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Summary

At high-conductance state, a neuron is exposed to increased synaptic bombard-
ment. We analyzed the ability of hippocampal pyramidal neurons, as well as the
principle cell type of the medial superior olive (MSO), to perform reliable computa-
tions under these circumstances. While those neurons come from two completely
different brain areas, they are nevertheless ideal study objects, as they are well
studied and ample functional knowledge is available.
Pyramidal neurons exhibit sharp-wave ripple events, a specific type of oscillation,
during memory consolidation. They are characterized by sharp voltage deflec-
tions, accompanied by fast, ripple oscillation. We were interested in the memory
capacity of one ripple cycle. To test the correlation between spiking at one cy-
cle with respect to the activity at the previous cycle, the excitatory conductances
were modified such that the amplitude of a specific cycle was increased until an
AP was generated. We observed only small dependencies between different cy-
cles. Thus, we conclude that a major part of compound postsynaptic currents act
as background activity.
In another set of experiments, learning capabilities of a single cell were tested.
For this, 10,000 synapses targeting a single cell were simulated, each with the
potential to generate postsynaptic currents. Predefined patterns had to be repli-
cated. The number of patterns as well as the coding ratio (percentage of active
synapses) were systematically varied.
The compound postsynaptic currents were injected into two different model ver-
sions, a multi compartment, Hodgkin-Huxley type neuron, and a single compart-
ment, leaky integrate-and-fire neuron. The leaky integrate-and-fire neuron reflects
the synaptic drive of a cell in vivo, by allowing to set an optimal firing threshold.



viii Summary

In both models, a small number of patterns can be retrieved using sparse in-
puts. For physiological sparseness, pattern retrieval was improved in the leaky
integrate-and-fire neuron, when adding inhibition, but only at low signal-to-noise
ratios.
From our finding, we conclude that the CA1 is an unlikely candidate network for
the storage of large numbers of patterns.
Medial superior olive neurons are characterized by a very highmembrane conduc-
tance, which results in a low probability for action potential generation. However,
MSO neurons can produce high firing rates and are known for their precise co-
incidence detection. To understand this apparent contradiction, we implemented
a biophysically inspired, multi-compartment model and combined its finding with
results from immunohistochemical stainings and in vitro recordings.
The model neuron included a detailed axonal compartment, which allowed to test
the impact of the distribution of ionic channels on the firing properties. With the
help of in vitro patch-clamp recordings we investigated the effect of the input fre-
quency on the firing threshold, by varying this frequency.
One major finding concerns the site at which APs can be generated. With increas-
ing input frequency, a lot of APs in the model are initiated at the nodes of Ranvier,
in contrast to the axon initial segment.
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1
Introduction

1.1 The High-Conductance State

The state of a single neuron largely depends on the activity of the network, the cell
is embedded in. The high-conductance state describes a cell which is surrounded
by active neurons (Destexhe et al., 2003). Typically, this can be observed in an
awake animal. During sleep, high-conductance state is comparable to a state in
which the neuron exhibits a depolarized membrane voltage, the Up state, in con-
trast to a more hyperpolarized voltage, the Down state (Paré et al., 1998).
In the high-conductance state, the neuron is exposed to an increased synaptic
bombardment. Such high synaptic background activity has several impacts on
integration properties of a single cell. A main focus of this thesis is the analysis
of the ability of cells to perform reliable computations under these circumstances.
The effect of a high-conductance state is discussed with respect to hippcampal
pyramidal neurons, as well as to the principle cell type of the medial superior olive
(MSO).
Pyramidal neurons represent a well described cell type. Thus, models can be
based on well understood physiological parameters. In a high-conductance state,
hippocampal pyramidal neurons are more sensitive to normally subthreshold ac-
tivity and may respond to them (Hô and Destexhe, 2000). Additionally, fast ripple
oscillations occur during population burst in the HC and are assumed to play a
crucial role in memory consolidation (Buzsáki et al., 1983; English et al., 2014).
MSO cells can integrate inputs with a high temporal precision (Klumpp and Eady,
1956). Interestingly, this precision is enhanced in a high-conductance state (Ratté
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et al., 2013).
Thus, both systems benefit from a high conductance state to perform very precise
computations, thus enabling them to function as coincidence detectors (Abeles,
1982; Klumpp and Eady, 1956).
Before going into further details, the term conductance needs to be introduced.
Conductance is the property that denotes the flow of electric currents. Its inverse,
the electrical resistance is calculated as voltage per current. In neurons, the con-
ductance is determined by the composition of ion channels in the membrane. The
excitability of neurons is mainly affected by conductance changes. Hence, alter-
ing the conductance state of a neuron can result in a changed spiking behavior.
The membrane conductance of a neuron influences the membrane time constant.
This time constant describes how quickly the membrane potential of a cell rises
or decays. It is calculated as the product of membrane resistance and membrane
capacitance. This correlation allows MSO neurons, in high conductance states,
to have extremely low time constants, which they need to perform with a high tem-
poral precision (Scott et al., 2005).
A detailed discussion on the impact of this state on the integration properties of
single neurons can be found in the discussion chapter, at the end of this thesis.
In the remaining part of the introduction, I will introduce the hippocampus, as well
as the MSO. I will start with an overview of the hippocampus, including synaptic
connections, area specific cell types, as well as typical oscillations. The subse-
quent section is dedicated to learning and memory formation. At the end, the
focus lies on sound localization, including a section about the MSO.

1.2 Hippocampus

The hippocampus (HC) is a brain region which can be found in both hemispheres
within the medial temporal lobe in mammals. Looking at the three-dimensional
structure reveals the eponymous shape of the HC, which is often said to resem-
ble the form of a seahorse. The name hippocampus is deduced from the Greek
word for seahorse. Another, older, denotation is Cornu Ammonis based on a
comparison to a ram’s horn. Its abbreviation CA is found in the notation of the
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hippocampal subregions.
Being part of the limbic system, the HC was and still is associated with various
functions. Early on, a role in the underlying mechanism of processing emotions
was suggested. This sparked further research on the brain region (Redish and
Touretzky, 1997). Before, the HC had only been mentioned as being involved in
olfaction (Brodal, 1947).
The case study of patient H.M. from the 1950s was a meaningful event in the
field of memory and the role of the human HC in general (Scoville and Milner,
1957; Milner, 1972). H.M. suffered from severe epilepsy with a focal point in the
hippocampal region. As the seizures affected his daily life in a very severe fash-
ion, both hippocampi were surgically removed. As an unexpected consequence,
H.M. developed a profound anterograde amnesia, i.e., he had problems forming
new memories. Particularly, he was not able to remember what happened dur-
ing his days, but he could learn new motor skills (Milner et al., 1968). Thus, his
declarative memory, i.e., memory about facts and events, seemed to have suf-
fered profoundly, in contrast to his non-declarative memory.
Observing H.M. throughout his whole life, till he died in 2008, offered seminal in-
sights into humanmemory formation. Specifically indicating that the hippocampus
on its own can not be responsible for

1. all types of memories

2. one type of memory without any other helping brain structure (Eichenbaum
et al., 1992).

Besides these observations, more precise research was conducted to unravel the
functions of the HC as well as the process of memory formation.
Here, lesion studies in animals contributed significantly to this progress (Douglas,
1967). In contrast to studies with humans, in animal studies controlled lesions
can be performed and it is possible to record from specific brain areas depending
on the scientific questions one is interested in. Nowadays, memory formation
and spatial cognition are assigned as major functions to the HC (Eichenbaum and
Cohen, 2014). In doing so, the HC is thought to play a crucial role in the integration
of different memories (Giovanello et al., 2009). Hereby, a certain flexibility within
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the neural network is needed in order to link novel experiences to already gained
ones. A typical learning paradigm to test this ability would be to learn to associate
word pairs. The flexible expression of declarative memory could be shown in rats
(Bunsey and Eichenbaum, 1996) and humans (Preston et al., 2004). The rats
had to associate pairs of odors whereas humans were trained with pairs of faces
and houses. The type of memory tested here is known as the flexible relational
memory.
Another theory about the HC tackles its contribution in spatial learning and is called
the cognitive map theory (O’Keefe and Nadel, 1978). The theory states that the
HC builds an internal representation of the external environment which can be
used, e.g., for navigation. The theory was kick-started by the discovery of the
hippocampal place cells (O’Keefe and Dostrovsky, 1971). The firing of a place
cell in an animal, in a predetermined maze, is highly correlated to the location of
the animal. A detailed description of place cells can be found below.
The discovery of place cells was trend-stetting in the field of neuroscience, and
subsequently John O’Keefe won the Nobel Prize for Physiology or Medicine in
2014. He shared the Nobel Prize with May-Britt and Edvard Moser who were in
2005 the first to describe a similar cell type in the entorhinal cortex, namely the
grid cells (Hafting et al., 2005). In contrast to place cells, grid cells feature multiple
firing fields in a more or less regular hexagonal fashion.

1.2.1 Hippocampal subregions

Together with its surrounding structures, the HC is part of the hippocampal for-
mation (HF) (Amaral and Witter, 1989). The following areas belong to the HF: the
entorhinal cortex (EC), pre- and parasubiculum, subiculum, and dentate gyrus
(DG) (see Figure 1.1). There are various connections within this brain regions as
well as projections to other areas which will be examined in the following.
The HC can be anatomically as well as functionally divided into different subfields.
Asmentioned above, they are labeled with the abbreviation CA followed by a num-
ber to distinguish the parts from each other.
Already in 1911, Cajal revealed, by looking at Golgi stainings and providing draw-
ings, a significant portion of the underlying anatomical structure as well as projec-
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Figure 1.1: Rat brain from a posterolateral view. (a) Anterior part is characterized by the

olfactory bulb (OB). In violet the HF is depicted with its neighboring regions. (b) Horizontal

section through the HF. (c) Main synaptic connections in the HF. Adapted fromWitter et al.

(2000) with permission,

tions from and to different cell layers within the HF (Cajal, 1911). Some of which
even got forgotten over the years and were found again later, like the projection
from the EC to CA1 and CA3 (Witter et al., 2000; Steward and Scoville, 1976).

Layers. Each layer in the HC is characterized by the type of cell bodies as well as
axonal and dendritic connections located in it. These distributions can already be
seen in older drawings of hippocampal slices, as mentioned above. Additionally,
electrophysiological in vitro or in vivo recordings reveal differences in the layers,
as well as molecular analysis of it.
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The HC is characterized by the following layers (see, e.g., Amaral et al. (2007)
and Benson (2020) as references):

• Stratum lacunosum-moleculare

• Stratum radiatum

• Stratum lucidum

• Stratum pyramidale

• Stratum oriens

Stratum lacunosum-moleculare is the layer that is most superficial. In CA3,
projections from EC layer II terminate in this layer. Below it, stratum radiatum can
be found with septal and commissural axons. Stratum lucidum only appearce
in CA3. It cannot be found in CA1 and CA2. Mossy fibers from DG terminate
in stratum lucidum. Attached, stratum pyramidale is located, containing the cell
bodies of the principal cell type in the HC, the excitatory pyramidal neurons
(Freund and Buzsáki, 1998). Stratum oriens concludes the layers. It mainly
contains cell somata of inhibitory neurons, like basket cells.
The variety of inhibitory interneurons is considerably higher than that of pyramidal
cells (Klausberger and Somogyi, 2008). More than 20 have been found in
the CA1, in contrast to a small single-digit number of types of pyramidal cells
(Spruston, 2008). These inhibitory cells spread the entire area. Pyramidal
neurons in the CA1 are packed in a denser fashion than those in CA3.
Overall, pyramidal neurons in CA1 and CA3 have very similar properties (Sprus-
ton, 2008). In contrast, pyramidal neurons found in the CA2 are more different,
e.g., they possess a higher membrane capacitance, a lower input resistance, and
are more hyperpolarized (Dudek et al., 2016). Furthermore, in CA2 no long-term
potentiation seems possible (Dudek et al., 2016).
For the sake of completeness, the CA4 has to be mentioned. It is sometimes re-
ferred to as the hilar region when assigned to the DG (Amaral, 1978). Regarding
the cells of CA4, which resemble more closely those in the DG than in other CA
areas, the assignment to DG seems sensible (Blackstad, 1956). Beyond, CA4
is mainly mentioned in the context of schizophrenia (Falkai and Bogerts, 1986).
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In patients with schizophrenia a loss in the volume of CA4 can be registered in
comparison to healthy subjects (Haukvik et al., 2015).

1.2.2 Synaptic connections

Trisynaptic Circuit. In the classical view of hippocampal connections the focus
lies on the trisynaptic loop (McNaughton and Morris, 1987). As its name implies,
it consists of three synapses. Starting from layer II of the EC, neurons project
via the perforant path to the DG. Here, granule cells are connected to the area
CA3 via the mossy fibers. Finally, the CA3 pyramidal neurons show dense con-
nections to pyramidal neurons in area CA1, called Schaffer collaterals. Area CA3
and DG exhibit many recurrent connections, in contrast to cells in CA1 (Lisman,
1999). Nevertheless, compared to primary sensory cortices, those recurrent con-
nections are sparse (Miles et al., 2014).
The lamellar hypothesis which came up in the 1970s, suggested that the HC is or-
ganized in parallel lamellae (Andersen et al., 1971). This means that all the fibers
have the same orientation in the three-dimensional space of the HC, i.e., trans-
verse to the longitudinal axis. According to this theory, activation in a small portion
of the EC would subsequently lead to a similar amount of activation in the under-
lying fiber connections. Thereby, parallel stacks of processing units would exist,
with very little exchange across each other. The lamellar hypothesis sounded
very plausible because it was in line with the anatomical organization of the HC.
However, more modern tracing technologies, like anterograde tracers, finally dis-
proved this (Amaral andWitter, 1989). Thereby, a muchmore diverse connectivity
map could be revealed, including extensive connections also in the longitudinal
axis.

Modern view. Although the trisynaptic loop builds a nice basis, e.g., for com-
putational networks of the hippocampal area, as already indicated, ongoing work
suggests a more complicated view (Lisman, 1999). First, it has to be mentioned
that the trisynaptic loop can be bypassed via a direct connection between layer
III of the EC to area CA1 (Van Hoesen et al., 1975). Moreover, the EC posses
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direct projections to the subiculum (Witter et al., 1988). There is also a disynaptic
loop from EC to CA3 and further on to CA1. Thus, it is possible to have spe-
cific information processing for different purposes, e.g., for pattern separation or
completion (Jones and Mchugh, 2011). Pattern separation needs a sparse firing
environment to give the possibility to activate different combinations of cells for
different pattern. This environment can be found in the DG with its granule cells.
In contrast to it, pattern completion is linked to the recurrent network of the pyra-
midal cells in area CA3.
At last, area CA2 has been disregarded for the most time and is getting only very
recently more attention by analyzing, e.g., its gene expression or electrophysio-
logical profile (Jones and Mchugh, 2011). Besides, it was shown that CA2 plays
a crucial role in social memory formation (Hitti and Siegelbaum, 2014). The ex-
act involvement of CA2 in hippocampal learning is still unclear. There is strong
inhibition of the excitatory inputs from CA3 onto the pyramidal neurons in CA2.
Thereby, actions potentials are suppressed in CA2 (Nasrallah et al., 2015). How-
ever, the generation of action potentials can be achieved by using high frequency
distal inputs or induce long-term depression (Nasrallah et al., 2017).
Overall, it has to be mentioned that within the HF lots of parallel circuits exist (Wit-
ter et al., 2000). Here, the EC has to be mentioned as the gatekeeper of the HF
providing the input as well as receiving the output.

1.2.3 Place cells

The HC is very important in spatial cognition, i.e, the navigation through different
environments (see also Burgess et al. (2002)). In the HC, pyramidal neurons are
the principal cell type. In vivo recordings of these neurons in area CA1 and CA3
of rodents reveal a very specific firing pattern in moving animals.
This particular type of experiment was first published by O’Keefe and Dostrovsky
in 1971 (O’Keefe and Dostrovsky, 1971). They implanted electrodes into the HC
of rats and placed the animals into a maze to freely explore the space. Later
analysis of the data allowed them to report on locations of single cell activity, i.e.,
single action potentials of one specific cell. Mapping the activity of one cell onto
the real maze revealed a high correlation between location and activity. Some
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cells showed very distinct firing fields and generated with their activity a represen-
tation of the outside location. Based on this finding, these neurons were named
place cells. Combining the information of several of these cells, allows to follow
the trace of the animal through the environment by analyzing the cell’s activity
(Wilson and McNaughton, 1993). The easy decoding of place cells strengthens
the idea of the HC playing a central role in forming a cognitive map (O’Keefe and
Nadel, 1978).
Over the following years, because of their fascinating firing pattern, the study of
place cells became more and more popular. Thus, recordings in various environ-
ments, from simple linear tracks (Lee and Wilson, 2002) up to mazes in virtual
reality setups (Harvey et al., 2009), exist. Some of them had a fixed layout, others
were flexible, e.g., in the location of walls or the appearance of visual cues. Of-
ten, these studies wanted to test the dependency of place cell firing with respect
to cues from the outside world. Changes observed in the firing pattern of place
cells are called remapping.
There are two kinds of remapping, rate remapping and global remapping (Leutgeb
et al., 2005). In rate remapping changes in the environment affect only the firing
rate of the place cells, but do not alter the position of the firing fields in the maze.
In contrast, global remapping means a complete change of the firing field location
of a place cell.
Recently, the firing profile of verified place cells was tested with respect to
frequency of sound (Aronov et al., 2017). The question was whether the
hippocampal-entorhinal system allows only themapping of spatial cues or whether
the circuit can be also used for non-spatial cues. Therefore, rats were trained to
push a button as long as a presented pure tone reached a predetermined fre-
quency. In fact, the authors could show that many cells preferably fired at one
specific frequency of the sound. Thus, the authors reported that the hippocampal-
entorhinal circuit is capable of processing various types of information by using
similar mechanisms. Testing the circuit on sound frequency came from the idea
to test the system on another continuous variable besides space.
Even the existence of social place cells in bats has been reported recently (Omer
et al., 2018). Social place cells were defined as cells being active at locations of
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an observed conspecific. To define social place cells, the firing activity of a place
cell in the observer bat was mapped onto to movement trace of the watched con-
specific. A similar experiment was performed in rats (Danjo et al., 2018).
To what extend the activity in the neurons of the observer represents a social
place cell or planning of future movement is highly debated. The authors claim
that future planning can be excluded as the fields do not vanish when sharp-wave
ripples are disrupted in the observer, although they would be necessary for action
planning (Omer et al., 2018).

Figure 1.2: Rate maps of spatially organized cells in the HF. Blue colors indicate low

firing rates, whereas red colors stand for high firing rates. The number below depicts the

peak firing rates. (A) Place cells in the CA1. (B) Grid cells in the MEC. (C) Boundary

vector cells in the MEC. Adapted from Sanders et al. (2015) with permission.

1.2.4 Other spatially organized cells in the HF

Additionally, to the spatially organized place cells in the HC, a variety of cells can
be found in the EC and surrounding structures, which also exhibit location depen-
dent firing patterns (see Figure 1.2).
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As referred to before, in 2014 the Nobel Price was not only awarded to John
O’Keefe for the discovery of place cells, but also to May-Britt and Edvard Moser
for being the first to describe grid cells in the EC of rats (Fyhn et al., 2004; Hafting
et al., 2005). In contrast to most of the place cells, grid cells posses several firing
fields in one environment. These fields are not distributed randomly, but follow
a very specific and highly interesting pattern. They are arranged in a hexagonal
fashion. The single fields of these grids vary in size along the dorsal-ventral axis
(Brun et al., 2008) and they come in various orientations. Together with place
cells they form a distinct representation of the outside location which is easy to
decode.
Another type of important cells, regarding the navigation through space, are head-
direction cells (Taube et al., 1990a). As the name implies, firing of these cells
depends on the direction of an animal’s head on a horizontal plane. Very early
on, it was clear that the firing largely dependent on the environment with its local
and distal cues (Taube et al., 1990b). By changing these cues one can shift the
preferred angle of a head-direction cell.
Sargolini et al. (2006) could show that in deeper layers of the medial EC conjunc-
tive cells, exhibiting the properties of grid and head-direction cells, can be found.
Additionally, the activity of these cells depends on the running speed of the animal,
a property also reported in plain grid and head-direction cells. The convergence
of information about direction, movement, and position within these conjunctive
cells indicates a possible role of these neurons in updating the grid coordinates
during exploration.
The next class of spatially dependent firing cells are border cells (Solstad et al.,
2008). These neurons are located in the medial EC as well as the parasubiculum
and fire with respect to geometric borders, e.g., the wall of a maze. Border cells
become active when the animal is, e.g., close to the wall.
Furthermore, Lever et al. (2009) found boundary vector cells in the subiculum.
The activity of these cells is determined by the distance to a boundary, with each
cell having a peak firing rate at a different distance. Their existence has been pre-
dicted since 1996 to explain the expansion of a place field when an environment
is stretched (O’ Keefe and Burgess, 1996; Burgess and O’Keefe, 1996).
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Recently, the finding of speed cells has been reported in the medial EC (Kropff
et al., 2015). These neurons adapt their firing rate with respect to the running
speed. Thus, they could serve as information source about the velocity of the
animal for grid cells to adapt their firing rate.
The list of cells with spatial firing of spatially firing cells corresponds to the cur-
rent view but might be incomplete. New cell types, like the social place cell or the
sound dependent cells are described. To what extent these cell types can be in
fact considered completely new types is a matter of debate. Hereby, the exper-
imental protocols carefully need to be analyzed. Especially an expected reward
has the tendency to increase firing in certain cells and thereby strongly influences
the firing pattern.

1.2.5 Hippocampal oscillations

Depending on the current state of the brain, largely constrained by the behavior,
different oscillations are particularly obvious in electroencephalography (EEG) or
local field potential (LFP) recordings of the HC (Draguhn and Buzsaki, 2004). In
general, local synchronous rhythms seem to be important to select inputs and pro-
vide plasticity in the underlying network (Draguhn and Buzsaki, 2004). Oscillations
of different frequency bands often show close relationships to certain behavioural
states. Comparing, e.g., the awake to the sleeping brain, reveals profound differ-
ences in the power spectrum.
In the context of memory formation, oscillations in the cortex are thought to provide
time windows in which information transfer and storage is possible. This might be
achieved, e.g., by synchronizing the phases of oscillations over different brain re-
gions and thereby establishing precise spike timing.
Here, I want to give a short overview of the three prominent oscillations in the
cortex. Each type is characterized by a frequency band which exact borders are
highly debated among scientist. Thus, the given values below do not need to be
seen as exact numbers but rather as a rough range of the respective frequency
band for different oscillations in the HC.
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Theta. An oscillation with a frequency between 8 to 10 Hz is called theta.
Theta oscillations are highly prominent during locomotive behavior and rapid eye
movement sleep (REM) (see Figure 1.3). In contrast, they are mainly absent
during resting behavior and slow wave sleep (Jouvet, 1969). Interestingly, theta
frequency exhibits a strong correlation with the running speed (Fuhrmann et al.,
2015).
Different mechanisms seem to be able to generate theta, with pyramidal neurons
being discharged in a synchronous fashion (Buzsáki et al., 1983). This, in turn,
induces a synchronous discharge of interneurons, targeted by the pyramidal cells
(Tóth and Freund, 1992).

A

B walking

still

Figure 1.3: Hippocapal oscillations. Depending on the behavior of an animal, the LFP

shows different oscillatory pattern. The figure shows the oscillatory differences in the

hippocampus of a rat while it is moving or inactive (still). (A) The green curves show how

the LFP changes over time when the behavior of an animal switches from moving (left

side) to still (right side). The upper curve depicts the recording in the left hemisphere (LH)

and the lower one in the right hemisphere (RH). (B) The upper rat is moving, while the

lower one is still. Next to each rat characteristic voltage traces for the two behavioral states

are shown, filtered in the frequencies indicated above. In case of a moving animal, theta

oscillations are prominent (around 8 Hz). In resting behavior strong voltage deflections,

sharp waves are apparent. Adapted from Buzsáki (2015) with permission.
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Theta rhythm became particularly interesting when single spiking activity of pyra-
midal neurons in the HC were analyzed with respect to the phase of the oscilla-
tion. Skaggs et al. (1996) reported a shift in phase when passing through several
cycles. Spikes appear earlier and earlier in phase. This phenomenon is called
phase precession. During one theta cycle, only a minor fraction of CA1 pyramidal
neurons is active (Csicsvari et al., 1998). They correspond to the place cells being
active at the current location.
A link between theta and memory formation in rodents was already provided by
Winson (1978). He disrupted hippocampal theta oscillations during a spatial learn-
ing task whereby the memory performance of the animals decreased. In humans,
Backus et al. (2016) were the first to show electrophysiological evidence for the im-
portance of hippocampal theta in the process of memory integration. They found
a positive correlation between theta power during memory encoding and the later
performance in memory recall.

Gamma. Gamma oscillations are faster than theta. They are often subdivided
into fast gamma from 40 to 100 Hz and slow gamma from 25 to 50 Hz. Their am-
plitude is typically lower than the one of theta oscillations (Buzsáki et al., 1983).
The two subtypes seem to have different origins. Whereas fast gamma is gen-
erated in medial EC, slow gamma originates in CA3 (Csicsvari et al., 2003). By
varying the interplay between these rhythms it appears to be possible to guide
information flow during memory formation through connection of specific cell as-
semblies (Colgin et al., 2009). In these processes precise timing is the key feature.
Coordinated spike times might be enabled through synchronization to certain fre-
quencies. Here, it is hypothesized that hippocampal theta plays an important role
in the entrainment of gamma (Sirota et al., 2008).

Sharp-wave ripples. During slow-wave sleep and waking immobility, LFP
recordings in the HC exhibit in a regular fashion high voltage deflections, sharp-
waves (see Figure 1.3), accompanied by fast oscillation, ripples, in the range of
150 to 200 Hz. First described by Buzsáki et al. (1992), very early on, they were
associated with memory consolidation.
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As sharp-wave ripples (SWR) can be observed in detached hippocampal slices,
the HC itself is a good candidate as their origin (Kubota, 2002). Even CA1
minisclices, with CA1 being detached from CA3, can exhibit SWRs (Maier et al.,
2011).
Spikes of CA1 place cells show phase locking to ripples in CA1, which argues
against an entrainment of CA1 firing by CA3 (Sullivan et al., 2011). But CA3 may
still alter the firing properties of CA1 cells during ripples as it can be seen in re-
play. The phenomenon of replay is dealt with in greater detail the subsequent
paragraph.
Before I explain the phenomenon of replay, I would like to go a bit more into de-
tail about the relevance of SWR currents for memory consolidation. To test their
importance, a straight-forward approach is to block SWRs during a sleep period di-
rectly following a spatial learning task (Girardeau et al., 2009, 2014). In this study,
an online detection mechanism was used to filter SWR during the experiment by
applying a threshold in the ripple frequency band. The detected SWR could be
blocked by directly inserting an electric pulse. Girardeau et al. (2009) showed that
rats with post-learning SWR blockage performed worse in the task than the con-
trol groups. They controlled for effects of the electrical pulse in general by testing
unimplanted animals, as well as for the specificity of the stimulation by applying
a pulse 80-120 ms after SWR detection. Both control groups exhibited a similar
performance index, measuring the memory stability over several days after the
learning task.
Jadhav et al. (2012) conducted a similar experiment. Instead of blocking SWR
during post-learning sleep, they blocked SWR occurring in awake rats during the
performance of a spatial alternation task. This also resulted in a performance
loss.
A later study could identify NMDA receptors as an important component in in-
creasing the SWR drive(Girardeau et al., 2014). Blocking NMDA receptors before
training of a spatial learning task resulted in a lower performance of the tested an-
imals. Those results suggest that the consolidation of spatial memories during
sleep is regulated by processes that depend on NMDA receptors.
Together, these studies provide strong evidence for SWR playing a crucial role in
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the process of memory consolidation.
The mechanisms behind SWR generation are still under debate and various mod-
els exist (Donoso et al., 2018). A major point of debate is the origin of SWR oscil-
lations, i.e., do SWR originate from excitation, inhibition, or a combination of both
(Draguhn et al., 1998; Memmesheimer, 2010; Ylinen et al., 1995; Stark et al.,
2014).
In the case of models based on excitatory induced fast oscillations, pyramidal cells
are thought to propagate their signals in a second stage to inhibitory interneu-
rons. The two studies mentioned here, propse different ways of transmission.
While Draguhn et al. (1998) suggested a signal transmission via axo-axonic gap-
junctions, later Memmesheimer (2010) introduced the concept of supralinear den-
dritic interactions as a potential mechanism for these coherent oscillations.
In models that rely on inhibition as a source for SWR, the focus lies on recurrent
networks of interneurons in area CA3 (Taxidis et al., 2012). These are assumed
to generate fast oscillations which in a second step serve as pacemakers for pyra-
midal neurons in CA1. The transmission to CA1 could either happen via Schaffer
collaterals (Csicsvari et al., 2000) or through activation of local pyramidal cells
(Stark et al., 2014).

Replay. The term replay describes a specific pattern of the single cell spiking ac-
tivity of pyramidal cells during SWR. As explained before, during free exploration
of an environment, tracking the firing of place cells allows for reconstruction of the
pathway the tested animal took. Wilson and McNaughton (1994) were the first
to describe a correlation between the firing of these cells during exploration and
their activity during resting. Namely, place cells firing together while the animal
explored the environment, had the tendency to fire together during subsequent
sleep sessions as well. To unravel this phenomenon, detailed multi-site record-
ings were necessary.
Later on, it was even shown that the relative firing order is preserved Lee and
Wilson (2002). The replay during sleep is considered as a re-experience of the
previous behavior and thereby as a strong hint that SWR are important in mem-
ory consolidation. Moreover, the faster timescale of replay fits the activity profile
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of NMDA receptors which are important in spike-timing dependent plasticity (Gi-
rardeau et al., 2009).
Interestingly, analysis of single cell activity during short resting times directly after
a running session shows reversed replay (Foster and Wilson, 2006). This could
be considered to express immediate processing of a recent event.
Within 2d environments, a form of replay before a goal-directed behavior was de-
scribed (Pfeiffer and Foster, 2013). Thus, replay seems to allow goal-directed
movement, an essential part of spatial learning.

Models of ripple generation There are mainly three different types of models
trying to explain the generation of ripple oscillations:

1. Axon-axon gap junctions between CA1 pyramidal neurons (Traub and Bib-
big, 2000)

2. Solely rhythmic perisomatic inhibition (Pangalos et al., 2013)

3. Phasic inhibition and excitation (Maier et al., 2011).

Based on electrophysiological findings (Draguhn et al., 1998), Traub and Bib-
big (2000) developed the idea of an axon-axon gap junction model for ripples.
Draguhn et al. (1998) described gap junction dependent 200 Hz oscillations in
hippocampal slices, which appeared spontaneously. Spikelets, somatic depolar-
izations with small amplitude, are thought to represent electrically coupled cells.
Experiments could show a correlation between these spikelets and dye coupling
of pyramidal cells (Perez-Velazquez et al., 1994). Schmitz et al. (2001) presented
evidence in favor of an axonal connection between two pyramidal neurons. This
connection would allow for a very fast information transfer between cells, as it is
thought to happen during SWR.
The idea of spikelets being important in this process was strengthened by the find-
ing that a strong contribution to place cell firing comes from spikelets (Epsztein
et al., 2010).
In contrast, Pangalos et al. (2013) put their focus on perisomatic inhibition from
oriens-lacunosum-moleculare (O-LM) interneurons. According to their in vitro
recordings, O-LM neurons increase their firing during SWR due to excitatory
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ripple-locked inputs. Thus, in contrast to previous findings, there is enough ac-
tivity in O-LM neurons in order to have influence on the synaptic input into CA1
pyramidal neurons during SWR.
Maier et al. (2011) go even a step further and assume that not only inhibition is a
key player, but also excitation. By using in vitro and in vivo recordings, they found
evidence of a ripple modulated excitation.
There is still an ongoing debate about whether or not phasic excitation plays a
crucial role and is present. Gan et al. (2017) argue against the presence of a
phasic excitation. In contrast, Hulse et al. (2016) present findings pointing in the
direction of a ripple generation that needs phasic excitation.

1.3 Learning and Memory

Learning is seen as the process of memory formation in order to store information
which can be later restored. Classically, memory can be split into a declarative
(explicit) and nondeclarative (implicit) form (Squire, 1992; Squire and Zola, 1996).
In everyday life the use of the word memory is typically associated with the declar-
ative type.

Declarative Memory. Declarative memory describes the capacity to remember
events and facts (Cohen and Squire, 1980). Studies with amnesic patients, e.g.,
the famous patient H.M., revealed a tight connection between explicit memories
and themedial temporal lobe structures. Thus, most studies concerned with learn-
ing in the HC try to use experimental settings such that the subject has to use its
declarative memory.

Nondeclarative Memory. The term nondeclarative memory was established
by Squire and Zola-Morgan (1988) to replace the term procedural memory as
antagonist for declarative memory (Winograd, 1975). Thereby, it becomes a
true opposite of declarative memory as it includes learning types that are not
skill-based like classical conditioning. All of these nondeclarative memory abilities
have an implicit information acquisition in common. Nevertheless, they include
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a variety of learning and memory types and are, unlike the declarative memory,
associated with multiple brain areas.

Furthermore, the division into short-term and long-term memory is widely
used with short-term memory comprising memories lasting seconds to minutes.
From a molecular perspective this classification is interesting, as long-term
memory is dependent on protein synthesis, whereas short-term memory is not
(Davis and Squire, 1984; Goelet et al., 1986). Thus long lasting memories can be
affected by disruption of protein synthesis, whereas short-term memories cannot.

Memory Capacity. Memory capacity describes the amount of information that
can be stored and successfully reproduced. Among other possible ways, behav-
ioral events can be memorized as sequences of neuronal activity, e.g., as it is
observable in the HC during replay of place cell activity (Pastalkova et al., 2008).
Thus, the number of sequences that can be correctly replayed can be seen as a
measurement for memory capacity.
Memory capacity is impacted by different factors (Leibold and Kempter, 2006).
Those factors include the complexity of the sequence, i.e., its length, as well as the
maximum amount of synaptic connections in the corresponding network. Longer
sequences are harder to reproduce and more prone to mistakes. Increasing the
number of synapses allows for more synaptic combinations. Consequently, higher
connectivity increases the memory capacity of a network.

1.3.1 Learning in the Hippocampus

In 1989, Buzsáki proposed a ”two-stage model of memory formation”, comprising
the following steps (Buzsáki, 1989):

1. Encoding

2. Consolidation.

The first stage is accompanied by theta oscillations, whereas the later one by rip-
ple oscillations.
As explained before, memory consolidation is tightly linked to the phenomenon of
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ripples in the HC and disruption of ripples in rodents results in impaired behavior
in memory tasks. Memory consolidation describes the process of transferring a
memory representation from its transitional place, e.g., the HC, to a place for long-
term storage. The neocortex was proposed as a possible candidate for long-term
memory. Especially associative cortices are known to be highly interconnected
with temporal lobe structures like the HC. Additionally, cortical spindles, oscilla-
tions at 12 Hz which appear during non REM sleep, co occur with hippocampal
ripples (Peyrache et al., 2011). Ripple oscillations were also found in the posterior
parietal and midline cortex and were time wise correlated to hippocampal ripples
(Khodagholy et al., 2017), thus, providing strong evidence for these cortical struc-
tures to be involved in memory consolidation.

Novel Object Recognition Tasks. To test nonspatial memory capacity in ro-
dents novel object recognition tasks, developed by Ennaceur and Delacour
(1988), are still very popular. In its original version, the time is measured an ani-
mal explores a familiar object in comparison to the time the animal spends with a
new object. As rodents are curious animals they typically would spend more time
with the unknown object.
In hippocampal lesion experiments after the training, the new object preference
was reduced (Gaskin et al., 2003). This reduced novel object preference is seen
as loss in the memory. The involvement of the HC could be shown with the help of
hippocampal lesion experiments. Performing such lesions after training towards
objects, the reduced new object preference was minimized in contrast to sham
condition.

Spatial Learning Tasks. A very simple and elegant experimental paradigm to
test spatial learning in rodents is the famous Morris water maze (Morris, 1981,
1984). Its setup is rather easy consisting in its basic version of a tank of milky
water with a hidden platform the animal has to find (Vorhees and Williams, 2006).
To orientate in space, distal cues, usually simply in form of the laboratory environ-
ment, are given. Learning is negatively correlated with the time the rodent needs
to find the platform in repeating trials. By slight variations of the experimental
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setup, e.g., removing or shifting the platform location, different forms of learning
can be tested. Another neat advantage is the fact that no pretraining of the ani-
mals is required. Nevertheless, there is one big disadvantage, namely the water.
Being no concern if one is interested in the rodents behavior, it becomes an issue
when one wants to perform recordings in the brain. One possible workaround are
virtual reality (VR) setups.
By using VR, the concept of the Morris water maze can now even be applied in
humans and can be, e.g., combined with magnetoencephalographic recordings
(Cornwell et al., 2008).
A common alternative to test spatial memory capabilities are radial arm mazes
(Olton and Samuelson, 1976). Here, from a central platform, several linear tracks
go off and the tested animal has to remember, with the help of distal cues, e.g. in
which arm it already went in order to receive a reward.
Spatial learning tasks become even more interesting when considering associa-
tive memories. Meaningful events like fear or a reward situation can be associated
with certain locations. The storage of these associations is linked with strength-
ening of synaptic connections (Hebb and Bussey, 1949). On this cellular level
of learning, high frequency inputs can induce changes at the synapse, which are
long lasting, known as long-term potentiation (LTP) (Bliss and Gardner-Medwin,
1973).

Learning on a synaptic level. The term long-term potentiation goes back to
1973 (Bliss and Gardner-Medwin, 1973). As already marked, LTP describes the
strengthening of synaptic efficiency. It can be artificially induced by applying high
frequency stimulation. It was first observed in the perforant path of the HC and
has since then been described in a lot of other excitatory pathways.
The role of LTP, in the the context of learning in the HC, can be best investigated
by disabling LTP during learning tasks. To do so, it is helpful to know that N-
methyl-D-aspartate receptor (NMDAR) activation is crucial for the induction of a
large part of LTP types (Collingridge et al., 1983). Thus, it is sufficient to block
NMDAR in order to block at least these specific forms of LTP. The blocking can
be achieved mainly with two different approaches.
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On the one hand, there is the pharmacological approach, where a NMDAR an-
tagonist is region specifically applied. On the other hand, one can use genetically
modified mice to prevent the formation of NMDA receptors in defined brain areas.
The difficulty with pharmacological NMDAR antagonists is their precise applica-
tion, which is virtually not possible. Thus, any experimental outcome has to be
interpreted with care.
Long-term depression (LTD) describes the opposite effect of LTP, namely low-
ering the effectiveness of synapses over a longer period of time (Bramham and
Srebro, 1987). It can be induced by continuously applying a low frequency stim-
ulus.

1.3.2 Computational single cell models

To study the computational properties of single neurons, a huge variety of mod-
els is available (for reference see, e.g. Abbott and Dayan (2001)). The selection
ranges from stochastic models up to biophysically more realistic representations.
Neurons can be described with one equation for the whole cell or a complex com-
bination of thousands of differential equations. The complexity of themodel should
be chosen depending on the scientificquestions. Simple single cell models are a
good choice when the focus lies on big neuronal networks. In contrast, highly de-
tailed, biophysically inspired cell models are preferably selected when the focus
lies on inner cell computations. Today, supercomputers allow scientists to built
complex neuronal networks with detailed single neuron models. Nevertheless,
simple models don’t lose their right to exists. The fewer parameters used, the
easier it is to interpret the results in a meaningful way.
The following section deals with models based on equations for membrane poten-
tial changes. In their ordinary form, a whole cell is regarded as one compartment,
described by a single membrane voltage Vm. As input, these cell models receive
electrical currents I.

Integrate-and-fire neuron The integrate-and-fire neuron is represented by the
following equation

I(t) = Cm
dVm(t)

dt
. (1.1)
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with Cm being the membrane capacitance. Membrane voltage changes are rep-
resented over the time. Additionally, a voltage threshold has to be set. When the
this threshold is crossed a spike is elicited in the form of a delta function and the
voltage returns to resting state.

Leaky integrate-and-fire neuron As the name implies, the leaky integrate-and
fire neuron has an additional term for the membrane leakage Ileak. This current
mimics the ion permeable membrane and thereby allowing the membrane voltage
to return to equilibrium potential even when subthreshold inputs are applied. With
the leak current the equation changes to

I(t)− Ileak = Cm
dVm(t)

dt
, (1.2)

with Ileak =
Vm(t)
Rm

.

Hodgkin-Huxley typemodel TheHodgkin-Huxleymodel extends the integrate-
and-fire neuron with terms for different ion channels (Hodgkin and Huxley, 1952).
In the classical version those are sodium, potassium, and a leakage current. As
base the current is computed the following way

Ii = gi(Vm − Ei). (1.3)

Here, gi denotes the conductance of channel i and Ei its reversal potential. The
sum of sodium, potassium, and leak is represented by

Im = gleak(V − Eleak) + gKn
4(V − EK) +m3hgNa(V − ENa). (1.4)

The letters n, m, and h denote the gating variables, which describe the opening
and closing dynamics of the channels with respect to membrane voltage changes.
Those changes follow the equation

dn

dt
= αn(V )(1− n)− βn(V )n, (1.5)

where αn(V ) is the opening and βn(V ) the closing rate. The formula can be rewrit-
ten as τn(V )dn

dt
= n∞(V )− n, with

τn(V ) =
1

αn(V ) + βn(V )
(1.6)
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and
n∞(V ) =

αn(V )

αn(V ) + βn(V )
. (1.7)

These two variables represent the time constant τ and the steady-state levels of
activation and deactivation, respectively.
Oneway to enhance thismodel in order to get a biophysically more realistic neuron
is by applying a complex geometrical layout. These models are then called multi-
compartment models. In multi-compartment models, each geometrical unit has its
own equation for the membrane voltage. This subdivision does not only allow to
specify the surface area of specific parts of a neuron but also to individually adjust
the type and amount of channels in this area. Geometrically, each compartment.
To combine compartments resistive couplings are used.

1.3.3 Hebbian Learning

In order to achieve learning in neuronal networks, the cells within have to be flexi-
ble, i.e., they have to adapt their firing characteristics depending on the input from
other cells.
The famous Hebb’s rule tries to give a possible explanation on how synaptic plas-
ticity can be achieved (Hebb and Bussey, 1949). It acts on the assumption of
having two cells A and B that are close enough to be capable of exciting each
other. The synaptic connection from neuron A to neuron B can be strengthened
by repeatedly triggering action potentials in neuron B via activation of neuron A.
In short, the postulate is often reduced to the sentence:

’Cells that fire together wire together’.

Learning is put on a level with stabilizing a specific firing pattern. The principle
has been extended to loosing strength in the connections between neuron A and
B if activation of neuron A frequently fails to excite neuron B . According to the
principal: ’Use it or lose it’.
Nowadays, Hebbian learning is often used as term for correlation based learning
rules in form of mathematical formulations (Gerstner and Kistler, 2002). Hence,
it plays a major role in implementing artificial neural networks.
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Artificial neural networks

One of the original neural network models for associative memory is the Willshaw
model (Willshaw et al., 1969). The goal is to store a number of P memories, so
called pattern.
The Willshaw model convinces by its very simple learning rule. The most sim-
ple version consists of two neuronal layers each with N excitatory neurons. The
synaptic efficacy between two neurons is notated by Jji, with j being the jth presy-
naptic neuron and i the ith postsynaptic neuron. If both cells are active in one
presented pattern, Jji is set to 1, otherwise it remains 0. Each memory can be
represented by a vector V , for the first layer Vi with i = 1, ..., N , which leads to a
synaptic matrix

Jji = Θ
p∑

µ=1

V µ
i V

µ
j . (1.8)

Early versions of the model were limited to excitation, as the ability to store
information was mainly assigned to excitatory synapses. When it became clear
that inhibition cannot be neglected, the model was extended such that one
synapse combines excitatory and inhibitory properties at the same time. Later
addition of an independent inhibitory synapse enhanced the significance of the
model (Golomb et al., 1990; Shim et al., 1991). Thereby, the model resembles
more physiological findings.
The basic Willshaw model allows for all these adaptations and hence, is still an
often used base for neural networks, especially in the context of sparse coding.
In general, artificial neural networks are a big field and recently, their popularity
increased in the field of artificial intelligence and machine learning.
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1.4 Sound localization

Localizing the source of a sound can be very crucial for the survival of an animal,
e.g. in the case of a prey trying to avoid its predator. Thus, it might not be a
surprise how precise this ability is in some species. Nevertheless, it is very im-
pressive.
In particular, humans have to be mentioned. They can discriminate angular
changes of sound source of around 1 degree (Blauert, 1970).
Physically, sound is nothing but a vibration generating a traveling pressure wave
through a medium, e.g., the air or water. A sound wave is characterized through
different parameters: amplitude, frequency, and speed. These parameters al-
ter due to the distance a sound wave is traveling or changes in the medium it is
traveling through.

Monaural Sound Localization. Already the sound arriving at one ear typically
contains spatial information. Responsible for this is a combination of different ef-
fects. The ability that even one ear is capable of locating sounds was found very
early on (Angell and Fite, 1901). In the 80s it was debated whether these monau-
ral cues can only extract the elevation (Oldfield and Parker, 1986) or if they also
add information to azimuth, the horizontal plane position (Butler, 1986). To gather
directional information using just one ear seems to be an interplay between two
things, spectral cues from the pinna and alterations through the head-shadow ef-
fect (Van Wanrooij, 2004). Whereas, healthy binaural subjects seem to disregard
the head-shadow effect completely, for monaural listeners it appears to be a cru-
cial input for sound localization.

Binaural Sound Localization. In humans, the two ears are located on opposite
sides of the head, i.e., the distance between the ears resembles the width of
the head. The easiest way to understand the impact of this arrangement, is to
imagine a sound coming exactly from the right side of a human subject at the
height of the ear. The sound will clearly arrive first at the right ear and then, with
a time lag, at the left ear. This lag is known as interaural time difference, short
ITD (see Figure 1.4). Additionally, the loudness of the sound is reduced at the
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left ear, because of a higher distance to the sound source. The difference in
loudness is called interaural level difference, ILD. Together, ITD and ILD provide
good information about the direction a sound is coming from (Thompson, 1882).

Figure 1.4: Cues for binaural hearing. Left side depicts interaural time differences,

whereas on the right side interaural level differences are shown. Adapted from Grothe

and Pecka (2014) with permission.

Changing the position of the sound source alters both, ITD and ILD. Shifting a
sound source from the right side horizontally on a planar circle around the head
towards the front, i.e., facing the nose of a subject, ITD and ILD are reduced until
they are zero.
As already mentioned, humans are very accurate in determining the direction a
sound is coming from. In the case of ITDs, they can discriminate up to 10 µs
(Klumpp and Eady, 1956). For ILDs, changes in the range of 1 to 2 decibel can
be detected (Middlebrooks and Green, 1991).
Whereas the minimal ITD is determined by the internal speed of processing the
information in the brain, the maximum ITD is restricted by head size. For hu-
mans the maximum ITD is about 690 µs. Rodents have smaller values, e.g., the
maximum ITD in gerbils is 120 µs (Maki and Furukawa, 2005). Gerbils are a
very popular experimental animal in auditory research due to their hearing range
(Ryan, 1976). With 0.1 to 60 kHz, their hearing range is comparable to the one in
humans with 20 Hz to 20 kHz, especially for the lower frequencies.
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It has to be noted that ILDs are particularly useful for high frequencies, whereas
ITDs are mainly used for low frequency sound localization. A first to describe this
separated paths and giving it the name duplex theory was Lord Raleigh in 1907
(Strutt (Lord Rayleigh), 1907).
It has been shown that gerbils also make use of ITDs localizing low frequency
sounds (Heffner and Heffner, 1988). An additional point for their popularity in
auditory neuroscience.

1.4.1 Auditory pathways

As mentioned above, it is very impressive how precise sound localization is in
humans. Differences in microseconds can be detected. The brain is capable of
doing so, despite the fact that the duration of an AP lies in millisecond range. To
achieve these levels of accuracy, a high precision in processing is needed in the
brain. For a detailed review on the following auditory pathways have a look at
Grothe et al. (2010) and see Figure 1.5.
Interestingly, with the calyx of Held, the largest synapse found in the human brain,
is part of the auditory pathway (Held, 1893). It was named after the anatomist
Hans Held, who, with the help of Golgi stainings in the late 19th century, ex-
tensively studied the pathways underlying the auditory system (see Schneggen-
burger and Forsythe (2006) for a review). This very special synapse connects the
anteroventral cochlear nucleus (AVCN) with the contralateral medial nucleus of
the trapezoid body (MNTB), thereby taking care of a very accurate ILD process-
ing.
In the ILD processing circuit, the lateral superior olive (LSO) is the first nucleus
which is sensitive to ILDs (Cant and Casseday, 1986). At the ipsilateral side,
there is a direct excitatory connection between spherical bushy cells (SBCs) in
the cochlear nucleus (CN) and cells in the LSO (Ryugo and Sento, 1991). In-
puts coming from the contralateral CN have to bypass two synapses. Globular
bushy cells (GBCs) in the the contralateral CN project onto cells in the MNTB via
the already mentioned calyx of Held (Harrison and Warr, 1962). This excitatory
connection is afterwards converted into an inhibition from the MNTB to the LSO
(Friauf and Ostwald, 1988). It is assumed that the calyx of Held plays a crucial
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part in this switch from a very precise excitation to a very precise inhibition (Her-
mann et al., 2007).
LSO neurons send out inhibitory projections to the ipsilateral dorsal nucleus of
the lateral lemniscus (DNLL) and inferior colliculus (IC) and excitatory projections
to the contralateral DNLL and IC (Adams, 1979). The IC is the second nucleus
at which ILD sensitivity is created (Park and Pollak, 1994). Next to the binaural
inhibitory input from ipsilateral, it receives monaural excitatory input from the ipsi-
lateral CN (Adams, 1979).
For this thesis more relevant is the pathway of ITD processing. Here, the impor-
tant nucleus, to be mentioned, is the medial superior olive (MSO). As the MSO is
very crucial for study 2, after discussing the ITD processing pathway, I will dedi-
cate a more detailed paragraph to it below.
The very precise information transfer in the analysis of ITDs starts with the inner
hair cells (IHC) in the cochlea (Galambos and Davis, 1943). Especially to low
frequencies, these cells exhibit phase locking to the incoming wave form (Rose
et al., 1967). The phase locking vanishes with increasing frequency, thereby lim-
iting temporal information processing for high frequencies in this circuit.
Information flow continues from GBCs and SBCs in the CN. Ipsilateral and con-
tralateral SBCs send direct excitatory projections onto the MSO (Chirila et al.,
2007). GBCs also establish excitatory connections, which are converted into in-
hibitory connections onto the MSO. On the ipsilateral side, the change happens
in the LNTB (Cant and Casseday, 1986), the contralateral projection switches to
inhibition in the MNTB (Kuwabara and Zook, 1992). Thus, binaural excitatory and
inhibitory inputs converge in the principal neurons of the MS0.
From MSO neurons the signal is further transmitted to the DNLL and IC. In con-
trast to LSO neurons, the MSO cells send out excitatory connections.
Furthermore, ITD processing is also possible in the LSO, when considering low
frequency stimuli (Tollin, 2005).

1.4.2 Medial superior olive (MSO)

The MSO is a nucleus located in the auditory brain stem. Exactly like the HC, an-
alyzing the structure of the MSO goes back to Cajal (Ramón y Cajal, 1909). Cajal
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Figure 1.5: Projections from and to the medial superior olive (MSO) in a gerbil brain. Red

arrows mark excitatory connections, whereas blue arrows depict inhibitory projections.

The MSO receives in total 4 inputs. Contra- and ipsilateral ventral cochlear nuclei have

direct excitatory projections onto the MSO. Inhibitory input arrives at the MSO via the

lateral nucleus of the trapezoid body (LNTB) from ipsilateral and via the medial nucleus of

the trapezoid body (MNTB) from contralateral. Both LNTB and MNTB convert exciation

coming from the VCN into inhibition. The MSO targets the dorsal nucleus of the lateral

lemniscus and the inferior colliculus with excitatory synapses (not shown). Adapted from

Brand et al. (2002) with permission.

already proposed a possible role of the MSO in binaural hearing processing.
The MSO has a laminar structure and is organized from dorsal to ventral accord-
ing to frequency tuning (Stotler, 1953). The dorsal part is tuned to low frequencies
whereas the ventral part codes high frequencies (Guinan et al., 1972). The princi-
pal cells in the MSO receive mainly four inputs, which arrive at the individual cell at
very distinct positions (Werthat et al., 2008). MSO neurons posses a very unique
shape, with two major dendrites emerging from opposite sides of the cell (Kapfer
et al., 2002). They are all arranged with the same orientation in para-saggital
plane, giving the nucleus a very distinct look. Both ipsilateral and contralateral
excitation and inhbition target each principal neuron. The excitatory inputs come
from SBCs (Chirila et al., 2007). The ipsilateral excitation targets lateral dendrites,
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the contralateral the medial dendrites. The inhibition comes ipsilaterally from the
LNTB and contralaterally from the MNTB, both with a very fast transmission rate
with little synaptic delay (Grothe and Sanes, 1993). Studies in gerbils show an
almost exclusive targeting of inhibition onto the soma of MSO neurons (Kapfer
et al., 2002).
It is known, that inputs coming from the MNTB provide very precise temporal in-
formation (Hermann et al., 2007). The exact interaction between the four inputs
targeting one MSO neuron remains to be identified.
Although MSO neurons act as coincidence detectors, the tuning curves do not
exhibit, as one might expect, peak firing at an ITD difference of 0 between the
ipsi- and contralateral side. Rather there is a shift towards contra- or ipsilateral
leading. This, on a first glance unexpected finding, provides helpful additional in-
formation, as explained later in the text.
The expectation of a peak firing rate at ITD 0 goes back to earlier research. Jef-
fress (1948) wrote a seminal paper on binaural hearing in the barn owl. His the-
ory served for a long time as the model for ITD processing. The Jeffress model is
based on an array of cells serving as coincidence detectors of sounds coming from
both ears. The two ears supply a series of delay lines. Here, the peak firing rate
of the neurons indeed arises at the time point at which the signals coming from
the left and the right ear arrive at the same time. The transmission is achieved by
excitatory connections only.
The simplicity of this model is quite striking and thus, it is no surprise that for a long
period of time it was seen as the model for sound localization. Thus, it seemed
likely that a similar mechanism was expected to be found in humans.
But as already mentioned, electrophysiological recordings suggest a different pic-
ture in mammals. Hereby, especially the finding of bilateral inhibitory inputs onto
the MSO is crucial (Grothe and Sanes, 1993). Looking at experiments in ger-
bils where the glycinergic inhibition was blocked by inserting strychine, a glycine
antagonist, it seems valid to assign an important role in ITD tuning to inhibition
(Brand et al., 2002). By blocking inhibitory connections, the peak of the ITD func-
tion is moved in direction of 0 ITD, i.e., in direction of the physiological range.
Thus, under normal conditions, without blockage of inhibition, the peak lies outside
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the physiological range. Initially, this finding sounds counterintuitive, but this view
can be changed, when drawing the attention away from the peak to the steepest
slope of the function. In contrast to the peak, the slope lies within the physiological
range and could allow for a high acuity (Skottun, 1998). This theory includes the
finding that the highest resolution of MSO neurons lies at a rather low variance
firing rate.
Overall, there is still room for further discussion about the underlying processes
and to what extent results from mammals can be applied to birds and vice versa.
Hereby, it is crucial to consider the evolutionary point of view: Processing of au-
ditory spatial stimuli evolved independently in mammals and birds (Grothe et al.,
2004). Hence, it seems rather valid to assume different ways to process informa-
tion on a neuronal level.
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1.5 Thesis Aims

The thesis is divided into two separate studies with a following discussion. Both
studies have in common the use of a biophysically inspired, compartmentalized
neuronal model. Whereas the focus of study 1 lies on CA1 pyramidal neurons in
the HC, study 2 is concerned with the integration properties of MSO neurons.

Study 1 - Pattern Separation During Sharp-Wave Ripples using

Physiological Inputs

Sharp-wave ripple (SWR) oscillations can be recorded in the hippocampal LFP
during slow-wave sleep and quiet wakefulness. They are composed of a high volt-
age deflection, paired with fast oscillations (ripples) in the range between around
150 to 200 Hz (Buzsáki et al., 1992). Studies identified a connection between
SWR and memory consolidation (Girardeau et al., 2009; Jadhav et al., 2012).
During the occurrence of SWR, CA1 pyramidal neurons exhibit temporally pre-
cise sparse firing (Wilson and McNaughton, 1994).
In the here presented study, the focus lies on these oscillations and on how cel-
lular mechanisms help to overcome the noise to integrate the incoming signals in
a meaningful way. Biophysically inspired pyramidal cell models were used.
The physiological inputs of the model are a distinctive feature of the model and
used to test learning in a sparse recurrent network. These inputs are based on in
vitro recordings in the area CA1 during the spontaneous appearance of SWR
(Maier et al., 2011). Parameters obtained from recorded currents were used
to recreate excitatory and inhibitory conductance traces that then served as our
model inputs.
The first aim was to study the origin of the AP sequences that are observable
during SWR. The second aim was to test the hypothesis that the sparse recurrent
network in CA1 is sufficient to store and successfully recall sequences, despite
high background activity.



34 1. Introduction

Study 2 - Action Potential Generation in an Anatomically Con-

strained Model of Medial Superior Olive Axons

The principal neurons in the MSO are characterized by a distinct electrical
property, namely a high membrane conductance (Ratté et al., 2013). This
property should make it very hard for the neurons to generate APs. Nevertheless,
it is known from in vivo recordings that MSO neurons can produce APs with high
firings rates (Goldberg and Brown, 1969).
This leaky membrane of MSO neurons arises from a certain arrangement of
ion channels, especially Kv1 and HCN channels. The distribution of the latter
is assumed to be crucial for the cell to work as a coincidence detector (Svirskis
et al., 2004).
The study is based on this observation and uses a mixture of computational
modeling, in vitro recordings, and immunohistochemical stainings to analyze it.
Thus, the aim of this study was to analyze, how precise ITD coding can be
achieved in MSO neurons during a high-conductance state causing a short
membrane time constant. The study tried to provide insights on the impact of the
distribution of ion channels across the membrane on the signal integration time.
Additionally, the goal was to test the influence of varied input frequencies on the
firing threshold of a MSO cell.

Overall, both studies share the aim to unravel the cellular mechanisms underlying
the ability to perform temporally very precise computations in a high-conductance
state.
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Abstract

Sharp wave ripple (SWR) events are brief deflections of the local field potential in
hippocampal area CA1 that are associated with high frequency “ripples” and they of-
ten coincide with recurring sequences of action potentials from the CA1 pyramidal cell
population. The mechanistic underpinnings of these SWR-associated sequences are
unclear, particularly since CA1 is known to have only little recurrent synaptic connec-
tivity. Nevertheless, these recurrent synapses exist and SWR have also been found in
isolated CA1 preparations in-vitro. In this paper, we evaluated the hypothesis that the
sparse CA1 recurrent connectivity could indeed be implementing a recurrent associa-
tive network for storing sequences by stimulating model CA1 neurons with compound
synaptic inputs recorded in an in-vitro model of the SWR state. Our simulations show
that, while history effects across cycles are indeed weak, the memory capacity that
can be reached assuming physiological sparseness levels are much too low to support
the model of a recurrent sequence memory. We thus conclude that the sequences ob-
served during CA1 SWR in vivo must either result from intrinsic stereotypical burst
of hyperexcitability, or involve pattern associations via extrahippocampal loops.
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Introduction

Hippocampal sharp-wave ripple (SWR) events are characterized by large amplitude de-
flections of the local field potential (LFP) in hippocampal stratum pyramidale (Buzsáki,
1986) that are accompanied by a transient burst of high frequency (∼ 200 Hz) oscil-
lations (Buzsaki et al., 1992). SWRs were classically thought to play a role in memory
consolidation processes (Buzsaki, 1989, 2015), and more recently were shown to be involved
in path planning (Jadhav et al., 2012). The latter interpretation is particularly tempting
because of the coincidence of SWRs with fast replay of place-field sequences (Lee and
Wilson, 2002; Gupta et al., 2010).

Furthermore, SWRs are generated intrinsically in the hippocampus (Sullivan et al.,
2011; Maier et al., 2011; Oliva et al., 2016) and thus they may be population signatures
of memory-related activity patterns. The physiological mechanisms underlying sequence
replay during sharp waves are, however, unresolved. One potential explanation is that
sequential activity is merely reflecting different levels of excitability such that highly ex-
citable cells fire early in a CA3-evoked burst, whereas less excitable cells are activated
towards the end (Taxidis et al., 2012; Stark et al., 2015). A second explanation could be
that the sequential activity structure is actually encoded in the recurrent synaptic con-
nections (Deuchars and Thomson, 1996; Maier et al., 2011) such that at each ripple cycle
a different cell assembly is activated from the excitatory drive exerted by the assembly
active in the previous ripple cycle either within (Deuchars and Thomson, 1996) our outside
the hippocampus.

Mathematical models based on the second hypothesis are supported by the finding
that ripple-locked excitation has been observed in CA1 pyramidal cells in vitro even in
an isolated CA1 preparation (Maier et al., 2011). However, as yet those models have
mostly been discussed in discrete time, where a time step is assumed to reflect one ripple
cycle (Leibold and Kempter, 2006; Kammerer et al., 2013). Generalizations to continuous
time (Jahnke et al., 2015) so far did not fully explore memory capacity of how many cycle-
by-cycle transitions can be retrieved. In this paper, we are asking to which extent the
simplifications made in time discrete models are justified by the biophysical constraints of
a CA1 pyramidal cell simulated in continuous time, and how they would affect memory
capacity. These simplifications particularly concern the cellular memory time scale: In
order for a cell to decide on a cycle-by-cycle basis whether it should fire in one specific
ripple cycle, its input to the previous cycles must have only little effect. Furthermore,
we explore how the ripple-locked nature of inhibitory currents, and the resulting high-
conductance state, would contribute to cycle-by-cycle memory retrieval.

Results

Validation of multi-compartment model

To assess the memory capacity of single ripple cycles in CA1 pyramidal neurons, we
created a multicompartmental model of a CA1 pyramidal neuron consisting of a soma, and
dendritic and axonal compartments. The model was fitted to yield typical input resistance,
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resting potential and rheobase values (see Methods for details). Voltage responses of the
model cell were simulated for synaptic conductance traces that were reconstructed from
in-vitro slice recordings of CA1 pyramidal cells during sharp-wave ripples (Maier et al.,
2011), where conductances were derived from double exponential fits (see Methods) of
both excitatory and inhibitory compound postsynaptic currents (cPSC). Examples of such
conductance trains are shown in Fig.1 A. In our model, inhibitory inputs were located at
the soma, excitatory conductances at the dendritic compartment.

We first asked, how well the experimentally recorded synaptic inputs can drive ac-
tion potentials in our model cell and found that using only the excitatory cPSCs give
rise to spiking for 12 % of the recorded cPSCs (126 of 1051 cPSCs). We next intended
to combine excitatory cPSCs with inhibitory cPSCs (in total we generated 2000 of those
random stimulus combinations). However, as there are no simultaneous recordings of ex-
citatory and inhibitory cPSCs, this required us to decide how cPSCs recorded in different
experiments should be temporally aligned. The lack of simultaneous recordings of excita-
tory and inhibitory cPSCs was due to experimental limitations. To gain either signal, the
corresponding other one needed to be blocked. To record excitatory cPSCs the holding po-
tential was shifted towards the reversal potential of Cl−. Inhibitory cPSCs were recorded
by pharmacologically blocking GABAergic synaptic inputs at single-cell level. One pos-
sibility would be to align them with respect to the intracellular current recording, more
specifically using the fitted onset time of the cPSC (Fig.1 B top), the other possibility
was to align inputs with respect to the extracellular recording, i.e., the sharp wave (SPW)
peak (Fig.1 B bottom). Comparison of the intracellular cPSC Hilbert-phase distributions
between the two alignment methods reveals that, while the intracellular alignment, not
surprisingly, results in a better phase coordination in the first few cycles, the SPW peak
alignment allows for phase coupling over larger number of cycles. Since we intended to
study action potential generation over the whole extent of the SPW, we used the SPW
peak as the alignment criterion in what follows. Again measuring the percentage of trials
with action potentials, this time with SPW peak aligned excitatory and inhibitory inputs,
we obtained an almost unchanged fraction of 11% action potential-eliciting stimuli (229 of
2000). However, the percentage of about 11% active neurons is sparser than the firing of
CA1 pyramidal cells during SWRs in-vivo (Csicsvari et al., 1999, 2000). This suggests that
a) pyramidal cells in-vivo are more easily excited than in-vitro and b) inhibition seems to
only have limited effects on the overall spike output but could rather affect the temporal
organization of AP firing. Potentially, the reduced fraction of APs in-vitro could be also
explained by less current inputs due to cutting synaptic connection in the slices, although
the 200 Hz ripples are very similar to ripples recorded in-vivo (Buzsáki, 1986). To test the
latter hypothesis we computed spike phases of our model outputs, and found that indeed
the action potentials only significantly lock to the ripple oscillation if inhibitory and exci-
tatory cPSCs are combined (Fig. 1D). The firing phase of about 300 degrees is consistent
with in-vivo reports (Csicsvari et al., 1999, note that phase zero is set ripple peak with our
Method, whereas phase zero corresponds to ripple troughs there). Moreover, phase-locking
also sensitively depends on the overall excitability of the neuron, since adding an addi-
tional depolarizing current injection increases spiking probability but removes significant
phase locking at both conditions (with and without inhibition; Figure 1E).
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Hence, our model of a CA1 pyramidal neuron exhibits sparse firing on physiological
SWR inputs with phase-locking critically depending on the sparse activation and the
presence of inhibitory conductances.

History dependence of spike timing

As a next question, we asked how independent the neuron can process the inputs it receives
in subsequent ripple cycles and thus can function as a pattern associator on a cycle-by-cycle
basis.

To this end, the reconstructed cPSCs were modified such that spiking of the neuron
could be controlled at a specific ripple cycle. Therefore, we picked one cycle, e.g. cycle
0 (see Fig. 2 A), and removed the PSCs from this specific cycle to replace them by a
single mean PSC for which we could freely vary the amplitude. These mean PSCs were
constructed from double exponential fits (see Maier et al., 2011) using the mean rise and
decay times from the recorded excitatory PSCs. The amplitude of this ’artificial’ PSC was
then increased until our model generated an action potential.

Figures 2 B to E depict the relationship between the minimal amplitude of the inserted
PSC that elicited a spike and the amplitude of the experimentally measured excitatory
PSC at the preceding cycle. For pure excitatory inputs, we would expect a negative
relationship, such that excitation from preceding cycles reduces the needed amplitude in
the following cycle to elicit an AP. To test for effects of cycle number, we removed and
replaced PSCs at different ripple cycles from -2 to +1, with cycle 0 determined by the
SWR maximum. Left columns show the results for purely excitatory inputs, whereas for
the right column excitation was combined with a randomly picked inhibitory cPSC as
described for Figure 1.

Only in the case of removing PSCs at cycle -2 a significant, but small negative re-
lationship can be seen (see Figure 2 B and C, p values from Pearson’s correlation). In
the other cases, a small but not significant negative trend remains and the values for the
amplitude of the inserted PSC cluster at about 780 pA (see Figure 2 D and E; conduc-
tance amplitudes are obtained by normalizing with the excitatory driving force of -70 mV).
This amplitude corresponds to the amplitude needed to elicit an AP with a single PSC
(with mean shape). When pairing the adapted excitatory cPSCs with unaltered inhibitory
cPSCs, results are qualitatively similar except that there is even a slight positive trend
observable when PSCs are modified at cycle 0.

Thus, the influence from preceding cycles on spike timing in the following cycles is very
small, if at all present, but appears to be more pronounced in earlier ripple cycles than in
later ones. This suggests that the physiological conductance traces used to stimulate our
neuron model were typically low amplitude and thus hardly carried over to the next ripple
cycle. Most of the cPSCs thus seemed to act as a noise background, that, in the next
section, will be interpreted as the result of interference from multiple stored associations.
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Pattern associations

Since the history dependence of spike timing was rather weak, we suspected that each
ripple cycle might be treated as an individual time step for pattern association. We
therefore aimed at quantifying the memory capacity of a ripple cycle.

To this end, we created input patterns (Fig. 3A) assuming that cPSCs arise from a
sparse combination of 10,000 synaptic sites. To standardize the input cPSCs we fixed the
number of ripple cycles to 7 and the cycle duration to 5 ms. During each cycle every
synapse could be active or inactive, with the ratio of active to inactive synapses deter-
mined by the coding ratio f ; the coding ratio can hence be interpreted as the population
sparseness during a ripple cycle. In all synthetic cPSCs we used the 4th cycle to contain
the random signal pattern to which the neuron should elicit an action potential, whereas
the others cycles were containing random noise patterns to which the neurons should re-
main silent. Signal patterns differed from noise patterns only in that the synaptic weights
were tuned to the signal pattern using Willshaw’s learning rule (Willshaw et al., 1969): A
synaptic weight was set to a standard conductance value (see Methods) if the synapse is
active in at least one of P random signal patterns, otherwise it remains zero.

To quantify the success of memory retrieval, we used the retrieval quality measure

Γ = fraction of hits − fraction of false alarms

from (Leibold and Kempter, 2006). Since we probed the neuron with P cPSCs (each of
which contained a different signal pattern in cycle 4) this measure amounts to

Γ =
m

P
− n

6P
,

where m and n count the number of action potentials in the signal cycle and the noise
cycles, respectively.

Our simulations show that the retrieval quality only obtains positive values for a large
number P of stored patterns if the inputs are very sparse (coding ratios below 1%);
Figure 3A. For denser codes the capacity is limited to about 10 patterns. Adding inhibition
does not improve storage capacity bur rather degrades it.

From these findings one may conclude that there is a necessity for sparse inputs.
However, the idea of a cycle-by-cycle association additionally requires that the sparseness
is similar in all ripple cycles, because the output in one cycle should be the input in the next
cycle. Our simulations show that such a self-consistency in firing rate can, if at all, only
be obtained for very low pattern numbers and coding ratio of about 0.04, which, assuming
7 ripple cycles, corresponds to sparseness values of about 7 × 0.04 ≈ 0.3 per sharp-wave,
which indeed comes close to what is reported from in-vivo experiments (Csicsvari et al.,
2000).

Thus, to be consistent with in-vivo firing rates a cycle-by-cycle pattern association
would only have a limited capacity of about ten patterns and thus would not be useful
as a sequence memory, at least not if it was implemented by recurrent CA1 synapses (re-
ported to realize a connectivity probability of 1% in Deuchars and Thomson, 1996). A
potential problem for the validity of this conclusion could, however, arise from the neu-
ron being modeled according to in-vitro measurements not reflecting the excitability and
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synaptic drive CA1 pyramidal cells experience in-vivo. We therefore next repeated ca-
pacity measurements in a simpler neuron model which allows us to set an optimal firing
threshold.

Pattern associations in leaky integrator neurons

In order to be able to control different spiking thresholds in a controlled manner, we
implemented a single compartment leaky-integrate and fire neuron (LIF). Again the neuron
was driven by 10,000 synapses, representing the potential input from other CA1 cells,
during ripple oscillations. The resulting conductance trains were constructed identically
as in Figure 3A. We now simulated multiple variants of the neuron model for a whole
range of firing thresholds between -20 mV and -10 mV. For high thresholds the output
rate was lower than the input rate (coding ratio), for low thresholds the output rate was
higher than f (Figure 4B), such that for each input coding ratio there was a threshold
with equal input and output rate (black line Figure 4C). This threshold was then used
for capacity calculations for a recurrent regime in which activity in each cycle triggers the
activity in the next cycle.

For only excitatory cPSCs (Figure 5D) positive retrieval quality can again only be
achieved for sparse (f < 1%) inputs, ruling out cycle-by-cycle retrieval for physiological
sparseness values. However, after including inhibition we observe positive but small Γ
values for large number of patterns even for physiological sparseness (Figure 5D). Thus
adaptive threshold mechanisms could restore a high capacity in the presence of inhibition,
but only at low signal-to-noise ratios. It is therefore questionable whether such a recurrent
sequence memory is realized in CA1 (see Discussion).

Discussion

Based on physiologically recorded synaptic currents during sharp-wave ripple states in-
vitro, this manuscript evaluates the capacity of a putatively recurrently connected CA1
network for sequence memory. Our results show that physiological sparseness values of
about 30% (Csicsvari et al., 2000) per sharp wave (corresponding to about 4% per ripple
cycle) are only consistent with the recurrent CA1 network hypothesis if ripple-locked
excitatory and inhibitory currents are injected simultaneously, if the firing threshold is
adaptable, and if low signal-to-noise ratios are sufficient.

Threshold adaptations of pyramidal cells have been shown to occur by both homeo-
static changes in cellular excitability and synaptic strength (Burrone et al., 2002; Turri-
giano, 2017). As a consequence the adapted threshold in slice recordings during the SWR
state could thus indeed reflect the adapted threshold state for situations with of only few
stereotypical patterns being repeated (Reichinnek et al., 2012). The adaptive threshold
mechanism is needed because slight changes in the threshold lead to a different integration
of inputs (Kempter et al., 1998). Only at an optimal threshold value the cell can function
as coincidence detector.

To derive storage capacity from single neuron firing behavior, we made fundamental
simplifications. First, we assessed sequence replay by the retrieval quality measure which
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compares hit and false alarm rates. Such an approach of course would not work in a
recurrent setting with entirely independent activity patterns, it rather assumes that the
false alarm activation in one cycle contribute to the signal input in the next cycle. However,
there is no physiological evidence that activity patterns in different cycles of a single
SWR are independent. Thus, our model could still be consistent with recurring sequence
motifs (Chenani et al., 2019). Here, the starting pattern defines the specific evolution of
sequential activation without the ability to rewire associations between patterns within
sequences. Second, the input cPSCs used in our model are derived from in-vitro recordings
and it is unclear how well they reflect the in-vivo situation. Indeed (Gan et al., 2017)
reported that ripple locked excitation cannot be identified in intracellular recordings in-
vivo. The difference between the in-vivo and the in-vitro situation maybe reflecting overall
homeostatic excitability increase. Particularly our simulations with added DC currents
(Figure 1) show that increased excitability may shadow ripple locking of action potentials
and hence that of recurrent EPSCs. Third, inhibitory and excitatory cPSCs cannot be
recorded simultaneously from the same cell. We therefore randomly combined excitatory
and inhibitory inputs, which disregards the possibility that at the single neuron level both
inputs could have a higher degree of temporal coordination eventually leading to a better
signal to noise ratio. However, the high postsynaptic connectivity (out degree) (Bezaire
and Soltesz, 2013) of inhibitory neurons (particularly parvalbumin positive basket cells)
argues in favor of a relatively similar inhibitory signals at all pyramidal cells and therefore
such increases in signal-to noise ratio may be small.

Combining the results of our modeling and the limitations listed above, we can con-
clude that it is rather unlikely that at least under in-vivo conditions the recurrent CA1
network stores a large number of sequences of activity patterns. Since CA1 recordings,
nevertheless show an extremely rich reservoir of sequences (Nadasdy et al., 1999; Liu
et al., 2018; Chenani et al., 2019) their underlying mechanisms must be different from
simple recurrence. There are two most likely alternatives. First, as already eluded to in
the introduction, sequences may be generated by an excitability bias (Taxidis et al., 2012;
Stark et al., 2015), where more excitably neurons in a pattern tend to fire first. Secondly,
sequences may be generated by extrahippocampal recurrent loops. Such a mechanism
would solve the independence problem of the noise patterns since consecutive feedforward
layers would be able to filter out false alarm activations (Reyes, 2003). Moreover, ex-
perimental evidence showing spike timing alterations following medial entorhinal cortex
lesions (Schlesiger et al., 2015) and dentate gyrus lesions (Sasaki et al., 2018) are also
consistent with this latter idea.

Methods

Fitting of composed postsynaptic currents

The parameters used to reconstruct the post-synaptic currents (PSCs) were received from
in-vitro recordings in hippocampal slices (Maier et al., 2011). The conductance of a single
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PSC was modeled as follows:

I(t) = I0 Θ(t− t0)

[
exp

(
t− t0
τd

)
− exp

(
− t− t0

τr

)]
(1)

with the Heaviside step function Θ(t) = 0 for t < 0 and Θ(t) = 1 otherwise. The current
I0 = AN is the product of the peak amplitude A of the PSC and normalization factor

N =

(
τr
τd

) τr
(τd−τr) −

(
τr
τd

) τd
(τr−τd)

. (2)

Here, τr and τd denote the rise and decay time, with average values of τr = 1.7 ± 0.04 ms
and τd = 4.04 ± 0.08 ms.
Combining several of these PSCs, resembles a compound post-synaptic current (cPSC).
The data, collected in the in-vitro recordings, includes 1051 excitatory and 814 inhibitory
cPSCs. Currents were transformed into conductances by dividing by the 70 mV which is
approximately the driving force used in the experimental recordings.

Extracellular ripple cycles

In order to perform a cycle specific analysis, extracellular ripple cycles had to be mapped
onto the intracellular signals. Therefore, the extracellular voltage signal was filtered in
the ripple band (120 Hz to 300 Hz) and phases were obtained using a Hilbert transform
of the filtered signal. Ripple cycles were subsequently identified as framed by the time
points with Hilbert phase zero.

Single-compartment model

To gain control over the firing thresholds, we implemented a single-compartment leaky-
integrate-and-fire model of a CA1 pyramidal neuron. The cell is modeled as one single
compartment with one membrane voltage V governed by the differential equation

cm
dV

dt
= −Im, (3)

with capacitance cm = 100 pF and Im = Ileak + Iexc + Iinh. All currents are modeled as
Ohmic,

I = gi (V − Ei), (4)

with i being one specific channel type with its corresponding conductance gi and reversal
potential Ei.

The leak current Ileak has a conductance gleak = 1
r , with r being the membrane resis-

tance set to r = 50 MOhm. The resting potential was set by Vrest = Eleak = −70 mV,
the excitatory and inhibitory reversal potentials were taken to be Eexc = −6.5 mV and
Einh = −66 mV. Additionally, the model contained a refractory time of τ = 5 ms. The
firing threshold was a free parameter.
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Parameter Value (µm)

RadiusDendrite 2.5

LengthDendrite 200

Radiusad 2

Lengthad 7

RadiusAIS 0.5

LengthAIS 50

RadiusNode 0.5

LengthNode 1

RadiusInternode 0.75

LengthInternode 100

Table 1. Geometry of multicompartmental neuron model

Multi-compartment model

The choice for the geometry of our multi-compartment model of a CA1 pyramidal neuron
was motivated by Thome et al. (2014). One of their findings was that axons of CA1 pyra-
midal neurons often emerge from dendrites. Thus, we took this observation and created a
model neuron containing two dendritic compartments. One dendrite is directly attached
to the soma, whereas the other one is connected via a small axo-dendritic compartment
ad. From this small unit, the second dendrite as well as the axon branch off. The axon
consists of an axon initial segment (AIS) following 8 axonal segments, subdivided into node
and internode segments. Inhibitory synaptic inputs target the soma, excitatory synapses
target the the axon-carrying dendrite. For the dendritic and axonal morphology we used
the values summarized in Table 1.

The geometry of the soma was indirectly determined by fixing the capacity of the
whole cell to 150 pF. The voltage was implemented as a Hodgkin–Huxley-type equation

cm
dV

dt
= −(Ilk + INav1.2 + INav1.6 + IKv1 + IKht + Iaxial + Isyn) . (5)

The transmembrane currents were modeled as Ohmic

Ix(V ) = gxa
m
x b

n
x(V − Ex), (6)

with Ex denoting the reversal potential of channel x, gx denoting the maximal conduc-
tance, a, and b are the gating variables and m,and n their cooperativities. Reversal
potentials were set to Eleak = −60mV, ENa = 60mV, EK = −80mV.
Axial currents between the ith compartment and its surrounding compartments are cal-
culated as follows:

Iiaxial =
Vi−1 − Vi

Ri−1,1
ax

+
Vi+1 − Vi

Ri+1,1
ax

, (7)

with the axial resistances Rax follow from the geometry and the specific length resistance
of ρ = 150 Ohm cm.

9



Our choice of sodium channels was inspired by Hu et al. (2009). We thus inserted two
different types of sodium channels Nav1.2 and Nav1.6. Additionally, we also implemented
two potassium channels, one standard high-threshold channel (Mainen and Sejnowski,
1996) and a voltage-gated channel Shu et al. (2007).

The channel peak conductances are summarized in table 2. The leak conductance was

Soma Dendrite AIS Node Internode

Nav1.2 11.28 0.008 2.0 0.0 0.0

Nav1.6 0.08 0.008 0.75 0.1 0.0

Kv1 0.40 0.0 1.0 0.005 0.0

Kht 0.0 0.002 0.2 0.0 0.0

Table 2. Channel densities in nS/µm2

set to 0.000095nS/µm2 to account for resting potential of −71 mV and an input resistance
of 14 MOhm. The rheobase current of the model is 780 pA.

The synaptic currents Isyn were calculated as for the single compartment model.

Setting the synaptic weights

The coding ratio f determines the percentage of active presynaptic cells during one ripple
cycle. The exact distribution of active neurons is randomly assigned for each cycle indi-
vidually. Noise and signal cycles share the same probability of active cells. In contrast,
setting of the synaptic weights is solely determined by neurons being active during a sig-
nal cycles. We applied Willshaw’s (clipped Hebbian) learning rule, which means that a
synapse can be either on or off (Willshaw et al., 1969). Whenever a synapse is active in
one of the signal cycles P , the synapse is set on all other synapses remain off. As value
for the active synaptic weights, we chose a standard conductance of 0.84 nS divided by
the number of active synapses. The standard conductance corresponds to the peak of a
single, mean PSC which is sufficient to elicit a spike in our model.
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Figure Captions

Figure 1

A Suprathreshold activation by in-vitro cPSCs. A Examples of reconstructed excitatory
(orange) and inhibitory (blue) conductance trains from in-vitro cPSCs. Note the different
scale bars indicative for generally larger inhibitory conductances. B Ripple phase his-
tograms (upper panels) and ripple phase profile as a function of time (lower panels) of
all 1051 excitatory cPSCs aligned relative to cPSC onset (top) and SWR peak (bottom).
Color code of the phase histograms (upper panels): the darker the more cPSCs fall into the
phase bin. Color code of the phase profiles: cyclic with white corresponding to phase 0. C
Left column: Spike raster plots for all 1051 excitatory cPSC (top) and 2000 random com-
binations of excitatory and inhibitory cPSC. Right column: Same as left for an additional
constant input current IDC = 100pA. D Phase histograms for all four tested conditions
from C. P-values are derived from a Rayleigh test on uniform phase distribution.

Figure 2

History dependence of spike timing. A Example cPSC as derived from the in-vitro record-
ings. In order to generate APs at a specific cycles, the existing cPSC is removed and
replaced by an artificial PSC at the starting at the same time as the removed PSC. Grey
bar marks the cycle of the deleted/inserted PSCs. B Relationship between the minimal
amplitude of the inserted PSC at cycle -2, which elicited a spike, and the amplitude of the
PSC at the preceding cycle. Linear regression line is drawn in orange. Left column depicts
the results without inhibition, right column is simulated with inhibition. C Regression
slopes from the scatter plots in B.

Figure 3

Cycle-by-cycle capacity. A Schematic drawing of the generation of cPSCs. Every input
conductance is constructed from 7 ripple cycles each of which samples inputs from a
population of 10,000 synapses (only 7 shown). The weight vector is chosen according
to a clipped Hebbian learning rule constructed from all P input patterns arriving in the
4th cycle (red). During the other cycles (blue) inputs are randomly sampled owing to
interference with the patterns stored in the weight vector. B Retrieval quality Γ (averaged
over 10 repetitions) for different numbers P and coding ratios f (colors as indicated). Left:
only excitatory cPSCs (constructed as shown in A); Right: Excitatory and inhibitory
cPSCs (inhibition from in-vitro experiments). C Population sparseness in the output
versus populations sparseness in the input (coding ratio). Colors indicate different values
of P .

Figure 4

Cycle-by-cycle capacity with adaptable threshold. A For varying coding ratios f and firing
thresholds, output sparseness was computed and parameter combinations were marked
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blue or orange for which output sparseness was below or above the input sparseness (coding
ratio). The black line connects the parameter combinations where input and output
sparseness were identical. B Examples of cPSCs and corresponding voltage responses
for a case in the blue (top) and a case in the orange (bottom) regimes from A. The
grey rectangle marks the signal cycle (4th cycle). C Retrieval quality as a function of
P for various values of f (colors as indicated). Left: Simulations with only excitatory
cPSCs. Right: Combination of excitatory cPSCs (constructed as shown in Figure 3A)
and inhibitory cPSCs from in-vitro recordings.
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Action Potential Generation in an Anatomically Constrained
Model of Medial Superior Olive Axons

Simon Lehnert,1 Marc C. Ford,1,2 Olga Alexandrova,1 Franziska Hellmundt,1,2 Felix Felmy,1,3 Benedikt Grothe,1

and Christian Leibold1

1Department Biology II, 2Graduate School of Systemic Neurosciences, and 3Department Biology I, BioImaging Zentrum, Ludwig-Maximilians-Universität
München, D-82152 Planegg-Martinsried, Germany

Neurons in the medial superior olive (MSO) encode interaural time differences (ITDs) with sustained firing rates of �100 Hz. They are
able to generate such high firing rates for several hundred milliseconds despite their extremely low-input resistances of only few megao-
hms and high synaptic conductances in vivo. The biophysical mechanisms by which these leaky neurons maintain their excitability are
not understood. Since action potentials (APs) are usually assumed to be generated in the axon initial segment (AIS), we analyzed
anatomical data of proximal MSO axons in Mongolian gerbils and found that the axon diameter is �1 �m and the internode length is
�100 �m. Using a morphologically constrained computational model of the MSO axon, we show that these thin axons facilitate the
excitability of the AIS. However, for ongoing high rates of synaptic inputs the model generates a substantial fraction of APs in its nodes of
Ranvier. These distally initiated APs are mediated by a spatial gradient of sodium channel inactivation and a strong somatic current sink.
The model also predicts that distal AP initiation increases the dynamic range of the rate code for ITDs.

Key words: action potential; axon; coincidence detection; interaural time difference; sound localization

Introduction
The generation of action potentials (APs) is widely assumed to
take place in the axon initial segment (AIS). Evidence for this
assumption stems predominantly from cortical pyramidal neu-
rons and cerebellar Purkinje neurons using simultaneous so-
matic and axonal whole-cell recordings (Stuart and Sakmann,
1994; Stuart et al., 1997; Kole et al., 2007; Shu et al., 2007) and
voltage-sensitive dye imaging (Palmer and Stuart, 2006; Foust et
al., 2010; Palmer et al., 2010; Popovic et al., 2011). At rest, these
neurons have relatively high input resistances of 10 –200 M�,
allowing them to integrate synaptic inputs over several millisec-
onds. Thus, during depolarizing stimuli, the soma generally
serves as a strong and temporarily stable current source for the
AIS. In neurons with very low input resistances of 2–5 M�, the
mechanisms of AP initiation have not yet been studied in such
great detail. In those cells, the membrane time constants are too
short to allow the soma to serve as a temporarily stable current
source. Conversely, the soma might even act as a current sink to
the AP generating zone and therefore increases the AP threshold
at the AIS.

In the present study, we investigated AP generation in neu-
rons of very low input resistance, the principal cells of the medial
superior olive (MSO). These neurons have membrane time con-
stants in the range of only a few hundreds of microseconds and
input resistances as low as 5 M� (Scott et al., 2005; Couchman et
al., 2010). The MSO is a binaural nucleus in the ascending
auditory pathway. MSO neurons encode the azimuthal posi-
tion of low-frequency sounds via differences in the time of
arrival at the two ears by their firing rate (Goldberg and
Brown, 1969; Yin and Chan, 1990; Fitzpatrick et al., 1997;
Brand et al., 2002) with a precision of only a few tens of mi-
croseconds. This exquisite temporal precision of binaural coin-
cidence detection is partly achieved by the fast membrane time
constants of neurons resulting from the high expression of low-
voltage-activated potassium channels and hyperpolarization-
activated cation channels (Svirskis et al., 2002; Koch et al., 2004;
Scott et al., 2005; Mathews et al., 2010; Baumann et al., 2013),
both of which are already open at rest. Despite the resulting low
input resistance, these neurons can fire at high rates of �100
Hz and more. The mechanisms by which this is possible are
still unresolved.

In this article, we address the question of how AP generation is
accomplished in leaky neurons using a computational model of
MSO neurons with axonal morphology based on new detailed
morphometric data. Our simulations show that, despite the leaky
soma, the AIS remains electrotonically isolated and retains its
ability to generate APs. However, we also identified conditions
under which the APs are initiated at the nodes of Ranvier. This
distal initiation of APs increases the dynamic range of the rate
code of interaural time differences (ITDs).
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Materials and Methods
General
All experiments were performed according to institutional guidelines,
and national and regional laws; it was approved by the Regierung von
Oberbayern (AZ55.2–1-54 –2531-105–10). All results are given as the
mean � SEM.

Retrograde labeling of MSO cells
Mongolian gerbils (Meriones unguiculatus) of either sex [n � 4; postnatal
day 29 (P29) to P31] were anesthetized with pentobarbital (2 mg/kg body
weight) and intracardially perfused with ice-cold Ringer’s solution con-
taining 0.1% heparin. After decapitation, the brainstem was removed
from the skull under ice-cold dissection solution comprising the follow-
ing (in mM): 125 NaCl, 2.5 KCl, 1 MgCl2, 0.1 CaCl2, 25 glucose, 1.25
NaH2PO4, 25 NaHCO3, 0.4 ascorbic acid, 3 myo-inositol, and 2 pyruvic
acid (all chemicals were from Sigma-Aldrich). For retrograde labeling of
MSO cells, the brainstem was sectioned along the posterior–anterior axis
until the MSO, lateral superior olive, and superior paraolivary nucleus
(SPN) were clearly visible. Borosilicate glass micropipettes with a tip
diameter of 10 –15 �m were filled with a 10% solution of tetramethyl-
rhodamine dextran (3000 molecular weight; Invitrogen) and visually
guided to the SPN. Cells were labeled by applying 2– 4 electroporation
pulse trains (50 ms, 50 V, 10 Hz; modified from previous studies; Ford et
al., 2009). Subsequently, the explants were transferred to a chamber con-
taining oxygenated incubation solution (same as incubation solution,
but containing 2 mM instead of 0.1 mM CaCl2) and incubated at room
temperature for 90 min. Thereafter, brainstems were immersion fixed at
room temperature overnight in 4% paraformaldehyde solution.

Immunohistochemistry
Brainstems were sectioned transversally (80 –120 �m slice thickness),
rinsed in PBS, and transferred to blocking solution containing 1% bovine
serum albumin, 2% Triton X-100, and 0.1% saponin in PBS. Multiple-
immunofluorescence labeling was performed with the following primary
antibodies: ankyrin G (sc-28561; rabbit; 1:500; Santa Cruz Biotechnol-
ogy), Kv1.2 (75-008 clone K14/16; mouse; 1:500; NeuroMab),
microtubule-associated protein 2 (CH22103; chicken polyclonal; 1:1000;
Neuromics), and myelin basic protein (ab7349; rat monoclonal; 1:20;
abcam). The incubation time (4°C) for primary antibodies was 3 d. After
incubation with secondary antibodies (1–2 d; 4°C) and rinsing in PBS,
sections were mounted with Vectashield mounting medium.

Confocal microscopy
Confocal images were acquired with a TCS SP5-2 confocal laser-
scanning microscope (Leica Microsystems) equipped with HCX PL APO
63�/numerical aperture 1.3 glycerol objective. Fluorochromes were ex-
cited at 405, 488, 561, 594, and 633 nm for aminoethylcoumarin acetate,
DyLight488, tetramethylrhodamine dextran, Alexa Fluor 594, and Dy-
Light649, respectively. The emission filters for these fluorochromes were
set to (in the same order) 410 – 460, 510 –550, 565–585, 605– 625, and
640 –760 nm. For each optical section the images were collected sequen-
tially for four to five fluorochromes. Stacks of 8-bit grayscale images were
obtained with axial distances of 290 nm between optical sections and a
pixel size of 120.4 nm. To obtain an improved signal-to-noise ratio, each
section image was averaged from five successive scans. After stack acqui-
sition, the Z chromatic shift between color channels was corrected. RGB
stacks, montages of RGB optical sections, and maximum-intensity pro-
jections were assembled into tables by using ImageJ 1.37k plugins and
Photoshop version 8.0.1 (Adobe Systems) software.

Morphometry
Morphometric measurements were made from overlapping image stacks
of MSO principal cells. Using the ImageJ 1.37k paint-brush tool, individ-
ual axons of MSO cells filled with tetrametylrhodamine dextran were
manually labeled by following single axons subsequently through each
optical section of the confocal stack (Werthat et al., 2008; for dendrites,
see Couchman et al., 2010). Afterward, the neighboring axons were dig-
itally deleted. We refer to this method as digital extraction. The same
axon was identified in the neighboring overlapping confocal stacks and
digitally extracted. AISs and nodes of Ranvier were identified on the basis

ankyrin G/Kv1.2 antibody staining. AIS and internode lengths were mea-
sured in three dimensions in confocal stack images using the ImageJ
1.37k Sync Measure 3D tool. AIS and internodal axon diameters were
measured at the positions defined by ankyrin G and Kv1.2 labeling (see
Fig. 2B) in maximum-intensity projections of image stacks based on
tetrametylrhodamine dextran labeling. The mean diameter of the first
internode was averaged from measurements at several (10 –29) different
positions between the outer borders of the juxtaparanodes (see Fig. 2B,
K3 and K6).

Electrophysiology
Experimental procedures were as described in Couchman et al. (2010). In
brief, Mongolian gerbils of either sex of P60 –P80 were anesthetized with
isoflurane. Brains were removed after decapitation, and 110-�m-thick
horizontal brainstem slices were taken with a VT1200S vibratome (Leica)
in dissection solution containing the following (in mM): 50 sucrose, 25
NaCl, 27 NaHCO3, 2.5 KCl, 1.25 NaH2PO4, 3 MgCl2, 0.1 CaCl2, 25
glucose, 0.4 ascorbic acid, 3 myo-inositol, and 2 Na-pyruvate, pH 7.4
when bubbled with 95% O2 and 5% CO2. Slices were incubated in re-
cording solution (same as slice solution but with 125 mM NaCl, no su-
crose, and 2 mM CaCl2 and 1 mM MgCl2) at 36°C for 45 min, bubbled
with 5% CO2 and 95% O2.

Incubated slices were placed into a recoding chamber attached to a
BX51WI microscope (Olympus) equipped with a custom-made gradient
contrast illumination and continuously perfused with recording solution
kept at 34 –36°C by a Warner Instruments heating system. MSO neurons
were visualized at 60� magnification with a Retiga 2000 DC camera (Till
Photonics/FEI Munich). Current-clamp whole-cell recordings were per-
formed using an EPC10/2 amplifier (HEKA Elektronik) on visually iden-
tified MSO neurons with electrode resistances of �3 M�. Access
resistance was estimated in voltage-clamp after break in and was bridge
balanced to 100% in current-clamp mode. The internal recording solu-
tion consisted of the following (in mM): 145 K-gluconate, 4.5 KCl, 15
HEPES, 2 Mg-ATP, 2 K-ATP, 0.3 Na2-GTP, 7.5 Na2-phosphocreatine, 5
K-EGTA, pH 7.2. The liquid junction potential was corrected on-line
with an estimated value of 17 mV.

Computational modeling
Based on the morphometric analysis, a multicompartmental model was
created to study the generation of APs in MSO principal cells. The model
consists of one large somatic compartment that combines the somatic
and dendritic membrane surface (Ashida et al., 2007). The model focuses
on the axonal morphology, since APs are generally assumed to be gener-
ated there. The axon model consisted of an unmyelinated AIS followed
by an extensive myelinated part that was periodically interrupted by 21
nodes of Ranvier. Figure 1A shows a schematic drawing of the first seg-
ments of the model up to the fourth node of Ranvier (R4). The AIS was
further subdivided into a tapering part (tAIS) and a constant part (cAIS),
resembling the actual geometry of the AIS. The voltages of the compart-
ments followed a Hodgkin–Huxley-type equation as follows:

Cm

dV

dt
� � 	INa � IKHT � IKLT � Ih � Ilk � Isyn � Iaxial � Iext
,

where Iext is the external current, and the ohmic transmembrane currents
are as follows:

Ix	V
 � gxax
mbx

n	V � Ex
.

Here, Cm is the membrane capacitance, gx is respective peak conduc-
tances, ax and bx are the gating variables, and m and n are the respective
cooperativities. The dynamics of the gating variables are modeled ac-
cording to first-order kinetics, as follows:

da

dt
�

a� � a

�a
and

db

dt
�

b� � b

�b

where a� and b� are the steady-state activation functions, and �a and �b

are the voltage-dependent time constants.
The axial current for the ith compartment is defined as follows:
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Iaxial
i �

Vi�1 � Vi

Raxial
i�1, i �

Vi1 � Vi

Raxial
i1, i ,

in which Raxial denotes the axial resistance be-
tween the ith compartment and its respective
neighboring compartments. The axial resis-
tance results from the geometry of the axonal
segment (diameter and length) as well as the
specific axial resistivity of 100 �cm, which is in
the range of usually assumed values (Mainen et
al., 1995; Mainen and Sejnowski, 1996; Shu et
al., 2007).

The specific model for the sodium channel
was taken from Scott et al. (2010) with a rever-
sal potential for sodium of 69 mV and a mod-
ified conductance density in the axon of 4 nS/
�m 2 to fit the firing threshold of our current-
clamp measurements (see Fig. 4). We chose the
somatic sodium conductance density to be 0.2
nS/�m 2, a value 20-fold smaller than that in
the axon and reflecting the low sodium channel
density found in MSO principal cell somata
(Scott et al., 2010). The high-threshold potas-
sium channel was modeled according to Roth-
man and Manis (2003) without a slow
activation variable and only at the soma since it
had only little effect in the axon. The low-
threshold potassium channel (KLT) was
modeled according to (Mathews et al., 2010)
and was present in the soma and all unmyeli-
nated axonal compartments. The potassium
reversal potential was set to �90 mV. The
hyperpolarization-activated cation channel
gives rise to a somatic hyperpolarization (h)-
activated cation current (Ih), which was mod-
eled using the kinetics measured in dorsal MSO
neurons (Baumann et al., 2013), with a reversal
potential of �35 mV. The resting potential of
�68 mV and the somatic input resistance of 5
M� were set by adjusting the peak conduc-
tances of KLT and h current. The somatic sur-
face was set to 8750 �m 2, such that we get a
somatodendritic capacitance of 70 pF (Rauten-
berg et al., 2009), assuming a specific capaci-
tance of 0.8 �F/cm 2 (Gentet et al., 2000; Shu et
al., 2007). As a consequence, the somatic mem-
brane time constant is 350 �s, which closely
resembles the measured membrane time con-
stants in vitro (Scott et al., 2005; Couchman et
al., 2010). The specific myelin conductance per
lamella was set to 0.1 �F/cm 2 (McIntyre et al.,
2002, 2004). Together with a g-ratio of 0.7 and
an assumed myelin periodicity of 16 nm
(Agrawal et al., 2009), our standard model ex-
hibits nine myelin lamellae. Thus, we obtain a
specific capacitance of the myelin sheath of
0.0111 �F/cm 2, similar to the value of 0.01 �F/
cm 2 used in Kuba et al. (2006) for axons of
nucleus laminaris (NL) neurons. Some com-
putational studies of axons use specific capaci-
tances per lamella that are significantly higher;
however, they compensate for this by a larger number of myelin lamellae.
Using a substantially larger myelin capacitance (e.g., three times or
higher) would cause propagation failures of generated APs in our model,
a result that would contradict the secure propagation of APs known from
MSO principal neurons (Scott et al., 2007). This matching of an experi-
mental finding argues in favor of our parameter choice. The validity of
the parameter choice is further supported by our physiological measure-
ments of firing thresholds for onset-like responses in Figure 4.

A detailed account of the geometrical and electrical features of the
model is given in Tables 1 and 2, respectively.

In response to somatic current injections, the neuron model exhib-
its typical onset behavior (Fig. 1B; i.e., it fires only one AP; Scott et al.,
2005; Couchman et al., 2010) at the onset of the depolarizing pulse.
The AP amplitude at the soma resembles physiologically measured
values of �10 mV (Scott et al., 2005; Couchman et al., 2010), whereas,
at the nodes of Ranvier, the APs exhibit usual amplitude values of
�100 mV.
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Figure 1. Computational model. A, Schematic drawing of the first segments from the soma to R4 of the MSO model neuron. The
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soma) to current injections at the soma (bottom). C, D, The input conductances were obtained from noise that is filtered by a
gammatone filter with a center frequency of 500 Hz (gray) and half-wave rectified (C, black). The trace from C is transformed into
conductance inputs by convolution with excitatory (ipsilateral, dark red; contralateral, light red) and inhibitory (ipsilateral, green;
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Since ongoing synaptic bombardment under in vivo conditions in-
creases the leakiness of the neuron, we decided to study AP generation
using a temporally extended naturalistic stimulus that resembles the pe-
riodicity of a cochlear channel with a specific center frequency. Our
stimuli were generated using bandpass-filtered white noise n(t) (Fig. 1C)
that was linearly filtered (convolved) with a gammatone kernel, as
follows:

f	t
 � t4e�t�cos 	t�c
,

with � (�c) � 24.7(4.37 � �c/(2	)1) in kilohertz (Glasberg and
Moore, 1990) and the center frequency �c/(2	) in kilohertz. The filter
output was half-wave rectified and normalized to yield a spike probabil-
ity function with a mean AP rate R (200 Hz) during the stimulus length l
� 300 ms. The resulting input train was then multiplied with a factor S,
which we call the stimulus intensity, and afterward convolved with
double-exponential functions Gexc and Ginh, which we created to resem-
ble electrophysiologically measured synaptic kinetics for excitatory and
inhibitory synaptic activity (Couchman et al., 2010):

Gexc	t
 � gexc

	1 � e�t/1.0
1.3 e�t/0.27

max 		1 � e�t/1.0
1.3 e�t/0.27

and

Ginh	t
 � ginh

	1 � e�t/0.4
 e�t/1.6

max 		1 � e�t/0.4
 e�t/1.6

.

Here, gexc � 37 nS and ginh � 57 nS are the peak conductances of single
fibers (Couchman et al., 2010), and time t is considered in milliseconds.
Examples for such synaptic conductance trains are shown in Figure 1D.
Unless mentioned otherwise, we used two inhibitory inputs based on the
same stimulus wave form; one advances the excitatory inputs by 0.6 ms
and one lags them by 0.11 ms (see Impact of distal AP initiation on ITD
coding; Leibold, 2010). Apart from the simulations in which the inhibi-
tory inputs are essential (see Figs. 5M, 8), all simulations were performed
with only excitatory inputs activated.

Neuron model with dendrites
To test the robustness of our findings in a model with dendrites, we
performed simulations (see Fig. 8) in a model variant in which two
identical dendrites (five compartments each) were added to the soma.
Excitatory synapses were placed at the dendrites (ipsilateral inputs at the
lateral dendrite, contralateral inputs at the medial dendrite), and inhib-
itory synapses were restricted to the soma (Kapfer et al., 2002). The
parameters of the dendritic model were chosen such that the basic char-
acteristics at the soma (input resistance, resting potential, capacitance,
and EPSP kinetics) matched that of the model with a single somatoden-
dritic compartment and hence the physiological data from Scott et al.
(2005) and Couchman et al. (2010). Most importantly, the length of each
of the dendrites was 200 �m, with a constant diameter of 5 �m. The
somatic surface was reduced to 2467 �m 2, such that the total cell surface
remained at 8750 �m 2, which is equal to the model with only one soma-
todendritic compartment. The geometrical length of the dendritic com-
partments appears slightly longer than that observed in MSO neurons
(Rautenberg et al., 2009), since we did not take into account branching of
dendrites but had to match the overall cell surface for comparability.

In the dendritic compartments, sodium channels were omitted (Scott
et al., 2010), and thus the sodium density of the remaining somatic com-
partment was scaled up such that the total sodium conductance matched
that of the simpler model with only one somatodendritic compartment.
The conductance of the low-threshold potassium channels decayed ex-
ponentially along the dendrites with a length constant of 74 �m
(Mathews et al., 2010). The peak conductance at the somatic compart-
ment was thereby identical to that of the simpler model. The conduc-
tance of the h current was chosen to follow the same gradient along the
dendrite to keep the local balance of the two channels. Finally, the input
resistance and resting potential of the model with dendrites were
matched to those of the simpler model by adjusting the peak conduc-
tances of the h current and the passive leak current.

Analysis of simulations
In our simulations, APs during ongoing stimulation were often not detect-
able in the soma (Fig. 1E). However, at more distal locations in the axon, the
amplitude and kinetic differences of subthreshold responses and APs are
much larger, and, thus, at the more distal axonal compartments these two
cases are very easy to separate by a simple amplitude threshold.

Initiating segment. Since the MSO model is described by a system of
coupled differential equations, the generation of an AP necessarily re-
quires the interplay of all compartments. The question of where an AP is
generated thus can only be answered by a phenomenological criterion.
This phenomenological AP-initiating segment was identified as follows
(Fig. 1F ). First, a stimulus evoked AP was defined by a voltage threshold
criterion in R7 at which AP and no AP events are clearly separable.
Second, we inspected the voltage trace at the axonal nodes of Ranvier and
the AIS going from distal to proximal, and identified the segment-
specific AP times via the voltage peaks (above �50 mV) that occurred
within a certain time interval of duration L around the voltage peak in the
(previous) downstream node. The duration L of this time interval is
determined by L � 5.33 
, where 
 is the impulse conduction time from
node to node for a strong current stimulus delivered at rest, which elicits
a clear AIS AP. The window is asymmetrically aligned to the previous
voltage peak such that the preceding part is three times longer than the
part following the voltage peak. The factor 5.33 allows for a slower AP
propagation of the AIS and near-threshold stimuli. Within the set of all
detected voltage peaks, the earliest in time defines the AP initiation seg-
ment. This algorithm has been tested against a variety of simple threshold
and phase space criteria, and has proven to give more reliable results for
different axonal morphologies and different input parameters, even for
extremely fast voltage deflections.

In simulations in which we tested higher somatic input resistances (see
Fig. 5L), the somatic AP was strongly influencing the voltage trace in the
AIS, which made it difficult to identify a clear AIS voltage peak. We
therefore identified the AIS AP as the first drop of the voltage derivative
below 50 V/s, identifying a shoulder in the voltage deflection.

In few cases (see Fig. 6) during orthodromic propagation does the AP
amplitude initially decrease before increasing again in the more distal

Table 1. Geometrical parameters of the model

Parameters Values

Soma/somatodendritic compartment
Area 8750 �m 2

Axon initial segment (tapering part)
Length 10 �m
Large diameter 1.64 �m
Small diameter 0.66 �m

Axon initial segment (constant part)
Length 10 �m
Diameter 0.66 �m

Internodes
Length 100 �m
Inner diameter 0.66 �m
Outer diameter 0.948 �m (corresponding to a g-ratio of 0.7),
Myelin lamellae 9 (corresponding to a myelin periodicity of 16 nm)*

Node(s) of ranvier
Length 1 �m
Diameter 0.66 �m

*From Agrawal et al. (2009).

Table 2. Maximum conductances of voltage-gated channels

Channels Soma tAIS cAIS Internodes Nodes

gNa 0.2 4 4 0 4
gKHT 0.1 0 0 0 0
gKLT 1.55 1.55 1.55 0 1.55
gh 0.02 0.02 0.02 0 0
glk 0.0005 0.0005 0.0005 0.0002 0.05

Data are in nS/�m 2.
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axonal segments. Such APs were also labeled as being distally initiated,
even though they would have been an AIS AP according to the time-
window criterion.

Relative slope during ongoing conductance trains. To identify the input
features that are most predictive for spiking, we placed particular empha-
sis on current amplitude and the relative current slope (derivative di-
vided by amplitude). We chose relative slope because the derivative of
any oscillating function linearly scales with the amplitude of the input,
and, thus, without such normalization, dependencies on slopes are con-
founded by amplitude effects. To determine the relative derivative of the
input current in Figure 7, G and H, we normalized by the amplitude of a
high-pass-filtered version (fourth-order Butterworth filter with a cutoff
of one-third of the stimulation frequency) of the input current rather
than by the actual amplitude itself. This was necessary to obtain the actual
local relative slope for each cycle and not a distorted value caused by the
temporal summation of the input currents of high-frequency stimuli.

ITD coding
To assess how well the responses of the model neuron resolve an ITD �,
we computed the Fisher information I(�), assuming a Gaussian distribu-
tion of AP counts. From at least 90 repetitions of a 300 ms stimulus, we
obtained the mean AP count (tuning curve) �(�) and its variance v(�),
and calculated the Fisher information as follows:

I	�
 �
��	�
2

v	�

�

1

2 �v�	�


v	�
 �
2

Results
Morphometry of the AIS and proximal axon
Using a combination of retrograde tracing of MSO neurons and
immunohistochemical labeling of ankyrin G and Kv1.2 channels,
a detailed morphometric analysis of the AIS and proximal axon of

Figure 2. Morphometry of the AIS and first internodal segments in MSO neurons. A, Retrogradely labeled MSO neuron after digital extraction from the surrounding area. Insets A� and A� show
magnifications of the AIS and first node of Ranvier, respectively. B, Schematic of the proximal axon segment comprising the AIS, the first internode, and the first node of Ranvier, illustrating the
positions where measurements were made. Red and green dots indicate the distribution of ankyrin G and Kv1.2 immunolabeling in the AIS and axon. A1–A4 and K1–K8 indicate the borders of
ankyrin G- and Kv1.2-positive domains, respectively. JPN, Juxtaparanodes. C, Mean diameter of the AIS at various positions plotted as a function of the mean distance from the soma. Diameter and
distance measurements were made at the positions indicated in B. Error bars show the SEM.
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12 MSO neurons was performed (Fig. 2A). Our immunostain-
ings revealed that the AIS consisted of a 17.3 � 1.1-�m-long
ankyrin G-positive domain emerging directly from the soma and
a 11.2 � 0.6-�m-long Kv1.2-positive domain starting at 7.6 �
0.7 �m distal from the soma in the labeled axons (Fig. 2A,B).
Diameter measurements indicated that the AIS consisted of the
tAIS and the cAIS. On average, the diameter of the AIS decreased
from 1.6 � 0.1 �m at the soma (position A1) to 0.6 � 0.1 �m at
the position K2, as defined in Figure 2, B and C. The length of the
AIS (measured from A1 to K2; Fig. 2B) ranged from 14.0 to 24.0
�m (18.8 � 1.0 �m). Adjacent to the AIS was a 2.3 � 0.2-�m-
long segment devoid of ankyrin G and Kv1.2 labeling, which
we interpret as the paranodal (or para-AIS) region, where
myelin is anchored to the axon (Duflocq et al., 2011; Fig. 2A�,
arrow). The paranodal region was followed by a 2.9 � 0.5-�m-
long Kv1.2-positive domain representing the juxtaparanode
(or juxtapara-AIS). The first node of Ranvier was identified
based on its typical arrangement of two juxtaparanodal Kv1.2-
positive domains that were separated from the nodal ankyrin
G domain through unlabeled paranodes (Fig. 2A�). The length
of the first internode ranged from �50 to �150 �m (100.4 �
9.1 �m), and its mean diameter (Fig. 2 B, C, measured at sev-
eral positions between the two juxtaparanodal borders K3
and K6) was 0.7 � 0.1 �m. These axonal parameters were used
to constrain a computational model of the MSO neuron
(Table 1).

Input– output functions
We first determined how the AP frequency of our computational
neuron model is influenced by the parameters that we assumed to
be most crucial for axonal excitability (AP threshold), i.e., the
morphological parameters internode length, axonal diameter,
proximal diameter, and tAIS length; and the electrical properties
density of sodium channels in the unmyelinated axonal segments
and somatic input resistance (Fig. 3). We tested how much the
influence of these excitability parameters on AP probability de-
pended on the center frequency of the bandpass stimuli (see Ma-
terials and Methods) and found that for center frequencies of
�500 Hz all of the axonal parameters had little influence on
spiking probability (Fig. 3A–D, example of internode length). For
higher stimulus frequencies, the axonal parameters had distinct
influences on the input– output functions. As we increased the
internode length, the spiking probability generally decreased
(Fig. 3A–D), which can be attributed to a reduction of the axial
current flow. Geometrical alterations that increase the axonal
sodium conductance (while keeping the channel density con-
stant) mostly result in an increase of the firing rate. This increase
could be observed in simulations with altered axonal diameter
[keeping a constant ratio of 0.7 between the inner (axon) and
outer (myelin) diameter of the internode]. The firing rate also
increased with axonal diameter (Fig. 3E), reflecting the corre-
sponding increase of the number of sodium channels. Also an
increase of the length of the tAIS led to a higher AIS sodium
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conductance and an increasing firing probability (Fig. 3F). In line
with these findings, a direct increase in the sodium conductance
in unmyelinated axonal compartments (Fig. 3G,H) also facili-
tated AP probabilities. However, a different effect was observed
when the proximal diameter of the tAIS was decreased, which
also decreased the amount of sodium conductance but, interest-
ingly, increased AP frequency (Fig. 3I). This indicates that in
addition to the total local sodium conductance excitability of the
axon also profits from an increased electrotonic isolation from
the leak currents in the soma. This interpretation was corrobo-
rated by the following two additional sets of simulations: (1) an
increase of the tAIS input resistance by removing all tAIS sub-
threshold conductances from the equation had almost no effect
on firing probability (Fig. 3I, inset); and (2) increasing the so-
matic input resistance (by multiplicative scaling of the peak con-
ductances of KLT channel and h current, keeping a constant
resting potential) strongly enhanced AP frequency (Fig. 3J). The
MSO soma thus acts as a strong current sink for the AIS, and,
hence, the axon excitability crucially depends on rather small
changes of the somatic current reaching the axon.

Frequency-dependent threshold
Since the firing probabilities strongly depended on the center
frequency of the inputs (Fig. 3), we performed a more systematic
analysis of the frequency dependence of excitability of our com-
putational neuron model and corroborated these data by in vitro
measurements of MSO cells. The frequency dependence of MSO
firing probability in the model was determined for a large range of
bandpass stimuli with center frequencies ranging from 100 to

1250 Hz and varying stimulation intensities (Fig. 4A). This allows
the assessment of the firing thresholds of MSO neurons with
respect to both the shape (frequency content) and the amplitude
of the input currents. The lowest current thresholds were ob-
served at �500 Hz. For higher as well as lower input frequencies,
more excitatory drive was necessary to reach a certain firing
probability.

To better understand the dependence of AP initiation on the
input kinetics, we simulated two onset stimulation paradigms
using brief current stimuli applied at rest. First, we applied a ramp
stimulus for which we could independently vary amplitude and
ramp duration (Fig. 4B1). The ramp duration was assumed to
serve as a proxy for stimulus shape (frequency) during the ongo-
ing bandpass stimulation. The firing probabilities (Fig. 4B2) ob-
tained with these stimuli very well explained the behavior
observed for low-frequency bandpass inputs, which effectively
implements a slope threshold (Golding and Oertel, 2012); that is,
the neuron fires in response to a specific speed of membrane
depolarization that is rather independent of amplitude. Such be-
havior has been previously described in octopus cells (Ferragamo
and Oertel, 2002), in the vestibular pathway (Beraneck et al.,
2007) and the MSO (Jercog et al., 2010), and is generally attrib-
uted to the fast kinetics of the KLT channels, which are further
opening only for slow stimuli and cannot generate such addi-
tional leaks for fast-rising stimuli. The high-frequency behavior
of our threshold profile, however, could not be modeled using the
simple ramp stimuli. We therefore also applied half-wave-
rectified sine waves (Fig. 4C1). Here again, both the low- and the
high-frequency increase of threshold amplitudes was observed
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(Fig. 4C2). Thus, the threshold amplitude
for high frequencies crucially depends on
the duration of the stimulus. This indi-
cated that the high-frequency part of the
threshold curve reflects the limit imposed
by the charging of the membrane capaci-
tor for regimes in which the membrane
voltage rises too quickly to open the low-
threshold potassium channels (Jercog et
al., 2010). These modeling results were
verified physiologically using whole-cell
current-clamp recordings using the same
stimuli as in the model (see Materials and
Methods). From the recorded data ob-
tained with the ramp stimuli, the AP
probability was fitted by a sigmoid for
each ramp duration as a function of the
amplitude using at least 10 consecutive
trials. The amplitude at which the fit was
at 50% AP probability was defined as the
threshold. The physiologically obtained
threshold curves qualitatively matched
the modeling results for the ramp-current stimuli (Fig. 4B2, su-
perimposed black trace, D) with less firing for slow-input ramps
and secure responses for faster ramps. For the half-wave-rectified
sine stimuli, threshold amplitudes were obtained by manual test-
ing (Fig. 4C2, superimposed black trace, E) and also qualitatively
matched the simulations with the lowest firing threshold for me-
dium frequencies and less firing for low and high frequencies.
From these simulations and experiments, we concluded that the
threshold behavior observed during ongoing stimulation is func-
tionally very similar to that in onset-like stimulus paradigms with
single current pulses.

Site of AP initiation
Although AP initiation might be functionally similar under onset
and ongoing stimulus conditions, the underlying mechanisms
may be different, since, owing to the temporal summation of the
inputs, the ongoing stimulation sets the cell membrane into a
state that is very different from resting conditions (e.g., because of
steady-state activation of channels and changes in input resis-
tance). We therefore investigated AP initiation during ongoing
stimulation in greater detail. In particular, we were interested in
the contributions of the different cellular (somatic and axonal)
compartments to the generation of APs.

A first assessment of the local excitability of the model neuron
was derived from local input resistance measurements, using
small hyperpolarizing current pulses (amplitude, �100 pA for
300 ms) that were consecutively injected into the soma, the cAIS,
and the nodes of Ranvier of our model at rest (Fig. 5A, black
trace). Here, the input resistance was derived from the peak of the
voltage responses and not the steady-state component to obtain a
measure for the instantaneous susceptibility of the local mem-
brane. In our model, the peak conductance parameters were cho-
sen such that the somatic input resistance was fixed at 5 M�
(Scott et al., 2005; Couchman et al., 2010). With the standard
parameter settings (Tables 1 and 2), the AIS had two (tAIS, 9.7
M�) to six times (cAIS, 28.5 M�) the input resistance of the
soma. Further distally in the axon, the R1 showed a 50-fold in-
crease of input resistance (256.5 M�). We next applied a current
pulse of 1 nA at the soma while at the same time extracting the
peak of the axial current in the respective axonal segments (Fig.
5B, black trace). The portion of this current that spread from the

soma into the AIS was only 0.4% (4 pA), with further attenuation
at the R1 (0.3 pA). Multiplying the axial current by the local input
resistance yields a measure that can be interpreted as the axonally
mediated voltage amplitude (Vax). This voltage amplitude was
further used as an estimate for the local excitability. The axially
mediated voltage amplitude was maximal at the second and third
nodes of Ranvier (Fig. 5C, black trace). Thus, in contrast to the
classical model of AP initiation at the AIS, the second and third
nodes appear to be more excitable, indicating that the more distal
compartments play an important role in axon excitability in leaky
neurons.

A detailed analysis of AP times in the individual compart-
ments revealed that the site of AP initiation was indeed not re-
stricted to the AIS (Fig. 5D–H). Although many APs were
initiated in the AIS (Fig. 5F, I–K), 5– 60% (depending on input
conditions) of the APs first crossed the detection threshold (see
Materials and Methods) at the first (Fig. 5G) or even the second
(Fig. 5H) node of Ranvier, while the AIS showed a response
similar to the subthreshold case (Fig. 5E). The amplitudes of the
somatic and AIS APs were relatively small, independent of where
they were generated, and underwent subsequent amplification
by the nodes of Ranvier as they orthodromically propagated
along the axon (Fig. 5F–H).

To further elucidate the mechanisms of this distal AP initia-
tion, we quantified its occurrence under our naturalistic ongoing
input paradigm for different morphological parameters. For
purely excitatory inputs, the fraction of distally initiated APs over
AIS APs increased with stimulus frequency (Fig. 5I–L). For
shorter internodes (Fig. 5I) and thicker axonal diameter (Fig. 5J),
more distal APs were observed. This is because the resulting in-
creased axial conductance allows the stimulus-evoked potential
to propagate further along the axon and is also illustrated by the
peak of the Vax located at more distal regions of the axon in both
conditions (Fig. 5C, cyan and magenta traces). Consistently, a
higher nodal sodium conductance increased the fraction of dis-
tally initiated APs as well, because APs could be more easily ini-
tiated at the nodes (Fig. 5K).

A major factor influencing distal AP initiation for inputs at all
center frequencies is the somatic input resistance. The prevalence
of distal AP initiation is strongly reduced with the increase of
input resistance of the soma (Fig. 5L). Hence, distal spiking
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should be particularly prevalent in leaky neurons that receive
fast-fluctuating inputs such as in the MSO.

Since MSO neurons not only receive excitatory inputs but also
strong phase-locked inhibitory inputs via the medial and lateral
trapezoid body, we also performed simulations with excitatory
and inhibitory inputs. In these simulations, the frequency depen-
dence of the site of AP initiation is less clear (Fig. 5M). On the one
hand, the fraction of distally initiated APs also increased with
frequency for center frequencies of �500 Hz. On the other hand,

for a low center frequency of 250 Hz, in-
hibition also generated large amounts of
distal AP initiation. This already indicates
that distal AP initiation may result from a
variety of different mechanisms, particu-
larly also those that add to the somatic
current sink.

Distal AP initiation for
high-frequency inputs
The steady-state approach to axonal excit-
ability (Fig. 5A–C) disregards contribu-
tions from the dynamics of the ion
channels. To understand whether such
dynamic properties of the neuron model
also contribute to distal AP initiation, we
used strictly periodic synaptic (conduc-
tance) input trains of different frequen-
cies (Fig. 6A). Temporal summation of
the synaptic inputs generated a conduc-
tance plateau that increased with fre-
quency as revealed by low-pass filtering
(Fig. 6A, second-order Butterworth low-
pass filter with a cutoff frequency of 100
Hz, red traces). We then applied these av-
erage conductance values as a constant
conductance to the cell and measured the
corresponding steady-state sodium chan-
nel inactivation at the soma, the AIS, and
the first three nodes of Ranvier (Fig. 6B).
This revealed that a larger average con-
ductance generally caused more sodium
channel inactivation. Moreover, the con-
ductance level was highest at the soma and
decreases along the axon. Thus, a regime
of a high-frequency input generates a per-
sistent depolarization of the membrane
with a larger fraction of inactivated so-
dium channels at the proximal axonal
membranes than at the distal segments
(Fig. 6C). As a result, this leads to a larger
fraction of distal AP initiation with in-
creased input frequency (Fig. 6D).

Influence of distal AP initiation on the
firing threshold
To understand the functional relevance of
distal AP initiation, we next investigated
which input properties are particularly
amenable to evoke distal APs during on-
going stimulation (Fig. 2B–D). We there-
fore repeatedly stimulated the neuron
model with identical input trains for con-
secutively increasing mean synaptic con-

ductances. Figure 7A–F shows an exemplary stimulus cycle for
which, with increasing conductance, the voltage profile along the
axon transitions from a completely subthreshold response (Fig.
7B) over an AP being initiated at the nodes of Ranvier (Fig. 7C,D)
to an AP generated at the AIS (Fig. 7E,F). From these examples,
it seemed that distal AP initiation is particularly prevalent at the
AP threshold.

To further evaluate the threshold property of distal AP initia-
tion, we ran the simulations using excitatory bandpass inputs of
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different center frequencies and amplitudes. For a low-frequency
input with a center frequency of 250 Hz, the rate of distally initi-
ated APs was highest right at the border between no APs and AIS
APs (Fig. 7G1,G2). The orientation of this border was diagonal in
amplitude–frequency space and qualitatively matched the AP
boundaries from Figure 4 (Fig. 7G1). For 1000 Hz, the distribu-
tion of AIS APs and distally initiated APs is different (Fig.
7H1,H2). There, the boundary between AP firing and no firing
was approximately vertical, indicating that the cell effectively im-
plemented an amplitude threshold being insensitive to the slope
of the input current (Fig. 7H1). Moreover, for 1000 Hz center
frequency, distal AP initiation could no longer be seen as a threshold
effect. In fact, after an initial dip for low amplitudes, the overall
fraction of distally initiated spikes rose with input amplitude (Fig.
7H), which is in line with the dependence of the fraction of distally
initiated APs on sodium inactivation from Figure 6.

In conclusion, distal AP initiation seems to have two effects.
(1) If the sodium channels were only slightly inactivated, the cell
is able to fire in response to smaller stimulus amplitudes than
without distal initiation of APs. (2) If the sodium channels are
largely inactivated (as in the case of temporally summed high-
frequency input), distal AP initiation allows the cell to keep up
high firing rates for high-frequency stimuli with large stimulus
amplitudes.

Impact of distal AP initiation on ITD coding
The above findings have important consequences for the firing
behavior of MSO cells in vivo. We simulated ITD tuning functions
using our ongoing input paradigm with synaptic conductances de-
rived from bandpass-filtered noise. Mimicking phase-locked au-

ditory activity from the two ears, we split up the synaptic inputs
into two channels with distinct temporal disparity for the puta-
tive ipsilateral and contralateral excitatory synapses, which, dis-
regarding possible additional cochlear and transmission delays,
we interpret as an ITD. We assumed that the cell also received
phase-locked inhibitory input from both ears (from the medial
and lateral nuclei of the trapezoid body) and used the inhibitory
synapses to generate a maximum shift in best ITD (Brand et al.,
2002; Leibold and van Hemmen, 2005; Pecka et al., 2008; Leibold,
2010). For bandpass input with a center frequency of 250 and 500
Hz, the contralateral inhibition was advanced compared with
excitation by 0.8 ms, whereas the ipsilateral inhibition was de-
layed with respect to excitation by 0.11 ms. For these low center
frequencies of the input, the model generated a rate code of ITD
(Fig. 8A1,A2) in which firing at low rates was relatively more
supported by distally initiated APs (Fig. 8B1,B2). This becomes
obvious if one computes Fisher information as a means to assess
the ITD resolution of the neuronal responses (Fig. 8C). Fisher
information (resolution) is particularly high at the slopes of the
tuning curves. In line with the high fractions of distally initiated
APs at low firing rates (Fig. 8B), distally initiated APs also con-
tribute a particularly large amount of information at these low
rate regimes. Although, for the present definition of ITDs, these
low rate parts are largely outside the physiological range (Fig. 8,
gray bars), they might still become physiologically relevant if ad-
ditional bilaterally asymmetric cochlear, axonal, or cellular delays
exist that shift the tuning curves in parallel to the ITD axis.

To achieve the maximal peak shift for bandpass input with a
center frequency of 1000 Hz, we set the contralateral inhibition to
lead the excitation by 0.5 ms. The situation was very similar to
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those for the two lower center frequencies, only that the best ITD,
in contrast to in vivo findings (Brand et al., 2002), was close to the
midline (Fig. 8A3), and the code was mediated by distal AP initi-
ation to an even larger extent (Fig. 8B3). Also Fisher information
was particularly high for distally initiated APs, even within the
physiological range without any additional asymmetric delays
(Fig. 8C3). Thus, the realistically slow decaying inhibition (expo-
nential decay with a time constant of 1.6 ms; Magnusson et al.,
2005; Couchman et al., 2010) could well account for the observed
peak shifts of low-frequency cells in gerbils, whereas it (at least
alone) does not do so for frequencies of �1 kHz and beyond
(Pecka et al., 2008).

As a control, we ran the simulations without inhibitory inputs
(Fig. 8A4,B4,C4) which resulted in a best delay of zero. In this case,
distally initiated APs were less prevalent. We thus conclude that
distal AP initiation is an important mode of AP generation, par-
ticularly in the high-frequency channels but also in low-
frequency channels with phase-locked inhibition.

In a final set of simulations, we tested how robust our findings
are in a model that includes dendrites (Fig. 8A5,B5,C5). MSO
neurons typically have two dendrites, a lateral one receives
ipsilateral excitatory input fibers and a medial one targeted by
contralateral excitatory input fibers. We adjusted the model
such that all basic physiological properties matched those of
the simpler model and, hence, the published electrophysiolog-
ical data (Scott et al., 2005; Couchman et al., 2010). The tuning
curves and distal AP fractions from this extended model were
almost identical to that of the simpler model. We thus con-

clude that the additional dendritic cur-
rent sinks do not influence the
excitability of the neuron beyond their
contribution to the basic physiological
parameters (input resistance, resting
potential, and EPSP shape).

Discussion
In this study, we used naturalistic synaptic
conductance trains to investigate AP ini-
tiation in a model of binaural coincidence
detector neurons in the MSO, featuring a
detailed axonal morphology. Modeling as
well as electrophysiology showed that
MSO cells incorporate temporal filtering
properties such that they were easiest to
excite for an input frequency of �500 Hz.
In contrast to current theories, the site of
AP generation was not restricted to the
AIS but varied depending on the spectral
composition of the input. Further distally
initiated APs (at the nodes of Ranvier) oc-
curred close to the AP threshold in low-
frequency channels, particularly in the
presence of inhibition, as well as for strong
stimulation in the high-frequency chan-
nels. Mechanistically, distal AP initiation
at low frequencies was mediated by a
strong somatic current sink, whereas for
high frequencies it resulted from a stron-
ger sodium channel inactivation in the
AIS than in the distal axon. Importantly,
in both cases, the ability of the neuron to
generate APs in more distal axonal seg-
ments increased the dynamic range of fir-
ing rates. Distal AP initiation thereby

facilitates the resolution of the rate code of ITDs in the cell (Skot-
tun, 1998).

Our model simulations show that AP initiation cannot be
viewed to generally occur at one specific site, but rather the prox-
imal axonal segments act as a whole during this process. This is
because the axial transport of charge particularly strongly deter-
mines the excitability of neighboring axonal segments (Baranaus-
kas et al., 2013). To support the idea of distributed AP generation
on a phenomenological level, we compared the trajectories of AIS
APs and distally initiated APs plotting AIS voltage against voltage
at the first node of Ranvier (Fig. 9). Although, on average, we see
a clear distinction between the trajectories of the AIS and distally
initiated APs, for higher stimulus frequencies the two sorts of
trajectories form a continuum. This means that for some APs it is
valid to assign a single site of initiation, but for others (Fig. 9, close
to the border between red and green traces) it is rather difficult. A
further argument in favor of spatially distributed AP generation is
that the distribution of AP initiation sites in our model also
depends on stimulus frequency, with high frequencies giving
rise to more distal spiking (Fig. 5I ). This finding is consistent
with previous reports about layer 5 pyramidal neurons reveal-
ing that the first node of Ranvier facilitates high-frequency
(�100 Hz) burst firing and reduces the somatic AP threshold
by 5 mV (Kole, 2011). In summary, these results suggest that
for high-frequency inputs, AP initiation of MSO cells indeed
results from a spatially distributed and collective mechanism,
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whereas for low-frequency inputs APs are rather generated at
a distinct site.

Our computational model explains the small AP amplitudes
observed in vivo (Yin and Chan, 1990) and in vitro (Scott et al.,
2007; Couchman et al., 2010). However, the specific choice of
parameters is crucial to further justify the model results. Whereas
most of the parameters are closely tied to the existing MSO liter-
ature and the new morphometric data presented in this article,
specifically the sodium conductances have not yet been deter-
mined experimentally in MSO axons. We have set the axonal
sodium conductance density such that the firing threshold (70 –
110 nS) for a single excitatory synaptic conductance stimulus fits
our current-clamp measurements (Couchman et al., 2010).
Moreover, the axonal sodium conductance density of 4 nS/�m 2

used in the model lies within the range of values reported for
cortical pyramidal neuron AISs (2.5 nS/�m 2, Kole et al., 2008)
and has been used in several other studies (7.5 nS/�m 2, Shu et al.,
2007; 4.5 nS/�m 2, Spirou et al., 2008). In our standard parameter
set, we decided to use the same sodium channel density for all
unmyelinated axonal compartments (the AIS and the nodes of
Ranvier). This simplification rather leads to an underestimation
of distal AP initiation (Fig. 5K). Assuming a higher sodium chan-
nel density in the nodes of Ranvier than in the axon initial seg-
ment, as shown by immunogold electron microscopy in cortical
pyramidal cells (Lorincz and Nusser, 2010), relatively decreases
the excitability of the AIS, thereby increasing the fraction of dis-
tally initiated APs.

In the analog ITD circuitry of birds, axonal processing has also
been shown to be functionally important (Kuba et al., 2006;
Ashida et al., 2007). In NL cells receiving phase-locked inputs up
to 3 kHz, the AP initiation zone (clustering of sodium channels)
of the AIS is located substantially more distal compared with the
low-frequency neurons (Kuba et al., 2006). This finding is in line
with the present observation of AP initiation moving to more
distal parts of the axon for high-frequency stimuli. Compared
with MSO principal neurons, which we suggest to have a dynam-
ically changing site of AP initiation, in NL neurons the site of AP
initiation seems rather hardwired, which is also supported by a
partial myelination of the initial segment (Carr and Boudreau,
1993).

The mechanisms underlying ITD tuning of MSO principal
neurons are highly debated (Grothe et al., 2010; Roberts et al.,
2013; van der Heijden et al., 2013). Traditionally, ITD processing
was thought to rely exclusively on the coincidence detection of
excitatory inputs and neuronal ITD representation on the neu-
rons that respond most at their best ITD. This best ITD is deter-
mined by the difference of internal delay lines between the ears
and the coincidence detector neuron (Jeffress, 1948). While in the
bird systems this concept still seems to constitute the core mech-
anism underlying ITD maps (Ashida and Carr, 2011), the situa-
tion in mammals is less clear. In brainstem and midbrain, the best
ITDs change with stimulus frequency inconsistently with the as-
sumption of a solely temporal conduction delay (i.e., they exhibit
a so-called characteristic phase; Yin and Chan 1990, Agapiou and
McAlpine, 2008, Siveke et al., 2012). Furthermore, blockade of
glycinergic transmission in vivo shifted the best ITD of MSO
neurons toward zero (Brand et al., 2002), hence arguing for a
distinct effect of inhibitory inputs on the timing and shape of the
excitatory potentials (Brand et al., 2002; Pecka et al., 2008) and
providing a putative explanation for the frequency-dependent
best ITDs (Leibold, 2010). Although it has been assumed that,
given its slow kinetics, inhibition alone cannot account for a sub-
stantial shift of the best ITD (Jercog et al., 2010; Day and Semple,

2011; Roberts et al., 2013), our present modeling results show
that inhibition has the potential to generate shifts as large as the
physiological ITD range of gerbils (�130 �s), at least for frequen-
cies �500 Hz. This, of course, does not exclude further mecha-
nisms like cochlear or axonal delays (Schroeder, 1977; Shamma et
al., 1989; Joris et al., 2006; Day and Semple, 2011) and morpho-
logical (Zhou et al., 2005; but see Rautenberg et al., 2009) or
physiological (Jercog et al., 2010; but see Roberts et al., 2013)
asymmetries. A further argument against a contribution of fast
inhibition to the shift of best ITDs stems from recent in vivo
whole-cell recordings (van der Heijden et al., 2013), which state a
lack of obvious hyperpolarizing IPSPs. Because of the slow inhib-
itory time constant, our simulations show that during an ongoing
stimulus IPSPs indeed do not show up as isolated potentials (Fig.
1D) but nevertheless influence the phase of the monaurally in-
duced oscillations sufficiently to induce a shift of best ITDs (even
for 1 kHz, although not much).

Beyond the auditory brainstem, fast and leaky cell membranes
have also been reported in cortical pyramidal cells during massive
synaptic bombardment such as in high-conductance states [Paré
et al., 1998 (who reported input resistances as low as 4 M�)]
and sharp wave ripple events (Bähner et al., 2011). Under both
conditions, the cells show extensive spiking activity in vivo
(Csicsvari et al., 1999; Steriade, 2001). It is thus tempting to
speculate that distal AP initiation contributes to firing as well
by allowing the somatic current sink to decouple from the
axonal AP-generating zones in a context-dependent manner
(Vladimirov et al., 2013).
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4
Discussion

At a first glance, the two studies that have been presented here, have little in
common. They represent two completely different brain areas and circuits, with
extremely different functions. Nevertheless, principal cells in the medial superior
olive (MSO) as well as pyramidal neurons in the hippocampus (HC) share some
profoundly similar properties. In the following I will highlight a selection of these
and discuss their impact on the presented studies. Unless stated otherwise, the
results are obtained from experiments with rodents, typically mice or rats, or in the
case of MSO studies gerbils.
To begin with, I will give an overview of the most important discussion points of
each study separately. Afterwards, I will discuss the impact of high-conductance
states in the information processing of single neurons and on the network level.
This topic leads to an analysis of the influence of dendritic integration.

4.1 Summary of Study 1

Many studies suggest a tight link between memory formation and the HC. In our
study, we focus on SWR, large voltage deflections, visible in the LFP, which are
accompanied by fast, bursting oscillations. In the living animal, they mainly occur
during quiet wakefulness and sleep. SWR are thought to be important in memory
consolidation. In this work (see Chapter 2), we focus on the memory capacity of
SWR.
Therefor, we created two different models of a CA1 pyramidal neuron, an
one compartmental leaky-integrate and fire model, and a biophysically inspired
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Hodgkin-Huxley type model. We used physiological, compound postsynaptc cur-
rents (cPSCs) as inputs, recreated from in vitro slice recordings (Maier et al.,
2011). These inputs allowed us to investigate memory capacity of single ripple
cycles in a continuous time space. Former studies mainly treated a ripple cycle
as one discrete event in time (Kammerer et al., 2013).
To begin with, we studied the impact on spiking at a specific cycle with respect
to the activity in the preceding ripple cycle. Unaltered reconstructed, excitatory
cPSCs were modified such that at the beginning of the experiment the PSCs at
selected cycle were deleted. Instead as average PSC was inserted, which ampli-
tude was increased until an AP was elicited. We could not observe a strong effect
of preceding activity on spike timing at the following cycle. The amplitudes of our
conductances appear not to be sufficiently high. We conclude that most of the
cPSCs serve as a form of noisy background activity. Thus, this finding allowed us
to treat each ripple cycle as an individual unit for pattern association.
To study the memory capacity of a single ripple cycle, artificial cPSCs were cre-
ated. We fixed the duration of one ripple event to 7 cycles and defined the 4th
cycle to be our signal cycle, at which we expected the generation of APs. All other
cycles were treated, as noise cycles, in accordance with our first finding. Setting
of the synaptic weights depended on the activity during signal pattern. We varied
the number of ripple inputs, and measured the ability of the neuron to retrieve
those. Large numbers of ripple patterns could only be restored in the case of
sparse coding in the inputs.
As our biophysical model relied on parameters drawn from observations made in
in vitro recordings, we applied the same learning paradigm in a leaky-integrate
and fire neuron. This gave us control over the spiking threshold. In each trial we
determined the threshold such that the output firing rate resembled the input rate.
When only excitation was applied, the results match the findings in the biophysical
model. However, adding inhibition improves the memory capacity for larger num-
bers of patterns, although to a small extent. Thus, threshold adaptation as well
as excitation, accompanied by inhibition, are necessary requirements,to improve
memory retrieval.
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4.2 Summary of Study 2

The MSO is known for its importance in interaural time difference (ITD) process-
ing. Despite the very low input resistance of MSO neurons, they can generate
and sustain very high firing rates. How this works is still unclear and thus, we try
to give more insights into the topic of action potential (AP) initiation in the principal
MSO neurons (Lehnert et al., 2014).
The main core of this study (see Chapter 3) is a biophysically inspired multi-
compartment model of a binaural coincidence detection neuron featuring a very
detailed axonal segment. The synaptic conductance inputs were created based
on experimental findings. The study could show that AP initiation is possible at
different locations along the axon and not only at the axonal initial segment (AIS).
Thereby, the exact position of the initiation appears to be dependent on the spec-
tral profile of the used input. Especially high frequency inputs seem to be able to
generate APs at distal parts of the axon. In contrast, low frequency inputs appear
to be more restricted to initiate APs in the region of the AIS. The possibility of gen-
erating APs at different locations might have a profound impact on the integration
of inputs.
Two major effects have to be mentioned which are possibly ascribed to the flex-
ible AP initiation site. First, high stimulus amplitudes are able to keep high firing
rates, despite the large excitement. And second, it is more likely to generate APs
using small stimulus amplitudes.
Both of these findings play a key role in keeping the high precision in the rate code
of ITDs.
Adding inhibition, enhances the occurrence of APs to appear more distal.
Another very unique feature in our study is the chosen sodium conductance den-
sity used in the axonal segments. In contrast to other parameters, the actual val-
ues do not come from direct electrophysiological recordings. As such experiments
haven’t been conducted, the value for the sodium conductance was inferred from
current-clamp experiments. It was known which excitatory conductance trace
should elicit an AP. Thus, the sodium conductance density was adjusted such
that a conductance trace evokes an AP.
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4.3 The impact of a high-conductance state

The typical or not so typical neuron

Due to their shape, pyramidal neurons are often used to depict a standard ’text-
book neuron’ (see, e.g., Abbott and Dayan (2001) as a reference for classical
information transfer in a single neuron). In this classical view, a pyramidal neuron
consists of a highly branching dendrite and a single axon, typically drawn on the
opposite of the dendrite. The described shape goes back to the first drawings of
cortical neurons from Cajal in 1911 (Cajal, 1911).
In textbooks this setting is used to explain the input-output behavior in a single neu-
ron. Signal processing in this traditional view takes the following steps. Synapses
target the dendrite. Any input travels from the dendrites, through the soma to the
axon. In case of a strong enough input, an AP will be generated at the axon hillock
or axon nodes, which travels along the axon to target via a synapse the next neu-
ron and the transfer can start over again.
And indeed, this type of pyramidal neuron has been described in the HC. But over
the years of studying the cortex, a whole variety of pyramidal neurons, with re-
spect to their shape, was found. Not to mention the huge diversity of neurons
in general, which ranges from extensive branching axons in neocortical interneu-
rons to Purkinje cells in the cerebellum with two highly branching dendrites, and
all possible variations in between those two examples (Parekh and Ascoli, 2013).
It is still unclear how much impact the actual shape of each individual neuron has
on the overall integration of information in neuronal networks. Additionally, the
effects on the integration of inputs at single cell level are most uncertain, as well.
Thome et al. (2014) started looking into this topic inside the hippocampal frame-
work. They unraveled the finding that a huge portion of pyramidal neurons in the
region CA1 have axon-carrying dendrites (AcDs). As already explained, the clas-
sical view would be that the axon emerges from an AIS attached to the soma.
Here, the axon is linked to the soma via a small dendritic compartment. Thome
et al. (2014) described effects on the AP generation. AcD neurons tend to exhibit
more dendritic spikes. When a current input is injected into an AcD a lower thresh-
old is needed to elicit an AP in comparison to an injection into a normal dendrite.
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Thus, altering the form of a neuron comes along with profound changes in electri-
cal properties. On the one hand, this can be simply explained from the geometrical
properties. Here, cable theory applies, which is basically the attempt to describe
the current flow in a passive neuron through mathematical equations. Therefore,
the neuron is theoretically subdivided in cylindrical units with certain values for
their resistance and capacitance (Hodgkin and Huxley, 1952). On the other hand,
the distribution of ion channels in the membrane has a high impact on the elec-
trophysiological properties of a neuron.
The properties of neurons are mainly gained through stainings of slices or record-
ings in the latter, so called in vitro recordings. The big advantage of slice record-
ings, in contrast to in vivo recordings, is the high control over external parameters,
like temperature or ions in the surrounding fluid. In theory, this should allow for
a good reproducibility, in case of performing experiments under the same condi-
tions. Unfortunately, this aim is in reality more difficult, e.g., due to parameters
which cannot be easily controlled, like atmospheric pressure or temperature in the
laboratory, among many others.
But, in vitro recordings lack a very important feature, which was neglected for a
long time. Namely the existence of a fully functioning neuronal network, the cell
of interest is embedded in. This is especially important when considering that the
cerebral cortex is known for its very dense connectivity, with one cell receiving
inputs from several thousand synapses. Thus, by cutting those connections one
can expect a huge effect on the overall activity of the neurons.
One key difference between in vitro and in vivo recordings, I want to focus on, is
the input resistance. Interestingly, in vitro recordings go along with higher values
for the input resistance than in vivo recordings. Moreover, the input resistance in
in vivo recordings highly depends on the behavior of the animal. A supplemen-
tary point, which will be discussed later. Additionally, I also want to highlight the
influence of higher conductances in precise temporal processing in MSO cells.

Impact of a high-conductance state

Conductance describes how well a current travels through a medium, and it is
the inverse of the resistance. Thus, it is equivalent to talk about low resistance
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instead of high conductance.
In neurons the conductance plays a crucial role for their excitability, thereby affect-
ing the spiking behavior of the cells, i.e., altering the neural code. Before I go into
details about the effects of changes in the resistance, I want to briefly introduce
the notion of neural code, which resembles a bit my description of a ”textbook”
neuron from above.
The process of information transfer through the brain can be called neural coding.
The first clear definition of this term was given in a report from a work session in
1968. Here, the participants subdivided neural coding into 4 parts (Bullock, TH
and Perkel, 1968). The coding starts with the generation of information (1). This
information can then be transformed (2) and transmitted (3). As a last step the re-
ceiver has to interpret it (4). The aim of this is a reliable transmission of information
through the neuronal system. Interestingly, the participants already concluded
that computational simulations of neurons have a big advantage in comparison to
in vitro experiments. Simulations allow to control the effect of surrounding cells
with a high level of detail and thereby mimicking the real environment of a cell.
Neurons with a low input resistance, equal to a high-conductance state, are char-
acterized by a variety of properties (for a review see Destexhe et al. (2003)).
As previously mentioned, high-conductances allow for an increased temporal pre-
cision in firing. By analyzing the response time of a cell with respect to a current
step inserted into the soma, the membrane time constant can be measured (Des-
texhe and Paré, 1999). It was shown that a higher conductance comes with a
reduced membrane time constant. The smaller time constant is responsible for
different effects. Among others, the ability to effectively resolve inputs exhibiting
high frequencies has to be mentioned (Rudolph and Destexhe, 2003). The pre-
sented effect is assumed to be crucial for the high resolution needed in processing
auditory cues.
Another consequence, resulting from a low resistance, is an altered responsive-
ness of the neuron. An increased conductance reinforces the responsiveness of
a neuron (Paré et al., 1998; Zerlaut and Destexhe, 2017). It has to be noted that
this is not the case with a constant high conductance, but rather a fluctuation is
needed. Otherwise, the effect is reversed, i.e., the responsiveness is reduced. To
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achieve this enhancement effect, a balanced synaptic bombardment with respect
to excitation and inhibition is needed (Shu et al., 2003). A prominent example for
this extreme increase of synaptic activity are UP states during slow-wave sleep
(Steriade et al., 2001). Especially, in contrast to their counterpart, the DOWN
states, where activity levels are low. Shu et al. (2003) used this framework to
study the effects on a single cell exposed to this synaptic barrage. It appears that
UP states allow for an easier generation of AP with a small number of inputs. Ad-
ditionally, the authors attribute the creation of context, e.g., attention, to the high
synaptic background activity. Fast changes between different states are possible.
In contrast to changes in modulatory transmitters, tuning on and off of the synaptic
barrage is rather quick. Thereby, making it the perfect choice to switch between
different network states, depending on the situation.
Moreover, high conductance-states have impact on the effectiveness of synaptic
inputs with respect to their entry location at the dendrite (Destexhe et al., 2003).
Last, I want to mention the impact of high-conductance state on the temporal in-
tegration of input signals. This specific condition seems to allow for switching be-
tween different coding strategies, e.g., between a firing-rate based coding strategy
and coincidence detection (Perkel and Holmes Bullock, 1968). Different coding
strategies have an impact on the spike synchrony and the degree to which this
synchrony can be kept from one neuron to the next (Ratté et al., 2013).
Already the chosen selection of consequences, high-conductance states can have
in neurons, makes clear how much impact they do have. The above section was
kept more generic and not all of the described observations can be applied to
neurons in general, and in particular to hippocampal pyramidal or principal MSO
neurons. Thus, in the following, I try to examine the impact of this state on the
two mentioned cell types. A conclusion that can be drawn from all of these ef-
fects is the general phenomenon of cells being more ore less stochastic in their
responses. This can be explained by the huge barrage of synaptic inputs the cells
receive during the high-conductance states.

Hippocampus. As it is apparent from the paragraph above, high-conductance
influences the cell in several ways. Specifically in the HC, the following observa-
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tions have been made.
In a study from 2001, Stacey and Durand (2001) performed slice recordings of
CA1 pyramidal neurons. They injected current pulses into the Schaffer collater-
als. To generate synaptic noise, they placed an electrode nearby the CA3 region
and applied a long current pulse. Modulating the noise influenced the capabil-
ity of detecting subthreshold activity in CA1 neurons. To be more precise, noise
improves the ability of doing so. Moreover, they also suggest that this barrage
of synaptic input could also be used to get over the effect of attenuation, seen
in passive dendrites (Stacey and Durand, 2000). Thus, signal detection in gen-
eral seems to largely benefit from enhanced noise. It seems that increasing the
background activity, leads to an enhancement of random spiking, which in turn
decreases the signal to noise ratio (Stacey and Durand, 2001)
Hô and Destexhe (2000) focused their simulation study of neocortical pyramidal
neurons on the different components of background activity. Next to a tonically
active conductance, voltage fluctuations are important to be observed. Especially
these voltage fluctuations seem to account for a higher sensitivity of the cell to-
wards subthreshold inputs.

MSO. In general, MSO neurons are, as previously mentioned, known for their
extremely high temporal precision, used for sound localization. The membrane
time constant of these cells is small, with values around a few hundreds of milisec-
onds (Scott et al., 2005). The high precision is needed for accurate coincidence
detection, which is the ability to solely generate a response in the case of syn-
chronous inputs (Ratté et al., 2013). The crucial ion channels are namely the
low-threshold potassium channel Kv1 and sodium channels (Svirskis et al., 2004).
The low-threshold potassium currents impact the absolute as well as the relative
refractory period of the MSO neuron, together with the cation currents (Negm and
Bruce, 2014). Using a computational model, Svirskis et al. (2004) could show
that increasing the potassium current results in a reduced coincidence detection.
Increasing the sodium current exhibited the opposite effect. Thus, the authors
concluded that in order to gain a precise time window for the coincidence detec-
tion, sodium channels should be more activated and the low-threshold potassium
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channels deactivated by the requested synaptic inputs.
Here, the distribution of the specific ion channels along the cell are vital as well.
Mathews et al. (2010) focused on the effect of Kv1 channels. They demonstrated
that in synaptic integration the time resolution can be increased by activation of
Kv1 channels. Additionally, the gradient of this potassium channel allows for com-
pensation of filter effects stemming from the passive cable properties.

Coincidence detection. The ability of a neuron to function as a coincidence
detector, and thereby transforming temporal code into a rate code, relies on
several factors. One major factor seems to be the integration time with respect to
the interspike interval. If the integration time of a neuron is long in comparison to
the interspike interval of the input, the cell can sum up the inputs and thereby acts
as a temporal integrator (König et al., 1996). In contrast, coincidence detectors
have a low integration time that allows the neuron to transmit signals with high
temporal precision and depend on the membrane time constant (Kempter et al.,
1998).
In the case of coincidence detection with subthreshold inputs, a reduced low-
threshold potassium channel activity is suggested to play a key role (Svirskis
et al., 2004). These potassium currents appear to be involved in the generation
of membrane potential resonances (Beraneck et al., 2007) that help to intensify
the subthreshold signal and thereby overcome noise (Kempter et al., 1998).
Neurons acting as coincidence detectors can be found in different brain areas.
In the auditory brain stem, next to other nuclei, the MSO is known for its ability to
process incoming inputs with a high temporal precision (Hermann et al., 2007).
Fischer et al. (2018) argue that neurons can actively change their integration
properties via these subthreshold membrane resonances and thereby serving
different frequency inputs. The authors assume that in particular the leakiness
of a neuron affects the resonance, a property of a cell that can dynamically
change. Thereby, Fischer et al. (2018) predict that their finding is not restricted
to a specific type of neuron.
Thus, also hippocampal pyramidal cells could potentially function like this. During
SWR occurrence the single cell has to overcome massive background noise
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and exhibits an increased membrane conductance (Prescott et al., 2006). The
increased membrane conductance directly results in a decreased membrane
time constant (Bernander and Koch, 1991). An effect that, similar to MSO cells,
alters the integration properties of a pyramidal neuron and allows it to function as
coincidence detector.

The aim of this thesis was to identify possible mechanisms, that allow neurons to
perform reliable computations in high-conductance state. Hippocampal pyramidal
neurons and MSO neurons proved as a good study object choice, as they are well
studied and ample functional knowledge is available.
CA1 pyramidal neurons show a decrease of signal to noise ratio with enhanced
noise. MSO neurons appear to change the AP generation site along the axon with
increased input frequency.
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