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Abstract 

Upon fertilization the two parental genomes are extensively reprogrammed to 

give rise to a totipotent state. In the mammalian embryo, this epigenetic reprogramming 

involves an extensive three dimensional (3D) rearrangement of nuclear organization 

which only recently have been started to be investigated on a genome-wide scale. The 

positioning of loci relative to the nuclear periphery has been shown to change during 

differentiation, potentially regulating gene expression and chromatin. Therefore, it is of 

question whether the nuclear reorganization in early embryonic cells correlates with or 

even regulates genome function and embryo development. 

During my PhD work, we have created maps of lamina associated domains 

(LADs) from mouse preimplantation embryos and oocytes at the single cell level. LADs 

are genomic regions that reside at the nuclear periphery and represent a lowly 

transcribed, gene-poor fraction of the genome originally identified in somatic cells. We 

have found that LADs are absent in oocytes but become established already in zygotes 

and are dynamically rearranged during the 2- and 8-cell stages with little heterogeneity 

between individual cells. We obtained LAD data from hybrid embryos to distinguish the 

parental genomes by single nucleotide polymorphisms (SNPs) in sequencing. Our 

analysis unravelled differences in genome organization between the two parental 

alleles that likely reflect their different germline history. Moreover, we find that LAD 

formation precedes the maturation of topologically associated domains (TADs) in a 

DNA replication independent manner. Additionally, we observed that only the X 

chromosome contacts the lamina in oocytes, potentially through an interaction with the 

Lamin B Receptor (LBR) protein. 

Eventually, we identified an epigenetic asymmetry of H3K4 methylation on 

LADs between the paternal and maternal genomes in zygotes. We found that the 

experimental reduction of the H3K4me3 histone mark by the overexpression of the 

lysine demethylase Kdm5b results in a loss of LAD structure, specifically in the paternal 

zygotic genome. 

In conclusion, we have uncovered a novel mechanism of allele specific LAD 

formation through histone methylation. Additionally, this work provides genome wide 

information on mouse preimplantation nuclear organization contributing a resource for 

further epigenetic studies of early embryos.	
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Aims 
The role of nuclear organization – the three-dimensional (3D) positioning of 

genomic loci relative to one another and to subcompartments of the nucleus – in 

transcriptional and cell state control is becoming increasingly well-established. Highly 

dynamic changes in nuclear architecture are known to occur during early mammalian 

embryogenesis, however these changes have not been systematically characterized, 

nor have they been probed for functionality. Also, it is unknown whether genome 

organization is inherited from the germline and the mechanism of LAD formation is 

unclear.   

Therefore, the aims of my PhD work were to: 

1) provide a genome-wide map of nuclear organization in the mouse 

preimplantation embryo at the single cell level 

2) determine the allelic differences in genome organization in embryos 

3) test if there is a preexisting LAD pattern in gametes that could be 

inherited through fertilization 

4) uncover potential epigenetic mechanisms that could regulate genome 

organization in these early embryonic nuclei 
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Introduction 

Previously, I have written a review article on nuclear organization in early 

embryos (Borsos and Torres-Padilla, 2016). In the following introduction I will: 

  1) introduce mouse preimplantation embryo development 

  2) highlight our current understanding of genome organization and its 

connection to gene expression 

  3) describe the current knowledge on genome organization in preimplantation 

nuclei 

Mouse preimplantation development 

Life starts with fertilization, the fusion of two highly differentiated cells: an egg 

and a sperm. The oocyte is one of the largest cells of the body with a spherical diameter 

of 60-70 μm in the mouse. Therefore, oocytes are able to store a large cytoplasmic 

content, an essential supply of proteins and RNA for the early embryo (Susor et al., 

2016). Contrarily, the sperm carries barely any cytoplasm, its genome is tightly 

packaged around protamines instead of histones (Rodman et al., 1984). The sperm 

head is supported by its neck packed with mitochondria and its tail for rapid movement. 

These two germ cells acquire very different characteristics during oogenesis and 

spermatogenesis making them specialized to very different tasks; yet both are 

essential to support further development of a new organism under natural conditions. 

Upon ovulation, the oocyte undergoes nuclear envelope breakdown and 

executes the first meiotic division halving its DNA content from 4n to 2n by extruding 

the first polar body (Li and Albertini, 2013). The ovulated egg is surrounded by a 

protective glycoprotein shell called the zona pellucida. Several layers of somatic 

cumulus cells are attached to the zona pellucida surrounding the egg. Upon expulsion 

from the ovary, the egg reaches the oviduct and slowly travels towards the uterus in 

the oviductal fluid. The ovulated egg(s) are met by the spermatozoa in an enlarged 

section of the oviduct called the ampulla, where fertilization happens (Eddy and 

Pauerstein, 1980). Upon penetration of the zona pellucida the sperm head fuses with 

the plasma membrane of the egg enabling the entry of the paternal genome into the 

egg’s cytoplasm. This fusion induces Ca2+ oscillations upon which the egg completes 

the second meiotic division by extruding the second polar body (Miyazaki and Ito, 

2006).  



	

	
13	

From the fusion of the gametes a zygote emerges bearing the two parental 

genomes initially at the two opposite sides of the zygote. Both genomes rapidly 

assemble into two separate nuclei referred to as “pronuclei” (PN): the maternal meiotic 

chromosomes decondense into interphase and histones are incorporated into the 

compact sperm genome exchanging its original protamines. During the approximately 

twelve hours long zygotic cell cycle the two pronuclei gradually migrate towards each 

other and meet in the center just before the first mitosis begins. The developmental 

time of a zygote is usually categorized into “pronuclear stages” based on the distance 

between the two pronuclei (Adenot et al., 1997). 

Before the first mitosis, the two separate pronuclei undergo nuclear envelope 

breakdown and the paternal and maternal chromosomes converge onto a single 

metaphase plate followed by the division of the zygote into a 2-cell stage embryo. Both 

zygotes and 2-cell embryos are considered totipotent in mice because each of the 

single cells of these embryos can give rise to an entire mouse including both 

extraembryonic and embryonic tissues (Figure 1) (Mulnard, 1965; Tarkowski, 1959; 

Tarkowski and Wroblewska, 1967). The 2-cell embryo divides further and these 

divisions are referred to as “cleavages” because with each round the cells 

approximately halve their size. After the 16-cell stage the embryo starts to cavitate 

creating a fluid cavity between the internal and external cells achieving a ball like 

structure called the blastocyst (Pratt, 1989). By this stage the embryo already reaches 

the uterus where the blastocyst hatches from the protective zona pellucida and 

attaches to the uterine wall and initiates implantation.  

Zygotic transcription and the first cell fate decisions 

Most transcripts in the zygote are inherited from the oocyte, therefore, are 

termed “maternal transcripts”. Upon fertilization, the translation form these transcripts 

is either activated or the majority of these RNAs are actively degraded. The zygote 

carries out very little ongoing transcription termed minor zygotic genome activation 

(ZGA). Minor ZGA is primarily executed by RNA Polymerase II (Pol II) on intergenic 

regions and by RNA Polymerase III (Pol III) on rDNA clusters and is essential for further 

development (Abe et al., 2018; Lin et al., 2014). It is only by the 2-cell stage when the 

levels of active transcription by Pol II of genes and also of repetitive elements surges, 

this process is termed major ZGA (Abe et al., 2015; Schultz, 2002). The major ZGA 
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not only provides essential transcripts for cell function but is also critical for the 

remodeling of chromatin (see next chapter). 

The early embryonic transcription is peculiar since even though repetitive 

elements of the genome are usually kept silent in most cell types, in preimplantation 

stages several classes of repeats are transiently transcribed (Peaston et al., 2004; 

Rodriguez-Terrones and Torres-Padilla, 2018). For example, the MERV-L type of 

transposons are highly expressed just preceding major ZGA at the early-2-cell stage 

(Ishiuchi et al., 2015; Macfarlan et al., 2012; Peaston et al., 2004). Such transcription 

also gives rise to chimeric transcripts that are likely important for development. 

Recently, a single transcription factor called Dux was shown to bind these MERV-L 

elements and also be necessary for the start of major ZGA (De Iaco et al., 2017; 

Hendrickson et al., 2017; Whiddon et al., 2017). Also, other repeats such as type 1 

long interspersed nuclear elements (LINE1) are transiently expressed in early embryos 

(Fadloun et al., 2013; Jachowicz et al., 2017). The proper timing of this LINE1 

expression has been shown to regulate chromatin accessibility and be necessary for 

embryo development (Jachowicz et al., 2017). These observations suggest that the 

transient burst of repetitive transcription might play a functional role at these early 

stages.  

The first two distinct cell lineages arise by the blastocyst stage including the 

pluripotent inner cell mass (ICM) that will constitute the embryo and the more 

differentiated trophoectoderm (TE) which will constitute the extraembryonic tissues 

such as the placenta (Figure 1). These cell populations are molecularly identified by 

the expression and kinetics of distinct transcription factors (e.g. Cdx2 for TE, Oct4 for 

ICM) (Plachta et al., 2011); and are first distinguishable morphologically as an ‘outer’ 

and an ‘inner’ group of cells at the 16-cell stage morula	(Zernicka-Goetz et al., 2009). 

To what extent cell fate decisions are pre-patterned or arise from random, stochastic 

processes has been under debate. Recently, considerable epigenetic (e.g. histone 

arginine methylation)	(Torres-Padilla et al., 2007) and gene expression (e.g. Prdm14, 

Sox2 expression) (Burton et al., 2013; White et al., 2016) differences have been 

observed between blastomeres at the 4-cell stage. This suggests that information 

linked to cell fate might be present at an earlier stage than was previously thought. 

However, these represent only isolated examples, and information on the genome-

wide scale is lacking. 
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Epigenetic reprogramming during preimplantation development 

There is an extensive epigenetic reprogramming (the erasure and remodeling 

of epigenetic marks) occurring in zygotes and 2-cell stage embryos. This processes 

mainly entail the removal and rewriting of histone marks and DNA modifications. Along 

with these most studied processes, there might be other yet uncovered features of 

epigenetic reprogramming taking place such as changes in replication timing, nuclear 

organization or the remodeling of yet uncharacterized novel histone/DNA 

modifications. 

One of the first epigenetic marks found to be reprogrammed upon fertilization is 

cytosine methylation of DNA (5mC). Upon fertilization, both genomes carry high levels 

of 5mC as judged by immuno-fluorescent (IF) staining, however, 5mC from the paternal 

DNA is rapidly lost (Figure 2a). Thus, by the late-zygote stage a clear asymmetry 

arises, the maternal genome having high and the paternal genome bearing very low 

Mouse development starts with the fertilization of an egg by sperm giving rise to a one-cell 
zygote. The zygote and 2-cell stage are totipotent and the pluripotent ICM and the differentiated 
TE lineages emerge by in the morula after the 8-cell stage embryo divides asymmetrically. The 
two lineages are fully distinguished by the blastocyst stage. The expression pattern of 
pluripotency and trophoectoderm markers (indicated on top) is distinctive in these two distinct 
cell lineages. Figure adapted from Burton et al. 2014. © 2014 Macmillan Publishers Limited. All 
rights reserved. License number: 4514440015385 
	

Figure 1. Preimplantation development of the mouse embryo 
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levels of 5mC. One model for this asymmetry proposes that the Dppa3/Stella protein 

binds to the di-methylated ninth lysine of the H3 histone tail (H3K9me2) in the maternal 

pronucleus and protects the maternal genome from active demethylation (Nakamura 

et al., 2007). Yet, the reduction of 5mC in the paternal genome in zygotes involves 

both active demethylation and passive dilution through replication (Hajkova et al., 

2010; Inoue and Zhang, 2011). It has been proposed that the active demethylation 

takes place by the conversion of 5mC into hydroxymethylcytosine (5hmC) by the Tet3 

hydroxylase enzyme (Ladstatter and Tachibana-Konwalski, 2016). Moreover, recently 

de novo methylation activity has also be reported to occur in zygotes which seems to 

be essential for 5hmC formation (Amouroux et al., 2016). Overall, 5mC levels are 

unconventionally low during preimplantation development and a more canonical DNA 

methylation pattern is established only by the blastocyst stage (Smallwood et al., 2014; 

Smith et al., 2014; Smith et al., 2012). 

Posttranslational modifications of histone tails are also extensively remodeled 

after fertilization (Burton and Torres-Padilla, 2014). Since the sperm chromatin is 

mainly packaged around protamines, most of the inherited histone modifications are 

present in the maternal genome. Several of these are erased and rewritten de novo as 

development proceeds. Most of these marks were initially assessed only by IF staining, 

recently however a few of them were also assessed by genome-wide approaches like 

ChIP-seq. 

One of the most well characterized histone mark in embryos is the tri-

methylation on the fourth lysine of the H3 histone tail (H3K4me3). This modification is 

present in broad, non-canonical domains in the oocyte (Figure 2b) (Dahl et al., 2016; 

Liu et al., 2016; Zhang et al., 2016). Contrarily to its typical correlation of H3K4me3 

promoter peaks with active genes, the experimental removal this mark in the oocyte 

results in incomplete transcriptional silencing – which otherwise would occur by the 

end of oocyte growth (Zhang et al., 2016). These broad domains of the maternal 

genome are passed down to the zygote and become remodeled into canonical 

promoter peaks only upon the zygotic genome activation of gene expression. The 

function of these broad domains in the zygote and in early-2-cell embryos is unknown. 

In contrast, the paternal chromatin has lower levels of H3K4me3 at fertilisation and 

undergoes de novo methylation on H3K4 in a more canonical, promoter peak pattern. 

The canonical repressive chromatin mark, tri-methylation of H3K9 is also 

extensively remodeled in embryos. It shows a distinct asymmetry bearing high levels 
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on the maternal but not on the paternal chromatin of zygotes (Figure 2a). Later, 

H3K9me3 levels are decreased by the middle of preimplantation and are then de novo 

reestablished by the end of implantation. Likely, H3K9me3 acts as a barrier to efficient 

epigenetic reprogramming, since the use of H3K9me3 depleted donor nuclei in nuclear 

transfer experiments resulted in a more than twice-fold increase in blastocyst 

development rate (Matoba et al., 2014). A recent paper employing ChIP-seq and 

functional experiments have demonstrated that H3K9me3 deposition occurs actively 

in embryos and contributes to the silencing of repetitive elements through recruiting 

the DNA methylation machinery (Wang et al., 2018).  

 

Another repressive mark, H3K27me3 has also been assessed genome wide 

using ChIP-seq in embryos (Zheng et al., 2016). This study revealed that sperm 

Figure 2. Epigenetic asymmetry of H3K9me and DNA methylation, remodelling 
of H3K4me3 after fertilization 

a) Di- and tri-methylation of H3K9 and DNA methylation shows an asymmetric distribution in 
zygotes, predominantly covering the maternal genome. This asymmetry is still present at the 2-
cell stage as the maternal alleles are higher methylated than the paternal. Gradually, this 
asymmetry is lost over preimplantation development. Figure adapted from (Burton and Torres-
Padilla, 2010) © Burton and Torres-Padilla 2010. Published by Oxford University Press. All rights 
reserved. b) H3K4me3 is present in non-canonical broad domain in oocytes and in promoter 
peaks in the sperm. The sperm H3K4me3 is removed upon fertilization and is de novo re-
established. The broad maternal H3K4me3 domains are remodelled only by the late-2-cell stage 
in a transcription dependent manner. Figure adapted from (Xu and Xie, 2018). © 2017 Elsevier 
Ltd. All rights reserved. License number: 4514431370475	
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H3K27me3 is completely reset upon fertilization but peaks distal from promoters are 

inherited from oocytes.  H3K27me3 is erased on promoters of developmental genes 

upon fertilization and is only reestablished around implantation mainly contributing to 

bivalent promoters (bearing both the activating H3K4me3 mark and the repressive 

H3K27me3). Moreover, several allele specific H3K27me3 peaks have been identified 

which contribute to a DNA methylation independent form of imprinting resulting in 

monoalllelic expression of dozens of genes (Inoue et al., 2017a). 

The mouse preimplantation embryo as an experimental model system 

Since the mid-1960s, the in vitro culture of mouse preimplantation embryos 

became a reality making this model system accessible for biological studies (Brinster, 

1963). Embryos can be obtained after natural matings and the timing of fertilization 

can be stringently controlled by experimentally inducing ovulation in females with 

hormonal injections. The developmental program of preimplantation embryos follows 

a strict timeline of cell divisions, therefore by synchronizing fertilization researchers can 

determine or manipulate the cell cycle stage precisely. 

Due to their large size, transparent nature and synchronized cell cycle, these 

embryos are applicable to live-cell imaging of several basic cell biological processes 

such as chromosome segregation (Tachibana-Konwalski et al., 2010). Moreover, 

mouse preimplantation embryos are fairly easy to micromanipulate. Blastomeres can 

be fused, individual nuclei can be removed or transplanted, embryos can be 

aggregated to form chimeras (the experimental fusion of two genetically distinct 

embryos typically at the 8- or 16-cell stage) as some of the prime examples of classical 

embryology. Also, the RNAi pathway works very efficiently in embryos (Wianny and 

Zernicka-Goetz, 2000), therefore siRNA, dsRNA or mRNA microinjections make a 

wide range of loss-of-function and gain-of-function approaches possible. The 

disadvantage of these experiments is that each embryo has to be handled manually 

one-by-one. 

The preimplantation embryo is an ideal system to study the very first cell fate 

decisions in mammals.  The small number of cells (1 to 64) makes it possible to track 

individual cells and their daughters since they can be marked by fluorescent protein 

coding mRNA injections. Moreover, mouse embryos can be efficiently segregated into 

single cells and then collected for next generation sequencing (NGS). Therefore, most 

of the initial single cell RNAseq studies used the preimplantation embryo as a model 
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system (Deng et al., 2014; Petropoulos et al., 2016; Tang et al., 2010). Regarding 

either NGS or any biochemistry approaches the disadvantage of preimplantation of 

embryos lies in the scarcity of material. Realistically, not more than a few thousand 

embryos/cells can be harvested, which already requires the sacrifice of over a hundred 

of mice. Additionally, for micromanipulated embryos this number drops with one or two 

orders of magnitude. 

Up until recently, the mouse early embryo culture was limited until the late, 

hatching blastocyst stage. However, novel in vitro methods have been developed to 

extend the culture periods of mouse embryos up to stages corresponding to 

implantation around embryonic day 5.5 (E 5.5) (Bedzhov et al., 2014; Bedzhov and 

Zernicka-Goetz, 2014; Deglincerti et al., 2016). This advancement is particularly 

valuable since this way embryogenesis could be studied in vitro at stages where not 

only three cell types are present (as in the non-implanted blastocyst) but more, for 

example even early specifying primordial germ cells (PGCs).  

Alternatively to embryos, embryonic stem cells (ES cells) are derived from the 

ICM of the blastocyst and can be cultured in vitro (Evans and Kaufman, 1981). They 

provide a valuable complementary tool to preimplantation embryos, since the amount 

of material is not limited. Therefore, most biochemical assays are usually carried out 

in ES cells instead of embryos. 

Nuclear organization and genome function 

Pioneering fluorescent in situ hybridization (FISH) studies have revealed that 

the organization of chromatin within nuclei of differentiated cells is non-random (Bolzer 

et al., 2005; Cremer et al., 2001). Generally, gene-rich chromosomes tend to be 

towards the interior, gene-poor ones close to the periphery and gene-rich loci within 

one chromosome tend to loop out from their territory – presumably because they are 

within a more accessible chromatin environment (Boyle et al., 2011). The three 

dimensional (3D) positioning of genomic regions has been associated with their 

transcriptional status, thus affecting development in multiple cases. For example the 

HoxB and HoxD cluster is activated upon looping out of its original territory 

(Chambeyron and Bickmore, 2004; Chambeyron et al., 2005; Eskeland et al., 2010) 

and the repositioning of genes towards/away from the nuclear envelope is a regulator 

of  B-cell development (Lin et al., 2012). Moreover, the nuclear position of loci seems 

to be epigenetically heritable throughout several divisions, at least in some cases 
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(Therizols et al., 2014). Furthermore, several subnuclear compartments (e.g. nucleoli, 

transcription factories, speckles, polycomb bodies, etc.) have been described to date, 

many with poorly understood function.  

Topologically Associated Domains (TADs) 

Chromatin architecture is nowadays widely studied by so called “C” methods 

(Chromosome Conformation Capture) of which the most commonly used is HiC (Crane 

et al., 2015; Lieberman-Aiden et al., 2009; Sexton et al., 2012). The purpose of these 

methods is to unravel physical 3D proximity of neighbouring genomic regions mainly 

in interphase nuclei. Briefly, it involves the crosslinking the chromatin of intact cells, 

digestion with restriction enzymes and ligation of these physically proximal fragments. 

Afterwards, the ligated fragments are purified and sequenced. Based on the identity of 

the two ligated loci, a matrix of contact frequencies is built computationally on each 

chromosome (cis contacts) and also between different chromosomes (trans contacts). 

The first information HiC contact matrices yielded was the discovery that the 

genome is partitioned into two main type of compartments that are preferentially 

interacting with their own type and not the other. Namely, A and B compartments are 

large, 1-10 Mb sized domains alternating on each chromosome (Lieberman-Aiden et 

al., 2009; Sexton et al., 2012). The A compartments tend to be rich in genes, they are 

transcriptionally more active and harbour a more open chromatin state. The B 

compartments are the opposite, they are gene poor, lowly transcribed and the 

chromatin is less accessible in these domains.  

At a finer resolution, contact matrices show that there are several smaller 

domains within the same compartment. These tend to self-associate and give rise to 

the globular organization of interphase chromosomes (Figure 3). These domains are 

in the range of 0.1-1 megabases (Mb) and are called topologically associated domains 

(TADs) (Dixon et al., 2012; Nora et al., 2012). The general TAD structuring of the 

genome is evolutionarily conserved and there are little cell type specific differences in 

TADs within the same species (Dixon et al., 2012; Rao et al., 2014). One method to 

define TAD boundaries is by calculating insulation scores (Crane et al., 2015). The 

boundaries exhibit a local minimum of insulation scores between two consecutive 

TADs. TAD borders are usually bound by architectural insulator proteins like the 

CCCTC-binding factor (CTCF) and by cohesin rings (Nora et al., 2012; Phillips-

Cremins et al., 2013). How TADs are maintained in cells has long been unanswered, 
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however conditional depletion of CTCF has shown that this boundary protein is not 

essential for keeping TAD organization in mouse ES cells (Nora et al., 2017). On the 

other hand, depletion of cohesin subunits or its loaders results in the loss of TAD 

structuring arguing that TADs are likely formed in a cohesion ring dependent manner 

(Gassler et al., 2017; Rao et al., 2017; Schwarzer et al., 2017). 

Recently the resolution of HiC has been improved to yield contact maps at the 

resolution of 5 kilobases (Kb) making it possible to distinguish transcriptional units 

(Bonev et al., 2017). Moreover, HiC is applicable for single cells in which case either 

haploid or hybrid cells are used to distinguish the two parental alleles based on SNPs 

(Nagano et al., 2017; Stevens et al., 2017). Additionally, other ligation independent 

methods like SPRITE revealed a similar chromatin organization confirming the findings 

of HiC (Quinodoz et al., 2018). 

 

Chromatin exhibits local preferences of interaction resulting in a globular domain organization 
of chromosomes. These domains can be determined by crosslinking chromatin and 
sequencing the crosslinked fragments that are a result of 3D physical proximity. HiC is a form 
of this crosslinking combined sequencing method that deciphers TAD structures. TADs are 
visualized as triangles showing higher interaction frequency on the linear scale of a 
chromosome, TADs represent globular domains of chromatin. TAD borders are visible by a 
local loss of interaction frequencies illustrated by local minima in the insulation scores. Figure 
adapted from (Gomez-Diaz and Corces, 2014). © 2014 Elsevier Ltd. All rights reserved. 
Licesnse number: 4514420098431	

Figure 3. HiC maps of topologically associated domains (TADs) 
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Lamina Associated Domains (LADs) 

The nuclear envelope (NE) is a double layered lipid membrane continuous with 

the endoplasmic reticulum. Underneath the NE a protein meshwork of the nuclear 

lamina (NL) contributes a scaffold for the interphase nucleus. The NL constitutes of 

intermediate-type protein filaments, mainly lamin B1, B2 and A/C (Dechat et al., 2010). 

Either lamin B1 or B2 are present in all cell types, while lamin A/C exhibits a more cell 

type specific expression pattern having low or undetectable levels in less differentiated 

cells like ES cells (Constantinescu et al., 2006; Eckersley-Maslin et al., 2013). 

Moreover, lamin A/C has been suggested to have roles not only at the nuclear 

periphery but also in the interior (Legartova et al., 2014). Interestingly, mouse embryos 

lacking lamin B1 and B2 or lamin A/C are able to develop to term but show an early 

post-natal lethality (Kim et al., 2011; Kim and Zheng, 2013; Sullivan et al., 1999). Also, 

deletion of these three lamins in ES cells does not perturb differentiation into all neither 

of the three germ layers in vitro, arguing that lamins are not essential for cell 

differentiation (Kim et al., 2013). 	

Another typical protein of the nuclear periphery is the lamin B receptor (LBR) 

that contains seven transmembrane domains and binds to the heterochromatic mark 

H4K20me and to Heterochromatin Protein 1 (HP1) (Hirano et al., 2012; Ye and 

Worman, 1996). Moreover, several LEM-domain containing proteins reside at the NL 

such as Emerin, Man1 or Lap2. These proteins have been also shown to interact with 

chromatin but mainly indirectly by binding the Barrier-to-autointegration factor (BAF1) 

(Wilson and Foisner, 2010). 

The region directly under the nuclear envelope can also be viewed as a 

subnuclear compartment. Those parts of the genome that are in close proximity to the 

nuclear lamina are referred to as lamina associated domains (LADs) (Guelen et al., 

2008). These loci contain 1.5-2 fold fewer genes compared to the so-called inter-LADs 

(iLADs), they tend to be silenced and labelled with heterochromatic marks, such as 

H3K27me3 and H3K9me2 (Guelen et al., 2008; Peric-Hupkes et al., 2010; Wen et al., 

2009). Also, LADs tend to be A/T rich and show a reduced of CpG content (Meuleman 

et al., 2013). Additionally, LADs seem to overlap with the late replicating domains of 

the genome which are also generally associated with silenced chromatin (Bickmore 

and van Steensel, 2013). Moreover, LADs typically coincide with B compartments 

determined in HiC experiments. The above mentioned details are summarized in 

(Table 1).  
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It has recently been shown that “mother”-LADs stochastically reshuffle after cell 

division in the daughter cells and only a sub-fraction of them (32 % based on DNA-

FISH) re-associate with the NL (Kind et al., 2013). Furthermore, upon differentiation of 

ES cell to neuronal progenitors in vitro, differences in LAD patterning arise between 

the two cell types – i.e. some genomic regions are peripherally located only in ES cells 

or in neurons (Peric-Hupkes et al., 2010). This study also suggested that the cell-type 

specific rearrangements of LADs coincide with changes in gene expression. Often 

regions that were actively transcribing in ES cell and became silenced upon transition 

to the neuronal lineage simultaneously relocated towards the periphery (Peric-Hupkes 

et al., 2010). However, it remains unclear whether movement towards the NL is 

necessary for the reduction of transcription or if it is just a consequence of it.   

The heterochromatic, more repressive nature of LADs have been demonstrated 

in several species (Gonzalez-Sandoval et al., 2015; Harr et al., 2015; Towbin et al., 

2012). Some of these experiments usually involve the artificial tethering of loci to the 

NL. This relies on the integration of repetitive arrays of target sites for DNA binding 

proteins (i.e. LacI/LacO system) which are fused to components of the NL, thereby 

physically linking the periphery with the target region. Often, when loci were artificially 

relocated towards the NL it resulted in lower transcription of genes from the loci (Finlan 

et al., 2008; Reddy et al., 2008). However, not all studies have confirmed this 

phenomenon and it is highly likely that the repressive effect of relocating a locus to the 

NL is context dependent – both depending on the cell type, and the selected region 

(Kumaran and Spector, 2008).  

Table 1. Typical features of LADs and iLADs 

	 features	 LADs	 iLADs	
Gene	density	 low	 high	
Gene	expression	 low	 high	
Hi-C	compartment	 B	 A	
Replication	timing	 late	 early	
Retroelements	 LINE	 SINE		
Sequence	A/T	content	 high	 low	

Histone	marks		 H3K9me2,	 H3K9me3,	
(H3K27me3)	

H3K4me1,	
H3K4me3,	
H3K27ac	

Nucleolus	association		 frequent		 infrequent		
Adapted from van Steensel and Belmont 2017. © 2017 Elsevier Ltd. All rights reserved. License 
number: 4514411451003 
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Importantly, the lamin proteins themselves are not required for maintaining LAD 

structuring of the genome: knock-out of lamin B1 or lamin A/C does not perturb the 

LAD profile of mouse ES cells (Amendola and van Steensel, 2015). In post mitotic cells 

such as the rod photoreceptors of the retina, however, it has been genetically 

demonstrated that peripheral tethering of heterochromatin depends on LBR and on 

lamin A/C (Solovei et al., 2013). 

Because of the potential role of nuclear architecture in regulating gene 

expression and the epigenetic state of a cell, it is of key importance to determine the 

nature of LAD establishment in the early embryo, as well as to test their functional role 

in regulating reprogramming and the developmental program. 

The DamID technique to map LADs  

The DamID technique was originally developed to map protein-DNA interactions 

in cells (van Steensel and Henikoff, 2000) and can be efficiently applied to map 

genome to nuclear lamina interactions (Guelen et al., 2008). It relies on the 

experimental introduction of a DNA modification, adenine-6-methylation (m6A). This 

mark is present at barely detectable levels in higher eukaryotes (Wu et al., 2016b) and 

has not been shown to create background signal in DamID experiments. m6A can be 

introduced by the E. coli DNA adenine methyltransferase (Dam) enzyme that 

recognizes GATC motifs in DNA. When a fusion of Dam and lamin B1 is expressed in 

cells, the methyltransferase activity is sequestered to the lamina, and thus labels only 

LADs (Figure 4). To detect m6A, genomic DNA from cells expressing Dam-LaminB1 is 

treated with DpnI, a restriction enzyme that cleaves Gm6ATC but not GATC, adaptors 

are ligated to the fragments which are then the PCR amplified (Vogel et al., 2007). 

After deep-sequencing, the regions that had been in molecular contact with the NL can 

be mapped to the reference genome. This method reliably works on single cells with a 

100kb window of resolution (Kind et al., 2015). Importantly, the results form lamin B1 

DamID experiments are reproducible with orthogonal methods such as ChIP-seq of 

lamin B1 (Handoko et al., 2011). 

Successful methylation of LADs is detectable not only in PCR and sequencing 

but also visually in the microscope. The m6A-Tracer is a truncated form of DpnI that 

cannot cut but can bind methylated GATCs without affecting cell viability and gene 

expression, fused with the enhanced green fluorescent protein (EGFP) (Kind et al., 
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2013). When LADs are methylated a clear fluorescent signal of the m6A-Tracer is visible 

at the nuclear periphery (Figure 4). 	

Important controls for Dam-lamin B1 DamID are parallel experiments performed 

with an unfused Dam protein (Dam-only) that diffuses freely in the nucleus. Methylation 

by Dam-only is not unbiased but marks open regions of chromatin. Since LADs consist 

of conventionally more compact heterochromatin, the Dam-only signal usually mirrors 

LADs in somatic cells (Kind et al., 2015). In experiments on pools of cells, the Dam-

lamin B1 signal is usually normalized by the Dam-only signal (Peric-Hupkes et al., 

2010), however in single cell experiments this method is not appropriate since variation 

between the individual cells makes it dubious to pick which cells to normalize with 

which one. Therefore, single cell DamID usually involves the calculation of observed 

over expected (OE) scores (Kind et al., 2015). OE scores take into account the total 

number of GATC motifs within a defined sliding window (usually 100 kb for lamin B1 

DamID) as “expected” numbers. The actually methylated GATC numbers “observed” 

a) The Dam-lamin B1 fusion protein incorporates into the NL, thus tethering the Dam activity 
to the periphery of the nucleus. Therefore, genomic regions close to the periphery (LADs) are 
adenine methylated, and central genomic regions (iLADs) are not. b) Adenine methylation 
can be visualized by the m6A-Tracer (a truncated form of the catalytically inactive DpnI enzyme 
fused to EGFP). c) Exemplary confocal images of lamin B1 immunofluorescence co-localizing 
with the m6A-Tracer signal. Figure adapted from Kind et al. 2013. © 2013 Elsevier Ltd. All 
rights reserved. License number: 4514411221031	

Figure 4. The DamID technique and the visualization of LADs with the m6A-
Tracer 
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are divided with the “expected” GATC counts and each cell is also normalized by the 

total number of GATC reads to account for sequencing variabilities (Kind et al., 2015). 

Other studies on pools of cells usually do not calculate OE scores but use the read 

coverage normalized by GATC number per bin. These values are usually normalized 

with the Dam-only signal. In the case of single cell DamID experiments, however such 

normalization is not reasonable as one could not assess which single cell from Dam-

lamin B1 experiments shall be normalized by which single cell from a Dam-only 

experiment. 

Genome organization in the preimplantation embryo 

Along with changes in histone and DNA modifications, another feature of 

reprogramming is the dramatic global reorganization of nuclear architecture already 

observable at the microscopic level. Mature oocytes, zygotes and embryos at the 2-

cell stage have a peculiar nuclear organization (Burns et al., 2003; Zuccotti et al., 

2005). Notably, they contain nucleolar precursor bodies (NPBs) around which the 

pericentromeric repeats cluster, forming distinctive ring like structures (Figure 5). The 

presence of such structures is known to correlate with efficient reprogramming upon 

nuclear transfer, but their exact function is still unknown (Martin et al., 2006). By the 4-

cell stage, centromeric regions of the genome re-cluster into chromocenters similar to 

those present in all somatic, differentiated murine nuclei (Figure 5). The 3D localization 

of centromeric repeats around the NPBs in early-2-cell stage and the formation of 

chromocenters by the late-2-cell stage have been shown to be crucial for proper 

embryonic development (Casanova et al., 2013; Jachowicz et al., 2013; Probst et al., 

2010). Yet, it is unknown why, how and what changes occur to the nuclear architecture 

genome-wide during this reorganization. Using electron microscopy, electron-dense 

heterochromatin can be observed at the nuclear periphery in almost all somatic nuclei 

(Towbin et al., 2013). In zygotic and 2-cell stage nuclei, however, electron dense 

regions are not visible and gradually become apparent only at later stages (Andre Eid, 

Torres-Padilla unpublished observations and (Ahmed et al., 2010)). The distinctive 

genome structure of the totipotent zygotes and 2-cell embryos suggests that the 

unusual nuclear architecture of the early embryo might be linked to the totipotent state 

(Borsos and Torres-Padilla, 2016). However, whether changes in nuclear architecture 

after fertilization are functionally required for reprogramming, cellular plasticity and 

development is barely explored.  
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Chromatin accessibility changes during preimplantation 

 Accessible chromatin regions usually reflect transcriptionally active loci, 

whereas compacted chromatin domains are typically lowly transcribed such as LADs. 

The two most commonly used techniques for mapping chromatin accessibility that are 

applicable for low-input material (therefore to embryos) are 1) assay for transposase-

accessible chromatin coupled with sequencing (ATAC-seq) and 2) DNase 

hypersensitive site mapping (DHS) (Boyle et al., 2008; Buenrostro et al., 2013; 

Buenrostro et al., 2015). ATAC-seq relies on a TN5 transposase that incorporates 

adaptor sequences preferentially to open chromatin regions, subsequently the 

fragments flanked by the adaptors are amplified and sequenced. The DHS mapping 

involves the digestion of intact chromatin with DNase I, that has access only to open 

chromatin regions, followed by the ligation of adapters to the newly created fragments 

and sequencing. 

 Recently, two independent groups have used ATAC-seq or DHS mapping to 

define the accessible chromatin regions of mouse preimplantation embryos (Lu et al., 

2016; Wu et al., 2016a). The DHS study found less than 1.000 hypersensitive sites in 

zygotes, many of which were different between the two pronuclei. By the morula stage 

the number of DHS gradually increased to 20.000 sites and most of the allelic 

differences were equalized (Lu et al., 2016). This data argues for a developmentally 

regulated, gradual establishment of chromatin accessibility landscape during 

preimplantation (Figure 6). 

DNA (DAPI) staining is enriched in A/T dense regions highlighting the pericentromeric repeats of 
chromosomes. While sperm nuclei show highly condensed chromatin in the center of the sperm head, 
the growing oocyte nucleus has dispersed chromocenters which re-cluster around the NPB (Nucleolar 
Precursor Body) by the fully-grown oocyte stage. This ring like arrangement is kept by the mid-2-cell 
stage. Afterwards, chromocenters are formed again from the pericentric ends of chromosomes. This 
patchy chromocenters arrangement is typical of the majority of mouse cells, for example in fibroblasts 
(on the right). Adapted from Borsos and Torres-Padilla 2016. © 2016 Borsos and Torres-Padilla; 
Published by Cold Spring Harbor Laboratory Press. 
.	

Figure 5. DNA staining of gamete and embryonic nuclei 
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 The ATAC-seq study was not performed on zygotes but found higher numbers 

of accessible regions in the 2-cell and 4-cell stages compared to the DHS study (Lu et 

al., 2016; Wu et al., 2016a). This discrepancy might result from the differential 

preference of the TN5 transposase and DNase I. A key finding of the ATAC-seq data 

is that during ZGA, accessible peaks are found not only at the transcriptional start sites 

(TSS) of active genes but also at the transcriptional end sites (TES) (Wu et al., 2016a). 

The authors hypothesize that the openness of the TES might serve as a platform for 

regulators that could prevent promiscuous transcription.  

Moreover, ATAC-seq also identified an embryo specific chromatin accessibility 

pattern, exhibiting a more relaxed chromatin state particularly at the 2-cell stage 

(Figure 5). The MERV-L transposon is actively transcribed at the onset of ZGA and 

ATAC-seq identified accessible regions not only at the MERV-L sequences but also 

several tens of kilobases downstream (Wu et al., 2016a). This data suggests that the 

activation of repetitive elements can shape the chromatin accessibility landscape of 

embryos, possibly even contributing to neighboring gene activation. Another repetitive 

element, LINE1 is also heavily transcribed during early stages of preimplantation 

development. In vivo artificial activation or repression of these endogenous LINE1 

elements resulted in persistent opening or premature closing of global chromatin 

architecture, respectively (Jachowicz et al., 2017). This mechanistic study 

demonstrates that the timely regulation of chromatin accessibility by repetitive element 

activation is critical for proper embryo development.  

TADs gradually mature during preimplantation 

 Recently, three independent groups have reported HiC data from mouse 

preimplantation embryos (Du et al., 2017; Flyamer et al., 2017; Ke et al., 2017).  

The first study performed single-cell HiC on fully-grown oocytes and early 

zygotes. They found that even though TADs are present in interphase oocytes, the 

compartmentalization is very weak (Flyamer et al., 2017). Oocytes arrested at the 

metaphase of the second meiotic division show no TAD structure and a complete loss 

of compartmentalization, suggesting that the chromatin structure is not passed on from 

the maternal germline to the embryo (Du et al., 2017). Right after fertilization, both 

pronuclei exhibit very weak TAD structuring in early zygotes (Flyamer et al., 2017). 

These TADs are not visible on single chromosome contact maps, but only when all 

contacts are averaged over the known TAD boundaries defined in ES cells. 
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Interestingly, there is an asymmetry between the paternal and maternal genome in 

their compartmentalization: the paternal pronucleus exhibits higher compartment 

strength, whereas compartments in the maternal pronucleus are barely detectable 

(Flyamer et al., 2017). This asymmetry might arise from the germline history of the two 

genomes, as the maternal pronucleus is assembled from condensed chromosomes of 

a metaphase plate. The paternal chromatin, on the other hand, arrives to the egg in a 

more interphase like conformation that it adopted in the sperm head, making it more 

likely to inherit some structure.  

The second study performed HiC on pools of embryos up to the blastocyst 

stage. They confirm the very weak signal of TAD boundaries that are again only 

detectable if averaged over the known boundaries of ES cell TADs (Du et al., 2017). A 

clear TAD pattern on individual chromosomes is visible only from the 8-cell stage 

onwards. This data suggests that TADs are either absent in earlier stages or are 

present only in a primed state with weak insulation at their boundaries which matures 

only by the 8-cell stage (Figure 6). This interpretation is also supported by the third 

study (Ke et al., 2017).  

The authors of the second study also tested if the maturation of TADs from the 

2-cell to the 8-cell stage is dependent on active transcription. They inhibited RNA Pol 

II with alpha-amanitin in 2-cell embryos which caused their arrest at the 2-cell stage. 

They collected these embryos two days later for HiC – when the untreated control 

embryos are already in 8-cell stage. Surprisingly, the 2-cell arrested, transcriptionally 

silent embryos still exhibited TAD maturation and increased insulation at TAD 

boundaries reminiscent of the transcriptionally active 8-cell stage controls (Du et al., 

2017). This data suggests that the maturation of TADs is independent of the 

transcriptional program. 

Whether progression through S-phase is important for TAD maturation was 

tested in the third study (Ke et al., 2017). Similarly to the alpha-amanitin experiment, 

2-cell embryos were treated with aphidicolin to inhibit DNA replication and processed 

for HiC two days later when the untreated controls reached 8-cell stage. Contrarily to 

transcription inhibition, the 2-cell embryos could not mature TAD structures without 

going through S-phase (Ke et al., 2017). Taken together, the consolidation of TADs by 

the 8-cell stage occurs independently of cell division (alpha-amanitin treated 2-cell 

embryos do not divide) and transcription; however, progression through the replication 

cycle is necessary for forming TADs. 
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The only genetic study to date testing factors necessary for TAD formation in 

early embryos used a conditional depletion of chromosome cohesion in zygotes 

(Gassler et al., 2017). The authors demonstrated that TAD establishment depends on 

the mitotic cohesin subunit Sister Chromatid Cohesion 1 (Scc1). When Scc1 is 

maternally depleted from oocytes, the fertilized zygotes show a complete lack of the 

primed TAD insulation (Gassler et al., 2017). 

 

 

A/B compartmentalization of the genome is present already in zygotes, however is gradually 
strengthened during development, becoming strongest by the after the 2-cell stage. TADs are 
initially in a primed state and not clearly defined, by the 8-cell stage TADs become matured and 
resemble somatic organization. Chromatin transiently opens up at the 2-cell stage coinciding with 
ZGA and with the transcription of MERV-L and LINE1. Figure adapted from Du et al. 2017. © 2017 
Macmillan Publishers Limited, part of Springer Nature. All rights reserved. License number: 
4514410925310 
	

Figure 6. Chromatin accessibility and TAD maturation changes during 
preimplantation 



	

	
31	

Results 

Establishing conditions for DamID in the mouse preimplantation embryo 

There are two possible ways to perform DamID on LADs in preimplantation 

embryos. The Dam-lamin B1 construct can be expressed from the genome if a knock-

in allele is created, however this requires the production of a new transgenic mouse 

line. This is not only time consuming but also the levels of Dam-lamin B1 cannot be 

precisely controlled, otherwise several promoters and induction systems (like TET-off 

or TET-on) need to be tested, each requiring the creation of a different mouse strain. 

Also, the genomic context of the transgene can affect the level of expression, thus 

several loci of integration should also be tested making this task even more difficult. 

The level of Dam-lamin B1 protein is critical since too high or too low expression can 

result in the oversaturation of the genome or inefficient labelling of LADs. Another 

method is to physically inject the mRNA coding for Dam-lamin B1 into wild-type 

embryos. This way, the levels of mRNA and therefore of the Dam-lamin B1 protein can 

be meticulously titrated. However, injection requires the micromanipulation of each 

embryo one-by-one in every experiment and there can be a slight variation in the levels 

of mRNA injected between embryos. Nevertheless, we decided to go for the 

microinjection approach because of its rapidity, flexibility for testing different conditions 

and our expertise in the method. 

Components of the nuclear lamina dynamically change in embryos 

First, we had to select a protein of the nuclear periphery that would be an ideal 

candidate for performing LAD DamID in embryos. It was important to use an NL protein 

that is uniformly expressed throughout preimplantation development with similar levels 

between stages in order to avoid the introduction of artifacts in embryo development. 

Therefore, we assessed the localization pattern of nuclear periphery proteins (lamin 

A/C, lamin B1, LBR) with immunofluorescence staining (Figure 7). While lamin A/C is 

only present zygotes and is absent in later stages, LBR is present in all stages but with 

increasing levels in the blastocyst (Figure 7). Therefore, these two proteins are 

unfavorable for the DamID of LADs. However, lamin B1 shows a clear peripheral 

staining in all stages with similar intensities, therefore being an ideal candidate to be 

fused with Dam. We cloned the mouse lamin B1 ORF downstream of Dam in an in 
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vitro mRNA transcription vector, prepared mRNA and went on with injecting it into 

embryos. 

The auxin degron system allows for the temporal control of DamID 

 Physical injection of preimplantation embryos is hardly feasible after the 2-cell 

stage because of the small size of the blastomeres. Also, we wanted to ensure having 

active Dam methylation only in the desired stage we would like to profile and not to 

carry over Dam methylated DNA from previous stages of development. Therefore, we 

aimed to temporally restrict the activity of Dam-lamin B1. One can do this by using a 

degron tag on the Dam-lamin B1 construct that enables turning on/off the protein by 

driving its proteosomal degradation upon the addition or withdrawal of a small molecule 

while the mRNA is present continuously.  

Lamin A/C localizes to the NL in zygotes but is absent from the 2-cell stage onwards. LBR shows 
also a peripheral staining, however the levels of LBR are much higher in the blastocyst than in 
earlier embryonic stages. Lamin B1 is present in all stages with similar intensity levels at the 
nuclear periphery. Scale bars represent 5 μm. 
	

Figure 7. Immunofluorescent staining of endogenous NL components in the 
mouse embryo 
 



	

	
33	

Initially, we tested a destabilization domain (DD) carrying Dam-LaminB1 

construct that is proteosomally degraded by default, unless a synthetic small molecule, 

Shield1 is bound to its DD (Banaszynski et al., 2006). Ideally, the concentration of 

Shield1 in the media defines the amount of stable protein in the cell, thus we were 

hoping that we could further fine tune the Dam-lamin B1 protein concentration by 

varying Shield1 concentrations. However, in preimplantation embryos the DD-Shield1 

system did not give positive results as the DD-Dam-lamin B1 protein was present 

regardless of incubation with or without Shield1 (Figure 8).  

Therefore, we turned to an alternative approach using the auxin based degron 

system (Holland et al., 2012; Nishimura et al., 2009). The system relies on the co-

expression of the Transport Inhibitor Response 1 protein (TIR1) that couples the auxin 

inducible degron (AID) tagged protein to the proteosome in the presence of IAA. This 

tool employs the following logic: when embryos are kept in auxin (IAA), despite mRNA 

being present the Dam-LaminB1 protein is rapidly degraded, when IAA is washed out, 

the protein is stabilized and LADs are methylated. Importantly, when injecting the AID-

Dam-lamin B1 construct (from hereafter simply referred to as Dam-lamin B1) together 

with the TIR1 mRNA, this system proved to be successful in embryos yielding Dam 

methylation only when the embryos were incubated without IAA. This is visible on 1) 

PCR gels where amplification from m6A methylated DNA is only detectable from 

Two-cell stage embryos expressing DD-Dam-lamin B1 show Dam methylation (m6A-Tracer signal) 
on LADs both with and without Shield1, as opposed to no methylation expected in the without 
Shield1 condition. Scale bars represent 5 μm. 
	

Figure 8. The DD/Shield1 system does not degrade the DD-Dam-lamin B1 fusion 
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embryos incubated without IAA; 2) and by microscopy when assessing the m6A-Tracer 

signal being absent in embryos cultured in the presence of IAA (Figure 9). 

The established DamID conditions does not perturb preimplantation 
development 

Second, it was critical to find ideal concentrations for Dam-LaminB1 mRNA 

since too low would yield poor methylation coverage of the LADs, and too high would 

methylate not only LADs but also regions that were in the nuclear interior. We titrated 

the mRNA injections using the m6A-Tracer as a readout (Figure 4 and 10) to find 

concentrations at which a clear peripheral ring was visible (Figure 10). For each stage 

a different injection scheme had to be adapted. For profiling zygotes and also 2-cell 

a) When TIR1 is co-expressed with the protein of interest fused to the AID-tag in the absence of 
auxin (IAA) the protein is stably present in the cell. In the presence of IAA, it is proteosomally 
degraded. Figure adapted from Nishimura et al. 2009. © 2009 Nature America, Inc. All rights 
reserved. License number: 4514410604144 b) Two-cell stage embryos show Dam-methylation 
judged by m6A-Tracer only in the absence of IAA. Scale bars represent 5 μm. c) PCR smears from 
amplification of pools of ten 2-cell stage embryos injected with different AID-Dam-lamin B1 mRNA 
concentrations show little or no methylation in the presence of IAA. 
	

Figure 9. The auxin degron system 
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embryos, we injected mRNA into either early- or late-zygotes, respectively. Because 

the Dam-lamin B1 mRNA was not stable enough to persist until the 8-cell stage when 

injected into zygotes, we had to inject both blastomeres of late 2-cell stage embryos. 

This way we could obtain 8-cell embryos that still had the injected mRNA present and 

by washing them out of IAA the Dam-lamin B1 protein could be “turned on”. In controls 

where Dam was not fused to LaminB1, methylation was everywhere in the nucleus 

(Figure 10). Subsequent DNA sequencing rounds enabled to define the final 

concentration of mRNA to be used for each stage. 

	

In addition, we tested whether the auxin based degron system has an effect on 

normal embryo development. We incubated uninjected embryos in the presence or 

absence of IAA from zygote to blastocyst stage in vitro (Figure 11). Scoring of 

blastocyst rate confirmed that the presence of IAA does not affect embryo development 

to the blastocyst. Next, we assessed if the designed injection schemes including LAD 

The scheme of experiments and representative images of live embryos injected with m6A-Tracer, TIR1 
and Dam-lamin B1 or Dam-only mRNA are shown. The cell membrane is labelled by a GAP43-EGFP 
fusion. The Dam-lamin B1 injected embryos show a clear ring-like peripheral signal of the m6A-Tracer, 
while the Dam-only injected embryos (2-cell stage shown on the right) show a signal dispersed around 
in the whole nucleus. Scale bar represents 5 μm.	

Figure 10. Different experimental injection schemes in zygote, 2-cell and 8-cell 
embryos 
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methylation and the m6A-Tracer binding to the genome has an effect on developmental 

potential. Compared to the uninjected group both Dam-only and Dam-lamin B1 injected 

embryos developed to the blastocyst stage with normal rate, regardless if they were 

washed out of IAA to methylate LADs at the 2-cell stage or not (Figure 11). 

 

Genome wide mapping of LADs post-fertilization 

LADs are present already in zygotes and dynamically reshuffle during 
development 

First, we used pools of embryos for sequencing to obtain LAD information. We 

mapped genome-NL interactions in zygotes, 2- and 8-cell stage embryos using pools 

of 15, 20, and 24 cells, respectively. The DamID PCRs and library preparations were 

performed by Jop Kind and the sequencing was done in the facility of the Hubrecht 

Institute. The raw data was analyzed by a bioinformatician postdoc in Jop Kind’s 

laboratory, Sara Perricone. We sequenced three independent population samples for 

each stage and Jop Kind’s laboratory also performed lamin B1 DamID in mouse ES 

cell clones expressing Dam and Dam-lamin B1 under the same auxin-inducible 

conditions as we used in the embryo.  

Genomic tracks of OE values for two replicates above each other showed that 

there is a good correspondence between the population biological replicates (Figure 
12a). This is further illustrated by a t-distributed neighbour embedding (t-SNE) map 

Bar graphs represent the rate of blastocyst development for auxin treated (black) or non-treated (gray) 
uninjected embryos (left). Similarly, injected embryos with either Dam-only or Dam-lamin B1 mRNA 
are developing to the blastocyst at normal levels regardless if methylation is allowed by the washout 
from IAA (right).	

Figure 11. The rate of blastocyst development in vitro is not perturbed by IAA or 
by the experimental m6A methylation of DNA 
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which highlights that the three replicates cluster together based on the stage of 

embryos used for DamID (Figure 12b). The m6A mark is enriched in broad continuous 

domains over all autosomes both in zygotes, 2- and 8-cell stage embryos (Figure 12a). 

This pattern is similar to those previously observed in somatic cells with Dam-lamin B1 

DamID. The genomic Dam-lamin B1 profiles showed a clearly distinct pattern 

compared to the Dam-only embryos (Figure 13a and 13b). This difference indicates 

that the detected LAD structure is not a result of biases related to the Dam protein’s 

preference for methylating certain regions but is truly due to specific genome-NL 

contacts.  

In order to compare our data to other datasets and between stages we had to 

binarize the data and divide the genome into categories of LADs and iLADs. We 

defined LADs using a two-state Hidden-Markov model (HMM) that binarizes the data. 

As input, we used the average of the three population replicate profiles for each 

embryonic stage. Genome-NL contacts in preimplantation development occurred in 

a) Chromosome plots of two biological replicates for each developmental stage. Peaks represent OE 
(observed over expected) methylation signal. Black bars above peaks highlight the LAD domains 
called by Hidden-Markov model (HMM) algorithm. b) Clustering of three biological replicates on a t-
SNE plot shows clear distinction of samples based on the stage of development.	

Figure 12. DamID profiles of Dam-lamin B1 injected embryo pools 
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broad domains with a median size ranging between 1 Mb and 1.9 Mb illustrated by 

violin plots (Figure 15b). Bar plots show that the genomic coverage is rather stable 

between stages, it ranges between 42% and 62%, reminiscent of LADs of somatic cells 

(Figure 15a). Overall, LADs were present throughout zygotes, 2-cell, 8-cell embryos 

and ES cells. Interestingly, the 2-cell stage showed more and smaller domains as it is 

visible on all autosomes in three biological replicates (Figure 14).   

 

a) Chromosome plots on top (darker color) show the OE values of Dam-lamin B1 methylation, 
on the bottom (lighter color) the Dam-only methylation signal is represented. b) Scatter plots 
of OE values from the whole genome show an increasing anti-correlation between Dam-only 
and Dam-lamin B1 methylated regions as development progresses. Pearson’s rho is 
indicated.	

Figure 13. Comparison of Dam-lamin B1 and Dam-only signals in embryos 



	

	
39	

	

Coloured rectangles represent HMM called LAD domains in three biological replicates in all 
stages profiled. Black bars on the left indicate centromeres, unmappable regions are highlighted 
in red color. 
	

Figure 14. Maps of LADs on all autosomes in three biological replicates 
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Next, we tracked the fate of genomic regions being LADs or iLADs between 

stages of embryo development. This analysis revealed an extensive reshuffling of 

regions towards and away from the lamina between stages as shown on an alluvial 

plot (Figure 15c). 42% of the zygotic genome changes NL-positioning at the 2- or 8-

cell stage, but 90% of the zygotic LADs that dissociated from the NL in the 2- and 8-

cell stages re-associate with the NL in ES cells (Figure 15c). The overlap between 

LADs in zygotes and ES cells is very high (96%), which is further illustrated by the t-

SNE map showing close proximity of the zygote data to the ES cell data. This suggests 

that there is a canonical LAD structure present right after fertilization which is then 

remodelled at the 2-cell stage and is subsequently consolidated by implantation. 

Embryonic LADs show similar genomic features to typical LAD 

	 Since genes in LADs are usually lowly transcribed we used public RNAseq data 

from mouse preimplantation embryos to compare LADs with gene expression (Zhang 

a) Bar plots showing the percentage of the genome being a LAD (black) across stages. b) 
Violin plots of LAD domain length across the developmental stages profiled, “n=” indicates the 
number of LADs defined by HMM. c) Alluvial plot showing the fate of the entire genome with 
respect to being on the nuclear periphery (LAD bars) or in the nuclear interior (inter-LAD bars). 	

Figure 15. Genomic coverage and rearrangement of LADs in embryos 
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et al., 2016) to plot average RPKM values of genes within LADs or within iLADs. This 

analysis revealed that genes in LADs at the 2- and 8-cell stages are indeed less 

transcribed compared to genes in iLADs (Figure 16a).  We did not analyze RNAseq 

data from zygotes because global transcription is very low at this stage and because 

the majority of transcripts in zygotes are carried over from the oocyte and thus does 

not represent active transcription.  

Next, we overlaid genomic features such as CpG density, A/T-content and 

chromatin accessibility (as determined by DNase hypersensitivity sites – DHS in 

embryos (Lu et al., 2016)) with our LAD domains. The cumulative plots showed that 

LADs in the embryo have genomic features comparable to somatic cells, being CpG 

poor and having an increased A/T-content, although this tendency was less clear at 

a) Boxplots of RNAseq RPKM values (data from Zhang et al. 2016) from 2-cell and 8-cell 
embryos show that genes within LAD regions exhibit lower expression when compared to genes 
within iLADs. b) Cumulative plots over the borders of all LADs (LADs to the left from the center, 
neighbouring iLADs to the right form the center) show that embryonic LADs exhibit the canonical 
pattern of low CpG levels and high A/T content. Chromatin accessibility (DHS) is clearly higher 
outside LADs from the 8-cell stage onwards. 	

Figure 16. Comparison of RNA expression and genomic features with LADs 
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the 2-cell stage (Figure 16b). While 8-cell and ES cell LADs were depleted of open 

chromatin regions, zygote and 2-cell LADs were more accessible (Figure 16b), this is 

consistent with findings in other papers describing a more open chromatin 

conformation at the very beginning of development (Lu et al., 2016; Wu et al., 2016a).	

Embryonic LADs show low heterogeneity between single cells 

There is an increasing intra-embryonic cell-to-cell heterogeneity in mouse 

preimplantation embryos as development progresses. This heterogeneity in epigenetic 

states and gene expression levels is linked to cell fate decisions which arise by the 

blastocyst stage. To address whether genome-NL interactions also display intra-

embryonic heterogeneity, we generated Dam-lamin B1 profiles of zygotes, 2- and 8-

cell embryos and ES cells at the single-cell level. The population data (15-24 cells) and 

the average of single-cell Dam-lamin B1 profiles showed a very similar pattern on 

chromosome plots (Figure 17a) which justifies our single cell approach. We used a 

cut-off score of 1 on the observed over expected (OE) values to generate binary NL-

a) Chromosome plots comparing population and single cell average OE values and HMM called LADs 
(black boxes) for each developmental stage. b) Contact Frequency (CF) scores on an exemplary 
chromosome for each developmental stage. c) Violin plots of coefficient of variation (CV) values for 
LAD and iLAD regions between stages.	

Figure 17. Dam-lamin B1 single cell data correlates well with data from pools of 
embryos and shows heterogeneity between cells 
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contact maps and calculated contact frequencies (CF). CF values range from zero to 

100 and indicate the percentage of single cells showing lamina association for each 

100 kb bin. Chromosomal plots of CF values showed that there is a wide range of 

contact frequencies in genome-NL contacts at all stages (Figure 17b). This is 

indicative of cell-to-cell variability in LADs. However, the comparable coefficients of 

variation (CV) indicate a similar variability in genome-NL contacts between individual 

cells of the three embryonic stages (Figure 17c). The segmentation of the genome 

into clear LADs and iLADs was more consistent in the ES cells as indicated by more 

contrastive chromosome plots of CF values and by the lower CV for LAD and iLADs 

compared to embryos (Figure 17b and 17c). 

The orthogonal method of DNA-FISH confirms DamID 

To confirm the validity of our findings with a DamID independent method, we 

turned to 3D mounted DNA fluorescent in situ hybridization (DNA-FISH). Due to the 

scarce number of embryos available, we optimized the initial protocol used in our 

laboratory to be able to visualize as many FISH probes simultaneously as possible. 

Using a white laser confocal microscope and after testing several labelling methods 

and fluorophores, we could image five different fluorophores from the same embryo.  

Additionally, we combined immunofluorescence staining of the nuclear 

envelope with DNA-FISH enabling to create a reference point of the nuclear periphery. 

With the help of our image analysis specialist Julien Pontabry, we developed a semi-

automated pipeline to analyze the DNA-FISH data. This was challenging, especially 

for zygotes, where the two pronuclei had to be separated apart, which was done 

manually. However, it was critical to establish the pipeline, since we performed 

experiments with more than 25 probes at three different developmental stages 

acquiring between 50-150 nuclei per stage. Eventually, we measured the 3D distance 

of DNA-FISH spots to the nuclear periphery (based on the mask of the DAPI signal), 

normalized by nuclear size.  

The 3D distance measurements of the tested LADs and iLADs at the 2- and 8-

cell stage indicated that all FISH probes in LADs were in closer proximity to the nuclear 

periphery than iLADs (Figure 18a and 18b). Moreover, for these regions we compared 

the mean distance of the DNA-FISH signals with the CF scores from single cell DamID. 

The resulting scatter plots showed a high positive correlation between these two 

orthogonal methods (Figure 18c).  
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Also, we categorized FISH spots manually as “overlapping” or “not-overlapping” 

the nuclear lamina based on their co-localization with the nuclear envelope staining 

(Figure 19a). Both of these analysis methods show similar results, confirming a 

preference of LADs being at the nuclear periphery as opposed to iLADs.  

 

In addition, we selected LADs that relocated towards or away from the nuclear 

periphery while the embryos transit from the 2-cell to the 8-cell stage (“changing LADs”) 

(Figure 19b). We named those regions that dissociate from the lamina from 2- to 8-

cell stage “disLADs”, and those that newly move to the lamina from 2- to 8-cell stage 

“newLADs”. DNA-FISH distance measurements indicated that these selected 

changing LADs indeed relocate between the 2- and 8-cell stage, as predicted by 

a) Exemplary images of 2-cell and 8-cell embryonic nuclei with DNA-FISH spots for a selected LAD 
and iLAD probe. Upper panels show overlay with DNA (DAPI), lower panels show the overlay with 
the nuclear envelope (nucleoporin staining). Scale bar represents 5 μm. b) Quantification of 3D 
distance measurements of all tested LAD and iLAD probes normalized with nuclear size. A value of 
1 represents complete peripheral localization, 0 represents central positioning. The number of FISH 
spots quantified are indicated as (n) numbers. c) Scatter plots show a clear correlation between the 
DNA-FISH distance measurements and the CF values obtained from the single cell DamID data, 
Pearson’s rho is indicated.	

Figure 18. DNA-FISH on LADs and iLADs confirms the validity of our DamID data 
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DamID (Figure 19c). This further reassured the validity of our findings from sequencing 

data.  

 

a) Bar plots show the percentage of FISH spots overlapping the nuclear envelope staining as 
judged by manual scoring (for each stage and each probe between 30 to 50 FISH spots were 
quantified.. b) Exemplary chromosome plots of DamID OE values with the location of changing 
LAD probes (red bars). c) 3D distance quantification of four changing LADs at the 2- and 8-cell 
stages. “disLADs” move away from the NL by the 8-cell stage, “newLADs” move towards the NL 
by the 8-cell stage as predicted by DamID. 	

Figure 19. Manual quantification of DNA-FISH and changing LADs 
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Extensive differences in LADs exist between the parental alleles  

In order to obtain information specifically on maternal versus paternal alleles 

(particularly important at zygote stage, where the two parental genomes are in distinct 

pronuclei) we had to perform DamID on embryos from hybrid crosses between CAST 

(paternal) and CBAxC57Bl6 (maternal) mice. This was a major challenge, since such 

crosses yielded ~ 25-fold less embryos then normal crosses, thus severely extending 

the time spent on injections and embryo collection. Nevertheless, we obtained 

sequencing data and we split the reads based on the single nucleotide polymorphisms 

(SNPs) and allocated them either to the paternal or maternal alleles.  

This analysis revealed that while both parental genomes display specific 

genome-NL interactions in the zygote, the paternal genome appears to be more 

defined with fewer and broader domains compared to the more fragmented patterns 

a) Violin plots of LAD domain length in maternal and paternal pronuclei show larger and fewer LADs 
on the paternal allele. The number of LADs is indicated as (n=). b) The ratio of the total number of 
GATC reads show an allelic bias in zygote population Dam-lamin B1 samples. c) Scatter plot of the 
paternal OE values obtained from hybrid crosses versus from non-hybrid crosses in which the 
pronuclei were mechanically separated. Pearson’s rho is indicated. d) Cumulative plot of chromatin 
accessibility (DHS signal) shows a difference in the maternal versus paternal pronuclei. e) Cumulative 
plot of CpG density shows a reduction of CpG content in LADs on both zygotic alleles, to less extent 
on the maternal allele. f) Cumulative plot of A/T content shows an enrichment of A/T content in LADs 
on both zygotic alleles, to less extent on the maternal allele.	

Figure 20. Allelic differences of LAD structure in zygotes 
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observed in the maternal zygotic genome (Figure 20a). Moreover, we systematically 

detected fewer genome-NL contacts in the maternal genome as compared to the 

paternal genome in the zygote (Figure 20b). Whether these differences were due to 

strain specificity or truly due to the different germline history of the alleles we used 

physically separated pronuclei from the same strain in a second experiment which 

confirmed that our results are not due to the strain but they are truly allele specific 

differences (Figure 20c). Despite the less structured appearance of the maternal LAD-

organisation, the regions that do contact the NL in both paternal and maternal pronuclei 

by DamID (not allele specific LADs) are positioned with similar average distances to 

the nuclear periphery measured by DNA-FISH (Figure 21).  

The genomic features associated with the paternal and maternal genome-NL 

regions differed substantially. Paternal zygotic LADs are associated with all the 

features typical for LADs (CpG poor, A/T rich, compact chromatin), whereas maternal 

LADs are less enriched for LAD-features and even contain regions with increased 

DNaseI hypersensitivity (Figure 20d, 20e and 20f). From the 2-cell stage onwards the 

genomic features are similar and canonical between LADs of both alleles. 

At later stages the chromosomal plots still show differences between alleles but 

these differences are equalized by the ES cell stage (Figure 22a). An allele specific t-

SNE map confirms that these differences exist at the 2- and 8-cell stages (Figure 22b), 

a) Exemplary images of zygote pronuclei with DNA-FISH spots for a selected LAD and iLAD probe. 
Upper panels show overlay with DNA (DAPI), lower panels show the overlay with the nuclear envelope 
(nucleoporin staining). Scale bar represents 5 μm. b) Quantification of 3D distance measurements 
normalized with nuclear size. A value of 1 represents complete peripheral localization, 0 represents 
central positioning, number of FISH spots quantified are indicated as (n) numbers.	

Figure 21. DNA-FISH on zygotes 
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albeit to a much less pronounced extent than in the zygote. Again, the results are not 

due to strain specific differences since our data from embryos derived from reciprocal 

hybrid crosses (CAST-maternal and CBAxC57Bl6-paternal) at the 2-cell stage 

positively correlates (Pearson’s r=0.64) with data from embryos of “normal” crosses 

(CAST-paternal and CBAxC57Bl6-maternal) (Figure 22c).  

LAD establishment precedes TAD maturation 

Recent work suggests that TADs are largely absent in zygotes and gradually 

consolidate to form “mature” TADs only at later cleavage stages around the 8-cell stage 

(Du et al., 2017; Ke et al., 2017). The interdependence between TADs and LADs has 

not been addressed neither in embryos nor in somatic cells so far. To investigate the 

interdependency between spatial genome organisation and the establishment of 

a) Chromosome plots showing maternal and paternal OE values and HMM called LADs (black 
boxes) for each developmental stage. b) Clustering on a t-SNE plot of allelic OE values, including 
reciprocal crosses from the 2-cell stage. c) Scatter plot comparing OE values of the maternal allele 
in the 2-cell stage from normal (CAST-paternal and CBAxC57Bl6-maternal) and reciprocal 
(CAST-maternal and CBAxC57Bl6-paternal) crosses.	

Figure 22. Allelic differences in LADs at all stages 
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chromatin topology, we analysed published HiC data (Du et al., 2017). We calculated 

the insulation scores in the zygote, 2- and 8-cell stages at TAD boundaries defined in 

ES cells. As shown previously, TAD-boundaries become progressively insulated as 

development proceeds (Figure 23a). 

In contrast, when we projected OE values from Dam-lamin B1 DamID on LAD 

boundaries (defined by HMM domain calling) per stage, we observed that LADs are 

already clearly defined as early as in zygotes and are stably present throughout all 

stages (Figure 23b). These findings suggest that the presence of LADs may precede 

the establishment of TADs.  

 

a) Cumulative plot of insulation scores from HiC plotted over ES cell TAD boundaries indicates the 
gradual maturation of TAD boundaries with development (data form Du et al. 2017).  b) The cumulative 
plot of OE scores from Dam-lamin B1 DamID plotted over LAD boundaries indicate that LADs are 
clearly present as early as in zygotes. c) Bar plot showing the percentage of LADs overlapping A 
(grey) or B (black) compartments as determined in embryo HiC datasets (data form Du et al. 2017). 
Bars represent the mean of three biological replicates of DamID experiments each replicated indicated 
by red dots, p-values were obtained with a post-hoc Tukey-test.	

Figure 23. Comparison of TAD and LAD establishment dynamics and the 
overlap between compartments and LADs 
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Unlike mature TADs, A and B compartments can be observed as early as the 

zygotic stage, however with higher compartment strength in the paternal genome 

(Flyamer et al., 2017). Since LADs are usually coinciding with B compartments in 

somatic cells (Bickmore and van Steensel, 2013), next we compared embryo LADs 

with embryo compartments. The majority of LADs overlapped with B compartments in 

zygotes, 8-cell embryos and ES cells (87%, 77% and 86%, respectively) (Figure 23c). 

Notably, however, there was a significant portion of LADs in the 2-cell embryos, that 

coincided with A compartments (39%) (Figure 23c).   

This unexpected change in compartmentalisation at the 2-cell stage prompted 

us to investigate whether LADs precede B compartments or whether B compartments 

precede LADs. We determined compartments scores in regions showing different 

patterns of LAD dynamics. Regions that were iLADs throughout early development 

were persistently in A compartments, while constant LAD regions were invariably in B 

compartments (Figure 24). This suggests that for approximately half of the genome, 

Violin plots of compartment scores (negative – B compartment, positive – A compartment). 
The percentage above LAD categories represent the percentage of the genome these 
regions occupy. The letters “i” above stages of development indicate iLAD position (white 
filled violins), “L” indicates LAD position of the regions (black filled violins). The top two 
panels are constant LADs or iLADs in all stages. The bottom three categories are de novo 
forming LADs at different times of development.	

Figure 24. Compartment scores in LADs with different developmental 
dynamics 
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LAD and compartment formation occur simultaneously. In contrast, for LADs that form 

de novo at the 2-cell stage and remain LADs through to the 8-cell stage and in ES cells 

(10.8% of the genome), LAD formation preceded the establishment of B compartments 

(Figure 24). However, the alternative scenarios also exist: (i) de novo LADs at the 8-

cell stage coincide with the formation of B compartments (3.6% of the genome) and (ii) 

iLADs that become LADs in ES cells (2.9% of the genome) are within B compartments 

already in 8-cell embryos (Figure 24).  

Inhibiting DNA replication shows no effect on LAD maintenance at the 2-
cell stage 

Previously, it has been reported that inhibiting replication perturbs LAD 

formation in somatic cells (Shachar et al., 2015). Also, in embryos TAD consolidation 

is prevented by blocking DNA replication with aphidicolin (Ke et al., 2017). In the HiC 

embryo paper reporting the dependence of TAD formation on replication, the authors 

did not analyze their data to check if A/B compartments are affected by aphidicolin. 

Thus, we reanalyzed their HiC data and observed that A/B compartments do not 

change upon the inhibition of replication at the 2-cell stage (Figure 25a and 25c). To 

a) Chromosome plots of compartment scores (HiC data from Ke et al. 2017) in control and 
aphidicolin treated 2-cell stage embryos.  b) Chromosome plots of OE values (lamin B1 DamID 
data) in control and aphidicolin treated 2-cell stage embryos. c) Scatter plots of genome wide 
compartment scores and OE values comparing control and aphidicolin treated 2-cell stage embryos, 
Pearson’s rho is indicated.	

Figure 25. Inhibition of DNA replication at the 2-cell stage neither perturbs 
compartment formation nor LAD formation 
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check whether LAD maintenance at the 2-cell stage is also affected by treatment with 

a DNA polymerase inhibitor, we treated late zygotes undergoing mitosis with 

aphidicolin or DMSO as control and let them develop to the late 2-cell stage followed 

by DamID. Similarly to compartments, LADs remained globally unaffected after 

aphidicolin treatment, although the LAD patterning appeared less distinctive as in 

controls (Figure 25b and 25c). 

Reducing H3K4me3 but not H3K9me3 affects paternal LAD establishment 
in zygotes 

We aimed to investigate the role of histone modifications in the potential 

mechanisms of LAD formation. When we correlated our LAD domains with public ChIP-

seq data we found that the levels of H3K4me3 projected on LAD boundaries showed 

that LADs and iLADs are progressively demarcated by differential H3K4me3 levels 

(H3K4me3 being on iLADs and excluded from LADs) as development proceeds 

(Figure 26a). Yet, between the maternal and paternal genomes in the zygote, only the 

paternal genome displayed a clear canonical profile of H3K4me3 being excluded form 

LADs (Figure 26b).  On the other hand, the maternal genome showed an uncanonical 

enrichment of H3K4me3 in LADs of zygotes. No preferred localization of H3K4me3 

was observed at the 2-cell stage and the conventional H3K4me3 devoid LAD pattern 

was apparent only from the 8-cell stage onwards on the maternal allele (Figure 26c). 

To address directly if H3K4me3 plays a role in LAD establishment, we aimed to 

experimentally modify the levels of H3K4me3. To do so, we injected mRNA coding for 

the mouse H3K4me3 demethylase Kdm5b into zygotes. As a negative control, we used 

the catalytic inactive mutant (H499A) of Kdm5b in our experiments. We tested the 

effects of overexpression by IF staining of the H3K4me3 mark. Wild-type Kdm5b 

expression led to a clear reduction of H3K4me3 levels in both pronuclei compared to 

non-injected embryos or compared to embryos expressing the catalytically inactive 

Kdm5b mutant (Figure 26e). When we quantified the immunofluorescent staining 

signal, we observed a clear statistically significant reduction of H3K4me3 in both 

pronuclei upon WT Kdm5b injection (Figure 26f). 
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a) Cumulative plots showing reduced H3K4me3 levels (ChIP-seq data from Zhang et al 2016) in 
embryonic LADs when the parental alleles are not distinguished.  b) Cumulative plots of the paternal 
genome show a reduction in H3K4me3 in LADs at all stages. c) Cumulative plots of the maternal 
genome show a dynamic reorganization of H3K4me3 with respect to LADs as development 
progresses. d) Experimental strategy to reduce H3K4me3 levels and perform DamID on these 
embryos. e) Immunofluorescent staining of H3K4me3 in non-injected, wild-type (WT) or mutant (MUT) 
Kdm5b injected zygotes. Scale bars represent 10 μm. f) Quantification of the immunofluorescent 
staining from panel e). p-values are a result of a Wilcoxon-test. The number of embryos indicated as 
(n=).	

Figure 26. H3K4me3 is mostly reduced in LADs and its levels can be modulated 
by the overexpression of Kdm5b 
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To test the effect of H3K4me3 reduction on LAD formation, we injected early-

zygotes right after fertilization with a mix of WT or MUT Kdm5b and Dam-lamin B1. It 

was critical to inject early-zygotes to allow enough time for Kdm5b to exert its 

demethylating effect. However, pronuclei are not yet formed in early zygotes and we 

wanted to avoid having the Dam-lamin B1 protein present before pronucleus formation 

to avoid methylation artefacts arising by free Dam-lamin B1 contacting DNA. 

Therefore, we kept the embryos in IAA until pronucleus formation to have only Dam-

lamin B1 mRNA but not protein present along with Kdm5b protein before pronucleus 

formation. Afterwards, we washed the embryos out of IAA to allow for the presence of 

the Dam-lamin B1 protein as well (Figure 26d). At the late-zygote stage, we physically 

separated the maternal and paternal pronuclei into different tubes – this was necessary 

to distinguish the alleles because at that time we had no hybrid embryos available.  

 

 

a) Chromosome plot of the maternal pronucleus showing no change in LAD structure in Kdm5b MUT 
or WT injected embryos.  b) Chromosome plot of the paternal pronucleus showing a loss of LAD 
patterning specifically in the Kdm5b WT injected embryos.   c) Cumulative plots of the maternal OE 
values over genome-wide LAD borders defined in non-injected embryos showing no change upon 
Kdm5b injection. d) Cumulative plots of the paternal OE values over genome-wide LAD borders 
defined in non-injected embryos showing a specific change upon WT Kdm5b injection.	

Figure 27. Depletion of H3K4me3 results in paternal specific loss of LAD 
structure in zygotes 
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Remarkably, the ectopic expression of the wild-type Kdm5b, but not the 

catalytically inactive mutant, resulted in the complete erasure of LAD structure in the 

paternal genome, and had little or no effect on the pattern of maternal genome-NL 

interactions as shown on selected chromosome plots of OE values (Figure 27a, 27b). 

Moreover, using cumulative analysis of the whole autosomal genome has also shown 

that LAD regions defined in non Kdm5b manipulated zygotes show a loss of OE values 

(i.e. no NL interaction) in zygotes which have reduced H3K4me3 but only in the 

paternal allele (Figure 27c, 27d). These results suggest that H3K4me3 in the paternal 

pronucleus underlies the establishment of genome-NL interactions.    

Importantly, we checked if the loss of LAD structure upon H3K4me3 reduction 

is a result a perturbed nuclear lamina formation in zygotes. Immunofluorescent staining 

of endogenous lamin B1 after mutant or wild-type Kdm5b injection showed proper NL 

formation and with unaffected protein, thus levels excluding this possibility (Figure 
28a). Moreover, we were concerned whether the ectopic Kdm5b overexpression also 

modifies other histone methylation marks. Since H3K9me2 and H3K9me3 are enriched 

on LADs in somatic cells, we checked by immunofluorescence if the levels of these 

two repressive heterochromatin marks are perturbed in Kdm5b injected zygotes. The 

quantification and exemplary images of these experiments show that Kdm5b is specific 

to H3K4me3, it does not affect the methylation of H3K9 (Figure 28c and 28d). 

 Since H3K4me3 is an activating histone mark involved in transcription, we 

checked whether upon Kdm5b injection global RNA transcription is perturbed. We 

incubated mutant or wild-type Kdm5b injected zygotes in 5-ethynyl uridine (EU) and 

detected the incorporated nucleotides with click-chemistry. Global transcription levels 

did not change significantly in H3K4me3 reduced zygotes (Figure 28b), arguing that 

the effect of reducing this histone mark might not act upon LAD formation in a 

transcription dependent manner.  
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a) Immunofluorescent staining 
of endogenous lamin B1 in MUT 
and WT Kdm5b injected 
embryos, violin plots show the 
quantified levels of lamin B1. b) 
Fluorescent visualization of 
global transcription after EU 
pulse in MUT and WT Kdm5b 
injected embryos, violin plots 
show the quantified levels of 
total RNA incorporation. c) 
Immunofluorescent staining of 
H3K9me2 in MUT and WT 
Kdm5b injected embryos, violin 
plots show the quantified levels 
of H3K9me2. d) Immuno-
fluorescent staining of 
H3K9me3 in MUT and WT 
Kdm5b injected embryos, violin 
plots show the quantified levels 
of H3K9me3. Scale bar 
represents 10 μm.	

Figure 28. Reduction of 
H3K4me3 by Kdm5b 
overexpression does not 
affect lamin B1 localization, 
global transcription and 
neither H3K9me2 nor 
H3K9me3 
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It remained a question whether the H3K4 methylation responsible for paternal 

LAD formation is inherited already from the sperm or is established de novo upon 

fertilization. To this end, we analyzed public ChIP-seq data of H3K4me3 from sperm, 

early- and late-zygotes (Zhang et al., 2016). Both chromosome plots and a cumulative 

analysis of the entire autosomal genome revealed that regions that become LADs in 

the paternal pronucleus by the late zygote stage do are not demarcated by H3K4me3 

in the sperm but become flanked by H3K4me3 in the early zygote (Figure 29). This 

data argues that it is de novo H3K4me3 deposition upon fertilization that is important 

for paternal LAD formation in the zygote. 

To test the potential contribution of H3K9me3 to LAD formation in the zygote, 

we performed the overexpression of an H3K9me3 specific demethylase (Kdm4d) in a 

with the same experimental design as done for H3K4me3 with Kdm5b. 

Immunofluorescence staining of H3K9me3 in WT and MUT Kdm4d injected zygotes 

revealed that H3K9me3 is significantly depleted in both pronuclei upon WT but not 

upon MUT Kdm4d overexpression (Figure 30). When we performed DamID on 

zygotes injected with Kdm4d, we observed no change in genome-wide LAD patterning 

neither in MUT nor in WT injected zygotes. Therefore, it occurs that the 

heterochromatic H3K9me3 mark does not play a role in zygotic LAD formation contrary 

to H3K4me3.  

a) Chromosome plot of paternal OE values from Dam-lamin B1 DamID (top in blue) and the paternal 
H3K4me3 ChIP-seq signal in sperm, early-zygotes and late-zygotes (shades of purple).  b) 
Cumulative plots of the paternal H3K4me3 ChIP-seq signal over genome-wide LAD borders on the 
paternal allele. (ChIP-seq data from Zhang et al 2016)	

Figure 29. Paternal H3K4me3 is established de novo outside of LADs upon 
fertilization 
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a) Immuno-fluorescent staining of H3K9me3 in MUT and WT Kdm4d injected embryos. Scale bar 
represents 10 μm. b) Violin plot quantifications of immunofluorescence staining show a clear reduction 
of H3K9me3 upon WT Kdm4d overexpression. c) Chromosome plot of the maternal pronucleus 
showing no change in LAD structure in Kdm4d MUT or WT injected embryos. d) Chromosome plot of 
the paternal pronucleus showing no change in LAD structure in Kdm4d MUT or WT injected embryos.	

Figure 30. Kdm4d overexpression depletes H3K9me3 but does not perturb LADs 
in zygotes 
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Genome wide mapping of LADs pre-fertilization 

DamID in fully grown oocytes reveals the lack of conventional LAD structure 

	 In order to address if a pre-existing LAD pattern is inherited from the germline 

upon fertilization we aimed to map LADs in gametes. Sperm cells are devoid of lamin 

proteins, therefore performing DamID with Dam-lamin B1 fusions in sperm is not 

feasible. Moreover, the introduction of Dam-nuclear periphery fusion proteins is not 

possible through microinjection into sperm, instead it would require the generation of 

a transgenic mouse line. Therefore, we focused on female gametes to map LADs 

before fertilization. 

 We injected fully grown mouse oocytes with the AID-Dam-lamin B1 and the 

control Dam-only mRNA. Imaging the m6A-Tracer in oocytes surprisingly revealed no 

clear peripheral ring of methylation but an unconventional pattern of one or two patches 

of m6A-Tracer signal at the periphery (Figure 31). This methylated patch of the genome 

showed a higher DAPI intensity suggesting that more compact or more AT rich 

genomic regions are methylated. Also, when co-injected with a fluorescent fused 

histone, we detected a higher signal of H2B-mRFP at the sites of methylation (Figure 
31b). 

The m6A-Tracer signal is enriched in one or two distinct “patches” at the nuclear periphery of oocytes. 
The methylated regions show a higher DAPI intensity (a) and a higher incorporation of H2B-mRFP 
(b). Scale bar represents 10 μm.	

Figure 31. Dam-lamin B1 methylate only a fraction of the nuclear periphery in 
oocytes 
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Furthermore, the methylated patch is present in a “bulging” region of the nucleus 

surrounded by invaginations (Figure 31).  
 Next, we aimed to cytologically test if only a few distinct or several different 

chromosomes localize to the peripheral patch in oocytes. Therefore, we designed an 

experiment to methylate the peripheral genome in interphase oocytes followed by 

inducing their resumption to meiotic division and perform chromosome spreading to 

detect the m6A-Tracer on chromosomes (Figure 33a). In order not to introduce 

promiscuous methylation of DNA during prophase and metaphase, we had to degrade 

the AID-Dam-lamin B1 protein before nuclear envelope breakdown. Therefore, first we 

Figure 32. The AID degron system 
efficiently depletes AID-Dam-lamin 
B1 within 30 minutes.  

Zygotes were injected with 50 ng/ μl 
AID-Dam-lamin B1 mRNA (10x higher 
concentration compared to that used 
in DamID sequencing experiments) 
and protein production was allowed 
for 6-8 hours. Subsequently to test the 
robustness of protein degradation, the 
embryos were transferred into IAA 
containing medium. The embryos 
were fixed 3 hours, 1 hour and 30 
minutes after the administration of 
IAA. Immunofluorescent staining of 
the V5-tag in the AID-Dam-lamin B1 
construct was performed. Control 
zygotes are either untreated with IAA 
(degradation not induced, therefore 
strong peripheral protein signal 
present) or non-injected embryos to 
assess the background of the 
antibody staining. Scale bar 
represents 10 μm.	
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tested the rapidity of protein degradation after auxin administration. To this end, we 

used zygotes due to their easier availability. After 6-8 hours expression of AID-Dam-

lamin B1 we transferred zygotes into auxin for 3, 1, 0.5 hours and detected the 

presence of the AID-Dam-lamin B1 protein by V5-tag staining. Importantly, we 

observed the complete degradation of our protein within 30 minutes after the addition 

of auxin (Figure 32).  

 We performed the oocyte chromosome spreading experiment (Figure 33a) and 

surprisingly observed that only one or two chromosomes showed a strong m6A-tracer 

signal (Figure 33b). Co-staining with centromeric (CREST) and telomeric (TRF1) 

Figure 33. Chromosome spreads reveal m6A-methylation only on one-two 
chromosomes in oocytes. 

a) Experimental scheme to perform chromosome spreads and detect m6A methylation that occurred 
only in interphase in oocytes. 5-8 hours after injection with AID-Dam-lamin B1 and the m6A-Tracer 
the oocytes are washed into IAA containing medium to degrade the AID-Dam-lamin B1 protein. 
Subsequently, the oocytes are released from IBMX to resume meiosis and the chromosomes are 
spread and co-stained with centromere and telomere markers.   (b) The m6A-Tracer signal is 
enriched at only one or two distinct chromosomes and does not show a preferred colocalization with 
either centromeres (CREST) or telomeres (TRF1). Spreads from four distinct oocytes are depicted.	
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markers did not reveal a particular enrichment of methylation at these regions but 

methylation was present on one to two entire chromosomes. 

We aimed to decipher whether it is always the same chromosome(s) that are 

localizing to the peripheral patch in oocytes or whether these are random 

chromosomes. Therefore, we performed single cell DamID sequencing on oocytes. 

Our data revealed that all autosomes apart from chromosome 14 exhibit the same 

pattern of methylation both in Dam-only and Dam-lamin B1 samples (Figure 34a) as 

illustrated by single-cell DamID profiles on chromosome 10. Chromosome 14 in the 

Dam-lamin B1 condition, however showed a distinct enrichment of methylation on its 

right arm when compared to Dam-only. Most strikingly, chromosome X showed a clear 

accumulation of methylation only in the Dam-lamin B1 condition (Figure 34a). This 

enrichment is further illustrated by the total number of reads per chromosome obtained 

from DamID sequencing. Clearly it is only chromosome 14 and mainly the X 

chromosome that shows the most contact with Dam-lamin B1 in oocytes (Figure 34b). 

a) Each row represents data from a single oocyte injected either with Dam-only (top rows) or Dam-
lamin B1 (bottom rows). The x axis represents the entire length of the indicated chromosomes. The 
darker colours indicated higher levels of methylation in calculated in every 100kb bin over the 
chromosome axis. b) Quantification of total number of GATC reads illustrates that chromosome 14 
and chromosome X show the highest levels of contact with the nuclear lamina compared to all other 
autosomes. 	

Figure 34. Single-cell DamID sequencing of oocytes reveals an X chromosome 
specific m6A-methylation. 
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Next, we performed DamID on pools of oocytes similar to the conditions 

employed for the post-fertilization embryos. The sequencing data of pooled oocytes 

further confirmed that the autosomes show an identical pattern of m6A-methylation in 

Dam-lamin B1 samples as in Dam-only samples. This is illustrated both by 

chromosome plots (Figure 35a) and by genome wide positive correlation of OE values 

from all autosomes in Dam-only versus Dam-lamin B1 samples (Figure 35b). 

Contrarily, in all other post-fertilization stages the Dam-only and Dam-lamin B1 OE 

values show a clear negative correlation (Figure 13 and Figure 35b). These results 

suggest that oocytes lack a clear LAD patterning on their autosomes, the X 

chromosome, however is tightly associated with the nuclear periphery. 

Given the specific, local interaction of the X chromosome with the NL, we aimed 

to investigate if there are NL components that are specifically enriched at the “patch” 

identified by the m6A-Tracer. To this end, we performed immunofluorescent staining of 

known NL component proteins. Both lamin B1 and lamin A/C showed a uniformly 

Figure 35. Pooled DamID of oocytes shows an identical methylation pattern in 
Dam-only and Dam-lamin B1 on autosomes – contrary to zygotes. 

a) Each row represents data from a single oocyte injected either with Dam-only (top rows) or Dam-
lamin B1 (bottom rows). The x axis represents the entire length of the indicated chromosomes. The 
darker colours indicated higher levels of methylation in calculated in every 100kb bin over the 
chromosome axis. b) Quantification of total number of GATC reads illustrates that chromosome 14 
and chromosome X show the highest levels of contact with the nuclear lamina compared to all other 
autosomes. 	
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distributed peripheral staining in oocytes (Figure 36a). Surprisingly, the staining with 

an anti-LBR antibody revealed a specific localization of LBR in a similar patch as 

observed in the m6A-Tracer stainings (Figure 36b).  When we performed LBR staining 

on oocytes that were previously inected with Dam-lamin B1 and the m6A-Tracer mRNA, 

we observed a clear overlap of the m6A-Tracer patch and the LBR patch (Figure 36b). 

 

Given the particular localization of LBR in mouse oocytes, we aimed to 

investigate if this pattern is also present in oocytes of other species. We obtained fully 

grown oocytes from pigs (Sus scrofa domesticus), cows (Bos taurus) and rats (Rattus 

norvegicus). We performed immunostaining with the same LBR antibody used for 

mouse oocytes given the high conservation of the protein among species. LBR 

localized to a similar patch in rat oocytes as observed in the mouse; the bovine and 

pig oocytes, however did not show this particular staining patter (Figure 37). Given the 

largely weak, background like staining in these species either LBR might not be 

expressed in bovine and pig oocytes at all or the antibody used might not recognize 

LBR in these species. Nevertheless, our data suggests that the patchy localization of 

LBR is potentially specific to rodents. 

 

   

Figure 36. LBR localizes in a 
patch at the nuclear periphery 
overlapping the m6A-Tracer 
signal in oocytes. 

a) Immunofluorescent staining of 
endogenous lamin B1 and lamin A/C 
shows a clear peripheral localization 
of both proteins in oocytes. b) 
Immunofluorescent staining of LBR 
shows a distinct patch at the nuclear 
periphery overlapping with the m6A-
Tracer signal in oocytes. Scale bar 
represents 10 μm.	
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Figure 37. LBR staining in rat, bovine and pig oocytes. 

Immunofluorescent detection of lamin A/C reveals uniform peripheral localization in all species 
tested. LBR staining however is present in a patch only in rats but not in bovine and pigs. Scale bar 
represents 10 μm.	
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Discussion 

During my PhD work in a collaborative effort with Jop Kind’s laboratory we have 

created genome-wide maps of LADs in early mouse embryos. We have identified LADs 

in zygotes, 2-cell and 8-cell embryos as well as in ES cells that correspond to the ICM 

of the blastocyst. Moreover, we have generated these maps in a hybrid background 

thus we were able to decipher the differences in LAD organization between the two 

parental alleles. Also, we have confirmed our sequencing data with the orthogonal 

method of DNA-FISH. 

Additionally, we have compared our LAD domains with several genetic and 

epigenetic features such as chromatin marks and TAD information from HiC data. We 

have found that LAD formation precedes TAD maturation independently of DNA 

replication. Moreover, we have uncovered a potential mechanism of allele specific LAD 

formation in the zygote that depends on the epigenetic mark, H3K4 methylation. Below, 

I discuss on these findings in detail and highlight potential implications and further 

directions of research that arise from our study. 

LADs are present throughout preimplantation development and are 
dynamic 

Our DamID mapping with Dam-lamin B1 revealed a clear LAD patterning 

already in zygotes and also in 2-cell and 8-cell embryos (Figure 12). This is not 

necessary expected since up to date, LADs have been found to be always a 

heterochromatic and repressive environment. However, electron microscopy studies 

especially in the zygote and also in the 2-cell embryo have observed the absence of 

canonical electron dense heterochromatin at the nuclear periphery (Ahmed et al., 

2010). Also, the mobility of histones in these early stages is higher than 8-cell or ES 

cell histone mobility suggesting that chromatin movements are possibly also higher in 

zygotes and 2-cell embryos compared to other cells (Boskovic et al., 2014; Ooga et 

al., 2016; Ooga and Wakayama, 2017). Based on these results it would have been 

reasonable to observe undefined LAD patterns in zygotes or 2-cell embryos. 

Nevertheless, it seems that in early embryos the clear LAD structure does not depend 

on the heterochromatic nature of LADs and also LADs can be present in cells with 

higher histone mobility.  
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Even though, the electron microscopy studies have reported the lack of 

peripheral heterochromatin, the mirroring pattern between Dam-lamin B1 and Dam-

only (which marks accessible regions) suggest that LADs are composed of a less 

accessible chromatin compared to iLADs already in the early embryo (Figure 13). This 

enrichment of closed chromatin in LADs is less obvious in the zygote (Figure 16) – 

due to allelic differences discussed in the next chapter – and becomes increasingly 

clear as development progresses.  

The number, genomic coverage and size of LADs are stable across stages with 

one notable exception of the 2-cell stage which contains more and smaller sized LADs 

(Figure 15). Furthermore, these small 2-cell stage LADs exhibit the most atypical 

genomic features of all stages examined (Figure 16). Zygotes, 2-cell embryos and ES 

cell controls show the canonical A/T richness and CpG sparsity. The 2-cell stage, 

however, shows the least contrast between iLADs and LADs in these genomic 

features.  The 2-cell stage is particular in the mouse embryo since ZGA occurs at this 

time. It is possible that the more fragmented, non-canonical LAD patterning of 2-cell 

embryos is due to the high transcription from both genic and intergenic regions.  

We observed that about half of the genome is stably maintained either in the 

interior or at the nuclear periphery across preimplantation development (Figure 15). 

The other half, however, exhibits a dynamic re-localization from one stage to another. 

Interestingly the majority of zygotic LADs return to the periphery by the ES cell stage 

which is also reflected in the highest similarity of LAD organization between zygotes 

and ES cells (Figure 12). This is intriguing, since it suggests that the zygote has a 

more differentiated-like nuclear organization which is then remodelled into small 

fragmented LADs at the 2-cell stage coinciding with ZGA and epigenetic 

reprogramming.  Eventually going through the 8-cell stage, the genome reorganizes 

into a more canonical LAD structure. These results suggest that the reorganization of 

LADs might be part of the epigenetic reprogramming program of the embryo, however 

whether this is a side effect or it drives other epigenetic changes like remodelling of 

histone marks remains to be determined. Addressing this question would be 

particularly hard because to date there is no known perturbation that would only affect 

genome organization without interfering with other processes like gene expression of 

chromatin modifications. 
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Lower transcription correlates with embryonic LADs – cause or consequence?  

In terms of gene expression, we have not analyzed the zygotic LADs because 

de novo transcription is hard to define at this stage due to the carryover of maternal 

transcripts from the oocyte. In 2-cell and 8-cell embryos, however, genes within LADs 

showed the tendency to be lower transcribed compared to genes within iLADs (Figure 
16). In the 2-cell stage this difference in expression between peripheral and internal 

regions is lower than in the 8-cell stage which again could be a consequence of 

widespread transcription occurring during ZGA in 2-cell embryos. Also, it is possible 

that LADs gradually become more strictly repressive as development progresses. The 

lower transcription from LADs in 2-cell and 8-cell stages is similar to what have been 

observed in somatic cells. This suggests that LADs of the early embryo already 

represent a repressive environment or that lowly transcribed genes are already 

preferentially stored at the periphery in embryos.  

In vitro differentiation systems have shown that changes in transcription 

between cell states can be accompanied by changes in peripheral positioning (Peric-

Hupkes et al., 2010). This study of ES cell to astrocyte differentiation revealed that 

several genes that turn on upon the transition from ES to astrocyte also relocate 

towards the nuclear interior. Contrarily, a handful of genes that cease transcription 

during this transition relocate towards the NL. Whether the repositioning and the 

change in transcription are functionally related to each other is not known. The 

preimplantation embryo provides a clear step-wise system in which these questions 

could be studied. It will be of great interest to check the expression dynamics of genes 

located in regions with different localization dynamics (e.g. different ribbons of the 

alluvial plot in Figure 15). Such analysis would reveal if the relocation and the change 

in transcription are in functional relation to each other and whether they occur 

concomitantly or one precedes the other. 

Whether LAD patterning depends on transcription in the embryo is an intriguing 

question which could be effectively answered with our experimental setup. The 

treatment of embryos with alpha-amanitin or 5,6-Dichloro-1-β-D-

ribofuranosylbenzimidazole (DRB) results in an efficient inhibition of global Pol II 

transcription (Abe et al., 2015; Abe et al., 2018; Schultz, 2002). Also, Pol III specific 

inhibitors have been successfully used in zygotes (Lin et al., 2014). Performing lamin 

B1 DamID in Pol II or Pol III inhibitor treated zygotes or 2-cell stage embryos would 

answer these questions. Moreover, taking advantage of the reversible nature of DRB, 
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well-designed experiments could dissect the contribution of zygotic transcription to 

LAD formation both at the zygote and 2-cell stages. Because, blocking transcription 

arrests embryos at the 2-cell stage, only the contribution of 8-cell transcription and not 

of previous stages may be assessed on LAD maintenance at the 8-cell stage. 

However, there are caveats to the perturbation of global transcription with 

inhibitors. In case changes in nuclear organization are observed, it will be hard to 

conclude whether this is due to the lack of transcription itself or whether this is due to 

the lack of production of certain proteins that are essential for maintaining nuclear 

organization. One way to tackle this problem would be to perform similar DamID 

experiments in cycloheximide (CHX) treated embryos which lack active translation. An 

even more precise way of dissecting the contribution of transcription to genome 

organization would be to affect transcription only locally in defined LADs.  

Fortunately, the tools to locally affect gene expression are rapidly evolving. Both 

TALEs (Transcription activator-like effectors) and the Cas9 protein of CRISPR 

(Clustered Regularly Interspaced Short Palindromic Repeats) system have been 

successfully used to modulate the expression of mainly repetitive elements but also 

single genes (Amabile et al., 2016; Bintu et al., 2016; Fuentes et al., 2018; Jachowicz 

et al., 2017). One could envision injecting embryos with selected LAD specific a 

TALE/Cas9 fused to activator or repressor domains and performing lamin B1 DamID 

in these embryos to map LADs. Alternatively, the positioning of the activated/repressed 

regions could be assessed by DNA-FISH. Those LADs that naturally change 

positioning concomitant with changing gene expression would be of particular interest 

to activate/repress. For example, regions that are at the periphery in zygotes and 

relocate to the interior at the 2-cell stage (concomitantly increasing gene expression) 

could be kept silent in the 2-cell embryos and one could unravel if the naturally 

increased transcription activity is necessary for relocation or not.  

Based on data from somatic cells, several research groups have suggested that 

peripheral localization induces gene silencing (Finlan et al., 2008; Kumaran and 

Spector, 2008; Therizols et al., 2014). Therefore, it would also be critical to perturb the 

localization of defined LADs in embryos and see if this change in organization leads to 

a change in expression. To do so, one could take advantage of the above mentioned 

TALE and CRISPR systems or zinc finger proteins (ZFs) which can be fused with 

components of the NL thereby tethering specific regions to the nuclear periphery 

(Jachowicz et al., 2013). In order to keep regions in the nuclear interior one would need 
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to fuse these sequence specific DNA binding proteins to architectural proteins of the 

interior. These are harder to identify but one candidate is Npm2, a component of the 

nucleolar precursor body present in embryos. However, such experiments are harder 

to conclude from, since it is possible that proximity to the NPB in itself might perturb 

transcription.  

LADs exhibit low heterogeneity in single cells 

In addition to using populations of around twenty cells per replicate, we also 

performed DamID on single cells from embryos. Importantly, our single cell data shows 

almost identical patterning to DamID data from pools of embryos (Figure 17). 

Moreover, comparison of DNA-FISH distances with CF scores from single cell DamID 

also shows a high correlation between these orthogonal methods further confirming 

the validity of our findings (Figure 18). 

We were particularly interested in the heterogeneity of genome organization 

during preimplantation since this is the developmental time window when the very first 

cell fate decisions arise. Epigenetic and gene expression differences between lineages 

that will contribute to the ICM or the TE are observable already from the 4-cell stage 

but become clearest by the compact 16-cell stage morula or rather the 36-cell 

blastocyst. Whether there is heterogeneity in nuclear organization reflecting cell fate is 

unknown, since all HiC studies beyond the zygote stage (Du et al., 2017; Ke et al., 

2017) were performed on pools of several embryos, not single cells.  

Unfortunately, our DamID experiments were not robust enough to profile all of 

the cells from the same 8-cell embryo. This was due to the approximately 50 percent 

efficiency in PCR amplification of our single cell samples. Nevertheless, if there were 

significant differences between two populations of cells at the 8-cell stage we would 

have expected to detect these when sampling the 114 cells we obtained from multiple 

8-cell embryos. However, we did not observe higher variability or two distinct 

populations between single cells at the 8-cell stage compared to other stages (Figure 
17). This suggests that LAD patterning is not yet cell lineage specific in these early 

embryos. Alternatively, our DamID sequencing with the 100 kb resolution and with the 

high sample drop-out rate might not be sensitive enough to acknowledge these 

differences.  

One important control would be to perform DamID on the blastocyst stage which 

clearly consists of two distinct cell lineages. Based on lamin B1 DamID of in vitro 
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cultures ES cells and trophoectoderm stem cells (TS cells) significant differences in 

LAD patterning have been reported (Kim et al., 2011). These changes were mainly 

detected on genes which are differentially expressed between ES and TS cells. These 

expression differences are similar to those in the ICM and the TE, therefore it is likely 

that single cell DamID on in vivo blastocyst would reveal two distinct populations. 

The paternal and maternal LADs differ early in development 

We used hybrid crosses between mice (CAST and CBAxC57Bl6 – shortly F1) 

that significantly differ in their genome sequence at known sites (SNPs) to distinguish 

the alleles in DamID sequencing.  However, a potential caveat of using hybrid embryos 

is the alternative explanation to why differences in LADs might be present in data from 

hybrids. It is plausible, that not the developmental history of the alleles (whether they 

went through oogenesis or spermatogenesis) but the sequence composition accounts 

for the differences in localization. For example, this could be due to essential 

positioning factors binding to regions that have SNPs between the two strains and 

therefore the effect of such peripheral tethering factors could be seen only on alleles 

from one of the strains. Such differences would be “strain specific”. 

To test if allelic differences are strain or parent of origin specific we employed 

two independent approaches. First, we performed DamID on 2-cell embryos from 

reciprocal crosses in which we inverted the sex of the two strains (originally CAST 

males mated with F1 females – in reciprocal crosses F1 males mated with CAST 

females). Second, we took advantage of the zygote in which the two alleles reside in 

distinct pronuclei. Using non-hybrid embryos, the paternal and maternal genomes can 

be physically separated by micromanipulation. Comparison of OE values from both 

reciprocal crosses and mechanically separated non-hybrid pronuclei revealed that the 

differences in LADs between alleles are likely parent of origin and not strain specific 

(Figure 20, 22).  
The differences between alleles were pronounced at the zygote stage. The 

maternal pronucleus showed a more uncanonical, fragmented LAD patterning 

reminiscent of the 2-cell stage on both alleles. Also, maternal LADs seem to be in an 

open state as judged by the DHS signal (Figure 20). The paternal pronucleus, 

however, exhibited a clear, canonical domain patterning with large, continuous 

stretches of lamina association depleted of accessible chromatin. This asymmetry of 

the paternal genome being more defined in terms of structure has also been observed 
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in HiC and DNA-FISH studies of A/B compartments in the zygote (Flyamer et al., 2017). 

The causes behind this asymmetry remain to be determined, however it is plausible 

that the different germline history contributes to the paternal genome bearing more 

structured chromatin. Also, it might simply be a consequence of the paternal genome 

entering the egg in a more “interphase” state from the sperm head. The maternal 

genome is in a meiotic condensed chromosomal configuration upon fertilization from 

which an interphase pronucleus has to be assembled. This could be a cause of the 

more fragmented LAD structure and weaker compartmentalization.  

Allelic differences are still observable during the 2-cell and 8-cell stages which 

might still be a result of the differences carried over from the zygote. However, 

concluding this requires further analysis. Nevertheless, by the ES cell stage the allelic 

differences are almost fully diminished. Our data suggests that there is a gradual 

consolidation of allelic differences in LAD organization taking place during 

preimplantation development.  

The relationship between LADs, TADs and compartments in the embryo 

One of the big questions in the field of nuclear organization is whether the 

different levels of organization depend on each other and whether they are set up 

simultaneously or in a step-wise manner. To address this questions, systems in which 

nuclear organization is set up de novo are needed, since cell culture cells show a clear 

organization which nuclear structure is maintained throughout cell divisions. 

LADs precede TAD maturation 

In the embryo, the TAD structure must establish gradually since TADs before 

the 8-cell stage cannot be identified; only a slight decrease in TAD insulation can be 

seen at the boundaries of TAD domains that were originally identified in ES cells (Du 

et al., 2017; Flyamer et al., 2017; Ke et al., 2017). There are arguments whether this 

is true de novo establishment or just gradual maturation of TADs with gradually 

increasing insulation at their boundaries. Nevertheless, there is definitely less TAD 

structure present immediately after fertilization than from the 8-cell stage onwards. 

Our data clearly shows, that LADs are present immediately after fertilization in 

the late-zygote stage, preceding the presence of mature TADs (Figure 12, 23). 

Whether LAD formation helps priming TADs or whether the presence of LADs is 
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necessary to mature TADs by the 8-cell stage is an intriguing questions. To address 

this, one would need a system in which LAD formation can be prevented.  

Fortunately, our observation that experimental reduction of H3K4me3 results in 

loss of LAD patterning of the paternal pronucleus might provide a system to decipher 

the LAD-TAD or LAD-compartment dependency. Experimentally, one could perform 

HiC in WT or MUT Kdm5b injected zygotes derived from a hybrid background. This 

experiments would reveal – at least in case of the paternal allele – whether the absence 

of LAD patterning results in less insulation at TAD boundaries or whether compartment 

formation is perturbed. One caveat of this experiment is that whether H3K4me3 itself 

(independently of affecting LADs) plays a role in TAD formation or 

compartmentalization could not be distinguished.  

LADs can overlap A compartment in the embryo 

Canonical LADs overlap with B compartments in all cell types examined up to 

date. This is indeed the case also in zygotes, 8-cell embryos and ES cells (Figure 23). 

Intriguingly, almost 40 percent of the 2-cell stage LADs, however, have an A 

compartments status (Figure 23). Given the non-canonical genomic features of 2-cell 

LADs (Figure 16) and the widespread transcription occurring at this stage, this might 

not be surprising. To our knowledge the 2-cell embryo represents the only cell type in 

which almost half of the peripheral genomic regions reside in A compartments. This 

data suggests that the compartment status might not be a driver of LAD positioning – 

at least in 2-cell embryos.  

When we compared the temporal compartment dynamics with the peripheral 

positioning of regions, we found that about quarter of the genome that is stably at the 

periphery across all stages keeps its B compartment status. Also, another quarter of 

the genome which is stably in the nuclear interior remains to be in the A compartment 

in all stages. In other cases, when a region is originally in the interior and then relocates 

to the periphery as development progresses (de novo forming LADs), several 

scenarios can occur. The relocation to the periphery can be accompanied by a 

simultaneous shift in the compartment status from A to B. Also, a change in A to B 

compartmentalization can precede or follow one stage later the relocation of a region 

to the NL. These results suggest that there is no clear explanation whether 

compartmentalization helps to drive relocation or the other way around. All scenarios 

exist and one would need to experimentally perturb one of these processes to gain 
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more insight. Also, results are likely to be locus specific and not general. Nevertheless, 

the H3K4me3 depletion induced paternal LAD loss in Kdm5b injected zygotes could 

be a model system to test whether this dependency exists. 

LADs and B compartments are independent of S phase progression 

Going through DNA replication has been shown to be important for peripheral 

positioning of genes in somatic cells (Shachar et al., 2015). Furthermore, HiC 

experiments in 2-cell stage mouse embryos have shown that TAD maturation depends 

on DNA replications but not on transcription (Du et al., 2017; Ke et al., 2017). 

Therefore, we were interested to check if LAD maintenance depends on the 

progression through S-phase. 

First, after reanalysing published HiC data of control and DNA polymerase 

inhibitor treated 2-cell stage embryos (Ke et al., 2017), we found that 

compartmentalization is stably maintained even in the absence of DNA replication 

(Figure 25). Given the uncanonically large overlap of 2-cell LADs with A compartments 

we wondered if even though compartments are stable without replication, whether LAD 

maintenance is perturbed. One could imagine that those LADs that overlap B 

compartments are not affected by replication but those overlapping A compartments 

might be. Interestingly, we found that 2-cell embryos treated with aphidicolin to inhibit 

S-phase do not show significant changes in their LAD patterning. This result suggests 

that contrarily to somatic cells, peripheral locus positioning can occur without 

replication in 2-cell embryos. 

H3K4me3 regulates paternal LAD formation in the zygote 

Studies from C. elegans have demonstrated that peripheral chromatin 

organization is dependent on the repressive heterochromatic marks H3K9me2 and 

H3K9me3 (Gonzalez-Sandoval et al., 2015; Towbin et al., 2012). The enzymes 

responsible for the deposition of these chromatin marks in worms are MET-2 (a 

mammalian Setdb1 homolog) and SET-25, a previously uncharacterized histone 

methyltransferase (HMT).  When MET-2 and SET-25 are knocked out, the 

heterochromatic array that the authors use for assessing positioning is relocated to the 

nuclear interior and also becomes derepressed. These results suggest that 

methylation on H3K9 is necessary for peripheral positioning. In the mouse early 

embryo, H3K9me levels are low and asymmetric showing higher levels in the maternal 
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genome.  We tested whether the removal of H3K9me3 in zygotes perturbs LAD 

formation by the overexpression of the Kdm4d demethylase followed by DamID. 

However, we found that neither the maternal nor the paternal LADs are affected by 

reduced H3K9me3 levels (Figure 30). This data suggests that the heterochromatic 

mark H3K9me3 typically enriched in LADs in other cell types is not essential for zygotic 

LAD formation. Therefore, we turned to assessing other histone marks in relation to 

LADs. 

Currently there is a limited number of studies that reported genome wide 

positioning of histone marks in the mouse preimplantation embryo. Only H3K4me3, 

H3K27me3 and recently H3K9me3 have been assessed by ChIP-seq systematically 

in all stages of preimplantation (Dahl et al., 2016; Liu et al., 2016; Wang et al., 2018; 

Zhang et al., 2016; Zheng et al., 2016). Also, H3K27ac have been interrogated but only 

at the 2-cell stage (Wu et al., 2016a).  

The alignment of the ChIP-seq data with LAD coordinates revealed no clear 

correlation between LADs and H3K27me3 (data not shown). However, we observed a 

striking asymmetric depletion versus enrichment of H3K4me3 on the paternal and 

maternal LADs in zygotes, respectively (Figure 26). In later stages, H3K4me3 became 

progressively excluded from LADs on both alleles. The asymmetry of H3K4me3 on 

LADs is likely a consequence of the very different nature of H3K4me3 peaks between 

the two alleles (Dahl et al., 2016; Liu et al., 2016; Zhang et al., 2016; Zheng et al., 

Figure 38. Proposed model of paternal LAD formation in the zygote 

The sperm derived H3K4me3 is likely removed from the paternal pronucleus in early zygotes. De 
novo methylation of H3K4 occurs outside of (or on the border) of LADs during the zygotic cell cycle. 
The LAD pattern of nuclear organization is set up in an iLAD localized H3K4me3 dependent manner.	
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2016). The oocyte carries non-canonical, broad domains of H3K4me3 whereas the 

sperm contributes very little of this mark since its genome is mainly packaged around 

protamines and not histones. However, upon fertilization the paternal chromatin rapidly 

acquires H3K4me3 de novo with more canonical promoter peaks contrary to the broad 

domains that the maternal pronucleus inherited from the oocyte (Xu and Xie, 2018).  

This striking asymmetric correlation and anti-correlation of H3K4me3 in the 

zygote male and female LADs prompted us to investigate its potential contribution to 

LAD formation. We experimentally reduced the levels of H3K4me3 by overexpressing 

a demethylase and found that while the maternal genome structure remains 

unaffected, the paternal pronucleus loses LAD patterning (Figure 26). The 

demethylation is specific to H3K4 and does not affect H3K9 methylation. Also, the 

nuclear lamina does not show observable changes by immunofluorescent staining, 

therefore likely this effect is due to the reduction in true H3K4 methylation. To exclude 

the possibility that our overexpressed demethylase (Kdm5b) does not exert its effect 

by demethylating other for example non histone targets we could overexpress a K4M 

mutated histone 3 (Aoshima et al., 2015). Another way to specify if it is the histone 

methylation causes the phenotype would be to remove the endogenous HMT either by 

siRNA or by using a degron system. The most likely candidate for this approach is 

Lysine Methyltransferase 2D (Kmt2d) which is inherited from the oocyte (Andreu-

Vieyra et al., 2010). 

What exactly the “flat” DamID signal means in the paternal pronucleus upon 

Kdm5b overexpression could be explained in different ways. In our experiments, the 

Dam-lamin B1 protein is expressed over the course of eight hours. It could be that 

during this time the entire genome makes contacts with the NL, thereby yielding a 

uniform distribution of OE values over all chromosomes. This could be due to an 

increased mobility of chromatin in the absence of H3K4me3, however, why this would 

occur is of question. Alternatively, one could argue that no genomic regions come into 

contact with the NL upon H3K4me3 reduction, however this is unlikely since in this 

case we would expect to recover no sequencing fragments from the paternal genome.  

There are several possibilities how mechanistically H3K4me3 could mediate 

LAD patterning in the paternal pronucleus: 

1) One could imagine that other epigenetic marks downstream of H3K4me3 are 

responsible for LAD patterning, and in the H3K4me3 depleted condition these other 

marks might be mislocalized. For example, DNA methylation has been shown to be 
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reduced in regions where H3K4me3 is present (Morselli et al., 2015). In the H3K4me3 

reduced condition 5mC might be spread all over the genome and if LAD patterning is 

dependent on 5mC (which have not been previously investigated) this could explain 

the loss of LAD structure.  

2) Another possible mechanism could be that upon H3K4me3 depletion 

chromatin binding proteins important for LAD structure might be mislocalized on the 

genome. For example, LAD formation might depend on components of the NL which 

act as hinges to tether LADs to the periphery. If these peripheral anchoring proteins 

distinguish LADs based on the lack of H3K4me3, it could occur that when the genome 

is globally devoid of H3K4me3 these anchors might sequester loci aspecifically to the 

NL.  

3) Alternatively, H3K4me3 might create a local chromatin environment that 

favours interactions with similar active chromatin in the interior of the nucleus. Possibly, 

this clustering of active chromatin in the nuclear interior could be a driver of LAD 

formation leaving non-H3K4me3 bearing chromatin to be passively positioned to the 

NL. In the H3K4me3 depleted condition this distinction between internal and peripheral 

clustering might be lost resulting in the absence of LAD patterning. 

Potentially, several other mechanisms might be in play behind the LAD 

formation of the paternal pronucleus which need to be experimentally tested. 

Potential mechanisms controlling maternal LAD structure 

Our experiments with Kdm5b overexpression have clearly reduced the levels of 

H3K4me3 in both pronuclei (Figure 26e and 26f). Why the LADs of the maternal 

pronucleus remains largely unaffected while the paternal genome loses LAD patterning 

is an intriguing question.  

One obvious difference between the two pronuclei is the nature of H3K4me3. 

The maternal pronucleus inherits the broad, uncanonical H3K4me3 domains whereas 

the paternal pronucleus de novo acquires a more canonical promoter peak like 

H3K4me3 pattern. Since the reduction of H3K4me3 by Kdm5b is not complete (Figure 
26e), it is plausible that there is a different threshold of sensitivity at which different 

types of H3K4me3 (broad domains vs. promoter peaks) exert their effect on nuclear 

organization. Alternatively, broad domains might have no role at all in directing LAD 

formation and the maternal LAD establishment could be completely H3K4me3 

independent. Another possibility is that H3K4me3 binding factors or yet unidentified 
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components of the NL might localize asymmetrically between the maternal and the 

paternal pronucleus could might explain the asymmetric effect of the Kdm5b 

experiments. 

The canonical heterochromatin mark H3K9me3 shows an asymmetric 

localization in the zygote with high enrichment on the maternal genome and barely 

detectable levels on the paternal genome (Puschendorf et al., 2008). Even though, our 

preliminary analysis of the published H3K9me3 ChIP-seq data did not show a clear 

relationship between H3K9me3 and LADs neither in the maternal nor in the paternal 

pronucleus, it is possible that the high levels of H3K9me3 specifically in the maternal 

pronucleus could contribute to LAD patterning. 

This question could be efficiently addressed in a similar way as of the H3K4me3 

reducing Kdm5b experiments. The Kdm4d demethylase is known to specifically 

remove the H3K9me3 mark from chromatin (Krishnan and Trievel, 2013). The 

overexpression of this enzyme and its catalytically inactive form has already been 

tested in mouse preimplantation embryos resulting in the removal of virtually all 

detectable H3K9me3 as judged by IF staining (Matoba et al., 2014). Therefore, 

performing lamin B1 DamID on Kdm4d injected embryos would answer if H3K9me3 

plays a role in LAD patterning.  

Regardless, whether one of the above mentioned possibilities or other 

mechanisms are in place for maternal LAD formation, it is likely that the maternal LAD 

establishment occurs through different processes compared to paternal LAD 

formation. Therefore, the setting up of LAD patterning post fertilization contributes one 

more example to the list of epigenetic asymmetries identified to date in the mammalian 

zygote. 

Oocytes likely lack LADs genome wide 

	 Our DamID sequencing data from oocytes suggests the lack of LAD structure 

on autosomes. Only in oocytes do we observe a positive correlation between the 

negative control Dam-only signal and the Dam-lamin B1 signal, suggesting that there 

are no specific genome-NL contacts of the autosomal genome in oocytes. One 

potential explanation to this result might be a failed DamID experiment, however we 

do observe methylation on chromosome 14 and the X chromosome suggesting that 

methylation indeed occurred in oocytes.  
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The potential caveat to this experiment is that if the AID-Dam-lamin B1 construct 

is not incorporated uniformly into the NL – but only at a specific region – it might yield 

this peculiar X chromosome specific LAD pattern. In order to test this, we will have to 

perform more control experiments. One way will be the overexpression EGFP-lamin 

B1 at similar concentrations to AID-Dam-lamin B1 to see if a uniform peripheral signal 

is detected. Ideally, an immunofluorescent staining of the AID-Dam-lamin would also 

prove or disprove these results, however at such low concentrations of mRNA injection 

as 5 ng/μl the detection of the resulting proteins by immunofluorescent staining is not 

possible. Other experiments to dis/prove the non-uniform localization of the DamID 

construct will be essential to strengthen or question these findings. 

Nevertheless, if oocytes truly lack LADs it implies that there are no peripheral 

genome contacts in the female germline which might be passed on to the next 

generation. This possibility presents a scenario in which the genome-NL contacts must 

establish de novo upon fertilization. Therefore, epigenetic information in nuclear 

organization likely is not inherited.  

The potential roles of the LBR-X chromosome interaction in oocytes  

The specific m6A-Tracer accumulation on one or two chromosomes and the 

sequencing results indicate that in oocytes only chromosome 14 and chromosome X 

are in molecular contact with the NL under our experimental conditions. These results 

raise several questions: 1) how are these two chromosomes specifically selected to 

contact the NL, 2) is there a role of these specific chromosome contacts during oocyte 

development, 3) are these contacts important (i.e. represent an inheritable mark) after 

fertilization. 

Why chromosome 14 is the only autosome that contacts the periphery is an 

intriguing and difficult to answer question. In the future, we will have to compare the 

genetic composition, sequence conservation and epigenetic features of chromosome 

14 with other autosomes. Such analysis might provide insights into why only this 

autosome contacts the nuclear periphery in oocytes. 	

An important developmental event that occurs to the X chromosome during the 

first days after fertilization is that in female embryos specifically the paternal X 

chromosome stays inactive (Harper et al., 1982; Okamoto et al., 2004). This process 

is called paternal specific imprinted X inactivation. In the extraembryonic tissues the 

paternal X chromosome stays inactivated. In the ICM, however, both maternal and 
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paternal X chromosomes are reactivated and random X inactivation occurs (Kay et al., 

1993; Lyon, 1961). Imprinted X inactivation is a prime example of epigenetic regulation; 

however, its exact mechanism is elusive. It is, however, clear that both imprinted and 

random X inactivation involves the expression of a long noncoding RNA – Xist – that 

coats the inactive chromosome and is essential for its silencing (Avner and Heard, 

2001; Borensztein et al., 2017). The first possible mechanism – of how only the 

paternal X chromosome becomes inactivated – is that the paternal X chromosome 

could carry an imprint from the sperm that would regulate this chromosome to stay 

inactive. The other scenario is that the maternal X chromosome harbours an activating 

imprint acquired in the oocyte, keeping it active during the first cleavage divisions and 

in extraembryonic tissues. In mouse, likely this second possibility takes place. 

It has been previously shown, that an imprinted mark is still absent 5 days after 

birth in oocytes and is built up on the X chromosome during oocytes growth (Tada et 

al., 2000). Recently, it has been demonstrated through ChIP-seq from different stages 

of mouse oocytes that it is the H3K27me3 histone modification that is gradually 

acquired over the Xist promoter during oocyte growth (Inoue et al., 2017b; Zheng et 

al., 2016). If H3K27me3 is experimentally removed upon fertilization, both paternal and 

maternal X chromosomes upregulate Xist expression and become inactivated (Inoue 

et al., 2017b). These results identify H3K27me3 as an imprinted mark in oocytes 

responsible for keeping the maternal X chromosome active in the first cleavage stages 

and in extraembryonic tissues. 

The LBR protein has been recently identified as a factor interacting with the Xist 

long noncoding RNA and proved to be essential for the establishment of X inactivation 

in ES cell cultures that represent a model for random X inactivation (Chen et al., 2016; 

Chen et al., 2017). Interestingly, our findings show that LBR localizes to a specific 

region of the NL contacting either the X chromosome or chromosome 14 or both 

(Figure 34 and 36). This observation raises the possibility that LBR might play a role 

in imprinted X inactivation in the mouse. Also, the observation that LBR localizes to a 

specific patch in mouse and rats but not in bovine and pigs (Figure 37), suggests that 

LBR might be linked to imprinted X inactivation. This hypothesis requires mechanistic 

testing which could be achieved through an oocyte specific deletion of the LBR gene. 

The oocyte specific knock-out strategy will be essential since the constitutive knock-

out LBR mice die shortly after birth (Cohen et al., 2008; Shultz et al., 2003). 

Experiments with LBR depleted oocytes fertilized by wild-type sperm could assess 
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whether the maternal LBR protein is required for imprinted X inactivation. RNA-FISH 

of Xist or RNA-seq of 8-cell embryos from these crosses would formally answer if 

without maternal LBR both X chromosomes become inactivated in female embryos.  

Mechanistically, it would be intriguing to decipher if there is a link between the 

H3K27me3 mark and LBR. Since the H3K27me3 is acquired over the Xist promoter 

only during oocyte growth, it will be essential to determine at what stage of oocyte 

development does the LBR patch form. This could be achieved by histological staining 

of mouse ovaries at different stages of development and would answer if LBR becomes 

accumulated at the peripheral patch prior to the Xist H3K27me3 acquisition. Using the 

LBR knock-out mouse, one could determine by ChIP-seq whether H3K27me3 is 

dependent on LBR. Similarly, using the already existing oocyte specific knock-out of 

the polycomb protein Eed (embryonic ectoderm development protein) one could 

determine if in H3K27me3 depleted oocytes the LBR patch is still formed or if it is built 

up independently of H3K27me3. 

The potential role of oocyte LBR in imprinted X inactivation is purely hypothetic, 

thus requires experimental testing.   
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List of contributions 

All embryo work, DNA-FISH and HiC data analysis was done by Máté Borsos. The 

DamID amplification, library preparation and sequencing was done by Jop Kind. The 

DamID data was analyzed by Sara Perricone. Techniques performed by our 

collaborator Jop Kind are indicated in italics in the materials and methods section. 

	

Materials and Methods 

Embryo collection and manipulation. Experiments with animals were carried 

out according to valid legislation in France and under the authorization of the Com'eth 

Institute of Genetics, Molecular and Cellular Biology ethical committee and in 

compliance with the local government (Government of Upper Bavaria). GV oocytes 

were collected 44-48 hours after PMSG injection. Oocytes were cultured in IBMX 

containing M16 while embryos were cultured in KSOM drops under paraffin oil (Sigma). 

Preimplantation embryos were collected from 5-8 weeks old F1 (CBAxC57BL/6J) 

females mated with CAST/EiJ males for hybrid crosses and with F1 males for non-

hybrid crosses. Ovulation was induced by injecting 10 IU PMSG (IDT Biologika Gmbh) 

and then hCG (MSD Animal Health) 46-48 hours later. Reciprocal crosses (CAST/EiJ 

females mated with F1 males) were performed without inducing ovulation. For DamID, 

an mRNA mixture containing 250 ng/μl TIR1, 50 ng/μl membrane-EGFP and 

embryonic stage dependent concentrations of AID-Dam-LaminB1 or AID-Dam-only 

were injected into the cytoplasm of embryos. To methylate LADs only at the stages of 

interest we washed the embryos into auxin-free media for 6-8 hours at the late-S, G2 

phases of the cell cycle. Zygotes (21 hours post hCG) were isolated and injected with 

5 ng/μl AID-Dam-LaminB1 or 20 ng/μl AID-Dam-only and kept in auxin free KSOM for 

6-8 hours to methylate LADs or accessible regions, respectively.  For DamID at 2-cell 

stage late-zygotes (27-28 hours post hCG) were isolated and injected with 10 ng/μl 

AID-Dam-LaminB1 or 40 ng/μl AID-Dam-only in auxin (500μM) containing media. 

Auxin was removed at 2-cell stage for 6-8 hours (from 42 to 48-50 hours post hCG). 

For DamID at 8-cell stage late-2-cell embryos (46-48 hours post hCG) were isolated 

and injected with 20 ng/μl AID-Dam-LaminB1 or 40 ng/μl AID-Dam-only in auxin 

containing media. Auxin was removed at 8-cell stage for 6-8 hours (from 66 to 72-74 

hours post hCG). Afterwards, the zona pellucida was removed by treatment with 0.5% 
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pronase in M2 at 37 °C and the polar bodies were mechanically separated from the 

embryos and discarded. Either pools of 20 blastomeres or single blastomeres were 

placed into 2 μl of DamID buffer (10mM TRIS acetate pH 7.5, 10mM magnesium 

acetate, 50mM potassium acetate) and stored at -80 °C until downstream processing. 
For DamID in Kdm5b overexpressing embryos, early zygotes from non-hybrid 

crosses (18 hours post hCG) were injected with 2 μg/μl wild-type or mutant Kdm5B, 5 

ng/μl AID-Dam-LaminB1, 250 ng/μl TIR1 and 50 ng/μl membrane-EGFP coding 

mRNA. Zygotes were kept in auxin containing KSOM for 3 hours to prevent adenine 

methylation during pronucleus formation. At 21 hours post hCG auxin was removed for 

6-8 hours to allow methylation. To separate pronuclei, the PN5 zygotes were 

transferred to M2 media containing 10 μg/ml cytochalasin B (Sigma-Aldrich). The zona 

pellucida was cut with a Piezo driven micromanipulator and one of the pronuclei was 

isolated into M2 drops. The pronuclei were distinguished based on their size and their 

relative position to the second polar body. The remaining embryos containing a single 

pronucleus were treated with pronase to remove the zona pellucida and the polar 

bodies were discarded. The karyoplasts and the single pronuclei containing embryos 

were frozen in DamID buffer as above.  For DamID in replication inhibited 2-cell 

embryos, late zygotes (26-28 hours post hCG) from hybrid crosses (CBAxC57BL/6J 

females mated with CAST/EiJ males) were injected with 10 ng/μl AID-Dam-LaminB1, 

250 ng/μl TIR1 and 50 ng/μl membrane-EGFP coding mRNA and kept in auxin 

containing media to prevent Dam activity in the zygote. Embryos were washed into 

aphidicoline (3 μg/ml) containing media when reaching the first metaphase. Auxin was 

removed from 42 to 48-50 hours post hCG to allow methylation of LADs in the late 2-

cell stage.  

Bovine and pig oocytes were kindly provided by Prof. Dr. Eckhard Wolf and 

Mayuko Kurome. Rat oocytes were kindly provided by Andrew Flatley. 

Plasmid construction and mRNA production. The in vitro transcription 

plasmids containing the wild-type Kdm5b was obtained from Addgene (86398) (Zhang 

et al., 2016). To generate a catalytically inactive version of Kdm5b the H499A mutation 

was introduced by site directed mutagenesis. The in vitro transcription plasmids 

containing the wild-type and mutant Kdm4d were obtained from Addgene (61553, 

61554) (Matoba et al., 2014). mRNA was in vitro transcribed with T7 or T3 

mMESSAGE mMACHINE kits (Ambion) and purified by LiCl precipitation. All plasmids 

generated in this study are available at Addgene under “Torres-Padilla lab plasmids”.  
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Immunofluorescence. Embryos were treated with 0.5% pronase in M2 to 

remove zona pellucida at 37 °C, washed in PBS and fixed in 4% PFA for 15 minutes 

at room temperature. After permeabilizing in 0.5% Triton-X 100 in PBS for 20 minutes, 

embryos were kept in blocking buffer (3% BSA in PBS) from one hour to overnight. 

Embryos were incubated overnight in primary antibody mixes (Supplementary Table 

1) diluted in blocking buffer, washed three-times in PBS and stained with secondary 

antibodies conjugated with (Alexa 488, Alexa 568, Alexa 594 or Alexa 647) in blocking 

buffer for one hour. After washing three-times in PBS embryos were mounted in 

Vectashield containing DAPI. For visualising global transcription, zygotes were pulsed 

with 50 μM EU for one hour (26-27 hours post hCG) and visualised with the Click-iT 

RNA Alexa Fluor 594 Imaging Kit according to the manufacturer’s instructions (Thermo 

Fischer). 

Chromosome spreads. Fully grown oocytes cultured in IBMX were injected 

with an mRNA mixture containing 250 ng/μl TIR1, 50 ng/μl membrane-EGFP and 5 

ng/μl AID-Dam-lamin B1. After 6-8 hours post injection, the oocytes were washed into 

IAA containing medium and 2 hours later were washed into IBMX free medium to allow 

meiotic resumption. 4 hours after nuclear envelope breakdown, the zona pellucida was 

removed by pronase treatment and the oocytes were treated in 1:1 mixture of FBS and 

water for 15 minutes. Oocytes were placed into 2 μl drops of 2 % PFA containing 0.5 

% TritonX-100 and 0.1M DTT on glass slides and incubated overnight at room 

temperature in a humidified chamber. The slides were air dried and washed in  

Slides were blocked in 3 % BSA containing 0.1% TritonX-100 for 1 hour at room 

temperature and incubated with anti-EGFP antibody (ab13970) 1:1000 dilution, 

CREST antibody (FZ90C-CS1058) 1:2500 dilution and anti-TRF1 antibody (in house) 

1:50 dilution overnight at room temperature. Slides were washed three-times in 0.1 % 

TritonX-100 containing PBS and incubated with secondary antibodies conjugated with 

(Alexa 488, Alexa 594 and Alexa 647) for 1 hour at room temperature followed by 

three-times washes in PBS and mounted in Vectashield containing DAPI.  

DNA-FISH. DNA-FISH was performed as described previously, using a protocol 

that preserves 3D information (Miyanari and Torres-Padilla, 2012). BACs were ordered 

from BACPAC or RIKEN DNABank (Supplementary Table 1) and purified with 

NucleoBond® Xtra Midi Plus kit (Macherey-Nagel). BACs were nick translated with 5-

TAMRA, Atto594, Atto647N conjugated dUTPs according to the manufacturer’s 

instructions (Roche). To combine nuclear envelope staining with DNA-FISH, 
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immunostaining was performed with mAb414 (1:1000) as described above, followed 

by postfixation in 2% PFA for 10 minutes. Next, embryos were washed in 0.5% Triton-

X 100 for 10 minutes and treated with HCl solution (0.1N HCl, 0.5 Triton-X 100, and 1 

mg/ml PVP in water) for 90 seconds, washed into prehybridization buffer (50 % 

formamide, 1 mg/ml PVP, 0.05% TritonX, 0.5 mg/ml BSA) and incubated in it at 37 °C 

for one hour. Embryos were transferred into drops of 0.2 µl hybridization buffer 

(prehybridization buffer containing 1 µg/µl mouse Cot-1 DNA) under mineral oil, 

denatured at 80 °C for 10 minutes and incubated at 37 °C for one hour. Embryos were 

transferred into drops of 0.2 µl hybridization buffer containing a mixture of three probes, 

each at 5 ng/μl which were previously denatured at 80 °C for 10 minutes under oil. 

After overnight hybridization at 37 °C, embryos were washed twice in 2x SSC, 0.05 

Triton-X 100, 1 mg/ml PVP at RT followed by washing three times 10 minutes in in 0.2x 

SSC, 0.05 Triton-X 100, 1 mg/ml PVP at 55 °C and mounted in Vectashield containing 

DAPI on slides with spacers (Grace Bio-Labs SecureSeal) to preserve 3D structure. 

 

Table 2. DNA-FISH probes 
name	 ID	 location	 provider	
iLAD1	 RP23-278K6	 chr4:154166444-154351367	 BACPAC	
iLAD2	 RP23-214P21	 chr8:121014748-121211934	 BACPAC	
iLAD3	 RP23-299E16	 chr5:136856848-137055210	 BACPAC	

LAD1	
B6Ng01-
224G13	

chr13:118649277-
118793034	 RIKEN	

LAD2	 RP23-300N5	
chr12:117475115-
117666869	 BACPAC	

LAD3	 RP23-73M19	
chr11:108987725-
109107402	 BACPAC	

LAD4	 RP23-248A14	 chr3:109703354-109905959	 BACPAC	
LAD5	 RP24-245M16	 chr9:94493947-94654374	 BACPAC	
LAD6	 RP23-447L6	 chr12:77637724-77818978	 BACPAC	
newLAD1	 RP23-53G23	 chr5:145946121-146115870	 BACPAC	
newLAD2	 RP23-152H19	 chr11:73182054-73393482	 BACPAC	
disLAD1	 RP24-289K11	 chr13:23892535-24061885	 BACPAC	
disLAD2	 RP23-294E8	 chr14:23338458-23517984	 BACPAC	

 

Imaging and analysis. Microscopy images were acquired on a Leica SP8 

confocal microscope equipped with a Plan Apochromat 63x/1.4 oil objective at 1.5 

micron z steps for immunofluorescence and at 0.3 micron z steps for DNA FISH. 

H3K4me3, LaminB1 and EU intensity was quantified in the nuclei defined by creating 

masks on the DAPI staining using a custom made Icy protocol. DNA FISH spots were 
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identified and their distance was measured relative to the DAPI mask periphery using 

another custom made Icy protocol. The centre of the DAPI mask was defined as 0 and 

the FISH spots location along the vector from the centre to the periphery defined as 1 

was determined. Immunofluorescence signal intensities of all experimental groups 

were normalized to the median of the control group’s (Kdm5b mutant) intensity 

separately for each biological replicate. The differences in signal intensity and FISH 

spot distance were subjected to Wilcoxon signed-rank test between groups or stages 

of development. For each stage between 71 to 220 FISH spots were analysed. 

Hi-C data analysis. Hi-C data analysis. Data for untreated embryos were used 

from GSE82185, for the aphidicolin treated and their control 2-cell embryos from 

PRJCA000241.  Raw files from all biological replicates were pooled and analyzed with 

HiC-Pro (version 2.10.0) as described in (Du et al., 2017) but aligning to the mm10 

mouse reference genome. Compartments were called using the HiTC package 

(Servant et al., 2015). ICE normalized 100-kb interaction matrices were binned with a 

bin size of 500 kb and a step size of 100 kb. Observed/expected matrices were used 

to generate correlation matrices and perform principal component analysis. A/B 

compartments were defined by the first principal component and gene density. TADs 

and insulation scores were calculated as described (Du et al., 2017). 

Cell culture. F1 hybrid 129/Sv:Cast/Eij mouse embryonic stem cells 

(Monkhorst et al., 2008) were cultured at 37°C, 5% CO2 on primary mouse embryonic 

fibroblasts (MEFs), in Glasgows minimum essential medium (G-MEM; Gibco 

#21710025) supplemented with 10% fetal bovine serum (FBS; Sigma #F7524), 1% 

PEN/STREP (Gibco #15140122), 1% GlutaMAX (Gibco #35050038), 1% non-

essential amino acids (Gibco #11140035), 1% sodium pyruvate (Gibco #11360039), 

143 μM β-mercaptoethanol (Sigma #M6250) and 1:1000 human leukemia inhibitor 

factor (LIF; in-house production). 

Generating cell lines. Stable clonal Dam and Dam-lamin B1 lines were created 

by transfection of EF1alpha-Tir1-neo with hPGK-AID-Dam-lamin B1 or hPGK-AID-

Dam plasmids in a ratio of 1:5 plasmids with Effectene (Qiagen #301427). Clones were 

selected with 250 μg/ml G418 (Thermofisher #10131035) and selection of the clones 

was based on methylation levels as determined by DpnII-qPCR. To reduce the 

background methylation levels in the presence of 1.0 mM indole-3-acetic acid (IAA; 

Sigma #I5148), we transduced the selected clones of both AID-Dam-lamin B1 and 

Dam with extra hPGK-Tir1-puro followed by selection with 0.8 μg/ml puromycin (Sigma 
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#P8833-10mg). Positive clones were screened for IAA induction by DpnII-qPCR 

assays and DamID PCR products (Vogel et al., 2007).  

DamID induction and harvesting. Expression of AID-Dam and AID-Dam-

lamin B1 was suppressed by culturing the cells in the presence of 1.0 mM IAA for 48 

hours. DamID was induced by IAA washout 12 hours prior to harvesting. 12 hours after 

IAA washout, cells were collected in G-MEM supplemented with 10% FBS and 1% 

PEN/STREP and stained with 10ug/ml Hoechst 34580 (Sigma #911004450) for 45 

minutes at 37 °C. Single cell or 20-cell populations were sorted in 96-well plates at 

G2/M phase of the cell cycle based on the DNA content histogram.  

Single cell DamID. Single cells or populations of cells were manually sorted in 

8-well PCR strips in 2 μl of DamID buffer (10mM TRIS acetate pH 7.5 (Sigma #T1258); 

10mM magnesium acetate (Sigma #63052); 50mM potassium acetate (Sigma 

#95843); 2.01% Tween-20 (Sigma #P2287). 1 μl of lysis buffer with proteinase K 

(10mM TRIS acetate pH 7.5 (Sigma #T1258); 10mM magnesium acetate (Sigma 

#63052); 50mM potassium acetate (Sigma #95843); 2.01% Tween-20 (Sigma 

#P2287); 2.01% Igepal (Sigma #I8896) and 2.01mg/ml proteinase K (Roche 

#03115828001) was added to the samples, followed by proteinase K digestion at 42 

°C for 12 hours in a thermoblock with heated lid. Proteinase K was inactivated by 

heating the samples for 20 minutes at 80 °C. In the following steps, reagents were 

added with an Eppendorf Multipipette Plus mounted with a 0.1 ml Combitip (Eppendorf 

#0030089405). The surface of the reaction volume was never touched by the pipette 

tip. Genomic DNA (gDNA) was digested for 8 hours by the addition of 7 μl of DpnI 

reaction mix (0.1 μl DpnI (10U/μl, New England Biolabs #R0176L); 0.7 μl 10x One-

Phor-all-buffer plus (100mM TRIS acetate pH7.5; 100mM magnesium acetate; 500mM 

potassium acetate) and 6.2 μl nuclease free H2O) and incubation at 37 °C in a PCR 

machine, followed by heat inactivation at 80 °C for 20 minutes. Adaptor ligation was 

performed by the addition of 10 μl ligation mix (2 μl 2x T4 ligation buffer; 0.5 μl T4 ligase 

(5U/ul, Roche #10799009001); 0.05 μl 50μM double-stranded DamID adapter 27 and 

7.3 μl nuclease free H2O) and incubation in a PCR machine at 16 °C overnight. Heat 

inactivation at 65 °C for 10 minutes the next day was followed by PCR amplification by 

the addition of 30 μl PCR mix (10 μl 5x MyTaq Red reaction buffer (Bioline #25043), 

1.25 μl PCR barcoded primer (50 µM) 

NNNNNNBARCODGTGGTCGCGGCCGAGGATC (Supplementary Table 2), 0.5 μl 

MyTaq DNA polymerase (Bioline #25043) and 18.25 μl nuclease free H2O).  The PCR 
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primer carries 6 random nucleotides at the 5' end to meet the Illumina software 

requirements of generating reads with diverse starting sequences and a 6 nucleotides 

sample barcode (Supplementary Table 2). The thermal cycling scheme is as follows: 

Step Denature Anneal Extend 

1   72 0C for 10 min 

2 94 0C for 1 min 65 0C for 5 min 72 0C for 15 min 

3-6 94 0C for 1 min 65 0C for 1 min 72 0C for 10 min 

7-35* 94 0C for 1 min 65 0C for 1 min 72 0C for   2 min 

*33 for the population samples 

Of the resulting PCR product 8 μl was used for standard 1% agarose gel 

electrophoresis for analytical purpose and estimation of DNA concentration. All 

samples were pooled and prepared for Illumina sequencing.  

Single-cell DamID Illumina library preparation and sequencing. Of 300 ng 

purified PCR product the 3’ or 5’ overhanging ends were blunted in a 50 μl reaction 

following the manufacturer’s instructions (End-It DNA End-Repair Kit, Epicentre 

#ER81050). The blunted DNA samples were again purified using the PCR purification 

colomns of Qiagen and eluted with 26 μl nuclease free H2O. Next, a 3’ adenine was 

added by incubation for 30 minutes at 37 °C in a 50 μL reaction mix (1x New Engeland 

Biolabs restriction buffer 2, 200 μM dATP (Roche #11051440001) and 25 units of 

Klenow 3′ → 5′ exo– (New Engeland Biolabs #M0212M). After heat inactivation at 75 

°C for 20 minutes, the DNA was purified with Agencourt AMPure XP beads (Beckman 

Coulter #A63881). A 1.8 x volume of beads over DNA sample was used, 

manufacturer’s instructions were followed and the DNA was eluted with 20 µl of 

nuclease free H2O. To the purified DNA the Illumina indexed Y-shaped adapters 

(TruSeq Nano DNA LT Library Prep Kit #FC-121-4402) were then ligated for two hours 

at room temperature in a 40 μl reaction mix (4μl 10x T4 ligation buffer, 0.5 μl T4 ligase 

(5U/ul) Roche #10799009001, 2.5 μl Illumina adapter, with nuclease-free H2O added 

to 40 μl final volume). Next, the T4 ligase reaction was heat inactivated at 65 °C for 10 

minutes followed by 2 times DNA purification with 1.8 x volume followed by 1.2 x 

volume AMPure beads as described for the previous step. For the addition of the 

Illumina index primers a PCR reaction was performed with the DNA from the previous 

step in a 20 μl MyTaq red DNA polymerase PCR reaction mixture (10 μl 2x MyTaq 

reaction mixture (Bioline #BIO21110), 1 μl 2.5 μM Illumina oligo mix, nuclease-free 

H2O till a final volume of 20 μl). The DNA was amplified for 6-8 PCR amplification 
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cycles (94 °C 1 minute; 94 °C 30 seconds, 58 °C 30 seconds and 72 °C for 30 seconds 

for 9 cycles and 72 °C for 2 minutes) after which 5 μl of each sample was analyzed by 

agarose gel electrophoresis. For Illumina multiplex sequencing typically 4 to 10 

separate libraries of each 20-50 single cells were mixed in approximate equimolar 

ratios as judged from the agarose gel image.  The pooled sample was subjected to a 

Qiagen PCR column purification and subsequent AMPure bead purification with 1.6 x 

volume of beads over DNA sample before it was used for sequencing.  

Processing of single-cell DamID sequencing reads. Total number of raw and 

final GATC reads are shown in Supplementary Table 3. Basecalling and filtering were 

performed using standard software of the Illumina HiSeq 2500. Sequenced 151 reads 

were parsed in order to obtain the gDNA for downstream analysis. When present, the 

first 6 random bases were discarded; subsequently the reads were demultiplexed and 

the 15 bp of adapter trimmed using custom scripts and cutadapt. The pre-processed 

reads were then mapped to the mm10 (or alternative genome assemblies) using bwa 

(version bwa-0.7.12) aln with default parameters. Reads aligning to the genome with 

quality score below 25 were discarded. The computation of Observed over Expected 

(OE) value per bin was carried out as described (Kind et al., 2015). Briefly, reads that 

precisely flanked an annotated GATC site were associated with GATC-fragments and 

kept for downstream analysis. In order to compare population samples to single cell 

samples, multiple reads aligning to the same position were counted as one and 

subsequently aggregated in genomic segments of 100kb in order to determine the 

experimentally Observed value. This was then divided by the Expected value per 

100kb bin. The expected value was generated by in-silico determining potential 

DamID-seq reads of the same length as the experimental data (~131 bp), aligning them 

to the mm10 genome assembly and selecting them based on the same filtering applied 

to the experimental data and aligned to GATC-fragments (see above).  The final OE 

value per 100 kb bins was computed by dividing the ratio of the two counts (Observed, 

Expected) by the total number of observed reads per bin. LAD domain calling was 

performed on the average population replicates for each stage in (parental or non-

allelic) OE values calculated using a two-state hidden Markov model (HMM) (Filion et 

al., 2010), which allows the classification of each 100kb segment as LAD or iLADs.The 

computation of CF scores was carried out as described in (Kind et al., 2015), by 

binarization of the OE values and subsequent summation of the CF score across the 

single cell samples per 100kb bin. 



	

	
90	

Identification of parental-specific reads. For hybrid samples C57BL/6 x 

CAST/EiJ or 129/Sv x CAST/EiJ, CAST/EiJ  and 129/Sv  genomes were de novo 

compiled by nucleotide substitution of strain specific SNPs using the 

SNPsplit_genome_preparation tool (version SNPsplit_v0.3.0/) 

(http://www.bioinformatics.babraham.ac.uk/projects/SNPsplit/)  in the original mm10 

genome assembly. The database of annotated SNPs between different mouse strains 

was obtained from ftp://ftp-mouse.sanger.ac.uk/current_snps/strain_specific_vcfs/. 

The reads were separately aligned to the parental (mm10 or hybrid) genomes using 

the above described parameters. The edit distance of the alignments of pre-filtered 

reads (quality score >= 25) was compared to the two genomes. The reads aligning 

with the lowest edit distance were assigned to the appropriate parental genome. The 

reads aligning with equal edit distance between the parental genomes were not 

assigned to the parental genomes but were kept for “non-allelic” profiles. 

Comparative genomics to published datasets. Low-input ChIP data for 

H3K4me3 and DNA-hypersensitivity data were respectively obtained from Gene 

Expression Omnibus (GEO) accession numbers GSE71434 and GSE76642. 

Alignment was carried out as described for the DamID sequencing reads. Picard tools 

(version picard-tools-1.130) (http://picard.sourceforge.net) was used to remove PCR 

duplicates. Additionally, as the H3K4me3 arises from a mouse mixed genetic 

background C57BL/6N x PWK, the assignment of reads belonging to parental 

genomes was carried out as described for the DamID libraries. Normalisation in read 

per million (RPM) was then carried out in fixed genomic windows of 5kb or 100kb to 

allow direct comparison with DamID data. Gene expression data was obtained from 

GEO accession GSE71434. The samples were aligned to the mm10 genome 

assembly using hisat2 (version hisat2-2.0.3-beta) with default parameters. Reads 

mapping with quality score lower than 200 were discarded.  htseq-count (version 0.6.0) 

was then used to assign the mapped reads to a transcriptional model file 

(gencode.vM9.annotation.gtf) obtained from (https://www.gencodegenes.org). Only 

genes annotated in the refFlat 

(http://hgdownload.soe.ucsc.edu/goldenPath/mm10/database/)  database were 

considered for downstream analysis. The reads per kilobase per million (RPKM) were 

calculated for each gene by normalising the total number of mapped reads per gene 

by the gene length in kb and sample size. A gene TSS was considered to be located 
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within a LAD when the region surrounding its TSS (+/- 250 bp) was located within a 

LAD. 

Statistical testing. Statistical tests were computed in order to test the 

correlation between datasets and/or the significance of specific features. The R 

programming language (versions R-3.1.2 and R-3.4.0) was widely used with this 

purpose. In general, before applying any test, the normality of the distributions was 

tested by the Anderson-Darling Normality test (R Package nortest). In our study, due 

to the non-normal distribution of the data analysed, non-parametrical tests such as the 

Wilcoxon rank-sum test (two-sided, unless otherwise specified) and Spearman 

correlation coefficient were chosen. 
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List of chemicals 

3-Indoleacetic acid (IAA)   (Sigma, l3750-25G) 

5-TAMRA NHS ester   (Sigma, 53048) 

Alexa Fluor 488 Goat Anti-Mouse IgG (Thermo Fischer, A11001) 

Alexa Fluor 488 Goat Anti-Rabbit IgG (Thermo Fischer, A11034) 

Alexa Fluor 594 Goat anti-Mouse IgG  (Thermo Fischer, R37121) 

Alexa Fluor 594 Goat anti-Rabbit IgG  (Thermo Fischer, A11037) 

Aminoallyl-dUTP sodium salt  (Sigma, A0410) 

Ampicillin     (Fischer Scientific, 10193433) 

anti-EGFP antibody    (Abcam, ab13970) 

anti-TRF1 antibody     (in house) 

Aphidicolin     (Sigma, A0781) 

Atto 594 NHS ester    (Sigma, 08741) 

Atto 647N NHS ester   (Sigma, 18373) 

Bovine Serum Albumin   (Sigma, A2153) 

Click-it DNA imaging kit   (Thermofischer, C10337) 

Click-it RNA imaging kit   (Thermofischer, C10330) 

CREST antibody     (Europa Bioproducts, FZ90C-CS1058) 

cytochalasin B     (Sigma, C6762) 

Dextran     (Sigma, 1179708) 

DTT      (Sigma, D9779) 

EDTA 0.5M pH8.0    (Invitrogen, 15575-020) 

Ethanol     (HMGU, 5000003) 

Formaldehyde    (Sigma, 8.18708) 

Formamide     (Sigma, F9037) 

Glycerol     (Fischer Scientific, 10021083) 

Glycogen     (Thermo Fischer, R0561) 

hCG       (MSD Animal Health) 

Hydrochloric acid    (Sigma, H1758) 

IBMX      (Sigma, I5879) 

LB Agar     (Fischer Scientific, L1515.500) 

LB Broth     (Fischer Scientific, L1520.500) 

mAb414 antibody    (Abcam, ab24609) 
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NICK TRANSLATION MIX   (Roche, 11745808910) 

NucleoBond® Xtra Midi Plus kit   (Macherey-Nagel, 740410.10) 

NucleoSpin® Gel and PCR Clean-up (Machery-Nagel, 740609.10) 

NucleoSpin® Miniprep Kit   (Macherey-Nagel, 5000814) 

Paraffin oil     (Sigma, 18512) 

Phusion High-Fidelity DNA Polymerase (Invitrogen, F530S) 

PMSG      (IDT Biologika Gmbh) 

Pronase     (Roche, 000000010165921001) 

PVP      (Sigma, PVP40) 

RNase-Free Water    (Quiagen, 129112) 

SecureSeal™ imaging spacer   (Sigma, GBL654008) 

SOC Broth     (Fischer Scientific, S1030.500) 

SSC buffer     (Sigma, 93017) 

T3 mMESSAGE mMACHINE kit   (Ambion, AM1348) 

T5 Exonuclease    (NEB, M0363S) 

T7 mMESSAGE mMACHINE kit  (Ambion, AM1344) 

Taq DNA ligase    (NEB, M0208S) 

TRIS acetate     (Sigma, 93295) 

magnesium acetate solution  (Sigma, 63052) 

potassium acetate solution   (Sigma, 95843) 

Triton X-100     (Sigma, T9284) 

Vectashield with DAPI   (Vectorlabs, H-1200) 
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