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I. INTRODUCTION 

Cystic Fibrosis (CF) is the most common life-threatening hereditary disorder 

among Caucasians and affects more than 100,000 people worldwide (reviewed in 

KLIMOVA et al., 2017). It is caused by mutations in the gene coding for the 

Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) (WELSH & 

SMITH, 1993), leading to a defective anion transport on epithelial surfaces. CF 

constitutes a complex multi-organ disease affecting the airways, the 

gastrointestinal tract, including the pancreas and the hepatobiliary system, as well 

as the reproductive tract and the sweat glands, whereby clinical expression in 

individuals with CF shows a considerable variability (reviewed in AVERILL et 

al., 2017; HARUTYUNYAN et al., 2018; PARANJAPE & MOGAYZEL, 2018). 

While many organ systems can be affected, the major cause of morbidity and 

mortality is traced to pulmonary insufficiency (reviewed in CUTTING, 2015; 

PARKINS et al., 2018). Although CF remains incurable, the overall knowledge 

about the disease increased tremendously, so that not only life expectancy of up to 

40 years, but also the quality of patients’ life has significantly been improved over 

the last decades. 

For a better understanding of pathophysiological mechanisms in CF and for 

developing novel therapeutic approaches, animal models turned out to be essential 

tools (reviewed in SEMANIAKOU et al., 2018). From the CF animal models 

developed so far in six species (mouse, rat, zebrafish, sheep, ferret and pig), the 

porcine CF model proves to be the model showing the closest similarity to 

hallmark features of human CF disease (reviewed in CUTTING, 2015). However, 

a lethal neonatal meconium ileus (MI) occurs in 100 % of all CF piglets 

(ROGERS et al., 2008b; KLYMIUK et al., 2012). If the intestinal obstruction is 

not corrected, CF piglets die within 48 hours after birth, considerably limiting the 

utility of pigs as animal models in CF research (KLYMIUK et al., 2012). 

Nonetheless, a previous thesis done at the Chair for Molecular Animal Breeding 

and Biotechnology, describes the occurrence of three CF piglets (#2850, #3137 

and #4424) that showed a clear improved intestinal phenotype as meconium has 

passed autonomously; all other characteristic features of CF were still present 

(DMOCHEWITZ, 2016). Subsequent genome-wide analysis revealed the 
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hypothesis of two independent modifying loci on chromosome 10 (25.8–25.9 Mb) 

and on chromosome 16 (4.7–5.2 Mb) to rescue the severe intestinal phenotype. In 

my work, the hypothesis was tested and therefore the frequency of the desired 

genotype constellation on both candidate regions was enriched in the CF breeding 

herd in order to increase the probability of an improved intestinal manifestation in 

CF piglets. Eventually, an alternative evaluation of the genetic diversity was 

performed by genome-wide analysis on the basis of a larger population.  

In addition, a variant respiratory phenotype was observed in some CF piglets 

during my thesis, independently from the CF gut-phenotype. 
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II. REVIEW OF THE LITERATURE 

1. Cystic Fibrosis 

Cystic Fibrosis (CF) is the most common, autosomal recessive monogenic 

disorder among Caucasians and indeed affects more than 100,000 people 

worldwide (reviewed in KLIMOVA et al., 2017). It is caused by mutations in the 

gene coding for the Cystic Fibrosis Transmembrane Conductance Regulator 

(CFTR), a controlled anion channel (WELSH & SMITH, 1993). 

As early as in the Middle Ages, interesting notes told about children whose brows 

tasted salty and who died precociously (AGRONS et al., 1996), but only in 1938 

Andersen firstly described clinical features of pancreatic fibrosis and pulmonary 

disease and finally introduced the term “cystic fibrosis” (ANDERSEN, 1938). 

Abnormal sweat gland electrolyte secretion was detected in 1953 (DI 

SANT'AGNESE et al., 1953), laying the foundation for the development of the 

“sweat test” in 1959 by Gibson and Cooke (GIBSON & COOKE, 1959) as a 

valuable diagnostic tool for CF, which is still in common use today. In 1983 the 

defective permeability of epithelium to chloride ions was recognized as the basic 

physiologic aberration in CF (QUINTON, 1983). With the identification of the 

disease causing CFTR gene (RIORDAN et al., 1989), a great breakthrough has 

been done and new diagnostic tests, prospects for novel therapeutic approaches 

and opportunities for further research came up. 

 

The history of Cystic Fibrosis treatment can be considered a paradigm of the 

successful performance by collaborative international exertion in the basic and 

clinical research (reviewed in CASTELLANI & ASSAEL, 2017). Although CF 

remains incurable, the overall knowledge about the disease increased 

tremendously, so that not only life expectancy, but also the quality of patients’ life 

has significantly been improved over the last decades. 
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1.1. Genetics of Cystic Fibrosis 

The identification of the CFTR gene in 1989 (RIORDAN et al., 1989) was a major 

breakthrough and paved the way for a more detailed diagnosis of CF, a better 

insight into the clinical features, and actually laid the foundation for new 

therapeutic agents (reviewed in DAVIS, 2006). The CFTR gene is located on the 

long arm of chromosome 7, consists of 27 exons, spanning over 250 kb and 

encodes the CFTR protein, which comprises 1,480 amino acids (MARINO et al., 

1991; reviewed in DAVIS, 2006; reviewed in FANEN et al., 2014). CFTR is a 

membrane protein, expressed in many epithelial cells within the airways, 

pancreas, liver, intestine, sweat glands and vas deferens (reviewed in DAVIS, 

2006) and functions as a cAMP-regulated channel, which transports anions, 

including chloride and bicarbonate. It belongs to the ABC-transporter family and 

is the only member of this family operating as an ion channel (reviewed in MENG 

et al., 2017; ROGERS et al., 2019). 

CFTR structurally consists of five domains: two membrane-spanning domains 

(MSDs), taking part in the formation of the chloride channel pore, two nucleotide-

binding domains (NBDs), interacting with cytosolic nucleotides, and one 

intracellular regulatory region (R) with multiple phosphorylation consensus sites. 

Coordinated interaction of NBDs and R domain systematically regulate channel 

activity (reviewed in WELSH & SMITH, 1993; MENG et al., 2017). Presently, 

there are more than 2,000 different mutations listed in the Cystic Fibrosis 

Mutation Database (CFTR1, 2015), of which at least 280 mutations are known to 

cause disease (IVANOV et al., 2018). The most common mutation worldwide, 

characterized by deletion of a single phenylalanine in position 508 (F508del), 

affects around 66 % of all CF patients (reviewed in RATJEN, 2009; CFTR1, 

2015). Individuals homozygous for F508del represent the most common CFTR 

genotype, namely 50 % of all patients (CUTTING, 2010). 

Based on their functional consequences on the CFTR protein, mutations are 

classified into six different groups (WELSH & SMITH, 1993; reviewed in 

ROGERS et al., 2019). Nonsense or splicing mutations lead to a complete absence 

of full-length, functional CFTR protein synthesis and are summarized in class I. 

Class II mutations, including the F508del mutation, stem from CFTR misfolding, 

resulting in a CFTR protein that fails to traffic through the endoplasmic reticulum 

to the cell surface. Mutant proteins that indeed reach the plasma membrane, but 



II. Review of the literature     5 

 

due to mutations in the NBDs, do not respond to activation stimuli, such as 

phosphorylation, are cumulated in class III. As a result, these types of mutations 

lead to decreased chloride channel activity. A diminished chloride conductance 

defect is summed up in class IV mutations. Class V and VI mutations lead to 

normal CFTR protein, but there is either less amount of functional protein (class 

V) or less stability at the apical membrane combined with an increased turnover in 

the plasma membrane (class VI). Class I-III mutations are associated with the 

classical CF phenotype, whereas the other defects lead to milder phenotypes 

(reviewed in PROESMANS et al., 2008). 
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1.2. Pathophysiology of Cystic Fibrosis 

Since the detection of the disease-causing CFTR gene, the knowledge of CF 

pathophysiology has increased significantly. Nevertheless, there are many aspects 

that still remain unclear and necessarily need to be clarified in order to 

conceivably escape the still unavoidable outcome of progressive lung dysfunction, 

the major cause of morbidity and mortality in CF-patients (reviewed in 

CUTTING, 2015). 

In summary, an absent or malfunctioning CFTR protein leads to reduced chloride 

and bicarbonate conductance on the apical membrane of epithelial cells, resulting 

in dehydration and acidification of mucosal surfaces (reviewed in RATJEN, 2009; 

GENTZSCH & MALL, 2018). The so formed sticky and viscous mucus obstructs 

the luminal compartments of the affected organs, such as the lungs, the intestine 

and the pancreas. 

It is of note, that, apart from being a chloride and bicarbonate channel, CFTR also 

acts as a regulator of other membrane channels. In this context, active CFTR 

inhibits the epithelial sodium channel ENaC, causing the absorption of sodium 

and water from the airway lumen (reviewed in CASTELLANI et al., 2018b), as 

well as chloride efflux via the outwardly rectifying chloride channel ORCC 

(reviewed in RATJEN, 2009). 

From the beginning there were two different hypotheses, both of them trying to 

find a possible explanation for the development of CF lung disease, which reflects 

a failure of innate defense against bacterial infections (BOUCHER, 2007). The 

first hypothesis, the ‘high salt’ hypothesis, proposes an increased NaCl 

concentration in the airway surface liquid (ASL) as responsible for decreased 

activity of antimicrobial peptides, resulting in chronic airway infections. In 

contrast, the ‘low volume’ hypothesis focuses on the idea, that reduced chloride 

conductance leads to less water efflux, finally resulting in dehydrated airway 

surfaces. In turn, airway surface liquid depletion is recognized as the major cause 

of diminished mucus clearance due to ciliary collapse. Adherent mucus obstructs 

the airways and thus sets the stage for a vicious circle of chronic bacterial 

infection (GOLDMAN et al., 1997) and inflammation, in the end culminating in 

progressive lung dysfunction. 
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1.3. Phenotypical abnormalities in Cystic Fibrosis 

Cystic Fibrosis is a complex multi-organ disease affecting the airways, the 

gastrointestinal tract, including the pancreas and the hepatobiliary system, as well 

as the reproductive tract and the sweat glands, whereby clinical expression in 

individuals with CF shows a comprehensive variability (reviewed in AVERILL et 

al., 2017; HARUTYUNYAN et al., 2018; PARANJAPE & MOGAYZEL, 2018). 

While many organ systems can be affected, the major cause of morbidity and 

mortality is traced to pulmonary insufficiency (reviewed in CUTTING, 2015; 

PARKINS et al., 2018). At birth the lungs of CF patients appear normal, however 

from early age on individuals with common CF typically exhibit progressive 

respiratory manifestations. Impaired mucociliary clearance, resulting in mucus 

obstruction and chronic colonization of the airways by pathogenic bacteria, the 

latter clearly dominated by Staphylococcus aureus and Pseudomonas aeruginosa 

(reviewed in PROESMANS et al., 2008), remain the clinical hallmarks of classic 

CF. Frequent infections with repeated episodes of chronic and acute inflammatory 

and immune reaction lead to airway damage, manifesting as bronchiectasis, 

accompanied by fever, cough, dyspnea and weight loss. Finally, chronic cycles of 

infection and inflammation provoke respiratory failure with clinical end-stage 

lung disease. This is, why lung transplantation often remains the only therapeutic 

option at this stadium. It is of note, that the clinical appearance of CF lung disease 

shows wide variability (reviewed in CASTELLANI & ASSAEL, 2017). 

Up to 90 % of individuals with classic CF suffer from gastrointestinal 

complications. Meconium ileus (MI), a life threatening obstruction of the distal 

small bowel by fetal feces, occurring in 15-20 % of all CF newborns (GUO et al., 

2014), is often the first clinical indication of CF (AGRONS et al., 1996). Its 

occurrence is more frequently associated with more severe CFTR mutations and 

seems to be influenced by additional genetic factors (KNOWLES & DRUMM, 

2012; DUPUIS et al., 2016). Two types of MI are admitted: the simple and the 

complicated form, both occurring with similar frequency (50-58 %). Simple MI 

typically appears in otherwise healthy infants within 48 hours after birth as an 

intestinal obstruction. The complicated form arises earlier and is characterized by 

more severe symptoms like volvulus or microcolon. Resolution of MI requires 

intensive treatment, including rectal infusion of Gastrografin or enema in the case 

of simple MI, as well as surgical intervention in about half of the cases (DUPUIS 
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et al., 2016). Thanks to great progress in the clinical management of MI, the 

survival of newborns with CF and MI increased significantly and is nowadays 

comparable to children with CF who do not suffer from MI.  

Older patients may exhibit intestinal obstruction as well, leading to a sub 

occlusive or fully occlusive manifestation called distal intestinal obstructive 

syndrome (DIOS), that appears in up to 25 % of adult patients (reviewed in 

CASTELLANI & ASSAEL, 2017; SEMANIAKOU et al., 2018). Typically 

conservative measures like oral rehydration or osmotic laxatives are 

recommended (KELLY & BUXBAUM, 2015).            

Another feature of classic CF, affecting 85-90 % of adults, is pancreatic exocrine 

insufficiency (reviewed in AVERILL et al., 2017; HARUTYUNYAN et al., 

2018). Decreased levels of pancreatic enzymes lead to fat malabsorption, causing 

steatorrhea, malnutrition, deficiency of fat-soluble vitamins and characteristic 

fatty and foul-smelling stool. Similar to the occurrence of MI, pancreatic 

insufficiency is usually also associated with severe class I-III CFTR mutations 

(DURNO et al., 2002). As a result of progressive damage of pancreatic tissue, the 

pancreas can also lose its endocrine function, leading to Cystic Fibrosis-related 

diabetes mellitus (CFRD), which is a unique combination of type I and type II 

diabetes and can be handled with insulin.  

Often hepatobiliary manifestation in CF is not clinically relevant. However, in 

some patients (3-5 %) Cystic Fibrosis-related liver disease (CFLD) is severe and 

counts as the third most common cause of mortality in CF individuals after 

respiratory failure and complications following transplantation. Usually, the onset 

of liver disease in the second decade of life or even later is characterized by fatty 

liver, fibrosis, biliary cirrhosis and portal hypertension. The so-called ‘micro-

gallbladder’ is another reported abnormality in 10-30 % of all patients with CF 

(reviewed in LAVELLE et al., 2016). It is small or even absent and may be 

nonfunctioning.  

Nearly all males with CF (over 95 %) are infertile due to congenital bilateral 

absence of the vas deferens (CBAVD) and obstructive azoospermia, whereas only 

a small percentage of women suffer from reduced fertility (reviewed in 

EDENBOROUGH, 2001; O'SULLIVAN & FREEDMAN, 2009).  
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1.4. Diagnosis of Cystic Fibrosis 

In most cases, Cystic Fibrosis is diagnosed in the first year of life und normally 

diagnoses are unambiguous (reviewed in AVERILL et al., 2017).  

At the moment there are three main tests to identify whether an individual suffers 

from CF: the newborn screening test, the confirmatory sweat-test and the 

diagnosis of specific mutations of the CFTR gene. 

A diagnosis in the first days of life can be done by newborn screening (NBS), a 

technique established in 1979 (reviewed in COURSE & HANKS, 2019). In this 

test a blood sample is checked for higher than normal levels of pancreatic 

Immunoreactive Trypsinogen (IRT). Laboratories either perform two consecutive 

measurements or, if the first IRT level is increased, execute successive CFTR 

mutation testing (reviewed in PARANJAPE & MOGAYZEL, 2018). Proceeding 

that way, most children diagnosed with CF are nowadays detected when still in an 

asymptomatic stage (reviewed in COURSE & HANKS, 2019). Such an early 

diagnosis has been proven to bring substantial benefits in the following treatment 

and thus in the prognosis of patients with CF. When properly designed and 

managed, screening programs are cost effective and offer a high sensitivity and 

specificity (reviewed in CASTELLANI & ASSAEL, 2017). Over the past two 

decades, there has been a steady increase in national NBS programs. At present, in 

nearly all European countries, as well as in the United States, well-established 

nationwide protocols have been implemented (reviewed in COURSE & HANKS, 

2019). 

The gold-standard for diagnosing CF remains the pilocarpine iontophoresis sweat 

test (reviewed in COURSE & HANKS, 2019), developed by Gibson and Cooke in 

1959, following the knowledge of increased chloride levels in the sweat as an 

unequivocal hallmark of CF (GIBSON & COOKE, 1959). A chloride 

concentration greater than 60 mmol/L is confirmatory of the CF diagnosis, while 

intermediate concentrations (40-60 mmol/L) are only indicative. In such cases, the 

identification of two CF-causing mutations on both alleles clearly verifies the 

before established suspicion (reviewed in KLIMOVA et al., 2017; CASTELLANI 

et al., 2018a). It has to be mentioned, that also in the case of a positive NBS test, a 

sweat test always has to confirm the diagnosis CF (CASTELLANI et al., 2009) . 

Since mutation specific therapies are becoming increasingly available, the 

detection of CFTR mutations in an individual patient is now another important 
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tool (reviewed in DE BOECK et al., 2017). Most common disease-causing 

mutations in the examined population (covering 80-85 % of all mutations in the 

population) are identified with the help of a standard CFTR mutation panel. More 

complex analyses, conducted by certified laboratories, are realized, when two 

CFTR gene mutations could not be identified and the diagnosis of CF is nearly 

confident (diagnostic sweat chloride concentration above 60 mmol/L) or very 

likely due to typical clinical features as previously described. In the course of this, 

the entire CFTR gene is sequenced and after that, large deletions or insertions are 

being evaluated. 

It is of note, that up to 7 % of CF cases are nowadays diagnosed in patients over 

the age of 16 years (reviewed in AVERILL et al., 2017), presenting with recurrent 

pancreatitis, chronic sinusitis or CBAVD. Often these patients exhibit one ‘mild’ 

CFTR mutation and retain a residual chloride channel activity. With only 10 % of 

the normal levels of CFTR mRNA remaining, individuals can show normal lung 

and pancreatic function, what is a formative difference from the before described 

classic CF phenotype diagnosed in childhood.  
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1.5. Treatment approaches for chronic aspects of Cystic Fibrosis 

When first described in 1938, CF usually resulted in death during infancy 

(reviewed in CASTELLANI et al., 2018a; ROGERS et al., 2019). Early diagnosis, 

substantial progress in the management of especially pulmonary CF disease, 

important new therapy approaches and the establishment of multi-disciplinary 

treatment centers in the 1950s, altogether greatly improved the duration and 

particularly the quality of patients’ life. Presently, 40-50 % of all CF patients are 

adults with a life expectancy of up to 40 years in countries with well-established 

CF programs (HODSON et al., 2008). For people born after the year 2000 it is 

even projected to be 50 years (HURLEY et al., 2014). CF cannot be cured, but 

with the help of careful monitoring and early aggressive pharmacological 

strategies, symptoms can be delayed.  

Treatment approaches primarily focus on pulmonary manifestation of CF. In early 

stages of the disease, non-pharmacological treatment, mainly focusing on chest 

physical therapy, can help to loosen mucus (reviewed in KLIMOVA et al., 2017). 

The main challenge in CF remains the prevention and control of lung infections 

(reviewed in CASTELLANI & ASSAEL, 2017; KLIMOVA et al., 2017; 

RAFEEQ & MURAD, 2017). In this context, antibiotics in a high-dosage regime 

are prescribed, mainly consisting of inhaled forms of azithromycin, tobramycin, 

aztreonam and levofloxacin. Despite aggressive preventive measures, bacterial 

colonization of the lower airways, usually ending up in progressive lung damage, 

just like repeated episodes of inflammatory and immune action, remain major 

clinical difficulties. Anti-inflammatory therapy is able to slow down the 

progression of lung disease (reviewed in CHENG et al., 2013) and comprises the 

intake of ibuprofen (LANDS et al., 2007), as well as inhaled (beclomethasone, 

budesonide and fluticasone) or systemic (prednisone) corticosteroids. Another 

important aspect in dealing with CF pulmonary manifestation is the use of 

mucoactive substances, which help to remove thick, sticky mucus from the lungs 

and further dilate the airways. Mucolytics can be divided into non-specific, such 

as ambroxol, acetylcysteine and mesna, and in CF-specific like amiloride, NaCl 

and dornase α. In the worst cases, respiratory failure and end-stage lung disease 

make a lung transplantation, as the only remaining therapeutic option, necessary. 

Pancreatic insufficiency is treated with well-established pancreatic enzyme 

replacement therapy rich in lipase, protease and amylase. Furthermore, a strict 



II. Review of the literature    12 

high-energy and high-fat dietary nutrition and the supplementation of vitamins is 

mandatory (reviewed in KLIMOVA et al., 2017). 

The therapy of CFLD focuses on improving biliary excretion and bile acid 

composting by oral supplementation of the bile salt ursodeoxycholic acid, which 

normalizes liver function. Only if hepatobiliary disease is complicated by portal 

hypertension, liver transplantation is considered (KELLY & BUXBAUM, 2015). 

Even before the identification of the CFTR gene, genetic based therapy was 

suggested as possible treatment for CF (reviewed in GILL & HYDE, 2014). Gene 

therapy approaches mainly focus on gene complementation, where wild type 

(WT) CFTR cDNA is delivered to cells suffering from impaired CFTR function, a 

method feasible for all classes of mutations. A clinical study by British scientists, 

administering monthly treatments of a nebulized gene/liposome complex, run in 

clinical trial phase II and showed modest, but positive results in favor of improved 

lung function in 3.7 % of participating CF patients (reviewed in CASTELLANI & 

ASSAEL, 2017). 

With the introduction of so-called CFTR modulators, treatment methods shifted 

from only symptomatic therapy towards personalized approaches, adjusted to the 

patients’ underlying CFTR mutation (reviewed in SKOV et al., 2019). At the 

moment there are three different types of modulators available: potentiators, used 

in class III or IV mutations, raise the function of CFTR channels by increasing the 

channel open probability. Correctors, which augment the intracellular processing 

of class II mutations, allowing more protein to reach the plasma membrane. 

Moreover, read-through agents promote ribosomal read-through in class I CFTR 

mutations (reviewed in BRODLIE et al., 2015). The first available modulator was 

ivacaftor (Kalydeco), targeting class III mutations such as G551D, which is 

carried by 4 to 5 % of CF patients (ROWE et al., 2014). Ivacaftor was shown to 

significantly improve clinical parameters such as lung function and has actually 

been approved for treating patients with 38 different class III and IV mutations 

(reviewed in ROGERS et al., 2019). In 2015, the combination of ivacaftor 

together with the corrector lumacaftor (VX-809) was established in order to 

correct the most common class II mutation F508del (WAINWRIGHT et al., 

2015). Unfortunately, compared to the previously described ivacaftor 

monotherapy, the effects of this combined method on lung function were 

relatively modest. Similar clinical effects, also tested in F508del mutations, have 

been observed with another potentiator/corrector combination ivacaftor/tezacaftor 
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(ROWE et al., 2017; TAYLOR-COUSAR et al., 2017). Ataluren (PTC124) is a 

read-through agent and has been trialed for use in class I mutations, affecting 

approximately 10 % of CF patients. It is now in phase III of clinical trials and so 

far, it showed moderate clinical improvement (KEREM et al., 2014). New and 

potentially more effective so-called next-generation modulators, aiming to be 

available for a much larger CF population, are presently tested in ongoing studies 

(reviewed in SKOV et al., 2019). 

In summary it can be said, that, despite the positive outcomes of all the new 

agents, there are still limitations, including high costs for long-term treatment 

(reviewed in WHITING et al., 2014) and particularly the indispensable need to 

continue other symptomatic treatment (reviewed in RAFEEQ & MURAD, 2017). 

The development and improvement of novel treatment procedures for an even 

larger community of CF patients is a crucial need to enhance the patients’ quality 

of live and will be a bold challenge in the near future. 
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2. Animal models for Cystic Fibrosis 

Animal models are essential tools for better understanding pathophysiological 

mechanisms in Cystic Fibrosis and for developing new therapeutic approaches 

(reviewed in SEMANIAKOU et al., 2018). CFTR-deficient animal models offer 

several advantages for studying CF disease (reviewed in OLIVIER et al., 2015). 

They can be studied early in life, whereas studies in CF infants and children are 

limited due to ethical concerns. Moreover, animal models allow for controlled 

comparison of organ systems and even of the clinical spectrum between different 

species. Thus, they do not only give greater insights into CF pathogenesis, but 

also help to identify additional genetic modifiers possibly influencing the disease. 

Currently, CF model in six different species are available (mouse, rat, zebrafish, 

sheep, ferret and pig) and demonstrate the complexity of human CF 

manifestations, whereby various models present different specific advantages, but 

also major limitations (reviewed in SEMANIAKOU et al., 2018). 

 

2.1. Animal models for Cystic Fibrosis (apart from the pig) 

Shortly after the identification of the CFTR gene in 1989, the first CF mouse 

model was generated (SNOUWAERT et al., 1992). The most prominent hallmark 

in CF mice is the severe intestinal obstruction, including mucus accumulation, 

goblet cell hyperplasia and crypt dilatation, symptoms comparable with human 

intestinal manifestation (reviewed in GRUBB & BOUCHER, 1999). In contrast to 

CF patients in whom pancreatic insufficiency and liver disease are major features, 

CF mice develop only mild pancreatic disease (SNOUWAERT et al., 1992) and 

no obvious liver pathology (reviewed in ROSEN et al., 2018). Most of the male 

CF mice exhibit reduced fertility, but the complete bilateral absence of the vas 

deferens, typical for male humans, is missing (LEUNG et al., 1996; LAVELLE et 

al., 2016). The main problem of the CF mouse, limiting its usage as an animal 

model, is the lack of replicating CF-typical substantial und spontaneous bacterial 

infection and inflammation in the lungs (reviewed in GUILBAULT et al., 2007). 

A possible explanation for this divergent respiratory phenotype could be an 

adaptive dominance of the calcium-activated chloride channel (CACC), 

compensating the defective chloride transport (reviewed in MCCARRON et al., 
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2018). 

CF rat models are characterized by intestinal obstruction at weaning, complete 

bilateral absence of the vas deferens and missing signs of obvious hepatobiliary 

and pancreatic disease (TUGGLE et al., 2014). While CF rats do not 

spontaneously develop lung infection and inflammation, they still share 

respiratory abnormalities consistent with humans, such as congenital tracheal 

defects with reduced cartilage and gland area. 

The CF zebrafish is a unique model of pancreatic disease progression in all 

developmental stages, demonstrating that pancreatic dysfunction starts early in 

life (NAVIS & BAGNAT, 2015). 

FAN et al. (2018) generated the first CF sheep model, which is characterized by 

intestinal obstruction with 100 % incidence in CF KO lambs, pancreatic fibrosis, 

hepatobiliary abnormalities, including fibrosis and cirrhosis, as well as the 

absence of vas deferens in male individuals. However, lung pathology is not 

detectable. 

Due to similarity in lung cell biology and anatomy to human CF patients, the 

ferret is a good animal model for CF research (reviewed in LAVELLE et al., 

2016). Ferret CF models show a more severe intestinal phenotype compared to 

humans, as MI is present in approximately 75 % of CF ferret kits (SUN et al., 

2010), resulting in death within 36 hours (reviewed in FISHER et al., 2011). 

Similar to human CF infants, CF KO kits are born with only mild pancreatic 

disease, but very early in life pancreatic inflammation is starting and within the 

first months the pancreas undergoes rapid tissue deterioration, finally resulting in 

pancreatic insufficiency in 85 % of adult CF ferrets and characteristics of CF-

related diabetes mellitus (OLIVIER et al., 2012). While the hepatobiliary system 

appears normal at birth, increased liver enzymes indicate an early onset of liver 

disease and even gallbladder abnormalities are present in the majority of CF 

ferrets older than one month (SUN et al., 2014). An absent or degenerated vas 

deferens is another characteristic, typically found in CF ferrets. Most importantly, 

ferret models mirror the human respiratory phenotype, characterized by impaired 

mucociliary clearance, mucus-obstruction of the airways and submucosal glands, 

and particularly the development of spontaneous lung infections soon after birth 

(SUN et al., 2010; SUN et al., 2014). 
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2.2. The pig as an animal model for Cystic Fibrosis 

From the CF animal models developed so far, the porcine CF model proves to be 

the model showing the closest similarity to typical CF phenotype in humans 

(reviewed in CUTTING, 2015). In view of pulmonary insufficiency, presenting 

the leading cause of mortality in CF patients, the pig as an animal model offers 

potential advantages, as its lung share many features with human lungs (ROGERS 

et al., 2008a; WELSH et al., 2009; AIGNER et al., 2010). In general, pigs and 

humans have a lot of similarities in terms of anatomy, physiology, histology, 

immunology, metabolism and even genomics. Moreover, the early sexual 

maturity, a short generation time and large litter sizes also recommend the pig as 

an ideal large animal model. The longevity of pigs enables for examining 

pathophysiological mechanisms in CF and long-term efficacy of pharmacological 

and other treatment approaches.  

So far, three different porcine CF models, either carrying the complete disruption 

of both CFTR alleles (ROGERS et al., 2008b; KLYMIUK et al., 2012), or 

carrying the most common CF-associated mutation F508del (ROGERS et al., 

2008a), have been generated. Rogers and colleagues used recombinant adeno-

associated virus (rAAV) vectors targeting the porcine CFTR gene in fetal 

fibroblasts, followed by somatic cell nuclear transfer (SCNT) and embryo transfer 

(ET) to produce male heterozygous CFTR+/- offspring. At sexual maturity they 

were bred selectively over two generations by initially generating further male and 

also female heterozygotes in order to finally produce CFTR-/- piglets (ROGERS et 

al., 2008a). The first European pig model of CF was established by KLYMIUK et 

al. (2012) by using modified bacterial artificial chromosome (BAC) vectors for 

sequential targeting of the CFTR gene in porcine primary kidney cells. 

Cystic Fibrosis pigs recapitulate many of the human phenotypical manifestations 

of CF. In newborn CF piglets, pancreatic insufficiency develops spontaneously, 

characterized by a variable severity of exocrine tissue destruction (ROGERS et 

al., 2008b; MEYERHOLZ et al., 2010b; KLYMIUK et al., 2012). Histologically, 

small and degenerative lobules with loose adipose tissue, mucus-dilated ducts, 

obstructed by eosinophilic material, and even signs of mild inflammation are 

generally detectable. Morphologically, pancreatic endocrine tissue appears intact 

(ROGERS et al., 2008b), however, glycemic abnormalities and even defects in 

insulin secretion are present findings in newborn CF pigs (UC et al., 2014). 
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Indeed, CF piglets demonstrate impaired glucose tolerance and an elevated 

glucose area, resulting in spontaneous hyperglycemia developing over time. 

Interestingly, obvious functional alterations in the pancreas of CF pigs are not 

associated with a decrease in islet cell mass, suggesting, that, independent of 

structural islet loss, functional deviations in pancreatic islets contribute to the 

early pathogenesis of CF-related diabetes mellitus (UC et al., 2014). 

The liver of CF KO pigs infrequently exposes mild to moderate hepatic lesions, 

whereby signs of focal biliary cirrhosis, including increased cellular 

inflammation, bile ductal hyperplasia and mild fibrosis, are present. While all 

CFTR-/- piglets exhibit a micro-gallbladder, filled with mucin-containing material, 

in human CF patients this phenotypical abnormality occurs in only 10-30 % of all 

cases (reviewed in LAVELLE et al., 2016). It is of note, that the hepatic changes 

in CF pigs are irregular not only between different areas within the same tissue, 

but also between different individuals (KLYMIUK et al., 2012). 

Moreover, male CF KO piglets reveal a degenerated or absent vas deferens, and in 

some cases also epididymis atresia, comparable with changes typically found in 

human CF patients (PIERUCCI-ALVES et al., 2011). 

 

2.2.1. The respiratory phenotype in Cystic Fibrosis pigs 

Due to anatomical, histological and physiological similarities between the human 

and porcine lung, the pig model presents an ideal model to examine 

pathophysiological mechanisms in CF lung disease (AIGNER et al., 2010). 

Interestingly, the porcine respiratory tract has already been used for a long time to 

study pulmonary abnormalities that are relevant to CF, such as infection and 

inflammation procedures (BRADLEY et al., 1976; PABST & BINNS, 1994).          

In contrast to most of the CF animal models generated so far, the porcine CF 

model demonstrates several respiratory abnormalities. Common findings in all CF 

piglets are tracheal abnormalities, including a triangular to oval shaped trachea, in 

contrast to the circular shape in WT controls, reduced tracheal caliber extended 

through the mainstem bronchi, as well as thicker and more discontinuous 

cartilages (ROGERS et al., 2008b; KLYMIUK et al., 2012). Due to altered 

orientation of smooth muscle cell bundles, the caudal trachea and the large 

bronchi exhibit a variable thickening of the posterior wall. Moreover, submucosal 
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glands occur with similar frequency compared to control airways, but CF glands 

are small and hypoplastic (MEYERHOLZ et al., 2010a). In summary, the 

congenital tracheal defects are similar to changes found in CF infants (reviewed in 

MEYERHOLZ et al., 2010a; STOLTZ et al., 2015) and are furthermore awarded 

to contribute to CF disease development during postnatal life (WELSH et al., 

2009; MEYERHOLZ et al., 2010a). Nevertheless, specific mechanisms for 

tracheal abnormalities and the question, how absent CFTR induces these effects 

during development, are still unknown (MEYERHOLZ et al., 2010a). 

The lungs of newborn CF piglets morphologically appear normal at birth without 

evidence of pathological abnormalities (ROGERS et al., 2008b). Only within 

weeks to months after birth, they spontaneously develop characteristic features of 

CF lung disease, including infection, inflammation, mucus accumulation and 

remodeling procedures (STOLTZ et al., 2010). Interestingly, the manifestation of 

CF respiratory phenotype is, similar to humans, heterogeneous within and among 

pigs. Although newborn CF pigs morphologically do not show signs of 

inflammation, compared to non-CF littermates their lungs are less sterile. 

Harboring a huge amount of environmental bacteria led to the conclusion, that this 

is an equal opportunity host-defense defect (STOLTZ et al., 2015). Even after 

intrapulmonary bacterial challenge, CF piglets actually fail to eliminate bacteria, 

suggesting that airway infection precedes lung inflammation and not vice versa 

(STOLTZ et al., 2010). The reason for diminished degree of bacterial killing has 

been directly linked to reduced CFTR-dependent bicarbonate secretion, resulting 

in acidic airway surface liquid and decreased antibacterial activity (reviewed in 

STOLTZ et al., 2015).  Suspecting that host-defense defects begin within hours of 

birth, preventive measures should be initiated immediately before secondary 

consequences, finally leading to respiratory failure, develop. 

Moreover, pigs with CF demonstrate a defective mucociliary clearance, caused by 

the failure of mucus to detach from submucosal gland ducts. This defect is not 

imputable to insufficient periciliary liquid (BIRKET et al., 2014), but rather to 

basic loss of CFTR anion transport, indicating that this is a primary discrepancy 

and not dependent on processes like infection, inflammation or tissue remodeling 

(reviewed in STOLTZ et al., 2015). 

Most significantly, studies on electrolyte transport in porcine CF airway tissue 

questioned the long-standing hypothesis, that sodium hyperabsorption via the 

epithelial sodium channel ENaC fundamentally contributes to CF pathogenesis. 
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CHEN et al. (2010), indeed demonstrated a lack of chloride conductance and 

impaired bicarbonate transport in airway epithelia in CF piglets, but also a clear 

absence of sodium hyperabsorption. This finding, together with lacking 

inflammation in the lungs of newborn CF pigs, contradicts the claim, that sodium 

hyperabsorption triggers respiratory failure (CHEN et al., 2010; STOLTZ et al., 

2015). Instead, defects in chloride and bicarbonate transport are considered to 

initially initiate the pathogenesis of lung progression in CF patients.  

 

2.2.2. The intestinal phenotype in Cystic Fibrosis pigs 

Unfortunately, the development of CF lung disease in pig models is difficult to 

investigate, as an ever-present, severe intestinal phenotype with fatal meconium 

ileus (MI) represents the most prominent feature in pigs with Cystic Fibrosis. 

While only 15-20 % of all CF infants (GUO et al., 2014) suffer from the intestinal 

obstruction, in CF piglets MI actually occurs with a penetrance of 100 % 

(KLYMIUK et al., 2012). This dissimilarity in penetrance rate may potentially be 

explained by differences in anatomy and physiology combined with a restricted 

genetic background in pigs (ROGERS et al., 2008b). The pathogenesis of MI still 

remains unclear, but possible explanations are the lacking CFTR-mediated 

chloride and/or bicarbonate transport across epithelial membranes or perhaps 

pancreatic dysfunction (STOLTZ et al., 2013). Except from the frequency of 

occurrence, the general features of MI in pigs closely replicate those observed in 

humans. The site of obstruction ranges from the distal part of the jejunum to the 

proximal spiral colon (ROGERS et al., 2008b; MEYERHOLZ et al., 2010b). An 

atretic and stenotic microcolon with diminished diameter, distal to the site of 

obstruction, is a common finding in piglets with CF. The reason why the intestine 

distal to the site of obstruction fails to develop normally, is still uncertain. It is 

possible, that luminal content either prevents mechanical elongation, or because 

obstruction inhibits a distal transfer of the luminal content, assumed for adequate 

intestinal growth (AMODIO et al., 1986). A variably severe diverticulosis at the 

mesenterial side of the meconium-dilated jejunum is another intestinal lesion 

typically found in CF piglets (KLYMIUK et al., 2012). It appears as saccular 

bulges, histologically composing of lamina propria herniating through the lamina 

muscularis (MEYERHOLZ et al., 2010b). The proposed pathogenesis of such 
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diverticles is described as a combination of increased intraluminal pressure by 

sticky, adherent meconium and hypertrophic smooth muscles during fetal life. For 

some pig breeds a genetic predisposition toward diverticulosis has also been 

discussed (MEYERHOLZ et al., 2010b). The appearance of characteristic 

microcolon and diverticulosis in CF pigs is reported in human CF patients as well, 

however, with a lower incidence rate and a less severity. Further histological 

examinations of the porcine intestine demonstrate atrophic and degenerated villi, 

as well as mucus-obstructed Brunner’s glands in the duodenum, lined by an 

atrophic epithelium (ROGERS et al., 2008b; KLYMIUK et al., 2012). Except as a 

secondary feature, initial signs of intestinal inflammation are not detectable 

(MEYERHOLZ et al., 2010b). 

As clinical signs of an intestinal obstruction, the CF piglets stop eating, evolve 

abdominal distension, show bile-stained emesis and therefore continuously lose 

weight (ROGERS et al., 2008b). If MI is not corrected, CF piglets die within 48 

hours after birth due to multifocal enteritis, peritonitis or even perforation, 

considerably limiting the usage of pigs as animal models in CF research 

(KLYMIUK et al., 2012). In CF infants, therapeutic strategies range from rectal 

infusion of Gastrografin or enema to complex surgical intervention, depending on 

the severity of MI (DUPUIS et al., 2016). However, nonsurgical approaches to 

rectify the intestinal obstruction fail in CF pigs (STOLTZ et al., 2013). Ensuring 

the survival of CF piglets, surgical ileostomy or cecostomy must be performed 

right after birth to bypass the obstruction (ROGERS et al., 2008b; STOLTZ et al., 

2010). Although operative treatment may rescue the severe intestinal phenotype, 

the practicability in pigs is limited by intensive and time-consuming surgical-

procedure as well as post-surgical care (KLYMIUK et al., 2012; GUILLON et al., 

2015). Initially, in some CF pigs a surgical correction is basically not feasible in 

terms of complications associated with MI, such as intestinal atresia or perforation 

(STOLTZ et al., 2013). Even after surgical treatment, there is a high risk for 

postoperative complications, limiting the piglets’ lifespan (KLYMIUK et al., 

2012). These aspects, in addition to associated high costs, compromise surgical 

approaches as a regular technique to overcome the lethal intestinal phenotype in 

CF pigs (STOLTZ et al., 2013).  

To circumvent these limitations, the prevention of MI rather than its treatment 

would obviously be an alternative method. Transgenic expression of CFTR under 

the control of gut-specific promoter results in an exclusive expression in the 
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intestine, while other organ systems stay unaffected (STOLTZ et al., 2013). As, in 

this way, the intestinal phenotype is able to be alleviated or even rescued, all other 

characteristic features of CF are still present. ZHOU et al. (1994) set the stage by 

using the rat intestinal fatty acid-binding protein (iFABP) promoter to express 

human CFTR in a murine model of CF, resulting in functional correction of cell 

hyperplasia and restored chloride secretion. STOLTZ et al. (2013) adopted that 

strategy to weaken the lethal intestinal phenotype, resulting in a “gut-corrected” 

porcine model of Cystic Fibrosis. They used the rat iFABP promoter to express 

WT porcine CFTR protein (pCFTR) in CF KO pigs (STOLTZ et al., 2013). In this 

study, piglets from 3 out of 5 transgenic lines had an improved intestinal 

phenotype, while still exhibiting pancreatic destruction, liver disorder and lung 

disease. An expression rate of approximately 20 % of WT CFTR seems to be 

adequate to largely prevent MI. It has to be mentioned, that a supportive treatment 

with Gastrografin enemas is still necessary to assure the piglets’ survival. 

Interestingly, BALLARD et al. (2016) evaluated the “gut-corrected” approach in 

CF pigs and unexpectedly found other complications among the piglets, including 

a high neonatal mortality, severe systematic edema and cardiovascular 

abnormalities. 
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3. Modifier genes in Cystic Fibrosis 

In general terms, Cystic Fibrosis is a monogenic recessive Mendelian disorder 

with complex, heterogeneous phenotypic expression (reviewed in WEILER & 

DRUMM, 2013; O'NEAL & KNOWLES, 2018). Apart from the causative CFTR 

defect itself, there are multiple sources that contribute to the striking phenotypic 

diversity, including the specific CFTR mutation, environmental factors, as well as 

additional non-CFTR genetic influences, so called ‘modifier genes’. Each of the 

affected organ systems in CF demonstrates a specific phenotypic variability and 

uniquely responds to CFTR mutations and modifier effects. The correlation 

between CFTR genotype and clinical manifestation of the disease is well-known 

(KEREM et al., 1990). However, even among patients carrying the same CFTR 

mutation, there is a wide range of clinical manifestation, most notably lung 

disease diversity. As early as 1990, the potential role of genetic modifiers in 

determining the complexity of CF, has been proposed (SANTIS et al., 1990). 

Twin and sibling studies, determining the relative contribution of genetic and 

environmental factors, demonstrated high degrees of heritability for several traits, 

such as the severity of lung disease (MEKUS et al., 2000; VANSCOY et al., 

2007), the risk for developing CFRD (BLACKMAN et al., 2009), early exocrine 

pancreatic insufficiency (SONTAG et al., 2006) and also the occurrence of 

intestinal obstruction at birth (BLACKMAN et al., 2006). In sum, those studies 

generally pointed to significant role of genetic modifiers in disease presentation, 

but the specific impact on the severity in CF still remains unclear (reviewed in 

SHANTHIKUMAR et al., 2019). 

It is clear, that identifying and comprehensively understanding the effect of non-

CFTR genetic influences in the context of CF pathogenesis and clinical 

variability, help to figure out novel therapeutic targets, hopefully resulting in new 

effective treatment strategies. In this context, observing a patient’s particular 

genetic profile, disease-modifying genes actually open the door to personalized 

medicine (reviewed in WEILER & DRUMM, 2013). 

Initial studies on modifier genes contributing to disease variability, evaluated 

candidate genes or regions implied in pathways that are already known to be 

relevant in CF (reviewed in WEILER & DRUMM, 2013; SHANTHIKUMAR et 

al., 2019). In view of still limited understanding of disease pathophysiology, 
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genetic locations beyond those are not detected. Further challenges of early 

candidate gene approaches are the limitation of statistical power due to relatively 

small cohort sizes and lots of conflicting results (reviewed in BÜSCHER & 

GRASEMANN, 2006). Larger, unbiased studies using a genome-wide approach 

examine either the overall exome, the coding region of the gene, via whole-exome 

sequencing, or all single nucleotide polymorphisms (SNPs), common genetic 

variations in an individual’s DNA sequence (DAVIES et al., 2005), via genome-

wide association study (GWAS). Thus, novel chromosomal regions and genes, 

previously not considered, can be identified. So far, a variety of individual genetic 

modifiers for multiple CF phenotypes has been detected, though there is no single 

definitive contributor that universally predicts disease severity or secondary 

complications (reviewed in DORFMAN, 2012). Rather combinations of genetic 

variants seem to contribute to overall disease manifestation. Due to this complex 

constellations, current study approaches are limited by disparate findings, 

confined replication and a relative lack of clinical influence. Future work has to 

overcome these limitations and finally assess, whether validated modifiers can 

actually be used in clinical management of CF patients. 

 

3.1. Gene modifiers for the respiratory phenotype in Cystic Fibrosis 

Considering the great relevance of pulmonary insufficiency in the progression of 

CF, the main focus of gene modifier approaches is the identification of additional 

non-CFTR genetic influences for lung disease progression (reviewed in O'NEAL 

& KNOWLES, 2018). The complex, heterogeneous phenotypic expression in CF 

appears, as previously mentioned, even among CF patients with the same CFTR 

mutation. While some patients exhibit relatively mild lung disease until 

adolescence and adulthood, others show a faster decline in lung function and 

suffer from poor respiratory condition even at very young age (KEREM et al., 

1990). Also, in various CF animal models, the manifestation of pulmonary disease 

severely differs, as ferrets and pigs spontaneously develop lung infection and 

inflammation, whereas mice, rats and sheep lack this CF-typical abnormality. It 

was determined, that genetic modifiers could account for 50-80 % of lung disease 

variability in CF patients carrying an equal CFTR genotype (VANSCOY et al., 

2007). 
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For the divergent pulmonary phenotype, a huge amount of modifier genes has 

been described, with TGFB1 and MBL being the first ones that have been 

identified (reviewed in SHANTHIKUMAR et al., 2019). Transforming growth 

factor beta 1 (TGFB1), a major fibrogenic cytokine (GRAINGER et al., 1999), is 

one of the most widely examined potential gene modifiers in CF lung disease, as 

it plays a key role in the regulation of inflammation and tissue remodeling 

(AKHURST, 2004). Its impact on other lung disorders, such as asthma and 

chronic obstructive pulmonary disease (COPD), has already been described 

(PULLEYN et al., 2001; WU et al., 2004). Moreover, there is also evidence that 

interaction between TGFB1 genotype and tobacco smoke exposure additionally 

influences CF lung disease severity (COLLACO et al., 2008). Several studies on 

TGFB1 as a modifier of CF, including the large Gene Modifier Study (GMS), 

revealed, that a codon 10 CC genotype has been associated with enhanced 

expression of TGFB1, leading to increased inflammation and fibrosis, in turn 

resulting in more severe respiratory manifestation (DRUMM et al., 2005).  

The lack of mannose-binding lectin (MBL), a serum protein participating in innate 

immune response, is related to increased susceptibility to infections. (reviewed in 

TURNER, 2003). Consequently, as actually proved in a number of candidate 

modifier studies, a MBL-deficient genotype is suggested to be connected with 

worse clinical manifestation, characterized by higher infection rate and reduced 

lung function (reviewed in SHANTHIKUMAR et al., 2019). However, since the 

findings of numerous studies are in part contradictory, and the most robust study 

actually could not find any effect of MBL on lung disease diversity (DRUMM et 

al., 2005), the role of MBL as a modifier gene of CF still remains a matter of 

debate. 

Apart from TGFB1 and MBL, many other genes have been suggested as modifiers 

contributing to the diverse pulmonary phenotype in CF patients, such as 

homeostatic iron regulator (HFE) (REID et al., 2004; PRATAP et al., 2010; 

SMITH et al., 2019), endothelin receptor type A (EDNRA) (DARRAH et al., 

2010) and carcinoembryonic antigen-related cell adhesion molecules (CEACAM) 

(STANKE et al., 2010). 

Moreover, current systematic GWAS identified five more regions that are 

correlated to lung disease severity (reviewed in O'NEAL & KNOWLES, 2018; 

SHANTHIKUMAR et al., 2019). On chromosome 3 mucin 4 (MUC4) and mucin 

20 (MUC20) have been detected, however, neither the region, nor the genes have 
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been identified in subsequent studies. In contrast, solute carrier family 9 member 

A3 (SLC9A3) on chromosome 5, as well as major histocompatibility complex 

(HLA) class II on chromosome 6 could both be detected as possible gene 

modifiers in additional investigations. The X chromosome revealed solute carrier 

family 6 member A14 (SLC6A14) to be associated with lung function and the risk 

of Pseudomonas aeruginosa infection. Further research detected ETS homologous 

factor (EHF) and APAF1 interacting protein (APIP) on chromosome 11 as 

potential gene modifiers. All hypothesized genes are of biological interest with 

high mechanistic probability (reviewed in O'NEAL & KNOWLES, 2018). 

However, it has to be mentioned that the loci of highest correlation are intergenic 

and hence very likely of regulatory function. Understanding the mechanistic effect 

of the suspected genes and expanding the present findings to even larger 

investigations will be an important challenge in future CF gene modifier research. 

 

3.2. Gene modifiers for the intestinal phenotype in Cystic Fibrosis 

Although the presentation of neonatal intestinal obstruction with meconium ileus 

(MI) is pathognomonic for Cystic Fibrosis (AGRONS et al., 1996), only 15-20 % 

of all CF infants are born with this characteristic trait. On the contrary, animal 

models for CF remarkably exhibit a more severe, but among each other, a still 

variable intestinal phenotype. In CF rats an intestinal obstruction at weaning is 

actually the most prominent feature (TUGGLE et al., 2014), whereas in CF mice 

the development of this trait usually depends on their genetic background 

(reviewed in FIOROTTO et al., 2019). CF ferrets are characterized by severe MI, 

appearing in approximately 75 % of all ferret kits (SUN et al., 2010). As a major 

drawback of the promising CF pig model, fatal MI even occurs with a penetrance 

of 100 % (KLYMIUK et al., 2012). While the respiratory phenotype is highly 

penetrant in CF patients, regardless of mutation class (DORFMAN et al., 2008), 

the occurrence of neonatal MI is usually associated with severe class I-III CFTR 

mutations in both alleles (KNOWLES & DRUMM, 2012; DUPUIS et al., 2016). 

Beyond that, studies in CF twins and siblings undoubtedly indicate a predominant 

impact of additional non-CFTR genetic modifiers on both, the contribution to and 

the protection against the occurrence of MI (BLACKMAN et al., 2006). In 

striking contrast to MI, the development of distal intestinal obstruction syndrome 
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(DIOS), a trait with clinical and pathologic similarities to MI in older CF patients, 

is not significantly influenced by modifier genes. 

The study of ROZMAHEL et al. (1996) initially described the role of further 

genetic factors on the intestinal disease in a murine model of CF, revealing a 

region on chromosome 7 to apparently influence intestinal obstruction. Examining 

the corresponding region of the human genome, located on chromosome 19, 

indeed indicated an association between variants in this region and the risk for MI 

(ZIELENSKI et al., 1999), but a causative gene has never been identified and also 

in later work this finding was not confirmed. (BLACKMAN et al., 2006). 

Genome-wide analyses revealed a few potential candidate loci, including 

polymorphisms in the genes coding for several members of the solute carrier 

family, either promoting (SLC6A14 on chromosome X, SLC9A3 on chromosome 

13, SLC26A9 on chromosome 1) or preventing the development of MI (SLC4A4 

on chromosome 4) (DORFMAN et al., 2009; SUN et al., 2012). Studies on 

murine models of CF clearly confirmed the protective effect of SLC4A4 variants 

against obstruction (GAWENIS et al., 2007). HENDERSON et al. (2012) 

confirmed an association between MSRA on chromosome 8, encoding for 

methionine sulfoxide reductase A, as CF mice lacking functional MSRA exhibit 

decreased incidence of intestinal obstruction in comparison to CF mice with 

functional MSRA. Another examination provided evidence for MI-promoting 

locus on chromosome 12 and suggested the involvement of the gene adiponectin 

receptor 2 (ADIPOR2) (DORFMAN et al., 2009). Just recently, two new potential 

modifier genes of MI have been identified, namely ATPase H+/K+ transporting 

non-gastric alpha2 subunit (ATP12A) on chromosome 13, and a suggestive locus 

on chromosome 7 near serine protease 1 (PRSS1) (GONG et al., 2019). 

For the porcine genome there are none potential modifiers that have been 

described so far, but the major contribution of additional non-CFTR genetic 

factors to neonatal intestinal obstruction in humans, as well as in murine models 

of CF, permits the assumption that also in CF pigs the severity of the intestinal 

disease might be modified.  
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Aims of my thesis 

KLYMIUK et al. (2012) generated the first European CF pig model at the Chair 

for Molecular Animal Breeding and Biotechnology, LMU Munich, Germany. As 

the CF pig exhibit hallmark features of human CF disease, it turned out to be an 

indispensable model for different cooperation partners working on CF research. In 

order to regularly provide porcine tissue material to different partners, a CFTR 

breeding herd with heterozygous female and male CFTR+/- pigs has been 

established. Since an ever-present, severe intestinal phenotype with fatal MI 

constitutes the most prominent trait in CF piglets, the use of the pig as an animal 

model for CF is strongly limited. However, a previous thesis done at the Chair for 

Molecular Animal Breeding and Biotechnology describes the occurrence of three 

CF KO piglets (#2850, #3137 and #4424) that showed a clear improved intestinal 

phenotype (DMOCHEWITZ, 2016). In those piglets, the meconium has passed 

through the cecum and was stuck in middle to distal parts of the colon. Moreover, 

the CF-typical microcolon was not detectable, but the size and diameter of the 

colon was similar to a WT one. To clarify the relevance of the genetic background 

for this naturally occurring improvement, a genome-wide analysis has been 

performed. This SNP typing revealed, that there are two potential modifier loci on 

chromosome 10 (25.8–25.9 Mb) and on chromosome 16 (4.7–5.2 Mb), whereby 

the three rectified piglets were homozygous for a specific haplotype at both loci. It 

was therefore hypothesized that the severity of the intestinal phenotype might be 

improved in those CF piglets that show homozygosity for specific haplotypes on 

both chromosomes. Based on these findings, the aim of my thesis was to test the 

hypothesis of two independent loci on chromosomes 10 and 16 to protect CF 

piglets from MI. In the case the hypothesis was verified, the probability of an 

improved manifestation in CF piglets should be increased by enriching the 

frequency of the desired genotype on chromosomes 10 and 16 in the CF pig 

breeding herd. Eventually, an alternative evaluation of the genetic diversity was 

performed by genome-wide analysis on the basis of a larger population. 

Independently from the CF gut-phenotype, a variant respiratory phenotype was 

observed in some CF piglets during my thesis. 
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III. ANIMALS, MATERIALS AND METHODS 

1. Animals 

The animals included in this work were wild type (WT), heterozygous CFTR+/- 

and homozygous CFTR-/- (CFTR KO) piglets generated by selected breeding of 

heterozygous female and male CFTR+/-. All animal experiments were approved by 

the responsible animal welfare authority (Regierung von Oberbayern, AZ 55.2-1-

54-2532-70-12). 

 

2. Materials 

2.1. Chemicals 

Acetic Acid (glacial) Carl Roth, Karlsruhe, Germany 

Bromophenolblue Carl Roth 

Chloroform (Trichloromethane) Sigma-Aldrich, St. Louis, USA 

EDTA (Ethylenediaminetetraacetic acid) Carl Roth 

Ethanol Carl Roth 

GelRed® Nucleic Acid Gel Stain Biotium, Fremont, USA 

Glutardialdehyde solution 25 % Merck, Darmstadt, Germany  

Glycerin (Glycerol) Carl Roth and Sigma-Aldrich 

HCl (Hydrochloric acid) 1 mol/L Bernd Kraft GmbH, Duisburg, 

Germany 

Methanol Carl Roth 

MgCl2 (Magnesium chloride) Thermo Fisher Scientific, 

Waltham, USA 

NaOH (Sodium hydroxide 2N) Carl Roth 

Paraformaldehyde Sigma-Aldrich 

Perfadex® XVIVO Perfusion, Gothenburg, 

Sweden 

Sodium cacodylate trihydrate  Sigma-Aldrich 

Tris (Tris-(hydroxymethyl)-aminomethane) Carl Roth 
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TRIzol® Reagent Thermo Fisher Scientific 

Universal Agarose Bio&SELL, Nuremberg, 

Germany 

 

2.2. Devices 

Chyo Petit Balance MK-2000B YMC CO, Kyoto, Japan 

Eppendorf Centrifuge 5417 R Eppendorf, Hamburg, Germany 

Eppendorf Centrifuge 5424 Eppendorf 

Eppendorf Centrifuge 5910 R Eppendorf 

Gel documentation system Bio-Rad Laboratories, Hercules 

USA 

Grant JB Nova 5 water bath Grant Instruments Ltd, Royston, 

UK 

Hettich Rotina 380 R Andreas Hettich GmbH & Co. 

KG, Tuttlingen, Germany 

Incubator Memmert GmbH & Co. KG, 

Schwabach, Germany 

inoLab® pH meter 7110 WTW, Weilheim in 

Oberbayern, Germany 

Labcycler SensoQuest GmbH, Göttingen, 

Germany 

LightCycler® 96 Roche Diagnostics, Basel, 

Switzerland 

Mastercycler® gradient Eppendorf 

Microwave DAEWOO, Gangnam, South 

Korea 

OwlTM  EasyCastTM B1A and B2 Thermo Fisher Scientific 

Mini gel electrophoresis systems 

Pipettes (1000 µL, 200 µL, 20 µL, 10 µL, 2 µL) Gilson Inc, Middleton, USA 

Polytron homogenizer PT 2500 E Kinematica, Luzern, 

Switzerland  

Power Pac 300 gel electrophoresis unit Bio-Rad Laboratories 

Power Station 300 gel electrophoresis unit Labnet International, Edison, 
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USA  

RH Basic heating plate with magnetic stirrer IKA, Staufen im Breisgau, 

Germany 

Select vortexer Select BioProducts, Edison, 

USA 

SimpliNanoTM spectrophotometer Biochrom GmbH, Berlin; 

Germany 

Spectrafuge 24D Microcentrifuge Labnet International 

Thermo-Shaker TS-100 bioSan, Riga, Latvia 

Varioklav 400 autoclave H+P Labortechnik GmbH, 

Oberschleißheim, Germany 

 

2.3. Drugs, enzymes and oligonucleotides 

Drugs 

Altrenogest (Regumate®) MSD Animal Health, 

Unterschleißheim, Germany 

Azaperon (Stresnil®) Elanco Animal Health, Bad 

Homburg, Germany 

Choriongonadotropine (hCG) (Ovogest®) MSD Animal Health 

Cloprostenol (Estrumate®) MSD Animal Health 

Embutramid, Mebezonium, Tetracain (T61®) MSD Animal Health 

Ketamine hydrochloride (Ursotamin®) Serumwerk Bernburg AG, 

Bernburg, Germany 

Peforelin (Maprelin®) Veyx-Pharma GmbH, 

Schwarzenborn, Germany 

 

Enzymes 

BigDye® Terminator v3.1 Applied Biosystems, Foster 

City, USA 

DNase I, RNase-free (1 U/µL) Thermo Fisher Scientific 

FastStart Essential DNA Green Master Roche Diagnostics 
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Herculase II Fusion DNA Polymerase Agilent Technologies, Santa 

Clara, USA 

HotStarTaq Plus DNA Polymerase                        Qiagen, Hilden, Germany 

(5 U/µL) 

Proteinase K, ready to use Agilent Technologies 

SuperScriptTM III Reverse Transcriptase Thermo Fisher Scientific 

(200 U/µL) 

Qiagen® LongRange PCR Enzyme Mix Qiagen 

(5 U/µL) 

Uracil N-Glycosylase (UNG) (1 U/µL) Thermo Fisher Scientific 

 

Oligonucleotides 

All oligonucleotides were designed with the PrimerQuest Tool by IDT and were 

purchased from Thermo Fisher Scientific. 

 

Cg2f  5′ AGA AGA GTA GGG CCT TTG GCA T 3′ 

Cg1r  5′ TGG CTG AAC TGA GCG AAC AAG T 3′ 

Cg5r  5′ AGC ACA TGT GGG TCT TAG AGT ACG 3′ 

c105b1  5′ TGG AGC CTC AGG CTG AAA GCA 3′ 

c105g1  5′ CCT TGA AGA AGC TCT GCA ATA C 3′ 

c105g2  5′ CCT TGA AGA AGC TCT GCA AAA C 3′ 

c105g3  5′ CCT TGA AGA AGC TCT GCA AAT C 3′ 

c105g4  5′ CCT TGA AGA AGC TCT GCT ATA C 3′ 

c105g5  5′ CCT TGA AGA AGC TCT GCA ATT C 3′  

c105g6  5′ CCT TGA AGA AGC TCT GCA TTA C 3′ 

c105g7  5′ TGG AGC CTC AGG CTG AAA GCG 3′ 

c105g8  5′ TGG AGC CTC AGG CTG AAA CAG 3′ 

c167b1  5′ CAA GTT TAT GGT TCA GAG AAC CA 3′ 

c167g1  5′ CTT TAG AGT TAT AGA AGC TCA GC 3′ 

c167b2  5′ CAA GTT TAT GGT TCA GAG AAG CA 3 

c167b3  5′ CAA GTT TAT GGT TCA GAG ATG CA 3′ 

c169b1   5′ TCT ACT CTC AGG AAT GAG ATA CG 3′ 

c169g1  5′ TTG GGT CTC ATT CAT AAG GGG AT 3′ 



III. Animals, Materials and Methods     33 

 

c104f1  5′ GGG AGG AGG AGC CCT CAT AA 3′ 

c104r1  5′ GTG ATT GGT GCC TTG ACT GC 3′ 

c104f2  5′ CTG TGG CCC TGT CCC TTA TG 3′ 

c104r2  5′ TTG GTG CCT TGA CTG CCT AC 3′ 

c105f1  5′ AGT GCT AGG CAG CAA TGT GT 3′ 

c105r1  5′ GGC ATC AGA TGT CCA AGG CT 3′ 

c105f2  5′ CTA GCT CCC ATC CAC ACT GC 3′ 

c105r2  5′ AGC TTA GGG AGC CCA TGA GA 3′ 

c105f3  5′ TGT GAG GAC ATA TCC TCC 3′ 

c105r3  5′ CAT TGC CAT GGT GAG CAG C 3′ 

c167f1  5′ GGT AGC AGC TTC CCT GAT TT 3′ 

c167r1  5′ CTC TTG GTG TGG ATG CTA TCT T 3′ 

c167f2  5′ GTG GTT TCT TGG TGA GCT CTT A 3′ 

c167r2  5′ CCA TAA AGG GAG GCT TAG TGA TG 3′ 

c169f1  5′ CTA TCC CTG CCC TTG CTC AG 3′ 

c169r1  5′ CAA CCC CTA GTG TGG GAA CC 3′ 

c169f2  5′ CCC ATC ATG GCA CAG TAG TT 3′ 

c169r2  5′ CTT CCC ATT TCT TTG GGT ACT TTC 3′ 

c169f3  5′ TCA CAA ATT AGC ACA GTA CC 3′ 

c169r3  5′ TGT CTT AGT GAG TTC AGG C 3′ 

ch10f1  5′ GCC CTG CAT GAA TGA ATG ACC 3′ 

ch10r1  5′ TCT CGG AGT TCC CAC CAT GT 3′ 

ch10f2  5′ CTT TGC TGA CAG GGA CAC TCA 3′ 
ch10r2  5′ TGG AGG CAC GGG TTC AAT C 3′ 

ch10f3  5′ GAA TGA CCC AGA GAT GGA GAA G 3′ 
ch10r3  5′ AGA TGT GTG ATG GCA GGT AAA 3′ 

ch10f4  5′ ACA GCA ACA CCA GAT CCG AG 3′ 
ch10r4  5′ TGT GTG ATT GGG TCT TCG GG 3′ 

ch10f5  5′ TTA TGG GTG CAG AGC AGT GG 3′ 
ch10r5  5′ AGT CAG GCT CGT CCT GAG TA 3′ 

ch10f6  5′ ACA CCA GTG CCC AAA TAG AG 3′ 
ch10r6  5′ GAG AGA TGA CCC AAG CCA AAT A 3′ 

ch10s11 5′ CAC ACC CTA TTC CAC TAA G 3′ 
ch10s12 5′ GGA AAG AAT ATT GAG AAG TGC 3′ 

ch10s13 5′ TCT CTC TGT GAC TGA GAC AGC 3′ 
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ch10s14 5′ CTT GCA CAG AAC ACA GAG G 3′ 

ch10s21 5′ TGA CTT CAA GCT GTG TGA CC 3′ 
ch10s22 5′ AGC TGA TAA TAG TCT CTC C 3′ 

ch10s23 5′ GAT TTA CCA AGC TAG TGG AC 3′ 
ch10s24 5′ CGT CTT CCA ATA GAT TCC GC 3′ 

ch10s25 5′ TAC ACT AAT AAT GCC AGG 3′ 
ch10s61 5′ AAG ATA GCG TTT CTA GCA G 3′ 
ch10s62 5′ ATA AGC AGT TAA CCA TTG C 3′ 

ch10s63 5′ AGA TCA CCT GCT GCC CTG AG 3′ 
ch10s64 5′ CTC ACA GGC TGT TGT TCA G 3′ 

ch10s71 5′ AGC TGC CTT ATC AAG CTC TG 3′ 
ch10s72 5′ ATG CTG TTG TCG CAT GCC 3′ 

ch10s73 5′ TGG AGA GTC CTG TAA AGT GC 3′ 
ch10s74 5′ GAT CCT GCA TTC CTG TGA GC 3′ 

nek1f  5′ CTC TCA GTG CTA CAC AGG ATT T 3′ 
nek1r  5′ GCA ACC TCA TGG TTC CTA GTT 3′ 

nek2f  5′ CCA ACC GAA TCC AAC AAC ATA TC 3′ 
nek2r  5′ CTG TCA GAC CTC CAT TAT CAC C 3′ 

nek3f  5′ TGA GTC TAT CGC CCT CCC AA 3′ 
nek3r  5′ GGA ACA GAG GCA GTC TCC AC 3′ 

nek4f  5′ CTG GTG CGG TGT AAG GAA GT 3′ 
nek4r  5′ CTG TCG TGT CTC GCT GAA CT 3′ 

nek5f  5′ GGT CTT AGC ATT GCA GCT TTC 3′ 
nek5r  5′ ATA CGG GCT AAA GGT AGG TTT C 3′ 

nek6f  5′ GCA CAC ATT ACC CAA GGC 3′ 
nek6r  5′ GTA CAA TCA TGA GTA GAG C 3′ 

nek7f  5′ TGA ATT GAT ATG AGA AGC AG 3′ 
GAPqf1 5′ CAG AAC ATC ATC CCT GCT TC 3′ 

GAPqr1 5′ GCT TCA CCA CCT TCT TGA TG 3′ 
gapdhF1 5′ CAG CAA TGC CTC CTG TAC CA 3′ 

gapdhR1 5′ GAT GCC GAA GTT GTC ATG GA 3′ 
tbpF  5′ GAT GGA CGT TCG GTT TAG G 3′ 

tbpR  5′ AGC AGC ACA GTA CGA GCA A 3′ 
ywhazF 5′ ATG CAA CCA ACA CAT CCT ATC 3′ 

ywhazR 5′ GCA TTA TTA GCG TGC TGT CTT 3′ 
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Lars2f  5′ AAC CTG AAC AAG TTT GAT GAA G 3′ 

Lars2ra 5′ AAG GCA AGT CCA CAG AAG GC 3′ 
 

2.4. Buffers and solutions 

Water deionized in a Millipore device (BarnsteadTM EASYpureTM II, Wilhelm 

Werner GmbH, Leverkusen, Germany) and termed as aq. bidest. was used as 

solvent. All buffers and other solutions were stored at room temperature if not 

indicated otherwise 

 

Buffers and solutions for PCR and agarose gels 

DNA loading buffer (10×) 

10 % glycerol in aq. bidest. 

1 spatula tip of Bromophenol Blue 

Add 0.5 M NaOH until color turns blue 

Stored aliquoted at 4 °C. 

 

dNTP-mix 

2 mM dATP, dCTP, dGTP, dTTP 

Mixed in aq. bidest. 

Stored aliquoted at -20 °C. 

 

TAE buffer (50×) 

242 g 2 M Tris 

100 mL 0.5 M EDTA (pH 8.0) 

57 mL acetic acid (glacial) 

Ad 1000 mL aq. bidest. 

Buffer solution was filtrated and autoclaved for storage. 

Before usage the buffer solution was diluted to single concentration. 

 

Gene RulerTM 1 kb DNA 

100 µL Gene RulerTM 1 kb DNA 

100 µL 6x loading dye 
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400 µL aq. bidest. 

Stored aliquoted at -20 °C. 

 

Sequencing buffer (5×) 

17.5 mL 1 M Tris/HCl (pH 9.0) 

125 µL 1 M MgCl2 

Ad 50 mL aq. bidest. 

Stored aliquoted at -20 °C. 

 

Buffers and solutions for RNA isolation and cDNA synthesis 

10 mM Tris/HCl, pH 8.0 

10 mM Tris 

Adjust pH to 8.0 with HCl 

 

10 mM dNTPs 

10 mM dATP, dCTP, dGTP, dTTP 

Mixed in aq. bidest. 

Stored aliquoted at -20 °C. 

 

Buffers and solutions for fixation  

Methacarn 

60 % methanol 

30 % chloroform 

10 % acetic acid (glacial) 

Prepared freshly, stored in the dark. 

 

4 % PFA solution 

4 % PFA 

1× PBS buffer 

Solution was heated to 50 °C in a water bath and was vigorously shaken 

several times. For complete dissolution of PFA, 200 µL of 5 M NaOH 

were added to raise the pH. After cooling down to room temperature, the 
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solution was adjusted to pH 7.4 with HCl, filtered and stored at 4 °C. 

 

Modified Karnovsky fixative 

2 % PFA 

2.5 % of glutardialdehyde solution 25 % 

Mixed in 0.05 M sodium cacodylate buffer, pH 7.2 

Stored aliquoted at -20 °C. 

 

0.05 M sodium cacodylate buffer, pH 7.2 

Sodium cacodylate trihydrate  

Dissvoled in aq. bidest 

Adjust pH to 7.2 with HCl 

Stored aliquoted at -20 °C. 

 

2.5. Kits 

Double Pure Kombi Kit Bio&SELL 

Easy-DNATM Kit Invitrogen, Carlsbad, USA 

NexttecTM Genomic DNA Isolation Kit Nexttec Biotechnologie GmbH,  

From Tissue and Cells Leverkusen, Germany 

 

2.6. Other reagents 

0.1 M DTT Thermo Fisher Scientific 

10× CoralLoad PCR buffer Qiagen 

10× DNase reaction buffer with MgCl2 Thermo Fisher Scientific 

10× LongRange PCR Buffer Qiagen 

5× Herculase II Reaction Buffer Agilent Technologies 

5× Reaction Buffer for RT Thermo Fisher Scientific 

6× DNA loading dye Thermo Fisher Scientific 

dNTPs (dATP, dCTP, dGTP, dTTP) Thermo Fisher Scientific 

Gene RulerTM (1 kb DNA ladder) Thermo Fisher Scientific 

Oligo(dT)18 primer (0.5 µg/µL) Thermo Fisher Scientific 
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2.7. Software 

BioEdit Sequence Alignment Editor 

FinchTV Version 1.3.1, Geospiza Inc. 

LightCycler® 96 Application Software 1.1.0.1320 
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3. Methods 

3.1. Sampling of piglets 

Autopsy of piglets 

For molecular analyses and for experiments performed by cooperation partners, 

samples were taken from WT and CFTR-/- piglets. For this purpose, the piglets 

were anaesthetized i.m. with ketamine hydrochloride (2 mL/10 kg BW) and 

azaperone (0.5 mL/kg BW), followed by euthanasia via i.c. injection of 

Embutramid, Mebezonium, Tetracain (1 mL/10 kg BW). 

 

Preparation of the airways 

After euthanasia, the thorax was opened and, starting from the larynx, the 

connected trachea, the lungs and the heart were explanted. Then the heart, the 

esophagus, attached nerves and big blood vessels were removed. In pulmonary 

tissue the pH was measured for experiments on alternative airway chloride 

channels, performed by Karl Kunzelmann and Roberta Benedetto from the 

Institute for Physiology at the University of Regensburg. For experiments on 

mucociliary transport, performed by Anna Ermund from the Mucin Biology 

Group at the University of Gothenburg, Sweden, all pulmonary tissue was 

carefully pulled away with anatomical forceps until only the trachea and the 

bronchial tree were left. Meanwhile, the airways were repeatedly bathed in 

Perfadex® transport solution, which has been adjusted to pH 7.4 with 1 M Tris 

solution. For histopathological exploration, tracheal and bronchial tissue were put 

in 4 % PFA and immediately sent to Lars Mundhenk from the Institute of Animal 

Pathology at the Free University of Berlin, Germany. For scanning electron 

microscopy (SEM), the airways were fixed in modified Karnovsky fixative for 24 

hours. After transferring the samples to 0.05 M sodium cacodylate buffer, pH 7.2, 

they were sent to the Mucin Biology group in Gothenburg for further 

investigation. For RNA isolation purposes, tissue samples were cut into small 

pieces and quick-frozen on dry ice as fast as possible to prevent degradation. 

Samples were transferred to 1.5 mL Eppendorf tubes and stored at -80 °C until 

further examination. After the sampling of each tissue, the surgical instruments 
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were disinfected with 70 % ethanol to prevent contamination. The airways were 

photographed to document the phenotypical manifestation. 

 

Preparation of the intestine 

To document the severity of the intestinal phenotype, pictures were taken of the 

opened abdomen, the intestinal convolute in whole and the intestine laid out in 

full length. For histopathological examination tissue samples were collected from 

the pancreas, liver, gall bladder, different parts of the intestine (duodenum, 

jejunum, ileum, caecum, colon ascendens divided into gyri centripetales and gyri 

centrifugales, colon descendens and rectum), and in the case of male piglets also 

the testicles. For fixation, the tissue samples were put in either 4 % PFA or 

methacarn solution. Samples in methacarn fixative were stored in fridge, protected 

from light exposure, and transferred to 100 % methanol after approximately 48 

hours. For histological investigation PFA- and methacarn-fixed samples were sent 

to Lars Mundhenk from the Institute of Animal Pathology at the Free University 

of Berlin, Germany. 

 

3.2. Analysis at molecular level 

3.2.1. Genotyping of pigs 

Due to the fatal MI, health status of newborn CFTR-/- piglets deteriorates shortly 

after birth. Therefore, it was necessary to select relevant animals by fast 

genotyping, including fast isolation of DNA and time-saving genotyping 

Polymerase Chain Reaction (PCR). This was done for the CFTR genotype, as well 

as for the candidate regions on chromosomes 10 and 16 that presumably improve 

the intestinal phenotype. 

 

Isolation of genomic DNA  

From freshly cut tails of newborn piglets, genomic DNA was isolated using the 

nexttecTM Genomic DNA Isolation Kit from Tissue and Cells according to the 

manufacturer’s instructions. A small amount of tissue (5-30 mg) was transferred 
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to a 1,5 mL Eppendorf tube containing a lysis buffer, which is composed of three 

included components, and then incubated in a thermomixer with 1200 rpm at 

60 °C for at least 30 min. To ensure proper lysis of the tissue 3 µL DTT were 

added and the sample was vortexed vigorously several times during incubation 

time. The lysate was then transferred to an equilibrated cleaning column and 

centrifuged for 1 min at 700 rcf. The occurred eluate containing the purified DNA 

was immediately used for subsequent PCR.  

For genome-wide analysis, genomic DNA was isolated according to the 

manufacturer’s instructions described in “protocol #8 - isolation of DNA from 

mouse tails” from the Easy-DNATM Kit. The obtained DNA pellet was air dried 

for 6 minutes to remove residual ethanol and resuspended in 100 µL of 10 mM 

Tris/HCl, pH 8.0. The DNA concentration was finally diluted to 70 ng/µL. 

 

PCR 

A robust PCR for CFTR genotyping has been established in previous work 

(doctoral thesis of Michaela Désirée Dmochewitz, done at the Chair for Molecular 

Animal Breeding and Biotechnology, LMU Munich, Germany) and was used for 

genotyping each litter. Table 1 and Table 2 show the master mix composition and 

the cycler protocol. To rapidly identify the desired constellation at the candidate 

regions on chromosomes 10 and 16, PCRs for specific markers in the modifier 

loci were established and optimized. First, the proposed markers were confirmed 

by sequencing of amplified PCR products using primers indicated in Table 3. The 

applied master mix composition and the running conditions are shown in Table 4 

and Table 5. Then, marker-specific PCRs were developed for chosen sites, using 

one primer specifically binding to one of the marker variants and one unspecific 

primer (see Table 6). For each of the chosen sites, one PCR was established for 

each of the marker variants. PCRs were either conducted with the HotStarTaq 

Plus DNA Polymerase kit or with the Herculase II Fusion DNA Polymerase kit. 

The PCR components were mixed on ice to a final volume of 20 µL (HotStarTaq) 

or 25 µL (Herculase) in 0.2 mL reaction tubes. 
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Table 1: Master mix composition for CFTR-genotyping PCRs. 

10× CoralLoad PCR buffer 2.0 µL 

dNTPs (2 mM) 2.0 µL 

Primer f (10 µM) 0.4 µL 

Primer r (10 µM) 0.4 µL 

HotStarTaq (5 U/µL) 0.2 µL 

aq. dest. 13 µL 

DNA template 2 µL 

 

Table 2: Cycler protocol for CFTR-genotyping PCRs. 

Denaturation 95 °C 5 min  

Denaturation 95 °C 20 s 

35× Annealing 56 °C 20 s 

Elongation 72 °C 30 s 

Final elongation 72 °C 5 min  

Termination 4 °C 5 min  

 

Table 3: Primers tested for amplification and sequencing of marker regions. 

c104f1 5′ GGG AGG AGG AGC CCT CAT AA 3′ 
c104r1 5′ GTG ATT GGT GCC TTG ACT GC 3′ 
c104f2 5′ CTG TGG CCC TGT CCC TTA TG 3′ 
c104r2 5′ TTG GTG CCT TGA CTG CCT AC 3′ 
c105f1 5′ AGT GCT AGG CAG CAA TGT GT 3′ 
c105r1 5′ GGC ATC AGA TGT CCA AGG CT 3′ 
c105f2 5′ CTA GCT CCC ATC CAC ACT GC 3′ 
c105r2 5′ AGC TTA GGG AGC CCA TGA GA 3′ 
c105f3 5′ TGT GAG GAC ATA TCC TCC 3′ 
c105r3 5′ CAT TGC CAT GGT GAG CAG C 3′ 
c167f1 5′ GGT AGC AGC TTC CCT GAT TT 3′ 
c167r1 5′ CTC TTG GTG TGG ATG CTA TCT T 3′ 
c167f2 5′ GTG GTT TCT TGG TGA GCT CTT A 3′ 
c167r2 5′ CCA TAA AGG GAG GCT TAG TGA TG 3′ 
c169f1 5′ CTA TCC CTG CCC TTG CTC AG 3′ 
c169r1 5′ CAA CCC CTA GTG TGG GAA CC 3′ 
c169f2 5′ CCC ATC ATG GCA CAG TAG TT 3′ 
c169r2 5′ CTT CCC ATT TCT TTG GGT ACT TTC 3′ 
c169f3 5′ TCA CAA ATT AGC ACA GTA CC 3′ 
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Table 4: Master mix composition for marker PCRs. 

5× Herculase II Reaction Buffer 5.0 µL 

dNTPs (2 mM) 2.5 µL 

Primer f (10 mM) 0.4 µL 

Primer r (10 mM) 0.4 µL 

Herculase II 0.2 µL 

aq. dest. 15.5 µL 

DNA template 1 µL 

 

Table 5: Cycler protocol for marker PCRs. 

Denaturation 95 °C 5 min  

Denaturation 94 °C 20 s 

35× Annealing 58 °C 20 s 

Elongation 72 °C 1 min 

Final elongation 72 °C 10 min  

Termination 4 °C 5 min  

 

Table 6: Primers tested for marker-specific genotyping PCRs. 

c105b1 5′ TGG AGC CTC AGG CTG AAA GCA 3′ 
c105g1 5′ CCT TGA AGA AGC TCT GCA ATA C 3′ 
c105g2 5′ CCT TGA AGA AGC TCT GCA AAA C 3′ 
c105g3 5′ CCT TGA AGA AGC TCT GCA AAT C 3′ 
c105g4 5′ CCT TGA AGA AGC TCT GCT ATA C 3′ 
c105g5 5′ CCT TGA AGA AGC TCT GCA ATT C 3′ 
c105g6 5′ CCT TGA AGA AGC TCT GCA TTA C 3′ 
c105g7 5′ TGG AGC CTC AGG CTG AAA GCG 3′ 
c105g8 5′ TGG AGC CTC AGG CTG AAA CAG 3′ 
c105f1 5′ AGT GCT AGG CAG CAA TGT GT 3′ 
c105r1 5′ GGC ATC AGA TGT CCA AGG CT 3′ 
c105f2 5′ CTA GCT CCC ATC CAC ACT GC 3′ 
c105r2 5′ AGC TTA GGG AGC CCA TGA GA 3′ 
c105f3 5′ TGT GAG GAC ATA TCC TCC 3′ 
c105r3 5′ CAT TGC CAT GGT GAG CAG C 3′ 
c167b1 5′ CAA GTT TAT GGT TCA GAG AAC CA 3′ 
c167g1 5′ CTT TAG AGT TAT AGA AGC TCA GC 3′ 
c167b2 5′ CAA GTT TAT GGT TCA GAG AAG CA 3′ 
c167b3 5′ CAA GTT TAT GGT TCA GAG ATG CA 3′ 
c167f1 5′ GGT AGC AGC TTC CCT GAT TT 3′ 
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c167r1 5′ CTC TTG GTG TGG ATG CTA TCT T 3′ 
c167f2 5′ GTG GTT TCT TGG TGA GCT CTT A 3′ 
c167r2 5′ CCA TAA AGG GAG GCT TAG TGA TG 3′ 
c169b1 5′ TCT ACT CTC AGG AAT GAG ATA CG 3′ 
c169g1 5′ TTG GGT CTC ATT CAT AAG GGG AT 3′ 
c169f1 5′ CTA TCC CTG CCC TTG CTC AG 3′ 
c169r1 5′ CAA CCC CTA GTG TGG GAA CC 3′ 
c169f2 5′ CCC ATC ATG GCA CAG TAG TT 3′ 
c169r2 5′ CTT CCC ATT TCT TTG GGT ACT TTC 3′ 
c169f3 5′ TCA CAA ATT AGC ACA GTA CC 3′ 
c169r3 5′ TGT CTT AGT GAG TTC AGG C 3′ 
 

Agarose gel electrophoresis 

For agarose gel electrophoresis, a 1 % agarose gel was produced by heating 1× 

TAE buffer with 1 g/100 mL Universal Agarose in a microwave till agarose 

completely dispersed. After cooling down to about 60 °C, GelRed® was added in 

a concentration of 5.0 µL/100 mL agarose gel and then the mixture was poured 

into an electrophoresis chamber. After solidifying, the chamber was filled with 1× 

TAE buffer as running buffer. PCR samples and 4.5 µL of Gene RulerTM 1 kb 

DNA were pipetted into individual gel slots. After separating in the electric field, 

DNA fragments were visualized under UV light. In order to verify a correct 

amplification of the PCR product, bands of the correct size were excised from the 

agarose gel, followed by elution and sequencing of the DNA. 

 

DNA-elution 

DNA was eluted according to the manufacturer’s instructions described in 

“protocol 1: isolation of DNA from agarose gels” from the Bio&Sell Double Pure 

Kombi Kit. To increase the final DNA yield, 30 µL of elution buffer, preheated to 

50 °C, were used. The successful extraction of the DNA was confirmed by mixing 

5 µL              eluted DNA  
2.5 µL            10× DNA loading buffer 
10 µL             aq. bidest. 

and loading this compound as well as 4.5 µL Gene RulerTM 1 kb DNA on 

prepared 1 % agarose gel. The eluted DNA was stored at -20 °C or immediately 
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used for following sequencing PCR. 

 

Sequencing PCR 

Sanger sequencing was performed with the BigDye® Terminator v3.1 Cycle 

Sequencing Kit. The master mix components (see Table 7) were mixed on ice to a 

final volume of 10 µL in 0.2 mL reaction tubes. Each DNA amplicon was 

sequenced either with the amplification and/or with internal sequencing primers. 

Table 8 indicates the running conditions for sequencing PCRs. 

 

Table 7: Master mix composition for sequencing PCRs. 

5× Sequencing buffer 4 µL 

BigDye® 1 µL 

Primer (10 µM) 1 µL 

DNA template 4 µL 

 

Table 8: Cycler protocol for sequencing PCRs. 

Denaturation 95 °C 1 min  

Denaturation 95 °C 5 s 

40× Annealing 54 °C 10 s 

Elongation 60 °C 4 min 

Termination 4 °C 15 min  

 

Purification of sequencing reactions  

Sequencing products were purified by ethanol precipitation. For this purpose, 2.5 

µL of 125 mM EDTA and 30 µL of 100 % EtOH were added to the amplified 

PCR. This mixture was then transferred to a fresh 1.5 mL Eppendorf tube and 

incubated on ice for 15 min. The samples were centrifuged at 13,000 rpm for 30 

min at 4 °C and the supernatant was carefully removed with a pipette. The pellet 

was washed in 150 µL of 70 % EtOH. After centrifugation at 13,000 rpm for 2.5 

min, the supernatant was removed again. The pellet was air-dried for 6 min, 

resuspended in 30 µL aq. dest. and finally transferred to a 96-well plate for 

capillary electrophoresis. The latter was performed at the Genome Analysis 
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Center, Helmholtz Zentrum Munich, Germany. Electropherograms were 

compared and evaluated with FinchTV Version 1.3.1 and the BioEdit Sequence 

Alignment Editor. 

 

3.2.2. Examination of candidate regions 

Within the candidate region on chromosome 10, three different genetic elements 

were investigated in more detail by sequencing of amplified PCR products. Table 

9 lists all primers that were tested for the amplification and sequencing of all three 

elements. PCRs were either conducted with the Herculase II Fusion DNA 

Polymerase kit or with the Qiagen® LongRange PCR kit. The optimal conditions 

for each PCR are presented in the results section. Amplified PCR products were 

sequenced via the Sanger approach following the same protocol as described 

under 3.2.1. “Genotyping of pigs” above. 

 

Table 9: Primers tested for amplification and sequencing of candidate region 

on chromosome 10. 

ch10f1 5′ GCC CTG CAT GAA TGA ATG ACC 3′ 
ch10r1 5′ TCT CGG AGT TCC CAC CAT GT 3′ 
ch10f2 5′ CTT TGC TGA CAG GGA CAC TCA 3′ 
ch10r2 5′ TGG AGG CAC GGG TTC AAT C 3′ 
ch10f3 5′ GAA TGA CCC AGA GAT GGA GAA G 3′ 
ch10r3 5′ AGA TGT GTG ATG GCA GGT AAA 3′ 
ch10f4 5′ ACA GCA ACA CCA GAT CCG AG 3′ 
ch10r4 5′ TGT GTG ATT GGG TCT TCG GG 3′ 
ch10f5 5′ TTA TGG GTG CAG AGC AGT GG 3′ 
ch10r5 5′ AGT CAG GCT CGT CCT GAG TA 3′ 
ch10f6 5′ ACA CCA GTG CCC AAA TAG AG 3′ 
ch10r6 5′ GAG AGA TGA CCC AAG CCA AAT A 3′ 
ch10s11 5′ CAC ACC CTA TTC CAC TAA G 3′ 
ch10s12 5′ GGA AAG AAT ATT GAG AAG TGC 3′ 
ch10s13 5′ TCT CTC TGT GAC TGA GAC AGC 3′ 
ch10s14 5′ CTT GCA CAG AAC ACA GAG G 3′ 
ch10s21 5′ TGA CTT CAA GCT GTG TGA CC 3′ 
ch10s22 5′ AGC TGA TAA TAG TCT CTC C 3′ 
ch10s23 5′ GAT TTA CCA AGC TAG TGG AC 3′ 
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ch10s24 5′ CGT CTT CCA ATA GAT TCC GC 3′ 
ch10s25 5′ TAC ACT AAT AAT GCC AGG 3′ 
ch10s61 5′ AAG ATA GCG TTT CTA GCA G 3′ 
ch10s62 5′ ATA AGC AGT TAA CCA TTG C 3′ 
ch10s63 5′ AGA TCA CCT GCT GCC CTG AG 3′ 
ch10s64 5′ CTC ACA GGC TGT TGT TCA G 3′ 
ch10s71 5′ AGC TGC CTT ATC AAG CTC TG 3′ 
ch10s72 5′ ATG CTG TTG TCG CAT GCC 3′ 
ch10s73 5′ TGG AGA GTC CTG TAA AGT GC 3′ 
ch10s74 5′ GAT CCT GCA TTC CTG TGA GC 3′ 
nek1f 5′ CTC TCA GTG CTA CAC AGG ATT T 3′ 
nek1r 5′ GCA ACC TCA TGG TTC CTA GTT 3′ 
nek2f 5′ CCA ACC GAA TCC AAC AAC ATA TC 3′ 
nek2r 5′ CTG TCA GAC CTC CAT TAT CAC C 3′ 
nek3f 5′ TGA GTC TAT CGC CCT CCC AA 3′ 
nek3r 5′ GGA ACA GAG GCA GTC TCC AC 3′ 
nek4f 5′ CTG GTG CGG TGT AAG GAA GT 3′ 
nek4r 5′ CTG TCG TGT CTC GCT GAA CT 3′ 
nek5f 5′ GGT CTT AGC ATT GCA GCT TTC 3′ 
nek5r 5′ ATA CGG GCT AAA GGT AGG TTT C 3′ 
nek6f 5′ GCA CAC ATT ACC CAA GGC 3′ 
nek6r 5′ GTA CAA TCA TGA GTA GAG C 3′ 
nek7f 5′ TGA ATT GAT ATG AGA AGC AG 3′ 
 

3.2.3. RT-PCR 

For expression analysis, RNA was isolated from porcine tissue samples and 

subsequently reversely transcribed into cDNA. CFTR expression was compared to 

the housekeeping genes GAPDH, TBP and YWHAZ. 

 

RNA isolation 

For isolation of tRNA from tissue samples stored at -80 °C, the acid guanidinium 

thiocyanate-phenol-chloroform extraction with TRIzol® was performed. To avoid 

possible RNase contamination all working steps were done under a separate hood. 

At first tissue was powdered in liquid nitrogen by using a hammer and mortar. 50-

100 mg of tissue powder was then transferred to a 2 mL Eppendorf tube filled 



III. Animals, Materials and Methods    48 

with 1 mL TRIzol® and immediately homogenized for 10 s at 30,000 rpm with the 

Polytron homogenizer PT 2500 E. After each sample, the grinder was cleaned 

carefully with aq. dest. for several times to avoid carry-over of contaminating 

material. After centrifugation at 12,000 rcf for 10 min at 4 °C, the clear 

supernatant was transferred to a new 1.5 mL Eppendorf tube and RNA was 

isolated according to the manufacturer’s protocol. RNA concentration was 

determined with a spectrophotometer by measuring the absorbance at a 

wavelength of 260 nm and 280 nm. Prepared and measured RNA samples were 

stored at -80 °C. 

 

DNase digestion 

In order to eliminate a possible contamination with genomic DNA (gDNA), RNA 

samples were treated with DNase I, RNase-free, an endonuclease that digests 

single- and double-stranded DNA. 

2 µL  10× reaction buffer with MgCl2 
1 µL  DNase I, RNase-free 
16 µL             aq. dest. 
1 µL  RNA (500 ng/µL) 

were mixed together and incubated for 30 min at room temperature. Afterwards   

1 µL of 25 mM EDTA was added to each sample and incubated at 65 °C for 10 

min to inactivate DNase. From each sample 10 µL were used for confirmation of 

complete DNA digestion. 

 

cDNA synthesis 

The residual 10 µL of the DNase digest were applied for first-strand cDNA 

synthesis, performed with SuperScriptTM III Reverse Transcriptase. cDNA 

synthesis was implemented according to the manufacturer’s instructions, whereby 

Oligo(dT)18 was used as primer. The obtained cDNA was stored at -20 °C until 

further processing. The integrity of the obtained cDNA was verified by 

amplification of the housekeeping gene GAPDH. The master mix composition as 

well as the running conditions for this PCR are shown in Table 10 and Table 11. 



III. Animals, Materials and Methods     49 

 

Table 10: Master mix composition for cDNA-verification PCRs. 

10× CoralLoad PCR buffer 2.0 µL 

dNTPs (2 mM) 2.0 µL 

Primer f (10 µM) 0.4 µL 

Primer r (10 µM) 0.4 µL 

HotStarTaq (5 U/µL) 0.1 µL 

aq. dest. 14.1 µL 

DNA template 1 µL 

 

Table 11: Cycler protocol for cDNA-verification PCRs. 

Denaturation 95 °C 5 min  

Denaturation 95 °C 20 s 
35× Annealing 58 °C 20 s 

Elongation 72 °C 45 s 

Final elongation 72 °C 5 min  

Termination 4 °C 5 min  

 

qPCR 

The CFTR expression in tissue samples of WT, CFTR-/- and respiratory improved 

CFTR-/- piglets was determined by comparing to housekeeping genes GAPDH, 

TBP and YWHAZ. Primers for different sets of qPCR have been tested in endpoint 

PCR in previous work (doctoral thesis of Michaela Désirée Dmochewitz, done at 

the Chair for Molecular Animal Breeding and Biotechnology, LMU Munich, 

Germany). My work was based on these conditions, but running conditions were 

optimized, whereby the optimal conditions are presented in the results section. 

The quality of each cDNA sample was tested by determining the amplification 

efficacy in a serial dilution with primers for GAPDH. For this purpose, five serial 

1:8 dilutions were prepared: 

1:8  10 µL cDNA      +     70 µL of 10 mM Tris/HCl, pH 8.0 
1:16  40 µL of 1:8 dilution     +     40 µL of 10 mM Tris/HCl, pH 8.0 
1:32  20 µL of 1:8 dilution     +     60 µL of 10 mM Tris/HCl, pH 8.0 
1:64  10 µL of 1:8 dilution     +     70 µL of 10 mM Tris/HCl, pH 8.0 
1:128  5 µL of 1:8 dilution     +     75 µL of 10 mM Tris/HCl, pH 8.0 

Each dilution was run in duplicates and a non-template control (NTC) served as a 

negative control. The qPCR master mix (see Table 12) was mixed on ice and 10 
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µL were used for each well in a LightCycler® 480 Multiwell Plate 96. Table 13 

indicates the running conditions for qPCR. The PCR efficacy was calculated by 

the LightCycler® 96 Application Software and cDNA showing improper 

amplification was excluded from further analysis and newly synthesized from 

DNase-digested RNA. Appropriate cDNA was used at the 1:16 dilutions and Ct-

values (threshold cycle) for CFTR, GAPDH, TBP and YWHAZ were determined in 

duplicates. Relative CFTR expression was calculated as Δ Ct-levels. 

 

Table 12: Master mix composition for qPCRs. 

FastStart Essential DNA Green Master 6.25 µL 

UNG 0.075 µL 

Primer f (10 µM) xx µL 

Primer r (10 µM) xx µL 

aq. bidest. ad 10 µL 

Template (cDNA) 2.5 µL 

 

Table 13: Cycler protocol for qPCRs. 

UNG activation 50 °C 2 min  

Denaturation 95 °C 10 min 

Denaturation 95 °C 10 s 
45× 

Annealing xx °C 90 s 

Melting 

95 °C 10 s  

65 °C 1 min 

97 °C 1 s 

Cooling 37 °C 30 s 
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IV. RESULTS 

1. The improved intestinal phenotype in CFTR
-/- piglets 

The relevance of the genetic background for an improved intestinal phenotype 

was initially evaluated by a genome-wide survey of single nucleotide 

polymorphism (SNP) variations using the PorcineSNP60 DNA Analysis Kit v2 

(Illumina, San Diego, USA). SNP typing was implemented by Doris Seichter, 

Tierzuchtforschung e.V. München (TZF Grub, Germany) and data were analyzed 

by Sophie Rothammer and Ivica Medugorac, Population Genomics Group, 

Department of Veterinary Sciences, LMU Munich, Germany. This SNP typing 

revealed that there are two potential modifier loci on chromosome 10 (25.8–25.9 

Mb) and on chromosome 16 (4.7–5.2 Mb), whereby the three rectified piglets 

(#2850, #3137 and #4424) were homozygous for a specific haplotype at both loci. 

The findings are described in more detail in the doctoral thesis of Michaela 

Désirée Dmochewitz, done at the Chair for Molecular Animal Breeding and 

Biotechnology, LMU Munich, Germany. First goal of my thesis was to check the 

hypothesis of two modifying loci on chromosomes 10 and 16. For this, it was 

necessary to increase the frequency of the desired genotype constellation in the 

breeding herd and then to produce the CF piglets with this constellation at larger 

scale. All available pigs of the breeding herd were screened for the potential 

modifier loci on chromosome 10 and on chromosome 16. Marker-specific 

genotyping-PCRs were established to rapidly identify the desired genotype 

constellation.  

 

1.1. Evaluation of candidate regions on chromosomes 10 and 16 

1.1.1. Marker-based selection of breeding animals 

The desired haplotype constellation on chromosome 10 was covered by 6 marker 

positions and on chromosome 16 by 10 marker positions. To avoid costly and 

time-consuming SNP-typing for each breeding animal and each CF piglet, I aimed 

at establishing marker-specific PCRs that discriminate the desired haplotype “g/g” 
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from any of the non-desired constellations. Via genome-wide association study 

(GWAS) the three CF KO piglets with the improved intestinal phenotype were 

compared to all CF KO littermates as well as with any parents and grandparents 

for which samples were available. For the two candidate loci on chromosome 10 

and on chromosome 16 all haplotype patterns were compared (see Figure 1). In 

both cases only one specific haplotype (haplotype 1) is postulated to be beneficial 

for the manifestation of an improved intestinal phenotype in CFTR-/- piglets, all 

other haplotypes are presumably unfavorable. To distinguish the desired 

haplotype from unwanted ones with a minimal effort, markers on positions 1, 4, 5 

or 6 for chromosome 10 and markers on positions 7 and 9 for chromosome 16 

must be applied. All potential markers were examined in the context of the 

porcine reference genome; marker 4 on chromosome 10 turned out to be an 

artefact, whereas the other positions were identified in the reference genome. We 

decided to use marker 5 as indicative for chromosome 10 and a combination of 

markers 7 and 9 as indicative for chromosome 16. Each of these indicative 

markers is evaluated for both allele variants. If both alleles on the marker position 

correspond to the desired variant, the haplotype is “g/g” (g = good), whereas the 

haplotype is “g/b” (b = bad) or “b/b”, if one or none allele is congruent. 

At first the markers were confirmed by sequencing of amplified PCR products. 

For this purpose, two different primer pairs were tested for amplification of each 

marker sequence under standard conditions (see Table 4 and Table 5 in III., 

3.2.1.). For each marker we chose the better of the two primer pairs, excised the 

band from the gel and verified the nucleotide sequence (see Figure 2). Each 

sample was sequenced independently with a forward and/or a reverse primer. On 

the basis of the verified marker positions, SNP-specific primer pairs were 

designed. To increase the probability of the desired haplotype constellation in CF 

piglets, all animals of the existing breeding herd were screened for the candidate 

regions on chromosome 10 and on chromosome 16 (see Figure 3) and selected for 

breeding according to their haplotype. 
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Figure 1: Distinguishing the desired haplotype from unwanted ones by 

detecting informative markers. Marker 5 on chromosome 10 and markers 7 and 9 

on chromosome 16 are suitable SNPs to differentiate the desired haplotype 

(haplotype 1) from all others. As marker 4 (marked gray) on chromosome 10 turned 

out to be an artefact, it was not taken into further consideration. The haplotypes are 

described as “g/g”, “g/b” or “b/b” depending on whether both, only one or none of 

the two alleles comply with the wanted haplotype. The three intestinal improved 

piglets (#2850, #3137 and #4424) show homozygosity for the desired haplotype at 

both candidate loci. 
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Figure 2: Exemplary electropherograms of the marker regions. An animal’s 

haplotype is discriminated by SNPs (marked blue) with the help of marker-specific 

primer pairs, whereby the sequence of the primer pairs is indicated in the upper 

lines (see chapter IV.1.1.2.). It should be noted that no single individual showed a 

“g/b” constellation on marker c167, wherefore no electropherogram for the 

heterozygous constellation is shown.  
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Figure 3: Haplotypes of the initial breeding herd. Marker c105 was indicative 

for the desired candidate region alone, while for chromosome 16 the “g” 

constellation only on both, the c167 and the c169 marker, suggested the desired 

haplotype.  

  

1.1.2. Establishment of marker-specific genotyping PCRs 

Since sequencing of marker regions is very time-consuming, marker-specific 

genotyping-PCRs were established to rapidly identify the desired genetic 

constellation at both candidate regions. For each marker on chromosome 16, 

marker 7 and marker 9, two individual PCRs were designed. One PCR identifies 

the desired (“g”) haplotype, the second one detects the undesired (“b”) 

constellation. For marker 5 on chromosome 10 only one PCR was established that 

ruled out any unwanted haplotype. To establish robust PCRs, various sets of SNP-

specific primer pairs as well as different master mix compositions were tested. 

Table 14 and Table 15 demonstrate the final conditions for each discrimination 

PCR. Genotyping by marker-specific PCRs and Sanger sequencing gave 

consistent results (see Figure 4). 

While on chromosome 10 the desired haplotype “g/g” was abundant at high 

frequency, the desired haplotype on chromosome 16 was low and almost extinct 

in female animals (see Figure 3 above). However, in a parallel attempt on 

reducing inbreeding by mating with unrelated WT animals, a higher frequency of 

the desired haplotype was achieved (see Figure 5 and Figure 6). 
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Table 14: Final master mix compositions for discrimination PCRs. 

Marker Primer pair * MgCl2 HotStarTaq DNA template 

c105-b c105b1/c105r3 0.0 µL 0.1 µL 1 µL 

c167-b c167b3/c167r2 0.0 µL 0.1 µL 2 µL 

c167-g c167f1/c167g1 2.0 µL 0.2 µL 1 µL 

c169-b c169b1/c169r3 0.0 µL 0.2 µL 1 µL 

c169-g c169f2/c169g1 0.0 µL 0.1 µL 1 µL 

* 0.4 µL of 10 µM stock solution was applied for each primer.  

Table 15: Cycler protocol for discrimination PCRs. 

Denaturation 95 °C 5 min  

Denaturation 94 °C 20 s 

35× Annealing 58 °C 20 s 

Elongation 72 °C 1 min 

Final elongation 72 °C 10 min  

Termination 4 °C 5 min  

 

 

Figure 4: Confirming the sequenced haplotypes of the initial breeding herd by 

marker-specific discrimination PCRs. To identify the haplotype of each marker, 

the separate PCRs are considered in combination. The detection of a single band in 
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the “b”- or “g”-PCR only, defines the “g/g” or the “b/b” constellation. If there are 

bands in both PCRs detectable, the “g/b” haplotype exists. 

 

 

Figure 5: Haplotypes of the additional breeding animals. Heterozygous CFTR+/- 

sows of the initial breeding herd were inseminated with sperm of WT boars to 

generate further CFTR+/- pigs as potential new breeding animals. 

 

 

Figure 6: Discrimination of the additional breeding animals by marker-

specific discrimination PCRs. 
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1.1.3. CFTR-/- piglets with the desired genotype constellation 

Outbreeding delivered new heterozygous CFTR+/- pigs with an increased 

frequency of the desired haplotypes. Animals with homozygous “g/g” on 

chromosome 10 and heterozygous “g/b” on chromosome 16 were raised and 

mated to have a higher probability of the desired haplotype combination in the CF 

offspring. 

Immediately after birth, all piglets were evaluated by genotyping PCRs for CFTR 

as well as for the markers c105, c167 and c169. CF KO piglets were euthanized 

and examined for their intestinal phenotype. During a period from February to 

December 2018, marker-specific genotyping PCRs revealed 10 out of 55 CFTR-/- 

piglets in 19 litters that showed homozygosity for the desired haplotype at both 

candidate regions. Genotyping and pedigree of an exemplary CFTR litter is shown 

in Figure 7 and Figure 8. None of the CFTR-/- animals showed autonomous release 

of meconium. This is confirmed by the macroscopic and histological examination 

of the CF piglet #6491 which exhibited the desired genotype constellation on 

chromosome 10 and on chromosome 16 in comparison to the CF piglet #6345 

which lacked the desired genotype constellation (see Figure 9 to Figure 11). 

Obviously, there was no phenotypic difference between the animals. The distinct 

localization of the intestinal obstruction reflected the typical variation seen in CF 

piglets. In sum, all CF KO piglets with the desired genotype on chromosome 10 

and on chromosome 16, showed an MI similar to normal CF KO piglets. The 

naturally occurring improvement of the intestinal phenotype found in the 

previously described animals (#2850, #3137 and #4424), could not be replicated 

by selected breeding for the proposed modifier loci. The hypothesis of the 

beneficial influence of these loci was therefore clearly rejected. 
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Figure 7: Marker-specific discrimination PCRs performed in an exemplary 

CFTR litter. The CFTR-/- piglets #6192 and #6198 (marked green) are 

homozygous for the desired haplotype at all markers. Previously discriminated 

animals served as controls.   
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Figure 8: Pedigree of promising CFTR-/- piglets from an exemplary CFTR 

litter. Green constitutes WT pigs, heterozygous CFTR+/- breeding animals are 

represented in blue and red remarks CFTR-/- piglets. Boxes stand for male pigs; 

females are indicated by circles. The promising genetic structure found in the CF 

KO piglets #6192 and #6198 was attained over two generations by outbreeding and 

particular mating of heterozygous CFTR+/- animals. 

 

 

Figure 9: Pedigree of CFTR-/- piglet #6491 with the desired genotype. Based on 

the promising CF piglet #6491, the expression of the intestinal phenotype was 

exemplary investigated by comparing with a normal CF KO piglet that did not 

demonstrate the desired genetic constellation in previously implemented 

discrimination PCRs.   
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Figure 10: Intestinal phenotype of the promising CFTR-/- piglet #6491 

compared with a normal CFTR-/- piglet #6345. (A) View of the intestinal 

convolute after opening the abdomen. (B) and (C) The intestinal convolute after 

resection. White asterisks mark the presence of meconium. Black arrows point to 

the colon, the cecum is marked by discontinuous black arrows. A severe MI is 

present in both animals. In piglet #6491 the cecum and the colon ascendens are 

severely enlarged by stuck meconium. The reduced diameter of the following colon 

descendens is similar to the CF-typical microcolon apparent in piglet #6345. The 

severity of the intestinal phenotype is comparable in both the CF KO piglet 

exhibiting the desired genotype and the CF piglet without the special constellation. 
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Figure 11: Histopathological examination of intestinal tissue in the promising 

CFTR-/- piglet #6491 compared with a normal CFTR-/- piglet #6345. (A) PAS-

staining of 4 % PFA- (#6491) and methacarn-fixed (#6345) duodenal tissue. (B) 

PAS-staining of 4 % PFA-fixed colon ascendens (#6491) and colon descendens 

(#6345). (C) PAS-staining of methacarn-fixed colon ascendens (#6491) and 4 % 

PFA-fixed colon descendens (#6345). In both animals, duodenal Brunner’s glands 

(A), as well as crypts in the colon (B) are severely dilated and filled with mucus. 

The colon itself (C) is stuffed with large amounts of mucous material, whereby in 

piglet #6345 the additional CF-typical microcolon with reduced diameter is 

apparent (data kindly provided by Lars Mundhenk from the Institute of Animal 

Pathology at the Free University of Berlin, Germany). 

 

1.1.4. Detailed examination of the candidate region on 

chromosome 10 

The postulated candidate region on chromosome 10 (25.8–25.9 Mb) was defined 

by a specific pattern of 6 marker positions. Within this region, there was no 

annotated genetic element in the Sscrofa 10.2 reference genome. A multi-species 

alignment of chromosome 10 however revealed two loci within the candidate 

region that are characterized by high homology among different species, are 
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covered by bioinformatically predicted genetic elements and are consistent with 

potential regulatory function by the PreMod algorithm (Figure 12). Further, the 

last exon of NIMA related kinase 7 (NEK7) was located outside the region 

covered by the markers, but situated inside the nearest up-stream marker. 

Therefore, all three loci were investigated in more detail for a potential causative 

mutation. 

 

 

Figure 12: Multi-species alignment of chromosome 10. In a multi-species 

alignment, the similarity among genomic sequences of different species is studied. 

Shared patterns with possible regulatory or functional relevance can thus be 

identified. The performed alignment detected two loci that are highly homologous 

among the species. The PreMod database suggested a potential regulatory function 

of this loci and the GeneScan tool predicted them to be part of not clearly specified 

genetic elements. 

 

All three regions were investigated by sequencing of PCR products amplified 

from CF pigs with a g/g, g/b or b/b haplotype, as determined by Sanger 

sequencing of the marker site c105 (see chapter IV.1.1.1.). Standard conditions, 

according to Table 12 and Table 13, proved sufficient for PCR amplification of 

locus 1 and locus 2 (see Figure 13). For amplifying locus 3, several primer pairs 

were tested (see Figure 14). Finally, the primers nek3f and nek2r used in an 

optimized master mix composition and cycler protocol, resulted in efficient 

amplification (Table 16 and Table 17). Overall six animals with different c105 
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haplotypes were explored: two animals exhibiting the g/g constellation, three 

animals with the g/b haplotype and one b/b individual. Sequencing of PCR 

products was performed with amplification and internal sequencing primers. By 

comparing the PCR amplicons, SNPs were found in locus 1 and locus 2. Locus 1 

revealed six SNPs and in locus 2 seven SNPs were identified. Examination of 

locus 3 did not reveal any polymorphisms between the different c105 haplotypes 

(see Figure 15 A). As the patterns of SNPs in locus 1 and locus 2 were not 

consistent with the marker-defined haplotypes, none of the identified 

polymorphisms could present a causative mutation that supports the initial 

hypothesis of a modifier region on chromosome 10 (see Figure 15 B, Figure 16 

and Figure 17). This finding correlated to the rejection of the hypothesis by 

selected breeding (see chapter IV.1.1.3.). A further examination of the second 

postulated candidate region on chromosome 16 (4.7-5.2 Mb) was therefore not 

performed. 

 

 

Figure 13: Amplification of locus 1 and locus 2 in exemplary CFTR animals. 

After testing different primer pairs, the most promising ones (primer pair 1 for 

locus 1 and primer pair 2 for locus 2) were optimized. Under UV-light, amplified 

PCR products of the correct size were cut out of the agarose gel, DNA was eluted 

and subsequently used for sequencing reaction. 
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Figure 14: Amplification of locus 3 in exemplary CFTR animals. (1-3) Testing 

of primer pairs for amplification of locus 3. Primer pairs were tested with the 

Herculase II Fusion DNA Polymerase kit with a volume of 0.4 µL each. Primer 

pairs 2 and 3 were selected for further optimization by different combination of the 

primers. (4) Final amplification of locus 3 with the primer pair nek3f / nek2r by 

using the Qiagen® LongRange PCR kit. Bands of the correct bp size were cut out of 

the gel and eluted DNA was applied in following sequencing reaction. 

 

Table 16: Master mix composition for locus 3-PCR. 

10× LongRange PCR Buffer 2.5 µL 

dNTPs (10 mM) 1.25 µL 

Primer f (10 µM) 0.5 µL 

Primer r (10 µM) 0.5 µL 

LongRange (5 U/µL) 0.2 µL 

aq. dest. 18.05 µL 

DNA template 2 µL 
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Table 17: Cycler protocol for locus 3-PCR. 

Denaturation 93 °C 3 min  

Denaturation 93 °C 15 s 

35× Annealing 62 °C 30 s 

Elongation 68 °C 3.5 min 

Termination 4 °C 15 min  

 

 

Figure 15: Evaluation of SNPs in the candidate region of chromosome 10. (A) 

Identified SNPs in the three specified loci. SNPs were found in locus 1 and locus 2, 

with their position relative to the 5′-end of the forward primer indicated. In locus 1 

six SNPs were identified and locus 2 revealed seven possible SNPs. Investigating 

locus 3 did not detect any polymorphisms between the examined animals. (B) 

Overview of all examined SNPs in two individuals with the g/g constellation, three 

animals with the g/b haplotype and one individual exhibiting the b/b constellation. 

Regarding the latter, we identified only one single animal in our herd with the 

specific genotype. As the identified SNPs in locus 1 and locus 2 were not consistent 

with the marker-defined haplotypes, none of these polymorphisms could present a 

causative mutation according to the initial hypothesis of a modifier region on 

chromosome 10. 
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Figure 16: SNP patterns in locus 1. For each SNP, representative 

electropherograms from pigs with marker constellations g/g, g/b or b/b are shown. 

The SNP-position is highlighted by a blue box. 
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Figure 17: SNP patterns in locus 2. For each SNP, representative 

electropherograms from pigs with marker constellations g/g, g/b or b/b are shown. 

The position of the SNP is highlighted by a blue box. 
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1.2. Novel genome-wide analysis 

Although the initial hypothesis of two modifying loci on chromosome 10 and on 

chromosome 16 was fully rejected and no additional piglet with an improved gut-

phenotype was born, the close familial relation of these animals suggested an 

influencing effect by the genetic background. Therefore, we performed an 

alternative analysis based on a combined linkage disequilibrium and linkage 

analysis (cLDLA) (MÜLLER et al., 2017) on the basis of a more extended 

population of animals. This included all initial 146 CFTR-/- piglets, three of them 

with the gut improved phenotype, and 50 heterozygous CFTR+/- breeding animals 

as well as 55 additional CFTR-/- animals that were born between February and 

December 2018 as well as 14 new breeding animals that were involved in the 

extended pedigree. The animals were investigated using the PorcineSNP60 DNA 

Analysis Kit v2 (Illumina, San Diego, USA). SNP typing was performed by Doris 

Seichter, Tierzuchtforschung e.V. München (TZF Grub, Germany) and data were 

analyzed by Ivica Medugorac, Population Genomics Group, Department of 

Veterinary Sciences, LMU Munich, Germany. The newly obtained data were 

combined with the data set from the previous analysis.  

As in human CF patients the variability of the intestinal phenotype is proven to be 

dependent on modifying loci, the regions covering the proposed modifier genes 

SLC6A1 (AHMADI et al., 2018), SLC26A9 (LIU et al., 2015), SLC9A3 (LI et al., 

2014), ZG16 (BERGSTROM et al., 2016), CLCA1 (VAN DER DOEF et al., 

2010), MSRA (HENDERSON et al., 2012), ADIPOR2 (DORFMAN et al., 2009) 

and GUCY2C (ARORA et al., 2017) have been investigated regarding their 

relevance in porcine CF. A detailed examination indicated that none of these 

human modifiers were involved in similarly modulating CF in pigs (see Figure 

18). Instead, cLDLA revealed two significant peaks on chromosome 5 and on 

chromosome 13 that have been studied in more detail (see Figure 19).  

The candidate region on chromosome 5 is spanning over a segment of 1.5 Mb 

according to the Sscrofa 10.2 reference genome and corresponding to the regions 

chr12p13.33 and chr2q11.21 in the human genome. The locus is indicated by two 

sharp, closely adjacent peaks and contains 12 genes (see Figure 19 A). Haplotype 

analysis suggested a heterozygous influence of three haplotypes, narrowing the 

candidate region down to a size of 1.13 Mb covered by five markers. This 

genomic sequence covers a number of genes in all examined animals, including 
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ATP6V1E1 located within the center of the candidate region. The encoded protein 

of this gene is a component of the multi-unit vacuolar ATPase, a proton pump 

acting on the acidification of intracellular organelles and extracellular 

compartments (MCGUIRE et al., 2017). The abundance of other genes or genetic 

elements in the gut was low or almost absent (NCBI) or the submitted function 

described in the literature or the OMIM database give only little hint for an 

involvement in compensating lacking CFTR. 

Examination of the candidate region on chromosome 13 revealed a segment of 

0.41 Mb. This region corresponds to the human chr3p24.1, is indicated by a broad 

single peak and comprises only four genes (see Figure 19 B). Haplotype analysis 

presumes the involvement of a small region covered by only three markers, 

narrowing the candidate region down to 180 kb. The suggested region resembles 

the upstream region of TGFBR2, a gene that is expressed in almost any tissue 

(NCBI). Its protein is well known for its diverse roles in cell proliferation, 

including the continuous turnover of epithelial cells in the gut (FLENTJAR et al., 

2007; ZHANG et al., 2016). 

Is has to be mentioned that cLDLA analysis revealed further peaks apart from the 

investigated candidate regions, but none of them reached a peak level of similar 

height as the suggested modifying loci on chromosomes 5 and 13. Nonetheless, 

the new hypothesis has to be verified in future studies, whereby a more detailed 

characterization of the submitted modifier genes ATP6V1E1 and TGFBR2 is 

indispensable. The described data are part of a manuscript in preparation. 
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Figure 18: Combined linkage disequilibrium and linkage analysis (cLDLA) of 

intestinal improved CFTR-/- piglets compared with normal CFTR-/- piglets. 

Detailed examination of the proposed modifier genes of the gut-phenotype in 

human CF patients indicated that none of the candidate loci ZG16, CLCA1, 

GUCY2C, ADIPOR2, SLC26A9, MSRA or SLC6A14 is relevant in porcine CF. For 

each locus, the likelihood-ratio test (LRT) values, illustrated by blue dots, are 

indicated for the respective gene, presented in green, plus 10 LRT sites up- and 

downstream. The position of genes in the respective loci were taken from the 

Sscrofa 10.2 reference genome, after correlating to the corresponding genomic 

regions in the human reference genome. The corresponding genomic locations in 

the human genome are indicated for each locus. The y-axis (LRT value) is at the 

same scale for each locus. 
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Figure 19: Further examination of new candidate regions on chromosomes 5 

and 13. (A) Analysis of candidate region on chromosome 5. The locus on 

chromosome 5 is indicated by two sharp, closely adjacent peaks and is packed by 

genes (upper illustration). Haplotype analysis suggests a heterozygous constellation 

of a region covered by five markers (marked orange). This genomic segment covers 

a number of genes in all examined animals, including ATP6V1E1. (B) Examination 

of candidate region on chromosome 13. The locus on chromosome 13 is indicated 

by a broad single peak and covers only few genes. Haplotype analysis suggests the 

involvement of a small region covered by only three markers (marked orange) 

which resembles the upstream region of TGFBR2. 
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2. The improved respiratory phenotype in CFTR
-/- piglets 

During my thesis, the routine breeding program continued and overall, a number 

of 119 CF piglets has been produced. While we did not observe any further piglets 

with a modified phenotype of the gut, we found in total five CF piglets (#5703, 

#5704, #5786, #6046, #6704) that showed morphological changes in the airways 

at the time of examination. Those piglets exhibited a WT-like round trachea with 

a greater diameter in comparison to a typically triangular-shaped trachea with 

reduced diameter in all other CFTR-/- piglets. 

 

2.1. Finding genetic causes for the improved respiratory phenotype  

During routine section it became obvious that initially three animals (#5703, 

#5704, #5786) differed from normal CF piglets in their trachea by presenting a 

WT-like round caliber with greater diameter, while their genotype and also a 

significant MI clearly indicated common signs of CF. Experiments on mucociliary 

clearance, done by Anna Ermund from the Mucin Biology Group at the 

University of Gothenburg, Sweden, demonstrated a mucus bundle velocity which 

is at least as fast as in a WT trachea. To clarify a potential involvement of the 

genetic background in the naturally occurred modification of the CF airways, the 

parental animals of improved piglets (boar #5081, sow #5373) have been mated 

systematically (see Table 18). In this manner, we succeed in reproducing the 

modified phenotype in two more piglets (#6046, #6704). For a precise description 

of the origin of the respiratory improved piglets and their parents in the context of 

the entire CFTR breeding herd, a pedigree containing all the ancestors and 

littermates was created (see Figure 20). The close familial relation of all airway-

improved animals and the reproduction of the phenotype by selected breeding, 

suggested an influence of modifier genes. 
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Table 18: Overview of all respiratory improved CFTR-/- piglets. 

Boar # Sow # CF KOs # Phenotype 

5081 3506 5703 respiratory improved 

  5704 respiratory improved 

5081 5373 5786 respiratory improved 

  5788 normal CF KO 

  5790 normal CF KO 

5081 5373 6046 respiratory improved 

  6051 normal CF KO 

  6056 normal CF KO 

5081 5373 6438 normal CF KO 

5081 5373 6702 normal CF KO 

  6704 respiratory improved 
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Figure 20: Pedigree of the CFTR breeding herd. WT pigs are represented in 

green, blue constitutes heterozygous CFTR+/- breeding animals and red remarks 

CFTR-/- piglets. Males are indicated by boxes; circles stand for female pigs. CF 

piglets of both sexes are symbolized by combined boxes and circles. All respiratory 

improved piglets #5703, 5704, 5786 and 6046, highlighted in dark red, descends 

from one single boar #5081 and two different sows, #3506 and #5373. 

 

2.2. Macroscopic examination of the improved respiratory phenotype 

Macroscopically, the airway-modified phenotype is characterized by a WT-like 

trachea with an almost round caliber and a greater diameter in comparison to the 

CF-typical triangular trachea with clearly reduced diameter (see Figure 21). Is has 

to be mentioned that in some cases the modification did not extend regularly over 

the total length of the trachea, but only partially in the middle part, whereas the 

sections close to the larynx and the main bronchi branching off the trachea, 

showed CF-typical features. Nevertheless, in all cases of modification, the overall 

trachea appeared to be less fragile than the tender structure of a CF-trachea, 

whereby a WT-trachea is even more robust. Apart from the improved respiratory 

phenotype, all other characteristic features of CF, including a severe intestinal 

obstruction by MI as well as a micro-gallbladder, were still present. 
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Figure 21: The improved respiratory phenotype (#6046) compared with a 

normal CFTR-/- piglet (#6051) and a WT piglet (#6138). (A) The airways after 

resection. In comparison to the triangular shaped trachea with clearly reduced 

diameter in a normal CF pig, the trachea of the respiratory improved CF piglet 

showed a WT-like round caliber with greater diameter. (B) The intestinal convolute 

after opening the abdomen. White asterisks mark the presence of meconium. In 

contrast to the changes in the respiratory tract, the intestinal phenotype of piglet 

#6046 was typical for CF. 

 

2.3. Detailed examination of the improved respiratory phenotype  

To initially verify a lack of CFTR expression in respiratory modified CFTR-/- 

piglets, a quantitative PCR (qPCR) was performed. By comparing to 

housekeeping genes, the relative quantification of CFTR expression in pulmonary 

tissue of two respiratory improved CF piglets (#5786, #6046), two normal CF pigs 

(#5788, #6051) and one WT piglet (#6138) was determined (see Figure 22). The 

optimal conditions for the established qPCRs are presented in Table 19. Since the 

expression of housekeeping genes varies also within the same tissue material, we 

chose three different genes, GAPDH, TBP and YWHAZ, in order to exclude 

artifacts. qPCR revealed that, although there is a certain variance, the 

housekeeping genes are generally expressed in all examined animals. However, an 

expression of CFTR was only detectable in the WT control. Normal CF piglets as 

well as the airway-improved piglets lacked expression of CFTR. 

A histopathological exploration was performed by Lars Mundhenk from the 

Institute of Animal Pathology at the Free University of Berlin, Germany. By 

comparing the bronchus trachealis of a modified piglet with a normal CF piglet, 

the greater diameter in the case of the improved animal was clearly apparent (see 

Figure 23). For a further examination of the improved respiratory phenotype, 

tracheal tissue was analyzed by Anna Ermund from the Mucin Biology Group at 

the University of Gothenburg, Sweden. For experiments on mucociliary transport, 

three airway-improved CF piglets, seven normal CF pigs and overall 14 WT 

animals have been analyzed. The studies revealed a mucus bundle velocity along 

the tracheal tissue of the improved animals which is at least as fast as in WT ones 

(see Figure 24 A). Typically, the examined normal CF piglets did not show any 
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movement of the mucus due to ciliary collapse. An additional scanning electron 

microscopic (SEM) analysis, visualized the more expanded mucus in the airways 

of an improved CF piglet, whereas in a normal CF pig, the mucus network seemed 

to be more compressed (see Figure 24 C). The appearance of the airway mucus 

network in an examined WT animal was comparable to the improved animal. 

Moreover, a measurement of the surface pH in tracheal tissue was performed in 

four modified piglets, 18 normal CFs and 20 WT piglets, resulting in a similar 

starting pH value of nearly 6.8 in the improved piglets and the WT controls (see 

Figure 24 B). Normal CF piglets exhibited a lower pH value of approximately 6.5. 

For a more detailed examination, the potential role of other modifier elements, in 

this case responsible for the variant respiratory phenotype, has to be investigated 

by future genome-wide mapping.   

 

Table 19: Final conditions for respiratory improved qPCRs. 

Gene Primer pair Concen. Annealing  

CFTR Lars2f/Lars2ra 0.5 µL 60 °C 

GAPDH GAPqf1/GAPqr1 0.5 µL 60 °C 

TBP tbpF/tbpR 0.7 µL 63 °C 

YWHAZ ywhazF/ywhazR 0.3 µL 63 °C 
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Figure 22: Relative quantification of CFTR expression in pulmonary tissue of 

respiratory improved CFTR-/- piglets (#5786, #6046) compared with normal 

CFTR-/- piglets (#5788, #6051) and a WT piglet (#6138). In contrast to the 

housekeeping genes GAPDH, TBP and YWHAZ that are generally expressed in all 

examined animals, a CFTR expression is only detectable in the WT control. Normal 

CF KO piglets as well as the airway-improved CF piglets typically lack an 

expression of CFTR. 
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Figure 23: Histopathological examination of bronchial tissue of a respiratory 

improved CFTR-/- piglet (#6046) compared with a normal CFTR-/- piglet 

(#6051). HE-staining of 4 % PFA-fixed tissue of the bronchus trachealis. In 

comparison to the normal CF piglet that exhibits a clearly reduced diameter, the 

diameter of the improved animal appears to be significantly enlarged. In both cases, 

the epithelium is lost due to tissue preparation (data kindly provided by Lars 

Mundhenk from the Institute of Animal Pathology at the Free University of Berlin, 

Germany). 

 

Figure 24: Further examination of tracheal tissue of respiratory improved 

CFTR-/- piglets compared with normal CFTR-/- piglets and WT piglets. (A) 

Analysis of the mucus bundle velocity. For visualizing, the mucus was stained with 

Alcian blue. The mean of five measurement points per time-lapse revealed that 

mucus transport in modified piglets is at least as fast as in WT ones, whereas 
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normal CFs did not show any mucus movement. (B) Surface pH measurement. 

Improved CF piglets and WT ones show a similar starting pH value of nearly 6.8, 

whereas normal CF animals exhibit a lower pH value of approximately 6.5. (C) 

Scanning electron microscopic (SEM) analysis. Red circles indicate the airway 

mucus network. Cilia are represented by yellow arrows. In the exemplary improved 

piglet, the mucus network seems to be more expanded than in the normal CF piglet 

that shows a more compressed network. The appearance of the airway mucus in the 

examined WT animal, is comparable to the modified pig (data kindly provided by 

Anna Ermund from the Mucin Biology Group at the University of Gothenburg, 

Sweden). 
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V. DISCUSSION 

Although Cystic Fibrosis remains incurable, the overall knowledge about this 

monogenic disease appearing with striking phenotypic diversity, increased 

tremendously (reviewed in WEILER & DRUMM, 2013; O'NEAL & KNOWLES, 

2018). Not only life expectancy, but also the quality of patients’ life has 

significantly been improved over the last decades. The development of first 

animal models for CF just shortly after the identification of the disease-causing 

CFTR gene in 1989 (RIORDAN et al., 1989; SNOUWAERT et al., 1992), 

significantly contributed to this successful progression. Animal models turned out 

to be essential tools for a better understanding of pathophysiological mechanisms 

in CF and for developing new therapeutic approaches (reviewed in 

SEMANIAKOU et al., 2018). From the CF animal models developed so far in six 

species, the porcine CF model proves to be the model showing the closest 

similarity to hallmark features of human CF disease (reviewed in CUTTING, 

2015) and it is therefore not surprising that CF pigs became an important model in 

CF research. However, a lethal neonatal intestinal obstruction by meconium 

represents a significant limitation in CF piglets. If MI is not corrected, CF piglets 

die within 48 hours after birth, considerably limiting the usage of pigs as animal 

models in CF research (KLYMIUK et al., 2012). While only 15-20 % of all CF 

infants (GUO et al., 2014) suffer from the intestinal obstruction, in CF piglets MI 

actually occurs with a penetrance of 100 % in both available CF pig models, in the 

United States as well as in Europe (ROGERS et al., 2008b; KLYMIUK et al., 

2012). Nonetheless, a previous thesis done at the Chair for Molecular Animal 

Breeding and Biotechnology, describes the occurrence of three CF piglets (#2850, 

#3137 and #4424) that showed a clear improved intestinal phenotype as 

meconium has passed autonomously; all other characteristic features of CF, such 

as mucus sticking in the airways, a triangular trachea, hypoplastic exocrine 

pancreas and a micro-gallbladder, were still present (DMOCHEWITZ, 2016). 

Genome-wide analysis suggested two independent modifying loci on chromosome 

10 (25.8–25.9 Mb) and on chromosome 16 (4.7–5.2 Mb) to rescue the severe 

intestinal phenotype. In my work, this hypothesis was tested. Therefore, the 

frequency of the promising genotype constellation on both candidate regions was 
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enriched in the CF breeding herd by selective breeding in order to increase the 

probability of the desired genotype constellation and the consequent expectation 

of additional CF piglets with an improved intestinal manifestation. 

 

The relevance of the genetic background for an improved intestinal phenotype 

was evaluated by a genome-wide survey of single nucleotide polymorphism 

(SNP) variations using the PorcineSNP60 DNA Analysis Kit v2 (Illumina, San 

Diego, USA). The PorcineSNP60 v2 BeadChip is the most comprehensive 

genome-wide genotyping array for the porcine genome (RAMOS et al., 2009; 

ILLUMINA, 2020). It has been validated in seven economically important pig 

breeds, including Duroc, Landrace, Pietrain, Large White as well as in wild boar 

as the ancestor of all modern pig breeds. The chip features more than 64,232 

SNPs that uniformly span the porcine genome with an average spacing of 43.4 kb, 

and thus enables a broad range of applications such as genome-wide selection, 

linkage disequilibrium studies, identification of quantitative trait loci, evaluation 

of genetic merit, cross-breed mapping, comparative genetic studies, and breed 

characterization for determining biodiversity. High call rates and accurate 

genotype calls ensuring the highest accuracy and reliability for successful whole-

genome association studies. Overall, validation of the PorcineSNP60 v2 

BeadChip proved it to be a valuable tool for most types of pig genetic studies 

(RAMOS et al., 2009). 

The AxiomTM Porcine Genotyping Array even includes 658,692 SNPs, validated 

in a diverse set of commercial and non-commercial pig breeds 

(THERMOFISHER). An accordance with 56,000 SNPs of the PorcineSNP60 v2 

BeadChip allows well compatibility with previous studies. A key benefit of this 

high-density array is the ability to genotype samples without experiencing marker 

dropout or missing data, which might occur with other porcine genotyping 

products. Compared with the PorcineSNP60 v2 BeadChip, the AxiomTM Porcine 

Genotyping Array offers the power for a more detailed fine mapping of the 

porcine genome. Nonetheless, considering the specification of the proposed 

haplotype constellation on chromosome 10 by six markers and on chromosome 16 

by ten markers, it is questionable whether a denser coverage of the proposed 

modifying loci would be favorable. These concerns appear even more true if the 

costs (approximately tenfold) are considered. The very same is true also for 

whole-genome surveys; although they would allow the most comprehensive 
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evaluation of a genome (in case of the nucleotide resolution). Further, analysis can 

only be performed in specialized laboratories and the evaluation requires specific 

bioinformatic equipment and expertise. Finally, at this point in time, whole-

genome approaches in the pig are limited by the low number of reference genome 

and would therefore require the sequencing of numerous control animals. For 

these reasons, we decided to do SNP typing with the PorcineSNP60 v2 BeadChip 

only. 

 

Although the marker-based haplotyping of animals is an effective and relatively 

cheap option for identifying candidate regions, its application in daily routine is 

difficult. This is not only due to the requirement of high-quality DNA, the scale of 

96 samples per run and the necessary access to specialized equipment, but also 

because genotyping of CF piglets needs to be carried out within the first hours 

after birth. To achieve this in a preferably simple, cheap and time-saving way, I 

established marker-specific genotyping PCRs. The discrimination PCRs 

distinguish the desired haplotypes at the modifier regions on chromosomes 10 and 

16 from unwanted ones. In total, every single piglet of a litter was characterized 

by performing seven PCRs. PCR for CFTR genotyping comprises two PCRs 

amplifying the WT and the mutated CFTR sequence. Five additional PCRs 

discriminate genetic constellations at the candidate regions on chromosomes 10 

and 16 (see chapter IV.1.1.2.). For marker 7 and marker 9 on chromosome 16, in 

each case, two individual PCRs were designed. One PCR determines the desired 

(“g”) haplotype, the second one detects the undesired (“b”) constellation. For 

marker 5 on chromosome 10 only one PCR was established that ruled out any 

unwanted haplotype. 

The marker-based genotyping was first used to enrich the desired haplotypes in 

the breeding herd. After screening all available pigs of the breeding herd for the 

potential modifier loci on chromosomes 10 and 16, the pigs have been mated 

selectively according to their haplotype constellations. By mating with unrelated 

WT animals, the frequency of the desired genotype constellation in the breeding 

animals has been increased. By selective breeding, I obtained the desired 

haplotypes on chromosome 10 and on chromosome 16 in 10 out of 55 CFTR-/- 

piglets (see chapter IV.1.1.3.). However, none of these animals showed the 

previously described autonomous release of meconium. Even a macroscopic and 

histological examination of the exemplary CF piglet #6491 with the desired 
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genetic constellation, did not reveal any indicative improvement of the intestinal 

phenotype compared to the CF piglet #6345 which lacked the wanted genotype. 

The initial hypothesis of two independent loci on chromosome 10 and on 

chromosome 16 to protect CFTR-/- piglets from MI was therefore clearly rejected. 

The influence of the genetic background on the intestinal phenotype in the CF pig, 

based on the report on three closely related CF piglets that had passed meconium 

autonomously, is still likely. However, the small number of affected CF piglets 

(three out of 23 CF piglets that showed the initial gut-improved phenotype) 

suggests a low frequency of a protective genetic constellation in the original 

breeding herd. Furthermore, I propose that by following a wrong initial 

hypothesis, the rare beneficial genotype constellation was finally sorted out. It is 

likely that both, the marker-based selection of breeding animals as well as the 

outbreeding with unrelated WT animals contributed to this elimination. 

 

Independently from the intestinal phenotype in CF pigs, a variant respiratory 

phenotype was observed in some CF piglets. During routine section it became 

obvious that three animals (#5703, #5704, #5786) differed from normal CF piglets 

by showing a WT-like round trachea with greater diameter, while their genotype 

and a significant MI clearly indicated common signs of CF (see chapter IV.2.2.). 

By systematically mating the parents of improved piglets (boar #5081, sow 

#5373), the randomly occurred improvement of the respiratory phenotype has 

been reproduced in two more CFTR-/- piglets (#6046, #6704). It is thus consequent 

to suppose that both, the intestinal as well as the respiratory phenotype in the CF 

pig are independently modified by variants of genetic background elements. A 

contribution of distinct genetic elements to the manifestation of the gut- and the 

lung-phenotype is very likely at the basis of the GWAS studies and reflects the 

situation in patients, where the phenotypical manifestation of CF in different 

organ systems uniquely responds to CFTR mutations and modifier effects 

(reviewed in WEILER & DRUMM, 2013; O'NEAL & KNOWLES, 2018). As 

early as 1990, the potential role of genetic modifiers in determining the 

complexity of CF, has been proposed (SANTIS et al., 1990). So far in human 

patients with CF, a variety of individual genetic modifiers for multiple CF 

phenotypes has been detected, though there is no single definitive contributor that 

universally predicts the disease severity or secondary complications (reviewed in 

DORFMAN, 2012). Rather combinations of several genetic variants seem to 
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contribute to overall disease manifestation.  

Regarding the intestinal phenotype, studies in CF twins and siblings undoubtedly 

indicate a predominant impact of additional non-CFTR genetic modifiers on both, 

the contribution to and the protection from MI (BLACKMAN et al., 2006). 

Subsequent genome-wide analyses on human CF patients revealed a few potential 

candidate loci, including polymorphisms in the genes coding for several members 

of the solute carrier family, either promoting (SLC6A14 on chromosome X, 

SLC9A3 on chromosome 13, SLC26A9 on chromosome 1) or preventing the 

development of MI (SLC4A4 on chromosome 4) (DORFMAN et al., 2009; SUN 

et al., 2012). Just recently, two new potential modifier genes of MI have been 

identified, namely ATPase H+/K+ transporting non-gastric alpha2 subunit 

(ATP12A) on chromosome 13, and a suggestive locus on chromosome 7 near 

serine protease 1 (PRSS1) (GONG et al., 2019). 

In CF patients carrying an identical CFTR genotype it was determined that genetic 

modifiers could account for 50-80 % of lung disease variability (VANSCOY et 

al., 2007). For the divergent pulmonary phenotype in humans, numerous modifier 

genes have been described, with transforming growth factor beta 1 (TGFB1) and 

mannose-binding lectin (MBL) being the first ones that have been identified 

(reviewed in SHANTHIKUMAR et al., 2019). Apart from TGFB1 and MBL, 

there are other genes that have been suggested as potential modifiers, such as 

homeostatic iron regulator (HFE) (REID et al., 2004; PRATAP et al., 2010; 

SMITH et al., 2019), endothelin receptor type A (EDNRA) (DARRAH et al., 

2010) and carcinoembryonic antigen-related cell adhesion molecules (CEACAM) 

(STANKE et al., 2010). 

In contrast to the significant evidence of modifier genes for human CF disease, 

none such elements have been described in the pig so far. The most striking 

explanation for this finding is the limited number of CF piglets that have been 

produced. Even if the number of such animals in the US and European breeding 

herds reaches a several hundreds, the obviously limited genetic diversity in the 

breeding herds descending from a handful of individuals and their systematic 

breeding for less than ten generations, would prevent a constellation similar to 

humans where founder individuals have distributed their mutations among huge 

populations for centuries. Therefore, the appearance of unusual phenotypes in 

closely related CFTR-/- piglets showing either autonomous remove of meconium 

or a WT-like anatomy of the trachea, must be seen as strong evidences that also in 
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CF pigs modifier genes might play a crucial role in altering disease severity. 

 

In parallel to testing the hypothesis of modifier loci on chromosome 10 and on 

chromosome 16 by marker-assisted breeding, a detailed analysis of the candidate 

region on chromosome 10 has been conducted. Based on the assumption that a 

potential causative mutation would preferentially be located in a region with a 

specific function and that such functional region would often be conserved 

between species, we performed a multi-species alignment of the candidate region 

on chromosome 10 and identified genetic elements proposed by different 

prediction tools. This procedure suggested three regions of several kb size which 

were therefore examined by Sanger sequencing in animals of the different marker-

defined haplotypes “g/g”, “g/b” and “b/b”. The identified SNPs in locus 1 and 

locus 2 did not reveal a pattern according to the marker-based analysis, and locus 

3 did not reveal any polymorphisms between the different c105 haplotypes. As 

this finding correlated to the results from the selected breeding procedure, the 

initial hypothesis of modifier regions on chromosome 10 and on chromosome 16 

was finally rejected. For reasons of completeness, however, one could question, if 

not a region outside the three examined loci contained a genetic variant 

responsible for the differences in the intestinal phenotype. Although this cannot be 

excluded, I think the assumption of functional properties in conserved and/or 

annotated genetic elements is a valuable and efficient strategy. Notably, not only 

the GeneScan tool predicted locus 1 and locus 2 as significant genetic elements, 

but both loci are also characterized by high homology among different species. 

Assuming the maintenance of genetic elements during the evolution only in the 

case of a beneficial function, this finding implies a potential regulatory function of 

locus 1 and locus 2. The finding of a potential regulatory capacity of two loci by 

the PreMod database, supports this consideration. No other region within the 

candidate region on chromosome 10, except the terminal exon of NEK7 (locus 3) 

showed similar evidence for a potential regulatory function. On the other hand, 

there is also evidence that such biased assumptions do not always correctly 

identify all regulatory elements. This is particularly true if such elements are 

species-specific. Two such examples have previously been published in the cattle: 

The first one was the responsibility of genetic duplications, located in a large 

intergenic region, for genetically induced lack of horn (MEDUGORAC et al., 

2012). Although the mechanism of how these mutations prevent the growing of 
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horn is not completely understood (reviewed in ALDERSEY et al., 2020), the 

introgression of such a modification by gene editing proved transformation of a 

horned cattle genome into a polled version (TAN et al., 2013). The second one 

was the identification of a common, dominant genetic variant that causes a white 

belt around the body of otherwise colored cattle (AWASTHI MISHRA et al., 

2017; ROTHAMMER et al., 2018). Again, the causative mutation is fairly distant 

to its closest annotated genetic element, TWIST2. Importantly, however, both 

phenotypic characteristics, the formation of horned appendices at the skull bones 

and the coloring of fur are definitely species-specific artifacts which is in strong 

contrast to the functional conservation of the CFTR-encoded anion channel. 

Since the examination of chromosome 10 did not provide a possible explanation 

for a diverse manifestation of the CF gut-phenotype, and although I succeeded in 

enriching the desired genotype constellation on chromosome 10 and on 

chromosome 16 in almost 10 CFTR-/- piglets, but none of them showed an obvious 

improvement regarding the intestinal obstruction by meconium, the second 

postulated candidate region on chromosome 16 was not taken in further 

consideration. 

 

Although the initial hypothesis of two independent loci on chromosomes 10 and 

16 to protect CF piglets from MI has clearly been rejected by different methods, 

the assumption of a genetic background influencing the severity of the CF gut-

phenotype appeared still convincing. Therefore, we conducted a second genome-

wide survey (see also chapter IV.1.2.). For SNP-typing we employed the same 

genotyping array as used for the first analysis, namely the PorcineSNP60 v2 

BeadChip (Illumina, San Diego, USA), but this time mapping was performed 

under more favorable conditions. Not only the amount of examined CF piglets 

showing the typical MI was extended to overall 198 animals, including 143 

animals that have been investigated in the first GWAS and 55 additional piglets, 

but also 14 new heterozygous breeding animals have been incorporated into the 

pedigree. By integrating an extended population of control animals in the 

genotyping, the probability to figure out appropriate candidate regions along the 

porcine genome allowing for a proper distinction between the modified and the 

normal gut-phenotype in CF pigs, is increasing respectively. To analyze the 

obtained data, an alternative method based on a combined linkage disequilibrium 

and linkage analysis (cLDLA) has been applied corresponding to the method 
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proposed by MEUWISSEN et al. (2002). The cLDLA approach, based on 

reconstructed haplotypes, facilitate a more precise mapping and proved to be less 

sensitive to the absence of error-free marker maps and perfectly associated SNP 

than the SNP-GWAS approach (MEDUGORAC et al., 2017; MÜLLER et al., 

2017). In view of promising results that have been realized in former studies, the 

alternative cLDLA method was considered as a useful complementary approach 

to the standard GWAS (ROTHAMMER et al., 2014; KUNZ et al., 2016). In this 

way, the analysis of our extended data set revealed two alternative candidate 

regions on chromosome 5 and on chromosome 13 potentially modifying the 

severity of the CF intestinal phenotype in pigs. A further examination of the two 

loci resulted in interesting features: 

The first candidate region on chromosome 5 is packed by almost 12 genes. 

Because it is difficult to predict a causative variation among this high density of 

genes, the expression rate of every gene or genetic element in a broad spectrum of 

different organs as well as their described function according to the current 

literature has been checked in order to estimate a possible impact on modifying 

the CF gut-phenotype. In doing so, ATP6V1E1, located within the center of the 

candidate region, turned out to be a very promising one as its encoded protein is a 

component of the multi-unit vacuolar ATPase, a proton pump acting on the 

acidification of intracellular organelles and extracellular compartments 

(MCGUIRE et al., 2017). In view of an impaired regulation of the pH in the case 

of lacking CFTR, the involvement of ATP6V1E1 in compensating this deficit, 

constitutes a logical approach. The consequences of lacking CFTR on lysosomal 

acidification are discussed contradictory (TEICHGRABER et al., 2008; HAGGIE 

& VERKMAN, 2009), however, there is no doubt about a co-localization of the 

vacuolar ATPase with CFTR on the apical side of respiratory epithelial cells 

(JAKAB et al., 2013; PLASSCHAERT et al., 2018). It is interesting to note that 

in human and other mammalian species, another anion channel, SLC25A18, is 

included in this region, but in sheep, cattle and pig it is lacking due to a large 

genomic deletion. Therefore, it has not been considered as a possible modifier of 

the intestinal phenotype in the CF pig model.  

The second candidate region on chromosome 13 comprises only four genes and an 

implemented haplotype analysis restricted the region to a size of 180 kb. This 

segment resembles the upstream region of TGFBR2, including some of its well-

characterized enhancer elements. While this region is apparently lost in pair-toed 
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species, it is partially highly conserved in the other investigated animals. TGFB is 

well known to modify pulmonary disease in CF (DRUMM et al., 2005; BREMER 

et al., 2008) and also its function as a promoter of growth in the intestinal 

epithelium is considered as secure (BARNARD et al., 1989). TGFBR2 itself plays 

an important role in cell proliferation, including the continuous turnover of 

epithelial cells in the gut (FLENTJAR et al., 2007; ZHANG et al., 2016). A loss 

of function causes structural and functional damage of intestinal organoids 

(IHARA et al., 2018). Interestingly, a recent study of KLUGE et al. (2019) 

demonstrated a direct interaction between the TGFB-signaling axis and 

ATP6V1E1 in regulating the extracellular bicarbonate concentration by epithelial 

cells. This finding supports the assumption of an independent or synergistic 

involvement of both proposed genes in controlling the extracellular pH and 

bicarbonate concentration of the intestine. 

Taken together, an involvement of genetic variants of ATP6V1E1 on chromosome 

5 as well as TGFBR2 on chromosome 13 in modifying the severity of the gut-

phenotype in CF pigs deserves further attention. However, the new hypothesis has 

to be verified in future studies, whereby a more detailed characterization of the 

two submitted modifier genes is necessary. A first attempt would be the detailed 

sequencing of the candidate region, which has become a valuable approach due to 

the dramatically decreasing costs of whole-genome sequencing approaches. On 

the other hand, the limited availability of reference genomes as well requires the 

examination of numerous control animals, which makes this approach a 

demanding exploration. Second, the reproduction of suitable parental animals 

might produce new CF piglets with an improved phenotype and facilitates a more 

profound analysis of the genetic background. However, both strategies are time-

consuming and therefore could not be conducted during my thesis. So far, there is 

good evidence for an influence of the genetic background on the gut-phenotype in 

our CF pig herd, but the exact molecular constellation still has to be identified. 

Pursuing the idea of a marker-assisted breeding will help to shape the genetic 

constellation of the breeding animals towards a regular production of CF piglets 

with an improved intestinal phenotype. Surviving the first critical days of life, will 

make the CF pig an ideal animal model for CF. It paves the way for a better long-

term evaluation of the disease and allows for systematic preclinical testing of 

potential new forms of Cystic Fibrosis therapy. 
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As the new respiratory phenotype constitutes an interesting new modification of 

the CF pig model, it is crucial to analyze it in more detail. For a more precise 

description, it will be essential to increase the number of experimental animals. 

Since we did not obtain further animals with a similar modification of the 

respiratory CF phenotype after retiring the parental animals of the improved 

piglets from our breeding herd, new CF piglets must be generated in another way. 

One possible option is the re-cloning of one of the modified CF piglets via SCNT 

and ET. The production of airway-improved CF pigs by re-cloning is a fast and 

efficient method to generate a small number of animals with the desired genotype. 

However, it has to be considered that the re-cloned piglets might not exhibit the 

same level of improvement as the donor animals or even do not show any 

modification compared with normal CF piglets. In addition, this method is not 

suitable to produce a large number of viable animals due to a usually low cloning 

efficiency and a high rate of phenotypical abnormalities, so-called cloning 

artefacts, that might be explained with epigenetic reprogramming or genomic 

damage of the donor cells (CHO et al., 2007; HÖRMANSEDER et al., 2017). 

Alternatively, the parental animals of the airway-improved CF piglets themselves 

could be re-cloned and selectively mated at sexual maturity enabling a 

conventional breeding of a larger number of piglets.  Nevertheless, this approach 

is very time-consuming and again, it is not certain if the resulting CF piglets will 

exhibit the desired phenotypical modification of the airways.  

The new improved respiratory phenotype in the CF pig opens new prospects for 

the Cystic Fibrosis research and can thereby lead to a better understanding of 

pathophysiological mechanism of the disease.  



VI. Summary       93 

 

VI. SUMMARY 

Modifier genes of the intestinal and respiratory phenotype in Cystic Fibrosis 

pigs 

Cystic Fibrosis (CF) is the most common lethal, autosomal recessive hereditary 

disease among Caucasians and affects more than 100,000 people worldwide. It is 

caused by mutations in the gene coding for the anion channel Cystic Fibrosis 

Transmembrane Conductance Regulator (CFTR), leading to a defective 

transepithelial electrolyte transport. While CF constitutes a multisystemic disease 

mainly affecting the airways, the gastrointestinal tract and the pancreas, the major 

cause for the decreased survival rate of CF patients is traced to pulmonary 

insufficiency. The overall knowledge about the disease increased tremendously, 

so that not only life expectancy of up to 40 years, but also the quality of patients’ 

life has significantly been improved over the last decades. 

From the CF animal models developed so far in six species, the porcine CF model 

proves to be the model showing the closest similarity to human CF disease. 

However, since a lethal neonatal meconium ileus (MI) occurs in 100 % of all CF 

piglets, the use of the pig as an animal model for CF is strongly limited. 

Nonetheless, a previous thesis done at the Chair for Molecular Animal Breeding 

and Biotechnology, describes the occurrence of three CF piglets that showed an 

improved intestinal phenotype as meconium has passed autonomously. An 

implemented genome-wide association study resulted in the hypothesis of two 

potential modifier loci on chromosome 10 (25.8–25.9 Mb) and on chromosome 16 

(4.7–5.2 Mb) to rescue the severe gut-phenotype, whereby the three rectified 

piglets were homozygous for a specific haplotype at both loci.  

As the aim of my thesis was to test this hypothesis, it was necessary to enrich the 

desired genetic constellation on both candidate regions in the CF breeding herd in 

order to increase the probability of generating CF piglets with the specific 

haplotypes. For this purpose, the CF breeding herd was screened for the proposed 

modifier loci by detecting informative markers. In addition, marker-specific PCRs 

have been established that discriminate the desired haplotype from any of the non-

desired constellations. By selected mating, I succeeded in enriching the wanted 
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genotype in 10 CF piglets, but none of these animals showed the previously 

described improvement of the gut-phenotype. This finding was confirmed by a 

macroscopic and histological examination and correlated to the detailed SNP-

based examination of the candidate region on chromosome 10 as the identified 

SNP patterns were not consistent with the marker-defined haplotypes. The initial 

hypothesis of a beneficial influence of the postulated regions on chromosomes 10 

and 16 was therefore fully rejected. Instead, an alternative investigation of a more 

extended population of CF animals, based on a combined linkage disequilibrium 

and linkage analysis (cLDLA), revealed two new candidate regions on 

chromosome 5 and on chromosome 13 and suggested the potential involvement of 

genetic variants of ATP6V1E1 (chromosome 5) and TGFBR2 (chromosome 13). 

Independently from the CF gut-phenotype, a variant respiratory phenotype was 

observed in some CF piglets during my thesis. These animals differed from 

normal CF piglets by showing a WT-like round trachea with greater diameter, 

while their genotype and a significant MI clearly indicated common signs of CF. 
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VII. ZUSAMMENFASSUNG 

Modifier-Gene des intestinalen und respiratorischen Phänotyps in Schweinen 

mit Mukoviszidose 

Die Mukoviszidose, auch zystische Fibrose (ZF) genannt, stellt die häufigste 

tödliche, autosomal rezessive Erbkrankheit unter Kaukasiern dar und betrifft 

weltweit mehr als 100.000 Menschen. Sie wird verursacht durch Mutationen im 

Gen, das für den Anionenkanal Cystic Fibrosis Transmembrane Conductance 

Regulator (CFTR) codiert, welche zu einem fehlerhaften transepithelialen 

Elektrolyttransport führen. Obwohl ZF eine multisystemische Erkrankung 

darstellt, welche hauptsächlich die Atemwege, den Verdauungstrakt sowie das 

Pankreas betrifft, ist die Hauptursache für die eingeschränkte Lebenserwartung 

der ZF-Patienten auf eine Lungeninsuffizienz zurückzuführen. Das allgemeine 

Wissen um die Krankheit hat sich enorm erweitert, sodass sich in den 

vergangenen Jahrzehnten nicht nur die Lebenserwartung der Patienten auf bis zu 

40 Jahren erhöhte, sondern sich auch deren Lebensqualität signifikant verbesserte.  

Von den bislang entwickelten sechs ZF-Tiermodellen, erweist sich das porcine 

Modell als dasjenige, welches die größte Ähnlichkeit mit der menschlichen ZF-

Erkrankung aufweist. Dennoch ist der Nutzen des Schweins als Tiermodell für die 

Mukoviszidose stark begrenzt, da in 100 % aller ZF-Ferkel ein tödlicher 

neonataler Mekoniumileus (MI) auftritt. Nichtsdestotrotz beschreibt eine 

vorhergehende Doktorarbeit, erarbeitet am Lehrstuhl für Molekulare Tierzucht 

und Biotechnologie, das Vorkommen von drei ZF-Ferkeln, welche durch das 

selbstständige Absetzen von Mekonium einen verbesserten intestinalen Phänotyp 

aufzeigten. Eine durchgeführte genomweite Assoziationsstudie resultierte in der 

Hypothese zweier möglicher Modifier-Regionen auf Chromosom 10 (25,8-25,9 

Mb) und auf Chromosom 16 (4,7-5,2 Mb), die vor einer schwerwiegenden 

Ausprägung des Darmphänotyps bewahren sollen, wobei die drei verbesserten 

Ferkel homozygot für einen bestimmten Haplotyp auf beiden Regionen waren. Da 

es das Ziel meiner Doktorarbeit war, diese Hypothese zu testen, war es 

notwendig, die gewünschte genetische Konstellation auf beiden 

Kandidatenregionen in der ZF-Zuchtherde anzureichern, um die 
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Wahrscheinlichkeit zu erhöhen, ZF-Ferkel mit den spezifischen Haplotypen zu 

produzieren. Aus diesem Grund wurde die ZF-Zuchtherde auf die 

vorgeschlagenen Modifier-Regionen überprüft, indem aussagekräftige Marker 

festgestellt wurden. Darüber hinaus wurden markerspezifische PCRs etabliert, 

welche den gewünschten Haplotyp von allen unerwünschten Konstellationen 

unterscheiden. Durch gezielte Verpaarung gelang es mir, den gesuchten Genotyp 

in 10 ZF-Ferkeln anzureichern, aber keines dieser Tiere zeigte die zuvor 

beschriebene Verbesserung des Darmphänotyps. Dieses Ergebnis wurde mit Hilfe 

makroskopischer und histologischer Untersuchung überprüft und korrelierte mit 

der ausführlichen, auf SNPs basierenden Untersuchung der Kandidatenregion auf 

Chromosom 10, da die Muster der identifizierten SNPs nicht mit den marker-

definierten Haplotypen übereinstimmten. Die ursprüngliche Hypothese eines 

günstigen Einflusses der vorgeschlagenen Regionen auf den Chromosomen 10 

und 16 wurde deshalb vollständig widerlegt. Stattdessen brachte die alternative 

Untersuchung eines erweiterten ZF-Tierbestandes, beruhend auf der cLDLA-

Methode, zwei neue Kandidatenregionen auf Chromosom 5 und auf Chromosom 

13 zum Vorschein und unterstellte eine mögliche Beteiligung genetischer 

Varianten von ATP6V1E1 (Chromosom 5) und TGFBR2 (Chromosom 13). 

Unabhängig vom ZF-Darmphänotyp konnte während meiner Doktorarbeit in 

einigen ZF-Ferkeln ein abweichender respiratorischer Phänotyp festgestellt 

werden. Diese Tiere unterschieden sich von normalen ZF-Ferkeln, indem sie eine 

WT-ähnliche runde Trachea mit größerem Durchmesser aufwiesen, wohingegen 

ihr Genotyp sowie ein signifikanter MI eindeutig auf übliche Anzeichen von 

Mukoviszidose hinwiesen. 
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