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Abstract

Relational learning algorithms utilize structured relational data and underlying structure
to extract useful information. Examples of relational data are social networks that can be
abstracted as graphs with undirected edges or triple-oriented knowledge graphs as directed
graphs with labeled edges. In recent years, large-scale triple-oriented knowledge graphs
have become an essential approach for knowledge representation and reasoning. They are
widely used in artificial intelligence systems, such as question answering systems, recom-
mendation systems, etc. One well-known example is IBM’s cognitive computing platform,
IBM Watson, where the knowledge graph is a core component. Another example is the
world’s largest structured relational database of human knowledge, Google’s knowledge
graph. Knowledge graphs are also applied in enterprises as knowledge management and
process monitoring tools. For example, inside Siemens, a knowledge graph for gas turbines
is applied to realize knowledge-based maintenance.

Triple-oriented knowledge graphs consist of semantic triples, which are interlinked en-
tities describing the facts and human knowledge of the world, e.g., (California, locatedIn,
USA). Triple-oriented knowledge graphs are static and represent the human knowledge of
the world at a specific timestamp. However, commonly, the world is changing, as well as
the human knowledge of it. For example, a healthy person becomes diagnosed with a dis-
ease, or a new president is inaugurated. Hence, semantic triples can be easily generalized
to episodic quadruples by incorporating timestamps, and episodic quadruples constitute
an episodic knowledge graph describing the evolving knowledge and changing facts of a
dynamic world. Modeling episodic knowledge graphs using tensor methods for knowledge
inference is one of the subjects studied in the present dissertation.

Triple-oriented semantic knowledge graphs and quadruple-oriented episodic knowledge
graphs are supposed to be the most straightforward and human-understandable form of
static and evolving knowledge, respectively. Hence, it is hypothesized that semantic and
episodic knowledge graphs are technical realizations of the brain’s declarative memories in
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artificial intelligence systems. As the first contribution, in this dissertation, we closely in-
vestigate the corresponding relation between semantic memory and the semantic knowledge
graph, as well as episodic memory and the episodic knowledge graph. The interdependency
between semantic and episodic memory suggests that their technical realizations, the se-
mantic and episodic knowledge graphs, are also not mutually independent and support one
another. We can realize a mapping from the episodic knowledge to the semantic knowledge,
or, from the cognitive perspective, a transition from the episodic memory to the seman-
tic memory, via marginalization of timestamps. Cognitive aspects of different knowledge
graphs are wholly original and open new research directions. For example, previous stud-
ies showing that semantic knowledge graph can improve visual relationship detection in
images suggest that there could be a deeper connection between perception and semantic
memory.

Knowledge graphs can be constructed by gathering and merging information from un-
structured texts of different resources. Hence, the size of knowledge graphs, including the
number of semantic triples and the number of distinguishable entities, is rapidly grow-
ing. For example, the size of Google’s knowledge graph grows rapidly after launch, and
currently, it contains more than 570 million distinguishable entities and nearly 100 bil-
lion semantic triples. However, the speed of performing knowledge inference on knowledge
graphs is greatly influenced by the massive number of triple facts and entities. Consider-
ing that all the current learning algorithms on knowledge graphs are classical algorithms
and implemented on classical computational resources, as the second contribution of this
dissertation, we develop first quantum learning algorithms that can potentially speedup
the knowledge inference on knowledge graphs.

We propose two quantum machine learning algorithms: a trainable quantum circuit-
based method, and a quantum tensor singular value decomposition method. Both show
different speedups on inference in the knowledge graph. In particular, the quantum circuit-
based method applies variational quantum circuits to obtain quantum representations of
entities and evaluates the score functions of semantic triples via unitary circuit evolu-
tion. We prove that the resulting method shows a quadratic speedup with respect to the
number of entities and could, in principle, be tested on noisy intermediate-scale quantum
devices. We further investigate the performance of the circuit-based method via a quan-
tum variational simulator. While the quantum circuit-based method is parametric and
trainable, the quantum tensor singular value decomposition method performs knowledge
inference via sampling, showing an exponential acceleration with respect to the number
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of entities. Despite a dramatically reduced inference time, the quantum sampling-based
method cannot easily be implemented on current devices, since its quantum subroutines,
e.g., quantum random access memory and quantum phase estimation, are nontrivial and
require error corrects. As one of the theoretical contributions of this dissertation, we prove
the plausibility of the sampling-based quantum algorithm theoretically and investigate its
performance by implementing classical tensor singular value decomposition on knowledge
graphs.

In the last part of this dissertation, we study causal effects on relational data. Causal
inference on relational data is a relatively new research area. Hence, as a first step, in-
stead of studying causal effects on knowledge graphs, we investigate the causal effects in
social networks and user-item networks. Commonly, consistency and lack of interference
are underlying assumptions in studies of causal inference. However, the interference-free
assumption becomes improper in the social network setting. For example, the treatment
response of a unit in the social network can be affected by the treatment assignments or re-
sponses of its neighboring units. Hence, the treatment response of a unit is a superposition
of individual treatment effect and peer effect. As the third contribution of this dissertation,
we propose the first causal estimators to estimate superimposed causal effects on networks
using different graph neural networks. After obtaining graph neural network-based causal
estimators, we employ an optimal policy network for treatment assignment on the network
to maximize the network’s total welfare.
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Zusammenfassung

Relationale Lernalgorithmen verwenden strukturierte relationale Daten und die zugrunde
liegende Struktur, um nützliche Informationen zu extrahieren. Beispiele für relationale
Daten sind soziale Netzwerke, die als Graphen mit ungerichteten Kanten betrachtet werden
können, oder Tripel-orientierte Wissensgraphen, die als gerichtete Graphen mit beschrifteten
Kanten betrachtet werden können. In den letzten Jahren sind Tripel-orientierte Wis-
sensgraphen zu einem wesentlichen Ansatz für die Präsentation von Wissen geworden.
Sie werden häufig in Systemen der künstlichen Intelligenz verwendet, wie z.B. in Fragen-
beantwortungssystemen, Empfehlungssystemen usw. Ein bekanntes Beispiel ist die IBM
kognitive Computing-Plattform, IBM Watson, bei der ein Wissensgraph eine Kernkom-
ponente ist. Ein weiteres Beispiel ist die weltweit größte relationale Datenbank men-
schlichen Wissens, der Wissensgraph von Google. Wissensgraphen werden auch in Un-
ternehmen als Werkzeuge für Wissensmanagement und Prozessüberwachung eingesetzt. So
wird beispielsweise innerhalb von Siemens ein Wissensgraph für Gasturbinen für bessere
Wartungszyklen angewendet.

Tripel-orientierte Wissensgraphen bestehen aus semantischen Tripeln, die miteinander
verbindenden Entitäten darstellen. Semantische Tripel beschreiben die Fakten und das
menschliche Wissen der Welt, z.B. (Kalifornien, Lokalisiert In, USA). Tripel-orientierte
Wissensgraphen sind statisch und stellen das menschliche Wissen zu einem bestimmten
Zeitstempel dar. Im Allgemeinen verändert sich jedoch die Welt, ebenso wie das men-
schliche Wissen darüber. Zum Beispiel wird bei einer gesunden Person eine Krankheit
diagnostiziert oder ein neuer Präsident wird vereidigt. Daher können semantische Tripel
leicht auf episodische Quadrupel verallgemeinert werden, indem Zeitstempel integriert wer-
den. Episodische Quadrupel bilden episodische Wissensgraphen, die das sich entwickelnde
Wissen und die sich verändernden Fakten der dynamischen Welt beschreiben. Die Mod-
ellierung episodischer Wissensgraphen mit Tensor Zerlegung zur Wissensinferenz ist eines
der in dieser vorliegenden Arbeit untersuchten Themen.
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Tripel-orientierte semantische und Quadrupel-orientierte episodische Wissensgraphen
sollen die direkteste und menschenverständlichste Form von statistischem bzw. sich en-
twickelndem Wissen sein. Daher wird die Hypothese aufgestellt, dass semantische und
episodische Wissensgraphen die technischen Realisierungen der deklarativen Gedächtnisse
des Gehirns in künstlichen Intelligenzsystemen sind. Als erster Beitrag untersuchen wir
in dieser Dissertation die entsprechende Beziehung zwischen dem semantischen Gedächt-
nis und dem semantischen Wissensgraphen sowie Beziehung zwischen dem episodischen
Gedächtnis und dem episodischen Wissensgraphen. Die Interdependenz zwischen semantis-
chem und episodischem Gedächtnis zeigt, dass ihre technischen Realisierungen, die seman-
tischen und episodischen Wissensgraphen, auch nicht voneinander unabhängig sind und
sich gegenseitig unterstützen. Wir können eine Abbildung vom episodischen Wissen zum
semantischen Wissen oder, aus der kognitiven Perspektive, einen Übergang vom episodis-
chen Gedächtnis zum semantischen Gedächtnis durch Marginalisierung von Zeitdimension
realisieren. Kognitive Perspektiven verschiedener Wissensgraphen sind völlig original und
eröffnen neue Forschungsrichtungen. Frühere Studien, die zeigen, dass semantische Wis-
sensgraphen die visuelle Erkennung von Beziehungen in Bildern verbessern können, deuten
beispielsweise darauf hin, dass ein tieferer Zusammenhang zwischen Wahrnehmung und
semantischem Gedächtnis besteht.

Wissensgraphen können aufgebaut werden, indem Informationen aus den unstrukturi-
erten Texten verschiedener Ressourcen gesammelt und extrahiert werden. Daher wächst
die Größe der Wissensgraphen, einschließlich der Anzahl der semantischen Tupel und der
Anzahl der Entitäten, schnell. Zum Beispiel nimmt die Größe von Googles Wissensgraphen
schnell zu, und derzeit enthält er mehr als 70 Millionen unterscheidbare Entitäten und fast
100 Milliarden semantische Tripel. Die Geschwindigkeit der Durchführung von Wissensin-
ferenz in Wissensgraphen wird jedoch strak durch die enorme Anzahl semantischen Fakten
und Entitäten beeinflusst. In Anbetracht der Tatsache, dass alle aktuellen Lernalgorith-
men für Wissensgraphen klassische Algorithmen sind und auf klassischen Rechenressourcen
implementiert sind, entwickeln wir als zweiten Beitrag dieser Dissertation die ersten Quan-
tenalgorithmen, die möglicherweise die Wissensinferenz in Wissensgraphen beschleunigen
können.

Wir schlagen zwei Quantenalgorithmen vor: eine trainierbare Quantenschaltkreis-basierte
Methode und eine Quantentensor-Singulärwert-Zerlegungsmethode. Beide Quantenalgo-
rithmen zeigen unterschiedliche Beschleunigungen der Wissensinferenz in Wissensgraphen.
Insbesondere wendet die Quantenschaltkreis-basierte Methode variationellen Quantenschaltkreise
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an, um die Quantendarstellungen von Entitäten zu erhalten. Die Score-Funktionen seman-
tischer Tripel werden über die unitäre Evolution der Quantenschaltung berechnet. Wir
haben bewiesen, dass die Quantenschaltkreis-basierte Methode eine quadratische Beschle-
unigung in Bezug auf die Anzahl der Entitäten bei der Wissensinferenz aufweist. Wir
untersuchten weiterhin die Leistungen der schaltungsbasierten Methode mit Hilfe eines
Quantensimulators.

Während das quantenschaltungsbasierte Verfahren parametrisiert und trainierbar ist,
führt die Quantentensor-Singulärwert-Zerlegungsmethode die Wissensinferenz durch das
Sampling durch und zeigt eine exponentielle Beschleunigung in Bezug auf die Anzahl der
Entitäten. Trotz einer drastisch verkürzten Inferenzzeit lässt sich diese Quantensampling-
basierte Methode nicht leicht auf gegenwärtigen Rechner implementieren, da die benötigten
Quantensubroutinen, z.B. der Quantenzugriffsspeicher und die Quantenphasenschätzung,
nicht trivial sind und Quantenfehlerkorrekturen erfordern. Als einer der theoretischen
Beiträge dieser Arbeit beweisen wir die Plausibilität des Sampling-basierten Quantenalgo-
rithmus und untersuchen seine Leistung, indem wir klassische Tensor-Singulärwertzerlegung
von Wissensgraphen implementieren.

Im letzten Teil dieser Dissertation untersuchen wir kausale Effekte auf relationale
Daten. Kausale Inferenz auf relationale Daten ist ein relativ neues Forschungsgebiet. Daher
untersuchen wir in einem ersten Schritt die kausalen Auswirkungen in sozialen Netzwerken
und Benutzer-Item-Netzwerken. Im Allgemeinen sind die Konsistenz und das Fehlen von
Interferenz die zugrunde liegenden Annahmen in Studien der kausalen Inferenz. Die inter-
ferenzfreie Annahme wird jedoch in der Einstellung der sozialen Netzwerke unrealistisch.
Beispielsweise kann die Behandlungsreaktion einer Einheit im sozialen Netzwerk durch
die Behandlungszuweisungen und die Behandlungsreaktionen der benachbarten Einheiten
beeinflusst werden. Daher stellt die Behandlungsreaktion einer Einheit eine Überlagerung
des individuellen Behandlungseffekts und Peer-Effekts dar. Als dritten Beitrag dieser Dis-
sertation schlagen wir die ersten Kausalschätzer vor, die verschiedene Graph neuronaler
Netzwerke verwenden, um überlagerte Kausaleffekte im Netzwerk zu schätzen. Nach dem
Erhalt von Graph neuronalen Netzwerke-basierten Kausalschätzern, setzen wir eine opti-
male Strategie für die Behandlungszuweisung im Netzwerk ein, um das Gesamtwohl des
Netzwerks zu maximieren.
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Chapter 1

Introduction

1.1 Motivation

Knowledge representation is an essential subdiscipline of artificial intelligence (AI) [98, 62]
with focuses on translating external information and human knowledge of the world into
machine-understandable language, such that an artificial agent can utilize this knowledge
and undertake specific complex tasks. Different schemes for relational knowledge represen-
tation have been proposed in the history of artificial intelligence, such as the Fame [77] that
stores knowledge in substructures and a semantic network [104] that adopts a conceptual
dependency graph to describe semantically structured knowledge. Relational knowledge
representation can also be augmented with logic rules, hence bringing explainable and
reliable knowledge into current artificial intelligence approaches.

Current attempts for artificial intelligence are based on neural networks and designed
to extract meaningful latent representations from raw input features for subsequent tasks.
Depending on the tasks, specific neural network architectures have been proposed, e.g.,
Feedforward Neural Network [100] for supervised learning, Convolutional Neural Network
(CNN) [63] for image classification, Recurrent Neural Network (RNN) [25, 48] for sequence
modeling tasks, and Graph Neural Network (GNN) [46] for modeling graph-structured
raw data. Neural networks are flexible deep learning frameworks for solving various tasks,
but they cannot explicitly leverage expert knowledge, and they always require massive
human-labeled data. Therefore, explicit and well-structured knowledge representations
are supposed to be perfect complements to machine learning and deep learning.

The semantic Web [11] is an example of explicit and relational knowledge representa-
tion, which creates a standard framework for interlinking Internet data, such that these



2 1. Introduction

machine-readable data can be shared and extended across different domains and systems.
To develop the Semantic Web for interchangeable data, technology such as Resource De-
scription Framework (RDF) [58] has been proposed, where links between two resources are
expressed in the subject-predicate-object format, also known as the SPO triples. Semantic
Web is an ambitious project proposed by Tim Berners-Lee, inventor of the World Wide
Web, and remains to be fully accomplished. On the other hand, the Knowledge Graph
(KG), as a variant of Semantic Web, inherits the RDF format and describes existing facts
as relationships between entities using the subject-predicate-object triples. Due to the ex-
plicit semantic meaning of the subject-predicate-object triples, facts stored in a knowledge
graph are also referred to as semantic triples.

Recently, various relational knowledge bases, or knowledge graphs, have been created
by different companies, research institutes, and communities for their purposes of use, es-
pecially for facilitating AI systems. For example, Google Knowledge Graph [103] gathers
billions of facts from a variety of resources to improve search engine’s quality and to assist
the question-answering service. YAGO [105] is a huge semantic knowledge base about peo-
ple, countries, and organizations, and helps to build the Watson cognitive platform [28].
Moreover, Freebase [12] is a community-oriented knowledge graph that is extracted from
Wikipedia and augmented by its community members. A social network can be regarded
as a domain-specific knowledge graph with nodes representing individuals and edges the
friendship relations among individuals. Hence, based on the social graph nature of Face-
book, a social graph search engine was developed by Facebook to enhance the friend
recommendation service.

Knowledge graphs provide a structured and declarative representation of knowledge
and support the intelligent reasoning on knowledge through learning. The purpose of
learning on knowledge graphs is to obtain features or representations of entities and encode
complex relational structures into these features as a form of knowledge representation.
After learning on knowledge graphs, statistical inference can be conducted using learned
representations for the tasks such as missing link prediction, entities’ attributes prediction,
and entities classification [83]. This kind of learning and reasoning belongs to the field of
statistical relational learning (SRL) [59]. Numerous statistical learning algorithms have
been developed for modeling knowledge graphs such as RESCAL [85] and DistMult [125].
In comparison with the rule-based reasoning system, scalability and generalizability are the
main advantages of learning-based algorithms. It is feasible to generalize statistical learning
algorithms to knowledge graphs with millions of entities. Therefore, in this dissertation,
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we mainly develop learning-based algorithms to solve reasoning and prediction tasks.

So far, knowledge graphs are introduced as relational databases that store relationships
between entities as semantic triples. Hence, these relational databases are referred to as
semantic knowledge graphs. In most circumstances, however, the world is dynamic, and
facts of the world might change over time. For instance, one patient is recovered from
a disease, or the political relationship between two countries becomes tense. In order
to declaratively describe the changing facts, episodic knowledge graphs were introduced,
which are also known as temporal or time-dependent knowledge graphs. They are large-
scale event databases used to represent time-evolving and multi-relational data. Examples
of standard episodic knowledge graphs are GDELT [64] and ICEWS [13], which were
created to keep global events such as interactions between countries and organizations.
Moreover, time-dependent facts are stored in the episodic knowledge graphs as quadruples
with additional timestamps. One other subject of this dissertation is to develop statistical
learning algorithms on episodic knowledge graphs and to perform probabilistic inference
on them.

Semantic and episodic knowledge graphs store information in a declarative form. They
are believed to be the most abstract and succinct way to represent facts and human knowl-
edge. Therefore, an analogy between knowledge graphs and human’s cognitive memory
functions was first observed and proposed in [111, 112]. In particular, the papers sug-
gest that semantic knowledge graphs are technical realizations of semantic memory, and
episodic knowledge graphs correspond to episodic memory. Semantic and episodic mem-
ories are long-term declarative memories that support each other. Hence, it is expected
that their technical realizations, the semantic and episodic knowledge graphs, are interde-
pendent. [113, 69] demonstrate the above idea and show that a semantic knowledge can be
derived from an episodic knowledge via marginalization. The ideas regarding knowledge
graphs from cognitive perspectives are pushed forward recently in the effort [114], where
knowledge graphs are suggested to support the semantic decoding of the perception as
well as memory consolidations. Also, in this dissertation, we improve a previous cognitive
architecture for the associative memory, the holographic reduced representation [89], and
apply the novel framework to large-scale knowledge graphs.

Information is extracted from various text resources and aggregated into a knowledge
graph such as from webpages, newspaper articles, and scientific reports, resulting in consis-
tently growing knowledge graphs with an increasing number of semantic triples and unique
entities. The growing number of semantic triples and entities slows down the training and
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inference on knowledge graphs. In the second part of this dissertation, we, therefore, inves-
tigate quantum algorithms that can accelerate the learning procedure and the reasoning
on knowledge graphs, which can be regarded as our second significant contribution. Pri-
marily, we propose two types of quantum algorithms for reasoning on knowledge graphs.
The first approach is a training-based algorithm using a hybrid quantum-classical building
block, called the variational quantum circuit [78]. This hybrid approach adopts a circuit-
centric [101] parametrized quantum circuit to estimate the score functions of semantic
triples, such that the computational complexity for evaluating the score functions can be
dramatically reduced. Besides, it employs a classical unit for storing and updating the
parameters in the variational circuit. Furthermore, we show that there exists a heuristic
quantum subroutine that can quadratically accelerate the reasoning.

The second approach is a sampling-based quantum algorithm, which can be regarded
as the quantum counterpart of classical tensor singular tensor decomposition [19] (tensor
SVD). The quantum tensor SVD approach employs a quantum memory architecture, the
Quantum Random Access Memory [33], and quantum subroutines such as density matrix
exponentiation [67], quantum phase estimation [57], and quantum singular value projec-
tion [54], realizing an exponential acceleration for the reasoning on knowledge graphs. As
one theoretical contribution, we provide rigorous conditions, under which tensor singu-
lar value decomposition is plausible for the tensor completion task, and under which the
quantum counterpart is feasible.

In the last part of this dissertation, we investigate causal inference in complex relational
domains. Major subjects studied in the causal inference are, for example, identifying the
causal direction from observed data and predict the potential outcomes from observational
or experimental studies. We will focus on the framework for inferring potential outcomes,
also known as the Neyman-Rubin causal model [95, 97] and generalize it to the relational
domain. In the relation domain, the outcome of an individual is not only affected by the
treatment assignment to this individual but also by the treatment assignments or responses
of its neighboring individuals. This causal interference phenomenon is referred to as the
spillover effect in economics or peer effect in social science [4]. For instance, a student’s
academic performance depends not only on whether it attends a tutorial class, which can
be regarded as a treatment being assigned to the student, but also on whether its friends
attend a tutorial class and its friends’ performances.

Such a problem, inferring causal effects under network interference, is a challenging yet
intriguing research topic and has attracted attention from the causal inference community.
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To capture the neighboring influence, we adopt graph neural networks (GNNs) as powerful
aggregators for aggregating information of neighboring feature vectors and develop causal
estimators upon them. We provide a heuristic error bound for these novel GNN-based
causal estimators and show their superior performance. After obtaining the optimal causal
estimators, we further learn a policy network to maximize the average welfare on the
network by reassigning intervention decisions. As a novel theoretical contribution, we
provide policy regret for policy networks that employ GNN-based causal estimators with
and without treatment capacity constraint.

This cumulative dissertation is organized as the following. Chapter 1 serves as a general
introduction of this dissertation and provides necessary backgrounds. Section 1.1 motivates
the subjects investigated and provides an overview. Section 1.2 reviews different machine
learning approaches for modeling semantic knowledge graphs, while Section 1.3 introduces
episodic knowledge graphs and reviews tensor decomposition and point process methods for
modeling episodic knowledge graphs. In Section 1.4, we discuss the cognitive perspectives
of semantic and episodic knowledge graphs and their connections to declarative memo-
ries. Section 1.5 further introduces a cognitive architecture for the associative memory,
the holographic reduced representation, and discusses its improvement and application
on semantic knowledge graphs. Section 1.6 and 1.7 provide necessary backgrounds for
understanding the two quantum algorithms for reasoning on semantic knowledge graphs.
Moreover, Section 1.8 introduces the task of causal inference under interference and pro-
poses the GNN-based causal estimators. Chapters 2, 3, 4, 5, and 6 present our published
works and works under review. Chapter 7 gives a summary and points out further research
directions as continuations of presented works.

1.2 Modeling of Semantic Knowledge Graphs

1.2.1 Introduction of Semantic Knowledge Graphs

We first provide a brief introduction of semantic knowledge graphs and representation
learning of semantic knowledge graphs. A set of semantic facts that describe the relations
between entities builds a semantic knowledge graph. A semantic fact in the Resource
Description Framework (RDF) [61] is represented as a triple (subject, predicate, object),
which is also referred to as a semantic triple. Figure 1.1 (a) illustrates a small fragment
of a semantic knowledge graph. It keeps, for instance, the location of the city of Hamburg
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and describes this fact as the semantic triple (Hamburg, CityOf, Germany). Freebase [12],
Wikidata [120], and YAGO [73] are standard knowledge graphs that are widely used in
AI systems. Similar to the preference prediction and item recommendation using the
preference matrix, by modeling semantic knowledge graphs, we can infer implicit and
missing knowledge from observed semantic triples [83]. Since knowledge graphs contain
noisy facts and missing links after automatic extraction, the inference task becomes a
standard method for testing the modeling algorithms developed on them.

Besides the database format for storing semantic triples, a knowledge graph can also
be viewed as a directed graph with labeled edges representing predicates and nodes being
the entities. Note that a directed and labeled graph is equivalent to a three-dimensional
tensor with one dimension for subjects, one for objects, and one for predicates. Hence,
another view of a knowledge graph is a three-dimensional sparse tensor, with entries indi-
cating the truth values of corresponding semantic triples. A tensor decomposition method
for modeling the three-dimensional semantic tensor has been proposed in [85]. This ten-
sor decomposition method, also known as RESCAL, is demonstrated in Figure 1.1 (b).
RESCAL decomposes the three-dimensional semantic tensor into lower-dimensional vector
representations of entities and matrix representations of predicates, which can be used in
subsequent tasks. Other tensor decomposition algorithms that have been applied to knowl-
edge graphs are, for example, PARAFAC [44], HOSVD [22], and the Tucker model [117].

(a) (b)

Figure 1.1: (a) A fragment of a semantic knowledge graph with semantic triples, e.g.,
(Hamburg, CityOf, Germany) and (Berlin, CapitalOf, Germany), etc. (b) illustrates the
tensor view of a semantic knowledge graph and the RESCAL [85] model for semantic
tensor decomposition. In RESCAL, each entity has a vector representation, and each
predicate possesses a matrix representation. The score function of each semantic triple is
then obtained via the vector-matrix-vector multiplication.



1.2 Modeling of Semantic Knowledge Graphs 7

1.2.2 Relational Learning for Semantic Knowledge Graphs

We provide a brief introduction to different modeling methods of semantic knowledge
graphs. We let E denote the set of entities with the size Ne, and P the collection of
predicates with the size Np. We write the three-way semantic tensor as χ with entries
xspo indicating the truth value of the corresponding semantic triple (s, p, o), i.e., χ ∈
{0, 1}Ne×Np×Ne . As mentioned previously, the main idea of representation learning is to
obtain low-dimensional representations of entities and predicates that can well capture the
global patterns in the knowledge graph. Hence, we assume unique latent representations
for each entity and predicate. We let aei , i = 1, . . . , Ne, denote entity representations,
and api , i = 1, . . . , Np, predicate representations. Note that given the triple (s, p, o), we
also interchangeably use as, ap, and ao as representations of the subject, predicate, and
object, respectively. We further introduce a companion tensor H sharing the same shape
as χ with entries ηspo. Statistical modeling of the semantic tensor χ assumes that the
probability of an entry being true is given by Pr(xspo|ηspo) = σ(ηspo), where the sigmoid
function is defined as σ(x) := 1

1+e−x .
The tensor element ηspo assigns a score to the triple (s, p, o). Hence it also referred

to as the score function of the triple (s, p, o). The score function is a function of latent
representations, and usually, each model is associated with a unique way of composing the
score function. For instance, the Tucker tensor decomposition with rank R is defined as

ηspo =
R∑

r1,r2,r3=1
Gr1,r2,r3as,r1ap,r2ao,r3 ,

where we assume that each entity and predicate has an R-dimensional vector represen-
tation; G ∈ RR×R×R represents the core tensor. Moreover, the RESCAL model assumes
vector representations of entities and matrix representations of predicates (see Figure 1.1
(b)) whose score function is composed as

ηspo =
R∑

r1,r2=1
as,r1ap,r1,r2ao,r2 ,

with aei ∈ RR, for i = 1, . . . , Ne, and api ∈ RR×R, for i = 1, . . . , Np.
In addition to tensor decomposition approaches, several compositional and translational

methods for the score function have been proposed in [125, 116, 84]. One simple compo-
sitional model DistMult [125] uses a tri-linear dot function and defines the score function
as

ηspo =
R∑
r=1

as,rap,rao,r,
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where it assumes that all entities and predicates are R-dimensional real-valued vectors.
Moreover, ComplEx [116] is proposed as an extension of DistMult by using complex-valued
vector representations. The score function for ComplEx is defined as

ηspo = <(
R∑
r=1

as,r, ap,r, āo,r),

where the bar indicates the complex conjugate operation, and < represents the real part
of a complex number.

The semantic tensor is usually an extremely sparse tensor whose nonzero entries take
value one and represent real or observed facts. Under the closed world assumption [83],
unobserved semantic triples are assumed to be false and registered as zero entries into
the semantic tensor. Latent representations of entities and predicates are obtained by
minimizing a loss function and using a dataset that consists of both true and false semantic
triples. Consider a training dataset D = {(xi, yi)}mi=1 with m samples, where xi represent
semantic triples and yi the corresponding truth values. The loss function can be chosen
as, for instance, a binary cross-entropy loss that is defined as

L = − 1
m

m∑
i=1

(yi log(σ(ηxi)) + (1− yi) log(1− σ(ηxi))) ,

where σ is the sigmoid function, and ηxi represents the score function of the semantic triple
xi.

Inferring implicit knowledge, or missing link prediction, is only one of the applica-
tions with knowledge graphs. Google uses knowledge graphs to enhance the quality of its
search engine. Semantic knowledge graphs can also provide rich and structured knowledge
to pre-trained neural language models to improve natural language understanding [127].
Complicated conjunctive logical queries can also be conducted on knowledge graphs using
learned representations, e.g., an existential query “What drugs can target proteins that are
associated with both mutations A and B?” on a biological knowledge base [40]. Besides,
knowledge graphs can facilitate fact-checking using path-based reasoning and extracted ar-
guments by two debating agents [47]. In summary, modeling knowledge graphs and using
them for the subsequent tasks are exciting and imaginative research topics, and there are
more can be explored.
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1.3 Modeling of Episodic Knowledge Graphs

1.3.1 Relational Learning for Episodic Knowledge Graphs

Episodic knowledge graphs, also known as temporal or time-dependent knowledge graphs,
are large-scale event databases, which can describe temporally evolving multi-relational
data. An episodic knowledge graph can be viewed as a sequence of semantic knowl-
edge graphs accompanied by timestamps. Hence, the entries of an episodic knowledge
graph are quadruples composed of subject, predicate, object, and timestamp, also de-
noted as (s, p, o, t) for short. For instance, Global Database of Events, Language, and
Tone (GDELT) [64] and Integrated Crisis Early Warning System (ICEWS) [13] are two
available event-based temporal knowledge graphs that have been drawing attention in the
community. As the name suggests, the data repository GDELT registers evolving knowl-
edge about interactions between countries and organizations across the globe. The ICEWS
data repository contains information about national and international crises.

In the last section, we have reviewed several representation learning models of semantic
knowledge graphs, including tensor decomposition and compositional models. For instance,
representative tensor decomposition models are Tucker and the RESCAL model, and Dist-
Mult and ComplEx are representative compositional models. In the pioneering work [69],
we are the first to investigate representation learning models for episodic knowledge graphs.
To generalize the semantic models to episodic knowledge graphs, we introduce unique latent
representations for timestamps. For instance, Figure 1.2 (a) shows the extension of three-
way Tucker to four-way Tucker, where a four-dimensional core tensor replaces the three-
dimensional core tensor with one dimension representing the timestamp. Figure 1.2 also
shows the extensions of RESCAL and ComplEx and their applications to episodic knowl-
edge graphs. In particular, the ConT model, which is the extension of RESCAL, shows
a superior memory capacity since each timestamp is associates with a three-dimensional
core tensor in this tensor decomposition model. The high dimensionality of the timestamp
representations not only results in superior memory capacity of the model, but it also
facilitates the mapping from episodic knowledge to semantic knowledge.

A similar approach has been proposed in [21], which develops an extension of the trans-
lational model of static knowledge graphs by introducing latent representations for times-
tamps. The main disadvantage of these approaches is a restricted generalization ability to
unobserved timestamps. In other words, these models are limited to the completion tasks
on episodic knowledge graphs with observed timestamps in the training dataset, and they
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Figure 1.2: Illustrations of (a) Tucker, (b) ComplEx, and (c) ConT models for representa-
tion learning of episodic knowledge graphs introduced in [69]. The Tucker model realizes a
four-way tensor decomposition with dimensions representing subjects, predicates, objects,
and timestamps. The four-way ComplEx model is an extension of the ComplEx model
for semantic knowledge graph. ConT can be regarded as a generalization of the RESCAL
model, where Gt indicates the three-dimensional tensor representation of a timestamp.

cannot predict future events. To resolve these issues, [31] introduces latent representations
for each character of the timestamp, such that latent representations can be generalized
to unobserved timestamps. Know-Evolve [115], on the other hand, provides a novel deep
learning architecture that allows reasoning over time and future events prediction. Know-
Evolve models the non-linearly evolving events as a nonparametric point process whose
intensity function is characterized by time-dependent entity representations.

1.3.2 Graph Hawkes Network for Modeling Episodic Knowledge
Graphs

It is advantageous to introduce the nonparametric point process for modeling temporal
knowledge graphs. For instance, modeling events as point process can return the inten-
sity or the probability of the occurrence of an event over continuous time, which makes it
different from the aforementioned temporal knowledge graph models using discrete times-
tamps. In particular, the intensity function can be interpolated between timestamps and
extrapolated to the future, such that the occurrence time of future events can be pre-
dicted. However, as pointed out by the follow-up work [42], Know-Evolve cannot deal with
concurrent entities and event interactions within the same timestamp.
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To resolve the problem of concurrent events, we proposed a Graph Hawkes Network
(GHN) for future events prediction in [42] 1. The GHN model captures the underlying
interactions between entities and events using a Graph Neural Network and estimates the
intensity function of an event from the historical events via a multivariant Hawkes process.
To be more specific, the GNN module aggregates information from concurrent events, and
the intensity functions in the Hawkes process is returned by a continuous-time LSTM [76]
that uses the aggregated information from the GNN module as inputs. Note that each
event type in a temporal knowledge graph corresponds to a directed and labeled edge,
namely unique event types are unique semantic triples by ignoring the time information of
quadruples. From another perspective, a temporal knowledge graph can be considered as
an event stream with many event types. Hence, another superior advantage of the GHN
model is its flexibility of modeling event stream with a large number of event types.

Hawkes Process [45] is defined to be a self-exciting multivariate point process for model-
ing sequential discrete and inter-dependent events that occur over continuous time. It is a
self-exciting process in which the occurrence of an event can raise the conditional intensity
of other events. The conditional intensity function of one event type at instance t depends
explicitly on previously happed events, and it takes the form

λk(t) = µk +
∑
h:th<t

αkh,k exp(−δkh,k(t− th)),

where µk is the background intensity of event type k, αj,k characterizes the degree of
excitation of event type j on type k, and δj,k describes the exponential decay rate of the
excitation with time. The conditional probability density function pk(t), which describes
the probability that the next event with type k will occur during the interval [t, t + dt)
conditioned on the past events, can be calculated using survival analysis theory [1]. The
density function is defined to be the product of the intensity function and the probability
that no event of any type happens after the latest event, namely

pk(t) = λk(t) exp(−
∫ t

tL

∑
k

λk(s)ds),

where tL represents the time of the latest event that happened before t.
In the context of modeling episodic knowledge graphs via Hawkes process, we let ei =

(esi , epi , eoi , ti) denote an event happed at time ti having type (esi , epi , eoi), where esi , epi ,
and eoi are the subject, predicate, and object of the event ei, respectively. Without going

1as a second author work with significant contribution
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into details of the GHN model, we discuss the reasoning ability of it. A plausible task on the
temporal knowledge graph is to infer the missing entities of events at a future timestamp
ti conditioned on observed histories, e.g., to predict the missing subject (?, epi , eoi , ti) or
the missing object (esi , epi , ?, ti). Besides entities predictions, the GHN model can infer
when an event type will happen, namely (esi , epi , eoi , ?), which is also known as the time
prediction task.

More concretely, given query (esi , epi , ?, ti), we use the GHN model to estimate the
intensity functions λ(eo|esi , epi , ti,H) of all candidate objects eo and locate the possible
ones, where H represents observed histories, and the intensity function is conditioned on
the query and the historyH. Also, for the time prediction task (esi , epi , eoi , ?), we can obtain
a similar conditional intensity function λ(t|esi , epi , eoi ,H) from GHN, which describes the
intensity of event type (esi , epi , eoi) at instance t given the history H. The corresponding
density function of this event type reads

p(t|esi , epi , eoi ,H) = λ(t|esi , epi , eoi ,H) exp
(
−
∫ t

tL
λ(τ |esi , epi , eoi ,H) dτ

)
.

The expected occurrence time of the given event type can then be estimated as∫ ∞
tL

t p(t|esi , epi , eoi ,H) dt.

More details on the model architecture and experimental results are provided in [42].

1.4 Cognitive Perspectives of Knowledge Graphs

1.4.1 Knowledge Graphs and Cognitive Memories

Declarative and nondeclarative memories are two components of the brain’s long-term
memory, where declarative memory can be further divided into semantic memory, episodic
memory, and autobiographic memory [32]. Declarative memory refers to the memory of
facts and events which can be recalled and described with language. Whereas semantic
memory refers to conscious recollection of factual knowledge and concepts, episodic memory
is an intentional retrieval of previous events with their spatial and temporal contexts. The
difference between episodic memory and autobiographic memory is that autobiographical
memory is only associated with specific personal experiences. Nondeclarative memory, on
the other hand, is an unconscious memory, including perceptual and procedural memories,
which are related to the acquisition of better skills and formation of habits. Figure 1.3
demonstrates a simple classification of the brain’s different types of memory.
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Figure 1.3: Basic classification of human memory functions.

A technical realization of semantic memory is a collection of semantic triples, e.g., the
triple (California, locatedIn, USA) storing the factual knowledge that California locates
in the USA. The collection of quadruples, or semantic triples accompanied with times-
tamps, realizes the episodic memory, e.g., the quadruple (Jack, diagnosedWith, Diabetes,
Feb10) recording the fact that Jack was diagnosed with diabetes on February 10. A se-
mantic knowledge describing the current health condition of Jack can be derived from the
quadruple by ignoring the temporal information, namely (Jack, diagnosedWith, Diabetes).

As motivated previously, a 3-way semantic tensor, with dimensions for subjects, predi-
cates, and objects, is a suitable representation of semantic memory, while a 4-way episodic
tensor with additional timestamp dimension is suitable a data representation of episodic
memory. The tensor view of declarative memory is not efficient and compressed. Hence,
a biologically more plausible view of declarative memory is proposed in [113]. In this
framework, declarative memory tenors are first decomposed, and each generalized entity,
predicate, and timestamp obtains a unique latent representation, such that memory tensors
can be approximately reconstructed from latent representations. The tensor decomposi-
tion approach provides a compressed form of declarative memory, and more advanced,
knowledge generalization becomes plausible by inferring new semantic triples or episodic
quadruples using latent representations.

The tensor decomposition framework for declarative memories is biologically plausible
since generalized entities and distributed representations can find their counterparts in
the brain, which are widely studied in cognitive neuroscience. Entities for abstract and
symbolic concepts are encoded as concept cells resided in the medial temporal lobe (MTL)
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- the hippocampus and its surrounding cortex [91]. Concept cell represents one neuron or
a separate assembly of neurons that become activated when perceiving a specific concept.
The activation of the concept cell corresponding to a specific concept can be triggered by
different aspects of the same concept, e.g., the visual or acoustic features of the concept,
since there exist links between the concept cell and cortical areas that store different aspects
of the corresponding concept. For example, concept cell is also called as Jennifer Aniston
cell, since it might be invoked by Jennifer’s appearance, voice, or even the movies she
starred.

Furthermore, the entity representations in the tensor decomposition framework resem-
ble the distributed representations of concepts stored in different cortical areas. Reversely,
the activation of a concept cell brings the conscious retrieval of various attributes of the
corresponding concept. The localized storage of concepts and distributed storage of con-
ceptual representations form a flexible system of long-term memory, which even contributes
to perception, language, and thought [55].

Cognitive studies suggest that semantic and episodic memories are interdependent both
at encoding and retrieval phases [36]. Baddeley [8] argues that semantic memory might
arise from blurred episodic memory by losing temporal information, in the sense that re-
peatedly experienced episodic events become consolidated, and during conscious retrieval,
only decontextualized events can be recalled. For example, by consistently noticing that
Jack is diagnosed with diabetes on February 10, one becomes aware that Jack has di-
abetes. As proposed in [113, 112], in the tensor decomposition framework of declarative
memories, the technical realization of decontextualization of episodic memory and the tran-
sition from episodic memory to semantic memory are implemented via marginalization in
the time dimension. The marginalization is performed using the latent representations of
timestamps. However, since semantic memory reflects the factual knowledge of current
timestamp, marginalization should be implemented while minding the end timestamps of
repeatedly experienced episodic events [69].

Until now, we have assumed that the distributed representations of timestamps only
come from the tensor decomposition of the episodic tensor, and the semantic decoding of
episodic events is realized by marginalization over time dimension. However, according
to the definition of episodic memory, it refers to the memory of specific events and re-
lated contexts, such as spatial, temporal, visual information, and associated emotion, etc.
Previous theory of episodic memory, such as the Hippocampal Memory Indexing Theory
(HMIT) [109], suggests that episodic events are stored by forming time indices in the brain
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that connect to the representation layer. Activation of the time indices brings the rec-
ollection of previous experiences. However, the hippocampal memory indexing theory is
subsymbolic, which contradicts the fact that episodic memory is declarative.

1.4.2 Cognitive Architecture for Semantic Decoding

Figure 1.4: A cognitive neural architecture that describes the sequential semantic decoding
for perception, which is proposed in [114].

To extract the declarative information from episodic events, a cognitive neural archi-
tecture for sequential semantic decoding from perception is proposed in [114]. Figure 1.4
sketches the basic idea of this cognitive architecture for scene understanding. Visual in-
puts are first processed and passed through a convolutional neural network and stored in
the sensory memory layer as visual representations. Representations for perceived entities
are initially obtained from a linear transformation of the memory stored in the sensory
memory layer and then reactivated via the connections between concept neurons and the
representation layer. Visual relations are recognized by iteratively sampling the semantic
triples with the help of a recurrent neural work, which mostly resembles the working mem-
ory. Furthermore, the scene can be consolidated and stored as an episodic memory. More
details of this cognitive neural architecture for modeling the human memory system can
be found in [114].

Semantic decoding utilizes semantic memory and facilitates the interpretation of per-
ception, and it is believed to be a unique capacity of the human. Through semantic
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decoding, semantic triple statements of the visual perception are generated, which can
compose the thought for verbally describing the visual perception. Notice that during
the semantic decoding, the semantic memory serves as prior knowledge for creating triple
statements and facilitates the efficient formation of episodic memory [9, 10]. Therefore, the
conscious and declarative recollection of a piece of episodic memory might be realized by
activating the time index, which triggers the activation of the corresponding representation
layer, and semantic decoding then follows up. Moreover, repeated recollections or experi-
ences of the same episodic event lead to memory consolidation and, eventually, a transition
from episodic memory to semantic memory. A summary of the cognitive perspectives of
knowledge graphs is presented in Figure 1.5.

Figure 1.5: An overview of our cognitive perspectives of knowledge graphs. The semantic
knowledge graph achieves a technical realization of semantic memory, while episodic mem-
ory is a technical realization of episodic memory. A semantic decoder that incorporates
long-term semantic memory, sensory memory, and short-term working memory provides a
declarative property of episodic memory.

1.5 Holographic Reduced Representation and Holis-
tic Representation

1.5.1 Holographic Reduced Representation

The tensor decomposition framework for modeling declarative memories is a learning-based
cognitive architecture where latent representations of generalized entities are obtained via
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tensor decomposition. It also serves as a vector symbolic architecture (VSA) for structured
associative memory in the sense that an incomplete entry can be approximately completed
using latent representations. For example, the associative query (s, p, ?) is answered by
ranking the scores objects, realizing an architecture for associative recollection. Associa-
tive memory is an essential component of artificial intelligence since connections between
seemingly unrelated concepts can be stored in the associative memory, e.g., paired stim-
uli and responses. Various approaches for modeling the associative memory have been
proposed, starting from the Hopfield’s network [49], which is a learning-based architec-
ture. Among various vector symbolic architectures for simulating associative memory,
holographic associative memory (HAM) was first studied in [30, 121], which suggests that
the holographic storage of many stimulus-response pairs might be related to the working
principles of the human brain.

Holographic associative memory was further modified to the Holographic Reduced Rep-
resentation (HRR) proposed in [89]. In the HRR cognitive structure, each item or symbol
is associated with a vector representation. An association between two items is reduced to
a single vector of the same dimension via a vector binding operation. To ensure the reduc-
tion is reversible, circular convolution and correlation are chosen as the binding operations.
The reduced representation for the item association forms a memory trace, and multiple
memory traces, i.e., multiple associations, can be compressed into a single memory trace
via superposition, which is, defined mathematically, an addition in the same vector space.
Two associated items are called a cue-filler pair. Through the reversible vector binding
operation, encoded cue-filler pairs can be approximately retrieved from this single memory
trace. However, the restored representation is usually distorted due to the interference
caused by the superposition of multiple associations. Therefore, to identify the retrieved
item, a clean-up post-process is required in the HRR cognitive structure.

Usually, multiple associations are stored holographically in a memory trace, e.g., a mem-
ory trace of a horse might encode the breed, color, and height of the horse. Intuitively, the
more associative pairs encoded in a memory trace, the less accurate associations can be
retrieved. The maximal number of cue-filler pairs encoded in a single memory trace, which
can still be approximately retrieved, is referred to as the memory capacity of the cognitive
structure for associative memory. Before understanding how the circular convolution- and
correlation-based binding operation affects the memory capacity, especially when it is ap-
plied to directed knowledge graphs, we first discuss another critical factor, the initialization
of vectors in the VSA. Recall that, in holographic reduced representation, distributed rep-
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resentations of items are initialized by elementwise sampling from a Gaussian distribution.
It has been shown in [89] that the memory capacity of the HRR architecture depends on
the degree of pairwise quasi-orthogonality of initialized random vectors.

1.5.2 Quasi-Orthogonality

The concept of near orthogonality was studied in [24], which informally states that most
vectors in an ensemble of independently sampled random vectors are nearly orthogonal.
A more rigorous mathematical definition of near orthogonality, or quasi-orthogonality, has
only recently been addressed in [16, 17], where, given an ensemble of Gaussian random
vectors, the asymptotic distribution function of the cosine of pairwise angles is derived.
The more mathematical term, ε-orthogonality, is formally defined as follows.

Definition 1. A set of n vectors X1, . . . ,Xn is said to be pairwise ε-orthogonal, if |〈Xi,Xj〉| <
ε for i, j = 1, . . . , n, i 6= j, where ε > 0, and 〈·, ·〉 denotes the inner product in the vector
space.

We assume that X1, . . . ,Xn are q-dimensional vectors with elements randomly sampled
from the normal distribution N (0, 1). Let Θij denote the angle between vectors Xi and
Xj and let ρij := cos Θij ∈ [−1, 1]. The distribution function of random variables ρij in
the large n limit, n→∞, is derived in [16, 81] and revisited in the following Lemma.

Lemma 1. Consider ρij as defined above. Then {ρij|1 ≤ i < j ≤ n} are pairwise i.i.d.
random variables with the following asymptotic probability density function

g(ρG) = 1√
π

Γ( q2)
Γ( q−1

2 )
(1− ρ2

G)
q−3

2 , |ρG| < 1, (1.1)

with fixed dimensionality q, where the subindex in ρG indicates that random vectors are
sampled from Gaussian distribution.

Since the concept of holographic reduced representation, it had mainly been tested on
small toy datasets for associative memory tasks. The main difficulties of applying the HRR
architecture to large-scale knowledge graphs are a large number of entities and the sub-
stantial interference due to the superposition. The key solution is the quasi-orthogonality
since, in fact, with improved quasi-orthogonality of randomly initialized distributed repre-
sentations, the entities become more distinguishable from their representations even after
slight distortion, and the interference can be reduced, allowing more associations to be en-
coded into a single memory trace. In our recent work [68], we observed that by elementwise
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sampling the initial representations from a heavy-tailed distribution, e.g., Cauchy distribu-
tion, the quasi-orthogonality of sampled random vectors could be significantly improved,
realizing a dramatically enhanced memory capacity for associations.

An asymptotic approximation of the density function g(ρC) was derived using the arith-
metic of random variables and the generalized central limit theorem [34]. Let X1, . . . ,Xn

be independent q-dimensional random vectors that are elementwise i.i.d. sampled from a
Cauchy distribution C(0, 1). Let Θij denote the angle between vectors Xi and Xj and let
ρij := cos Θij ∈ [−1, 1]. In the limit q →∞, the distribution function of the pairwise angle
in the Cauchy case approaches

g(ρC) = − 2
π2q2ρ3

C
· 1
z

3
2

[
e 1
πz Ei

(
− 1
πz

)]
, (1.2)

where z := 1
q2

(
1
ρ2

C
− 1

)
, and the exponential integral Ei(x) is defined as Ei(x) = −

∞∫
−x

e−t
t
dt.

Figure 1.5.2 shows the empirical distribution of ρG in an ensemble of random vectors el-
ementwise sampled from the normal distribution N (0, 1) compared with the distribution
function given in Eq. 1.1; and the empirical distribution of ρC in an ensemble of random
vectors elementwise sampled from the Cauchy distribution C(0, 1) compared with the ana-
lytical approximation provided in Eq. 1.2. In particular, a spike concentrated around ρ = 0
in the setting of Cauchy initialization indicates a significantly improved quasi-orthogonality.

1.5.3 Holistic Representation

In the holographic reduced representation, circular convolution is employed as the reversible
bind operation. Given two q-dimensional vectors a and b, the circular convolution ∗ :
Rq × Rq → Rq is defined as

[a ∗ b]k =
q−1∑
i=0

aib(k−i) mod q.

Moreover, the circular correlation operator ? : Rq × Rq → Rq is defined as

[a ? b]k =
q−1∑
i=0

aib(k+i) mod q.

A noisy version of b can be decoded from the association a ∗b via the circular correlation,
i.e., b ≈ a ? (a ∗ b). Figure 1.7 provides an illustrative explanation of circular convolu-
tion and circular correlation. By applying the convolution-correlation binding method to
knowledge graphs, the memory trace of an entity should encode all the semantic triples



20 1. Introduction

Figure 1.6: The empirical distribution of ρG in an ensemble of random vectors elementwise
sampled from N (0, 1) (green) is compared with the asymptotic distribution function given
in Eq. 1.1 (magenta); the empirical distribution of ρC in an ensemble of random vectors
elementwise sampled from C(0, 1) (blue) is compared with its analytical approximation
provided in Eq. 1.2 (red). In both cases, all the random vectors have dimension q = 2000.

that are related to the entity. For instance, suppose that (s, p1, o1), (s, p2, o2), and (s, p3, o3)
are all the semantic triples that have s as the subject. Then the memory trace for s should
encode all the predicate-object pairs that are associated with it, such that given the mem-
ory trace of s and a predicate, say p1 or p2, as the cue, the object, o1 or o2, should be
retrieved.

The resulting memory traces are referred to as the holistic representations in [68] to
emphasize the holistic theory of meaning. Note that the holistic representations of entities
are not learned as in the statistical relational modeling of knowledge graph. Instead, they
are encoded from random initializations. [68] also first mathematically proves that circular
correlation is more suitable for encoding asymmetric relations in knowledge graphs, such
as (California, locatedIn, USA) for which the inverse relation (USA, locatedIn, California)
does not exist, since circular correlation is a noncommutative operator, i.e., a ? b 6= b ? a.
In this case, circular convolution will be employed accordingly as the decoding operation.

Holistic representations realize an associative memory architecture by compressing each
node’s neighboring information into its representation. Each node could approximately en-
code its local structure in the knowledge graph. Therefore, it is expected that by employing
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Figure 1.7: Illustration for circular convolution [a ∗ b] (left) and circular correlation [a ?
b] (right) of two 3-dimensional vectors a and b. For example, the vector after circular
convolution reads [a ∗b]0 = a0b0 + a2b1 + a1b2, [a ∗b]1 = a1b0 + a0b1 + a2b2, and [a ∗b]2 =
a2b0 + a1b1 + a0b2. The vector after circular correlation reads [a ? b]0 = a0b0 + a1b1 + a2b2,
[a ? b]1 = a2b0 + a0b1 + a1b2, and [a ? b]2 = a1b0 + a2b1 + a0b2.

a global learning module, missing links, or implicit knowledge, in the knowledge graph can
be inferred as well. In [68], we adopt a simple 2-layer neural network that uses the holis-
tic representations as input features to learn the global relational patterns hidden in the
knowledge graph. This simple neural network with bottle structure outperforms several
baselines, especially when the holistic representations are encoded from the Cauchy initial-
ization. More important, it is even capable of inferring implicit knowledge of unobserved
entities given only several semantic triples that contain those unobserved entities, with-
out retraining and fine-tuning the weights. More experiments and rigorous analysis of the
holistic representations can be found in [68] and Chapter 3.

1.6 Variational Quantum Circuit for Knowledge Graph
Embedding

1.6.1 Variational Quantum Circuit

Knowledge graphs are extracted from various unstructured text data, e.g., webpages, news-
paper articles, and scientific reports, through two steps: named entity recognition and rela-
tion extraction. The task of named entity recognition (NER), also known as named entity
classification, is to recognize and locate the mentioned entities in unstructured texts and
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classify them to predefined categories [82]. Previous NER approaches use language-specific
knowledge to design hand-crafted rules and annotate mentioned entities in corpora. With
the development of deep learning-based natural language processing, neural architectures
for NER are introduced in [60], which apply bidirectional LSTMs and conditional random
fields. Relations are then extracted from the corpora after annotating the entities and
integrated into knowledge bases as semantic triples.

The number of recognized entities and extracted triples continually increases as knowl-
edge graphs collect and merge information from different data sources. The growing num-
ber of semantic triples and entities leads to a slow inference on knowledge graphs given a
new query. To understand this, consider that we are given an unobserved query with an
unknown object, the computational complexity of inferring the potentially correct object
is O(NeR

3) for the Tucker model, where R represents the rank, and Ne the number of
entities. This estimation comes from the observation that the computational complexity of
evaluating the score function is R3 for the Tucker model, and the score function needs to be
calculated Ne times and ranked afterward to determine the potential object. Hence, in this
dissertation, we investigate the first quantum approaches for statistical relational learning
to accelerate the learning process and inference on knowledge graphs. In this section, we
briefly sketch the idea of our first quantum approach, whose underlying building block is
the parameterized quantum circuit, also known as the variational quantum circuit.

|0〉...
|0〉

|Ψ〉 Uθ

p

Figure 1.8: Quantum circuit part of the quantum-classical hybrid architecture for super-
vised learning. The input feature is first normalized and encoded as the amplitudes of
the quantum state |Φ〉, which is then evolved by a parameterized unitary transformation
Uθ, where θ represents parameters in the transformation. The predicted binary label is
encoded in the measurement statistics of the auxiliary qubit.

The parameterized quantum circuit is the building block of quantum-classical hybrid
machine learning algorithms. Hybrid approaches combine a low-depth parameterized quan-
tum circuit and a classical unit for optimization to learn a task by tuning and updating
the parameters in the circuit. The hybrid architecture makes the parameterized quantum
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circuit a hot research topic since it is more suited to near-term noisy quantum devices. An
overview of variational algorithms with a quantum-classical hybrid optimization scheme
can be found in [75, 78], which show that parameterized quantum circuits can approxi-
mate some nonlinear functions through numerical simulations. The variational approach
can be applied to solve combinatorial optimization problems, such as MaxCut on regular
graphs [26], by reformulating them to the ground state problems of Ising models. More-
over, [101] investigated a supervised learning algorithm using the quantum-classical hybrid
architecture, where inputs are normalized and encoded into the amplitudes of quantum
states.

Figure 1.8 illustrates the quantum part of the hybrid architecture for supervised learn-
ing. This quantum supervised learning architecture encodes the normalized input features
as the amplitudes of a quantum state, which is then evolved by a sequence of unitary
transformations. The unitary transformations are usually composed of parameterized sin-
gle and two-qubit gates. An objective function for the binary classification is associated
with the measurement statistics of an auxiliary qubit, which is entangled with the qubits
for amplitude encoding. This binary quantum classifier is then optimized by updating the
parameters in the unitary transformations and minimizing the objective function.

In this dissertation, we restrict to the case where the unitary transformation Uθ is
composed of a sequence of parameterized single and two-qubit gates. A single-qubit gate
is a 2-dimensional matrix representation of the special unitary group SU(2), which, after
ignoring a global phase, can be parameterized as

G(α, β, γ) =
 eiβ cosα eiγ sinα
−e−iγ sinα e−iβ cosα

 , (1.3)

where {α, β, γ} are tunable parameters of the single-qubit gate. Two-qubit gates that we
adopt in the Ansätze are controlled gates, where one qubit acts as a control of opera-
tions on another qubit. For instance, the controlled gate Ci(Gj) that applies a unitary
transformation on the j-th qubit conditioned on the state of the i-th qubit can be written
as

Ci(Gj) |x〉i ⊗ |y〉j = |x〉i ⊗G
x
j |y〉j ,

where |x〉i and |y〉j represent the quantum state of qubit i and j, respectively.
Quantum algorithms using n fully entangled qubits can perform computations on 2n

amplitudes. Hence, an n-qubit quantum circuit can encode input data with maximal
dimension 2n. To understand how the circuit processes the input data, we explicitly write
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down the (2n × 2n)-dimensional matrix representation of each unitary gate acting on the
n-qubit system. Suppose that Uθ consists of L unitary operations and let the l-th unitary
operation Ul be a single-qubit gate acting on the k-th qubit, then its matrix representation
reads

Ul = 11 ⊗ · · · ⊗Gk ⊗ · · · ⊗ 1n.

If the l-th unitary operation is a controlled gate Ci(Gj), which acts on the j-th qubit and
conditioned on the i-th qubit, then Ul possesses the following matrix representation

Ul = 11 ⊗ · · · ⊗ P0︸︷︷︸
i-th

⊗ · · · ⊗ 1j︸︷︷︸
j-th

⊗ · · · ⊗ 1n

+ 11 ⊗ · · · ⊗ P1︸︷︷︸
i-th

⊗ · · · ⊗ Gj︸︷︷︸
j-th

⊗ · · · ⊗ 1n,

where P0 = ( 1 0
0 0 ) and P1 = ( 0 0

0 1 ). Therefor, the (2n × 2n)-dimensional matrix representa-
tion of Uθ can be written as Uθ = UL · · ·U1.

To optimize the circuit model, gradients of parameters can be estimated from the
same circuit architecture using the parameter shift rule. This technique has been recently
proposed in [39, 101, 27], and it shows that the partial derivative of the expectation of a
quantum observable with respect to a circuit parameter can be decomposed into a sum of
unitary operators. Hence, the partial derivatives with respect to the circuit parameters can
be derived from the measurement statistics of the same auxiliary qubit using the parameter
shift rule. For instance, let us consider parameterized single-qubit gate G(α, β, γ), whose
partial derivatives with respect to α, β, and γ read

∂

∂α
G(α, β, γ) = G(α + π

2 , β, γ)
∂

∂β
G(α, β, γ) = 1

2G(α, β + π

2 , 0) + 1
2G(α, β + π

2 , π)

∂

∂γ
G(α, β, γ) = 1

2G(α, 0, γ + π

2 ) + 1
2G(α, π, γ + π

2 ).

1.6.2 Modeling Knowledge Graphs with Variational Quantum
Circuit

Having the knowledge of variational quantum circuits, we can introduce quantum embed-
ding models for knowledge graphs. In the pioneering work [70], we contribute two different
quantum embedding models: QCE and fQCE. In both models, each entity possesses
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a quantum representation, which is encoded as the amplitudes of a quantum states. The
only difference is that how these quantum representations of entities are prepared or loaded
as the amplitudes of quantum states. In the QCE model, quantum representations are
stored in a tree-structured classical memory, which can be accessed by a quantum algo-
rithm to load the representations as quantum representations. This memory structure (see
Figure 1.9) is a special Quantum Random Access Memory (QRAM) [33], which allows
the vector representations to be loaded with exponential acceleration in the vector dimen-
sion. Since the QCE model is training-based, we have shown that the iterative parameter
updates might ruin the exponential speedup gained during the preparation of quantum
states. Hence, we were motivated to propose the fully-parameterized Quantum Circuit
Embedding (fQCE).

||x||2

x2
1 + x2

2

x2
1

sgn(x1)

x2
2

sgn(x2)

x2
3 + x2

4

x2
3

sgn(x3)

x2
4

sgn(x4)

Figure 1.9: Classical memory structure with quantum access for creating the quantum
state |x〉 = x1 |00〉 + x2 |01〉 + x3 |10〉 + x4 |11〉. In this example, a 4-dimensional real-
valued normalized vector can be encoded as the amplitudes of a 2-qubit quantum state via
three conditioned unitary rotations. In general, an R-dimensional real-valued vector can
be encoded as the amplitudes of a dlogRe-qubit quantum state via O(logR) conditioned
unitary rotations. More details are given in [90, 54]

In the fQCE model, vector representations are not stored in the classical memory
structure described in Figure 1.9. Instead, quantum representations are prepared via ad-
ditional variational quantum circuits with entity-dependent gate parameters. The entity-
dependency means that the quantum circuit architecture for preparing entity quantum
representations remains the same for all entities. However, each entity possesses a unique
set of gate parameters. In other words, the quantum representation of an entity is prepared
by iteratively applying parameterized gates on a maximally entangled state.

To evaluate the score function of a semantic triple, for both models, after preparing a
quantum state for the subject, denoted as |s〉, a predicate-dependent circuit evolves the
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quantum state |s〉 to the resulting state |sp〉. Moreover, the quantum state for the object
|o〉 is prepared analogously, which is entangled with the state |sp〉 via an auxiliary qubit.
After performing another Hadamard gate on the auxiliary qubit, the inner product of
quantum states |o〉 and |sp〉 is encoded in the state of the auxiliary qubit. Therefore, we
can derive the score function from the measurement statistics of the auxiliary qubit. More
details of the circuit architecture can be found in [70] and Chapter 4.

By replacing the tree-structured memory storage with a variational quantum circuit
for preparing the quantum representations, we realize a circuit-centric model for knowl-
edge graph embedding. Recall that an R-dimensional classical vector representation can
be encoded as the amplitudes of a quantum state with O(logR) fully entangled qubits.
Therefore, in the circuit-centric fQCE model, if the variational circuit for the entity prepa-
ration is shallow enough and in the order O(logR), the computational complexity of score
functions can be reduced to O(logR).

Furthermore, we can realize an acceleration with respect to the number of entities when
inferring unobserved triples after training. The basic idea is to introduce a quantum register
for indices, which is entangled with the qubits for encoding quantum representations and
the auxiliary qubit. Consider query (s, p, ?) with an unknown object. Using the quantum
register for indices, we first prepare states |sp〉 and ∑i |i〉 |ei〉, where

∑
i |i〉 |ei〉 represents

the entanglement of all indices of entities and the corresponding quantum representations.
In this way, the inner product between |sp〉 and all |ei〉 can be evaluated and encoded as
the amplitudes of the register qubits. Correct objects might subsequently be read out by
measuring the register qubits. This algorithm heuristically realizes a quadratic speedup
in the number of entities during the inference. More details about the algorithm can be
found in Section 6 of [70] and Chapter 4.

1.7 Quantum Tensor SVD for Knowledge Graphs In-
ference

1.7.1 Classical Tensor Singular Value Decomposition

In the last section, we have introduced one quantum approach for modeling knowledge
graphs, which provides a quadratic acceleration for the knowledge inference with respect
to the number of entities. This approach applies variational quantum circuits, realiz-
ing a learning-based method, and the inference is performed using the learned quantum
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representations. The computational complexity of the learning-based approach is always
proportional to the number of data points in the training set. Due to the vast number of
semantic triples, it is still challenging to scale to more massive knowledge graphs. How-
ever, the tensor perspective of knowledge graphs indicates that the quantum counterparts
of classical tensor decomposition algorithms for knowledge inference might have different
computational complexities. In this section, we propose a sampling-based quantum method
that realizes an exponential acceleration in knowledge reasoning.

Quantum machine learning (QML) has attracted the attention of scientists from dif-
ferent research areas since it has been shown that specific classical algorithms can be
accelerated using quantum subroutines implemented on quantum devices. A famous quan-
tum machine learning algorithm in recent years has been the quantum algorithm for linear
systems of equations [43], also known as the HHL algorithm. The HHL algorithm performs
a matrix inversion and offers an exponential speedup in the dimensions of the matrix under
certain conditions. This quantum routine for matrix inversion finds applications in acceler-
ating classical algorithms, e.g., in support vector machine for classification [92] and in linear
regression [122]. Another series of quantum machine learning algorithms employ ampli-
tude amplification [15] to solve supervised and clustering problems [123, 3]. The amplitude
amplification quantum routine is inspired by Grover’s database search algorithm [38] and
can provide quadratic speedup to the problems mentioned above.

An interesting application of quantum machine learning is the quantum recommen-
dation system [54]. Given the preference matrix, the quantum recommendation system
can recommend user-preferred items with runtime polylogarithmic in the dimensions of
the preference matrix. The quantum recommendation system relies on quantum singu-
lar value estimation, which requires an efficient encoding of the preference matrix into a
quantum state. This quantum state preparation can be realized by the Quantum Random
Access Memory described in Figure 1.9 with the entries of the preference matrix stored
in the tree-structured memory. Recently, a quantum-inspired classical algorithm proposed
in [107] suggests that there exists a classical algorithm that can achieve similar exponen-
tial acceleration if the classical algorithm can access and prepare the data with runtime
similar to QRAM. However, as pointed out in [53], this quantum-inspired dequantization
algorithm has a much higher polynomial dependence on the rank of the preference matrix
as well as the inverse accuracy parameter, making this dequantized algorithm impractical,
and the supremacy of the quantum recommendation system maintains.

Due to the three-way tensor view of semantic knowledge graphs, we propose a quantum
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counterpart of classical tensor singular value decomposition, also called quantum tensor
SVD. Inferring implicit semantic knowledge from observed samples is, in principal, a tensor
completion problem. Therefore, before developing the quantum counterpart, it is necessary
to prove the plausibility of classical tensor singular value decomposition for the tensor com-
pletion task. Notably, it is essential to determine under what conditions the initial tensor
can be approximately reconstructed from the partially observed entries using the tensor
SVD algorithm. Such conditions are crucial to select the appropriate quantum subroutines
and design the quantum algorithm. The primary assumption made for the feasibility of
classical tensor SVD algorithm is that the original knowledge graph contains global and
structured relational patterns, such that low-rank approximation of the subsampled knowl-
edge graph can approximately reconstruct the original one. In the following, we explain
tensor SVD and its approximation power using rigorous mathematical language.

Let A = (Ai1i2···iN ) ∈ Rd1×d2×···×dN denote a N -way tensor with dk representing the k-th
dimension. The tensor product of two N -way tensors A and B is defined as 〈A,B〉F :=∑d1
i1=1 · · ·

∑dN
iN=1Ai1i2···iNBi1i2···iN . The tensor-vector product can be written as

A⊗1 x1 · · · ⊗N xN :=
d1∑
i1=1
· · ·

dN∑
iN=1
Ai1i2···iNx1i1x2i2 · · ·xNiN ,

for arbitrary vectors xk ∈ Rdk , with k = 1, . . . , N . We introduce two tensor norms: the
Frobenius norm and the spectral norm. The Frobenius norm of tensor A reads ||A||F :=√
〈A,A〉F . The spectral norm ||A||σ is defined as

||A||σ = max{A ⊗1 x1 · · · ⊗N xN |xk ∈ Sdk−1, k = 1, . . . , N},

where Sdk−1 represents a unit vector in Rdk .
Following the work [19], the definition of classical tensor SVD is provided below.

Definition 2 (cf. Definition 1 in [72]). If a tensor A ∈ Rd1×d2×···×dN can be written as
sum of rank-1 outer product tensors A = ∑R

i=1 σiu
(i)
1 ⊗ u

(i)
2 · · · ⊗ u

(i)
N , with singular values

σ1 ≥ σ2 ≥ · · · ≥ σR and 〈u(i)
k , u

(j)
k 〉 = δij, for k = 1, . . . , N . Then we say A has a tensor

singular value decomposition with rank R.

The above notations and tensor SVD are defined for general N -way tensors. We return
to the 3-way semantic tensor χ representing a semantic knowledge graph for a moment. It
was first proved in [72] by us that if a low-rank factorization χ̃ can well approximate the
original semantic tensor χ, i.e., ||χ−χ̃||F ≤ ε||χ||F for a small error ε > 0, then information
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can be successfully retrieved with high probability. To be more specific, suppose that
we use the approximation tensor χ̃ to answer the query (s, p, ?) for an unknown object.
The probability that correct objects cannot be successfully located from the top-n returns
provided by χ̃ is bounded by O(εn) for sufficiently small error ε (cf. Lemma 1 in [72]). Note
that, in general, the semantic tensor χ is incomplete with missing entries, or subsampled,
and the task is to infer unobserved entries from the approximation of subsampled tensor.
Therefore, it is essential to understand under what circumstances a tensor can be well
approximated by the low-rank factorization of its subsampled tensor.

Let us go back to the general tensor A. We let Â denote the subsampled tensor and
introduce the subsampling and rescaling scheme suggested in [2], where

Âi1i2···iN =


Ai1i2···iN

p
with probability p

0 otherwise.

This procedure describes that tensor elements are first i.i.d. subsampled with probability
p and subsequently rescaled. The advantage of rescaling is that expectation values of
elements in the subsampled tensor remain the same as before the subsampling. We can
write the subsampled tensor as Â = A + N , where the tensor N represents introduced
noise after subsampling. In fact, to prove that the reconstruction error from the low-rank
approximation of the subsampled tensor, we need to bound the spectral and Frobenius
norms of the noise tensor N , which can be considered as our contributions to the theory
of tensor decomposition.

We apply tensor factorization and subspace projection to the subsampled and rescaled
tensor Â to approximate the original tensor A. The idea behind these operations is that
after projecting Â to low-rank subspaces, observed elements become smoothed, and missing
entries are boosted, such that missing entries, or implicit knowledge, can be retrieved from
the reconstruction. In particular, we provide two subspace projection methods after tensor
SVD. The first method project the decomposed tensor onto the subspaces spanned by the
top-r singular values, which is also referred to as the truncated r-rank tensor SVD, denoted
as Âr. The second approach projects the factorized tensor onto the subspaces spanned by
the singular values whose absolute values are larger than a cutoff threshold τ > 0. We let
Â|·|≥τ denote the second projection method and name it as the projected tensor SVD with
absolute singular value threshold τ .

In [72], as one significant theoretical contribution, we prove that if the original tensor A
possesses a low-rank approximation, then the reconstruction error of truncated r-rank ten-
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sor SVD using the subsampled and rescaled tensor Â is bounded, i.e., ||A−Âr||F ≤ ε||A||F
with high probability, where ε > 0 is a small number depending on the subsample proba-
bility (cf. Theorem 1 in [72]). However, it could be challenging to design the corresponding
quantum algorithm of truncated low-rank tensor SVD. The reason is that negative singular
values might occur in the tensor case, and quantum subroutines for singular values always
disregard the sign of singular values. To be more specific, the quantum subroutines that
we need, such as quantum singular value estimation and singular value projection, neglect
the sign of singular values and store the absolute values of them in quantum registers.
Therefore, we are motivated to propose the classical algorithm of projected tensor SVD
with threshold and design the corresponding quantum counterpart of it. Furthermore, we
show that the tensor reconstruction error using the second approach is also bounded, i.e.,
||A − Â|·|≥τ ||F ≤ ε||A||F is satisfied with high probability (cf. Theorem 2 in [72]).

1.7.2 Sampling-based Quantum Algorithm for Knowledge Graphs
Inference

The quantum algorithm for tensor completion is then built on the classical algorithm of
projected tensor SVD with a projection threshold. We briefly sketch the idea of quantum
tensor SVD in this paragraph; more details are relegated to Section 3 in [72] and Chapter 5.
Consider we are given query (s, p, ?) for correct objects. The sampling-based quantum
algorithm should sample semantic triples with given subject s and subsequently post-
select on the predicate p. After quantum sampling and post-selection, we obtain the
desired semantic triples to identify correct objects. In other words, sampling should be
conducted in the predicate and object dimensions, which can be realized by unfolding the
subsampled semantic tensor χ̂. Therefore, as an essential step, we need to prepare the
following quantum density operator from χ̂,

ρχ̂†χ̂ :=
∑

i2i3i′2i
′
3

∑
i1

χ̂†i1,i2i3χ̂i1,i′2i′3 |i2i3〉 〈i
′
2i
′
3| .

This can be done by encoding the tensor χ̂ into the quantum state ∑
i1i2i3

χ̂i1i2i3 |i1i2i3〉 and
subsequently performing a partial trace to the density function of this quantum state. In
order to maintain the quantum supremacy, the quantum state ∑

i1i2i3
χ̂i1i2i3 |i1i2i3〉 and the

operator ρχ̂†χ̂ should be prepared using QRAM, which realizes an exponential acceleration
in the tensor dimensions.
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After obtaining the density operator ρχ̂†χ̂, the next step is to project this operator onto
eigenspaces spanned by the eigenvalues whose absolute values are larger than a threshold
τ . To realize the projection, we first need to exponentiate the density matrix and perform
the quantum phase estimation [57], such that eigenvalues of ρχ̂†χ̂ are all stored in additional
quantum registers. This step is also known as the quantum principal component analysis
(qPCA) [67]. Afterward, analogous to the quantum projection introduced in [54], we
can achieve a quantum singular value projection with selected eigenvalues larger than the
threshold τ with the help of an auxiliary quantum register. The resulting quantum state
is related to the classical projected tensor χ̂|·|≥τ , where values of missing entries become
boosted. Therefore, correct objects might be sampled from the resulting quantum states
by measuring the canonical bases. The computational complexity for inferring the query
(s, p, ?) is, therefore, O(polylog(d1d2d3)), where d1, d2, and d3 are three dimensions of the
semantic tensor, realizing an exponential acceleration during the inference. More details of
the analysis of the quantum tensor SVD can be found in Section 3 of [72] and Chapter 5.

1.8 Causal Inference under Interference

1.8.1 Introduction

Determination of the causal connection between two time-independent variables from ob-
servational data is a major topic in causal inference. For instance, genetics studies genetic
variants to find the causation of a disease, and sociology studies how education affects the
income. Causal inference analyzes the potential outcome of the effect variable after chang-
ing the cause variable, also known as counterfactual inference [88, 79], which distinguishes
it from the inference of correlation. Correlations between genetic variants and diseases
only characterize the dependency between them, while the causation emphasizes that the
presence of some genetic variants will lead to a specific disease, not the other way around.
Hence, correlation does not always imply causation.

The framework that analyzes the cause and effect from observational or experimental
studies to infer potential outcomes is called the Rubin causal model, also known as the
Neyman-Rubin causal model [95, 97]. Estimating average treatment effects or individual
treatment effects from observational or experimental studies are essential tasks in the
Rubin causal model. Causal inference usually requires the Stable Unit Treatment Value
Assumption (SUTVA) [20, 96], which assumes that the response of one unit is consistently
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observed and should be unaffected by the treatment assignments and responses of other
units. Namely, the causal model should be free from the interference between units. The
interference-free assumption becomes problematic in the relational setting, e.g., under a
social network setting, since the response of a unit might be affected by its social neighbors
through peer effects.

Causal inference in the complex relational domain is a challenging yet intriguing re-
search topic. For example, let us consider a citation knowledge graph of scientific pub-
lications, where nodes represent authors, publications, and journals, and labeled edges
represent the friendships or mentorships between authors, as well as authored-by relations.
A causal model can discover that the co-authorship of a publication might affect its citation,
and the topic of a paper might cause where it can be published [74]. In this dissertation,
we focus on the Rubin causal model, and for the sake of simplicity, we investigate causal
inference under interference on networks without labeled edges. Possible scenarios are the
following: an individual’s health condition might be dependent on its social connections’
vaccination conditions against an infectious disease, or other persons might influence the
inclination of a person buying a particular product through opinion propagation on social
networks.

Causal inference with interference was first studied in [50], which provides estimators
for group-level causal effects randomized trials, and the interference is presumed to appear
only within the groups. Later, based on this work, [108] proposes new inverse probability
weighting estimators for finite sample causal inference with a binary outcome, and it uses
observed data from group-randomized experiments in the presence of interference. Fur-
thermore, [66] derives the asymptotic causal estimators when either the number of subjects
per group or the number of groups diverges. Group-level randomized experiments and par-
tial interference within the groups and independence across different groups are, however,
sometimes invalid assumptions. Hence, several works focus on unit-level causal effects un-
der cross-unit interference and arbitrary treatment assignments, such as [4, 29, 86, 87, 119].
For instance, [4] performs causal inference via the Horvitz-Thompson estimator, assuming
that the vector of the generalized probability of exposure for each unit is known. [29]
develops new covariate-adjustment methods for causal inference on networks based on
neighborhood propensity score and individual propensity score. [87] fits generalized linear
models for estimating non-instantaneous contagion and infectiousness effects in a social
network.

We first introduce notations for the Rubin causal inference model. Let the binary
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variable Ti denote the treatment assignment of node or unit i with Ti = 1 indicating that
node i is assigned to the treatment group, and Ti = 0 if node i is in the control group.
Moreover, let Xi be the covariate vector of node i and Yi the outcome variable. Note
that in the interference-free assumption, the outcome variable Yi might only depend on the
assignment Ti and the covariate Xi. Hence, we let Yi(Ti = 1) represent the response under
treatment and Yi(Ti = 0) the potential response under control. Individual treatment effect
(IDE) of node i is then defined as the difference between responses under treatment and
control, i.e.,

τ(Xi) := E[Yi(Ti = 1)− Yi(Ti = 0)|Xi],

where the expectation value is taken over the response variable. One approach for es-
timating the individual treatment effect is directly modeling the data from random ex-
periments or observational studies. Given n data points 2 (Xi, Ti, Y

F
i ) with the factual

response Y F
i := TiYi(Ti = 1) + (1− Ti)Yi(Ti = 0), we learn a causal estimator h such that

h(Xi, Ti) ≈ Y F
i . Then, the estimated individual treatment effect can be derived as

τ̂(Xi) =

 Y F
i − h(Xi, Ti = 0), Ti = 1,

h(Xi, Ti = 1)− Y F
i , Ti = 0,

where evaluating the unobserved responses is also known as counterfactual inference.
In order to estimate the individual treatment effect, we need to evaluate counterfactual

outcomes using obtained causal estimators, which makes this estimation method insuf-
ficient, especially when the treatment and control groups are imbalanced. Imbalanced
treatment and control groups can cause biased causal estimators. Previous approaches for
addressing the imbalance issue are, e.g., propensity score matching and propensity score re-
weighting [94, 93, 7]. Besides, we always encounter the covariate shift or domain adaption
problem when the factual distribution Pr(Xi, Ti) differs from the counterfactual distribu-
tion Pr(Xi, 1−Ti). This problem is prevalent in causal inference with observed data, where
treatments are not randomly assigned. To address the issues mentioned above, [52, 102]
propose a method for learning balanced representations. In this method, covariate vectors
are first mapped to a feature space via a feature map Φ, such that in this feature space,
the discrepancy between the empirical distribution P̂r(Φ(Xi), Ti) and the empirical coun-
terfactual distribution P̂r(Φ(Xi), 1 − Ti) becomes minimized (see Figure 1.10). To some
extent, the treatment assignment Ti and the representation Φ(Xi) in the feature space
become approximately disentangled, i.e., Pr(Xi, Ti) ≈ Pr(Xi) Pr(Ti).

2For the sake of simplicity, we abuse the notation and let capital letters represent values of variables.
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Figure 1.10: Illustration of the idea of learning balanced representation. In the feature
space, representations Φ(Xi) become independent on the treatment assignments Ti after
an imbalance penalty.

Now we introduce the setting of causal inference under network interference. Let G =
(N , E , A) be a graph network with node set N of size n, edge set E , and adjacency matrix
A ∈ {0, 1}n×n. We useNi to represent the set of neighboring nodes of a node i ∈ N . Let TNi
and YNi indicate the treatment assignments and potential responses of neighboring nodes
Ni of the node i. Moreover, let X and T represent the covariate vectors and the treatment
assignments of all nodes, respectively. The idea of the Rubin causal model is to estimate
the population-level causal effects from randomized experiments, where individuals are
assigned randomly to the treatment and control groups. However, in many circumstances,
randomized assignments are infeasible due to external factors, budget constraints, or the
nonexperimental setting.

In this dissertation, we study causal inference under network interference using data
in both experimental and observational settings. We use the following structural equa-
tion model which describes the data generation process to unify both experimental and
observational settings,

Ti = fT (Xi),

Yi = fY (Ti,X,T,G) + εYi , (1.4)

for units i = 1, . . . , n, where fT captures the assignment mechanism, and fY describes the
simulation mechanism of potential outcomes. In the randomized experiment setting, the
assignment mechanism assumes that each individual is assigned to the treatment with a
predefined treatment probability p, i.e., fT = Bern(p). However, in the setting of observa-
tional studies, we model the assignment mechanism using covariates. We use a function fY
to simulate the causal responses under general network interference, which is a function not
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only of Xi and Ti but also the network structure and neighboring treatment assignments
and covariates.

Various methods for estimating individual treatment and spillover effects under network
interference have been proposed. [110, 14, 4] introduce an exposure variableGi as a function
of neighboring treatment assignments TNi . One choice for Gi could be the exposure level
to the treated neighbors, i.e., Gi :=

∑
j∈Ni

Tj

|Ni| . Furthermore, [29] proves the identifiability
of individual treatment effect under the assumption that potential response only depends
on the individual treatment assignment and the level of exposure. [29] further defines an
individual treatment effect under the exposure Gi = g,

τ(Xi, Gi = g) := E[Yi(Ti = 1, Gi = g)− Yi(Ti = 0, Gi = g)|Xi]. (1.5)

In addition, the spillover effect received by node i under the treatment assignment Ti = t

and the exposure Gi = g is defined as

δ(Xi, Ti = t, Gi = g) := E[Yi(Ti = t, Gi = g)− Yi(Ti = t, Gi = 0)|Xi].

Parametric causal estimators with generalized propensity score weighting are employed to
estimate the individual treatment and spillover effects.

In most circumstances, the assumption made in [29] becomes insufficient since the
response could be a complicated function of the network structure, neighboring covariates,
and treatment assignments. [86] investigates the estimation and inference of causal effects
in the social network setting and assumes a more general causal structural model. In that
causal structural model, the treatment response of node i under assignment Ti is a function
of its covariate, neighboring covariates, and treatment assignments, i.e.,

Yi,t := fY (sX(Xi, {Xj|j ∈ Ni}), sT (Ti, {Tj|j ∈ Ni})).

The summary functions sX and sT could be, for instance, the concatenations of covari-
ates and assignments, which are defined as sX(Xi, {Xj|j ∈ Ni}) :=

(
Xi,

∑
j∈Ni Xj

)
and

sT (Ti, {Tj|j ∈ Ni}) :=
(
Ti,
∑
j∈Ni Tj

)
, respectively. These summary functions might cause

high-dimensional and high-variance inputs to the causal estimator, and more critical, they
rule out the possibility of modeling network interference beyond nearest neighbors. Hence,
in this dissertation, we are motivated to investigate causal estimators which incorporate
Graph Neural Networks. These GNN-based causal estimators can aggregate neighbor-
ing and higher-order neighboring features and treatment assignments, which make them
superior candidates for studying spillover effects.
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1.8.2 GNN-based Causal Estimators

Before elaborating on our GNN-based causal estimators, we first introduce graph neu-
ral networks that are employed in the model. Graph neural networks were proposed in
the pioneering works [35, 99], which are based on the information diffusion mechanism
and can be applied to general graphs. Graph neural networks are also referred to as
Graph Convolutional Networks (GCNs) since they generalize the convolution operation
from grid-structured data to graph-structured data. Propagating a node’s neighboring
representations and integrating aggregated information into the node’s representation are
essential operations of GCNs. The resulting representation that integrates neighboring
information can be further applied to the next layer of graph convolutional operation, such
that the final representation of a node after several layers of graph convolutional opera-
tions can aggregate higher-order neighboring features. GCNs can extract both local and
global information by stacking several local graph convolutional operations, making them
appropriate candidates for node- and graph-level classifications [56, 126].

A representative set of graph neural networks are spectral-based GCNs [56, 23]. The
basic idea of spectral-based GCNs is to factorize the normalized Laplacian matrix and
perform graph Fourier transform to graph signals. By inheriting previously introduced
notations, the normalized graph Laplacian of an undirected graph is defined as L = In −
D−1/2AD−1/2, where In is the diagonal identity matrix, and D represents the node degree
matrix, i.e., Dii = ∑

j Aij. [56] proposes a normalization trick to stabilize the numerical
calculation by introducing the convolutional operator D̂−1/2ÂD̂−1/2, where the modified
adjacent matrix Â is augmented by self-loops, i.e., Â := In + A, and D̂ represents the
node degree matrix of Â. The corresponding convolutional layer is then defined as

X(l+1) = σ
(
D̂−1/2ÂD̂−1/2X(l)W(l)

)
,

where X(l) is the l-th layer hidden representation with X(0) indicating input features, and
we use ReLU as the activation function σ.

Another representative set of graph neural networks contain spatial-based GNNs [6, 41].
The basic idea of spatial-based GNNs is to propagate messages along edges with processed
information, e.g., by taking non-identical contributions from neighbors using an attention
mechanism [118]. One spatial-based GNN employed in the GNN-based casual estimators
is the GraphSAGE model [41], whose message passing operator reads

X(l+1)
i = norm

(
meanj∈Ni∪{i}X

(l)
j W(l)

)
,
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where mean represents the operation of taking the mean value, and norm is a normal-
ization operation. In GraphSAGE, neighboring nodes’ features are first transformed via a
weight matrix before integrating into the central node’s representation. As first pointed out
in [71], this localized information aggregation resembles a specific simulation mechanism of
spillover effects on the network. Hence, spatial-based GNNs are expected to be compelling
candidates for estimating causal effects on the network. One variation of the GraphSAGE
model that can be applied in the causal estimators is proposed in [80], which transforms the
central node’s representation and the neighboring representations separately with different
weight matrices, whose message passing operator is defined as

X(l+1)
i = σ

(
X(l)
i W(l)

1 + meanj∈NiX
(l)
j W(l)

2

)
.

This model, also known as the 1-GNN model, is expected to be more expressive than
GraphSAGE due to the separate transformations. A detailed survey of graph neural net-
works can be found in [124].

Figure 1.11: Illustration of GNN-based causal estimators.

Equipped with the necessary knowledge, we can now briefly sketch the GNN-based
causal estimators (see Figure 1.11). GNN-based causal estimators consist mainly of four
components: the feature map module Φ that maps the input covariates to a feature space;
a graph neural network module that aggregates neighboring features and extracts local
representations; an output module that uses the concatenations of central node feature
and local representation as inputs to estimate the potential outcomes; and a representation
penalty, with which node features and treatment assignments become disentangled in the
feature space. We use the Hilbert-Schmidt Independence Criterion (HSIC) [37] to force the
independence between features and treatment assignments. In addition to the balancing
of the feature map’s outputs, we also investigate the effect of balancing the outputs of the
GNNs since one challenge of inferring causal effects under interference is the imbalanced
spillover exposure.



38 1. Introduction

One necessary clarification is that the outcome prediction networks h0 and h1 in Fig-
ure 1.11 can only estimate the causal effects that are the superpositions of individual
treatment effects and network spillover effects. However, we can show that the individ-
ual treatment effects can be well extracted from GNN-based causal estimators by merely
assuming that the considered unit is isolated and setting the graph as an empty graph
without connections, i.e., G = ∅. As a theoretical contribution in [71], we provide an error
bound for the GNN-based causal estimators under reasonable assumptions. Particularly,
we show that, if the maximal node degree is independent on the graph size n, the error is
bounded by O(

√
1
n
). However, if the maximal node degree changes along with the graph

size, the O(
√

1
n
) convergence rate becomes infeasible, which is in line with the theoreti-

cal observation reported in [86]. More details can be found in the Appendix of [71] and
Chapter 6.

The fundamental problem of causal inference is the missing counterfactual responses
since we cannot observe both outcomes of an individual under different assignments at
once. Therefore we conduct randomized experiments on synthetic datasets with known
response generation processes. In the setting of the randomized experiment, we choose
two networks: an in-school friendship network collected from the National Longitudinal
Study of Adolescent Health project [18] and an online social network in Slovakia [106]. We
further test the proposed causal estimators in the observational setting using the Amazon
dataset [65], where counterfactual responses are simulated by matching the covariates.

To thoroughly investigate the performance of GNN-based causal estimators, we con-
sider both linear and nonlinear response generation mechanisms. For instance, the linear
generation mechanism simulates the response as

Yi = Yi(Ti = 0,G = ∅) + Tiτ(Xi) + δi(X,T,G) + εYi , (1.6)

where Yi(Ti = 0,G = ∅) and τ(Xi) represent response under control and individual treat-
ment effect without network interference, respectively; δi(X,T,G) indicates the spillover
effect; εYi is Gaussian noise. Note that Yi(Ti = 0,G = ∅) and τ(Xi) are nonlinear functions
of covariates, and δi(X,T,G) is simulated as a function of individual treatment effects,
treatment assignments, and network structure. Nonlinear responses are simulated anal-
ogously by, for example, including a quadratic term of δi(X,T,G). GNN-based causal
estimators have shown superior performance on causal effects prediction and individual
treatment effects retrieval for both linear and nonlinear responses.
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1.8.3 Intervention Optimization on Network

Given causal estimators derived from randomized experiments or observational studies, an
optimal intervention policy can be learned to maximize the total welfare of the popula-
tion. In many circumstances, policymakers might face some specific constraints that the
learned policy needs to satisfy, e.g., capacity or budget constraint. For instance, policy-
makers might need to choose whom to treat, such that a predefined upper limit bounds
the percentage of treated individuals, and at the same time, the average welfare of the
population can be maximized. Under the interference-free condition, [5] suggests using a
utility function to study the average utility for the population by applying a treatment
assignment policy π, which is defined as

A(π) = E[(2π(Xi)− 1)(Yi(Ti = 1)− Yi(Ti = 0))] = E[(2π(Xi)− 1)τ(Xi)].

Intuitively speaking, the policy learns to assign individuals with positive IDE to the treat-
ment group and individuals with negative IDE to the control group. In practice, an optimal
empirical policy π̂n can be learned by maximizing the following empirical utility function
from n samples

Âτn(π) := 1
n

n∑
i=1

(2π(Xi)− 1)τ̂(Xi),

where the outcome estimator τ̂ is plugged in. [5] further establishes strong guarantees for
policy regret, which quantify the utilitarian difference between optimal empirical policies
and optimal global policies.

As another contribution, we define a utility function in the network setting. For the
sake of notational simplicity, we consider only interference from first-order neighbors and
write the response variable as Yi(Ti,XNi , TNi). The corresponding utility function of an
intervention policy π on a network is then defined as

S(π) := E[(2π(Xi)− 1)(Yi(Ti = 1,XNi , TNi = π(XNi))− Yi(Ti = 0,G = ∅))],

where one unit’s utility gain is the difference between response under treatment with net-
work interference and response under control without any network effects. Hence, learning
an optimal policy that can not only make decisions on units but also adjust its decisions
based on neighboring units is a challenging task.

The situation becomes more cumbersome when the policy needs to satisfy a specific
capacity constraint. As another significant theoretical contribution, in [71], we establish
guarantees for the regret of learned policies, both with and without treatment capacity
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constraint. The main techniques applied for deriving the policy regret are concentration
inequalities of networked random variables [51]. Using synthetic datasets with known
data generation mechanisms, we show that policies learned from the population-averaged
utility function that uses GNN-based causal estimators are more reliable and robust. The
main reason is that the intervention policy for treatment assignment on a network might
become very sensitive to the prediction accuracy of the employed causal estimators due to
the interference effects.
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Abstract

In recent years a number of large-scale triple-oriented knowledge graphs have

been generated and various models have been proposed to perform learning in

those graphs. Most knowledge graphs are static and reflect the world in its

current state. In reality, of course, the state of the world is changing: a healthy

person becomes diagnosed with a disease and a new president is inaugurated. In

this paper, we extend models for static knowledge graphs to temporal knowledge

graphs. This enables us to store episodic data and to generalize to new facts

(inductive learning). We generalize leading learning models for static knowl-

edge graphs (i.e., Tucker, RESCAL, HolE, ComplEx, DistMult) to temporal

knowledge graphs. In particular, we introduce a new tensor model, ConT,

with superior generalization performance. The performances of all proposed

models are analyzed on two different datasets: the Global Database of Events,

Language, and Tone (GDELT) and the database for Integrated Conflict Early

Warning System (ICEWS). We argue that temporal knowledge graph embed-

dings might be models also for cognitive episodic memory (facts we remember

and can recollect) and that a semantic memory (current facts we know) can be

generated from episodic memory by a marginalization operation. We validate

this episodic-to-semantic projection hypothesis with the ICEWS dataset.

Keywords: knowledge graph, temporal knowledge graph, semantic memory,

episodic memory, tensor models
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1. Introduction

In recent years a number of sizable Knowledge Graphs (KGs) have been

developed, the largest ones containing more than 100 billion facts. Well known

examples are DBpedia [1],YAGO [2], Freebase [3], Wikidata [4] and the Google

KG [5]. Practical issues with completeness, quality and maintenance have been

solved to a degree that some of these knowledge graphs support search, text

understanding and question answering in large-scale commercial systems [5]. In

addition, statistical embedding models have been developed that can be used

to compress a knowledge graph, to derive implicit facts, to detect errors, and to

support the above mentioned applications. A recent survey on KG models can

be found in [6].

Most knowledge graphs are static and reflect the world at its current state. In

reality, of course, the state of the world is changing: a healthy person becomes

diagnosed with a disease and a new president is inaugurated. In this paper,

we extend semantic knowledge graph embedding models to episodic/temporal

knowledge graphs as an efficient way to store episodic data and to be able to

generalize to new facts (inductive learning). In particular, we generalize lead-

ing approaches for static knowledge graphs (i.e., constrained Tucker, DistMult,

RESCAL, HolE, ComplEx) to temporal knowledge graphs. We test these mod-

els using two temporal KGs. The first one is derived from the Integrated Conflict

Early Warning System (ICEWS) data set which describes interactions between

nations over several years. The second one is derived from the Global Database

of Events, Language and Tone (GDELT) that, for more than 30 years, monitors

news media from all over the world. In the experiments, we analyze the gener-

alization abilities to new facts that might be missing in the temporal KGs and

also analyze to what degree a factorized KG can serve as an explicit memory.

We propose that our technical models might be related to the brain’s explicit

memory systems, i.e., its episodic and its semantic memory. Both are considered

long-term memories and store information potentially over the life-time of an

individual [7, 8, 9, 7]. The semantic memory stores general factual knowledge,

2



i.e., information we know, independent of the context where this knowledge

was acquired and would be related to a static KG. Episodic memory concerns

information we remember and includes the spatiotemporal context of events [10]

and would correspond to a temporal KG.
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Figure 1: Illustrations of (left) a semantic knowledge graph and (right) an episodic knowledge

graph. (Left) Every arrow represents a (subject, predicate, object) triple, with the annotation

of the arrow denoting the respective predicate. The triple (Ban Ki-moon, SecretaryOf, UN)

is deleted, since the knowledge graph has been updated with the triple (António Guterres,

SecretaryOf, UN). (Right) Every arrow represents a (subject, predicate, object, timestamp)

quadruple, where the arrow is both annotated with the respective predicate and timestamp.

Here the quadruple involving is not deleted, since the attached timestamp reveals that the

relationship is not valid at present.

An interesting question is how episodic and semantic memories are related.

There is evidence that these main cognitive categories are partially dissociated

from one another in the brain, as expressed in their differential sensitivity to

brain damage. However, there is also evidence indicating that the different

memory functions are not mutually independent and support one another [11].

We propose that semantic memory can be derived from episodic memory by

marginalization. Hereby we also consider that many episodes describe starting

and endpoints of state changes. For example, an individual might become sick

3



with a disease, which eventually is cured. Similarly, a president’s tenure even-

tually ends. We study our hypothesis on the Integrated Conflict Early Warning

System (ICEWS) dataset, which contains many events with start and end dates.

Figure 1 compares semantic and episodic knowledge graphs. Furthermore, Fig-

ure 2 illustrates the main ideas of building and modeling semantic and episodic

knowledge graphs.

Websites Newspapers Social Media

Data Accumulation (e.g. GDELT) 
through knowledge extraction

Graph Construction 
assigns entries as nodes and 
predicates as labeled edges 

for each timestamp

Tensorization

Modeling

Figure 2: Illustration of the main idea behind the models presented in this paper. Step

1: Knowledge is extracted from unstructured data, such as websites, newspapers or social

media. Step 2: The knowledge graph is constructed, where entities are assigned as nodes,

and predicates as labeled edges; note that there is a labeled edge for each timestamp. Step

3: The knowledge graph is represented as a tensor; for semantic KGs, we obtain a 3-way

tensor, storing (subject, predicate, object) triples, and for episodic KGs, we obtain a 4-way

tensor, storing (subject, predicate, object, timestamp) quadruples. Step 4: The semantic

and episodic tensors are decomposed and modeled via compositional or tensor models (see

Section 2).

The paper is organized as follows. Section 2 introduces knowledge graphs,
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the mapping of a knowledge graph to an adjacency tensor, and the statistical

embedding models for knowledge graphs. We also describe how popular em-

bedding models for KGs can be extended to episodic KGs. Section 3 shows

experimental results on modelling episodic KGs. Finally, we present experi-

ments on the possible relationships between episodic and semantic memory in

Section 4.

2. Model Descriptions

A static or semantic knowledge graph (KG) is a triple-oriented knowledge

representation. Here we consider a slight extension to the subject-predicate-

object triple form by adding the value in the form (es, ep, eo; Value), where

Value is a function of es, ep, eo and, e.g., can be a Boolean variable (True for 1,

False for 0 ) or a real number. Thus (Jack, likes, Mary; True) states that Jack

(the subject or head entity) likes Mary (the object or tail entity). Note that es

and eo represent the entities for subject index s and object index o. To simplify

notation we also consider ep to be a generalized entity associated with predicate

type with index p. For the episodic KGs we introduce et, which is a generalized

entity for time t.

To model a static KG, we introduce the three-way semantic adjacency tensor

χ where the tensor element xs,p,o is the associated Value of the triple (es, ep, eo).

One can also define a companion tensor Θχ with the same dimensions as χ and

with entries θs,p,o. Thus, the probabilistic model for the semantic tensor χ is

defined as P (xs,p,o|θs,p,o) = σ(θs,p,o), where σ(x) = 1/(1 + exp(−x)). Similarly,

the four-way temporal or episodic tensor E has elements xt,s,p,o which are the

associated values of the quadruples (et, es, ep, eo), with t = 1, . . . , T . Therefore,

the probabilistic model for episodic tensor is defined with the corresponding

companion tensor ΘE as

P (xt,s,p,o|θt,s,p,o) = σ(θt,s,p,o) . (1)

We assume that each entity e has a unique latent representation a. In particu-

lar, the embedding approach used for modeling semantic and episodic knowledge
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graphs assumes that θsems,p,o = fsem(aes ,aep ,aeo), and θepit,s,p,o = fepi(aet ,aes ,aep ,aeo),

respectively. Here, the indicator function fsem/epi(·) is a function to be learned.

Given a labeled dataset D = {(xi, yi)}mi=1, latent representations and other

parameters (denoted as P) are learned by minimizing the regularized logistic

loss

min
P

m∑

i=1

log(1 + exp(−yiθsem/epii )) + λ||P||22. (2)

In general, most KGs only contain positive triples; non-existing triples are nor-

mally used as negative examples sampled with local closed- world assumption.

Alternatively, we can minimize a margin-based ranking loss over the dataset

such as

min
P

∑

i∈D+

∑

j∈D−
max(0, γ + σ(θ

sem/epi
j )− σ(θ

sem/epi
i )), (3)

where γ is the margin parameter, and D+ and D− denote the set of positive

and negative samples, respectively.

There are different ways for modeling the indicator function fepi(·) or fsem(·).
In this paper, we will only investigate multilinear models derived from tensor

decompositions and compositional operations. We now describe the models in

detail. Graphical illustrations of the described models are shown in Figure 3.
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Figure 3: Illustrations of (a) episodic Tucker, (b) episodic ComplEx (where • denotes con-

traction), (c) RESCAL, (d) ConT and (e) Tree. Each entity in the figure is represented as a

circle with two edges, since the representation for an entity e is ae,i. In addition, G represents

the core tensor in Tucker, Gp represents the matrix latent representation of predicate p in the

RESCAL and Tree models, Gt represents the three-dimensional tensor latent representation

of timestamp t in the ConT model.

Table 1 and Table 2 summarize notations used throughout this paper for
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easy reference, while Table 3 summarizes the number of parameters required for

each model.2

Table 1: Summary of the general notations.

General

Symbol Meaning

es Entity for subject index s

eo Entity for object index o

ep Generalized entity for predicate index p

et Generalized entity for time index t

aei Latent representation of entity ei

a(etstart
) Latent representation of starting timestamp

aei,ri ri-th element of aei

r̃ Rank/Dimensionality of aei for i ∈ {s, p, o}
r̃t Rank/Dimensionality of aet

Ne/p/t Number of entities / predicates / timestamps

Tucker. First, we consider the Tucker model for semantic tensor decom-

position of the form θsems,p,o =
∑r̃
r1,r2,r3=1 aes,r1aep,r2aeo,r3g

sem(r1, r2, r3). Here,

gsem(r1, r2, r3) ∈ R are elements of the core tensor Gsem ∈ Rr̃×r̃×r̃. Similarly,

the indicator function of a four-way Tucker model for episodic tensor decompo-

sition is of the form

θepit,s,p,o =

r̃t∑

r1=1

r̃∑

r2,r3,r4=1

aet,r1aes,r2aep,r3aeo,r4g
epi(r1, r2, r3, r4), (4)

with a four dimensional core tensor Gepi ∈ Rr̃t×r̃×r̃×r̃. Note that this is a con-

2For DistMult, ComplEx, and HolE it is required that r̃ = r̃t. In our experiments (see

Sections 3 and 4), in order to enable a fair comparison between the different models, we

assume that the latent representations of entities, predicates, and time indices all have the

same rank/dimensionality.

7



Table 2: Summary of the notations for semantic and episodic knowledge graphs.

Semantic knowledge graphs Episodic knowledge graphs

Symbol Meaning Symbol Meaning

χ Sem. adjacency tensor E Epi. adjacency tensor

Θχ Companion tensor of χ ΘE Companion tensor of E
xs,p,o Value of (es, ep, eo) xt,s,p,o Value of (et, es, ep, eo)

θsems,p,o Logit of (es, ep, eo) θepit,s,p,o Logit of (et, es, ep, eo)

fsem(·) Sem. indicator function fepi(·) Epi. indicator function

Gsem Sem. core tensor Gepi Epi. core tensor

gsem(·) Element of Gsem gepi(·) Element of Gepi

straint Tucker model, since, as in RESCAL, entities have unique representations,

independent of the roles as subject or object.

RESCAL. Another model closely related to the semantic Tucker tensor

decomposition is the RESCAL model, which has shown excellent performance

in modelling KGs [12]. In RESCAL, subjects and objects have vector latent

representations, while predicates have matrix latent representations. The indi-

cator function of RESCAL for modeling semantic KGs takes the form θsems,p,o =
∑r̃
r1,r2=1 aes,r1gp(r1, r2)aeo,r2 , where gp(r1, r2) represents the matrix latent rep-

resentation for the predicate ep. Then next two models, Tree and ConT, are

novel generalizations of RESCAL to episodic tensors.

Tree. From a practical perspective, training an episodic Tucker tensor model

is very expensive since the computational complexity is approximately r̃4. Ten-

sor networks provide a general and flexible framework to design nonstandard

tensor decompositions [13, 14]. One of the simplest tensor networks is a tree

tensor decomposition (T ) of the episodic indicator function, which is illustrated

in compositional operations. We now describe the models in detail. Graphical

illustrations of the described models are shown in Figure 3(e). Therefore, we

propose a tree tensor decomposition (T ) of the episodic indicator function. The

tree T is partitioned into two subtrees T1 and T2, wherein subject es and time
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et reside in T1, while object eo and an auxiliary time et reside in T2. T1 and T2
are connected with ep through two core tensors G1 and G2. Thus, the indicator

function can be written as

θepit,s,p,o =

r̃t∑

r1,r6=1

r̃∑

r2,r3,r4,r5=1

aet,r1aes,r2g1(r1, r2, r3)gp(r3, r4)g2(r4, r5, r6)aeo,r5aet,r6 . (5)

Within T , we reduce the four-way core tensor in Tucker into two three-dimensional

tensors G1 and G2, so that the computational complexity of T is approximately

r̃3.

ConT. ConT is another generalization of the RESCAL model to episodic

tensors with reduced computational complexity of approximately r̃3. The idea

is that another way of reducing the complexity is by contracting indices of the

core tensor. Therefore, we contract the G from Tucker with the time index

giving a three-way core tensor Gt for each time instance. The indicator function

takes the form

θepit,s,p,o =
r̃∑

r1,r2,r3=1

aes,r1aep,r2aeo,r3gt(r1, r2, r3). (6)

In this model, the tensor Gt resembles the relation-specific matrix Gp from

RESCAL. Later, we will see that ConT is a superior model for modeling episodic

knowledge graphs due to the representational flexibility of its high-dimensional

tensor Gt for the time index.

Even though the complexity of Tree and ConT is reduced as compared to

episodic Tucker, the three-dimensional core tensor might cause rapid overfitting

during training. Therefore, we next propose episodic generalization of compo-

sitional models, such as DistMult [15], HolE [16] and ComplEx [17]. For those

models, the number of parameters only increases linearly with the rank.

DistMult. DistMult [15] is a simple generalization of the CP model, by en-

forcing the constraint that entities should have unique representations. Episodic

DistMult takes the form θepit,s,p,o =
∑r̃
i=1 λiaet,iaes,iaep,iaeo,i. Here, we require

that vector latent representations of entities, predicates, and timestamps have
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the same rank. DistMult is a special case of Tucker having a core tensor with

only diagonal elements λi.

HolE. Holographic embedding (HolE) [16] is a state-of-art link prediction

and knowledge graph completion method, which is inspired by holographic mod-

els of associative memory.

HolE uses circular correlation to generate a compositional representation

from inputs es and eo. The indicator of HolE reads θsems,p,o = aep ·(aes?aeo), where

? : Rd×Rd → Rd denotes the circular correlation [a?b]k =
∑d−1
i=0 aib(k+i)mod d.

We define the episodic extension of HolE as

θepit,s,p,o = aet ·
(
aep ? (aes ? aeo)

)
. (7)

As argued by [16], HolE employs a holographic reduced representation [18]

to store and retrieve the predicates from es and eo. Analogously, episodic HolE

should be able to retrieve the stored timestamps from ep, es and eo. In the se-

mantic case, ep can be retrieved if existing triple relations are stored via circular

convolution ∗, and superposition in the representation aeo =
∑

(s,p)∈So aep ∗aes ,

where So is the set of all true triples given eo. This is based on the fact that

a ? a ≈ δ [16]. Analogously, the stored timestamp et for an event can be re-

trieved if all existing episodic events are stored via ∗, and superposition in the

representation of eo, aeo =
∑

(t,s,p)∈So aet ∗ (aep ∗ aes), where So is the set of

all true quadruples (t, s, p, o) given eo. However, high order circular correla-

tion/convolution will increase the inaccuracy of retrieval. Another motivation

for our episodic extension (7) is that a compositional operator of the form aet · f̃
allows a projection from episodic memory to semantic memory, to be detailed

later.

ComplEx. Complex embedding (ComplEx) [17] is another state-of-art

method closely related to HolE. It can accurately describe both symmetric and

antisymmetric relations. HolE is a special case of ComplEx with imposed con-

jugate symmetry on embeddings [19]. Thus, ComplEx has more degrees of free-

dom, if compared to HolE. For the semantic complex embedding, the indicator

function is θsems,p,o = Re
(∑r̃

i aes,iaep,i, āeo,i

)
with complex valued a and where
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the bar indicates the complex conjugate. To be consistent with the episodic

HolE, the episodic complex embedding is defined as3

θepit,s,p,o = Re

(
r̃∑

i

aet,iaes,iaep,i, āeo,i

)
. (8)

3. Experiments on Episodic Models

We investigate the proposed tensor and compositional models with experi-

ments which are evaluated on two datasets:

ICEWS. The Integrated Conflict Early Warning System (ICEWS) dataset

[20] is a natural episodic dataset recording dyadic events between different coun-

tries. An example entry could be (Turkey, Syria, Fight, 12/25/2014 ). These

dyadic events are aggregated into a four-way tensor E with 258 entities, 20 rela-

tion types, and 72 timestamps, which has in total 320, 118 positive (et, es, ep, eo)

quadruples 4. This dataset was first created and used in [21]. From this ICEWS

dataset, a semantic tensor is generated by extracting consecutive events that

last until the last timestamp, constituting the current 5 semantic facts of the

world.

GDELT. The Global Database of Events, Language and Tone (GDELT)

[20] monitors the world’s news media in broadcast, print and web formats from

all over the world, daily since January 1, 1979 6. We use GDELT as a large

episodic dataset. For our experiments, GDELT data is collected from January

1, 2012 to December 31, 2012 (with a temporal granularity of 24 hrs). These

events are aggregated into an episodic tensor E with 1100 entities, 180 relation

3One can show that Eq. (7) is equivalent to Eq. (8) by converting it to the frequency

domain [19]. Then, θepit,s,p,o ∝ ωT
et

(ω̄ep � ω̄es � ωeo ), where ω = F (a) ∈ Cr̃ are the discrete

Fourier transforms of embeddings a, and using the fact that ω is conjugate symmetric for real

vector a.
4Note that for an episodic event the dataset contains all the quadruples (eti , es, ep, e0) for

ti ∈ {tstart, tstart + 1, · · · , tend − 1, tend}.
5Current always indicates the last timestamp/timestamps of the applied episodic KGs.
6https://www.gdeltproject.org/about.html
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Table 3: Number of parameters for different models and the runtime of one training epoch on

the GDELT dataset.

Runtime

Model Semantic Episodic Complexity rank 40 rank 60 rank 150

DistMult (Ne +Np + 1)r̃ (Ne +Np +Nt + 1)r̃ O(r̃) 35.2s 36.4s 53.7s

HolE (Ne +Np)r̃ (Ne +Np)r̃ O(r̃ log r̃) 42.8s 43.2s 59.0s

ComplEx 2(Ne +Np)r̃ 2(Ne +Np +Nt)r̃ O(r̃) 40.1s 42.4s 57.5s

Tree − Ner̃ +Npr̃2 + (Nt + 2r̃2)r̃t O(r̃3) 133.6s 160.2s −
ConT − (Ne +Np)r̃ +Ntr̃3 O(r̃3) 95.4s 226.1s −
Tucker (Ne +Np)r̃ + r̃3 (Ne +Np)r̃ + (Nt + r̃3)r̃t O(r̃4) 144.2s 387.9s −

types, and 366 timestamps, which has in total 2, 563, 561 positive (et, es, ep, eo)

quadruples.

We assess the quality of episodic information retrieval on both datasets for

the proposed tensor and compositional models. Since both episodic datasets

only consist of positive quadruples, we generated negative episodic instances

following the protocol of corrupting semantic triples given by Bordes [22]: nega-

tive instances of an episodic quadruple (es, ep, eo, et) are drawn by corrupting the

object eo to eo′ or the timestamp et to et′ , meaning that (es, ep, eo′ , et) serves as

a negative evidence of the episodic event at time instance et, and (es, ep, eo, et′)

is a true fact which cannot be correctly recalled at time instance et′ . During

training, for each positive sample in a batch we assigned two negative samples

with corrupted object or corrupted subject.

The model performance is evaluated using the following scores. To retrieve

the occurrence time, for each true quadruple, we replace the time index et with

every other possible time index et′ , compute the value of the indicator function

θepit′,s,p,o, and rank them in a decreasing order. We filter the ranking as in [22]

by removing all quadruples where xt′,s,p,o = 1 and t 6= t′, in order to eliminate

ambiguity during episodic information retrieval. Similarly, we evaluated the

retrieval of the predicate between a given subject and object at a certain time

instance by computing and ranking the indicator θepit,s,p′,o. We also evaluated the
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retrieval of entities by ranking and averaging the filtered indicators θt,s′,p,o and

θt,s,p,o′ . To measure the generalization ability of the models, we report different

measures of the ranking: mean reciprocal rank (MRR), and Hits@n on the test

dataset.

The datasets were split into train, validation, and test sets that contain the

most frequently appearing entities in the episodic knowledge graphs. Training

was performed by minimizing the logistic loss (2), and was terminated using

early stopping on the validation dataset by monitoring the filtered MRR recall

scores every {50, 100} epochs depending on the models, where the maximum

training duration was 500 epochs. This ensures that the generalization ability

of unique latent representations of entities doesn’t suffer from overfitting. Before

training, all model parameters are initialized using Xavier initialization [23]. We

also apply an l2 norm penalty on all parameters for regularization purposes (see

Eq. (2)).

In Table 3 we summarize the runtime for one training epoch on the GDELT

dataset for different models at ranks r̃ = r̃t ∈ {40, 60, 150}. All experiments

were performed on a single Tesla K80 GPU. In the following experiments, for

compositional models we search rank in {100, 150}, while for tensor models we

search optimal rank in {40, 50, 60} since larger ranks could lead to overfitting

rapidly. Loss function is minimized with Adam method [24] with the learning

rate selected from {0.001, 1e− 4, 5e− 5}.
We first assess the filtered MRR, Hits@1, Hits@3, and Hits@10 scores of

inferring missing entities and predicates on the GDELT test dataset. Table 4

summarizes the results. Generalizations on the test dataset indicate the induc-

tive reasoning capability of the proposed models. This generalization can be

useful for the completion of evolving KGs with missing records, such as clinical

datasets. It can be seen that tensor models are able to outperform compositional

models consistently on both entity and predicate prediction tasks. ConT has the

best inference results on the entity-related tasks, while Tucker performs better

on the predicate-related tasks. The superior Hits@1 result of ConT on the en-

tity prediction indicates that there are easily to be fitted entities in the GDELT
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Table 4: Filtered results of inferring missing entities and predicates of episodic quadruples

evaluated on the GDELT dataset.

Entity Predicate

Method MRR @1 @3 @10 MRR @1 @3 @10

DistMult 0.182 6.55 19.77 43.70 0.269 12.65 30.29 59.40

HolE 0.177 6.67 18.95 41.84 0.256 11.81 28.35 57.73

ComplEx 0.172 6.54 17.52 41.56 0.255 12.05 27.75 56.60

Tree 0.196 8.17 21.00 44.65 0.274 13.30 30.66 60.05

Tucker 0.204 8.93 21.85 46.35 0.275 12.69 31.35 60.70

ConT 0.233 13.85 24.65 42.96 0.263 12.83 29.27 57.30

Table 5: Filtered results for entities and predicates recollection/prediction evaluated on the

ICEWS dataset.

Entity Predicate

Method MRR @1 @3 @10 MRR @1 @3 @10

DistMult 0.222 9.72 22.48 52.32 0.520 33.73 62.25 91.13

HolE 0.229 9.85 23.49 54.21 0.517 31.55 65.47 93.59

ComplEx 0.229 8.94 23.53 57.72 0.506 30.99 61.46 93.44

Tree 0.205 10.48 19.84 42.81 0.554 36.62 67.25 94.70

Tucker 0.257 12.88 27.10 54.43 0.563 36.96 69.55 95.43

ConT 0.264 15.71 29.60 46.67 0.557 38.12 67.76 87.71

dataset along the timestamps. In fact, the GDELT dataset is unbalanced, and

episodic quadruples related to certain entities dominate in the episodic Knowl-

edge graph, such as quadruples containing the entities USA, or UN. Experiment

results on balanced and extremely sparse episodic dataset will be reported in

the following.

Next, Table 5 shows the MRR, Hits@1, Hits@3, and Hits@10 scores of infer-

ring missing entities and predicates on the ICEWS test dataset. Similarly, we

can read that tensor models outperform compositional models on both missing

entity and predicate inference tasks. The superior Hits@1 result of ConT for the

14



missing entity prediction indicates again that the ICEWS dataset is unbalanced,

and episodic quadruples related to certain entities dominate.

Table 6: Filtered recall scores for entities and timestamps recollection on the ICEWS (rare)

training dataset.

Timestamp Entity

Method Rank MRR @3 MRR @3

DistMult 200 0.257 27.0 0.211 21.9

HolE 200 0.216 20.8 0.179 16.3

ComplEx 200 0.354 40.3 0.301 33.2

Tree 40 0.421 55.3 0.314 35.7

Tucker 40 0.923 98.9 0.893 97.1

ConT 40 0.982 99.7 0.950 97.9

The recollection of the exact occurrence time of a significant past event

(e.g. unusual, novel, attached with emotion) is also an important capability

of episodic cognitive memory function. In order to manifest this perspective

of proposed models, Table 6 shows the filtered MRR, and Hits@3 scores for

the timestamps and entities recollection on the episodic ICEWS (rare) training

dataset, where rank column registers the optimal and minimum rank r̃ = r̃t

having the outstanding recall scores. Figure 4 further displays the filtered MRR

score as a function of rank. Unlike the original ICEWS, which contains many

consecutive events that last from the first to the last timestamp leading to

unreasonably high filtered timestamp recall scores, this ICEWS (rare) dataset

consists of rare temporal events that happen less than three times throughout

the whole time and starting points of events.

The outstanding performance of ConT compared with other compositional

models indicates the importance of large dimensionality of time latent repre-

sentation for the episodic tensor reconstruction / episodic memory recollection.

Recall that for ConT the real dimension of the latent representation of time is

actually r̃3 after flattening Gt. This flexible latent representation for time could
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compress almost all the semantic triples that occur at a certain instance 7.

Figure 4: Filtered MRR scores vs. rank for the entities (left) and timestamps (right) recol-

lection on the ICEWS (rare) training dataset.

4. Semantic Memory from Episodic Memory with Marginalization

We already discussed that a semantic KG might be related to a human

semantic memory and that an episodic KG might be related to a human episodic

memory. It has been speculated that episodic and semantic memory must be

closely related, and that semantic memory is generated from episodic memory

by some training process [28, 29]. As a very simple implementation of that

idea, we propose that a semantic memory could be generated from episodic

memory by marginalizing time. Thus, both types of memories would rely on

identical representations and the marginalization step can be easily performed:

Since probabilistic tensor models belong to the classes of sum-product nets, a

marginalization simply means an integration over all time representations.

Thus, in the second set of experiments, we test the hypothesis that semantic

7This observation has its biological counterpart. In fact, the entorhinal cortex, which plays

an important role in the formation of episodic memory, is the main part of the adult hip-

pocampus that shows neurogenesis [25]. In an adult human, approximately 700 new neurons

are added per day through hippocampal neurogenesis, which are believed to perform sensory

and spatial information encoding, as well as temporal separation of events [26, 27].
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memory can be derived from episodic memory by projection. In other words,

a semantic knowledge graph containing current semantic facts can be approx-

imately constructed after modeling a corresponding episodic knowledge graph

via marginalization. A marginalization can be performed by activating all time

index neurons, i.e., summing over all aet , since, e.g., Tucker decompositions are

an instance of a so-called sum-product network [30]. However, events having

start as well as end timestamps cannot simply be integrated into our current se-

mantic knowledge describing what we know now. For example, (Ban Ki-moon,

SecretaryOf, UN) is not consistent with what we know currently. To resolve this

problem, we introduce two types of time indices, etstart
and etend

, having the

latent representations a(etstart
) and a(etend

), respectively. Those time indices

can be used to construct the episodic tensor Estart aggregating the start times-

tamps of consecutive events, as well as the episodic tensor Eend aggregating the

end timestamps8.

For the projection, instead of only summing over a(etstart
), we also subtract

the sum over a(etend
). In this way, we can achieve the effect that events that

have terminated already (i.e., have an end time index smaller than the current

time index) are not integrated into the current semantic facts. Now, to test our

hypothesis that this extended projection allows us to derive semantic memory

from episodic memory, we trained HolE, DistMult, ComplEx, ConT, and Tucker

on the episodic tensors Estart and Eend as well as on the semantic tensor χ

derived from ICEWS. Note that only these models allow projection, since their

indicator functions can be written in the form θepit,s,p,o = aet · f̃ , where f̃ can be

arbitrary function of aes , aep , and aeo depending on the model choice9. The

8E.g., if the duration of a triple event (es, ep, eo) lasts from tstart to tend, the quadruple

(es, ep, eo, etstart ) is stored in Estart, while (es, ep, eo, etend ) is stored Eend only if tend < T

(where T is the last timestamp). In other words, events that last until the last timestamp do

not possess eend.
9For ConT, θepit,s,p,o = flatten(gt) · (aes ⊗ aep ⊗ aeo ), where ⊗ denotes the outer product.

For ComplEx, θepit,s,p,o = Re(aet ) ·Re(aes � aep � āeo )− Im(aet ) · Im(aes � aep � āeo ), where

� denotes the Hadamard product. The Tree model cannot be written in this form since et
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model parameters are optimized using the margin-based ranking loss (3)10.

Training was first performed on the episodic tensor Estart, and then on Eend
with fixed aes , aep , and aeo obtained from the training on Estart, since we

assume that latent representations for subject, object, and predicate of a con-

secutive event do not change during the event. Note that after training in this

way, we could recall the starting and terminal point of a consecutive event (see

the episodic tensor reconstruction experiments in Section 3), or infer a cur-

rent semantic fact solely from the latent representations instead of rule-based

reasoning.
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Figure 5: Recall scores vs. rank for the episodic-to-semantic projection on the ICEWS

dataset with two different projection methods.

To evaluate the projection, we compute the recall and area under precision-

recall-curve (AUPRC) scores for the projection at different ranks on the ICEWS

resides in both subtrees T1 and T2.
10For the projection experiment, we omit the sigmoid function in Eq. (3), train and interpret

the multilinear indicator θepit,s,p,o = aet · f̃(aes ,aep ,aeo ) directly as the probability of episodic

quadruple. Only in this way of training, a projection is mathematically legitimate.
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Figure 6: AUPRC scores vs. rank for the episodic-to-semantic projection on the ICEWS

dataset with two different projection methods.

training dataset, and compare them with the scores obtained from training

the semantic tensor separately. The semantic dataset contains positive triples,

which are episodic events that continue until the last (current) timestamp,

e.g. (António Guterres, SecretaryOf, UN, True), along with negative triples

extracted from already terminated episodic events, e.g. (Ban Ki-moon, Secre-

taryOf, UN, False). During the test phase of projection, a triple from the seman-

tic dataset is given with non-specified time index, e.g. (es, ep, eo,True/False, t).

Then, for the first method considering only the starting point of an episodic

event, the projection to semantic space is computed as

θprojs,p,o = [
T∑

tstart=1

a(etstart
)] · f̃ , (9)

while for the second method considering both starting and terminal points, the

projection is computed as

θprojs,p,o =

[
T∑

tstart=1

a(etstart
)−

T∑

tend=1

a(etend
)

]
· f̃ . (10)
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Then, the scores are evaluated by taking the label of the given semantic triple

as the target, and taking θprojs,p,o as the prediction. The goal of this test is to check

how well the algorithms can project a given consecutive event (es, ep, eo, tstart · · · tend)
to semantic knowledge space using only the marginalized latent representation

of time. All other experimental settings are similar to those in Section 3, and

the experiments were repeated four times on different sampled training datasets.

Figure 5 shows the recall scores for the two different projection methods on

the training dataset in comparison to the separately trained semantic dataset.

Due to limited space, we only show four models: ConT, Tucker, ComplEx, and

HolE. As we can see, only the marginalization considering both starting and

terminal time indices allows a reasonable projection from episodic memory to

the current semantic memory. Again, ConT11 exhibits the best performance,

with its recall score saturating after r̃ ≈ 15. In contrast, HolE shows insuffi-

cient projection quality with sizable errors, especially at small ranks, which is

due to its higher-order encoding noise. To show that the two types of latent

representations of time do not simply eliminate each other for a correct episodic

projection, Figure 6 shows the AUPRC scores evaluated on the training dataset.

Overall, this experiment supports the idea that semantic memory is a long-term

storage for episodic memory, where the exact timing information is lost.

For a fair comparison, in the last experiment we report the recall scores of

the semantic models obtained by projecting the episodic models with respect

to the temporal dimension. We compare two projection methods, the Start

projection which only considers the staring point of episodic events (see Eq. 9),

and the Start-End projection which takes both the starting and terminal points

of episodic events into consideration. In addition, we report the recall scores on

two semantic datasets. The first one contains genuine semantic facts, while the

second dataset contains false semantic triples which should already be ruled out

11Note that since ConT doesn’t have a direct semantic counterpart, we instead use the

semantic results obtained using RESCAL. This is reasonable since ConT can be viewed as a

high-dimensional (i.e., episodic) generalization of RESCAL.
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Table 7: Filtered and raw Hits@10 scores for the episodic-to-semantic projection. Two pro-

jection methods, Start (Eq. 9), Start-End (Eq. 10), are compared. Furthermore, semantic

ICEWS dataset with genuine semantic triples, and semantic ICEWS dataset with false triples

are used for the projection experiments. Various projection scores are compared with the

scores which are obtained by directly modeling the semantic ICEWS dataset with genuine

semantic triples.

Start Start-End Start (false) Start-End (false) Semantic

Method Filter Raw Filter Raw Filter Raw Filter Raw Filter Raw

DistMult 3.8 3.6 5.6 5.0 4.0 3.8 3.8 3.6 59.3 32.4

HolE 5.8 5.4 5.5 5.1 4.7 4.5 5.6 5.2 56.1 31.3

ComplEx 4.1 3.7 4.9 4.4 3.9 3.7 3.8 3.6 60.1 29.4

Tucker 14.8 13.1 15.1 13.4 11.3 10.3 11.8 10.9 46.5 23.7

ConT 30.9 24.6 40.8 30.3 23.0 19.9 22.6 19.3 43.8 20.4

through the projection.

Two different projections are performed on two semantic datasets, the gen-

uine one and the false one. Theoretically, the recall scores on the genuine

semantic dataset should be higher than those on the false dataset. Thus, the

model hyper-parameters are chosen by monitoring the difference between the

recall scores Hits@10 on the genuine and false semantic datasets.

Table. 7 reports the filtered and raw Hits@10 metrics for different models,

projection methods, and datasets. Moreover, we also compare the projection

with the recall scores obtained by directly modeling the genuine semantic dataset

using the corresponding semantic models 12. The ConT model has the best pro-

jection performance, since its projected recall scores on the genuine dataset are

much higher than those obtained on the false semantic dataset. Moreover, the

Start-End projection method based on the ConT model is the only combination

which achieves similar results compared to the corresponding semantic model.

One can also notice that all the projected compositional models are only able

to tell whether a semantic triple is already ruled out or not before the last

12Note that we use the RESCAL model as the corresponding semantic model for the ConT.
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timestamp, however they can not provide good inference results on the genuine

semantic dataset.

5. Conclusion

This paper described the first mathematical models for the declarative mem-

ories: the semantic and episodic memory functions. To model these cogni-

tive functions, we generalized leading approaches for static knowledge graphs

(i.e., Tucker, RESCAL, HolE, ComplEx, DistMult) to 4-dimensional tempo-

ral/episodic knowledge graphs. In addition, we developed two novel generaliza-

tions of RESCAL to episodic tensors, i.e., Tree and ConT. In particular, ConT

has superior performance overall, which indicates the importance of introduced

high-dimensional latent representation of time for both sparse episodic tensor

reconstruction and generalization.

Our hypothesis is that perception includes an active semantic decoding pro-

cess, which relies on latent representations of entities and predicates, and that

episodic and semantic memories depend on the same decoding process. We ar-

gue that temporal knowledge graph embeddings might be models for human

cognitive episodic memory and that semantic memory (facts we know) can be

generated from episodic memory by a marginalization operation. We also test

this hypothesis on the ICEWS dataset, the experiments show that the current

semantic facts can only be derived from the episodic tensor by a proper projec-

tion considering both starting and terminal points of consecutive events.

Acknowledgements. This work is funded by the Cognitive Deep Learning
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Abstract

In this paper we introduce a novel holographic
memory model for the distributed storage of
complex association patterns and apply it to
knowledge graphs. In a knowledge graph, a la-
belled link connects a subject node with an ob-
ject node, jointly forming a subject-predicate-
objects triple. In the presented work, nodes
and links have initial random representations,
plus holistic representations derived from the
initial representations of nodes and links in
their local neighbourhoods. A memory trace
is represented in the same vector space as the
holistic representations themselves. To reduce
the interference between stored information,
it is required that the initial random vectors
should be pairwise quasi-orthogonal. We show
that pairwise quasi-orthogonality can be im-
proved by drawing vectors from heavy-tailed
distributions, e.g., a Cauchy distribution, and,
thus, memory capacity of holistic representa-
tions can significantly be improved. Further-
more, we show that, in combination with a
simple neural network, the presented holistic
representation approach is superior to other
methods for link predictions on knowledge
graphs.

1 INTRODUCTION

An associative memory is a key concept in artificial in-
telligence and cognitive neuroscience for learning and
memorizing relationships between entities and concepts.
Various computational models of associative memory
have been proposed, see, e.g., [Hopfield 1982; Gentner
1983]. One important family of associative memory

∗yunpu.ma@siemens.com

models is the holographic associative memory (HAM),
which was first proposed in [Gabor 1969]. HAMs can
store a large number of stimulus-response pairs as ad-
ditive superpositions of memory traces. It has been
suggested that this holographic storage is related to the
working principle of the human brain [Westlake 1970].

An important extension to the HAM is based on holo-
graphic reduced representations (HRR) [Plate 1995]. In
HRR, each entity or symbol is represented as a vector
defined in a continuous space. Associations between two
entities are compressed in the same vector space via a
vector binding operation; the resulting vector is a mem-
ory trace. Two associated entities are referred to as a
cue-filler pair, since a noisy version of the filler can be
recovered from the memory trace and the cue vector via
a decoding operation. Multiple cue-filler pairs can be
compressed in a single memory trace through superposi-
tion. Associations can be read out from this single trace,
however with large distortions. Thus, a clean-up mech-
anism was introduced into HRR, such that associations
can be retrieved with high probability.

The number of associations which can be compressed in
a single trace is referred to as memory capacity. It has
been shown in [Plate 1995] that the memory capacity of
the HRR depends on the degree of the pairwise orthogo-
nality of initial random vectors associated with the enti-
ties.

Quasi-orthogonality was put forward in [Diaconis et al.
1984; Hall et al. 2005]. They informally stated that
“most independent high-dimensional random vectors are
nearly orthogonal to each other”. A rigorous mathemat-
ical justification to this statement has only recently been
given in [Cai et al. 2012; Cai et al. 2013], where the den-
sity function of pairwise angles among a large number of
Gaussian random vectors was derived. To the best of our
knowledge, density functions for other distributions have
not been derived, so far. As a first contribution, we will
derive a significantly improved quasi-orthogonality, and



we show that memory capacity of holographic represen-
tations can significantly be improved. Our result could
potentially have numerous applications, e.g., in sparse
random projections or random geometric graphs [Pen-
rose 2003].

After the HRR had been proposed, it had mainly been
tested on small toy datasets. Quasi-orthogonality be-
comes exceedingly important when a large amount of
entities needs to be initialized with random vectors, as
in applications involving large-scale knowledge graphs.

Modern knowledge graphs (KGs), such as FREE-
BASE [Bollacker et al. 2008], YAGO [Suchanek et al.
2007], and GDELT [Leetaru et al. 2013], are relational
knowledge bases, where nodes represent entities and di-
rected labelled links represent predicates. An existing
labelled link between a head node (or subject) and a tail
node (or object) is a triple and represents a fact, e.g. (Cal-
ifornia, locatedIn, USA).

As a second contribution, we demonstrate how the holo-
graphic representations can be applied to KGs. First, one
needs to define association pairs (or cue-filler pairs). We
propose that the representation of a subject should en-
code all predicate-object pairs, such that given the pred-
icate representation as a cue, the object should be recov-
ered or at least recognized. Similarly, the representation
of an object should encode all predicate-subject pairs,
such that the subject can be retrieved after decoding with
the predicate representation. We call those representa-
tions holistic, since they are inspired by the semantic
holism in the philosophy of language, in the sense that
an abstract entity can only be comprehended through its
relationships to other abstract entities.

So far we have discussed memory formation and mem-
ory retrieval. Another important function is the general-
ization of stored memory to novel facts. This has tech-
nical applications and there are interesting links to hu-
man memory. From a cognitive neuroscientist point of
view, the brain requires a dual learning system: one is
the hippocampus for rapid memorization, and the other
is the neocortex for gradual consolidation and compre-
hension. This hypothesis is the basis for the Complemen-
tary Learning System (CLS) which was first proposed in
[McClelland et al. 1995]. Connections between KGs and
long-term declarative memories has recently been stated
in [Tresp et al. 2017a; Ma et al. 2018; Tresp et al. 2017b].

As a third contribution of this paper, we propose a
model which not only memorizes patterns in the train-
ing datasets through holistic representations, but also is
able to infer missing links in the KG, by a simple neu-
ral network that uses the holistic representations as in-
put representations. Thus, our model realizes a form of

a complementary learning system. We compare our re-
sults on multiple datasets with other state-of-the-art link
prediction models, such as RESCAL [Nickel et al. 2011;
Nickel et al. 2012], DISTMULT [Yang et al. 2014], COM-
PLEX [Trouillon et al. 2016], and R-GCN [Schlichtkrull
et al. 2018].

The above mentioned learning-based methods model the
KGs by optimizing the latent representaions of entities
and predicates through minimizing the loss function. It
had been observed that latent embeddings are suitable for
capturing global connectivity patterns and generalization
[Nickel et al. 2016a; Toutanova et al. 2015], but are not
as good in memorizing unusual patterns, such as patterns
associated with locally and sparsely connected entities.
This motivates us to separate the memorization and in-
ference tasks. As we will show in our experiments, our
approach can, on the one hand, memorize local graph
structures, but, on the other hand, also generalizes well
to global connectivity patterns, as required by comple-
mentary learning systems.

Note, that in our approach holistic representations are
derived from random vectors and are not learned from
data via backpropagation, as in most learning-based
approaches to representation learning on knowledge
graphs. One might consider representations derived from
random vectors to be biologically more plausible, if com-
pared to representations which are learned via complex
gradient based update rules [Nickel et al. 2016a]. Thus,
in addition to its very competitive technical performance,
one of the interesting aspects of our approach is its bio-
logical plausibility.

In Section 2 we introduce notations for KGs and embed-
ding learning. In Section 3 we discuss improved quasi-
orthogonality by using heavy-tailed distributions. In Sec-
tion 4 we propose our own algorithm for holistic repre-
sentations, and test it on various datasets. We also dis-
cuss how the memory capacity can be improved. In Sec-
tion 5 we propose a model which can infer implicit links
on KGs through holistic representations. Section 6 con-
tains our conclusions.

2 REPRESENTATION LEARNING

In this section we provide a brief introduction to repre-
sentation learning in KGs, where we adapt the notation
of [Nickel et al. 2016b]. Let E denotes the set of entities,
and P the set of predicates. Let Ne be the number of
entities in E , and Np the number of predicates in P .

Given a predicate p ∈ P , the characteristic function φp :
E × E → {1, 0} indicates whether a triple (·, p, ·) is true
or false. Moreover, Rp denotes the set of all subject-
object pairs, such that φp = 1. The entire KG can be



written as χ = {(i, j, k)}, with i = 1, · · · , Ne, j =
1, · · · , Np, and k = 1, · · · , Ne.
We assume that each entity and predicate has a unique
latent representation. Let aei , i = 1, · · · , Ne, be the
representations of entities, and api , i = 1, · · · , Np, be
the representations of predicates. Note that aei and api
could be real- or complex-valued vectors/matrices.

A probabilistic model for the KG χ is defined as
Pr(φp(s, o) = 1|A) = σ(ηspo) for all (s, p, o)-triples
in χ, where A = {aei}Nei ∪ {api}

Np
i denotes the collec-

tion of all embeddings; σ(·) denotes the sigmoid func-
tion; and ηspo is the a function of latent representations,
as, ap and ao. Given a labeled dataset containing both
true and false triples D = {(xi, yi)}mi=1, with xi ∈ χ,
and yi ∈ {1, 0}, latent representations can be learned.
Commonly, one minimizes a binary cross-entropy loss

− 1

m

m∑

i=1

(yi log(pi) + (1− yi) log(1− pi)) + λ||A||22,

(1)
where m is the number of training samples, and λ is the
regularization parameter; pi := σ(ηxi) with σ(·) being
the sigmoid function. ηspo is defined differently in vari-
ous models.

For instance, for RESCAL entities are represented as
r-dimensional vectors, aei ∈ Rr, i = 1, · · · , Ne, and
predicates are represented as matrices, api ∈ Rr×r, i =
1, · · · , Np. Moreover, one uses ηspo = aᵀsapao.

For DISTMULT, aei ,apj ∈ Rr, with i = 1, · · · , Ne, j =
1, · · · , Np; ηspo = 〈as,ap,ao〉, where 〈·, ·, ·〉 denotes
the tri-linear dot product.

For COMPLEX, aei ,apj ∈ Cr, with i = 1, · · · , Ne,
j = 1, · · · , Np; ηspo = <(〈as,ap, āo〉), where the bar
denotes complex conjugate, and < denotes the real part.

3 DERIVATION OF
ε-ORTHOGONALITY

As we have discussed in the introduction, quasi-
orthogonality of the random vectors representing the en-
tities and the predicates is required for low interference
memory retrieval. In this section we investigates the
asymptotic distribution of pairwise angles in a set of in-
dependently and identically drawn random vectors. In
particular, we study random vectors drawn from either a
Gaussian or a heavy-tailed Cauchy distribution distribu-
tion. A brief summary of notations is referred to the A.7.
First we define the term “ε-orthogonality”.
Definition 1. A set of n vectors x1, · · · ,xn is said to
be pairwise ε-orthogonal, if |〈xi,xj〉| < ε for i, j =
1, · · · , n, i 6= j.

Here, ε > 0 is a small positive number, and 〈·, ·〉 denotes
the inner product in the vector space.

3.1 ε-ORTHOGONALITY FOR A GAUSSIAN
DISTRIBUTION

In this section we revisit the empirical distribution
of pairwise angles among a set of random vec-
tors. More specifically, let X1, · · · ,Xn be indepen-
dent q-dimensional Gaussian variables with distribution
N (0, Iq). Denote with Θij the angle between Xi and
Xj , and ρij := cos Θij ∈ [−1, 1]. [Cai et al. 2012;
Muirhead 2009] derived the density function of ρij in
the following Lemma.

Lemma 1. Consider ρij as defined above. Then
{ρij |1 < i < j ≤ n} are pairwise i.i.d. random vari-
ables with the following asymptotic probability density
function

g(ρG) =
1√
π

Γ( q2 )

Γ( q−1
2 )

(1− ρ2
G)

q−3
2 , |ρG| < 1, (2)

with fixed dimensionality q.

[Cai et al. 2013] also derived the following Theorem 1.

Theorem 1. Let the empirical distribution µn of pair-
wise angles Θij , 1 ≤ i < j ≤ n be defined as µn :=

1

(n2)

∑
1≤i<j≤n

δΘij . With fixed dimension q, as n → ∞,

µn converges weakly to the distribution with density

h(θ) =
1√
π

Γ( q2 )

Γ( q−1
2 )

(sin θ)q−2, θ ∈ [0, π]. (3)

From the above distribution function we can derive the
upper bound of quasi-orthogonal random vectors with
pairwise ε-orthogonality in the Euclidean space Rq .
Corollary 1. Consider a set of independent q-
dimensional Gaussian random vectors which are pair-
wise ε-orthogonal with probability 1−ν, then the number
of such Gaussian random vectors is bounded by

N ≤ 4

√
π

2q
e
ε2q
4

[
log

(
1

1− ν

)] 1
2

. (4)

The derivation is given in A.1. Due to the symmetry of
density function g(ρG), we immediately have E[ρG] =
0, moreover, E[θ] = π

2 . However, for the later use, it is
important to consider the expected absolute value of ρG:

Corollary 2. Consider a set of n q-dimensional random
Gaussian vectors, we have

λG := E[|ρG|] =

√
2

πq
. (5)



Figure 1: Empirical pairwise angle distribution in a set
of Gaussian random vectors (green) is compared with
theoretical prediction Eq. 2 (magenta); Empirical pair-
wise angle distribution in a set of Cauchy random vectors
(blue) is compared with prediction Eq. 6 (red)

Figure 2: Compare λG and λC from simulation and the-
ory, see Eq. 5 and Eq. 9.

Note, that the quantity π
2 − arccosE[|ρG|] has a clear

geometrical meaning: It indicates the expected deviation
from π

2 of pairwise angles. In fact, in the extreme case
when q → ∞, the deviation converges to 0 with the rate√
q.

3.2 ε-ORTHOGONALITY FOR A CAUCHY
DISTRIBUTION

In this subsection, we show that the set of random vectors
whose elements are initialized with a heavy-tailed distri-
bution, e.g., a Cauchy distribution C (0, 1), has improved
ε-orthogonality. The intuition is as follows: Consider a
set of q-dimensional random vectors initialized with a
heavy-tailed distribution. After normalization, each ran-
dom vector can be approximated by only the elements
which significantly deviate from zero and were drawn
from the heavy tails. If the number of those elements
is k with k � q, then there are at most

(
q
k

)
orthogonal

random vectors.

Moreover,
(
q
k

)
≈ qk

kΓ(k) could be much larger than

4

√
π
2q e

ε2q
4 from Eq. 4, when q is sufficiently large, k �

q, and ε → 0. In other words, under stricter quasi-
orthogonality condition with smaller ε, random vectors
drawn from a heavy-tailed distribution could have more
pairs satisfying the quasi-orthogonality condition.

Consider a set of q-dimensional Cauchy random vectors.
As q →∞ the approximate density function of ρij , with
1 ≤ i < j ≤ n is described in the following conjecture.

Conjecture 1. Let X1, · · · ,Xn be independent q-
dimensional random vectors whose elements are inde-
pendently and identically drawn from Cauchy a distribu-
tion C(0, 1). Moreover, consider the angle Θij between
Xi, and Xj . Then, as q →∞, ρij := cos Θij ∈ [−1, 1],
1 ≤ i < j ≤ n are pairwise i.i.d. with a density function
approximated by

g(ρC) = − 2

π2q2ρ3
C

· 1

z
3
2

[
e

1
πz Ei

(
− 1

πz

)]
, (6)

where z := 1
q2

(
1
ρ2C
− 1
)

, and the exponential integral

Ei(x) is defined as Ei(x) = −
∞∫
−x

e−t

t dt.

The intuition behind the conjecture is as follows. Sup-
pose X = (X1, · · · , Xq) and Y = (Y1, · · · , Yq) are
random vector variables, and assume that elements of X
and Y are independently Gaussian distributed. In order
to derive g(ρX,Y) in Lemma 1, [Cai et al. 2012; Muir-
head 2009] compute the distribution function for αᵀ·X

||X||
instead, where αᵀα = 1. In particular, they assume
that α = (1, 0, · · · , 0). The underlying reason for this
assumption is that the random vector X

||X|| is uniformly
distributed on the (q − 1)-dimensional sphere.

Here, elements of X and Y are independently Cauchy
distributed. We derive the approximation in Eq. 6 under
the same assumption by taking g(ρX,Y) ≈ X1√

X2
1+···+X2

q

.

Furthermore, we introduce a new variable zX,Y :=
1
q2

(
1

ρ2X,Y
− 1
)

= 1
q2
X2

2+···+X2
q

X2
1

, and derive the den-

sity function ĝ(zX,Y) by using the generalized central
limit theorem [Gnedenko et al. 1954] and properties of
quotient distributions of two independent random vari-
ables. g(ρX,Y) can be directly obtained from ĝ(zX,Y)
by a variable transform. More details and derivation are
referred to the A.2.

We turn to study the limiting behaviour of the density
function when ρ approaches zero. In this case, the vari-
able z defined in in Conjecture 1 can be approximated by
z ≈ 1

q2ρ2C
. Using properties of the exponential integral,

as q →∞, the density function in Eq. 6 can be approxi-
mated by its Laurent series,

g(ρC) ≈ 2

πqρ2
C

− 2

q3ρ4
C

+
4π

q5ρ6
C

+O
(

1

q7ρ8
C

)
(7)

In the following corollary we give the upper bound of the
number of pairwise ε-orthogonal Cauchy random vectors
using Eq. 6.



Corollary 3. Consider a set of independent q-
dimensional Cauchy random vectors which are pairwise
ε-orthogonal with probability 1 − ν, then the number of
such Cauchy random vectors is bounded by

N ≤
√
πεq

4

[
log

(
1

1− ν

)] 1
2

. (8)

Let us compare the prefactor of this upper bound for two

distributions: That is 4

√
π
2q e

ε2q
4 for the Gaussian distri-

bution, and
√

πεq
4 for the Cauchy distribution. Under

strict quasi-orthogonal conditions with arbitrarily small

but fixed ε > 0, for the dimension q � 2 3

√
1
πε2 we have

that
√

πεq
4 � 4

√
π
2q e

ε2q
4 ≈ 4

√
π
2q . It implies that in suffi-

ciently high-dimensional spaces, random vectors which
are independently drawn from a Cauchy distribution are
more likely to satisfy the pairwise ε-orthogonality condi-
tion - particularly when ε� 1.

Remark 1. For the later use, we define λC as λC :=
E[|ρC|] for the case of Cauchy distribution. However, no
simple analytic form is known for this integral. Thus we
use the following numerically stable and non-divergent
equation to approximate λC,

λC ≈ −
4q

π2

∫ 1

0

ρ

[
e
q2ρ2

π Ei

(
−q

2ρ2

π

)]
dρ. (9)

This simpler form is derived from Eq. 6 using the approx-
imation z ≈ 1

q2ρ2 .

Fig. 1 shows the empirical distribution of ρG in a set of
Gaussian random vectors (green) compared with theo-
retical prediction in Eq.2 (magenta); and the empirical
distribution of ρC in a set of Cauchy random vectors
(blue) compared with theoretical prediction (red). In the
case of Cauchy random vectors, the leading orders of the
Laurent expansion of Eq. 6 are used, see Eq. 7. For the
empirical simulation, 10000 random vectors with dimen-
sionality q = 2000 were drawn independently from ei-
ther a Gaussian or a Cauchy distribution.

In addition, in Fig. 2 we plot λG and λC as a function of q
in comparison with the theoretical predictions from Eq. 5
and Eq. 9, respectively, under the same simulation condi-
tion. It is necessary to emphasize that λC(q) < λG(q) for
all the dimensions q; this fact will be used to explain the
relatively high memory capacity encoded from Cauchy
random vectors.

In the Appendix, see Remark A 2, the distribution of ele-
ments from the normalized random variable X

||X|| is also
considered. In particular, for normalized Cauchy random
vector most of its elements are nearly zero, and it realizes
a sparse representation.

4 HOLISTIC REPRESENTATIONS FOR
KGS

4.1 HRR MODEL

First, we briefly review HRR. Three operations are de-
fined in HRR to model associative memories: encoding,
decoding, and composition.

Let a, b, c, and d be random vectors representing dif-
ferent entities. The encoding phase stores the associa-
tion between a and b in a memory trace a ∗ b, where
∗ : Rq × Rq → Rq denotes circular convolution, which

is defined as [a ∗ b]k =
q−1∑
i=0

aib(k−i) mod q .

A noisy version of b can be retrieved from the memory
trace, using the item a as a cue, with: b ≈ a ? (a ∗ b),
where ? : Rq × Rq → Rq denotes the circular correla-

tion 1. It is defined as [a ? b]k =
q−1∑
i=0

aib(k+i) mod q . In

addition, several associations can be superimposed in a
single trace via the addition operation: (a ∗ b) + (c ∗
d) + · · · .

4.2 HOLISTIC MODEL

Initially, each entity and predicate in a KG is associ-
ated with a q-dimensional normalized random vector,
which is then normalized. We denote them as r

G/C
ei ,

i = 1, · · · , Ne, and r
G/C
pi , i = 1, · · · , Np, respectively.

The superscript indicates from which distribution vector
elements are independently drawn, either the Gaussian
or Cauchy distribution. If there is no confusion, we may
omit the superscript.

Consider an entity ei. Let Ss(ei) = {(p, o)|φp(ei, o) =
1} be the set of all predicate-object pairs for which triples
(ei, p, o) is true and where ei is the subject. We store
these multiple associations in a single memory trace via
circular correlation and superposition:

hsei =
∑

(p,o)∈Ss(ei)
[Norm(rp ? ro) + ξrei ] , (10)

where Norm : Rq → Rq represents the normalization
operation 2, which is defined as Norm(r) := r

||r|| . More-
over, the hyper-parameter ξ > 0 determines the contri-
bution of the individual initial representation r.

1It uses the fact that a ? a ≈ δ, where δ is the identity
operation of convolution.

2In other sections, we may obviate Norm operator in the
equation for the sake of simplicity, since it can be shown that
the circular correlation of two normalized high-dimensional
random vectors are almost normalized.



Note, that the same entity ei could also play the
role of an object. For instance, the entity Califor-
nia could be the subject in the triple (California, lo-
catedIn, USA), or the object in another triple (Paul,
livesIn, California). Thus, it is necessary to have an-
other representation to specify its role in the triples.
Consider the set of subject-predicate pairs So(ei) =
{(s, p)|φp(s, ei) = 1} for which triples (s, p, ei) are
true. These pairs are stored in a single trace via
hoei =

∑
(s,p)∈So(ei)

[Norm(rp ? rs) + ξrei ], where hoei is

the representation of the entity ei when it acts as an ob-
ject.

For the later generalization task, the overall holistic rep-
resentation for the entity ei is defined as the summation
of both representations, namely

hei = hsei + hoei . (11)

In this way, the complete neighbourhood information of
an entity can be used for generalization.

Furthermore, given a predicate pi, the holistic represen-
tation hpi encodes all the subject-object pairs in the set
S(pi) = {(s, o)|φpi(s, o) = 1} via

hpi =
∑

(s,o)∈S(pi)

[Norm(rs ? ro) + ξrpi ] . (12)

After storing all the association pairs into holistic fea-
tures of entities and predicates, the initial randomly as-
signed representations are not required anymore and can
be deleted. These representations are then fixed and not
trainable unlike other embedding models.

After encoding, entity retrieval is performed via a circu-
lar convolution. Consider a concrete triple (e1, p1, e2)
with unknown e2. The identity of e2 could be revealed
with the holistic representation of p1 and the holistic rep-
resentation of e1 as a subject, namely hp1 and hse1 . Then
retrieval is performed as hp1 ∗ hse1 . The associations can
be retrieved from the holography memory with low fi-
delity due to interference. Therefore, after decoding, a
clean-up operation is employed, as in the HRR model.
Specifically, a nearest neighbour is determined using co-
sine similarity. The pseudo-code for encoding holistic
representations is provided in A.6.

4.3 EXPERIMENTS ON MEMORIZATION

We test the memorization of complex structure on dif-
ferent datasets and compare the performance of different
models. Recall that Rp is the set of all true triples with
respect to a given predicate p. Consider a possible triple
(s,p, o) ∈ Rp. The task is now to retrieve the object en-
tity from holistic vectors hs and hp, and to retrieve the
subject entity from holistic vectors hp and ho.

As discussed, in retrieval, the noisy vector r′o = hp ∗ hs

is compared to the holistic representations of all entities
using cosine similarity, according to which the entities
are then ranked. In general, multiple objects could be
connected to a single subject-predicate pair. Thus, we
employ the filtered mean rank introduced in [Bordes et
al. 2013] to evaluate the memorization task.

We have discussed that the number of pairwise quasi-
orthogonal vectors crucially depends on the random ini-
tialization. Now we analyse, if the memory capacity de-
pends on the quasi-orthogonality of the initial represen-
tation vectors, as well. We perform memorization task on
three different KGs, which are FB15k-237 [Toutanova et
al. 2015], YAGO3 [Mahdisoltani et al. 2013], and a sub-
set of GDELT [Leetaru et al. 2013]. The exact statistics
of the datasets are given in Table. 1.

Table 1: Statistics of KGs

#D Na Ne Np

GDELT 497, 605 ≈ 73 6786 231
FB15k-237 301, 080 ≈ 20 14505 237
YAGO3 1, 089, 000 ≈ 9 123143 37

Recall that Ne and Np denote the number of entities and
predicates, respectively. Moreover, #D denotes the total
number of triples in a KG, and Na is the average num-
ber of association pairs compressed into holistic feature
vectors of entities, which can be estimated as #D

Ne
. Af-

ter encoding triples in a dataset into holistic features, fil-
tered mean rank is evaluated by ranking retrieved sub-
jects and objects of all triples. Filtered mean ranks on
three datasets with holistic representations encoded from
Gaussian and Cauchy distributions are displayed in Fig. 3
(a)-(c).

Cauchy holistic representations outperform Gaussian
holistic representations significantly when the total num-
ber of entities is large (see, Fig. 3(c) for YAGO3), or
the average number of encoded associations is large
(see, Fig. 3(a) for GDELT). This implies that quasi-
orthogonality plays an important role in holographic
memory. Improved quasi-orthogonality allows for more
entities to be initialized with quasi-orthogonal represen-
tations, which is very important for memorizing huge
KGs. In addition, it reduces the interference between as-
sociations. Moreover, Cauchy holistic features are intrin-
sically very sparse, making them an attractive candidate
for modeling biologically plausible memory systems.

4.4 CORRELATION VERSUS CONVOLUTION

On of the main differences between holistic representa-
tion and the holographic reduced representation is the
binding operation. In HRR, two vectors are composed



(a) (b) (c)

Figure 3: Filtered MR vs. the dimensionality of holistic representations evaluated on dataset: (a) GDELT, (b) FB15k-
237, and (c) YAGO3. Blues lines denote holistic representations encoded from Gaussian random vectors, and green
lines denote holistic representations encoded from Cauchy random vectors. Lower values are preferred.

Figure 4: Filtered MR vs. the dimensionality of holis-
tic representations evaluated on the GDELT dataset with
Gaussian initialization.

via circular convolution, while in holistic representation,
they are composed via circular correlation.

Binding with convolution and correlation is compared in
Fig. 4. We report the filtered MR scores on the GDELT
dataset versus the dimensionality of holistic representa-
tions. It can be seen that binding with circular correlation
is significantly superior to convolution. Therefore, a non-
commutative compositional operator is essential for stor-
ing the directed structures of KG into holographic mem-
ory. A theoretical explanation is given in the A.4, along
with experimental results on other datasets.

4.5 HYPER-PARAMETER ξ

In the experiments so far, the optimal hyper-parameter
ξ is found via grid search. However, it is possible
to roughly estimate the range of the optimal hyper-
parameter ξ. Indeed, ξ strongly depends on λG or λC

and the average number of encoded association pairsNa.

So far, the deep relation between holographic memory
capacity and quasi-orthogonality has not been discussed
in the literature. In the original work on HRR, mem-
ory capacity and information retrieval quality are esti-
mated from the distribution of elements in random vec-
tors. In this section we give a plausible explanation from
the point of view of the pairwise angle distribution.

Consider a subject s. The predicate-object pair (p, o)

is stored in the holistic representation hs along with the
other Na − 1 pairs, such that

hs = ξNars + rp ? ro +

Na∑

i=2

rpi ? roi .

Suppose we try to identify the object in the triple (s,p, ·)
via hs and hp. After decoding, the noisy vector r′o =
hp ∗ hs should be recalled with ho, which is the holistic
representation of o. Let θr′o,ho denote the angle between
r′o and ho. The cosine function of this angle is again
defined as ρr′o,ho

:= cos θr′o,ho
.

In order to recall the object successfully, the angle be-
tween r′o and ho should be smaller than the expected ab-
solute angle between two arbitrary vectors, namely

θr′o,ho
< E[|θG/C|], (13)

This inequality first implies that the optimal ξ should be
a positive number. Given the definition of λG/C in Eq. 5
and 9, equivalently, Eq. 13 requires

ρr′o,ho
> λG/C. (14)

After some manipulations, a sufficient condition to rec-
ognize the object correctly is given by (see A.5)

ρr′o,ho >

ξ2N2
a − (ξ3N3

a + 2ξ2N3
a − ξ2N2

a + ξN2
a + ξN3

a )λG/C

ξ2N2
a +Na + 2ξN2

aλG/C +Na(Na − 1)λG/C

> λG/C. (15)

In the following, we verify this condition on the FB15k-
237 dataset. We consider one of the experimental set-
tings employed in the memorization task. The dimen-
sion of holistic features is q = 5200, with λG = 0.0111
computed from Eq. 5, and λC = 0.00204 from Eq. 9. For
Gaussian initialization, the optimum is found at ξ = 0.14
via grid search, while for Cauchy initialization, the opti-
mum is found at ξ = 0.05.



(a) (b)

Figure 5: Analysis of the hyper-parameter ξ on the FB15k-237 dataset. (a): Approximation of ρr′o,ho
for Gaussian

initialization. Curves with Na = 10 (blue), Na = 20 (magenta) and their intersections with the retrieval threshold λG

are displayed. The red vertical line denotes the experimentally determined optimal ξ. Insert shows the curves with
ξ ∈ [−3, 3]. (b): Approximation of ρr′o,ho

for Cauchy initialization with Na = 10 (blue), and Na = 20 (magenta).
Rest remains the same.

To verify these optima, Fig. 5 (a) and (b) display the ap-
proximation of ρr′o,ho

(ξ,Na) as a function of ξ. 3 Its
intersection with λG/C is marked with a black dot. In
FB15k-237,Na is estimated to be 20, while, in general, a
KG could be quite imbalanced. Thus, ρr′o,ho(ξ,Na) with
Na = 10, and 20 are shown together for comparison.

In Fig. 5 (a) for Gaussian initialization, experimentally
determined optimal ξ (red vertical line) is found close to
the intersection of ρr′o,ho

(ξ,Na = 10) and threshold λG,
meaning that Gaussian holistic features tend to memo-
rize fewer association pairs. They can only map sparsely
connected graph structures into meaningful representa-
tions.

In Fig. 5 (b) for Cauchy initialization, however, the opti-
mal ξ is close to the intersection of ρr′o,ho(ξ,Na = 20)
and λC. Thus, Cauchy holistic features are more suit-
able to memorize a larger chunk of associations, mean-
ing that they are capable of mapping densely connected
graph structures into meaningful representations. All op-
tima are found near the intersection points instead of the
local maximum with ξ > 0. It indicates that, to maxi-
mize the memory capacity, the holistic features can only
store information with very low fidelity.

Table 2: Filtered recall scores on FB15k-237

Hits

Methods MR MRR @10 @3 @1

RESCAL 996 0.221 0.363 0.237 0.156
DISTMULT 254 0.241 0.419 0.263 0.155
COMPLEX 339 0.247 0.428 0.275 0.158

R-GCN 4 - 0.248 0.414 0.258 0.153

HOLNNG
5 235 0.285 0.455 0.315 0.207

HOLNNC 228 0.295 0.465 0.320 0.212

3The approximation of ρr′o,ho is the second term of Eq. 15

5 INFERENCE ON KG

5.1 INFERENCE VIA HOLISTIC
REPRESENTATION

In this section, we describe the model for inferring the
missing links in the KG. Recall the scoring function ηspo
defined in Sec. 2. Our model uses holistic representations
as input and generalizes them to implicit facts, by a two-
layer neural network 6. Formally, the scoring function is
given as follow:

ηspo =〈ReLU(hsW
e
1)We

2, ReLU(hpW
p
1)Wp

2,

ReLU(hoW
e
1)We

2〉, (16)

where 〈·, ·, ·〉 denotes tri-linear dot product; hs, ho are
the holistic representations for entities defined in Eq. 11,
hp is defined in Eq. 12.

Suppose that the holistic representations are defined in
Rq . Then We

1 ∈ Rq×h1 and We
2 ∈ Rh1×h2 are shared

weights for entities; Wp
1 ∈ Rq×h1 and Wp

2 ∈ Rh1×h2

are shared weights for predicates. We refer Eq. 16 as
HOLNN, a combination of holistic representations and a
simple neural network.

As an example, for training on FB15k-237, we take
q = 3600, h1 = 64, and h2 = 256. Note that only
weight matrices in the neural network are trainable pa-
rameters, holistic representations are fixed after encod-
ing. Thus, the total number of trainable parameters in
HOLNN is 0.48M , which is much smaller than COM-

4see [Schlichtkrull et al. 2018]
5G stands for Gaussian holistic features, and C for Cauchy

holistic features.
6Further experimental details are referred to A.8



PLEX with 5.9M parameters, by assuming that the di-
mension of embeddings in the COMPLEX is 200.

To evaluate the performance of HOLNN for missing
links prediction, we compare it to the state-of-the-art
models on two datasets: FB15k-237, and GDELT. They
were split randomly in training, validation, and test sets.
We implement all models with the identical loss function
Eq. 1, and minimize the loss on the training set using
Adam as the optimization method. Hyper-parameters,
e.g., the learning rate, and l2 regularization, are opti-
mized based on the validation set.

We use filtered MR, filtered mean reciprocal rank
(MRR), and filtered Hits at n (Hits@n) as evaluation
metrics [Bordes et al. 2013]. Table 2 and Table 3 report
different metrics on the FB15k-237, and GDELT dataset,
respectively. It can be seen that HOLNN is superior to all
the baseline methods on both datasets with considerably
less trainable parameters. Moreover, HOLNNC consis-
tently outperforms HOLNNG, indicating that the mem-
ory capacity of holistic representations is important for
generalization.

Table 3: Filtered recall scores on GDELT

Hits

Methods MR MRR @10 @3 @1

RESCAL 212 0.202 0.396 0.225 0.107
DISTMULT 181 0.232 0.451 0.268 0.124
COMPLEX 158 0.256 0.460 0.295 0.146

HOLNNG 105 0.284 0.457 0.301 0.198
HOLNNC 102 0.296 0.471 0.315 0.210

5.2 INFERENCE ON NEW ENTITIES

In additional experiments, we show that HOLNN is capa-
ble of inferring implicit facts on new entities without re-
training the neural network. Experiments are performed
on FB15k-237 as follows. We split the entire FB15k-
237 dataset D into Dold and Dnew. In Dnew, the subjects
of triples are new entities which do not show up in Dold,
while objects and predicates are already seen in theDold.
Suppose our task is to predict implicit links between new
entities (subjects in Dnew) and old entities (entities in
Dold). Thus, we further split Dnew into Dtrain

new , Dvalid
new ,

and Dtest
new sets.

For embedding models, e.g., COMPLEX, after training
on Dold, the most efficient way to solve this task is to
adapt the embeddings of new entities on Dtrain

new , with
fixed embeddings of old entities. On the other hand,
for the HOLNN model, new entities obtain their holistic
representations via triples in the Dtrain

new set. These holis-
tic features are then fed into the trained two-layer neural
network. Table 4 shows filtered recall scores for predict-

ing links between new entities and old entities on Dtest
new,

with the number of new entities in Dnew being 300, 600,
or 900. COMPLEX and HOLNN with Cauchy holistic
features are compared.

There are two settings for the HOLNNC model. New en-
tities could be encoded either from holistic features of
old entities, or from random initializations of old en-
tities 7. We denote these two cases as HOLNNC(h)
and HOLNNC(r), respectively. It can be seen that
HOLNNC(r) outperforms HOLNNC(h) only to some
degree. It indicates that HOLNNC is robust to the noise,
making it generalizes well.

Table 4: Inference of new entities on FB15k-237

Number of New Entities

300 600 900
Methods MR MRR MR MRR MR MRR

COMPLEX 262 0.291 265 0.266 286 0.243
HOLNNC(h) 345 0.274 415 0.242 510 0.222
HOLNNC(r) 252 0.315 302 0.281 395 0.265

6 CONCLUSION

We have introduces the holistic representation for the
distributed storage of complex association patterns and
have applied it to knowledge graphs. We have shown
that interference between stored information is reduced
with initial random vectors which are pairwise quasi-
orthogonal and that pairwise quasi-orthogonality can
be improved by drawing vectors from heavy-tailed dis-
tributions, e.g., a Cauchy distribution. The experi-
ments demonstrated excellent performance on memory
retrieval and competitive results on link prediction.

In our approach, latent representations are derived from
random vectors and are not learned from data, as in most
modern approaches to representation learning on knowl-
edge graphs. One might consider representations derived
from random vectors to be biologically more plausible, if
compared to representations which are learned via com-
plex gradient based update rules. Thus in addition to its
very competitive technical performance, one of the inter-
esting aspects of our approach is its biological plausibil-
ity.

Outlook: Potential applications could be applying the
holistic encoding algorithm to Lexical Functional for
modeling distributional semantics [Coecke et al. 2010],
or graph convolutional network [Kipf et al. 2017] for
semi-supervised learning using holistic representations
as feature vectors of nodes on a graph.

7Recall that random initializations are actually deleted after
encoding. Here we use them just for comparison.
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A APPENDIX

A.1 DERIVATION OF COROLLARY 1 & 2

Corollary 1. Consider a set of independent q-
dimensional Gaussian random vectors which are pair-
wise ε-orthogonal with probability 1−ν, then the number
of such Gaussian random vectors is bounded by

N ≤ 4

√
π

2q
e
ε2q
4

[
log

(
1

1− ν

)] 1
2

. (A.1)

Proof. Recall that, in the case of Gaussian distributed
random vectors, the pdf of ρ is

g(ρ) =
1√
π

Γ( q2 )

Γ( q−1
2 )

(1− ρ2)
q−3
2 .

This directly yields that ω :=
√
qρ has the density func-

tion

f(ω) =
1√
q

1√
π

Γ( q2 )

Γ( q−1
2 )

(
1− ω2

q

) q−3
2

→ 1√
2π

e−
ω2

2

(A.2)
as q → ∞, using the fact that Γ( q2 )

Γ( q−1
2 )
∼
√

q
2 . Therefore

the probability that two random Gaussian vectors are not
ε-orthogonal is upper bounded by

Pr(|ρ| ≥ ε) = Pr(|ω| ≥ √qε) = 2

∫ √q
√
qε

1√
2π

e−
ω2

2 dω

<

√
2

π
e−

qε2

2 (
√
q −√qε) <

√
2q

π
e−

qε2

2 .

(A.3)

To estimate the probability that ε-orthogonality is satis-
fied for a set ofN independent Gaussian random vectors,
let us consider the following quantity

P(ε,N) :=

N−1∏

k=1

[1− kPr(|ρ| ≥ ε)] . (A.4)

The above estimation has clear meaning. Given one
Gaussian random vector X1, the probability that an in-
dependently sampled random vector X2 which is not ε-
orthogonal to X1 is Pr(|ρ| > ε). Similarly, given k
i.i.d. Gaussian random vectors X1, · · · ,Xk, the proba-
bility that an independently drawn Gaussian random vec-
tor Xk+1 which is not ε-orthogonal to X1, · · · ,Xk is
upper bounded by kPr(|ρ| > ε). Therefore, we have the
estimate in Eq. A.4 for N independent random vectors.

Using Eq. A.3, P(ε,N) can be computed as follows

P(ε,N) >

N−1∏

k=1

(1− k
√

2q

π
e−

ε2q
2 )

> (1−N
√

2q

π
e−

ε2q
2 )N ∼ e−N

2
√

2q
π e−

ε2q
2 ,

for sufficiently large N and q satisfying N
√

2q
π e−

ε2q
2 <

1. If we require P(ε,N) ≥ 1 − ν, then the number of
pairwise ε-orthogonal i.i.d. Gaussian random vectors is
bounded from above by

e−N
2
√

2q
π e−

ε2q
2 ≥ 1− ν ⇒

N ≤ 4

√
π

2q
e
ε2q
4

[
log

(
1

1− ν

)] 1
2

Corollary 2. Consider a set of n q-dimensional random
Gaussian vectors, we have

λG := E[|ρG|] =

√
2

πq
. (A.5)

Proof. Given the g(ρG) in Theorem 1, we have

E[|ρG|] =

∫ 1

−1

|ρ|g(ρ) dρ =

√
2q

π

∫ 1

0

ρ(1− ρ2)
q−3
2 dρ

= −
√

2q

π

(1− ρ2)
q−1
2

q − 1

∣∣∣∣∣

1

0

=

√
2

πq
,

for large q.

A.2 DISCUSSION ON CONJECTURE 1

In this section, we derive the approximations stated in
Conjecture 1 and verify them with empirical simulations.

According to the central limit theorem, the sum of in-
dependently and identically distributed random variables
with finite variance converges weakly to a normal dis-
tribution as the number of random variables approaches
infinity. Our derivation relies on the generalized central
limit theorem proven by Gnedenko and Kolmogorov in
1954 [Gnedenko et al. 1954].
Theorem A 1. (Generalized Central Limit Theorem
[Gnedenko et al. 1954]) Suppose X1, X2, . . . is a se-
quence of i.i.d random variables drawn from the distribu-
tion with probability density function f(x) with the fol-
lowing asymptotic behaviour

f(x) '
{
c+x

−(α+1) for x→∞
c−|x|−(α+1) for x→ −∞, (A.6)



where 0 < α < 2, and c+, c− are real positive num-
bers. Define random variable Sn as a superposition of
X1, · · · , Xn

Sn =

n∑
i=1

Xi − Cn

n
1
α

, with

Cn =





0 if 0 < α < 1

n2= ln(φX(1/n)) if α = 1

nE[X] if 1 < α < 2,

where φX is the characteristic function of a random
variable X with probability density function f(x), E[X]
is the expectation value of X , = denotes the imagi-
nary part of a variable. Then as the number of sum-
mands n approaches infinity, the random variables Sn
converge in distribution to a unique stable distribution
S(x;α, β, γ, 0), that is

Sn
d−→ S(α, β, γ, 0), for n→∞,

where, α characterizes the power-law tail of f(x) as de-
fined above, and parameters β and γ are given as:

β =
c+ − c−
c+ + c−

,

γ =

[
π(c+ + c−)

2α sin(πα2 )Γ(α)

] 1
α

. (A.7)

To be self-contained, we give the definition of stable dis-
tributions after [Nolan 2003; Mandelbrot 1960].

Definition A 1. A random variable X follows a stable
distribution if its characteristic function can be expressed
as

φ(t;α, β, γ, µ) = eiµt−|γt|
α(1−iβ sgn(t)Φ(α,t)), (A.8)

with Φ(α, t) defined as

Φ(α, t) =

{
tan(πα2 ) if α 6= 1

− 2
π log |t| if α = 1.

Then the probability density function S(x;α, β, γ, µ) of
the random variable X is given by the Fourier transform
of its characteristic function

S(x;α, β, γ, µ) =
1

2π

∞∫

−∞

φ(t;α, β, γ, µ) e−ixt dx.

The parameter α satisfying 0 < α ≤ 2 characterizes
the power-law asymptotic limit of the stable distribution,
β ∈ [−1, 1] measures the skewness, γ > 0 is the scale
parameter, and µ ∈ R is the shift parameter. Note that the

normal distribution is a typical stable distribution. Other
examples with analytical expression include the Cauchy
distribution and the Lévy distribution. For the later use,
we give the analytical form of the Lévy distribution.

Remark A 1. The probability density function of the
Lévy distribution is given by

f(x; γ, µ) =

√
γ

2π

e−
γ

2(x−µ)

(x− µ)
3
2

, x ≥ µ, (A.9)

where µ is the shift parameter and γ is the scale param-
eter. The Lévy distribution is a special case of the stable
distribution S(x;α, β, γ, µ) with α = 1

2 and β = 1. This
can be seen from its characteristic function, which can
be written as

φ(t; γ, µ) = eiµt−|γt|
1/2(1−i sgn(t))

To derive g(ρC) for Cauchy random vectors, we first
need the distribution function of X2 given that the ran-
dom variable X has a Cauchy distribution.

Lemma A 1. Let X be a Cauchy random variable hav-
ing the probability density function fX(x) = 1

π
ζ

x2+ζ2 ,
where ζ > 0 is the scale parameter. Then the squared
variable Y := X2 has the pdf:

fY (y) =

{
1
π

ζ√
y(ζ2+y) for y ≥ 0,

0 otherwise.
(A.10)

Proof. fY (y) can be derived from fX(x) by a simple
variable transformation y = g(x) = x2. In particular,
utilizing the symmetry of fX(x), we have

fY (y) = 2

∣∣∣∣
d

dy
g−1(y)

∣∣∣∣ fX(g−1(y))

=
1

π

ζ√
y(ζ2 + y)

.

In the following Lemma we derive the probability den-
sity function for zX,Y, which is defined as zX,Y :=
1
q2
X2

2+···X2
q

X2
1

.

Lemma A 2. Let X1, · · · , Xq be a sequence of i.i.d.
random variables drawn from C(0, 1). Then the random

variable Zq := 1
q2
X2

2+···+X2
q

X2
1

converges in distribution
to

f(z) = − 1

π2

1

z
3
2

[
e

1
πz Ei

(
− 1

πz

)]
, (A.11)

as q →∞, where Ei(x) denotes the exponential integral.



Proof. The numerator in Zq can be regarded as a sum
of independent random variables with density function
fY :=X2(y) = 1

π
1√

y(1+y) , see Eq. A.10 with ζ = 1.
Thus, we can use the generalized central limit theorem
to obtain the density function g( 1

q2

∑q
i=2X

2
i ) for the nu-

merator, as q →∞.

Note that fY (y) ∼ 1
πy
− 3

2 as y → +∞. From this
asymptotic behaviour we can extract that c+ = 1

π , c− =
0, and α = 1

2 . Moreover, Eq. A.7 with β = 1 yields

γ =
[

1
sin(π4 ) Γ( 1

2 )

]2
= 2

π . In summary, g( 1
q2

∑q
i=2X

2
i )

converges to a unique stable distribution S(α = 1
2 , β =

1, γ = 2
π , µ = 0), which is exactly the Lévy distribution

shown in Remark A 1. Hence, we have

g(
1

q2

q∑

i=2

X2
i )

d−→ S(x;
1

2
, 1,

2

π
, 0) =

1

π

e−
1
πx

x
3
2

,

as q →∞. (A.12)

Next, we consider the quotient distribution of two ran-
dom variables in order to derive the pdf of Zq . To be
more specific, let X and Y be independent non-negative
random variables with corresponding probability density
function fX(x) and fY (y) over the domains x ≥ 0 and
y ≥ 0, respectively. Then the cumulative distribution
function FZ(z) of Z := Y

X can be computed by

FZ(z) = Pr(
Y

X
≤ z) = Pr(Y ≤ zX)

=

∫ ∞

0

[∫ y=zx

0

fY (y)dy

]
fX(x)dx.

Differentiating the cumulative distribution function
yields

fZ(z) =
d

dz
FZ(z) =

∫ ∞

0

x fY (zx) fX(x) dx.

Following the above procedure, we can obtain the pdf
for Zq as q → ∞ in case the density functions of the
numerator and the denominator are given by Eq. A.12
and Eq. A.10, respectively. That yields

f(z) =
1

π2

∫ ∞

0

x
e−

1
πzx

(zx)
3
2

1√
x(1 + x)

dx

=
1

π2

1

z
3
2

[
−e

1
πz Ei

(
−x+ 1

πzx

)]∣∣∣∣∣

∞

x=0

= − 1

π2

1

z
3
2

[
e

1
πz Ei

(
− 1

πz

)]
.

In the following we discuss why the density function
g(ρC) can only be approximated by taking the limit as
q →∞.

Suppose X = (X1, · · · , Xq) and Y = (Y1, · · · , Yq)
are Gaussian random variables. To derive g(ρX,Y) in
Lemma 1, [Cai et al. 2012; Muirhead 2009] compute the
density function of αᵀ·X

||X|| instead, where αᵀ · α = 1,
and α := Y

||Y|| . In particular, without loss of generality,
they assume α = (1, 0, · · · , 0). The justification for this
assumption is that the random variable X

′
:= X

||X|| is
uniformly distributed on the (q − 1)-dimensional sphere
(see Theorem 1.5.6 in [Muirhead 2009]).

In our case, the distributional uniformity of X
||X|| is not

superficial, since the density function of X
′

doesn’t de-
pend on X

′
only through the value of X

′ᵀX
′
. To see

this, in the following Lemma, we discuss the distribution
function of the normalization X

||X|| .

Lemma A 3. Consider a q-dimensional random vector
X = (X1, · · · , Xq), where X1, · · · , Xq are indepen-
dently and identically drawn from a Cauchy distribution
C(0, 1). Then, as q → ∞, the normalized random vec-
tor X

||X|| = (X
′
1, · · · , X

′
q) has a joint density function,

in which the random variables X
′
1, · · · , X

′
q are all inde-

pendent from each other.

Proof. Without loss of generality, we study the pdf of
X
′
1 = X1√

X2
1+···+X2

q

. Similar to the proof of Lemma

A 2, the random variable Zq := 1
q2
X2

2+···+X2
q

X2
1

converges
weakly to the distribution with pdf given by Eq. A.11
as q → ∞, which is independent of the other random
variables due to the generalized central limit theorem.
Hence,X

′
1 can be treated as an independent random vari-

able as q → ∞. In addition, we obtain the pdf of X
′
1

given by

fX′1
(x′1) = − 2

π2q2x
′3
1

1

z
3
2
1

[
e

1
πz1 Ei

(
− 1

πz1

)]
,

(A.13)
where z1 is defined as z1 := 1

q2

(
1
x
′2
1

− 1
)

. The argu-

ments can be easily generalized to X
′
2, · · · , X

′
q .

The pdf of the joint distribution fX′ (x
′
1, · · · , x′q) can be

written as a product of marginals, that is

fX′ (x
′
1, · · · , x′q) =

q∏

i=1

fX′i
(x′i),

as q → ∞. The density function of X
′

is not invari-
ant under an arbitrary rotation. Thus, it is not uniformly
distributed on Sq−1.

The above density function of normalized Cauchy ran-
dom vectors leads to the following Remark.



Remark A 2. The normalized Cauchy random vector
X
′

= X
||X|| is sparse in the sense that the density function

of its elements can be approximated by a δ-function.

Fig. 1 shows the empirical elements distribution of 1000
normalized Cauchy random vectors. This indicates that
in sufficiently high-dimensional spaces the density func-
tion of the normalized entries converges to a δ-function.
To explain this, recall the Laurent expansion of the den-
sity function given in Eq. A.13,

fX′1
(x′1) =

2

πqx′21
− 2

q3x′41
+

4π

q5x′61
+O

(
1

q7x′81

)
.

(A.14)
This expansion converges to zero almost everywhere ex-
pect for x′1 = 0 as q →∞.

Figure 1: Empirical distributions of 10000 normalized
Cauchy random vectors with dimensions q = 100, 500,
1000, 5000.

In the following, we provide a full derivation of g(ρC)
proposed in the Conjecture 1.

Conjecture 1. Let X1, · · · ,Xn be independent q-
dimensional random vectors whose elements are inde-
pendently and identically drawn from a Cauchy distri-
bution C(0, 1). Let Θij be the angle between Xi and
Xj . Then, as q → ∞, ρij := cos Θij ∈ [−1, 1],
1 ≤ i < j ≤ n are pairwise i.i.d. with density func-
tion approximated by

g(ρC) = − 2

π2q2ρ3
C

· 1

z
3
2

[
e

1
πz Ei

(
− 1

πz

)]
, (A.15)

where z := 1
q2

(
1
ρ2C
− 1
)

.

Given two Cauchy random vectors X = (X1, · · · , Xq)
and Y = (Y1, · · · , Yq), ρX,Y is approximated by
ρX,Y ≈ X1√

X2
1 ···+X2

q

.

Furthermore, we introduce the new variable zX,Y :=
1
q2 ( 1

ρX,Y
− 1). From Lemma A 2 we have the den-

sity function ĝ(zX,Y). Then, g(ρX,Y) can be directly
obtained from ĝ(zX,Y) by a variable transform, that is

g(ρX,Y) =

∣∣∣∣
dz

dρ

∣∣∣∣ ĝ(zX,Y). With
∣∣∣∣
dz

dρ

∣∣∣∣ = 2
q2ρ3 we imme-

diately get Eq. A.15 as the density function for ρX,Y.

Assume that Eq. A.15 is valid as q → ∞. In the follow-
ing we show that {ρij |1 ≤ i < j ≤ n} are i.i.d random
variables. First, notice that ρij and ρkl are independent
if {i, j} ∩ {k, l} = ∅. It is left to prove that ρX,Y and
ρX,Z are independent, given that X, Y, Z are indepen-
dent random variables.

To prove the independence, consider
E[h1(ρX,Y)h2(ρX,Z)], where h1 and h2 are arbi-
trary bounded functions. Since X, Y, and Z are
independent,

E[h1(ρX,Y)·h2(ρX,Z)]

= E [ E[h1(ρX,Y) · h2(ρX,Z)|X] ]

= E [ E[h1(ρX,Y)|X] · E[h2(ρX,Z)|X] ] .

Given X, the probability density function of ρX,Y
is independent of X. Thus, E[h1(ρX,Y)|X] =∫ 1

−1
h1(ρX,Y)g(ρX,Y) dρ = E[h1(ρX,Y)], and simi-

larly E[h2(ρX,Z)|X] = E[h2(ρX,Z)]. It gives,

E[h1(ρX,Y) · h2(ρX,Z)] = E[h1(ρX,Y)] · E[h2(ρX,Z)],

This concludes that ρX,Y and ρX,Z are also independent.

Recall that the derivation of Eq. A.15 uses the gener-
alized central limit theorem which requires the limiting
condition q →∞. Therefore it is important to check how
the dimensionality q effects the quality of the prediction.

Fig. 2 displays the empirical distribution of ρ, that is
g(ρ) =

∑
1≤i<j≤n

δρij , and the theoretical prediction in

Eq. A.15 for various dimensions q. For the simulation,
n = 10000 random vectors are drawn independently
from C(0, 1). We use the leading orders of the Laurent
series of Eq. A.15 to represent the theoretical predictions.

It can be seen that for a sufficiently high-dimensional
space, say q = 2000, the theoretical prediction fits the
simulation very well. Moreover, the pairwise angles
among Cauchy random vectors converge to π

2 as the di-
mensionality increases.

It implies that in high-dimensional spaces the distribu-
tional uniformity of normalized Cauchy random vectors
could be tenable. We explain this in an intuitive way.
According to Remark A 2, each element in the normal-
ized variable converges independently in distribution to
a Dirac δ-function, which can be constructed as the limit
of a sequence of zero-centered normal distribution

fX′i
(x′i) =

1

a
√
π

e−
x′2i
a2 for a→ 0+.



Figure 2: Comparisons between empirical distributions
and theoretical predictions of ρC for various dimensions,
q = 50, 100, 500, 2000.

Thus, following Lemma A 3, the density function of
fX′ (x

′
1, · · · , x′q) can be approximated by

fX′ (x
′
1, · · · , x′q) =

(
1

a
√
π

)q
e−

x′ᵀx′
a2 for a→ 0+.

This joint distribution is invariant under an arbitrary or-
thogonal rotation. Thus, it is a spherical distribution, as
well as a uniform distribution on Sq−1. A rigorous proof
of this result is still necessary. However, it is beyond the
scope of this work.

A.3 DERIVATION OF COROLLARY 3

Corollary 3. Consider a set of independent q-
dimensional Cauchy random vectors which are pairwise

ε-orthogonal with probability 1− ν. Then the number of
such Cauchy random vectors is bounded by

N ≤
√
πεq

4

[
log

(
1

1− ν

)] 1
2

. (A.16)

Proof. The derivation of this bound is similar to that
of Corollary 2. The probability, that two random vec-
tors whose elements are independently and identically
Cauchy distributed are not ε-orthogonal, is bounded from
above by

Pr(|ρ| ≥ ε) = 2

∫ 1

ε

2

πqρ2
dρ <

4

πq

1

ε
,

where only the leading order Laurent expansion of
Eq. A.15 is considered. Then the quantity P(ε,N) can
be estimated as follows,

P(ε,N) :=

N−1∏

k=1

[1− kPr(|ρ| ≥ ε)] >
N−1∏

k=1

(1− k 4

πεq
)

> (1−N 4

πεq
)N ∼ e−N

2 4
πεq ,

for sufficiently large N , and q → ∞, with N 4
πεq < 1.

If we require P(ε,N) ≥ 1− ν, then the number of pair-
wise ε-orthogonal i.i.d. Cauchy random vectors is upper
bounded by

e−N
2 4
πεq ≥ 1− ν ⇒ N ≤

√
πεq

4

[
log

(
1

1− ν

)] 1
2

A.4 BINDING WITH CORRELATION OR
CONVOLUTION

The filtered mean rank scores with different binding op-
erations are compared in Fig. 3.

Now we give a heuristic explanation. For the sake of sim-
plicity, consider only one semantic triple (s, p, o). For
the binding with circular correlation the holistic repre-
sentations are given by hcorr

s = rp ? ro + ξrs, hcorr
p =

rs ? ro + ξrp, and hcorr
o = rp ? rs + ξro.

On the other hand, for the binding with convolution, the
holistic representations given by: hconv

s = rp ∗ ro + ξrs,
hconv
p = rs ∗ ro + ξrp, and hconv

o = rp ∗ rs + ξro.

Suppose that the subject needs to be retrieved and re-
called using holistic representations only. To quantify
the retrieval quality, a similarity scorr/conv is introduced
for different binding operators. In particular, for binding
with circular correlation scorr := hcorr ᵀ

s (hcorr
p ∗ hcorr

o ),



(a) (b) (c) (d)

Figure 3: Comparison of the filtered MR scores for binding with convolution and binding with correlation (a) for
FB15k-237 with Cauchy initialization, (b) for FB15k-237 with Gaussian initialization, (c) for GDELT dataset with
Cauchy initialization, (d) for GDELT with Gaussian initialization

while for binding with circular convolution sconv :=
hconv ᵀ
s (hconv

p ? hconv
o ).

Before any further derivations, recall that circular corre-
lation can be computed in log-linear complexity via

a ? b = F−1
(
F(a)�F(b)

)
,

where F(·) denotes the fast Fourier transform and
F−1(·) its inverse, and the bar denotes the complex con-
jugate of a complex-valued vector. Moreover, circular
convolution can also be computed via fast Fourier trans-
forms

a ∗ b = F−1 (F(a)�F(b)) .

First we compute the similarity scorr

scorr = hcorr ᵀ
s (hcorr

p ∗ hcorr
o )

= (rp ? ro + ξrs)
ᵀ[(rs ? ro + ξrp) ∗ (rp ? rs + ξro)]

= (rp ? ro + ξrs)
ᵀ[(rs ? ro) ∗ (rp ? rs)︸ ︷︷ ︸

1©
+

ξ (rs ? ro) ∗ ro︸ ︷︷ ︸
2©

+ ξ rp ∗ (rp ? rs)︸ ︷︷ ︸
3©

+ ξ2rp ∗ ro].

Using that

1© = F−1
[
F(rs)�F(ro)�F(rp)�F(rs)

]
≈ rp ? ro,

2© = F−1
[
F(rs)�F(ro)�F(ro)

]
= Noise,

3© = F−1
[
F(rp)�F(rp)�F(rs)

]
≈ rs,

yields

scorr ≈ (rp ? ro + ξrs)
ᵀ[rp ? ro + ξrs + Noise]

≈ (1 + ξ2) + Noise.

The similarity sconv can be computed in a similar way,

sconv = hconv ᵀ
s (hconv

p ? hconv
o )

= (rp ∗ ro + ξrs)
ᵀ[(rs ∗ ro + ξrp) ? (rp ∗ rs + ξro)]

= (rp ∗ ro + ξrs)
ᵀ[(rs ∗ ro) ? (rp ∗ rs)︸ ︷︷ ︸

1©
+

ξ (rs ∗ ro) ? ro︸ ︷︷ ︸
2©

+ ξ rp ? (rp ∗ rs)︸ ︷︷ ︸
3©

+ ξ2rp ? ro].

Moreover, using that

1© = F−1
[
F(rs)�F(ro)�F(rp)�F(rs)

]
≈ ro ? rp,

2© = F−1
[
F(rs)�F(ro)�F(ro)

]
≈ rs,

3© = F−1
[
F(rp)�F(rp)�F(rs)

]
≈ rs,

leads to

sconv ≈ (rp ∗ ro + ξrs)
ᵀ[ro ? rp + 2ξrs + Noise]

≈ 2ξ2 + Noise.

The optimal hyper-parameter requires ξ < 1 which in
turn yields scorr > sconv. From the derivation of scorr,
we have that the subject-object association pair stored in
hcorr
p contributes the most in scorr ≈ 1 + ξ2 via the term

1©.

A.5 APPROXIMATION OF ρr′o,ho

Here we provide a heuristic study on the relations be-
tween hyper-parameter ξ, λG/C, and the average num-
ber of association pairs Na. Recall that ξ was intro-
duced for holistic representations, and λG/C is defined
as λG/C := E[|ρG/C|].
Consider a subject s. The predicate-object pair (p, o)
is stored in the holistic representation hs along with the
other Na − 1 pairs. This means

hs = ξNars + rp ? ro +

Na∑

i=2

rpi ? roi .



Figure 4: Approximations of ρr′o,ho
(ξ,Na) in the case of Gaussian holistic representations with (a): Na = 10 (b):

Na = 20 (c): Na = 30. We use the experiment setting with dimnsionality q = 5200, λG = 0.0111, and optimal
ξ = 0.14.

Suppose that we aim to identify the object in the triple
(s,p, ·) via hs and hp, where hp is the holistic represen-
tation for the predicate p. We further assume that up to
Na subject-object pairs can be stored in hp having high
enough fidelity, then

hp = ξNarp +

Na∑

k=1

rsk ? rok .

To retrieve the object o, the decoding via circular convo-
lution is obtained as follows

r′o = hp ∗ hs

≈ ξNaro + ξ2N2
a (rp ∗ rs) + ξNa

Na∑

i=2

[rp ∗ (rpi ? roi)]

+ ξNa

Na∑

k=1

[(rsk ? rok) ∗ rs] +

Na∑

k=1

[(rsk ? rok) ∗ (rp ? ro)]

+

Na,Na∑

k=1,i=2

[(rsk ? rok) ∗ (rpi ? roi)]

= ξNaro + ξ2N2
ab1 + ξNa

Na∑

i=2

bi + ξNa

Na∑

k=1

ck

+

Na∑

k=1

dk +

Na,Na∑

k=1,i=2

eki,

where bi, ck, dk, and eki with i, k = 1, · · · , Na are ap-
proximately normalized Gaussian/Cauchy random vec-
tors. This is due to the fact that in high-dimensional
spaces both circular correlation and circular convolution
of two normalized Gaussian/Cauchy random vectors is
approximately a normalized Gaussian/Cauchy random
vectors.

After decoding with circular convolutions, the decoded
noisy version of the object needs to be recalled with
ho which is the holistic representation of o. As before,
Na predicate-subject association pairs are assumed to be

stored in the holistic representation of o, with

ho = ξNaro +

Na∑

j=1

rpj ? rsj = ξNaro +

Na∑

j=1

fj ,

where fj , j = 1, · · · , Na are approximately normalized
Gaussian/Cauchy random vectors.

In order to recall the object successfully, the angle be-
tween r′o and ho should be smaller than the expected
absolute angle between two arbitrary vectors, namely
θr′o,ho

< E[|θG/C|]. Given the definition of λ, equiva-
lently, it requires ρr′o,ho

> λG/C.

Now we turn to approximate the numerator of ρr′o,ho
, that

is r′ᵀo ho. Recall that, in general, the expectation of the
dot product of two normalized, independent random vec-
tors equals 0 due to the symmetry of the density function
g(ρG/C). Therefore, in the following approximation we
only consider noisy terms which are directly related to ro
as adverse effects to a successful retrieval and treat other
terms as white noisy with zero expectation. This yields,

r′ᵀo ho

≈ ξ2N2
a + ξNa

Na∑

j=1

(rᵀofj) + ξ3N3
a (rᵀob1) + ξ2N2

a

Na∑

i=2

(rᵀobi)

+ ξ2N2
a

Na∑

k=1

(rᵀock) + ξNa

Na∑

k=1

(rᵀodk) + ξNa

Na,Na∑

k=1,i=2

(rᵀoeki)

> ξ2N2
a − (ξN2

a + ξ3N3
a + ξ2N2

a (Na − 1) + ξ2N3
a

+ ξN2
a + ξN2

a (Na − 1))λG/C

= ξ2N2
a − (ξ3N3

a + 2ξ2N3
a − ξ2N2

a + ξN2
a + ξN3

a )λG/C.

Furthermore, the denominator of ρr′o,ho can be approxi-
mated in the same way. More concretely, we have

||r′o|| · ||ho|| < ξ2N2
a +Na + 2ξN2

aλG/C

+Na(Na − 1)λG/C.

Combining these results, a sufficient condition to retrieve



the object correctly is given by

ρr′o,ho >

ξ2N2
a − (ξ3N3

a + 2ξ2N3
a − ξ2N2

a + ξN2
a + ξN3

a )λG/C

ξ2N2
a +Na + 2ξN2

aλG/C +Na(Na − 1)λG/C

> λG/C. (A.17)

Consider the experimental setting for the memoriza-
tion task on the FB15k-237 dataset: The dimensional-
ity of the holistic representations is q = 5200, λG(q =
5200) = 0.0111, and λC(q = 5200) = 0.00204. Fig. 4
displays the above approximation of ρr′o,ho

(ξ,Na) for
Gaussian initializations.

After performing grid search, the optimal ξ is found to be
close to the intersection of the curve ρr′o,ho

(ξ,Na = 10)
and the threshold λG. However, for Na > 30, no inter-
section points on ξ > 0 exists. This explains why Gaus-
sian holistic representations have lower memory capacity
compared to Cauchy holistic representations.

More comparisons between Gaussian and Cauchy initial-
izations can be found in Fig. 5.

A.6 HOLISTIC ENCODING ALGORITHM

Algorithm 1 Holistic Encoding

Require: hyper-parameter ξ
1: for i = 1, · · · , Ne do
2: Draw r̃

G/C
ei from Gaussian or Cauchy

3: r
G/C
ei ← Norm(r̃

G/C
ei )

4: for i = 1, · · · , Np do
5: Draw r̃

G/C
pi from Gaussian or Cauchy

6: r
G/C
pi ← Norm(r̃

G/C
pi )

7: for i = 1, · · · , Ne do
8: Extract ∈ Ss(ei), So(ei) from Database
9: hsei ←

∑
(p,o)∈Ss(ei)

[Norm(rp ? ro) + ξrei ]

10: hoei ←
∑

(s,p)∈So(ei)

[Norm(rp ? rs) + ξrei ]

11: hei ← hsei + hoei
12: for i = 1, · · · , Np do
13: Extract S(pi) from Database
14: hpi ←

∑
(s,o)∈S(pi)

[Norm(rs ? ro) + ξrpi ]

Remark:

Normalizing initial random vectors can assist the analy-
sis of memory capacities via different sampling schemes.
For example, for the derivation of retrieval condition
Eq. A.17 we heavily relay on the fact that the dot product
of two random vectors - say ri · rj , where ri and rj are

Figure 5: Comparison of ρr′o,ho(ξ,Na) for Gaussian
(blue) and Cauchy (green) holistic representations with
(a): Na = 10 (b): Na = 20 (c): Na = 30 (d): Na = 40.

randomly sampled and normalized - is just ρij . In the
memorization task, since triples are recalled by compar-
ing the angles (a.k.a cosine similarity) between decoded
noisy vector and all other holistic vectors, normalization
does not effect the recall scores.

A.7 NOTATIONS

In Table 1 and Table 2, we summary important notations
introduced in Section 3 and 4, respectively.

A.8 FURTHER EXPERIMENTAL DETAILS

After searching for the optimal hyper-parameter ξ for
holistic encoding, holistic representations with superior



Table 1: Notations for ε-orthogonality

Symbol Meaning

X
q-dimensional random variable with elements
drawn from Gaussian or Cauchy distribution

Θij
Angle between two random variables Xi and
Xj

ρij
Cosine of the angle between random variables
Xi and Xj

g(ρG)
Asymptotic density function of ρij given an en-
semble of Gaussian random variables Xi, i =
1, · · · , n, with n→∞

g(ρC)
Asymptotic density function of ρij given an en-
semble of Cauchy random variables Xi, i =
1, · · · , n, with n→∞

λG Expectation value of |ρG|
λC Expectation value of |ρC|

memory capacity will be fixed and applied to the next
inference tasks.

The architecture is a simple 2-layered fully-connected
neural network, which map high-dimensional holistic
representations (q = 3600) of subjects, predicates, and
objects to low-dimensional (h2 = 256) representations,
separately. We choose ReLU as the activation func-
tion for faster training, and batch normalization after the
hidden-layer for regularization. In order to reduce the
number of trainable parameters, the network has a bottle-
neck structure with the dimensionality of the hidden-
layer h1 = 64. The extracted low-dimensional features
are then combined via tri-linear dot-product, similar to
DISTMULT.

In summary, given a triple (s,p, o) the scoring function
ηspo takes the following form:

ηspo =〈BN(ReLU(hsW
e
1))We

2,

BN(ReLU(hpW
p
1))Wp

2,

BN(ReLU(hoW
e
1))We

2〉,

where hs, hs are the holistic representations for the sub-
ject s and object o; hp is the holistic representation for
the predicate p. Note that there are two separate net-
works for extracting low-dimensional features of entities
and predicates, respectively. In particular, We

1 ∈ Rq×h1

and We
2 ∈ Rh1×h2 are shared weights for entities, in-

cluding subjects and objects; Wp
1 ∈ Rq×h1 and Wp

2 ∈
Rh1×h2 are shared weights for predicates.

For training the model, we minimize the following binary

Table 2: Notations for holistic representations

Symbol Meaning

∗ Circular convolution

? Circular correlation

Norm Normalization operator, Norm(r) := r
||r||

Ne Number of entities in the KG

Np Number of predicates in the KG

Na
Average number of association pairs encoded in
holistic representations of entities

r
G/C
ei

Random initialization of entity ei with elements
drawn from Gaussian or Cauchy distribution

r
G/C
pi

Random initialization of predicate pi with ele-
ments drawn from Gaussian or Cauchy distribu-
tion

hs
ei

Holistic representation of entity ei as subject

ho
ei

Holistic representation of entity ei as object

hei Overall holistic representation of entity ei

hpi Holistic representation of predicate pi

ξ Hyper-parameter for holistic encoding

cross-entropy loss with l2 regularization:

L = − 1

m

m∑

i=1

(yi · log(σ(ηxi))+

(1− yi) · log(1− σ(ηxi))) + λ||A||22,

where the label vector yi has dimension {0, 1}1×N for
1-N scoring to accelerate the link prediction tasks. To be
more specific, during the training given a triple (s,p, o),
we take the subject-predicate pair (s,p) and and rank it
against all object entities o ∈ E ; take the predicate-object
pair (p, o) and rank it against all subject entities s ∈ E
simultaneously as well.

Hyper-parameters in the HOLNNG and HOLNNC are
optimized via grid search with respect to the mean recip-
rocal rank (MRR). The ranges for grid search are as fol-
lows - learning rate {0.001, 0.003, 0.005}, l2 regulariza-
tion parameter {0., 0.01, 0.05}, decay parameter in the
batch normalization {0.99, 0.9, 0.8, 0.7}, and batch size
{1000, 3000, 5000}.
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Variational Quantum Circuit Model for Knowledge Graph
Embedding

Yunpu Ma,* Volker Tresp, Liming Zhao, and Yuyi Wang

In this work, the first quantum Ansätze for the statistical relational learning on
knowledge graphs using parametric quantum circuits are proposed. Two
types of variational quantum circuits for knowledge graph embedding are
introduced. Inspired by the classical representation learning, latent features
for entities are first considered as coefficients of quantum states, while
predicates are characterized by parametric gates acting on the quantum
states. For the first model, the quantum advantages disappear when it comes
to the optimization of this model. Therefore, a second quantum circuit model
is introduced where embeddings of entities are generated from parameterized
quantum gates acting on the pure quantum state. The benefit of the second
method is that the quantum embeddings can be trained efficiently meanwhile
preserving the quantum advantages. It is shown that the proposed methods
can achieve comparable results to the state-of-the-art classical models, for
example, RESCAL, DistMult. Furthermore, after optimizing the models, the
complexity of inductive inference on the knowledge graphs might be reduced
with respect to the number of entities.

1. Introduction

Over the last few years, some large-scale triple-oriented knowl-
edge databases have been generated. These databases are prin-
cipled approaches to knowledge representation and reasoning.
They are widely used in large-scale artificial intelligence systems,
such as question answering engines, human-computer interac-
tion platforms, and decision-making support systems. One well-
known example is the IBM’s cognitive computing platform, the
IBM Watson, where knowledge graphs are at the core of it. The
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other example is the largest universally ac-
cessible knowledge graph (KG) maintained
by Google.

Nowadays, knowledge graphs prolifer-
ate with increasing numbers of semantic
triples and distinct entities. The reason is
that knowledge graphs collect andmerge in-
formation from various unstructured data,
such as publications and internet. The in-
creasing number of semantic triples and
distinct entities leads to a slow training of
knowledge graphs, as well as a sluggish re-
sponse to the inductive inference tasks on
knowledge graphs after training. Therefore,
in order to accelerate the learning and in-
ference on knowledge graphs, we propose
statistical relational learning using quan-
tum Ansätze.

In this work, we propose the first quan-
tum Ansätze for modeling and learning
large-scale relational databases using para-
metric quantum circuits. We simulate our

quantum learning algorithms on graphics processing units
(GPUs) and demonstrate the model performance on multiple
state-of-the-art relational databases. We will also discuss how
these quantum Ansätze could speed up the inference.

2. Representation Learnings on Knowledge Graphs

Various statistical relational models for large-scale KGs have
been proposed in the literature, such as the bilinear model
(RESCAL[1]), the bilinear diagonal model (DistMult[2]), the com-
plex embedding model (ComplEx[3]). In this section, we first in-
troduce knowledge graphs, and provide a succinct introduction
to representation learning in KGs. We adapt the notation of ref.
[4] for convenience.

2.1. Knowledge Graphs

Knowledge graphs are triple-oriented knowledge representa-
tions. The core components of KGs are semantic triples (sub-
ject, predicate, object) where subject and object are entities rep-
resented as nodes in the graph and where predicate indicates the
labeled link from the subject to the object. One example of a se-
mantic triple in Figure 1 could be (Angela_Merkel, Chancellor_of,
Germany). Observed semantic triples (marked as solid lines in
Figure 1) are elements of the training dataset, while unobserved
triples (marked as dashed lines) will be inferred during the test.

Adv. Quantum Technol. 2019, 1800078 C© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim1800078 (1 of 13)
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Figure 1. A knowledge graph fragment: observed semantic triples are
marked with solid arrows, while unobserved semantic triples are marked
with dashed arrows.

2.2. Representation Learning

Let E denote the set of entities, and P the set of predicates. Let
Ne be the number of entities in E , and Np the number of pred-
icates in P . Given a predicate p ∈ P , the indicator function φp :
E × E → {1, 0} indicates whether a triple (·, p, ·) is true or false.
Furthermore,Rp indicates the set of all subject–object pairs, such
that φp = 1. The entire KG can be written as χ = {(i, j, k)}, with
i = 1, . . . , Ne , j = 1, . . . , Np , and k = 1, . . . , Ne . A knowledge
graph can be equivalently treated as a Ne × Np × Ne -dimensional
three-order tensor, and an entry indicates whether a semantic
triple is true, false or unobserved.

We assume that each entity and predicate has a unique latent
representation. Let aei , i = 1, . . . , Ne , be the representations of
entities, and api , i = 1, . . . , Np , be the representations of predi-
cates. Note that aei and api could be real- or complex-valued vec-
tors/matrices. Moreover, when we consider a concrete example,
say (s, p, o), we use as, ap, and ao to represent the latent represen-
tation of the subject s, the predicate p, and the object o, respec-
tively.

A probabilistic model for the knowledge graph χ is defined
as Pr(φp(s , o) = 1|A) = σ (ηs po ) for all (s , p, o)-triples in χ , where
A = {aei }Nei=1 ∪ {api }Np

i=1 denotes the collection of all embeddings;
σ (·) denotes the sigmoid function; ηs po is the value function of
latent representations as , ap , and ao . Given a labeled dataset con-
taining both false and true triples D = {(xi , yi )}mi=1, with xi ∈ χ ,
and yi ∈ {−1, 1}, latent representations can be learned from a
loss function. Commonly, oneminimizes the regularized logistic
loss function

min
A

m∑
i=1

log(1 + exp(−yiηxi )) + λ||A||22 (1)

wherem is the number of training samples, ηxi is the value func-
tion for the semantic triple xi , and λ is the regularization hyperpa-
rameter. Another commonly used loss function is the regularized
mean squared error (MSE) loss

1
m

m∑
i=1

(yi − ηxi )
2 + λ||A||22 (2)

Note that the value function ηs po can be defined differently in
different models. For instance, for the RESCAL[1] model, enti-
ties are represented as unique R-dimensional real-valued vectors,
aei ∈ RR, with i = 1, . . . , Ne , and predicates are represented as

R × R matrices, api ∈ RR×R, with i = 1, . . . , Np . Moreover, the
value function is defined as

ηs po = aᵀs apao (3)

For DistMult,[2] aei , ap j ∈ RR, with i = 1, . . . , Ne ,
j = 1, . . . , Np . The value function is defined as

ηs po = 〈as , ap, ao〉 (4)

where 〈·, ·, ·〉 denotes the tri-linear dot product.
For ComplEx,[3] entities and predicates are complex-valued

vectors aei , ap j ∈ CR, with i = 1, . . . , Ne , j = 1, . . . , Np . The
value function for the ComplEx model reads

ηs po = �(〈as , ap, āo〉) (5)

where the bar denotes complex conjugate, and� denotes the real
part of a complex number.

For the Tucker[5] tensor decomposition model, entities and
predicates are real-valued vectors, aei ∈ RR, with i = 1, . . . , Ne ,
and ap j ∈ RR, with j = 1, . . . , Np . Additionally, a global core ten-
sorW ∈ RR×R×R is introduced. The value function for the Tucker
model reads

ηs po = W ×1 as ×2 ap ×3 ao (6)

Tensor models and compositional models are principled ap-
proaches for modeling large-scale relational data. The global re-
lational patterns are encoded in the latent features of entities
and predicates after optimizing the models. Thus, it is beneficial
to analyze how the dimensionality of latent features influences
the expressiveness and the generalization ability of the models.
These questions have been studied in ref. [6]. In order to interpret
the results in ref. [6], we first introduce the following notations.

Definition 1. Let X ∈ R
∏m

i=1 ni be an m-order tensor with di-
mensions n = (n1, . . . , nm). Suppose that it can be written as a
(Tucker) tensor product X = W ×1 U(1) ×2 · · · ×m U(m) with n-rank
R = (R1, . . . , Rm), whereW ∈ R

∏m
i=1 Ri is the core tensor, and U(i ) ∈

Rni×Ri are the latent factor matrices. Each entry of the tensor X can
be written as a polynomial

xi1,...,im =
R1∑
j1=1

· · ·
Rm∑
jm=1

w j1,..., jm

m∏
k=1

u(k)
ik , jk

The set of different sign patterns which can be expressed by the tensor
X is defined as

Sn,R := {sgn(X) ∈ {−1, 0, +1}
∏
n|n-rank(X) ≤ R} (7)

Note the cardinality |Sn,R| indicates how expressive and flexi-
ble the Tucker tensor decomposition could be. For the KGs mod-
eling with tensor decomposition, we focus on the case of three-
order tensors. The upper bound of |Sn,R| is given in the following
Lemma.

Lemma 1 (Upper Bound for Sign Patterns[6]). Consider a three-
order tensor X ∈ Rn1×n2×n3 which can be written as a tensor product
X = W ×1 U(1) ×2 U(2) ×3 U(3) with rank R = (R1, R2, R3). The
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number of different sign patterns of the tensor X is upper bounded by
the following number

|Sn,R| ≤
(
16e n1n2n3
var(X)

)var(X)

(8)

where var(X) is defined as var(X) := ∏3
i=1 Ri + ∑3

i=1 ni Ri .

Given observed entries of a KG, the above Lemma indicates
that the ranks should be large enough to fit the observed entries
via the tensor decomposition. Therefore, in order to model an
ever-increasing KG with increasingly complex relational struc-
tures, the dimension of latent features also needs to grow with
the KG. As a reminder, the complexity of value functions grows at
least linearly with the dimension of the latent features for entities.
For example, the computational complexity of the value function
for the DistMult model is O(R) (see Equation (4)), while for the
Tucker model it becomes O(R3) (see Equation (6)). One goal of
this work is to learn a probabilistic model for relational databases
by making a quantum Ansatz for the value function. We will dis-
cuss how the evaluation of value functions can be accelerated via
low-depth quantum circuits.

3. Quantum Circuit Models

In this section, we focus on variational unitary circuits. Algo-
rithms of quantum classifiers using variational unitary circuits
with parameterized and trainable gates have been proposed in
ref. [7]. A quantum circuit U composed of L unitary operations
can be decomposed into a product of unitary matrices

U = UL · · ·Ul · · ·U1

where each Ul indicates either a unitary operation on one qubit
or a controlled gate acting on two qubits. Since a single qubit
gate is a 2 × 2 unitary matrix in SU(2), we apply the following
parameterization

G(α, β, γ ) =
(

eiβ cosα eiγ sinα

−e−iγ sinα e−iβ cosα

)
(9)

where {α, β, γ } are the tunable parameters of the single qubit
gate. Note that a global phase factor is neglected.

In the following, we introduce the parameterization of con-
trolled gates. The controlled gate Ci (G j ) which acts on the j -th
qubit conditioned on the state of the i -th qubit can be defined as

Ci (G j ) |x〉i ⊗ |y〉 j = |x〉i ⊗ Gx
j |y〉 j

where |x〉i , |y〉 j denotes the state of the i -th and the j -th qubit, re-
spectively.

Using the parametric gates G and C(G), we are capable to de-
scribe the quantum circuit model Uθ with parameterization θ in
more details. Let us consider a quantum state with n entangled
qubits. Suppose that the l -th unitary operationUl is a single qubit
gate acting on the k-th qubit, then it can be written as

Ul = 11 ⊗ · · · ⊗ Gk ⊗ · · · ⊗ 1n

If the l -th unitary operation acts on the j -th qubit and conditioned
on the state of the i -th qubit, Ul will have the following matrix
representation

Ul = 11 ⊗ · · · ⊗ P0︸︷︷︸
i -th

⊗ · · · ⊗ 1 j︸︷︷︸
j -th

⊗ · · · ⊗ 1n

+ 11 ⊗ · · · ⊗ P1︸︷︷︸
i -th

⊗ · · · ⊗ G j︸︷︷︸
j -th

⊗ · · · ⊗ 1n,

where P0 =
(
1 0
0 0

)
and P1 =

(
0 0
0 1

)
.

4. Circuit Models for Knowledge Graphs

In this section, we introduce two quantum Ansätze for the value
function and compare their computational complexities.

4.1. Quantum Circuit Embedding

We first introduce theQuantum Circuit Embedding (QCE) model,
which can be considered as a generalization of the classical
RESCAL model to the quantum regime. Similar to the RESCAL
model, in QCE entities are represented by R-dimensional latent
features. Without loss of generality, we assume that R = 2r . In
this way, an R-dimensional latent vector corresponds to a state of
an r -qubit system.

One significant barrier to quantum learning algorithms is an
efficient preparation of quantum states from classical data. In
this work, we only consider real-valued representations for enti-
ties stored in a classical data structure T . Then, a technique devel-
oped in ref. [8] can be utilized now, which can efficiently prepare
the quantum states corresponding to latent features by accessing
the classical data structure T . In this way, the complexity of quan-
tum state preparation can be reduced to the logarithm of R. De-
tails related to the classical data structure T and the preparation
of quantum states via T are relegated to the appendix. In sum-
mary, in the QCE model, entities are defined as aei ∈ RR, with
normalized l2-norm ||aei ||2 = 1, for i = 1, . . . , Ne .

Furthermore, in QCE each predicate p is associated with
a specific quantum circuit composed of sequential implemen-
tations of variational gates. Therefore, each predicate has an
R × R unitary matrix representation Up(θp), where θp are the
predicate-specific trainable parameters stemming from the vari-
ational quantum gates. Moreover, we fix the circuit architecture
of implementing predicates such that each predicate is uniquely
determined by the circuit parameterizations θp .

Given a semantic triple (s, p, o), how the value function ηspo is
defined in the quantum model? As a reminder, in The RESCAL
model, the value function ηspo can be seen as the dot product of
two vectors asp and ao, where asp := aᵀs ap. The loss function en-
courages the two vectors asp and ao to point in the same direction
if the given semantic triple is genuine, otherwise in opposite di-
rections.

Inspired by the classical model ComplEx, we define the quan-
tity η

QCE
spo := �〈o|Up(θp) |s〉. This quantity is the real part of the
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Figure 2. Building blocks of the QCE model. a) The U1 module in the QCE model is displayed. U1 encodes the latent feature of the subject s as the
state |s〉. The quantum circuit associated to the predicate p maps the ket state |s〉 to another ket state Up(θp) |s〉. For all the following experiments, we
set the dimension of entity latent features as R = 64, which corresponds to a six-qubit system. In addition, the circuit architecture for all predicates is
fixed, and it can be decomposed in four blocks: single qubit gates, two-qubit controlled gates with control range 1, 2, and 3 (dashed blocks). b) The U2
module in the QCE model, which prepares the quantum state |o〉 is displayed. In both (a) and (b), the tree structure represents the quantum access to
the classical data structure T .

inner product of two quantum states |o〉 and |sp〉 := Up(θp) |s〉
generated by separate unitary circuits. The model parameters
can be optimized by maximizing the inner product given
genuine triples and minimizing the inner product given false
or unobserved semantic triples. A relation between η

QCE
spo and the

label of the triple (s, p, o) will be specified later.
We explain the circuit architecture in more details. Latent fea-

tures as for the subject and ao for the object are first encoded
in quantum states |s〉 and |o〉 through a quantum access to the
memory structure T . The dimension of features is set to R = 64
in the following experiments, which corresponds to a six-qubit
system. Next, a unitary circuit Up(θp) corresponding to the pred-
icate p evolves |s〉 to the stateUp(θp) |s〉. Note that both the latent
features of entities and the parametric circuits of predicates need
to be optimized during the training.

We develop the circuit for predicates out of four building
blocks, and each block consists of variational gates or controlled
gates operating on each of the six qubits. To be more specific,
the first block consists of single qubit rotations, and the rest
of the blocks consist of two-qubit controlled gates with control
range 1, 2, 3, respectively. So, the unitary circuit associated with
the predicates can be written as Upi (θpi ) = U4 U3 U2 U1, with
i = 1, . . . , Np , where

U1 = G6 G5 G4 G3 G2 G1

U2 = C6(G1) C1(G2) C2(G3) C3(G4) C4(G5) C5(G6)

U3 = C5(G1) C6(G2) C1(G3) C2(G4) C3(G5) C4(G6)

U4 = C4(G1) C5(G2) C6(G3) C1(G4) C2(G5) C3(G6) (10)

Note that the index for the predicate was neglected since we as-
sume that the circuit architecture is fixed for all the predicates.
Figure 2 illustrates the circuits for preparing the states |o〉 and

Figure 3. Quantum circuit for estimating the value � 〈o| Up(θp) |s〉. The
detailed architectures of unitary evolutions U1 and U2 can be found in
Figure 2 for the QCE model and Figure 4 for the fQCE model.

|sp〉. In the following, we show that the value η
QCE
spo can be mea-

sured physically. We adopt a similar idea to SWAP test for dis-
criminating two quantum states. The SWAP test was initially pro-
posed for quantumfingerprinting,[9] and it was further developed
within refs. [10,11] for discriminating quantum evolution opera-
tors.

The basic idea is illustrated in Figure 3. This architecture is
inspired by ref. [11] and Observation 3 in ref. [7]. Consider two
unitary operationsU1 andU2 which operate on a pure state |0〉 :=
|0 · · · 0〉 conditioned on the state of the ancilla qubit. Particularly,
the quantum state becomes U1 |0〉 if the ancilla qubit is |1〉A and
U2 |0〉 if it is in the state |0〉A. Before measuring the ancilla qubit,
the underlying quantum state of the entire system reads

1√
2
(|0〉AU2 |0〉 + |1〉AU1 |0〉)

The second Hadamard gate acting on the ancilla qubit brings the
state to

1
2
[|0〉A (U2 |0〉 +U1 |0〉) + |1〉A (U2 |0〉 −U1 |0〉)]

For the QCE model, the unitary modules U1 and U2 are
illustrated in Figure 2. Considering a concrete seman-
tic triplet (s, p, o), with an access to the quantum gates
parameters we can prepare the following quantum state
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according to the second Hadamard formula above:

1
2

[|0〉A (|o〉 + |sp〉) + |1〉A (|o〉 − |sp〉)]

Therefore, the probability of sampling the ancilla qubit in the
state |0〉A is

Pr(|0〉A) = 1
2

+ 1
2
� 〈o|sp〉 = 1

2
+ 1

2
ηspo (11)

while the probability of measuring it in the state |1〉A is

Pr(|1〉A) = 1
2

− 1
2
� 〈o|sp〉 = 1

2
− 1

2
ηspo (12)

In the upper equation, we temporarily neglect the superscript of
the value function. As we can see, the value ηspo is related to the
statistics of sampled quantum states of the ancillary qubit via

ηspo = 2 Pr(|0〉A) − 1 = 1 − 2 Pr(|1〉A) (13)

Similar to the classicalmodels, this quantity defines the loss func-
tion jointly with the labels of the triplets.

4.2. Loss Function and Training

Details of the loss function and the optimization method are pro-
vided in this section. We focus on the QCE model. Given a train-
ing dataset D = {(xi , yi )}mi=1 with xi ∈ χ , the loss function of the
quantum circuit model is defined as the following mean error

L = 1
m

m∑
i=1

(
yi − ηQCE

xi

)2κ
(14)

where yi ∈ {−1, 1} are labels, and κ ∈ Z+ is a hyperparameter.
The reason for this choice of the labels will be clarified later. One
can also notice that for the quantum model, the loss function is
not regularized by the normof parameters. Because of the unitary
constraint on the evolution of quantum circuits, hidden quantum
states are automatically normalized. Therefore, the l2 norm can-
not either effect the norms of embedding vectors or improve the
generalization ability of the quantum circuit model.

With the loss function, themodel is optimized by updating the
parameters via gradient descent. Parameters of the variational
gates can be efficiently estimated using a hybrid gradient de-
scent scheme introduced in ref. [7]. The partial derivative of Equa-
tion (14) with respect to the gate parameters reads

∂L
∂θ

= 2κ
m

m∑
i=1

(ηQCE
xi

− yi )2κ−1 ∂

∂θ
ηQCE
xi

(15)

where θ ∈ {αpi , βpi , γpi }, with i = 1, . . . , Np .
The techniques developed within refs. [7,12] allow the above

partial derivate to be estimated from the states’ statistics of the
ancilla qubit since the partial derivate can be written as a linear
combination of gates with shifted parameters. To be specific, we

have the following derivatives for a single qubit gate

∂

∂α
G(α, β, γ ) = G

(
α + π

2
, β, γ

)

∂

∂β
G(α, β, γ ) = 1

2
G

(
α, β + π

2
, 0

)
+ 1

2
G

(
α, β + π

2
, π

)

∂

∂γ
G(α, β, γ ) = 1

2
G

(
α, 0, γ + π

2

)
+ 1

2
G

(
α, π, γ + π

2

)

Moreover, partial derivatives of two-qubit gates can be written
as a combination of control gates with shifted gates’ parame-
ters. More details of the hybrid gradient descent approach can
be found in Section 4 of ref. [7].

However, this technique cannot be applied to the estimation
of the gradients with respect to the latent features of entities. An-
other problem is that even if we could efficiently estimate the gra-
dients with respect to the latent features, the entire classical data
structure T needs to be updated after each step of optimization
due to the normalization constraints. It leads to a computational
overhead of O(R2) for just one update of aei , with i = 1, . . . , Ne .

4.3. Fully Parameterized Quantum Circuit Embedding

To overcome the disadvantages of the QCE, at this place, we in-
troduce another fully parameterized Quantum Circuit Embedding
(fQCE) model. The idea behind fQCE is reasonably simple. In-
stead of storing and reading entity features as normalized R-
dimensional vectors, they are obtained by applying parameter-
ized quantum circuit to initial quantum states which can be easily
prepared. In this way, each entity is uniquely identified by the cir-
cuit architecture and the gates parameters similar to the circuits
definition of predicates in the QCE model.

Compared to the QCE model, the advantages of this approach
are twofolds. First, latent features do not need to be loaded
from the classical data structure T and encoded as the coeffi-
cients of quantum states. Alternatively, they are generated from
the quantum evolution of initial quantum states. Second, fQCE
can be optimized efficiently since the only trainable parameters
are in the variational quantum gates. Therefore, techniques ex-
plained in the last subsection can be applied to accelerate the
optimization.

The circuit architecture for generating quantum representa-
tions of entities is given in Figure 4 and overall we fix the circuit
architecture for all entities. The six-qubit quantum system is ini-
tialized as a pure quantum state |0〉. Hadamard gates act on each
qubit to create a superposition H6,...,1 |0〉 := H6H5 · · · H1 |0〉. Sub-
sequently, an entity-specific unitary circuit develops the quantum
representation from the superposition,

|ei 〉 = Uei H6,...,1 |0〉 , with i = 1, . . . , Ne (16)

where Uei have the same circuit architecture design as Upi in
Equation (10).

To harvest the quantum advantages, the circuit depth should
be low and in the order of log(R). In this way, we only need to
replicate the experimentsO(log2 R/ε2) times to update themodel
parameters given one training example, where ε is the accuracy
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Figure 4. In the fQCE model, the classical data structure T is replaced by variational unitary circuits. Therefore, the quantum states |s〉 or |o〉 can be
prepared by applying unitary circuits to the initial quantum states |00 · · · 0〉, instead of loading data from the classical data structure T . Note that the
circuit architecture is fixed for all entities (subjects and objects). The unitary circuit contains five blocks. The first block consists of Hadamard gates
which can develop superposition from the initial quantum state |0 · · · 0〉. The rest of the blocks consist of single qubit gates and two-qubit controlled
gates with control range 1, 2, and 3 (dashed blocks).

required. Moreover, the overall model architecture for estimating
the value function η

fQCE
spo using ancilla qubit remains the same as

in Figure 3.
Before simulating the proposed quantum Ansätze, we com-

pare computational complexities of them. We first consider the
time complexity of evaluating the value function. In the QCE
model, loading the entity features from the classical data struc-
ture T costs time O(log R). Since we use shallow circuits with
depth O(log R) to specify the predicates, the unitary evolution
of quantum states for entities requires O(log2 R) unitary oper-
ations. The value function is estimated from the Bernoulli distri-
bution of the ancilla qubit. Therefore, one has to perform O( 1

ε2
)

repetitions of the experiment in Figure 3 to resolve the statistics
of the ancilla qubit up to a predefined error ε. To summarize,
the entire procedure of evaluating η

QCE
s po can be completed in run-

timeO(poly(log R, 1
ε
)). Similarly, the evaluation of ηfQCE

s po requires
a runtime O(poly(log R, 1

ε
)).

A notable complexity difference between two quantum circuit
models appears when it comes to the training. Let us first con-
sider the fQCE model. Given one training sample (s, p, o), it re-
quires O(log2 R/ε2) repetitions of the experiments to estimate
the gradients and update the parameters in Us, Up, and Uo. Let
D indicate the total number of semantic triples in the training
dataset, then the runtime of one epoch is O(D poly(log R, 1

ε
)).

However, for QCE, the runtime of one training epoch becomes
O(D poly(R, log R, 1

ε
)) since after each step of optimization, re-

normalizing the entity latent features and updating the classical
memory structure T require additional O(R) operations. As one
can see, the quantum advantages disappear when we optimize
the QCE model.

5. Experiments

5.1. Datasets and Evaluation

To evaluate proposed quantummodels for knowledge graph em-
bedding, we use four link prediction datasets of different sizes:
Kinship,[13] FB15k-237,[14] WN18RR,[15] and GDELT.[16]

Kinship contains relations between family members. An ex-
ample of the triple is (Max, husband_of, Mary)
FB15k-237 is a subset of Freebase with only 237 predicates.

Most of the semantic triples in the FB15k-237 are related to the
facts of cities, movies, sports, and musics, for example, (Califor-
nia, located_in, U.S.).

Table 1. Statistics of different knowledge graphs.

#D Ne Np Na

Kinship 10 790 104 26 ≈ 104

WN18RR 79 043 39 462 18 ≈ 2

FB15k-237 310 079 14 505 237 ≈ 21

GDELT 497 603 6785 230 ≈ 73

GDELT The Global Database of Events, Language and Tone
(GDELT) monitors evens between different countries and orga-
nizations. An example could be (ESA, collaborates with, NASA).
WN18RR This hierarchical knowledge base is a subset of

WordNet which consists of hyponym and hypernym relations
between words, for example, (pigeon, hyponym_of, bird).

The exact statistics of datasets are listed in Table 1, including
the total number of triplets in the dataset #D, the number of en-
tities Ne , the number of predicates Np , and the average number
of labeled links connecting to a node Na .

Since the above-mentioned datasets only consist of positive
(genuine) semantic triples, we generate negative (false) instances
according to the method of corrupting semantic triples proposed
in ref. [17]. Given a genuine semantic triple (s, p, o), negative
triples are drawn by corrupting the object o to a different entity o ′,
and similarly corrupting subject s to s ′. This corruption method
makes a local-closed world assumption, meaning that the knowl-
edge graph is assumed to be only locally connected. Therefore,
corrupted and unobserved semantic triples are treated as nega-
tive examples during the training.

The model performance is evaluated using the following met-
rics on the test dataset. Let us consider a semantic triple (s, p, o)
in the test dataset. To evaluate the retrieval of the object o, given
the subject s and the predicate p, we first replace the object o with
every object o ′ and compute the values of ηspo′ . Following that, we
sort these values in a decreasing order and locate the target ob-
ject o. This position is referred to as the rank of the target object.
We provide the filtered ranking scores as suggested in ref. [17] by
removing all semantic triples (s, p, o ′) with yspo′ = 1 and o ′ �= o.
Filtered ranking scores eliminate the ambiguity of retrieved infor-
mation and provide a clearer performance evaluation of different
models. In the same way, we also evaluated the retrieval of the
subject s by ranking ηs ′po for all possible subjects s ′.

To quantify the performance of the classical and quantum
models on missing links predication, we report three metrics:
filtered mean rank (MR), filtered Hits@3, and filtered Hits@10
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Table 2. Filtered recall scores evaluated on four different datasets. Four metrics are compared: filtered Mean Rank (MR), filtered Hits@3 (@3), and
filtered Hits@10 (@10).

Kinship WN18RR FB15k-237 GDELT

Methods MR @3 @10 MR @3 @10 MR @3 @10 MR @3 @10

RESCAL 3.2 88.8 95.5 12036 21.3 25.0 291.3 20.7 35.1 185.0 10.4 22.2

DistMult 4.5 61.0 87.7 10903 21.0 24.8 305.4 23.4 39.1 130.4 12.1 24.5

Tucker 2.9 89.8 95.0 11997 19.1 23.9 276.1 20.9 35.7 144.0 14.5 27.3

ComplEx 2.2 90.0 97.7 11895 24.6 26.1 242.7 25.2 39.7 137.6 12.9 26.4

Best Known – – – 4187[15] 44.0 52.0 244.0[15] 35.6 50.1 102.0[20] 31.5 47.1

QCE 3.6 73.8 93.8 3655 19.5 32.3 258.7 22.5 35.0 128.8 12.5 23.8

fQCE 3.6 73.1 94.0 2160 27.4 37.8 236.0 19.8 33.7 131.0 10.8 24.1

evaluated on the test dataset. Filtered mean rank is the average
filtered ranking scores, and filtered Hits@n indicates the prob-
ability of finding the correct retrieval within the top-n filtered
ranking.

The dimension of latent representations for all classical base-
lines is chosen as R = 64. For comparison, circuits algorithms
for knowledge graph embedding are evaluated via six-qubit
Ansätze. Overall, we fix the quantum circuit architecture depicted
in Figure 2 for QCE and Figure 4 for fQCE model. Experiments
show the recall scores on the test dataset are not sensitive to the
order of implementing different blocks. Thus, for a simple imple-
mentation, we only consider four different blocks without repe-
titions. Exploration of various quantum circuit architectures to
achieve better results could be an interesting research direction,
and we leave it for future work.

During the training, the datasets are randomly split into train-
ing, validation, and test datasets. Early stopping on the validation
set is used to avoid overfitting by monitoring the filtered His@3
entity recall scores every 20 epochs. Before training, all model pa-
rameters, including the entity embeddings and the gates parame-
ters, are randomly initialized. In particular, we found that for the
quantum Ansätze the model performance is relatively sensitive
to the initialization of the gates parameters. After hyperparame-
ter search, the gates parameters are initialized uniformly in the
interval [− π

10 ,
π

10 ].
Here, we give more details on how quantum Ansätze are

simulated. As discussed in Section 3, unitary evolution of a
quantum state is equivalent to the unitary matrix-vector product.
Therefore, we can simulate the quantum Ansätze on a single
Tesla K80 GPU without exploiting real quantum devices.[18] For
the QCE model, each entity embedding is randomly initialized
from a multivariate normal distribution and normalized after
initialization. Embeddings for entities are stored as NumPy
arrays instead of in the classical data structure T . All the
parameters, including entity embeddings and gate parameters,
are updated via stochastic gradient descent. Moreover, after
each step of the update, entity embeddings will be normalized
again. Differently, for the fQCE model, each entity is initialized
as 1

8 |00 · · · 0〉 ≡ 1
8 (0, 0, . . . , 0)

ᵀ since all the trainable param-
eters are in the variational circuit. The codes are based on
Tensorflow,[19] and they will be available online.
Table 2 reports the performance of classical models and quan-

tum Ansätze evaluated on different datasets. In addition, the

row best known in Table 2 shows the best results reported in the
literatures.[21] From the table, we can read that both quantum cir-
cuit models can achieve comparable results to the classical mod-
els using the dimension R = 64. In some cases, for example, the
filtered Mean Rank recall scores on the WN18RR, FB15k-237,
and GDELT datasets, the quantum models can outperform all
classical models.

Another interesting observation is that the Mean Rank score
on the WN18RR dataset returned by the fQCE model is even
better than the best-known models. We have to emphasize that
among the four datasets, WN18RR contains the largest number
of distinct entities (see Table 1). Therefore, fQCE is the desired
quantum Ansatz of relational learning which shows both quan-
tum advantages and superior performance on a vast database.
However, one has to note that WN18RR possesses the smallest
number of average links per node. Thus, questions are: Whether
the quantum circuit models are only practical for modeling large
and sparse datasets due to the intrinsic linearity of the circuit
models; and whether applying nonlinearity activation functions
on the circuit models[22,23] can further improve the performance
on other dense datasets? We leave these questions for future re-
search.

5.2. Regularizations

As mentioned before, the quantum circuit models cannot be
regularized using the l2-norm due to the unitarity constraints.
Hence, what regularization methods can be applied to improve
the generalization ability of the circuit models? We examine two
techniques that are widely used in classical learning: dropout
and Gaussian noise of model parameters. Generally speaking,
dropout reduces the overfitting on the training dataset and noise
encourages the model to land on flat minima of the loss surface.
These two methods can be efficiently applied without destroying
the unitarity restrictions.

We first apply the dropout technique. During the training,
each quantum gate has a nonzero probability to be switched off.
From the perspective of a classical neural network, this dropout
is equivalent to randomly removing some weight matrices and
replacing them with identity matrices. Similar regularization
methods have been used to train very deep neural networks
with vanishing gradients.[24] However, all the gates will be
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Figure 5. Comparison of the filtered Hits@3 recall scores on the Kinship dataset for a) QCE and b) fQCE. Blue line: without employing the dropout;
orange line: 2% probability of dropping out a quantum gate randomly.

Figure 6. Filtered Hits@3 scores on the Kinship dataset for a) QCE and b) fQCE. Blue line: without introducing random noise; orange line: adding 2%
noise to the model parameters both during the training and test.

implemented during the test phase. Because of the imperfec-
tions of quantum gates, quantum circuit models inherently
possess this regularization property.

Simulations are performed for both circuit models using the
Kinship dataset, and the dropout probability is chosen from
{0.02, 0.05, 0.1, 0.2}. However, we could not observe any im-
provement in the performance, even using the smallest dropout
probability. Recall scores for no dropout and 2% dropout proba-
bility are compared in Figure 5. Even though the dropout regu-
larization cannot augment the performance of both models, we
still learn that the fQCE model is more robust and resistant to
imperfect quantum circuits, making it a potential candidate for
the future test on real quantum devices.

Now we turn to study another regularization method which
adds Gaussian noise to the model parameters. System noises
are quite common in quantum computational devices, for exam-
ple, they can stem from the disentanglement, flips of the qubits,
or random phase rotations. However, in this work, we focus on
noises stemming from inaccuracies. For example, the inevitably
inaccurate loading of the classical data into quantum devices, the
inaccurate parametric gates, or the statistical uncertainty about
the state of ancilla qubit. To simulate quantum system impreci-

sion, we add Gaussian perturbations to the model parameters as
follows

θ ′ = θ + μN (0, |θ |) (17)

where θ could be a gate parameter or an element of an entity la-
tent feature defined in the QCEmodel, and μ indicates the noise
level. We further assume the amplitude of perturbation added
to a model parameter is proportional to this parameter’s abso-
lute value.

To bemore realistic, perturbations are introduced not only dur-
ing the training but also in the test phase. Figures 6 and 7 compare
the recall scores, the filtered Mean Rank and filtered Hits@3, on
the Kinship dataset. Performance improvement can be observed
in both quantum models which indicates that system impreci-
sion brings the models to flat minima of the loss functions. As
first pointed out in ref. [25], the flatness of the minimum on the
loss surface found by an optimization algorithm is a good indica-
tor of the generalization ability. Improved performance by adding
noise also suggests that the computational complexity can be re-
duced by controlling the accuracy ε.
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Figure 7. Filtered Mean Rank recall scores on the Kinship dataset for a) QCE and b) fQCE. Blue line: without introducing random noise; orange line:
adding 2% noise to the model parameters both during the training and test.

Figure 8. T-SNE visualizations of entity representations learned by a) QCE and b) fQCE.

5.3. T-SNE

We perform a qualitative analysis to visualize and understand the
learned representations from the quantum Ansätze. Particularly,
we focus on the latent features of entities. It has been reported
that classical embeddings of entities show clustering effects. En-
tities with similar semantic meaning tend to group in the vector
space. Here, we use t-SNE to analyze whether entity representa-
tions in the quantum models render this property. T-SNE[26] is
a powerful method for visualizing high-dimensional data on a
2D plane.

In order to visualize the semantic clustering effect, we focus on
the FB15k-237 dataset, since it contains categorical information
about the entities.We extract the top-15most frequent categories,
for example, Movie, Administrative_Area, Organization, and dis-
play themusing different colors on the t-SNEplot.We still need to
clarify how the quantum features are defined. In QCE, entity rep-
resentations are normalized vectors aei ∈ RR, with i = 1, . . . , Ne .
Besides, in the fQCE model, we define the hidden quantum
states |ei 〉 = Uei H6,...,1 |0〉, with i = 1, . . . , Ne (see Equation (16)),
as entity representations.

The t-SNE visualizations of learned quantum representations
are displayed in Figure 8. One can clearly recognize the cluster-
ing effect based on the categories of entities. It is intriguing to
point out that in Figure 8, the pink nodes representing the cate-
gory Educational_Organization overlap with the blue nodes which
represent the category College_Or_University.

Quantum circuit models reveal better semantic clustering
effects of the learned latent features than classical models.
Figure 9 displays the t-SNE visualization of entity latent rep-
resentations learned by DistMult. Particularly, one can notice
that the learned latent features of the semantic categories City,
Administrative_Area, and Place strongly overlap without reveal-
ing more detailed structures. The better semantic clustering
effect might explain why fQCE performs consistently well when
comparing with the Mean Rank metric.

6. Accelerated Inference

In previous sections, we have shown that the value functions
can be evaluated with reduced complexity using the quantum
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Figure 9. T-SNE visualization of entity representations learned by DistMult.

Ansätze. However, there is another quantum advantage we have
notmentioned yet, namely the acceleration on the inference task.
To be more specific, given an incomplete semantic triple (s, p, ·),
we attempt to find a quantum algorithmwhich can accelerate the
search for the best (or the most possible) candidates for the un-
known object.

What makes this task very challenging? As mentioned before,
we are dealing with ever-increasing knowledge graphs with the
consistently increasing number of distinct entities. Inference us-
ing classical models, for example, RESCAL and Tucker requires
many computation resources. The reason is we need to calculate
all the value functions ηspei , with i = 1, . . . , Ne . Then, the entity
ei that corresponds to the maximum ηspei will be located, and the
algorithm returns ei as the best candidate for the unknown ob-
ject. It could be extremely time and resource consuming since
the same algorithm has to be repeated at least Ne times and each
time of evaluation requires O(polyR) classical operations.

We are motivated to find a quantum algorithm showing quan-
tum acceleration on the inference task. Here, we describe an ide-
alistic and heuristic quantum algorithm for the inference. First,
we prepare the following quantum state

1√
2Ne

Ne∑
i=1

(|0〉A |i〉I |0〉L + |1〉A |i〉I |0〉L) (18)

The first qubit with the subscript A is an ancilla qubit. The sec-
ond index register with the subscript I consists of ne := �log2 Ne�
qubits, and the state |i〉I is the binary representation for the index
i of the entity ei . Furthermore, the third register with r = log2 R
qubits is prepared in the pure state |0〉R which will be used to
generate the quantum representations of the entities.

Afterward, we use unitary circuit evolutions to prepare the
states |sp〉 and |ei 〉. To be more specific, theU1 circuit brings |0〉L
to the state |sp〉 conditioned on the ancilla qubit being |1〉A. More-
over, an entity-dependent circuitU2(ei ) brings |0〉L into the quan-
tum state |ei 〉 conditioned on the ancilla being |0〉A and the index
register being |i〉I. Recall that the circuits U1 and U2 are defined
in Figures 2 and 4.

To summarize, the unitary circuits will generate the following
quantum state

1√
2Ne

Ne∑
i=1

(|0〉A |i〉IU2(ei ) |0〉L + |1〉A |i〉IU1 |0〉L
)

= 1√
2Ne

Ne∑
i=1

(|0〉A |i〉I |ei 〉L + |1〉A |i〉I |sp〉L
)

(19)

Performing the Hadamard gate on the ancilla qubit gives

1
2
√
Ne

Ne∑
i=1

(|0〉A |i〉I (|ei 〉L + |sp〉L) + |1〉A |i〉I (|ei 〉L − |sp〉L)
)

(20)

Note that the values ηspei are encoded in the probability am-
plitudes of the above quantum state Equation (20). For example,
the probability of measuring the ancilla qubit and index register
being in the quantum state |0〉A |i〉I is given by

Pr(|0〉A |i〉I) = 1
2Ne

(1 + � 〈ei |sp〉L) = 1
2Ne

(1 + ηspei ) (21)

Let us consider an idealistic case for the inference: The nega-
tive semantic triples have value functions −1, while the positive
triples have value functions +1. In this case, the probability in
Equation (21) takes value Pr(|0〉A |i〉I) = 0 if the entity ei is not a
correct return to the query (s, p, ?), while Pr(|0〉A |i〉I) = 1

Ne
if the

entity ei is correct.
Since the index register is sampled conditioned on the ancilla

qubit, we need to discuss the probability of post-selection on the
ancilla qubit. The marginalized probabilities of measuring the
ancilla qubit being |0〉A and |1〉A read

Pr(|0〉A) = 1
2

+ 1
2Ne

Ne∑
i=1

ηspei

Pr(|1〉A) = 1
2

− 1
2Ne

Ne∑
i=1

ηspei (22)
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Figure 10. Empirical distributions of the value functions a) ηQCEs po and b) ηfQCEs po evaluated on the test dataset of Kinship. The targets are set as yi ∈ {−1, 1}
during the training. Note that for each triple in the test dataset, say (s, p, o), the value functions ηspei and ηei sp, with i = 1, . . . , Ne are evaluated and
accumulated for the plotting.

Assume that the cardinality of the solution set to the query (s, p, ?)
is H ∈ O(1). In the idealistic situation, we have the marginalized
probability Pr(|0〉A) = H

2Ne
, and Pr(|1〉A) = 1 − H

2Ne
. To read out

the indices that correspond to the entities in the solution set, we
can perform amplitude amplification[27] on the subspace |0〉A of
the ancilla qubit. The number of required iterations is approx-

imately � π

4

√
2Ne
H � = O(

√
Ne ). The resulting quantum state after

the amplitude amplification reads

1√
H

∑
i∈{i |φp(s,ei )=1}

|0〉A |i〉I (23)

It is unnecessary to perform quantum state tomography and
read out all the probability amplitudes. We can sample the states
of the index register conditioned on |0〉A and determine the most
frequent states that are related to the indices of the entities giv-
ing the highest scores. Since the cardinality of the solution set
is assumed to be H ∈ O(1), the same experiment needs to be
replicated at least O(H

√
Ne ) times. Hence, this heuristic quan-

tum algorithm realizes a quadratic acceleration with respect to
the number of entities Ne .

Our idealistic quantum algorithm provides a quadratic accel-
eration during the inductive inference on the database. Even
a quadratic speedup is desirable when the number of entities
Ne is large. Note that another well-known quantum algorithm,
Grover’s algorithm,[28] which was designed for searching in a
database, also provides a quadratic speedup. More specifically,
Grover’s algorithm can identify the input to an unknown func-
tion in O(

√
N) steps from a N-item database. At the same time

as Grover’s publication, it is proved in ref. [29] that Grover’s al-
gorithm is an almost optimal solution. Different from this quan-
tum algorithm for the database search, our algorithm is learning-
based, adaptive, and inference-oriented.

Note that the above described quantum algorithm is merely
idealistic and heuristic, since the scores of semantic triples in the
test dataset take values from the interval [−1, 1] instead of the
discrete set {−1, 1}. Figure 10 shows the empirical distribution
of value functions on the Kinship test dataset.[30]

As one can observe that the empirical value functions concen-
trate around −0.5 and 0.5. The quantum advantage on inference

might disappear in these cases since Pr(|0〉A |i〉I) ≈ Pr(|0〉A | j 〉I),
∀i ∈ {i |φp(s, ei ) = 1}, and j /∈ {i |φp(s, ei ) = 1}. In other words,
the probability of sampling correct solutions is approximately
equal to the probability of sampling incorrect solutions. Thus,
one promising future research direction is to study whether per-
forming nonlinear functions on quantum representations can
separate the positive and negative triples in an inference task.

7. Conclusion and Outlook

In this work, we study the quantum Ansätze for the statistical
relational learning on knowledge graphs as well as latent quan-
tum representations. Two different quantum models QCE and
fQCE are proposed and compared by their complexity and per-
formance. To be specific, QCE assumes that entity representa-
tions are stored in a classical data structure, while in the fQCE
model quantum entity representations are generated from pure
quantum states through unitary circuit evolution. The experi-
ments show that both quantum Ansätze can achieve comparable
results to the state-of-the-art classical models on several bench-
mark datasets.

This work can be further explored in several directions. The
quantum circuit architecture could be fine-tuned using rein-
forcement learning or evolutionary algorithms. It is necessary to
understand why quantum circuit models show superior perfor-
mance on the WN18RR dataset which contains the most entities
and the smallest average number of links. Whether this observa-
tion indicates that quantum circuit models are only suitable for
modeling large but simple relational dataset due to the inherent
linearity? Thus, a reasonable question is whether acting nonlin-
ear operations on the quantum representations can improve the
inductive inference on complex relational datasets and make the
idealistic and heuristic quantum algorithm for the accelerated in-
ference more realizable?

Appendix A: Preparation of Quantum States

Theorem A1.[31] Let x ∈ RR be a real-valued vector. The quantum
state |x〉 = 1

||x||2
∑R

i=1 xi |i〉 can be prepared using �log2 R� qubits in
time O(log2 R).
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Figure A1. Classical memory structure with quantum access for creating
the quantum state |x 〉 = x1 |00〉 + x2 |01〉 + x3 |10〉 + x4 |11〉.

Theorem A1 claims that there exist a classical memory struc-
ture and a quantum algorithm which can load classical data into
a quantum state with exponential acceleration. Figure A1 illus-
trates a simple example. Given an R = 4D real-valued vector, the
quantum state |x〉 = x1 |00〉 + x2 |01〉 + x3 |10〉 + x4 |11〉 can be
prepared by querying the classical memory structure and apply-
ing three controlled rotations.

Let us assume that x is normalized, namely ||x||2 = 1. The
quantum state |x〉 is created from the initial state |0〉 |0〉 by query-
ing the memory structure from the root to the leaf. The first ro-
tation is applied on the first qubit, giving

(cos θ1 |0〉 + sin θ1 |1〉) |0〉 =
(√

x21 + x22 |0〉 +
√
x23 + x24 |1〉

)
|0〉

where θ1 := tan−1

√
x23+x24
x21+x22

. The second rotation is applied on the

second qubit conditioned on the state of qubit 1. It gives

√
x21 + x22 |0〉 1√

x21 + x22
(|x1| |0〉 + |x2| |1〉)+

√
x23 + x24 |1〉 1√

x23 + x24
(|x3| |0〉 + |x4| |1〉)

The last rotation loads the signs of coefficients conditioned on
qubits 1 and 2. In general, an R-dimensional real-valued vec-
tor needs to be stored in a classical memory structure with
�log2 R� + 1 layers. The data vector can be loaded into a quan-
tum state using O(log2 R) nontrivial controlled rotations.
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Semantic knowledge graphs are large-scale triple-oriented databases for knowledge representation and reasoning. Implicit knowledge
can be inferred by modeling and reconstructing the tensor representations generated from knowledge graphs. However, as the sizes of
knowledge graphs continue to grow, classical modeling becomes increasingly computational resource intensive. This paper investigates
how quantum resources can be capitalized to accelerate the modeling of knowledge graphs. In particular, we propose the first quantum
machine learning algorithm for making inference on tensorized data, e.g., on knowledge graphs. Since most tensor problems are
NP-hard Hillar and Lim [16], it is challenging to devise quantum algorithms to support that task. We simplify the problem by making
a plausible assumption that the tensor representation of a knowledge graph can be approximated by its low-rank tensor singular value
decomposition, which is verified by our experiments. The proposed sampling-based quantum algorithm achieves exponential speedup
with a runtime that is polylogarithmic in the dimension of knowledge graph tensor.
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1 INTRODUCTION

Semantic knowledge graphs (KGs) are graph-structured databases consisting of semantic triples (subject, predicate,
object), where subject and object are nodes in the graph, and the predicate is the label of a directed link between subject
and object. An existing triple normally represents a fact, e.g., ( California, located_in, USA) and missing triples stand
for triples known to be false (closed-world assumption) or with an unknown truth value. In recent years a number
of sizable knowledge graphs have been built, such as Freebase [3], Yago [30], etc. The largest knowledge graph, e.g.,
Google’s Knowledge Vault [8], contains more than 100 billion facts and hundreds of millions of distinguishable entities.

An adjacency tensor can represent a knowledge graph with three dimensions: One stands for subjects, one for
predicates and one for objects. More precisely, we let χ ∈ {0, 1}d1×d2×d3 denote the semantic tensor of a knowledge
graph, where d1, d2, and d3 represent the number of subjects, predicates, and objects, respectively. An entry xspo in χ
assumes the value 1 if the semantic triple (s,p,o) is known to be true, while it assumes the value 0 if the triple is false or
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missing. A goal of machine learning is to infer the truth value of triples, given the knowledge graph triples were known
to be true. Popular learning-based algorithms for modeling KGs are based on a factorization of the adjacency tensor, e.g.,
the Tucker tensor decomposition, PARAFAC, RESCAL [24], or compositional models, e.g., DistMult [36], and HolE [26].

The vast number of facts and entities makes it particularly challenging to scale learning and inference algorithms to
perform inference on the entire knowledge graph. The goal of this paper is to use quantum computation to design
algorithms that can dramatically accelerate the inference task. Thanks to the rapid development of quantum computing
technologies, quantummachine learning [2] is becoming an active research area which attracts researchers from different
communities. In general, quantum machine learning exhibits great potential for accelerating classical algorithms, e.g.,
solving linear systems of equations [15], supervised and unsupervised learning [35], support vector machines [28],
Gaussian processes [6], non-negative matrix factorization [10], recommendation systems [17], etc.

Note that most of the above-mentioned quantum machine learning algorithms contain subroutines for singular value
decomposition, singular value estimation, and singular value projection of data matrices that are prepared and presented
as quantum density matrices. We show that the tensor factorization algorithm presented in this paper, which uses
existing quantum algorithms as subroutines, has a polylogarithmic runtime complexity. However, unlike matrices, most
tensor problems are NP-hard, and there is no current quantum algorithm which can handle tensorized data. Therefore,
to understand the difficulties of designing quantum machine learning algorithms on tensorized data, e.g., data derived
from a vast relational database, we need first to answer the following questions:

(1) Under what conditions can we infer implicit knowledge from an incomplete knowledge graph by reconstructing
it via classical algorithms; (2) Does there exist an analogous tensor singular value decomposition method that we can
map to a quantum algorithm? (3) Assuming that the knowledge graph has global and well-defined relational patterns,
can the tensor SVD of a subsampled semantic tensor well approximate the original tensor. Mainly, after projecting onto
the lower-rank space, previously unobserved truth values of semantic triples might be boosted? (4) If all the above
conditions are fulfilled, how can we design a quantum algorithm which projects the tensorized data onto lower-rank
space to reconstruct the original tensor?

The first part of this paper contributes to the classical theory of binary tensor sparsification. As a novel contribution,
we derive the first binary tensor sparsification condition under which the original tensor can be well approximated by
the truncated or projected tensor SVD of its subsampled tensor. The second part focuses on developing the quantum
machine learning algorithm. To handle the tensorized data, we first explain a quantum tensor contraction subroutine.
We then design a quantum learning algorithm on knowledge graphs using quantum principal component analysis,
quantum phase estimation, and quantum singular value projection. We study the runtime complexity and show that
this sampling-based quantum algorithm provides exponential acceleration w.r.t. the size of the knowledge graph during
inference.

1.1 Related Work

In this section, we discuss recent work on quantum machine learning for big data. It is commonly believed that the
quantum recommendation system (QRS) proposed in Kerenidis and Prakash [17] will potentially be one of the first
commercial applications of quantum machine learning. The quantum recommendation system provides personalized
recommendations to individual users according to a preference matrix A with runtime O (poly(k )polylog(mn)), where
m ×n is the size of the preference matrix A which is assumed to have a low rank-k approximation. On the other hand, a
recent breakthrough made by Tang [31] shows that by dequantizing the quantum recommendation algorithm a classical
machine learning algorithm can achieve the same acceleration if the classical algorithm has access to a data structure
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which resembles the one required in the QRS. However, as commented by the authors of Kerenidis and Prakash [17]
in Kerenidis et al. [18], this new classical algorithm based on the FKV methods Frieze et al. [12] has a much worse
polynomial dependence on the rank of the preference matrix and a dramatic slowdown dependence on a predefined
precision parameter, making it completely impractical. Therefore, it remains an open question to find the corresponding
dequantized classical algorithms for machine learning on tensorized data that are polylogarithmic in dimension as the
proposed quantum algorithm.

A recent work Gu et al. [14] that presents a quantum algorithm for higher-order tensor singular value decomposition
(HOSVD) De Lathauwer et al. [7]. The quantumHOSVD algorithm decomposes am-wayn-dimensional tensor into a core
tensor and unitary matrices with computational complexity O (mn3/2 logm n). It provides an exponential acceleration
compared with the classical HOSVDwith complexityO (mnm+1). Note that the polynomial dependence of the complexity
on the tensor dimension comes from the quantum subroutines since the quantumHOSVD reconstruct the core tensor and
unitary matrices explicitly. In contrast, our quantum tensor SVD method doesn’t estimate singular values and unitary
matrices explicitly, instead, it samples results from a projected tensor under the assumption that the tensorized data has
a low-rank orthogonal approximation. Hence, it provides a polylogarithmic dependence on the tensor dimension.

2 TENSOR SINGULAR VALUE DECOMPOSITION

First, we recap the singular value decomposition (SVD) of matrices. Then we introduce tensor SVD and show that a
given tensor can be reconstructed with a small error from the low-rank tensor SVD of the subsampled tensor. Other
tensor decomposition algorithms, e.g., higher-order tensor SVD De Lathauwer et al. [7], will not be considered in this
work since designing their quantum counterparts can be much more involved.

SVD Let A ∈ Rm×n , the SVD is a factorization of A is the form A = U ΣV⊺, where Σ is a rectangle diagonal
matrix singular values on the diagonal,U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices withU ⊺U = UU ⊺ = Im and
V⊺V = VV⊺ = In .

Notations for Tensors A N -way tensor is defined as A = (Ai1i2 · · ·iN ) ∈ Rd1×d2×···×dN , where dk is the k-
th dimension. Given two tensors A and B with the same dimensions, the inner product is defined as ⟨A,B⟩F :=
∑d1
i1=1 · · ·

∑dN
iN =1Ai1i2 · · ·iN Bi1i2 · · ·iN . The Frobenius norm is defined as | |A||F :=

√⟨A,A⟩F . The spectral norm | |A||σ
of the tensor A is defined as | |A||σ = max{A ⊗1 x1 · · · ⊗N xN |xk ∈ Sdk−1,k = 1, · · · ,N }, where the tensor-vector
product is defined as

A ⊗1 x1 · · · ⊗N xN :=
d1∑

i1=1
· · ·

dN∑

iN =1
Ai1i2 · · ·iN x1i1x2i2 · · · xNiN

and Sdk−1 denotes the unit sphere in Rnk .
Tensor SVD Parallel to the matrix singular value decomposition, several orthogonal tensor decompositions with

different definitions of orthogonality are studied in Kolda [20]. Among them the complete orthogonal rank decomposition

is also referred to as the tensor singular value decomposition (tensor SVD, c.f. Definition 1) studied in Chen and Saad [5].
Especially, Zhang and Golub [37] shows that for all tensors with N ≥ 3, the tensor SVD can be uniquely determined via
incremental rank-1 approximation.

Definition 1. If a tensorA ∈ Rd1×d2×···×dN can be written as sum of rank-1 outer product tensorsA = ∑R
i=1 σiu

(i )
1 ⊗

u
(i )
2 · · · ⊗ u

(i )
N , with singular values σ1 ≥ σ2 ≥ · · · ≥ σR and ⟨u (i )k ,u

(j )
k ⟩ = δi j for k = 1, · · · ,N . Then A has a tensor

singular value decomposition with rank R.
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Define the orthogonal matrices Uk = [u (1)k ,u
(2)
k , · · · ,u

(R )
k ] ∈ Rdk×R with UT

k Uk = IR for k = 1, · · · ,N , and
the diagonal tensor D ∈ RR×R×···×R with Dii · · ·i = σi , then the tensor SVD for A can be also written as A =
D ⊗1 U1 ⊗2 U2 · · · ⊗N UN . Given an arbitrary tensor A ∈ Rd1×d2×···×dN , an interesting question is to find a low-rank
approximation via tensor SVD. In particular, Chen and Saad [5] proves the existence of the global optima of the following
optimization problem

min | |A −
r∑

i=1
σiu

(i )
1 ⊗ u

(i )
2 · · · ⊗ u

(i )
N | |F ; s.t. ⟨u (i )k ,u

(j )
k ⟩ = δi j , for k = 1, · · · ,N

for any r ≤ min{d1,d2, · · · ,dN }. We will utilize this fact to derive the error bound after projecting the tensor onto
low-rank subspaces. Note that, in contrast to the matrix SVD, tensor SVD is unique up to the signs of singular values.

Our quantum algorithm builds on the assumption that the semantic tensor χ can be well approximated by a low-rank
tensor χ̂ with | |χ − χ̂ | |F ≤ ϵ | |χ | |F for small ϵ > 0. Previous work of recommendation systems Drineas et al. [9] has
shown that the quality of recommendations for users depends on the reconstruction error. Similarly, in the case of
relational learning, with a bounded tensor approximation error it is possible to estimate the probability of a successful
information retrieval. Consider the query (s, p, ?) on a KG using classical algorithm. We normally only readout top-n
returns from the reconstructed tensor χ̂ , written as x̂sp1, . . . , x̂spn , where n is a small integer corresponding to the
commonly used Hits@n metric. The information retrieval is called successful if the correct object corresponding to the
query can be found in the returned list x̂sp1, . . . , x̂spn . In particular, we have the following estimation.

Lemma 1. If an algorithm returns an approximation of the binary semantic tensor χ , denoted χ̂ , with | |χ − χ̂ | |F ≤ ϵ | |χ | |F
and ϵ < 1

2 , then the probability of a successful information retrieval from the top-n returns of χ̂ is at least 1 − ( ϵ
1−ϵ )

n .

(Proof in Appendix A.1)

In real-world applications, we can only observe part of the non-zero entries in a given tensor A, and the task is to
infer unobserved non-zero entries with high probability. This task corresponds to items recommendation for users given
an observed preference matrix, or implicit knowledge inference given partially observed relational data. The partially
observed tensor is called as subsampled or sparsified, denoted Â. Without further specifying the dimensionality of the
tensor, we consider the following subsampling and rescaling scheme proposed in Achlioptas and McSherry [1]:

Âi1i2 · · ·iN =

Ai1i2 ···iN

p with probability p

0 otherwise.
(1)

It means that the non-zero elements of a tensor are independently and identically sampled with the probability p and
rescaled afterwards. The subsampled tensor can be rewritten as Â = A+N , whereN is a noise tensor. Entries ofN are
independent random variables with distribution Pr(Ni1 · · ·iN = (1/p − 1)Ai1 · · ·iN ) = p and Pr(Ni1 · · ·iN = −Ai1 · · ·iN ) =

1 − p.
Now, the task is to reconstruct the original tensor A by modeling Â. We use tensor SVD to model the observed

tensor Â. The reconstruction error can be bounded either using the truncated r -rank tensor SVD, denoted Âr , or
the projected tensor SVD with absolute singular value threshold τ , denoted Â | · | ≥τ . Notation Â | · | ≥τ means that the
subsampled tensor Â is projected onto the eigenspaces with absolute singular values larger than a cutoff threshold
τ > 0. By comparison, in matrix SVD, essentially the singular values larger than, or equal to, a cutoff threshold are kept
and those that are smaller are disregarded. However, in the tensor case, negative singular values can arise. The same
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cutoff scheme then is no longer meaningful, as it would disregard singular values with large negative values which may
potentially be important.

Theorem 1 gives the reconstruction error bound usingAr and the corresponding conditions on the sample probability.

Theorem 1. Let A ∈ {0, 1}d1×d2×···×dN . Suppose that A can be well approximated by its r -rank tensor SVD Ar . Using

the subsampling scheme defined in Eq. 1 with the sample probabilityp ≥ max{0.22, 8r
(
log( 2N

N0
)
N∑
k=1

dk + log 2
δ

)
/(ϵ̃ | |A||F )2},

N0 = log 3
2 , then the original tensor A can be reconstructed from the truncated tensor SVD of the subsampled tensor Â.

The error satisfies | |A − Âr | |F ≤ ϵ | |A||F with probability at least 1 − δ , where ϵ is a function of ϵ̃ . Especially, ϵ̃ together

with the sample probability controls the norm of the noise tensor.

Proof. We outline the ideas involved in the proof and relegate details to the appendix A.2. The proof is divided into
two parts. We first derive the following bound for the reconstruction error (see appendix Lemma A 2, 3, 4)

| |A − Âr | |F ≤ 2| |A − Ar | |F + 2
√
| |Ar | |F | |A − Ar | |F + 2

√
| |Nr | |F | |Ar | |F + | |Nr | |F .

Notice that the RHS doesn’t contain the subsampled tensor Â. Therefore we can further simplify the RHS by assuming
that the original tensor has a low-rank approximation, namely | |A−Ar | |F ≤ ϵ0 | |A||F . After that, we prove numerically
that the random variables Ni1 · · ·iN x1i1 · · · xNiN for any xk ∈ Sdk−1, k = 1, · · · ,N are sub-Gaussian distributed
if the sample probability fulfills p ≳ 0.22. Hence we can further use the covering number on the product space
Sd1−1 × · · · × SdN −1 to bound the norm of N (see appendix Lemma A 5, 6, 7):

| |Nr | |F ≤
√√√√
r

8
p

*.,log( 2N
N0

)
N∑

k=1
dk + log 2

δ
+/-. (2)

Finally, by requiring | |Nr | |F ≤ ϵ̃ | |A||F or by selecting

p ≥ max{0.22, 8r *.,log( 2N
N0

)
N∑

k=1
dk + log 2

δ
+/- /(ϵ̃ | |A||F )

2}

we have | |A − Âr | |F ≤ ϵ | |A||F via Eq. 2, where ϵ := 2(ϵ0 +
√
ϵ0 +
√
ϵ̃ ) + ϵ̃ .

We further introduce the projected tensor SVD Â | · | ≥τ and analysis its error bound for the later use in the quantum
singular value projection. Note that quantum algorithms are fundamentally different from classical algorithms. For
example, classical algorithms for matrix factorization approximate a low-rank matrix by projecting it onto a subspace
spanned by the eigenspaces possessing top-r singular values with predefined small r . Quantum subroutine, e.g., quantum
singular value estimation, on the other hand, can read and store all singular values of a unitary operator into a quantum
register. However, singular values stored in the quantum register cannot be read out and compared simultaneously since
quantum state collapses after one measurement; measuring the singular values one by one will also break the quantum
advantage. Therefore, we perform a projection onto the union of operator’s subspaces whose singular values are larger
than a threshold; and this step can be implemented on the quantum register without destroying the superposition.
Moreover, since we use quantum PCA as a subroutine which ignores the sign of singular values during the projection, we
have to analyze the reconstruction error given by Â | · | ≥τ for the quantum algorithm. Theorem 2 gives the reconstruction
error bound using Â | · | ≥τ and conditions for the sample probability.

Theorem 2. Let A ∈ {0, 1}d1×d2×···×dN . Suppose that A can be well approximated by its r -rank tensor SVD Ar . Using

the subsampling scheme defined in Eq. 1 with the sample probability p ≥ max{0.22,p1 := l1C0
(ϵ̃ | |A | |F )2 ,p2 := rC0

(ϵ̃ | |A | |F )2 ,p3 :=
Manuscript submitted to ACM



6 Yunpu Ma, Yuyi Wang, and Volker Tresp

√
2rC0

ϵ1ϵ̃ | |A | |F }, with C0 = 8
(
log( 2N

N0
)
∑N
k=1 dk + log 2

δ

)
, N0 = log 3

2 , where l1 denotes the largest index of singular values

of tensor Â with σl1 ≥ τ , and choosing the threshold as 0 < τ ≤
√

2C0
pϵ̃ , then the original tensor A can be reconstructed

from the projected tensor SVD of Â. The error satisfies | |A − Â | · | ≥τ | |F ≤ ϵ | |A||F with probability at least 1 − δ , where ϵ
is a function of ϵ̃ and ϵ1. Especially, ϵ̃ together with p1 and p2 determine the norm of noise tensor and ϵ1 together with p3
control the value of Â’s singular values that are located outside the projection boundary.

Proof. The proof resembles that of Theorem 1, and details are relegated in appendix A.2. One can first derive
| |A−Â | · | ≥τ | |F ≤ 3| |A−Âl1 | |F . Then we distinguish two cases: l1 ≥ r and l1 < r and show that if p ≥ max{0.22,p1,p2}
it gives | |Nr | |F ≤ ϵ̃ | |A||F via Eq. 2. Moreover, requiring p ≥ p3 leads to | |Âr − Âl1 | |F ≤ ϵ1 | |A||F . It says that the
singular values of Â that are outside the projection boundary can be controlled by p3 and predefined small ϵ1. Notice
that p3 ≫ p1,p2 if tensorA is dense and | |A||F is large enough. Hence we can estimate sample probability p ≥ {0.22,p3}
given predefined ϵ̃ , ϵ1 without knowing l1 a prior. On the other hand, this theorem indicates that it is impossible to
complete an over sparsified tensor with subsample probability smaller than 0.22.

In the bodies of Theorem 1 and 2 there exist data-dependent parameters r and l1 which are unknown a prior. These
parameters can only be estimated by performing tensor SVD to the original and subsampled tensors explicitly. However,
in practice, mostly, we are only given the subsampled tensor without even knowing the subsample probability. For
example, given an incomplete semantic tensor, we do not know what percentage of information is missing, and therefore
we cannot rescale the entries in the incomplete tensor. Fortunately, unlike any other matrix sparsification Achlioptas
and McSherry [1] or tensor sparsification algorithms Nguyen et al. [23], our analysis suggests a reasonable initial
guess for the subsample probability numerically, and inversely an initial guess for the lower-rank r and the projection
threshold τ as well.

3 QUANTUM MACHINE LEARNING ALGORITHM FOR KNOWLEDGE GRAPHS

3.1 Quantum Mechanics

To make this work self-consistent we briefly introduce the Dirac notations of quantum mechanics. Under DiracâĂŹs
convention quantum states can be represented as complex-valued vectors in a Hilbert spaceH . For example, a two-
dimensional complex HilbertH2 space can describe the quantum state of a spin-1 particle, which provides the physical
realization of a qubit. By default, the basis inH2 for a spin-1 qubit read |0⟩ = [1, 0]⊺ and |1⟩ = [0, 1]⊺. The Hilbert space
of a n-qubits system has dimension 2n whose computational basis can be chosen as the canonical basis |i⟩ ∈ {|0⟩ , |1⟩}⊗n ,
where ⊗ represents tensor product. Hence any quantum state |ϕ⟩ ∈ H2n can be written as a quantum superposition
|ϕ⟩ = ∑2n

i=1 ϕi |i⟩, where the coefficients |ϕi |2 can also be interpreted as the probability of observing the canonical basis
state |i⟩ after measuring |ϕ⟩ using canonical basis. Moreover, we use ⟨ϕ | to represent the conjugate transpose of |ϕ⟩, i.e.,
( |ϕ⟩)† = ⟨ϕ |. Given two stats |ϕ⟩ and |ψ ⟩ The inner product on the Hilbert space is defined as ⟨ϕ |ψ ⟩∗ = ⟨ψ |ϕ⟩. A density
matrix is a projection operator which is used to describe the statistics of a quantum system. For example, the density
operator of the mixed state |ϕ⟩ in the canonical basis reads ρ = ∑2n

i=1 |ϕi |2 |i⟩ ⟨i |. Moreover, given two subsystems with
density matrices ρ and σ the density matrix for the whole system is their tensor product, namely ρ ⊗ σ .

The time evolution of a quantum state is generated by the Hamiltonian of the system. The Hamiltonian H is a
Hermitian operator with H† = H . Let |ϕ (t )⟩ denote the quantum state at time t under the evolution of an invariant
Hamiltonian H . Then according to the Schrödinger equation |ϕ (t )⟩ = e−iHt |ϕ (0)⟩, where the unitary operator e−iHt

can be written as the matrix exponentiation of the Hermitian matrix H , i.e., e−iHt =
∑∞
n=0

(−iHt )n
n! . Eigenvectors of the
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Hamiltonian H , denoted |ui ⟩, also form a basis of the Hilbert space. Then the spectral decomposition of the Hamiltonian
H reads H = ∑

i λi |ui ⟩ ⟨ui |, where λi is the eigenvalue or the energy level of the system. Therefore, the evolution
operator of a time-invariant Hamiltonian can be rewritten as

e−iHt = e−it
∑
i λi |ui ⟩⟨ui | =

∑

i
e−iλi t |ui ⟩ ⟨ui | , (3)

where we use the observation ( |ui ⟩ ⟨ui |)n = |ui ⟩ ⟨ui | for n = 1, · · · ,∞. When applying it on an arbitrary initial state
|ϕ (0)⟩ we obtain |ϕ (t )⟩ = e−iHt |ϕ (0)⟩ = ∑

i e−iλi t βi |ui ⟩, where βi indicates the overlap between the initial state and
the eigenbasis of H , i.e., βi := ⟨ui |ϕ (0)⟩. To implement the time evolution operator e−iHt and simulate the dynamics of
a quantum system using universal quantum circuits is a challenging task since it involves the matrix exponentiation
of a possibly dense matrix. Therefore, Hamiltonian simulation is an active research area which was first proposed by
Richard Feynman Feynman [11], see also Lloyd [21].

3.2 Quantum Tensor Singular Value Decomposition

In this section, we propose a quantum algorithm for inference on knowledge graphs using quantum singular value
estimation and projection. In the following, a 3-dimensional semantic tensor χ ∈ {0, 1}d1×d2×d3 as one example of a
tensor A is of particular interest. The present method builds on the assumption that the original semantic tensor χ
modeling the complete knowledge graph has a low-rank orthogonal approximation, denoted χr , with small rank r . The
low-rank assumption is plausible if the knowledge graph contains global and well-defined relational patterns, as has
been discussed in Nickel et al. [25]. χ could be thereof reconstructed approximately from χ̂ via tensor SVD according
to Theorem 1 and 2. Since our quantum algorithm is sampling-based instead of learning-based, w.l.o.g., we consider
sampling the correct objects given the query (s, p, ?) as an example and discuss the runtime complexity of one inference.

Recall that the preference matrix of a recommendation system normally contains multiple nonzero entries in a given
user-row; items recommendations are made according to the nonzero entries in the user-row by assuming that the user
is ’typical’ Drineas et al. [9]. However, in a KG there might be only one nonzero entry in the row (s, p, ·). Therefore, we
suggest, for the inference on a KG quantum algorithm needs to sample triples with the given subject s and post-select
on the predicate p. Post-selection can be a feasible step if the number of semantic triples with s as subject and p and
predicate is O (1).

Before sketching the algorithm, we need to mention the quantum data structure since our method contains the
preparing and exponentiating of a density matrix derived from the tensorized classical data. The most difficult technical
challenges of quantum machine learning are loading classical data as quantum states and measuring the sates since
reading or writing high-dimensional data from quantum states might obliterate the quantum acceleration. Therefore, the
technique quantum Random Access Memory (qRAM) Giovannetti et al. [13] was developed, which can load classical data
into quantum states with exponential acceleration. Appendix A.3 gives more details on loading vector and tensorized
classical data.

The basic idea of our quantum algorithm is to project the observed data onto the eigenspaces of χ̂ whose corresponding
singular values are larger than a threshold. Therefore, we need to create an operator that can reveal the eigenspaces and
singular values of χ̂ . The first step is to prepare the following density matrix from χ̂ via a tensor contraction scheme:

ρ χ̂ † χ̂ :=
∑

i2i3i′2i
′
3

∑

i1

χ̂†i1,i2i3 χ̂i1,i′2i′3 |i2i3⟩ ⟨i
′
2i
′
3 | , (4)
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where ∑
i1
χ̂†i1,i2i3 χ̂i1,i′2i′3 means tensor contraction along the first dimension; a normalization factor is neglected tem-

porarily. Later we will elaborate why we perform contraction along the first dimension. We have the following lemma
about ρ χ̂ † χ̂ preparation.

Lemma 2. ρ χ̂ † χ̂ can be prepared via qRAM in time O (polylog(d1d2d3)).

Proof. Since χ̂ ∈ Rd1×d2×d3 is a real-valued tensor, the quantum state ∑
i1i2i3

χ̂i1i2i3 |i1i2i3⟩ =
∑

i1i2i3
χ̂i1i2i3 |i1⟩⊗|i2⟩⊗|i3⟩

can be prepared via qRAM in time O (polylog(d1d2d3)), where |i1⟩ ⊗ |i2⟩ ⊗ |i3⟩ represents the tensor product of index
registers in the canonical basis. The corresponding density matrix of the quantum state reads

ρ =
∑

i1i2i3

∑

i′1i
′
2i
′
3

χ̂i1i2i3 |i1⟩ ⊗ |i2⟩ ⊗ |i3⟩ ⟨i ′1 | ⊗ ⟨i ′2 | ⊗ ⟨i ′3 | χ̂†i′1i′2i′3 .

After preparation, a partial trace implemented on the first index register of the density matrix

tr1 (ρ) =
∑

i2i3

∑

i′2i
′
3

∑

i1

χ̂i1i2i3 |i2⟩ ⊗ |i3⟩ ⟨i ′2 | ⊗ ⟨i ′3 | χ̂†i1i′2i′3

=
∑

i2i3i′2i
′
3

∑

i1

χ̂†i1i2i3 χ̂i1i′2i′3 |i2i3⟩ ⟨i
′
2i
′
3 |

gives the desired operator ρ χ̂ † χ̂ .

Suppose that χ̂ has a tensor SVD approximation with χ̂ ≈ ∑R
i=1 σiu

(i )
1 ⊗ u

(i )
2 ⊗ u

(i )
3 . Then the spectral decomposition

of the density operator can be written as

ρ χ̂ † χ̂ =
1

∑R
i=1 σ

2
i

R∑

i=1
σ 2
i |u (i )2 ⟩ ⊗ |u

(i )
3 ⟩ ⟨u

(i )
2 | ⊗ ⟨u

(i )
3 | .

Especially, the eigenstates |u (i )2 ⟩ ⊗ |u
(i )
3 ⟩ of ρ χ̂ † χ̂ form another set of basis in the Hilbert space of the tensor product of

quantum index registers.
The next step is to readout singular values of ρ χ̂ † χ̂ and write into another quantum register via the density matrix

exponentiation method proposed in Lloyd et al. [22]. This step is also referred to as quantum principal component
analysis (qPCA). The key is to prepare the unitary operator

U :=
K−1∑

k=0
|k ∆t⟩ ⟨k ∆t |C ⊗ exp(−ik∆t ρ̃ χ̂ † χ̂ )

which is the tensor product of a maximally mixed state
K−1∑
k=0
|k ∆t⟩ ⟨k ∆t |C with the exponentiation of the rescaled

density matrix ρ̃ χ̂ † χ̂ . Especially, the clock registerC is needed for the phase estimation and ∆t determines the precision
of estimated singular values. The following Lemma shows that the Hamiltonian simulation with unitary operator
e−it ρ̃ χ̂ † χ̂ can be applied on arbitrary quantum states for any simulation time t .

Lemma 3. Unitary operator e−it ρ̃ χ̂ † χ̂ can be applied to any quantum state, where ρ̃ χ̂ † χ̂ :=
ρ χ̂ † χ̂
d2d3

, up to simulation time

t . The total number of steps for simulation is O ( t 2
ϵ Tρ ), where ϵ is the desired accuracy, and Tρ is the time for accessing the

density matrix.

Proof. The proof uses the dense matrix exponentiation method proposed in Rebentrost et al. [29], which was
developed from Lloyd [21]. One crucial step is to show that Hamiltonian simulation in infinitesimal time step can be
Manuscript submitted to ACM
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implemented with a simple unitary swap operator without exponentiating the Hamiltonian. Details are in Appendix
A.4 and Lemma A 8, 9.

The algorithm samples triples with subject s given the query (s, p, ?). Hence a quantum state | χ̂ (1)s ⟩I needs to be
created first via qRAM in the input data register I , where χ̂ (1)s denotes the s-row of the flattened tensor χ̂ along the

first dimension. After that, the operator U is applied to the quantum state
K−1∑
k=0
|k∆t⟩C ⊗ | χ̂ (1)s ⟩I . After this stage of

computation, we obtain
R∑

i=1
βi

*.,
K−1∑

k=0
e−ik ∆t σ̃ 2

i |k ∆t⟩C+/- |u
(2)
i ⟩I ⊗ |u

(3)
i ⟩I , (5)

where σ̃i := σi√
d2d3

are the rescaled singular values of ρ̃ χ̂ † χ̂ (see Eq. 3). Moreover, βi are the coefficients of | χ̂ (1)s ⟩I
decomposed in the eigenbasis |u (i )2 ⟩I ⊗ |u

(i )
3 ⟩I of ρ χ̂ † χ̂ , namely | χ̂ (1)s ⟩I =

∑R
i=1 βi |u

(i )
2 ⟩I ⊗ |u

(i )
3 ⟩I .

The third step is to perform the quantum phase estimation on the clock register C , which is restated in the next
Theorem.

Theorem 3 (Quantum Phase Estimation Kitaev [19]). Let unitaryU |vj ⟩ = eiθ j |vj ⟩ with θ j ∈ [−π ,π ] for j ∈ [n].
There is a quantum algorithm that transforms

∑
j ∈[n] α j |vj ⟩ 7→

∑
j ∈[n] α j |vj ⟩ |θ̄ j ⟩ such that |θ̄ j − θ j | ≤ ϵ for all j ∈ [n]

with probability 1 − 1/poly(n) in time O (TU log(n)/ϵ ), where TU is the time to implementU .

The resulting state after phase estimation reads ∑R
i=1 βi |λi ⟩C ⊗ |u

(i )
2 ⟩I ⊗ |u

(i )
3 ⟩I where λi := 2π

σ̃ 2
i
. In fact, it can

be shown that the probability amplitude of measuring the register C is maximized when k ∆t = ⌊ 2π
σ̃ 2
i
⌉, where ⌊·⌉

represents the nearest integer. Therefore, the small time step ∆t determines the accuracy of quantum phase estimation.
We chose ∆t = O ( 1

ϵ ), and according to Lemma 3 the total run time is O ( 1
ϵ 3Tρ̃ ) = O ( 1

ϵ 3 polylog(d1d2d3)). We also
perform controlled computation on the clock register to recover the original singular values of ρ χ̂ † χ̂ , and obtain
∑R
i=1 βi |σ 2

i ⟩C ⊗ |u
(i )
2 ⟩I ⊗ |u

(i )
3 ⟩I .

The next step is to perform quantum singular value projection on the quantum state obtained from the last step.
Notice that, classically, this step corresponds to projecting χ̂ onto the subspace χ̂ | · | ≥τ . In this way, observed entries
will be smoothed and unobserved entries get boosted from which we can infer unobserved triples (s, p, ?) in the test
dataset (see Theorem 2). Quantum singular value projection given the threshold τ > 0 can be implemented in the
following way. We first create a new register R using an auxiliary qubit and a unitary operation that maps |σ 2

i ⟩C ⊗ |0⟩R
to |σ 2

i ⟩C ⊗ |1⟩R only if σ 2
i < τ

2, otherwise |0⟩R remains unchanged. This step of projection gives the state
∑

i :σ 2
i ≥τ 2

βi |σ 2
i ⟩C ⊗ |u

(i )
2 ⟩I ⊗ |u

(i )
3 ⟩I ⊗ |0⟩R +

∑

i :σ 2
i <τ

2

βi |σ 2
i ⟩C ⊗ |u

(i )
2 ⟩I ⊗ |u

(i )
3 ⟩I ⊗ |1⟩R . (6)

The last step is to erase the clock register using reversible unitary operator U again; measure the new register R and
post-select on the state |0⟩R ; and trace-out the clock register C . This leads the projected state ∑

i :σ 2
i ≥τ 2

βi |u (i )2 ⟩I ⊗ |u
(i )
3 ⟩I .

In summary, implementing all aforementioned quantum operations, in fact, produces | χ̂+| · | ≥τ χ̂ | · | ≥τ χ̂
(1)
s ⟩I from the input

data state | χ̂ (1)s ⟩I , where
χ̂+| · | ≥τ χ̂ | · | ≥τ =

∑

i : |σi | ≥τ
(

1
σi
u
(i )
2 ⊗ u

(i )
3 ) ⊗ (σiu

(i )
2 ⊗ u

(i )
3 )⊺,
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Algorithm 1 Quantum Tensor SVD on Knowledge Graph
Input: Inference task (s, p, ?)
Output: Possible objects to the inference task
Require: Quantum access to χ̂ stored in a classical memory structure; threshold τ for the singular value projection
1: Create ρ χ̂ † χ̂ via qRAM
2: Create state | χ̂ (1)s ⟩I on the input data register I via qRAM
3: Prepare unitary operatorU and apply on | χ̂ (1)s ⟩I , where

U :=
K−1∑

k=0
|k ∆t⟩ ⟨k ∆t |C exp(−ik ∆t ρ̃ χ̂ † χ̂ )

4: Quantum phase estimation on the clock register C to obtain ∑R
i=1 βi |λi ⟩C ⊗ |u

(i )
2 ⟩I ⊗ |u

(i )
3 ⟩I

5: Controlled computation on the clock register C to obtain ∑R
i=1 βi |σ 2

i ⟩C ⊗ |u
(i )
2 ⟩I ⊗ |u

(i )
3 ⟩I

6: Singular value projection given the threshold τ to obtain ∑
i :σ 2

i ≥τ 2
βi |σ 2

i ⟩C ⊗ |u
(i )
2 ⟩I ⊗ |u

(i )
3 ⟩I ⊗ |0⟩R+

∑
i :σ 2

i <τ
2
βi |σ 2

i ⟩C ⊗

|u (i )2 ⟩I ⊗ |u
(i )
3 ⟩I ⊗ |1⟩R

7: Measure on the register R and post-select the state |0⟩R
8: Partial trace over the clock register C
9: Measure the resulting state ∑

i : |σi | ≥τ
βi |u (i )2 ⟩I ⊗ |u

(i )
3 ⟩I in the canonical basis of the input register I

10: Post-select on the predicate p from the sampled triples (s, ·, ·)

and ·+ represents pseudo-inverse. Now we can recover the ignored normalization factor in Eq. 6 and derive the

probability of a successful singular value projection, which is
| | χ̂+|·|≥τ χ̂ |·|≥τ χ̂

(1)
s | |2

| | χ̂ (1)
s | |2

. Finally, we measure this state in the
canonical basis to get the triples with subject s and post-select on the predicate p. This will return objects to the inference
(s, p, ?) after O ( 1

ϵ 3 polylog(d1d2d3)) times of repetitions. The quantum algorithm is summarized in Algorithm 1.

4 EXPERIMENTS WITH CLASSICAL TENSOR SVD

Kinship FB15k-237
Methods MR @3 @10 MR @3 @10
RESCAL 3.2 88.8 95.5 291.3 20.7 35.1
Tucker 2.9 89.8 95.0 276.1 20.9 35.7
ComplEx 2.2 90.0 97.7 242.7 25.2 39.7
Tensor SVD 2.7 84.8 96.6 365.5 19.4 35.8

Table 1. Mean Rank, Hits@3, Hits@10 scores of various models compared on the Kinship and FB15k-237 datasets.

At the present stage, universal quantum computers are limited by the coherence times of qubits and the fidelity
for two-qubit gates. Hence, we investigate the performance of classical tensor SVD on benchmark datasets: Kinship
and FB15k-237 Toutanova and Chen [33] as the verification of proposed quantum algorithm since it is essentially the
quantum counterpart of classical tensor singular value decomposition method. On the other hand, the experiments
can additionally verify the primary assumption that the tensor representation of a knowledge graph has a low-rank
approximation if the knowledge graph contains global patterns.
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Given a semantic triple (s, p, o), the value function of the tensor SVD is defined as ηspo =
R∑
i=1

σi usi upi uoi , where us,

up, uo are R-dimensional vector representations of the subject s, predicate p, and object o, respectively. Intuitively, the
value function indicates the class of a given semantic tensor in a binary classification with 1 representing genuine triple,
while 0 false triple. Note that the vector representations are read out from separate embedding matrices of subjects,
predicates, and objects, and the dimension R serves as a hyperparameter.

The model is optimized by minimizing the following objective function

L := 1
|Dtrain |

∑

(s,p,o)∈Dtrain

(yspo − ηspo)
2 + γ ( | |U ⊺

s Us − IR | |F + | |U ⊺
p Up − IR | |F + | |U ⊺

o Uo − IR | |F )

via stochastic gradient descent, which contains a mean square error loss and a penalization. The hyper-parameter γ
is used to encourage the orthonormality of embedding matrices for subjects, predicates, and objects as required by
the definition of tensor SVD. We compare the performance of tensor SVD model with other benchmark models, e.g.,
RESCAL Nickel et al. [24], Tucker, and ComplEx Trouillon et al. [34] in Table 1. In Fig. 1 we plot the training curves of
the tensor SVD on FB1k-237 using evaluation metrics Mean Rank and Hits@10 1. It shows that the tensor SVD performs
reasonably well for small rank, indicating a plausible assumption on the low-rank approximation of the complete
knowledge graph tensor. Hence we can estimate the projection threshold τ according to the Theorem 2.

Fig. 1. Mean Rank (left) and Hits@10 (right) scores versus epochs on the FB15k-237 data for different ranks.

5 CONCLUSION

In this work, we presented a quantum machine learning algorithm showing exponentially accelerated inference on
knowledge graphs. We first proved that the semantic tensor could approximately be reconstructed from the truncated
or projected tensor SVD of the subsampled tensor. Afterward, we constructed a quantum algorithm using quantum
principal component analysis and singular value projection. The resulting sample-based quantum machine learning
algorithm shows an exponential acceleration w.r.t. the dimensions of the semantic tensor. Due to technical limitations,
we study the performance of tensor SVD on classical resources. It shows comparable results to other benchmarking
algorithms, which ensures the performance of implementing the quantum tensor SVD on future quantum computers.

1Details of these evaluation metrics can be found in Bordes et al. [4]. For MR lower is better, while for Hits@10 higher is better.
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12 Yunpu Ma, Yuyi Wang, and Volker Tresp

A APPENDIX

A.1 Proof of Lemma 1

Lemma A 1 (Lemma 1 in the main text). If an algorithm returns an approximation of the binary semantic tensor χ ,

denoted χ̂ , with | |χ − χ̂ | |F ≤ ϵ | |χ | |F and ϵ < 1
2 , then the probability of a successful information retrieval from the top-n

returns of χ̂ is at least 1 − ( ϵ
1−ϵ )

n .

Proof. Since the reconstruction error of χ from χ̂ is upper bounded, we have the following inequality

(1 − ϵ ) | |χ | |F ≤ || χ̂ | |F ≤ (1 + ϵ ) | |χ | |F .

We can use this inequality of Frobenius norm to estimate the number of tripes which are in χ̂ but not in χ

ϵ2 | |χ | |2F ≥ ||χ − χ̂ | |2F =
∑

(i, j,k )∈χ∩(i, j,k )∈ χ̂
(1 − χ̂i jk )2 +

∑

(i, j,k )∈ χ̂∩(i, j,k )<χ
χ̂2
i jk +

∑

(i, j,k )∈χ∩(i, j,k )< χ̂
(1 − χ̂i jk )2

≥
∑

(i, j,k )∈ χ̂∩(i, j,k )<χ
χ̂2
i jk ,

where we use the notation (i, j,k ) ∈ χ̂ ∩ (i, j,k ) < χ to represent a semantic triple that can be observed in χ̂ but not
in χ , etc. Hence the probability of sampling a semantic triple from χ̂ that doesn’t exist in the original tensor is upper
bounded by

Pr[(i, j,k ) ∈ χ̂ ∩ (i, j,k ) < χ] =

√ ∑
(i, j,k )∈ χ̂∩(i, j,k )<χ

χ̂2
i jk

| | χ̂ | |F ≤ ϵ | |χ | |F
| | χ̂ | |F ≤

ϵ

1 − ϵ .
Without loss of generality, consider the retrieval of objects given the inference task (s, p, ?). The retrieval becomes
unsuccessful if the top-n returns from χ̂ do not contain the correct objects regarding to the query, which has probability
at most ( ϵ

1−ϵ )
n . Hence the probability of a successful information retrieval from χ̂ is at least 1 − ( ϵ

1−ϵ )
n .

A.2 Proof of Theorem 1 and Theorem 2

We first introduce and recap notations. Consider a N -way tensorA ∈ Rd1×d2×···×dN , which has a tensor singular value
decomposition with rank R. Let Ar = D ⊗1 U1 ⊗2 U2 · · · ⊗N UN denote the truncated r -rank tensor SVD of A with
Ui = [u (1)i , · · · ,u

(r )
i ] ∈ Rdi×r for i = 1, · · · ,N and D = diag(σ1, · · · ,σr ) ∈ Rr×···×r . Define the projection operators

PA,ri := I ⊗ · · · ⊗ UiUT
i ⊗ · · · ⊗ I with i = 1, · · · ,N and the product projections PA,r := ∏N

i=1 PA,ri . We have the
following Lemma for the projection operator.

Lemma A 2. Consider a tensorA, ifA has an exact tensor SVD with rank R then PA,rA = Ar . If the tensor SVD ofA
is obtained by minimizing | |A −

R∑
i=1

σiu
(i )
1 ⊗ u

(i )
2 ⊗ · · · ⊗ u

(i )
N | |F := | |A − AR | |F , s.t. ⟨u (i )k ,u

(j )
k ⟩ = δi j for k = 1, · · · ,N

with predefined rank R, then PA,rA = Ar still holds.

Proof. We first consider A has an exact tensor SVD. It means that A = D̃ ⊗1 Ũ1 · · · ⊗N ŨN , where D̃ =
diag(σ1, · · · ,σR ) and Ũi = [u (1)i ,u

(2)
i , · · · ,u

(R )
i ] for i = 1, · · · ,N . Hence

PA,rA = D̃ ⊗1 U1U
⊺
1 Ũ1 · · · ⊗N UNU

⊺
N

˜UN =
r∑

i=1
σiu

(i )
1 ⊗1 ⊗2u

(i )
2 · · ·u

(i )
N = Ar .

On the other hand, suppose thatA’s tensor SVD is found by minimizing the objective function. DefineA⊥R := A −AR ,
then we have ⟨A⊥R ,Ti ⟩ = 0 with Ti := u

(i )
1 ⊗ u

(i )
2 ⊗ · · · ⊗ u

(i )
N for i = 1, · · · ,R. To see this, suppose ∃j, such that
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⟨A⊥R ,Tj ⟩ = ϵ , 0. Then,

| |A −
R∑

i=1
σiTi − ϵTj | |2F = | |A −

R∑

i=1
σiTi | |2F − ϵ2 < | |A −

R∑

i=1
σiTi | |2F ,

which contradicts the fact thatAR is the global minimum of the objective function. Thus, PA,rA = PA,r (AR +A⊥R ) =
PA,rAR = Ar .

As we can see the projection operator PA,r projects the tensor onto the space spanned by Ti , · · · ,Tr . Lemma A 2
also implies that for any two tensors A and B we have the inequality

| |PA,rA||F ≥ ||PB,rA||F . (7)

In the next Lemma we give the lower bound of | |PB,rA||F . The proof is similar to the matrix case which is given
in Achlioptas and McSherry [1].

LemmaA 3. Given two tensorsA andB having tensor SVDwith ranksRA andRB , respectively. Suppose r ≤ min{RA,RB },
we have

| |PB,rA||F ≥ ||PA,rA||F − 2| |PA−B,r (A − B) | |F .

Proof.

| |PB,rA||F = | |PB,r (B + (A − B)) | |F ≥ ||PB,rB||F − ||PB,r (A − B) | |F
≥ ||PA,rB||F − ||PB,r (A − B) | |F = | |PA,r (A − (A − B)) | |F − ||PB,r (A − B) | |F
≥ ||PA,rA||F − ||PA,r (A − B) | |F − ||PB,r (A − B) | |F
≥ ||PA,rA||F − 2| |PA−B,r (A − B) | |F ,

where we used Eq. 7 multiple times.

Lemma A 3 indicates that if A and B are similar tensors, then the projection of tensor A onto the first r bases of
tensor B has only small error which is bounded by | |PA−B,r (A−B) | |F . Using Lemma A 3 we can derive the following
bound which will serve as the main Lemma for estimating the bound of reconstruction error.

LemmaA 4. Given two tensorsA andB having tensor SVDwith ranksRA andRB , respectively. Suppose r ≤ min{RA,RB },
we have

| |A − PB,rB||F

≤ 2| |A − Ar | |F + 2
√
| |Ar | |F | |A − Ar | |F + 2

√
| |Ar | |F | |PA−B,r (A − B) | |F + | |PA−B,r (A − B) | |F .
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14 Yunpu Ma, Yuyi Wang, and Volker Tresp

Proof.

| |A − PB,rB||F = | |A − PB,r (A − (A − B)) | |F ≤ ||A − PB,rA||F + | |PB,r (A − B) | |F
≤ ||PA,rA − PB,rA||F + | |A − PA,rA||F + | |PB,r (A − B) | |F
= | |Ar − PB,r ((A −Ar ) +Ar ) | |F + | |A − PA,rA||F + | |PB,r (A − B) | |F
≤ ||Ar − PB,rAr | |F + | |PB,r (A −Ar ) | |F + | |A − PA,rA||F + | |PB,r (A − B) | |F
≤ ||Ar − PB,rAr | |F︸                  ︷︷                  ︸

(⋆)

+2| |A − PA,rA||F + | |PA−B,r (A − B) | |F ,

for the last inequality we use Eq. 7 multiple times. Now we can apply Pythagorean theorem on the first r eigenbases of
tensor A to bound the term (⋆). Hence

(⋆) =
√
| |Ar | |2F − ||PB,rAr | |2F

(1)≤
√
| |Ar | |2F − ||Ar | |2F + 4| |Ar | |F | |PAr−B,r (Ar − B) | |F

= 2
√
| |Ar | |F | |PAr−B,r (Ar − B) | |F

≤ 2
√
| |Ar | |F [| |PAr−B,r (Ar − A) | |F + | |PAr−B,r (A − B) | |F ]

(2)≤ 2
√
| |Ar | |F [| |Ar − A||F + | |PA−B,r (A − B) | |F ]

(3)≤ 2
√
| |Ar | |F | |A − Ar | |F + 2

√
| |Ar | |F | |PA−B,r (A − B) | |F ,

where inequality (1) is given by Lemma A 3, (2) by Eq. 7 and (3) is according to √x + y ≤ √x + √y.

In summary, we have the following bound

| |A − PB,rB||F

≤ 2| |A − Ar | |F + 2
√
| |Ar | |F | |A − Ar | |F + 2

√
| |Ar | |F | |PA−B,r (A − B) | |F + | |PA−B,r (A − B) | |F .

Consider a tensor A which will be subsampled and rescaled. The resulting perturbed tensor can be written as
Â = A +N , where N is a noise tensor. In the following, we use Â to represent subsampled (sparsified) tensor, and
Âr the truncated r -rank tensor SVD of Â. Thus, according to Lemma A 4 the reconstruction error using the truncated
tensor SVD of the sparsified tensor Â is upper bounded by

| |A − Âr | |F ≤ 2| |A − Ar | |F + 2
√
| |Ar | |F | |A − Ar | |F + 2

√
| |Nr | |F | |Ar | |F + | |Nr | |F . (8)

To further estimate the bound of the error, we briefly recap the tensor subsampling and sparsification techniques. The
basic idea behind matrix/tensor sparsification algorithms is to neglect all small entries, and keep or amplify sufficiently
large entries, such that the original matrix/tensor can be reconstructed element-wise with bounded error. Matrix
sparsification was first studied in Achlioptas and McSherry [1], and tensor sparsification in Nguyen et al. [23].

Without further specification, we consider the following general sparsification and rescaling method used in the
main text:

Âi1i2 · · ·iN =

Ai1i2 ···iN

p with probability p > 0

0 otherwise,
(9)
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where the choose of the element-wise sample probability p will be discussed later. Note that the expectation values of
the entries of the sparsified tensor read E[Âi1i2 · · ·iN ] = Ai1i2 · · ·iN . Recall that the perturbation is defined asN = Â −A.
Thus, the entries of the noise tensor have zero mean E[Ni1i2 · · ·iN ] = 0 and variance Var[Ni1i2 · · ·iN ] = A2

i1i2 · · ·iN ( 1
p − 1).

To bound the norms of the noise tensor N we also need the following auxiliary lemmas.

Lemma A 5. Define two functions f1 (x ) = px + ln(1 − p + p e−x ) and f2 (x ) = px2/2. For any x ∈ (−∞,∞) and

0.22 ≤ p ≤ 1, we have f1 (x ) ≤ f2 (x ).

Proof. We first consider the case when x ≥ 0. First we have f1 (0) = f2 (0) and f ′1 (0) = f ′2 (0). Since

1 − p + p e−x = (
√

1 − p −
√

e−x )2 + 2
√
(1 − p)e−x − e−x + p e−x

≥ 2
√
(1 − p)e−x − (1 − p)e−x ,

we immediately have the following inequality for the second derivatives of f1 (x ) and f2 (x ),

f ′′1 (x ) =
p (1 − p)e−x

(1 − p + p e−x )2
≤ p (1 − p)e−x

(2
√
(1 − p)e−x − (1 − p)e−x )2

≤ p (1 − p)e−x
(
√
(1 − p)e−x )2

= p = f ′′2 (x ). (10)

We used the condition that 0 ≤ p ≤ 1 and e−x ≤ 1 for x ≥ 0 to derive the second inequality in Eq. 10. Hence
f1 (x ) ≤ f2 (x ) for any x ≥ 0 and 0 ≤ p ≤ 1.

Next, we consider the case when x < 0 for different values of p. To find the condition of non-negative p such that
f1 (x ) ≤ f2 (x ) we need to solve a transcendent inequality numerically. Hence in Figure 2 we plot f1 (x ) − f2 (x ) as a
function of x and p. From Figure 2 we can read the following numerical conditions

x = 0. p ≥ 0. x = −0.5 p ≥ 0.1185 x = −1 p ≥ 0.1772 x = −6 p ≥ 0.1787
x = −0.1 p ≥ 0.0310 x = −0.6 p ≥ 0.1337 x = −2 p ≥ 0.2184 x = −7 p ≥ 0.1652
x = −0.2 p ≥ 0.0577 x = −0.7 p ≥ 0.1469 x = −3 p ≥ 0.2196 x = −8 p ≥ 0.1531
x = −0.3 p ≥ 0.0809 x = −0.8 p ≥ 0.1585 x = −4 p ≥ 0.2082 x = −10 p ≥ 0.1331
x = −0.4 p ≥ 0.1010 x = −0.9 p ≥ 0.1685 x = −5 p ≥ 0.1934 x = −20 p ≥ 0.0794

Table 2. Numerical conditions for non-negative p such that f1 (x, p ) − f2 (x, p ) ≤ 0 for different values of x .

Table 2 and Figure 2 indicate that if p ≳ 0.22 we have f1 (x ) ≤ f2 (x ) for any x < 0 in the worst case. In summary,
f1 (x ) ≤ f2 (x ) for any x ∈ (−∞,∞) and 0.22 ≤ p ≤ 1.

Lemma A 6. Assume that the noise tensor N is generated by subsampling a binary tensor A ∈ {0, 1}d1×d2×···×dN

according to Eq. 9 with sample probability p ≳ 0.22. The spectral norm of N is bounded by

| |N ||σ ≤
√√√√

8
p

*.,log( 2N
N0

)
N∑

k=1
dk + log 2

δ
+/-, (11)

with probability at least 1 − δ .
Proof. Recall that the noise tensor entries Ni1i2 · · ·iN are independent random variables with zero mean and

Ni1i2 · · ·iN =

( 1
p − 1)Ai1i2 · · ·iN with probability p

−Ai1i2 · · ·iN with probability 1 − p.
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16 Yunpu Ma, Yuyi Wang, and Volker Tresp

Fig. 2. Plotting f1 (x, p ) − f2 (x, p ) for x = [−10, −9, −8, −7, −6, −5, −4, −3, −2] (left) and x =

[−1., −0.9, −0.8, −0.7, −0.6, −0.5, −0.4, −0.3, −0.2] (right).

We first estimate the quantity E[e−tNi1i2 ···iN x1i1x2i2 · · ·xNiN ] for any t ≥ 0 with xk ∈ Sdk−1, k = 1, · · · ,N . For the
sake of succinct notation we adopt a bijection of index and write Nl := Ni1i2 · · ·iN and xl := x1i1x2i2 · · · xNiN for
l = 1, · · · ,d1d2 · · ·dN . Then we have the following inequality via Lemma A 5

E[e−tNl xl ] = p e−t (
1
p −1)Al xl + (1 − p) etAl xl = etAl xl

(
1 − p + p e−

t
p Al xl

)

= epy+ln(1−p+pe−y ) ≤ e
py2

2 for p ≳ 0.22,

where y := tAl xl
p . Since Al ∈ [0, 1], we have E[e−tNl xl ] ≤ e

t2
2p x

2
l for any t ≥ 0. In other words, random variables Nlxl

are sub-Gaussian distributed if the sample probability fulfills p ≳ 0.22.
Hence

E[e−t
∑
l Nl xl ] = E[e−tN ⊗1x1 · · ·⊗N xN ] ≤

∏

l

e
t2
2p x

2
l

= e
t2
2p

∑d1
i1=1 x

2
1i1

∑d2
i2=1 x

2
2i2
· · ·∑dN

iN =1 x
2
NiN = e

t2
2p ,

where we use | |xk | |2 = 1, k = 1, · · · ,N .
Given non-negative auxiliary parameters λ and t , we have

Pr(N ⊗1 x1 · · · ⊗N xN ≤ −λ) = Pr(e−tN ⊗1x1 · · ·⊗N xN ≥ etλ )

≤ e−tλE[e−tN ⊗1x1 · · ·⊗N xN ]

≤ e
t2
2p −tλ ≤ e−

pλ2
2

by choosing t = pλ. Similarly we have the probability Pr(N ⊗1 x1 · · · ⊗N xN ≥ λ) ≤ e−
pλ2

2 . In summary,

Pr( |N ⊗1 x1 · · · ⊗N xN | ≥ λ) ≤ 2e−
pλ2

2 , (12)

if xk ∈ Sdk−1, k = 1, · · · ,N and p ≥ 0.22.
Now we are able to use the covering number argument proposed in Tomioka and Suzuki [32] to bound the spectral

norm. Let C1, · · · ,CN be the ϵ-covering of spheres Sd1−1, · · · , SdN −1 with covering number |Ck | upper bounded
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by ( 2
ϵ )

dk for k = 1, · · · ,N . Since the product space Sd1−1 × · · · × SdN −1 is closed and bounded, there is a point
(x⋆1 , · · · , x⋆N ) ∈ Sd1−1 × · · · × SdN −1 which maximizes the tensor-vector product N ⊗1 x1 · · · ⊗N xN . Hence

| |N ||σ = N ⊗1 (x̄1 + δ1) · · · ⊗N (x̄N + δN ), (13)

where x̄k + δk = x⋆k and x̄k ∈ Ck for k = 1, · · · ,N . According to the definition of ϵ-covering, we have | |δk | |2 ≤ ϵ .
Expanding Eq. 13 gives

| |N ||σ ≤ N ⊗1 x̄1 · · · ⊗N x̄N +
(
ϵN + ϵ2

(
N

2

)
+ · · · + ϵN

(
N

N

))

︸                                  ︷︷                                  ︸
(⋆)

| |N ||σ .

Furthermore, we choose ϵ = log 3
2

N and estimate the above (⋆) term as follows

(⋆) ≤ ϵN + (ϵN )2

2! + · · · + (ϵN )N

N ! ≤ eϵN − 1 = 1
2 .

Hence
| |N ||σ ≤ 2 max

x̄k ∈Ck ,k=1, · · · ,N
N ⊗1 x̄1 · · · ⊗N x̄N .

Using the property of ϵ-covering and Eq. 12 we can derive the following inequality for any λ ≥ 0

Pr( | |N ||σ ≥ λ) ≤ Pr(2 max
x̄k ∈Ck ,k=1, · · · ,N

N ⊗1 x̄1 · · · ⊗N x̄N ≥ λ)

≤
∑

x̄k ∈Ck ,k=1, · · · ,N
≤

( 2
ϵ

) N∑
k=1

dk
2e−

pλ2
8 .

Setting Pr( | |N ||σ ≥ λ) = δ , the spectral norm of the noise tensor N can be bounded by

| |N ||σ ≤
√√√√

8
p

*.,log( 2N
N0

)
N∑

k=1
dk + log 2

δ
+/-, N0 := log 3

2 (14)

with probability at least 1 − δ if the sample probability satisfies p ≥ 0.22.

Using | |Nr | |σ = | |N ||σ , and | |Nr | |F ≤
√
r | |Nr | |σ we can estimate the norms of the truncated tensor SVD of the

noise tensor.

Lemma A 7.

| |Nr | |σ ≤
√√√√

8
p

*.,log( 2N
N0

)
N∑

k=1
dk + log 2

δ
+/-

| |Nr | |F ≤
√√√√
r

8
p

*.,log( 2N
N0

)
N∑

k=1
dk + log 2

δ
+/-,

where N0 = log 3
2 and the sample probability should satisfy p ≥ 0.22.

Now we are able to determine the sample probability, such that the error ratio | |A−Âr | |F
| |A | |F is bounded.

Theorem A 1 (Theorem 1 in the main text). Let A ∈ {0, 1}d1×d2×···×dN . Suppose that A can be well approx-

imated by its r -rank tensor SVD Ar . Using the subsampling scheme defined in Eq. 9 with the sample probability
Manuscript submitted to ACM
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p ≥ max{0.22, 8r
(
log( 2N

N0
)
N∑
k=1

dk + log 2
δ

)
/(ϵ̃ | |A||F )2}, N0 = log 3

2 , then the original tensor A can be reconstructed

from the truncated tensor SVD of the subsampled tensor Â. The error satisfies | |A − Âr | |F ≤ ϵ | |A||F with probability at

least 1−δ , where ϵ is a function of ϵ̃ . Especially, ϵ̃ together with the sample probability controls the norm of the noise tensor.

Proof. Suppose tensorA can be well approximated by its r -rank tensor SVD, in a sense that | |A −Ar | | ≤ ϵ0 | |A||F
for some small ϵ0 > 0. According to Lemma A 7 if we want the Frobenius norm of the noise tensor Nr to be bounded

by ϵ̃ | |A||F with ϵ̃ > 0, then the sample probability should satisfy p ≥ {0.22,
8r

(
log( 2N

N0
)
N∑
k=1

dk+log 2
δ

)

(ϵ̃ | |A | |F )2 }.
Using Eq. 8 we have

| |A − Âr | |F ≤ 2ϵ0 | |A||F + 2
√
ϵ0 | |A||F + 2

√
ϵ̃ | |A||F + ϵ̃ | |A||F = ϵ | |A||F ,

where ϵ := 2(ϵ0 +
√
ϵ0 +
√
ϵ̃ ) + ϵ̃ .

Note that in the case where A is a two-dimensional matrix, the sample probability derived in Achlioptas and
McSherry [1] reads O ( d1+d2

| |A | |2F
). This corresponds the high-dimensional tensor case.

For the later use in the quantum algorithm, instead of considering low-rank approximation of the subsampled tensor,
we study the tensor SVD with projected singular values, denoted as Â | · | ≥τ . This notation denotes that subsampled
tensor Â is projected onto the eigenspaces with absolute singular values larger than a threshold. Later, it will be also
referred to as the projected tensor SVD of Â with threshold τ . The following theorem discusses the choice of sample
probability and threshold τ , such that the error ratio | |A−Â |·|≥τ | |F| |A | |F is bounded.

Theorem A 2 (Theorem 2 in the main text). Let A ∈ {0, 1}d1×d2×···×dN . Suppose that A can be well approximated

by its r -rank tensor SVDAr . Using the subsampling scheme defined in Eq. 9 with the sample probabilityp ≥ max{0.22,p1 :=
l1C0

(ϵ̃ | |A | |F )2 ,p2 := rC0
(ϵ̃ | |A | |F )2 ,p3 :=

√
2rC0

ϵ1ϵ̃ | |A | |F }, with C0 = 8
(
log( 2N

N0
)
∑N
k=1 dk + log 2

δ

)
, N0 = log 3

2 , where l1 denotes

the largest index of singular values of tensor Â with σl1 ≥ τ , and choosing the threshold as 0 < τ ≤
√

2C0
pϵ̃ , then the original

tensor A can be reconstructed from the projected tensor SVD of Â. The error satisfies | |A − Â | · | ≥τ | |F ≤ ϵ | |A||F with

probability at least 1−δ , where ϵ is a function of ϵ̃ and ϵ1. Especially, ϵ̃ together with p1 and p2 determine the norm of noise

tensor and ϵ1 together with p3 control the value of Â’s singular values that are located outside the projection boundary.

Proof. Suppose tensorA can be well approximated by its r -rank tensor SVD, in a sense that | |A −Ar | | ≤ ϵ0 | |A||F
for some small ϵ0 > 0. Define the threshold as τ := κ | |Â | |F > 0 for some κ > 0. Let l1 denote the largest index of
singular values of tensor Â with σl1 ≥ κ | |Â | |F , and let l2 denote the smallest index of singular values of tensor Â with
σl2 ≤ −κ | |Â | |F . If the threshold τ is large enough, we only need to consider the case l1 ≪ l2. Moreover, we have the
following constrain for l1 and κ:

l1 · σ 2
l1
≤ ||Âl1 | |2F ≤ ||Â | |2F ⇒ l1 · κ2 ≤ 1. (15)
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Suppose that the tensor Â can be well approximated by the tensor SVD with rank R which is written as ÂR . Note
that the rank R can be much larger than r . We first bound | |A − Â | · | ≥τ | |F as follows

| |A − Â | · | ≥τ | |F ≈ ||A − Â[0,l1]∪[l2,R] | |F = | |A − (ÂR − Âl2 + Âl1 ) | |F
≤ ||A − Âl1 | |F + | |Âl2 − ÂR | |F = | |A − Âl1 | |F + | |A − A + Âl2 − ÂR | |F
≤ ||A − Âl1 | |F + | |A − ÂR | |F + | |A − Âl2 | |F
≤ 3| |A − Âl1 | |F .

Assume l1 ≪ l2 and we only distinguish two cases: l2 ≫ l1 ≥ r and l1 < r ≪ l2.
Suppose l1 ≥ r , we have

| |A − Â | · | ≥τ | |F ≤ 3| |A − Âl1 | |F
(1)≤ 3(2| |A − Al1 | |F + 2

√
| |Al1 | |F | |A − Al1 | |F + 2

√
| |Nl1 | |F | |Al1 | |F + | |Nl1 | |F )

(2)≤ 3(2| |A − Ar | |F + 2
√
| |A||F | |A − Al1 | |F + 2

√
| |Nl1 | |F | |A||F + | |Nl1 | |F ),

where inequality (1) is given by Eq. 8 and (2) uses | |Al1 | |F ≤ ||A||F .
According to Lemma A 7 if we want the Frobenius norm | |Nl1 | |F to be bounded by ϵ̃ | |A||F with ϵ̃ > 0, then

the sample probability should satisfy p ≥ max{0.22,p1 := l1 C0
(ϵ̃ | |A | |F )2 } where the constant is defined as C0 :=

8
(
log( 2N

N0
)
N∑
k=1

dk + log 2
δ

)
(see Lemma A 7). Finally, under this sample condition we have | |A − Â | · | ≥τ | |F ≤ 3(2ϵ0 +

2√ϵ0 + 2
√
ϵ̃ + ϵ̃ ) | |A||F for l1 ≥ r .

Before considering the case l1 < r ≪ l2 we first estimate the Frobenius norm of subsampled tensor. | |Â | |2F can
be written as a sum of random variables Xl := Â2

l for l = 1, · · · ,d1d2 · · ·dN using a bijection of indices, namely
X := | |Â | |2F =

∑
l Xl . Moreover, E[Xl ] = 1

pA2
l and E[X ] = 1

p | |A||2F . According to the Chernoff bound

Pr( |X − E[X ]| ≥ δE[X ]) ≤ 2e−
E[X ]δ 2

3 for all 0 < δ < 1, (16)

we have Pr( | |Â | |2F ≥ 1+δ
p | |A||2F ) ≤ 2e−

| |A||2F δ
2

3p for δ ∈ (0, 1). Hence | |Â | |F ≤
√

2
p | |A||F is satisfied with high

probability.
In the following, we study the case l1 < r ≪ l2 and fix the sample probability p temporarily. It gives

| |A − Â | · | ≥τ | |F ≤ 3| |A − Âl1 | |F ≤ 3( | |A − Âr | |F + | |Âr − Âl1 | |F )
(1)≤ 3(2| |A − Ar | |F + 2

√
| |Ar | |F | |A − Ar | |F + 2

√
| |Nr | |F | |Ar | |F + | |Nr | |F + | |Âr − Âl1 | |F )

(2)≤ 3(2| |A − Ar | |F + 2
√
| |A||F | |A − Ar | |F + 2

√
| |Nr | |F | |A||F + | |Nr | |F +

√
2r
p
κ | |A||F

︸          ︷︷          ︸
(⋆)

), (17)

where inequality (1) is given by Eq. 8 and (2) uses the following estimation

| |Âr − Âl1 | |F ≤
√
r − l1τ ≤

√
rτ =

√
rκ | |Â | |F ≤

√
2r
p
κ | |A||F .
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Similarly, if we want the Frobenius norm | |Nr | |F to be bounded by ϵ̃ | |A||F with ϵ̃ > 0, then the sample probability
should satisfy p ≥ max{0.22,p1 := r C0

(ϵ̃ | |A | |F )2 } according to Lemma A 7. In order to choose κ, we fix the sample
probability p temporarily and use the constraint Eq. 15. It gives

l1 < r =
p (ϵ̃ | |A||F )2

C0
⇒ κ2 ≤ C0

p (ϵ̃ | |A||F )2
. (18)

We can further control the sum of singular values that are located outside the projection boundary by requiring
(⋆) ≤ ϵ1 | |A||F for some small ϵ1 > 0 in Eq. 17. Plug the above inequality of κ into the (⋆) term we obtain another
condition for the sample probability

√
2r
p
κ ≤ ϵ1 ⇒ p ≥

√
2rC0

ϵ1ϵ̃ | |A||F := p3. (19)

Therefore, in the case l1 < r ≪ l2 if p ≥ max{0.22,p2 =
rC0

(ϵ̃ | |A | |F )2 ,p3 =
√

2rC0
ϵ1ϵ̃ | |A | |F } we have | |A − Â | · | ≥τ | |F ≤ ϵ | |A||F ,

where ϵ := 3(2ϵ0 + 2√ϵ0 + 2
√
ϵ̃ + ϵ̃ + ϵ1).

In summary, combine two situations we have | |A − Â | · | ≥τ | |F ≤ ϵ | |A||F , where ϵ := 3(2ϵ0 + 2√ϵ0 + 2
√
ϵ̃ + ϵ̃ + ϵ1) if

the sample probability is chosen as

p ≥ max{0.22,p1 =
l1C0

(ϵ̃ | |A||F )2
,p2 =

rC0
(ϵ̃ | |A||F )2

,p3 =

√
2rC0

ϵ1ϵ̃ | |A||F }.

Moreover, the threshold can be determined from the following approximation after choosing the sample probability:

τ = κ | |Â | |F ≤
√

C0
pϵ̃2
| |Â | |F
| |A||F ≤

√
2C0
pϵ̃
,

where the inequality is derived by using Eq. 18 and | |Â | |F ≤
√

2
p | |A||F .

The above estimation on the error bound in the case of projected tensor SVD is crucial for the quantum algorithm
since quantum singular value projection depends only on the positive threshold defined for the singular values.

A.3 Data Structure

Theorem A 3. Prakash [27] Let x ∈ RR be a real-valued vector. The quantum state |x⟩ = 1
| |x | |2

R∑
i=1

xi |i⟩ can be prepared
using ⌈log2 R⌉ qubits in time O (log2 R).

Theorem A 3 claims that there exist a classical memory structure and a quantum algorithm which can load classical
data into a quantum state with exponential acceleration. Figure 3 illustrates a simple example. Given an R = 4
dimensional real-valued vector, the quantum state |x⟩ = x1 |00⟩+x2 |01⟩+x3 |10⟩+x4 |11⟩ can be prepared by querying
the classical memory structure and applying 3 controlled rotations.

Let us assume that x is normalized, namely | |x| |2 = 1. The quantum state |x⟩ is created from the initial state |0⟩ |0⟩
by querying the memory structure from the root to the leaf. The first rotation is applied on the first qubit, giving

(cosθ1 |0⟩ + sinθ1 |1⟩) |0⟩ = (
√
x2

1 + x
2
2 |0⟩ +

√
x2

3 + x
2
4 |1⟩) |0⟩ ,
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where θ1 := tan−1
√

x 2
3+x

2
4

x 2
1+x

2
2
. The second rotation is applied on the second qubit conditioned on the state of qubit 1. It

gives √
x2

1 + x
2
2 |0⟩

1√
x2

1 + x
2
2

( |x1 | |0⟩ + |x2 | |1⟩) +
√
x2

3 + x
2
4 |1⟩

1√
x2

3 + x
2
4

( |x3 | |0⟩ + |x4 | |1⟩).

The last rotation loads the signs of coefficients conditioned on qubits 1 and 2. In general, an R-dimensional real-valued
vector needs to be stored in a classical memory structure with ⌈log2 R⌉ + 1 layers. The data vector can be loaded into a
quantum state using O (log2 R) non-trivial controlled rotations.

| |x| |2

x2
1 + x

2
2

x2
1

sgn(x1)

x2
2

sgn(x2)

x2
3 + x

2
4

x2
3

sgn(x3)

x2
4

sgn(x4)

Fig. 3. Classical memory structure with quantum access for creating the quantum state |x ⟩ = x1 |00⟩ + x2 |01⟩ + x3 |10⟩ + x4 |11⟩.

The above simple example of quantum Random Access Memory for generating quantum state from a real-valued
vector can be generalized to quantum access of other more complicated data structures, e.g., matrices, tensors.

A.4 Simulation of the unitary operator e−it ρ̃ χ̂ † χ̂

Before proving Lemma A 9 of unitary operator simulation in the main text we give the following auxiliary Lemma. The
difficulty of simulating a unitary operator e−iρt up to time t is to efficiently exponentiate the density matrix ρ. In Lloyd
[21] Lloyd suggested an efficient algorithm for Hamiltonian simulation using a tensor product structure. In particular,
the unitary operator e−iρ∆t with small simulation time ∆t can be constructed via a simple swap operator.

Lemma A 8. Let ρ and σ be density matrices, and S a swap operator such that S |x⟩ |y⟩ = |y⟩ |x⟩. Then for an infinitesimal

simulation step ∆t we have e−iρ∆tσeiρ∆t = tr1{e−iS∆t ρ ⊗ σeiS∆t } up to the first order of ∆t , where tr1 is a partial trace

applied on the first subsystem of the tensor product structure.

Proof. First note that density matrices ρ and σ can be written in the eigenbasis as ρ = ∑
i
|ρi ⟩ ⟨ρi | and σ = ∑

j
|σj ⟩ ⟨σj |.

Moreover, for ∆t → 0 we have approximations e−iS∆t ≈ cos∆t I − i sin∆t S and eiS∆t ≈ cos∆t I + i sin∆t S , where I
denotes the identity operator.

Hence

tr1{e−iS∆t ρ ⊗ σeiS∆t } =tr1{(cos∆t I − i sin∆t S ) (
∑

i j
|ρi ⟩ |σj ⟩ ⟨ρi | ⟨σj |) (cos∆t I + i sin∆t S )}

=tr1{
∑

i j
[cos2 ∆t |ρi ⟩ |σj ⟩ ⟨ρi | ⟨σj | − i sin∆t cos∆tS |ρi ⟩ |σj ⟩ ⟨ρi | ⟨σj |

+ i cos∆t sin∆t |ρi ⟩ |σj ⟩ ⟨ρi | ⟨σj | S† + sin2 ∆tS |ρi ⟩ |σj ⟩ ⟨ρi | ⟨σj | S†]}
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Recall that S |ρi ⟩ |σj ⟩ = |σj ⟩ |ρi ⟩ and ⟨ρi | ⟨σj | S† = ⟨σj | ⟨ρi |. Applying the swap operator S gives

tr1{e−iS∆t ρ ⊗ σeiS∆t } ≈ σ − i∆t[
∑

i j
⟨ρi |σj ⟩ |ρi ⟩ ⟨σj | −

∑

i j
⟨σj |ρi ⟩ |σj ⟩ ⟨ρi |] + O (∆t2),

where we used cos∆t ≈ 1 and sin∆t ≈ ∆t as ∆t → 0. The commutator of two operators is defined as

[ρ,σ ] := ρσ − σρ =
∑

i j
⟨ρi |σj ⟩ |ρi ⟩ ⟨σj | −

∑

i j
⟨σj |ρi ⟩ |σj ⟩ ⟨ρi |

and we finally have
tr1{e−iS∆t ρ ⊗ σeiS∆t } = σ − i∆t[ρ,σ ] + O (∆t2). (20)

On the other hand, applying the limits lim
∆t→0

e−iρ∆t = I − iρ∆t and lim
∆t→0

eiρ∆t = I + iρ∆t we can derive

e−iρ∆tσeiρ∆t ≈ (I − i∆t
∑

i
|ρi ⟩ ⟨ρi |)

∑

j
|σj ⟩ ⟨σj | (I + i∆t

∑

i
|ρi ⟩ ⟨ρi |)

=σ − i∆t[ρ,σ ] + O (∆t2).

In summary, we have e−iρ∆tσeiρ∆t = tr1{e−iS∆t ρ ⊗ σeiS∆t } up to th first order of ∆t . The above proof indicates
that we can construct the unitary operator e−iρt and act on the density σ by repeatedly applying simple operations
e−iS∆t ≈ I − iS∆t on the tensor product state ρ ⊗ σ in n = t

∆t steps.

Lemma A 9 (Lemma 3 in the main text). Unitary operator e−it ρ̃ χ̂ † χ̂ can be applied to any quantum state, where

ρ̃ χ̂ † χ̂ :=
ρ χ̂ † χ̂
d2d3

, up to simulation time t . The total number of steps for simulation is O ( t 2
ϵ Tρ ), where ϵ is the desired accuracy,

and Tρ is the time for accessing the density matrix.

Proof. The proof uses the dense matrix exponentiation method proposed in Rebentrost et al. [29] which was
developed from Lloyd [21]. Recall that ρ χ̂ † χ̂ =

∑
i2i3i′2i

′
3

Ci2i3i′2i′3 |i2i3⟩ ⟨i ′2i ′3 |, where Ci2i3i′2i′3 =
∑
i1
χ̂†i1,i2i3 χ̂i1,i′2i′3 . For the

sake of simplicity, we rewrite ρ χ̂ † χ̂ as A ∈ RN 2×N 2 , where N := d2d3. Suppose that the unitary operator needs to be
applied on the quantum state |x⟩ whose density matrix reads σ := |x⟩ ⟨x |. Then follow the method in Rebentrost et al.
[29], we first create a modified swap operator

SA =
N∑

j,k=1
Ajk |k⟩ ⟨j | ⊗ |j⟩ ⟨k | ,

and another auxiliary density matrix µ = |⃗1⟩ ⟨⃗1|, with |⃗1⟩ := 1√
N

N∑
k=1
|k⟩. Consider the evolution of the system µ ⊗ σ

under the unitary operator e−iSA∆t for a small step ∆t . With Lemma A 8 it can be shown that

tr1{e−iSA∆t µ ⊗ σeiSA∆t } ≈ e−i
A
N ∆tσei

A
N ∆t .

Moreover, repeated applications of e−iSA∆t , say n times with t := n∆t , on the bigger system µ ⊗σ can give e−i
A
N tσei

A
N t

with is the density matrix of the quantum state e−i
A
N t |x⟩. In other words, we can simulate the unitary operator e−it ρ̃ χ̂ † χ̂

with ρ̃ χ̂ † χ̂ :=
ρ χ̂ † χ̂
d2d3

.
Furthermore, Rebentrost et al. [29] shows that given t and the required accuracy ϵ , the step size ∆t should be small

enough, such that n = O ( t 2
ϵ ). In addition, the quantum access for obtaining the density ρ χ̂ † χ̂ and creating the modified

swap operator requires Tρ = O (polylog(d1d2d3)) steps. In summary, the total run time for simulating e−it ρ̃ χ̂ † χ̂ |x⟩ is
nTρ = O ( t 2

ϵ polylog(d1d2d3)).
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Abstract Estimating individual treatment effects from data of randomized experiments is
a critical task in causal inference. The Stable Unit Treatment Value Assumption (SUTVA)
is usually made in causal inference. However, interference can introduce bias when the
assigned treatment on one unit affects the potential outcomes of the neighboring units. This
interference phenomenon is known as spillover effect in economics or peer effect in social
science. Usually, in randomized experiments or observational studies with interconnected
units, one can only observe treatment responses under interference. Hence, the issue of how
to estimate the superimposed causal effect and recover the individual treatment effect in
the presence of interference becomes a challenging task in causal inference. In this work,
we study causal effect estimation under general network interference using Graph Neural
Networks, which are powerful tools for capturing node and link dependencies in graphs.
After deriving causal effect estimators, we further study intervention policy improvement on
the graph under capacity constraint. We give policy regret bounds under network interference
and treatment capacity constraint. Furthermore, a heuristic graph structure-dependent error
bound for Graph Neural Network-based causal estimators is provided.

Keywords Causal Inference · Causal Interference · Graph Neural Network

1 Introduction

Common assumptions made in causal inference are the consistency and interference-free
assumptions, i.e., the Stable Unit Treatment Value Assumption (SUTVA) [33], under which
the individual treatment response is consistently defined and unaffected by variations in other
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individuals. However, this assumption is problematic under a social network setting since
peers are not independent; “no man is an island,” as written by the poet John Donne.

Interference occurs when the treatment response of an individual is influenced through
the exposure to its social contacts’ treatments or affected by its social neighbors’ outcomes
through peer effects [5, 40]. For instance, the treatment effect of an individual under a vacci-
nation against an infectious disease might influence the health conditions of its surrounding
individuals; or a personalized online advertisement might affect other individuals’ purchase
of the advertised item through opinion propagation on social networks. Separating individ-
ual treatment effect and peer effect in causal inference becomes a difficult problem under
interference since, in randomized experiments or observational studies, one can only observe
the superposition of both effects. The issue of how to estimate causal responses and make
optimal policies on the network is studied in this work.

One of the main objectives of treatment effect estimation is to make better treatment
decision rules for individuals according to their characteristics. Population-averaged utility
functions have been studied in [27, 3, 19, 20]. In those publications, a policy learner can adapt
and improve its decision rules through the utility function. However, interactions among
units are always ignored. On the other hand, a policy learner usually faces a capacity or
budget constraint, as studied in [22]. Therefore, in this work, we develop a new type of utility
function defined on interconnected units and investigate provable policy improvement with
budget constraints.

1.1 Related Work

Causal inference with interference was studied in [15, 39, 26]. However, the assumption of
group-level interference, having partial interference within the groups and independence
across different groups, is often invalid. Hence, several works focus on unit-level causal effects
under cross-unit interference and arbitrary treatment assignments, such as [2, 9, 29, 42].
Other approaches for estimating causal effects on networks use graphical models, which are
studied in [1, 38].

1.2 Notations and Previous Approaches

Let G = (N , E , A) denote a directed or undirected graph with a node set N of size n, an
edge set E , and an adjacency matrix A ∈ {0, 1}n×n. For a node, or unit, i ∈ N , let Ni
indicate the set of neighboring nodes with Aij = 1 excluding the node i itself, and let
Xi denote the covariate vector of node i which is defined in the space χ. Let’s first focus
on the Neyman–Rubin causal inference model [32, 36]. Let Ti be a binary variable with
Ti = 1 indicating that node i is in the treatment group, and Ti = 0 if i is in the control
group. Moreover, let Yi be the outcome variable with Yi(Ti = 1) indicating the potential
outcome of i under treatment Ti = 1 and Yi(Ti = 0) the potential outcome under control
Ti = 0. Moreover, we use TNi and YNi to represent the treatment assignments and potential
outcomes of neighboring nodes Ni, and T the entire treatment assignments vector.

In the SUTVA assumption, the individual treatment effect on node i is defined as the
difference between outcomes under treatment and under control, i.e., τ(Xi) := E[Yi(Ti =
1)− Yi(Ti = 0)|Xi]. To estimate treatment effects under network interference, an exposure
variable G is proposed in [40, 5, 2]. The exposure variable Gi is a function of neighboring
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treatments TNi . For instance, Gi can be a variable indicating the level of exposure to the

treated neighbors, i.e., Gi :=
∑
j∈Ni Tj
|Ni| .

Under the assumption that the outcome only depends on the individual treatment and
neighborhood treatments, [9] defines an individual treatment effect under the exposure
Gi = g as

τ(Xi, Gi = g) := E[Yi(Ti = 1, Gi = g)− Yi(Ti = 0, Gi = g)|Xi]. (1)

Moreover, the spillover effect under the treatment Ti = t and the exposure Gi = g is defined
as

δ(Xi, Ti = t, Gi = g) := E[Yi(Ti = t, Gi = g)− Yi(Ti = t, Gi = 0)|Xi].

Treatment and spillover effects are then estimated using generalized propensity score (GPS)
weighted estimators.

In general, the outcome model can be more complicated, depending on network topol-
ogy and covariates of neighboring units. [29] investigates more general causal structural
equations under dimension-reducing assumption, and the potential outcome reads Yi,t :=
fY (Xi, sX({Xj |j ∈ Ni}), Ti, sT ({Tj |j ∈ Ni})), where sX and sT are summary functions
of neighborhood covariates and treatment, e.g., they could be the summation or average
of neighboring treatment assignments and covariates, respectively. Motivated by the above
causal structural equation model, we incorporate Graph Neural Network (GNN)-based causal
estimators with appropriate covariates and treatment aggregation functions as inputs. GNNs
can learn and aggregate feature information from distant neighbors, which makes it a right
candidate for capturing the spillover effect given by the neighboring units.

Contributions This work has four major contributions. First, we propose GNN-based
causal estimators for causal effect prediction and to recover direct treatment effect under
interference (Section 2). Second, we define a novel utility function for policy optimization on
a network and derive a graph-dependent policy regret bound (Section 3). Third, we provide
an error bound for the GNN-based causal estimators (Section 3 and Appendix F). Last, we
conduct extensive experiments to verify the superiority of GNN-based causal estimators
and show that the accuracy of a causal estimator is crucial for finding the optimal policy
(Section 4).

2 GNN-based Causal Estimators

In this section, we introduce our Graph Neural Network-based causal effect estimators under
general network interference.

2.1 Structural Equation Model

Given the graph G, the covariates of all units in the graph X, and the entire treatment
assignments vector T, the structural equation model describing the considered data generation
process is given as follows

Ti = fT (Xi)

Yi = fY (Ti,X,T,G) + εYi , (2)
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for units i = 1, . . . , n. This structural equation model encodes both the observational studies
and the randomized experiments setting. In observational studies, e.g., on the Amazon
dataset (see Section 4.1), the treatment Ti depends on the covariate Xi and the unknown
specification of fT , or even on the neighboring units under network interference. In the
setting of the randomized experiment, e.g., experiments on Wave1 and Pokec datasets, the
treatment assignment function is specified as fT = Bern(p), where p represents predefined
treatment probability. Function fY characterizes the causal response, which depends on, in
addition to Xi and Ti, the graph and neighboring covariates and treatment assignments. If
only influences from first-order neighbors are considered, the response generation can be
specified as Yi = fY (Ti,XNi ,TNi ,G) + εYi . When the graph structure is given and fixed,
we leave out G in the notation.

2.2 Distribution Discrepancy Penalty

Even without network interference, a covariate shift problem of counterfactual inference is
commonly observed, namely the factual distribution Pr(X, T ) differs from the counterfactual
distribution Pr(X, 1− T ). To avoid biased inference, [18, 35] propose a balancing counter-
factual inference using domain-adapted representation learning. Covariate vectors are first
mapped to a feature space via a feature map Φ. In the feature space, treated and control pop-
ulations are balanced by penalizing the distribution discrepancy between Pr(Φ(X)|T = 0)
and Pr(Φ(X)|T = 1) using the Integral Probability Metric. This approach is equivalent
to finding a feature space such that the treatment assignment T and representation Φ(X)
become approximately disentangled, namely Pr(Φ(X), T ) ≈ Pr(Φ(X))P (T ). We use the
Hilbert-Schmidt Independence Criterion (HSIC) as the dependence test in the feature space.
The empirical HSIC using a Gaussian RBF kernel is written as ˆHSICKσ . According to [11],
given samples {Φ(Xi), Ti}ni=1, the empirical estimation of HSIC in Gaussian kernel Kσ
reads

ˆHSICKσ =
1

n2

n∑

i,j=1

Kσ(Φ(Xi), Φ(Xj))Kσ(Ti, Tj)

+
1

n4

n∑

i,j,k,l=1

Kσ(Φ(Xi), Φ(Xj))Kσ(Tk, Tl)−
2

n3

n∑

i,j,k=1

Kσ(Φ(Xi), Φ(Xj))Kσ(Ti, Tk).

Note that incorporating the feature map and the representation balancing penalty is essential
to tackle the imbalanced assignments in observational studies, e.g., on the Amazon dataset
(see Section 4.1).

2.3 Graph Neural Networks

Different GNNs are employed and compared in our model, and we briefly provide a review.
Graph Convolutional Network (GCN) [21] The graph convolutional layer in GCN is

defined as
X(l+1) = σ

(
D̂−1/2ÂD̂−1/2X(l)W(l)

)
,

where X(l+1) is the hidden output from the l-th layer with X(0) being the input features
matrix, and σ is the activation function, e.g., ReLU. The modified adjacency Â with inserted
self-connections is defined as Â := A+ I, and D̂ denotes the node degree matrix of Â.
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GraphSAGE GraphSAGE [12] is an inductive framework for calculating node em-
beddings and aggregating neighbor information. The mean aggregation operator of the
GraphSAGE in this work reads

X
(l+1)
i = norm

(
meanj∈Ni∪{i}X

(l)
j W(l)

)
,

with norm being the normalization operator. Traditional GCN algorithms perform spectral
convolution via eigen-decomposition of the full graph Laplacian. In contrast, GraphSAGE
computes a localized convolution by aggregating the neighborhood around a node, which
resembles the simulation protocol of linear treatment response with spillover effect for semi-
synthetic experiments (see Section 4.1). Due to the resemblance, a better causal estimator is
expected when using GraphSAGE as the aggregation function (see Appendix F.3 for more
heuristic motivations.).

1-GNN 1-GNN [28] is a variation of GraphSAGE, which performs separate transfor-
mations of node features and aggregated neighborhood features. Since the features of the
considered unit and its neighbors contribute differently to the superimposed outcome, it is
expected that the 1-GNN is more expressive than GraphSAGE. The convolutional operator
of 1-GNN has the form

X
(l+1)
i = σ

(
X

(l)
i W

(l)
1 +meanj∈NiXjW

(l)
2

)
. (3)

Fig. 1: Treated and control populations have different distributions in the covariate vectors
space. Through a map Φ and distribution discrepancy term HSIC, features and treatment
assignments become disentangled in the feature space. On top of Φ, we apply GNNs, where
Φ and GNNs have 2 or 3 hidden layers, depending on the dataset. After applying GNNs, for
each node i, the concatenation [Φ(Xi), GNN(Φ(X),T)i, Gi] is fed into outcome prediction
network h1 or h0 depending on the treatment assignment. The loss function consists of
outcome prediction error and the distribution discrepancy in the feature space.

2.4 GNN-based Causal Estimators

We use the percentage of treated neighboring nodes, i.e., the random variable G, as the
treatment summary function, and the output of GNNs as the covariate aggregation function.
The concatenation [Φ(Xi), GNN(Φ(X),T)i, Gi] of node i is then fed into the outcome
prediction network h1 or h0, depending on Ti, where h1 and h0 are neural networks with
a scalar output. Note that GNN(Φ(X),T)i indicates that the treatment vector T is also
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a GNNs’ input. During the implementation, the treatment assignment vector masks the
covariates, and GNN models use the masked covariates TiXi, for i = 1, . . . , n, as inputs. In
summary, given (Φ(X)i, Ti, Gi, Yi) and graph G, the loss function for GNN-based estimators
is defined as

Lest :=MSE (hTi([Φ(Xi), GNN(Φ(X),T)i, Gi]), Yi) + κ ˆHSICKσ ,

where κ and σ are tunable hyperparameters. Our model is illustrated in Fig. 1. During the im-
plementation, we incorporate two types of empirical representation balancing: balancing the
outputs of representation network Φ to tackle imbalanced assignments, denoted as ˆHSIC

Φ
,

and balancing the outputs of the GNN representations to tackle imbalanced spillover exposure,
denoted as ˆHSIC

GNN
.

At this point, it is necessary to emphasize that only the causal responses of a part
of the units in N are relevant to the models. The GNN-based models use this part of
causal responses, the network structure G, and covariates X as input, and can predict the
superimposed causal effects of the remaining units. Note that for GNN-based nonparametric
models, the identifiability of causal response is guaranteed under reasonable assumptions
similar to those given in Section 3.2 of [29]. The proof is relegated to Appendix A.

Notice that the outcome prediction networks h0 and h1 are trained to estimate the
superposition of individual treatment effect and spillover effect. Still, after fitting the observed
outcomes, we expect to extract the non-interfered individual treatment effect from the causal
estimators by assuming that the considered unit is isolated. An individual treatment effect
estimator can be defined similarly to Eq. 1. To be more specific, the individual treatment
effect of unit i is expected to be extracted from GNN-based estimators by setting its exposure
to Gi = 0 and its neighbors’ covariates to 0, namely 1

τ̂(Xi) = h1([Φ(Xi),0, 0])− h0([Φ(Xi),0, 0]). (4)

3 Intervention Policy on Graph

After obtaining the treatment effect estimator, we develop an algorithm for learning interven-
tion assignments to maximize the utility on the entire graph; the learned rule for assignment
is called a policy. As suggested in [3], without interference a utility function is defined as

A(π) = E[(2π(Xi)− 1)(Yi(Ti = 1)− Yi(Ti = 0))] = E[(2π(Xi)− 1)τ(Xi)].

An optimal policy π̂n is obtained by maximizing the n-sample empirical utility function
Âτn(π) :=

1
n

∑n
i=1(2π(Xi) − 1)τ̂(Xi) given the individual treatment response estimator

τ̂ , i.e., π̂n ∈ argmaxπ∈ΠÂ
τ
n(π), where Π indicates the policy function class. Notably, π̂n

tends to assign treatment to units with positive treatment effect and control to units with
negative responses.

Now, consider the outcome variable Yi under network interference. For notational simplic-
ity and clarity of the later proof, we assume first-order interference from nearest neighboring
units, hence the outcome variable can be written as Yi(Ti,XNi , TNi). Inspired by the defini-
tion of A(π), the utility function of a policy π under interference is defined as

S(π) := E[(2π(Xi)− 1)(Yi(Ti = 1,XNi , TNi = π(XNi))− Yi(Ti = 0,G = ∅))], (5)

1 Spillover effect can be extracted similarly.
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where Yi(Ti = 0,G = ∅) with an empty graph represents the individual outcome under
control without any network influence. 2 After some manipulations, S(π) equals the sum of
individual treatment effect and spillover effect, i.e.,

S(π) = E[(2π(Xi)− 1)(τi + δi(π))],

where

τi := E[Yi(Ti = 1,G = ∅)− Yi(Ti = 0,G = ∅)|Xi]

δi(π) := E[Yi(Ti = 1,XNi , TNi = π(XNi))− Yi(Ti = 1,G = ∅)|Xi,XNi ].

To be more specific, τi is the conventional individual treatment effect, while δi(π) represents
the spillover effect under the policy π and when Ti = 1. Due to the network-dependency
in the spillover effect, an optimal policy will not merely treat units with positive individual
treatment effect but also adjust its intervention on the entire graph to maximize the spillover
effects.

Next, we establish guarantees for the regret of learned intervention policy. Let τ̂i and
δ̂i(π) denote the estimator of τi and δi(π), respectively. Given the true models τi and δi(π),
let

Sπ,δn (π) :=
1

n

n∑

i=1

(2π(Xi)− 1)(τi + δi(π))

be the empirical analogue of S(π), and let

Ŝπ,δn (π) :=
1

n

n∑

i=1

(2π(Xi)− 1)(τ̂i + δ̂i(π)) (6)

be the empirical utility with estimators plugged in. Using learned causal estimators, an
optimal intervention policy from the empirical utility perspective can be obtained from π̂n ∈
argmaxπ∈Π Ŝ

π,δ
n (π). Moreover, the best possible intervention policy from the functional

class Π with respect to the utility S(π) is written as π? := argmaxπ∈ΠS(π), and the policy
regret between π? and π̂n is defined as

R(π̂n) := S(π?)− S(π̂n).

Throughout the estimation of policy regret, we maintain the following assumptions.

Assumption 1.
(BO) Bounded treatment and spillover effects: There exist 0 < M1,M2 < ∞ such that
the individual treatment effect satisfies |τi| ≤ M1 and the spillover effect satisfies ∀π ∈
Π, |δi(π)| ≤M2.
(WI) Weak independence assumption: For any node indices i and j, the weak independence
assumption assumes that Xi⊥Xj if Aij = 0, or @k with Aik = Akj = 1.
(LIP) Lipschitz continuity of the spillover effect w.r.t. policy: Given two treatment policies π1
and π2, for any node i the spillover effect satisfies |δi(π1)− δi(π2)| ≤ L||π1−π2||∞, where
the Lipschitz constant satisfies L > 0 and ||π1 − π2||∞ := supX∈χ |π1(X)− π2(X)|.
(ES) Uniformly consistency: after fitting experimental or observational data on G, individual
treatment effect estimator satisfies

1

n

n∑

i=1

|τi − τ̂i| <
ατ

nζτ
,

2 Hence XNi and TNi are omitted in the expression.
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and spillover estimator satisfies

∀π ∈ Π, 1

n

n∑

i=1

|δi(π)− δ̂i(π)| <
αδ
nζδ

(7)

where ατ > 0 and αδ > 0 are scaling factors that characterize the errors of estimators. ζτ
and ζδ control the convergence rate of estimators for individual treatment effect and spillover
effect, respectively, which satisfy 0 < ζτ , ζδ < 1.

Notice that the (ES) assumption requires consistent estimators of the individual treatment
effect and the spillover effect, which is the fundamental problem of causal inference with
interference. In our GNN-based model, these empirical errors are particularly difficult to
estimate due to the lack of proper theoretical tools for understanding GNNs. To grasp how
these GNN-based causal estimators are influenced by the network structure and network
effect, in Appendix F.3, we study a particular class of GNNs, which is inspired by the
surrogate model of nonlinear graph neural networks and have the following claim.

Claim 1. GNN-based causal estimators restricted to a particular class for predicting the

superimposed causal effects have an error bound O(
√

D3
max lnDmax

n ), where Dmax :=

1 + dmax + d2max and dmax is the maximal node degree in the graph.

The above claim indicates that an accurate and consistent causal estimator is difficult with
large network effects. Worse case is that the 1√

n
convergence rate in the (ES) assumption

becomes unreachable when dmax(n) depends on the number of units. The exact convergence
rate of causal estimators is impossible to derive since it depends on the topology of the net-
work, and it beyond the theoretical scope of this work. Therefore, we assume the coefficients
ζτ and ζδ to characterize the convergence rates, which is line with the assumption made in [3]
(see Assumption 2 of [3]).

Besides, (LIP) assumes that the change of received spillover effect is bounded after modi-
fying the treatment assignments of one unit’s neighbors. We will use hypergraph techniques,
instead of chromatic number arguments, to give a tighter bound of policy regrets. Another
advantage is that the weak independence (WI) assumption can be relaxed to support longer
dependencies on the network. However, by relaxing (WI), the power of dmax in Theorem 1
and 5 needs to be modified correspondingly. For example, if we assume a next-nearest
neighbors dependency of covariates, i.e., Xi ⊥ Xj for j 6∈ i ∪ Ni ∪ N (2)

i , then the term
d2max in Theorem 1 and 5 needs to be modified to d4max.

Under Assumption 3, we can have the following bound.

Theorem 1. By Assumption 3, for any small ε > 0, the policy regret is bounded byR(π̂n) ≤
2
(
ατ
nζτ

+ αδ
nζδ

)
+ 2ε with probability at least

1−N
(
Π,

ε

4(2M1 + 2M2 + L)

)
exp

(
− nε2

32(d2max + 1)(M1 +M2)2

)

where N
(
Π, ε

4(2M1+2M2+L)

)
indicates the covering number 3 on the functional class Π

with radius ε
4(2M1+2M2+L) , and dmax is the maximal node degree in the graph G.

3 The covering number characterizes the capacity of a functional class. Definition is provided in the
Appendix F.1
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Proof. Under (WI) and (BO), we can use concentration inequalities of networked random
variables defined on a hypergraph, which is derived from graph G to bound the convergence
rate. Moreover, the Lipschitz assumption (LIP) allows an estimation of the covering number
of the policy functional class Π (see Appendix F.1).

Suppose that the policy functional class Π is finite and its capacity is bounded by |Π|.
According to Theorem 1, with probability at least 1− δ, the policy regret is bounded by

R(π̂n) ≤ 2
(
ατ

nζτ
+

αδ
nζδ

)
+ 8(M1 +M2)

√
2(d2max + 1)

n
log
|Π|
δ

≈ 2
(
ατ

nζτ
+

αδ
nζδ

)
+ 8dmax(M1 +M2)

√
2

n
log
|Π|
δ

It indicates that optimal policies are more difficult to find in a dense graph even under weak
interactions between neighboring nodes.

In a real-world setting, treatments could be expensive. So the policymaker usually
encounters a budget or capacity constraints, e.g., the proportion of patients receiving treatment
is limited, and to decide who should be treated under constraints is a challenging problem [22].
Through the interference-free welfare function A(π), a policy is trained to make treatment
choices using only each individual’s features. In contrast, under interference, a smart policy
should maximize the utility function Eq. (5) by deciding whether to treat an individual or
expose it under neighboring treatment effects such that a required constraint can be satisfied.
Therefore, in the second part of the experiments, after fitting causal estimators, we investigate
policy networks that maximize the utility function S(π) on the graph and satisfy a treatment
proportion constraint.

To be more specific, we consider the constraint where only pt percentage of the population
can be assigned to treatment 4. The corresponding sample-averaged loss function for a policy
network π under capacity constraint is defined as

Lpol(π) := −Ŝτ,δn (π) + γ(
1

n

n∑

i=1

π(Xi)− pt),

where γ is a hyperparameter for the constraint. Optimal policy under capacity constraint is
obtained by

π̂ptn ∈ min
π∈Π

Lpol(π).

A capacity-constrained policy regret bound is provided in Theorem 5, which is proved in
Appendix F.2. It indicates that if, in the constraint, pt is small, then the optimal capacity-
constrained policy will be challenging to find. Increasing the treatment probability can not
guarantee the improvement of the group’s interest due to the non-linear network effect.
Therefore, finding the balance between optimal treatment probability, treatment assignment,
and group’s welfare is a provocative question in social science.

Theorem 2. By Assumption 3, for any small ε > 0, the policy regret under the capacity
constraint pt is bounded by R(π̂ptn ) ≤ 2

(
ατ
nζτ

+ αδ
nζδ

)
+ 2ε with probability at least 1 −

N exp
(
− nε2

32(d2max+1)(M1+M2)2

)
, where N := N

(
Π, ε

8[(M1+M2+L)+ 1
pt

(M1+M2)]

)
indi-

cates the covering number on the functional classΠ with radius ε
8[(M1+M2+L)+ 1

pt
(M1+M2)]

,

and dmax is the maximal node degree in the graph G.
4 Note that here pt differs from the treatment probability p from causal structural equations in the random-

ized experiment setting.
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4 Experiments

4.1 Datasets

The difficulties of evaluating the performance of the proposed estimators lie in the broad
set of missing outcomes under counterfactual inference. Therefore, we conduct randomized
experiments on two semi-synthetic datasets with ground-truth response generation functions,
and observational studies on one real dataset with unknown treatment assignment and response
generation functions. Notably, in the randomized experiment setting, we consider a linear
response generation function inspired by Eq. 5 of [40],

G0 : Yi = Yi(Ti = 0,G = ∅) + Tiτ(Xi) + δi(X,T,G) + εYi ,

where Yi(Ti = 0,G = ∅) is the outcome under control and without network interference, and
εYi represents Gaussian noise. τ(Xi) and δi(X,T,G) represent individual treatment effect
and spillover effect, respectively, whose forms are dataset-dependent and discussed below.

To further investigate the superiority of the GNN-based causal estimators on nonlinear
causal responses, we consider the following data generation function inspired by Section 4.2
of [40],

G1 : Yi = Yi(Ti = 0,G = ∅) + Tiτ(Xi) + δi(X,T,G) + κδ2i (X,T,G) + εYi ,

where κ characterizes the strength of nonlinear effects. In addition, a more complicated
nonlinear response generation function

G2 : Yi = Yi(Ti = 0,G = ∅) + Tiτ(Xi) + δi(X,T,G) +
κ

2
δ2i (X,T,G)

+
κ

2
τ(Xi)δi(X,T,G) + εYi

is considered, where the quadratic terms signify the spillover effect depending on the individ-
ual treatment effect.

Wave1 Wave1 is an in-school questionnaire data collected through the National Longitu-
dinal Study of Adolescent Health project [6]. The questionnaire contains questions such as
age, grade, health insurance, etc. Due to the anonymity of Wave1, we use the symmetrized k-
NN graph derived from the questionnaire data as the friendship network. In our experiments,
we choose k = 10, and the resulting friendship network has 5, 578 nodes and 100, 158 links.
We assume a randomized experiment conducted on the friendship network which describes
students’ improvements of performance through assigning to a tutoring program or through
the peer effect. Hence Yi(Ti = 0,G = ∅) represents the overall performance of student i
before assignment to a tutoring program and before being exposed to peer influences, τ(Xi)
the simulated performance difference after an assignment, and δi(X,T,G) the synthetic peer
effect. Exact forms of Yi(Ti = 0,G = ∅) and τ(Xi) depend nonlinearly on the features of
each student. Moreover, the first-order peer effect is simulated as

δi(X,T,G) := α
1

|Ni|
∑

j∈Ni
Tjτ(Xj),

where the decay parameter α characterizes the decay of influence. In randomized experiments
reported in the main text, we randomly assign 10% of the population to the treatment. Details
of the generating process and more experiment results with different settings are relegated to
Appendix B and E.
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Pokec The friendship network derived from the Wave1 questionnaire data may violate
the power-law degree distribution of real networks. Hence, we further conduct experiments on
the real social network Pokec [37] with generated responses. Pokec is an online social network
in Slovakia with profile data, including age, gender, education, etc. We consider randomized
experiments on the Pokec social network, in which personalized advertisements of a new
health medicine are pushed to some users. We assume that the response of exposed users to
the advertisement only depends on a few properties, such as age, weight, smoking status,
etc. We keep profiles with complete information on these properties, and the resulting Pokec
social network contains 11, 623 nodes and 76, 752 links. Let Yi(Ti = 0,G = ∅) represent
the purchase of this new health medicine without external influence on the decision, τ(Xi)
the purchase difference after seeing the advertisement, δi(X,T,G) the purchase difference
due to social influences. For randomized experiments on the Pokec social network, we also
consider peer effects from next-nearest neighbors by defining

δi(X,T,G) := α
1

|Ni|
∑

j∈Ni
Tjτ(Xj) + α2 1

|N (2)
i |

∑

k∈N (2)
i

Tkτ(Xk),

where the decay parameter α characterizes the decay of influence. Details and more experi-
mental results with different hyperparameter settings are given in Appendix C and E.

Amazon The co-purchase dataset from Amazon contains product details, review infor-
mation, and a list of similar products. Therefore, there is a directed network of products
that describes whether a substitutable or complementary product is getting co-purchased
with another product [25]. To study the causal effect of reviews on the sales of products,
[30] generates a dataset containing products with only positive reviews from the Amazon
co-purchase dataset, named as pos Amazon, and Amazon for short. In this dataset, all items
have positive reviews, i.e., the average rating is larger than 3, and one item is considered
to be treated if there are more than three reviews under this item; otherwise, an item is in
the control group. In this setting, pos Amazon is an over-treated dataset with more than
70% of products being in the treatment group. Word2vec embedding of an item’s review
serves as the feature vector of this item. Moreover, the individual treatment effect of an item
is approximated by matching it to other items having similar features and under minimal
exposure to neighboring nodes’ treatments.

4.2 Results of Causal Estimators

Evaluation Metrics One evaluation metric is the square root of MSE for the prediction of the
observed outcomes on the test dataset UT , which is defined as

√
MSE :=

√
1

|UT |
∑

i∈UT
(Yi − hTi)2,

where hTi denotes the output of the outcome prediction network (see h0 and h1 in Fig. 1).
This metric reflects how well an estimator can predict the superimposed individual treatment
and spillover effects on a network. Another evaluation metric that quantifies the quality of
extracted individual treatment effect is the Precision in Estimation of Heterogeneous Effect
studied in [14], which is defined as

εPEHE :=
1

|UT |
∑

i∈UT
(τ(Xi)− τ̂(Xi))

2,

where τ̂(Xi) is defined in Eq. (4).
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Table 1: Experimental results of randomized experiments on the Wave1 and Pokec datasets
using linear response generation function G0. For Wave1, we set (node degree) k = 10,
(decay parameter)α = 0.5, and (treatment probability) p = 0.1, and for Pokec p = 0.1.
Improvements are obtained by comparing with the best baselines.

Wave1 Pokec√
MSE εPEHE

√
MSE εPEHE

DA GB 0.721± 0.054 0.289± 0.061 0.713± 0.016 0.321± 0.057
DA RF 1.037± 0.122 0.790± 0.215 0.749± 0.023 0.840± 0.087
DR GB 0.831± 0.109 0.499± 0.185 0.686± 0.020 0.275± 0.051
DR EN 0.929± 0.091 0.733± 0.135 0.695± 0.019 0.247± 0.060

GPS 0.238± 0.012 0.150± 0.047 0.329± 0.010 0.147± 0.010

GCN + ˆHSIC
Φ/GNN

0.192± 0.019 0.047± 0.018 0.305± 0.011 0.136± 0.009

GraphSAGE + ˆHSIC
Φ/GNN

0.181± 0.016 0.042± 0.020 0.303± 0.008 0.123± 0.003

1-GNN + ˆHSIC
Φ/GNN

0.176± 0.011 0.035± 0.011 0.302± 0.004 0.130± 0.006
Improve 26.1% 76.7% 8.2% 16.3%

Baselines Baseline models are domain adaption method [24] with gradient boosting re-
gression (DA GB), with random forest regression (DA RF), doubly-robust estimator [10]
with gradient boosting regression (DR GB), and elastic net regression (DR EN). They are
implemented via EconML [31] with grid-searched hyperparameters. These baselines incor-
porate the feature vectors as inputs and exposure as the control variable into the model. For
randomized experiments on Wave1 and Pokec, the predefined treatment probability p is
provided, while for the observational studies on the Amazon dataset, the covariate-dependent
treatment probability is estimated. Moreover, the generalized propensity score (GPS) method
is reproduced and enhanced for a fair comparison, equipped with the same feature map Φ
function. More details of baselines, the sketch of the training procedure, and hyperparameters
are relegated to Appendix E.

Table 2: Experimental result on the pos Amazon dataset without representation balancing
and under different imbalance penalties.

√
MSE εPEHE

DA GB 0.601± 0.007 1.370± 0.016
DA RF 0.604± 0.019 1.398± 0.013
DR GB 0.615± 0.022 1.222± 0.020
DR EN 1.104± 0.001 1.929± 0.003

GPS 0.399± 0.003 1.968± 0.025
GCN 0.312± 0.002 2.400± 0.201

GCN + ˆHSIC
GNN

0.303± 0.006 1.881± 0.076

GCN + ˆHSIC
Φ

0.301± 0.002 1.531± 0.024
GraphSAGE 0.305± 0.001 1.984± 0.026

GraphSAGE + ˆHSIC
GNN

0.296± 0.002 1.567± 0.051

GraphSAGE + ˆHSIC
Φ

0.300± 0.002 1.358± 0.025
1-GNN 0.279± 0.000 1.512± 0.111

1-GNN + ˆHSIC
GNN

0.276± 0.002 1.434± 0.030

1-GNN + ˆHSIC
Φ

0.277± 0.002 1.098± 0.031
Improve 30.8% 10.1%
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Experiments We use partial outcomes, both in the randomized experiments and observational
settings, to train the GNN-based causal estimators. We investigate the effect of penalizing
representation imbalance in the observational studies on the Amazon dataset. The entire data
points (Xi, Ti, Gi, Yi) are randomly divided into training (80%), validation (5%), and test
(15%) sets. Note that the entire network G and the covariates of all units X are given during
the training and test, while only the causal responses of units in the training set are provided
in the training phase. For the randomized experiments using the Wave1 and Pokec datasets,
we repeat the experiments 3 times and use different random parameters in the response
generation process each time.

Experimental results on the Wave1 and Pokec data generated via linear model G0 are
presented in Table 1. Both representation balancing ˆHSIC

Φ
and ˆHSIC

GNN
are deployed

in the GNN-based estimators for searching for the best performance. GNN-based estimators,
especially the 1-GNN estimator, are superior for superimposed causal effects prediction.
One can observe a 26.1% improvement of the

√
MSE metric on the Wave1 dataset when

comparing the 1-GNN estimator with the enhanced GPS method and a 8.2% improvement
on the Pokec dataset. The covariates of neighboring units in the Pokec dataset actually have
strong cosine similarity, hence the improvement on the Pokec dataset is not significant, and
the network effect can be approximately captured from the exposure variable. Table 2 shows
the experimental results on the pos Amazon dataset in the observational study. In particular,
we demonstrate the effects of without representation penalty, and with different penalties.
It shows that representation penalties can significantly improve the individual treatment
effect recovery, serving as a regularization to avoid over-fitting the network interference.
Furthermore, GNN-based estimators using ˆHSIC

GNN
penalty are slightly better than those

using ˆHSIC
Φ

penalty; however, by sacrificing the metric εPEHE .

Table 3: Experimental results of randomized experiments on the Wave1 dataset using non-
linear response generation functions G1 and G2 with κ = 0.2. For Wave1, we set (node
degree) k = 10, (decay parameter) α = 0.5, and (treatment probability) p = 0.1. ˆHSIC

Φ

and ˆHSIC
GNN

are deployed in the GNN-based estimators. Improvements are obtained by
comparing with the best baselines.

Wave1
G1 G2√

MSE εPEHE
√
MSE εPEHE

DA GB 0.770± .017 0.379± .126 0.763± .047 0.248± .121
DA RF 1.047± .046 0.701± .029 0.977± .021 0.599± .193
DR GB 0.814± .058 0.392± .029 0.771± .014 0.401± .028
DR EN 1.063± .037 0.843± .005 0.886± .010 0.636± .173

GPS 0.236± .001 0.158± .031 0.262± .071 0.163± .063
GCN 0.192± .003 0.050± .007 0.201± .034 0.044± .026

GraphSAGE 0.191± .004 0.049± .003 0.198± .022 0.039± .018
1-GNN 0.207± .003 0.058± .006 0.188± .020 0.043± .024

Improve 19.1% 19.0% 28.2% 76.1%

Table 3 and 4 report the performance of GNN-based causal estimators on nonlinear
response models. Nonlinear responses are generated via G1 and G2 under κ = 0.2. For
the
√
MSE metric, GNN-based estimators outperform the best baseline GPS dramatically,

showing the effectiveness of predicting nonlinear causal responses. Moreover, a 19.0%(G1)
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Table 4: Experimental results of randomized experiments on the Pokec dataset using nonlinear
response generation functions G1 and G2 with κ = 0.2. For Pokec, we set p = 0.1. ˆHSIC

Φ

and ˆHSIC
GNN

are deployed in the GNN-based estimators. Improvements are obtained by
comparing with the best baselines.

Pokec
G1 G2√

MSE εPEHE
√
MSE εPEHE

DA GB 0.988± .005 0.419± .046 1.189± .017 0.376± .033
DA RF 1.016± .024 1.075± .031 1.225± .009 1.016± .037
DR GB 0.943± .024 0.297± .057 1.173± .012 0.314± .020
DR EN 0.947± .023 0.181± .031 1.172± .013 0.282± .041

GPS 0.420± .006 0.212± .070 0.475± .004 0.220± .013
GCN 0.367± .005 0.162± .004 0.423± .017 0.183± .010

GraphSAGE 0.360± .000 0.146± .001 0.425± .018 0.167± .005
1-GNN 0.366± .013 0.151± .006 0.408± .009 0.158± .004

Improve 14.3% 19.3% 14.1% 28.2%

and 76.1%(G2) performance improvement on the εPEHE metric with the Wave1 dataset
shows that setting an empty graph, i.e., G = ∅, in the GNN-based estimators is an appropriate
approach for extracting individual causal effect. Results of nonlinear responses with larger
strength parameter κ = 0.5 are reported in Appendix B and C.

4.3 Results on Improved Intervention Policy

Experiment Settings After obtaining the optimal causal effect estimators and feature map
Φ (see Fig. 1), we subsequently optimize intervention policy on the same graph. A neural
network having two hidden layers, with ReLU activation between hidden layers and sigmoid
activation at the end, is employed as the policy network. The output of the policy network lies
in [0, 1], and it is interpreted as the probability of treating a node. The real intervention choice
is then sampled from this probability via the Gumbel-softmax trick [16] such that gradients
can be back-propagated. Sampled treatment choices along with corresponding node features
are then fed into the feature map Φ and subsequent causal estimators to evaluate the utility
function under network interference defined in Eq. (5). Each experiment setting is repeated 5
times until convergence. The hyperparameter γ in Lpol is tuned such that the constraint for
the percentage pt is satisfied within the tolerance ±0.01. More details of experiment settings
and hyperparameters are relegated to Appendix E and D.

To quantify the optimized policy π̂ptn , we evaluate the difference

∆Ŝ(π̂ptn ) := Ŝτ,δn (π̂ptn )− Ŝτ,δn (πptR ),

where πptR represents a randomized intervention underlying the same capacity constraint.
The difference ∆Ŝ(π̂ptn ) indicates how a learned policy can outperform a randomized policy
with the same constraint evaluated via learned causal effect estimators. However, from its
definition, it is concerned that the policy improvement π̂ptn may be very biased, such that
any “expected improvement” may come from the inaccurate causal estimators. Hence, for
the Wave1 and Pokec datasets, knowing the generating process of treatment and spillover
effects, we also compare the actual utility difference

∆S(π̂ptn ) := Sτ,δn (π̂ptn )− Sτ,δn (πptR ).
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Table 5: Intervention policy improvements on the Wave1 and Pokec semi-synthetic datasets
under treatment capacity constraint with pt = 0.3. ∆Ŝ(π̂ptn ) and ∆S(π̂ptn ) represent utility
differences evaluated from learned estimators and ground truth, respectively. Note that only
∆S(π̂ptn ) reflects the real policy improvement.

Wave1 Pokec
∆Ŝ(π̂ptn ) ∆S(π̂ptn ) ∆Ŝ(π̂ptn ) ∆S(π̂ptn )

DA GB 0.276± 0.033 0.002± 0.025 0.231± 0.051 0.001± 0.036
DA RF 0.302± 0.029 0.003± 0.021 0.198± 0.080 0.001± 0.057
DR GB 0.322± 0.023 0.002± 0.019 0.338± 0.060 0.002± 0.046
DR EN 0.311± 0.019 0.001± 0.018 0.329± 0.028 0.001± 0.026

GPS 0.235± 0.042 0.004± 0.032 0.362± 0.069 0.001± 0.053
GCN 0.260± 0.024 0.163± 0.020 0.270± 0.007 0.190± 0.012

GraphSAGE 0.283± 0.031 0.176± 0.025 0.376± 0.049 0.211± 0.034
1-GNN 0.327± 0.038 0.208± 0.026 0.377± 0.041 0.225± 0.031

Table 6: Intervention policy improvements on the pos Amazon dataset under treatment
capacity constraint with pt = 0.5. Only domain adaption methods and GPS are compared
since they are the best baseline estimators according to Table 2.

DA GB DA RF GPS GCN GraphSAGE 1-GNN
∆Ŝ(π̂ptn ) 38.9± 1.1 84.1± 2.3 98.6± 10.8 80.7± 0.9 86.0± 0.9 84.1± 1.3

Table 5 displays policy optimization results on the under-treated Wave1 and Pokec
simulation datasets, where initially only 10% of nodes are randomly assigned to treatment.
It shows that an optimized policy network cannot even outperform a randomized policy in
ground truth when the causal estimators perform poorly. Hence, policy networks learned
from the utility function with plugged in doubly-robust or domain adaption estimators are
not reliable. By contrast, the small difference between genuine utility improvement ∆S(π̂ptn )
and estimated improvement ∆Ŝ(π̂ptn ) for the GNN-based causal estimators indicates the
reliability of the optimized policy. Moreover, comparing the ground-truth utility improvement
on GPS and GCN-based estimator shows that the policy network sensitively relies on the
accuracy of the employed causal estimator. Furthermore, one might argue that through
baseline estimators, a simple policy network cannot adjust its treatment choice according to
neighboring nodes’ features and responses, unlike through GNN-based estimators. For a fair
comparison, in Appendix D, we also provide experimental results using a GNN-based policy
network. However, we still cannot observe genuine utility improvements on ∆S(π̂ptn ) when
using baseline models as causal estimators.

Next, we conduct experiments for intervention policy learning on the over-treated pos
Amazon dataset under treatment capacity constraint. Since we do not have access to the
ground truth of the pos Amazon dataset, Table 6 shows the utility difference under treatment
capacity constraint with pt = 0.5 evaluated only from learned causal estimators. Although
the optimized utility improvement ∆Ŝ(π̂ptn ) achieves the best result via the GPS causal
estimator, it might be unreliable compared to the ground truth. A reliable policy improvement
having comparable utility improvement via a GNN-based causal estimator is expected.
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5 Conclusion

In this work, we first introduced the task of causal inference under general network interfer-
ence and proposed causal effect estimators using GNNs of various types. We also defined
a novel utility function for policy optimization on interconnected nodes, of which a graph-
dependent policy regret bound can be derived. We conduct experiments on semi-synthetic
simulation and real datasets. Experiment results show that GNN-based causal effect estima-
tors, especially GraphSAGE and 1-GNN, with an HSIC distribution discrepancy penalty, are
superior in superimposed causal effect prediction, and the individual treatment effect can be
recovered reasonably well. Subsequent experiments of intervention policy optimization under
capacity constraint further confirms the importance of employing an optimal and reliable
causal estimator for policy improvement. In future work, we consider the scenario in which
the network structure is only partially observed, or dynamic.
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A Nonparametric Identifiability of Causal Effect

The nonparametric identifiability of expected causal response is guaranteed following [29, 9]. For the sake of
simplicity, we assume that influences are only from the first-order neighbors. To prove the identifiability, we
introduce a variable Vi := SV,i(XNi ,TNi ), where

SV,i : {0, 1}|Ni| ⊗ χ⊗|Ni| → Vi,

for i = 1, . . . , n, represents the aggregation of neighboring covariates and treatment assignments, e.g., the
average of neighboring treatments and the output of a GNN. Following reasonable assumptions are necessary
for the nonparametric identifiability.

Assumption 2.
(1) Given summary function SV,i, for i = 1, . . . , n, ∀TNi ,T′Ni , ∀XNi ,X

′
Ni , ∀TN−i ,T

′
N−i , and

∀XN−i ,X′N−i , with SV,i(TNi ,XNi ) = SV,i(T
′
Ni ,X

′
Ni ), then it holds

Yi(Ti,TNi ,XNi ,TN−i ,XN−i ) = Yi(Ti,T
′
Ni ,X

′
Ni ,T

′
N−i ,X

′
N−i ).

(2) Unconfoundedness assumption: Yi(ti, vi) ⊥ Ti, Vi|Xi, ∀ti ∈ {0, 1} and vi ∈ Vi, for i = 1, . . . , n.

Hence, the expected response of one unit under network inference can be identified as E[Yi(ti, vi)] =
E[Yi|Ti = ti, Vi = vi,Xi], ∀ti ∈ {0, 1}, and vi ∈ Vi, for i = 1, . . . , n. It is derived by

E[Yi|Ti = ti, Vi = vi,Xi]
Asm.(1)

= E[Yi(ti, vi)|Ti = ti, Vi = vi,Xi]

Asm.(2)
= E[Yi(ti, vi)|Xi].

B Synthetic Randomized Experiments on Wave1

On the in-school friendship network derived from the Wave1 questionnaire data, we conduct randomized
intervention experiments that simulate the improvement of performance after assigning a student to a tutoring
or support program. Recall that Yi(Ti = 0,G = ∅) indicates the overall performance of student i before
assigning it to a tutoring program or being influenced by peers. We select specific questions from the
questionnaire and regard the corresponding answers as the features of corresponding students. These feature
vectors are further used to construct a symmetrized k-NN similarity graph as the in-school friendship network.
Questions related to the potential performance of students are list in Table 7.

Using the answers of selected questions and their abbreviations, Yi(Ti = 0,G = ∅) is
generated as follows

Yi(Ti = 0,G = ∅) := −Xi,H1GH52 + 2Xi,H1ED3 −Xi,H1ED5 − 2Xi,H1ED7

− 0.5(Xi,H1ED11 +Xi,H1ED12 +Xi,H1ED13 +Xi,H1ED14)

+ 0.5(Xi,H1DA5 +Xi,H1DA7)− 3Xi,H1DS12 + fN (Xi,H1HS1

+Xi,H1HS3 +Xi,H1WP17B +Xi,H1TO51 +Xi,H1TO53

+Xi,H1NB5 +Xi,H1EE3 +Xi,PA57D),

where fN (·) represents a 1-layer neural network with random coefficients.
The generating process of the individual treatment response also depends on the selected

properties. For example, by assigning a student who has repeated grade will probably improve
this student’s performance. The treatment effect is simulated as follows:

τ(Xi) := Xi,H1ED3 + 0.5(Xi,H1GH52 +Xi,H1ED5 +Xi,H1ED7)

+ 0.5(Xi,H1ED11 +Xi,H1ED12 +Xi,H1ED13 +Xi,H1ED14)

+Xi,H1DS12 + fN ,
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Table 7: Selected questions from the Wave1 data [13] that are used as feature vectors.

H1GH52 Do you get enough sleep?
H1ED3 Have you skipped a grade?
H1ED5 Have you repeated a grade?
H1ED7 Have you received an suspension?
H1HS1 Have you had a routine physical examination?
H1HS3 Have you received psychological counseling?

H1WP17B Played a sport in the past 4 weeks?
H1TO51 Is alcohol easily available in your home?
H1TO53 Is a gun easily available in your home?
H1NB5 Do you feel safe in your neighborhood?
H1EE3 Did you work for pay in the last 4 weeks?
PA57D Food stamps?
H1DA5 How often do you play sport?
H1DA7 How do you hang out with friends?
H1ED11 Your grade in English or language arts?
H1ED12 Your grade in mathematics?
H1ED13 Your grade in history or social studies?
H1ED14 Your grade in science?
H1DS12 How often did you sell marijuana or other drugs

where fN represents a nonlinear random function depending on the rest of variables. Further-
more, peer effect in this synthetic experiment is generated by

δi(X,T,G) := α
1

|Ni|
∑

j∈Ni
Tjτ(Xj), (8)

where the decay parameter α characterizes the decay of influence. Eq. 8 means that the peer
effect applied to the node i is determined by individual treatment responses of its neighbors
who are under treatment. Finally, the outcome, e.g., the linear response G0, is simulated by

Yi = Yi(Ti = 0,G = ∅) + Tiτ(Xi) + δi(X,T,G) + εYi . (9)

Other nonlinear response generation functions studied in the main text are defined as

G1 : Yi = Yi(Ti = 0,G = ∅) + Tiτ(Xi) + δi(X,T,G) + κδ2i (X,T,G) + εYi , (10)

and

G2 : Yi = Yi(Ti = 0,G = ∅) + Tiτ(Xi) + δi(X,T,G) +
κ

2
δ2i (X,T,G)

+
κ

2
τ(Xi)δi(X,T,G) + εYi , (11)

where κ characterizes the strength of nonlinear effects.
The benefit of using synthetic data is that we can modify the experiment settings. Three

parameters control the experimental settings: number of neighbors k, which determines the
graph structure and density; the probability p of assigning a node to treatment which controls
the population imbalance between treatment and control groups; the decay parameter α,
which determines the intensity of peer effect. For the evaluation results reported in the main
text we generate the simulation data with parameters k = 10, p = 0.1, and α = 0.5. We
report more evaluations in Table 8, Table 9, and Table 10. One observation is that in the
randomized experiment setting with linear response, the GraphSAGE-based estimator is



Causal Inference under Networked Interference and Intervention Policy Enhancement 21

Table 8: Evaluation metrics on under-treated synthetic data with p = 0.1, α = 0.5, and k =
5, 10. Improvements are obtained by comparing with the GPS baseline. Both representation
balancing ˆHSIC

Φ
and ˆHSIC

GNN
are deployed in the GNN-based estimators for searching

for the best performance.

k = 5 k = 10√
MSE εPEHE

√
MSE εPEHE

GPS 0.279± 0.071 0.210± 0.043 0.281± 0.049 0.139± 0.052
GCN 0.212± 0.035 0.095± 0.055 0.211± 0.013 0.058± 0.036

GraphSAGE 0.200± 0.032 0.088± 0.054 0.199± 0.030 0.057± 0.039
1-GNN 0.214± 0.039 0.096± 0.062 0.203± 0.033 0.057± 0.040

Improve 28.3% 58.1% 29.2% 59.0%

Table 9: Evaluation metrics on over-treated synthetic data with p = 0.7, α = 0.5, and k =
5, 10. Improvements are obtained by comparing with the GPS baseline. Both representation
balancing ˆHSIC

Φ
and ˆHSIC

GNN
are deployed in the GNN-based estimators for searching

for the best performance.

k = 5 k = 10√
MSE εPEHE

√
MSE εPEHE

GPS 0.318± 0.010 0.409± 0.008 0.363± 0.087 0.491± 0.200
GCN 0.277± 0.007 0.051± 0.007 0.288± 0.063 0.087± 0.053

GraphSAGE 0.276± 0.024 0.050± 0.007 0.301± 0.054 0.083± 0.033
1-GNN 0.249± 0.006 0.054± 0.015 0.278± 0.056 0.076± 0.034

Improve 21.7% 87.8% 23.4% 84.5%

Table 10: Evaluation metrics on balanced synthetic data with p = 0.5, α = 0.5, and k =
5, 10. Improvements are obtained by comparing with the GPS baseline. Both representation
balancing ˆHSIC

Φ
and ˆHSIC

GNN
are deployed in the GNN-based estimators for searching

for the best performance.

k = 5 k = 10√
MSE εPEHE

√
MSE εPEHE

GPS 0.329± 0.005 0.207± 0.015 0.294± 0.008 0.224± 0.071
GCN 0.269± 0.011 0.047± 0.006 0.215± 0.020 0.050± 0.012

GraphSAGE 0.279± 0.015 0.044± 0.003 0.223± 0.018 0.037± 0.011
1-GNN 0.268± 0.015 0.042± 0.005 0.214± 0.015 0.032± 0.007

Improve 18.5% 79.7% 27.2% 85.7%

a good candidate for causal inference in an under-treated population, while 1-GNN-based
estimator is superior in a balanced- or over-treated population.

Table 11 reports the performance of GNN-based causal estimators on the Wave1 dataset
using nonlinear response models. Nonlinear responses are generated via G1 and G2 under
κ = 0.5. For the

√
MSE metric, GNN-based estimators outperform the best baseline by

23.6%(G1) and 20.1%(G2) on Wave1. Moreover, GNN-based causal estimators signifi-
cantly outperform the best baseline in the individual treatment effect recovery task, where a
73.2%(G1) and a 70.5%(G2) improvement are observed.
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Table 11: Experimental results of randomized experiments on the Wave1 dataset using
nonlinear response generation functions G1 and G2 with κ = 0.5. Other parameters are set
as (node degree) k = 10, (decay parameter) α = 0.5, and (treatment probability) p = 0.1.
Both representation balancing ˆHSIC

Φ
and ˆHSIC

GNN
are deployed in the GNN-based

estimators for searching for the best performance. Improvements are obtained by comparing
with the best baseline.

G1 G2√
MSE εPEHE

√
MSE εPEHE

DA GB 0.742± 0.083 0.210± 0.008 1.060± 0.047 0.400± 0.054
DA RF 1.007± 0.027 0.527± 0.141 1.243± 0.089 1.056± 0.222
DR GB 0.784± 0.019 0.352± 0.074 1.116± 0.106 0.633± 0.195
DR EN 0.882± 0.053 0.575± 0.015 1.258± 0.176 0.841± 0.293

GPS 0.280± 0.017 0.142± 0.032 0.289± 0.012 0.244± 0.066

GCN + ˆHSIC
Φ/GNN

0.224± 0.008 0.038± 0.003 0.237± 0.020 0.095± 0.010

GraphSAGE + ˆHSIC
Φ/GNN

0.214± 0.007 0.045± 0.002 0.231± 0.014 0.072± 0.003

1-GNN + ˆHSIC
Φ/GNN

0.216± 0.003 0.040± 0.001 0.250± 0.020 0.103± 0.015
Improve 23.6% 73.2% 20.1% 70.5%

C Synthetic Randomized Experiments on Pokec

The motivation for using a real social network dataset is that the k-NN similarity graph
can violate the power-law degree distribution, as shown in Fig. 2. Consider hypothetical
intervention experiments to the users of the Pokec social network. After reading a personalized
advertisement or getting influenced by social contacts, a user is encouraged to purchase a new
medicine. To simulate the individual buying behavior, we use profile features that are related
to the health condition of a user. Table 12 lists the related features used in semi-synthetic
experiments.

Fig. 2: Number of nodes vs. node degree from the k-NN similarity graph of Wave1 with
k = 10 (left), and from the Pokec social network (right).

We assume that a healthy person with good habits is self-motivated to purchase health
medicine even without external influences. Hence, Yi(Ti = 0,G = ∅) is simulated as follows:

Yi(Ti = 0,G = ∅) := 0.2(1−Xi,gender) + 0.5Xi,age − 0.2Xi,weight + 0.5Xi,education

− 0.6(3−Xi,smoke) + 0.2Xi,sex − 0.6(3−Xi,alcohol) + ε,

where ε is a Gaussian random variable with mean 0.1. Suppose that new health medicine is
advertised to offer miraculous effects on weight loss, quit smoking, abstinence, etc. Then the
individual treatment response can be generated by

τ(Xi) := 0.8(1−Xi,gender) +Xi,age + 0.3Xi,weight + 0.5(1−Xi,eyesight)
0.5(Xi,education + 0.5) + 0.6Xi,smoke + 0.5Xi,alcohol + ε.
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Table 12: Characteristics of users and corresponding ranges of values selected from the Pokec
social network data.

features values
gender [0, 1]

age [15, 16, · · · , 60]
height [140, 141, · · · , 200]
weight [30, 31, · · · , 200]

completed level of education [0, 1, 2, 3]
eyesight [0, 1]

relation to smoking [0, 1, 2, 3]
relation to alcohol [0, 1, 2, 3]

relation to casual sex [0, 1, 2]

Since Pokec is a social network, in the semi-synthetic experiments, we also take into account
long-range influences to simulate opinion propagation in the social network. To be more
specific, the spillover effect on one node not only depends on the nearest neighboring nodes
but also next-nearest neighboring nodes. Formally, it is defined as

δi(X,T,G) := α
1

|Ni|
∑

j∈Ni
Tjτ(Xj) + α2 1

|N (2)
i |

∑

k∈N (2)
i

Tkτ(Xk), (12)

where α is the decay factor and N (2)
i represents the next-nearest neighbors of i. Finally, the

observed data in the randomized experiments can be derived from Yi(Ti = 0,G = ∅), τ(Xi),
and social network structure GPokec using Eq. 12 and Eq. 9 for the linear response or Eq. 10
and Eq. 11 for nonlinear responses. The experiments reported in the main text use the setting
α = 0.5 and p = 0.1.

Table 13: Evaluation metrics on under-treated Pokec social network with p = 0.1, α =
0.1, 0.9. Improvements are obtained by comparing with the GPS baseline. Both representation
balancing ˆHSIC

Φ
and ˆHSIC

GNN
are deployed in the GNN-based estimators for searching

for the best performance.

α = 0.1 α = 0.9√
MSE εPEHE

√
MSE εPEHE

GPS 0.263± 0.001 0.156± 0.017 0.595± 0.005 0.185± 0.005
GCN 0.230± 0.017 0.147± 0.031 0.573± 0.033 0.163± 0.005

GraphSAGE 0.227± 0.005 0.128± 0.015 0.569± 0.032 0.151± 0.011
1-GNN 0.231± 0.006 0.132± 0.014 0.571± 0.033 0.197± 0.020

Improve 13.5% 17.9% 4.4% 18.4%

Since the network structure GPokec is given, we provide more experiment results in
Table 13 and Table 14 to understand the effect of decay parameter α. In particular, we
consider regimes from negligible peer effects with α = 0.1 to significant peer effects with
α = 0.9. Since the covariates of neighboring units in the Pokec dataset have strong cosine
similarity, and the simulation generation process is relatively simple, GNN-based causal
estimators might overfit the superimposed causal effects and poorly recover the individual
treatment effect. It is becoming more evident if the peer effects are strong and the population
is over-treated, where the GPS baseline can achieve comparable results as other GNN-based
estimators using only the information of exposure level (see Table 14).
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Table 14: Evaluation metrics on over-treated Pokec social network with p = 0.7, α =
0.1, 0.9. Improvements are obtained by comparing with the GPS baseline. Both representation
balancing ˆHSIC

Φ
and ˆHSIC

GNN
are deployed in the GNN-based estimators for searching

for the best performance.

α = 0.1 α = 0.9√
MSE εPEHE

√
MSE εPEHE

GPS 0.404± 0.007 0.126± 0.004 1.438± 0.000 0.533± 0.015
GCN 0.247± 0.008 0.044± 0.003 1.426± 0.030 0.594± 0.039

GraphSAGE 0.240± 0.006 0.041± 0.001 1.417± 0.021 0.662± 0.061
1-GNN 0.233± 0.001 0.039± 0.002 1.390± 0.033 1.076± 0.094

Improve 42.3% 69.0% 3.3% −11.4%

Table 15: Experimental results of randomized experiments on the Pokec dataset using nonlin-
ear response generation functions G1 and G2 with κ = 0.5. We set the treatment probability
as p = 0.1 and the decay parameter as α = 0.5. Both representation balancing ˆHSIC

Φ
and

ˆHSIC
GNN

are deployed in the GNN-based estimators for searching for the best performance.
Improvements are obtained by comparing with the best baselines.

G1 G2√
MSE εPEHE

√
MSE εPEHE

DA GB 1.342± 0.070 0.551± 0.026 2.095± 0.070 0.828± 0.282
DA RF 1.369± 0.060 1.015± 0.074 2.125± 0.080 1.389± 0.109
DR GB 1.324± 0.081 0.306± 0.011 2.038± 0.090 0.438± 0.005
DR EN 1.325± 0.078 0.336± 0.032 2.043± 0.089 0.338± 0.040

GPS 0.693± 0.058 0.450± 0.042 0.813± 0.068 0.375± 0.089

GCN + ˆHSIC
Φ/GNN

0.483± 0.010 0.193± 0.001 0.729± 0.007 0.242± 0.032

GraphSAGE + ˆHSIC
Φ/GNN

0.480± 0.009 0.198± 0.004 0.713± 0.017 0.217± 0.025

1-GNN + ˆHSIC
Φ/GNN

0.454± 0.003 0.159± 0.005 0.767± 0.023 0.218± 0.002
Improve 34.5% 48.0% 12.3% 35.8%

Table 15 reports the performance of GNN-based causal estimators on the Pokec dataset
using nonlinear response models. Nonlinear responses are generated via G1 and G2 under
κ = 0.5. For the

√
MSE metric, GNN-based estimators outperform the best baseline by

34.5%(G1) and 12.3%(G2) on Wave1. Moreover, GNN-based causal estimators signifi-
cantly outperform the best baseline in the individual treatment effect recovery task, where a
48.0%(G1) and a 35.8%(G2) improvement are observed.

D Additional Experiments for Intervention Policy Optimization

In addition to the policy optimization experiments on the Wave1 and Pokec simulation data
under the treatment capacity constraint pt = 0.3, in Table 16 we also report the intervention
policy improvement under the treatment capacity constraint with pt = 0.5.

Until now, we have only employed a simple neural network as the policy network with
feature vectors as input. For GNN-based methods, the policy learner can adjust its treatment
rules according to the neighboring nodes’ features and responses through the GNN-based
causal estimators. However, through baseline estimators, e.g., doubly-robust estimators, a
simple policy network cannot access the neighboring features of a node. Therefore, for a fair
comparison, we employ another 1-GNN as the policy network, and the evaluations on the
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Table 16: Intervention policy improvements on the Wave1 and Pokec semi-synthetic datasets
under treatment capacity constraint with pt = 0.5. Note that only ∆S(π̂ptn ) reflects the
genuine policy improvement.

Wave1 Pokec
∆Ŝ(π̂ptn ) ∆S(π̂ptn ) ∆Ŝ(π̂ptn ) ∆S(π̂ptn )

DA GB 0.636± 0.028 0.012± 0.025 0.479± 0.066 0.002± 0.055
DA RF 0.644± 0.027 0.016± 0.023 0.477± 0.049 0.008± 0.045
DR GB 0.761± 0.037 0.003± 0.031 0.712± 0.133 0.001± 0.089
DR EN 0.901± 0.150 0.006± 0.100 0.708± 0.093 0.001± 0.078

GPS 0.964± 0.091 0.018± 0.076 0.841± 0.072 0.007± 0.060
GCN 0.725± 0.015 0.544± 0.012 0.747± 0.041 0.566± 0.035

GraphSAGE 0.712± 0.031 0.532± 0.024 0.754± 0.099 0.559± 0.079
1-GNN 0.722± 0.052 0.546± 0.041 0.806± 0.031 0.586± 0.023

Table 17: Intervention policy improvements on the Wave1 semi-synthetic dataset under
treatment capacity constraint with pt = 0.3. The policy network employed is another 1-GNN.
Note that only ∆S(π̂ptn ) reflects the real policy improvement.

Wave1
∆Ŝ(π̂ptn ) ∆S(π̂ptn )

DA GB 0.291± 0.031 0.004± 0.026
DA RF 0.310± 0.041 0.003± 0.032
DR GB 0.102± 0.057 0.002± 0.048
DR EN 0.360± 0.044 0.002± 0.037

GPS 0.278± 0.061 0.006± 0.051
GCN 0.279± 0.029 0.179± 0.026

GraphSAGE 0.268± 0.023 0.169± 0.019
1-GNN 0.310± 0.022 0.201± 0.016

Wave1 dataset are given in Table 17. The results further confirm that the accuracy of causal
effect estimators is crucial for intervention policy optimization on interconnected units.

E Experiment Settings

E.1 GNN-based Estimators in Causal Inference Experiments

For GNN-based estimators, we use Adam as a default optimizer with learning rate 0.001
and weight decay 0.0001. The number of total epochs is 20, 000; early stopping is employed
by monitoring the loss on the validation set every 2000 epochs. Hyperparameter κ in Lest
for penalizing the distribution discrepancy is searched from {0.001, 0.005, 0.1, 0.2} for the
Wave1 and Pokec datasets, and from {0.1, 0.2, 0.5, 1.} for the Amazon dataset. The feature
map neural network Φ has hidden dimensions [64, 64] for the Wave1 and Pokec datasets,
and [256, 128, 128] for the Amazon dataset. GNNs have hidden dimensions [128, 32] for the
Wave1 and Pokec datasets, and [256, 128, 64] for the Amazon dataset. Outcome prediction
networks h0 and h1 have hidden dimensions [64, 32] for the Wave1 and Pokec datasets,
and [256, 128, 64] for the Amazon dataset. ReLU is used as the activation function between
hidden layers. Dropout is also employed between hidden layers with dropout rate a 0.5.
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E.2 Baseline Estimators in Causal Inference Experiments

For baseline models, learning rate of the DR EN model is searched from {0.001, 0.01, 0.1}
with maximal iteration 10000. For the DA RF model, the number of estimators is searched
from {5, 10, 20}, the maximal depth from {5, 10, 20}, and the minimum number of samples at
a leaf node from {5, 10, 20}. For the DR GB and DA GB models, the number of estimators is
searched from {10, 50}, and the maximal depth is searched from {5, 10}. In our experiments,
the training procedure of Domain Adaption estimators for causal inference under interference
is given as below

µ̂0 =M1

(
Y 0
i ∼ [X0

i ;Gi],weights =
g(X0

i )

1− g(X0
i )

)
,

µ̂1 =M2

(
Y 1
i ∼ [X1

i ;Gi],weights =
1− g(X1

i )

g(X1
i )

)
,

D̂1
i = Y 1

i − µ̂0([X1
i , Gi]),

D̂0
i = µ̂1([X

0
i ;Gi])− Y 0

i ,

τ̂ =M3(D̂
0
i |D̂1

i ∼ X0
i |X1

i ),

where M1,M2,M3 are machine learning algorithms; Y 0
i ,X

0
i represent the outputs and

covariates of units under control in the training dataset, and Y 1
i ,X

1
i under treatment. To

capture the interference, the exposure variable Gi is concatenated to the covariates. g(Xi) is
an estimation of Pr[Ti = 1|Xi] in the observational study using the Amazon dataset, while it
is the predefined treatment probability p in randomized experiments using the Wave1 and
Pokec datasets. Similarly, the training procedure of Doubly Robust estimators for causal
inference under interference is given as

µ̂0 =M1(Y
0
i ∼ [X0

i ;Gi]),

µ̂1 =M2(Y
1
i ∼ [X1

i ;Gi]),

D̂1
i = µ̂1([Xi;Gi]) +

Yi − µ̂1([Xi;Gi])

g(Xi)
1{Ti = 1},

D̂0
i = µ̂0([Xi;Gi]) +

Yi − µ̂0([Xi;Gi])

1− g(Xi)
1{Ti = 0},

τ̂ =M3((D̂
1
i − D̂0

i ) ∼ Xi),

where M1,M2,M3 are machine learning algorithms; g(Xi) is an estimation of Pr[Ti =
1|Xi] in the observational study using the Amazon dataset, while it is the predefined treatment
probability p in randomized experiments using the Wave1 and Pokec datasets.

E.3 Intervention Policy Experiments

Causal estimators with the best performance will be saved and fixed for the subsequent
intervention policy improvement experiments on the same dataset. We use Adam as a default
optimizer for the policy network with a learning rate of 0.001. The policy network has hidden
dimensions [64, 32] for the Wave1 and Pokec datasets, and [128, 64, 64] for the Amazon
dataset. ReLU is employed as the activation function between hidden layers, and a sigmoid
function is applied to the output. Treatment is then sampled from a Bernoulli distribution
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using the output of the policy network as the probability. The Gumbel-softmax trick [16] is
employed such that errors can be back-propagated. Hyperparameter γ in Lpol for enforcing
the constraint is chosen from {5, 50, 100, 200, 500}, such that the pre-defined constraint can
be satisfied within the tolerance±0.01. Besides, we also penalize the distribution discrepancy
under the new intervention policy given by the policy network, and the hyperparameter
for penalizing this term is chosen from {0.0, 0.0001, 0.001, 0.01, 0.1, 1}. The number of
training epochs is 2000, and each experiment is repeated 5 times.

F Omitted Proofs

F.1 Omitted Proof of Theorem 1

Recall that throughout the estimation of intervention policy regret bound, we keep the
following assumptions.

Assumption 3.
(BO) Bounded treatment and spillover effects: There exist 0 < M1,M2 < ∞ such that
the individual treatment effect satisfies |τi| ≤ M1 and the spillover effect satisfies ∀π ∈
Π, |δi(π)| ≤M2.
(WI) Weak independence assumption: For any node indices i and j, the weak independence
assumption assumes that Xi⊥Xj if Aij = 0, or @k with Aik = Akj = 1.
(LIP) Lipschitz continuity of the spillover effect w.r.t. policy: Given two treatment policies π1
and π2, for any node i the spillover effect satisfies |δi(π1)− δi(π2)| ≤ L||π1−π2||∞, where
the Lipschitz constant satisfies L > 0 and ||π1 − π2||∞ := supX∈χ |π1(X)− π2(X)|.
(ES) Uniformly consistency: after fitting experimental or observational data on G, individual
treatment effect estimator satisfies

1

n

n∑

i=1

|τi − τ̂i| <
ατ

nζτ
,

and spillover estimator satisfies

∀π ∈ Π, 1

n

n∑

i=1

|δi(π)− δ̂i(π)| <
αδ
nζδ

(13)

where ατ > 0 and αδ > 0 are scaling factors that characterize the errors of estimators. ζτ
and ζδ control the convergence rate of estimators for individual treatment effect and spillover
effect, respectively, which satisfy 0 < ζτ , ζδ < 1.

The underlying difficulty of estimating the intervention policy regret is the networked
setting. Weak independence assumption (WI) allows us to use hypergraph-based method
and derive concentration inequalities for the networked random variables. This becomes a
plausible assumption if the spillover effect only depends on the nearest neighbors and/or
next-nearest neighbors. Note that the assumption (LIP) is plausible, at least, in the synthetic
experiments. For instance, consider the spillover effect in the simulated experiments generated
by δi(π) = α 1

|Ni|
∑
j∈Ni π(Xj)τ(Xj) (see Eq. 8), then we can see

|δi(π1)− δi(π2)| ≤ α
1

|Ni|
∑

j∈Ni
M1|π1(Xj)− π2(Xj)| ≤ αM1||π1 − π2||∞.
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Hence, in this example L = αM1.
Concentration inequalities on partly dependent random variables are first given in [17].

Later, [44] provides tighter concentration inequalities using hypergraph and weak dependence
assumption. A hypergraph is a generalization of graph in which a hyperedge groups a
number of vertices in the graph. For instance, consider a graph with n vertices, and let N =
{v1, v2, . . . , vn} represent the set of vertices. Hyperedges set Eh = {eh,1, eh,2 · · · , eh,m}
represents instances joining a number of vertices. In the following, let Gh = (N , Eh) denote
a hypergraph.
Definition 1 (Definition 1 in [44]). Given a hypergraph Gh, we call {ξi}ni=1 Gh-networked
random variables if there exist functions fi : χ⊗|eh,i| → R such that ξi = fi({Xv|v ∈ eh,i}),
where {Xv|v ∈ eh,i} represents the set of covariates of the vertices in the hyperedge eh,i.

Furthermore, we have the following concentration inequality.
Theorem 3 (Corollary 7 in [44]). Let {ξi}ni=1 be Gh-networked random variables with mean
E[ξi] = µ, and satisfying a < ξi < b, ∀i ∈ {1, 2, . . . , n}. Then for all ε > 0,

Pr

(∣∣∣∣∣
1

n

n∑

i=1

ξi − µ
∣∣∣∣∣ ≥ ε

)
≤ exp

(
− nε2

2ωGh(b− a)2
)
, (14)

where ωGh := maxv∈N |{eh : v ∈ eh}| represents the maximal degree of Gh.

Recall the following definitions of utility functions Sτ,δn (π), Ŝτ,δn (π), and S(π)

S(π) := E[(2π(Xi)− 1)(τi + δi(π))]

Sτ,δn (π) :=
1

n

n∑

i=1

(2π(Xi)− 1)(τi + δi(π))

Ŝτ,δn (π) :=
1

n

n∑

i=1

(2π(Xi)− 1)(τ̂i + δ̂i(π)),

where the policy π function has output in [0, 1]. An optimal empirical policy is obtained via
π̂n ∈ argmaxπ∈Π Ŝ

τ,δ
n (π). Note that in the definition of S(π) we still keep the subindex i to

emphasize the dependence of spillover effect on neighboring nodes. Next we provide several
lemmas related to the utility functions.
Lemma 1. Let S(π) := Sτ,δn (π) − S(π), for any π1, π2 ∈ Π, where the policy class in
contained in [0, 1], according to the assumptions (BO) and (LIP) we have

|S(π1)− S(π2)| ≤ 2(2M1 + 2M2 + L)||π1 − π2||∞

Proof. First note that |S(π1)−S(π2)| ≤ |S(π1)−S(π2)|+ |Sτ,δn (π1)−Sτ,δn (π2)|, and we
have

|S(π1)− S(π2)| = |
∫

χ

(2π1(Xi)− 1)(τi + δi(π1))− (2π2(Xi)− 1)(τi + δi(π2)) dXi|

≤
∫

χ

2|τi|||π1 − π2||∞ + |(2π1(Xi)− 1)(δi(π2) + L||π1 − π2||∞)− (2π2(Xi)− 1)δi(π2)| dXi

=

∫

χ

2|τi|||π1 − π2||∞ + |2(π1(Xi)− π2(Xi))δi(π2) + L(2π1(Xi)− 1)||π1 − π2||∞| dXi

≤ (2|τi|+ 2|δi(π2)|+ L)||π1 − π2||∞
≤ (2M1 + 2M2 + L)||π1 − π2||∞.
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Similarly, we have |Sτ,δn (π1)− Sτ,δn (π2)| ≤ (2M1 + 2M2 + L)||π1 − π2||∞.

Using the concentration inequality in Theorem 3 we can obtain the convergence rate of
the worst-case utility regret. We also use a capacity measure of the policy functional class Π ,
namely the covering number, to prove the convergence rate, which is defined in the following.

Definition 2 (Definition 3.1 in [7]). Let Π be a metric space and ε > 0, the covering number
N (Π, ε) is defined as the minimal l ∈ N such that there exist l disks in Π with radius ε
covering Π .

Lemma 2. Under Assumption 3, for any {Xi}ni=1 ∈ χ⊗n and ε > 0, it satisfies

Pr

(
sup
π∈Π

|Sτ,δn (π)− S(π)| ≤ ε
)

≥ 1−N
(
Π,

ε

4(2M1 + 2M2 + L)

)
exp

(
− nε2

32(d2max + 1)(M1 +M2)2

)
, (15)

where N
(
Π, ε

4(2M1+2M2+L)

)
represents the covering number on the policy functional

class Π with radius ε
4(2M1+2M2+L) .

Proof. According to the assumption (BO), the summands are bounded as |(2π(Xi)−1)(τi+
δi(π))| ≤ M1 +M2, ∀i ∈ {1, . . . , n}. Given the graph G = (N , E) and its corresponding
adjacency matrix A, using the weak independence assumption (WI) a dependence hypergraph
can be defined as Gh = (N , Eh), where a hyperedge eh,i ∈ Eh is defined as eh,i :=
{vi} ∪ {vj |j ∈ Ni} ∪ {vk|∃j : Aij = 1 ∧Ajk = 1}. Therefore, the maximal degree of the
hypergraph Gh satisfies ωGh ≤ d2max + 1, where dmax indicates the maximal vertex degree
of the graph G. Via Theorem 3, we have

Pr
(
|Sτ,δn (π)− S(π)| ≥ ε

)
≤ exp

(
− nε2

8(d2max + 1)(M1 +M2)2

)
, ∀π ∈ Π. (16)

Let l = N
(
Π, ε

2(2M1+2M2+L)

)
denote the covering number. Consider policies πj , with

j ∈ {1, . . . , l} located in the center of disks Dj with radius ε
2(2M1+2M2+L) which cover the

policy functional class Π. Recall the definition S(π) := Sτ,δn (π)− S(π), by Lemma 1, for
any πj and π ∈ Dj , we have

|S(π)− S(πj)| ≤ 2(2M1 + 2M2 + L)
ε

2(2M1 + 2M2 + L)
= ε.

Then ∀π ∈ Dj , supπ∈Dj S(π) ≥ 2ε⇒ S(πj) ≥ ε, which indicates

Pr( sup
π∈Dj

S(π) ≥ 2ε) ≤ Pr(S(πj) ≥ ε) ≤ exp

(
− nε2

8(d2max + 1)(M1 +M2)2

)
.

Since Π = D1 ∪ · · · ∪Dl, it is easy to see

Pr

(
sup
π∈Π

S(π) ≥ 2ε

)
≤

l∑

j=1

Pr

(
sup
π∈Dj

S(π) ≥ 2ε

)

≤ N
(
Π,

ε

2(2M1 + 2M2 + L)

)
exp

(
− nε2

8(d2max + 1)(M1 +M2)2

)
.

Upper bound for the probability Pr (supπ∈Π S(π) ≤ −2ε) can be derived in the same way.
The statement becomes valid by replacing ε by ε

2 .
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Theorem 4 (Theorem 1 in the main text restated). By Assumption 3, for any small ε > 0,
the policy regret is bounded by R(π̂n) ≤ 2

(
ατ
nζτ

+ αδ
nζδ

)
+ 2ε with probability at least 1−

N
(
Π, ε

4(2M1+2M2+L)

)
exp

(
− nε2

32(d2max+1)(M1+M2)2

)
, whereN

(
Π, ε

4(2M1+2M2+L)

)
in-

dicates the covering number on the functional class Π with radius ε
4(2M1+2M2+L) , and

dmax is the maximal node degree in the graph G.

Proof. Consider an arbitrary policy π̃ ∈ Π , we have the following utility difference

S(π̃)− S(π̂n) = Sτ,δn (π̃)− Sτ,δn (π̃) + Sτ,δn (π̂n)− Sτ,δn (π̂n)

+ S(π̃)− S(π̂n) + Ŝτ,δn (π̂n)− Ŝτ,δn (π̂n)

≤ Sτ,δn (π̃)− Ŝτ,δn (π̃)− Sτ,δn (π̂n) + Ŝτ,δn (π̂n)︸ ︷︷ ︸
(1)

+ S(π̃)− Sτ,δn (π̃) + Sτ,δn (π̂n)− S(π̂n)︸ ︷︷ ︸
(2)

.

Using ∀π ∈ Π , π ∈ [0, 1] and assumption (ES) the term (?) can be bounded as

(1) =
1

n

n∑

i=1

2(τi − τ̂i)(π̃(Xi)− π̂n(Xi))

+
1

n

n∑

i=1

(2π̃(Xi)− 1)(δi(π̃)− δ̂i(π̃))−
1

n

n∑

i=1

(2π̂n(Xi)− 1)(δi(π̂n)− δ̂i(π̂n))

≤ 1

n

n∑

i=1

2|τi − τ̂i|+
1

n

n∑

i=1

|δi(π̃)− δ̂i(π̃)|+
1

n

n∑

i=1

|δi(π̂n)− δ̂i(π̂n)|

≤ 2
(
ατ

nζτ
+

αδ
nζδ

)
.

Furthermore, (2) ≤ |Sτ,δn (π̃)− S(π̃)|+ |Sτ,δn (π̂n)− S(π̂n)| ≤ 2 supπ∈Π |Sτ,δn (π)− S(π)|.
In summary,

R(π̂n) := sup
π̃∈Π

(S(π̃)− S(π̂n)) ≤ 2
(
ατ

nζτ
+

αδ
nζδ

)
+ 2ε,

with probability at least 1 − N
(
Π, ε

4(2M1+2M2+L)

)
exp

(
− nε2

32(d2max+1)(M1+M2)2

)
via

Lemma 2.

F.2 Capacity-constrained Policy Regret

Before introducing a capacity-constrained utility function under network interference, we
first review the definition of A(π) following Section 2 of [3]. The benefit of deploying the
intervention policy π compared to assigning everyone in control group is defined as

V (π) := E[Yi(Ti = 1)π(Xi)+Yi(Ti = 0)(1−π(Xi))]−E[Yi(Ti = 0)] = E[π(Xi)τ(Xi)],

and the utility function equals

A(π) := 2V (π)− E[τ(Xi)] = E[(2π(Xi)− 1)τ(Xi)].
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In the following, let us consider policy learning under treatment constraint pt. If the distribu-
tion of covariates Pχ is known, and let Pχ(π) denote the treatment rule on the covariates
space, then a capacity-constrained welfare gain relative to treating no one is defined as (see
also Section 4.1 of [22])

Vpt(π) := E[[Yi(Ti = 1)min{1, pt
Pχ(π)

}+ Yi(Ti = 0)(1−min{1, pt
Pχ(π)

})]π(Xi)

+ Yi(Ti = 0)(1− π(Xi))]− E[Yi(Ti = 0)]

= min{1, pt
Pχ(π)

}E[π(Xi)τ(Xi))],

and the corresponding capacity-constrained utility function equals

Apt(π) := 2Vpt(π)− E[τ(Xi)] = E[(2min{1, pt
Pχ(π)

}π(Xi)− 1)τ(Xi))].

Similarly, the capacity-constrained utility function under interference for interconnected
units reads

Spt(π) := E[(2min{1, pt
Pχ(π)

}π(Xi)− 1)(τi + δi(π))].

Moreover, the empirical version of Spt(π) reads

Sτ,δn,pt(π) :=
1

n

n∑

i=1

(2min{1, pt
Pχ(π)

}π(Xi)− 1)(τi + δi(π)).

The empirical estimation of Spt(π) with causal estimators being plugged in reads

Ŝτ,δn,pt(π) :=
1

n

n∑

i=1

(2min{1, pt
Pχ(π)

}π(Xi)− 1)(τ̂i + δ̂i(π)),

an corresponding optimal capacity-constrained policy is obtained via 5

π̂ptn ∈ argmaxπ∈Π Ŝ
τ,δ
n,pt(π).

Moreover, let πpt? denote the best possible intervention policy from the functional class
Π with respect to the utility Spt(π), namely πpt? ∈ argmaxπ∈ΠSpt(π). The capacity-
constrained policy regret is defined as R(π̂ptn ) := Spt(π

pt?)− Spt(π̂ptn ). Before estimating
the capacity-constrained intervention policy regret we derive the following inequality similar
to Lemma 1.

Lemma 3. Let Spt(π) := Sτ,δn,pt(π)− Spt(π), for any π1, π2 ∈ Π , where the policy class in
contained in [0, 1], according to the assumptions (BO) and (LIP) we have

|Spt(π1)− Spt(π2)| ≤ 4[(M1 +M2 + L) +
1

pt
(M1 +M2)]||π1 − π2||∞. (17)

5 This optimal capacity-constrained policy is, in principle, equivalent to the one obtained by minimizing
the loss function Lpol(π) := −Ŝτ,δn (π) + γ( 1

n

∑n
i=1 π(Xi)− pt), since, in practice, treatment capacity

constraint can be satisfied via Lagrangian multiplier.
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Proof. Note that |Spt(π1) − Spt(π2)| ≤ |Spt(π1) − Spt(π2)| + |Sτ,δn,pt(π1) − Sτ,δn,pt(π2)|.
We first rewrite Spt(π) as

Spt(π) = min{1, pt
Pχ(π)

}E[(2π(Xi)−1)(τi+δi(π))]+(min{1, pt
Pχ(π)

}−1)E[τi+δi(π)].

Recall the definition of S(π), and define T (π) := E[τi + δi(π)], we have

|Spt(π1)− Spt(π2)| = |min{1, pt
Pχ(π1)

}S(π1)−min{1, pt
Pχ(π2)

}S(π2)

+ (min{1, pt
Pχ(π1)

} − 1)T (π1)− (min{1, pt
Pχ(π2)

} − 1)T (π2)|

≤ |min{1, pt
Pχ(π1)

}||S(π1)− S(π2)|

+ |S(π2)||min{1, pt
Pχ(π1)

} −min{1, pt
Pχ(π2)

}|

+ |min{1, pt
Pχ(π1)

} − 1||T (π1)− T (π2)|

+ |T (π2)||min{1, pt
Pχ(π1)

} −min{1, pt
Pχ(π2)

}|

≤ |S(π1)− S(π2)|+ |T (π1)− T (π2)|
+ (|S(π2)|+ |T (π2)|)|min{1, pt

Pχ(π1)
} −min{1, pt

Pχ(π2)
}|.

Using the following bounds

|S(π1)− S(π2)| ≤ (2M1 + 2M2 + L)||π1 − π2||∞,
|T (π1)− T (π2)| ≤ L||π1 − π2||∞,
|S(π2)| ≤M1 +M2,

|T (π2)| ≤M1 +M2,

|min{1, pt
Pχ(π1)

} −min{1, pt
Pχ(π2)

}| = | pt
max{pt,Pχ(π1)}

− pt
max{pt,Pχ(π2)}

|

≤ 1

pt
|Pχ(π1)− Pχ(π2)| ≤

1

pt
||π1 − π2||∞,

yields |Spt(π1)−Spt(π2)| ≤ 2[(M1+M2+L)+
1
pt
(M1+M2)]||π1−π2||∞. Similarly, we

also have |Sτ,δn,pt(π1)− Sτ,δn,pt(π2)| ≤ 2[(M1 +M2 +L) + 1
pt
(M1 +M2)]||π1 − π2||∞.

In the same sense as Lemma 2, using Lemma 3 we obtain the following bound for the
policy functional class under a capacity constraint pt.

Lemma 4. Under Assumption 3, for any {Xi}ni=1 ∈ χ⊗n and ε > 0, it satisfies

Pr

(
sup
π∈Π

|Sτ,δn,pt(π)− Spt(π)| ≤ ε
)
≥ 1−N exp

(
− nε2

32(d2max + 1)(M1 +M2)2

)
,

where N := N
(
Π, ε

8[(M1+M2+L)+ 1
pt

(M1+M2)]

)
represents the covering number on the

policy functional class Π with radius ε
8[(M1+M2+L)+ 1

pt
(M1+M2)]

.

Finally, we can derive the capacity-constrained policy regret bound.
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Theorem 5. By Assumption 3, for any small ε > 0, the policy regret under the capacity
constraint pt is bounded by R(π̂ptn ) ≤ 2

(
ατ
nζτ

+ αδ
nζδ

)
+ 2ε with probability at least 1 −

N exp
(
− nε2

32(d2max+1)(M1+M2)2

)
, where N := N

(
Π, ε

8[(M1+M2+L)+ 1
pt

(M1+M2)]

)
indi-

cates the covering number on the functional classΠ with radius ε
8[(M1+M2+L)+ 1

pt
(M1+M2)]

,

and dmax is the maximal node degree in the graph G.

Proof. Consider an arbitrary policy π̃ ∈ Π , we have the following utility difference

Spt(π̃)− Spt(π̂ptn ) ≤ Sτ,δn,pt(π̃)− Ŝτ,δn,pt(π̃)− Sτ,δn,pt(π̂ptn ) + Ŝτ,δn,pt(π̂
pt
n )︸ ︷︷ ︸

(1)

Spt(π̃)− Sτ,δn,pt(π̃) + Sτ,δn,pt(π̂
pt
n )− Spt(π̂ptn )︸ ︷︷ ︸

(2)

.

Using the fact that ∀π ∈ Π, |2π(Xi)min{1, pt
Pχ(π)} − 1| ≤ 1, it is easy to see (1) ≤

2
(
ατ
nζτ

+ αδ
nζδ

)
. Furthermore,

(2) ≤ |Sτ,δn,pt(π̃)− Spt(π̃)|+ |Sτ,δn,pt(π̂ptn )− Spt(π̂ptn )| ≤ 2 sup
π∈Π

|Sτ,δn,pt(π)− Spt(π)|.

In summary, via Lemma 4 it yields the statement.

F.3 Error Bound of Causal Estimators under Interference

In this section we will give a heuristic explanation why the causal estimators are difficult
to obtain under interference. First, with abuse of notation, we consider the following linear
model with deterministic outcome

µ?(Xi,X,T,G) = Tiτ?(Xi) + α1

∑

j∈Ni
Tjτ?(Xj) + α2

∑

k∈N (2)
i

Tkτ?(Xk) (18)

by setting Yi(Ti = 0) = 0, α = 1 and letting α1 = 1
|Ni| , α2 = 1

|N (2)
i |

, where τ? stands for

the ground truth individual treatment response which is bounded by ||τ?||∞ ≤M .
One motivation for employing localized graph convolution network, such as GraphSAGE,

is that the surrogate model of a 2-layer GraphSAGE can recover the linear model, especially,
when T = 1. To be more specific, consider the following form of a 2-layer GraphSAGE

X
(1)
i = ReLU (Xi +

∑

j∈Ni
XjW

(1))

X
(2)
i = ReLU (X

(1)
i +

∑

j∈Ni
X

(1)
j W(2))

= ReLU [ ReLU (Xi +
∑

j∈Ni
XjW

(1)) +
∑

j∈Ni
ReLU (Xj +

∑

k∈N (2)
i

XkW
(1))W(2)].
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A prediction from it reads o(Xi) = X
(2)ᵀ
i v, where v is a vector mapping the second hidden

layer to the outcome prediction. In a surrogate model 6, where an identity mapping replaces
the ReLU activation function, the model returns the outcome prediction

osurrogate(Xi) = Xᵀ
i v+

∑

j∈Ni
(XjW

(1) +XjW
(2))ᵀv+

∑

k∈N (2)
i

(XkW
(1)W(2))ᵀv,

which correctly recovers the linear model and the simulation protocol of spillover effects
when all units are assigned to treatment. Moreover, according to the universal approximation
properties of GNNs [34], µ? can be approximated. However, this claim cannot reflect an
explicit dependence of estimation error on the graph structure. Hence, motivated by the
surrogate model and the universal approximation property, we study the following class
of functions derived from the universal GNN. Let T be a class of bounded functions with
envelop M <∞ and finite VC-dimension V C(T ) <∞, and let

MGNN := {τ1+· · ·+τDmax , τi ∈ T ∪{0}, i = 1, . . . , Dmax, ||τ1+· · ·+τDmax ||∞ ≤ 3M},
(19)

where Dmax is related to the maximal degree of the graph, for a 2-layer GNN Dmax := 1 +
dmax+d

2
max. Function fromMGNN takes (Xi,Xj∈Ni ,Xk∈N (2)

i

)ni=1 as input 7 and returns
outcome prediction. The maximal subscript Dmax serves as a padding, to fit it, the function
class T is extended to T ∪ {0}. As an example, one can find a function µGNN ∈ MGNN

which approximates µ?(Xi,X,T,G) as

µGNN (Xi,X,T,G) = τ0(Xi) +
∑

j∈Ni
τj(Xj) +

∑

k∈N (2)
i

τk(Xk),

where τ0, τj , τk ∈ T , for j ∈ Ni, k ∈ N (2)
i . In other words, there exists a function in the

classMGNN which, for every node in the network, only uses the representations of this
node, this node’s neighbors, and this node’s 2-hop neighbors, similar to the surrogate model.
Assumptions used in this section are summarized in Assumption 4.

Assumption 4.
(A1) Outcome simulation under interference follows the protocol given in Eq. 18 with
||µ?||∞ ≤ 3M due to the requirement ||τ?||∞ ≤M .
(A2) Outcome prediction model is drawn fromMGNN defined in Eq. 19.
(A3) There are no isolated nodes in the network 8.

Define the best approximation realized by the classMGNN as

µ̃GNN := argminµ∈MGNN
||µ− µ?||∞,

and the approximation error

εGNN := ||µ̃GNN − µ?||∞. (20)

6 The surrogate models of graph convolutional networks are first studied in [45] for designing adversarial
attacks on GNNs and finding robust nodes.

7 Note that, treatment assignments can be combined with the covariates and fed into the function. In the
experiments, we fed TiXi into the GNNs, meaning that only covariates of treated units are non-zero.

8 This assumption will be used later
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Moreover, define the optimal empirical estimator as

µ̂GNN := argminµ∈MGNN

n∑

i=1

`(µ(Xi,X,T,G), Yi).

Since both µ̃GNN and µ̂GNN belong to the same classMGNN , it is easy to see

En[`(µ̃GNN (Xi), Yi)] ≥ En[`(µ̂GNN (Xi), Yi)],

where we write µ̃GNN (Xi) and µ̂GNN (Xi) for the sake of simplicity.
We can decompose the approximation error of the empirical causal estimator using the

following fact

E[`(µ̂GNN (Xi), Yi)− `(µ?(Xi), Yi)]

= EEYi [µ̂
2
GNN (Xi)− 2Yiµ̂GNN (Xi) + 2Yiµ?(Xi)− µ2?(Xi)]

= E[µ̂2GNN (Xi)− 2µ?(Xi)µ̂GNN (Xi) + µ2?(Xi)]

= E[(µ̂GNN (Xi)− µ?(Xi))
2].

It then yields

E[(µ̂GNN (Xi)− µ?(Xi))
2] = E[`(µ̂GNN (Xi), Yi)− `(µ?(Xi), Yi)]

≤ E[`(µ̂GNN (Xi), Yi)− `(µ?(Xi), Yi)]

− En[`(µ̂GNN (Xi), Yi)] + En[`(µ̃GNN (Xi), Yi)]

= (E− En)[`(µ̂GNN (Xi), Yi)− `(µ?(Xi), Yi)]︸ ︷︷ ︸
(I)

+ En[`(µ̃GNN (Xi), Yi)− `(µ?(Xi), Yi)]︸ ︷︷ ︸
(II)

.

The second term (II) can be bounded by applying the Bernstein inequality. The following
inequality holds with probability at least 1− e−γ

(II) ≤ E[`(µ̃GNN (Xi), Yi)− `(µ?(Xi), Yi)] +

√
2C2

` ||µ̃GNN − µ?||2∞γ
n

+
2C`||µ̃GNN − µ?||∞γ

3n

= E[(µ̃GNN (Xi)− µ?(Xi))
2] +

√
2C2

` ε
2
GNNγ

n
+

2C`εGNNγ

3n

≤ ε2GNN + εGNN

√
2C2

` γ

n
+

4C`Mγ

n
(21)

using the facts ||`(µ̃GNN (Xi), Yi)−`(µ?(Xi), Yi)||∞ ≤ C`||µ̃GNN−µ?||∞ and εGNN :=
||µ̃GNN − µ?||∞ ≤ 6M where C` represents the finite Lipschitz constant of loss function.

Furthermore, the first term (I), the maximal deviation between empirical and true means,
can be bounded using the standard symmetrization method (see Theorem 2.1 in [4]). Consider
a class of functions F , for any f ∈ F , assume that ||f ||∞ ≤ F and V[f ] ≤ V . Then for every
γ > 0, with probability at least 1− e−γ

sup
f∈F

(E[f ]− En[f ]) ≤ inf
α>0

(
2(1 + α)RnF +

√
2V γ

n
+ 2F (

1

3
+

1

α
)
γ

n

)
,
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where RnF indicates the Rademacher complexity of F . Hence, it gives

(I) ≤ 4Rn{`(µ)− `(µ?) : µ ∈MGNN}+ 6

√
2C2

`M
2γ

n
+

16C`Mγ

n
(22)

by setting α = 1 and using ||`(µ(Xi), Yi)− `(µ?(Xi), Yi)||∞ ≤ C`||µ− µ?||∞ ≤ 6C`M ,
V[`(µ(Xi), Yi)−`(µ?(Xi), Yi)] ≤ E[(`(µ(Xi), Yi)−`(µ?(Xi), Yi))

2] ≤ 36C2
`M

2 for any
µ ∈MGNN . Moreover, the Rademacher complexity term is defined as

Rn{`(µ)− `(µ?) : µ ∈MGNN}

:= Eσ

[
sup

µ∈MGNN

| 1
n

n∑

i=1

σi(`(µ(Xi), Yi)− `(µ?(Xi), Yi))|
∣∣∣∣∣X,T,G

]

≤ C`Eσ
[

sup
µ∈MGNN

| 1
n

n∑

i=1

σi(µ(Xi)− µ?(Xi))|
∣∣∣∣∣X,T,G

]

︸ ︷︷ ︸
(#)

, (23)

where {σi}ni=1 are Rademacher random variables. Before using the covering number ar-
guments to further bound the Rademacher complexity term we introduce the following
lemmas.

Lemma 5 (Theorem 29.6 in [8]). Let F1, . . . ,Fk be classes of real functions on Rd. For
n arbitrary fixed points zn1 = (z1, . . . , zn) in Rd, define the sets F1(z

n
1 ), . . . ,Fk(zn1 ) by

Fj(zn1 ) = {fj(z1), . . . , fj(zn) : fj ∈ Fj}, j = 1 . . . , k. Also introduce F = {f1+ · · ·+fk :
fj ∈ Fj , j = 1, . . . , k}. Then for every ε > 0 and zn1 ,

N1(ε,F(zn1 )) ≤
k∏

j=1

N1(ε/k,Fj(zn1 )). (24)

Lemma 6. Let F1, . . . ,Fk be classes of bounded real functions on Rd with envelop F and
finite VC-dimension v < ∞, for 3 ≤ k ≤ K. Also introduce F = {f1 + · · · + fk, fj ∈
Fj , j = 1, . . . , k} and let F(zn1 ) = {f(z1), . . . , f(zn), f ∈ F} for arbitrary fixed points zn1
in Rd. Then we have the following bound

Eσ[sup
f∈F
| 1
n

n∑

i=1

σif(zi)|] ≤ CF
√
kv ln k

n
, (25)

where CF is a constant which depends only on the envelop.

Proof. According to the Theorem 5.22 in [43], the Rademacher complexity term is bounded
as

Eσ[sup
f∈F
| 1
n

n∑

i=1

σif(zi)|] ≤
32√
n

∫ 2F

0

√
lnN1(ε,F(zn1 )) dε

︸ ︷︷ ︸
(?)

.

Using Lemma 5 and N1(ε,F) ≤ N2(ε,F), it gives

(?) ≤ 32√
n

∫ 2F

0

√√√√
k∑

j=1

lnN2(ε/k,Fj(zn1 )).
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Moreover, a uniform entropy bound for the covering number is given by the Theorem 2.6.7
in [41]. A small modification gives

N2(ε,Fj(zn1 )) ≤ C(v + 1)(16e)(v+1)(k/ε)2v, j = 1, . . . , k,

where C is a universal constant. Furthermore, following the same technique used by Eq. A.6
in [23], we obtain

(?) ≤ 32√
n

√
k

∫ 2F

0

√
lnC + ln(v + 1) + (v + 1) ln(16e) + 2v ln k − 2v ln ε dε

(1)

≤ 32√
n

√
kv

∫ 2F

0

√
lnC + ln 2 + ln(16e) + 2 ln k − 2 ln ε dε

(2)

≤ 32√
n

√
kv ln k

∫ 2F

0

√
lnC + ln 2 + ln(16e) + 2− 2 ln ε/ lnK dε := CF

√
kv ln k

n
,

where (1) uses the fact that usually v is large enough and (2) is due to the condition
3 ≤ k ≤ K.

Now, we can further bound the termRn{`(µ)− `(µ?) : µ ∈MGNN} after Eq. 23. Note
that

(#) = C`Eσ

[
sup

f∈MGNN

∣∣∣∣∣
1

n

n∑

i=1

σi[(τ0(Xi)− Tiτ?(Xi)) +
∑

j∈Ni
(τj(Xj)− Tjτ?(Xj))

+
∑

k∈N (2)
i

(τk(Xk)− Tkτ?(Xk))]

∣∣∣∣∣

]
. (26)

Define a new constant for each node Di := 1 + |Ni| + |N (2)
i |, i = 1, . . . , n. According

to (A3) in Assumption 4, we have Di ≥ 3. Also introduce a new class of function Ω :=
{T ± τ?}. Note that class Ω has the same VC-dimension as T , i.e., V C(Ω) = V C(T ), and
||ω||∞ ≤ 2M for any ω ∈ Ω. Recall the definition of Dmax := 1 + dmax + d2max. By
decomposing the node subscript i into groups with the same Di, Eq. 26 can be further written
as

(#) = C`Eσ

[
sup

f∈MGNN

∣∣∣∣∣
1

n

n∑

i=1

σi

Di∑

l=1

ωl(Xi,X,T,G)
∣∣∣∣∣

]
ωl ∈ Ω

= C`Eσ


 sup
f∈MGNN

∣∣∣∣∣∣

Dmax∑

k=3

1

n

∑

i:Di=k

σi

k∑

l=1

ωl(Xi,X,T,G)

∣∣∣∣∣∣




(1)

≤ C`

Dmax∑

k=3

Eσ


 sup
f∈MGNN

∣∣∣∣∣∣
1

n

∑

i:Di=k

σi

k∑

l=1

ωl(Xi,X,T,G)

∣∣∣∣∣∣




(2)

≤ C`CF

Dmax∑

k=3

1

n

√
|i : Di = k|kV C(T ) ln k ≤ C`CF

Dmax∑

k=3

√
kV C(T ) ln k

n

≤ C`CF
√
D3
maxV C(T ) lnDmax

n
,
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where (1) uses the triangle inequality and (2) uses Lemma 6. Hence, the (I) term is bounded
by

(I) ≤ 4C`CF

√
D3
maxV C(T ) lnDmax

n
+ 6

√
2C2

`M
2γ

n
+

16C`Mγ

n
.

By combining (I) and (II) we have the following theorem.

Theorem 6. Suppose Assumption 4 holds. Let µ̂GNN be the optimal causal estimator
obtained by minimizing an empirical loss function using the data {Xi,X,T,G}ni=1. Suppose
that the loss function has a finite Lipschitz constant C` and µ̂GNN is restricted toMGNN ,
Then with probability at least 1− 2e−γ , the causal estimator under interference has an error
bound

E[(µ̂GNN (Xi)− µ?(Xi))
2] ≤ 4C`CF

√
D3
maxV C(T ) lnDmax

n
+ 6

√
2C2

`M
2γ

n
(27)

+ εGNN

√
2C2

` γ

n
+

20C`Mγ

n
+ ε2GNN , (28)

where εGNN is defined in Eq. 20.

Keeping only the leading term with Dmax, under network interference, the causal estima-

tor has an error bound O(
√

D3
max lnDmax

n ). It indicates that an accurate causal estimator is
difficult to obtain under large network interference. Recall that the prediction outcome from
the GNN causal estimator is actually the superposition of individual treatment effect and
spillover effect. Hence, it is expected that, similarly, the individual treatment effect becomes
more and more difficult to recover under more substantial network interference. This intuitive
expectation can be observed in the following experimental results in Table 18. We observe
that the error of individual treatment effect estimator increases from k = 1 to k = 4.

Table 18: εPEHE on the semi-synthetic Wave1 data with p = 0.1, α = 0.5, and k = 1, 2, 4.
To fit the theoretical analysis, exposure level is not fed into the model.

k = 1 k = 2 k = 4
GraphSAGE 0.048 0.129 0.152
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Chapter 7

Conclusion

In this dissertation, we investigated machine learning on relational data from the per-
spectives of cognition, quantum computing, and causal inference. Examples of relational
data considered here are graphs with undirected edges, e.g., social networks, and directed
graphs with labeled edges such as knowledge graphs. Mainly, we studied the connections
between relational databases, or knowledge graphs, and cognitive memory functions. We
developed quantum machine learning algorithms to accelerate the inference on knowledge
graphs. Besides, we developed causal inference algorithms on networks with interfered
causal effects.

In Chapter 2, we discussed the technical realizations and mathematical models for
declarative memories. Semantic and episodic knowledge graphs were considered as the
technical realizations of semantic and episodic memory, respectively. They were modeled
by decomposing the corresponding adjacency tensors. After tensor decomposition, the
obtained latent representations of subjects, predicates, and objects can capture the global
relational patterns of a semantic knowledge graph for memorization and implicit knowledge
inference. Modeling episodic knowledge graphs returns additionally representations for
timestamps, which are essential for reconstructing episodic tensors and generalizing on
time-dependent facts. We have demonstrated the importance of the high dimensionality
of timestamp representations for generalization and, especially, for the memorization of
sparse episodic tensors. Besides, we have shown that semantic memory can be derived
from episodic memory via marginalization over the time dimension, realizing a transfer
from time-dependent facts to static facts. As future works, we will investigate deeper
relationships between knowledge graphs and cognitive memory functions in the context
of visual understanding by incorporating sensory and working memories. More advanced
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methods of modeling the episodic knowledge graphs for future events prediction are also
future works.

In Chapter 3, we discussed a previous cognitive architecture for associative memory,
the holographic reduced representation, and proposed a method to improve the memory
capacity. We have demonstrated that the memory interference caused by the superposition
of different association pairs in one single memory trace can be dramatically reduced by ele-
mentwise sampling initial random vectors from heavy-tailed distributions, e.g., the Cauchy
distribution. We mathematically proved how an improved quasi-orthogonality could in-
crease the associative memory capacity by deriving the distribution function of pairwise
angles between random vectors. We showed how the holographic reduced representation
could be adjusted and applied to semantic knowledge graphs. The resulting representa-
tions, or the holistic representations, implement a distributed storage of semantic pairs
and can be used for predicting implicit links by incorporating a simple neural network.
Analogously, the performance of holistic representations in the generalization task can be
improved by introducing the Cauchy initialization. The derived distribution function of
pairwise angles between quasi-orthogonal random vectors might find unexpected applica-
tions in random projection and dimension reduction, serving as future works.

To resolve the slow inference issue caused by the increasing number of semantic triples
and entities, in Chapters 4 and 5, we proposed two quantum algorithms to accelerate the
reasoning on semantic knowledge graphs. The first quantum approach in Chapter 4 in-
troduced quantum representations for entities by employing parametric quantum circuits
and encoding the representations to the amplitudes of quantum states. Hence, this quan-
tum Ansatz is a learning-based approach and can heuristically realize a quadratic speedup
when inferring unobserved triples. Recall that variational quantum circuits can be viewed
as multi-layer linear neural networks without nonlinear activation functions. According
to the superior performance on the dataset with rather simple relational patterns, fu-
ture work could be introducing nonlinear activations into the quantum circuit Ansätze to
model more complicated relational patterns. In Chapter 5, the second quantum approach
designed a quantum counterpart of the classical tensor singular value decomposition algo-
rithm, making it a sampling-based quantum algorithm. For knowledge inference, it realizes
an exponential acceleration with dimensions of knowledge graphs. The theoretical contri-
butions, under what conditions the tensor decomposition of the subsampled and rescaled
tensor can well approximate the original tensor, deserve more considerations in the future
work.
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In the last chapter of this dissertation, we studied causal effects estimation on networks
in the framework of Neyman-Rubin causal inference. It is a nontrivial task since the re-
lational nature of the network makes the treatment effects of individuals not independent
anymore, which is known as network interference or spillover effect. Hence, we have pro-
posed GNN-based causal estimators for causal inference under network interference and
shown their superior performance on synthetic and real datasets. After obtaining optimal
causal estimators, we defined a novel utility function and policy network to maximize the
average welfare on the network and confirmed the importance of employing an accurate
causal estimator for the intervention policy improvement under network interference. As
independent theoretical contributions, we derived heuristic error bounds for GNN-based
causal estimators and the regret bound of the policy network. The graph-dependency of
the error bonds could be refined using more advanced concentration inequalities of depen-
dent variables. Besides, we will consider causal inference under network interference with
only partially observed or dynamic graph structures.

This dissertation has only discussed a small portion of machine learning on relational
data. For instance, the ongoing works are using the neural point process for future events
prediction from observed temporal knowledge graphs, defining representations on non-
Euclidean manifolds to learn the complex, or hierarchical, relational structures in knowl-
edge graphs, understanding cognitive memory functions with knowledge graphs and per-
ceptions. Therefore, leaning with relational data is an exciting and challenging research
area, and there remains a lot to be explored.
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