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Abstract

Scalable physical systems that enable trapping and coherent manipulation of quantum
matter lie at the heart of quantum information processing (QIP). Solid-state approaches
benefit from rapidly evolving nanotechnology and provide a way towards efficient on-chip
quantum devices. In this thesis we show how key ideas from quantum optics can inspire
novel setups and implementations for QIP in solid-state settings. To this end, we develop
strategies for the realization of well-defined lattices for electrons and other quasiparticles
in semiconductors. The theoretical proposals presented in this thesis may serve as novel
platforms for controlling and studying quantum many-body systems.

In an introductory passage, we provide a brief summary of goals, recent advances and
future directions in quantum information science, highlighting the significant progress that
has been made in related fields during the past years. The core of the thesis consists of
two parts, one dedicated to quantum systems interacting with elastic waves in solids, and
another related to a novel class of two-dimensional semiconductors.

In the first part, we theoretically investigate how surface acoustic waves (SAWs) may be
used to create well-defined potentials for mobile electrons and other semiconductor quasi-
particles. We develop an effective description of electrons coupled to SAW-driven time-
dependent electromagnetic fields by modelling their dynamics within a Floquet framework.
The underlying physical coupling mechanisms can be based on piezoelectric, piezomagnetic
or strain fields, respectively, and we discuss the implications of each. We show that these
systems bear striking similarities with atomic, molecular and optical implementations, such
as trapped ions and cold neutral atoms in optical lattices. Specific to the solid-state en-
vironment are couplings to various sorts of impurities and bulk phonons, which possibly
degrade the quality of SAW-based traps. We thus take into account these effects, and
investigate the influence of thermal bulk phonons by deriving an effective description of
the electronic motion based on quantum master equations. These results provide a recipe
for a near-term realization of acoustic traps and lattices for semiconductor particles. The
versatility of the presented theoretical approach allows a thorough examination of various
materials, heterostructures and quasiparticles. Several case studies of suitable host mate-
rials are presented, and connections to possible future experimental work are established.
With a projected lattice spacing on the scale of ∼ 100nm, acoustically defined electron lat-
tices allow for relatively large energy scales in the realization of fermionic Hubbard models,
and a parameter regime very different from the one typically obtained in other systems.
The ultimate prospect of entering the low-temperature, strong-interaction regime may be
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crucial for a better understanding of high-temperature superconductivity.
In the second part of this thesis, we focus on realization and detection of self-assembled

electron lattices in transition-metal dichalcogenides (TMDs). TMDs have remarkable me-
chanical, optical and electronic properties and are ideally suited for the study of quantum
Wigner crystals (WCs). WCs are prime candidates for the realization of regular electron
lattices under minimal requirements on external control and electronics. However, several
technical challenges have prevented their detailed experimental investigation and applica-
tions to date. Based on scattering theory, we theoretically analyze the optical response of
TMD-based WCs. We show that TMDs allow for minimally invasive all-optical detection
schemes of charge order inherent in WCs, and that optical selection rules of TMDs pro-
vide direct access to spin measurements via Faraday rotation. Experimental signatures of
WCs are presented, and disorder-induced imperfections are considered. We highlight their
potential as a platform for the quantum simulation of geometrically frustrated magnetism
with adjustable and self-assembled lattice structures.

Future research directions, that are related to the results presented here, are discussed
at the end of the thesis.



Zusammenfassung

Kontrollierbare und skalierbare Quantensysteme bilden die Grundlage für Quanteninforma-
tionsverarbeitung. Festkörpersystemen kommt dabei eine besondere Rolle zu, da diese von
industriell verfügbaren Nanofabrikationstechniken profitieren und somit einen möglichen
Weg zur Bereitstellung von Chip-basierten Quantentechnologien bieten. In dieser Arbeit
zeigen wir auf, wie Schlüsselkonzepte aus der Quantenoptik neuartige Implementierungen
festkörperbasierter Quantensysteme ermöglichen können, die im Rahmen der Quanten-
informationsverarbeitung relevant sind. Zu diesem Zweck entwickeln wir Strategien zur
Realisierung wohldefinierter Fallen und Gitter zum Fangen von Elektronen und anderen
Quasiteilchen in Halbleitern. Die theoretischen Ausarbeitungen in dieser Arbeit eröffnen
Möglichkeiten für neue Plattformen zur Kontrolle und zum Studium von Quantenviel-
teilchensystemen.

In der Einleitung stellen wir eine Übersicht der Ziele, jüngsten Fortschritte und Zukun-
ftsvisionen im Bereich der Quanteninformationswissenschaften vor. Der Hauptteil dieser
Arbeit besteht aus zwei Teilen. Zuerst widmen wir uns Quantensystemen, die in Festkörpern
mit akustischen Wellen wechselwirken, und danach setzen wir uns mit einer neuartigen
Klasse zweidimensionaler Halbleiter auseinander.

Im ersten Teil untersuchen wir, wie akustische Oberflächenwellen wohldefinierte Po-
tentiallandschaften für bewegliche Elektronen und andere Quasiteilchen in Halbleitern
erzeugen können. Wir entwickeln eine effektive Beschreibung von Elektronen, die an
akustisch getriebene, zeitabhängige elektromagnetische Felder koppeln. Hierfür model-
lieren wir die Dynamik der freien Ladungsträger im Rahmen eines Floquet-Formalismus.
Die zu Grunde liegenden physikalischen Kopplungsmechanismen können piezoelektrischen
oder piezomagnetischen Ursprungs sein oder von mechanischer Spannung herrühren. Wir
zeigen, dass diese Systeme Ähnlichkeit mit atomaren, molekularen und optischen Quan-
tensystemen haben, z. B. mit gefangenen Ionen und ultrakalten Atomen in optischen
Gittern. Spezifisch für die festkörperbasierten Systeme sind Kopplungen der Elektronen
an Störstellen und phononische Freiheitsgrade, welche die Funktionsweise von akustischen
Fallen beeinträchtigen können. Daher berücksichtigen wir diese Effekte und untersuchen
den Einfluss von thermischen Phononen auf die elektronische Bewegung auf Basis einer
Quantenmastergleichung. Diese Resultate bilden die Basis für eine ausführliche Unter-
suchung verschiedener möglicher experimenteller Umsetzungen. Hierzu berücksichtigen
wir diverse Materialien, Heterostukturen und Quasiteilchen. Verschiedene konkrete Fall-
beispiele werden diskutiert. Da die Gitterkonstanten von akustischen Gittern im Bere-
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ich von ∼ 100nm liegen können, erlauben akustisch getriebene Elektronengitter die Ver-
wirklichung relativ großer Energieskalen in fermionischen Hubbardmodellen, und damit
das Erreichen von Parameterkonstellationen, die mit anderen Systemen typischerweise
nicht realisiert werden können. Damit ermöglichen uns diese Systeme gleichzeitig starke
Wechselwirkungen und tiefe Temperaturen, um zum Beispiel Neues über Hochtemperatur-
supraleiter zu erfahren.

Im zweiten Teil beschäftigen wir uns mit der Realisierung und Detektion von selb-
storganisierten Elektronengittern in zweidimensionalen Halbleitern. Die hier untersuchten
Halbleiter haben beeindruckende mechanische, optische und elektronische Eigenschaften
und eignen sich in besonderer Weise zur Untersuchung von Wignerkristallen. Wign-
erkristalle stellen Elektronengitter dar, die ohne hohe Anforderungen an externe Kontroll-
parameter auskommen. Allerdings haben sich diese bisher aufgrund einiger technischer
Schwierigkeiten der detaillierten experimentellen Untersuchung entzogen. Aufbauend auf
einer Streutheorie des Lichts untersuchen wir optische Eigenschaften von Wignerkristallen
in zweidimensionalen Halbleitern. Insbesondere zeigen wir, dass diese Systeme minima-
linvasive optische Detektion der Ladungsträgeranordnung in Wignerkristallen erlauben.
Des Weiteren ermöglichen es die optischen Auswahlregeln dieser Halbleiter, anhand des
gestreuten Lichts auch Informationen über den Spinfreiheitsgrad der Elektronen zu gewin-
nen. Experimentell beobachtbare Signale werden vorgestellt und Imperfektionen der Elek-
tronengitter werden untersucht. Wir zeigen, dass sich diese Systeme auch für die Quan-
tensimulation von frustriertem Magnetismus eignen.

Künftige Forschungsfragen, die im Zusammenhang mit dieser Arbeit stehen, werden im
abschließenden Kapitel diskutiert.
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Chapter 1

Introduction

The development of a quantum theory of the physical world is arguably one of the major
intellectual achievements in modern science. Quantum mechanics has its historical roots in
the beginning of the 20th century, when it was first invoked to explain physical phenomena
outside the realm of classical physics, such as black-body radiation [10] or the photoelectric
effect [11]. Besides its importance for modern physics and research, quantum physics has
also had a great impact on the development of novel technology. Today, there exists a
plethora of devices that rely on quantum effects, including semiconductors, transistors and
laser systems. The development of quantum mechanics and the successive integration of
these devices and functionalities into modern technology is often refered to as first quantum
revolution.

Similarly, the birth of modern computers had a tremendous impact on society and
rapidly fueled scientific, technological and economic progress. Prior to the appearance of
first fully automatic digital computers in the 1940s, early results in theoretical computer
science laid out a mathematical framework of computation. Notably, it was Alan Turing
who formalized the abstract idea of general-purpose machines [12], demonstrating capabil-
ities and limitations of computing devices. In a seminal paper, Computing Machinery and
Intelligence [13], he also paved the way for what later became known as artificial intelli-
gence. Recent progress with artificial neural networks has renewed interest in this field,
fueled by a significantly increased computing power available with modern technology. Un-
til today, we are persistently challenging the question of what is computable, and which
processes in the world around us we can model and quantitatively describe and understand.

Initially, quantum physics and computer science seemed rather unrelated, until it was
realized that these two major discplines share common ground. Information is intimitely
related with its physical manifestation, which led to Rolf Landauer’s famous expression,
information is physical [14]. It was when previously disconnected disciplines from computer
science, physics and mathematics came together that quantum science gained a lot of
additional momentum, to launch research on quantum information theory. While core
principles of computer science and information theory operate on the basis of classical
physics, the fundamental concepts of quantum information theory and all novel quantum
technologies rely on the laws of quantum mechanics.
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1.1 Quantum Science and Technology

Recent advances show that the potential for new discoveries and applications related to
quantum science has not been stretched to its limits, and that a new era of quantum
technologies has just started. With the advent of physical implementations of quantum
information processing (QIP), a variety of novel quantum technologies is on the horizon.
This on-going second quantum revolution [15] addresses many challenges that can be largely
grouped into four categories: (i) quantum communication, (ii) quantum metrology, (iii)
quantum computation, and (iv) quantum simulation. The tremendous progress in these
fields in recent years has led to remarkable scientific discoveries and first technological
applications. In fact, significant progress has been made in all of these fields during the
relatively short time span between 2016 and 2020, in which the work summarized in this
thesis has been carried out. The impressive pace at which new illuminating insights are
being obtained is most easily demonstrated by naming several examples from recent years,
highlighting both challenges and opportunities associated with novel and upcoming quan-
tum information technologies. Notwithstanding the wealth of research directions within
each field, an executive summary of central themes of all four research domains will be
provided in the following. Selected research highlights of each category shall serve as a
demonstration of the rapid progress, and showcase current developments. While these
introductory passages raise no claim of completeness in any regard, they give a taste of
current themes in quantum science research.

One common goal of many recent efforts is near-term applicability, with a focus on
quantum advantage: designing and putting into practice quantum systems that improve
specific scientific or technological tools beyond what is possible with devices based on the
laws of classical physics. The pursuit of such quantum enhancement rests on properties
of quantum systems that are not shared by their classical counterparts. Quantum super-
positions and entanglement play a central role in this regard. Entangled quantum states
exhibit correlations that have no classical analog. Examples are the four Bell states, spe-
cific maximally entangled quantum states of two qubits. Suppose Alice and Bob are at
distant locations and both hold one qubit each, such that their joint quantum state reads
|Φ+

12〉 = 1√
2
(|0〉1 |0〉2 + |1〉1 |1〉2). If Alice measures her qubit (subscript 1), the outcome

would be perfectly random, either possibility 0 or 1 having 50% probability. But if then
Bob (subscript 2) measures his qubit, the outcome would be the same as Alice’s. Although
their measurement outcomes may seem random, they are in fact perfectly correlated. Al-
bert Einstein famously called this the spooky action at a distance, and concluded that the
formulation of quantum mechanics must be incomplete [16]. Nowadays, the pecularities of
quantum physics, especially quantum entanglement, are at the heart of all promising new
quantum technologies.
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Quantum communication

Quantum communication is concerned with the transmission of information encoded in
quantum states, e.g. in the polarization state of an optical photon [17]. It contrasts
classical communication, as it is governed by the laws of quantum mechanics, and allows
for intrinsically secure exchange of information. Potential applications are not limited to
communication protocols, and include even schemes that can help to significantly extend
the baseline of interferometric telescopes [18], and may thus be used to learn more about
distant celestial objects, like galaxies. In fact, some quantum communication technologies
have already been put into practice and commercialized. Most prominently, quantum key
distribution (QKD) provides a recipe for secure communication, as it is decorated with a re-
markable property: the presence of any eavesdropper may be detected in a post-processing
phase, as any measurement leaves behind its traces in the transmitted quantum state [19].
Despite its commercial availability, QKD and other applications still face a number of
challenges. One of these obstacles is related to the fact that all physical communication
channels are imperfect and affected by transmission losses. Naturally, noisy channels limit
the distance over which information can be transferred. State-of-the-art experiments using
ultralow-loss optical fibers achieve transmission distances of several dozens of kilometres
[20]. For large-scale quantum networks, e.g. to realize the vision of a quantum internet
[21], this is certainly not enough. More than twenty years ago, it has been suggested that
this problem may be overcome by employing quantum repeaters [22]. Repeaters are widely
used in telecommunications to extend transmission of information to longer distances, by
receiving and retransmitting a signal. Due to the no-cloning theorem, a profound insight
stating that quantum states cannot be replicated, quantum repeaters must conceptually
be entirely different from their classical counterparts.

The standard approach to tackle this scalability issue with quantum repeaters re-
quires long-range entanglement, and starts with entanglement generation between ad-
jacent nodes in a network. Subsequent entanglement swapping enables to create long-
distance entanglement from shorter-distance entanglement. This technique is based upon
Bell state measurements (BSM). Suppose, for example, both Alice and Bob, represent-
ing two spatially separated nodes of a network, were in possession of a Bell pair each,1

|Φ+
12〉 = 1√

2
(|0〉1 |0〉2 + |1〉1 |1〉2) and |Φ+

34〉 = 1√
2
(|0〉3 |0〉4 + |1〉3 |1〉4), respectively, such that

the full quantum state of the composite system reads |Ψ〉 = |Φ+
12〉 ⊗ |Φ+

34〉. Charlie, at a
third location, receives one of Alice’s and one of Bob’s particles, and performs a projec-
tive measurement on these, in the basis of Bell states {|Φ+

23〉 , |Φ−23〉 , |Ψ+
23〉 , |Ψ−23〉}. As a

result, since |Ψ〉 = 1
2
(|Φ+

23〉 |Φ+
14〉 + |Φ−23〉 |Φ−14〉 + |Ψ+

23〉 |Ψ+
14〉 + |Ψ−23〉 |Ψ−14〉), the remaining

two particles at Alice’s and Bob’s nodes become entangled. Consecutive application of
this entanglement-swapping procedure paves a way for building large-scale repeater-based
quantum networks, which enjoy a polynomial scaling of the transmission efficiency with
total distance.

Distribution of quantum entanglement between adjacent nodes can be achieved using
photons and optical fibres. Photonic BSMs can be implemented directly with linear optics

1Alice holds two qubits (subscripts 1 and 2), and Bob holds two qubits (subscripts 3 and 4).
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and single-photon detectors, in principle. However, the described scheme then only works
when Alice’s and Bob’s photons arrive at the same time at Charlie’s node. To avoid this
difficulty and improve the performance of this scheme, a quantum memory at Charlie’s
location can be used to store information upon arrival of the first photon. In that approach,
the state of Alice’s photon is stored in Charlie’s memory while awaiting receipt of Bob’s
photon, allowing for asynchronous BSMs.

At the heart of many quantum communication schemes lies therefore the realization of
efficient and high-fidelity quantum memories, that can be interfaced with light. In prac-
tice, this poses tremendous challenges. However, recent advances present significant steps
forward towards practical quantum repeaters and large-scale quantum networks. Various
quantum physical setups may help achieving this, including atomic systems, rare-earth
doped solids, color centers in solids, and quantum dots.

In order to enhance quantum light-matter interaction, and thus enable high-fidelity
light-matter interfaces for building optically addressable memory nodes, two widely used
approaches may be distinguished, in general: (i) embedding single quantum emitters in
high-finesse optical cavities, and (ii) increasing the number of particles, e.g. with atomic
ensembles. In both cases, the light-matter interaction can be increased significantly. To
illustrate the most recent progress in this field, two selected research milestones of the past
year will be mentioned in the following, that each follow at least one of these two strategies.

Recently, it has been experimentally demonstrated that memory-assisted quantum com-
munication can outperform direct-transmission and repeater-less communication by a large
margin in a state-of-the-art laboratory setting [23]. In this experiment, a silicon-vacancy
center in diamond served as a quantum memory, embedded in a nanophotonic cavity with
a very high cooperativity. Two photons, one from Alice and another from Bob, arriving at
different times at the memory node were used to carry out asynchronous BSMs, by photon
detection and measuring the spin state of the color center. This experiment demonstrates
a scenario in which the memory-assisted BSM success rate exceeds the direct-transmission
success rate, due to a sufficiently long coherence time of the quantum memory. As a proof-
of-principle result, this shows a form of quantum advantage enabled by memory-based
communication nodes which are spatially nearby. It provides a significant step towards
realizing functional quantum repeaters and, once implemented in a practical long-distance
communication setting, may enable larger-scale repeater-based quantum networks.

The earliest proposal for a physical realization of a repeater-based network is the DLCZ
proposal, named after its inventors [24]. It is based on collective interference effects in
atomic ensembles and linear optics. In this approach, atomic ensembles realize quantum
memories. Recently, entanglement over dozens of kilometeres of optical fibre has been
achieved, connecting two memory nodes containing one atomic ensemble each [20]. Quan-
tum frequency conversion techniques allow for a conversion of light from a laser source,
used to address the quantum memory, to the telecommunication band. This result presents
a significant step forward towards fully functional segments of atomic quantum networks
at city-scale distances.

These results highlight the high pace at which progress in quantum communication
research is being made. By combining theoretical concepts with modern technology and
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further improving state-of-the-art experimental setups, this branch of quantum informa-
tion research has already led to novel communication technology, and each incremental step
is bringing large-scale quantum networks a bit closer. Commercially available QKD sys-
tems are offered by several companies now, including ID Quantique, MagiQ Technologies,
QuintessenceLabs and SeQureNet, and quantum encryption has already been employed to
protect national elections against hacking and data corruption.

Quantum metrology

Measurements lie at the heart of scientific discovery, allow us to define standards and enable
technology, trade and commerce. Still today, the boundaries of precision measurements
and of what is resolvable are pushed further and further. A few years ago, the Laser In-
terferometer Gravitational-Wave Observatory (LIGO) detected gravitational waves for the
first time, and helped improving our understanding of the universe [25]. This was made
possible by extremely precise distance measurements, that enabled to detect changes in
distance between two mirrors of the order of 10−19 m. Another example are atomic clocks,
that have already reached frequency precision of the order of 10−19 in recent years [26]. At
this level of performance, geophysical processes or even the interplay of quantum mechanics
and general relativity may be probed on the millimeter scale. Further impressively accu-
rate metrological achievements include yoctonewton force sensing [27], yoctogram mass
sensing [28], and subfemtotesla magnetic field sensing [29]. While the final resolution of all
measurements is doomed to be fundamentally limited, it can be improved beyond what is
possible with classical measurements by resorting to quantum physics.

Quantum metrology is dedicated to devising highly sensitive measurement schemes that
may help to overcome limits posed on classical metrology. Altogether, quantum mechanics
has been playing a central role in metrology for decades now. For example, calibrations of
electrical resistors are based on the quantum Hall effect. Since 2019, the definition of the
standard units of measurement incorporates fixed values of the Planck constant h, and the
elementary charge e. It thus circumvents the outdated definition of the kilogram based on
a carefully protected prototype and is less prone to errors. On a more fundamental level,
quantum-enhanced sensing may be employed to systematically outperform (semi-)classical
measurements using entanglement [30].

Precision measurements are often performed by converting a quantity of interest to a
phase shift, that can be measured using interferometers. In this procedure, a probe state
acts as a sensor, and acquires a phase shift θ during the measurement process, that depends
on the desired physical observable. An estimate of this phase shift can be obtained from
the measurement outcomes [31]. Precision is always limited by an uncertainty ∆θ, which
can be caused by either technical (classical) or fundamental (quantum) restrictions. The
final precision as a function of the resources used, e.g. number of photons N in optical
interferometry, number of atoms in atomic spectroscopy, or measurement time, determines
the effectiveness of the sensor.

Statistical parameter estimation provides a mathematical framework to bound the un-
certainty ∆θ from below, a key result that is known as the Cramer-Rao bound. The best
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classical sensors feature a precision ∆θSQL = O(1/
√
N), known as the standard quan-

tum limit (SQL). This shot-noise scaling occurs, for example, in photon-counting devices,
where the incident photon count follows a Poisson distribution. By contrast, quantum
sensors can beat the SQL, and eventually reach ∆θHL = O(1/N), known as the Heisenberg
limit (HL). Overcoming the SQL requires entanglement between particles. As an illus-
trative example, consider an optical interferometer using coherent and entangled states
with average photon number N , respectively. The overlap of two coherent states2 |α〉
and |ei∆θα〉 is given by exp(−|α(1 − ei∆θ)|2) ≈ exp(−N∆θ2), for sufficiently small phase
displacements ∆θ. At ∆θ ∼ 1/

√
N , the two coherent states tend to become orthogonal,

which makes them more distinguishable. Repeating this line of reasoning for two entan-
gled states |ΨN〉 = (|N, 0〉 + |0, N〉)/

√
2 and |ΨN,∆θ〉 = (|N, 0〉 + eiN∆θ|0, N〉)/

√
2,3 one

obtains |〈ΨN |ΨN,θ〉|2 = cos2(N∆θ/2). These states become orthogonal for ∆θ ∼ 1/N ,
which reproduces the beforementioned Heisenberg scaling.

In quantum systems, noise and decoherence make it very challenging to reach the
Heisenberg limit for all practical purposes. It is still an active field of research to determine
the maximally achievable accuracy in the presence of different types of noise sources, and
how error-correction schemes can be used to enhance sensitivity. Despite these obstacles,
quantum-enhanced measurements with multi-particle entangled states beyond the SQL
have already been demonstrated in several experiments, e.g. using trapped ions, cold atoms
and Bose-Einstein condensates, and in optical interferometry. Recently, measurements on
N = 2 photonic NOON states have achieved unconditional violation of the shot-noise
limit [32]. Furthermore, squeezed states which seek to redistribute the noise between two
non-commuting observables while obeying the Heisenberg uncertainty relation, have helped
to surpass the SQL in different contexts. For example, squeezed states of light recently
enhanced the sensitivity of gravitational wave detection by 3.2 dB [33], and spin squeezing
in ensembles with half a million atoms has led to a 11-fold metrological gain in phase
sensitivity [34].

A variety of different physical systems are being considered for quantum-enhanced
sensing, including trapped ions, quantum dots and nitrogen-vacancy (NV) centers, see
Fig. 1.1. Sensors based on single electron spins associated with NV centers in diamond
target highly accurate measurements of electromagnetic fields, temperature or strain, with
nanoscale resolution. Their recent success partly relies on long spin coherence times, even
at room temperature. Furthermore, diamond-based spin sensors can benefit from a close
proximity to their target, a wide field of view and extraordinary sensitivity, and have great
potential in various contexts, including imaging of living cells under ambient conditions [35],
navigation in GPS-denied environments, and dark-matter detection [36]. These exciting
prospects underline how mature the field of quantum metrology has become, due to a
fruitful convergence of novel technologies and profound theoretical groundwork.

2A Coherent state is the closest analog to a classical light field, exhibits a Poisson photon number
distribution with an average photon number N = |α|2, and can be written as |α〉 = e−|α|2/2 ∑∞

n=0

αn

√
n!
|n〉

in the number-state basis.
3These NOON states correspond to coherent superpositions of N photons in one branch of an optical

interferometer, and zero photons in the second branch.



1.1 Quantum Science and Technology 7

Quantum computation

Quantum computation is a cornerstone of quantum information science and technology,
and a universal quantum computer is one of its holy grails. The vision of a useful quantum
computer, that outperforms all classical computing devices at specific tasks, has fueled
progress in various interconnected disciplines. Even beyond academic research, quantum
computation is nowadays of great interest, since world-leading tech companies such as
Google, IBM, Microsoft and Intel have joined the race to build a quantum computer.

Four decades ago, the first quantum mechanical model for Turing machines, based
on the time evolution of quantum states, was introduced by Paul Benioff [37]. A few
years later, David Deutsch described the concept of universal quantum computers, which
are capable of efficiently simulating any other quantum computer (just as any universal
Turing machine can efficiently simulate any other Turing machine) [38]. As the theoretical
description of quantum computing became more developed and mature, the concepts of
quantum circuits and quantum gates were established and formalized. It was shown that
two-qubit gates are universal for quantum computation [39], and that any operation can
be decomposed into controlled-NOT (CNOT) gates between two qubits and a number of
single-qubit gates [40].

However, until 25 years ago, no physical system had been demonstrated to realize the
required two-qubit interaction to implement a CNOT gate. In 1995, the first physical
implementation of a quantum computer was proposed by Ignacio Cirac and Peter Zoller,
who showed how a CNOT gate can be realized in a system composed of trapped ions
[41]. Soon after, first experimental proof-of-principle demonstration of a CNOT gate was
released. At that time, many different physical realizations were being considered for
the first time, and explicit proposals for quantum computing platforms were worked out.
The Loss-DiVincenzo quantum computer was proposed in 1997, which uses as qubits the
spin degree of freedom of electrons confined to electrically defined quantum dots (QDs)
[42]. In that proposal, two-qubit gates are realized with the aid of the electrically tunable
exchange interaction between two adjacent spin qubits. Silicon-based nuclear-spin quantum
computers, that use the nuclear spins of individual phosphorus atoms in silicon as qubits
and donor electrons to mediate exchange coupling between them, was proposed by Bruce
Kane in 1998 [43].4 Around the same time, it was shown that superconducting (SC) circuits
can be used as qubits, and coherent control of individual SC qubits [45] as well as controlled
couplings between them [46] were studied. Global efforts in developing quantum processors
based on SC circuits have improved their quality, and a variety of types of SC qubits exists.

In parallel with the exploration of suitable platforms for quantum computation, physi-
cists and information scientists have been conceiving new quantum algorithms, that can
be run on future quantum computers and benefit explicitly from their quantum mechani-
cal properties to outperform classical computers at certain tasks. Early milestones in this
field include Shor’s factoring algorithm [47] and Grover’s search algorithm [48]. Perhaps

4A main difficulty associated with this approach is the tricky single-qubit addressablity related to
focusing magnetic fields down to single qubits. Recently, it was experimentally shown how electric fields
may be used to address single qubits in these sytems [44].
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the most prominent example of a quantum algorithm, Shor’s algorithm outlines a method
for determining the prime factors of large integers efficiently, unlike any known classical
algorithm. With a sufficient number of qubits and the capability to correct for errors
during operation, running Shor’s algorithm on a QC could be used to break widely used
public-key cryptography schemes. This, in turn, led to the emergence of a new branch
of research, post-quantum cryptography, dedicated to designing cryptographic algorithms
that are meant to be secure against attacks by quantum computers. On the other hand,
Grover’s algorithm provides a quadratic speed-up for searching unsorted databases. It
also plays a central role in tackling Boolean satisfiability problems, which are known to
be very hard to solve. The underlying concepts of these early key results form the basis
for many algorithms that have been developed ever since. Quantum phase estimation, for
example, a main building block of Shor’s algorithm, is equally important for the inner
working principle of the HHL algorithm for solving systems of linear equations [49]. Due
to the widespread use of linear systems in science and elsewhere, the HHL algorithm has
great potential for widespread applicability. Amplitude amplification, on the other hand,
the key principle behind Grover’s algorithm, is also applied in many other algorithms to
obtain quadratic speed-ups.

Since the early 2000’s, small-scale versions of these quantum algorithms have success-
fully been tested on the first quantum processors. In a 2001 experiment, Shor’s algorithm
was employed to factorize 15 = 3 · 5 in a proof-of-principle demonstration, using nuclear
spins [50]. The current record achieved with Shor’s algorithm managed to factor 21 = 3 · 7
[51], which obviously compares unfavourably with the record for the largest integer fac-
tored classically, which is a number with 240 decimal digits at the time of this writing.
Similarly, proof-of-principle demonstrations of Grover’s algorithm, the HHL algorithm and
others have been given in recent years. Despite this progress, improving the performance of
quantum processors and turning them into useful computing devices will continue to pose
some tremendous challenges for the years to come. These challenges include the protection
of qubits from their environment and decoherence to reduce both global and local sources
of error, harnessing quantum error-correcting schemes and significantly scaling up system
sizes.

While quantum error correction is a main area of current research in quantum informa-
tion science, and the numbers of qubits in state-of-the-art architectures are steadily grow-
ing, a recent paradigm shift towards quantum computing in the NISQ (Noisy Intermediate-
Scale Quantum) era [52] puts the focus on noisy quantum devices with about 50 − 100
qubits, that may already outperform classical computers at certain tasks.

In line with this reasoning, global efforts to demonstrate so-called quantum supremacy
have recently culminated in an experimental demonstration of a quantum processor that
solves a specifically chosen problem much faster than the best currently available classi-
cal supercomputers [53]. In particular, this experiment demonstrated efficient sampling
from random unitary circuits. In contrast to decision problems, sampling problems output
random numbers according to a particular probability distribution. Another well-known
example of a sampling problem is Boson sampling, which concerns the probability distribu-
tion of photons scattered by an interferometer. It is related to the evaluation of the matrix
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permanent, which is known to be a computationally hard problem. Boson sampling has
been demonstrated in proof-of-principle experiments [54], and larger-scale implementations
are being explored.

While fully fledged, fault-tolerant quantum computers are a driving force and may
be the ultimate goal of this research field, current quantum technology offers thrilling
possibilities to study hard problems with quantum systems and learn more about quantum
physics itself. The current NISQ era may be game-changing, and has most recently brought
to us very striking results.

Quantum simulation

The genuine idea of quantum simulation was originally conceived in the early 1980s by
Richard Feynman [55] and Yuri Manin [56]. It relies on the observation that well-controlled
quantum systems can be used to study properties of other quantum systems, which may
be much harder to control or operate with. Importantly, putting this idea into practice
is widely believed to offer solutions to very hard and yet unsolved problems, as it enables
finding the solution to specific problems without computing their solution directly. In fact,
simulation as a tool for scientific discovery is widely used in many branches of science. Its
general working principle may be most easily illustrated with the following example. Let us
consider a simple mathematical problem, whose solution may be encoded in the outcome
of an experiment. Say we wish to determine the square root of a given number r ∈ R+.
Instead of performing a computation, we may as well measure the time t it takes for a mass
to hit the ground after free fall from a height r. We realize that

√
r =

√
g/2t, and thus

measuring the elapsed time t in the experiment can be regarded as a simulation of the
square-root function. Likewise, quantum simulators may serve as a resource to simulate
interacting quantum many-body problems, which may be computationally intractable.

Quantum simulators are promising to unravel complex many-body phenomena in con-
densed matter and high-energy physics, cosmology or quantum chemistry. They may also
encode computationally hard optimization problems, like satisfiability problems. Often
digital and analog quantum simulators are distinguished. While the former are based on
quantum circuits and may in principle be made fault-tolerant, analog quantum simulators
mimic the time evolution of interacting quantum systems in a controlled fashion. Analog
quantum simulators have already become available in state-of-the-art experiments.

There is a variety of physical realizations that enable quantum simulation, see Fig. 1.1.
Each candidate physical system for quantum simulation should fulfil a number of criteria
[57]. Clearly, it should be modeled by a Hamiltonian that describes a problem of interest.
Measurements then encode the result to the problem, just like in the square-root example
above. Each physical system comes with its own advantages. Cold atomic systems in
optical lattices, for example, are rather scalable, while other setups may allow for easier
individual control and readout.

In what was possibly the first quantum simulation experiment, a four-level quantum
system consisting of two nuclear spins was used to simulate the dynamics of a truncated
harmonic oscillator [58]. While the harmonic oscillator is one of theoretical physics’ most
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widely used toy models that is even analytically solvable, more intricate models and phys-
ical effects have since then been studied in experiment, which remain elusive for analytical
or numerical treatments. For example, early experiments with atomic BECs have probed
phase transitions from superfluid to Mott insulating states [59]: by trapping hundreds of
thousands of atoms with only three optical standing waves, a sufficiently complex system
can be brought under experimental control, that encodes a Hamiltonian way too compli-
cated for a classical computer to solve exactly. Cold atoms in optical lattices have come
a long way, and provide a versatile platform for the study of lattice models, e.g. Hubbard
models. Both geometry and dimension are reconfigurable, and tunneling and interaction
energies can be set by external parameters. As Hubbard models are suspected to capture
the essential physics of high-temperature superconductors, such quantum simulators pave
the way for a better understanding of important physical effects which are of immediate
relevance, also for industrial applications.

More recently, arrays of N ∼ 50 Rydberg atoms using optical tweezer technology [60]
provided experimental access to a new class of constrained models that may in the future
be used to encode solutions to optimization problems that no classical machine can solve.
This recent development very nicely demonstrates how Feymman’s original idea can be
filled with life in a specific context: a physical effect (in this case, the Rydberg blockade)
naturally occurs in an atomic Rydberg array and introduces constraints on the excitations
in the lattice; calculating the properties of the underlying Hamiltonian can be much harder
than performing a measurement on the Rydberg array, once the experimental apparatus
is available. This may turn out to be relevant in the context of classical optimization,
since the Rydberg-blockade effect gives rise to excitation patterns in the lattice that can
be associated with particular combinatorial problems in graph theory [61].

Other experimental approaches use semiconductor technology to trap electrons in ar-
rays of gate-defined quantum dots (see Fig. 1.1). As distant charges interact via long-
range Coulomb interactions, in contrast to cold neutral atoms that interact only at short
distances, these systems would be more naturally suited for studying models with long-
distance couplings. Recent progress with the control of Fermi-Hubbard models in arrays
of gate-defined QDs [62] has underlined their great potential for quantum simulations. In
another recent work, Nagaoka ferromagnetism, a physical phenomenon predicted in the
1960s, has been observed for the first time, in a system of four electrons in a plaquette of
quantum dots [63].

Other current efforts are related to the study of quantum chemistry problems using
controlled quantum systems, for example, cold atoms [64] or trapped ions [65]. Like many
of the other examples given before, this line of research is also decicated to exploiting the
quantum nature of analog and digital quantum simulators to study fundamental processes
in nature, that seem to be too complex for a classical supercomputer to handle. While these
ideas are all variations on Feynman’s original theme, they demonstrate the tremendous
potential for obtaining useful quantum advantages enabled by quantum simulators in the
years to come.
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1.2 Physical Implementations

The realization of each quantum technology demands a physical manifestation. A variety of
different systems, that are becoming increasingly relevant for future quantum technologies,
is now already a reality. Most platforms can be largely grouped into two categories: (i)
solid-state systems (e.g., superconducting qubits, quantum dots, color centers) and (ii)
atomic, molecular and optical (AMO) systems (e.g., cold neutral atoms, trapped ions,
photons), see Fig. 1.1. While the former benefit from rapidly evolving nanotechnology
and often an intrinsic scalability, the latter constitute a prime example of well-controlled
quantum systems which are typically well-isolated from their environment.

It is natural to ask how the advantages of these different paradigms can be brought
together either in hybrid quantum systems or by translating fundamental concepts from one
to another. These strategies have already been adopted and successfully applied in various
cases. Hybrid quantum systems leverage the strengths of their constituents by combining
several physical implementations with the aid of an appropriate interface [66]. For example,
a mechanical quantum bus may be employed to couple dissimilar qubits, such as trapped
ions, SC qubits, and photons. On a more abstract level, the investigation of physical
systems with theoretical and experimental tools originally conceived in a different context
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Figure 1.1: Overview of AMO (blue) and solid-state (orange) implementations for quantum
science. The dashed line encircles the physical setups that are related to this thesis.
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may put forward fruitful analogies and inspire a fresh take on long-standing problems. In
that spirit, we aim at exploring novel solid-state quantum systems from a quantum-optics
perspective.

For many QIP-related tasks, it is crucial that well-defined qubits can be held at fixed
positions and controlled. The underlying trapping mechanisms vary considerably from
system to system. Often they rely on well-controlled electromagnetic fields. For instance,
ion traps may be generated from electric potentials on metal electrodes, and neutral atoms
can be stored in optical dipole traps and lattices with laser beams. These systems are well-
studied, and among the leading contenders for quantum computation and simulations.

In this thesis, we study semiconductor systems that host mobile quasiparticles and
charge carriers, which are subject to similarly tailored electromagnetic and strain fields. In
particular, we address the usage of controlled sound fields, and the remarkable properties of
two-dimensional semiconductors for the realization of traps and lattices for quasiparticles
(e.g., electrons) in semiconductors. While being closely related to well-established solid-
state implementations based on quantum dots, some of the discussed physical systems bear
striking similarities with trapped-ion or cold atomic systems, and bring together several
advantages from both the solid-state domain on the one hand, and AMO systems and
quantum optics on the other hand.

The following two Sections 1.3 and 1.4 provide a brief theoretical background of sound-
matter interaction and two-dimensional semiconductors, respectively. For a better overview,
the general structure of this thesis is outlined in Sec. 1.5.
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1.3 Quantum Acoustics

Quantum acoustics is a relatively young research field that is concerned with sound-matter
interaction in quantum systems. Per se, the underlying physics is not fundamentally dif-
ferent from mechanisms in light-matter interactions. Hence, it is instructive to compare
key concepts in this field with their counterparts in quantum optics, see Table 1.1. In
quantum acoustical settings, quasiparticles or artificial atoms interact with sound fields
in solid-state systems. Sound waves are typically launched by converting electric signals
to elastic waves using interdigital transducers (IDTs). Quantum matter can be interfaced
with different kinds of sounds modes, e.g. bulk acoustic waves (BAWs) or surface acoustic
waves (SAWs). Due to their advantageous properties, which will be summarized in the
following, we focus on SAWs in this Thesis.

Surface acoustic waves

In the following, basic properties of surface waves will be summarized. In particular, sur-
face waves in piezoelectric and piezomagnetic solids will be discussed. These concepts are
central to the results presented in Chapters 2 and 3.

SAW basics

Elastic waves and their propagation in solids can be described in terms of the displacement
vector u(x, t). It depends on the spatial coordinate x and time t, and ui shall denote the
displacement along the ith Cartesian coordinate x̂i (x̂1 ≡ x̂, x̂2 ≡ ŷ, x̂3 ≡ ẑ). In a medium
with mass density ρ, the displacement field obeys

ρ
∂2ui(x, t)

∂t2
=

∑

j

∂Tij
∂xj

, (1.1)

where T denotes the stress tensor, and the matrix element Tij is the ith component of force
per unit area perpendicular to the x̂j axis. In the literature, notation concerning summation

Quantum Optics Quantum Acoustics

Photons (light) Phonons (sound)
Atoms & ions Quasiparticles, artificial qubits

Speed of light c ∼ 3 · 108 m/s Speed of sound vs ∼ (1 − 10) · 103 m/s
Laser Interdigital transducer

Paul ion traps Acoustic lattices (see Chapter 2)
Optical lattices Magnetic lattices (see Chapter 3)

Table 1.1: Quantum Optics and Quantum Acoustics: analogies and key ingredients. See
also ref. [1].
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over repeated indiced is often conveniently shortened using the Einstein convention. In this
introductory passage, for clarity, we will explicitly provide all sums, but we will switch to
the Einstein convention in the following chapters.

The stress tensor is symmetric, Tij = Tji, ∀i, j. Since strain is proportional to stress in
the commonly encountered linear regime, T typically obeys a generalized form of Hooke’s
law,

Tij =
∑

k,l

cijklukl, (1.2)

where c is the elasticity tensor (or stiffness tensor), and the strain tensor is defined as

ukl(x, t) =
1

2

(
∂uk(x, t)

∂xl
+
∂ul(x, t)

∂xk

)
. (1.3)

Using its symmetry, ukl = ulk, ∀k, l, we obtain

Tij =
∑

k,l

cijkl
∂uk
∂xl

. (1.4)

Plugging Eq. (1.4) into Eq. (1.1), we obtain the wave equation

ρ
∂2ui(x, t)

∂t2
=

∑

j,k,l

cijkl
∂2uk
∂xj∂xl

. (1.5)

Eq. (1.5) gives rise to a variety of solutions, both bulk and surface waves. For quantum
acoustics, both kinds of acoustic waves are of interest. Here, we will only address basic
properties of surface waves.

For the remainder of this Thesis, we will assume a crystal surface at z = 0, spanned by
x̂1 and x̂2. In the absence of external forces, the stress-free boundary at z = 0 imposed by
this surface gives rise to unique acoustic modes whose propagation is confined to the vicinity
of the surface. These solutions to Eq. (1.5) are known as surface acoustic waves, and they
play an important role in various disciplines, including geophysics and electronics.5 The
boundary conditions (T13 = T23 = T33 = 0 at the surface) may be written as

Ti3 =
∑

k,l

ci3kl
∂uk(x = (x, y, z = 0), t)

∂xl
= 0, (i = 1, 2, 3). (1.6)

In general, there exists a variety of different solutions to Eq. (1.1) under the boundary
conditions specified in (1.6). Rayleigh waves constitute a particular class of solutions, that
are polarized in the sagittal plane, spanned by the wavevector k (which points in the direc-
tion of propagation) and x̂3, the surface normal.6 In homogeneous and flat elastic solids,

5SAWs are being used in electronic components to provide a number of different functionalities, includ-
ing bandpass filters and delay lines. The wide succcess of SAW devices relies on crystalline host materials
in which elastic wave propagation is almost ideal, i.e., with low loss, diffraction and dispersion, and suitable
piezoelectric coupling.

6Another important kind of surface waves are Love waves, which are polarized in the (x̂1, x̂2) plane.
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Figure 1.2: Propagation and excitation of Rayleigh waves. (a) Displacements u(x, t0)
around crystal lattice sites at fixed time t = t0. (b) Rayleigh wave front excited by
interdigital transducer. The polarization of the wave lies in the sagittal plane spanned by
x̂1 and x̂3.

Rayleigh waves show no dispersion, i.e., ω(k) = vsk is linear. As surface waves, they are
bound to the surface and decay exponentially with increasing depth in the solid. Typically,
the decay length is of the order of the wavelength λ, see Fig. 1.2(a). Their phase velocity
is smaller than that of the slowest bulk wave. Therefore, these surface-wave solutions do
not appreciably couple to bulk waves. Note that there also exist surface waves that leak
into the bulk. For the purpose of this Thesis, such waves are not considered, but more
information can be obtained in Refs. [67, 68].

SAW propagation in piezoelectric materials

In a piezoelectric medium, mechanical stress and strain are coupled to an electric field E

or electric displacement D. As before, we consider only the linear regime where the stress
tensor now includes a contribution from the electric field, and reads

Tij =
∑

k,l

cijklukl −
∑

k

ekijEk, (1.7)

where e denotes the piezoelectric tensor that encodes the piezoelectric coupling strength
in a given material. The electric displacement is given by

Di =
∑

j

εijEj +
∑

j,k

eijkujk, (1.8)

and ε is the permittivity tensor. Eqs. (1.7) and (1.8) are the constitutive equations of
a piezoelectric solid, that determine the properties of propagating surface waves. From
these relations, a set of coupled equations of motion for the displacement and electric fields
u(x, t) and E(x, t) can be derived.
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In a piezoelectric medium with mass density ρ, elastic waves obey Eq. (1.1) with T given
by Eq. (1.7). Electromagnetic theory provides another relation, with which a complete set
of coupled equations can be obtained that may be solved, given appropriate boundary
conditions. While electric material characteristics are governed by Maxwell’s equations,
the quasi-static approximation of ∇×E = 0 can be applied to acoustic wave propagation,
since the sound velocity, vs, is several orders of magnitude smaller than the speed of light,
c. Within this approximation, the electric field can be expressed as

E(x, t) = −∇φ(x, t), (1.9)

where φ denotes the electric potential. The electric displacement satisfies ∇ ·D = q, and,
in a typical piezoelectric solid, the contribution of the charge density q is negligble, i.e.,
∇ · D ≈ 0.7 Putting Eqs. (1.1), (1.7)-(1.9) and Gauss’s law together, we obtain a set of
four coupled equations,

ρ
∂2ui
∂t2

=
∑

j,k,l

cijkl
∂2uk
∂xj∂xl

+
∑

j,k

ekij
∂2φ

∂xj∂xk
, (1.10)

∑

i,j

εij
∂2φ

∂xi∂xj
=

∑

i,j,k

eijk
∂2uj
∂xi∂xk

. (1.11)

The solutions are mainly characterized by crystal symmetry and, more generally, material
properties. For a general piezoelectric medium, upon fixing material parameters and direc-
tion of propagation, these equations may be solved numerically. Note that, as a result of
the quasi-electrostatic approximation, φ(x, t) inherits both the spatial and temporal peri-
odicity from the elastic displacement u(x, t). This electric signal, that propagates through
the material with a characteristic speed vs ≈ (1 − 10) km/s, for typical semiconductors,
will be important for the ideas presented in Chapter 2.

SAW propagation in piezomagnetic materials

In a piezomagnetic material, similar equations may be derived, based on the constitutive
equations

Tij =
∑

k,l

cijklukl −
∑

k

hkijHk, (1.12)

Bi =
∑

j,k

hijkujk +
∑

j

µijHj. (1.13)

Here, H and B denote and the magnetic field and induction, respectively, and h is the
piezomagnetic tensor. µ is the magnetic permeability. Similar to the piezoelectric case,
Eq. (1.1) can be invoked to derive an equation of motion for u(x, t). Likewise, Gauss’s

7In insulating solids, there are no free charges, and ∇ ·D = 0 holds exactly.
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law for magnetism provides another relation, and the coupled equations can be used as a
starting point for further numerical analysis. Note that, more generally, materials which
exhibit both piezoelectric and piezomagnetic effects, can be described by [69],

Tij =
∑

k,l

cijklukl −
∑

k

ekijEk −
∑

k

hkijHk, (1.14)

Di =
∑

j,k

eijkujk +
∑

j

εijEj +
∑

j

αijHj, (1.15)

Bi =
∑

j,k

hijkujk +
∑

j

µijHj +
∑

j

αijEj. (1.16)

Acoustically driven magnetic and electric fields provide the basis for the results discussed
in Chapter 3.

Surface waves in semiconductors

Traveling electric potentials φ(x, t) that can be generated deterministically hold promise
for various applications in semiconductor systems: metrology [70, 71], on-demand single-
electron transport [72, 73], implementation of solid-state flying qubits [74], distant spin
entanglement [75], and single-photon sources [76, 77], just to name a few. This list is not
exhaustive, but it already indicates the great potential of SAW-defined moving quantum
dots for quantum technologies and information processing.

Arrays of gate-defined quantum dots (QDs) are a key platform for QIP, see Fig. 1.1.
While electrons confined to QDs can be used to encode quantum information, efficient
manipulation and transfer of quantum states through an array of QDs poses a variety
of challenges on experiments. Acoustically defined electron shuttles enable high-fidelity
single-electron transport between distant quantum dots. Recent experiments have shown
to preserve the electron spin during transport with high fidelity [78], and experiments
performing quantum logic operations on flying electron qubits are underway [79, 80]. SAW
platforms may also be used to implement a quantum data bus, where the information is
encoded in propagating phonon states, to store and transfer quantum information between
nodes in a quantum network. Due to the versatility of SAW-based setups, this may enable
novel hybrid platforms, where vastly different quantum systems may be coupled [81]. For
example, acoustic phonons may be coupled via strain to the internal degrees of freedom of
defect centers in solids, e.g. NV or SiV centers in diamond [82, 83, 84]. This strain coupling
has been employed for quantum control of internal states and improved spin coherence,
and large spin-phonon interaction may be used to realize two-qubit gates between distant
defect centers [81, 85].

Yet another direction consists in the design and implementation of SAW-based acoustic
traps and lattices for charge carriers in semiconductors. Regular lattices of electrons, for
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example, that interact strongly over large distances, present a fresh alternative to more
established QIP platforms. This will be discussed in Chapters 2 and 3.

Surface waves and superconducting qubits

A superconducting circuit can serve as a physical realization of a qubit, that may be
piezoelectrically coupled to the electric potential φ associated with SAW phonons. These
systems can realize Hamiltonians that are familiar from quantum optics and circuit quan-
tum electrodynamics (QED), where photons are being replaced by phonons and artificial
atoms take over the role of real atoms, see Table 1.1.

The first step in this direction was achieved in 2012 by coupling a single phonon piezo-
electrically to a single-electron transistor [86], demonstrating the required sensitivity and
feasibility of this approach. Soon after, the coupling of SAW phonons and superconducting
transmon qubits was demonstrated [87]. In the meantime, this relatively young research
direction has seen various remarkable experimental results, including first cavity quantum
acoustodynamics (QAD) experiments in the dispersive regime [88], the demonstration of
strong coupling [89, 90], quantum control of SAW phonons [91], and the relaxation dynam-
ics of giant artificial atoms [92].

Due to the fact that some properties of quantum acoustical systems are fundamentally
different from their quantum optical counterparts, e.g. the slow propagation of sound (see
Table 1.1) or the breakdown of the electric dipole approximation, it can be expected
that there will be plenty of opportunities for exploring novel phenomena with quantum
acoustics.

Further reading

• D. Morgan, Surface Acoustic Wave Filters, Academic Press (2007). See
ref. [67].

• P. Delsing, et al., The 2019 surface acoustic waves roadmap, J. Phys. D 52,
353001 (2019). See ref. [1].

• A. F. Kockum, Quantum optics with giant atoms – the first five years, preprint
available on arXiv :1912.13012. See ref. [93].
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1.4 Two-Dimensional Semiconductors

Atomically thin materials such as graphene and monolayer transition-metal dichalcogenides
(TMDs) have remarkable electronic, optical and mechanical properties due to their reduced
dimensionality and crystal structure. Two-dimensional crystals became largely available for
studies and applications after graphene was mechanically exfoliated from three-dimensional
graphite in pioneering work [94], by pulling single carbon sheets away using adhesive tape.
In 2010, following the first demonstration of this higly efficient procedure, the Nobel Prize in
Physics was awarded for groundbreaking experiments regarding the two-dimensional mate-
rial graphene [95]. While graphene is certainly the best studied among the two-dimensional
materials with great potential for various applications, it lacks a band gap, making it un-
suitable for certain optoelectronic tasks. Unlike graphene, a variety of two-dimensional
TMDs is semiconducting. While the band structure of bulk TMDs has an indirect band
gap, monolayer TMDs have a direct band gap8 at the K and K ′ corner points of the
Brioullin zone, which was verified experimentally using photoluminescence [96]. This has
far-reaching consequences for their optoelectronic properties, and it makes this class of
materials precious for numerous applications, including in electronics as transistors, or in
optics as emitters, diodes, and solar cells.

Meanwhile, two-dimensional semiconductors emerged as a key platform to explore novel
many-body phenomena. Due to their optical band gap and reduced screening in two dimen-
sions, they enable efficient light-matter interfaces. This key insight has triggered various
studies of quantum emitters and the optical response of TMDs, and motivates the results
discussed in Chapter 4. Other recent developments in this research area include, but are
not restricted to strain engineering, valleytronics, and bilayer TMD systems.

Electrostatic interaction

Due to reduced screening in two dimensions, interactions between charge carriers can be
significantly enhanced, as compared to settings in bulk semiconductors. A brief summary
of the derivation of the electrostatic interaction potential in TMD monolayers is given
below.

In three dimensions, macroscopic screening effects are well-described by global prop-
erties, and quantified by a dielectric constant ε. In contrast, screening in two dimensions
is non-local, and described by a wavevector-dependent dielectric function in momentum
space, ε(q) [97]. We consider a dielectric sheet at z = 0, subject to an electric poten-
tial φext(x) due to a point charge Q1 located at the origin, which is associated with a
charge density next = Q1δ(x). The total electrostatic potential φ and total charge density,
n(x) = next(x) + nind(x), are related by Poisson’s equation,

∇2φ(x) = −4πn(x), (1.17)

8The crystal momentum of electrons and holes is the same in both the conduction and valence band.
The materials MoS2, MoSe2, WS2, WSe2 and MoTe2 all have a direct band gap.
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where the induced charge density nind(r, ϕ, z) is restricted to the plane at z = 0. In the long-
wavelength limit, it can be expressed in terms of the polarization P2D, as nind = −∇·P2D.
The polarization itself is related to the polarizability α2D,

P2D(r) = −α2D∇rφ(r, ϕ, z = 0), (1.18)

from which it follows that

nind(x) = δ(z)α2D∇2
rφ(r, ϕ) (1.19)

Now, we can write the Poisson equation as

∇2φ(x) = −4πQ1δ(x) − 4πα2D∇2
r(r, ϕ)δ(z). (1.20)

This equation can be Fourier transformed and solved in momentum space, such that

φ2D(q) =
2πQ1

|q|(1 + 2πα2D|q|)
, (1.21)

which defines the two-dimensional electric potential as a function of the in-plane wavevector
q. The effective interaction potential between Q1 and a second test charge Q2 is given by

V (r) = Q2

∫
d2q φ2D(q)eiq·r, (1.22)

where r is the location of charge Q2, and r = |r| denotes the distance between two charges.
The Keldysh interaction potential between Q1 and Q2 can now be obtained as

V (r) =
Q1Q2

4α

[
H0

( r

2πα

)
− Y0

( r

2πα

)]
, (1.23)

where H0 and Y0 denote Struve and von Neumann functions, respectively. The resulting
expression for the electrostatic interaction potential between two charges will be contained
in the theoretical model of Chapter 4. Note that the polarizability α ∼ 1/Eg can be related
to the band gap Eg [98]. Plugging in typical TMD parameters, one obtains α ≈ 7 Å for
MoS2, and similar values for other monolayer TMDs. At distances r ≫ 2πα, Eq. (1.23) is
well described by a Coulomb-like interaction, V (r) ∼ 1/r (see Fig. 1.3).

Excitons, trions and optical properties

In semiconductors, the absorption of a photon with suitable energy may cause an electron
to be promoted from the valence to the conduction band, leaving behind a hole in the va-
lence band. Electrons and holes can form bound states, referred to as excitons, by means
of attractive Coulomb interation, see Fig. 1.3. TMD monolayers host excitons with rela-
tively large binding energies of the order of ∼ 0.5 eV, which is due to strong electrostatic
interactions. For this reason, their fundamental optical properties are largely determined



1.4 Two-Dimensional Semiconductors 21

σ−

∆c
so

∆v
so

+

–

|↑〉

|↓〉

|↑〉

|↓〉

|↓〉

|↑〉

|↓〉

|↑〉

K K ′

Figure 1.3: (Left): Keldysh potential for typical TMD parameters. Insets: Orange dotted
lines show logarithmic 2D (1/r-like 3D) Coulomb potential that approximates the short-
range (long-range) behaviour of the Keldysh potential. (Right): Band structure of MoX2

monolayers at the K and K ′ valleys, with spin-orbit splittings between spin states in the
conduction and valence bands.

by strong excitonic resonances, both at cryogenic and room temperature. These exciton
transitions exhibit large oscillator strengths, resulting in large radiative linewidths. In ad-
dition, the excitonic response may be controlled and tuned electrically. Optical absorption
and photoluminescence spectroscopy of monolayer TMDs, as a function of charge-carrier
density, has revealed the presence of strongly bound, electrically charged trions [150], and
further multi-particle excitonic states have been theoretically predicted and detected in
experiment.

Spin and valley optical selection rules further enrich the low-dimensional physics of
monolayer TMDs. Importantly, TMD monolayer crystals have no inversion symmetry
center, which allows access to the valley degree of freedom of charge carriers. The direct
band gaps of monolayer TMDs are located at two inequivalent points in momentum space,
K and K ′, at the corners of the hexagonal Brioullin zone. Interband transitions near these
points couple exclusively to right or left circularly polarized light, respectively. This enables
polarization-dependent addressing of specific valley states, see Fig. 1.3. In addition, strong
spin-orbit coupling in TMD monolayers leads to large spin-orbit splittings, ∆v

SO and ∆c
SO,

of the order of hundreds of meV (a few meV) in the valence (conduction) band. This results
in spin-valley coupling and optical spin selection rules. Taken together, these properties
enable stable valley polarization and, more general, pave the way to control the internal
quantum degrees of freedom of charge carriers in TMDs.



22 1. Introduction

Further reading

• G. Wang, et al., Colloquium: Excitons in atomically thin transition metal
dichalcogenides, Rev. Mod. Phys. 90, 021001 (2018). See ref. [99].

• T. Mueller, and Ermin Malic, Exciton physics and device applications of two-
dimensional transition metal dichalcogenide semiconductors, npj 2D Mat. and
Appl. 2, 29 (2018). See ref. [100].

• S. Manzeli, et al., 2D transition metal dichalcogenides, Nat. Rev. Mater. 2,
17033 (2017). See ref. [101].
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1.5 Outline of this Thesis

Various approaches towards QIP are being explored, and many physical implementations
thereof are being considered (see Fig. 1.1), each with its own unique advantages. In this
thesis we address how several ideas taken from quantum optics inspire novel setups and
implementations of QIP in solid-state settings.

To this end, we develop strategies to enable the realization of well-defined lattices for
electrons and other quasiparticles in semiconductors. We distinguish two key strategies:
(i) quantum acoustical implementations in semiconductors, inspired by quantum optical
systems, and (ii) solid-state systems interfaced with quantum optical readout tools and
methodology. As summarized in Fig. 1.4, the structure of this thesis follows this concept.
In the first part of this thesis, we investigate how SAWs may be used to create well-defined
potentials for mobile electrons. In the second part of this thesis, we focus on realization
and detection of self-assembled electron lattices in TMDs.

In Chapter 2, we propose and analyze a solid-state platform based on surface acoustic
waves for trapping, cooling, and controlling (charged) particles, as well as the simulation of
quantum many-body systems. We develop a general theoretical framework demonstrating
the emergence of effective time-independent acoustic trapping potentials for particles in
two- or one-dimensional structures. As our main example, we discuss in detail the gen-
eration and applications of a stationary, but movable, acoustic pseudolattice with lattice
parameters that are reconfigurable in situ. We identify the relevant figures of merit, dis-
cuss potential experimental platforms for a faithful implementation of such an acoustic

Acoustically Defined Lattices

– Inspired: quantum acoustical systems inspired by quan-
tum optical systems.

– Introductory remarks in Sec. 1.3.

– Results discussed in Chapters 2 and 3.
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TMD

Self-Assembled Lattices

– Interfaced: exploration of semiconductor systems with
quantum optics tools.

– Introductory remarks in Sec. 1.4.

– Results discussed in Chapter 4.

Figure 1.4: Structure and building blocks of this thesis. Lower figure adapted from Ref. [4].



24 1. Introduction

lattice, and provide estimates for typical system parameters. With a projected lattice
spacing on the scale of 100nm, this approach allows for relatively large energy scales in
the realization of fermionic Hubbard models, with the ultimate prospect of entering the
low-temperature, strong interaction regime. Experimental imperfections as well as readout
schemes are discussed. The results presented in this chapter are based on Ref. [2].

In Chapter 3, we propose and analyze magnetic traps and lattices for electrons in
semiconductors. We provide a general theoretical framework and show that thermally
stable traps can be generated by magnetically driving the particle’s internal spin transition,
akin to optical dipole traps for ultracold atoms. Next we discuss in detail periodic arrays
of magnetic traps, i.e., magnetic lattices, as a platform for quantum simulation of exotic
Hubbard models, with lattice parameters that can be tuned in real time. Our scheme can
be readily implemented in state-of-the-art experiments, as we particularize for two specific
setups, one based on a superconducting circuit and another one based on surface acoustic
waves. The results presented in this chapter are based on Ref. [3].

In Chapter 4, we discuss and analyze self-assembled Wigner crystals in two-dimensional
semiconductors. Wigner crystals are prime candidates for the realization of regular elec-
tron lattices under minimal requirements on external control and electronics. However,
several technical challenges have prevented their detailed experimental investigation and
applications to date. We propose an implementation of two-dimensional electron lattices
for quantum simulation of Ising spin systems based on self-assembled Wigner crystals in
transition-metal dichalcogenides. We show that these semiconductors allow for minimally
invasive all-optical detection schemes of charge ordering and total spin. For incident light
with optimally chosen beam parameters and polarization, we predict a strong dependence
of the transmitted and reflected signals on the underlying lattice periodicity, thus reveal-
ing the charge order inherent in Wigner crystals. At the same time, the selection rules
in transition-metal dichalcogenides provide direct access to the spin degree of freedom via
Faraday rotation measurements. The results presented in this chapter are based on Ref. [4].

In Chapter 5, we discuss possible future research directions that go beyond the scope
of this work, but are closely related. While this thesis is of theoretical nature, it is quite
closely connected with experimental considerations, that may enable the realization of the
proposed ideas in the near future.



Chapter 2

Acoustic Traps and Lattices

2.1 Motivation

The ability to trap and control particles with the help of well-controlled electromag-
netic fields has led to revolutionary advances in the fields of biology, condensed-matter
physics, high-precision spectroscopy and quantum information, enabling unprecedented
control both in the study of isolated single particles as well as few- and many-body sys-
tems subject to controlled and tunable interactions. Prominent examples range from using
optical tweezers for probing the mechanical properties of DNA [102, 103], to the realizations
of Bose-Einstein condensates [104, 105, 106] and numerous breakthrough investigations of
strongly-correlated quantum many-body systems with both trapped ions [107] and ultra-
cold atoms in optical lattices [108, 109]. At the same time, the ever improving control
of materials and fabrication of semiconductor nanostructures has led to a proliferation of
quasi-particles in such systems and a quest to trap and isolate them in order to gain deeper
insights into their properties and interactions. While quantum dots have been developed
into excellent traps for charged and neutral quasiparticles and have contributed to a wealth
of exciting insights [110], scaling them to the many-body regime remains either a fabri-
cation or operational challenge. This motivates our search for trapping mechanisms that
bring the generality and flexibility of optical lattices to the solid-state setting.

While an optical approach may be feasible [111], surface-acoustic waves (SAWs) have
recently been used in a range of exciting experiments to trap electrons [72, 73, 112, 113, 114]
or excitons [115] in moving potentials. When following this approach, however, particles
are typically lost on a relatively fast timescale of ∼ 10ns, as a consequence of finite sample
sizes and propagation speeds set by the speed of sound to ∼ 3 × 103m/s. Inspired by
these experiments, here we propose and analyze engineered stationary and quasi-stationary
(movable) acoustic trapping potentials and acoustic lattices (ALs) as a generic strategy for
trapping, cooling and controlling quasi-particles as well as a potential on-chip, solid-state
platform for the simulation of quantum many-body systems. While in this work we use the
generation of an effective standing-wave lattice for electrons as the main example of our
technique, our theoretical approach generalizes immediately to other trap configurations.
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Figure 2.1: (color online). Schematic illustration of the setup. In a piezo-electric solid
(PE) counter-propagating SAWs (as induced by standard IDTs deposited on the surface
[67, 68]) generate a time-dependent, periodic electric potential for electrons confined in a
conventional two-dimensional electron gas (2DEG). If the SAW frequency ω/2π = vs/λ
is sufficiently high (as specified in the main text), the electron’s potential landscape can
effectively be described by a time-independent pseudo-lattice with a lattice spacing a =
λ/2. The potential depth (lattice spacing) can be controlled conveniently via the power
(frequency) applied to the IDTs; while an additional screening layer (not shown) allows
for tuning the strength of the Coulomb interaction between the particles [120]. In more
complex structures, the setup can consist of multiple layers on top of some substrate.

In particular, focused SAWs [116] might allow for the generation of quasi zero-dimensional
traps for electrons akin to optical tweezers, thereby entering a new parameter regime in the
context of acoustic tweezers ; so far, the latter have been used only in a high-temperature,
classical regime to trap and manipulate microparticles immersed in fluids above the SAW-
carrying solid [117].

2.2 Executive Summary

Our basic scheme involves counter-propagating SAWs that are launched in opposite direc-
tions from two (or more) standard interdigital transducers (IDTs) [67, 68] patterned either
directly onto a piezoelectric substrate such as GaAs or on some piezoelectric island as
demonstrated for example in Ref. [118]; for a schematic illustration compare Fig.3.1. Be-
cause of the intrinsic piezoelectric property of the material, the SAWs are accompanied by
a (time-dependent) periodic electric potential and strain field, generating a well-controlled
potential landscape (of the same spatial and temporal periodicity) for electrons confined
in conventional quantum wells or purely two-dimensional crystals such as transition metal
dichalcogenides (TMDs), with a periodicity on the order of ∼ 100nm for SAW frequencies
of ∼ 20GHz [119]. Based on a perturbative Floquet approach, we show that the electron’s
potential landscape can effectively be described by a time-independent pseudo-lattice with
a lattice spacing ∼ a = λ/2, provided that certain conditions are fulfilled (as specified
below). Intuitively, the occurrence of such an effective time-independent potential can be
understood from the fact that sufficiently heavy electrons cannot adiabatically follow a
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rapidly oscillating force as created by the SAW-induced electric potential; therefore, the
electron will effectively be trapped close to the potential minimum if its wavefunction
spreads slowly enough such that it is still close to its original position after one oscillation
period of the SAW field. We identify the relevant figures of merit for this novel setup
[cf. Eq.(2.2)] and show how the system parameters can be engineered and dynamically
tuned. As a guideline for an experimental realization of the proposed setup, we derive
a set of self-consistency requirements which allows us to make clear predictions about
the material properties needed for a faithful implementation. Consequently, we identify
strategies to meet these requirements with state-of-the-art experimental techniques and
suitable material choices. Concerning the latter, we analyze the viability of different het-
erostructures with high effective electron masses which support high-velocity sound waves,
e.g. AlN/diamond or, alternatively, TMDs such as MoS2 or WSe2. While we discuss the
relevant decoherence mechanisms as well as other relevant experimental imperfections for
specific systems, the very basic principles of our approach should be of broad applicability
to various physical solid-state platforms. In particular, thanks to the generic nature of our
analysis and the variety of fields (strain, electric, magnetic) that potentially accompany
SAWs, our framework is readily applicable to a broad class of (quasi-)particles, including
for example electrons, holes, trions and excitons. While our theoretical treatment is (to
some extent) reminiscent of trapped ions, allowing us to capitalize on ideas and results
from this well-developed field of research, we show that the emergent effective dynamics
can be captured by the Fermi-Hubbard model, very much like for fermionic ultra-cold
atoms in optical lattices, albeit in unprecedented parameter regimes, because of ultra-
high charge-to-mass ratios and naturally long-ranged Coulomb interactions. Our approach
provides an alternative to standard (gate-defined) quantum dots, providing a highly regu-
lar periodicity simply set by the SAW wavelength, with minimal fabrication requirements
(without any further gate patterning), and the potential to deterministically move around
the acoustically-defined quantum dots by simply changing the phase of the excitation ap-
plied to the IDTs. Also, our trapped-ion-inspired pseudo-potential approach makes our
proposal significantly different from previous theoretical [120] and experimental investi-
gations [115, 118], where particles trapped inside a dynamic, moving AL (rather than a
quasi-stationary, standing AL, as considered here) are inevitably lost within a rather short
timescale ∼ 10ns.

2.3 Theoretical Framework

In this section we first develop a general theoretical framework describing particles in low-
dimensional semiconductor structures in the presence of (SAW-induced) high-frequency
standing waves. We employ both classical and quantum-mechanical tools in order to
identify the relevant figures of merit and specify the conditions for the validity of our
theoretical framework. The experimental feasibility of our scheme will be discussed for
specific setups thereafter in Section 2.4.

Surface acoustic waves.—SAWs are phonon excitations which propagate elastically on
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the surface of a solid within a depth of roughly one wavelength λ [67, 68]. In the case of a
piezoelectric material, SAWs can be generated electrically based on standard interdigital
transducers (IDTs) deposited on the surface, with a SAW amplitude proportional to the
amplitude (square root of the power) applied to the IDTs [67, 68, 72]. Typically, such
an IDT consists of two thin-film electrodes on a piezoelectric material, each formed by
interdigitated fingers. Whenever a radio frequency (RF) signal is applied to such an IDT,
a SAW is generated if the resonance condition p = vs,α/f is met; here, p, vs,α and f =
ω/2π refer to the IDT period, the sound velocity of a particular SAW mode α and the
applied frequency, respectively [67, 68, 121]. As evidenced by numerous experimental
studies [122, 123, 124, 125], SAWs can interact with a two-dimensional electron gas (2DEG)
via the electric (and/or strain) field accompanying this elastic wave.

Classical analysis.—To illustrate our approach, let us first consider the classical dy-
namics of a single, charged particle of mass m (also referred to as electron in the fol-
lowing) exposed to a SAW-induced monochromatic piezo-electric standing wave of the
form φ (x, t) = φ0 cos (kx) cos (ωt). Here, ω = vsk refers to the dispersion relation of
a specific SAW mode and the time-dependent potential experienced by the electron is
V (x, t) = eφ (x, t) with an amplitude VSAW = eφ0 (where e denotes the electron’s charge).
In the absence of a piezoelectric potential, a similar periodic potential derives from the
(strain-induced) deformation potential associated with a SAW [115]; our theoretical anal-
ysis applies to both scenarios, as it is independent of the microscopic origin of the SAW-
induced potential V (x, t) = VSAW cos (kx) cos (ωt). While the motion in the z-direction is
frozen out for experimentally relevant temperatures, a potential pattern of the same peri-
odic form could be produced in the y-direction using appropriately aligned pairs of IDT’s
launching counter-propagating SAWs [120]. In this scenario the electron’s motional degrees
of freedom are separable into two one-dimensional problems of the same structure. Alter-
natively, using for example etching techniques or gate-defined structures as described in
Refs.[72, 73], effectively one-dimensional wires with strong transverse confinement in the y-
direction may be considered. Therefore, in any case only the motion in the x-direction will
be discussed in the following. Then, in dimensionless units, where x̃ = kx and τ = ωt/2,
Newton’s equation of motion for the electron’s position x(t) reads

d2x̃

dτ 2
+ 2q sin(x̃) cos(2τ) = 0, (2.1)

where we have introduced the (dimensionless) stability parameter q = VSAW/ES, with the
emerging energy scale

ES = mv2s/2, (2.2)

that is, the classical kinetic energy of a particle with mass m and velocity equal to the
speed of sound vs of the driven SAW-mode; as will be shown below, the energy scale
ES turns out to be a key figure of merit in our setup. In the Lamb-Dicke limit x̃ ≪ 1,
Eq. (2.1) reduces to the so-called Mathieu equation [cf. Eq.(2.9)], which is known to gov-
ern the dynamics of ions in Paul traps [126, 127]. We assess the stability of the electron’s
motion against thermal noise by numerically solving Eq. (2.1), for initial conditions set as
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Figure 2.2: (color online). Approximate stability diagrams of the classical equation of
motion in the low-q (upper plot) and high-q (lower plot) regimes, respectively. The dots
denote trajectories corresponding to some exemplarily chosen parameter sets (q, kBT/ES).

x̃0 = 0, ṽ0 := [dx̃/dτ ]τ=0 =
√

2kBT/ES; here, according to mv20/2 = kBT/2, the initial
velocity v0 is identified with the temperature T by simple equipartition. Solutions to this
problem are deemed stable if the maximal excursion xmax is smaller than one half of the
lattice spacing (x̃max < π), even for very long timescales, and unstable otherwise. The re-
sults of this classification procedure are shown in Fig.2.2: Stable (bounded) solutions can
only be found for sufficiently low temperatures (with kBT ≪ ES) and certain values of the
stability parameter q. In particular, in the regime q2 ≪ 1, kBT ≪ ES stable trajectories
x̃(τ) consist of slow harmonic oscillations at the secular frequency ω0/ω ≈ q/

√
8, super-

imposed with fast, small-amplitude oscillations at the driving frequency ω (also referred
to as micromotion [127]); compare Fig.2.2(b). When neglecting the micromotion within
the so-called pseudo-potential approximation (as routinely done in the field of trapped
ions [127]), the electron’s (secular) dynamics is effectively described by that of a time-
independent harmonic oscillator with (slow) frequency ω0 ≪ ω; for further analytical and
numerical details we refer to Appendix 2.A.

Quantum-mechanical Floquet analysis.—The results described above can be corrobo-
rated within a fully quantum-mechanical model. Here, the electron’s dynamics are governed
by the time-dependent Hamiltonian

HS (t) =
p̂2

2m
+ VSAW cos (ωt) cos (kx̂) , (2.3)

where x̂ and p̂ refer to the particle’s position and momentum operators, respectively. The
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Hamiltonian HS (t) satisfies HS(t + T ) = HS(t) due to the time-periodic nature of the
external driving, with T = 2π/ω. In a high-frequency field, where the period of the
force T is small compared to all other relevant timescales, the particle’s dynamics can be
approximately described by a time-independent Hamiltonian Heff . As detailed in Appendix
2.B, Heff can be calculated in a systematic expansion in the inverse of the driving frequency
ω [128, 129]. Then, up to second order in ∼ ω−1, we obtain

Heff =
p̂2

2m
+ V0 sin2(kx̂), (2.4)

where V0 = ε2ES, with the small parameter ε = q/
√

8. The second term Veff(x̂) =
V0 sin2(kx̂) demonstrates the formation of an effectively time-independent, spatially peri-
odic acoustic lattice, with a lattice spacing a = λ/2 = π/k and potential depth V0 = ε2ES.
Similar to the case for trapped ions, lattice sites are found at the nodes of the time-
dependent force F(x, t) ∼ sin(kx) cos(ωt)x associated with the potential V (x, t). This
force changes its sign on a timescale ∼ ω−1; if this is fast compared to the particle’s dy-
namics ∼ ω−10 , the particle will be dynamically trapped, because it does not have sufficient
time to react to the periodic force before this force changes its sign again. Within the usual
harmonic approximation, where Veff(x̂) ≈ (m/2)ω2

0x̂
2, the effective trapping frequency ω0

can be estimated as ω0/ω ≈ q/
√

8, which coincides exactly with the (classical) result for
the slow secular frequency ω0 in the pseudopotential regime (with q2 ≪ 1). Accordingly,
the AL can be rewritten as Veff(x̂) = (ω0/ω)2ES sin2(kx̂), with the first (perturbative) fac-
tor accounting for the inherent separation of timescales between the fast driving frequency
ω and the slow secular frequency ω0. Written in this form, the effective acoustic potential
Veff(x̂) is reminiscent of standard dipole traps for ultra-cold atoms. Here, the effective
optical potential for a two-level system driven by a Rabi-frequency Ω with detuning ∆ in
a electromagnetic standing wave takes on the form Vopt(x̂) = (Ω2/4∆2)∆ sin2(kx̂), with
the self-consistent requirement ∆ ≫ Ω. Therefore, with the pre-factor ∼ Ω2/4∆2 being
small for self-consistency, we can associate the role ES plays in the acoustical case with
the role the detuning ∆ plays in the optical setting. Along these lines, for robust trapping
it is favourable to increase the material-specific quantity ES, thereby achieving a larger
trap depth V0 while keeping both the stability parameter q = VSAW/ES and thus also the
perturbative parameter ε constant. This can be well understood intuitively, since trapping
due to a rapidly oscillating (SAW) field only becomes possible if the particle is too inert to
adiabatically follow the periodically applied force: an electron does not significantly move
away from a potential minimum if during one oscillation period of the SAW field its wave-
function spreads slowly enough such that it is still close to its original position when the
minimum reforms. This simplified (pseudo-potential) picture is valid for relatively heavy
electrons with high mass m and sufficiently high driving frequency (that is, high speed of
sound vs), as captured by an elevated sound energy ES = (m/2)v2s .

Cooling in the presence of micromotion.—While our previous discussion has exclu-
sively focused on the time-dependent system’s dynamics, in the following we extend our
studies and introduce a dissipative model, which describes the electron’s motional cou-
pling to the (thermal) phonon reservoir. For details of the derivation, we refer to Ap-
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pendix 2.C. Within one unified Born-Markov and Floquet framework, we derive an ef-
fective quantum-master equation (QME) for the electronic motion in the vicinity of one
lattice site, fully taking into account the explicit time-dependence of the system Hamil-
tonian (2.3). Since the quantum-state evolution due to this QME is Gaussian, one can
readily derive a closed set of equations for the first- and second-order moments of the po-
sition and momentum observables; formally, it takes on the form v̇ = M (t)v+C (t) with

v = (〈x̂〉t , 〈p̂〉t , 〈x̂2〉t , 〈p̂2〉t , 〈x̂p̂+ p̂x̂〉t)
⊤

. This equation of motion can be readily solved
by numerical integration; a prototypical result of this procedure is displayed in Fig.2.3.
In the regime q2 ≪ 1, our numerical findings show that (i) the electronic motion can be
described very well by a simple damped harmonic oscillator with secular frequency ω0, (ii)
the electronic motion is cooled by the phonon reservoir and (iii) the Lamb-Dicke approxi-
mation is well-satisfied. Let us elaborate on these statements in some more detail: (i) As
evidenced by the dashed red line in Fig.2.3, we find that the effective, time-independent

Figure 2.3: (color online). Exact numerical simulation [based on Eqs.(2.70) and (2.5)] for
the electron’s trajectory 〈x̂〉t (solid black line), showing a slow secular motion with fre-
quency ω0 that is superimposed by fast, small-amplitude micromotion oscillations. When
disregarding micromotion, the dynamics can approximately be described by a simple
damped harmonic oscillator with secular frequency ω0 (dashed red line). The initial state
has been set as a coherent state with 〈ˆ̃x〉 = 0, 〈 ˆ̃p〉 = 0.01. Other numerical parame-
ters: q = 0.47, γ/ω0 = 10−3, kBT/~ω0 = 10−1, ω0/ω ≈ 0.17. Inset: Position variance
σ2
x̃ = 〈ˆ̃x2〉 − 〈ˆ̃x〉2 at times when transient effects have decayed.
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master equation

ρ̇ = −iω0

[
a†a, ρ

]
+ γ (n̄th (ω0) + 1) D [a] ρ+ γn̄th (ω0) D

[
a†
]
ρ, (2.5)

captures very well the most pertinent features of the electronic dynamics (for q2 ≪ 1). Here,
γ is the effective, incoherent damping rate due to coupling to the thermal phonon reservoir,
n̄th (ω0) = 1/ (exp[~ω0/kBT ] − 1) gives the thermal occupation number of the phonon
bath at frequency ω0, D [a] ρ = aρa† − (1/2)

{
a†a, ρ

}
denotes the standard dissipator

of Lindblad form, and a(†) refers to the usual annihilation (creation) operators for the
canonical harmonic oscillator. As a consequence of the presence of the dissipator, the first-
order moments 〈x̂〉t, 〈p̂〉t decay towards zero in the asymptotic limit t→ ∞. However, the
second-order moments retain the periodicity of the external driving for arbitarily long times
(with a periodicity T̄ = ωT/2 = π), which is the signature of an emerging quasi-stationary
state [cf. Appendix 2.C for details] and the persisting micromotion which manifests itself
in the fast oscillating dynamics of the position and momentum variances, as depicted in the
inset of Fig.2.3. (ii) As suggested by our analytical results [cf. Appendix 2.C for details],
the phonon reservoir provides an efficient cooling mechanism for the electron provided that
the host temperature is sufficiently low, that is kBT ≪ ~ω0. The influence of the electronic
micromotion on this cooling mechanism can be condensed in the following statement: in
the pseudopotential regime (for which q2 ≪ 1), the expectation value for the averaged
quantum kinetic energy (over one micromotion period) features a surplus of energy, in
addition to the zero-point kinetic energy in the ground state of ~ω0/4. This excess energy
∆heat & ~ω0/4 may be viewed as micromotion-induced heating and amounts to merely
a factor of two increase only in the particle’s time-averaged kinetic energy [130]. These
results are explicated in greater detail in Appendix 2.C. (iii) We have numerically verified
that both the expectation value for the electron’s motion as well as the corresponding
fluctuations are small compared to the SAW wavelength λ = 2π/k, i.e., k 〈x̂〉t ≪ 1 and
kσx ≪ 1 with σ2

x = 〈x̂2〉t − 〈x̂〉2t , thereby justifying our Lamb-Dicke approximation (with
cos (kx̂) ≈ 1− (k2/2) x̂2) self-consistently.

Self-consistency requirements.—Our theoretical framework is valid provided that the
following conditions are satisfied: (i) First, the Markov approximation holds given that
autocorrelations of the bath (which typically decay on a timescale ∼ ~/kBT ) decay quasi
instantaneously on the timescale of system correlations ∼ γ−1 [131]. In principle, the
damping rate γ should be replaced by the thermally enhanced rate γeff = γ (n̄th (ω0) + 1);
however, we will be interested mostly in the low-temperature, pseudopotential regime where
γeff ≈ γ. Thus, the Markov approximation yields the condition ~γ ≪ kBT . (ii) Second, the
(weak-coupling) Born approximation holds provided that the dissipative damping rate γ
is small compared to the relevant system’s transition frequencies, yielding the requirement
γ ≪ ω0. In the low-q limit, taking conditions (i) and (ii), together with the prerequisite for
efficient ground-state cooling, kBT ≪ ~ω0, yields the chain of inequalities ~γ ≪ kBT ≪
~ω0. In this regime, the weak-coupling Born approximation (γ ≪ ω0) is satisfied very well.
(iii) Third, the characteristic separation of timescales between the (slow) secular motion
and the (fast) micromotion, with ω0 = εω and ε = q/2

√
2 ≪ 1, gives the requirement
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ω0 ≪ ω. (iv) Fourth, the energy scale ~ω has to be much smaller than ES in order to
ensure the existence of at least one bound state per lattice site; the latter can be estimated
as nb = V0/~ω0 = εES/~ω = (ε/2)mvs/~k, leading to ~ω ≪ ES in the regime ε ≪ 1,
nb & 1. Note that the existence of at least one bound state per lattice site (nb & 1) may
always be fulfilled by choosing the lattice spacing a = π/k sufficiently large, at the expense
of more severe temperature requirements for ground state cooling and smaller energy scales
in the emerging Hubbard model (see below). Finally, the parameter regime of interest can
be condensed into one line of inequalities as (~ = 1)

γ ≪ kBT ≪ ω0 ≪ ω ≪ ES. (2.6)

Let us discuss the implications of Eq. (2.6) in some more detail: (i) In the parameter
regime described by Eq. (2.6) the acoustic trap is stable against thermal fluctuations,
because kBT ≪ V0 with V0 = ε2ES; in other words, V0 = nbω0 ≫ kBT , if ω0 ≫ kBT
and nb & 1, as desired. The condition kBT ≪ ω0, however, may be relaxed if ground-
state cooling is not necessarily required, akin to the physics of optical tweezers. In this
case, the less stringent condition V0 ≫ kBT still ensures a thermally stable trap. (ii) The
self-consistency requirement γ ≪ kBT derives from the Markov assumption of having a
short correlation time of the phonon bath γτc ≪ 1, with τc ∼ 1/kBT . However, in the
low-temperature regime, the correlation time τc may as well be set by the bandwidth of the
bath ∆B (that is, the frequency range over which the bath at hand couples to the system),
rather than just temperature. In that case, one may drop the condition γ ≪ kBT , leading
to a slightly refined regime of interest with γ, kBT ≪ ω0 ≪ ω ≪ ES, provided that the
Markov assumption γτc ≪ 1 is still satisfied with τc ∼ ∆−1B . (iii) As a direct consequence
of the presence of Mathieu-type instabilities, the proposed setup operates at relatively low
SAW-induced amplitudes set by the energy scale ES, with the potential amplitude due to
a single IDT given as VIDT = VSAW/2 = (q/2)ES < ES.

Again, Eq. (2.6) underlines a remarkably close connection to the established field of
trapped ions, where (as a direct consequence of Mathieu’s equation, just as in our setting)
the inherent separation of timescales (ω0 ≪ ω) between (slow) secular motion and (fast)
micromotion is well-known, albeit at very different energy scales with typical driving fre-
quencies ω/2π ∼ 100kHz − 100MHz [127]. Beyond this close analogy, our work identifies
the importance of the energy scale ES = (m/2)v2s in the proposed solid-state, SAW-based
setting, as displayed by Eq. (2.6). Moreover, the first two inequalities in Eq. (2.6) derive
directly from the intrinsic solid-state cooling mechanism provided by the phonon bath,
whereas ions are typically cooled down to the motional ground state using laser-cooling
techniques that (as opposed to our solid-state approach) explicitly involve the ion’s internal
level structure [127].

In the following we will address the experimental implications of the requirements listed
in Eq. (2.6) for realistic setups and show how some of the conditions may in fact be relaxed.



34 2. Acoustic Traps and Lattices

2.4 Implementation: How to Meet the Requirements

Our previous conceptual analysis has revealed a specific set of requirements [as summarized
in Eq. (2.6)] which should be fulfilled in order to ensure a faithful implementation of the
proposed AL setup in an actual experiment. In the following we discuss several practi-
cal strategies in order to meet these conditions. Thereafter, we address several practical
considerations which might be relevant under realistic experimental conditions.

Requirements.—First, rough (potentially optimistic; see below) estimates for the spon-
taneous emission rate of acoustic phonons ∼ γ may be inferred from low-temperature
experiments on charge qubits in (GaAs) double quantum dots which indicate rates as low
as γ/2π & 20MHz (~γ & 0.1µeV) [132, 133, 134, 135]. We consider this estimate for the re-
laxation rate ∼ γ to be an optimistic, but still adequate ballpark value for our SAW-induced
acoustic traps, because the typical (i) temperatures (T ∼ (20 − 100) mK), (ii) length-scales
(∼ 300nm for the dot-to-dot distance), (iii) transition frequencies (∼ GHz in Ref.[134]),
and (iv) host materials (GaAs) studied in Refs.[132, 133, 134, 135] are all compatible with
our setup. Furthermore, in Ref.[134] a ohmic spectral density has been assumed (just like
in our theoretical model discussed above) in order to fit the experimental data with the
(thermally enhanced) decoherence rate γeff = γ (2n̄th(ω0) + 1), yielding γ = ζω0 with the
fit parameter ζ = (π/4) × 0.03 ∼ 2.35 × 10−2. Second, we consider typical dilution-fridge
temperatures in the range of T ∼ (10 − 100) mK (corresponding to kBT ∼ (1 − 10)µeV)
[136]. For γ/2π ≈ 20MHz the first inequality in Eq.(2.6) is then safely satisfied even for the
lowest temperatures under consideration (kB · 10mK/2π ∼ 200MHz). Still, since γ varies
significantly with both energy and length scales, phonon relaxation rates of γ/2π ≈ 20MHz
for GaAs-based systems may be overly optimistic. In this case, operation at higher tem-
peratures [in order to satisfy Eq.(2.6)] may still be avoided by employing (for example)
phonon band gaps as discussed in Ref.[132] or different materials such as silicon [121, 137]
where the corresponding phonon-induced relaxation rates are much smaller [138], as a
consequence of a much smaller electron-phonon coupling strength. All other things being
equal, the SAW-induced potential depth VSAW will be reduced as well in a silicon-based
setup, which, however, can be compensated by simply applying a larger RF power to the
IDTs. Lastly, recall that the spontaneous emission rate γ may be as large as γ ≈ kBT
and still be fully compatible with the desired regime of interest, if the correlation time
of the phonon bath is set by (for example) the bandwidth ∆B rather than temperature.
Third, for high SAW frequencies ω/2π ≈ 25GHz [119], the energy ~ω ≈ 100µeV yields a
trapping frequency ~ω0 . 20µeV (q2 ≪ 1). Altogether, we thus conclude that Eq.(2.6) can
be satisfied with state-of-the art experimental setups, provided that the material-specific
energy scale ES is much larger than ~ω ≈ 100µeV. For electrons in standard GaAs and
the lowest Rayleigh mode, however, we find ES ≈ 2µeV. In the following, we identify three
potential, complementary strategies to solve this problem.

(1) Material engineering.—Our first approach involves sophisticated material engineer-
ing, with the aim to crank up the energy scale ES. Here, we can identify three general,
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setup m/m0 vs[km/s] ES[µeV]

electrons in GaAs∗ 0.067 ∼ 3 ∼ 1.7
heavy holes in GaAs∗∗ 0.45 ∼ (12 − 18) ∼ 184 − 415
electrons in Si∗∗ 0.2 ∼ (12 − 18) ∼ 82 − 184
holes in GaN∗∗ 1.1 ∼ (12 − 18) ∼ 450 − 1010
electrons in MoS2

∗∗ 0.67 ∼ (12 − 18) ∼ 274 − 617
trions in MoS2

∗∗ 1.9 ∼ (12 − 18) ∼ 794 − 1787

Table 2.1: Estimates for the energy scale ES for different physical setups. Examples
marked with ∗ refer to the lowest SAW mode in GaAs whereas those marked with ∗∗

refer to relatively fast (diamond-boosted) values of vs in diamond-based heterostructures
featuring high-frequency SAW and PSAW modes as investigated in [142, 143]. Further
details are given in the text.

complementary strategies to increase the sound energy [cf. Eq. (2.2)]. (i) First, the effective
mass m crucially depends on both (a) the type of particle and (b) the host material: (a)
heavy holes or composite quasi-particles such as trions (also known as charged excitons)
typically feature much higher effective masses than electrons in GaAs. (b) Compared to
standard GaAs, where the effective electron mass is m ≈ 0.067m0 (m0 refers to the free
electron mass), in Si/SiGe structures m ≈ 0.2m0, while for electrons (heavy holes) in AlN
m ≈ 0.33m0 (mhh = 3.89m0). (ii) Second, following common practice in the quest for SAW
devices operating at ultra-high frequencies [139, 140, 141], vs can be effectively increased
by employing a specialized heterostructure involving for example diamond (which features
the highest speed of sound). (iii) Third, the speed of sound vs,α = ωα/k can be enhanced
even further by exciting higher-order Rayleigh modes (α > 1) in the sample at the same
wavelength [67]. In particular, layered half-space structures (such as AlN/diamond, with
h denoting the thickness of the piezoelectric AlN layer) support so-called pseudo-surface
acoustic waves (PSAWs) propagating with exponential attenuation due to wave energy
leakage into the bulk, in contrast to regular (undamped) SAWs [67, 142, 143]. As shown
both theoretically and experimentally [142, 143], this leakage loss can, however, become
vanishingly small for certain magic film-thickness-to-wavelength ratios h/λ, such that for
all practical purposes this PSAW mode can be seen as a true SAW mode which propagates
with negligible attenuation. While SAWs by definition may not exceed the shear wave
velocity cs (cs ≈ 12.32km/s for diamond) in the lower half-space, PSAW velocities can be
significantly larger than cs and reach values of up to vs ≈ 18km/s [142, 143], that is about
40% higher than those of regular SAWs [143] and about a factor of ∼ 3.2 higher as com-
pared to the lowest Rayleigh mode for a homogeneous AlN half-space where vs ≈ 5.6km/s
[142]. Lastly, even higher velocities may be achieved if leakage losses into the bulk are
suppressed when using freely suspended two-dimensional electron gases [144] rather than
a (quasi) semi-infinite half-space.

We have verified these considerations using numerical finite-element calculations, per-
formed with the software package COMSOL [145] for GaAs/diamond (AlN/diamond) het-
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erostructures; our simulations indeed show that the effective speed of sound can be signifi-
cantly scaled up in comparison with the standard values in GaAs (AlN) [146]. In Fig. 2.4,
the behaviour of vs as a function of the width h of the GaAs (AlN) layer is displayed. The
results show both the second Rayleigh SAW modes in GaAs/diamond and AlN/diamond,
respectively, as well as one particular PSAW mode (as identified previously in Ref.[142]).
For large h, the second Rayleigh SAW modes coincide with the corresponding second modes
in the raw materials GaAs and AlN (without a diamond layer), as expected. On the other
hand, in the limit of comparatively small h ≈ (50−200) nm, the SAW velocities are signif-
icantly larger compared to the first and second Rayleigh modes in pure GaAs (AlN), while
for the PSAW mode vs ≈ 18km/s at h/λ ≈ 0.57. Moreover, in the case of piezoelectric
coupling, the electric potential which accompanies the SAW has to be non-zero at the

Figure 2.4: (color online). Speed of sound vs (left axis) and kinetic sound energy ES

normalized to its value at h = λ (right axis) in layered heterostructures made of gallium
arsenide (aluminium nitride) and diamond. All results are given as a function of h, which
denotes the thickness of the GaAs (AlN) layer. Results for the second SAW modes and
heavy holes are shown. Squares and pentagons (triangles) denote the numerical results for
a GaAs/diamond (AlN/diamond) heterostructure. ES(h = λ) ≈ 32µeV for GaAs/diamond
(≈ 205µeV for AlN/diamond). The data points are connected by lines to guide the eye. The
isolated data points at h ≈ 0.57λ denote a ultra-high velocity PSAW mode in AlN/diamond
(cf. Ref.[142]). Inset: Distribution of the piezoelectric potential at f = 12.2 GHz of a
second SAW mode for a layer thickness of h = 0.2µm in a GaAs/diamond heterostructure.
The IDT finger spacing, hence the SAW wavelength, is set to be λ = 500 nm. The results
were obtained with the software package COMSOL.
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2DEG which is located somewhere in the center of the top GaAs (AlN) layer. As shown
in Fig. 2.4, such configurations do exist in GaAs/diamond (AlN/diamond) heterostruc-
tures, while reaching the parameter regime kBT = 1µeV . (10−3 − 10−2)ES. Hence, when
suitably combining strategies (i)-(iii), we predict the feasibility of reaching ES & 1 meV,
which is sufficiently large to safely satisfy condition (2.6), as desired. Consider for example
a two-dimensional hole gas at a AlN/GaN interface on top of diamond; here, the effective
heavy-hole mass of GaN amounts to m ≈ 1.1m0. When driving the PSAW mode iden-
tified in Fig. 2.4, we find ES ≈ 1.0meV. Alternatively, we may consider TMDs such as
MoS2 or WSe2, on top of some high-speed material such as diamond. While all TMDs
are piezoelectric due to the lack of inversion symmetry [147], some of them show relatively
large effective masses; for example, the effective electron and hole mass in MoS2 amount
to approximately m ≈ 0.67m0 and m ≈ 0.6m0, respectively [148, 149]. Then, for electrons
(charged trions) in MoS2 with effective mass m ≈ 0.67m0 (m ≈ 1.9m0) [149], as experimen-
tally investigated for example in Refs.[150, 151], and a diamond-boosted speed-of-sound
vs ≈ 18km/s, we estimate ES to be as large as ES ≈ 617µeV (ES ≈ 1.78meV). Further
estimates of this type for different physical setups are summarized in Tab.2.1. Here, we
have covered the most relevant material properties for the implementation of the proposed
AL setups only, whereas the interplay of different material-design strategies (i)-(iii), leads
to an intricate problem involving various parameters (such as piezoelectric properties and
the electron mobility), which we cannot cover in its full depth within the scope of this
work.

While this material-engineering based approach is fully compatible with our general
theoretical framework, as described in Section 2.3, in the following we present two addi-
tional schemes that allow for thermally stable trapping, at potentially higher temperatures
than what we have found so far, but at the expense of a more involved theoretical de-
scription [which, however, is not necessarily restricted to the parameter regime given in
Eq.(2.6)]; here, similar to Section 2.3, we first present a classical analysis of the dynamics,
whereas a detailed, quantum-mechanical analysis thereof goes beyond the scope of this
work and will be subject to future research.

(2) Exotic stability regions.—In the context of ion traps where stability is governed by
the Mathieu equation [cf. Eq.(2.9)], ion motion is stable in the primary stability region
(adc = 0, 0 < q < 0.908) and then becomes unstable as q is increased [127]. Stable mo-
tion, however, reoccurs at higher q values which we refer to as exotic stability regions in
the following; these exotic stability regions were studied to some extent in the context of
ion traps [152, 153]. Here, we propose, as a second strategy to meet the self-consistency
requirements, to extend the previously established classical stability analysis to the next
higher-lying (adc = 0, 7.5 . q . 7.6) stability region of the Mathieu equation. As evi-
denced in Fig.2.2(d), in this high-q regime, a separation between secular and fast (micro-
)motion is no longer possible. However, while the theoretical description of the dynamics
becomes more involved, still the particles are found to be dynamically trapped, already at
temperatures much higher than what we found in the low-q regime. While kBT . 0.03ES

for small q, in the high-q regime (with 7.5 < q < 7.6) thermal stability sets in already at
kBT . 0.15ES, thus alleviating temperature requirements by about an order of magnitude,
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cf. Fig.2.2(c).

(3) Optimized driving schemes.—As a third strategy, we suggest to utilize polychromatic
driving schemes, rather than the simple monochromatic driving considered so far. Recently,
it has been experimentally demonstrated that such polychromatic drivings can eventuate
arbitrary SAW wavefronts [154], thus allowing us to consider more general equations of
motion of the form ẍ+f(τ)x = 0, with some particular time dependence f(τ). For example,
instead of the Mathieu equation for which f(τ) = 2q cos(2τ) (no dc contribution), a simple
two-tone driving scheme can be used to expand the stability regions as previously suggested
in Ref.[155]. Our numerical studies suggest that the superposition of higher harmonics in
the form of f(τ) = 2q[c1 cos(2τ) + c2 cos(4τ) + ...] may already enhance the robustness of
the stability region in Fig. 2.2(a) against temperature by a factor of two, as compared to
the standard Mathieu equation.

Technical considerations.—We now address several technical considerations which might
be relevant for a faithful experimental realization of our proposal: (i) Since the poten-
tial amplitude due to a single IDT is limited by Mathieu-type stability arguments as
VIDT = VSAW/2 = (q/2)ES . 0.5meV [156], the proposed setup operates at SAW-induced
amplitudes that are about two orders of magnitude smaller than what is common for SAW-
induced electron transport experiments (where typically VIDT ≈ 40meV [72, 157]). Note
that this comparatively low driving amplitude amounts to a fraction of typical quantum
dot charging energies. Today, quantum dots are routinely pulsed with similarly high am-
plitudes, and yet excellent charge and spin coherence is seen in experiments [158, 159, 160].
(ii) In a similar vein, as a direct consequence of the low-amplitude external drive, potential
microwave-induced heating effects of the sample should be small. Furthermore, undesired
heating may be suppressed efficiently by placing the IDTs very far away from the center
of the trap, without losing acoustic power, thereby avoiding local heat dissipation near the
center of the trap due to the applied RF power; for further details we refer to Appendix
3.5. (iii) Minimization of crosstalk-related effects can be accomplished based on various
techniques [161]: these can involve, for example, very careful choice of metal-packaging
structure and dimensions, the judicious placement of ground connections to avoid ground
loop effects, and the placement of thin metal-film ground strips between the IDTs. More-
over, because of the vast difference between the speed of light (c ≈ 108m/s) and the speed
of sound (vs ≈ 104m/s), for a given frequency the wavelength associated with the EM
crosstalk is about four orders of magnitude larger than the SAW wavelength (even when
accounting for the refractive index of the specific material), and therefore practically flat on
the relevant lengthscale of a few lattice sites; for ω/2π ≈ 30GHz, the wavelength is in the
millimeter range, i.e., much larger than the acoustic lattice spacing a = vs/ (ω/π) ≈ 170nm.

2.5 Applications

The possibility to acoustically trap charged particles in a semiconductor environment
should open up many experimental possibilities, well beyond the scope of this work. Here,
we briefly describe just two potential exemplary applications; see also our discussion in the
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Figure 2.5: (color online). Schematic illustration (top view; not to scale) for a quasi-
stationary two-dimensional AL which can be controllably displaced in both x- and y-
direction by adiabatically tuning the phases applied to the IDTs. The dashed (orange)
box highlights a small sub-lattice consisting of just four lattice sites, before and after the
adiabatic ramp.

final section of this chapter.

Mobile Acoustic Quantum Dots

By adiabatically tuning the phases applied to the IDTs one may displace the AL in both
the x- and y-direction, thereby creating mobile acoustic quantum dots, with the possibil-
ity to transfer in this way quantum information stored in the spin degree of freedom of
the particle; for a schematic illustration compare Fig. 2.5. Here, in contrast to standard
SAW-based mobile quantum dots [72, 73], the speed veff at which the trapped particles can
be moved around between different locations in the 2DEG would not simply be set by the
SAW’s speed of sound vs, but could rather be controlled in situ by the time derivative of
the phases applied to the IDTs, with an upper bound roughly given by the adiabaticity
condition (εad ≪ 1) as veff = εada(ω0/2π) . 100m/s. Apart from thermal fluctuations,
the trapping lifetime in such a mobile quantum dot will be limited by tunnel-coupling to
neighbouring mobile quantum dots inside the AL (while the spin lifetime remains unaf-
fected for spin-coherent tunneling); as shown in more detail below, this coupling can be
suppressed controllably by going to a larger SAW wavelength λ, at the expense of more
stringent ground-state cooling requirements as the level spacing ω0 decreases. For a mo-
bile AL with near unit filling, however, tunnelling is largely suppressed due to Coulomb
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blockade effects and the (spin) dynamics is governed by the next lower energy scale (the
exchange coupling), as discussed and quantified next.

Towards Many-Body Physics

While our previous discussion has exclusively focused on dynamically trapping and cooling
single particles in SAW-induced potentials, in our second example we provide a simple
characterization of our setup for the potential investigation of quantum many-body systems.
We show that (at dilution fridge temperatures) our system can be naturally described
by an extended Anderson-Hubbard model, with the ultimate prospect of entering the
low temperature, strong interaction regime where kBT ≪ t < U ; here t and U refer
to the standard hopping and interaction parameters of the Hubbard model, as specified
below. We provide estimates for these quantities in terms of the relevant parameters
characterizing the AL, and show how they can be engineered and (dynamically) tuned.
For this analysis, again we restrict ourselves to the pseudopotential regime (ω0 ≪ ω)
where the effects of the fast, small-amplitude micromotion on the Hubbard parameters
t, U can be neglected. Thereafter, we discuss several approaches that may be used in order
to detect and accurately probe the resulting quantum phases of matter.

Estimates for Hubbard parameters.—Consider an ensemble of fermionic charged parti-
cles inside a periodic one or two-dimensional AL, with roughly one particle per site (cor-
responding to electron densities ∼ 1010cm−2 for a two-dimensional AL with a ∼ 100nm).
If all energy scales involved in the system dynamics are small compared to the excita-
tion energy to the second band ∼ ~ω0 (for example kBT ≪ ~ω0, as required for ground
state cooling), the electrons will be confined to the lowest Bloch band of the AL, and
the system can effectively be described by the extended Anderson-Hubbard Hamiltonian
[120, 163, 164, 162]

HAFH = −t
∑

〈i,j〉,σ

(
c†i,σcj,σ + h.c.

)
+
∑

i,σ

µini +
∑

σ,σ′

∑

ijkl

Uijklc
†
i,σ′c

†
j,σck,σcl,σ′ , (2.7)

where the fermionic operator ci,σ(c†i,σ) annihilates (creates) an electron with spin σ =↑, ↓
at site i; ni,σ = c†i,σci,σ and ni = ni,↑ + ni,↓ refer to the spin-resolved and total occupation
number operators, respectively. In Eq.(2.7) we have retained the nearest neighbour hopping
term only, as specified by a tunneling amplitude t, but accounted for the full effect of the
repulsive (long-range) Coulomb interactions ∼ Uijkl. The remaining (second) term, with
a variable on-site energy µi, acts like a spatially varying chemical potential and describes
potential disorder effects (as discussed in more detail below). In the limit of homogeneous
on-site energies with µi = const., Eq.(2.7) reduces to the minimal Hubbard model, if all but
the largest on-site interaction terms are neglected (with Uiiii = U in standard notation). In
the limit V0 ≫ ER (where ER = ~2k2/2m is the recoil energy), the tunneling rate t is given

by t/ER ≈ (4/
√
π) (V0/ER)3/4 exp

[
−2

√
V0/ER

]
[108], setting the upper limit t < ER. In

terms of the relevant AL parameters, this relation can be rewritten as

t/ES ≈
(
2
√

2πnb

)−1
q2 exp [−4nb] , (2.8)
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showing that the tunneling rate t ∼ q2 can be tuned via the stability parameter q, reaching
at maximum t/ES . 3 × 10−3 within the lowest stability region for (fixed) nb & 1; here,
the existence of at least one bound state (nb & 1) ensures both V0/ER = 4n2

b & 4 and
t≪ ~ω0, as required. Therefore, with ER/ES = ε2/(4n2

b), we find t < ER ≪ ES such that
realistically ES ≫ 300µeV is required in order to access the coherent many-body regime
where t ≫ kBT , at dilution fridge temperatures. Making use of the strategies outlined in
the previous section, this regime seems to lie within reach of state-of-the-art experimen-
tal capabilities. The order of magnitude for the Coulomb integral Uijkl can be roughly
estimated as Uijkl ∼ e2/4πǫa (where ǫ denotes the effective dielectric constant of the ma-
terial). Since t ∼ ER ∼ a−2 and Uijkl ∼ 1/a, the relative importance of the hopping term
∼ t as compared to the Coulomb interactions can be conveniently controlled via the SAW
frequency ω = πvs/a [120]. Taking (for example) a ∼ 300nm, this rough estimate yields
Uijkl ∼ 380µeV (for GaAs, where ǫ ≈ 12.5ǫ0), which exceeds any realistic hopping ampli-
tude t by far, but also violates the assumptions underlying the model Hamiltonian (2.7).
To enter a parameter regime where the simplified toy model (2.7) becomes applicable, spe-
cial heterostructures with a metallic screening layer close to the 2DEG may be employed,
while in a similar vein the thickness of the spacer layer (separating the 2DEG from the
δ-doping layer) may also be reduced in favour of increased screening effects [120, 136]. In
this scenario, a simple image-charge based estimate shows that the Coulomb interaction is
reduced by a factor fscr ≈ 1− [1 + 4 (d/a)2]−1/2 (where d refers to the distance between the
2DEG and the metallic screening plate), while retaining its ∼ 1/r scaling [120]. Accord-
ingly, the estimate quoted above reduces from ∼ 380µeV for d→ ∞ down to ∼ 50µeV for
d ∼ 0.3a ∼ 90nm. As discussed in more detail below, this approach does not only allow for
tuning the strength of the Coulomb interaction (albeit not in situ), but at the same time
reduces the detrimental effects due to background impurities [136]. In a regime where the
latter is negligible, the next lower energy scale is set by the exchange coupling J = 4t2/U ,
which describes effective spin-spin interactions via virtual hopping processes in the regime
U ≫ t. With the Coulomb interaction reduced to U ≈ 10t, the regime t ≫ kBT (and
therefore J ≈ t/2 ≫ kBT ) should then give access to experimental studies of quantum
magnetism [108]. For a comprehensive overview of the key quantities of our analysis and
self-consistent estimates thereof we refer to Appendix 2.D. In this Appendix we also dis-
cuss relevant electron spin decoherence effects which may compete with the observation of
coherent spin physics.

Detection schemes.—In order to measure the resulting collective many body state in an
actual experiment, several approaches may be available: (i) First, the electron excitation
spectrum could be probed using inelastic light scattering, as has been done experimentally
in a closely related setup (based on electrons confined in etched pillars in a high-quality
GaAs quantum well with mobility µ ∼ 3× 106cm2/Vs) in Ref.[165]. (ii) Second, transport
measurements, in which a small dc voltage Vdc is applied across the AL, should carry
signatures of the phase of the Hubbard model in the resulting dc current; compare for
example Refs.[120, 166, 167]. The corresponding dc current Idc will be blocked in the Mott-
insulator regime, whereas Ohm’s law Idc ∝ Vdc should hold in a metallic phase [120, 62].
(iii) Third, charge-imaging methods could also be used to demonstrate regular carrier
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localization in the acoustic lattice, somewhat similar to the detection of single electrons
trapped by impurity centres [168, 169]. (iv) Fourth, capacitance spectroscopy techniques
(as demonstrated for example in Ref.[170]) could be used in order to measure the density
of states by detecting the ability to tunnel in from a back-plane. (v) Fifth, optical readout
of the charge- and spin-state could be achieved with methods developed for self-assembled
quantum dots [171], in particular in TMD-based setups [147, 150, 151, 172]. Similar to self-
assembled quantum dots, our SAW-defined quantum dots and lattices trap both electrons
and holes at the same location and could thus support quantum-dot excitons and trions.
The charge- and spin-dependent interaction with quasi-resonant light fields can be used
for read-out via resonance fluorescence [173] or the Kerr effect [174, 175]. Moreover, it
is conceivable that related optical techniques for state preparation and spin rotation can
be adapted as well. Note that due to the expected homogeneity of our SAW-generated
lattice sites, we also expect largely identical optical spectra across the lattice which may
facilitate global readout and collective optical effects. (vi) Lastly, apart from these well-
established measurement techniques, we propose to perform local site-resolved detection by
adiabatically changing the phases at the IDTs φ (t) and then loading one lattice site after
the other (very much like in a CCD camera) into nearby gate-defined quantum dots, where
both the charge as well as the spin degree of freedom could be measured via well-established
spin-to-charge conversion techniques [176].

2.6 Effects of Disorder

Disorder in the AL will affect the (Anderson) Hubbard model, as described by the second
term in Eq.(2.7), where (in the presence of disorder) µi is essentially a randomly fluctuating
variable. In a semiconductor the dominant source of disorder is due to charged impurities,
which includes both (i) desired contributions (such as the dopants used for forming the
2DEG) as well as (ii) undesired ones due to bulk or surface impurities [136]. While the
dominant source of disorder (i) due to remote donor scattering can be largely removed in
structures with a relatively large spacer thickness ∼ 85nm [136, 177], the second one (ii) has
been identified as the main mechanism limiting the mobility µ in ultra-clean 2DEGs [178,
179]. Still, as experimentally demonstrated in Ref.[179], mobilities exceeding ∼ 107cm2/Vs
can be realized for dilution-fridge temperatures T ∼ 100mK, resulting in a mean-free-path
lmfp = µvFm/e of up to lmfp ∼ 120µm (here, vF refers to the Fermi velocity [120]). In
the low-density regime of interest with nel ∼ 1010cm−2 (corresponding to half-filling for a
lattice spacing of a ∼ 100nm) the mean-free-path is expected to drop to lmfp ∼ 15µm [179],
which is still much larger than the lattice spacing a ∼ 100nm. To further compensate
for residual disorder originating from background impurities (ii) one may resort to special
heterostructures with a conducting backplane, as suggested in Ref.[136]. Also, in periodic
arrays of quantum dots signatures of Hofstadter’s butterfly [180] have been observed at
high magnetic fields [167, 166], as a result of the interplay between the periodic potential
and quantized Hall orbitals, suggesting that disorder from the substrate can in fact be
sufficiently small to investigate coherent lattice physics. This discussion certainly provides
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the basis for some optimism, but a dedicated research program (rather than just a literature
survey) may be required to fully understand and characterize the role of disorder in this
system; compare Ref.[62] for recent efforts in this direction based on gate-defined lattices in
GaAs. While the effect of disorder on the single-particle level is well understood [181], the
intricate interplay between interactions and disorder in the Hubbard model (as studied in
Refs.[182, 183, 184, 185]) yields a non-trivial regime in its own right which may be explored
systematically in the proposed setup by deliberately controlling the amount of disorder.

2.7 Conclusions and Outlook

In summary, we have proposed and analyzed the formation of an all-solid-state acoustic
lattice with a highly regular periodicity set by the SAW wavelength (without any further
gate patterning). We have developed a theoretical framework reminiscent of trapped-ion
physics thus connecting two previously unrelated fields of research. With this framework
at our disposal, we have identified the relevant figures of merit for this system and dis-
cussed potential experimental platforms for a faithful implementation of such acoustic
lattices, with the ultimate potential to study yet unexplored parameter regimes, thanks
to specific system properties such as ultra-light particle masses, intrinsic electron-phonon
cooling and strong inter-particle interactions. Here, let us emphasize again the flexibility
(and generic nature) of the proposed scheme: SAWs exist in many materials (semicon-
ductor heterostructures, TMDs), can be endowed with a variety of accommpanying fields
(depending on the material used: strain, electric, magnetic) and superposed to different
standing wave patterns. Therefore the proposed scheme should be applicable to a variety
of different (quasi-) particles and allow to study different lattice geometries.

Finally, we highlight possible directions of research going beyond our present work:
(i) While we have focused on a simple square-lattice geometry, more sophisticated lattice
geometries might be explored, given the design flexibilities associated with SAW devices
[67]. (ii) For simplicity, in this work we have disregarded the potential presence of magnetic
fields and/or spin-orbit effects, which stem from the underlying material properties. There-
fore, without any further sophisticated engineering, these additional ingredients could be
readily implemented, giving rise to rich phase diagrams and, for example, the formation of
topological quantum spin Hall states [186]. Finally, we may envisage several setups that
are complementary to the system studied in this work: (iii) Acoustic lattices for dipoles :
Our ideas can be generalized towards an acoustic lattice for solid-state dipoles (rather than
charged particles), e.g., for indirect excitons which consist of electrons and holes from two
different parallel quantum well (QW) layers, thereby complementing previous experimental
studies on SAW-induced lattices for exciton-polaritons both in moving [118] and standing-
wave [187] configurations in the regime of many particles per lattice site. As evidenced by
several experiments (where the repulsive character of the interaction shows up as a positive
and monotonic line shift with increasing density [188]), indirect excitons behave as effective
dipoles perpendicular to the plane [189, 190]. Because of the spatial separation between
the electron and hole layers in this coupled QW structure, the intrinsic radiative lifetimes



44 2. Acoustic Traps and Lattices

of optically active indirect excitons exceeds that of their direct counterparts by orders of
magnitude and can be in the range of several microseconds [190]. In TMD-based setups
our approach may be used to dynamically trap and to spatially and spectrally isolate single
excitons, thereby complementing experiments based on static strain-engineering [191]. (iv)
Acoustic lattices for ions : The electric potential (created and controlled at the surface) due
to standard IDTs extends into the material, but also into the vacuum above the surface
[81]. In principle, this should allow for the integration of our SAW-based setup with ions
above the surface that are exposed to this acoustically induced electric potential, leading
to new hybrid setups and complementing other approaches towards regular, disorder-free
surface traps for ions in which the lattice spacing is simply set by the SAW wavelength.
With comparatively large parameter values for ES (≈ 420meV for Be ions on top of GaAs),
preliminary estimates show that a pseudopotential trap depth of several ∼ meV should be
possible within the lowest stability region (where q2 ≪ 1), provided that the ion can be
stabilized in the direction normal to the surface within the SAW wavelength. (v) Magnetic
lattices : While the acoustic lattice described above is based on coupling to the particle’s
external motional degree of freedom (as is the case with Paul traps for ions), in closer
analogy to optical lattices for ultra-cold atoms, SAWs in piezo-magnetic materials such as
Terfenol-D [192, 193, 194] may be used in order to couple to the particle’s internal spin
degree of freedom, thereby inducing a spatially inhomogeneous Stark shift on the electron’s
spin resonance which will act as an external potential for the electron’s motion [3]. In this
setup, for a fixed detuning of the ESR driving frequency from the Zeeman splitting, the
effective trap depth can (in principle) be made arbitrarily large, provided that sufficient
SAW power is available.

In conclusion, this discussion indicates that by combining the control and flexibility of
SAWs with the rich variety of material properties of heterostructures, the emerging field
of quantum acoustics opens a large number of further research directions with the ulti-
mate goal of understanding the behavior of correlated electrons in technologically relevant
materials and molecules and building a universal quantum simulator.



Appendices

2.A Classical Stability Analysis

Mathieu equation

Performing a Taylor expansion for the electric field close to the origin, sin (x̃) ≈ x̃, Eq.
(2.1) can be mapped onto the well-known Mathieu differential equation by identifying the
parameters appearing in the standard Mathieu differential equation,

d2x̃

dτ 2
+ [adc + 2q cos (2τ)] x̃ = 0, (2.9)

as adc = 0 (no dc voltage) and q = VSAW/ES.
In the case of vanishing dc contribution, according to Ref.[126], there is a stability

zone for 0 < q < qmax, with qmax ≈ 0.92, resulting in the maximum potential depth of
VSAW = qmaxES. The lowest-order approximation to the ion trajectory x (t) in the case
q2 ≪ 1 is found to be

x (t) ≈ 2AC0cos
(
β
ω

2
t
)

︸ ︷︷ ︸
secular

[
1 − q

2
cos (ωt)

]

︸ ︷︷ ︸
micromotion

, (2.10)

where β ≈ q/
√

2. If the fast low-amplitude oscillations contained in in the second factor are
neglected, the secular motion can be approximated by that of a harmonic oscillator with
frequency ω0 = βω/2 ≪ ω. The condition for the lowest-order approximation q2 ≪ 1 is
equivalent to a separation of timescales between secular and micromotion, that is ω0 ≪ ω.
In this regime, the dynamics can be described by an effective pseudopotential.

Classical pseudopotential

The classical dynamics in a high frequency field can be described by an effective time-
independent Hamiltonian. Following Refs.[128, 129], it can be calculated in a systematic
expansion in the inverse of the frequency ω. If the period of the force is small compared to
the other time scales of the problem, it is possible to separate the motion of the particle
into slow and fast parts. This simplification is due to the fact that the particle does not
have sufficient time to react to the periodic force before this force changes its sign. Based
on this separation of time scales, the motion for the slow part is computed explicitly up
to the order ω−4. Note that the effective time-independent Hamiltonian depends on a
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coordinate X (t) which describes the slow part of the motion; this coordinate is not the
location of the particle, even though they are almost identical at high frequencies ω. As
outlined in Refs.[128, 129], the decomposition of x(t) into slow and fast components can
be written as

x (t) = X (t) + ξ
(
X, Ẋ, ωt

)
, (2.11)

where the fast part of the motion ξ fulfills

ξ̄ =
1

2π

∫ 2π

0

dτξ
(
X, Ẋ, τ

)
= 0. (2.12)

By expanding ξ in powers of 1/ω,

ξ =
∞∑

i=1

1

ωi

ξi, (2.13)

such that Eq.(2.9) leads to an equation for X that is time-independent and following
Refs.[128, 129], we find the following (classical) effective Hamiltonian describing the slow
dynamics X(t)

Heff =
P 2

2m

[
1 +

3

8
q2 cos2 (kX)

]
+
q

8
VSAW sin2 (kX) + O

(
ω−5

)
. (2.14)

Here, P is the momentum conjugate to X. Given a solution X (t), the solution of the
original problem can be obtained to appropriate order of 1/ω since ξ is known explicitly
in terms of X [128, 129]. The pseudo-potential for the average motion of the electron,
Veff = V0 sin2 (kX), with an amplitude given by

V0 =
q

8
VSAW =

q2

8
ES, (2.15)

is also referred to as ponderomotive potential [127]. Note that the correction to the kinetic
term in Eq. (2.14) is a fourth-order term, while the pseudo-potential Veff is a second-
order contribution in 1/ω. Close to the origin x = 0, the effective potential Veff can be
approximated by a harmonic potential Veff (x) = (m/2)ω2

0x
2 with an oscillation frequency

ω0 = q√
8
ω, which is equivalent to result obtained above from the Mathieu equation. Using

this definition of the trapping frequency, the ponderomotive potential becomes

Veff =
(ω0

ω

)2

ES sin2 (kX) (2.16)

We can then estimate the number of bound states nb as

nb ≈ V0
~ω0

=
1

2

√
V0
ER

, (2.17)

with the recoil energy ER = ~k2/2m.
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Stability diagrams

Here, we provide further details on our classical stability analysis. First, we would like
to note that the stability diagrams shown in Sec.2.3 are of approximate character as they
were obtained by interpolating our numerical results. This is due to the deliberate choice
of defining a stable trajectory in terms of the maximal excursion during a sufficiently long
propagation time: two trajectories with almost equal parameters q and kBT/ES can be
judged as stable and unstable by this definition, respectively, because only one of their
amplitudes exceeds the cut-off value set to one half of the lattice constant (a/2). Second,
the notion of (thermal) stability may be defined via the mean-free path as well, by taking
lmfp as our cut-off value, in contrast to the trapping condition x̃max < π. In that case,
the regions of thermal stability increase as compared to the ones shown in the main text,
provided that lmfp > a/2. The last inequality is likely to be fulfilled in high-mobility 2DEGs
where lmfp ∼ 10µm. Third, the stability analysis underlying Fig. 2.2 neglects damping in
the classical equation of motion; incorporating an additional friction term may alter the
notion of stability, since particles which escape one lattice site can then be dynamically
trapped at a different lattice site. Lastly, the state initialization via equipartition of thermal
and kinetic energies describes an average condition; in practice, only a fraction of the
electrons will fulfill this condition, where the details depend on the statistical distribution
of the initial conditions. In order to estimate the statistical fraction of electrons whose
(initial) velocity v is smaller than v0 =

√
kBT/m, given by equipartition of thermal and

kinetic energies of the particle, we assume a Maxwell-Boltzmann distribution of velocities,

p(v)dv = 2

√
m

2πkBT
exp

(
− mv2

2kBT

)
dv, (2.18)

which yields
∫ v0
0
p(v)dv ≈ 0.68; i.e., given a thermal ensemble of particles we find that a

significant fraction of the electrons is found to be trapped.

2.B Quantum-Mechanical Floquet Analysis

Preliminaries.—We consider a quantum system with a Hamiltonian that is periodic in time,
H (t+ T ) = H (t). Floquet theory provides a natural framework to treat such a system
[128, 129]. The Bloch-Floquet theorem states that the eigenstates of the Schrödinger
equation

i
∂

∂t
|Ψ〉 = H |Ψ〉 , (2.19)

obey the form

|Ψλ〉 = e−iλt |uλ (ωt)〉 , (2.20)

where uλ are periodic with respect to ωt with period 2π, that is uλ (x, ω (t+ T )) = uλ (x, ωt)
with ω = 2π/T . The states uλ are called Floquet states and λ is the so-called quasienergy.
They have a natural separation into a slow part e−iλt (with the natural choice 0 ≤ λ < ω)
and a fast part uλ (x, ωt). Now, the goal is to find an effective description for the slow part
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of the dynamics as was done above for the classical dynamics. Formally, this is done by
introducing a gauge transformation

|φ〉 = eiF (t) |Ψ〉 , (2.21)

where F (t) is a Hermitian operator which is a periodic function of time t, with the same
period as H (t), such that the effective Hamiltonian Heff in the Schrödinger equation

i
∂

∂t
|φ〉 = Heff |φ〉 , (2.22)

Heff = eiFHe−iF + i

(
∂

∂t
eiF

)
e−iF , (2.23)

is time-independent. In particular, Heff can then be used to predict trapping due to oscil-
lating potentials [128].

Typically, F and Heff cannot be computed exactly. Following Refs.[128, 129], we expand
Heff and F in powers of 1/ω and choose F such that Heff is time-independent to any given
order. In the following, we compute the effective Hamiltonian,

Heff =
∑

n

1

ωn
H

(n)
eff , (2.24)

explicitly up to fourth order in 1/ω.

Second order

Given the temporal periodicity of the driving only, it has been shown [128, 129] that the

odd terms H
(1)
eff , H

(3)
eff from the perturbative expansion (2.24) vanish. Hence, the leading-

order term (besides the purely kinetic contribution p2/2m) of the effective Hamiltonian is
of second order in 1/ω.

For the single-particle Hamiltonian under consideration,

H (t) =
p̂2

2m
+ VSAW cos (ωt) cos (kx̂) , (2.25)

up to second order in 1/ω we find

Heff =
p̂2

2m
+
q

8
VSAW sin2 (kx̂) , (2.26)

which is the second-order result given in Eq. (2.4). Hence, similar to the classical treatment,
also within the quantum mechanical Floquet framework, the effective potential, which is
of second order in the dimensionless coefficient ω0/ω, can be written as

Veff (x̂) =
(ω0

ω

)2

ES sin2 (kx̂) . (2.27)
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Leading-order corrections to this result are of the order O (ω−4).

Fourth order

Computing (2.24) explicitly up to O(ω−4) yields

Heff =
p̂2

2m
+
q

8
VSAW sin2 (kx̂)

+
1

2m

[
p̂2g (x̂) + 2p̂g (x̂) p̂+ g (x̂) p̂2

]

+
q2

32
ER sin2 (kx̂) + O

(
ω−5

)
, (2.28)

where

g (x̂) =
3

32
q2 cos2 (kx̂) . (2.29)

In the classical limit (where x̂ and p̂ commute), Eq.(2.29) correctly reproduces the kinetic
correction term given in Eq.(2.14). Compared to the classical result in Eq.(2.14), Eq.(2.28)
also contains a fourth-order quantum-correction term which provides a contribution to the
pseudo-potential and which scales as ∼ q2ER. The eigenvalues of Heff yield the Floquet
quasienergies. If the eigenstates of Heff are known, then the Floquet states can be computed
up to order ω−4 using the explicit expressions for F derived in Refs.[128, 129]. Similarly to
the classical analysis above, we find an effective potential up to fourth order in 1/ω which
reads

Veff (x̂) =

[
q

8
VSAW +

q2

32
ER

]
sin2 (kx̂) , (2.30)

= ε2ES sin2 (kx̂) , (2.31)

where we have introduced the factor

ε2 =
q2

8
[1 + q̃] , q̃ =

ER

4ES

=

(
~k

2ps

)2

, (2.32)

where the momentum ps is given by ps = mvs. Within the usual HO approximation, we
obtain the corresponding trapping frequency as

ω0

ω
= ε =

q

2
√

2

√
1 + q̃2. (2.33)

2.C Phonon-Induced Cooling in the Presence of Mi-

cromotion

In this Appendix we discuss in detail the phonon-induced cooling-heating dynamics and
the resulting effective temperature of acoustically trapped charge carriers, with full con-
sideration of the time-dependence of the SAW-induced trapping potential. Here, we focus
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on the relevant decoherence processes due to coupling of the particle’s motion to the (ther-
mal) phonon reservoir. Our analysis is built upon the master equation formalism, a tool
widely used in quantum optics for studying the irreversible dynamics of a quantum system
coupled to a macroscopic environment. We detail the assumptions of our approach and
discuss in detail the relevant approximations.

Time-Dependent System Dynamics

The system dynamics describing the motion of an electron (of mass m) exposed to a SAW-
induced standing wave is described by the Hamiltonian given in Eq.(2.3). In the following,
we restrict ourselves to the so-called Lamb-Dicke regime in which the electron’s motion is
confined to a region much smaller than the SAW wavelength λ = 2π/k. The corresponding
approximation cos (kx̂) ≈ 1− (k2/2) x̂2 will be justified self-consistently below. Dropping
the first term ∼ 1 (which results in an irrelevant, global phase only), the Hamiltonian
HS (t) may be written as

HS (t) ≈ p̂2

2m
+
m

2
W (t) x̂2, (2.34)

where W (t) = − (ω2/2) q cos (ωt) can be identified as a time-varying spring constant,
with the stability parameter q = VSAW/ES. In this form, the Hamiltonian HS (t) and
the corresponding dynamics have been studied extensively in the literature (primarily in
the context of trapped ions), from both a classical and a quantum-mechanical point of
view; see for example Refs.[127, 130, 195]. Still, in order to set up the relevant notation
for the subsequent analysis, here we provide a self-contained discussion, closely following
Refs.[127, 130, 195].

Starting out from Eq.(2.34), the Heisenberg equations of motion for the electron’s
position x̂ and momentum operators p̂ read

˙̂x (t) =
1

i~
[x̂ (t) , HS (t)] = p̂ (t) /m, (2.35)

˙̂p (t) =
1

i~
[p̂ (t) , HS (t)] = −mW (t) x̂ (t) , (2.36)

which, when taken together, yield the well-known quantum Mathieu equation

¨̂x (t) +W (t) x̂ (t) = 0. (2.37)

This equation is equivalent to its classical counterpart if one replaces the operator x̂ (t)
with a function u (t) which satisfies the classical Mathieu equation [127, 130, 195]. As well
known in the context of trapped ions, stable solutions exist only for certain values of the
parameter q, which are usually defined in terms of a stability chart; as compared to the
standard analysis, here we consider the simplified scenario without any dc voltage [130].
According to Floquet’s theorem, such a stable solution u (t) takes on the form

u (t) =
∞∑

n=−∞
c2ne

i(ω0+nω)t = eiω0tΦ (t) , (2.38)
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where Φ (t) is a periodic function with period T = 2π/ω, i.e. Φ (t+ T ) = Φ (t). Following
Ref.[127], we consider solutions of the Mathieu equation subject to the boundary conditions

u (0) = 1, u̇ (0) = iω0. (2.39)

As will be seen later, this choice of boundary conditions is convenient for the appropriate
definition of commutation relations. The (secular) frequency ω0/ω is a function of q and the
coefficients can be expressed in terms of a continued fraction; see e.g. Refs.[127, 130]. In
the limit q2 ≪ 1 it can be shown that c0 ≫ |c±2|, such that the solution u (t) is dominated
by the so-called secular frequency ω0/ω ≈ q/

(
2
√

2
)
, which is much smaller than the driving

frequency ω. In the corresponding pseudo-potential regime, a small-amplitude modulation
with micromotion frequency ω is superimposed on the slow (secular) macro-motion. To
lowest order in ∼ q, the solution u (t) simplifies to u (t) = exp [iω0t], without accounting
for the micromotion.

Since the solution u (t) and its complex conjugate u∗ (t) form linearly independent
solutions (which are related to each other by the time-inversion symmetry inherent to the
Mathieu equation) [127, 131], they obey the Wronskian identity

W (t) = u∗ (t) u̇ (t) − u (t) u̇∗ (t) , (2.40)

= u∗ (0) u̇ (0) − u (0) u̇∗ (0) , (2.41)

= 2iω0. (2.42)

The second equality simply follows from the fact that W (t) is a constant of motion. With
this normalization, we obtain the sum rule

∑

n

c2n

(
ω0 + nω

ω0

)
= 1. (2.43)

Since x̂ (t) and u (t) by definition satisfy the same differential equation, one can construct
an operator Ĉ (t) which consists of an explicitly time-dependent linear combination of the
position and momentum operators as

Ĉ (t) = i

√
m

2~ω0

[
u (t) ˙̂x (t) − u̇ (t) x̂ (t)

]
, (2.44)

but which (being proportional to the Wronskian W) turns out to be a constant of motion
[127, 130, 195]. Then, since

Ĉ (t) = Ĉ (0) =
1√

2m~ω0

[mω0x̂ (0) + ip̂ (0)] , (2.45)

one can readily identify Ĉ (t) with the well-known annihilation operator associated with a
static harmonic oscillator of mass m and frequency ω0 as

Ĉ (t) = Ĉ (0) = A, (2.46)
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with the usual standard commutation relation

[
A,A†

]
= 1. (2.47)

This static potential harmonic oscillator is usually referred to as reference oscillator [127].
Since the operator A is time-independent, the same is true for

N = A†A, (2.48)

whose eigenstates are simply the familiar Fock states of the (static potential) reference
oscillator, with the standard ladder algebra

A |n〉ω0
=

√
n |n− 1〉ω0

, (2.49)

A† |n〉ω0
=

√
n+ 1 |n+ 1〉ω0

, (2.50)

yielding directly N |n〉 = n |n〉ω0
.

The Heisenberg operators x̂ (t) and p̂ (t) can then be expressed in terms of the clas-
sical Mathieu solutions u (t) as well as the (time-independent) creation and annihilation
operators of the reference oscillator as

x̂ (t) =

√
~

2mω0

[
u∗ (t)A+ u (t)A†

]
, (2.51)

p̂ (t) =

√
~m

2ω0

[
u̇∗ (t)A+ u̇ (t)A†

]
. (2.52)

Accordingly, the time dependence of the Heisenberg operators x̂ (t) and p̂ (t) is captured
entirely by the classical Mathieu equation u (t) and its complex conjugate. Note that
[x̂ (t) , p̂ (t)] = ~

2ω0
W (t) = i~, as desired. For later reference, here we also define the

Heisenberg operator for the kinetic energy as

p̂2 (t)

2m
=

~

4ω0

[
|u̇ (t)|2

(
A†A+ AA†

)
+ (u̇∗ (t))2A2 + (u̇ (t))2

(
A†

)2]
. (2.53)

Since the annihilation (creation) operators A
(
A†

)
associated with the reference oscilla-

tor satisfy the usual algebra, in complete analogy to the standard oscillator one may define
a set of basis states (in the Schrödinger picture) labeled as |n; t〉 with n = 0, 1, 2, . . . , which
form the dynamic counterpart of the harmonic oscillator Fock states. The states |n; t〉 are
not stationary states, but do depend explicitly on time, as indicated by the argument t
in the ket vector [195]. The ground state of the reference oscillator |n = 0〉ω0

obeys the
condition

A |n = 0〉ω0
= Ĉ (t) |n = 0〉ω0

= 0. (2.54)

We can relate the Heisenberg operator Ĉ (t) to its counterpart in the Schrödinger picture
ĈS (t) as ĈS (t) = U (t) Ĉ (t)U † (t), with the unitary operator U (t) which fulfills

U̇ (t) = −iHS (t)U (t) . (2.55)
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Explicitly, we find

ĈS (t) =
1

2i

[
u̇ (t)

√
2m

~ω0

x̂− u (t)

√
2

m~ω0

p̂

]
. (2.56)

Then, Eq.(2.54) can be rewritten as

ĈS (t)U (t) |n = 0〉ω0
= ĈS (t) |n = 0; t〉 = 0, (2.57)

where we have introduced the state |n = 0; t〉 in the Schrödinger picture which evolves uni-
tarily starting from the ground state of the reference oscillator as |n = 0; t〉 = U (t) |n = 0〉ω0

.
The ladder-operator relations stated in Eqs.(2.49) and (2.50) for the reference oscillator
can easily be transferred to the Schrödinger picture, yielding

ĈS (t) |n; t〉 =
√
n |n− 1; t〉 ,

Ĉ†S (t) |n; t〉 =
√
n+ 1 |n+ 1; t〉 , (2.58)

implying NS (t) |n; t〉 = n |n; t〉 , with NS (t) = Ĉ†S (t) ĈS (t). Since the Schrödinger opera-

tors ĈS (t), Ĉ†S (t) act as shift operators for the Floquet states |n; t〉, they will be referred to
as Floquet shift operators [131]. Therefore, all other states forming the complete orthonor-
mal basis {|n; t〉} can be constructed by repeated operation on the ground state with the
Schrödinger creation operator ĈS (t) (with the proper normalization) as

|n; t〉 =
[ĈS (t)]n√

n!
|n = 0; t〉 . (2.59)

When expressing this equation in coordinate space, the micromotion appears in the wave-
functions as a pulsation with the period T = 2π/ω [127]. Although the states |n; t〉 are not
energy eigenstates (since they periodically exchange energy with the driving field), they
are typically referred to as quasi-stationary states, because for stroboscopic times (that are
integer multiples of the driving period T ) the full evolution U (t) boils down to multiplying
the wavefunction by a simple phase factor (as is the case for standard stationary states for
all times). Because of the periodicity of the micromotion, the quantum number n (labeling
the quasi-energy states) can thus be tied to the electron’s energy averaged over a period
T = 2π/ω of the drive frequency. This connection will be explored in greater detail below.

The System-Bath Model

While our previous discussion has exclusively focused on the time-dependent system’s
dynamics [as described by the Hamiltonian HS (t) given in Eq.(2.34)], in the following
we will develop a microscopic dissipative model, which describes the electron’s motional
coupling to the (thermal) phonon reservoir.

The global Hamiltonian, describing both the electronic motion as well as the phonon
reservoir, can be formally decomposed as

H (t) = HS (t) +HB +HI . (2.60)
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Here, the time-dependent system Hamiltonian HS (t) is given in Eq.(2.34). The Hamilto-
nian for the phonon bath HB is of the usual form

HB =
∑

q,s

ωq,sa
†
q,saq,s, (2.61)

where a†q,s (aq,s) creates (annihilates) an acoustic phonon with wave vector q =
(
q||, qz

)
,

polarization s and dispersion ωq,s. Optical phonons can be disregarded at sufficiently
low energies as considered here [196]. Following Ref.[137], generically the electron-phonon
interaction takes on the form

HI =
∑

q,s

Wq,saq,se
iq·r̂ + h.c., (2.62)

with r̂ = (x̂, ŷ, ẑ) denoting the electron’s three-dimensional position operator. The cou-
pling constant Wq,s comprises both the deformation potential as well as the piezoelectric
coupling mechanism [137, 196]; it strongly depends on specific material properties, but can
be left unspecified for the sake of our discussion. For low-dimensional quasi-2D systems
as considered here, the Hamiltonian HI may be simplified by projecting the electronic
motional degrees of freedom onto the lowest electronic orbital ψ0 (z), leading to

HI ≈
∑

q,s

F (qz)Wq,saq,se
iq||·r̂|| + h.c., (2.63)

with the in-plane position operator r̂|| = (x̂, ŷ). The form factor F (qz) =
∫
dzeiqzz |ψ0 (z)|2

introduces a momentum cut-off, with F (qz) approaching unity in the limit |qz| ≪ d−1 and
vanishing for |qz| ≫ d−1; here, d ∼ 10nm denotes the size of the quantum well along the
z-axis [196]. For the sake of clarity, here we will consider a quasi-one-dimensional structure
(a quantum wire) where the electron’s motion is restricted to the x-direction; compare our
previous discussion in Sec.2.C. In this case, the electron-phonon interaction reduces to

HI ≈
∑

q,s

W̃q,saq,se
iqx̂ + h.c., (2.64)

where the coupling W̃q,s accounts for transversal confinement in both the y- and z-direction;
moreover, we have set q = qx. Along the lines of Sec.2.C, again we restrict ourselves to
the Lamb-Dicke regime in which the electron’s motion is confined to a region much smaller
than the wavelength of the relevant, resonant phonon modes. Then, taking eiqx̂ ≈ 1+ iqx̂,
and introducing displaced bosonic bath modes as

bq,s = −i
(
aq,s + W̃ ∗

q,s/ωq,s

)
, (2.65)

b†q,s = i
(
a†q,s + W̃q,s/ωq,s

)
, (2.66)
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we finally arrive at the following microscopic system-bath model with bilinear coupling
between the system [as described by Eq.2.34] and a bath of noninteracting harmonic oscil-
lators (i.e., the phonon reservoir),

HB =
∑

ν

ωνb
†
νbν , (2.67)

HI = x̂
∑

ν

gν x̂ν + x̂2
∑

ν

g2ν
2mνω2

ν

. (2.68)

where, to simplify the notation, we have introduced the multi-index ν = (q, s) and gν spec-
ifies the coupling strength between the system and each bath oscillator mode ν. Following
the standard procedure in the literature, in Eq.(2.68) we have also included a correction
term which acts in the Hilbert space of the particle only and compensates for a renormal-
ization of the potential V (x̂, t) = m

2
W (t) x̂2 stemming from the system-reservoir coupling

[131, 197]. In this model, the reservoir spectral density, defined as

J (ω) = π
∑

ν

g2ν
2mνων

δ (ω − ων) , (2.69)

encodes all features of the environment relevant for the reduced system description [131].

Quantum Master Equation, Quasi-Stationary State and Effective Temperature

The time-dependent, dissipative quantum system described by Eqs.(2.60), (2.34), (2.67)
and (2.68), commonly referred to as parametrically driven, dissipative harmonic quantum
oscillator, has been studied in great detail previously in Ref.[131]. Within one unified Born-
Markov and Floquet framework, the authors of Ref.[131] have derived a quantum Master
equation for the electronic motion, fully taking into account the explicit time-dependence
of the system Hamiltonian HS (t).

Master equation.—By tracing out the unobserved degrees of freedom of the phonon
reservoir Kohler et al. derive an effective equation of motion for the reduced, electronic
density matrix ρ, which is irreversibly coupled to a thermal phonon reservoir [131]. In
addition to the standard assumptions of a weak system-reservoir coupling (Born approxi-
mation), and a short reservoir correlation time (Markov approximation), the analysis has
been restricted to an ohmic spectral density where J (ω) ∼ ω (which, however, may be gen-
eralized to a more general setting straight-forwardly). Under these conditions, the central
master equation can be written as

ρ̇ = − i

~

[
ĤS (t) , ρ

]
+ Lγρ, (2.70)

with

Lγρ = γ (N + 1) D

[
ĈS (t)

]
ρ+ γND

[
Ĉ†S (t)

]
ρ. (2.71)
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Here, D [c] ρ = cρc† − 1
2

{
c†c, ρ

}
is a dissipator of Lindblad form, γ denotes the effective,

incoherent damping rate due to coupling to the thermal phonon reservoir, and

N =
∑

n

c22n
ω0 + nω

ω0

n̄th (ω0 + nω) , (2.72)

with n̄th (ω) = (exp [~ω/kBT ] − 1)−1, refers to a generalized effective thermal-bath occu-
pation number. Note that Eq.(2.70) retains the periodicity of the driving and exhibits
Lindblad form. Moreover, the dissipative part of Eq.(2.70) is of the same form as for
the well-known undriven dissipative harmonic oscillator, with the Floquet shift operators
defined in Eqs.(2.56) and (2.58) replacing the usual creation and annihilation operators.
Note that in the pseudopotential limit (where c0 is much larger than all other Floquet
coefficients) the effective thermal occupation reduces to N = n̄th (ω0), that is the standard
bosonic thermal occupation at the secular frequency ω0.

The Master equation given in Eq.(2.70) is valid provided that the following conditions
are satisfied [131]: (i) First, the Markov approximation is satisfied provided that autocor-
relations of the bath (which typically decay on a timescale ∼ ~/kBT ) decay quasi instan-
taneously on the timescale of system correlations ∼ γ−1. In principle, the damping rate γ
should be replaced by the thermally enhanced rate γeff = γ (N + 1); however, we will be in-
terested mostly in the low-temperature, pseudopotential regime where γeff ≈ γ. Thus, the
Markov approximation yields the condition ~γ ≪ kBT . (ii) Second, the (weak-coupling)
Born approximation holds provided that the dissipative damping rate γ is small compared
to the relevant system’s transition frequencies, yielding the requirement γ ≪ ω0. Taking
together conditions (i) and (ii) (and setting ~ = 1 for the moment) gives the requirement

γ ≪ ω0, kBT, (2.73)

which (as shown below) comprises the regime for ground-state cooling where γ ≪ kBT ≪
ω0. (iii) Finally, when deriving Eq.(2.70), the reservoir spectral density J (ω) has been
assumed to be ohmic (i.e., J (ω) ∼ ω).

Quasi-stationary state.—Using Eq.(2.58), the (asymptotic) quasi-stationary solution
ρss (t) associated with the Master equation (2.70) is readily found to be

ρss (t) =
1

N + 1

∞∑

n=0

(
N

N + 1

)n

|n; t〉 〈n; t| , (2.74)

where |n; t〉 refer to the generalized (time-dependent) Fock states as discussed above [131].
The quasi-stationary solution ρss (t) is dark with respect to the phonon-induced dissipation,
that is Lγρss (t) = 0 for all times, and, being a mixture of the Floquet solutions |n; t〉,
evolves periodically with the period of the driving field, i.e., ρss (t+ T ) = ρss (t).

While the notion of temperature becomes ambiguous for an explicitly time-dependent
problem as considered here, in the following we will adopt the reasoning presented in
Ref.[130] and take the mean kinetic energy (defined as the quantum kinetic energy 〈p̂2(t)〉/2m,
time-averaged over one period T = 2π/ω of the fast micromotion) as our figure of merit
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for assessing the cooling-heating dynamics in more detail. To do so, let us first transform
our analysis into a frame that is moving with the electron. Formally, this transformation
is defined as ̺ = U † (t) ρU (t), with the unitary operator that satisfies

U̇ (t) = −iHS (t)U (t) . (2.75)

Then, in the corresponding interaction picture (which coincides with the Heisenberg picture
defined in Sec.2.C) the dynamics described by Eq.(2.70) reduces to a purely dissipative
master equation, ˙̺ = L̺,

˙̺ = γ (N + 1) D [A] ̺+ γND
[
A†

]
̺, (2.76)

where A
(
A†

)
refers to the time-independent annihilation (creation) operator associated

with the reference oscillator discussed in Sec.2.C. Since the Liouvillian L is time-independent,
one can easily explain the phonon-induced cooling dynamics via the eigenstates of A†A,
as defined in Sec.2.C. For simplicity, let us focus on the pseudopotential regime where
N ≈ n̄th (ω0) as discussed above; then, for sufficiently low temperatures (kBT ≪ ~ω0) the
cooling dynamics dominate over the heating processes such that, at the end of the cooling
process, we have

〈
A†A

〉
= 〈A2〉 =

〈
A†A†

〉
= 0. In this regime the expectation value for

the quantum kinetic energy reduces to

〈p̂2 (t)〉
2m

cooling−→ ~

4ω0

|u̇ (t)|2 , (2.77)

as one can readily deduce from Eq.(2.53). Averaging this expression (which still fully
accounts for the time dependence of the potential) over one micromotion period, we obtain

〈p̂2(t)〉
2m

=
~

4ω0

∑

n

|c2n|2 (ω0 + nω)2 , (2.78)

=
~ω0

4
+ ∆heat, (2.79)

where we have separated the residual kinetic zero-point motion in the ground state of the
secular reference oscillator ∼ ~ω0/4 from the non-zero heating term

∆heat =
~

4ω0

∑

n 6=0

|c2n|2 (ω0 + nω)2 , (2.80)

which may be viewed as micromotion-induced heating. While the full expression given
in Eq.(2.78) can be evaluated numerically using the well-known solutions of the Mathieu
equation (compare for example Ref.[130]), a simple estimate (for q2 ≪ 1) shows ∆heat &

~ω0/4. Therefore, in agreement with the results presented in Ref.[130] for trapped ions, we
then find 〈p̂2(t)〉/2m & ~ω0/2 for the time-averaged kinetic energy in the pseudo-potential
regime, which coincides with twice the residual kinetic zero-point motion in the ground
state of the reference oscillator.
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In conclusion, our analysis shows that micromotion does lead to some heating as com-
pared to the naive estimate based on the slow secular motion only, but (in the pseu-
dopotential regime of interest, where q2 ≪ 1) this apparent heating mechanism is strongly
suppressed and amounts to merely a factor of 2 increase only in the particle’s time-averaged
kinetic energy.

Exact Numerical Simulations and Discussion

Since the electronic dynamics described by Eq.(2.70) are purely Gaussian, an exact solution
is feasible. Therefore, in the following we will complement our analytical findings with
numerically exact simulations for the electron’s dynamics. Based on Eq.(2.70), one can
readily derive a closed dynamical equation

d

dt
v = M (t)v + C (t) , (2.81)

where v is a five-component vector comprising the first- and second-order moments, that
is v = (〈x̂〉t , 〈p̂〉t , 〈x̂2〉t , 〈p̂2〉t , 〈x̂p̂+ p̂x̂〉t)

⊤
. Since the first- and second-order moments are

decoupled, the dynamical matrix M is of block-diagonal form.
Numerical results.—As illustrated in Fig.2.3, in the regime q2 ≪ 1 we numerically find

that (i) the electronic motion can be described very well by a simple damped harmonic
oscillator with secular frequency ω0, (ii) the electronic motion is cooled by the phonon
reservoir and (iii) the Lamb-Dicke approximation is well satisfied. Let us elaborate on these
statements in some more detail: (i) When disregarding micromotion, the dynamics can
approximately be described by a simple damped harmonic oscillator with secular frequency
ω0. As shown in Fig.2.3, the effective, time-independent master equation

ρ̇ = −iω0

[
a†a, ρ

]
+ γ (n̄th (ω0) + 1) D [a] ρ+ γn̄th (ω0) D

[
a†
]
ρ, (2.82)

with a
(
a†
)

denoting the usual annihilation (creation) operators for the canonical harmonic
oscillator, captures well the most pertinent features of the electronic dynamics, provided
that q2 ≪ 1; compare the dashed orange line in Fig.2.3. (ii) As suggested by our analytical
analysis, the phonon reservoir provides an efficient cooling mechanism for the electron
provided that the host temperature is sufficiently low, that is kBT ≪ ω0. (iii) Regarding
the last statement (iii) we have numerically verified that both the expectation value for the
electron’s motion as well as the corresponding fluctuations are small compared to the SAW
wavelength λ = 2π/k, i.e., k 〈x̂〉t ≪ 1 and kσx ≪ 1 with σ2

x = 〈x̂2〉t−〈x̂〉2t . Furthermore, the
Lamb-Dicke approximation underlying the bilinear system-bath interaction Hamiltonian
[compare Eq.(2.68)] can be justified as follows: Since the effective transition frequency ω0

is much smaller than the SAW driving frequency (ω0 = εω, with ε ≪ 1), the same is

true for the relevant phonon wavenumber k0. Using the relation ω0 = v
(b)
s k0 (where v

(b)
s

refers to the speed of sound associated with some relevant bulk phonon mode), the latter

can be expressed as k0 = ε(vs/v
(b)
s )k (with vs denoting the speed of sound of the SAW

mode driven by the IDTs, as usual). Therefore, even for higher Rayleigh SAW-modes

whose speed of sound vs may exceed the lowest value of v
(b)
s , our approximate treatment of
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~ω[µeV] q = VSAW/ES ~ω0[µeV] V0[µeV] nb = V0/~ω0 a = λ/2[nm] d[nm]

207 0.5 - 0.7 37-51 31-61 0.85-1.2 180 10-100

t [µeV] U [µeV] kBT [µeV]

0.7-1.8 5-270 1-10

Table 2.2: Important (energy) scales for an exemplary setup with ES = 1meV and f =
50GHz. d denotes the distance between the screening layer and the 2DEG.

the system-bath Hamiltonian is well justified, provided that vs . v
(b)
s /ε holds. Note that

material-engineering strategies as discussed in the main text would increase vs in the same
way as v

(b)
s , providing a very good justification for our linearized Hamiltonian (2.68) since

k0 . εk.
Finally, the parameter regime of interest is summarized and discussed extensively in

Section 2.3 of the main text, while the experimental feasibility thereof is discussed in
Section 2.4.

2.D Case Study & Practical Considerations

In this Appendix we provide further details regarding several practical considerations that
are relevant for a faithful experimental realization of our proposal. First, we provide
comprehensive overview of the key quantities of our analysis and self-consistent estimates
thereof. Next, we address microwave-induced heating effects. Lastly, we discuss electron
spin decoherence effects due to (nuclear) spin noise.

Case study.—Typical parameter regimes for the key quantities of our analysis are given
in Table 2.2. The parameters are chosen self-consistently with respect to the requirements
derived in the main text, see Eq. 2.6. Note that the high-SAW frequencies lead to large
energy scales in the effective (harmonic-oscillator) problem. For comparison, ions are
typically confined in traps with harmonic-oscillator energy ~ω0 ∼ 10MHz [127]. For the
SAW velocity vs, we assume an ultra-fast PSAW mode in AlN/diamond (vs ≈ 18km/s) as
described in the main text and a corresponding effective hole mass m = 1.1m0 in the host
material GaN where the 2DEG is located.

Heating.—In order to avoid excessive heating of the effective electron temperature above
the dilution fridge temperature in the presence of RF driving, we (i) either need the heat
dissipation Wheat to be balanced by the applied cooling power Pcool (for which, in an
actual experiment, the way the sample is heat sunk is very important) and/or (ii) the heat
dissipation to be too slow to change the electron’s temperature on relevant experimental
timescales after the IDT induced driving has been turned on. In the following we argue why
the requirements (i) and (ii) can both be fulfilled under realistic conditions: (i) First, recall
that our proposal is based on low power SAWs (as a direct consequence of the limitations
imposed by Mathieu’s equation) [156]. Since the potential amplitude due to a single IDT
is limited by Mathieu-like stability arguments as VIDT = VSAW/2 = (q/2)ES . 0.5meV,
the proposed setup operates at SAW-induced amplitudes that are about two orders of
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magnitude smaller than what is common for SAW-induced electron transport experiments
(where typically VIDT ≈ 40meV [72, 157]). Based on experimental results presented in
Refs.[72, 198, 199], we find that SAW amplitudes VIDT ≈ 1meV can be reached with an
applied RF power P ≈ −10dBm(0.1mW), in the desired SAW frequency range ω/2π ≈
30GHz (as needed to enter the pseudo-potential regime), whereas high-amplitude electron
transport measurements operate at P > +10dBm(10mW) [72]. This estimate is based on
experiments with relatively wide IDTs in GaAs; therefore, the power budget P could be
further reduced (if needed) by reducing the width W of the IDTs (which is typically several
hundreds of µm long [200], i.e., much longer than necessarily required for an acoustic trap
or lattice) and/or using strongly piezoelectric materials [67, 68, 201] where the electro-
mechanical coupling efficiency is much larger than for the weakly piezoelectric material
GaAs. Heating effects as a function of the applied RF power P have been investigated
experimentally in detail in Refs.[198, 199]: Here, at a comparatively large microwave power
P = +5dBm the SAW-induced heating has been measured to be W SAW

heat ≈ 0.1mW. We
may estimate this source of heating as W SAW

heat ≈ ~ω× (VSAW/V0)
2 κ, where ~ω is the energy

of a single phonon and the second factor gives the total phonon loss rate in terms of the
phonon number Nph ≈ (VSAW/V0)

2 and the decay rate κ = ω/Q; here, V0 refers to the
amplitude associated with a single phonon [81] and Q is the quality factor associated with
the driven SAW mode. However, it has been shown in Ref.[199] that W SAW

heat accounts
for ∼ 10% of the overall heating only, due to the limited efficiency of the IDTs. While
this ratio may be improved with more sophisticated IDT designs [67, 68, 202], an overall
heating of Wheat ≈ 10W SAW

heat ≈ 1mW is still compatible with the cooling power of state-
of-the-art dilution refrigerators, which can reach Pcool = 1mW at T ≈ 100mK [203]; here,
to maximize the cooling efficiency in an actual experiment, attention should be paid to
the the specific way the sample is heat sunk. Since the proposed AL setup operates at
much lower RF power levels [P . −10dBm(0.1mW) as compared to P = +5dBm(3mW)],
the overall heat dissipation Wheat can be balanced by the applied cooling power Pcool for
the specific parameters under consideration. This finding is further supported by the
experiments presented in Refs.[198, 199], where for low-power SAWs no significant heating
above the base temperature has been observed. (ii) Second, the IDTs generating the SAWs
can be placed very far away from the center of the trap, without losing acoustic power,
thereby reducing local heat dissipation near the center of the trap due to the applied RF
power. For example, in Ref.[72] (and many similar setups) the SAW transducer has been
placed approximately 2mm away from the center of the sample. In this way, the dominant
local heating at the IDT may be suppressed efficiently, at least on timescales that are
short compared to the one set by the material-specific thermal diffusivity (which specifies
the rate of transfer of heat from the IDT to the cold center of the trap). While this
timescale is strongly material-dependent, a rough estimate for GaAs shows that it can lie
in the millisecond range (for IDTs placed ∼ 1mm away from the center of the trap), which
is much longer than any relevant experimental timescale. This reasoning is also in line
with experimental results showing that the effective temperature increase could be further
reduced when using pulsed schemes rather than CW [198]; note that this approach is fully
compatible with our discussion on optimized driving schemes. In summary, we conclude
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that for realistic cooling powers and/or IDTs placed sufficiently far away from the center
of the trap microwave induced heating effects should not lead to a significant increase of
the effective particle temperature (as compared to the base temperature) since the AL
setup is based on low amplitude SAWs with VIDT . 0.5meV, as a direct consequence of
the Mathieu-type stability arguments.

Nuclear spin noise.—The observation of coherent spin physics as outlined in Sec.2.5
may be impeded by electron spin decoherence. For GaAs-based systems, the electron spin
coherence timescale will be largely limited by the relatively strong hyperfine interaction
between the electronic spin and the nuclei in the host environment [204], resulting in a ran-
dom, slowly evolving magnetic (Overhauser) field for the electronic spin, and eventually
leading to a loss of spin coherence on a timescale ∼ T ⋆

2 . The latter depends on the number
of nuclear spins the electron effectively interacts with. Since the electron’s spatial exten-
sion ∆x/a ≈ 1/

(
π
√

2nb

)
is comparable to the typical size of gate-defined quantum dots for

realistic parameter values, we estimate T ⋆
2 ∼ 15ns [204]. Then, in the first approximation,

the detrimental effects due to Overhauser noise may be neglected provided that the condi-
tion J ≫ 1/T ⋆

2 is fulfilled, i.e., if coherent spin exchange ∼ 1/J is much faster than electron
spin dephasing. According to our estimates provided above this regime is within reach even
for GaAs-based systems, where electron spin dephasing is known to be relatively fast [204].
In this respect, even more promising estimates apply to nuclear spin free systems such as
28Si/SiGe where the influence of nuclear spins on the electron spins is largely eliminated
[205]. While such a silicon-based setup will require a more sophisticated heterostructure
including some piezoelectric layer on top (as has been studied experimentally in Ref.[121]),
it should profit from significantly prolonged dephasing times T ⋆

2 > 100µs [206]. Finally, as
argued for example in Ref.[73], Overhauser-field induced spin dephasing can be suppressed
based on motional-narrowing techniques, when moving around the acoustic dots (lattice
sites) such that the electron effectively samples many different Overhauser fields.





Chapter 3

Magnetic Traps and Lattices

3.1 Motivation

The advent of cold atoms trapped in optically defined potential landscapes has enabled
experimental breakthroughs in various discplines ranging from condensed-matter physics
to quantum information processing [208, 109]. Especially, thanks to largely tunable system
parameters and the possibility to mimic and gain understanding of complex solid-state sys-
tems, ultra-cold atomic gases have become a rich playground and valuable tool to explore
novel quantum many-body physics [108]. On a complementary route towards controllabe
quantum matter and a fully fledged quantum simulator, solid-state platforms allow to pur-
sue the same goals in a very different physical context, both bearing challenges such as to
overcome impurity-induced disorder in semiconductor systems [136], but also offering the
potential to benefit from long-range inter-particle interactions, access to a wide variety of
quasiparticles and, in principle, means to build scalable on-chip architectures for quantum
information processing. To this end, different kinds of quasiparticle traps in semiconduc-
tor nanostructures have been proposed and realized [110, 111, 114, 209, 210, 211, 212].
Likewise, in the realm of atomic [213, 214] and molecular [215, 216] systems, mesoscopic
on-chip platforms have been tailored to miniaturize experiments with ultracold quantum
matter. Apart from more established solid-state platforms like, e.g., quantum-dot based ar-
chitectures [62], it has recently been proposed [2] to employ surface acoustic waves (SAWs)
to trap and control semiconductor quasiparticles such as electrons in intrinsically scalable
and tunable acoustic lattices (see Chapter 2). The latter operate at elevated energy scales
with typical lattice spacings a & 100 nm and recoil energies ER/kB ∼ (0.1 − 1) K (where
ER = h2/(8ma2) with an effective particle mass m which is typically of the order of the
electron rest mass) as compared with optical lattices where typically ER/kB ∼ 10−7K
[217]. Inspired by these results and recent advances in the rapidly evolving field of nano-
magnetism [218, 219], i.e., the generation and control of (high-frequency) magnetic fields
on the nanoscale, the present work aims to bring the favourable scaling properties and
flexibility of optical lattices to the solid-state domain.
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3.2 Executive Summary

In contrast to electrically defined confinement potentials for charged particles in quantum
wells, the spin degree of freedom (DOF) can be addressed with magnetic field gradients
in order to trap and control particles in semiconductor nanostructures; note that this
is in close analogy to the working principle of optical dipole traps where the induced
AC Stark shift of the atomic levels gives rise to a dipole potential for the atom [220].
In previous theoretical proposals [221, 222] and experimental demonstrations [223, 224],
magnetic traps for charge carriers in low-dimensional quantum wells were induced by a
spatially inhomogeneous giant Zeeman splitting in dilute magnetic semiconductors (DMS)
[225], which feature extremely large g-factors ∼ 102. In particular, microscale magnets
[226] and current loops [227] as well as superconducting (SC) vortex lattices [222] have
been considered in this context. So far, however, none of these previous results have
yet been tailored to scalable architectures and, moreover, only static traps with limited
tunability of system parameters have been taken into account. In this work, we take a
significant next step towards tunable and scalable magnetic lattices and develop a general
theoretical framework fit to describe the latter. We show that a non-standard form of
the Hubbard model with two independently tunable hopping parameters can readily be
implemented. Ultimately, two alternative implementations of the developed model will be
discussed in detail, one based on SAWs and the other based on magnetic field gradients
generated by SC nanowires, both operated in yet unexplored parameter regimes and with
highly favourable tunability and scalability properties.

The basic scheme is depicted in Fig. 3.1. We consider electrons with two internal (spin)
states |↑〉 and |↓〉 which are confined to a conventional low-dimensional quantum well or a
purely two-dimensional material, e.g., from the group of transition-metal dichalcogenides
(TMDs), and subject to a spatially inhomogeneous magnetic driving field. Due to the
thereby induced AC Stark shift acting on the internal energy levels, the electrons feel an
effective state-dependent potential which is periodic along one axis (in the one-dimensional
setup we consider here), as illustrated in Fig. 3.1. As a result, the electrons are attracted to
a regular lattice of antiferromagnetic character, since the two internal states are found to be
trapped at nodes or antinodes of the magnetic field distribution, respectively, cf. Fig. 3.1(b).
For simplicity, we consider only one-dimensional systems, but all results can readily be
generalized to two dimensions.

This chapter is organized as follows. In Sec. 3.3, we first introduce the theoretical frame-
work to describe magnetic trapping potentials for electrons confined to a two-dimensional
electron gas (2DEG). All requirements for the validity of the theoretical treatment and rele-
vant approximations are discussed, followed by an investigation of hopping and interactions
in magnetic lattices and a detailed description of possible implementations in Sec. 3.4. Fi-
nally, we will provide case studies for both implementations with realistic parameters in
Sec. 3.5.
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3.3 Theoretical Framework

Single-particle physics in magnetic traps

We consider an electron confined to a 2DEG with effective mass m and the two internal
states |↑〉 and |↓〉 exposed to an external magnetic field, B(r, t) = B⊥(r, ωt) + B||. The
spatially homogeneous, static (in-plane) part of the field, B|| = B0ẑ, gives rise to a Zeeman
splitting, ~ω0 = gsµBB0, and the inhomogeneous (time-dependent or time-independent)
(out-of-plane) field component, B⊥(r, ωt) = B1Λ(r) cos(ωt)x̂, drives spin transitions with
frequency ω. The corresponding Hamiltonian can be written as (here and in the following,
we adopt the convention that ~ = 1)

H =
p̂2

2m
+ h(ẑ) =

p̂2

2m
+
ω0

2
σz +

Ω(ẑ)

2
cos(ωt)σx, (3.1)

where ẑ, p̂, σx = |↑〉 〈↓| + |↓〉 〈↑|, σz = |↑〉 〈↑| − |↓〉 〈↓| denote the particle’s position,
momentum and Pauli spin operators, respectively. The inhomogeneous Rabi frequency is
denoted by Ω(ẑ) = Ω0Λ(ẑ) with Ω0 = γB1, where γ = gsµB is the gyromagnetic ratio of the
electron. We assume Λ(ẑ) = cos(kẑ) in the following, where k denotes the wavevector, but
more general periodic functions can be considered. While the universality of this model
will become more apparent later, especially when we consider different implementations in
Sec. 3.4, we may already distinguish between two physically dissimilar cases both captured
by Eq. (3.1): (i) static traps (ω = 0) are time-independent and (ii) dynamic traps (ω > 0)
are explicitly time-dependent realizations of the model. Due to their intrinsic flexibility
and in-situ tunability of system parameters, we put the main focus on dynamic magnetic
traps, i.e., ω > 0.

Within a co-rotating frame and rotating-wave approximation (RWA) for |∆| = |ω0 −
ω| ≪ ω0 + ω and Ω0 ≪ ω, the time-independent internal model hRWA(ẑ) = [∆/2]σz +
[Ω(ẑ)/2]σx can be diagonalized exactly which yields the local eigenenergies ±ε(ẑ) with
ε(ẑ) = 1

2

√
Ω2(ẑ) + ∆2 and position-dependent eigenstates,

|+〉θ(ẑ) = cos
θ(ẑ)

2
|↑〉 + sin

θ(ẑ)

2
|↓〉 ,

|−〉θ(ẑ) = − sin
θ(ẑ)

2
|↑〉 + cos

θ(ẑ)

2
|↓〉 ,

where θ(ẑ) = arcsin[ Ω(ẑ)√
Ω2(ẑ)+∆2

]. The trap depth of the effective potentials ±ε(ẑ), which is

given by the difference |max
z

ε(ẑ)−min
z
ε(ẑ)|, depends only on Ω0 and ∆ and will be denoted

by V0 in the following [see Fig. 3.1]. In the limit Ω0 ≪ |∆|, the standard result from second-
order perturbation theory, ε(ẑ) ≈ |∆|/2 + Ω2

0Λ
2(ẑ)/(4|∆|), can be recovered. Note that

the periodic modulation of the internal energy levels |±〉θ(ẑ) amounts to a state-dependent
potential for the motional DOF such that the states are trapped at nodes and antinodes
of the driving field, respectively. As a consequence, magnetic trapping potentials for the
two spin components are shifted with respect to one another, as illustrated in Fig. 3.1(b).
In fact, this result is reminiscent of state-dependent optical lattices which can be enriched
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|↓〉

|↑〉 |+〉

|−〉

∆

Ω(r)
ω0

(a)

∼ Ω(r)2

∆

(b)

Figure 3.1: (color online). Schematic illustration of the trapping scheme and magnetic
lattice. (a) At each point, the two-level spin systems experience an AC Stark shift which
defines an effective (state-dependent) potential landscape for the electrons. (b) The local
eigenenergies ±ε(ẑ) of the two spin components |+〉θ(ẑ) and |−〉θ(ẑ) are shifted with respect
to each other. The energies +ε(ẑ) (dashed) and −ε(ẑ) (solid) are shown for ∆/Ω0 = 10
(blue), ∆/Ω0 = 1 (black) and ∆/Ω0 = 0 (red) in units of Ω0. The hopping matrix elements
tc and t± denote next-nearest neighbour spin-conserved and nearest-neighbour spin-flip
assisted tunneling, respectively. V0 denotes the trap depth.

by laser-assisted tunneling between internal atomic states [162, 228], whereby gauge fields
for ultracold atoms can be generated [229, 230, 231, 232].

Note that, in the realm of the RWA introduced before, the Rabi frequency Ω0 is limited
to relatively small values, as compared to other relevant energy scales. This limitation can
be overcome, to some extent, by deriving an effective Floquet Hamiltonian without RWA,
see Appendix 3.A for details.

Until now, we have not explicitly taken into account the presence of the kinetic term,
p̂2/(2m), in Eq. (3.1). Its presence induces a coupling between the local spin eigenstates
|±〉θ(ẑ) and, as a consequence, undesired spin flips may result in particle loss from the trap
[233]. In order to quantify this effect, it is instructive to introduce a unitary transformation
U(ẑ) which diagonalizes hRWA(ẑ) at each point, such that |+〉θ(ẑ) = U(ẑ) |↑〉 (|−〉θ(ẑ) =

U(ẑ) |↓〉). The thereby transformed Hamiltonian, H̃ = U †[ p2

2m
+hRWA(ẑ)]U = p̂2/2m+h̃(ẑ)+

∆T , contains the kinetic term from Eq. (3.1), the diagonal (in the local eigenbasis spanned
by |+〉θ(ẑ) and |−〉θ(ẑ)) spin Hamiltonian h̃ = U †hRWAU and an additional term ∆T , which
stems from the transformation of the kinetic term, see Appendix 3.B for details. If the
latter contributes only a small correction to the system’s characteristic energy scale set by
the motional quantum ωHO, the internal spin DOF follows adiabatically the local direction
of the magnetic field and the contribution from ∆T can be safely neglected. For this
adiabatic approximation (also refered to as Born-Oppenheimer approximation) to hold, the
local eigenstates of the two-level system spanned by |+〉θ(ẑ) and |−〉θ(ẑ) must be sufficiently
separated in energy. If this energy gap by far exceeds ωHO, i.e. χ := ωHO/|∆| ≪ 1, spin-flip
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processes are typically negligible [233].

Requirements.—Following the line of arguments outlined above, we have implicitly made
a few assumptions about the system parameters which we are going to summarize in the
following: (i) We have assumed idealized two-level spin systems with well-resolved en-
ergy levels and thus a relatively small intrinsic linewidth Γ ≪ |∆|. (ii) We require a
weak electron-phonon coupling, i.e., the spontaneous phonon emission rate γ which quan-
tifies motional damping of the electron must be small compared to all other characteristic
system’s time scales; explicitly, we demand that it should be smaller than the motional
transition frequencies, i.e., γ ≪ ωHO. (iii) In order to obtain thermally robust traps and
minimize particle loss from the trap, we need thermal energies kBT ≪ V0 (where kB de-
notes the Boltzmann constant). Typically, in case ground-state cooling is desired, this
requirement is replaced by the stronger condition kBT ≪ ωHO. (With at least one bound
state, nb = V0/ωHO ≥ 1, supported by the trap, the latter condition is more restrictive.)
(iv) The magnetic trap depth V0 is either much smaller than Ω0, i.e. V0 = Ω2

0/(4|∆|)
in the perturbative regime Ω0 ≪ |∆|, or approaches V0 → Ω0/2 in the opposite limit
|∆|/Ω0 → 0; however, in both cases V0 is limited from above by Ω0/2. In terms of other
relevant physical parameters contained in Ω0 = γB1, this means that strong magnetic
radio-frequency (RF) fields ∼ B1 and large g-factors are favourable. (v) The Rabi fre-
quency Ω0, in turn, is typically much smaller than the driving frequency within the RWA,
Ω0 ≪ ω, but this condition can be relaxed as mentioned earlier. However, for too large
Ω0, even the high-frequency expansion of the Floquet Hamiltonian fails to converge. For
our purposes, we therefore demand Ω0 < ω. (vi) Finally, introducing the small number
εad = V0/ω . 0.5, the adiabaticity condition χ ≪ 1 can be rewritten as ω ≪ nb|∆|/εad.
However, this condition may be relaxed at the cost of higher loss rates. The Majorana loss
rate Γloss, compared to the natural frequency scale ωHO of the trap, can be estimated as
η := Γloss/ωHO ≈ 2π exp (−4/χ) [233] (compare also Ref. [234] for a related description of
non-adiabatic spin-flips in radio-frequency dressed magnetic traps for cold atoms); deep in
the adiabatic regime with χ = 0.1, spin-flip losses are negligible as η ∼ 10−17, but even
for moderate values χ = 0.5 (χ = 1), the loss rates are relatively small with η ≈ 2 · 10−3

(η ≈ 1.2 · 10−1). Hence, the adiabaticity condition may be relaxed in order to obtain
well-performing traps. Putting these findings together results in a concise list of necessary
requirements and, in general, without resorting to the RWA or the perturbative regime
where Ω0 ≪ |∆|, we find:

γ, kBT ≪ ωHO . V0 . Ω0/2 . ω/2. (3.2)

In order to obtain reliable magnetic traps, both implementations discussed in Sec. 3.4 need
to be operated in a parameter regime where Eq. (3.2) is fulfilled and η is sufficiently small.

Engineering of Hubbard models

Based on the theoretical framework fit to describe single traps as worked out above, the
following paragraphs are dedicated to the study of Fermi-Hubbard physics in magnetic
lattices, i.e., periodic arrays of magnetic traps. Explicitly, we show that spin-dependent
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forms of the Hubbard model with independently tunable hopping parameters tc and t±
can be realized with the aid of additional driving fields [see Appendix 3.C for more de-
tails] in the fashion of zigzag optical lattices for cold atoms [235, 236]. Here and in the
following, tc denotes spin-conserved next-nearest neighbour coherent tunneling processes
and t± describes spin flip-assisted tunneling between adjacent lattice sites, cf. Fig. 3.1(b).
Another genuine prospect is the operation in a low-temperature, strong-interaction regime
(at dilution-fridge temperatures T ≈ (10 − 100) mK) where the thermal energy is much
smaller than the hopping parameters tc, t± which, in turn, are small compared to the
on-site interaction strength U , i.e., kBT ≪ tc, t± < U .

As a starting point, we consider the single-particle Hamiltonian H̃ within the adiabatic
approximation which can be written as

H̃ ≈ p̂2

2m
+ h̃(ẑ) =

p̂2

2m
+ ε(ẑ)σ̃z, (3.3)

with σ̃z = |+〉〈+| − |−〉〈−|. In a next step, we now consider an ensemble of electrons in
a magnetic lattice. At sufficiently low temperatures (kBT ≪ ωHO) such that the electrons
are confined to the lowest Bloch band, we find that the system is characterized by a Fermi-
Hubbard model of the form [120]

HFH = −tc
∑

〈〈i,j〉〉,s
(c†iscjs + h.c.) − ε

∑

is

(−1)inis

+
∑

i

µini +
∑

s,s′

∑

ijkl

Uijklc
†
is′c
†
jsclscks′ , (3.4)

where the fermionic operator c
(†)
is annihilates (creates) an electron with spin s = +,− at

lattice site i, nis = c†iscis and ni = ni++ni− are the spin-resolved and total occupation num-
bers, respectively. The summation over 〈〈·, ·〉〉 is performed for next-nearest neighbours
(accordingly, 〈·, ·〉 in Eq. (3.5) denotes a summation over neighbouring sites). Uijkl =∫

dzdz′w∗i (z′)w∗j (z)UC(z, z′)wk(z)wl(z
′) quantifies the inter-particle interaction strength

(U = Uiiii denotes the on-site interaction strength), where wi is a Wannier basis func-
tion which is typically strongly localized around the respective lattice i. Typically, it is
inversely proportional to the lattice constant a, depends on the dielectric constant ǫ of
the substrate and can be reduced with the aid of an additional metallic screening layer
positioned at a distance dscr from the 2DEG. The screened Coulomb interaction can be
written as UC = e2fs(z, z

′)/(4πǫ|z − z′|), where fs = 1 − |z − z′|/
√

(z − z′)2 + 4d2scr in-
corporates screening [120, 237]. In Eq. (3.4) the spin-dependent energy offset ∼ ε [see
Fig. 3.1] incorporates the remnant of the Zeeman splitting (in the rotating frame) and
the AC Stark shifts. Moreover, the site-dependent chemical potential µi can take disorder
effects into account [2]. In the tight-binding limit where the potential is sufficiently deep,
i.e., ER ≪ V0 (with the recoil energy ER = k2/2m), the hopping parameter is approx-
imately given by tc/ER ≈ (4/

√
π)(V0/ER)3/4 exp[−2

√
V0/ER] [108]. Realistic parameter

values [see below for details] suggest that the low-temperature, strong-interaction regime
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Figure 3.2: (color online). Overview of log trat as a function of Ωdr/Ω0 and Ω0/∆. The
contour lines depict parameter constellations of equal trat: trat = 10 (dash-dotted), trat = 1
(solid), trat = 0.1 (dashed). Other parameters: nb = 1.

U ≈ 10tc ≫ tc ≫ kBT ≈ 1µeV lies within reach with state-of-the-art experimental tech-
niques.

As illustrated in Fig. 3.1(b), the standing-wave field distribution, as described by
Eq. (3.1), gives rise to spatially separated traps for the different spin components. Hence,
adjacent potential minima host two different spin states |+〉θ(ẑ) and |−〉θ(ẑ), respectively.
As a consequence, spin-flip assisted tunneling ∼ t± between neighbouring lattice sites is
strongly suppressed, whereas next-nearest neighbours, occupying the same internal state,
are coupled much more strongly via direct tunneling ∼ tc, as captured by Eq. (3.4). In or-
der to control these hopping matrix elements independently, we consider the application of
an additional magnetic driving field at frequency ω2 6= ω which effectively couples different
spin states (at adjacent lattice sites), thus increasing the hopping parameter t± and at the
same time also the ratio trat := t±/tc. As outlined in Appendix 3.C, this introduces a sec-
ond hopping term to the Fermi-Hubbard model in Eq. (3.4) and the resulting Hamiltonian
can be written in a suitable co-rotating frame as

HFH2 = −tc
∑

〈〈i,j〉〉,s
(c†iscjs + h.c.) − t±

∑

〈i,j〉,s
(c†iscjs̄ + h.c.)

+
∑

i

µini +
∑

s,s′

∑

ijkl

Uijklc
†
is′c
†
jsclscks′ , (3.5)

where s and s̄ denote opposite spins (i.e., s = +, s̄ = − or vice versa).
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The additional transverse driving field of strength ∼ Ωdr has to be sufficiently small
in order to be considered a perturbation to the magnetic-lattice Hamiltonian in Eq. (3.3);
more precisely, we demand Ωdr ≪ Ω0. In general, the time-dependence and exact form of
this spatially homogeneous field can be derived and reverse-engineered from the desired
Hamiltonian in the adiabatic frame, see Appendix 3.C for further details. Since, in the
tight-binding regime, next-nearest neighbour hopping is exponentially suppressed, weak
driving fields Ωdr/Ω0 ≪ 1 are sufficient to reach situations where t± & tc and, typically, for
moderate driving strengths direct tunneling processes ∼ tc can be safely neglected [162].
In Fig. 3.2, it is shown how the ratio trat is affected by sweeping Ωdr/Ω0 and Ω0/∆, while
keeping the number of bound states nb ≈

√
V0/(4ER) at a constant value. Evidently,

smaller driving fields Ωdr lead to smaller t±. Moreover, at small Ω0/∆ ≪ 1 (i.e. deep in the
perturbative regime), trat tends to decrease with increasing Ω0/∆. By choosing adequate
driving fields, the tunneling matrix elements tc and t± can thereby be independently tuned
over a relatively wide range.

Spin-orbit interaction.—In the presence of strong spin-orbit interaction (SOI), transi-
tions between different spin states at adjacent lattices sites can be induced (eventually, for
strong enough SOI, without any external driving field) such that the Hubbard model in
Eq. (3.4) may contain additional SOI-induced hopping terms. Specifically, SOI-induced

hopping parameters can be estimated as tλ±/ER ≈ λ
√
V0ERπ

2/a exp
(
−π2/16

√
V0/ER

)
,

where λ = αR, βD denotes the Rashba and Dresselhaus coupling strengths, respectively.
For realistic parameter values, this may give rise to tλ±/tc & 1 such that nearest and next-
nearest neighbour hopping terms become comparable, see Sec. 3.5 for further details. Both
the Rashba and Dresselhaus SOI strengths depend on the orientation of the lattice in the
host material and can thereby induce anisotropic hopping. This gives access to a wider
class of Hubbard models than those captured by Eq. (3.5).

3.4 Implementation: How to Meet the Requirements

In the following, we propose two experimental setups for the realization of our model. First,
we consider magnetic field gradients provided by a classical current source as an example
for a setup which can be operated both in a static (ω = 0; compare Eq. (3.1)) or dynamic
(ω > 0) mode. Subsequently, we will discuss a purely dynamic (i.e., always ω > 0) setup
based on surface acoustic waves.

Superconducting circuit

As a first example for a realization of our model as described by Eq. (3.1), we consider SC
circuits operating at GHz frequencies. The electrons are confined in a 2DEG at a distance
d from a current-carrying wire, which is located above the surface. For our purposes, SC
circuits and circuit resonators are attractive because of their capability to generate AC
magnetic fields by carrying relatively large currents and the possibility to integrate them
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in semiconductor nanostructures [239, 240]. In a simple toy model, we describe the circuit
by a meandering wire carrying an AC current ∼ I0 cos(ωt) through parallel sections of
the wire separated by a lattice constant a, see Fig. 3.3(a) for an illustration of the setup.
Note that, in principle, this setup can also be operated in the static regime (ω = 0)
when DC currents and, thus, time-independent fields are considered. The classical electric
current density J induces a magnetic field which is calculated using the Biot-Savart law,
see Fig. 3.3(b) for an exemplary field distribution as induced by a current source at fixed
positions r = (0 < x < a, y = 0, 23.5 < z/a < 26.5) [242].

Here, we consider only one-dimensional trapping potentials in which the electrons are
confined to a one-dimensional channel such that the y motional DOF is frozen out. Fur-
thermore, we assume that the spatial extension of the meandering wire exceeds the size of
the trapping region within the 2DEG, such that finite-size effects of the induced magnetic
field can be neglected. This simplifies the mathematical description and we obtain the
AC magnetic field distribution BAC(r, t) = Ω(r) cos(ωt)x̂ for a given wire geometry by
summing up the induced fields of all parallel wire segments, see Fig. 3.3 [for details, cf. Ap-
pendix 3.D]. In the presence of an additional static homogeneous field Bext = Bextẑ, the
resulting Hamiltonian, H(t) = p̂2/(2m) + γ(BAC(r̂, t) + Bext) · σ, approximately coincides
with our model in Eq. (3.1), where we can identify ω0 = γBext and the amplitude Ω0 of
the Rabi frequency is given by

Ω0 = γ
µ0I0d

πa2

∑

n∈N0

(−1)n

(n+ 1
2
)2 +

(
d
a

)2 . (3.6)

2DEG

x

y
z

J(t)

a

d

(b)(a)

Figure 3.3: (color online). (a) Sketch of the meandering-wire setup. A current provides a
magnetic field as described by the Biot-Savart law. At a distance x = d from the surface,
the two-dimensional electron gas is located (see text). (b) Magnetic field distribution for
an example of a meandering nanowire that consists of N = 50 parallel wires which are
separated by the lattice constant a = 1 µm. The vector field BAC(r, t = 0) is shown and
its scalar field |BAC| is plotted on a logarithmic scale. Magnetic field strenghts of the order
of B1 ∼ (10 − 50) mT are obtained in the proximity (x . 0.6a = 600 nm) of the wire.
Other numerical parameters: I0 = 70 mA at a current density Jc = 30 MA/cm2 [241] and
wire dimensions of 480 nm x 480 nm.
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Eq. (3.6) becomes exact in the limit of an infinitely long wire and it converges to the
numerically exact result in the limit of a long wire and in the center region below the
wire [see App. 3.D for further details]; for all practical purposes, it yields sufficiently exact
results for typical resonator geometries. The exact spatial pattern of the Rabi frequency
Ω(ẑ) depends on both the geometry of the resonator and the ratio d/a. Neglecting finite-
size effects and for a perfectly periodic resonator geometry, the Rabi frequency can be
approximately written as Ω(ẑ) = Ω0 cos(πẑ/a+ φ), see Appendix 3.D for further details.

Let us conclude the description of the proposed setup with a few general remarks.
Firstly, we note that the calculation of the Hamiltonian results in an additional time-
dependent term ∝ σz which we have neglected here and which is typically very small
compared to the time-independent contribution from Bext, see Appendix 3.D for more in-
formation. Secondly, the calculated RF field strength B1 ≈ (10 − 50) mT [see Fig. 3.3(b)]
at a given distance d . 0.6a and given current intensity I0 = 70 mA from the surface ranges
from realistic to very optimistic values. The highest given values can only be obtained in
close proximity to the surface. Moreover, the critical current density Jc = 30 MA/cm2

[241] used in our calculations is optimistic because high (∼ GHz) frequencies and strong
(∼ T) in-plane magnetic fields might reduce this value. However, especially the frequency
dependence of Jc is still a current topic of research and, as noted earlier, the proposed
setup may also be operated at ω = 0, i.e., with DC currents. For g-factors ∼ 15 (e.g.,
in InAs-based quantum wells), the given range of field strengths amounts to trap depths
V0 . (4 − 22) µeV = kB · (46 − 255) mK. An explicit case study for specific material
parameters follows in Sec. 3.5, where we check when the requirements set by Eq. (3.2) can
be fulfilled. Finally, we stress that the relevant system parameters from Eq. (3.2) do not
depend on the material choice (except for the g-factor of the quantum well) and due to
its simplicity, the setup can, in principle, readily be implemented in an experiment. While
the trap depth V0 is tunable, the geometry is predefined in this setup, and therefore the
lattice constant a (thus also the ratio d/a) is fixed. In the following, we will discuss an
implementation which overcomes this limitation by construction, allowing for more widely
tunable system parameters and lattice geometries.

Surface acoustic waves

As a second implementation, we discuss time-dependent (ω > 0) magnetic field gradients
induced by SAWs. In piezomagnetic materials which exhibit a significant (inverse) magne-
tostrictive effect, mechanical and magnetic DOFs are coupled which can be captured by the
constitutive relations for magnetostriction, cf. Appendix 3.E. Specifically, the magnization
m of a sample with non-zero magnetoelastic coupling changes due to mechanical stress
applied to the material, which is described by a stress tensor T .

We consider a ferromagnetic film of thickness δ deposited on top of a SAW-carrying
substrate, where the surface waves generate RF strain fields which, in turn, can induce
magnetization dynamics in the ferromagnet and may thus provide strong time-dependent
magnetic stray fields; for related experimental works, see Refs. [219, 243]. This setup is
schematically shown in Fig. 3.4(a). Two counter-propagating SAWs, which can be launched
from interdigital transducers (IDTs) patterned on top of the material, generate a standing-
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Figure 3.4: (a) Sketch of the SAW-based setup with a ferromagnetic film above the sur-
face. Two counter-propagating SAWs generate standing-wave mechanical and magnetic
field distributions. (b) Magnetic field strength B1 as a function of distance x from the
ferromagnetic film and SAW frequency f . The contour lines indicate the regions where
kBT = 1µeV ≪ γB1/2 ≪ 2πf [see Eq. (3.2)] can be fulfilled for different g-factors: gs = 2
(dash-dotted lines), gs = 15 (solid lines), gs = 70 (dashed lines). Other numerical param-
eters: Speed of sound vs = 3500 m/s, film thickness δ = 25 nm, saturation magnetization
µ0|ms| = 1.8 T , strain amplitude εxx = 2·10−4, damping constant α = 0.01, magnetoelastic
constant h = 10 T , g-factor of the ferromagnetic film gs,FM = 2.1.

wave pattern of both the mechanical field and induced spin wave, introducing a periodicity
which defines the lattice constant a = λ/2 where λ is the SAW wavelength; the dispersion
relation of the SAW, ω = 2πf = kvs, yields λ = vs/f , where vs denotes the speed of sound
in the host material. This results in a spatially and time-periodic magnetic field as needed
for the realization of Eq. (3.1). The coupled equations of motion for the (i) mechanical
and (ii) magnetic field distributions can be described by (i) ρüi = ∂Tij/∂zj, where ρ and
u(x, t) denote the mass density and the mechanical displacement vector, respectively, with
the displacement ui along the coordinate ẑi (= x̂, ŷ, ẑ) and (ii) the Landau-Lifshitz-Gilbert
(LLG) equation, respectively. The latter describes the motion of the unitless magnetization
direction m due to an effective magnetic field Heff and reads [244, 245]

∂m

∂t
= −γm× µ0Heff + αm× ∂m

∂t
, (3.7)

where µ0 and α denote the magnetic constant and phenomenological Gilbert damping
parameter, respectively, and Heff accounts for the SAW-induced magnetic field.

Given the effective magnetic field Heff at the ferromagnetic film (x = 0) which is
calculated from Eq. (3.7), we estimate the stray field at the 2DEG, see Appendix 3.E for
details. The accessible range of field strenghts B1 strongly depends on the specific material-
dependent parameters, i.e., the saturation magnetization ms, the damping parameter α,
the g-factor gs,FM and magnetoelastic constant h of the film and, moreover, the amplitude
of the SAW-induced strain field. The latter is technically limited due to undesired heating
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effects at too large amplitudes. Fig. 3.4(b) shows the RF field strength B1 as a function of
distance x from the ferromagnetic film and SAW frequency f . The numerical parameters
are chosen such that they can be implemented in state-of-the-art experiments [see caption
of Fig. 3.4]; note that even much higher strain amplitudes [246], magnetoelastic constants
[243] and lower damping constants [247] have been realized in experiment, which renders
our chosen set of parameters very realistic. As a result, we obtain strong driving fields
B1 ≈ (10−100) mT at given distance x = (0.1−0.5)a from the film which amounts to trap
depths V0 . (4−43) µeV at gs ∼ 15. However, for increasing frequencies f ∼ (10−50) GHz,
the field strength decreases at fixed distance x. Hence, the lattice constant cannot be
made arbitrarily small. In Sec. 3.5, we provide an overview of realistic parameter regimes
(specifically, with a focus on Eq. (3.2)) based on the derived driving fields.

Strain-induced acoustic traps.—So far, we have neglected strain-induced deformation
potentials and electric-field components generated in a piezoelectric host material. In
principle, these electric fields couple to the motional DOF of a charged particle and thereby
induced time-dependent electric potentials can either constitute stable traps or, if the
driving amplitude of the electric field becomes too large, destabilize the motion of the
electron [2]. In order to take both the electric and magnetic field-induced couplings to
the external and internal DOFs into account, we extend our previous analysis to the more
general model

Hhyb =
p̂2

2m
+ VSAW cos(kẑ) cos(ωt)

+
ω0

2
σz +

Ω0

2
cos(kẑ) cos(ωt)σx, (3.8)

which contains a kinetic term, a time-dependent strain-induced potential of amplitude
VSAW and the remaining terms from the Hamiltonian in Eq. (3.1). Following the procedure
outlined in Refs. [128, 129], we derive an effective time-independent Hamiltonian for the
hybrid (strain-induced and magnetic) lattice by performing a high-frequency expansion of
Eq. (3.8) in 1/ω. Starting from Eq. (3.8), we obtain an effective model of the form

Heff
hyb =

p̂2

2m
+

|∆|
2
σ̃z +

[
V 2
SAW

8ES

− Ω2
0

4|∆| σ̃
z

]
sin2(kẑ), (3.9)

with ES = mv2s/2. This result can be self-consistently verified in the limit Ω0/|∆|, V 2
SAW/(8E

2
S) ≪

1. The second term in Eq. (3.9) describes a spin-dependent energy offset [compare Fig. 3.1]
and the third term is a spin-dependent effective potential.

From Eq. (3.9), by projecting onto the adiabatic eigenstates |+〉θ(ẑ) and |−〉θ(ẑ), re-

spectively, we obtain the spin-dependent potential amplitudes, i.e., V −0 = Ω2
0/(4|∆|) +

V 2
SAW/(8ES) and V +

0 = |Ω2
0/(4|∆|)− V 2

SAW/(8ES)|. We can deduce that strain-induced and
magnetic potentials add up constructively (destructively) for the |−〉θ(ẑ) (|+〉θ(ẑ)) adiabatic
potential. In Fig. 3.5 the effective trap depths for both spin components are shown as a
function of Ω0 and VSAW. Since the strain-induced deformation potential is typically very
weak [81, 110, 248], we consider the strain-induced potential ∼ VSAW to become important



3.5 Case Studies 75

(a) (b)

Figure 3.5: Spin-dependent trap depth of effective potential as given by Eq. (3.9) plotted
as a function of Rabi frequency Ω0 and strain-induced potential amplitude VSAW for fixed
Ω0/|∆| = 0.3 and VSAW/ES = 0.3. (a) Effective trap depth of hybrid trap for the s = −
spin component. The magnetic and strain-induced potentials add up and the effective
potential becomes deeper if either the magnetic or strain contribution is increased. (b)
Effective trap depth of hybrid trap for the s = + spin component. The magnetic and
strain-induced potentials have different signs. At VSAW = 2Ω0, the two potentials cancel
each other.

only in piezoelectric materials. However, since the magnetic traps operate at relatively
high strain amplitudes, in piezoelectric materials this contribution will typically not be
negligible and also depends on the orientation of the magnetic lattice with respect to the
crystalline structure of the piezoelectric host medium. More details on the derivation
of Eq. (3.9) and a stability analysis of the time-dependent model Hamiltonian given in
Eq. (3.8) can be found in Appendix 3.E.

3.5 Case Studies

Faithful implementation of magnetic traps.—As outlined above, a faithful implementation
of magnetic traps is only possible if Eq. (3.2) can be fulfilled. This can be achieved in
state-of-the-art experiments, e.g., in the setups discussed in Sec. 3.4, as we outline in the
following: (i) The spontaneous phonon emission rate can be as low as γ ∼ 0.3 µeV in
InAs-based setups [249] and similar values are expected for InSb-based setups [250]. Even
for much higher emission rates, the regime γ ≪ ωHO can still be reached and, typically,
kBT ≈ (1 − 10) µeV ≪ ωHO imposes a stronger constraint on the minmum energy ωHO.
(ii) Based on the results shown in Figs. 3.3 and 3.4, Table 3.1 gives an overview of realistic
Rabi frequencies Ω0 in both described setups for different host materials [251]. Since
the trap depth V0 . Ω0/2 is limited from above by half of the Rabi frequency Ω0, it is
evident that relatively low-gs materials, like, e.g., GaAs, do not prove to be promising
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host material |gs| Ωwire
0 [µeV] ΩSAW

0 [µeV]

GaAs 0.44 ∼ (0.3 − 1.3) ∼ (1.3 − 2.5)
InAs 14.9 ∼ (8.6 − 43) ∼ (43 − 86)
InSb ∼ 70 ∼ (41 − 200) ∼ (200 − 410)
DMS ∼ (102 − 103) ∼ (58 − 2900) ∼ (290 − 5800)
MoS2 2.21 ∼ (1.3 − 6.4) ∼ (6.4 − 13)
WS2 2.84 ∼ (1.6 − 8.2) ∼ (8.2 − 16)

Table 3.1: Estimates for achievable Rabi frequencies in both the nanowire and SAW
setups. The table shows Rabi frequencies based on both state-of-the-art (Bwire

1 = 10mT,
BSAW

1 = 50mT) and more optimistic (Bwire
1 = 50mT, BSAW

1 = 100mT) maximum driving
field strengths [compare Figs. 3.3 and 3.4].

candidates for magnetic trapping as described in Sec. 3.3 since, in particular, the condition
kBT ≪ V0 . Ω0/2 from Eq. (3.2) cannot be fulfilled easily. Assuming thermal energies
kBT ≈ (1−10) µeV, a comparison with the data shown in Table 3.1 suggests that a faithful
implementation of magnetic traps should be feasible with state-of-the-art experiments using
materials with moderate (e.g., TMDs like MoS2 or WS2) to relatively high g-factors |gs| &
15 (as can be found, e.g., in III-V semiconductors like InAs or InSb). Only then, thermal
stability as required by Eq. (3.2) can be guaranteed. (iii) Given that trap depths of the
order of V0 ∼ 100 µeV may be reached in SAW-based setups at |gs| & 15, the requirements
kBT ≪ ωHO . V0 < ω/2 can be fulfilled at oscillator frequencies ωHO & 5 µeV (& 7.5 GHz).
In this parameter regime, accordingly, the trap can support a couple of bound states
nb ≈ 1 − 5. (iv) Moreover, as discussed in detail in Sec. 3.3, high driving frequencies f =
ω/(2π) & 10 GHz are another important bottleneck towards the experimental realization of
reliable magnetic traps; these can be provided by both the proposed nanowire and SAW-
based setups, as has been experimentally demonstrated, reaching ultra-high frequencies
f ≈ 25 GHz (ω ≈ 103 µeV) [119]. Using existing technology, as indicated, e.g., by the
solid lines in Fig. 3.4, experiments could therefore be operated in a regime where Ω0 . ω
(and even the more demanding requirement (within RWA) Ω0 ≪ ω) is clearly fulfilled.
(v) 2DEGs in InAs-based quantum wells can have a long mean-free path of the order of a
few µm [252, 253] which is much larger than a lattice spacing of a few hundred nm. This
provides optimism that disorder may not become too large in some of the high g-factor
materials considered here, cf. also Ref. [2] for a more detailed discussion on the role of
disorder in related systems.

Parameter regimes for Fermi-Hubbard physics in magnetic lattices.—Typical tunneling
rates tc in magnetic lattices (as described in Sec. 3.3) can reach values of a couple of µeV
as discussed below. By sufficiently screening the Coulomb interaction, e.g., with the aid
of a metallic screening layer [120], we may enter a parameter regime where both tc ≫
kBT and U ≈ 10tc can be reached simultaneously which itself is interesting for studying
phenomena of quantum magnetism [108]. Furthermore, we introduced in Sec. 3.3 the
possibility to enrich the standard Fermi-Hubbard model, typically including only tunneling
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processes between adjacent lattice sites, by the application of additional driving fields [see
also Appendix 3.C], thus allowing for independent tuneability of the hopping parameters
tc and t±. Weak driving fields Ωdr ≪ Ω0 already give access to all the different regimes
t± ≪ tc, t± ≈ tc and t± ≫ tc.

For SOI-induced hopping process ∼ tλ±, we estimate that tλ± ∼ 50 µeV can be reached at
lattice spacings of a few 100 nm in InAlAs/InGaAs quantum wells where the Dresselhaus
SOI is mostly negligible [254] and the Rashba parameter is given by αR ≈ 104 m/s [255].
Note that this value depends very strongly on the host material and, naturally, in some
materials both the Rashba and Dresselhaus couplings become important which can induce
significant anisotropies [110]. Most notably, this shows that the parameter regime tλ± & tc
is accessible and the next-nearest neighbour tunneling processes may become important
even without the application of any additional driving fields.

Within our tight-binding model where we consider the limit V0 ≫ ER, ωHO is typically
of the order of a few recoil energies [108]. Considering, e.g., InAs or InSb as host materials,
the effective electron mass becomes relatively small, i.e., mInAs = 0.023m0 and mInSb =
0.014m0, both expressed in terms of the electron’s rest mass m0 [256]. Then, only relatively
large lattice spacings a & 1 µm give rise to small recoil energies ER ≪ V0. In turn, much
smaller lattice spacings a & 300 nm can be self-consistently achieved in TMD-based setups,
where, e.g., mMoSe2 = 0.67m0.

Spin relaxation and dephasing.—The specific value for the spin relaxation time T1 is
material-dependent. Generically, however, T1 can be very long (T1 ∼ 10 ms), as is well
known from spin relaxation measurements in quantum dots [257, 258]. Therefore, on the
relevant timescales considered here, spin relaxation can be largely neglected, allowing for
the faithful realization of spinful (two-species) magnetic lattices. Only in the presence of
very strong magnetic fields, care must be taken to avoid too fast spin relaxation, since
1/T1 ∼ B5

0 [259]. Conversely, spin dephasing times ∼ T ⋆
2 tend to be much shorter than T1.

In InAs [260] and InSb [261], e.g., values of T ⋆
2 ∼ 10 ns have been reported. While spin

dephasing should not affect our ability to magnetically trap single electrons, the observation
of coherent (many-body) spin physics may be severely limited by electron spin decoherence,
since the many-body wavefunction of N electrons will dephase on a timescale set by ∼
T ⋆
2 /N .
Specific examples: InAs and InSb.—Finally, we discuss the full set of relevant system

parameters for two specific material choices, i.e., InAs-based and InSb-based setups. In the
following, we assume dilution-fridge temperatures T = 10 mK, i.e., kBT ≈ 1 µeV. Hence,
the spontaneous phonon emission rate given above fulfills γ ∼ 0.3 µeV < kBT , underlining
that a low γ is expected to set the smallest energy scale in Eq. (3.2) if thermal stability
(kBT ≪ ωHO, V0) is ensured. First, we consider electrons in InAs with an effective mass
m = 0.023m0. For Ω0 = 86 µeV [compare Table 3.1] and small detunings |∆| ≪ Ω0, we can
reach trap depths V0 ≈ 43 µeV which ensures thermal robustness of the trap at considered
temperatures. Operating at a high frequency f = 22 GHz, the highest energy scale in
Eq. (3.2) is set by ω ≈ 92 µeV at a lattice spacing a = 900 nm. For self-consistency, we
check that the recoil energy is given by ER ≈ 20 µeV which means that we are not deep
in the tight-binding limit (ER ≪ V0). Still, the tunneling parameter can be estimated as
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tc ≈ 5.2 µeV [108]. Note that, in this setting (|∆| ≪ Ω0), the harmonic approximation
around a local potential minimum is typically not well justified. Secondly, we consider
heavy holes in InAs with an effective mass m = 0.836m0. For an ambitious Rabi frequency
Ω0 = 100 µeV and a large detuning ∆ = 380 GHz = 250 µeV, we obtain a trap depth
V0 = |max

z
ε(ẑ) − min

z
ε(ẑ)| ≈ Ω0/10 = 10 µeV. Operating at a high SAW frequency

f = 25 GHz, we obtain ω ≈ 103 µeV at a lattice spacing a = 500 nm and vs = 25 km/s.
Hence, the recoil energy is given by ER ≈ 1.8 µeV which ensures the validity of the tight-
binding approximation. Since the harmonic approximation, ε(ẑ) ∝ Ω2(ẑ) ∝ ẑ2, is well
justified in this case, we estimate mω2

HOẑ
2/2 ≈ Ω(ẑ)2/(4|∆|), i.e.,

ωHO = 118 MHz ×

√
(gs[g0])

2

m[m0]
× B1 [mT]

a [µm]
√

|∆[GHz]|
,

where g0 = 2 denotes the g-factor of the free electron. Accordingly, we obtain ωHO =
5.4 µeV for heavy holes in InAs, as considered here. Hence, all conditions imposed
by Eq. (3.2) are fulfilled. In this scenario, the tunneling parameter amounts to only
tc ≈ 0.2 µeV. However, the second hopping parameter introduced in Sec. 3.3, t±, can
be significantly enhanced such that t± ≫ tc with the aid of additional driving fields, as
discussed in more detail in Appendix 3.C. Thirdly, we consider heavy holes in InSb with an
effective mass m = 0.627m0. For a Rabi frequency Ω0 = 200 µeV [compare Table 3.1] and
a relatively small detuning ∆ = 38 GHz = 25 µeV, we obtain a trap depth V0 ≈ 90 µeV.
Assuming a very high (SAW) frequency f = 50 GHz, we obtain ω ≈ 207 µeV at a = 100
nm and (in the SAW implementation) vs = 10 km/s. The recoil energy is then given by
ER ≈ 60 µeV. The tunneling parameter can be estimated as tc ≈ 18 µeV.

Altogether, these considerations clearly suggest that thermally stable and well-performing
magnetic traps may be implemented with current technology; more specifically, fulfilling
Eq. (3.2) should be possible in host materials possessing high enough g-factors. Further-
more, note that the values presented in Table 3.1 might be further enhanced; in the SAW
setup, the values calculated in Sec. 3.4 have been derived assuming a magnetoelastic con-
stant h = 10 T and strain amplitudes εxx = 2 · 10−4, which both may be elevated further
in experiment, yielding even higher Rabi frequencies than the ones given in Table 3.1.

3.6 Conclusions and Outlook

To summarize, we have proposed magnetic traps and scalable lattices for electrons in semi-
conductors. Firstly, we have derived a general theoretical framework fit to characterize the
traps and parameter regimes in which they can be operated under realistic experimental
conditions and at dilution-fridge temperatures. Secondly, we have described two possible
platforms suitable for an experimental demonstration of thermally stable magnetic traps
and, eventually, coherent lattice physics in scalable arrays of magnetic traps. The devel-
oped model which is based on a periodically modulated AC Stark shift induced by magnetic
RF fields is reminiscent of the working principle of optical lattices; moreover, very much
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in analogy to experiments performed with ultracold atoms in optical lattices, the SAW
setup offers similarly attractive features such as in-situ tunable system parameters and
favourable scaling properties. Furthermore, the applicability of the derived results is not
limited to electron traps but is more general; in principle, all generalizations to quasipar-
ticles with an internal level structure that can be used to realize the model from Eq. (3.1)
are candidates for a realization of the proposed magnetic traps. Quantitatively, the pro-
jected trap depths should allow for the implementation of thermally robust and low-loss
magnetic traps with state-of-the-art technology and high g-factor materials such as InAs,
InSb or dilute magnetic semiconductors. With the possibility to reach yet unexplored
parameter values, especially in the low-temperature and strong-interaction regime of the
Fermi-Hubbard model, solid-state magnetic lattices may constitute a novel platform for
studying superfluidity, quantum magnetism and strongly correlated electrons in periodic
systems.

Finally, we discuss possible future research directions. (i) By contrast with effectively
one-dimensional systems discussed in this work, two-dimensional lattices with vastly dif-
ferent geometries might be studied. Due to the flexibility of SAW-based setups, these
lattice geometries could be altered during an experiment. By dynamically modulating
the lattice, this may allow for the investigation of intricate band structures or resonant
coupling between different Bloch bands, akin to experiments with shaken optical lattices
[262, 263, 264, 265]. (ii) Instead of considering electrons with two Zeeman-split internal
spin states, quasiparticles with a richer internal energy-level structure might be examined
(e.g., spin-3/2 holes). Here, one interesting prospect could be the realization of tunable
subwavelength potential barriers for quasiparticles on the nanoscale, in close analogy to
dark-state optical lattices with subwavelength spatial structure [266, 267]. (iii) Apart from
the two possible implementations studied in this work, other implementations may be con-
sidered, either as stand-alone alternatives or in combination with, e.g., SAWs. Specifically,
nanoengineered vortex arrays have been considered in the past both for magnetic atom
traps [217] and strong magnetic modulations of Bloch electrons in 2DEGs [268]. (iv) Since
we have only considered one-dimensional lattices, anisotropies of system parameters were
negligible so far. In contrast, in two-dimensional systems, anisotropic effective electron
masses or g-factors can lead to strongly non-uniform potential landscapes and anisotropic
tunneling matrix elements. Besides that, SOI can itself be a strongly anisotropic interac-
tion, thus modulating the SOI-induced hopping amplitude tλ± (λ = αR, βD in the presence
of Rashba or Dresselhaus SOI, respectively) in a way that it becomes anisotropic. In this
way, the effect of anisotropic hopping on the phase diagram of a (spin-dependent) Fermi-
Hubbard model might be studied, inheriting its rich physics from a number of versatile
material properties.
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Appendices

3.A Beyond the Rotating-Wave Approximation

A fundamental limitation in the above discussion stems from the condition Ω0 ≪ ω nec-
essary for the RWA to be justified. Due to this restriction, Rabi frequencies, and hence
ultimately the trap depths, are limited to values much smaller than the driving frequency
ω. One way to lift this built-in restriction is to drop the RWA, keeping counter-rotating
terms ∝ Ω(ẑ)σ±e±2iωt in the Hamiltonian Eq. (3.1) which can be written in a rotating
frame as

H = ∆σz +
Ω(ẑ)

2
σx +

Ω(ẑ)

2

(
σ+e2iωt + σ−e−2iωt

)
. (3.10)

If we now consider the corresponding time-evolution operator evaluated at stroboscopic
times tn = t0 + nT/2 with T = 2π/ω,

U(tn) = T← exp

(
i

∫ tn

t0

dτH(τ)

)
, (3.11)

a Magnus expansion [269] up to second order in 1/ω yields

U(tn, t0) = exp (−iHF [t0]nT/2) , (3.12)

with the stroboscopic Floquet Hamiltonian HF given by

HF = H
(0)
F +H

(1)
F +H

(2)
F + ..., (3.13)

with the three lowest-order contributions

H
(0)
F =

∆

2
σz +

Ω(ẑ)

2
σx, (3.14)

H
(1)
F =

Ω(ẑ)

16ω
(2∆σx − Ω(ẑ)σz) , (3.15)

H
(2)
F = −Ω(ẑ)

64ω2

(
4∆2 + Ω2(ẑ)

)
σx. (3.16)

Numerical results of the dynamics generated by the zeroth- and second-order results are
compared with the dynamics generated by the full time-dependent Hamiltonian [the inter-
nal Hamiltonian h in Eq. (3.1), without RWA] in Fig. 3.6. From the numerical results we
conclude that the (stroboscopic) characterization of the system dynamics by HF works well
only if Ω0 . ω. In this regime, even at higher orders we still obtain a time-independent
periodic Hamiltonian which allows for the implementation of magnetic (super-)lattices.
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Figure 3.6: (color online). Numerical simulation of the dynamics generated by the time-
dependent (i.e., without any RWA) Hamiltonian (3.1) for Ω(ẑ) = Ω0 = 0.1ω (blue solid
line) and Ω0 = 0.5ω (black solid line), respectively. The corresponding dashed (dotted)
lines refer to the dynamics generated by the time-independent zeroth-order (second-order)
Floquet Hamiltonian HF , with dots highlighting the results according to the second-order
Floquet Hamiltonian HF at stroboscopic times tn = nT/2. The initial state has been set
as |Ψ〉0 = |↓〉. Other numerical parameters: ∆/ω = 0.2.

3.B Spin-Flip Transitions in Magnetic Traps and Lat-

tices

Based on Ref. [233], we investigate undesired spin-flip losses from a magnetic trap. We
consider the model

H =
p̂2

2m
+ ω0σ

z + Ω(ẑ) cos(ωt)σx, (3.17)

which, in a rotating frame and within a rotating-wave approximation, can be written as

H =
p̂2

2m
+ ∆σz +

Ω(ẑ)

2
σx = T̂ + h(ẑ), (3.18)

where T̂ = p̂2/(2m) and

h(ẑ) =
1

2

(
∆ Ω(ẑ)

Ω(ẑ) −∆

)
. (3.19)

We introduce a unitary operator U(ẑ) = exp(−i θ(ẑ)
2
σy) acting on the internal states such

that

|+〉θ = U(ẑ)| ↑〉, (3.20)

|−〉θ = U(ẑ)| ↓〉.
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Note that U †(ẑ) rotates the effective magnetic field to be parallel to the z axis. The
transformed Hamiltonian H̃ takes the form

H̃ = U †(ẑ)HU(ẑ) (3.21)

= T̂ +
[
U †(ẑ)T̂U(ẑ) − T̂

]
+ U †(ẑ) [h(ẑ)]U(ẑ)

= T̂ + ∆T + ε(ẑ)σ̃z,

where ∆T =
[
U †(x)T̂U(x) − T̂

]
, ε(ẑ) = 1

2

√
∆2 + Ω2(ẑ) and σ̃z = |+〉〈+| − |−〉〈−|. The

adiabatic approximation amounts to neglecting the contribution which stems from ∆T
[233]. This is justified provided that χ = ωHO/|∆| ≪ 1, i.e., that the potentials defined by
ε and −ε are sufficiently separated in energy.

3.C Spin-Flip Assisted Tunneling Processes in Mag-

netic Lattices

In Eq. (3.5) in the main text, we present an extended Hubbard model which includes
both next-nearest (spin-conserving) neighbour hopping (∼ tc, compare with Eq. (3.4)) and
nearest neighbour (spin-flip assisted) hopping (∼ t±) processes. In the following, we show
how this Hamiltonian and, more specifically, the additional hopping term ∼ t± can be
constructed with the aid of additional RF driving fields.

Starting from Eq. (3.1), we consider two auxiliary time-dependent fields in addition to
the field B(r, ωt): (i) The driving field Bdr(t) = Bdr cos(ω2t)x̂, a second rapidly oscillating
transverse field, is weaker than the RF field B⊥(r, ωt) which provides the lattice and
detuned from it so as to be resonant with the energy difference between the two local
spin directions. (ii) The third time-dependent field B3 = B3 cos(ω3t)ẑ is slowly varying
and parallel to the constant field B|| which provides the Zeeman splitting; its purpose is
to (partially) compensate the longitudinal components that Bdr acquires in the adiabatic
frame.

In the presence of these additional fields, two new terms appear in the model of Eq. (3.1),

Hdr =
p̂2

2m
+ ω0σ

z + Ω(ẑ) cos(ωt)σx + Ωdr cos(ω2t)σ
x + Ω3 cos(ω3t)σ

z, (3.22)

where Ωdr = γBdr and Ω3 = γB3. In the following, we require ω, ω2 ≫ |ω − ω2| ≡ δ ≈ ω3

as well as |Ω0| ≫ |Ωdr|, |Ω3|.
Defining a rotating frame by |ψrot

t 〉 = Ut |ψt〉 (where |ψt〉 denotes a solution of the
Schrödinger equation in the lab frame) with Ut = exp(itωσz), we obtain the Hamiltonian
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in the rotating frame as

Hrot
dr =

p̂2

2m
+ ∆σz +

Ω(ẑ)

2
σx +

Ω(ẑ)

2

[
|↑〉〈↓| ei2ωt + h.c.

]

+
Ωdr

2

[
|↑〉〈↓| (eiδt + ei(ω+ω2)t) + h.c.

]

+ Ω3 cos(ω3t)σ
z. (3.23)

Within a RWA, where we keep only the constant and slowly oscillating terms, we obtain

Hrot
dr =

p̂2

2m
+ ∆σz +

Ω(ẑ)

2
σx +

Ωdr

2

[
eiδt |↑〉〈↓| + h.c.

]

+ Ω3 cos(ω3t)σ
z. (3.24)

Now, by employing the unitary transformation U(ẑ) introduced in the main text, we can
(locally) diagonalize the constant contribution stemming from p̂2/(2m) + hRWA(ẑ) [see
Sec. 3.3]. Then, neglecting the non-adiabatic correction due to ∆T and simplifying the
resulting expressions yields

H̃ =
p̂2

2m
+ ε(ẑ)σ̃z

+

[
Ωdr

2
cos2 ϑ cos(δt) − 2Ω3 sinϑ cosϑ cos(ω3t)

]
σ̃x

+
[
2Ωdr sinϑ cosϑ cos(δt) + Ω3(cos2 ϑ− sin2 ϑ) cos(ω3t)

]
σ̃z, (3.25)

where ϑ := θ(ẑ)/2 = arcsin[ Ω(ẑ)√
Ω2(ẑ)+∆2

]/2 and σ̃z = |+〉〈+|−|−〉〈−|, σ̃x = |+〉〈−|+ |−〉〈+|.
Clearly, in comparison with Eq. (3.3), we get additional contributions due to the additional
time-dependent fields.

We now use the fact that the newly introduced driving fields are relatively weak com-
pared to the fields considered in the main text and treat these terms as a perturbation to
the tight-binding model in Eq. (3.4). Furthermore, from Eq. (3.25), it becomes clear that
the third driving field B3 can be used to compensate for undesired (time-dependent) on-site
terms due to Bdr. At the resonance ω3 = δ and within a rotating frame U rot2

t = exp(itδσ̃z),
the Hamiltonian (3.25) can be further simplified and a RWA with respect to 2δ can be per-
formed, given that the off-resonant spin-flip terms oscillate much faster than their strength.
Eventually, we obtain the extended Fermi-Hubbard model

HFH3 = −tc
∑

〈〈i,j〉〉,s
(c†iscjs + h.c.) − t±

∑

〈i,j〉,s
(c†iscjs̄ + h.c.)

+
∑

i,s

µisnis +
∑

s,s′

∑

ijkl

Uijklc
†
is′c
†
jsclscks′ , (3.26)

which reduces to Eq. (3.5) at the resonance δ = ∆. Here, the nearest-neighbour tunneling
is characterized by t± = 〈wj|Ωdr

2
cos2 ϑ − 2Ω3 sinϑ cosϑ|wj+1〉 with the Wannier function

wj located at lattice site j.
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3.D Implementation I: Superconducting Circuit

In the following, we describe the magnetic field due to an electric current density J by
the Biot-Savart law. Since we are dealing with AC fields, this description can only be
approximately valid. A more precise picture follows from the Jefimenkov equations [270]:

BAC(r, t) =
µ0

4π

∫

V

d3r′
(
J(r′, tret) ×

r− r′

|r− r′|3 +
1

c

∂J(r′, tret)

∂t
× r− r′

|r− r′|2
)
. (3.27)

where the right-hand side of the equation is evaluated at the retarded time tret = t− |r−
r′|/c and c denotes the speed of light in the dielectric medium. However, since the time-
dependence of the current density J(r′, t) ∼ exp(iωt), the correction term in Eq. (3.27) is
expected to be of the order of |r− r′|ω/c ∼ dω/c with the distance d between meandering
wire and 2DEG. The wires are located above the surface at x = 0. For typical distances
d ∼ (0.1 − 1) µm and frequencies ω ∼ (1 − 100)GHz, the correction term in Eq. (3.27)
may be neglected and the Biot-Savart law is recovered which then accurately describes the
induced magnetic field due the electric current density J,

BAC(r, t) =
µ0

4π

∫

V

d3r′ J(r′, t) × r− r′

|r− r′|3 . (3.28)

In the following, we assume the spatial extension of the meandering wire to exceed the
relevant size of the 2DEG, i.e., the trapping region. This assumption guarantees the
absence of finite-size effects at the turning points of the meandering wire, i.e., we model
each parallel line in the meandering wire as an infinite wire which induces a magnetic field
on its own. Also, we neglect boundary effects from the border of the 2DEG. In the case of
an infinitely long wire which runs parallel to the y axis (cf. Fig. 3.3), the Biot-Savart law
simplifies to [270]

BAC(r = (ρ, φ, y), t) =
µ0I(t)

2πρ
eφ, (3.29)

where I(t) denotes the current in a single wire. In the presence of many parallel wires
(whose current flow alternates between the +y and −y directions), which is the situation
that accurately describes the setup sketched in Fig. 3.3, the magnetic field at point r is
given by

BAC(r = (x, y, z)) = −
N∑

n

µ0In(t)

2π
× rn

r2n
(3.30)

=
µ0I0 cos(ωt)

2π

N∑

n

(−1)n

(z − na)2 + x2




x
0

z − na


 ,

with the center of the wires positioned at x = 0 and given a time-dependent current ampli-
tude I(t) = I0 cos(ωt) in each wire and the position vectors rn which denote the position
at which the field is evaluated relative to the nth wire. An exemplary field distribution
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BAC(r, t = 0) is shown in Fig. 3.3(b). Due to the translational symmetry along the axis
parallel to the wires, Eq. (3.30) enables us to write the spin Hamiltonian, in the presence
of an additional external magnetic field, as

H = γBAC(r̂, t) · σ + γBextσ
z (3.31)

=
γµ0I0

2π

N∑

n=1

(−1)nx

ẑ2 − 2naẑ + n2a2 + x2
σx cos(ωt)

+
γµ0I0

2π

N∑

m=1

(−1)m(ẑ −ma)

ẑ2 − 2maẑ +m2a2 + x2
σz cos(ωt)

+γBextσ
z.

The induced electric field due to a time-dependent magnetic field is described by Fara-
day’s law, ∇ × E = −∂B/∂t. By (anti-)symmetries of the straight long wire and its
magnetic field — translations along the y axis, rotations about y axis, and the reflection
y → −y —the induced electric field points in a direction parallel to the wire, i.e., along
y. Hence, the induced electric field should not affect the magnetic lattice along z. The
motional DOF along y could experimentally be frozen out, e.g., via the implementation of
an etched channel.

We define ω0 = gsµBBext and rewrite (3.31) as

H = [ω0 + Ωz
0(ẑ) cos(ωt)] σz + Ωx

0(ẑ) cos(ωt)σx (3.32)

Next, we take a closer look at the spatial profiles of the Rabi frequencies Ωz
0(ẑ) and

Ωx
0(ẑ) in Eq. (3.32). The time-dependent field amplitudes in Eq. (3.32) can be exactly

expressed via the Digamma function ̥ (logarithmic derivative of the Γ function; [271, 272]).
Denoting the two sums appearing there as bx and bz, respectively, setting a = 1 and using
ξ = −z + ix, it holds that

bz + ibx = − 1

2
̥ (ξ/2 + ⌊(N − 1)/2⌋ + 1) +

1

2
̥(ξ/2)

+
1

2
̥ ([ξ + 1]/2 + ⌊N/2⌋) − 1

2
̥([ξ + 1]/2)

N→∞
=

1

2
(̥(ξ/2) −̥([ξ + 1]/2)) . (3.33)

For N ≫ z ≫ 1 the real and imaginary parts of this function are (approximately) periodic
with period 1 and have zeros at integer (half-integer) values of z, respectively. For an odd
number of wires, the z (x) field components are antisymmetric (symmetric) with respect
to the axis z = zs ≡ (N − 1)/2; (for even N , Bz is symmetric and Bx antisymmetric).
The fields are well approximated by bz + ibx ∝ exp(−iπz), with errors less than 0.1% but
not approaching zero as N ≫ z → ∞. Using properties of the Digamma function, we can
write

bz + ibx =
1

2

⌊N/2⌋−1∑

l=0

1

l + (ξ + 1)/2
− 1

2

⌊(N−1)/2⌋∑

l=0

1

l + ξ/2
. (3.34)
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Figure 3.7: (color online). Spatial pattern of Rabi frequency (at given time), compare
Λ(x) in Sec. 3.3. Black (solid): calculated from Eq. (3.31), green (dashed): sin-fit. At
the ends of the meandering wire, i.e. at the edges of the lattice, finite-size effects become
apparent, but in the center of the lattice Λ(ẑ) is well-described by the sinusoidal fitting
curve. Parameters: d = a and N = 50 wires.

As shown in Fig. 3.7, the spatial dependence of Ωx
0(ẑ) and Ωz

0(x) (not shown) can
(depending on the choice of parameters) be well-described by a sine function. Hence, we
can approximately write

H =
[
ω0 + Ωz

0 sin(
π

a
ẑ + ϕ) cos(ωt)

]
σz + Ωx

0 sin(
π

a
ẑ) cos(ωt)σx, (3.35)

where ϕ denotes a phase shift between Ωx
0(ẑ) and Ωz

0(ẑ).

In the center region, where finite-size effects are negligible, the Rabi frequencies Ωx
0 and Ωz

0

are approximately given by

Ωz
0 = γ

µ0I0
πa

∑

n=0,1,..

(−1)n (n+ 1/2)

(n+ 1/2)2 + (d/a)2
, (3.36)

Ωx
0 = γ

d

a

µ0I0
πa

∑

n=0,1,..

(−1)n

(n+ 1/2)2 + (d/a)2
. (3.37)

The expressions (3.36) and (3.37) become exact in the limit of infinitely many wires,
N → ∞. For all practical purposes considered in this work, Ωz

0 is very small such that
Ωz

0 ≪ ω0 and it may be safely neglected.
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3.E Implementation II: Surface Acoustic Waves

Magnetization dynamics and effective magnetic field

The governing constitutive relations for magnetostriction [273] read (see also Chapter 1.3)

Tij = cijklukl − hkijHk, (3.38)

Bdr,i = hijkuik + µijHj, (3.39)

where T , Bdr, H and h denote the stress tensor, the magnetic induction, the magnetic
field (intensity vector) generated by a magnetoelastic wave and the effective piezomagnetic
tensor, respectively. µ is the magnetic permeability and the strain field is defined as
ukl(x) = (∂uk/∂xl + ∂ul/∂xk) /2.

Given Eq. (3.39), we provide an estimate for the effective driving field in the ferromag-
net,

Bdr,1 ≈ hkU = 2πh
U

λ
, (3.40)

where h denotes the magnetoelastic constant, k is the wavevector and U denotes the
amplitude of the displacement field. For small strain-field amplitudes kU ≈ 10−6 and a
magnetoelastic constant h = 10 T, this magnitude can be estimated as Bdr,1 ≈ 25 µT [243].

At ferromagnetic resonance, the effective magnetic field can be significantly enhanced.
The response of a ferromagnet to small time-varying magnetic fields can be described with
the aid of Eq. (3.7). The resulting dynamical component of the magnetization m is given
by

µ0|ms|m = χ̄Bdr, (3.41)

where χ̄ denotes the Polder susceptibility which describes the magnetic response of a fer-
romagnet to small time-varying magnetic fields perpendicular to the magnetization equi-
librium direction [243]. In practical terms this means that the resulting effective magentic
field can be enhanced by about two orders of magnitude.

In a next step, the field at the 2DEG is then calculated from the field distribution at
the ferromagnetic thin film by discretizing the field distribution at the film and summing
up the dipole fields of these volume elements. At high strain amplitudes kU ∼ 10−4−10−3

and a magnetoelastic constant h = (10 − 25) T, the relevant magnitude of the field at the
2DEG can be numerically estimated as B1 ∼ (10 − 100) mT. In our numerical calcula-
tions, the amplitude of the displacement field, the magnetoelastic coupling constant and
the wavevector are input parameters which determine the microwave field strength at the
ferromagnetic layer.

Strain-induced potentials

Starting from Eq. (3.8) and in a suitable rotating frame, we obtain

Hrot
hyb =

p̂2

2m
+ VSAW cos(kẑ) cos(ωt) (3.42)

+
ω0

2
σz +

Ω(ẑ)

2

(
σx + e2iωtσ+ + e−2iωtσ−

)
,
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with σ+ = |↑〉 〈↓| and σ− = |↓〉 〈↑|. Following the procedure outlined in Refs. [128, 129] and
using results from [2], we derive an effective time-independent Hamiltonian up to second
order in 1/ω which reads

Heff
hyb =

p̂2

2m
+ ε̃(ẑ)σ̃z +

(
q2

8
ES +

r

4
|∆|

)
sin2(kẑ), (3.43)

with ε̃(ẑ) = 1
2

√
Ω2(ẑ) + ∆̃2, ∆̃ = |∆| + Ω2

0/(8ES), q = VSAW/ES and r = Ω2
0/(4ES∆). For

typical parameter values r ≪ 1, q2/8 ≪ 1 and Ω0 ≪ |∆|, we obtain the simplified form

Heff
hyb ≈ p̂2

2m
+

|∆|
2
σ̃z +

[
V 2
SAW

8ES

− Ω2
0

4|∆| σ̃
z

]
sin2(kẑ), (3.44)

which coincides with the result given in Eq. (3.9). Writing Eq. (3.44) in the form Heff
hyb =

p̂2/2m+ |∆|/2σ̃z +Vhyb sin2(kẑ), we find that the spin-dependent potential amplitudes read

〈+|Vhyb|+〉 ≈ Ω2
0

4|∆| −
q2

8
ES,

〈−|Vhyb|−〉 ≈ − Ω2
0

4|∆| −
q2

8
ES. (3.45)

The resulting trap depths are depicted in Fig. 3.5.

Stability analysis of hybrid magnetic and strain-induced traps

The discussion in this section completes the discussion of hybrid magnetic and strain-
induced traps and is devoted to the stability analysis of such traps, meaning whether or
not electrons can be trapped in time-dependent trapping potentials of the kind of those
featured in Eq. (3.8).

Starting from Eq. (3.8), we would like to predict whether a given set of parameters
{m, ω, ω0, VSAW, Ω0} gives rise to a stable (hybrid strain-induced and magnetic) trap or
not. To this end, we first derive the coupled Heisenberg equations of motion for the set of
observables {〈z〉 , 〈p〉 , 〈σx〉 , 〈σy〉 , 〈σz〉} within a RWA.

Equations of motion.—In order to determine the EOMs of interest, we consider the
time evolution (τ = ωt/2) of the operators z̃ := kẑ, p̃ := dz̃/dτ, σx, σy, σz which is given
by the Heisenberg EOMs,

〈 ˙̃z〉 = 〈p̃〉,

〈 ˙̃p〉 =
2Ω0

ES

〈sin(z̃)〉 cos(2τ) +
VSAW
2ES

〈sin(z̃)〉〈σx〉,

〈σ̇x〉 = −2
∆

ω
〈σy〉,

〈σ̇y〉 = 2
∆

ω
〈σx〉 − VSAW

ω
〈cos(z̃)〉〈σz〉,

〈σ̇z〉 =
VSAW
ω

〈cos(z̃)〉〈σy〉,
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Figure 3.8: Stability diagram of Eq. (3.46) with stability paramters q = VSAW/ES and
r = Ω2

0/(4ES∆). Red areas denote regions of stable trapping, i.e. stable solutions of
Eq. (3.46), and white areas, in turn, denote unstable areas. On the r = 0 axis, the
standard Mathieu equation is recovered which, for a purely time-dependent drive, yields
stable trajectories in the region 0 ≤ q . 0.908. Other numerical parameters: η = 0.1.

with ES = m(ω/k)2/2 and assuming that there exists no significant correlation between
external and internal DOFs, i.e., decorrelated expressions such as, e.g., 〈sin(z̃ + ϕ)σi〉 ≈
〈sin(z̃ + ϕ)〉〈σi〉.

Two limiting cases.—We consider the two limiting cases (i) Ω0 = 0 and (ii) VSAW = 0:
(i) At Ω0 = 0, we recover a Hamiltonian which is discussed in great detail in Ref. [2];
in the limit z̃ ≪ 1, the Heisenberg EOMs yield a Mathieu equation [127] whose stability
diagram in terms of VSAW and ES = mv2s/2 is well-known, where vs denotes the speed
of sound. (ii) For VSAW = 0 and in the large-detuning regime Ω0 ≪ |∆|, an EOM can
be derived which corresponds for a given spin state to a Hamiltonian of the form H =
p̂2/(2m)+Ω2

0/(4|∆|) sin2(kẑ). Intuitively, these results agree very well with our expectation,
since the case (i) coincides with a result known from the physics of trapped ions; this is not
surprising since only the electric field contributes. On the other hand, case (ii) reproduces
an effective Hamiltonian which is very familiar from optical lattices for cold (neutral) atoms
[208]; this finding, in turn, underlines the close relation between the proposed magnetic
traps and optical dipole traps which are both based on the AC Stark effect. In general,
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i.e., VSAW,Ω0 6= 0, the EOM leads to more involved dynamics. By adiabatic elimination
of the internal DOFs, we obtain [corresponding to the constructive case in Eq. (3.45)] an
EOM of the form

¨̃z + [r + 2q cos(2τ) − r cos(2ητ)]z̃ = 0, (3.46)

with stability parameters r = Ω2
0/(4ES|∆|) and q = VSAW/ES and dimensionless quantities

x̃ = kx and τ = ωt/2. The ratio η = |∆|/ω is typically small in the RWA regime.
Based on Eq. (3.46), we extract stability diagrams (to predict the stability of solutions to
Eq. (3.46)) in terms of q, r and η. These diagrams can have an intricate structure, see also
Ref. [274, 275]. Here, we are mainly interested in the prediction of parameter constellations
that give rise to stable solutions of Eq. (3.46). A prototypical stability diagram is shown in
Fig. 3.8 for η = 0.1. It can be seen that a r = 0 cut in Fig. 3.8 reproduces the well-known
result that stable behaviour of solutions to the Mathieu equation occurs at 0 < q . 0.908
for r = 0. At r > 0, the stability properties can be rather sensitive to slight changes in q.
An operation in the stable regime therefore requires a balanced choice of these parameters.
However, Fig. 3.8 shows that several values r > 0 support a range of stable values q which
indicates that operation in a stable regime is possible for a significant range of parameters.
Moreover, the numerical parameters used in Fig. 3.4 give rise to q ≪ 1 which allows for
stable trajectories for many different r. We conclude that, even in the presence of induced
electric fields, stable magnetic traps can be operated.





Chapter 4

Quantum Wigner Crystals in

Two-Dimensional Semiconductors

4.1 Motivation

Ever since its theoretical inception 85 years ago [276], Wigner crystallization has stimu-
lated both theoretical and experimental research to find unambiguous evidence for this
elusive state of matter. Since the earliest indication for quantum Wigner crystals (WCs)
obtained from high-magnetic-field transport measurements [277, 278], it has proven to be
a very demanding task to study WCs, especially in a minimally invasive manner without
destroying the crystalline order. Recent experimental work demonstrated non-destructive
read-out of the charge distribution of one-dimensional WCs in carbon nanotubes [279].
However, it remains an open challenge to find approaches for the non-invasive detection of
WCs in two-dimensional and a broader range of one-dimensional quantum systems.

Apart from a fundamental interest in the physics of Wigner crystallization, self-assembled
crystals promise a route towards highly ordered and scalable many-body systems under
minimal external control. Thus, they meet some of the key requirements posed by quantum
computers [280] and simulators [57]. It has therefore been proposed that Wigner crystals
hosted in semiconductor nanostructures [281, 282], trapped above the surface of liquid
helium [283, 284] or composed of trapped ions [285, 286] can be utilized for quantum in-
formation processing and simulation. In particular, electrons confined to low-dimensional
semiconductors [287] may be brought into the low-temperature regime kBT ≪ εF (Fermi
energy εF) where quantum phenomena occur and spin-exchange interactions can play an
important role. Since solid-state systems also offer a genuine prospect for miniaturization
and on-chip integration, the quest for a faithful implementation of solid-state quantum
WCs at zero magnetic field remains tantalizing.
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4.2 Executive Summary

As recently pointed out, monolayer transition-metal dichalcogenides (TMDs) [288] and
TMD-based moiré superlattices [289, 290, 291] are unique platforms for realizing strongly
correlated systems and the study of WCs in particular owing to the combination of reduced
screening in two dimensions and a relatively high effective electron mass. Their optical
bandgap offers exciting possibilities to probe quasiparticle excitations, e.g., excitons or
trions [150, 267, 292, 293] optically [294, 295, 296].

In this chapter, we demonstrate the potential of scalable quantum simulators based
on two-dimensional WCs in TMDs and propose an all-optical detection scheme for charge
ordering and partial spin information in these systems (see Fig. 4.1). In particular, the
scheme possesses three key properties: (i) It provides clear evidence for Wigner crystal-
lization in monolayer TMDs. (ii) Under conditions specified below, the detection scheme
is non-invasive and leaves charge and spin order intact. (iii) Optical selection rules provide
spin-selective addressability which is a crucial requirement for quantum simulation.

1

k

θ

φ

TMD

Figure 4.1: (color online). Schematic illustration of proposed setup and optical detec-
tion scheme. Charge ordering of electrons in a lattice (black dots) competes with ran-
dom disorder-induced dislocations of lattice sites in the presence of impurities and defects
(green triangle). The angle-dependent (φ) reflection of a tilted (θ) focused laser beam with
wavevector k from a WC probes its lattice geometry. Light polarization provides further
information about the spin via optical selection rules of TMDs.
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4.3 Theoretical Framework

Wigner crystals.—At electron densities n below a critical density ncr and in the presence
of an external confinement potential, interacting charge carriers (refered to as electrons in
the following) arrange themselves in a lattice 1, leading to a periodic modulation of charge
density n(r). In this low-density regime, electrostatic interactions dominate over the kinetic
energy of electrons. In two dimensions, this regime is characterized by a sufficiently large
interaction parameter rs = 1/(

√
πnaB), with the Bohr radius aB = 4πε~2/(e2m), effective

electron mass m and permittivity ε. Monolayer TMDs feature an extraordinarily small
Bohr radius aB & 0.5 nm and thus render the large-rs regime accessible at experimentally
achievable [297, 298] densities n . ncr. For our calculations, we choose ncr = 1011 cm−2

[288] and m = 0.5m0 (representative of MoX2 monolayers where X = S, Se [299]), where
m0 denotes the bare electron mass. In a square (triangular) lattice, this maximum electron
density corresponds to a minimum lattice spacing of a & 32 nm ( a & 34 nm).

Model.—We consider N electrons trapped at z = 0 in a global harmonic potential such
that the total potential reads

V (r1, ..., rN) =
mω2

2

N∑

i=1

(
x2i + y2i

)
+
∑

i 6=j

Vint (ri, rj) , (4.1)

where ri = (xi, yi, 0) denotes the position of the ith electron. The confinement is charac-
terized by the trapping frequency ω and Vint denotes the two-body interaction potential.
In TMDs, the former may be induced by strain [300, 301] or defined via local gates [302]
and the latter is usually modeled by the Keldysh potential [303],

Vint(ri, rj) =
πe2

2r0

[
H0

( |ri − rj|
r0

)
− Y0

( |ri − rj|
r0

)]
, (4.2)

with a material-specific length scale r0 ≈ 5 nm. H0 and Y0 are Struve and Bessel functions,
respectively. At electron concentrations n < ncr, the inter-particle distance |ri − rj| ≫ r0
and hence Vint(ri, rj) ∼ 1/|ri − rj| behaves like a Coulomb potential.

In a WC, the electrons are localized around lattice sites at r0i (i = 1, ..., N) which
can be determined from the equilibrium conditions ∇iV |ri=r0

i

= 0. Numerical calculations
show that harmonic confinement potentials, as described in Eq. (4.1), give rise to triangular
lattice geometries while other potentials can give rise to, e.g., square lattices; see Appendix
4.A for details. For any ω, the maximum number of WC electrons can be calculated given a
critical density, and vice versa. Small systems containing N ∼ (10− 100) electrons require
~ω ∼ (1 − 3) meV at n ∼ ncr (see Fig. 4.2).

The strong interactions in Eq. (4.2) enable the description of charge excitations in
terms of phonons in the WC. These can be expressed as small displacements qi = ri − r0i
(i = 1, ..., N) from the lattice sites such that V = (m/2)

∑Kαβ
ij q

α
i q

β
j (α, β ∈ {x, y})

1For simplicity, we refer to this lattice as a WC, despite the absence of long-range order. In the
literature, these systems are also referred to as Wigner molecules.
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with an elasticity matrix K. All 2N normal modes of the system with eigenfrequencies
Ωn (n = 1, ..., 2N) are readily obtained by diagonalization of K and for the non-zero
eigenfrequencies one finds that Ωn & ω (cf. Appendix 4.A). Given the relation between ω
and N at n ∼ ncr, this indicates that large WCs have low-energy phonon modes. Using
anharmonic potentials, there is no limit placed on N by the phonon modes or ncr.

Requirements.—Wigner crystallization requires low disorder. Disorder-induced poten-
tial fluctuations are incorporated based on Eq. (4.1) by adding further randomly distributed
local confinement terms to analyze the impact of impurities (e.g., atomic defects or charges)
on the electron lattice. In order to obtain a regular lattice structure with an approximately
equidistant spacing between adjacent electrons (see schematic Fig. 4.1), the impurity den-
sity nimp should be significantly smaller than the electron density, i.e. nimp . 0.1n; see
Appendix 4.B for details. To date, atomic and charge defects in TMDs still prevent the
realization of systems with sufficiently low disorder [304]. However, both sample quality
and deterministic control over defects [305] have been improving rapidly in recent years and
defect densities around ncr can already be achieved. Moreover, WCs require sufficiently low
temperature. Cooling into the motional ground state requires low temperatures T ∼ 1 K
for ~ω . meV, as the thermal occupation n̄th = 1/[exp(~Ωn/(kBT )) − 1] of the modes
increases as ω is decreased (cf. Appendix 4.C).

There are many interesting aspects about the dynamics of strongly correlated electrons
that can be studied in the system we describe, including the entanglement properties of the
ground state, the nature and dynamics of excitations and the transitions to neighboring
phases. In the following, we focus on the spin physics.

(a) (b)

Figure 4.2: Spin coupling and system size. (a) Maximum number of electrons as a
function of ω such that n < ncr. (b) Coupling constant J as a function of the confinement
ω for different particle numbers N = 10 (dash-dotted), N = 20 (solid), N = 50 (dashed),
N = 100 (dotted). Black dots: maximum frequency ω for given N such that n < ncr.
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4.4 Spin Physics

TMD monolayers exhibit strong spin-orbit coupling and an intricate interplay between spin
and valley degrees of freedom. Here we focus on the case where, by energetic isolation of
the lower spin states of the conduction band, spin and valley become locked [306]. For
this reason, we require that the electron density be sufficiently low such that the Coulomb
interaction energy Eint ∼ rs · εF = rsπ~

2n/m is small compared to the spin-orbit splitting
in the conduction band, ∆c

SO. At n . ncr, one typically finds Eint . 10 meV, such that
the above condition is readily satisfied in MoSe2 (∆c

SO ≈ 23 meV), though not necessarily
in MoS2 (∆c

SO ≈ 3 meV) [307]. Nevertheless, the requirement can be met in all TMDs
by considering holes instead of electrons, since the spin-orbit splitting in the valence band
∆v

SO is on the order of a hundred meV [267].

At low temperature and small displacements qi, we assume that the electron spins are
localized around the lattice sites at r0i . Adjacent spins are coupled via exchange inter-
actions that can be either ferromagnetic or antiferromagnetic, depending on the density
n [308, 309]. Here, we provide an estimate for the magnitude of the spin-spin coupling,
demonstrating the potential of TMD-based electron lattices as a platform for quantum
simulation of prototypical spin systems. As exchange couplings decay exponentially with
a2, where a denotes the inter-particle distance, the low-density regime necessary for WCs
stands in contrast with the strong couplings of interest for spin physics. However, at
intermediate densities n . ncr we still find significant exchange couplings which exceed
predicted spin relaxation rates [310, 311].

Due to the spin polarization in each of the K and K ′ valleys, we find that the ef-
fective spin model in the spin-valley locked, low-temperature regime reduces to an Ising
Hamiltonian (cf. Appendix 4.D for details) of the form

Hσ =
∑

i,j

Jijσ
z
i σ

z
j . (4.3)

Here σz
i is a Pauli operator and Jij denotes the coupling strength between spins at sites i

and j. In a tight-binding approximation, we calculate Jij (1 ≤ i < j ≤ N) using Gaussian
ansatz wavefunctions centered around the sites r0i . The width of these wave functions is
expressed in terms of the normal mode frequencies Ωn and, upon inserting typical mate-
rial parameters, we find for the magnitude J of the spin-spin interaction between nearest
neighbours typical values in the range J ∼ (5 − 30) µeV for n . ncr. Due to the expo-
nential decay of Jij with distance, nearest-neighbour interactions are dominant and typi-
cally roughly one order of magnitude larger than next-nearest-neighbour interactions. In
Fig. 4.2(b), we show the resulting spin-coupling constant J as a function of ω for different
particle numbers 10 ≤ N ≤ 100. At the intermediate densities n . ncr considered here,
we find antiferromagnetic exchange couplings which can result in geometrical frustration
[312] depending on the lattice structure.
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∆T

θ = π/4

(a) (b)

θ = π/3

(c) (d)

Figure 4.3: Density and angle-dependent transmission of elliptically polarized (see
Eq. (4.25)) incoming light beam at incident angle θ and in-plane rotation angle φ (see
Fig. 4.1). (a) Transmission T at a tilt angle θ = π/4 for a square lattice configuration as a
function of lattice constant a and density n. (b) T (φ) at chosen values for a/λ = 0.1 (red,
dash-dotted line), a/λ = 0.45 (blue, dashed line) and same parameters as in (a). Contrast
∆T is depicted by oscillation amplitude of T (φ). (c) Same as (a) but for a triangular lattice
configuration. Angle of incidence θ = π/3. (d) T (φ) at chosen values for a/λ = 0.2 (red,
dash-dotted line), a/λ = 0.45 (blue, dashed line) and same parameters as in (c). Numerical
parameters: Gaussian beam waist w0 = 1.0λ, N = 40 × 40, detuning ∆0 = 0.

4.5 Optical Readout

We now address the optical detection of charge ordering in TMD-based WCs and consider
an incoming (z < 0) Gaussian laser beam Ein(r) with wavelength λ focused to a spot on the
electron lattice (z = 0) at a tilt angle θ (see Fig. 4.1). Our approach is similar in nature to
the one taken in Refs. [313, 314], where the reflection and transmission of arrays of discrete
atomic emitters in a lattice configuration was analyzed. Such an approach is valid for highly
localized charges [315], in contrast to the study of mobile polarons [316]. Due to optical
transition selection rules in monolayer TMDs, specific electron spin states can be addressed
using circularly polarized σ+ and σ− light. For example, σ− (σ+) light may couple a WC
electron in a |↑K〉 (|↓K′〉) spin state to a trionic state |↑K, ↓K′⇓K′〉 (|↓K′ , ↑K⇑K〉) with a hole
spin ⇑ (⇓) in the K ′ (K) valley. For our calculations, we assume a low-amplitude light
beam with sufficiently small detuning ~∆0 ≪ Eb, Eg from the trion resonance such that
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other quasiparticle excitations and transitions can be neglected. Prototypical values for the
trion binding energy Eb ∼ 20 meV and quasiparticle band gap Eg ∼ 500 meV are given
in Ref. [267]. When the incoming beam is sufficiently close to resonance with a dipole
transition at lattice points r0n, the scattered light field E(r) at position r is obtained by
solving a set of coupled linear equations,

E(r) = Ein(r) +
4π2

ε0λ2

N∑

n=1

G(k, r, r0n)αn(∆0)E(r0n), (4.4)

with the detuning from resonance ∆0, the dyadic Green’s function G evaluated at k = 2π/λ
and the polarizability tensor αn. The magnitude of the polarizability tensor is given by
the scalar polarizability α(∆0), while the orientation depends on the electron spin at site
n; see Appendix 4.E for more details.

In order to probe charge ordering, it is advantageous to address all WC electrons equally.
To this end, we assume for the following discussion that the WC is fully spin polarized,
which could be achieved by applying a large magnetic field or via optical pumping [317].
Alternatively, one could consider a TMD heterobilayer system where an electron-hole pair
excited in one layer forms a trion state with a WC electron in the other layer, such that
both valleys can be addressed independent of the spin of the resident electron [267].

The total power P transmitted by the WC to z > 0 is obtained by integrating the
transmitted signal (µ0 = 1),

P =
1

2

∫

S
Re [E×B∗] · ẑ dA, (4.5)

with the electric and magnetic fields E and B, respectively, and B∗ denotes the complex
conjugate of B. The transmission T = Pwc/P0 is calculated as a function of density n,
incidence angle θ, and rotation angle φ (see Fig. 4.1) by comparing the transmitted power
Pwc in the presence of a WC with a reference signal P0 obtained in the absence of localized
dipoles [313], e.g. in a system with no doping at n = 0.

In Fig. 4.3, T is shown as a function of the electron density n ∼ 1/a2 for square
[Fig. 4.3(a)] and triangular [Fig. 4.3(c)] lattices with a lattice constant a. Here we consider
∆0 = 0, which corresponds to a wavelength λ ∼ (700 − 800) nm in state-of-the-art TMD
setups [318, 319]. We choose θ such that the cross section of the Gaussian beam is small
enough and does not exceed the size of the WC. Varying the twist angle φ of the laser beam
leads to smooth variations in T (φ). The periodic modulation of T (φ) reflects the rotational
symmetry of the WC. Figs. 4.3(b) and (d) display the 2π/4 and 2π/6 rotational symmetry
of a square and triangular lattice, respectively. The amplitude of this periodic signal shows
that the contrast ∆T = max

0≤φ<2π
T (φ)− min

0≤φ<2π
T (φ) can be of the order of a few percent. This

modulation provides an unambiguous experimental signature of Wigner crystallization.
The beam parameters and polarization of the incident light can be optimized to maximize
the transmission contrast (cf. Appendix 4.E). Momentum transfer onto the WC can be
safely neglected since the recoil energy ER = ~2k2/(2m) ∼ (5 − 10)µeV is much smaller
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Figure 4.4: Faraday rotation and optical selection rules. (a) θF from Eq. (4.6) as a
function of detuning ∆0 from the bare resonance and spin imbalance N↑ − N↓. Results
for a total number of N = N↑ + N↓ = 25 electrons in a square lattice at a/λ = 0.4. (b)
Energy level diagrams for conduction and valence bands at the K and K ′ valleys of MoX2

monolayers with spin-orbit splittings between |#〉 and |↑〉 in the conduction (∆c
SO) and

valence (∆v
SO) bands. Carrier densities n↑ and n↓ in the |↑K〉 and |↓K′〉 conduction bands,

respectively. Right-circularly (left-circularly) polarized light couples only to spin-up (spin-
down) electron states in the K (K ′) valley. Numerical parameters: nonradiative linewidth
~γnr = 0, tilt angle θ = 0 (normal incidence) and beam waist w0 = 1.0λ.

than interaction energy and trapping potential. This approach already incorporates spin
information, as it can be used to detect ferromagnetic ground states and may pick up
signatures of the lattice constant 2a prevailing in an antiferromagnetic ground state.

Faraday rotation.—While we have focused on the detection of charge ordering in a spin-
polarized WC before, we now further examine the spin degree of freedom by analyzing
the polarization of the scattered field. With the probe beam Ein detuned far enough
from the trionic resonance, the presence of the optical transition merely imprints a state-
dependent phase shift on the incoming field. According to selection rules of monolayer
TMDs [320, 321], σ+ (σ−) polarized light couples to the resident electron density n↑ (n↓)
in the K (K ′) valley (see Fig. 4.4(b)). In optical Faraday (Kerr) rotation using linearly
polarized light, the polarization of the transmitted (reflected) part of the light is rotated
by an angle θF which depends on the spin imbalance n↑ - n↓ [175, 317]. Here we inspect
the Faraday rotation of an incident s or p-polarized beam, which is given by [322]

θF =
1

2
arctan

2ReχF

1 − |χF|2
, (4.6)

where χF = tps/tss for s-polarized light (χF = −tsp/tpp for p-polarized light) depends on the
Jones matrix elements tss, tps (tpp, tsp) encoding the polarization state of the scattered light
[323]. We consider N↑ (N↓) electrons in the |↑K〉 (|↓K′〉) conduction band and numerically
calculate θF as a function of spin imbalance N↑−N↓ and detuning ∆0. Here we assume that
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the electron sites r0i are distributed in a square-lattice configuration in the spot of the beam
with N↑ (N↓) randomly assigned |↑〉 (|↓〉) states. We average over many such configurations.
In Fig. 4.4(a) the resulting Faraday rotation is depicted for a p-polarized input field, yielding
the strongest signal at |∆0| = γr/2 with the radiative linewidth γr. For the strongly
localized quantum emitters considered here, we estimate ~γr ∼ 10−2 µeV. Nonradiative
decay processes can also be taken into account in our framework, yielding weaker Faraday
signals for larger nonradiative decay rates γnr (cf. Appendix 4.E). Since the Faraday rotation
is proportional to N↑−N↓, it provides a measure for the spin imbalance in the system. With
this tool, one may distinguish between ferromagnetic and antiferromagnetic configurations
or even locally probe domain walls in the spin system, where the spatial resolution would
be limited by the spot size ∼ λ2.

4.6 Conclusions and Outlook

In conclusion, we have proposed an all-optical detection scheme for TMD-based Wigner
crystals, highlighting their potential as a platform for the quantum simulation of geomet-
rically frustrated magnetism with adjustable and self-assembled lattice structures. Beyond
the Ising model considered here, richer spin physics with multi-spin exchange interactions
has been predicted for these systems, potentially offering a platform to study three- and
four-body interactions [324, 325]. Moreover, recent results show that multi-electron quan-
tum dots hold promise as exchange-based mediators of quantum information [326]. In
this context, intermediate-scale Wigner crystals in 2D semiconductors could be interesting
for achieving long-range spin coupling with minimal external control requirements [282].
Control over the spin degree of freedom may be provided via magnetic fields or optical
pumping into a specific valley, e.g. in parts of the system to study the formation of domain
walls. Inversion symmetric TMD bilayers, whose bands are spin degenerate, may further
give rise to a wider range of spin Hamiltonians and allow for coherent optical control of
the electron spin as no momentum is required to flip the spin. High-quality samples of
monolayer TMDs should provide access to first proof-of-principle experiments with small
system sizes. Local spin probes may be enabled by illuminating only parts of the WC.
Besides the optical techniques we propose, which we believe can be readily implemented
given sufficiently clean samples, we envisage that it might become possible in the future
to extend existing and developing work on high-resolution electron beam imaging with
(close-to) single site resolution [327, 328] to the point that a single electron charge can be
directly spatially probed. Furthermore, other detection schemes could be considered like
magnetic noise spectroscopy [329], microwave spectroscopy [330], or using surface acoustic
waves in piezoelectric TMD monolayers [331].
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Appendices

4.A Calculation of Lattice Structure and Normal Modes

We consider a general potential of the form

Vp =
N∑

i=1

µp (xpi + ypi ) +
∑

i 6=j

Vint(ri, rj), (4.7)

where µp is the strength of the potential and the interaction potential Vint is modeled by
the Keldysh interaction potential given in Eq. (2). The results presented in the main text
are derived for the special case p = 2 and µ2 = mω2/2.

Lattice structure

(a) (b)

Figure 4.5: Lattice configurations {r0i }1≤i≤N (black dots) for small systems of (a) N = 7
electrons in a harmonic potential with p = 2 and (b) N = 9 electrons in an anharmonic
potential with p = 8.
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The lattice sites r0i are calculated by solving the equations

∂Vp
∂xi

∣∣∣∣
ri=r0

i

=
∂Vp
∂yi

∣∣∣∣
ri=r0

i

= 0 (4.8)

for each electron i ∈ {1, ..., N}. This leads to a set of 2N coupled equations which are of
the form

µppα
p−1
i + ξ

∑

j 6=i

(αj − αi)h (|rj − ri|/r0) = 0, (4.9)

with α ∈ {x, y}, ξ = πe2/(2r30) and the function

h(x) = H−1(x) −H1(x) + Y1(x) − Y−1(x) +
1√
πΓ(3

2
)
, (4.10)

which is obtained by making use of recurrence relations for the Struve and Bessel functions
of the second kind Hν and Yν (ν ∈ N), respectively. In order to solve Eqs. (4.9), it is instruc-
tive to introduce dimensionless variables scaled by a length scale ℓ = [e2/(4πεpµp)]

1/(p+1).
For r0 ≪ ℓ, we find that the obtained lattice configurations agree very well with the corre-
sponding results obtained with a Coulomb interaction potential, Vint(ri, rj) ∼ 1/|ri − rj|.
Since ℓ ≈ 30 nm at ~ω = 1 meV, this condition is typically well satisfied in the situations
considered in the main text. The resulting lattice structure {r01, ..., r0N} depends on the
details of the confinement potential. Two exemplary charge configurations are shown in
Fig. 4.5.

Normal modes

A two-dimensional lattice with N electrons has 2N elementary excitations, the so-called
normal modes of the crystal. The normal-mode excitation spectrum of WCs can be calcu-
lated from the the system’s elasticity matrix K.

Starting with Eq. (4.7), the elasticity matrix is obtained from the second-order deriva-
tives of Vp with respect to the spatial coordinates. In the general case of arbitrary p ≥ 2
and the interaction potential in Eq. (2), we find that

∂2Vp
∂αm∂αn

=





µp(p− 1)pαp−2
m + ξ

[∑
i 6=m

(αi−αm)2

r20
g(|ri − rm|/r0) − h(|ri − rm|/r0)

]
,

if m = n,

−ξ
[
(αn−αm)2

r20
g(|rm − rn|/r0) − h(|rm − rn|/r0)

]
,

if m 6= n,

(4.11)

and

∂2Vp
∂αm∂βn

=

{
ξ
∑

i 6=m
(αi−αm)(βi−βm)

r20
g(|ri − rm|/r0), if m = n,

−ξ (αn−αm)(βn−βm)

r20
g(|rn − rm|/r0), if m 6= n,

(4.12)
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where α, β ∈ {x, y}, α 6= β and the function g is given by

g(x) = H2(x)+H−2(x)−2H0(x)−Y2(x)−Y−2(x)+2Y0(x)+
2√

πΓ(3
2
)x

− x

2
√
πΓ(5

2
)
. (4.13)

The eigenmodes of the system are then calculated from the eigenvalues of the elasticity
matrix Kαβ

mn = ∂2Vp/(∂αm∂βn).

4.B Impurity-Induced Positional Disorder: Equidis-

tance Measure

Random dislocations of single electrons from their lattice sites r0i may not only affect the
lattice structure of a Wigner crystal, but also the detection scheme and spin couplings
discussed in the main text. For a simple estimate of how severe the impact of impurities
on the lattice is, we consider Nimp randomly distributed Gaussian confinement potentials
in addition to the potential in Eq. (4.7), and draw both size and depth of these local
confinement potentials from normal distributions. For our calculations, we assume that
they are localized on a nanometer length scale and have a depth of the order of ∼ meV.
In a monolayer TMD, such defects could be, e.g., atomistic defects [332]. Starting from
Eq. (1), we take these into account by adding a disorder term,

V (r1, ..., rN ; {si}1≤i≤Nimp
) =

mω2

2

N∑

i=1

(
x2i + y2i

)

+
∑

i 6=j

Vint (ri, rj) + Vrand(r1, ..., rN ; {si}1≤i≤Nimp
), (4.14)

with

Vrand(r1, ..., rN ; {si}1≤i≤Nimp
) = −

N∑

i=1

Nimp∑

j=1

Dj√
2πσ2

j

exp

[
−(ri − sj)

T (ri − sj)

2σ2
j

]
, (4.15)

with random variables Dj ∼ meV and σj ∼ nm (where both means and standard deviations
are of these orders), where {sj}1≤j≤N denote the positions of the impurities. To illustrate
how this impurity model affects the lattice site distribution r0i (i = 1, ..., N) of a small
system, an exemplary numerical result obtained with N = 8 is shown in Fig. 4.6(a). The
same result, but obtained in the presence of two randomly located (in the lattice) local
harmonic potentials, is shown in Fig. 4.6(b). Averaging over many such instances and
calculating the density-density correlations in the WC yields a measure of how much the
crystal structure is affected by the presence of disorder. Similarly, here we look at another
measure, χ, which quantifies how equidistantly the lattice sites r0i are distributed in the
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x-y-plane by summing up the distances between nearest neighbours,

χ =
2n

N

∑

i

min
j 6=i

∣∣r0i − r0j
∣∣ . (4.16)

Below we show that χ = 2
√

2/
√

3 (χ = 1) for an equidistantly (completely randomly

distributed) set of points r0i (i = 1, ..., N). By increasing the number of impurities for a
given system size, i.e., increasing the impurity density nimp as compared to the electron
density n, χ drops from its maximum value very fast, see Fig. 4.6. As would be intuitively
expected, this underlines that nimp ≪ n should be fulfilled in any experiment in order to
maximize the chances to observe charge ordering in regular electron lattices.

We briefly show that χ is upper-bounded by χmax = rm/r∞ = 2
√

2/31/4 ≈ 2.15 [333].
This can be achieved by (i) calculating an upper bound for rm =

∑
i minj 6=i |ri − rj|/N

and (ii) estimating r∞ = 1/(2
√
n) as a function of the average electron density n: (i) In a

close-packed lattice with an average nearest-neighbour distance rm, the unit cell occupies
an area in Auc =

√
3r2m/2. The electron density is then given by n = 2/(

√
3r2m). (ii) The

mean number of lattice sites in a sector of area Ak = πr2/k is m = nAk. The probability
of finding N sites in Ak is given by a Poisson distribution P (N sites in Ak) = mNe−m/N !.
Hence, we obtain the probability that two lattice sites are separated by a distance |r0i − r0j |
smaller than a given r, P<(r) := P (|r0i − r0j | < r) = 1 − exp(−nπr2/k). Therefore, we
obtain for the mean of the distance distribution (k = 1),

r∞ =

∫ ∞

0

dP<(r)

dr
rdr =

1

2
√
n
. (4.17)

1
x[ℓ]

y[ℓ]

y[ℓ]

χ

Figure 4.6: Impact of disorder-induced potential fluctuations on the lattice structure
of a small WC with N = 8 resident electrons in a harmonic confinement potential. (a)
Electron configuration without disorder. (b) Exemplary electron configuration (red dots)
in the presence of two randomly positioned local confinement potentials (black triangles).
(c) Equidistance measure χ is shown as a function of impurity density nimp/n for N = 10
electrons.



4.C Finite Temperature Effects 107

Figure 4.7: Melting curves of (left) GaAs and (right) monolayer TMD systems according
to the Lindemann criterion. The dark areas indicate the onset of WC electron lattices,
obtained for N = 20 electrons. The dashed line indicates kBT = εF.

Combining the findings from (i) and (ii), we obtain an upper bound for χ, χmax =
2
√

2/31/4 ≈ 2.15. Similarly, it can be shown that χ = 1 for a random distribution of
lattice sites.

In our numerical calculations, we have seen that the detection scheme is only weakly
affected by disorder if the impurity density nimp/n . 0.1. The influence of disorder on co-
operative resonances such as the ones discussed in the main text has also been investigated
in Ref. [314].

4.C Finite Temperature Effects

We first provide a simple estimate of the melting temperature Tm of a WC by employing
the Lindemann criterion, which has been used extensively in the literature [334, 335]. It
states that, in a lattice with charge-carrier density n, melting occurs if the root-mean
square (RMS) displacement of a charge carrier from its lattice site r0i exceeds a certain
fraction of the inter-particle distance a. The RMS displacement can be obtained from
the thermally occupied vibrational (normal) modes of the system at thermal equilibrium.
Accordingly, the melting temperature Tm and electron density n can be related. Although it
is only a phenomenological criterion, it provides an efficient tool for estimating the melting
temperature of a lattice. The thereby numerically calculated melting curves, obtained using
typical material parameters of GaAs and monolayer TMD systems, respectively, are shown
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in Fig. 4.7. For the latter, we estimate melting temperatures of the order of Tm ∼ 5 K,
which is in agreement with previous estimates [288].

Cooling the system into its motional ground state puts more demanding constraints on
temperature than considering melting only. We compare the thermal energy set by kBT to
the mode frequencies Ωn and calculate the thermal mode occupation n̄th = [exp(~Ωn/(kBT )−
1]−1. Fig. 4.8 shows that for the center-of-mass (COM) mode it is n̄th ≪ 1 at T . (1−5) K
and ~ω & 0.5 meV.

4.D Spin-Spin Interactions: Derivation of Coupling

Constant

We estimate the spin-coupling strength J as given by Eq. (4) in the main text. For this,
we model the interaction potential Vint(ri, rj) between two electrons at ri and rj with a
Coulomb potential ∼ 1/|ri−rj|. In the parameter regime considered here, this (i) simplifies
the calculation and (ii) yields the same results as obtained with the Keldysh interaction
potential from Eq. (2) to a very good approximation, as confirmed by our numerical cal-
culations.

Estimate of spin-coupling constant

We calculate the spin-exchange interaction between two electrons from the energy difference
between the spin-singlet and spin-triplet energies [336],

J =
Jab − S2C

1 − S4
, (4.18)

where Jab, C and S denote the exchange, Coulomb and overlap integrals, respectively,
which are given by (in atomic units)

Jab =

∫
d2r1

∫
d2r2Ψa(r1)

∗Ψb(r2)
∗ 1

|r1 − r2|
Ψb(r1)Ψa(r2),

S =

∫
d2rΨb(r)Ψa(r), (4.19)

C =

∫
d2r1

∫
d2r2|Ψa(r1)|2

1

|r1 − r2|
|Ψb(r2)|2,

where Ψa/b(r) = φa/b(r) · χa/b(r) denotes the electronic wave function and the labels a
and b refer to the two electrons located at around r0a/b = (x0a/b, y

0
a/b). We model the wave

functions with a Gaussian wave packet of width wrZPF (see Sec. S4.2),

φi(r) =

(
1

2πw2r2ZPF

)1/2

exp

(
−(x− x0i )

2 + (y − y0i )2

4w2r2ZPF

)
,

where i ∈ {a, b}, and take into account spin-valley locking by setting the Bloch wave χi(r) =
exp(iKx) (χi(r) = exp(iK ′x)) if the i electron, i ∈ {a, b}, is in a spin-|↑〉 (spin-|↓〉) state.
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Figure 4.8: Bose-Einstein distribution n̄th(Ω1) at COM frequency Ω1 = ω and temperature
T .

Next, we evaluate the exchange integral in the spin basis spanned by |↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉.
With the electrons in different valleys (i.e., opposite spins), by performing some of the
integrations analytically, we find for Jab in Eq. (4.19) that

JKK′

ab =
e
− a

2

4w2r2
ZPF

πw2r2ZPF
×
∫ ∞

−∞
dxe

− x
2

8w2r2
ZPF cos

(
8π

3

x

aTMD

)
K0

(
x2

8w2r2ZPF

)
,

where a2 = (x0a − x0b)
2 + (y0a − y0b )2, with a TMD lattice constant aTMD ≈ 0.3 nm for

MoX2 (X = S, Se) [337] and |K − K′| = 8π/(3aTMD). K0 denotes the modified Bessel
function of the second kind. Inserting our numerical results for w, and in particular with
wrZPF ≫ aTMD, we find numerically that JKK′

ab evaluates to negligibly small values as
compared with JKK

ab , with which we denote the case where the two electrons are in the
same valley. We find that JKK′

ab /JKK
ab ∼ aTMD/(wrZPF) and that typically JKK′

ab is several
orders of magnitude smaller than JKK

ab .
For JKK

ab , we find an analytical expression and insert TMD parameters such that

JKK
ab ≈ 35.5meV

√
~ω [meV]

w
e
−37.9× ~ω[meV]

n[1010cm−2]w2 , (4.20)

where we have expressed the electron density as n = 2/(
√

3a2) for a triangular lattice.
Similarly, we find for the overlap integral S in Eq. (4.19) that

S ≈ exp

(
−37.9 × ~ω [meV]

n [1010cm−2]

)
. (4.21)
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In the low-density regime considered here, we find S ≪ 1 such that J ≈ Jab in Eq. (4.18)
to a very good approximation.

Also the Coulomb integral C in Eq. (4.19) can be calculated analytically by employing
the convolution and Parseval’s theorems. Defining fa/b(r) := |φa/b(r)|2 and g(x) = 1/|x|,
we insert TMD parameters and find that

C =

∫
d2r1fA(r1) (fB ∗ g) (r1) = 2π

∫
d2q

f̃A(q)f̃B(−q)

|q|

≈ 35.5meV

√
~ω [meV]

w
e
−18.9× ~ω[meV]

n[1010cm−2]w2 × I0

(
18.9

~ω [meV]

n [1010cm−2] w2

)
, (4.22)

where I0 is the modified Bessel function of the first kind.
Putting our results together, we find that JKK′

is several orders of magnitude smaller
than JKK for realistic parameters. Evaluating the Coulomb interaction Hamiltonian in
the spin basis, with these results we obtain the spin model from Eq. (3) in the main text.
Finally, putting the results from Eqs. (4.20)-(4.22) and Eq. (4.18) together, we obtain cou-
pling strengths in the range ∼ (5 − 30) µeV at densities n . ncr, as presented in Fig. 2(a)
of the main text.

Width of ansatz wavefunction

We have considered two approaches to calculate w, for which we have found good agree-
ment. (i) Mean-field approximation: First, we (iteratively, until the result is found to
be converged) calculate the effective potential seen by a single electron due to the neigh-
bouring electrons by summing up the Coulomb interaction terms. From this potential, we
calculate the wave function with a Gaussian ansatz, which yields the width of the wave
function ∼ w. (ii) Harmonic model : Secondly, we consider an expansion of the individual
electron displacements in the set of collective displacement modes. In this way, we relate
w to the normal modes which we have calculated before,

w2 =
1

N

2N∑

n=1

1

Ωn

, rZPF =

√
~

2mω
, (4.23)

where the mode frequencies Ωn are expressed in units of the external confinement ω. For
a confinement ~ω = 3 meV, we obtain rZPF ≈ 5 nm.

4.E Optical Readout: Numerical and Analytical Treat-

ment

Here we first briefly summarize how we solve the scattering problem of light incident on
a finite Wigner crystal, and then continue with an analytical treatment of the scattering
problem for an infinite lattice. The latter provides us with more physical insight into the
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problem and is useful for optimizing the beam parameters in order to maximize the trans-
mission or reflection contrast of the readout scheme.

Finite arrays

The principle behind the optical readout scheme discussed in the main text is based on a
cooperative resonance effect as described in detail in Refs. [314, 313]. As depicted in Fig. 1,
we consider a Gaussian beam Ein(x′, y′, z′) incident on the xy plane with a tilt angle θ and
azimuthal angle φ, where

Ein(x, y, z) = E0epol
w0

w(z)
exp

(
−x

2 + y2

w(z)2

)
× exp

(
−i

[
kz + k

x2 + y2

R(z)
− ϕ(z)

])
,

that is scattered from a lattice of dipoles. Here we have introduced the coordinates


x′

y′

z′


 =



x cos θ cosφ− y cos θ sinφ− z sin θ

x sinφ+ y cosφ
x sin θ cosφ− y sin θ sinφ+ z cos θ


 . (4.24)

In Eq. (4.24), E0 denotes the the beam amplitude, w0 and w(z) = w0

√
1 + (z/zR)2 are

beam waist and radius at z, respectively, zR = πw2
0/λ is the Rayleigh length and ϕ =

arctan z/zR refers to the Gouy phase of the laser beam [338]. epol encodes the polarization
of the beam. For the results presented in Fig. 3 in the main text we consider elliptically
polarized light with

epol(θ, φ) = − 1√
1 + cos2 θ




cos2 θ cosφ+ i sinφ
cos2 θ sinφ− i cosφ

sin θ cos θ


 . (4.25)

At small detunings ∆0 from the transition frequency ω0, |∆0| ≪ ω0, each lattice site is
modeled as a dipole with polarizability

α(∆0) = − 3

8π2
ε0λ

3 γr
∆0 + i(γr + γnr)/2

, (4.26)

with the radiative (nonradiative) linewidth γr (γnr). In general, the radiative linewidth γr
can be enhanced by the presence of a medium [339], especially for high refractive-index
materials like TMDs [340]. At low temperatures as considered here, hexagonal boron ni-
tride (hBN) encapsulated TMD monolayers feature optical transitions with a radiative
linewidth ~γ0 ∼ meV [341]. In our calculations, we assume that the excitons are localized
on a length scale much smaller than the wavelength, i.e. aB ≪ λ. Those spatially local-
ized quantum emitters show much narrower linewidths ∼ 100 µeV [172, 342, 343, 344].
Using Fermi’s golden rule, the increased radiative lifetime of such localized excitons can
be calculated, yielding a significantly enhanced emission time as compared to free excitons
[345]. We estimate the radiative linewidth of a localized exciton to be of the order of
~γr ≈ 4π/3(aB/λ)2γ0 ≈ 10−5 γ0 ≈ 10−2 µeV. In the results presented in the main text, we
have considered γnr = 0.
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Given the Gaussian input field from Eq. (4.24), we solve the Lippmann-Schwinger
equation (4), with the Green’s function [346]

Gαβ(k, r, r0n) =
exp (ik |r− r0n|)

4π |r− r0n|
×
[(

1 +
ik |r− r0n|
k2 |r− r0n|2

)
δαβ (4.27)

+

(
3 − 3ik |r− r0n|
k2 |r− r0n|2

− 1

)
(r− r0n)α (r− r0n)β

|r− r0n|2

]
,

with α, β ∈ {x, y, z}. We solve Eq. (4) self-consistently for various angles of incidence θ
and φ, beam profiles, detunings, and electron lattices. At normal incidence, i.e. θ = 0, the
resulting transmission and reflection signals depend on the lattice constant [see Fig. 4.9]
but clearly not on φ. For 0 < θ < π/2, the transmission and reflection contrasts can be
of the order of a few percent. An analytical derivation of the maximum contrast for an
infinite lattice, depending on the angle of incidence θ and detuning ∆0, is presented below.

Faraday rotation

In the main text we investigate the Faraday rotation angle according to Eq. (6). For the

Figure 4.9: Transmission at normal incidence (θ = 0) for a square lattice. Other numerical
parameters as in Fig. 3 in the main text.
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Figure 4.10: Faraday rotation for different γnr and the same numerical parameters as in
Fig. 3 at N↑ = 15, N↓ = 5. Also shown is the maximum Faraday signal as a function of
γnr/γr.

results in Fig. 4, we consider an incoming beam at normal incidence (θ = 0) with

epol =




1
0
0


 . (4.28)

We considerN ≡ N↑+N↓ dipoles which are located at lattice sites r0i with the spins assigned
randomly to these lattice lattices for fixed N↑ and N↓. Next we average over sufficiently
many (∼ 104) instances of such configurations to calculate the Faraday rotation.

In Fig. 4 we show results for γnr = 0. For γnr > 0, the maximum Faraday rotation
decreases and shifts towards more highly detuned frequencies, cf. Fig. 4.10.

Infinite arrays

Here we consider light scattering off an (infinite) two-dimensional lattice of dipoles. If the
transition dipole is parallel to the unit vector ê, the electric field at position r satisfies the
equation

E(r) = Ein(r) + α(∆0)
k20
ε0

∑

n

G(r, rn)êê†E(rn), (4.29)

where k0 denotes the wavenumber of the transition. This equation can be readily solved
using a Fourier transform, assuming that the medium surrounding the lattice is transla-
tionally invariant in the plane of the lattice. One obtains

E(k, z) = Ein(k, z) + α(∆0)
k20
ε0A

G(k, z)êê† ×
[
I− α(∆0)

k20
ε0A

G̃(k)êê†
]−1 ∑

B Ein(k + B, 0) (4.30)
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where A is the area of the unit cell and

G̃(k) =
∑

B

G(k + B, 0), (4.31)

where the sum runs over all reciprocal lattice vectors, denoted by B.
For an incident plane wave with momentum k, only a single term contributes to the

sum in Eq. (4.30). The plane wave will be Bragg scattered to momenta k + B. However,
for sufficiently small lattice constants, |k + B| > k0 for any B 6= 0, such that all nonzero
scattering orders are evanescent. In this case, the far field is completely described by

E(k, z) = Ein(k, z) − 3πγr/k0A

∆0 + iγnr/2 + 3πγrê†G̃(k)ê/k0A
G(k, z)êê†Ein(k, 0). (4.32)

We were able to turn the matrix inversion into a simple division by using the fact that êê†

is a projector. It is straightforward to show that the condition |k + B| > k0 is equivalent
to |B| > 4π/λ. For a square lattice, one obtains a < λ/2, while for a triangular lattice
a < λ/

√
3.

To simplify Eq. (4.32) further, we consider the special case that the array is placed in
free space. The free space Green’s function is given by

G(k, z) =
i

2kz
eikz |z|P±(k), (4.33)

where

kz =
√
k20 − |k|2 (4.34)

and P±(k) denotes the projector onto transverse polarizations for waves propagating up
(+, z > 0) or down (−, z < 0). Explicitly, the P±(k) projects onto the two-dimensional
space spanned by

ŝ(φ) =



− sinφ
cosφ

0


 , p̂±(θ, φ) =



± cos θ cosφ
± cos θ sinφ

− sin θ


 , (4.35)

where we defined the angles θ and φ according to

kx = k0 sin θ cosφ, ky = k0 sin θ sinφ, kz = k0 cos θ. (4.36)

We note that kz is always taken to have a positive real (|k| < k0) or imaginary (|k| > k0)
part. When |k| < k0, all angles are real, and the vector (kx, ky,−kz) is simply the wavevec-
tor of the incident wave. We also point out that the Green’s function is discontinuous at
z = 0. Right at z = 0, one should take 2

G(k, 0) =
i

4kz
eikz |z| [P+(k) + P−(k)] . (4.37)

2We further neglect an unimportant δ-function contribution.
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We focus on a circularly polarized transition, that is,

ê =
1√
2




1
i
0


 . (4.38)

When there is no Bragg scattering, it is easy to see that Im G̃(k) = ImG(k, 0) such that

ê† Im G̃(k)ê =
i

4k0

1 + cos2 θ

cos θ
. (4.39)

A straightforward calculation further yields

P+(k)êê†P−(k) =
1

2
(1 + cos2 θ)v̂+(θ, φ)v̂−(θ, φ)†, (4.40)

where

v̂±(θ, φ) =
1√

1 + cos2 θ
[îs(φ) ± cos θp̂±(θ, φ)] . (4.41)

Since Ein(k) = P−(k)Ein(k), we thus obtain

E(k, z) =

[
e−ikzz − eikz |z|

iΓ(θ)/2

∆0 + ∆̃(θ, φ) + iγnr/2 + iΓ(θ)/2
v̂±(θ, φ)v̂−(θ, φ)†

]
Ein(k, 0),

(4.42)
where

Γ(θ) =
3πγr
2k20A

1 + cos2 θ

cos θ
(4.43)

and

∆̃(θ, φ) =
3πγr
k0A

ê†Re G̃(k)ê. (4.44)

Eq. (4.42) has a simple physical interpretation. The light probes a collective resonance
with energy ∆̃ and radiative linewidth Γ. The vectors v̂± correspond to projections of the
transverse polarizations onto the transition dipole. The response of the lattice is maximized
when Ein ∝ v̂−, which corresponds to an elliptic polarization whose projection onto the
xy plane is circular. The expression allows us to immediately read off the reflection and
transmission coefficients:

r = − iΓ(θ)/2

∆0 + ∆̃(θ, φ) + iγnr/2 + iΓ(θ)/2
v̂+(θ, φ)v̂−(θ, φ)†, (4.45)

t = P− − iΓ(θ)/2

∆0 + ∆̃(θ, φ) + iγnr/2 + iΓ(θ)/2
v̂−(θ, φ)v̂−(θ, φ)†. (4.46)

Both r and t should be thought of as 2 × 2 matrices acting on the subspaces of transverse
polarizations. For a fixed incident polarization êin, we may further compute the intensity
reflection and transmission cofficients. They are given by

R =
Γ(θ)2/4

[∆0 + ∆̃(θ, φ)]2 + [γnr + Γ(θ)]2/4

∣∣v̂−(θ, φ)†êin
∣∣2 , (4.47)



116 4. Quantum Wigner Crystals in Two-Dimensional Semiconductors

T = 1 − Γ(θ)[Γ(θ) + 2γnr]/4

[∆0 + ∆̃(θ, φ)]2 + [γnr + Γ(θ)]2/4

∣∣v̂−(θ, φ)†êin
∣∣2 . (4.48)

The intensity coefficients satisify R + T = 1 when γnr = 0 as required.
In practice, we would like to infer the rotational symmetry of the lattice via the depen-

dence of ∆̃ on φ. Choosing the optimal polarization êin = v̂−(θ, φ), the maximum contrast
in reflection for a fixed value of θ is given by

∆R =
Γ2

4

[
1

(∆0 + ∆̃min)2 + Γ2/4
− 1

(∆0 + ∆̃max)2 + Γ2/4

]
(4.49)

where ∆̃min = minφ ∆̃(θ, φ) and similarly for ∆̃max. For simplicity we set γnr = 0, which
implies that the contrast in transmission is equal to the contrast in reflection. We are free
to choose ∆0 to maximize the contrast. Writing ∆0 = −(∆̃min + ∆̃max)/2 + δ, the contrast
can be expressed as

∆R =
δ∆̄/Γ2

(δ2/Γ2 − ∆̄2/Γ2 + 1/4)2 + ∆̄2/Γ2
, (4.50)

where ∆̄ = (∆̃max − ∆̃min)/2. In the limit ∆̄ ≪ Γ, the expression simplifies to

∆R ≈ δ∆̄/Γ2

(δ2/Γ2 + 1/4)2
(4.51)

It is easy to show that the contrast is maximized by choosing

δ =
1

2
√

3
Γ, (4.52)
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Figure 4.11: Reflection contrast according to Eq. (4.53) for a square and triangular lattice
and various lattice constants a.
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yielding

∆R ≈ 3
√

3

2

∆̄

Γ
. (4.53)

The value of ∆̄ can be computed numerically. The results for a square and triangular
lattice are plotted below.

As a final remark, we mention that by measuring the transmission coefficient for a
component of the electric field that is neither parallel nor perpendicular to the incident
field, it is possible to observe dispersive (asymmetric) line shapes. Such features could
potentially enhance the sensitivity.





Chapter 5

Outlook

In this thesis, we have outlined several strategies for the implementation of scalable lat-
tices for electrons and other quasiparticles in semiconductors. These theoretical proposals
offer a fresh platform for controllable and scalable quantum systems in semiconductors.
Furthermore, as we have discussed in Chapters 2-4, they may enable quantum simulations
of many-body systems with long-range interactions. In the first part of this thesis, we
have borrowed concepts from quantum optics and applied them to solid-state settings.
In doing so, we have developed fruitful solid-state analogies of well-established AMO plat-
forms, thereby finding quantum acoustical equivalents of optical lattices and ion Paul traps.
In the second part of this thesis, we have studied how self-assembled electron lattices in
two-dimensional semiconductors may be probed with tools from quantum optics. To this
end, we have studied cooperative resonances of light scattered by quantum Wigner crys-
tals. This may prove useful for future experiments, that aim at the observation of Wigner
crystals in two-dimensional materials.

Finally, we conclude with possible future steps that go beyond the results presented
in this thesis. For clarity, we will group them into two categories: (i) quantum acoustical
systems and (ii) novel phenomena in two-dimensional materials.

Quantum acoustical systems

In quantum acoustics, fundamental sound-matter interactions at the quantum level are
studied. Quantum acoustical systems bear strong similarities with quantum optical sys-
tems. However, there are also striking differences between the two that may be capitalized
on in future research projects.

Acoustically defined traps and lattices.—As outlined in Chapter 2, one limitation for
trapping quasiparticles in SAW standing wave lattices arises from their low effective mass
and the ensuing instability of the time-averaged trap, a well-known phenomenon in the
trapped-ion community. Future work may focus on developing systematic approaches to
theoretically tackle these problems in order to render the realization of acoustic traps, lat-
tices and related systems more realistic. This may enable a new class of experiments with
well-controlled lattice systems of electrons, holes, trions or other semiconductor quasi-
particles. One approach may consist in the investigation of acoustic traps and lattices



120 5. Outlook

in quantum Hall systems, in which quasiparticles have very large effective masses and
may therefore be more amenable to ponderomotive trapping. Since the lattice constant
of a SAW-defined acoustic lattice matches well the expected magnetic localization length
lB =

√
~/(eB) at magnetic field strengths B < 1 T, a filling factor of one of the lowest

Landau level corresponds to a filling factor of the order of one in the acoustic lattice.
Acoustically trapped electrons exposed to a magnetic field can be described by a minimal-
coupling Hamiltonian of the form H = (p + eA)2 + VSAW(t) with a time-dependent SAW
driving field. Within a theoretical Floquet framework, one could analyze the impact of
an external magnetic field and the appearance of a new energy scale, i.e. the cyclotron
frequency ωB = eB/m, on the stability of SAW-driven acoustic lattices.

Giant atoms.—Usually, when studying light-matter interactions in quantum optics and
AMO systems, the wavelength of light exceeds the size of the atoms it interacts with
by far, justifying the electric dipole approximation. On the contrary, the wavelength of
surface-acoustic waves can easily exceed the size of superconducting qubits to which they
can be coupled piezoelectrically. As has been pointed out before [93], this may give rise to
interesting new physical effects, including non-exponential decay of a giant atom coupled
to a waveguide [92]. This provides an exciting playground for the study of non-Markovian
open quantum systems which are characterized by an information backflow from the en-
vironment to the system. While in quantum optics non-Markovianity is typically related
to the structure of the environment, in the quantum acoustical setting its origin is due
to the finite time it takes the sound (phonon) to propagate at speed vs between different
connection points, separated by a distance d, of the superconducting qubit to the waveg-
uide. This time delay ∆t = d/vs may be of the same order or smaller than the relaxation
time of the qubit and can be deterministically controlled by choosing the position of the
connection points to the waveguide. The breakdown of Markovianity in the above sense
may enable studies of new physical effects arising from these systems. One interesting
direction is a thorough study of SAW waveguide-mediated interactions between N giant
atoms in the non-Markovian regime. In contrast to previous work, memory effects in the
open-system dynamics need to be taken into account and it is no longer possible to derive
a Lindblad quantum master equation within the typically justified Born-Markov approx-
imation. Moreover, the flexibility of the circuit design allows for unusual scenarios where
superconducting transmon qubits are coupled at many connection points to the waveguide.
In general, the properties of a system of coupled quantum emitters may differ significantly
from those of single quantum emitters. This may give rise to subradiant and superradi-
ant emission of light, where the decay rate of collective excitations is either reduced or
enhanced due to mutual correlations. These collective effects find several key applications
in quantum communication, metrology and quantum memories. In quantum acoustical
systems where SAWs are coupled to multiple giant atoms in a waveguide or cavity QAD
setting, it will be interesting to study cases where collective decay of multiple artificial
atoms leads to subradiant and superradiant emission of sound. Giant atoms can also be
coupled to microwave photons in transmission lines, yielding a waveguide-QED setup with
giant atoms. In these setttings the Markov condition may hold, but the mere fact that
these artificial atoms can be coupled to a waveguide at multiple connection points (which
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are farther than a wavelength apart) leads to exotic behaviour such as decoherence-free
interactions between two giant atoms [93]. In the future, the emergence of collective effects
in these systems may be studied further, eventually taking into account the differences be-
tween real and artificial atoms. Another interesting extension of the typical quantum optics
scenario would consist in the investigation of multi-level giant atoms coupled to waveguides.

Novel phenomena in two-dimensional materials

Two-dimensional materials such as (i) transition-metal dichalcogenides (TMDs) and (ii)
graphene are prime candidates for the study of strongly correlated electrons. TMDs (i)
have received a lot of attention lately and are becoming a main research focus in solid-state
quantum optics and condensed-matter physics. Quasi-2D systems composed of bilayers of
graphene (ii) have recently been demonstrated to possess a rich phase diagram that hosts
unconventional superconducting phases [347, 348]. In the following, we will outline two
possible research lines that aim at exploring novel phenomena in two-dimensional systems
with analytical and numerical tools from quantum optics.

Multi-spin exchange Hamiltonians.—In physics, many-body interactions may arise from
fundamental two-body interactions. In quantum information processing, many-body in-
teractions are relevant in different areas, including quantum error correction, quantum
simulation and quantum chemistry. However, the implementation of suitable higher-order
many-body interactions is very challenging, given that the strength of these interactions
should be comparable with and should be controlled independently from lower-order inter-
actions. Various physical systems have been considered for the implementation of quantum
many-body interactions, including trapped ions [349], cold atoms in optical lattices [350],
polar molecules [351] and superconducting qubits [352]. It still remains a grand challenge
to engineer higher-order many-body interactions in scalable quantum systems. The aim of
a follow-up research project of Chapter 4 could be to propose and analyze a TMD-based
system in which higher-order many-body interactions naturally occur. At low temper-
ature, electronic systems are governed by spin-exchange interactions. Near the melting
point of a two-dimensional Wigner crystal, the spin-exchange energy increases as well as
the relative contribution of large loops involving higher-order many-body interactions. It
has already been pointed out in the 1960s that this can give rise to the emergence of effec-
tive multi-spin exchange Hamiltonians [308]. The magnitude of the different higher-order
contributions can be calculated within a path-integral formalism. At low densities, semi-
classical WKB approximations enable the derivation of simple expressions for the exchange
coupling strength. One may analyze in detail TMD-based Wigner crystals in which signif-
icant higher-order interactions between more than two spins could naturally occur.

Bilayer systems.—Recent breakthrough experiments with bilayer graphene have sparked
a widespread interest in the study of crystal bilayers. Twisted bilayer graphene was shown
to host superconductivity when the rotation angle between the two graphene layers is tuned
to special magic angles, at which isolated and almost flat bands appear in the electronic
band structure of the system. Since the first discovery of unconventional superconductivity
and correlated insulating behaviour in twisted bilayer graphene, the underlying physical
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phenomena leading to these unexpected results are being heavily debated. Very recently,
similar correlated phenomena have been reported in twisted bilayer TMDs [353] and a
proposal for cold-atom implementations of twisted-bilayer crystals has been put forward
[354]. In the future, one may analyze optical signatures of twisted bilayer systems. Single
layers of two-dimensional atomic arrays with sub-wavelength lattice spacings have been
shown to display a strong optical response and even total reflection at certain magic lat-
tice constants (see Chapter 4). An interesting question to ask in this context is how the
optical response of a multi-layer system behaves, e.g. as a function of the twist angle and
inter-layer separation. Transmission and reflection of such systems may be investigated
numerically.

These ideas, together with the results presented in this thesis, are examples of the vast
amount of interesting novel phenomena to be discovered at the interface of quantum optics,
quantum information and solid-state physics.
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[11] A. Einstein, Über einen die Erzeugung und Verwandlung des Lichtes betreffenden
heuristischen Gesichtspunkt, Ann. Phys. 17, 132 (1905).

[12] A. M. Turing, On computable numbers, with an application to the Entschei-
dungsproblem, Proc. Lond. Math. Soc. 42, 161 (1937).

[13] A. M. Turing, Computing Machinery and Intelligence, Mind 59, 433 (1950).

[14] R. Landauer, The physical nature of information, Phys. Lett. A 217, 188 (1996).

[15] J. P. Dowling, and G. J. Milburn, Quantum technology: the second quantum revo-
lution, Phil. Trans. R. Soc. Lond. A 361, 1655 (2003).

[16] A. Einstein, B. Podolsky, and N. Rosen, Can Quantum-Mechanical Description of
Physical Reality Be Considered Complete?, Phys. Rev. 47, 777 (1935).

[17] N. Gisin, and R. Thew, Quantum communication, Nat. Phot. 1, 165 (2007).

[18] D. Gottesman, T. Jennewein, and S. Croke, Longer-Baseline Telescopes Using
Quantum Repeaters, Phys. Rev. Lett. 109, 070503 (2012).

[19] C. H. Bennett, and and G. Brassard, Quantum cryptography: Public key distribution
and coin tossing, Proceedings of the IEEE International Conference on Computers,
Systems, and Signal Processing, Bangalore, pp. 175 (1984).

[20] Y. Yu, F. Ma, X.-Y. Luo, B. Jing, P.-F. Sun, R.-Z. Fang, C.-W. Yang, H. Liu, M.-Y.
Zheng, X.-P. Xie, W.-J. Zhang, L.-X. You, Z. Wang, T.-Y. Chen, Q. Zhang, X.-H.
Bao, and J.-W. Pan, Entanglement of two quantum memories via fibres over dozens
of kilometres, Nature 578, 240 (2020).

[21] S. Wehner, D. Elkouss, and R. Hanson, Quantum internet: A vision for the road
ahead, Science 362, 303 (2018).

[22] H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, Quantum Repeaters: The Role of
Imperfect Local Operations in Quantum Communication, Phys. Rev. Lett. 81, 5932
(1998).

[23] M. K. Bhaskar, R. Riedinger, B. Machielse, D. S. Levonian, C. T. Nguyen, E.
N. Knall, H. Park, D. Englund, M. Loncar, D. D. Sukachev, and M. D. Lukin,
Experimental demonstration of memory-enhanced quantum communication, Nature
580, 60 (2020).



125

[24] L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, Long-distance quantum com-
munication with atomic ensembles and linears optics Nature 414, 413 (2001).

[25] B. P. Abbott, et al. (LIGO Scientific Collaboration and Virgo Collaboration), Ob-
servation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev.
Lett. 116, 061102 (2016).

[26] G. E. Marti, R. B. Hutson, A. Goban, S. L. Campbell, N. Poli, and J. Ye, Imaging
Optical Frequencies with 100 µHz Precision and 1.1 µm Resolution, Phys. Rev. Lett.
120, 103201 (2018).

[27] S. Schreppler, N. Spethmann, N. Brahms, T. Bottler, M. Barrios, and D. M.
Stamper-Kurn, Optically measuring force near the standard quantum limit, Science
344, 1486 (2014).

[28] J. Chaste, A. Eichler, J. Moser, G. Ceballos, R. Rurali, and A. Bachtold, A Nanome-
chanical Mass Sensor With Yoctogram Resolution, Nature Nanotechnol. 7, 301
(2012).

[29] W. Wasilewski, K. Jensen, H. Krauter, J. J. Renema, M. V. Balabas, and E. S.
Polzik, Quantum Noise Limited and Entanglement-Assisted Magnetometry, Phys.
Rev. Lett. 104, 133601 (2010).

[30] V. Giovannetti, S. Lloyd, and L. Maccone, Quantum-Enhanced Measurements:
Beating the Standard Quantum Limit, Science 306, 1130 (2004).
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[121] S. Büyükköse, B. Vratzov, D. Atac, J. van der Veen, P. V. Santos, and W.G. van
der Wiel, Ultrahigh-frequency surface acoustic wave transducers on ZnO/SiO2/Si
using nanoimprint lithography, Nanotechnology 23, 315303 (2012).

[122] A. R. Hutson and D. L. White, Elastic Wave Propagation in Piezoelectric Semicon-
ductors, J. Appl. Phys. 33, 40 (1962).

[123] P. Bierbaum, Interaction of ultrasonic surface waves with conduction electrons in
thin metal films, Appl. Phys. Lett. 21, 595 (1972).

[124] A. Wixforth, J. P. Kotthaus, and G. Weimann, Quantum Oscillations in the Surface-
Acoustic-Wave Attenuation Caused by a Two-Dimensional Electron System, Phys.
Rev. Lett. 56, 2104 (1986).

[125] A. Wixforth, J. Scriba, M. Wassermeier, J. P. Kotthaus, G. Weimann, and W.
Schlapp, Surface acoustic waves on GaAs/AlxGa1−xAs heterostructures, Phys. Rev.
B 40, 7874 (1989).

[126] W. Paul, Electromagnetic traps for charged and neutral particles, Rev. Mod. Phys.
62, 531 (1990).

[127] D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, Quantum dynamics of single
trapped ions, Phys. Rev. Mod. 75, 281 (2003).

[128] S. Rahav, I. Gilary, and S. Fishman, Time Independent Description of Rapidly
Oscillating Potentials, Phys. Rev. Lett. 91, 110404 (2003).

[129] S. Rahav, I. Gilary, and S. Fishman, Effective Hamiltonians for periodically driven
systems, Phys. Rev. A 68, 013820 (2003).



133

[130] J. I. Cirac, L. J. Garay, R. Blatt, A. S. Parkins, and P. Zoller, Laser cooling of
trapped ions: The influence of micromotion, Phys. Rev. A 49, 421 (1994).

[131] S. Kohler, T. Dittrich, and P. Hänggi, Floquet-Markovian description of the para-
metrically driven, dissipative harmonic quantum oscillator, Phys. Rev. E 55, 300
(1997).

[132] T. Fujisawa, T. H. Oosterkamp, W. G. van der Wiel, B. W. Broer, R. Aguado,
S. Tarucha, and L. P. Kouwenhoven, Spontaneous Emission Spectrum in Double
Quantum Dot Devices, Science 282, 932 (1998).

[133] T. Fujisawa, D. G. Austing, Y. Tokura, Y. Hirayama, and S. Tarucha, Allowed
and forbidden transitions in artificial hydrogen and helium atoms, Nature 419, 278
(2002).

[134] T. Hayashi, T. Fujisawa, H. D. Cheong, Y. H. Jeong, and Y. Hirayama, Coherent
manipulation of electronic States in a double quantum dot, Phys. Rev. Lett. 91,
226804 (2003).

[135] J. R. Petta, A. C. Johnson, C. M. Marcus, M. P. Hanson, and A. C. Gossard,
Manipulation of a single charge in a double quantum dot, Phys. Rev. Lett. 93,
186802 (2004).

[136] P. Barthelemy and L. M. K. Vandersypen, Quantum Dot Systems: a versatile plat-
form for quantum simulations, Ann. Phys. 525, 808 (2013).

[137] V. Kornich, C. Kloeffel, and D. Loss, Phonon-mediated decay of singlet-triplet qubits
in double quantum dots, Phys. Rev. B 89, 085410 (2014).

[138] K. Wang, C. Payette, Y. Dovzhenko, P. W. Deelman, and J. R. Petta, Charge
Relaxation in a Single Electron Si/SiGe Double Quantum Dot, Phys. Rev. Lett.
111, 046801 (2013).

[139] J. G. Rodriguez-Madrid, G. F. Iriarte, J. Pedros, O. A. Williams, D. Brink, and
F. Calle, Super-High-Frequency SAW Resonators on AlN/Diamond, IEEE Electron
Device Lett. 33, 495 (2012).

[140] M. Benetti, D. Cannata, F. Di Pietrantonio, and E. Verona, Growth of AlN Piezo-
electric Film on Diamond for High-Frequency Surface Acoustic Wave Devices, IEEE
Trans. Ultrason. Ferroelectr. Freq. Control 52, 1806 (2005).

[141] M. B. Assouar, O. Elmazria, P. Kirsch, P. Alnot, V. Mortet, and C. Tiusan, High-
frequency surface acoustic wave devices based on AlN/diamond layered structure
realized using e-beam lithography, Journal of Applied Physics 101, 114507 (2007).



134 5. Bibliography

[142] E. Glushkov, N. Glushkova, and C. Zhang, Surface and pseudo-surface acous-
tic waves piezoelectrically excited in diamond-based structures, Journal of Applied
Physics 112, 064911 (2012).

[143] M. Benetti, D. Cannata, F. Di Pietrantonio, V. I. Fedosov, and E. Verona,
Gigahertz-range electro-acoustic devices based on pseudo-surface-acoustic waves in
AlN/diamond/Si structures, Appl. Phys. Lett. 87, 033504 (2005).

[144] R. H. Blick, M. L. Roukes, W. Wegscheider, and M. Bichler, Freely suspended two-
dimensional electron gases, Physica B 249, 784 (1998).

[145] COMSOL Multiphysics® v. 5.2. www.comsol.com. COMSOL AB, Stockholm, Swe-
den.

[146] In our Comsol simulations we have neglected the presence of the thin AlxGa1−xAs
crystal layer with typically x ≈ 0.3. As argued in Ref.[207], this treatment is ap-
proximately correct since the relevant material properties (elastic constants, densi-
ties, and dielectric constants) of AlxGa1−xAs and GaAs are very similar. The mode
functions and speed of sound are largely defined by the elastic constants, which are
roughly the same for both AlxGa1−xAs and pure GaAs; for example, the speed of
the Rayleigh SAW mode for Al0.3Ga0.7As is vs ≈ 3010m/s, which differs from that
of pure GaAs by only ∼ 5%. Also, the piezoelectric coupling constants are rather
similar, with e14 ≈ 0.15C/m2 for pure GaAs and e14 ≈ 0.145C/m2 for Al0.3Ga0.7As
[207].

[147] K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro Neto, 2D materials
and van der Waals heterostructures, Science 353, aac9439 (2016).
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