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Abstract

Quality assurance in German hospitals has recently become a focus of policy makers
and practicioners alike, though its methods based on annual averages still lack in terms
of timeliness, accuracy, reliability and evaluability. When monitoring health care
performance, Statistical Process Monitoring (SPM) tools have been widely applied to
detect quality shifts. However, the use of SPM in German external quality assurance
(EQA) is not straightforward, as the monitored hospitals and processes differ greatly
and data collection is based not on a sequential, but quarterly rhythm.

This thesis first recapitulates the use of Bernoulli log-likelihood CUSUM charts. It then
introduces the construction of CUSUM charts for a predefined false signal probability and
evaluates the signalling characteristics of CUSUM charts for different monitoring schemes
and process scenarios within the framework of German EQA. This first part explains
the influence of case risk mix, hospital volume, baseline failure probability and risk-
adjustment on the construction and performance of CUSUM charts, and demonstrates
the application of CUSUM charts for fair performance evaluation of inpatient care.

Second, it introduces an extension to traditional CUSUM charts, the Group Sequential
CUSUM (GSCUSUM) chart. SPM methods rely on a regular and accurate data
collection, which is unrealistic for most hospital settings. The extension enables the use
of SPM methods when only aggregated binary performance over irregular time periods
and of irregular length are available. A simulation study proves that the GSCUSUM
chart is a good approximation for the standard CUSUM chart, and is equivalent to the
standard CUSUM chart when the full sequence is observed.

Finally, the CUSUM and GSCUSUM charts are applied to hospital performance data and
compared to traditional evaluation methods of the EQA. We find that control charts
support the interpretation of data to find performance changes in a much more clearer
way. Nevertheless, good data documentation is still of great importance.

Methods of SPM can be a valuable extension to standard performance evaluation in
German hospitals. Areas for which control charts may be first implemented could be
worst-case processes of high failure probability and the evaluation of process
interventions.
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1 Introduction

Experts believe that every year 400,000-800,000 patients experience a negligent adverse
event in German hospitals and 20,000 patients die a negligent death.1 Few of these cases
are attributable to individuals like Harold Shipman in the UK or Niels Högel in Germany,
who were convicted for murdering patients under their care. More frequently, causes for
negligent events are overworked and understaffed health care providers and systematic
process failures.2

Monitoring the performance of health care providers and while doing so also identifying
quality deficits is tremendously important to avoid morbidity and mortality inflicted by
the caring profession. In Germany, the first monitoring of inpatient care was introduced
inBavaria in the 1970s in form of perinatal registries. The monitoring of care was made
mandatory in the 1990s, but remained self-regulated until the 2000s.3 The focus of
these evaluations was the comparison among peers, and results were not shared with
the public. In the mid-2000s, the Federal Joint Committee (G-BA), which is the highest
decision-making body in the German Statutory Health Insurance (SHI) system, took over
responsibility and is since coordinating quality assurance measures. Quality assurance is
based on two procedures: an external quality assurance (EQA) and an internal quality
management. Both of these measures are mandatory for all inpatient and outpatient
health care providers treating patients under SHI.

In 2014, the next step was taken by the legislator to make the monitoring of quality of
care more transparent and rigorous by instructing the G-BA to found an independent,
scientific institute to conduct the quality assurance procedure, the Federal Institute for
Quality Assurance and Transparency in Healthcare (IQTIG). Two years later, the Law
reforming the Structures of Hospital Care (Krankenhausstrukturgesetz - KHSG) was
introduced.4 For the first time, this law allows the use of quality of care as a decisive
factor in hospital planning and hospital financing. Hospital departments, which do not
provide acceptable quality of care, can be shut down and quality deductions or quality
supplements can be used as punishments or stipulates to provide exceptional care.

All these changes demand a reliable and robust method to evaluate hospital performance
and to identify and signal quality deficits.
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1 Introduction

To this end, Statistical Process Monitoring (SPM) is a method worth investigating. It
was first introduced in the 1930s for the monitoring of industrial production processes,5∗

but has since been adapted and applied to different health care settings. Tools of SPM
have been used to monitor the performance of individual physicians8–15 and health care
providers,16–19 assess the learning curve of trainees,20–24 monitor infectious diseases,25–29

and to manage diseases in individuals.30,31

Being used and enhanced across all different disciplines and areas of research, SPM
instruments can be quite sophisticated and are a flexible tool to monitor the
performance of processes. Given the right circumstances, they return exact and timely
feedback on the quality of a process. The main objective of SPM is to quickly detect
process changes by classifying process performance as in-control or out-of-control,
using the graphical representation of control charts. When the process is in-control,
the performance varies naturally around an accepted failure probability, which is called
stable system of chance causes in the framework of SPM.32 These chance causes of
variability are unavoidable and part of the natural process. On the other hand, if other
causes of variability exists that are assignable and special, the process is deemed to be
out-of-control. In industrial production control, these causes may be malfunctioning
machines, human error or defective materials – in a hospital similar causes are
imaginable.

This thesis assesses the application of SPM methods to external quality assurance of
inpatient care in Germany and gives guidance on its application. While there have been
some projects of introducing SPM to monitor large health care settings, German EQA
poses unique challenges that are addressed in the main part of this thesis:

1. The EQA setting in Germany is very diverse. 205 performance indicators of 28
medical faculties were monitored in 2018. EQA is mandatory for all German
hospitals treating patients covered by the SHI, which vary vastly in case risk mix
and patient numbers. A method eligible to be used in EQA should be applicable to
most processes and be equally able to classify between acceptable and unacceptable
performance for fair performance evaluation. Questions arising from these specific
needs are addressed in Chapter 3. Parts of this chapter have been published in
our first paper.33

2. The data quality of German EQA is not optimal. The only available date value
is the date of documentation. Performance data are documented by the treating
physicians, who often document multiple procedures at the same time. Thus,
the inherent sequence of events is lost and simple SPM methods fail, as they

∗When introduced by Shewhart, he called the method Statistical Process Control (SPC), which is
still the more frequently used term. It is however mostly associated with simple control chart techniques,
and implies that some sort of control action is taking place. Woodall and others proposed to use the
term monitoring instead of control,6,7 which appropriatly reflects tools for continuous monitoring of a
process.
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rely on regular data transmission in order to guarantee consistent control chart
performance. Unfortunately, a better date variable (date of admission/discharge)
is not available due to data protection laws. An extension to standard SPM
methods is presented in Chapter 4, which deals with this kind of group-sequential
data.

Chapter 2 describes the EQA procedure as regulated by §136 SGB V and lays out
important shortcomings. Furthermore, it introduces the motivating example and the
data set that is the basis for all analyses in this thesis.

Chapter 5 compares all presented methods of SPM to the standard performance
evaluation of EQA. This comparison shows factors influencing the signalling of a
performance deficit and points out the importance of accurate data documentation.

Accompanying this thesis, software for constructing and evaluating CUSUM charts are
available as an open source R package on the Comprehensive R Archive Network
(CRAN)∗ and development versions are available on github.† This package has been
downloaded from CRAN more than 8000 times and we have received user reports from
practicioners around the world. In the Appendix, two instructional vignettes on how to
use the package to calculate and evaluate CUSUM control charts are presented
(Appendix 1). Furthermore, an R shiny app is provided that illustrates the use of
CUSUM charts.‡

∗https://CRAN.R-project.org/package=cusum
†https://github.com/lhubig/cusum
‡https://shiny.lenahubig.de/cusum
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2 External quality assurance of
inpatient care

2.1 External quality assurance procedure

01 02 03 04 05 06 07 08 09 10 11 12 01 02 03 04 05 06 07 08 09 10

Transmission Transmission Transmission Transmission Evaluation Structured Dialogue

Corrective TransmissionCorrective Transmission

Collection

Fig. 2.1. Timeline of quality assurance process following QSKH-RL.34 The reporting
period, for which data is collected, covers one year (grey box). Data is
transmitted towards the end of each quarter before 15 May, 15 August,
15 November, or 28 February (dark green boxes), and corrective data
transmissions (light green box) are possible throughout the year. Data
evaluation (red box) starts when the complete annual data is available,
followed by the Structured Dialogue (yellow box) if a quality deficit is
suspected.

External quality assurance (EQA) of inpatient care is regulated by the Directive on
Measures concerning the Quality Assurance in Hospitals (QSKH-RL).34 According to
the directive, each patient’s treatment is documented based on a set of nationally
standardised performance indicators for selected interventions. Performance data of the
previous quarter are submitted to the central agency, the IQTIG, and to the
corresponding state offices by 15 May, 15 August, 15 November and 28 February, and
corrective data transmissions from all quarters are accepted until 28 February (Figure
2.1).∗ Most of the performance data are submitted to the corresponding state offices,
who then transmit the data to the IQTIG (indirect procedure). Performance data for

∗This schedule was introduced for the reporting year of 2019. Previously, all performance data had
to be submitted annually by 28 February, with the possibility to submit data throughout the year for
interim analyses and data checks.
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2 External quality assurance of inpatient care

few interventions, which have small case numbers and few reporting hospitals, are
submitted directly to the IQTIG (direct procedure). The whole process is accompanied
via a data validation process to ensure the correct and complete documentation of
patients’ treatments.

Even though the directive requires a quarterly data transmission, the main analysis is
the annual evaluation of hospital performance data. Until 15 June of the following year,
hospitals must receive a performance evaluation, comparing their results to that of their
peers. Arithmetic deviations are defined for each performance indicator, where a target
range is set by the IQTIG.∗ Target ranges can either be defined by a fixed value (fixed
reference range), or by the distribution of the results of all providers (percentile reference
range). If the annual aggregated failure rate of a hospital and performance indicator is in
the target range, it is considered acceptable performance. The signalling of an arithmetic
deviation does not consider random error due to hospital volume.

If a deviation is detected, a so-called Structured Dialogue must be initiated. Here,
hospitals must provide a statement on the suspected cause of deviation. If the
explanation for deviation is not compelling, further interventions can be considered.
These range from meetings of experts with hospital representives, over audits of the
affected departments, to target agreements.

2.2 Challenges of external quality assurance

Quality in German hospitals as measured by the EQA has continuously improved over
the last years, which was the result of analyses carried out by Rückle and Stausberg,35

and Lack and Gerhardinger.36 Still, there is room for improvement, as the current EQA
procedure is lacking in four areas: timeliness, accuracy, statistical reliability and
evaluability.

Timeliness Although since 2019 the data ought to be transmitted quarterly and
quarterly results are provided to the hospitals, the main analysis and the basis for
intervention is still the annual evaluation. As a consequence, over a year may
pass before quality deficits are investigated and interventions are considered.

Accuracy By only evaluating aggregated performance data, more intricate
performance changes are missed. Trends, seasonal effects or general runs of
conflicting performance are masked by the average. Interventions may benefit
from identifying different patterns of performance changes, and targeted actions
may help prevent further deviations in following years.

∗German: Referenzbereich
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2.3 Motivating example

Statistical reliability Hospital volume is not automatically considered when assessing
hospital performance. The state offices and IQTIG provide additional statistical
analyses, which include confidence intervals for hospital results and enables the
additional evaluation of a statistical deviation. This evaluation is not mandatory
and not the decisive factor for a quality deficit. Furthermore, deviations that are
the result of one single event are excluded from further analyses and interventions.

Evaluability It is currently not possible to evaluate interventions over short periods of
time within the EQA framework. As a result, it is also not possible to attribute
positive long-term trends to particular interventions. Possible process
improvements can only be noticed when the data of the following year is
analysed, and then it is difficult to link the intervention to the positive change.

2.3 Motivating example

To illustrate the use of SPM, all methods were applied to real performance data from
Bavarian hospitals over the period of 2016–2017, made available by the Bavarian Agency
for Quality Assurance (BAQ). Three performance indicators were chosen as examples
to test and evaluate all methods (Table 2.1). The indicators were developed by the
IQTIG, and the exact specifications and algorithms are published on the website of the
IQTIG.37

Indicator 11724 is risk-adjusted and monitors in-hospital complication or death after
open carotid stenosis surgery. The risk model is estimated by the IQTIG and updated
annually.38 For 2016, the explanatory variables were given as: age, indication group,
preoperative degree of disability, and ASA classification. The hospital result is calculated
as the ratio of numbers of observed cases to numbers of expected cases. The patient
individual risk for complications or death ranged between 0.24% to 40.98%, with a
median of 0.83% across 2016 and 2017.

Indicator 51838 monitors the cases of surgically treated necrotizing enterocolitis in small
premature infants, a serious intestinal infection often leading to death.39 This indicator
was chosen because of its low failure rate: Only 1.07% cases were recorded in 2016 in
Bavarian hospitals.

Indicator 54030 measures the cases of extended preoperative stay of patients with
proximal femur fracture, which repeatedly has a high failure probability (20.35% in
2016). Rapid surgery within 24 hours may prevent severe complications such as
thrombosis, pulmonary embolism or pressure ulcers.40

Figure 2.2 and Figure 2.3 break down the individual hospital results for these indicators
in 2016 and 2017 by hospital volume, i.e. number of patients to which the respective

7



2 External quality assurance of inpatient care

Table 2.1: Performance indicators selected to illustrate and evaluate control chart
performance.

Number Risk-
adjusted

Description Target
range

(2016)

11724 Yes Carotid Stenosis Surgery: Ratio of observed
to expected cases of severe stroke or death under
open surgery

≤ 4.58

51838 No Neonatology: Surgically treated necrotizing
enterocolitis in small premature infants

not determined

54030 No Trauma surgery: Preoperative stay over 24
hours for patients with proximal femur fracture

≤ 15%

indicator is applicable. For indicator 11724 and 51838, many hospitals reported no cases,
and even large hospitals did not record a single case in a year. The figures also show that
the majority of hospital had less than 100 patients per year: In 2016 and 2017 hospitals
recorded on average 50 and 48 patients per performance indicator respectively.
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Fig. 2.2. Annual hospital results of the selected performance indicators displayed by
hospital volume in Bavaria, 2016.
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Fig. 2.3. Annual hospital results of the selected performance indicators displayed by
hospital volume in Bavaria, 2017.
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3 Cumulative Sum Chart

First introduced in 1954 by Page,41 Cumulative Sum (CUSUM) charts are one of the
most popular and at the same time sophisticated control charts.42–45 As there remains
confusion about the correct definition of CUSUM charts, this chapter starts with a short
differentiation between the Sequential Probability Ratio Test (SPRT), the Variable Life
Adjusted Display (VLAD), and subsequently the CUSUM.

Most frequently, CUSUM charts are confused with the Sequential Probability Ratio
Test (SPRT) introduced by Spiegelhalter et al.46 and Grigg et al.,47 which is also
known as the CUSUM log-likelihood ratio test. It looks similar to the CUSUM chart, as
in that it consists of two horizontal thresholds, but it is not restricted to non-negative or
non-positive values. The SPRT is a sequential hypothesis test, where the limits define
a threshold to reject the null hypothesis, and as long as the observations are inside the
limits, the hypothesis test is continued. Crossing a threshold signals the acceptance
of the alternative hypothesis, which reflects a deviating performance. Woodall et al.48

specifically discourage the use of the SPRT and the risk-adjusted SPRT, the RSPRT.
As these charts are building up credit during periods of good performance, they are less
likely to detect process deteriorations.

The CUSUM is also frequently confused with the Variable Life Adjusted Display
(VLAD), proposed by Lovegrove et al.,49 or Cumulative Risk-Adjusted Mortality
(CRAM), by Poloniecki et al.,50 that is also known as the E–O CUSUM. The VLAD
monitors the difference between the expected and observed events. Its main
disadvantage is the difficulty of setting control limits. In order to detect a performance
change, control limits of the VLAD have to widen over the monitoring period, due to
an increase in variance with greater sample size. Different methods have been proposed
to construct control limits, e.g. the Rocket Tail plot by Sherlaw-Johnson,51 or the
updated V-mask by Wittenberg et al.52 Additionally, like the SPRT, VLAD charts are
prone to build up credit, as they are not restricted to one side of zero. Because of this,
the exclusive use of VLAD charts is generally discouraged, and it is recommended to
show VLAD charts and generate signals via CUSUM statistics,53 as VLAD charts are
more easy to interpret than CUSUM charts.

We use the Tabular CUSUM chart as described by Montgomery in his introduction
to SPM and CUSUM charts,32 and by Steiner et al.54 Tabular CUSUM charts consist
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3 Cumulative Sum Chart

of the continuous monitoring of two CUSUM statistics, the upper C detecting process
deteriorations and the lower Z signalling process improvements, both of which are
restricted to one side of zero, enabling faster signalling in case of a process change as
no credit is building up.

We decided to evaluate and propose the tabular CUSUM chart for binary events due to
the following reasons:

• The CUSUM chart is optimal in detecting process changes.53,55,56

• The CUSUM chart is very flexible regarding different monitoring scenarios. It is
possible to construct CUSUM charts for different performance indicators, including
risk-adjusted and non-risk-adjusted, with different failure probabilities.54

• While the calculation and background of CUSUM charts may not be as simple as
the VLAD chart, interpretation of a signal is straightforward.
• With the CUSUM chart it is possible to detect process deteriorations as well as

process improvements. For now, only the CUSUM chart restricted to non-negative
values that is detecting process deteriorations is of interest, as current EQA is
focused on detecting quality deficits. Future application may of course benefit
from this feature of the CUSUM.
• CUSUM charts are quite popular and well researched. They are not a niche control

chart and there is a rich literature on applications and enhancements (see also
Section 3.1.4)

This Chapter introduces the general framework of CUSUM charts, its construction,
influencing factors and potential enhancements in Section 3.1. Section 3.2 presents a
simulation study which evaluates chart performance in form of a power analysis, and
Section 3.3 applies the presented methods to hospital performance data. Large parts of
this chapter (Secs. 3.1 through 3.5 with the exception of 3.1.4) have been published in
our first paper.33

3.1 Construction of CUSUM charts

3.1.1 Definition and graphical representation

CUSUM charts for monitoring process performance for a deterioration in quality over
time are defined as:41

Ct = max(0, Ct−1 +Wt), t = 1, 2, 3, ... (3.1)
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3.1 Construction of CUSUM charts

The dichotomous outcome of observation y equals 0 for every success and 1 for every
adverse event. Observations are plotted in sequence of their temporal occurrence.
Depending on the outcome, the CUSUM decreases or remains at zero for every
success, and increases for every adverse event. The magnitudes of increase and
decrease are denoted by CUSUM weights Wt. Following Steiner et al. the weights Wt

for the Standard CUSUM (ST-CUSUM) are:54

Wt =


log

(1− cA

1− c0

)
if yt = 0

log
(
cA

c0

)
if yt = 1

, (3.2)

where c0 is the baseline failure probability and cA the smallest unacceptable failure
probability, which is the change in performance that is detected. CUSUM weights may
be individualised for patient risk in the risk-adjusted CUSUM (RA-CUSUM). Here, the
weights are:54

Wt =


log

(
1

1− pt +RApt

)
if yt = 0

log
(

RA

1− pt +RApt

)
if yt = 1

, (3.3)

where pt represents the individual patient risk score. The baseline failure probability is
no longer constant, but tailored to patients’ risk. The risk-adjusted CUSUM monitors
for a change in risk specified by an odds ratio change from R0 to RA, with RA greater
than one indicating process deteriorations.

The hereafter ommitted CUSUM chart to monitor process improvements is constructed
on the same prinicple. It differs from CUSUM charts detecting process deterioriations
only by being mirrored around zero, and hence restricted to non-positive values: Zt =
min(0, Zt−1 +Wt).

The Tabular CUSUM is usually presented in a CUSUM chart as shown in Figure 3.1,
where either both CUSUM statistics, C and Z, or only one, is plotted. CUSUM statistics
are plotted in their sequence of observations, as well as the horizontal control limits, that
signal a performance change.

3.1.2 Factors influencing CUSUM chart performance

Several factors influence the characteristics and performance of CUSUM charts. Some
factors may be regarded as control switches of the monitoring schemes, as they are
configurable and directly influence control charts. Other factors are mostly fixed by the
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3 Cumulative Sum Chart

Fig. 3.1. Example of Tabular CUSUM chart for simulated data, where the first half
of the process is in-control, and the second half of the process is out-of-
control. The CUSUM statistic C ≥ 0 signals negative performance changes
(increase in failure rate ). The lower CUSUM statistic Z ≤ 0 signals positive
performance changes (decrease in failure rate). Blue horizontal lines show the
control limits, crossing of which generates a signal (orange/green stars).

process that is monitored. Most of these factors are also relevant when applying other
types of performance monitoring or SPM. Additionally, other types of variations exist
that may influence the performance of CUSUM charts, but they are not accounted for.
These may be unknown or random factors that are not measured or difficult to quantify,
e.g. the quality of the data.

Performance indicator: Performance indicators quantify a process output, indicating
quality of care. For each performance indicator, the subset of patients covered
by this indicator is specified. The performance indicator establishes the baseline
failure probability c0 or the risk-adjustment model for the patients’ risk scores pt.
Additionally, the performance indicator should be considered when setting up a
monitoring scheme due to the implications of the process at hand on detecting
performance deteriorations.

Hospital Volume: Hospital volume is here defined as the annual number of patients
per performance indicator and hospital. It is a major source of variation between
hospitals and possibly also within hospitals across years, and it is considered for
fair performance evaluation in the control limit simulation as the sample size n.
As the hospital volume directly influences the control limit, it has a considerable
effect on CUSUM performance.

Case risk mix: Adjusting for individual patient risk is necessary when comparing
outcomes, but there is often some uncertainty about the validity of the risk
adjustment model. When possible, previous experience of the process can be
used to estimate the case risk distribution. The estimation of case risk mix is
used in the simulation of the control limit, where outcome data is simulated on
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3.1 Construction of CUSUM charts

the estimated risk population.
Detection level δ: Detectable changes in performance are determined by an odds ratio

multiplier δ. In the ST-CUSUM, this change of δ defines the alternative failure
probability cA, which influences the CUSUM weights Wt in Eq. 3.2. For the RA-
CUSUM, δ is equal to RA in Eq. 3.3. Values of δ greater than one detect process
deteriorations, while values less than one detect process improvements.

False Signal Probability: The False Signal Probability (FSP) is defined as the type 1
error of the CUSUM chart. It is the probability of a CUSUM signal within the
monitoring of a process when the process is truly in control. Here it is applied as
the defining parameter to construct CUSUM charts in the simulation of control
limits.

3.1.3 Setting the CUSUM control limit

The CUSUM chart signals a performance change when the CUSUM statistic exceeds a
pre-defined control limit. The process should then be investigated for quality deficits
and monitoring can restart by resetting the current CUSUM statistic.32

Shewhart proposed setting control limits for his control chart, the x̄-chart, to 3σ, where
σ is the standard deviation of an in-control process. This method is still used in CUSUM
chart,19,57 but depends on exact estimation of previous performance.

Most commonly, control limits are constructed based on the Average Run Length
(ARL),12,58 which is the average time to first signal.∗ First, an appropriate in-control
ARL (IC-ARL) is chosen, which is the ARL when the monitored process performance is
as expected. Then, one estimates the IC-ARL of possible control limits and iteratively
identifies the control limit that results in the desired IC-ARL. One can approximate the
IC-ARL using Markov-Chain approximation, as proposed by Brook and Evans,60 and
improved by Knoth et al. for the RA-CUSUM.61

Setting the control limit based on a desired ARL has the following issues: The concept
of ARL is difficult to understand and adapt for non-specialists of SPM. One has to
decide how long a process is expected to run on average and deduce what kind of ARL
is appropriate. If the ARL is used, there is no direct estimate of a false signal probability,
a parameter essential for estimating the signalling characteristics of a control chart. The
use of ARL is further hindered by the exponentially skewed distribution of control chart
run lengths. This results in more short run lengths than expected and a higher probability
for a false signal.

∗Sometimes, one might also come across the Average Number of Observations to Signal (ANOS),59

which is the appropriate term for ARL when observations are not taken regularly. The procedure for
both methods is the same.
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3 Cumulative Sum Chart

Instead of using the ARL, we decided to construct control limits based on FSP directly.
Its interpretation is intuitive and clinicians are already familiar with the concept of false
positive from diagnostic tests. The control limit is set by calculating possible CUSUM
statistics for a process of a specific failure probability and estimating the probability for
crossing a control limit.

As the signal probability approaches 100% with increasing run length, these parameters
have to be estimated for a fixed sample size (n). For very small sample sizes, it is
possible to estimate the exact FSP of possible control limits, by calculating all possible
CUSUM paths. For larger sample sizes, we propose the following algorithm to select a
control limit that will result in a specific FSP:33

1. Simulate a sufficiently large number of in-control sequential outcome data for
t = 1, 2, . . . , n, with baseline failure probability or, if applicable, individual risk
probabilities drawn from the population.

2. Unrestricted CUSUM runs are calculated for these simulated sequences. This
means the CUSUM charts do not include a control limit and are not reset.

3. The maximum CUSUM statistics (Ct) are collected from each CUSUM run.
4. The desired control limit for a sequence of size n is the (1 − FSP)-percentile of

the maximum CUSUM statistics.

3.1.4 CUSUM Chart enhancements

Let us at this point deviate from Ref. [33] to enumerate some additional CUSUM
Chart enhancements, which may be of interest and could be applied to individualise or
improve the proposed basic design. They range from simple extensions, which are
already available, to more complex designs, which would need further research before
implementing them in German EQA.

Fast Initial Response Scheme At the beginning of monitoring, the state of
performance is unknown. Starting the CUSUM statistic at C0 > 0 may result in
fast signals if the process is out-of-control. If the process however is truly in
control, the CUSUM statistics likely converge to zero.62 The fast initial response
results in more early signals, and results in a higher false signal probability. If
used, a signal at the beginning of monitoring should be treated more carefully.

Supplementary Control Limits Supplementary signalling rules were already proposed
in the Western Electric Handbook in the year 1956 for the Shewhart x̄-chart, which
are unnatural patterns of deviations:63

• One data points falls beyond the 3σ-control limit
• Two out of three consecutive points fall beyond the 2σ-control limit
• Four out of five consecutive points fall beyond the 1σ-control limit
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3.2 Performance of CUSUM charts

Following these ideas, additional control limits may be added to the CUSUM chart,
warning of the possibility of a process change. This provides the ability to react
more quickly and prevent a true CUSUM signal. Additional signalling rules however
increase the probability for a false signal, hence these signals should naturally be
treated less seriously than signals resulting from the original CUSUM control limits.

Dynamic Probability Control Limits (DPCL) DPCL for the RA-CUSUM chart were
introduced by Zhang et al. as a flexible alternative to constant control limits.64

They are able to control the false signal probability during monitoring and adjust
for case risk mix at every observation, which minimises the risk of false estimation
of case risk mix from Phase I. They do however require constant calculation of
risk mix and are complex to construct and interpret.

Multivariate Monitoring Monitoring several performance indicators simultaneously
might beg the question if there is additional information gained by taking the
relationship between indicators into account. Tang et al. proposed a method of
SPM that allows the monitoring of more than two outcomes,65 and a review on
different multivariate SPM methods was provided by Bersimis et al.66 These
approaches might be interesting for performance indicators of the EQA, which
can be summarised in a index, or which measure similar things, e.g. preoperative
stay for femur fracture and preoperative stay for hip or knee endoprothesis.

Monitoring of Multiple Data Streams When monitoring multiple data streams, the
risk of a false discovery increases. Previous work by Benjamini and Kling67 and by
Grigg and Spiegelhalter68 introduced controlling the False Discovery Rate (FDR)
by applying strategies from multiple testing to normally distributed data, and Mei
proposed a scalable global monitoring scheme for concurrent data streams.69 A
method to control the FDR of Bernoulli log-likelihood CUSUM chart is currently
not available.

3.2 Performance of CUSUM charts

3.2.1 Simulation design

Returning to Ref. [33], we simulated hospital performance data to assess the effect
of various influencing factors on the False Signal Probability (FSP) and True Signal
Probability (TSP) of ST-CUSUM and RA-CUSUM charts. Figure 3.2 illustrates how the
described factor influence the construction and simulation of CUSUM charts.

CUSUM runs are simulated for the three previously described performance indicators
from EQA. The baseline failure probabilities for the non-risk-adjusted performance
indicators were set to the national overall average failure rate of 2016 and 2017
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Hospital
Volume

Failure
Probability

False Signal
ProbabilityCase Risk MixDetection Level

Simulation of
Control Limit

h

Simulation of
CUSUM runs

Performance
Level

ts

Fig. 3.2. Factors influencing simulation of control limits (h) and time to signal (ts) in
CUSUM runs simulation.

(51838: c0 = 1.25%; 54030: c0 = 19.21%). For the risk-adjusted indicator 11724, we
re-sampled risk scores with replacement from the total hospital population of 2016 and
2017. Additionally, we created artificial subpopulations based on case risk mix. For a
high risk population, risk scores were sampled from the risk population of the upper
25th percentile (≥ 1.04%). A low risk population was considered with risk scores
sampled from the risk population of the lower 25th percentile (≤ 0.56%).

Three hospital volumes were derived for small, medium and large hospitals. The
volume was estimated by taking the mean of the hospital volume percentiles across all
performance indicators. The mean of hospitals below the 25th percentile (ns = 7) was
used as an estimate for small hospitals, the mean between the 25th and 75th percentile
(nm = 42) for medium hospitals, and the mean above the 75th percentile (nl = 105)
for large hospitals.

First, 100,000 in-control CUSUM runs were simulated to estimate control limits h (Figure
3.2). We simulated control limits for FSP of 0.1%, 0.5%, 1% and 5%, in accordance
with typical values of type 1 error rates. The CUSUM was set to detect deteriorations
with δ > 1. The detection level of a doubling (2) of odds was considered as well as one
step below (1.5) and one (2.5) and two (3) steps above.

In a second step, 2,000 in-control and out-of-control CUSUM runs were simulated to
assess how well the specific CUSUM chart differentiates between good and poor
performance. From these runs, we collected the run length to signal ts, where the
CUSUM statistic first exceeds the control limit. Finally, the signal rates are calculated
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3.3 Application of CUSUM charts

as the proportion of CUSUM runs, where the run length to signal was smaller than the
hospital volume.

3.2.2 Simulation results

For every hospital volume, performance indicator and risk population, sixteen control
charts were constructed for varying FSP and detection levels δ. Control limits were
wider when FSP was small, detection level was high, baseline failure probability or case
risk mix was high and hospital volume was large.

Figures 3.3 (a) and 3.4 (a) show the percentage of in-control CUSUM runs that signalled
a process change as signal rates. Here, performance was as expected and signal rates
should not exceed the predefined FSP of the control chart. Mostly, signal rates of in-
control simulations were close to the desired FSP, demonstrating successful simulation
of control limits. For two scenarios, the achieved in-control signal rate deviated from
the desired FSP: For small hospital volumes of indicator 51838 (Figure 3.3 (a), bottom
left), the CUSUM limit equals the CUSUM weight of an adverse event, which results in
a higher false signal rate of ≈ 15%. For small hospital volume and low risk population
of indicator 11724 (Figure 3.4 (a), top left), the control limit was set to zero, and the
RA-CUSUM signalled at every observation. Hence, the in-control and out-of-control
signal rates for this scenario were 100%. For these scenarios the exact estimation of
FSP failed, because there are only finitely many possible CUSUM control limits due to
the discrete nature of the CUSUM chart. When dealing with scenarios that require a
careful estimation of tight control limits, it may be reasonable to chose a lower FSP and
in turn also accept a lower TSP.

Signal rates for out-of-control CUSUM runs (Figures 3.3 (b), 3.4 (b)) represent the
correctly identified deteriorations and ideally should be close to 100%. Large hospital
volumes and higher failure probability resulted in a higher TSP. Control chart of indicator
54030 achieved 99.25% for the highest FSP and detection level (Figure 3.3 (b), top
right). Yet, most CUSUM runs had smaller TSP; particularly CUSUM runs for small
hospital volumes did not trigger a signal in the majority of CUSUM runs within one
observation period.

3.3 Application of CUSUM charts

CUSUM charts with FSP-simulated control limits are applied to real data from EQA of
inpatient care from the years 2016 and 2017 provided by the Bavarian Agency of Quality
Assurance (BAQ).
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Fig. 3.3. Percentage of ST-CUSUM charts signalling a process deterioration (signal
rate) from 2,000 simulated in-control (top) and out-of-control (bottom) ST-
CUSUM runs. The desired FSP is marked by black symbols.
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Fig. 3.4. Percentage of RA-CUSUM charts signalling a process deterioration (signal
rate) from 2,000 simulated in-control (top) and out-of-control (bottom) for
risk-adjusted indicator 11724. RA-CUSUM runs were simulated for mixed,
low and high risk populations. The desired FSP is marked by black symbols.
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Fig. 3.5. Control limits for hospital performance data of EQA in Bavaria. Control
limits were estimated on performance data of 2016 and simulated for δ = 2
and FSP=5%.

Performance data from 2016 is used to estimate baseline failure probability and case risk
mix to construct CUSUM charts for performance data of 2017, though the monitoring
period extends from 1 March 2017 to 28 February 2018, becauce documentation and
transmission deadline is 28 February for the previous year with the reporting year shifted
by two months.

CUSUM charts were constructed by simulating the control limit for a FSP of 5%. We
set the detection level to δ = 2 and constructed control charts for hospitals with hospital
volume > 1 in 2016 and 2017.

We initiated all CUSUM runs with C0 = 0 and reset Ct to zero after every signal, which
is applicable if an investigation after a signal takes place and appropriately identifies
underlying issues.32

Simulated control limits of ST-CUSUM charts for indicators 54030 and 51838 increased
with increasing hospital volume to ensure a constant FSP during one observation period
(Figure 3.5). Control limits of the RA-CUSUM chart for indicator 11724 increased as
well, but adjustment of the different case risk mixes influenced variability of the control
limits.

Of the 261 hospitals’ CUSUM charts, 34 processes triggered a signal and were identified
as out-of-control. Overall, 86.21% of the hospitals were classified as in-control (Table
3.1).

22



3.3 Application of CUSUM charts

0

1

2

3

0 10 20

Consecutive events (t)

C
U

S
U

M
t

IHV2016 = 45 ;  IHV2017 = 27

(a) Small hospital #69: No CUSUM Signal

0

1

2

3

0 20 40

Consecutive events (t)

C
U

S
U

M
t

IHV2016 = 41 ;  IHV2017 = 54

(c) Medium hospital #45: No CUSUM Signal

0

1

2

3

4

0 25 50 75 100

Consecutive events (t)

C
U

S
U

M
t

IHV2016 = 125 ;  IHV2017 = 119

(e) Large hospital #102: No CUSUM Signal

0.0

0.5

1.0

1.5

2.0

0 5 10 15 20

Consecutive events (t)

C
U

S
U

M
t

IHV2016 = 14 ;  IHV2017 = 23

(b) Small hospital #136: CUSUM Signal

0.0

0.5

1.0

1.5

2.0

0 10 20 30

Consecutive events (t)

C
U

S
U

M
t

IHV2016 = 17 ;  IHV2017 = 31

(d) Medium hospital #113: CUSUM Signal

0

1

2

3

4

0 25 50 75 100

Consecutive events (t)

C
U

S
U

M
t

IHV2016 = 132 ;  IHV2017 = 104

(f) Large hospital #175: CUSUM Signal

Fig. 3.6. Trauma Surgery 54030. Selected ST-CUSUM plots for individual hospital
annual performance data of 2017. IHV denotes indicator specific hospital
volume.

Table 3.1: Percentage of hospitals with CUSUM signals per performance indicator in
Bavaria in 2017. Two of the control charts for indicator 11724 had to be
discarded due to incorrect control limit (Signals: NA).

54030 51838 11724
Signals (n = 163) (n = 34) (n = 64)

0 85.89% 85.29% 88.00%
1 9.82% 14.71% 9.00%
2 1.84% 0.00% 0.00%
3+ 2.45% 0.00% 0.00%
NA 0.00% 0.00% 3.00%
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Fig. 3.7. Neonatology 51838. Selected ST-CUSUM plots for individual hospital
annual performance data of 2017. IHV denotes indicator specific hospital
volume.
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Fig. 3.8. Carotid Stenosis 11724.Selected RA-CUSUM plots for individual hospital
annual performance data of 2017. IHV denotes indicator specific hospital
volume.
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As the positive CUSUM weights Wt(y = 0), which decrease the CUSUM, were smaller
for indicators 51838 and 11724 than for indicator 54030, adverse events were more
difficult to compensate by good performance (e.g. Figure 3.8 (f)). For this reason,
in-control CUSUM charts of indicators 51838 and 11724 generally allowed for no more
than two adverse events. Still, out-of-control processes of indicators 51838 and 11724
had at most one signal.

CUSUM charts of indicator 54030 triggered multiple signals in several hospital processes.
These hospitals most likely had a persistent quality deficit for this indicator and were
not able to control the process during the entire monitoring period. For some hospital
processes, it became clear that the quality deficit was only at one specific time due to
a clustering of adverse events (Figure 3.6 (f)). These insights help to locate causes of
quality deficits and lead subsequent investigations.

The hospital example also illustrates the influence of hospital volume on control charts.
Larger hospital volume lead to wider control limits, allowing more adverse events within
a year. Large hospital #102 (Figure 3.6 (e)) was categorised as in-control for indicator
54030, although a third of the observations were adverse events. Hospital #113 (Figure
3.6 (d)) had 29% adverse events for indicator 54030 and triggered a signal. This is
partly due to the shorter sequence of adverse events and the smaller hospital volume.
However, this hospital also had a substantial increase in volume from 2016 to 2017, so
that the control limit was probably lower than necessary.

3.4 Concluding remarks

Controlling the FSP worked well for sufficiently large hospital volumes and high baseline
failure probability. In monitoring schemes of small hospital volumes, it often remains
impossible to adjust the control limit to fit a specific FSP, as these control charts are
not as flexible as control charts for larger volumes.

Small hospitals present an issue in SPM, as corresponding CUSUM charts are difficult
to construct and evaluate. In our simulation, it is quite possible that no failure was
simulated for small hospital volume processes (ns = 7), especially for indicators with a
small failure probability such as for indicator 51838 (c0 = 1.25%). Detecting a doubling
or tripling of odds with a small failure probability and small hospital volume is difficult,
as even with doubled or tripled odds, the probability to observe no adverse event is still
large. Taking this example, 92% of ns = 7 observations show no adverse events at
failure probability c0 compared to 84% at doubled odds – i.e., in 84% of all possible
sets of ns = 7 patients, no difference between the in-control and out-of-control state is
observable. As most control charts required at least two adverse events to signal, signals
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became very unlikely. The hospitals’ CUSUM charts in the example showed that small
hospitals may still benefit from an individual investigation based on the CUSUM chart as
differences in performance are fairly well illustrated. Hospital volume may be increased
by extending the data to cover multiple years, if the achievable FSP is not acceptable.

Current German regulations require that in cases of an extremely adverse clinical outcome
written explanations have to be furnished by the medical staff in every such instance.
This strategy does not rule out the use of control charts for indicators with low baseline
failure probability and we suggest that individual investigations of adverse events should
accompany CUSUM charts for these indicators. The monitoring of rare events is a
common issue in SPM and Woodall and Driscoll gave a comprehensive review on this
topic.70 In this context, our example (c0 = 1.25%) is not yet regarded as rare, as
the methods discussed here consider failure probabilities that are ten or hundred times
smaller.

As CUSUM charts are based on performance data of the previous year, they may be
subject to uncertainty of these estimations. Monitoring across different years presents
the additional challenge that specifications of performance indicators may change due
to clinical recommendations of national advisory panels, and thus indicators may not
always be comparable across different monitoring periods. Additionally, hospital volume
and case risk mix vary across years, which affects the signal characteristics of the
CUSUM scheme. It has been shown that wrong expectations of risk mix or wrong
model specifications can have a significant impact on CUSUM runs .61,71,72

In the example, we reset the CUSUM after every signal to gain a sense of frequency of
signals. However, according to the theoretical background of SPM in industrial process
contro, this is only appropriate if the process is investigated and brought back in control,
which is naturally more complex in hospitals. Additionally, when the CUSUM restarts
with the same control limit as before, the FSP and TSP may be lower than anticipated,
as the hospital volume decreases. If resetting the CUSUM to zero is not reasonable,
resetting it to any value between zero and the control limit is also an option. This
was already proposed by Lucas and Crosier in 1982,62 and results in faster subsequent
signals.
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4 Group Sequential Cumulative Sum
Chart

In the quality control of industrial production process, samples are taken regularly during
the production process to inspect quality. In health care settings, it cannot be expected
that a regular weekly sampling of performance data results in similar sample size due to
patient fluctuation in the weekly hospital volume. Additionally, the exact sequence of
patients is unknown, as patients are treated simultaneously or switch sequence during
their inpatient stay.

As a result, the implementation of standard SPM methods is greatly hindered in
common hospital settings. Standard SPM tools rely on meticulous data collection with
two options: Observing the whole sequence of events, where each points reflects one
observation (n = 1), or collecting regular samples of equal size (n > 1), to guarantee a
consistent control chart performance.32 The data set described and used here consists
of b irregular samples i = 1, 2, . . . , b of size ni ≥ 1.

We introduce the Group Sequential CUSUM (GSCUSUM) chart for processes, where only
aggregated binary performance data of unequal sample size are available. This approach
can also be applied to other control charts, like the VLAD,49,50 or the Exponentially
Weighted Moving Average (EWMA).73 It is also possible to extend the GSCUSUM to
risk-adjustment or other enhancements described in Section 3.1.4.

This chapter provides details on the construction of GSCUSUM charts and evaluates
their performance. Section 4.1 explains the construction for non-risk-adjusted as well as
risk-adjusted indicators. Section 4.2 assesses the performance of GSCUSUM charts in a
simulation study. In Section 4.3 the GSCUSUM chart is applied to performance data of
EQA.

4.1 Construction of Group Sequential CUSUM charts

Consider the simulated data in Table 4.1. 50 observations, of which 10 are events or
failures, are grouped in 10 samples of unequal size.
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Table 4.1: Simulated group-sequential example data. The data consists of sequential
blocks b, that contain n observations, of which m are events (y = 1).

Block Number of observations Number of events Cumulative n
b n m

1 4 0 4
2 5 2 9
3 6 0 15
4 8 1 23
5 5 2 28
6 4 0 32
7 5 0 37
8 1 1 38
9 7 3 45

10 5 1 50

For this data set, common SPM methods fail because of vastly different sample sizes.
Particular sample sizes of size n = 1 (Block b = 8) greatly distort the result.

First, we describe the estimation of GSCUSUM charts based on data from the example
(Table 4.1), which is also illustrated in Figure 4.1. At the end, we present the general
algorithm to construct GSCUSUM and risk-adjusted GSCUSUM (RA-GSCUSUM) charts.
Software to calculate GSCUSUM and RA-GSCUSUM charts is provided in the R package
cusum74 and presented in the Appendix 1.

The GSCUSUM charts permutes through possible sequences of observations, in order to
estimate possible CUSUM paths, considering the uncertainty of he unobserved sequence
of observation. In our example, the GSCUSUM initialises with C0 = 0. Using data
from the first block, new sequences are created by permuting the four observations. As
the first block has no events, there is only one possible sequence of observations: The
CUSUM statistic remains at zero.

The data of the second block, which ends at t = 9, are used in a similar way. Here we
have five observations, of which two are events. Thus there are ten possible sequences
and ten possible CUSUM paths (Figure 4.1).

For the third block, there are five possible CUSUM paths to continue. From each of these
path, the last CUSUM statistic is used to initialise CUSUM paths, and new sequences
are generated to estimate new possible CUSUM distributions. All following blocks are
handled in a similar iterative way: the final CUSUM distribution of the previous block
is used to calculate new possible CUSUM paths and estimate distributions of CUSUM
statistics.

The general algorithm to construct GSCUSUM charts is as follows:
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Fig. 4.1. First three data blocks of example Table 4.1. Data blocks are coloured in
alternating yellow and blue.
The top plot shows all possible CUSUM paths that result from generated new
sequences.The bottom plot is the resulting CUSUM distribution, illustrated
in a GSCUSUM chart. The main black path represents the median of the
CUSUM distribution, and the middle 50%, middle 90% and total range are
shaded in grey.
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1. First block data Yi for i = 1, . . . , t
2. Repeat multiple times:

a) Shuffle sequence of data: Y ∗i
b) Initialise CUSUM with C0 = 0
c) Calculate CUSUM statistics on Y ∗i : C∗Yi

d) Estimate distribution of CUSUM statistics
3. Second block data Yj for j = t+ 1, . . . t′

4. Repeat for all Ct:
a) Repeat multiple times:

i. Shuffle sequence of data: Y ∗j
ii. Initialise CUSUM with Ct

iii. Calculate CUSUM statistics on Y ∗j : C∗Yj

b) Estimate distribution of CUSUM statistics
5. Repeat 4. for all following blocks, always considering all final CUSUM statistics

of the previous block as initialisation of the CUSUM

This algorithm can be used to construct non-risk-adjusted GSCUSUM and risk-adjusted
GSCUSUM (RA-GSCUSUM) charts. In the risk-adjusted case, performance data include
individual patient risks for adverse event pi ∈ [0, 1], that are considered when estimating
the RA-CUSUM statistic as described in Chapter 3. Notice that the possible number
of different sequences increases in the risk-adjusted case. Each observation has to be
permuted regardless of the outcomes in a block, as each RA-CUSUM weight is individual
and each sequence of observation can result in a different RA-CUSUM path. The number
of possible sequences is thus the factorial of the number observations in one block, and
it may not be feasible to permute through all possible sequences beyond a certain block
size.

Yet oftentimes, the GSCUSUM is simplified. When all CUSUM weights within a block
are the same, the sequence of observations is irrelevant. When no adverse events
occur, the CUSUM distribution returns to zero, mimicking a restart of the CUSUM and
all initialisations of the GSCUSUM at the beginning of a new data block are zero.
Additionally, when data blocks are small, the GSCUSUM converges to the traditional
CUSUM, as expected.

In CUSUM charts, a signal is triggered when the CUSUM statistic crosses the control
limit. Instead of only one CUSUM statistic per observation, the GSCUSUM gives all
possible CUSUM statistics, so the simple decision rule of the traditional CUSUM chart
fails. Still, the GSCUSUM may return a probability of signalling for every point in time
by aggregating all CUSUM statistics and estimating the rate γ of statistics greater than
the control limit. We use this rate γ as a benchmark when assessing GSCUSUM chart
performance, as we need a definite signal of good or poor performance. Smaller values

32



4.2 Performance of Group Sequential CUSUM charts

of γ return more false signals and larger γ may miss important changes. To balance the
risk of false signals and false negatives we set γ to 0.5.

Nevertheless, we abstain from plotting signals in the GSCUSUM plots, as these signals are
not inherent to the GSCUSUM chart and the process evaluation is not as straightforward
as a standard signal might suggest.

4.2 Performance of Group Sequential CUSUM charts

The performance of GSCUSUM charts was evaluated in a simulation study and compared
to the traditional CUSUM chart. We analysed three scenarios:

1. The fully observed CUSUM chart as reference
2. The outlier CUSUM chart, which groups all adverse events yi = 1 as close as the

data blocks allow together in order to simulate a worst case scenario
3. The GSCUSUM chart using the information of grouped outcomes in blocks of

different sample size

Data sets for hospital volumes between 10 and 100 were simulated, denoting the number
of patients documented in a hospital during a monitoring period. Data blocks were
generated by simulating the outcomes in groups of unequal sample sizes. Data quality
was simulated for three levels: bad, fair and good data quality. The number of blocks nb

per process was used as a measure of data quality, e.g. many blocks imply rather small
blocks overall and thus better data quality; with few blocks the opposite is implied. The
number of blocks nb were defined in relation to hospital volume n:

• Bad data quality: nb = n ∗ 0.75
• Fair data quality: nb = n ∗ 0.5
• Good data quality: nb = n ∗ 0.25

In-control performance was simulated with an odds-multiplier of 1 and out-of-control
performance was simulated with an odds-multiplier of 2. All charts were set up to detect
a performance change from c0 = 20.35% to cA = 32.22%, which corresponds to a
doubling of odds for failure(δ = 2). This baseline failure probability c0 is deduced from
the performance indicator 54030 of the motivating example and is the Bavarian average
failure rate of all hospitals in the year 2016.

The GSCUSUM charts’ control limits were set like the traditional CUSUM control limits
to a false signal probability of 5%. A total of 10’000 data sets were generated per scenario
on which the CUSUM, the outlier CUSUM and the GSCUSUM were calculated.

Data were simulated using R 3.6.0.75
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Fig. 4.2. Performance of (3) GSCUSUM compared to (1) CUSUM and (2) Outlier
CUSUM chart. The top plots show deviations from signals of reference
CUSUM to GSCUSUM and outlier CUSUM (10’000 random results per
method are plotted; white points refer to average value). Bottom plot show
signal rates of in- and out-of-control performance (dashed line refers to desired
false signal probability level of 5%).

The primary estimands of the simulation study were the signal probabilities of the in-
control and in the out-of-control processes. Additional, the deviation from the reference
CUSUM was estimated for the outlier and the GSCUSUM in the form of deviation from
a signal at every observation. While the signal rate indicates the signalling of control
charts over the whole run, the signal deviation is a marker for delayed or early signals
that are a result of the loss of information about the true sequence.

Figure 4.2 (a) displays the deviation in signalling time of the outlier-CUSUM and
GSCUSUM to the reference CUSUM. Signal deviation was greater in the out-of-control
scenarios than the in-control scenarios. For all cases, the outlier-CUSUM had a greater
deviation in signalling time than the GSCUSUM. Hospital volume does not seem to
influence the deviation greatly. As expected, the effects of the different analysis
methods became insignificant with better, i.e. more continuous, data documentation.
Signal probabilities of the in- and out-of-control processes are shown in Figure 4.2 (b).
Signalling rates of the GSCUSUM were close to the true CUSUM; in parts the
GSCUSUM was more conservative than the reference CUSUM. In contrast, the outlier
CUSUM signalled vastly more when data quality was worse.
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4.3 Application of Group Sequential CUSUM charts

We illustrate the characteristics of the GSCUSUM with hospital performance data of
the EQA in Bavaria, Germany. The non-risk-adjusted GSCUSUM is shown on indicator
54030, and the risk-adjusted GSCUSUM on indicator 11724, as introduced before.

Baseline failure probability, case risk mix and hospital volumes were estimated on data
from 2016. CUSUM and GSCUSUM charts were constructed to detect a doubling of odds
from the Bavarian average of all hospitals in the year 2016 (c0 = 20.35%; cA = 32.22%).
For the risk-adjusted example, case risk mix was estimated individually for each hospital
on their data from 2016. Control limits were set to a false signal probability of 5%. We
assumed monitoring began for 2017.

Data were grouped in samples based on the date of documentation recorded in the data
set. Additionally, we constructed traditional CUSUM charts where patients with the same
date of documentation were randomly rearranged in order to receive a pseudo-sequence
of observations.

Exemplary control charts of three hospital processes for the two performance indicators
illustrate the GSCUSUM (Figure 4.3) and RA-GSCUSUM (Figure 4.4). Figure 4.3 (a)
shows an example of an out-of-control process. The pseudo-sequential CUSUM charts
as well as the GSCUSUM charts classified the process as out of control. In Figure 4.4
(a), the RA-CUSUM signals, and also the median of the RA-CUSUM distribution in
the RA-GSCUSUM chart crossed the control limit. CUSUM statistics of the second
examples (Figure 4.3 (b) and Figure 4.4 (b)) did not exceed the control limit, and also
the GSCUSUM did not give cause to suspect poor performance.

In Example 3 the interpretation of the charts differs. The CUSUM chart signalled at
observation 86 (Figure 4.3 (c)), though the median of the GSCUSUM did not cross the
control limit at this point. In the later run one could have suspected a process change,
though the statistic seemed to recede below the control limit at the end of the monitoring
period. In this case it remains unclear if a signal was warranted at observation 86 or if
at this point no deviation had occurred. The RA-GSCUSUM of Example 3 (Figure 4.4
(c)) clearly shows that the signal in the RA-CUSUM chart was the result of an outlier,
as the majority of sequences did not cross the control limit.

4.4 Concluding remarks

The GSCUSUM chart proposed here poses a valuable and practical extension to the
standard Bernoulli log-likelihood CUSUM chart to more realistic hospital performance
data settings. GSCUSUM is a good approximation of the true CUSUM statistic when
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Fig. 4.3. Three examples of pseudo-sequence CUSUM (top) and GSCUSUM (bottom)
for hospital performance data of Bavarian external quality assurance in 2017
(Indicator 54030). Data blocks are coloured in alternating order. In the
GSCUSUM plots, the median of the CUSUM distribution is shown as the
main path, shaded areas present middle 50%, middle 90% and total range.
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Fig. 4.4. Three examples of pseudo-sequence RA-CUSUM (top) and RA-GSCUSUM
(bottom) for hospital performance data of Bavarian external quality assurance
in 2017 (Indicator 11724). Data blocks are coloured in alternating order. In
the RA-GSCUSUM plots, the median of the RA-CUSUM distribution is shown
as the main path, shaded areas present middle 50%, middle 90% and total
range.
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the complete sequence of observations is not observed: The GSCUSUM and the fully
observed CUSUM chart signalled almost simultaneously and signal rates were
comparable. We illustrated the concept on the Bernoulli log-likelihood CUSUM chart
for non-risk-adjusted and risk-adjusted processes; it is also possible to apply the
method to other types of control charts that monitor binary sequences.

Our simulation study and the hospital example showed that the näıve approach of
randomly assigning a sequence may change the signalling of CUSUM charts and result
in wrong conclusions about the process performance, as it is possible to select an
atypical outlier sequence. The GSCUSUM, in contrasts, studies all possible sequences
that fit the grouped data, thus giving an accurate probability of a signal for each point
in time.

The software implementation of GSCUSUM and RA-GSCUSUM is not straightforward
and can be computationally expensive if not programmed optimally. We therefore provide
R-Code with a fast C++ implementation to calculate GSCUSUM and RA-GSCUSUM
charts in the R-package cusum.74

A major limitation of the GSCUSUM chart is the loss of the inherent signal that is
available in the CUSUM chart. We have proposed an alternative signalling when a
proportion γ of CUSUM statistics cross the control limit, though a more conservative
choice may be to signal once all possible CUSUM statistics exceed the control limit.
Naturally, different proportions of exceeding CUSUM paths (γ) may also be interpreted
as different types of signals. For example, 25% of paths crossing may lead to a warning
signal whereas 75% of paths crossing cause an alarm signal.

We assumed that observations in data blocks are randomly distributed, but it is also
plausible that failures are more likely to occur clustered due to a common source of
error. Our approach tends to avoid false signals, as the equal distribution of observations
enables compensating for failures before the next occurs. If there are grounds to believe
that this assumption is violated in an application, it is useful to evaluate a GSCUSUM
that takes clustering of failures into account, i.e. the outlier CUSUM.

To conclude, the GSCUSUM chart enables the use of SPM in applications where using
a CUSUM chart was previously not possible due to a lack of data quality. When data
quality is improved, the GSCUSUM chart also converges smoothly to the CUSUM chart
and hence provides for a seamless handling of the transition period until optimal data
quality is achieved.
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5 Application to hospital
performance data

This chapter applies both methods, presented in Chapter 3 and 4 respectively, the
CUSUM and the GSCUSUM, to hospital performance data for the three introduced
performance indicators 11724, 51838 and 54030, and compares the evaluation results
to the evaluation conducted by EQA. The objective is to find differences and
similarities in evaluations and show how control charts can assist conventional EQA
evaluation methods.

5.1 Performance evaluation methods

In-control parameters were estimated on hospital performance data of 2016, and
performance data from 2017 were monitored and evaluated. Hospitals with fewer than
two observations per year and performance indicator were excluded from analyses.

Following the evaluation process used by the existing EQA, annual hospital results were
calculated by building the average failure rates for non-risk-adjusted performance
indicators and ratios of observed to expected events for the risk-adjusted performance
indicator. Upon these results, hospital processes were either classified as acceptable,
arithmetically deviating or statistically deviating. Arithmetically deviating is defined as
an absolute deviation from the target value or national average. Statistically deviating
also considers sample size and is defined as the target value being outside the range of
the confidence interval of the hospital result.

Control charts were constructed for a FSP of 5% and an detection level of δ = 2. For
indicator 54030, the specified target value was used as baseline failure probability, and for
indicator 51838 the overall average failure rate of the year 2016 was used, as no target
value is specified for this indicator. All simulations necessary to construct CUSUM and
GSCUSUM charts were performed 100,000 times.

Analyses were done using R 3.6.0,75 and the cusum R package.74 Statistical deviation
were calculated using the R package IQTIGpvci, provided by the IQTIG.76 R Code
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5 Application to hospital performance data

to evaluate hospital performance using CUSUM, GSCUSUM and conventional EQA is
provided in the Appendix 2. The result is presented as an upset plot, which was created
using the R package UpSetR.77

5.2 Performance evaluation results

261 hospital processes were included in the analyses. The upset plot in Figure 5.1 shows
that 159 (60.9%) were classified by all methods as acceptable performance. Conventional
EQA methods classified 57 processes as arithmetically deviating and 39 as statistically
deviating. SPM signalled 53 CUSUM signals and 30 GSCUSUM signals. 27 (10.3%)
hospital processes were statistically deviating and were also signalled by the CUSUM
and GSCUSUM charts. Hospitals should be informed about a potential quality deficit
in these processes and some form of intervention should occur. Figure 5.9 shows two
of the 27 hospital processes, which shows the out-of-control state of the process during
the complete monitoring period.

15 (5.4%) additional processes were arithmetically deviating and triggered CUSUM
and/or GSCUSUM signals and could be considered for intervention. The hospital
examples in Figure 5.8 suggest that some of these processes were able to mask a poor
run for the conventional EQA evaluation. Thus, they were only classified as
arithmetically deviating, but triggered both CUSUM and GSCUSUM signals.

While an arithmetical deviation may be due to chance, statistical deviations are more
robust. Yet, seven statistically deviating processes were not detected by either control
chart. This might have been because events were evenly distributed over the whole
monitoring period (Figure 5.4), which did not cause the CUSUM to break out and cross
the control limit. The second example in Figure 5.4 (right) also shows that the CUSUM
depends on exact estimation of hospital volume to construct control charts. This hospital
decreased in hospital volume from 2016 to 2017, resulting in a wide control limit.

Six (2.3%) processes were only signalled by the two control charts, all of these in
processes of Indicator 11724 (Figure 5.5). This is mainly because the target value is
set very high (4.58), and hospital processes with an increased ratio of observed to
expected are not detected by the EQA.

Better data documentation was needed in processes where the CUSUM and the
GSCUSUM differ in signalling (Figures 5.6–5.7). Acting upon a signal is hindered
because the validity of a signal is unclear.
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Fig. 5.1. The top figure shows all possible combinations of evaluation results (top)
as well as the total counts of each evaluation (left) summed for all three
performance indicators. The middle plot acts as a guide to illustrate the
combinations. For example, the red bar (third from left) shows the total
number of hospital processes that were classified as statistically deviating and
as out-of-control by the GSCUSUM and CUSUM chart.
The bottom figure shows the occurrence of combinations of evaluation results
per performance indicator. Colouring of the subsets is derived from the top
plot.
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Fig. 5.2. Example hospital control charts that were classified by all methods as
acceptable performance. The hospital results (left: 14%; right: 2.83) are
smaller than the reference value (left: ≤15%; right: ≤4.58) and their
confidence interval includes the reference value. Both hospitals are thus
classified as acceptable performance by the EQA, and also the control charts
give no cause to suspect a deviation.
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Fig. 5.3. Example hospital control charts that were only classified by the EQA for
arithmetic deviation.Both hospital results (left: 20%; right: 3.39%) are
greater than the baseline failure probability (left: ≤15%; right: ≤1.07%), but
as their confidence interval includes the reference value, they are classified as
arithmetically deviating. Both CUSUM and GSCUSUM do not signal.
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Fig. 5.4. Example hospital control charts that were only classified by the EQA for
statistic deviation. The hospital results (left: 24.44%; right: 58.33%)
are greater than the baseline failure probability (both: 15%), and the
confidence intervals do not contain the reference value, thus being classified
as statistically deviating by EQA. The CUSUM does not signal, though this
may be due to poor data documentation, as the GSCUSUM suggests.

0.0

0.2

0.4

0.6

C
U

S
U

M
 S

ta
ti
s
ti
c

Result Hospital #138: 4.31 [0.43; 17.72]

CUSUM Indicator 11724

0.0

0.2

0.4

0.6

0 5 10 15

Sequence of Observations

C
U

S
U

M
 D

is
tr

ib
u
ti
o
n

O/E target ratio : 4.58

0.0

0.5

1.0

1.5

2.0

C
U

S
U

M
 S

ta
ti
s
ti
c

Result Hospital #187: 3.48 [1.16; 8.31]

CUSUM Indicator 11724

0.0

0.5

1.0

1.5

2.0

0 20 40 60 80

Sequence of Observations

C
U

S
U

M
 D

is
tr

ib
u
ti
o
n

O/E target ratio : 4.58

Fig. 5.5. Example hospital control charts that were only classified by CUSUM and/or
GSCUSUM as out-of-control. The hospital result (left: 4.31; right: 3.48) is
smaller than the target ratio (4.58), and is classified by EQA as acceptable
performance. As the control charts are set to detect a doubling of odds, they
trigger a signal.
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Fig. 5.6. Example hospital control charts that were classified by the EQA for statistic
deviation and the CUSUM as out-of-control. Both hospital results (left:
29.63%; right: 23.61%) and their confidence intervals are greater than the
baseline failure probability (both: 15%). The GSCUSUM failed to signal due
to poor data quality.
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Fig. 5.7. Example hospital control charts that were classified by the EQA for arithmetic
deviation and the CUSUM as out-of-control. Both hospital results (left:
29.63%; right: 23.61%) and their confidence intervals are greater than the
baseline failure probability (both: 15%). Although the CUSUM signalled, the
GSCUSUM failed to do so. For the right hospital, this is due to poor data
documentation. For the left hospital, it is likely that the hospital volume
decreased from the previous year and the control limit was set too high,
resulting in a late CUSUM signal.
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Fig. 5.8. Example hospital control charts that were classified by the EQA for arithmetic
deviation and the CUSUM and GSCUSUM as out-of-control.Both hospital
results (left: 16.07%; right: 2.5%) are greater than the baseline failure
probability (left: 15%; right: 1.07%), but the confidence intervals contain
the baseline failure probability. Both processes start out with acceptable
performance, but deviate at the end. Therefore the processes are signalled by
the GSCUSUM and CUSUM, but the bad run is masked in the EQA evaluation
by a run of good performance.
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Fig. 5.9. Example hospital control charts that were classified by the EQA for statistic
deviation and the CUSUM and GSCUSUM as out-of-control. Both hospitals
results (left: 35.21%; right: 8.7%) and their confidence intervals are greater
than the baseline failure probability (left: 15%; right: 1.07%). In the left
chart, the CUSUM clearly shows the out-of-control state of the process. The
right CUSUM chart shows the almost exact sequence of observations at the
time of the signal, so there is clarity for when the signal happened.
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5.3 Concluding remarks

While the final results of the evaluation methods do not differ greatly, the CUSUM
enhances the evaluation procedure and provides additional and more timely information
about the process over shorter periods of time.

Furthermore, by visualising the process, the CUSUM helps to contextualise failures and
identify potential periods of poor performance. Completely deviating CUSUM charts
(Figure 5.9) also show that the process is fundamentally out-of-control and needs to
change. Processes which change from in-control to out-of-control during an observation
period (Figure 5.8, left) are also visualised straightforwardly. Moreover, in such a case, it
becomes easy to identify the moment in time at which the process changed. Naturally,
this will make it more feasible for the health care provider to bring the process back under
control as compared to the singular yearly average provided by current EQA methods.

The main conclusion when comparing the CUSUM and GSCUSUM chart must be the
importance of regular data documentation. When the control charts and EQA
evaluation differ, it is important to have a definite signal and know whether the
suspected quality deficit is due to a random sequence or a true difference in the
classification of performance. Often, when EQA signals, the GSCUSUM shows that a
signal could have been warranted if the sequence was different (Figure 5.4).
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6 Conclusion

Augmenting established EQA with concurrent SPM may well help to improve the
explanatory power of quality assurance measures. Furthermore, SPM control charts
may detect quality deficits without a delay, which in turn provides the opportunity to
intervene and improve performance before any deterioriations are detected using
conventional EQA methods. Moreover, control charts provide a visualisation of the
process, presenting events in their temporal context, indicating trends or seasonal
effects. CUSUM charts can also be of assistance in the evaluation of interventions and
will facilitate showcasing best practice examples.33

To be statistically rigorous, the whole sequence of observation should be observed. So
far, the date of documentation remains an unsatistfactory surrogate parameter in place
of a precise time stamp. While the GSCUSUM chart enables the use of SPM in this
kind of setting where the complete sequence of observation is not known, signals are less
accurate and not as interpretable as for the standard CUSUM chart. In the future, even
further advances in processing electronic health records may help to approximate real
time bed-side performance evaluation. For the time being, performance monitoring is still
constrained by unnecessarily complicated and laborious processes of data documentation,
transmission, validation and evaluation. Further advances in timely data documentation
can be motivated by the prospect of implementing efficient SPM.33

Naturally, there exists a trade-off between low FSP and high TSP when setting up a
monitoring scheme. Prioritising a low FSP will protect hospitals with good quality of
care from false accusations. As all signals require investigation at hospital level, false
signals will result in unnecessary draining of resources of monitoring investigators as well
as of those investigated. Still, detecting deteriorations should not be disregarded and an
adequate balance between FSP and TSP should be sought. A FSP of 5%, which can
result in an acceptable TSP, may be a reasonable choice for most scenarios.33

Adjustment for case risk mix is necessary for a fair and robust quality assurance. If a
risk-model for the particular indicator exists, risk-adjusted CUSUM charts are easy to
implement and their performance in our study was similar to the conventional CUSUM
charts.33
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6 Conclusion

Benefits and issues arising from simultaneously monitoring multiple data streams
should be dealt with more thoroughly when implementing CUSUM in German EQA.
Multiple indicators of one hospital can provide additional information about the
hospital’s performance. The global probability for a false discovery (FDR) can,
however, increase with multiple data streams. Methods to control FDR of multiple
data streams need to be developed and evaluated for their suitability in the monitoring
scheme of German EQA.33

The recent change from an annual data transmission to quarterly data transmission
shows the political interest of a more timely quality deficit detection. Yet, the main
analysis is still based on the annual average, which is a weak approximation as pointed
out in Section 2.2.

Performance indicators especially eligible for CUSUM analysis are indicators, which are
clinically relevant and have been difficult to control over the last years. Furthermore,
specifications should remain constant over time in order to allow construction of long
term CUSUM charts. SPM can be introduced for individual performance indicators in
addition to the standard procedure and it is not necessary to completely overhaul the
EQA procedure at once.

Some currently implementable areas of SPM are as follows:

• The state offices receive data from indirect procedures on a regular basis and
are able to provide continuous monitoring.

– CUSUM charts could be reported alongside conventional EQA results, but
possibly on a more regular basis. These analyses can warn health care
providers of possible deviations and support the intervention procedure.

– CUSUM charts could be used to guide the structured dialogues and help
identify sources of performance deficits.

• The IQTIG receives the data from the indirect procedure only in aggregate form,
so continuous monitoring over the year is not possible. Some post-analysis could
still be worthwile:

– CUSUM charts for process improvements could be used to evaluate measures
of interventions, like the Structured Dialogue.

– Like the state offices, the IQTIG could use CUSUM charts for in-depth
analyses of deviating processes in the structured dialogues.

In March 2019, I was invited to present at the Medical Biometry and Statistics Unit of
the IQTIG in Berlin. They are looking into the use of SPM for the use cases described
here.
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Appendix

1 R Package cusum vignettes

Following, two instructional vignettes published alongside the R package cusum∗ are
presented. They show the main functions and application of the package:

Construct CUSUM charts for hospital performance The first vignette considers
the construction and evaluation of ST-CUSUM and RA-CUSUM charts

GSCUSUM charts The second vignette desribes GSCUSUM charts, their construction
and graphical representation using the cusum and ggplot2 R packages.

∗https://cran.rstudio.com/packages=cusum
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Construct CUSUM charts for hospital performance
Overview

This vignette describes CUSUM charts based on a simulated false alarm probability for hospital performance
data in the R package cusum. This is a practical guide to constructing and evaluating non-risk-adjusted
and risk-adjusted CUSUM charts following Steiner et al. (Biostatistics 1.4 (2000), pp. 441-52).

The cusum packages takes different factors into account that influence the alarm rate of CUSUM charts.
Some are given by the process to be monitored; these factors are:

• number of patients: How many observations do we expect in a monitoring period (e.g. a month/a year)?
• risk-adjustment: Is risk adjustment available? Can we allocate different risks to different observations?

– if yes:
∗ patient risks: What are these risks and how are they distributed?

– if no:
∗ accepted failure probability: What kind of failure rate do we expect on average?

The primary control input when constructing a CUSUM chart is the control limit. The control limit alarms
performance deterioration once crossed by the cumulated sum.

The control limit depends on a number of variables:

• the desired target odds multiplier associated to an out-of-control process
• the accepted false alarm probability α
• number of simulations

Motivating example

To illustrate how cusum can be used for monitoring, we employ a simple and artificial data set generated to
closely follow the performance data of German hospitals for one non-risk-adjusted performance indicator and
one risk-adjusted performance indicator in 2016 and 2017.

risk-adj. Indicator Description Further explanation (in German)
NO Ratio of observed to

expected cases of severe
stroke or death under open
carotid stenosis surgery

pdf (p4)

YES Preoperative stay more than
24 hours for patients with
proximal femur fracture

pdf (p23)

Non-risk-adjusted performance indicator
data("cusum_example_data", package = "cusum")

head(cusum_example_data, 5)
#> t y year
#> 1 1 FALSE 2016
#> 2 2 FALSE 2016
#> 3 3 FALSE 2016
#> 4 4 FALSE 2016
#> 5 5 FALSE 2016

1
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Risk-adjusted performance indicator
data("racusum_example_data", package = "cusum")

head(racusum_example_data, 5)
#> t y score year
#> 1 1 FALSE 0.00237 2016
#> 2 2 FALSE 0.00237 2016
#> 3 3 FALSE 0.02412 2016
#> 4 4 FALSE 0.01893 2016
#> 5 5 FALSE 0.00725 2016

First, CUSUM charts are constructed on performance data from 2016 (Phase I), and then applied and
evaluated on performance data from 2017 (Phase II).
cusum_example_p1 <- cusum_example_data[cusum_example_data$year == 2016, ]
cusum_example_p2 <- cusum_example_data[cusum_example_data$year == 2017, ]

racusum_example_p1 <- racusum_example_data[racusum_example_data$year == 2016, ]
racusum_example_p2 <- racusum_example_data[racusum_example_data$year == 2017, ]

Non-risk-adjusted CUSUM chart

Simulation of CUSUM Control Limits

We get the control limit of our CUSUM chart by simulating for a false alarm probability depending on sample
size and accepted failure probability.

We can estimate the accepted failure probability by taking the average of Phase I. Alternatively, we could
also define an accepted failure probability.
failure_probability <- mean(cusum_example_p1$y)

n_patients <- nrow(cusum_example_p1)

Then, control limits can be simulated using cusum_limit_sim.
cusum_limit <- cusum_limit_sim(failure_probability,

n_patients,
odds_multiplier = 2,
n_simulation = 1000,
alpha = 0.05,
seed = 2046)

print(cusum_limit)
#> [1] 6.498476

Applying CUSUM Charts

CUSUM charts are applied on performance data from 2017 (Phase II) and the control limit cusum_limit. It
can be calculated using cusum.
patient_outcomes <- cusum_example_p2$y
cusum_cs <- cusum(failure_probability,

patient_outcomes,
limit = cusum_limit,

2
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odds_multiplier = 2,
reset = FALSE)

plot(cusum_cs)
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Performance is as expected during the first half of monitoring, and then deteriorates. We get a alarm at
t=547. If reset==TRUE, the CUSUM resets after each alarm.
cusum_cs <- cusum(failure_probability,

patient_outcomes,
limit = cusum_limit,
odds_multiplier = 2,
reset = TRUE)

plot(cusum_cs)
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Evaluating CUSUM charts

The false alarm probability of a CUSUM chart can be simulated using cusum_alpha_sim given a predefined
control limit.
n_patients <- nrow(cusum_example_p2)

cusum_alpha <- cusum_alpha_sim(failure_probability,
n_patients,
odds_multiplier = 2,
n_simulation = 1000,
limit = cusum_limit,
seed = 2046)

print(cusum_alpha)
#> [1] 0.05

We see that cusum_alpha equals our previously defined false alarm probability of 0.05.

Risk-adjusted CUSUM chart

Simulation of RA-CUSUM Control Limits

Control limits of RA-CUSUM charts are simulated for a false alarm probability depending on sample size
and risk distribution.

RA-CUSUM Control limits can be simulated using racusum_limit_sim.

patient_risks <- racusum_example_p1$score

racusum_limit <- racusum_limit_sim(patient_risks,
odds_multiplier = 2,
n_simulation = 1000,
alpha = 0.05,
seed = 2046)

print(racusum_limit)
#> [1] 3.742861

Applying RA-CUSUM charts

RA-CUSUM chart are applied on performance data from 2017 (Phase II) and the control limit racusum_limit.
It can be calculated using racusum.
patient_risks <- racusum_example_p2$score
patient_outcomes <- racusum_example_p2$y

racusum_cs <- racusum(patient_risks,
patient_outcomes,
limit = racusum_limit,
odds_multiplier = 2,
reset = FALSE)

plot(racusum_cs)
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Performance is as expected during the first half of monitoring, and then deteriorates. We get a alarm at
t=865. If reset==TRUE, the CUSUM resets after each alarm.

racusum_cs <- racusum(patient_risks,
patient_outcomes,
limit = racusum_limit,
odds_multiplier = 2,
reset = TRUE)

plot(racusum_cs)
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Evaluating RA-CUSUM charts

The false alarm probability of a CUSUM chart can be simulated using cusum_alpha_sim.
racusum_alpha <- racusum_alpha_sim(patient_risks,

odds_multiplier = 2,
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n_simulation = 1000,
limit = racusum_limit,
seed = 2046)

print(racusum_alpha)
#> [1] 0.058

We see that racusum_alpha is similar to our previously defined false alarm probability of 0.05. Deviation is
possible due to a slight change in risk population.

CUSUM Chart for process improvement

CUSUM charts for detecting process improvements can be constructed similarly, but the CUSUM statistic is
restricted to non-positive values.

cusum_limit_improve <- cusum_limit_sim(failure_probability,
n_patients,
odds_multiplier = .5,
n_simulation = 1000,
alpha = 0.5,seed = 2046)

cusum_cs_improve <- cusum(failure_probability,
patient_outcomes = cusum_example_p2$y,
limit = cusum_limit_improve,
odds_multiplier = .5)

plot(cusum_cs_improve)
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GSCUSUM charts
Overview

This vignette describes how to use GSCUSUM charts, an extension to standard CUSUM charts for binary
performance data grouped in samples of unequal size.

Data preparation

Following information has to be available:

• patient-individual outcomes
• block-identifier in continuous sequence (can be obtained for example with dplyr::group_indices())
• (patient-individual risk scores / risk of adverse event/failure)

These information are collected in a numeric matrix.

Non-risk-adjusted example data:
head(gscusum_example_data)
#> # A tibble: 6 x 4
#> t y year block_identifier
#> <int> <lgl> <dbl> <int>
#> 1 1 FALSE 2016 1
#> 2 2 FALSE 2016 1
#> 3 3 FALSE 2016 1
#> 4 4 FALSE 2016 1
#> 5 5 FALSE 2016 1
#> 6 6 FALSE 2016 1

Risk-adjusted example data:
head(ragscusum_example_data)
#> # A tibble: 6 x 5
#> t y score year block_identifier
#> <int> <lgl> <dbl> <dbl> <int>
#> 1 1 FALSE 0.00829 2016 1
#> 2 2 FALSE 0.00237 2016 1
#> 3 3 FALSE 0.00926 2016 1
#> 4 4 FALSE 0.00394 2016 1
#> 5 5 FALSE 0.0241 2016 1
#> 6 6 FALSE 0.00557 2016 1

Non-risk-adjusted GSCUSUM chart

Like in the standard CUSUM chart (see vignette for CUSUM charts), parameters have to be estimated in
order to set up the charts,
failure_probability <- mean(gscusum_example_data$y[gscusum_example_data$year == 2016])

n_patients <- nrow(gscusum_example_data[gscusum_example_data$year == 2016,])

and control limits have to be estimated:

1
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cusum_limit <- cusum_limit_sim(failure_probability,
n_patients,
odds_multiplier = 2,
n_simulation = 1000,
alpha = 0.05,
seed = 2046)

print(cusum_limit)
#> [1] 4.91128

GSCUSUM charts are constructed on performance data from 2017.

gscusum_data <- gscusum_example_data[gscusum_example_data$year == 2017,]

input_outcomes <- matrix(c(gscusum_data$y, gscusum_data$block_identifier), ncol = 2)

gcs <- gscusum(input_outcomes = input_outcomes,
failure_probability = failure_probability,
odds_multiplier = 2,
limit = cusum_limit,
max_num_shuffles = 1000,
quantiles = c(0.,0.05,0.25,0.5,0.75,.95,1))

This function returns the signal probability, average CUSUM values and quantiles of the CUSUM distribution
specified in the function call.
gcs <- as.data.frame(gcs)
names(gcs) <- c("sig_prob", "avg", "min", "q05", "q25", "median","q75","q95","max")
head(gcs)
#> sig_prob avg min q05 q25 median q75 q95 max
#> 1 0 0.08494781 0 0 0 0 0.0000000 0.4910278 0.4910278
#> 2 0 0.13276181 0 0 0 0 0.2889099 0.4910278 0.9820557
#> 3 0 0.15132578 0 0 0 0 0.2889099 0.4910278 0.9820557
#> 4 0 0.15889569 0 0 0 0 0.2889099 0.5778198 0.9820557
#> 5 0 0.17285135 0 0 0 0 0.2889099 0.7799377 0.9820557
#> 6 0 0.18675470 0 0 0 0 0.3757019 0.5778198 0.9820557

gcs$block_identifier <- input_outcomes[,2]
gcs$t <- seq(1,nrow(gcs))

col1 <- "#f7ba02"
col2 <- "#4063bc"
palette <- rep(c(col1, col2), 300)

ggplot() +
geom_line(data = gcs, aes(x = t, y = sig_prob)) +
geom_point(data = gcs, aes(x = t, y = sig_prob, col = as.factor(block_identifier) )) +
scale_color_manual(guide=FALSE, values = palette) +
scale_y_continuous(name = "Signal Probability", limits = c(0,1))+
theme_bw()

2
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The complete run can be plotted with:
nblock <- max(gcs$block_identifier)

p <- ggplot(gcs)

for ( i in 1: nblock){
dblock <- gcs[gcs$block_identifier == i,]
col <- ifelse(i %% 2 == 0,col2,col1)
dblock_before <- dblock[1,]
dblock_before$t <- dblock_before$t - .5
dblock_after <- dblock[nrow(dblock),]
dblock_after$t <- dblock_after$t + .5
dblock_n <- rbind(dblock, dblock_before, dblock_after)

p <- p +
geom_ribbon(data = dblock_n, aes(x = t, ymin = min, ymax = max), fill = col, alpha = 0.2) +
geom_ribbon(data = dblock_n, aes(x = t, ymin = q05, ymax = q95), fill = col, alpha = 0.2) +
geom_ribbon(data = dblock_n, aes(x = t, ymin = q25, ymax = q75), fill = col, alpha = 0.2)

}

p <- p +
geom_line(data = gcs, aes(x = t, y = median)) +
geom_point(data = gcs, aes( x = t, y = median, fill = as.factor(block_identifier)), size=2, pch = 21)+
geom_hline(aes(yintercept = cusum_limit), linetype = 2) +
theme_bw() +
scale_y_continuous(name = "CUSUM Distribution") +
scale_x_continuous(name = "Sequence of Observations") +
scale_fill_manual(values = palette, guide = FALSE) +
labs(subtitle = "GSCUSUM")

p
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Risk-adjusted GSCUSUM chart

Like in the standard RA-CUSUM chart (see vignette for CUSUM charts), parameters are estimated in order
to set up the charts,
n_patients <- nrow(ragscusum_example_data[ragscusum_example_data$year == 2016,])

and control limits are set:

racusum_limit <- racusum_limit_sim(patient_risks = ragscusum_example_data$score[ragscusum_example_data$year == 2016],
odds_multiplier = 2,
n_simulation = 1000,
alpha = 0.05,
seed = 2046)

print(racusum_limit)
#> [1] 2.403465

GSCUSUM charts are constructed on performance data from 2017.

ragscusum_data <- ragscusum_example_data[ragscusum_example_data$year == 2017,]

input_outcomes <- matrix(c(gscusum_data$y, gscusum_data$block_identifier), ncol = 2)

gcs <- gscusum(input_outcomes = input_outcomes,
failure_probability = failure_probability,
odds_multiplier = 2,
limit = cusum_limit,
max_num_shuffles = 1000,
quantiles = c(0.,0.05,0.25,0.5,0.75,.95,1))

This function returns the signal probability, average CUSUM values and quantiles of the CUSUM distribution
specified in the function call.

4

1 R Package cusum vignettes

67



gcs <- as.data.frame(gcs)
names(gcs) <- c("sig_prob", "avg", "min", "q05", "q25", "median","q75","q95","max")
head(gcs)
#> sig_prob avg min q05 q25 median q75 q95 max
#> 1 0 0.06776184 0 0 0 0 0.0000000 0.4910278 0.4910278
#> 2 0 0.12496124 0 0 0 0 0.2889099 0.4910278 0.9820557
#> 3 0 0.15704095 0 0 0 0 0.2889099 0.4910278 0.9820557
#> 4 0 0.16123550 0 0 0 0 0.2889099 0.5778198 0.9820557
#> 5 0 0.17368954 0 0 0 0 0.2889099 0.5778198 0.9820557
#> 6 0 0.18926572 0 0 0 0 0.3757019 0.5778198 0.9820557

gcs$block_identifier <- input_outcomes[,2]
gcs$t <- seq(1,nrow(gcs))

col1 <- "#f7ba02"
col2 <- "#4063bc"
palette <- rep(c(col1, col2), 300)

ggplot() +
geom_line(data = gcs, aes(x = t, y = sig_prob)) +
geom_point(data = gcs, aes(x = t, y = sig_prob, col = as.factor(block_identifier) )) +
scale_color_manual(guide=FALSE, values = palette) +
scale_y_continuous(name = "Signal Probability", limit = c(0,1))+
theme_bw()
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The complete run can be plotted with:
nblock <- max(gcs$block_identifier)

p <- ggplot(gcs)

for ( i in 1: nblock){
dblock <- gcs[gcs$block_identifier == i,]
col <- ifelse(i %% 2 == 0,col2,col1)
dblock_before <- dblock[1,]
dblock_before$t <- dblock_before$t - .5
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dblock_after <- dblock[nrow(dblock),]
dblock_after$t <- dblock_after$t + .5
dblock_n <- rbind(dblock, dblock_before, dblock_after)

p <- p +
geom_ribbon(data = dblock_n, aes(x = t, ymin = min, ymax = max), fill = col, alpha = 0.2) +
geom_ribbon(data = dblock_n, aes(x = t, ymin = q05, ymax = q95), fill = col, alpha = 0.2) +
geom_ribbon(data = dblock_n, aes(x = t, ymin = q25, ymax = q75), fill = col, alpha = 0.2)

}

p <- p +
geom_line(data = gcs, aes(x = t, y = median)) +
geom_point(data = gcs, aes( x = t, y = median, fill = as.factor(block_identifier)), size=2, pch = 21)+
geom_hline(aes(yintercept = cusum_limit), linetype = 2) +
theme_bw() +
scale_y_continuous(name = "RACUSUM Distribution") +
scale_x_continuous(name = "Sequence of Observations") +
scale_fill_manual(values = palette, guide = FALSE) +
labs(subtitle = "RA-GSCUSUM")
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Appendix

2 R Code to evaluate hospital performance using
CUSUM, GSCUSUM and conventional EQA

This code shows the evaluation of hospital performance using the cusum R package to
construct CUSUM and GSCUSUM charts and the IQTIGpvci R package for conventional
EQA performance evaluation.

The input data frame (qdat) consists of the following variables:

qi: ID of performance indicator. Possible values are 11724 (risk-adjusted), 54030 and
51838 (non-risk-adjusted)

id: Hospital ID
year: Reporting year, used to select Phase I and Phase II data

y: Patient outcomes
yhat: Patient individual risk (NA in non-risk-adjusted performance indicators)
date: Date of documentation (sequence of observations in CUSUM; block indices in

GSCUSUM)
rho: Target value of performance indicator

# select quality data for Phase I and Phase II ####
data_1 <- qdat[qdat$qi == qi & qdat$id == id & qdat$year == 2016,]
data_2 <- qdat[qdat$qi == qi & qdat$id == id & qdat$year == 2017,]
n_sim <- 100000
rho <- unique(data_1$rho[data_1$qi == qi]

if (qi == 11724){
# Risk-adjusted performance indicator #####################
# Control Limit ####
# estimate on Phase I data
cl <- cusum::racusum_limit_sim(patient_risks = data_1$yhat,

odds_multiplier = 2,
alpha = 0.05,
n_simulation = n_sim,
seed = 7112015)

# CUSUM ####
cs <- cusum::racusum(patient_risks = data_2$yhat,

patient_outcomes = data_2$y,
limit = cl,
reset = FALSE)

cs_signal <- ifelse(max(cs$signal) >0, 1,0)
# GSCUSUM ####
data_2$block <- data_2 %>% dplyr::group_indices(date) # group by date
probability_ae <- data_2$yhat
odds_multiplier <- 2
ws <- log((1)/ (1 - probability_ae + odds_multiplier * probability_ae))
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wf <- log((odds_multiplier) / ((1 - probability_ae + odds_multiplier *
probability_ae) * 1))

gscs <- cusum::ragscusum(input_ra_outcomes = matrix(c(data_2$y,wf, ws, data_2
$block), ncol = 4),

limit = cl,
quantiles = c(0,0.5,1),
max_num_shuffles = n_sim,
seed = 10082018)

gscs <- as.data.frame(gscs)
names(gscs) <- c("sig_prob", "avg", "min", "q50","max")
gscs_signal <- ifelse(max(gscs$sig_prob) >.5, 1,0)
# IQTIG ####
ci <- IQTIGpvci::compute_oe_ci(o = sum(data_2$y), e = sum(data_2$yhat))
arithm_dev <- ifelse(mean(data_2$y) >= data_2$rho, 1,0)
stat_dev <- ifelse(ci$lower >= rho), 1,0)

} else if (qi == 54030 | qi == 51838){
# Non-risk-adjusted performance indicator #####################
# Control Limit ####

cl <- cusum::cusum_limit_sim(failure_probability = rho,
n_patients = nrow(data_1),
odds_multiplier = 2,
alpha = 0.05,
n_simulation = n_sim,
seed = 7112015)

# CUSUM ####
cs <- cusum::cusum(failure_probability = rho,

patient_outcomes = data_2$y,
limit = cl,
reset = FALSE)

cs_signal <- ifelse(max(cs$signal) >0,1,0)
# GSCUSUM ####
data_2$block <- data_2 %>% group_indices(date)
gscs <- cusum::gscusum(input_outcomes = matrix(

c(data_2$y, data_2$block),
ncol = 2),

failure_probability = rho,
odds_multiplier = 2,
limit = cl,
quantiles = c(0,0.5,1),
max_num_shuffles = n_sim,
seed = 10082018)

gscs <- as.data.frame(gscs)
names(gscs) <- c("sig_prob", "avg", "min","q50","max")
gscs_signal <- ifelse(max(gscs$sig_prob) > .5,1,0)
# IQTIG ####
ci <- IQTIGpvci::compute_rate_ci(o = sum(data_2$y), n = nrow(data_2))
arithm_dev <- ifelse(mean(data_2$y) >= rho,1,0)
stat_dev <- ifelse(ci$lower >= rho, 1,0)
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