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Zusammenfassung

In Vielteilchensystemen liefert die Reichweite der durch Verschränkung induzierten
räumlichen Quantenkorrelationen eine Vielzahl von Informationen über verschiedene
physikalische Eigenschaften. Eine Möglichkeit, diese Informationen zu untersuchen,
ist die Betrachtung des Skalierungsverhaltens der Verschränkungsentropie des Grund-
zustandes in Bezug auf eine skalierte Version eines räumlichen Gebietes. In vielen Syste-
men wächst die Verschränkungsentropie proportional zur Oberfläche des Gebietes, was
als Oberflächengesetz bezeichnet wird. In dieser Arbeit untersuchen wir den Zusam-
menhang zwischen dem Skalierungsverhalten der Verschränkungsentropie und Viel-
teilchenlokalisierung. In den letzten Jahren konnte gezeigt werden, dass eine Reihe von
Systemen, von denen bekannt ist, dass sich ihr Grundzustand in der lokalisierten Phase
befindet, Oberflächengesetze der Verschränkungsentropie aufweisen. Auf der anderen
Seite wird allgemein angenommen, dass die Verschränkungsentropie von delokalisierten
Grundzuständen nicht einem Oberflächengesetz genügt. Allerdings gibt es nur wenige
Beispiele, für die ein abweichendes Skalierungsverhalten bereits gezeigt wurde. Ziel
dieser Arbeit ist es, weitere Beispiele für solche Abweichungen von Oberflächenge-
setzen der Verschränkungsentropie im Zusammenhang mit delokalisierten Systemen zu
liefern. In drei verschiedenen Modellen zeigen wir, dass die Verschränkungsentropie des
Grundzustandes zumindest ein logarithmisch erweitertes Oberflächengesetz aufweist.

Der erste Teil dieser Dissertation, welcher auf einer gemeinsamen Arbeit mit L.
Pastur und P. Müller [MPS20] basiert, befasst sich mit dem zufälligen Dimer-Modell.
Obwohl dieses nicht-interagierende, eindimensionale Modell spektral lokalisiert ist, gibt
es kritische Punkte in dem Spektrum, an denen die Lokalisierungslänge divergiert. Im
Falle von geringer Unordnung wird in dieser Arbeit eine logarithmische Untergrenze für
den Erwartungswert der Verschränkungsentropie gezeigt. Darüber hinaus wird für eine
beliebige Unordnungsstärke eine logarithmische Untergrenze an die Verschränkungsen-
tropie für endliche Volumen an diesen kritischen Punkten bewiesen.

Im zweiten Teil dieser Arbeit, welcher auf einer gemeinsamen Arbeit mit P. Müller
[MS20] basiert, betrachten wir einen mehrdimensionalen, kontinuierlichen Schrödinger-
Operator, der durch die Störung eines negativen Laplace-Operators durch ein kompakt
getragenes, beschränktes Potential gegeben ist. Sowohl eine obere als auch eine untere
Grenze für die Verschränkungsentropie zu einer positiven Fermi-Energie wird gezeigt.
Diese Schranken beweisen, dass das Skalierungsverhalten der Verschränkungsentropie
einem logarithmisch erweiterten Oberflächengesetz entspricht. Dies ist das gleiche
Skalierungsverhalten, das auch bei freien Fermionen auftritt. Das Modell der freien
Fermionen ist eines der wenigen delokalisierten Systeme, für die eine asymptotische
Entwicklung der Verschränkungsentropie bekannt ist.
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Im dritten und letzten Teil wird, basierend auf einer gemeinsamen Arbeit mit C.
Fischbacher [FS20], die endliche XXZ-Spinkette mit periodischen Randbedingungen
in der Ising-Phase betrachtet. Dieses Modell hat aufgrund seiner Translationsinvar-
ianz delokalisierte Eigenzustände. Wir zeigen, dass für jeden Eigenwert im Droplet-
Band mindestens ein Eigenvektor existiert, sodass die zugehörige Verschränkungsen-
tropie mindestens logarithmisch anwächst. Für dieses Resultat setzen wir voraus, dass
der Anisotropie-Parameter ∆ ausreichend groß ist. Zusätzlich dazu zeigen wir eine
Combes–Thomas-Abschätzung für dieses Modell, was für sich genommen ebenfalls von
Interesse ist.



Summary

In many-body systems the extent and range of spatial quantum correlations induced
by entanglement provide a great deal of information about several qualitative phys-
ical properties. One way of studying this information is to examine the scaling be-
haviour of the ground state entanglement entropy with respect to a scaled version of
a distinguished spatial subregion. In various systems the entanglement entropy grows
proportionally to the surface area of the subregion which is referred to as an area
law. In this thesis we examine the connection between the scaling behaviour of the
entanglement entropy and many-body localisation. In recent years it was show that a
number of systems, which are known to be in the localised phase, exhibit area laws of
the entanglement entropy. It is commonly expected that the entanglement entropies
of delocalised ground states do not satisfy area laws, though not many examples of
different scaling behaviours have been shown, yet. The aim of this thesis is to provide
further examples of violations of area laws in the context of delocalised systems. In
three different models we show that the entanglement entropy of the ground states
grows at least like a logarithmically enhanced area law.

The first part of this thesis, based on joint work with P. Müller and L. Pastur
[MPS20], considers the random dimer model. Even though this non-interacting, one-
dimensional model is spectrally localised, there exist critical points in its spectrum at
which the localisation length diverges. We consider the ground state corresponding to
a Fermi energy positioned at one of these critical energies. In the case of small disorder
we show a logarithmic lower bound to the expectation of the entanglement entropy.
Moreover, we proof a logarithmic lower bound to the finite-volume entanglement en-
tropy at these critical points for any disorder strength.

In the second part of this thesis, which is based on joint work with P. Müller [MS20],
we consider a multi-dimensional continuum Schrödinger operator, which is given by a
perturbation of a negative Laplacian by a compactly supported, bounded potential. We
establish both an upper and a lower bound to the entanglement entropy corresponding
to a positive Fermi energy. These bounds prove that the scaling behaviour of the
entanglement entropy is a logarithmically enhanced area law. This is the same scaling
behaviour as the one occurring in the case of free fermions, one of the few delocalised
systems for which an asymptotic expansion of the entanglement entropy is known.

Finally, in the third and last part, based on joint work with C. Fischbacher [FS20],
we consider the finite XXZ spin chain with periodic boundary conditions in the Ising
phase. We show that for each eigenvalue in the droplet band there exists at least one
eigenvector such that the corresponding entanglement entropy grows at least logarith-
mically, provided the anisotropy parameter ∆ is sufficiently large. In addition, we show
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a Combes–Thomas estimate for this model, which may be of independent interest.



Preface

The thesis consists of an introductory chapter followed by three chapters with a detailed
description of the results, including proofs. The results presented here were obtained
in scientific collaboration, which resulted in the publications listed below. The relation
to published material is highlighted at the beginning of each of the chapters two to
four. Moreover, parts of the introduction coincide both in content and writing with
material from the publications (i)-(iii) below.

Published content

(i) P. Müller, L. Pastur and R. Schulte, How much delocalisation is needed for an
enhanced area law of the entanglement entropy?, Commun. Math. Phys. 376,
649–679 (2020).

(ii) P. Müller and R. Schulte, Stability of the enhanced area law of the entanglement
entropy, accepted by Ann. Henri Poincaré, (2020).

(iii) C. Fischbacher and R. Schulte, Lower bound to the entanglement entropy of the
XXZ spin ring (2020), e-print arXiv:2007.00735.

We do not refer to the publications below by the numbers (i)–(iii) but by their
respective numbers in the bibliography at the end of this thesis.
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Chapter 1

Introduction

Quantum entanglement is an important aspect of quantum mechanics, which lies at the
centre of interest of 21st century physics. First discovered by A. Einstein, B. Podolsky
and N. Rosen [EPR35] it describes a type of quantum mechanical correlations without
counterpart in classical physics. Such correlations impact many different aspects of
quantum mechanics. They were studied extensively in the context of various branches
of modern physics ranging from quantum information science over condensed matter
physics to string theory [HHHH09, Laf16].

A key quantity in the context of analysing entanglement is the bipartite entangle-
ment entropy, which serves as a quantifier of the entanglement between two subsystems.
For a given pure state in a bipartite system it is defined as the von Neumann entropy of
the corresponding reduced state [PV07]. We only consider two subsystems correspond-
ing to a distinguished spatial subregion and its complement in this thesis. In such a
situation, the entanglement entropy is sometimes also referred to as geometric entropy.
In recent years, the scaling behaviour of the entanglement entropy has received much
attention [ECP10, Laf16], with the asymptotic growth of the entanglement entropy
with respect to a scaled version of a spatial region Λ, namely ΛL ∶= L ⋅ Λ for L > 0,
being of particular interest. To study the effects of the correlations induced by entan-
glement in a given state, the leading asymptotic derived from this scaling proves to be
rather insightful.

Analysis of the ground state entanglement entropy of various physical systems re-
veals a curious property – against all expeditions it is generally not extensive. Unlike
the physical entropy of a thermal state, the entanglement entropy does not always
satisfy a volume law, which means that it does not scale like ∼ Ld for a d-dimensional
model. Often, the ground state entanglement entropy seems to be subject to an area
law instead, which means that it is proportional to the boundary surface of the re-
gion ∼ Ld−1. Other types of scaling behaviour, such as an area law with an additional
logarithmic enhancement ∼ Ld−1 lnL, are common, too. This is indeed an unusual ob-
servation, since generic states generally do not satisfy area laws. Page’s law suggests
that most of them obey a volume law instead [Pag93, FK94].

Historically, an area law of the entanglement entropy was first observed within
the context of black holes. In 1973, J. Bekenstein argued that the thermodynamic
entropy of a black hole, which is also called the Bekenstein–Hawking entropy, should
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be proportional to the horizon area [Bek73, Bek04]. Later, a connection between the
Bekenstein–Hawking entropy and the ground state entanglement entropy of a free scalar
bosonic field in flat space time was found [BKLS86, Sre93].

The idea of studying the entanglement between two spatial subregions was taken
up soon thereafter to quantify correlations in many-body systems. Especially in one-
dimensional models numerous results were found. Most notably, M. Hastings proved
in his seminal work [Has07] that the ground state of a rather generic one-dimensional
system with local interaction always obeys an area law, provided the ground state
energy is both simple and separated by a gap from the rest of the spectrum. Area laws
of the ground state entanglement entropy also occur in the context of topologically
ordered two-dimensional media [KP06].

This raises the question: What does an area law of the entanglement entropy
signify for a many-body state? Broadly speaking, it suggests that in this state the
correlations induced by entanglement are short-ranged so that only those close to the
boundary of the distinguished region yield large contributions. States with such a
property may be described with relatively few parameters. This is advantageous for
numerical simulations. It enables an approximation by matrix product states. The
density matrix renormalisation group, a versatile algorithm often used to model one-
dimensional systems, relies on this approximation [Sch05].

Apart therefrom, there is more information to be gained from the scaling behaviour
of the entanglement entropy. Those cases where the entanglement entropy does not
satisfy an area law are of particular interest. Such a violation of the area law may
indicate a quantum critical point, a second order phase transition at zero temperature
marked by the divergence of a correlation length. A logarithmic enhancement of an
area law was first found in the ground states of XY and XXZ spin chains at criti-
cal points [VLRK03]. Note that the same spin models with non-critical parameters
satisfy an area law. More generally, a logarithmic growth of the entanglement en-
tropy for one-dimensional critical systems was shown by P. Calabrese and J. Cardy by
using conformal field theory [CC09]. This is expected to be a purely one-dimensional
phenomenon. In higher dimensions it is conjectured that the leading term of the entan-
glement entropy is proportional to the surface area at any point, though the criticality
of the system might be encoded in a sub-leading term [MFS09, HW14]. A sub-leading
term to the entanglement entropy is also of interest as a criterion for characterising
topological order [HIZ05, KP06].

The scaling behaviour of the entanglement entropy has also received some atten-
tion in the context of studying the many-body localisation phase. Since this thesis
concerns questions linked to this phase, localisation shall be addressed in more de-
tail. In 1958, P. W. Anderson [And58] discovered that in some non-interacting models,
used to describe disordered materials, the absence of diffusion of waves. Later on,
this phenomenon was called Anderson localisation. The materials in question include
amorphous materials and glasses, where atoms are not positioned on a periodic lattice
but are rather randomly distributed, as well as alloys and materials with impurities,
which are random mixtures of different atoms. The randomness included in these
models causes the eigenstates of certain parts of the spectrum to be localised in space,
hence the name Anderson localisation. Because of this localisation property, quantum
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transport is suppressed. Anderson localisation is therefore considered to be a source of
an insulating behaviour other than the spectral gap responsible for the better known
band insulators.

Many-body localisation requires the occurrence of a similar effect in systems with a
particle-particle interaction. Contrary to the notion of Anderson localisation in a non-
interacting system, the notion of localisation in a many-body system is not as clearly
cut out. As we have remarked before, localisation is thought to prevent quantum
transport and thus to be a source of insulating behaviour. In a non-interacting system
this is equivalent to a situation in which no particle moves. However, in a many-body
setting quantum transport can occur in the form of group waves, where each individual
particle may move very little. Due to such complications, understanding many-body
localisation in any kind of interacting system is much more challenging.

On a mathematical level, Anderson localisation has been studied extensively within
the mathematical theory of random Schrödinger operators [CL90, PF92, Sto01, Kir08,
AW15]. By methods such as the multi-scale analysis [FS83, FMSS85, vDK89] or the
fractional moment method [AM93, Aiz94, ASFH01], localisation in some part of the
spectrum was proven for a number of models. However, the same is not true for many-
body localisation. Only a few rigorous results exist, mostly in specific one-dimensional
systems [KP90, ARNSS17, HSS12, Mas17]. We especially point out the recent results
concerning localisation in the lowest energy band of the XXZ spin chain in a disordered
magnetic potential [BW17, EKS18a, EKS18b], since this thesis addresses a related
topic. Even fewer attempts have been made to show many-body localisation in a more
general setting [Imb16a, Imb16b]. All in all, our general understanding of many-body
localisation is far from satisfactory. There still remains much to be explored.

One characteristic of a localised state are the rapidly decaying spatial correlations
responsible for an area law of the entanglement entropy [BH15]. And indeed, such
scaling behaviour of the engagement entropy has been proven for a number of disor-
dered systems. First and foremost, in a system with quasi-free fermions in a disordered
background potential, the many-body ground state corresponding to a Fermi energy EF
satisfies an area law of the entanglement entropy, provided EF lies in a region of Ander-
son localisation [PS14, EPS17, PS18a]. For some interacting systems, which are known
to be in the many-body localisation phase, area laws for the ground state entanglement
entropy have been shown, too. This again includes spin-chains in a random magnetic
background potential [ARS15, ARNSS17, BW18, FS18, Sto20]. Another example is
the bosonic model of randomly coupled harmonic oscillators [NSS13, AR18, BSW19].

Having established so far that localisation is connected to area laws of the entan-
glement entropy it remains to be assessed what happens in the absence of localisation.
One might expect some violation of an area law, since the correlations in delocalised
states are less likely to be short-ranged. Supporting this hypothesis is the case of
free fermions, for which the respective (generalised) eigenstates are clearly delocalised.
In any dimension d ∈ N, the entanglement entropy corresponding to a Fermi energy
EF > 0 satisfies a logarithmically enhanced area law, i.e. it scales like ∼ Ld−1 lnL
[Wol06, HLS11, LSS14, LSS17]. Another example for such scaling behaviour of the
entanglement entropy occurs in a system of quasi-free fermions in a periodic back-
ground potential in one dimension [PS18b], which is another model with delocalised
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eigenstates. If the scaling behaviour of the entanglement entropy is indeed different for
many-body localised and delocalised states, it might serve as a localisation criterion or,
at least, as an indicator for localisation. Such a criterion could benefit in further stud-
ies of the elusive many-body localisation phase. As pointed out before, there already
exists a number of many-body localised systems for which an area law of the ground
state entanglement entropy is confirmed. However, to the best of our knowledge there
are no other results than the ones already mentioned, proving a violation of the area
law in the absence of localisation. Now, the aim of this thesis is to collect further
examples of logarithmically enhanced area laws in order to explore the connection be-
tween delocalisation and the scaling of the entanglement entropy. To that end three
different models with eigenstates that are known to be delocalised are to be examined,
two of them without and one with particle-particle interactions. These models are:
the random dimer model, a system of quasi-free fermions in a compactly supported,
bounded background potential and the XXZ spin chain in the Ising phase. In order
to show the absence of an area law, the thesis focuses on proving lower bounds to the
entanglement entropy. For the second model an upper bound is also obtained.

Before expanding on these models in more detail, the mathematical foundations of
entanglement and the entanglement entropy are introduced in the next section.

1.1 Definition of the entanglement entropy

Entanglement occurs in quantum mechanical systems consisting of two or more sub-
systems. A state in such a system is entangled if it cannot be described in terms
of separate states of each subsystem. Let us focus on a bipartite system, which is a
system with two subsystems A and B. Mathematically, each subsystem is described
by its own separable Hilbert space HA and HB. The total system is described by the
Hilbert space H ∶= HA ⊗ HB, where ⊗ denotes the tensor product of Hilbert spaces.
Here, and in the following we use the Dirac notation for vectors in a Hilbert space. A
vector ∣φ⟩ ∈ H is called separable, if there exist vectors ∣φA⟩ ∈ HA and ∣φB⟩ ∈ HB with

∣φ⟩ = ∣φA⟩ ⊗ ∣φB⟩ . (1.1)

If ∣φ⟩ ∈ H is not separable, it is called entangled.
One method to quantifying for a given state the degree of entanglement between

two subsystems is the bipartite entanglement entropy. This quantity depends on the
reduction of a state to one of the subsystems. This is achieved by taking the partial
trace, which we are going to introduce first.

Definition 1.1.1. Let HA, HB be separable Hilbert spaces. Let H ∶= HA ⊗ HB. Let
∣ψB⟩ ∈ HB be fixed. We define

V (ψB) ∶ HA → HA ⊗HB,

∣φA⟩ ↦ ∣φA⟩ ⊗ ∣ψB⟩ . (1.2)

Let furthermore {∣ψBj ⟩}j be an orthonormal basis of HB. For any trace-class operator
T ∶ H→ H let the partial trace of T with respect to HB be given by

trB T ∶= ∑
j

[V (ψBj )]∗TV (ψBj ). (1.3)
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Here, A∗ denotes the Hermitian adjoint of an operator A.

Remark 1.1.2. (i) The partial trace does not depend on the choice of the orthonor-
mal basis {∣ψBj ⟩}j.

(ii) The partial trace trB T of a trace class operator T , is a trace class operator map-
ping HA onto HA. Moreover, tr{T} = tr{trB T}.

We are now able to reduce a state to a subsystem. Let us consider a pure state
∣φ⟩ ∈ H with ∥ ∣φ⟩ ∥ = 1, where ∥ ⋅ ∥ denotes the standard norm on H. Let further
ρ(φ) ∶= ∣φ⟩⟨φ∣ be the density operator associated with this state. The reduced density
with respect to the subsystem A is given by

ρA(φ) ∶= trB{ρ(φ)}. (1.4)

Let ρB(φ) ∶= trA{ρ(φ)} be defined analogously. The operator ρA(φ) is itself a density
operator defined on the Hilbert space HA.

Definition 1.1.3. The bipartite entanglement entropy is defined as the von Neumann-
entropy of the reduced state,

S1(A;φ) ∶= tr{s(ρA(φ))} (1.5)

where tr denotes the trace and s ∶ [0,1] → [0,∞[ with

s(λ) ∶= −λ log2(λ) for all λ ∈ [0,1]. (1.6)

Here, log2 denotes the binary logarithm with the convention 0 log2 0 ∶= 0.

The partial trace is identical to a projection only if ∣φ⟩ is separable, i.e. ρA(φ) =
∣φA⟩⟨φA∣ if ∣φ⟩ = ∣φA⟩ ⊗ ∣φB⟩ for some normalised vectors ∣φA⟩ ∈ HA and ∣φB⟩ ∈ HB.
Otherwise, ρA(φ) is a mixed state, which implies that it has eigenvalues other than
zero or one. Hence, S1(A;φ) = 0 if and only if ∣φ⟩ is separable.

There are also other measures for the bipartite entanglement, similar to the entan-
glement entropy. One example for such a measure are the Rényi entropies [Weh78, Sec-
tion II.G], which are defined as Sα(A;φ) ∶= 1

1−α log2(tr{[ρA(φ)]α}) for α ∈ ]0,∞[∖ {1}.
These entanglement measures are directly connected with the entanglement entropy via
the relation limα→1 Sα(A;φ) = S1(A;φ). Another important measure is the logarithmic
negativity [HHHH09, VW02], which is a lower bound to the entanglement entropy.
These measures are used analogously to the entanglement entropy in the context of
studying the correlations between spatial regions [LSS14, BW18, AR18].

As we have mentioned before, we are interested in measuring the entanglement
between a distinguished spatial subregion and its complement. Before we can determine
the entanglement entropy between spatial subregions, we first have to identify the
respective Hilbert spaces associated with these regions. To that effect, let us consider
a d-dimensional spin system with a spin positioned on each site of the lattice Γ ⊆ Zd.
The Hilbert space used to describe a single spin is C2. The Hilbert space for the whole
system is given by HΓ, where

HA ∶= ⊗
j∈A

C2 (1.7)
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for any finite set A. Of course, any subset ∅ ≠ Λ ⊂ Γ is described by HΛ, and we have

HΓ ≅ HΛ ⊗HΛc , (1.8)

where (⋅)c denotes the complement (with respect to Γ). We are now able to define the
entanglement entropy between Λ and Λc for any state ∣φ⟩ ∈ HΓ by

S(Λ; Γ, φ) ∶= S1(Λ;φ), (1.9)

where we substituted HA in (1.5) by HΛ. Notice that we made the dependance on Γ
explicit in this notation.

The model describing fermions on a finite lattice Γ is related to the one of a spin
system on the same lattice. The Hilbert space corresponding to one single fermion is of
course `2(Γ). Consequentially, the many-particle Hilbert space is given by the fermionic
Fock space F−(`2(Γ)). Applying the formalism of second quantisation enables us to
identify the Fock space F−(`2(Γ)) with the spin space HΓ, see Appendix A.1. We write
F−(`2(Γ)) ≅ HΓ. Therefore, we are able identify the subspaces corresponding to the
spatial region Λ and Λc as F−(`2(Λ)) ≅ HΛ and F−(`2(Λc)) ≅ HΛc respectively. Hence,
the entanglement entropy for a state ∣φ⟩ ∈ F−(`2(Γ)) is defined analogously to (1.9).

An interesting simplification of the formula for the entanglement entropy exists in
case that ∣φ⟩ is a ground state of a quasi-free fermionic system. Let H ∶ `2(Γ) → `2(Γ)
be a single-particle Hamiltonian and let (∣ψj⟩)j∈Γ ⊂ `2(Γ) denote an orthonormal basis
of eigenstates corresponding to the eigenvalues (Ej)j∈Γ ⊂ σ(H). Let further EF >
minσ(H) be a Fermi energy and let N ≡ N(EF ) ∶= ∣{j ∈ Γ ∶ Ej < EF}∣. Then the
N -particle ground state of the corresponding many-body system is given by

∣φ⟩ ∶= Π−[ ⊗
j∈Γ,

Ej<EF

∣ψj⟩ ], (1.10)

where Π− denotes the anti-symmetrisation operator, which ensures that the state ∣φ⟩ is
fermionic. By a straightforward calculation [Kli06] it can be seen that we can express
the entanglement entropy with respect to the region ∅ ≠ Λ ⊆ Γ completely in terms of
the one-particle Hamiltonian,

S(Λ; Γ, φ) = tr{h(1Λ(X)1<EF (H)1Λ(X))}, (1.11)

where X denotes the position operator and h ∶ [0,1] → R with

h(λ) ∶= −λ log2(λ) − (1 − λ) log2(1 − λ) for all λ ∈ [0,1]. (1.12)

We write 1A for the indicator function on the set A and, in abuse of notation, 1<EF ∶=
1]−∞,EF [. Note that the Fermi projection 1<EF (H) takes the place of the many-body
eigenstate ρ(φ).

The right-hand side of (1.11) is used to define the entanglement entropy between
spatial subregions for more general quasi-free fermionic systems, both discrete and
continuous.

Definition 1.1.4. Let K ∈ {Z,R} and d ∈ N. Let Γ ⊆ Kd be a Borel subset, which is
not a null-set. Let further H be a Hamiltonian which is densely defined on `2(Γ) (if
K = Z) or L2(Γ) (if K = R). For any Fermi energy EF ∈ R we define the entanglement
entropy with respect to a bounded, measurable subset Λ ⊂ Γ by

SEF (Λ; Γ,H) ∶= tr{h(1Λ(X)1<EF (H)1Λ(X))}. (1.13)
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1.2 Content of this thesis

Even without the complications added by particle-particle interactions, localisation is
not always a clearly cut-out concept. There are several different definitions of local-
isation, which are not always equivalent. One model where this is noticeable is the
random dimer model with Bernoulli disorder, which we consider in Chapter 2. This
discrete model describes quasi-free fermions in a one-dimensional chain composed out
of two distinctive dimer molecules, which are strung together in random order. For
a definition of the corresponding random Schrödinger operator Hω ∶ `2(Z) → `2(Z)
for a certain event ω in the probability space (Ω,A,P), see (2.1). The dimer model
exhibits spectral localisation, which means that for P-almost all ω the operator Hω has
only pure-point spectrum and all eigenfunctions decay exponentially in space [DBG00].
However, there is another, stronger notion for localisation called strong dynamical lo-
calisation. A random Schrödinger operator H̃ω, which is densely defined on `2(Zd) for
some d ∈ N, satisfies strong dynamical localisation in the energy interval I ⊆ R if there
exists C,µ ∈ [0,∞[ such that

E[ sup
t∈R

∣ ⟨δj, e−itH̃1I(H̃)δk⟩ ∣] ≤ Ce−µ∣j−k∣ for all j, k ∈ Zd (1.14)

where (∣δk⟩)k∈Zd denotes the canonical basis of `2(Zd) and ∣ ⋅ ∣ denotes the Euclidian
norm. The methods used for proving dynamical localisation, the fractional moment
method and multiscale analysis, can also be used to establish exponential decay (or
possibly only sub-exponential decay) of the Fermi projection [AG98, GK06a, AW15],
i.e. for every EF ∈ I, where I is an interval of strong dynamical localisation, there
exists C,µ ∈ ]0,∞[ such that

E[∣ ⟨δj,1<EF (H̃)δk⟩ ∣] ≤ Ce−µ∣k−j∣ for all j, k ∈ Zd. (1.15)

In view of Definition 1.1.4, this is a useful insight in the context of determining an
upper bound of the entanglement entropy. In [PS14], it was shown that (1.15) is a
sufficient condition for ensuring an area law of the entanglement entropy in the sense
that there exist constants c,C ∈ ]0,∞[ such that for ΛL ∶= [−L,L]d ∩Zd we have

cLd−1 ≤ E[SEF (ΛL;Zd, H̃)] ≤ CLd−1. (1.16)

However, the dimer Hamiltonian Hω neither satisfies (1.15) nor strong dynamical lo-
calisation on the whole spectrum. On the contrary, there exists superdiffusive quantum
transport in this model, i.e. for every α ∈ ]0,1/2[ there exists Cα > 0 such that

∫
T

0

dt

T
⟨δ0, e

itHω ∣X ∣2e−itHω

δ0⟩ ≥ CαT 3/2−α (1.17)

for all T > 0 and P-almost all ω. Here and in the following, ∣A∣2 ∶= A∗A for any operator
A. Predicted by [DWP90], this result was shown in [JSBS03]. The occurrence of trans-
port is due to specific critical points in the spectrum of Hω, at which the localisation
length diverges. Apart from these points, the operator satisfies dynamical localisation
[DBG00]. In this thesis we prove a logarithmic lower bound of the expectation of the
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entanglement entropy for a Fermi energy identical to one of the critical points respon-
sible for quantum transport in this model. Hence, we prove that spectral localisation
over the entire spectrum is, contrary to dynamical localisation, not sufficient to guaran-
tee the existence of an area law of the entanglement entropy. To prove this statement,
we make use of the delocalisation properties near the critical point which were studied
in detail in [JSBS03].

In Chapter 3 of this thesis we consider a more general system of quasi-free fermions
in d ∈ N space dimensions moving in a bounded and compactly supported background
potential V ∈ L∞c (Rd). The corresponding (single particle) Hamiltonian is given by
H ∶=H0 + V , where the Laplacian H0 ∶= −∆ denotes the Hamiltonian of the free Fermi
gas in d dimensions.

Let us first consider the case of free fermions without any additional potential. It
was suggested in [Wol06, GK06b, Gio06, HLS11] that the entanglement entropy at any
Fermi energy EF > 0 of free fermions should satisfy a logarithmically enhanced area
law, i.e.

SEF (ΛL;Rd,H0) = Σ0L
d−1 lnL + o(Ld−1 lnL) as L→∞ (1.18)

where ΛL ∶= L ⋅ Λ is the scaled version of a bounded Lipschitz-domain Λ ⊂ Rd with
piecewise C1-boundary. Based on Widom’s conjecture, the leading-order coefficient
Σ0 ≡ Σ0(d,Λ,EF ) was expected to depend only on the Fermi energy and the surface
BΛ. Widom’s conjecture was finally proven by A. Sobolev in his celebrated works
[Sob13, Sob15]. This enabled H. Leschke, A. Sobolev and W. Spitzer to confirm in
[LSS14] the leading asymptotic of the entanglement entropy in (1.18). For a one-
dimensional system with a periodic background potential a logarithmically enhanced
area law can be obtained by similar methods [PS18b].

For an arbitrary, bounded background potential V , we do not expect to encounter
significantly stronger correlations induced by entanglement, as compared to the case
of free fermions. We therefore predict that any such Schrödiger operator should satisfy
at most a logarithmical enhancement of an area law. As a first step towards proving
this conjecture, we consider compactly supported potentials only. The operator H has
many similarities with H0. Most importantly, the absolutely continuous spectrum of
both operators is given by the non-negative real numbers. This implies delocalisation
on the whole positive real line, which leads us to expect a logarithmically enhanced
area law of the entanglement entropy. In this thesis we are able to prove for any EF > 0
both an upper and a lower bound for SEF (ΛL;Rd,H) proportional to ∼ Ld−1 lnL, where
ΛL ∶= L ⋅Λ is again a scaled version of a subset Λ ⊂ Rd satisfying Assumption 3.1.2. We
obtain this result by deriving a perturbation theory for (1.18). A limiting absorption
principle for H of the form [Agm75, JM17] is required as a major technical input to
our proof.

Finally, in Chapter 4, we consider the XXZ spin chain in the Ising-phase for energies
in the droplet band. At an earlier point in this introduction we have already mentioned
that the disordered XXZ spin chain is one of the few interacting systems, for which
many-body localisation has been proven [EKS18b, EKS18a, BW17]; see [Sto20] for a
survey of the most recent developments. To provide some context for the result of
Chapter 4, we briefly introduce the disordered model considered in these publications.
For L ∈ N let VL ∶= {0,⋯, L− 1}. The Hamiltonian of a finite XXZ chain of length L in
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a disordered magnetic background field is given by H̃ω
L ∶ `2(VL) → `2(VL),

H̃ω
L ≡ H̃ω

L(∆) ∶=
L−1

∑
j=1

[(1

4
− S3

jS
3
j−1) −

1

∆
(S1

jS
1
j−1 + S2

jS
2
j−1)]

+
L−1

∑
j=0

ωjNj + β(∆)(N0 +NL−1) (1.19)

for some event ω ∈ Ω ∶= RL, where S1, S2, S3 ∈ C2×2 denote the standard spin-1/2 Pauli
matrices and N ∶= 1

2(12×2 − 2S3) denotes the local number operator. Here, and in
the following, let for any matrix A ∈ C2×2 and j ∈ VL the operator Aj ∶ HVL → HVL
denote the operator acting like A on the j-th spin. The choice of anisotropy parameter
∆ ∈ ]0,∞[ characterises the Ising phase. The Hamiltonian features droplet boundary
conditions, i.e. β(N0 +NL−1) with β ≡ β(∆) ∶= 1

2(1 − 1
∆).

The many-body localisation result most closely related to the definition of dynam-
ical localisation, which we mentioned before in the context of non-interacting systems,
is the following [EKS18b, EKS18a, BW17]: There exist an interval I at the bottom of
the spectrum of H̃ω

L such that for sufficiently large ∆ there exist constants C,µ ∈ ]0,∞[
such that

E[ ∑
E∈σ(H̃L)∩I

∥NjψE∥∥NkψE∥] ≤ Ce−µ∣j−k∣ for all j, k ∈ VL (1.20)

where ψωE denotes the eigenstate corresponding to E ∈ σ(H̃ω
L). The interval I is a subset

of the droplet spectrum, which we are going to discuss in more detail in Section 4.1.
Other localisation results that have been shown as well, include dynamical exponen-

tial clustering [EKS18b, EKS18a] and zero-velocity Lieb-Robinson bounds [EKS18a].
More relevant for our purpose, an area law for the expectation of the entanglement
entropy for eigenstates ψE corresponding to energies in the droplet spectrum has been
shown in [BW18]. In addition to the area law, a logarithmic upper bound for an ar-
bitrary deterministic magnetic field has been proven simultaneously. Such logarithmic
upper bounds exist also for eigenstates corresponding to higher energies outside the
droplet spectrum [ARFS20]. We now ask the following question: If many-body local-
isation induces in this model an area law of the entanglement entropy, is then on the
other hand delocalisation accompanied by a violation of the area law? If an area law
of the entanglement entropy is indeed a criterion for localisation, delocalised states
must have a different scaling behaviour. To answer this question, we consider the XXZ
model without a magnetic field. Furthermore, we consider cyclic boundary conditions
instead of the droplet boundary conditions in (1.19). Hence, the eigenstates of the
droplet spectrum are delocalised, due to the translational symmetry in this system.
For a large number of eigenstates corresponding to eigenvalues in the droplet spectrum
we prove a logarithmic lower bound of the entanglement entropy. As an intermediary
step, we also show a Combes-Thomas estimate for this Hamiltonian, which may be of
interest on its own.
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Chapter 2

Logarithmic enhancement in the
dimer model

Can we observe a logarithmic enhancement of the area law if we also have overall
spectral localisation at the same time? To answer this question, we consider quasi-free
fermions in the random dimer model with Bernoulli disorder. The dimer Hamiltonian
has almost surely only pure-point spectrum with corresponding exponentially decaying
eigenfunctions. However, there exist critical energies in the spectrum, where the locali-
sation length diverges. In this chapter we show a logarithmically divergent lower bound
for the entanglement entropy in the case that the Fermi energy coincides with one of
these critical energies. This chapter is the result of a collaboration with P. Müller and
L. Pastur. The content was already published in [MPS20].

2.1 Introduction and result

We consider a system of quasi-free fermions in the one-dimensional lattice of integers
Z. The Hamiltonian H ∶ Ω ∋ ω ↦ Hω of the random dimer model is given by the sum
of the kinetic part represented by the discrete Laplacian and a random potential,

Hω ∶= −∑
x∈Z

( ∣δx⟩⟨δx+1∣ + ∣δx+1⟩⟨δx∣ ) + v∑
x∈Z

V ω(x) ∣δx⟩⟨δx∣ . (2.1)

0−2 1 2 4−4

x with V ω(x) = 1

x with V ω(x) = 0

Figure 2.1: The dimer model

Here, (Ω,A,P) is a probability space
and the realisation Hω acts as a bounded
linear operator on `2(Z) for a given disor-
der configuration ω. We write {δx}x∈Z for
the canonical basis of `2(Z) and use the
Dirac notation for rank-1 operators. The
random potential with disorder strength
v > 0 acts as the multiplication operator
by the single-site potentials (V ω(x))

x∈Z,
which are the realisations of a family
of real-valued random variables with the
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properties V (2x) = V (2x+1) for all x ∈ Z and (V (2x))
x∈Z are independently and iden-

tically distributed. This means that every other pair of consecutive sites shares the
same value of the potential. The random variable V (0) is Bernoulli distributed. It
assumes one of the two different potential values V± ∈ R with probability p± ∈ ]0,1[ ,
subject to p+ + p− = 1. Without loss of generality, we set V− ∶= 0 and V+ ∶= 1. The
random Schrödinger operator H describes a random infinite sequence of two kinds of
homodimers linked together to an infinite chain. The random dimer model is a special
case of the more general random polymer model, which was treated in [JSBS03].

The spectrum of the operator (2.1) is given by σ(Hω) = [−2,+2] ∪ [v − 2, v + 2] for
P-almost every ω ∈ Ω. This observation is the result of standard ergodicity argument
[CL90, PF92, AW15] – here with respect to 2Z-translations. Moreover, the spectrum
is almost surely pure-point [DBG00], as is common in one-dimensional random models
[AW15]. For our purpose, the most interesting property of this particular model is
that it exhibits characteristics of delocalisation at isolated critical energies in the sense
that the localisation length diverges at these points in the spectrum [DWP90, JSBS03].
The critical energies in question occur at {0, v}, provided v < 2. We state and discuss
the precise result in Section 2.2. Critical energies in general are isolated points in the
spectrum, where the Lyapunov exponent L vanishes. Apart from {0, v} there exist
other critical energies in the dimer model for specific choices of the disorder strength
[DBG00]. However, it is not at all clear what kind of delocalisation phenomena are
to be expected at these other energies. In any case, [DBG00] proves strong dynamical
localisation apart from all of these exceptional energies.

Our main result shows the existence of a logarithmic lower bound to the disorder-
averaged entanglement entropy, if the following two conditions are met. First, the
Fermi energy must be equal to either 0 or v. And second, the disorder strength v must
be sufficiently weak. Given L ∈ N, let ΛL ∶= {1, . . . , L} be a box in Z consisting of
∣ΛL∣ = L consecutive sites.

Theorem 2.1.1. Consider the entanglement entropy (1.13) for the Hamiltonian (2.1)
of the random dimer model. Then, there exists a maximal disorder strength v0 ∈ ]0,2[
such that for every v ∈ ]0, v0] and for a critical Fermi energy Ec ∈ {0, v}, we have

lim inf
L→∞

E[SEc(ΛL;Z,H)]
lnL

> 0. (2.2)

Here, E denotes the expectation corresponding to the probability measure P.

In proving the theorem, we obtain an enhancement to the area law for a finite-
volume entanglement entropy as an intermediate result. Instead of the infinite lattice
Z we consider the finite volume ΓL ∶= {−L,⋯, L−1} ⊂ Z. By Hω

L ∶= 1ΓLH
ω1ΓL we denote

the restriction of the infinite-volume operator Hω to ΓL. For a suitable choice of an
L-dependent Λ′

L ⊂ ΓL, the finite-volume entanglement entropy SEc(Λ′

L,ΓL;Hω
L) admits

a logarithmic lower bound.

Theorem 2.1.2. Let v ∈ ]0,2[ and the Fermi energy Ec ∈ {0, v} be critical. Then
there exists δ′ ∈ ]0,1[ such that for all δ ∈ ]0, δ′] the finite-volume entanglement entropy
satisfies

lim inf
L→∞

SEc(Λ′

L; ΓL,Hω
L)

lnL
> 0 (2.3)
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for P-almost all ω ∈ Ω. Here, we have defined Λ′

L ∶= [−L,−(1 − δ)L] ∩Z.

Remark 2.1.3. (i) The proof of Theorem 2.1.1 shows that the left-hand side of (2.2)
is bounded from below by 2−16, see (2.196). More interestingly, the proof of The-
orem 2.1.2 yields a strictly positive constant, which depends only on v, but not
on ω that serves as a lower bound for the limit inferior in (2.3).

(ii) We point out that, in contrast to Theorem 2.1.1, the validity of Theorem 2.1.2 is
not restricted to weak disorder. Furthermore, it provides an almost-sure bound,
whereas Theorem 2.1.1 is obtained in expectation only. This is of relevance, be-
cause the entanglement entropy is known not to be self-averaging in one dimen-
sion [PS18a]. The price we pay is that the box Λ′

L is attached to one boundary
point of ΓL. Our methods in Section 2.4 do not allow us to pass to the infinite-
volume entanglement entropy in this situation.

(iii) Finite-volume entanglement entropies with boxes attached to a boundary as in
(2.3) are often considered in physics, especially if the entanglement entropy is
determined numerically, see e.g. [ISL12, PY14].

(iv) For all energies at which the Lyapunov exponent does not vanish, the multi-
scale analysis can be applied to prove strong dynamical localisation, despite the
Bernoulli distribution of the random variables [CKM87, DBG00]. Some addi-
tional work then yields fast decay of the Fermi projection at all these energies.
Thus, it follows from [PS14, EPS17] that the entanglement entropy exhibits an
area law at all non-critical Fermi energies of the random dimer model.

2.1.1 Roadmap

In Section 2.2 we discuss in detail the delocalisation phenomena as described in [JSBS03]
that occur at the critical energies. These results are the foundation for our own ap-
proach. Since the dependence on the disorder strength is crucial for our proof, we
present a slightly enhanced version of the original result. The necessary additional
arguments follow closely the proof presented in [JSBS03].

Next, we show an intermediate result similar to Theorem 2.1.2 for the finite-volume
operator in Section 2.3. In particular, we conduct a detailed analysis of the Prüfer
angles of generalised eigenfunctions to obtained a logarithmic lower bound for the
finite-volume entanglement entropy.

Finally, in Section 2.4, we proof Theorem 2.1.1 by extending the finite-volume result
to the infinite volume.

2.2 Delocalisation at the critical energies

The delocalisation and transport properties at critical energies of the random polymer
model were studied in detail by S. Jitomirskaya, H. Schulz-Baldes and G. Stolz in
[JSBS03]. They showed that in a window around the critical energies the finite-volume
Hamiltonian shares many properties with the discrete Laplacian. Within this window,
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the eigenvalues are rigidly spaced apart from each other and the eigenfunctions are
evenly spread out like plain waves. In the following, we present a short overview of
these results, since they are relevant for our own. We restrict ourselves by treating the
dimer model with disorder strength v < 2 only.

Recall that the operator Hω has pure-point spectrum with exponentially decaying
eigenfunctions. In other words, Hω exhibits spectral localisation. However, the rate of
decay of the eigenfunctions is not the same for each eigenenergy. In the dimer model,
delocalisation arises from the fact that this rate of decay vanishes sufficiently fast at
the critical energies.

In order to formulate this in a more rigorous way we need to consider general
solutions of the eigenequation. Given E ∈ R and ω ∈ Ω, let φ̃ωE ∶ Z→ R be a non-trivial
solution of the difference equation

−φ̃ωE(x − 1) − φ̃ωE(x + 1) + vV ω(x)φ̃ωE(x) = Eφ̃ωE(x) for all x ∈ Z. (2.4)

This solution is an eigenfunction of Hω if and only if it is an element of `2(Z), too.
Thus, general solutions of (2.4) expand our previous notion of eigenfunctions.

Any solution of (2.4) can be constructed directly with the aid of transfer matrices.
Given V ∈ {0,1} and E ∈ R, we define the single-step transfer matrix by

WV (E) ∶= (vV −E −1
1 0

) ∈ R2×2. (2.5)

The (multi-step) transfer matrix

W ω(E; y, x) ∶= {WV ω(y−1)(E)⋯WV ω(x)(E) if x < y,
12×2 if x = y, (2.6)

relates the solution of the discrete Schrödinger equation (2.4) at different sites

W ω(E; y, x)( φ̃ωE(x)
φ̃ωE(x − 1)) = ( φ̃ωE(y)

φ̃ωE(y − 1)) , (2.7)

where x ≤ y. A useful tool to study the asymptotic behaviour of the solution of (2.4)
for a given energy E ∈ R is the Lyapunov-exponent

L(E) ∶= lim
L→∞

1

L
ln ∥W ω(E;L,0)∥, (2.8)

where ∥ ⋅ ∥ denotes the operator norm. Note that this definition is well-defined. Ac-
cording to [PF92, Chap. V], the limit in (2.8) exists and is P-almost-surely constant in
ω. As a consequence of Oseledec’s theorem, any true eigenfunction to an eigenenergy
E decays exponentially with rate L(E) for x → ±∞. By definition, the localisation
length is given by the inverse of the Lyapunov-exponent.

At the critical energies E ∈ {0, v}, the Lyapunov exponent vanishes, which is syn-
onymous to the divergence of the localisation length. To establish this result, the
single-dimer transfer matrix

DV (E) ∶= (WV (E))2
(2.9)
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for V ∈ {0,1} is particularly helpful. Let us consider the critical energy E = 0 only, since
E = v can be treated similarly. The single-dimer transfer matrices have the properties
D0(0) = −12×2, while D1(0) has the complex eigenvalues λ± = (v ± i

√
4 − v2)/2. This

implies L(0) = 0 at once. Moreover, a Taylor expansion of the Lyapunov exponent is
possible [JSBS03] with

L(ε) = Cε2 + o(ε2) (2.10)

for a constant C > 0.
We want to illustrate the consequences of (2.10) on the eigenfunctions of the finite-

volume Hamiltonian. For any L ∈ N we define a particular set of solutions of the
eigenequation, which we call generalised eigenfunction. For all E ∈ R and ω ∈ Ω let
φωL,E be a solution to (2.4) subject to the constraints

φωL,E(−L − 1) = 0, φωL,E(−L) > 0 and ∑
x∈ΓL

φωL,E(x)2 = 1. (2.11)

We write

ψωL,E ∶= φωL,E ∣ΓL (2.12)

for its restriction onto ΓL. Only if φωL,E(L) = 0 is satisfied, is this restriction also an
eigenfunction of the finite-volume operator Hω

L .
The Taylor expansion of the Lyapunov exponent suggests that there exists energy

windows around each of the critical energies within which the localisation length is
larger than the size of ΓL. Hence, the corresponding generalised eigenfunctions are
evenly spread out over ΓL with high probability. In this respect, they are similar to
plain waves, the eigenfunctions of the discrete Laplacian. Since the leading term in
(2.10) is quadratic, the width of this window is roughly L−1/2.

Not only do the eigenfunctions of Hω
L within the energy window resemble the ones

of the discrete Laplacian, the spectral statistics of both operators also show similar-
ities. The eigenvalues are evenly spaced, a property which is sometimes called clock
behaviour. In order to derive this spectral property within the window we introduce
Prüfer variables rωx (E) ∈ [0,∞[ and θωx (E) ∈ R as the polar coordinates of the pair

(
φωL,E(x)

φωL,E(x − 1)) =∶ rωx (E)(
cos (θωx (E))
sin (θωx (E))

) (2.13)

for every x ∈ Z. For ease of notation, we do not keep track of the L-dependence of the
Prüfer variables. The angle θωx is chosen such that it is monotonously increasing in E.
Moreover, according to [LGP88, Sect. 12.2] and [JSBS03, Lemma 2], the Prüfer angle
is even differentiable in E with derivative

d

dE
θω` (E) = (rω` (E))−2

`−1

∑
x=−L

(φωL,E(x))
2

(2.14)

for all ` ∈ Z with ` ≥ −L and ω ∈ Ω. Any eigenvalue E of Hω
L must satisfy θωL(E) ∈

π/2 + πZ in order for φωL,E to meet the boundary condition on the right border. If
a generalised eigenfunction is evenly spread out, then [θωL]′(E) ≈ L. Consequently,
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integrating 2.14 yields a distance of approximately π/L between any two consecutive
eigenvalues of Hω

L inside this window.
The precise formulation of the delocalisation properties, which we have just dis-

cussed, is contained in the next theorem.

Theorem 2.2.1 (Jitomirskaya, Schulz-Baldes, Stolz [JSBS03]). Let v ∈ ]0,2[ and Ec ∈
{0, v}. Then

(i) For every α > 0 there exist a minimal length Lmin ≡ Lmin(α, v) ∈ N and constants
c ≡ c(α, v, p+) > 0 and C ≡ C(α, v) > 1 with

lim
v↓0

C = 1, (2.15)

such that for all L ≥ Lmin there are exceptional events ΩL(α) ⊆ Ω of small proba-
bility

P[ΩL(α)] ≤ e−cL
α/2

(2.16)

such that for every non-exceptional ω ∈ (ΩL(α))c the following statement is true:
the eigenvalues of Hω

L in the critical energy window

WL ≡ WL(α,Ec) ∶= [Ec −L−1/2−α,Ec +L−1/2−α] (2.17)

are equally spaced in the sense that any two adjacent eigenvalues E and E′ in
WL satisfy

π

C3L
≤ ∣E −E′∣ ≤ πC

3

L
. (2.18)

Furthermore, for any E ∈ WL the generalised eigenfunction ψωL,E of (2.4), defined
as in (2.12), is evenly spread out over ΓL in the sense that

1

CL
≤ (rωx (E))2 ≤ C

L
(2.19)

for all x ∈ {−L + 1, . . . , L − 1}.

(ii) The density of states N ′(Ec) is well defined and obeys the estimate

1

2πC3
≤ N ′(Ec) ≤

C3

2π
. (2.20)

Remark 2.2.2. (i) Our formulation of Theorem 2.2.1(i) is a slight improvement of
the original theorem in [JSBS03] concerning the value of C. In fact, the statement
(2.15) on its limit for weak disorder is not provided by [JSBS03]. However, we
need C to be sufficiently close to 1 for our proof of Theorem 2.1.1 to succeed. It is
plausible that weak disorder should lead to a value of C close to 1. If C would be
equal to 1, perfect clock behaviour of spectral statistics and perfect flatness of the
eigenfunctions are the consequence. Therefore, the deviation of C from 1 encodes
the aberration from these properties of the Laplacian. In order to derive (2.15)
we repeat some arguments of [JSBS03] in Chapter 2.2.1 while carefully tracking
the occurring constants. In particular, this requires additional estimates which
were not needed in [JSBS03].

(ii) The explicit two-sided bound on the density of states in Part (ii) is not contained
in [JSBS03] either. Its proof is also contained in Chapter 2.2.1.
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2.2.1 Proof of Theorem 2.2.1

Again, we assume v ∈ ]0,2[ and we restrict ourselves to the case Ec = 0, the case of the
other critical energy Ec = v being analogous.

In the previous chapter it already transpired that transfer matrices are an important
tool in this proof. In particular, the following similarity transform of the single-dimer
transfer matrices

TV (E) ∶=M−1
v DV (E)Mv =∶ (

aV (E) bV (E)
bV (E) aV (E)) (2.21)

with entries aV (E), bV (E) ∈ C is of great relevance. Here, the change of basis in C2

induced by

Mv ∶=mv (
pv pv
1 1

) with pv ∶=
1

2
(v + i

√
4 − v2) (2.22)

simultaneously diagonalises D0(0) and D1(0), i.e. T0(0) = −12×2 and T1(0) are both
diagonal. The real parameter mv > 0 is chosen such that ∣detMv ∣ = 1. We remark that
for every w ∈ R2 there exists z ∈ C such that

M−1
v w = (z

z
) . (2.23)

For later usage we state the Taylor expansions of the entries of TV (E) as E ↓ 0

a0(E) = −1 −E 2i√
4 − v2

+O(E2),

a1(E) = −1 + v
2

2
+ vi

2

√
4 − v2 −E (v + (2 − v2)i√

4 − v2
) +O(E2),

b0(E) = Ev
2

( − 1 + vi√
4 − v2

) +O(E2),

b1(E) = −b0(E) + O(E2).

(2.24)

In analogy to (2.6), we define the modified (multi-step) dimer transfer matrix as

T ω(E; y, x) ∶= { TV ω(y−1)(E)⋯TV ω(x)(E) if x < y,
12×2 if x = y, (2.25)

where x, y ∈ 2Z.
The next Lemma corresponds to (42) in [JSBS03]].

Lemma 2.2.3 (Cf. (42) in [JSBS03]). Given θ ∈ [0,2π[ , let eθ ∶= 1
√

2
(e−iθ, eiθ)T . For

all v ∈ ]0,2[ , V ∈ {0,1} and all E ∈ R there exist maps ΘV ∶ [0,2π[ → [0,2π[ and
ρV ∶ [0,2π[ → ]0,∞[ such that

TV (E)eθ = ρV (θ) eΘV (θ) (2.26)

for all θ ∈ [0,2π[ . Furthermore, we have

ρ2
V (θ) = 1 + 2∣bV (E)∣2 + 2 Re (aV (E)bV (E)e2iθ). (2.27)
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Proof. The form of TV (E) in (2.21) implies that for every non-zero wz ∶= (z, z)T ,
z ∈ C∖{0} there exists ζ ∈ C∖{0} such that TV (E)wz = wζ . Since wζ = ρeΘ for a unique
ρ > 0 and Θ ∈ [0,2π[, the first part of the lemma follows. The equality (2.27) is verified
by a direct computation, during which the equality 1 = detDV (E) = ∣aV (E)∣2−∣bV (E)∣2
is applied.

In the following lemma, which is a modification of (49) in [JSBS03], we use the
notation ∣ ⋅⋅⋅ ∣ for the Euclidean norm on C2.

Lemma 2.2.4. Let v ∈ ]0,2[ , L ∈ N, E ∈ [−v, v], ω ∈ Ω and x, y ∈ ΓL with x ≤ y.

(i) Then there exists a constant C̃ ≡ C̃(v) ∈ ]0,∞[ and a constant cv ∈ ]0,∞[ , which
depends only on v and obeys

lim
v↓0

cv = 0, (2.28)

such that for all unit vectors w ∈ R2, ∣w∣ = 1, there is an angle ξw ∈ [0,2π[ such
that

ln (∣W ω(E;x,−L)w∣2) ∈ 2E
k1−1

∑
k=k0

Re (dV ω(2k)e2iϑk) + (cv + C̃E2L)[−1,1] (2.29)

with dV ∶= aV (0)b′V (0) for V ∈ {0,1} and where

k0 ∶= min{k ∈ Z ∶ −L ≤ 2k} and k1 ≡ k1(x) ∶= max{k ∶ 2k ≤ x}. (2.30)

The angles (ϑk)k1>k≥k0 ⊆ [0,2π[ are defined recursively by ϑk0 ∶= ξw and ϑk+1 =
ΘV ω(2k)(ϑk) for all k ∈ {k0,⋯, k1 − 2}.

(ii) Let {w1,w2} be an orthonormal basis of R2. Then

∥W ω(E; y, x)∥ ≤ 2 max
w∈{w1,w2}

max
z∈ΓL

∣W ω(E; z,−L)w∣2. (2.31)

Proof. (i) For all x ∈ ΓL we have

W ω(E;x,−L) =W ω(E;x,2k1)MvT
ω(E; 2k1,2k0)M−1

v W ω(E; 2k0,−L). (2.32)

For w ∈ R2, ∣w∣ = 1, let the angle ξw ∈ [0,2π[ be given as the unique solution of

eξw =M−1
v W ω(E; 2k0,−L)w/∣M−1

v W ω(E; 2k0,−L)w∣. (2.33)

We claim that

ln ∣W ω(E;x,−L)w∣2 ∈
k1−1

∑
k=k0

ln (ρV ω(2k)(ϑk)2) + cv[−1,1] (2.34)

with

cv ∶= 4 ln (∥Mv∥) + 4 max
E∈[−v,v]

max
V ∈{0,1}

ln ∥WV (E)∥ > 0. (2.35)
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Since maxE∈[−v,v] ∥WV (E)∥, ∥Mv∥ → 1 as v → 0 for every V ∈ {0,1}, we conclude
(2.28) from (2.35). To see the validity of (2.34), we iterate Lemma 2.2.3 and
conclude

∣W ω(E;x,−L)w∣ = ∣W ω(E;x,2k1)Mveϑk1
∣
k1−1

∏
k=k0

ρV ω(2k)(ϑk)

× ∣M−1
v W ω(E; 2k0,−L)w∣. (2.36)

Furthermore, we note that

∥A−1∥ = ∥A∥ and
1

∥A∥ ≤ ∣Aw∣ ≤ ∥A∥ (2.37)

for any complex 2 × 2-matrix A with ∣detA∣ = 1 and any w ∈ C2 with ∣w∣ = 1.
Applying (2.37) to the first and last factor on the right-hand side of (2.36) yields
(2.34).

Equation (2.27), together with a Taylor expansion in the energy E, using (2.24),
yields the estimate

ln (∣W ω(E;x,−L)w∣2) ∈ 2E
k1−1

∑
k=k0

Re (dV ω(2k)e2iϑk) +Rω
w,x(E) + cv[−1,1], (2.38)

where the residual function Rω
w,x ∶ ] − v, v[ → R is given by

Rω
w,x(E) ∶=

k1−1

∑
k=k0

[ ln(ρV ω(2k)(ϑk)2) − 2ERe (dV ω(2k)e2iϑk)] + ∣bV ω(2k)(E)∣2] (2.39)

for all E ∈ ] − v, v[. We bound this function uniformly in w, x and ω

∣Rω
w,x(E)∣ ≤ C̃LE2, (2.40)

where the constant C̃ ≡ C̃(v) is determined by yet another Taylor expansion
using (2.24). This yields (2.29).

(ii) For all x, y ∈ ΓL we have

∥W ω(E; y, x)∥ ≤ ∥W ω(E; y,−L)∥∥W ω(E;x,−L)−1∥
≤ max
z∈ΓL

∥W ω(E; z,−L)∥2, (2.41)

where we used the equality of norms in (2.37). The claim follows from the obser-
vation that for any 2 × 2 matrix

∥A∥2 ≤ 2 max
w∈{w1,w2}

∥Aw∥2. (2.42)

The next lemma accounts for a perturbation in energy and is a variation of [DT03,
Lemma 2.1] or [Sim96, Thm. 2J].
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Lemma 2.2.5. Let E, ε ∈ R, ω ∈ Ω, L ∈ N and Gω
E ∶= maxx,y∈ΓL,x≤y ∥W ω(E; y, x)∥. Then

we have for all x ∈ ΓL and all w ∈ R2 with ∣w∣ = 1 the estimate

∣W ω(E + ε;x,−L)w∣2 ∈ ∣W ω(E;x,−L)w∣2 + (Gω
E)2(e4L∣ε∣GωE − 1) [−1,1]. (2.43)

Proof. For V ∈ {0,1} and E, ε ∈ R we observe

WV (E + ε) =WV (E) − ε(1 0
0 0

) (2.44)

and expand W ω(E + ε;x,−L) in powers of ε. For the upper bound, this leads to the
estimate

∣W ω(E + ε;x,−L)w∣ ≤ ∣W ω(E;x,−L)w∣ +Gω
E max
x∈ΓL

x+L

∑
j=1

(x+L
j
) (∣ε∣Gω

E)j

≤ ∣W ω(E;x,−L)w∣ +Gω
E

∣ΓL∣

∑
j=1

(∣ΓL∣∣ε∣Gω
E)

j

j!

≤ ∣W ω(E;x,−L)w∣ +Gω
E(e2L∣ε∣GωE − 1) (2.45)

for all x ∈ ΓL and all unit vectors w ∈ R2. To prove the lower bound, we use the inverse
triangle inequality to estimate the expansion in ε according to

∣W ω(E + ε;x,−L)w∣ ≥ ∣W ω(E;x,−L)w∣ −Gω
E max
x∈ΓL

x+L

∑
j=1

(x+L
j
) (∣ε∣Gω

E)j

≥ ∣W ω(E;x,−L)w∣ −Gω
E(e2L∣ε∣GωE − 1) (2.46)

for all x ∈ ΓL and all unit vectors w ∈ R2. We note that for any a, b, c ≥ 0, the two-
sided estimate a ∈ b + c [−1,1] implies a2 ∈ b2 + c(2b + c) [−1,1]. In our case, we have
b ∶= ∣W ω(E;x,−L)w∣ ≤ Gω

E, which implies the claim.

For the convenience of the reader we quote [JSBS03, Thm. 6] in our notation and
note that the assumption ∣⟨e2iη±⟩∣ < 1 is always satisfied in the dimer model.

Theorem 2.2.6 ([JSBS03, Thm. 6]). Let v ∈ ]0,2[. For L ∈ N, α > 0, θ ∈ [0,2π[ and
E ∈ WL, where WL was defined in (2.17), let

ΩL(α,E, θ) ∶= {ω ∈ Ω ∶ ∃ k1 ∈ (1
2ΓL) ∩Z such that ∣

k1

∑
k=k0

dV ω(2k)e
2iϑk ∣ ≥ Lα+ 1

2}, (2.47)

with dV , k0 and ϑk defined as in Lemma 2.2.4 (i) with ϑk0 = θ. Then there exist
constants C1 ≡ C1(α, v, p+) > 0 and C2 ≡ C2(α, v, p+) > 0 independent of E and θ such
that

P(ΩL(α,E, θ)) ≤ C1e−C2L
α

. (2.48)
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Lemma 2.2.7. Let v ∈ ]0,2[. For all α > 0 there exists L0 ≡ L0(α, v) ∈ N such that for
all L ≥ L0 there exists a measurable subset ΩL(α) ⊆ Ω and a constant c ≡ c(α, v, p+) > 0
such that

P(ΩL(α)) ≤ e−cL
α/2

(2.49)

and such that for all ω ∈ (ΩL(α))
c
, E ∈ WL and x ∈ ΓL

∣W ω(E;x,−L)(1
0
)∣

2

∈ [e−3cv , e3cv], (2.50)

where the constant cv is given in Lemma 2.2.4 (i), see (2.35).

Proof. Let w1 ∶= ( 1
0 ) and w2 ∶= ( 0

1 ). In view of (2.33), we define a set of modified
Prüfer angles

Ξ ∶= {ξ ∈ [0,2π[ ∶ ∃W ∈ {12×2,W0(E),W1(E)}, w ∈ {w1,w2}

with eξ =
M−1

v Ww

∣M−1
v Ww∣} (2.51)

with cardinality ∣Ξ∣ ≤ 6. Let

ΩL(α,E) ∶= ⋃
θ∈Ξ

ΩL(α/2,E, θ). (2.52)

Hence, P(ΩL(α,E)) ≤ 6C1e−C2L
α/2

by Theorem 2.2.6. We assume L ≥ v−2 so that
WL ⊂ [−v, v]. Thus, for all E ∈ WL and ω ∈ (ΩL(α,E))c the estimate (2.29) yields

ln (∣W ω(E;x,−L)w∣2) ∈ (C̃LE2 + 2EL1/2+α/2 + cv) [−1,1] (2.53)

for all x ∈ ΓL and w ∈ {w1,w2}. Here, the constant C̃ ≡ C̃(v) is given in Lemma 2.2.4.
Hence there exists L′0 ≡ L′0(α, v) ≥ v−2 such that for all L ≥ L′0, all E ∈ WL, all
ω ∈ (ΩL(α,E))c, all x ∈ ΓL and w ∈ {w1,w2}, we have

ln (∣W ω(E;x,−L)w∣2) ∈ 2cv [−1,1]. (2.54)

The upper bound in (2.54) and the inequality in Lemma 2.2.4 (ii) imply for the quantity
Gω
E in Lemma 2.2.5

Gω
E = max

x,y∈ΓL,x≤y
∥W ω(E; y, x)∥ ≤ 2e2cv (2.55)

for all ω ∈ (ΩL(α,E))c. We define

ΩL(α) ∶= ⋃
n∈Z∶

n/L2∈WL

ΩL(α,n/L2). (2.56)

Hence there exists L′′0 ≡ L′′0(α, v) ≥ L′0 and c > 0 such that for all L ≥ L′′0 we have

P[ΩL(α)] ≤ 18L3/2C1e−C2L
α/2 ≤ e−cL

α/2
. (2.57)
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Now, we consider a n ∈ Z such that En ∶= n/L2 ∈ WL and an arbitrary ω ∈ (ΩL(α))c.
Applying Lemma 2.2.5, (2.54) and (2.55) with w = w1 yields

∣W ω(E;x,−L)w1∣2 ∈ ∣W ω(En;x,−L)w1∣2 + 4e4cv( exp(8e2cv/L) − 1) [−1,1]
⊆ [e−2cv , e2cv] + 4e4cv( exp(8e2cv/L) − 1) [−1,1] (2.58)

for all x ∈ ΓL and all E ∈Dn ∶= En +L−2[−1,1]. Since

WL ⊆ ⋃
n∈Z∶

En∈WL

Dn (2.59)

there exists L0 ≡ L0(α, v) ≥ L′′0 such that for all L ≥ L0, all ω ∈ (ΩL(α))c, all E ∈ WL

and all x ∈ ΓL we have

∣W ω(E;x,−L)w1∣2 ∈ [e−3cv , e3cv]. (2.60)

Proof of Theorem 2.2.1. (i) Let us first proof (2.19). For every L ∈ N, x ∈ ΓL, E ∈ R
and ω ∈ Ω, we infer from (2.4) that

rωx (E)2 = φωL,E(x)2 + φωL,E(x − 1)2 = ∣W ω(E;x,−L)(1
0
)∣

2

/(Rω
E)2, (2.61)

with the normalisation

(Rω
E)2 ∶=

L−1

∑
k=0

∣W ω(E;−L + 1 + 2k,−L)(1
0
)∣

2

. (2.62)

Given α > 0, Lemma 2.2.7, provides the existence of a minimal length Lmin ≡
Lmin (α, v) ≥ v−2 such that for all L ≥ Lmin , ω ∈ (ΩL(α))c, x ∈ ΓL and E ∈ WL, the
two-sided estimate

(Rω
E)2 ∈ [Le−3cv , Le3cv] (2.63)

is true. Thus, (2.63), another application of Lemma 2.2.7 and (2.61) yield (2.19)
with the constant

C = e6cv , (2.64)

and (2.28) implies (2.15).

To prove the level-spacing estimate (2.18), let L0 be as above, L ≥ L0, ω ∈
(ΩL(α))c and let E,E′ ∈ WL be two adjacent eigenvalues of Hω

L with E < E′.
Recall that for E(′) to be an eigenvalue, the boundary conditions φω

L,E(′)
(L) = 0

have to be met on the right border of ΓL, that is, θωL(E(′)) ∈ π/2 + πZ. Hence E
and E′ are adjacent eigenvalues if and only if the Prüfer angle difference satisfies
θωL(E′) − θωL(E) = π. By integrating (2.14) we obtain

π = ∫
E′

E
dε

d

dε
θωL(ε) = ∫

E′

E
dε

L−1

∑
x=−L

(
φωL,ε(x)
rωL(ε)

)
2

= ∫
E′

E
dε

1

(rωL(ε))
2 . (2.65)
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The eigenfunction estimate (2.19) does not apply directly to rωL(ε) for ε ∈ WL,
since L ∉ ΓL. We need an additional iteration with the transfer matrix

(rωL(ε))
2 = ∣WV ω(L−1)(ε)(

cos θωL−1(ε)
sin θωL−1(ε)

)∣
2

(rωL−1(ε))
2
. (2.66)

We already have (rωL−1(ε))
2 ∈ L−1[C−1,C] for every ω ∈ (ΩL(α))c by (2.19). Since

maxV ∈{0,1} ∥WV (ε)∥ ≤ ecv/4 ≤ C uniformly in ε ∈ WL by (2.35), we deduce from

(2.37) that (rωL(ε))
2 ∈ L−1[C−3,C3]. Inserting this into (2.65) yields

E′ −E ∈ π
L

[C−3,C3]. (2.67)

(ii) The existence of the density of states N ′(Ec) follows from [JSBS03, Thm. 3]. We
do not present a proof for existence here, only for the upper and lower bound.
We use Dirichlet–Neumann bracketing as well as the eigenvalue spacing within
the critical energy window to show these estimates.

For L ∈ N we introduce the restricted Schrödinger operators H
ω, D/N
L with Dirich-

let, respectively Neumann, boundary conditions

Hω, D
L ∶=Hω

L + ∣δ−L⟩⟨δ−L∣ + ∣δL−1⟩⟨δL−1∣ , (2.68)

Hω, N
L ∶=Hω

L − ∣δ−L⟩⟨δ−L∣ − ∣δL−1⟩⟨δL−1∣ . (2.69)

Their integrated densities of states at energy E ∈ R are given by

N ω, D/N
L (E) ∶= tr{1≤E(Hω, D/N

L )}. (2.70)

Since H
ω, D/N
L are rank-2-perturbations of Hω

L , the min-max-principle implies

N ω, D/N
L (E) ∈ tr{1≤E(Hω

L)} + [−2,2]. (2.71)

According to [CL90, p. 312] Dirichlet–Neumann bracketing yields

1

∣ΓL∣
E[ND

L (E)] ≤ N(E) ≤ 1

∣ΓL∣
E[NN

L (E)] (2.72)

for every E ∈ R and every L ∈ N. Thus, we conclude from (2.71) and (2.72) that

N(E + ε) −N(E − ε)
2ε

∈ 1

2ε∣ΓL∣
E[ tr{1]E−ε,E+ε](HL)}] +

2

ε∣ΓL∣
[−1,1] (2.73)

for every ε > 0. For a fixed α ∈ ]0,1/2[ let εL ∶= L−1/2−α be half the width of the
critical energy window WL around Ec ∈ {0, v}. This implies limL→∞

2
εL∣ΓL∣

= 0 and
therefore

N ′(Ec) = lim
L→∞

1

2εL∣ΓL∣
E[ tr{1]Ec−εL,Ec+εL](HL)}]. (2.74)
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We estimate this limit by treating bad events in ΩL(α) separately. The bound
for the probability of bad events from Theorem 2.2.1 (i) yields

0 ≤ lim
L→∞

1

2εL∣ΓL∣
E[1ΩL(α) tr{1]Ec−εL,Ec+εL](HL)}] ≤ lim

L→∞

P[ΩL(α)]
2εL

= 0. (2.75)

Theorem 2.2.1 (i) provides the means to estimate the expectation for good events
in (ΩL(α))

c
. According to (i) there exists a minimal length L0 ∈ N such that for

all L ≥ L0 and all ω ∈ (ΩL(α))
c

we have

2εLL

πC3
− 1 ≤ tr{1]Ec−εL,Ec+εL](Hω

L)} ≤
2εLC3L

π
+ 1. (2.76)

Hence, by using (2.74) and (2.75) we arrive at the following estimate

N ′(Ec) = lim
L→∞

1

2εL∣ΓL∣
E[1(ΩL(α))c tr{1]Ec−εL,Ec+εL](HL)}]

∈ ( lim
L→∞

L P[(ΩL(α))
c]

π∣ΓL∣
)[C−3,C3] = 1

2π
[C−3,C3], (2.77)

which concludes the proof.

2.3 Lower bound of the finite-volume entanglement

entropy

2.3.1 General idea and strategy

Our aim is to construct a suitable lower bound to the finite-volume entanglement
entropy that grows logarithmically in L. Apart from proving Theorem 2.1.2, this
is the first step towards showing a logarithmic enhancement for the infinite-volume
entanglement entropy as well, which is our main objective.

A typical first step [PS14] in obtaining a lower bound for the entanglement entropy
is to replace the function h in its definition (1.13) by a parabola. The function g ∶
[0,1] → R≥0,

g(λ) ∶= 4λ(1 − λ), (2.78)

is a lower bound to h. We further introduce the quadratic analogue to the entanglement
entropy in non-interacting systems. Let H ∶ `2(Γ) → `2(Γ) be a discrete Schrödinger
operator defined on a lattice Γ ⊆ Z. For any Λ ⊆ Γ and a Fermi energy E ∈ R let

QE(Λ; Γ,HΓ) ∶= tr g(1Λ(X)1<E(HΓ)1Λ(X)). (2.79)

That QE(Λ; Γ,HΓ) ≤ SE(Λ; Γ,HΓ) follows immediately from g ≤ h.
Since the finite-volume Schrödinger operator Hω

ΓL
has only discrete spectrum, the

finite-volume quadratic entanglement entropy can be rewritten in terms of the eigen-
values E ∈ σ(Hω

ΓL
) and corresponding `2(ΓL)-normalised eigenfunctions ψωL,E.
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Lemma 2.3.1. Let x1, x2 ∈ Z with −L ≤ x1 < x2 < L − 1, Λ ∶= [x1, x2] ∩ Z and EF ∈ R.
Then we have

QEF (Λ; ΓL,H
ω
L) = 4 ∑

E,E′∈σ(HωL)∶
E<EF ,E′≥EF

1

(E′ −E)2
∣⟨ψωL,E, [Hω

L ,1Λ(X)]ψωL,E′⟩∣2 (2.80)

for all ω ∈ Ω, where the commutator is a boundary operator

[Hω
L ,1Λ(X)] ={ ∣δx1⟩⟨δx1−1∣ − ∣δx1−1⟩⟨δx1 ∣ + ∣δx2⟩⟨δx2+1∣ − ∣δx2+1⟩⟨δx2 ∣ if x1 ≠ −L,

∣δx2⟩⟨δx2+1∣ − ∣δx2+1⟩⟨δx2 ∣ if x1 = −L,
(2.81)

which is independent of randomness.

Proof. We introduce the abbreviations P ∶= 1Λ(X) and Q ∶= 1<EF (Hω
L). A straightfor-

ward calculation of the trace yields

1

4
tr g(PQP ) = trPQP (1 −Q)P

= ∑
E,E′∈σ(HωL)∶
E<EF ,E′≥EF

trP ∣ψωL,E⟩⟨ψωL,E ∣P ∣ψωL,E′⟩⟨ψωL,E′ ∣P

= ∑
E,E′∈σ(HωL)∶
E<EF ,E′≥EF

∣⟨ψωL,E, PψωL,E′⟩∣2. (2.82)

We write the matrix elements of P in terms of the commutator by applying the equality

E⟨ψωL,E, PψωL,E′⟩ = ⟨ψωL,E,Hω
LPψ

ω
L,E′⟩ = E′⟨ψωL,E, PψωL,E′⟩ + ⟨ψωL,E, [Hω

L , P ]ψωL,E′⟩. (2.83)

This concludes the proof.

Remark 2.3.2. It is clear that (2.80) is true for general self-adjoint operators H
defined on `2(Γ) for any finite subregion Γ ⊆ Zd with d ∈ N.

The overall idea of our argument is that the energy denominator in (2.80) pro-
vides the mechanism for a potential logarithmic enhancement to the area law. The
enhancement can only occur if eigenfunctions corresponding to nearby energies have
a significant overlap somewhere on the surface of Λ. For Anderson localised systems
this is typically not the case, because the localisation centres of two eigenfunctions
are expected to be separated by a distance that grows logarithmically with the inverse
of their energy difference [Mot68, Mot70, KLP03]. Consequently, the entanglement
entropy is expected to obey a strict area law for localised systems. Indeed, this was
proven in [PS14, EPS17], following another line of reasoning. In the dimer model,
however, localisation breaks down at the critical energies and delocalisation properties
occur, as we have discussed in detail in Chapter 2.2. In particular, the eigenfunctions
close to the critical energies Ec ∈ {0, v} are with high probability evenly spread out
over ΓL. This provides us with sufficient overlap at the surface of Λ between any two
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of them. To study this effect more rigorously, we express the matrix element of the
commutator in (2.81) in terms of Prüfer variables

⟨ψωL,E, [Hω
L ,1Λ(X)]ψωL,E′⟩ = rωx2+1(E)rωx2+1(E′) sin (θωx2+1(E) − θωx2+1(E′))

− rωx1
(E)rωx1

(E′) sin (θωx1
(E) − θωx1

(E′)), (2.84)

where E,E′ ∈ σ(Hω
L). We only consider good events ω ∈ (ΩL(α))c in the following. For

energies inside WL the Prüfer radius at any point in ΓL is roughly L−1/2, see (2.19).
Neglecting the possibility of cancellations between the two terms on the right-hand
side of (2.84) for the moment, we thus argue that ∣⟨ψωL,E, [Hω

L ,1Λ(X)]ψωL,E′⟩∣2 ∼ L−2 for
eigenvalues E,E′ ∈ WL.

We restrict the double sum in (2.80) to only those eigenvalues that are inside the
critical window WL. This still yields a lower bound to the entanglement entropy,
because all summands are non-negative. Since the spacing of eigenvalues inside WL

is ∼ L−1 according to (2.18), we are able to approximate these sums with the double
integral

E[SEc(Λ; ΓL,H
ω
L)] ≳ ∫

−L−1

−L−α−1/2
dE ∫

L−α−1/2

L−1
dE′

1

(E′ −E)2
≥ 1 − 2α

4
lnL, (2.85)

for sufficiently large L. We note that this logarithmic divergence is derived exclusively
from the artificial L-dependence of the larger box ΓL to which the operator is restricted,
rather than from Λ. Also, in the crude argument above we have neglected the possibility
of cancellations of the two terms in (2.84). In fact, such cancellations do occur for a
fixed bounded Λ. However, the argument can be justified for an L-dependent region
ΛL of a size proportional to L. Let us therefore set

Λγ,δ
L ∶= [L1, L2 − 1] ∩Z with L1 ∶= −L + ⌊γL⌋, L2 ∶= −L + ⌊(γ + δ)L⌋ (2.86)

for some γ, δ ∈ [0,1], where ⌊⋅⋅⋅⌋ denotes the standard floor function or Gauss bracket.
If γ is chosen to be equal to zero, this region is identical to Λ′

L in Theorem 2.1.2.
To prove Theorem 2.1.1 we ultimately want to replace the finite volume ΓL with the
infinite lattice Z. To control the ensuing error, it is, however, important that ΛL is not
attached to the border of ΓL. We therefore focus on the case γ > 0 from now on.

It is altogether impossible to prevent the above-mentioned cancellations with any
choice of γ and δ. However, if ∣⟨ψωL,E, [Hω

L ,1Λγ,δL
(X)]ψωL,E′⟩∣ ≳ L−1 for a sufficient number

of energies E, E′ ∈ WL ∩σ(Hω
L) we have enough good contributions in the double sum

in (2.80) to ensure a logarithmic lower bound. To obtain the necessary number of good
contributions, we choose

0 < δ ≪ γ ≪ 1. (2.87)

Their exact value will be determined by the quantity C given in Theorem 2.2.1. For
technical reasons we require C ≈ 1. Recall that this is the case if the disorder strength
is small as in the prerequisites of Theorem 2.1.1.

The energy dependence of the Prüfer angle may be used to determine the value of
(2.84). Integrating (2.14) yields

(θωL1
(E) − θωL1

(E′)) ≈ 2−1γL(E −E′),
(θωL2

(E) − θωL2
(E′)) ≈ 2−1(γ + δ)L(E −E′),

(2.88)
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which suggests that the matrix elements in (2.84) are approximately of the form

⟨ψωL,E, [Hω
L ,1Λ(X)]ψωL,E′⟩ ≈ 2L−1 sin (2π(E −E′)/T −) cos (2π(E −E′)/T +) (2.89)

for all eigenvalues E, E′ ∈ WL ∩ σ(Hω
L) where

T − ≡ T −(δ) ∶= 8π

Lδ
and T + ≡ T +(γ, δ) ∶= 8π

L(2γ + δ) . (2.90)

Observe that the right-hand side of (2.89) is a sinusoidal function with slowly
varying amplitude. The period of the fast oscillation T + is much smaller than the
period of the envelope T −, since δ ≪ γ. However, both periods are much larger than
the approximate distance between two consecutive eigenvalues ≈ πL−1, because γ ≪ 1.

It is evident that there are eigenvalues E, E′ ∈ WL ∩ σ(Hω
L) for which the matrix

element of the commutator is either very small or vanishes altogether. To identify
energies that give rise to good contributions in the double-sum of (2.80), we proceed
as follows. For a fixed E < Ec we write

WL ∩ [Ec,∞[ =
N−

⋃
q=0

Iq (2.91)

as a union over N− + 1 ∼ δ L1/2−α intervals that lie between the nodes of the envelope

fe(⋅) ∶= sin(2π(E − ⋅)/T −), (2.92)

as shown in Figure 2.2 (a). For each interval q ∈ {0,⋯,N−} we define envelope good
interval

Iegq ∶= {ε′ ∈ Iq ∶ ∣fe(ε′)∣ ≥ 2−1/2}, (2.93)

see Figure 2.2 (b). Each interval Iegq , with the possible exception of q = 0 and q = N−,
includes ∼ δ−1 eigenvalues E′. To determine eigenvalues with good contributions, we
have to consider the fast oscillation

ff(⋅) ∶= cos(2π(E − ⋅)/T +). (2.94)

Approximately half of the eigenvalues in Iegq also satisfy

∣ff(E′)∣ ≥ 2−1/2, (2.95)

as indicated by Figure 2.2 (c). Consequently, the absolute value of the matrix
element in (2.89) for such eigenvalues is larger than L−1. It is important to note that
the number of good contributions in Iq for any q ∈ {1,⋯,N− − 1} is independent of
L, since both T ± and the approximate distance between consecutive eigenvalues are
of order O(L−1). All in all, for each E < Ec we have ∼ L1/2−α eigenvalues E′ > Ec
that yield good contributions. This ultimately allows us to use an adaptation of the
argument of (2.85) to prove a logarithmic lower bound.

The main technical difficulty of this proof arises from the eigenvalue distribution.
Although the spectral statistic is close to clock behaviour, the distance between two
consecutive eigenvalues is generally not exactly the same. Using the minimal and
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(b)ff (ε
′)fe(ε

′)

I0 I1 Iq IN−. . .

supWLEc

1

−1

ε′. . .

(a)

ff (ε
′)fe(ε

′)
1

−1

ε′

(b)

−1/
√
2

inf Iq sup Iq

T−/2

(c)

Iegq

1/
√
2

· · · · · · · · · · · · · · · · · · · · ·︸ ︷︷ ︸

1

ε′

1/
√
2

(c)

T+/2

ff (ε
′) eigenvalues of Hω

L

eigenvalues with good contributions

Figure 2.2: The process of identifying eigenvalues with good contributions
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maximal distance between eigenvalues, we derive an upper and a lower bound for
the number of good contributions in the following chapter. The somewhat artificial
restriction to small disorder arises from the necessity to control the γ- and v-dependence
of the logarithmic lower bound. This will be crucial for the next step towards proving
Theorem 2.1.1. For further details see Chapter 2.4.1. Leaving aside this restriction,
we are able to prove Theorem 2.1.2 for any disorder strength v ∈ ]0,2[ by slightly
modifying the arguments above.

2.3.2 Finding good contributions

Here we identify a sufficient number of good contributions for a lower bound for the
modulus of (2.84) by following the general strategy outlined in the previous section.
We assume without loss of generality Ec = 0. Throughout this subsection L ≥ Lmin and
α > 0 from Theorem 2.2.1 are fixed. We only consider elementary events ω ∈ (ΩL(α))c
in this section. For the reader’s convenience we drop ω in the notation of all quantities.
The enumeration

EJmin
< ⋯ < E−2 < E−1 < Ec ≤ E0 < E1 < ⋯ < EJmax (2.96)

of the 2L non-degenerate eigenvalues of HL will be convenient. The labelling index
runs from the negative integer Jmin to the positive integer Jmax, which both depend
on ω. Since we are only interested in eigenvalues in the critical window WL below or
above the critical energy, we introduce the two index sets

J< ∶= {Jmin < j < 0 ∶ Ej−1,Ej ∈ WL},
J≥ ∶= {0 ≤ j < Jmax ∶ Ej,Ej+1 ∈ WL}

(2.97)

and

J< ∶= minJ< − 1, J≥ ∶= maxJ≥ + 1. (2.98)

The next lemma analyses the step size at which the sine functions in (2.84) are
sampled. This is the discrete analogue to (2.88).

Lemma 2.3.3. Let γ, δ ∈ [0,1]. There exists a minimal length L0 ≡ L0(C,γ, δ) ∈ N
such that for every length L ≥ L0 and every pair of consecutive eigenvalues Ej,Ej+1 ∈
WL for a j ∈ {J<,⋯, J≥} we have

θL1(Ej+1) − θL1(Ej) ∈
πγ

2C6
[1,C12],

θL2(Ej+1) − θL2(Ej) ∈
π(γ + δ)

2C6
[1,C12].

(2.99)

Here, the quantity C > 1 is the one from Theorem 2.2.1, and L1, L2 are defined in
(2.86).

Proof. To prove the first statement in (2.99) we use the explicit representation (2.14)
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for (d/dE)θL1 . We see that for E ∈ WL we get

d

dE
θL1(E) =

L1−1

∑
n=−L

(ψL,E(n)
rL1(E) )

2

= 1

2

L1−1

∑
n=−L+1

( rn(E)
rL1(E))

2

+ 1

2
(ψL,E(−L)
rL1(E) )

2

+ 1

2
(ψL,E(L1 − 1)

rL1(E) )
2

. (2.100)

For ω ∈ (ΩL(α))c and all n ∈ ΓL∖{−L} we conclude, by the estimate (2.19) of Theorem
2.2.1, that

( rn(E)
rL1(E))

2

∈ [C−2,C2] . (2.101)

Furthermore ψ2
L,E(−L) ≤ (r−L+1(E))2 and ψ2

L,E(L1 − 1) ≤ (rL1−1(E))2. Hence,

d

dE
θL1(E) ∈ ⌊γL⌋ − 1

2
[C−2,C2] + 1

2
[0,1 +C2] ⊆ γL

2C3
[1,C6], (2.102)

where there exists a L0 ≡ L0(C,γ) ∈ N such that the last inclusion is true for all L ≥ L0,
because C > 1. The first statement in (2.99) now follows from integrating (2.102) over
Ej+1 −Ej together with the level spacing estimate (2.18).

The verification of the second statement in (2.99) is analogous and makes the min-
imal length L0 also dependent on δ.

As in (2.89) and the following we find a condition that, if satisfied, yields a lower
bound to the commutator in (2.84).

Lemma 2.3.4. For j ∈ J≥ and k ∈ J< we define

z±j,k ∶= ([θL2(Ej) − θL2(Ek)] ± [θL1(Ej) − θL1(Ek)])/2. (2.103)

Assume that
∣ cos z+j,k sin z−j,k∣ ≥ 1/2. (2.104)

Then the estimate

∣⟨ψL,Ek , [HL,1Λγ,δL
(X)]ψL,Ej⟩∣ ≥

1

CL
(2.105)

is true for the constant C > 1 from Theorem 2.2.1.

Proof. Introducing ζ±j,k ∶= z+j,k ± z−j,k, the modulus of (2.84) reads

∣⟨ψL,Ek ,[HL,1Λγ,δL
(X)]ψL,Ej⟩∣

= ∣rL2(Ek)rL2(Ej) sin ζ+j,k − rL1(Ek)rL1(Ej) sin ζ−j,k∣. (2.106)

The condition (2.104) implies that

∣ sin ζ+j,k − sin ζ−j,k∣ = 2 ∣ cos z+j,k sin z−j,k∣ ≥ 1, (2.107)

and therefore that sin ζ+j,k and sin ζ−j,k have opposite signs. Thus, the right-hand side of
(2.106) equals

rL2(Ek)rL2(Ej)∣ sin ζ+j,k∣ + rL1(Ek)rL1(Ej)∣ sin ζ−j,k∣, (2.108)
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and all four Prüfer radii can be estimated from below with (2.19). This yields the lower
bound

∣⟨ψL,Ek , [HL,1Λγ,δL
(X)]ψL,Ej⟩∣ ≥

1

CL
(∣ sin ζ+j,k∣+∣ sin ζ−j,k∣) =

1

CL
∣ sin ζ+j,k−sin ζ−j,k∣. (2.109)

Now, the claim follows from again applying (2.107).

From now on, our aim is to guarantee that condition (2.104) is satisfied for a
sufficient number of indices j and k. We start with an auxiliary result.

Lemma 2.3.5. Let j ∈ J≥ and k ∈ J<. Then

z−j+1,k − z−j,k ∈
π

4C6
[ − (C12 − 1)γ + δ , (C12 − 1)γ +C12δ],

z+j+1,k − z+j,k ∈
π(2γ + δ)

4C6
[1,C12]

(2.110)

is true for the constant C > 1 in Theorem 2.2.1.

Proof. This statement is a direct consequence of (2.99), the identity

z±j+1,k − z±j,k = {[θL2(Ej+1) − θL2(Ej)] ± [θL1(Ej+1) − θL1(Ej)]} /2 (2.111)

and that [a, b] + [c, d] = [a+ c, b+ d] and [a, b] − [c, d] = [a− d, b− c] is true for all finite
intervals [a, b], [c, d] ⊆ R.

Now, we think of the index k ∈ J< as being fixed, whereas the index j varies over
J≥ in an increasing way in steps by one. For the time being, we assume the condition

C12 − 1 < δ
γ
. (2.112)

Its validity will be ensured later with a restriction on the disorder strength v. Thus,
according to (2.110), both variables z±j,k are strictly increasing functions in j albeit z+j,k
grows much faster than z−j,k due to (2.87). In fact, for C ≈ 1 we have

z±j+1,k − z±j,k ≈ 2π(Ej+1 −Ej)/T ± (2.113)

for all j ∈ J≥, where T − is the period of the envelope and T + is the period of the fast
oscillation of (2.89) in the last chapter. Hence, z−j,k samples the envelope while z+j,k
samples the faster oscillation.

The condition (2.104) amounts to the requirement that sampling the oscillation
produces an amplitude larger than 1/2. First, we focus on the envelope and partition
J≥ into smaller sets of eigenvalues between the nodes of the envelope. This partition
is a discrete version of the one presented in (2.91).

Definition 2.3.6. The set

Z− ∶= {j ∈ J≥ ∶ sin z−j,k sin z−j−1,k ≤ 0 and sin z−j,k ≠ 0} (2.114)
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consists of those N− ∶= ∣Z−∣ indices where a sign change occurs in the envelope. It gives
rise to a disjoint partition

J≥ =∶
N−

⊍
q=0

A−q (2.115)

of the index set into ranges of successive indices between the nodes of the envelope.
Here, we introduced A−0 ∶= {j ∈ J≥ ∶ j < minZ−} as the left-most set in the partition,
which is the only one that can be empty. The requirement A−q ∩ Z− = minA−q for every
q ∈ {1, . . . ,N−} renders the partition unique. The set of “envelope-good” indices in Aq
is defined as

J eg
q ∶= {j ∈ A−q ∶ ∣ sin z−j,k∣ ≥ 2−1/2}, (2.116)

and the set of “good” indices in Aq as

J g
q ∶= {j ∈ J eg

q ∶ ∣ cos z+j,k∣ ≥ 2−1/2}, (2.117)

where q ∈ {1, . . . ,N− − 1}. For the sake of brevity, we have dropped the dependence on
k ∈ J< in all of the above notions.

Remark 2.3.7. (i) Clearly, j ∈ J g
q implies that (2.104) is true for this index j and

the respective fixed index k.

(ii) The set Aq is the equivalence to the set of eigenvalues included in Iq in Fig-
ure 2.2 (a).

Lemma 2.3.8. Fix k ∈ J<. Let γ, δ ≤ 2−7 and v ∈ ]0,2[ such that C ≤ 2 and that (2.112)
is satisfied. Then we have

∣A−q ∣ ∈ 2C6 [ 1

(C12 − 1)γ +C12δ
,

4

−(C12 − 1)γ + δ] (2.118)

for every q ∈ {1, . . . ,N− − 1}. The upper bound in (2.118) is also true for q = 0 and
q = N−. Moreover, the number of envelope-good indices is controlled by

∣J eg
q ∣ ∈ C6 [ 1

(C12 − 1)γ +C12δ
,

4

−(C12 − 1)γ + δ] (2.119)

for every q ∈ {1, . . . ,N− − 1}. As before, C > 1 stands for the constant from Theo-
rem 2.2.1.

Proof. Lemma 2.3.5 and (2.112) provide the positive bounds a ∶= (π/4C6)[−(C12 −
1)γ + δ] and b ∶= (π/4C6)[(C12 − 1)γ +C12δ] for the possible values of the increments
(z−j+1,k − z−j,k) ∈ [a, b]. For any q ∈ {1,⋯,N− −1} the maximal phase difference of sample
points within half of a period can be estimated as

max
j,l∈A−q

{z−j,k − z−l,k} ∈ ]π − 2b, π[, (2.120)

see also Figure 2.3.2. Hence, we conclude

∣A−q ∣ ∈ [⌊π − b/b⌋ + 1, ⌊π/a⌋ + 1] ⊆ [π/(2b),2π/a]. (2.121)
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nπ
z−j,k z−j+1,k

z−j,k for j ∈ A−
q

∈ ]0, b] ∈ [a, b]

(n+ 1)π

∈ [0, b[

Figure 2.3: Determining the number of elements in A−q .

Here, the last inclusion is satisfied, if b ≤ π/2 and a ≤ π. But a ≤ b by definition, so
the latter follows from the former. We point out that the assumptions of the lemma
even guarantee b ≤ π/4, which is needed below. This establishes (2.118). Since the
upper bound for the phase difference in (2.120) is trivial and also holds for q = 0 and
q = N−, we infer the validity of the upper bound in (2.118) for those two values of q,
too.

Now, we turn to the proof of (2.119). Because of ∣{ς ∈ [0, π] ∶ ∣ sin ς ∣ ≥ 2−1/2}∣ = π/2,
the maximal phase difference associated with envelope-good indices is restricted to

max
j,l∈J eg

q

{z−j,k − z−l,k} ∈ ](π/2) − 2b, π/2]. (2.122)

Similarly, we conclude

∣J eg
q ∣ ∈ [⌊π/(2b) − 2⌋ + 2, ⌊π/(2a)⌋ + 1] ⊆ [π/(4b), π/a], (2.123)

where the last inclusion follows from a ≤ b ≤ π/4.

Next, we assert that there is a sufficient number of good indices in each Aq for
q ∉ {0,N−}.

Lemma 2.3.9. Fix k ∈ J<. We assume C ≤ 2, γ ≤ 2−8, δ/γ ≤ 2−17 and that (2.112) is
satisfied. Then we have

∣J g
q ∣ ≥

1

25C18δ
(2.124)

for every q ∈ {1, . . . ,N− − 1}. Again, C > 1 stands for the constant in Theorem 2.2.1.

Proof. The set

Z+q ∶= {j ∈ J eg
q ∶ cos z+j,k cos z+j−1,k ≤ 0 and cos z+j,k ≠ 0}, (2.125)

where q ∈ {1, . . . ,N− − 1}, consists of those N+

q ∶= ∣Z+q ∣ indices where a sign change
occurs in the fast oscillation within the envelope-good part of Aq. This gives rise to a
disjoint partition

J eg
q =∶

N+
q

⊍
r=0

A+q,r (2.126)
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into ranges of successive indices between two nodes of the fast oscillation. Here, we
introduced A+q,0 ∶= {j ∈ J eg

q ∶ j < minZ+q } as the left-most set in the partition, which
is the only one that can be empty. The requirement A+q,r ∩ Z+q = minA+q,r for every
r ∈ {1, . . . ,N+

q } renders the partition unique.
First, we estimate the cardinality of A+q,r in the same way as it was done for A−q

in the proof of the previous lemma. Lemma 2.3.5 provides the positive bounds a′ ∶=
π(2γ + δ)/(4C6) and b′ ∶= πC6(2γ + δ)/4 for the possible values of the increments
(z+j+1,k−z+j,k) ∈ [a′, b′]. For any q ∈ {1,⋯,N−−1} and any r ∈ {1,⋯,N+

q −1} the maximal
phase difference of sample points within half of a period of the fast oscillation can be
estimated as

max
j,l∈A+q,r

{z+j,k − z+l,k} ∈ ]π − 2b′, π[. (2.127)

Hence, we conclude

∣A+q,r∣ ∈ [⌊π/b′⌋, ⌊π/a′⌋ + 1] ⊆ [π/(2b′),2π/a′], (2.128)

where the last inclusion follows from 0 < a′ < b′ ≤ π/2. In fact, the assumptions of the
lemma even guarantee b′ ≤ π/4, which we need below. Since the upper bound for the
phase difference in (2.127) is trivial and is also true for r = 0 and r = N+

q , we infer the
validity of the upper bound in (2.128) for those two values of r, too.

In order to estimate the cardinality of Z+q for q ∈ {1,⋯,N−−1}, we infer from (2.126)
and (2.128) that

∣J eg
q ∣ ≤ (N+

q + 1) 2π

a′
. (2.129)

The assumptions of the present lemma imply those of Lemma 2.3.8 which yields

∣J eg
q ∣ ≥ d ∶= 1

2C6δ
. (2.130)

Thus, we arrive at

N+

q − 1 ≥ da
′

2π
− 2 ≥ da

′

4π
, (2.131)

where the second inequality holds because the assumptions of the lemma imply da′ ≥ 8π.
The set of “good” indices within A+q,r is defined as

J g
q,r ∶= {j ∈ A+q,r ∶ ∣ cos z+j,k∣ ≥ 2−1/2} (2.132)

so that

J g
q ⊇

N+
q −1

⊍
r=1

J g
q,r. (2.133)

For any q ∈ {1,⋯,N− − 1} and any r ∈ {1,⋯,N+

q − 1}, the maximal phase difference of
good sample points between two nodes of the fast oscillation can be estimated as

max
j,l∈J g

q,r

{z+j,k − z+l,k} ∈ ](π/2) − 2b′, π/2]. (2.134)

Here, we used the second statement from Lemma 2.3.5, z+j+1,k − z+j,k ∈ [a′, b′] with
a′ ∶= π(2γ + δ)/(4C6) and b′ ∶= πC6(2γ + δ)/4. Therefore, we conclude as in (2.123)

∣J g
q,r∣ ∈ [⌊π/(2b′) − 2⌋ + 2, ⌊π/(2a′)⌋ + 1] ⊆ [π/(4b′), π/a′], (2.135)

where the last inclusion follows from 0 < a′ < b′ ≤ π/4. Combining (2.133), (2.131) and
(2.135), we obtain ∣J g

q ∣ ≥ da′/(24b′), which proves the lemma.
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2.3.3 The logarithmic lower bound

We assemble the results from the previous section and deduce a deterministic logarith-
mic lower bound for the quadratic analogue to the finite-volume entanglement entropy
as defined in (2.79).

Theorem 2.3.10. Let v ∈ ]0,2[ and Ec ∈ {0, v}. We fix α ∈ ]0,1/4[ and γ ∈ ]0,2−17[ .
In addition, we assume that the quantity C > 1 from Theorem 2.2.1 satisfies

C < 1 + γ2. (2.136)

Then there exists a minimal length L0 ≡ L0(α, v) > 0 such that

QEc(Λγ,γ2

L ; ΓL,H
ω
L) ≥ 2−13(1 − 3α) lnL (2.137)

for all L ≥ L0 and all events ω ∈ (ΩL(α))c.

We argue in Remark 2.2.2 (i) that the assumption (2.136) can always be satisfied
by choosing the disorder strength v sufficiently small. This leads to

Corollary 2.3.11. We fix γ ∈ ]0,2−17[ . There exists a maximal disorder strength
v0 ∈ ]0,2[ such that for every v ∈ ]0, v0] and Ec ∈ {0, v} there is a minimal length
L′0 ≡ L′(v) > 0 such that for all L ≥ L′0

E[QEc(Λγ,γ2

L ; ΓL,HL)] ≥ 2−15 lnL. (2.138)

Proof. As limv↓0C = 1 by Theorem 2.2.1, there exists a maximal disorder strength
v0 ≡ v0(γ) ∈ ]0,2[ such that (2.136) is true for every v ∈ ]0, v0]. We choose α = 1/6 in
Theorem 2.3.10 and infer from (2.137) that

E[QEc(Λγ,γ2

L ; ΓL,HL)] ≥ 2−14 lnL P[(ΩL(α))c] (2.139)

for every L ≥ L0. Now, the claim follows from (2.16), possibly by enlarging L0.

Proof of Theorem 2.3.10. Let ω ∈ (ΩL(α))c and, for the time being, L ≥ Lmin, where
Lmin is the minimal length given in Theorem 2.2.1. We use the notation introduced at
the beginning of Section 2.3.2 and drop ω from all quantities, as it is also done there.
By restricting the double sum in Lemma 2.3.1 to energies inside the critical window,
we arrive at the estimate

QEc(Λγ,γ2

L ; ΓL,HL) ≥ 4 ∑
j∈J≥, k∈J<

1

(Ej −Ek)2
∣⟨ψL,Ek , [HL,1Λγ,γ

2

L

(X)]ψL,Ej⟩∣
2

. (2.140)

We aim to apply the lower bound for the commutator from Lemma 2.3.4. Its assump-
tion (2.104) is satisfied for every fixed k ∈ J< after further restricting the j-sum to good
indices according to J≥ ⊇ ⋃N

−
−1

q=1 J g
q , see Remark (i). This yields the lower bound

4

(CL)2 ∑
k∈J<

N−
−1

∑
q=1

∑
j∈J g

q

1

(Ej −Ek)2
≥ 4

(CL)2 ∑
k∈J<

N−
−1

∑
q=1

∣J g
q ∣

(ε(k)q −Ek)2
(2.141)
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for the right-hand side of (2.140), where we introduced

ε
(k)
q ∶= max

j∈A−q
Ej (2.142)

for q ∈ {1, . . . ,N−} and k ∈ J<. We recall that there is a suppressed k-dependence in

the quantities of Definition 2.3.6 which we explicitly expressed in ε
(k)
q .

The assumptions of the theorem imply those of Lemma 2.3.9 because the elementary
inequality (1 + ρ)n ≤ 1 + 2nρ, valid for ρ ∈ [0,1] and n ∈ N, ensures that (2.112) holds.
In fact, even the stronger inequality

C12 − 1 ≤ 212γ2 ≤ 2−5γ = 2−5δ/γ (2.143)

is satisfied for δ = γ2. Therefore, we can apply the lemma and infer that the expression

1/L
23C20γ2 ∑

k∈J<

N−
−1

∑
q=1

ε
(k)
q+1 − ε

(k)
q

(ε(k)q −Ek)2

1/L
ε
(k)
q+1 − ε

(k)
q

(2.144)

is a lower bound for the right-hand side of (2.141). The energy ε
(k)
q is the right-most

next to the qth node of the envelope. Therefore we can estimate their differences as

0 < ε(k)q+1 − ε
(k)
q ≤ ∣A−q+1∣

πC3

L
≤ π23C9

Lγ2

1

1 − 2−5
≤ 26C9

Lγ2
(2.145)

for q ∈ {1, . . . ,N−−1}, independently of k. Here, the first upper bound on the difference
follows from (2.18) and the second from Lemma 2.3.8 and (2.143). We note that the
assumptions of Lemma 2.3.8 are weaker than those of Lemma 2.3.9. Combining (2.140),
(2.141), (2.144) and (2.145), we arrive at

QEc(Λγ,γ2

L ; ΓL,HL) ≥
1/L

29C29 ∑
k∈J<

N−
−1

∑
q=1

ε
(k)
q+1 − ε

(k)
q

(ε(k)q −Ek)2

≥ 1/L
29C29 ∑

k∈J<
∫

ε
(k)
N−

ε
(k)
1

dε

(ε −Ek)2
. (2.146)

. . . . . .

Ec

1

|Ek − ε|2

εε
(k)
1 ε

(k)
2 ε

(k)
3 ε

(k)
N−

Figure 2.4: The Riemann sum of (2.146).
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Now, the next step is to deduce a k-independent lower bound on the range of the
ε-integration. This allows us to interchange the integral with the k-sum. Since ε

(k)
1 ,

respectively ε
(k)
N− , lies between the first, respectively last, two nodes of the envelope, we

estimate as in (2.145)

ε
(k)
1 ≤ Ec + (∣A−0 ∣ + ∣A−1 ∣)

πC3

L
≤ Ec +

27C9

Lγ2
,

ε
(k)
N− ≥ maxWL −

πC3

L
≥ Ec +L−1/2−α − 22C3

L
,

(2.147)

independently of k. Let L0 ≡ L0(α, v) ≥ Lmin be large enough so that both 22C3 ≤
27C9/γ2 ≤ 216/γ2 ≤ Lα0 and Lα −L−1/2+3α ≥ 1 for all L ≥ L0. For the rest of this proof we
assume L ≥ L0. Then (2.147) simplifies to

ε
(k)
1 ≤ Ec +L−1+α,

ε
(k)
N− ≥ Ec +L−1/2−2α(Lα −L−1/2+3α) ≥ Ec +L−1/2−2α.

(2.148)

We recall the definition of J< from (2.98) and conclude that

QEc(Λγ,γ2

L ; ΓL,HL) ≥
1

29C29 ∫
Ec+L−1/2−2α

Ec+L−1+α
dε ∑

k∈J<

Ek −Ek−1

(ε −Ek)2

1/L
Ek −Ek−1

≥ 1

211C32 ∫
Ec+L−1/2−2α

Ec+L−1+α
dε∫

E−1

EJ<

dη
1

(ε − η)2
(2.149)

because the level-spacing estimate (2.18) provides the bound Ek − Ek−1 ≤ πC3/L. It
also implies

E−1 ≥ Ec −
πC3

L
≥ Ec −L−1+α,

EJ< ≤ minWL +
πC3

L
≤ Ec −L−1/2−2α,

(2.150)

where we argued similarly as in (2.148) for L ≥ L0. We thus estimate and integrate

QEc(Λγ,γ2

L ; ΓL,HL) ≥
1

211C32 ∫
L−1/2−2α

L−1+α
dε∫

−L−1+α

−L−1/2−2α
dη

1

(ε − η)2

= 1

211C32
ln(L−1+3α 2

1 +L−1/2+3α
) ≥ 1 − 3α

212C32
lnL. (2.151)

Finally, the estimate C32 ≤ 1 + 232γ2 ≤ 2, which follows from the elementary inequality
above (2.143), concludes the proof.

2.3.4 Proof of Theorem 2.1.2

To conclude this section, we sketch the necessary modifications for the proof of The-
orem 2.1.2. The goal is to obtain a similar statement to Theorem 2.3.10, which is
valid for all possible coupling constants v ∈ ]0,2[. We therefore cannot rely on C being
arbitrarily close to one. However, the proof is much easier given that the region Λ′

L is
attached to the border of ΓL.
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Proof of Theorem 2.1.2. The use of Λ′

L ∶= [−L,−(1−δ)L]∩Z = Λ0,δ
L amounts to γ = 0 in

our previous arguments. This change simplifies the matrix elements of the commutator
(2.106) dramatically, since θL1(E) = 0 in this case by definition for all values E ∈ R.
Hence,

∣⟨ψL,Ek , [HL,1Λ′
L
(X)]ψL,Ej⟩∣ = ∣rL2(Ek)rL2(Ej) sin(2z−j,k)∣ ≥

1

CL
∣ sin(2z−j,k)∣ (2.152)

for all k ∈ J< and j ∈ J≥. This renders the considerations of Lemma 2.3.4 and
Lemma 2.3.9 unnecessary, since only a single sine-function emerges. The overall ar-
gument, however, is similar to the one in Lemma 2.3.8 with an additional factor of
2.

We therefore redefine the set

Z− ∶= {j ∈ J≥ ∶ sin(2z−j,k) sin(2z−j−1,k) ≤ 0 and sin(2z−j,k) ≠ 0} (2.153)

of indices where a sign change occurs in the oscillation. Again, let N− ∶= ∣Z−∣. As
before, this gives rise to a disjoint partition

J≥ =∶
N−

⊍
q=0

A−q (2.154)

of the index set into sets of successive indices between the nodes of the oscillation. The
set of good indices in A−q is defined as

J g
q ∶= {j ∈ A−q ∶ ∣ sin(2z−j,k)∣ ≥ 2−1/2}, (2.155)

for all q ∈ {0,⋯,N−}. The proof of Lemma 2.3.5 is valid for γ = 0. It provides
positive bounds a ∶= δπ/2C6 and b ∶= δπC6/2 for the positive values of the increments
2(z−j+1,k − z−j,k) ∈ [a, b]. From the proof of Lemma 2.3.8 we get the following estimate

∣J g
q ∣ ≥ ⌊π/(2b)⌋ ≥ π/(4b), (2.156)

where the last inclusion follows from b ≤ π/4, which is true for δ < 2−1C−6. The
inequality (2.156) replaces the estimate of Lemma 2.3.9. The rest of the proof is
identical to the one of Theorem 2.3.10 and Corollary 2.3.11, except that we do not
take the expectation at the end but resort to the Borel–Cantelli Lemma to conclude
that

P({ω ∈ (ΩL(α))
c

for all but a finite number of L ∈ N}) = 1. (2.157)

2.4 Lower bound to the infinite-volume entangle-

ment entropy

2.4.1 General idea and strategy

In this section we deduce the main Theorem 2.1.1 from Corollary 2.3.11. The goal is
to control the error arising from considering the finite-volume instead of the infinite-
volume entanglement entropy. We consider a discrete interval Λ ⊂ ΓL and denote by
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f(Hω
L) the trivial extension of this operator from `2(ΓL) to the space `2(Z) for any

measurable function f ∶ R→ R.
Our strategy is to apply Krĕın’s trace formula, see e.g. [Sch12, Sect. 9.7],

∣tr g(1Λ(X)1<Ec(Hω)1Λ(X)) − g(1Λ(X)1<Ec(Hω
L)1Λ(X))∣

= ∣∫
1

0
ds g′(s) ξωL(s)∣ ≤ 4 ∥ξωL∥L1 (2.158)

to the parabola g from (2.78), where

ξωL ∶ R ∋ s↦ tr 1≤s(1Λ(X)1<Ec(Hω)1Λ(X)) − 1≤s(1Λ(X)1<Ec(Hω
L)1Λ(X)) (2.159)

is the spectral shift function. Here, ∥ ⋅∥L1 denotes the L1(R)-norm. It can be estimated
in terms of the trace norm ∥ ⋅ ∥1 of the difference

∥ξωL∥L1 ≤ ∥1Λ(X)(1<Ec(Hω) − 1<Ec(Hω
L))1Λ(X)∥

1
. (2.160)

Consequently, our aim is to find an estimate for the right-hand side of (2.160) that
grows at most logarithmically in L.

5

σ(Hω)

v + 2−2 0 v−3

γT

min{1, Tπ/2}i

Figure 2.5: The contour γT

In a first step we replace 1<Ec by fT (⋅ −Ec), where fT ∶= 1/(1 + e(⋅)/T ) is the Fermi–
Dirac distribution for a temperature T > 0. For small temperatures this yields an
approximation of the Fermi projection, since limT→0 ∥fT − 1<0∥L1 = 0. The replacement
enables us to express the difference between finite- and infinite-volume operators in
terms of a contour integral along the curve γT shown in Figure 2.5. This curve encircles
both σ(Hω

L) and σ(Hω), but no singularities of the meromorphic function fT (⋅ −Ec),
which are positioned at (Ec + iπT ) + 2πiTZ. Hence,

F ω
L (Λ, T,Ec) ∶= 1Λ(X)(fT (Hω −Ec) − fT (Hω

L −Ec))1Λ(X)

= 1

2πi

¿

γT

dz fT (z −Ec)1Λ(X)( 1

z −Hω
− 1

z −Hω
L

)1Λ(X). (2.161)

This expression is advantageous, since there exists a number of well-known results on
resolvents of Schrödinger operators that can be applied to estimate the contour integral.
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In particular, we use the geometric resolvent equality and a Combes–Thomas estimate.
For almost all ω ∈ Ω we show that

∥F ω
L (Λ, T,Ec)∥1 ≤ 29∣Λ∣2T −2e−dLT /6 + rL,1(Λ, T ), (2.162)

where rL,1(Λ, T ) > 0 and dL ≡ dL(Λ) ∶= dist(Λ,{−L,L − 1}) denotes the distance of the
small box to the boundary of ΓL for all L ∈ N. It is noteworthy that this estimate is
completely deterministic and almost surely does not depend on ω.

In a second step, we estimate the error caused by replacing the Fermi projections
with the Fermi-.Dirac distribution to a temperature T > 0. For both Hω and Hω

L let
us define

Gω
(L)(Λ, T,Ec) ∶= 1Λ(X)(fT (Hω

(L) −Ec) − 1<Ec(Hω
(L)))1Λ(X). (2.163)

We estimate the expectation of these operators with

E[∥Gω
(L)(Λ, T,Ec)∥1] ≤ 2C4∣Λ∣T + r(L),2(Λ, T ), (2.164)

where r(L),2(Λ, T ) > 0.
These results are summarised in the lemma below, which will be proven in Sec-

tion 2.4.2.

Lemma 2.4.1. Let Ec ∈ {0, v} and α > 0. Then there exists a minimal length L0 ≡
L0(α, v, p+) ∈ N, such that for all L ≥ L0, all “temperatures” T ∈ ]0,∞[ and all discrete
intervals Λ ⊂ ΓL we have the estimate

E [∣QEc(Λ; ΓL,HL) −QEc(Λ;Z,H)∣] ≤ 22C4∣Λ∣T + 29∣Λ∣2T −2e−dLT /6 +RL(Λ, T ) (2.165)

with a remainder term

RL(Λ, T ) ∶= 24C + 29∣Λ∣2T e−dL/6 + 23C3∣Λ∣e−L−1/2−α
/T . (2.166)

The previous lemma finally enables us to prove Theorem 2.1.1 by perturbing the

result of Corollary 2.3.11. Recall, that the spatial region Γγ,γ
2

L considered in this corol-

lary is of size ∣Λγ,γ2

L ∣ ≈ γ2L and at a distance dL(Λγ,γ2

L ) ≈ γL to the border of ΓL. We
choose an L-dependent temperature

TL ∶= (K lnL)/L (2.167)

for some constant K ≡K(γ) ∶= 25
γ > 0.

For any γ ∈ ]0,1/2[ this implies limL→∞RL(Λγ,γ2

L , TL) = 0. The second term on
the right-hand side of (2.165) also vanishes for L → ∞. The remaining first term is
proportional to C4γ lnL. Since the lower bound to the finite-volume entanglement
entropy from Corollary 2.3.11 is independent of both γ and C, we are able to ascertain
a logarithmic lower bound to the infinite-volume entanglement entropy by choosing γ
to be sufficiently small.
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2.4.2 Proof of Lemma 2.4.1

Without loss of generality we restrict ourselves in the proof of Lemma 2.4.1 to the case
Ec = 0, the other case being analogous.

Following the strategy outlined in the previous section, we start by estimating the
contour integral presented in (2.161).

Lemma 2.4.2. The deterministic estimate

∥F ω
L (Λ, T,0)∥1 ≤ 29∣Λ∣2 (T e−dL/6 + T −2e−dLT /6) (2.168)

is true for all L ∈ N, Λ ⊂ ΓL, T > 0 and almost all ω ∈ Ω.

Proof. The function fT is meromorphic with singularities at iπT + 2πT iZ. Let γT be a
positively-oriented simple closed curve with an image that borders the rectangle

{z ∈ C ∶ ∣ Im(z)∣ ≤ min(1, Tπ/2), Re(z) ∈ [−3,5]}. (2.169)

Note that this curve encircles the spectra of both Hω
L and Hω for all L ∈ N and almost

all ω ∈ Ω, since both σ(Hω
(L)

) ⊆ [−2,4] for all v ∈ ]0,2[. We conclude that

1Λ(X)(fT (Hω) − fT (Hω
L))1Λ(X)

= 1

2πi

¿

γT

dz fT (z)1Λ(X)( 1

z −Hω
− 1

z −Hω
L

)1Λ(X). (2.170)

The geometric resolvent equation yields

1Λ(X)( 1

z −Hω
− 1

z −Hω
L

)1Λ(X)

= −1Λ(X) 1

z −Hω
( ∣δ−L−1⟩⟨δ−L∣ + ∣δL⟩⟨δL−1∣ )

1

z −Hω
L

1Λ(X). (2.171)

We estimate the matrix elements of the resolvent with the Combes–Thomas estimate
[Kir08, Thm. 11.2]

∣⟨δx, (
1

z −Hω
− 1

z −Hω
L

)δy⟩∣ ≤ 2
22

dist(z, [−2,4])2
e−2 dist(z,[−2,4])dL/12 (2.172)

for every x, y ∈ Λ and every z ∉ σ(Hω
L) ∪ σ(Hω). As to the applicability of [Kir08,

Thm. 11.2], we note that based on this proof the statement can be obtained not only
for z ∈ C with distance to the spectrum ≤ 1, but even if it is ≤ 12, which is satisfied in
our case.

An elementary computation shows that ∣fT (z)∣ ≤ 1 for all z on the curve γT . Fur-
thermore, for all z on the horizontal parts of γT where ∣ Im(z)∣ = min(1, Tπ/2) we
find dist(z, [−2,4]) ≥ Tπ/2. On the vertical parts where Re(z) ∈ {−3,5} we have
dist(z, [−2,4]) ≥ 1. Hence,
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∥1Λ(X)(fT (Hω) − fT (Hω
L))1Λ(X)∥

1

≤ ∑
x,y∈Λ

1

2π
∣
¿

γT

dz fT (z) ⟨δx, (
1

z −Hω
− 1

z −Hω
L

)δy⟩∣

≤ 29∣Λ∣2 (T e−dL/6 + T −2e−dLT /6) . (2.173)

As described in the last section, we now proceed by estimating the error term
(2.163) that arises from replacing the Fermi projections with fT (Hω

(L)
).

Lemma 2.4.3. There exists a minimal length L̃0 ≡ L̃0(v, p+) > 1, such that for all
L ≥ L̃0, all T > 0 and all sets Λ ⊂ ΓL we have

E[∥G(Λ, T,0)∥1] ≤ 2∣Λ∣ [C3T + (2 +C3L−1/2)e−L
−1/2

/T ]. (2.174)

Proof. We recall that, given a bounded measurable function ζ ∶ R → R with decompo-
sition ζ = ζ+ − ζ− in its positive and negative part, we have the estimate

∥1Λ(X)ζ(H)1Λ(X)∥1 ≤ ∥1Λ(X)ζ+(H)1Λ(X)∥1 + ∥1Λ(X)ζ−(H)1Λ(X)∥1

= tr{1Λ(X)∣ζ ∣(H)1Λ(X)}. (2.175)

This, together with ergodicity with respect to 2Z-translations and the well-known
Pastur–Shubin formula for the integrated density of statesN(E) = (E[⟨δ0,1<E(H)δ0⟩]+
E[⟨δ1,1<E(H)δ1⟩])/2 imply

E[∥1Λ(X)(fT (H) − 1<0(H))1Λ(X)∥
1
]

≤ E[ tr{1Λ(X)∣fT (H) − 1<0(H)∣1Λ(X)}] ≤ 2∣Λ∣ ∫
R

dN(E) ∣fT (E) − 1<0(E)∣. (2.176)

We split the integral over R into two contributions from R>0, respectively R<0, and only
discuss the one from R>0. The other one from R<0 will have the same upper bound.
Thus, for every L ∈ N, we infer from partial integration

∫
∞

0
dN(E) fT (E) = ∫

L−1/2

0
dE (N(E) −N(0)) (−fT )′(E)

+ (N(L−1/2) −N(0))fT (L−1/2)

+ ∫
∞

L−1/2
dN(E) fT (E). (2.177)

The integral in the last line of (2.177) is bounded from above by e−L
−1/2

/T . According to
Theorem 2.2.1 (ii), there exists ε0 > 0, which depends only on v and on the probabilities
p±, such that ∣N (E) −N(0)∣ < 2N ′(0)∣E∣ for all ∣E∣ < ε0. From now on we assume that
L ≥ L̃0 ≡ L̃0(v, p+) ∶= ε−2

0 . Thus, the modulus of the term in the second line of (2.177)
is bounded from above by

2N ′(0)L−1/2 e−L
−1/2

/T ≤ 2−1C3L−1/2 e−L
−1/2

/T , (2.178)
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where we used fT ≤ e−(⋅⋅⋅ )/T and Theorem (ii). Since (−fT )′ ≥ 0, we bound the modulus
of the first integral on the right-hand side of (2.177) from above by

2N ′(0)∫
L−1/2

0
dE E (−fT )′(E) = 2N ′(0){ −L−1/2fT (L−1/2) + ∫

L−1/2

0
dE fT (E)}

≤ 2N ′(0)T ≤ 2−1C3T. (2.179)

Combining the three upper bounds for the contributions to (2.177), and adding the
identical upper bound for the contribution from the integral over R<0 to (2.176), we
obtain the claim.

Lemma 2.4.4. Let α > 0. For all L > Lmin, all T > 0 and all discrete intervals A ⊂ ΓL
we have

E[∥GL(Λ, T,0)∥1] ≤ ∣Λ∣[C4T + 2C

L
+ e−L

−1/2−α
/T + e−cL

α/2], (2.180)

where Lmin, C and c originate from Theorem 2.2.1.

Proof. The principal strategy here is the same as in the proof of Lemma 2.4.3, but
instead of ergodicity and regularity of the integrated density of states, we rely on the
delocalisation results of Theorem 2.2.1. Thus, let L ≥ Lmin and ω ∈ (ΩL(α))c. We drop
ω from the notation of all quantities in this proof and infer from (2.175) that

∥1Λ(X)(1<0(HL) − fT (HL))1Λ(X)∥
1
≤ ∑
x∈Λ

⟨δx, ∣1<0(HL) − fT (HL)∣δx⟩. (2.181)

Since ∣1<0 − fT ∣ ≤ e−∣ ⋅⋅⋅ ∣/T , we obtain for all x ∈ Λ

⟨δx, ∣1<0(HL) − fT (HL)∣δx⟩ ≤ ⟨δx,1WL
(HL)e−∣HL∣/T δx⟩ + e−L

−1/2−α
/T

=
J≥

∑
j=J<

∣⟨δx, ψL,Ej⟩∣2e−∣Ej ∣/T + e−L
−1/2−α

/T , (2.182)

where J< and J≥ were defined in (2.98). Theorem 2.2.1 implies ∣ψL,Ej(x)∣2 ≤ C/L for
all j ∈ {J<, . . . , J≥} and C/L ≤ (C4/π)∣Ej − Ej±1∣ for all j ∈ {J<, . . . ,−2}, respectively
j ∈ {1, . . . , J≥}. This yields the following upper bound for the sum in (2.182)

C

L

J≥

∑
j=J<

e−∣Ej ∣/T ≤ C
4

π

−2

∑
j=J<

∣Ej −Ej+1∣e−∣Ej ∣/T +
C4

π

J≥

∑
j=1

∣Ej −Ej−1∣e−∣Ej ∣/T

+ C
L

(e−∣E−1∣/T + e−∣E0∣/T )

≤ C
4

π ∫
L−1/2−α

−L−1/2−α
dE e−∣E∣/T + 2C

L
≤ 2C4T

π
+ 2C

L
. (2.183)

Therefore, we conclude

E[∥1Λ(X)(1<0(HL) − fT (HL))1Λ(X)∥
1
]

≤ ∣Λ∣[C4T + 2C

L
+ e−L

−1/2−α
/T + P(ΩL(α))] (2.184)

and deduce the claim with (2.16).
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e−|ε|/T

ε

Figure 2.6: The Riemann sum of (2.183).

Proof of Lemma 2.4.1. We combine (2.158), (2.160), the triangle inequality and Lem-
mata 2.4.2 – 2.4.4. Furthermore, ∣Λ∣e−cLα/2 ≤ 2Le−cL

α/2 ≤ 1 ≤ C for all L ≥ L1, where the
minimal length L1 ≡ L1(α, v, p+) depends only on α and on the model parameters (but
not on Λ). We set L0 ≡ L0(α, v, p+) ∶= max{L̃0, Lmin, L1}.

2.4.3 Proof of Theorem 2.1.1

Before we turn to the proof of the main theorem, we need another perturbation result.

Lemma 2.4.5. Let Λ,Λ′ ⊆ ΓL and EF ∈ R. Then

∣QEF (Λ; ΓL,H
ω
L) −QEF (Λ′; ΓL,H

ω
L)∣ ≤ 4r for all ω ∈ Ω, (2.185)

with r ∶= ∣Λ△Λ′∣, where A△B denotes the symmetric difference of two sets A and B.

Proof. We use the abbreviation P ∶= 1<EF (Hω
L). The operators 1Λ(′)(X)P1Λ(′)(X) and

P1Λ(′)(X)P share the same non-zero singular values. This and g(0) = 0 implies that
the left-hand side of (2.185) equals

∣tr{g(P1Λ(X)P ) − g(P1Λ′(X)P )}∣ ≤ 4∥P (1Λ(X) − 1Λ′(X))P ∥1

≤ 4∥1Λ(X) − 1Λ′(X)∥1 = 4r, (2.186)

where, in order to deduce the first inequality, we argued with Krĕın’s trace formula as
in (2.158) and (2.160) but with the operators P1Λ(X)P and P1Λ′(X)P .

Lemma 2.4.6. Let γ ∈ ]0,1/2[, L′ ∈ N and ΛL′ ∶= {1,⋯, L′}. Then there exists L ∈ N
such that

∣E[QEc(ΛL′ ;Z,H) −QEc(Λγ,γ2

L ;Z,H)]∣ ≤ 8. (2.187)

Proof. Let us first show, that for each L′ ∈ N there exists a L ∈ N with ∣ΛL′ ∣ = ∣Λγ,γ2

L ∣.
For any ` ∈ N let

γ` ∶= ∣Λγ,γ2

` ∣ = ⌊(γ + γ2)`⌋ − ⌊γ`⌋. (2.188)

As γ < 1 and γ+γ2 < 1, we infer ⌊(γ+γ2)(`+1)⌋−⌊(γ+γ2)`⌋ ∈ {0,1} and ⌊γ(L+1)⌋−⌊γL⌋ ∈
{0,1} for all ` ∈ N. Thus, we have γ`+1 − γ` ∈ {−1,0,1} for all ` ∈ N. Together with
γ1 = 0 and lim`→∞ γ` = ∞, this implies that there exists at least one L ∈ N with γL = L′.



2.4 Lower bound to the infinite-volume entanglement entropy 45

Since Hω is 2Z-ergodic, we have

E[QEc(AL′ ;Z,H)] = E[QEc(Λγ,γ2

L ;Z,H)] (2.189)

for either AL′ = ΛL′ or AL′ = −1+ΛL′ , since we can shift the left border of Λγ,γ2

L to either
1 or 0. Since the cardinality of the symmetric difference between ΛL′ and −1 + ΛL′ is
equal to two, the claim is a consequence of Lemma 2.4.5.

Proof of Theorem 2.1.1. We fix α ∶= 1/6 and γ ∈ ]0,2−27[. The goal is to apply

Lemma 2.4.1 with Λ = Λγ,γ2

L , where dL ≡ dL(Λγ,γ2

L ) = ⌊γL⌋ and ∣Λγ,γ2

L ∣ = ⌊(γ+γ2)L⌋−⌊γL⌋.
First, we have to replace the box ΛL = {1, . . . , L} by the differently positioned box

Λγ,γ2

L according to

lim inf
L→∞

E[SEF (ΛL;Z,H)]
lnL

≥ lim inf
L→∞

E[QEF (ΛL;Z,H)]
lnL

= lim inf
L→∞

E[QEF (Λ
γ,γ2

L ;Z,H)]
lnL

. (2.190)

The equality in (2.190) follows from Lemma 2.4.6 and limL→∞ lnL/ ln ∣Λγ,γ2

L ∣ = 1.

Introducing the abbreviation EL ∶= E[∣QEF (Λ
γ,γ2

L ; ΓL,HL) −QEF (Λ
γ,γ2

L ;Z,H)∣], the
estimate (2.190) implies

lim inf
L→∞

E[SEF (ΛL;Z,H)]
lnL

≥ lim inf
L→∞

E[QEF (Λ
γ,γ2

L ; ΓL,HL)]
lnL

− lim sup
L→∞

EL
lnL

≥ 2−15 − lim sup
L→∞

EL
lnL

, (2.191)

where we used Corollary 2.3.11 in the last step, assuming that v ∈ ]0, v0].
Now, we estimate the error EL with Lemma 2.4.1. For that purpose we choose the

temperature as TL ∶= (K lnL)/L with

K ≡K(γ) ∶= 25/γ. (2.192)

We find for the residual term that

lim
L→∞

RL(Λγ,γ2

L , TL) = 24C. (2.193)

Furthermore the choice of K in (2.192) implies that

lim
L→∞

∣Λγ,γ2

L ∣2T −2
L e−dLTL/6 = 5−4γ2 lim

L→∞
(lnL)−2L4−KdL/(6L) = 0 (2.194)

and therefore

lim sup
L→∞

EL
lnL

≤ 27C4γ (2.195)

Thus, we deduce from (2.191) that

lim inf
L→∞

E[SEF (ΛL;Z,H)]
lnL

≥ 2−15 − 27C4γ ≥ 2−16. (2.196)

To see the validity of the last inequality, we recall from the proof of Corollary 2.3.11
that the restriction v ≤ v0 guarantees the bound C < 1+ γ2. Since γ ∈ ]0,2−27[, we have
C4 ≤ 2. This concludes the claim.
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Chapter 3

Stability of the enhanced area law
of the entanglement entropy

One of the few models for which an enhanced area law of the entanglement entropy
has already been proven is the one describing free fermions without interactions. We
are now asking the question, whether this result can be extended to quasi-free fermions
moving in a background potential? In this chapter, we prove an upper and a lower
bound to the entanglement entropy for such a system with a compactly supported,
bounded potential. The work that is presented here is the result of a collaboration
with P. Müller. The content was already published in [MS20].

3.1 Introduction and Result

We consider a quasi-free Fermi gas in a background potential in d ∈ N dimensions. The
model is described by the one-particle Schrödinger operator

H ∶= −∆ + V, (3.1)

where V ∈ L∞(Rd) is a bounded potential and ∆ denotes the Laplacian. This operator
is densely defined in L2(Rd).

Let us first consider the special case of free fermions described by the Hamiltonian
H0 ∶= −∆. As we have mentioned in the introduction, it was shown in [LSS14] that free
fermions satisfy a logarithmic enhancement to the area law of the entanglement entropy.
Recall from (1.18) that there even exists an exact formula for the leading asymptotic
growth of the entanglement entropy. Our aim is to develop a suitable perturbation
theory in order to prove an enhanced area law of the entanglement entropy for certain
background potentials, too.

It has been conjectured that for a general V ∈ L∞(Rd) any enhancement of the
area law of the entanglement entropy, if it occurs at all, should not grow faster than
logarithmic. As a first step towards this conjecture, we consider potentials with com-
pact support here. The operator H is a perturbation of H0 by the relative H0-compact
multiplication operator V [Sch12, Thm. 8.19]. It therefore has some properties in
common with the unperturbed case. First and foremost, the absolutely continuous
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spectrum of H is identical to σac(H0) = [0,∞[ [RS78, Thm. XIII.15, XIII.33 and
XIII.58]. Since an absolutely continuous spectrum amounts to spectral delocalisation,
we expect a logarithmically enhanced area law for the entanglement entropy. Another
similarity between H and H0 is that they both satisfy a limiting absorption principle
[Agm75, JM17], which will be the main technical input in our analysis.

In our main theorem we will consider the entanglement entropy with respect to
the scaled version ΛL ∶= L ⋅ Λ of a bounded subset Λ ⊂ Rd. Before we state our main
theorem let us first specify the assumptions on this subset. We require the following
definition first.

Definition 3.1.1. Let d ∈ N with d > 1. A set Λ ⊂ Rd is called a basic Lipschitz domain
if there exists a Lipschitz function Φ ∶ Rd−1 → R, such that with a suitable choice of
Cartesian coordinates the domain Λ is represented as

Λ = {x = (x1,⋯, xd) ∈ R ∶ xd > Φ(x1,⋯, xd−1)}. (3.2)

A set Λ ⊂ Rd is called a Lipschitz domain if Λ ≠ Rd and locally it can be represented by
a basic Lipschitz domain, i.e. for any z ∈ Λ there is a radius r > 0 and a basic Lipschitz
domain Λ0 ≡ Λ0(z) such that Bz(r) ∩Λ = Bz(r) ∩Λ0.

Assumption 3.1.2. We consider a bounded Borel set Λ ⊂ Rd such that

(i) it is a finite union of bounded intervals for d = 1 or a Lipschitz domain with
piecewise C1-boundary for d ≥ 2,

(ii) the origin 0 ∈ Rd is an interior point of Λ.

Remark 3.1.3. Assumption 3.1.2(i) is taken from [LSS14] and guarantees the validity
of the enhanced area law (1.18) for the free Fermi gas which is proven there. Assump-
tion 3.1.2(ii) does not impose any restriction because it can always be achieved by a
translation of the potential V in Theorem 3.1.4.

The main result of this section is summarised in the following theorem.

Theorem 3.1.4. Let Λ ⊂ Rd be as in Assumption 3.1.2 and let V ∈ L∞(Rd) have com-
pact support. Then, for every Fermi energy E > 0 there exist constants Σl ≡ Σl(Λ,E) ∈
]0,∞[ and Σu ≡ Σu(Λ,E, V ) ∈ ]0,∞[ such that

Σl ≤ lim inf
L→∞

SE(ΛL;Rd,H)
Ld−1 lnL

≤ lim sup
L→∞

SE(ΛL;Rd,H)
Ld−1 lnL

≤ Σu. (3.3)

Remark 3.1.5. (i) The constant Σl can be expressed in terms of the coefficient Σ0 ≡
Σ0(d,Λ,E) given in (3.9) in the leading term of the unperturbed entanglement
entropy SE(ΛL;Rd,H0) for large L, cf. (1.18). The explicit form

Σl =
3Σ0

2π2
, (3.4)

is derived in (3.86).
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(ii) If d > 1, the constant Σu can also be expressed in terms of Σ0. According to (3.80)
and (3.84), we have

Σu = 2508Σ0. (3.5)

In particular, this constant is independent of V . The numerical prefactor in (3.5)
can be improved by using the alternative approach described in Remark 3.2.8. In
d = 1 dimension, however, we only obtain a constant Σu which also depends on
V , because there is an additional contribution from (3.84).

(iii) Since both Σl and Σu do not depend on V in case that d > 1, we conjecture that
the result can be improved to Σl = Σu = Σ0.

(iv) B. Pfirsch and A. Sobolev [PS18b] proved that the coefficient of the leading-order
term of the enhanced area law is not altered by adding a periodic potential in
d = 1. Therefore, we expect the V -dependence of Σu in d = 1 to be an artefact of
our method.

(v) At negative energies there is at most discrete spectrum of H. Thus, if E < 0
the Fermi function can be smoothed out without changing the operator 1<E(H).
Therefore, the operator kernel of 1<E(H) has fast polynomial decay [GK03] and
SE(ΛL;Rd,H) = O(Ld−1) follows as in [PS14, EPS17]. In other words, the growth
of the entanglement entropy is at most an area law. The same is true for E = 0
because eigenvalues cannot accumulate from below at 0 due to the boundedness of
V and its compact support.

(vi) The stability analysis we perform in this paper requires only that the spatial do-
main Λ is a bounded measurable subset of Rd which has an interior point. The
stronger assumptions we make are to ensure the validity of Widom’s formula for
the unperturbed system as proven in [LSS14].

3.2 Proof of Theorem 3.1.4

3.2.1 General idea and strategy

Our strategy is a perturbational approach, which bounds the entanglement entropy of
H in terms of the one of H0 for large volumes. Before we sketch our strategy for our
proof, we revisit the main result by H. Leschke, A. Sobolev and W. Spitzer concerning
the entanglement entropy of free fermions.

Theorem 3.2.1 (Leschke, Sobolev, Spitzer [LSS14]). Let E > 0 and Λ ⊂ Rd be a set
satisfying Assumption 3.1.2 (i). Let f ∶ [0,1] → R with f ∣]0,1[ ∈ C∞(]0,1[,C) such that
there exists β ∈ ]0,1[ with ∣f(x)∣ ≤ (x(1 − x))β for all x ∈ [0,1]. Then

tr{f(1ΛL1<E(H0)1ΛL)} = I(f)J(BΛ,E)Ld−1 lnL + o(Ld−1 lnL) (3.6)

as L→∞. Here,

I(f) ∶= 1

4π2 ∫
1

0
dt

f(t)
t(1 − t) (3.7)



50 3. Stability of the enhanced area law

and

J(BΛ,E) ∶= 2

Γ[(d + 1)/2](
E

4π
)
d−1
2

∣BΛ∣, (3.8)

where ∣BΛ∣ denotes the surface area of the boundary of Λ and Γ denotes the gamma
function.

Remark 3.2.2. We note that by this formula we can easily deduce the value of Σ0

from (1.18) as

Σ0 ≡ Σ0(d,Λ,E) ∶= E(d−1)/2

2d3 ln 2 Γ[(d + 1)/2]π(d−1)/2
∣BΛ∣. (3.9)

Our first step towards proving Theorem 3.1.4 is an estimate of the function h
in (1.12) of the form

g ≤ h ≤ −3g log2 g, (3.10)

where
g ∶ [0,1] → [0,1], λ↦ λ(1 − λ). (3.11)

See Lemma B.2.1 for a proof of the lower bound in (3.10) and Lemma B.2.2 for a proof
of the upper bound. Note that both g and g log2 g satisfy the conditions of the function
f in Theorem 3.2.1. Therefore, these functions give rise to bounds for the entanglement
entropy of order O(Ld−1 lnL) in the case of free fermions.

The estimate (3.10) leads us to consider the operators g(1ΛL1<E(H(0))1ΛL). By a
straight forward calculation we get

g(1ΛL1<E(H(0))1ΛL) = ∣1ΛcL
1<E(H(0))1ΛL ∣

2
, (3.12)

where ∣A∣2 ∶= A∗A for any bounded operator A, and the superscript c indicates the
complement of a set. Recall that ΛL = L ⋅Λ for a set Λ ⊆ Rd satisfying Assumption 3.1.2
and L ∈ R. Now, the key to our perturbative approach is an estimate of the Hilbert–
Schmidt norm of the operator difference 1ΛcL

[1<E(H0) − 1<E(H)]1ΛL . This result is
summarised in the following lemma.

Lemma 3.2.3. Let Λ ⊂ Rd satisfy Assumption 3.1.2 (ii) and let V ∈ L∞(Rd) have
compact support in [−RV ,RV ]d for some RV > 0. Then for every Fermi energy E > 0
there exists a constant C2 ≡ C2(d,Λ, V,E) > 0 such that for all L > 0 we have the bound

∥1ΛcL
[1<E(H0) − 1<E(H)]1ΛL∥2

≤ C2. (3.13)

Here, ∥ ⋅ ∥p denotes the von Neumann–Schatten norm for p ∈ [1,∞[.

Before we outline the proof of this lemma, let us first illustrate on the example of
the lower bound in Theorem 3.1.4 why such an estimate is useful. The lower bound in
(3.10) and (3.12) imply that

∥1ΛcL
1<E(H(0))1ΛL∥

2

2
= tr{g(1ΛL1<E(H(0))1ΛL)} ≤ SE(ΛL;Rd,H(0)). (3.14)

We have established already that the left-hand side of (3.14) in the unperturbed case
of free fermions grows like Ld−1 lnL as L → ∞. Since the Hilbert-Schmidt norm of
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the operator difference in Lemma 3.2.3 is of order O(1), it follows immediately that
the lower bound to the entanglement entropy in the perturbed case has the same
growth. For the upper bound in Theorem 3.1.4 some further analysis is necessary,
since we have to account for the additional factor of log2 g in the upper bound in
(3.10). Especially in the case of d = 1 this leads to further complications, which we
will discuss in Remark 3.2.8. However, the upper bound is ultimately derived from
Lemma 3.2.3, too.

We conclude by sketching the main idea for the proof of Lemma 3.2.3, which is
presented in Section 3.2.2. An important technical input to our approach is that both
H0 and H satisfy a limiting absorption principle, in the sense that for any E > 0 there
exists a constant CLA ≡ CLA(d, V,E) > 0 such that

sup
z∈C∶Re z=E,

Im z≠0

∥⟨X⟩−1 1

H(0) − z
Πc(H(0))⟨X⟩−1∥ ≤ CLA, (3.15)

where X denotes the position operator, ⟨ ⋅⋅⋅ ⟩ ∶=
√

1 + ∣ ⋅⋅⋅ ∣2 the Japanese bracket and
Πc(H(0)) the projection onto the continuous spectral subspace of H(0). Such a limiting
absorption principle exists for any Schrödinger operator with compactly supported,
bounded potentials [Agm75, Thm. 4.2], see also e.g. [JM17].

γ

σ(H)

0inf σ(H)− 1 E

i min{E, 1}

−i min{E, 1}

Figure 3.1: The contour γ

Let us now introduce the notation Γn ∶= n+[0,1]d for the closed unit cube translated
by n ∈ Zd. For this proof we need an estimate of decay in space of the Fermi projection
difference 1<E(H0) − 1<E(H). We begin by representing the Fermi projection in terms
of a contour integral for a contour γ as in Figure 3.1, namely

1Γn(1<E(H0) − 1<E(H))1Γm = − 1

2πi

¿

γ

dz 1Γn (
1

H0 − z
− 1

H − z)1Γm (3.16)

for any m,n ∈ Zd. Here, the right-hand side of (3.16) exists as a Bochner integral
with respect to the operator norm. Note that the limiting absorption principle of H(0)

ensures the integrability of the integrand as well as the equality in (3.16). A more
general version of this equality is proven in the Appendix B.1. The limiting absorption
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principle of H together with the resolvent equality also enable us to estimate the
Hilbert–Schmidt norm of the integrand. We show that

∥1Γn(1<E(H0) − 1<E(H))1Γm∥2

2
≲ 1

(∣n∣∣m∣)(d−1)(∣n∣ + ∣m∣)2
(3.17)

for any n,m ∈ Zd at a sufficiently large distance to suppV . The only thing that remains
to be done is to sum over all n,m ∈ Zd with Λc

L ∩Γn ≠ ∅ and ΛL ∩Γm ≠ ∅ for any L > 0.
Note that the decay in (3.17) is sufficient to guarantee an upper bound independent of
L.

3.2.2 Proof of Lemma 3.2.3

In order to show this crucial lemma, we need another preparatory result, regarding
the decay in space of the resolvent of H0. For z ∈ C/R let G0( ⋅ , ⋅ ; z) ∶ Rd × Rd → C
be the kernel of the resolvent 1

H0−z
. The explicit formula for G0( ⋅ , ⋅ ; z) is well known.

Likewise, there exists an estimate for G0(⋅, ⋅; z) evaluated for large arguments, i.e. there
exists R ≡ R(d) > 0 and C ≡ C(d) > 0 such that for all x, y ∈ Rd with Euclidean distance
∣x − y∣ ≥ R/∣z∣1/2 we have

∣G0(x, y; z)∣ ≤ C ∣z∣(d−3)/4 e−∣ Im
√
z∣∣x−y∣

∣x − y∣(d−1)/2
. (3.18)

For a reference, see [ST70] and [AS64, Chap. 9.2] for d ≥ 2 and [AGHKH88, Chap.
I.3.1] for d = 1. Here,

√
⋅ denotes the principal branch of the square root.

Recall that Γl = l + [0,1]d for any l ∈ Zd.

Lemma 3.2.4. Let d ∈ N and V ∈ L∞c (Rd) with compact support in [−RV ,RV ]d for
some RV > 0. Given z ∈ C ∖R, let `0 ≡ `0(d, V, z) ∶= 2

√
d(RV + 1) +R(d)/∣z∣1/2.

Then, there exists a constant C1 ≡ C1(d, V ) > 0 such that for any z ∈ C∖R and any
n ∈ Zd ∖ ] − `0, `0[ d we have

∥∣V ∣1/2 1

H0 − z
1Γn∥

4
≤ C1∣z∣(d−3)/4 e−∣ Im

√
z∣∣n∣/2

∣n∣(d−1)/2
. (3.19)

Proof. Let z ∈ C∖R. Since the Hilbert–Schmidt norm of an operator can be computed
in terms of the integral kernel, we get

∥∣V ∣1/2 1

H0 − z
1Γn∥

4

4
= ∥1Γn

1

H0 − z
∣V ∣ 1

H0 − z
1Γn∥

2

2

= ∫
Γn

dx∫
Γn

dy ∣ ∫
Rd

dξ G0(x, ξ; z) ∣V (ξ)∣G0(ξ, y; z)∣
2

. (3.20)

For every n ∈ Zd ∖ ] − `0, `0[ d, every x ∈ Γn and every ξ ∈ suppV , we infer that ∣x − ξ∣ ≥
R(d)/∣z∣1/2. Therefore the Green’s-function estimate (3.18) yields

∣G0(x, ξ; z)∣ ≤ 2(d−1)/2C(d)∣z∣(d−3)/4 e−∣ Im
√
z∣∣n∣/2

∣n∣(d−1)/2
(3.21)
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because

∣x − ξ∣ ≥ ∣x∣ −
√
dRV ≥ ∣n∣ −

√
d(RV + 1) ≥ ∣n∣

2
. (3.22)

This implies the lemma.

Next, we show that the Fermi projection has a representation as a Riesz projection,
which is a consequence of the limiting absorption principle. In the Appendix B.1, we
show a more general version of this result, since it may be of independent interest.

Lemma 3.2.5. Let V ∈ L∞c (Rd). We fix an energy E > 0 and consider two compact
subsets Γ,Γ′ ⊂ Rd. Then we have the representation

1Γ1<E(H(0))1Γ′ = −
1

2πi

¿

γ

dz 1Γ
1

H(0) − z
1Γ′ . (3.23)

The right-hand side of (3.23) exists as a Bochner integral with respect to the op-
erator norm, and the integration contour γ is a closed curve in the complex plane
C which traces the boundary of the rectangle {z ∈ C ∶ ∣ Im z∣ ≤ min{E,1}, Re z ∈
[−1 + inf σ(H),E]} once in counter-clockwise direction, see Figure 3.1.

Proof. The lemma follows from the corresponding abstract result in Theorem B.1.1 in
the appendix. Indeed, according to [Agm75, Thm. 4.2], see also e.g. [JM17], both H
and H0 satisfy a limiting absorption principle at any E > 0,

sup
z∈C∶Re z=E, Im z≠0

∥⟨X⟩−1 1

H(0) − z
Πc(H(0))⟨X⟩−1∥ < ∞ (3.24)

with X being the position operator, ⟨ ⋅⋅⋅ ⟩ =
√

1 + ∣ ⋅⋅⋅ ∣2 the Japanese bracket and Πc(H(0))
the projection onto the continuous spectral subspace of H(0). Also, σpp(H) ⊂ ] −
∞,0] because the potential V is bounded and compactly supported [RS78, Cor. on p.
230].

Next, we prove the estimate (3.17).

Lemma 3.2.6. Let V ∈ L∞c (Rd) have compact support in [−RV ,RV ]d for some RV > 0.
Then for every Fermi energy E > 0 there exists c̃ ≡ c̃(d, V,E) > 0 and `1 ≡ `1(d, V,E) >
2
√
d such that for all n,m ∈ Zd ∖ ] − `1, `1[d we have the bound

∥1Γn(1<E(H0) − 1<E(H))1Γm∥
2
≤ c̃

(∣n∣∣m∣)(d−1)/2(∣n∣ + ∣m∣) (3.25)

Proof. We fix E > 0. To estimate the difference between the perturbed and the unper-
turbed Fermi projections we express them in terms of a contour integral as stated in
Lemma 3.2.5. We set

`1 ≡ `1(d, V,E) ∶= max
z∈img(γ)

{`0(d, V, z)} ∈ ]2
√
d,∞[, (3.26)
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where `0 is defined in Lemma 3.2.4 and img(γ) denotes the image of the curve γ in
Lemma 3.2.5. We obtain for all m,n ∈ Zd ∖ ] − `1, `1[ d

1Γn(1<E(H0) − 1<E(H))1Γm = − 1

2πi

¿

γ

dz 1Γn(
1

H0 − z
− 1

H − z)1Γm . (3.27)

The Bochner integral exists even with respect to the Hilbert–Schmidt norm, as will
follow from the estimates (3.31) and (3.37) below. We point out that (3.37) relies
again on the limiting absorption principle (3.24).

In order to estimate the integral in (3.27) we apply the resolvent identity twice to
the integrand. The integrand then reads

1Γn(
1

H0 − z
V

1

H0 − z
− 1

H0 − z
V

1

H − zV
1

H0 − z
)1Γm . (3.28)

This yields the Hilbert–Schmidt norm estimate

∥1Γn(
1

H0 − z
− 1

H − z)1Γm∥
2

≤ ∥1Γn

1

H0 − z
∣V ∣1/2∥

4
(1 + ∥∣V ∣1/2 1

H − z ∣V ∣1/2∥)∥∣V ∣1/2 1

H0 − z
1Γm∥

4
. (3.29)

Lemma 3.2.4 already provides bounds for the first and third factor on the right-hand
side of (3.29). To estimate the second factor, we employ two different methods, de-
pending on the location of z on the contour. To that end we split the curve γ into
two parts. We denote by γ1 the right vertical part of γ with image img(γ1) = {z ∈ C ∶
Re z = E, ∣ Im z∣ ≤ min{E,1}}. The remaining part of the curve γ is denoted by γ2.

Let us first consider the curve γ2. We observe

dist(z, σ(H(0))) ≥ min{1,E} for all z ∈ img(γ2). (3.30)

Therefore, the middle factor in the second line of (3.29) is bounded from above by
(1 + ∥V ∥∞/min{1,E}). Since the curve γ2 does not intersect [0,∞[, there exists ζ2 ≡
ζ2(V,E) > 0 such that ∣ Im√

z∣/2 ≥ ζ2 for all z ∈ img(γ2) ∖ R. Hence, according to
Lemma 3.2.4 we estimate (3.29) by

∥1Γn(
1

H0 − z
− 1

H − z)1Γm∥
2
≤ c2 e−ζ2(∣n∣+∣m∣)

(∣n∣∣m∣)(d−1)/2
≤ c2/ζ2

(∣n∣∣m∣)(d−1)/2(∣n∣ + ∣m∣) (3.31)

for all z ∈ img(γ2) ∖R with

c2 ≡ c2(d, V,E) ∶= C2
1( max

z∈img(γ2)

∣z∣(d−3)/2)(1 + ∥V ∥∞
min{1,E}) < ∞. (3.32)

We now turn our attention to γ1, the part of the contour that intersects the con-
tinuous spectrum of H. Writing 1 = Πpp(H) +Πc(H) and recalling σpp(H) ⊂ ] −∞,0],
see the end of the proof of Lemma 3.2.5, we infer

∥∣V ∣1/2 1

H − z ∣V ∣1/2∥ ≤ ∥V ∥∞
E

+ ∥∣V ∣1/2 1

H − zΠc(H)∣V ∣1/2∥ (3.33)
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for every z ∈ img(γ1) ∖R. The second term on the right-hand side admits the uniform
upper bound

∥⟨X⟩∣V ∣1/2∥2 sup
z∈C∶Re z=E,

Im z≠0

∥⟨X⟩−1 1

H − zΠc(H)⟨X⟩−1∥ ≤ (1 + dR2
V )∥V ∥∞CLA. (3.34)

Here, the constant CLA ≡ CLA(d, V,E) < ∞ was given in (3.15) and is derived from the
limiting absorption principle.

In addition, we need a lower bound for the decay rate of the exponential in (3.19)
along the curve γ1. We write img(γ1) ∋ z = E + iη with ∣η∣ ≤ min{1,E}. Then

∣ Im
√
z∣ = 4

√
E2 + η2 α(∣η∣/E) ≥

√
E α(∣η∣/E), (3.35)

with α ∶ [0,∞[ → [0,1], x ↦ sin (1
2 arctanx). We note that sin y ≥ y(1 − y2/6) for

all y ≥ 0, arctanx ≤ π/2 and arctanx ≥ x/2 for all x ∈ [0,1]. Therefore, we infer the
existence of a constant ζ1 ≡ ζ1(E) > 0 such that

∣ Im
√
z∣/2 ≥ ζ1∣η∣ for all z = E + iη ∈ img(γ1). (3.36)

By applying Lemma 3.2.4 together with (3.36), as well as (3.33) and (3.34), we get the
estimate

∥1Γn(
1

H0 − z
− 1

H − z)1Γm∥
2
≤ c1e−ζ1∣η∣(∣n∣+∣m∣)

(∣n∣∣m∣)(d−1)/2
(3.37)

from (3.29) and any img(γ1) ∋ z = E + iη with ∣η∣ ≤ min{1,E}. Here, we introduced the
constant

c1 ≡ c1(d, V,E) ∶= C2
1( max

z∈img(γ1)

∣z∣(d−3)/2)[1 + (E−1 + (1 + dR2
V )CLA)∥V ∥∞]. (3.38)

We are now able to estimate the contour integral in (3.27) with the help of the bounds
(3.31) and (3.37)

∥1Γn(1<E(H0) − 1<E(H))1Γm∥
2
≤ c̃2

(∣n∣∣m∣)(d−1)/2(∣n∣ + ∣m∣)

+ ∫
1

−1
dη

c1e−ζ1∣η∣(∣n∣+∣m∣)

2π(∣n∣∣m∣)(d−1)/2

= c̃

(∣n∣∣m∣)(d−1)/2(∣n∣ + ∣m∣) (3.39)

for all m,n ∈ Zd ∖ ] − `1, `1[ d, where

c̃2 ≡ c̃2(d, V,E) ∶= c2(E + ∥V ∥∞ + 2)
πζ2

and c̃ ≡ c̃(d, V,E) ∶= c1

πζ1

+ c̃2. (3.40)
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Proof of Lemma 3.2.3. In order to prove the lemma for any L > 0, we introduce a length
L0 > 0, which will be determined below, and first consider the case of L ∈ ]0, L0]. In
this case we have

∥1ΛcL
(1<E(H0) − 1<E(H))1ΛL∥

2

2
≤ ∥(1<E(H0) − 1<E(H))1ΛL0

∥2

2
. (3.41)

Following [Sim82, Thm. B.9.2 and its proof], we infer the existence of a constant
CS ≡ CS(d, V,E) such that

∥1<E(H(0))1Γm∥
1
≤ CS (3.42)

uniformly in m ∈ Zd. By applying the binomial inequality (a+b)2 ≤ 2a2+2b2 for a, b ∈ R
and the inequality ∥A∥2

2 ≤ ∥A∥1 for any trace-class operator A with ∥A∥ ≤ 1, we estimate
the right-hand side of (3.41) by

2(∥1<E(H0)1ΛL0
∥2

2
+ ∥1<E(H)1ΛL0

∥2

2
)

≤ ∑
m∈ΞL0

2(∥1<E(H0)1Γm∥1 + ∥1<E(H)1Γm∥
1
) ≤ 4CS ∣Λ̃L0 ∣ < ∞, (3.43)

where we introduce the coarse-grained box volumes

Λ̃
(ext)
` ∶= ⋃

m∈Ξ
(ext)
`

Γm with Ξ
(ext)
` ∶= {m ∈ Zd ∶ Γm ∩Λ

(c)
` ≠ ∅} (3.44)

and ` > 0. The sets Ξ
(ext)
` are illustrated by Figure 3.2. We note that Λ̃ext

` is not the

complement of Λ̃`. It will be needed below.

Ξext
� ∩ Ξ�

∂Λ�

Γm

m

Ξ� \ Ξext
�

Ξext
� \ Ξ�

Figure 3.2: Examples for elements of Ξ
(ext)
` .

In order to tackle the other case of L > L0 we first determine a suitable value for
L0 as follows: we recall that the origin is an interior point of the bounded domain Λ.
Hence, there exists a length L0 ≡ L0(d,Λ, V,E) > 0 such that for all L ≥ L0

Λ̃ext
L ⊂ Rd ∖ ] − `1, `1[ d, (3.45)
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where `1 was given in Lemma 3.2.6. Now, we cover Λc
L and ΛL ∖ ΛL0 by unit cubes.

Hence, we have

∥1ΛcL
(1<E(H0) − 1<E(H))1ΛL∥

2

2
≤ ∥1ΛcL

(1<E(H0) − 1<E(H))1ΛL0
∥2

2

+ ∑
n∈Ξext

L

m∈ΞL∩Ξext
L0

∥1Γn(1<E(H0) − 1<E(H))1Γm∥2

2
. (3.46)

The first term on the right-hand side of (3.46) is estimated by (3.41) and (3.43). To
bound the double sum in (3.46) from above, we use Lemma 3.2.6, which is applicable
due to the definition (3.45) of L0, and obtain

∥1ΛcL
(1<E(H0) − 1<E(H))1ΛL∥

2

2
≤ 4CS ∣Λ̃L0 ∣ + ∑

n∈Ξext
L

m∈ΞL∩Ξext
L0

c̃2

(∣n∣∣m∣)d−1∣n∣2 , (3.47)

where c̃ is as in Lemma 3.2.6. We conclude from the definition of `1 that ∣l∣ ≥ ∣u∣ −
√
d ≥

∣u∣/2 for every l ∈ Ξext
L ∪ (ΞL ∩ Ξext

L0
) and every u ∈ Γl ⊆ Rd ∖ ] − `1, `1[ d. Therefore, we

infer that the double sum in (3.47) is upper bounded by the double integral

∫
Λ̃L

dx∫
Λ̃ext
L

dy
(2dc̃)2

(∣x∣∣y∣)d−1∣y∣2 = (2dc̃)2∫L0
L

Λ̃L

dx

∣x∣d−1 ∫L0
L

Λ̃ext
L

dy

∣y∣d+1
. (3.48)

But Λ̃
(ext)
L ⊆ ⋃x∈Λ(c)L (x + [−1,1]d) so that the scaled domains satisfy

L0

L
Λ̃

(ext)
L ⊆ ⋃

x∈Λ
(c)
L0

(x + L0

L
[−1,1]d) ⊆ ⋃

x∈Λ
(c)
L0

(x + [−1,1]d) =∶K(ext)
L0

(3.49)

for any L ≥ L0. Clearly, KL0 is bounded. Furthermore, we ensure that Kext
L0

has a

positive distance to the origin. This is always the case, since `1 > 2
√
d and (3.45) imply

Kext
L0

⊂ Rd ∖ ] − `1 + 1, `1 − 1[d. (3.50)

It follows that the right-hand side of (3.48) is bounded from above by some constant
c3 ≡ c3(d,Λ, V,E) < ∞, uniformly in L ≥ L0. Combining this with (3.41), (3.43), (3.47)
and (3.48), we arrive at the final estimate

sup
L>0

∥1ΛcL
(1<E(H0) − 1<E(H))1ΛL∥

2

2
≤ 4CS ∣Λ̃L0 ∣ + c3 =∶ C2

2 . (3.51)

3.2.3 Proof of the upper bound

We begin with an interpolation result.
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Lemma 3.2.7. Let Λ ⊂ Rd be as in Assumption 3.1.2 (ii), let V ∈ L∞c (Rd) and fix
E > 0. Then there exists a constant C3 ≡ C3(d,Λ, V,E) > 0 such that for all s ∈ ]1/2,1[
and all L ≥ 1 we have

∥1ΛcL
(1<E(H) − 1<E(H0))1ΛL∥

2s

2s
≤ C3L

2d(1−s). (3.52)

Proof. Given a trace-class operator A and s ∈ ]1/2,1[ , we conclude from the interpo-
lation inequality, see e.g. [Tao10, Lemma 1.11.5],

∥A∥2s
2s ≤ ∥A∥2(1−s)

1 ∥A∥2(2s−1)
2 . (3.53)

Let us consider the operator

AL ∶= 1ΛcL
(1<E(H) − 1<E(H0))1ΛL . (3.54)

We do already know ∥AL∥2
2 ≤ C2

2 for all L ≥ 1, as was shown in Lemma 3.2.3. Since Λ
is bounded, there exists r ≡ r(Λ) ∈ [1,∞[ such that Λ ⊂ [−r, r]d. The estimate (3.42)
now implies ∥AL∥1 ≤ 2(2⌈rL⌉)dCS ≤ 2(4rL)dCS, where we used ⌈a⌉ ≤ 2a for all a ≥ 1.
This proves the claim with

(22d+1rdCS)2(1−s)C
2(2s−1)
2 ≤ 22d+1rd(1 +CS)(C2

2 + 1) =∶ C3 ≡ C3(d,Λ, V,E). (3.55)

Remark 3.2.8. Lemma 3.2.7 allows for a quick proof of the upper bound in Theo-
rem 2.1.1, if we restrict ourselves to the case d ≥ 2. First, we notice that we can
estimate

h(λ) ≤ 6

1 − s(g(λ))
s

(3.56)

for any λ ∈ [0,1] and s ∈ [1/2,1], as we show Lemma B.2.1. By applying this estimate
to the entanglement entropy and rewrite it with (3.12) we obtain

SE(ΛL;Rd,H) ≤ 6

1 − s∥1ΛcL
1<E(H)1ΛL∥

2s

2s

≤ 12

1 − s(∥1ΛcL
1<E(H0)1ΛL∥

2s

2s
+ ∥AL∥2s

2s). (3.57)

Here, AL is defined in (3.54). According to the lemma and subsequent remarks in
[LSS14], the first term on the right-hand side scales like O(Ld−1 lnL). The second term
is of order O(L2d(1−s)) according to Lemma 3.2.7. If we choose s ≡ s(d, ε) ∶= 1−ε(2d)−1

for any ε ∈ [0,1] the second term is of the order O(Lε), and thus subleading as compared
to the first term in all but one dimensions.

Unfortunately, there is no choice for s which yields only a logarithmic growth in
d = 1. To appropriately bound the term (1 − s)−1O(L2d(1−s)) in (3.57) requires an L-
dependent choice of s with s ≡ s(L) → 1 as L →∞. However, such a choice of s leads
to an additional diverging prefactor (1 − s)−1 multiplying the asymptotic O(Ld−1 lnL)
from the first term.

We now present an approach, which yields the optimal upper bound of order
O(Ld−1 lnL) for all dimensions.
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Lemma 3.2.9. Let A and B be two compact operators with ∥A∥, ∥B∥ ≤ e−1/2/3 and
consider the function

f ∶ [0,∞[→ [0,1], x↦ −1[0,1](x)x2 log2(x2). (3.58)

Then we have
tr{f(∣A∣)} ≤ 4 tr{f(∣B∣)} + 4 tr{f(∣A −B∣)}. (3.59)

For any compact operator A let (an(A))
n∈N ⊆ [0,∞[ denote the non-increasing

sequence of its singular values. They coincide with the eigenvalues of the self-adjoint
operator ∣A∣.

Proof of Lemma 3.2.9. By assumption, we have 0 ≤ a2n(A) ≤ a2n−1(A) ≤ e−1/2/3 for all
n ∈ N. Since the function f is monotonously increasing on [0, e−1/2], we deduce

tr{f(∣A∣)} = ∑
n∈N

f(an(A)) ≤ 2∑
n∈N

f(a2n−1(A)). (3.60)

The singular values of any compact operators A and B satisfy the inequality

an+m−1(A) ≤ an(B) + am(A −B) (3.61)

for all n,m ∈ N [Woj91, Prop. 2 in Sect. III.G]. We point out that the right-hand side
of (3.61) does not exceed the upper bound e−1/2, because of ∥A − B∥ ≤ ∥A∥ + ∥B∥ ≤
(2/3)e−1/2. Together with the monotonicity of f , we conclude from (3.60) that

tr{f(∣A∣)} ≤ 2∑
n∈N

f(an(B) + an(A −B)). (3.62)

Next, we claim that

f(x + y) ≤ −2(x2 + y2) log2[(x + y)2] ≤ 2f(x) + 2f(y) (3.63)

for all x, y ≥ 0 with x + y < 1. The first estimate follows from the binomial inequality
together with − log2[(x + y)2] ≥ 0 for x + y < 1, the second estimate from (x + y)2 ≥
x2, respectively (x + y)2 ≥ y2, and the fact that − log2 is monotonously decreasing.
Combining (3.62) and (3.63), we arrive at

tr{f(∣A∣)} ≤ 4∑
n∈N

[f(an(B)) + f(an(A −B))]. (3.64)

This concludes the proof.

Proof of the upper bound in Theorem 2.1.1. Let L ≥ 1 and E > 0. Lemma B.2.2 and
(3.12) yield

SE(ΛL;Rd,H) ≤ 3
∞

∑
n=1

f(an(1ΛcL
1<E(H)1ΛL)), (3.65)

where f was defined in Lemma 3.2.9. In order to apply Lemma 3.2.9, we will decompose
the compact operator 1ΛcL

1<E(H(0))1ΛL into a part bounded by e−1/2/3 in norm and a
finite-rank operator. To this end, we introduce

N(0) ≡ N(0)(Λ, V,E,L) ∶= min{n ∈ N ∶ an(1ΛcL
1<E(H(0))1ΛL) ≤ e−1/2/3} − 1, (3.66)
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the number of singular values of 1ΛcL
1<E(H(0))1ΛL which are larger than e−1/2/3. We

define F(0) as the contribution from the first N(0) singular values in the singular-value

decomposition of 1ΛcL
1<E(H(0))1ΛL . Hence, rank(F(0)) = N(0) and ∥F(0)∥ ≤ 1. The

remainder
Q(0) ∶= 1ΛcL

1<E(H(0))1ΛL − F(0) (3.67)

satisfies ∥Q(0)∥ ≤ e−1/2/3 by definition of N(0). We note the upper bound

N(0) ≤ 9e
N(0)

∑
n=1

(an(1ΛcL
1<E(H(0))1ΛL))

2

≤ 9e∥1ΛcL
1<E(H(0))1ΛL∥

2

2
. (3.68)

Using Lemma 3.2.3, we further estimate N in terms of unperturbed quantities

N ≤ 18e∥1ΛcL
1<E(H0)1ΛL∥

2

2
+ 18eC2

2 . (3.69)

The identity (3.12) and the lower bound in (B.10) imply immediately the inequality
∥1ΛcL

1<E(H0)1ΛL∥2
2 ≤ SE(ΛL;Rd,H0) so that we obtain

N0 ≤ 9eSE(ΛL;Rd,H0) and N ≤ 18eSE(ΛL;Rd,H0) + 18eC2
2 (3.70)

for later usage.
We deduce from (3.61) and rank(F ) = N that for all n ∈ N

an+N(Q + F ) ≤ an(Q) + aN+1(F ) = an(Q) ≤ e−1/2/3. (3.71)

Hence, (3.65) implies that

SE(ΛL;Rd,H) ≤ 3
N

∑
n=1

f(an(Q + F )) + 3
∞

∑
n=1

f(an(Q)) ≤ 3N + 3 tr{f(∣Q∣)}, (3.72)

where we used the monotonicity of f on [0, e−1/2] and f ≤ 1. Now, Lemma 3.2.9 allows
to estimate (3.72) so that

SE(ΛL;Rd,H) ≤ 3N + 12 tr{f(∣Q0∣)} + 12 tr{f(∣δQ∣)}, (3.73)

where δQ ∶= Q −Q0. The rank of δF ∶= F − F0 obeys

δN ≡ δN(Λ, V,E,L) ∶= rank(δF ) ≤ N +N0. (3.74)

We deduce again from (3.61) and from the definition of δN that for all n ∈ N

an+2δN(δQ) = a(n+δN)+(δN+1)−1(δQ) ≤ an+δN(δQ + δF ). (3.75)

Yet another application of (3.61) and the definition of δN yield for all n ∈ N

an+δN(δQ + δF ) ≤ an(δQ) ≤ ∥δQ∥ ≤ 2e−1/2/3. (3.76)

Therefore the singular values in (3.75) lie in the range where the function f is mono-
tonously increasing. Hence, we obtain

tr{f(∣δQ∣)} ≤
2δN

∑
n=1

f(an(δQ)) + ∑
n∈N

f(aδN+n(δQ + δF ))

≤ 2 δN + ∑
n∈N

f(an(δQ + δF )), (3.77)
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where the second line follows from 0 ≤ f ≤ 1.
Now, we repeat the arguments from (3.75) to (3.77) for Q0 instead of δQ, F0 instead

of δF and N0 instead of δN . This implies

tr{f(∣Q0∣)} ≤ 2N0 + ∑
n∈N

f(an(Q0 + F0)). (3.78)

The sum in (3.78) is bounded from above by the unperturbed entanglement entropy,
which follows from (3.67), the definition of f , (3.12) and the lower bound in Lemma
B.2.2, whence

tr{f(∣Q0∣)} ≤ 2N0 + SE(ΛL;Rd,H0). (3.79)

Next, we combine (3.73), (3.70), (3.77), (3.74) and (3.79) to obtain

SE(ΛL;Rd,H) ≤ 2508SE(ΛL;Rd,H0) + 1322C2
2 + 12∑

n∈N
f(an(δQ + δF )). (3.80)

In order to estimate the sum in (3.80), we appeal to the definitions of δQ and δF ,
(3.67), the definition of f and (B.9) to deduce

∑
n∈N

f(an(δQ + δF )) ≤ 1

1 − s ∥1ΛcL
(1<E(H0) − 1<E(H))1ΛL∥

2s

2s
(3.81)

for any s ∈ ]0,1[ . Restricting ourselves to s ∈ ]1/2,1[ allows us to apply Lemma 3.2.7
so that

∑
n∈N

f(an(δQ + δF )) ≤ C3

1 − s L
2d(1−s), (3.82)

where C3 = C3(d,Λ, V,E) > 0 is given in Lemma 3.2.7 and independent of s. Assuming
L ≥ 8, we choose the L-dependent exponent

s ≡ s(L) ∶= 1 − 1

lnL
∈ ]1/2,1[ (3.83)

which implies

∑
n∈N

f(an(δQ + δF )) ≤ C3e2d lnL. (3.84)

The entanglement entropy of a free Fermi gas exhibits an enhanced area law, i.e.
SE(ΛL;Rd,H0) = O(Ld−1 lnL) according to Theorem 3.2.1, so that the claim follows
from (3.80) together with (3.84).

3.2.4 Proof of the lower bound

Proof of the lower bound in Theorem 2.1.1. We fix L > 0 and E > 0. The lower bound
in (B.10), the identity (3.12) and the elementary inequality (a − b)2 ≥ a2/2 − b2 for
a, b ∈ R imply

SE(ΛL;Rd,H) ≥ tr{g(1ΛL1<E(H)1ΛL)} = ∥1ΛcL
1<E(H)1ΛL∥2

2

≥ 1

2
∥1ΛcL

1<E(H0)1ΛL∥
2

2
− ∥1ΛcL

(1<E(H0) − 1<E(H))1ΛL∥
2

2
. (3.85)
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The second term on the right-hand side is uniformly bounded in L according to Lemma
3.2.3. The first term is identical to tr{g(1ΛL1<E(H0)1ΛL)}. According to Theo-
rem 3.2.1, the leading behaviour of its asymptotic expansion in L is of order Ld−1 lnL.
Hence,

lim inf
L→∞

SE(ΛL;Rd,H)
Ld−1 lnL

≥ 1

2
lim
L→∞

tr{g(1ΛL1<E(H0)1ΛL)}
Ld−1 lnL

= 3

2π2
Σ0 =∶ Σl. (3.86)



Chapter 4

Logarithmic Enhancement in the
droplet band of the XXZ spin ring

Recently, it was shown that the disordered XXZ spin chain exhibits many-body lo-
calisation phenomena in the droplet band. It is one of the few interacting systems,
for which an area law of the entanglement entropy has been proven. On the other
hand, the XXZ spin chain without disorder is clearly not localised. For the area law to
be indeed a criterion for localisation, the entanglement entropy must have a different
scaling behaviour in this case.

In the following chapter we show a logarithmically divergent lower bound to the
finite-volume entanglement entropy for eigenstates in the droplet band. The work that
is presented here is the result of a collaboration with C. Fischbacher. The content was
already published in [FS20].

4.1 Introduction and Result

L− 10
1

2

Figure 4.1: The ring described
by the graph GL.

We consider the XXZ model on a discrete ring of finite
size L ∈ N. We describe the ring using the graph GL ∶=
(VL,EL) with vertex set VL ∶= {0,1, . . . , L−1} and edge
set

EL ∶= {{j, (j + 1)modL} ∶ j ∈ VL}. (4.1)

On each vertex we imagine a spin-1/2 particle, repre-
sented by the two dimensional vector space C2. Let
∣ ↑⟩ ∶= ( 1

0 ) and ∣ ↓⟩ ∶= ( 0
1 ) denote the canonical basis

of the single site vector space, which we interpret as
“up-spin” and “down-spin”. The Hilbert space of the
whole system is given by the tensor product HL ∶= HVL .
Recall that HA = ⊗j∈AC2 for any set A.

The XXZ Hamiltonian with cyclic boundary conditionsHL ∶ HL → HL only contains
interaction terms of sites that are connected by an edge in EL. It is given by

HL ≡HL(∆) ∶= ∑
{j,k}∈EL

hjk(∆), (4.2)
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where ∆ > 1 is the anisotropy parameter and the two-site operator hjk describes an
interaction between two spins located at the two sites {j, k} ∈ EL. It is defined as

hjk ≡ hjk(∆) ∶= (1

4
− S3

jS
3
k) −

1

∆
(S1

jS
1
k + S2

jS
2
k) , (4.3)

with S1, S2 and S3 being the standard spin–1/2 matrices

S1 ∶= ( 0 1/2
1/2 0

) , S2 ∶= ( 0 −i/2
i/2 0

) and S3 ∶= (1/2 0
0 −1/2) . (4.4)

Here and in the following, for any A ∈ C2×2 the notation Aj refers to a spin operator
acting as A on the site j ∈ VL and as the identity anywhere else. The ground state energy
of this Hamiltonian is given by 0 with a corresponding two-dimensional eigenspace
spanned by ∣↑⟩⊗L (“all spins-up”) and ∣↓⟩⊗L (“all spins-down”).

An important property of the XXZ Hamiltonian is that it preserves the magnetisa-
tion in 3-direction. In other words, the magnetisation operator M3

L ∶= ∑j∈VL S
3
j satisfies

[HL,M
3
L] = 0. (4.5)

This implies in particular that every eigenspace of M3
L is also a reducing subspace of

HL. In a way, the operator M3
L quantifies the number of down-spins in a given state.

Its spectrum is given by σ(M3
L) = {L/2 − n ∶ n ∈ {0,⋯, L}} – for all n ∈ {0,⋯, L} the

eigenspace corresponding to the eigenvalue L/2−n contains vectors with n down-spins.
We therefore treat each down-spin as a particle. A natural basis of eigenvectors can be
constructed by means of the spin lowering operator

S− ∶= ( 0 0
1 0

) , (4.6)

which is the operator satisfying S− ∣↑⟩ = ∣↓⟩ and S− ∣↓⟩ = 0. For any finite set A, we now

introduce the canonical basis { ∣δAx ⟩ }
x∈P(A)

of HA, where ∣δA
∅
⟩ ∶= ∣↑⟩⊗∣A∣

and

∣δAx ⟩ ∶= ∏
j∈x

S−j ∣δA
∅
⟩ for all ∅ ≠ x ∈ P(A), (4.7)

where P(A) denotes the power set for any set A. The vector ∣δAx ⟩ represents a state
with a down-spin particle at each position in x ⊆ A. The N -particle subspaces of HA
are now defined as

HN
A
∶= span{ ∣δAx ⟩ ∶ x ⊆ A with ∣x∣ = N}. (4.8)

For any N ∈ {0,⋯, L} is HN
L ∶= HN

VL
= ker (M3

L − (L/2 −N)). Since each HN
L reduces

the operator HL, we express it as the direct sum

HL =
L

⊕
N=0

HN
L , (4.9)

where HN
L is the restriction of HL to HN

L for all N ∈ {0,1, . . . , L}. By a short calculation
we see that the operators HL

L and H0
L are identical to the zero operator on HL

L =
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span{∣δL
VL

⟩} and H0
L = span{∣δL

∅
⟩} respectively. Here and in the following, we use the

short-hand notation ∣δLx ⟩ ∶= ∣δVLx ⟩ for any x ⊆ VL.

In this work we are not interested in the entanglement entropy of the ground state
of HL itself. For any region Λ ⊆ VL both ∣δL

∅
⟩ and ∣δL

VL
⟩ are separable with respect to the

spatial decomposition HL = HΛ⊗HΛc . Consequently, the entanglement entropy of both
of these ground states vanishes for any ΛL, which is an extreme version of an area law.
Instead, we consider eigenstates of the N -particle Hamiltonian HN

L , where the particle
number N ≡ N(ε) ∶= ⌊εL⌋ is determined by a constant particle density ε ∈ ]0,1[. Note
that the ground state energy of HN

L is bounded from below by 1 − 1
∆ , see [NSS06].

The anisotropy parameter ∆ is chosen to be positive in our model. This choice is
sometimes referred to as the “ferromagnetic” case, since in such a model it is energet-
ically favourable for all the spins to be parallel. Hence, the set of ground states of HL

include ∣δL
∅
⟩ and ∣δL

VL
⟩. Special cases of the ferromagnetic model include the Heisenberg

model for ∆ = 1 and the Ising model for 1/∆ = 0 or “∆ = ∞”. In this thesis we are
interested in the case ∆ ∈ ]1,∞[, which lies somewhere in between. This choice for the
anisotropy parameter is called the Ising phase.

The N -particle Hamiltonian in the Ising phase has a property that is crucial for
our approach. The eigenvectors corresponding to eigenvalues included in the droplet
spectrum

I1 ≡ I1(∆) ∶= [1 − 1

∆
,2(1 − 1

∆
)[ (4.10)

at the bottom of the spectrum favour configurations where all down-spin particles are
clustered together. Such clusters are also referred to as droplets, which is why these
low-energy eigenstates are also called droplet states. It is important to note that these
droplet states are not in any sense localised. Since the Hamiltonian is translational
invariant, all possible droplet configurations in its eigenvectors have the same weight.
The eigenvectors to larger energies may also contain significant contributions of con-
figurations with an increasing number of clusters. For a more detailed description we
refer to Section 4.2. Seen from a physical point of view, this means that breaking up
clusters costs energy, while clustering together saves energy.

It can also be observed in the infinite-volume model that droplet configurations are
energetically favoured for low energies. The infinite-volume N -particle Hamiltonian
HN
∞

is defined analogous to (4.2) and (4.9) with the only difference that the underlying
graph is given by G ∶= {Z,E} with edge sets E ∶= {{j, j + 1} ∶ j ∈ Z} instead of GL. In
a way, HN

∞
can be thought of as the limit of the finite-volume operator for L → ∞.

At least the ground state energy of the finite system is known to converge towards
inf σ(HN

∞
) in the thermodynamical limit [NSS06]. This Hamiltonian has a distinctive

lowest band, which is separated from the rest of the spectrum by a spectral gap for
sufficiently large ∆ [NSS06]. Moreover, the infinite-volume model is also translational
invariant. As a consequence, for large ∆ the spectrum of HN

∞
in the lowest band is

absolutely continuous, which can be proven with the help of the Bethe ansatz [NSS06].
The Bethe ansatz also yields a set of generalised eigenstates corresponding to energies in
the lowest energy band, where droplet configurations maintain the largest contributions
[NSS06, NS01, FS14, FS18].

The structure of the eigenvectors of HN
L for low energies and even more so the
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absolutely continuous spectrum in the lowest energy band of HN
∞

hint at delocalisation
phenomena. We therefore expect a scaling behaviour from the entanglement entropy
that is not an area law. This situation changes entirely if we add a random magnetic
field to the XXZ Hamiltonian, since such a disordered model does exhibit many-body
localisation phenomena in the lowest energy band. Recently, this model has been
rigorously studied in [EKS18b, EKS18a, BW17]; see also [Sto20] for a survey of the
newest developments. Even more of interest to us is the fact, that V. Beaud and S.
Warzel proved an area law for the entanglement entropy for this model in [BW18]. A
difference in the scaling behaviour of the entanglement entropy between the XXZ chain
with and without disordered magnetic field would indicate that area laws do indeed
distinguish between localised and delocalised states.

Our main result is a logarithmic lower bound to the entanglement entropy of low-
energy states whose eigenenergy belongs to the interval I1.

Theorem 4.1.1. Let ε ∈ ]0,1/16[ and θ ∈ ]ε,1/16[. For L ∈ N, let N ≡ N(L) ∶= ⌊εL⌋
and ΛL ∶= {0,⋯,2⌊θL⌋} ⊂ VL. Then there exists ∆0 ≡ ∆0(ε) > 3 such that for all ∆ ≥ ∆0,
L ∈ N there exists an orthonormal system of eigenstates {∣ϕNL (∆,E)⟩}E∈σ(HN

L )∩I1 ⊆ HN
L ,

where ∣ϕNL (∆,E)⟩ is an eigenstate corresponding to E ∈ σ(HN
L ) ∩ I1, such that

lim inf
L→∞

inf
E∈σ(HN

L )∩I1

S(ΛL;VL, ϕNL (∆,E))
lnL

≥ ε

2 ln 2
. (4.11)

Remark 4.1.2. (i) While we have made the particular choice for ΛL to scale pro-
portionally to the ring size L and not independently of it, our result nevertheless
shows that an area law could not possibly exist in the generic case. We considered
a similar choice in Theorem 2.1.2.

(ii) We only prove a lower bound to the entanglement entropy and no upper bound.
In [BW18], a logarithmic upper bound was shown for the XXZ model with droplet
boundary conditions and with any additional bounded magnetic field. The proof of
this statement is based on a Combes–Thomas estimate. We expect a logarithmic
estimate to be true for our case of a finite XXZ spin chain with cyclic boundary
conditions, since we showed a similar Combes–Thomas estimate.

(iii) Not every eigenvector to an eigenenergy E ∈ I1 is covered by Theorem 4.1.1. We
need them to reflect the translational symmetry of the system. However, since HL

is translational invariant there exists at least one eigenvector with these properties
for each eigenvalue. To the best of our knowledge, it has not yet been generally
established, whether the eigenvalues in the lowest energy band are simple or not.
We do know though that the ground state energy is simple, see Lemma C.1.2.
This implies that the ground state of HN

L always satisfies (4.11).

4.1.1 Roadmap

Section 4.2 is dedicated to obtaining estimates on low-energy eigenfunctions of the
XXZ Hamiltonian. Our focus lies on determining to which extent the weight of the
eigenfunctions is concentrated in the droplet configurations. To this end, we firstly
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exploit the ring’s translational symmetry and define a suitable Fourier transform. We
then introduce an equivalent formulation of the XXZ Hamiltonian using Schrödinger
operators, which we will apply to show an appropriate Combes–Thomas estimate in
Theorem 4.2.8. The constructions presented in this section follow the one of [EKS18b,
ARFS20] closely. The main new feature of our estimate here is that the ring’s symmetry
is taken into account, which allows us to obtain an additional factor of L−1/2.

In Section 4.3 we show that in the Ising limit there exist low-energy eigenstates ex-
hibiting the desired logarithmic lower bound. These eigenstates are entirely composed
out of droplet configurations. Therefore, we regard the low-energy eigenstates of the
Ising phase as a perturbation of the Ising limit. In the remainder of this section we
sketch our strategy on deriving a logarithmic lower bound to the entanglement entropy
for the Ising phase from the Ising limit.

For our perturbative approach it is crucial to bound the difference between low-
energy eigenstates in the Ising-phase and a matching eigenstate in the Ising limit. In
particular, we need to estimate the difference of the reduced densities of the afore-
mentioned states. In Section 4.4 we derive an estimate for the entries of this operator
difference. Some rather technical auxiliary results are necessary in order to deal with
the underlying geometry of the ring.

After this, in Section 4.5, we derive an upper bound to control the difference between
the two reduced density operators with respect to a von Neumann-Schatten quasi-
norm. We show that this estimate converges to zero for ∆ → ∞, which enables us to
use it as the base of our perturbation theory. We derive this bound by estimating the
singular values of the reduced density difference first. This finally enables us to derive
a logarithmic lower bound for the Ising phase from the bound of the Ising limit, by
using Krĕıns trace formula.

4.2 Estimating low energy eigenfunctions

4.2.1 Estimates for low energy eigenstates

In the last chapter we claimed that the mass of the low-energy eigenfunctions of HN
L

is mainly concentrated in the droplet configurations where all spin-down particles are
clustered together. The aim of this section is to quantify this statement.

To describe the N -particle subspace HN
L , we introduce the graph of N -particle

configurations GNL first. We are only interested in the non-trivial cases N ∉ {0, L}.
Therefore, let us assume L,N ∈ N with N < L for the whole section below. Recall that
the graph GL ∶= (VL,EL) describes the spin ring. The corresponding graph distance
between two sites j, k ∈ VL is given by

dL(j, k) = L/2 − ∣∣j − k∣ −L/2∣. (4.12)

Following [FS18], we define GNL ∶= (VNL ,ENL ) as the N -th symmetric product of GL,
where

VNL ∶= {x ⊆ VL ∶ ∣x∣ = N} and ENL ∶= {{x, y} ∶ x, y ∈ VNL , x△ y ∈ EL}. (4.13)
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Here, x△ y denotes the symmetric difference between the two subsets x, y ⊆ VL. A
vertex of GNL represents the positions of the N spin-down particles. As in [FS18], we
now identify HL ≅ `2(P(VL)) and HN

L ≅ `2(VNL ).
As we have remarked before, configurations where all spin-down particles are clus-

tered together are energetically favoured in the XXZ model, if the anisotropy parameter
∆ is larger than one. These droplet configurations are given by

DNL ∶= {{(j + 1)modL,⋯, (j +N)modL} ∶ j ∈ VL}. (4.14)

How close a given configuration is to a droplet configuration is of particular interest
to us. To quantify the distance between two given configurations we therefore intro-
duce the graph distance dNL (⋅, ⋅) on GNL . The graph distance counts how many times
individual particles have to be moved from one site to a neighbouring site to transform
one configuration into the other. For an example of the graph distance see Figure 4.2.

elements in y

elements in c

1.2.3.

Figure 4.2: Configurations y ∈ V4
L and c ∈ D4

L with distance d4
L(y, c) = 3.

The following theorem estimates the eigenfunctions of the XXZ Hamiltonian in the
lowest energy band. Recall that the lowest energy band is included in I1 ≡ I1(∆) = [1−
1
∆ ,2(1− 1

∆)[. The proof of this theorem is based on the approach in [EKS18b, ARFS20].

Theorem 4.2.1. Let L,N ∈ N with N < L and ∆ > 3. For any E ∈ σ(HN
L ) ∩ I1 there

exists a corresponding eigenstate ∣ϕNL ⟩ ≡ ∣ϕNL (∆,E)⟩ ∈ HN
L such that

∣ ⟨δLx , ϕNL ⟩ ∣ ≤ 24

√
L
⋅ e−µ1d

N
L (x,DNL ), (4.15)

for all x ∈ VNL , where dNL (x,A) ∶= miny∈A dNL (x, y) for all A ⊆ VNL and

µ1 ≡ µ1(∆) ∶= ln(1 + ∆ − 1

8
). (4.16)

Remark 4.2.2. (i) The translational symmetry of the ring is reflected in the factor
L−1/2 in (4.15). It indicates that the eigenstates are indeed delocalised in the sense
that the mass of a low energy eigenstate is not concentrated in one droplet but
rather distributed evenly over all droplet configurations. This factor constitutes
the main difference between this result and the results of [EKS18b, ARFS20].
The presence of this additional factor is crucial for proving the logarithmic lower
bound to the entanglement entropy.
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(ii) The rate of decay µ1 diverges for ∆→∞. This indicates that in the Ising limit the
eigenfunctions are concentrated on the droplet configurations alone. For further
information, see Section 4.3.

4.2.2 Fourier transform

Let L,N ∈ N with N < L be fixed. In order to exploit the ring’s translational symmetry,
we define a suitable Fourier transform. To this end, for any γ ∈ Z we define the
translations T γL ∶ P(VL) → P(VL) by

T γLx = {(j + γ)modL ∶ j ∈ x} for all x ⊆ VL. (4.17)

For every γ ∈ Z, the unitary translation operator T̃ γL ∶ `2(P(VL)) → `2(P(VL)) is given
by

(T̃ γLψ)(x) = ψ(T
γ
Lx) for all ψ ∈ `2(P(VL)), x ∈ P(VL). (4.18)

Due to translation symmetry of HL, we obtain [T̃ γL ,HL] = 0 for any γ ∈ Z.

Now, let “≈” denote the equivalence relation on VNL defined as

x ≈ y ∶⇔ ∃γ ∈ {0,1, . . . , L − 1} such that T̃ γLx = y. (4.19)

Moreover, let V̂NL ⊂ VNL be a fixed set of representatives for each equivalence class

induced by “≈”. For an element x̂ ∈ V̂NL we denote the corresponding equivalence class

by [x̂]. We define d̂NL ∶ V̂NL × V̂NL → N0 by

d̂NL (x̂, ŷ) ∶= min
γ∈Z

dNL (x̂, T γL ŷ) for all x̂, ŷ ∈ V̂NL . (4.20)

Lemma 4.2.3. d̂NL is a metric on V̂NL .

Proof. Since dNL is a metric, we conclude d̂NL (x̂, ŷ) = 0 if and only if there exists a γ ∈ VL
such that x̂ = T γL ŷ. By definition of V̂NL , this implies that x̂ = ŷ.

Now, for all x̂, ŷ ∈ V̂NL let us consider

d̂NL (x̂, ŷ) = min
γ∈Z

dNL (x̂, T γL ŷ) = min
γ∈Z

dNL (T −γ
L x̂, ŷ) = min

γ∈Z
dNL (ŷ, T −γ

L x̂) = d̂NL (ŷ, x̂). (4.21)

Finally, for any x̂, ŷ, ẑ ∈ V̂NL and any σ ∈ VL consider

d̂NL (x̂, ẑ) = min
γ∈Z

dNL (x̂, T γL ẑ) ≤ min
γ∈Z

(dNL (x̂, T σL ŷ) + dNL (T σL ŷ, T γL ẑ))

= dNL (x̂, T σL ŷ) +min
γ∈Z

dNL (ŷ, T γ−σL ẑ) = dNL (x̂, T σL ŷ) + d̂NL (ŷ, ẑ). (4.22)

Minimizing over σ ∈ Z now yields the desired triangle inequality d̂NL (x̂, ẑ) ≤ d̂NL (x̂, ŷ) +
d̂NL (ŷ, ẑ) and thus the lemma.
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We note that not all equivalence classes have the same cardinality. In fact, for any
x̂ ∈ V̂NL the number of elements in [x̂] is given by

nx̂ ∶= ∣[x̂]∣ = min{γ ∈ N ∶ T γL x̂ = x̂}. (4.23)

Moreover, for any x̂ ∈ V̂NL the number L is divisible by nx̂. Let us now define the unitary
Fourier transform. To this end, let

SNL ∶= {φ ∈ `2(VL × V̂NL ) ∶ ∀x̂ ∈ V̂NL ∀γ ∉ L

nx̂
{0,⋯, nx̂ − 1} we have φ(γ, x̂) = 0}. (4.24)

The scalar product ⟨⋅, ⋅⟩SNL on this space is defined in the following way:

⟨φ1, φ2⟩SNL ∶=
L−1

∑
γ=0

∑
x̂∈V̂NL

1

L/nx̂
φ1(γ, x̂)φ2(γ, x̂), (4.25)

for any φ1, φ2 ∈ SNL . Since the factors 1
L/nx̂

are positive for all x̂ ∈ V̂NL this map does

indeed define s positive definite, symmetric sesquilinear form. Moreover, for any f ∈ SNL ,

we define ∥f∥SNL ∶=
√

⟨f, f⟩SNL . The Fourier transform FNL is given by

FNL ∶ `2(VNL ) → SNL

(FNL ψ)(γ, x̂) ∶=
1√
L

L−1

∑
z=0

e−
2πi
L
γzψ(T zLx̂) for all (γ, x̂) ∈ VL × V̂NL . (4.26)

Lemma 4.2.4. The Fourier transform is well-defined. Furthermore, it is unitary and
its adjoint is given by

(FNL )∗ ∶ SNL → `2(VNL )

((FNL )∗φ)(x) ∶= 1√
L

L−1

∑
γ=0

e
2πi
L
γzφ(γ, x̂) , (4.27)

where x̂ ∈ V̂NL and z ∈ {0,⋯, nx̂ − 1} are uniquely determined by x = T zLx̂.

Proof. Firstly, let us prove that FNL is well-defined by showing that it indeed maps into

SNL . For ψ ∈ `2(VNL ), x̂ ∈ V̂NL and γ ∉ (L/nx̂){0,⋯, nx̂ − 1} we obtain

(FNL ψ)(γ, x̂) =
1√
L

nx̂−1

∑
ζ=0

L/nx̂−1

∑
k=0

e−
2πi
L

(ζ+knx̂)γψ(T ζ+knx̂L x̂)

= 1√
L

nx̂−1

∑
ζ=0

e−
2πi
L
ζγψ(T ζLx̂)

⎡⎢⎢⎢⎢⎣

L/nx̂−1

∑
k=0

e
2πi
L/nx̂

kγ
⎤⎥⎥⎥⎥⎦
= 0. (4.28)

In the first step of (4.28) we used that for every z ∈ VL there exist a unique ζ ∈
{0,⋯, nx̂ − 1} and a k ∈ {0,⋯, L/nx̂ − 1} such that z = ζ + knx̂. The last equality is due
to the fact that the sum over all the L/nx̂-th roots of unity is equal to zero.
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Let us now show that the adjoint of FNL is indeed given by (4.27). To this end, let
ψ ∈ `2(VNL ) and φ ∈ SNL . Then

⟨φ,FNL ψ⟩SNL = 1√
L

L−1

∑
γ=0

∑
x̂∈V̂NL

nx̂−1

∑
ζ=0

L/nx̂−1

∑
k=0

1

L/nx̂
φ(γ, x̂)e− 2πi

L
γ(ζ+knx̂)ψ(T ζLx̂)

= 1√
L
∑
x̂∈V̂NL

nx̂−1

∑
ζ=0

[
L−1

∑
γ=0

e
2πi
L
γζφ(γ, x̂)[ 1

L/nx̂

L/nx̂−1

∑
k=0

e
2πi
L/nx̂

γk]]ψ(T ζLx̂) (4.29)

We note for any γ ∈ (L/nx̂)Z that 1
L/nx̂

∑L/nx̂−1
k=0 e

2πi
L/nx̂

γk = 1. Hence (4.29) is equal to

∑
x∈VNL

((FNL )∗φ)(x)ψ(x) = ⟨(FNL )∗φ,ψ⟩ . (4.30)

To show that indeed (FNL )∗ = (FNL )−1 take any ψ ∈ `2(VNL ) and x ∈ VNL . There exist

unique x̂ ∈ V̂NL and z ∈ {0,⋯, nx̂ − 1} such that x = T zLx̂. We obtain

((FNL )∗FNL ψ)(T zLx̂) =
1

L
∑

γ∈VL∩(L/nx̂)Z

L−1

∑
ζ=0

e
2πi
L
γze−

2πi
L
γζψ(T ζLx̂), (4.31)

where we used that FNL ψ ∈ SNL . By applying the coordinate shift σ = γ
L/nx̂

we see that

(4.31) is equal to

1

L

nx̂−1

∑
σ=0

nx̂−1

∑
ξ=0

L/nx̂−1

∑
k=0

e
2πi
nx̂

(z−(ξ+knx̂))σψ(T ξLx̂)

= 1

nx̂

nx̂−1

∑
ξ=0

[
nx̂−1

∑
σ=0

e
2πi
nx̂

(z−ξ)σ]ψ(T ξLx̂) = ψ(T zLx̂). (4.32)

It can be shown analogously that FNL (FNL )∗ = 1.

4.2.3 The Schrödinger operator formulation

Let again L,N ∈ N with N < L be fixed. In [FS18] it was shown that the N -particle
Hamiltonian is unitarily equivalent to a discrete Schrödinger operator HN

L acting on
HN
L ≅ `2(VNL ) with

HN
L ≅ − 1

2∆
ANL +WN

L . (4.33)

Here, ANL denotes the adjacency operator on GNL
(ANL ψ)(x) ∶= ∑

y∶ x∼y

ψ(y) for all x ∈ VNL , (4.34)

where we use the notation x ∼ y for {x, y} ∈ ENL . Furthermore, the operator WN
L is

a multiplication by the function W ∶ P(VL) → N0 restricted to HN
L which counts the

number of connected components of a configuration x ∈ P(VL)

W (x) ∶= 1

2
∣{{α,β} ∈ EL ∶ α ∈ x,β ∉ x}∣. (4.35)
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Let us now consider the Fourier transform of the Hamiltonian ĤN
L ∶= FNLH

N
L (FNL )∗,

with ÂNL and ŴN
L being defined analogously.

Lemma 4.2.5. For any φ ∈ SNL , x̂ ∈ V̂NL and γ ∈ VL we have

(ĤN
L φ)(γ, x̂) = −

1

2∆
∑
ŷ

aNL,γ(x̂, ŷ)φ(γ, ŷ) +W (x̂)φ(γ, x̂), (4.36)

where the matrix elements of aNL,γ are given by

aNL,γ(x̂, ŷ) = ∑
z∈{0,⋯,nŷ−1}∶

Tz
L
ŷ∼x̂

e
2πi
L
γz. (4.37)

Proof. Firstly, concerning the potential WN
L , we observe that for any φ ∈ SLN we get

(FNLWN
L (FNL )∗φ)(γ, x̂) =W (x̂)φ(γ, x̂). (4.38)

Let us now consider the adjacency operator ANL .

(FNLANL (FNL )∗φ)(γ, x̂) = 1√
L

L−1

∑
z=0

e−
2πi
L
γz(ANL (FNL )∗φ)(T zLx̂)

= 1√
L

L−1

∑
z=0

∑
y∶y∼T zLx̂

e−
2πi
L
γz((FNL )∗φ)(y) (4.39)

For any y ∈ VNL there exists a unique ŷ ∈ V̂NL and σ ∈ {0,⋯, nŷ − 1} such that y = T̃ σL ŷ.
Hence,

(FNLANL (FNL )∗φ)(γ, x̂) = 1

L

L−1

∑
z=0

∑
ŷ

∑
σ∈{0,⋯,nŷ−1}∶
Tσ−z
L

ŷ∼x̂

L−1

∑
ξ=0

e−
2πi
L
z(γ−ξ)e

2πi
L
ξ(σ−z)φ(ξ, ŷ). (4.40)

For any ŷ ∈ V̂NL and ξ ∉ (L/nŷ){0,⋯, nŷ−1} we have φ(ξ, ŷ) = 0, since φ ∈ SNL . We there-
fore consider only ξ ∈ (L/nŷ){0,⋯, nŷ − 1}. The second factor in (4.40) is subsequently
given by

e
2πi
L
ξ(σ−z) = e

2πi
nŷ

ξ
L/nŷ

(σ−z)modnŷ
. (4.41)

By changing the summation index in (4.40) from σ to ζ ∶= (σ − z)mod nŷ we conclude
that (4.40) is equal to

1

L
∑
ŷ

∑
ζ∈{0,⋯,nŷ−1}∶

T
ζ
L
ŷ∼x̂

L−1

∑
ξ=0

[
L−1

∑
z=0

e−
2πi
L
z(γ−ξ)]e

2πi
L
ξζφ(ξ, ŷ) = ∑

ŷ

∑
ζ∈{0,⋯,nŷ−1}∶

T
ζ
L
ŷ∼x̂

e
2πi
L
γζφ(γ, ŷ). (4.42)

This concludes the proof.

Remark 4.2.6. The operator ÂNL is selfadjoint on SNL , since it is unitarily equivalent to

the selfadjoint operator ANL . This implies in particular that for all γ ∈ VL and x̂, ŷ ∈ V̂NL
we obtain

1

L/nx̂
aNL,γ(x̂, ŷ) =

1

L/nŷ
aNL,γ(ŷ, x̂). (4.43)
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Now, we decompose SNL into fibre spaces corresponding to the fibre index γ ∈ VL.
We obtain

SNL =
L−1

⊕
γ=0

SNL,γ , (4.44)

where
SNL,γ ∶= {φ ∈ SNL ∶ ∀x̂ ∈ V̂NL , ∀σ ∈ VL, σ ≠ γ, we have φ(σ, x̂) = 0}. (4.45)

In Lemma 4.2.5 it is shown that for each γ ∈ VL the subspace SNL,γ reduces ĤN
L . Con-

sequently, we decompose

ĤN
L =

L−1

⊕
γ=0

ĤN
L,γ, (4.46)

where ĤN
L,γ ∶= ĤN

L ∣SNL,γ . Analogously, we set ÂNL,γ ∶= ÂNL ∣SNL,γ and ŴN
L,γ ∶= ŴN

L ∣SNL,γ and

thus obtain

ĤN
L =

L−1

⊕
γ=0

ĤN
L,γ =

L−1

⊕
γ=0

( − 1

2∆
ÂNL,γ + ŴN

L,γ) (4.47)

and

σ(HN
L ) = σ(ĤN

L ) =
L−1

⋃
γ=0

σ(ĤN
L,γ). (4.48)

4.2.4 Combes–Thomas estimate on fibre operators and proof
of Theorem 4.2.1

Let again L,N ∈ N with N < L be fixed. For the reader’s convenience we will omit the
indices N and L in the following proofs. However, every quantity may depend on N
and L unless stated otherwise.

Lemma 4.2.7. For all γ ∈ VL the operator ÂNL,γ satisfies

−2ŴN
L,γ ≤ ÂNL,γ ≤ 2ŴN

L,γ. (4.49)

Proof. It is sufficient to prove only the upper bound. The lower bound follows analo-
gously by considering −Âγ.
Let x̂ ∈ V̂ . Equation (4.37) implies

∑
ŷ∈V̂

∣aγ(x̂, ŷ)∣ ≤ ∑
ŷ

∑
z∈{0,⋯,nŷ}∶
Tzŷ∼x̂

∣e 2πi
L
γz ∣ = ∑

y∈V∶
y∼x̂

1. (4.50)

According to (4.35) we get

∑
ŷ∈V̂

∣aγ(x̂, ŷ)∣ ≤ 2W (x̂). (4.51)

Now, consider an arbitrary φ ∈ Sγ. Then

⟨φ, Âγφ⟩S = ∑
x̂, ŷ∈V̂

φ(γ, x̂) 1

L/nx̂
aγ(x̂, ŷ)φ(γ, ŷ)

≤ [ ∑
x̂, ŷ∈V̂

∣φ(γ, x̂)∣2 1

L/nx̂
∣aγ(x̂, ŷ)∣]

1/2

[ ∑
x̂, ŷ∈V̂

∣φ(γ, ŷ)∣2 1

L/nx̂
∣aγ(x̂, ŷ)∣]

1/2

. (4.52)
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By the identity (4.43), we obtain

⟨φ, Âγφ⟩S ≤ ∑
x̂, ŷ∈V̂

∣φ(γ, x̂)∣2 1

L/nx̂
∣aγ(x̂, ŷ)∣. (4.53)

Hence, by applying (4.51) we arrive at

⟨φ, Âγφ⟩S ≤ 2∑
x̂

∣φ(γ, x̂)∣2 1

L/nx̂
W (x̂) = 2 ⟨φ, Ŵγφ⟩S . (4.54)

We are now able to prove a Combes–Thomas estimate on a fibre. The following
is an adaptation of the proof of a similar result on the infinite-volume XXZ chain
[ARFS20, EKS18b, EKS18a].

Theorem 4.2.8. For any γ ∈ VL and any multiplication operator Ŷ N
L,γ ∶ SNL,γ → SNL,γ,

consider the Hamiltonian ÔN
L,γ = − 1

2∆Â
N
L,γ + ŴN

L,γ + Ŷ N
L,γ. Moreover, let z ∉ σ(ÔN

L,γ) be
such that

∥(ŴN
L,γ)1/2(ÔN

L,γ − z)−1(ŴN
L,γ)1/2∥ ≤ 1

κNL (z) < ∞, (4.55)

for some κNL (z) > 0. Then for all A, B ⊂ V̂NL we have

∥1A(ÔN
L,γ − z)

−1
1B∥ ≤

2

κNL (z) e−η
N
L (z)d̂NL (A,B), (4.56)

where d̂NL (A,B) ∶= inf{d̂NL (x̂, ŷ) ∶ x̂ ∈ A, ŷ ∈ B} for all A, B ∈ P(V̂NL ) and

ηNL (z) = ln(1 + κ
N
L (z)∆

2
). (4.57)

Proof. Let us first observe that (4.49) implies that for any γ ∈ {0,⋯, L − 1}

−2 ≤ (Ŵγ)−1/2Âγ(Ŵγ)−1/2 ≤ 2. (4.58)

Now, for any A ⊆ V̂ , let ρA,γ ∶ Sγ → Sγ be the operator of multiplication by d̂(A, ⋅), i.e.

(ρA,γφ)(γ, x̂) ∶= d̂(A, x̂)φ(γ, x̂) for any φ ∈ Sγ. For any η > 0 let us define

Ôη,γ ∶= e−ηρA,γ Ôγe
ηρA,γ (4.59)

and B̂η,γ ∶= Ôη,γ − Ôγ. Observe that

B̂η,γ = −
1

2∆
(e−ηρA,γ Âγe

ηρA,γ − Âγ). (4.60)

Now, for any φ ∈ Sγ, consider

∥(Ŵγ)−1/2B̂η,γ(Ŵγ)−1/2φ∥2

S

= 1

4∆2 ∑
x̂

1

L/nx̂
∣∑
ŷ

W −1/2(x̂)W −1/2(ŷ)(eη[ρA,γ(ŷ)−ρA,γ(x̂)] − 1)aγ(x̂, ŷ)φ(γ, ŷ)∣
2

(4.61)
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We note that for all γ ∈ {0,⋯, L− 1} and all x̂, ŷ ∈ V̂ we have ∣aγ(x̂, ŷ)∣ ≤ a0(x̂, ŷ) which

follows from (4.37). Furthermore, we have ∣eη[d̂(x̂,A)−d̂(ŷ,A)] − 1∣ ≤ (eη − 1) for all x̂, ŷ ∈ V̂
with d̂(x̂, ŷ) = 1. Hence, (4.61) is bounded by

1

4∆2
(eη − 1)2∑

x̂

1

L/nx̂
[∑

ŷ

W −1/2(x̂)W −1/2(ŷ)a0(x̂, ŷ)∣φ(γ, ŷ)∣]
2

≤ 1

4∆2
(eη − 1)2∥(Ŵ0)−1/2Â0(Ŵ0)−1/2φ̃∥2

, (4.62)

where φ̃ ∈ S0 is defined by φ̃(γ̃, x̂) ∶= δγ,0∣φ(γ̃, x̂)∣ for all x̂ ∈ V̂ and γ̃ ∈ {0,⋯, L− 1}. The
function φ̃ is indeed an element of S0, since for all x̂ ∈ V̂ we have 0 ∈ L/nx̂{0,⋯, nx̂ −1}.
Clearly, ∥φ̃∥S = ∥φ∥S. By using (4.58) and (4.62) we further estimate the left-hand side
of (4.61) and eventually get

∥(Ŵγ)−1/2B̂η,γ(Ŵγ)−1/2∥ ≤ 1

∆
(eη − 1). (4.63)

For η ≡ η(z) as in (4.57) it now follows that

∥(Ŵγ)−1/2B̂η,γ(Ôγ − z)−1(Ŵγ)1/2∥

= ∥(Ŵγ)−1/2B̂η,γ(Ŵγ)−1/2(Ŵγ)1/2(Ôγ − z)−1(Ŵγ)1/2∥ ≤ (eη − 1)
∆κ(z) = 1

2
. (4.64)

Using the resolvent identity we get

(Ŵγ)1/2(Ôη,γ − z)−1(Ŵγ)1/2[I + (Ŵγ)−1/2B̂η,γ(Ôγ − z)−1(Ŵγ)1/2]
= (Ŵγ)1/2(Ôγ − z)−1(Ŵγ)1/2. (4.65)

By further applying the elementary inequality ∥(I+C)−1∥ ≤ (1−∥C∥)−1 for any operator
C ∶ Sγ → Sγ, ∥C∥ < 1, we obtain from (4.55) and (4.64) that

∥(Ŵγ)1/2(Ôη,γ − z)−1(Ŵγ)1/2∥ ≤ ∥(Ŵγ)1/2(Ôγ − z)−1(Ŵγ)1/2∥

× ∥[I + (Ŵγ)−1/2B̂η,γ(Ôγ − z)−1(Ŵγ)1/2]−1∥ ≤ 2

κ(z) . (4.66)

We conclude

∥1A(Ŵγ)1/2(Ôγ − z)−1(Ŵγ)1/21B∥ = ∥1AeηρA(Ŵγ)1/2(Oη,γ − z)−1(Ŵγ)1/2e−ηρA1B∥

≤ ∥(Ŵγ)1/2(Ôη,γ − z)−1(Ŵγ)1/2∥∥e−ηρA1B∥ ≤
2

κ(z)e−ηd̂(A,B), (4.67)

which is the desired result.

We use this Combes–Thomas estimate to deduce pointwise upper bounds to eigen-
functions of the fibre operators. These estimates apply uniformly to all eigenstates
corresponding to eigenvalues in a certain energy range. These energy ranges are asso-
ciated with configurations of K or less clusters V̂NL,K ∶= {x̂ ∈ V̂NL ∶ W (x̂) ≤ K} and are
given by

ĨK,δ ∶= [1 − 1

∆
, (K + 1 − δ)(1 − 1

∆
)], (4.68)
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where δ ∈ ]0,1[ and K ∈ N.
For K ∈ N with K ≤ ∥ŴN

L ∥ and γ ∈ VL, let P̂N
L,K,γ ∶ SNL,γ → SNL,γ be the orthogonal

projection given by
P̂N
L,K,γ ∶= 1≤K(ŴN

L,γ). (4.69)

Let further the projection P̂N
L,K ∶ SNL → SNL be defined by

P̂N
L,K ∶= ⊕

γ∈VL

P̂N
L,K,γ. (4.70)

Theorem 4.2.9. Let K ∈ N with K ≤ ∥ŴN
L ∥, δ ∈ ]0,1[ and γ ∈ VL. For any E ∈

σ(ĤN
L,γ)∩ ĨK,δ let φNL,γ ≡ φNL,γ(∆,E) ∈ SNL,γ be a corresponding eigenstate. Then, for any

A ⊆ V̂NL we obtain

∥1AφNL,γ∥ ≤
2(K + 1)2

δ
⋅ e−µ̃K d̂NL (A,V̂NL,K)∥P̂N

L,K,γφ
N
L,γ∥, (4.71)

where

µ̃K ≡ µ̃K(δ,∆) ∶= ln (1 + δ(∆ − 1)
2(K + 1)). (4.72)

Proof. Let us define the multiplication operator ŶK,γ ∶= (K + 1)(1 − 1/∆)P̂K,γ. Then

(Ŵγ)−1/2(Ĥγ + ŶK,γ −E)(Ŵγ)−1/2 = − 1

2∆
(Ŵγ)−1/2Âγ(Ŵγ)−1/2 + 1

+ (K + 1)(1 − 1

∆
)P̂K,γ(Ŵγ)−1 −E(Ŵγ)−1 (4.73)

By using the result of Lemma 4.2.7 as well as E ∈ ĨK,δ we estimate

− 1

2∆
(Ŵγ)−1/2Âγ(Ŵγ)−1/2 + 1 ≥ (1 − 1

∆
). (4.74)

Moreover,

(K + 1)(1 − 1

∆
)P̂K,γ(Ŵγ)−1 −EP̂K,γ(Ŵγ)−1 ≥ δ(1 − 1

∆
)P̂K,γ (4.75)

and

−E(1 − P̂K,γ)(Ŵ −1
γ ) ≥ − E

K + 1
(1 − P̂K,γ) ≥ (1 − 1

∆
)( − 1 + δ

K + 1
)(1 − P̂K,γ). (4.76)

Hence, (4.73) is estimated from below by

(Ŵγ)−1/2(Ĥγ + ŶK,γ −E)(Ŵγ)−1/2 ≥ δ

K + 1
(1 − 1

∆
). (4.77)

This implies that E ∉ σ(Ĥγ + ŶK,γ) and in particular, we get

∥(Ŵγ)1/2(Ĥγ + ŶK,γ −E)−1(Ŵγ)1/2∥ ≤ (K + 1)∆
δ(∆ − 1) . (4.78)
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By Theorem 4.2.8, this implies that

∥1A(Ĥγ + ŶK,γ −E)−11B∥ ≤
2∆(K + 1)
δ(∆ − 1) ⋅ (1 + δ(∆ − 1)

2(K + 1))
−d̂(A,B)

(4.79)

for any A,B ∈ V̂ . Now, consider

∥1Aφγ∥S = ∥1A(Ĥγ + ŶK,γ −E)−1(Ĥγ + ŶK,γ −E)φγ∥
S
. (4.80)

We note that since φγ is an eigenfunction of Ĥγ we have (Ĥγ −E)φγ = 0. Hence, (4.80)
is equal to

(K + 1)(1 − 1

∆
)∥1A(Ĥγ + ŶK,γ −E)−1

P̂K,γφγ∥S

≤ 2(K + 1)2

δ
⋅ (1 + δ(∆ − 1)

2(K + 1))
−d̂(A,V̂K)

∥P̂K,γφγ∥S,
(4.81)

which is the desired result.

Applying this result regarding fibre operators to the full N -particle Hamiltonian
yields Theorem 4.2.1. In fact, our result can be applied to obtain estimates for eigen-
functions with eigenenergy in the K-cluster band ĨK,δ for any K and not just K = 1.

Corollary 4.2.10. Let K ∈ N. For every E ∈ ĨK,δ ∩ σ(HN
L ) there exists an eigenstate

∣ψNL ⟩ ≡ ∣ψNL (∆,E)⟩ ∈ HN
L such that for all x ∈ VNL we obtain

∣ ⟨δLx , ψNL ⟩ ∣ ≤ 2(K + 1)2

δ
√
L

⋅ e−µ̃KdNL (x,VNL,K), (4.82)

where µ̃K(δ,∆) was defined in (4.72).

Proof. According to (4.48), for every E ∈ ĨK,δ ∩ σ(H) there exists a fibre index γ ∈
{0,⋯, L} such that E ∈ σ(Ĥγ). Let φ ≡ φ(∆,E) ∈ Sγ be a normalized eigenvector of

Ĥγ for the eigenvalue E. Let ∣ψ⟩ ≡ ∣ψ(∆,E)⟩ ≅ (F)∗φ be the corresponding eigenstate
of H.

Since φ ∈ Sγ and by (4.27) we have

ψ(T zx̂) = 1√
L

e
2πi
L
zγφ(γ, x̂) for all z ∈ Z and x̂ ∈ V̂ . (4.83)

The result now follows from Theorem 4.2.9, since

∣ ⟨δx, ψ⟩ ∣ =
1√
L
∣φ(γ, x̂)∣ = 1√

L
∥1{x̂}φ∥ ≤

2(K + 1)2

δ
√
L

⋅ e−µ̃K d̂(x̂,V̂K) (4.84)

and
d̂(x̂, V̂K) = min

γ
d(T γx̂, V̂K) = min

γ
d(x,T γV̂K) = d(x,VK), (4.85)

where we used that ⋃γ T γV̂K = VK .
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Proof of Theorem 4.2.1. Recall that I1 = [1 − 1
∆ ,2(1 − 1

∆)[ and DNL = VNL,1. According

to Lemma C.1.1 we have σ(HN
L )∩]1,2(1−1/∆)[ = ∅, since ∆ > 3. Hence I1∩σ(HN

L ) =
Ĩ1,1/2∩σ(HN

L ). The claim follows immediately from Corollary 4.2.10 with δ = 1/2, K = 1
and µ1(∆) = µ̃1(∆,1/2).

Remark 4.2.11. (i) In Lemma C.1.1, it was shown that for ∆ > 2 and all γ ∈ VL,
each fibre operator ĤN

L,γ has exactly one eigenvalue Eγ ∈ [(1 − 1/∆),2(1 − 1/∆)[.
Let { ∣ϕNL,γ(∆)⟩ }

γ∈VL
⊂ HN

L be the orthonormal set of corresponding eigenstates,

which is unique up to phase factors.

(ii) From Lemma C.1.2 it follows that E0 < Eγ for any γ ≠ 0. This implies in
particular that ∣ϕNL,0(∆)⟩ is the unique ground state of HN

L .

4.3 Perturbing the Ising limit

Let again N,L ∈ N with N < L. The main idea for Theorem 4.1.1 is to view it as a
perturbative result of the Ising limit “∆ = ∞”. From Theorem 4.2.1 it readily follows
that for all γ ∈ VL the density operator ρ(ϕNL,γ(∆)) converges weakly for ∆→∞ towards

ρNL,γ ∶= ρ(ϕNL,γ(∞)) = ∑
ζ,ξ∈VL

1√
L

e
2πi
L

(ζ−ξ)γ ∣δL
T ζLx̂0

⟩⟨δL
T ξLx̂0

∣, (4.86)

with

∣ϕNL,γ(∞)⟩ ∶= ∑
ζ∈VL

1√
L

e
2πi
L
ζγ ∣δL

T ζLx̂0
⟩ ∈ HN

L (4.87)

where x̂0 ∈ V̂NL ∩ DNL is the unique representative of all droplets in VNL . The state
∣ϕNL,γ(∞)⟩ itself is an eigenstate of the Ising Hamiltonian

HL(∞) ∶= ∑
{j,k}∈EL

(1

4
− S3

jS
3
k), (4.88)

since span{ ∣δLx ⟩ ∶ x ∈ DNL } is the eigenspace to the groundstate energy 1. This fact
follows immediately from the construction presented in the last chapter, since the N -
particle Hamiltonian HN

L (∞) can be identified with the multiplication operator WN
L .

As we will see in the following, the entanglement entropy of ρNL,γ satisfies the desired
logarithmic correction to the area law. In order to calculate the entanglement entropy of
a given pure state ∣ψ⟩ ∈ HN

L recall that it is necessary to determine its partial trace first.
We are interested in the partial trace with respect to the decomposition HL = HΛ⊗HΛc

for a region Λ ⊆ VL. Due to the constant particle number of ∣ψ⟩, the partial trace can
be decomposed into a direct sum of operators acting on the n-particle subspaces Hn

Λ

for n ∈ {0,⋯,N}.

Lemma 4.3.1. Let Λ ⊂ VL. For any state ∣ψ⟩ ∈ HN
L and for all n ∈ {0,⋯,min{∣Λ∣,N}}

there exists a ρnΛ(ψ) ∈ L(Hn
Λ) such that

trΛc {ρ(ψ)} =
min{∣Λ∣,N}

⊕
n=0

ρnΛ(ψ). (4.89)
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Furthermore for any n ∈ {0,⋯,min{∣Λ∣,N}} and any y, y′ ∈ Hn
L we have

⟨δΛ
y , ρ

n
Λ(ψ)δΛ

y′⟩ = ∑
z∈P(Λc),
∣z∣=N−n

⟨δLy∪z, ρ(ψ)δLy′∪z⟩ . (4.90)

Proof. First, we remark that the N -particle space HN
L is a subspace of HL = HΛ ⊗HΛc .

The elements of the canonical bases of these vector spaces are related in the following
way: For x ⊆ VL with y ∶= x ∩Λ ⊆ Λ and z ∶= x ∩Λc ⊆ Λc we have

∣δVLx ⟩ = ∣δΛ
y ⟩ ⊗ ∣δΛc

z ⟩ . (4.91)

Notice that P(VL) = {y ∪ z ∶ y ∈ P(Λ) and z ∈ P(Λc)}. The statement is shown by
applying the definition of the partial trace together with (4.91). Hence,

trΛc {ρ(ψ)} = ∑
y,y′∈P(Λ)

[ ∑
z∈P(Λc)

⟨δLy∪z, ρ(ψ)δLy′∪z⟩ ] ∣δΛ
y ⟩⟨δΛ

y′ ∣ . (4.92)

Readily, we now apply this lemma to the N -particle eigenstate ∣ϕNL,γ(∞)⟩ ∈ HN
L of

the Ising limit. For n ∈ {0,⋯,N} let therefore

ρnL,Λ,γ ∶= ρnΛ(ϕNL,γ(∞)). (4.93)

To simplify calculations, we impose some further restrictions on the region and the
particle number. We consider a connected region

ΛL ∶= {λ−,⋯, λ+} ⊂ VL, (4.94)

where the boundary points λ−, λ+ ∈ VL satisfy λ+ − λ− = 2⌊θL⌋ for some θ ∈]0,1/2[.
Recall that N = ⌊εN⌋ with a constant particle density ε. The particle density is chosen
to be small, while ΛL is chosen to be smaller than half of the ring but at the same time
also significantly larger than the particle number. The exact conditions are given in
Assumption 4.4.15.

It is easy to see that under these assumptions we have

ρnL,ΛL,γ =
1

L
(∣δΛL

yn+
⟩⟨δΛL

yn+
∣ + ∣δΛL

yn−
⟩⟨δΛL

yn−
∣) (4.95)

for all n ∈ {1,⋯,N − 1}, where

yn
±
≡ yn

±
(ΛL) ∶= λ± ∓ {0,⋯, n − 1}. (4.96)

This is a consequence of the fact that only two droplet configurations in DNL contain
exactly n-particles inside ΛL and N −n inside Λc

L, see Figure 4.3. For any n ∈ {1,⋯,N −
1} the operator in (4.95) has two non-trivial eigenvalues, both of size 1/L. Hence,

tr{s(ρnL,ΛL,γ)} =
2

L
log2L. (4.97)
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Figure 4.3: The only two droplets x1, x2 ∈ D7
L with exactly four particles inside ΛL.

Recall that the entropy function s was given by s(x) = −x log2 x for all x ∈ ]0,1[. The
entanglement entropy of ∣ϕNL,γ(∞)⟩ in total can be easily estimated from below by

S(ΛL;VL, ϕNL,γ(∞)) =
N

∑
n=0

tr{s(ρnL,ΛL,γ)} ≥
2(N − 1)

L
log2L ≥ ε log2L (4.98)

for all L > 3ε−1. Since ∣ΛL∣ = 2⌊θL⌋+1, this constitutes a logarithmically enhanced area
law.

Our strategy for proving Theorem 4.1.1 is to extend the result of the Ising limit to
low energy eigenstates of the Ising phase. We therefore view ρ(ϕNL,γ) as a perturbation

of ρNL,γ. Our aim is to show the inequality

∣ tr{s(ρnL,ΛL,γ)} − tr{s(ρnΛL[ϕ
N
L,γ(∆)])}∣ ≤ 1

L
log2L. (4.99)

for sufficiently many n ∈ {0,⋯,N}. For proving a lower bound to the entanglement
entropy it suffices to prove this inequality for n ∈ {⌈N/2⌉,⋯,N − 1}. We are able to
throw away all contributions of s(ρnΛL(ϕ

N
L,γ)) for all n < ⌈N/2⌉, since s is a non-negative

function. In total we obtain

tr{s(ρΛL[ϕNL,γ(∆)])} ≥
N−1

∑
n=⌈N/2⌉

tr{s(ρnΛL[ϕ
N
L,γ(∆)])} ≥ ε

4
log2L (4.100)

for all L > 4ε−1, which constitutes a logarithmically enhanced area law of the entangle-
ment entropy.

The only thing that remains to be done is showing the estimate (4.99). Like in
Section 2.4.1, our main tool to this effect is Krĕıns trace formula, see e.g. [Sch12, Sect.
9.7]. We get

∣ tr{s(ρnΛL[ϕ
N
L,γ(∆)])} − tr{s(ρnL,ΛL,γ)}∣ = ∣∫

1

0
dt s′(t)ξnL,ΛL,γ(t)∣, (4.101)

where
ξnL,ΛL,γ ∶ R ∋ t↦ tr{1≤t(ρnΛL[ϕ

N
L,γ(∆)]) − 1≤t(ρnL,ΛL,γ)} (4.102)
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denotes the spectral shift function. We remark here that (4.101) does not follow di-
rectly from Krĕıns trace formula, since s cannot be extended to R to be a C1(R)-
function. However, we achieve (4.101) by approximating s with compactly supported
C∞-functions.

Both s′1[0,1] and ξnL,ΛL,γ are Lp-integrable for any p ∈ [1,∞[. According to [CHN01,
Thm. 2.1] the Lp-norm of the spectral shift function is bounded by

∥ξnL,ΛL,γ∥p ≤ ∥ρnΛL[ϕ
N
L,γ(∆)] − ρnL,ΛL,γ∥

1/p

1/p
, (4.103)

where ∥ ⋅ ∥1/p denotes the 1/p-th von Neumann-Schatten quasinorm. Let us introduce
the notation

DN,n
L,ΛL,γ

≡Dn
L,ΛL,γ

(∆) ∶= ρnΛL[ϕ
N
L,γ(∆)] − ρnL,ΛL,γ. (4.104)

We claim that for all n ∈ {⌈N/2⌉,⋯,N − 1} we have

∥DN,n
L,ΛL,γ

∥1/p

1/p
≲ L−1/pe−µ1/p, (4.105)

where µ1 ≡ µ1(∆) was defined in (4.16). It is reasonable to expect such an estimate
because of Theorem 4.2.1. On the one hand, this theorem implies that the density
operator ρnΛL[ϕ

N
L,γ] contains a factor L−1. We recall from (4.95) that this is true for

the density ρnL,ΛL,γ, too. The eigenvalues of DN,n
L,ΛL,γ

therefore also contain a factor L−1,

which then leads to the factor L−1/p in (4.105). On the other hand, all contributions
to the state ∣ϕNL,γ⟩ of configurations other than droplets are exponentially small with
respect to µ1. Broadly speaking, to subtract ρnL,ΛL,γ is to remove the large contributions
of droplet configurations altogether. We therefore predict that the bound in 4.105
contains a factor e−µ1/p as well.

In our final step we estimate the right-hand side of (4.101) by using Hölder’s in-
equality. Note that the Lq-norm of the derivative of s satisfies

∥s′1[0,1]∥q ≲ q (4.106)

for all q ∈ [1,∞[. To attain the right scaling behaviour in L we choose the Hölder
coefficients to be L-dependent, namely q ≡ q(L) ∶= lnL and p ≡ p(L) ∶= (1−[q(L)]−1)−1.
By applying (4.106) and (4.105) we get

∣ tr{s(ρnΛL[ϕ
N
L,γ(∆)])} − tr{s(ρnL,ΛL,γ)}∣ ≤ ∥s′1[0,1]∥q∥ξnL,ΛL,γ∥p ≲

lnL

L
e−µ1(∆)/2, (4.107)

for all L ≥ 8. Recall that according to Theorem 4.2.1 the decay rate µ1(∆) diverges
for ∆ → ∞. It is therefore possible to determine ∆0 > 3 such that for all ∆ ≥ ∆0 the
inequality (4.99) is satisfied.

4.4 Estimating the entries of DN,n
L,ΛL,γ

4.4.1 General idea and strategy

Let us again consider n,N,L ∈ N with N = ⌊εL⌋ for an ε ∈ ]0,1[ and n < N < L, as well
as the region ΛL given in (4.94). The purpose of this chapter is to provide bounds for

⟨δΛL
y ,DN,n

L,ΛL,γ
(∆)δΛL

y′ ⟩ (4.108)
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for any two configurations y, y′ ⊆ ΛL with n = ∣y′∣ = ∣y∣. Let us introduce the set

Vm(A) ∶= {y ⊆ A ∶ ∣y∣ =m} (4.109)

for any countable set A and m ∈ N0 with m ≤ ∣A∣.
Our main result of this section is given by the following lemma. It is an intermediate

step towards estimating the eigenvalues of DN,n
L,ΛL,γ

(∆).
Lemma 4.4.1. Let γ ∈ VL and ∆ > 3 such that µ1(∆) ≥ ln 2, where µ1 ≡ µ1(∆)
was defined in (4.16). Let us assume ε ∈ ]0,1[, N ≡ N(ε) = ⌊εL⌋ and ΛL satisfy
Assumption 4.4.15. Then there exists L0 ≡ L0(ε) > 0 such that for all L ≥ L0, n ∈ N
with N/2 < n < N and y, y′ ∈ Vn(ΛL) we have

∣ ⟨δΛL
y ,DN,n

L,ΛL,γ
(∆)δΛL

y′ ⟩ ∣ ≤ 234

L
e−µ1e−µ1(h

n
L(y)+h

n
L(y

′
)). (4.110)

Here the function hnL ∶ Vn(ΛL) → [0,∞[ is defined by

hnL(y) ∶= { min{dn+1
L (y ∪ {a±,1(ΛL)},Dn+1

L ), L5/4} − 1 for y ∉ {yn
+
, yn

−
},

0 for y ∈ {yn
+
, yn

−
}, (4.111)

where a±,1(ΛL) ∶= λ± ± 1 are the boundary points of Λc
L and yn

±
was defined in (4.96).

Remark 4.4.2. The function hnL defined in (4.111) naturally combines two measure-
ments. On the one hand, it measures at what distance a given configuration y ∈ Vn(ΛL)
is to the closest droplet configuration. On the other hand, it quantifies how far away
the aforementioned droplet configuration is from the boundary. The anchor particles
at a±,1(ΛL) are included in the definition of hnL to cover the second aspect. For an
illustration of this function see Figure 4.4.

For technical reasons, the function also contains a cut-off at L5/4.

λ− λ+

+2+3

a+,1a−,1 elements in y

λ− λ+

+2

a+,1a−,1

+4 to right boundary

to left boundary
dist. of c to

dist. of c to elements in c ∈ D5
L

elements in {a±,1}

Figure 4.4: A configuration y ∈ V4(ΛL) with h4
L(y) = 5

To prove Lemma 4.4.1 it is necessary to consider a sum of the form

FN
L,ΛL

(y, µ) ∶= ∑
z∈VN−n(ΛL),
y∪z∉DN

L

e−µd
N
L (z∪y,DNL ), (4.112)
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where y ∈ Vn(ΛL) and µ > 0. For ∆ > 3 and any two configurations y, y′ ∈ Vn(ΛL)∖{yn
±
}

we have

∣ ⟨δΛL
y ,DN,n

L,ΛL,γ
δΛL
y′ ⟩ ∣ = ∣ ⟨δΛL

y , ρnΛL[ϕ
N
L,γ(∆)]δΛL

y′ ⟩ ∣

≤ 28

L

√
FN
L,ΛL

(y,2µ1)FN
L,ΛL

(y′,2µ1), (4.113)

where we used (4.92) and Theorem 4.2.1 to derive this bound. Note that the first equal-
ity in (4.113) is only true, because we have excluded the configurations yn

±
that were

defined in (4.96). These configurations yield the main contributions to ρnΛL(ϕ
N
L,γ(∆))

and the only contributions to ρnL,ΛL,γ, since they are derived from the droplet configu-

rations in ∣ϕNL,γ(∆)⟩ and ∣ϕNL,γ(∞)⟩ respectively. These configurations will be treated

separately in Section 4.4.3, by determining upper and lower bounds to ∣ ⟨δVLc , ϕNL,γ(∆)⟩ ∣
for any droplet c ∈ DNL .

The sum in (4.112) is reminiscent of the geometric sum. This leads us to expect for
any y ∈ Vn(ΛL) and µ > 0 an estimate of (4.112) that decays exponentially in y with
respect to the function hnL, i.e.

FN
L,ΛL

(y, µ) ≲ e−µe−µh
n
L(y). (4.114)

We remark that this result together with (4.113) proves Lemma 4.4.1 for most config-
urations y, y′.

The proof of an estimate of the form (4.114) is rather technically involved. For our
approach it is necessary to restrict ourselves to a region ΛL and a particle density ε
that satisfy Assumption 4.4.15 as well as µ > ln 2. Furthermore, we only consider such
configurations where more particles are inside ΛL than outside, i.e. N/2 < n < N .

The main technical difficulty arises from the peculiar geometry of the ring, since
it is not at all obvious what the graph distance between two given configurations is.
It is similarly difficult to determine the distance to DNL for a given configuration. The
situation on the infinite line stands in contrast to the one on the ring. Recall that
the graph of the line was given by G = {Z,E} with edge-sets E = {{j, j + 1} ∶ j ∈ N}.
The graph distance of the corresponding N -particle graph GN = {VN(Z),ENL } can be
calculated with the help of the formula [ARFS20]

dN(x,x′) =
N

∑
j=1

∣xi − x′i∣ (4.115)

for any configurations x(′) = {x(′)

1 ,⋯, x(′)

N } ∈ VN(Z) with x
(′)

1 < ⋯ < x(′)

N . Moreover, it is
known which droplet configurations are closest to x. Let

cNm ∶=m + { − ⌊N − 1

2
⌋,⋯, ⌈N − 1

2
⌉} (4.116)

be a droplet centred around the site m ∈ Z and let DN ∶= {cNm ∶ m ∈ Z} denote the set
of all droplets. The droplets closest to x ∈ VN(Z) are centred around a site in

W(x) ∶= {m ∈ Z ∶ dN(x, cNm) = dN(x,DN)} = {x⌊(N+1)/2⌋,⋯, x⌈(N+1)/2⌉ − 1}, (4.117)



84 4. The XXZ spin ring

as has been shown in [ARFS20, Lemma A.1]. This can be used to calculate dN(x,DN)
and therefore also to estimate sums of the form (4.112).

Our main strategy now is to cut the ring open along one edge e ∈ EL so that we
can treat it analogous to the line. To understand why this is even possible, we have to
turn our attention back to the N -particle graph distance.

elements of e

elements of x

elements of xc

L− 1

λ−
λ+Λ

0
1

2

λ− λ+ 0 12

Figure 4.5: Cutting the ring open alongside the edge e.

Recall that the graph distance between two configurations x,x′ ∈ VNL is the length
of a shortest path from x to x′. For the exact definition of a path we refer to Defi-
nition 4.4.3. If we think of a configuration as the position of N individual hard-core
particles, a path is a sequence of such configurations where in each step one particle
hops to a neighbouring site. We claim that for each shortest path from a droplet to
an arbitrary configuration there exists at least one edge e ∈ EL, which is not crossed by
any particle at any time. This implies that we can remove the edge e from the graph
altogether without changing the graph distance – we can cut the ring open alongside
e, see Figure 4.5.

In general we cannot immediately determine for any given configuration x ∈ VNL
which droplet c ∈ DNL satisfies dNL (x, c) = dNL (x,DNL ). Consequently, we do not know at
which edge we can cut the ring open in order to calculate this distance. The situation
is different, if most particles of x are concentrated in a small sector of the ring such
as ΛL. In this case we prove that the closest droplet configurations must be centred
around a site in the same region. Moreover, we show that we can cut the ring open
alongside an edge outside of this sector. In view of these restrictions we only consider
n ∈ N with N/2 < n < N , since this property ensures that all configurations in the
summand of (4.112) are concentrated in ΛL.

Let us now consider two configurations y ∈ Vn(ΛL) and z ∈ VN−nL (Λc
L) for N/2 < n <

N . Let x ∶= y ∪ z ∈ VNL and let c ∈ DNL be a droplet with dNL (x, c) = dNL (x,DNL ). We
have already established that c is centred around a site in ΛL. To calculate the graph
distance between x and c we now cut the ring open alongside a suitable edge e ∈ EL
and transform the ring into a line as described above. We only know that e is an edge
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somewhere in Λc
L, but we do not know its exact position. Let us assume that the cut

divides the configuration z into ` particles to the left and r particles to the right of ΛL

for `, r ∈ N0 with ` + r = N − n. Since we do not know the exact position of e we also
do not now the value of the parameters `, r, which may depend on y and z alike.

λ−

elements in y

elements in c

λ+

λ− λ+

λ− λ+

λ− λ+

elements in b1,2

elements in z

Figure 4.6: The construction of a path from c to x = y ∪ z via the configuration y ∪ b1,2,
which constitutes a shortest path

In the next step, we construct a particular shortest path from c to x. First, we
move the first ` particles on the left side of c into the positions λ− −{1,⋯, `} outside of
ΛL and the last r particles on the right side of c into the positions λ+ +{1,⋯, r}. Then
we move the remaining particles inside of ΛL into the configuration y. We denote this
intermediate configuration by y ∪ b`,r where b`,r ∶= [λ− − {1,⋯, `}] ∪ [λ+ + {1,⋯, r}]. In
the last stage of this construction we move all particles outside of ΛL into their final
positions z. For an illustration of this path see Figure 4.6.

We now have

dNL (y ∪ z,DNL ) = dN(x, c) = dN(y ∪ z, y ∪ b`,r) + dN(y ∪ b`,r, c), (4.118)

where the second equality is due to the fact that there exists a shortest path from c
to x passing through y ∪ b`,r. Here, in a slight abuse of notation, we denote by dN the
graph norm of the N -particle graph corresponding to the ring cut open alongside the
edge e.

With the help of (4.118) the estimate (4.114) can be shown by executing the sum
over all z ∈ VN−n(ΛL). This mainly concerns the first term on the right-hand side in
(4.118), since the second term does not depend on z directly but only on ` and r. Note
that we can immediately calculate this term by using (4.115). The function hnL emerges
from the second term on the right-hand side of (4.118). To understand why, we point
out that b`,r includes at least one of the boundary sites a±,1(Λc

L) for any ` and r. The
only remaining obstacle is our lack of knowledge of the exact values of ` and r for any
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given configurations z and y. This difficulty is overcome by summing over all possible
combinations `, r ∈ N0 with ` + r = N − n.

4.4.2 Some technical preliminaries

For the entirety of this section, let L,N ∈ N with N < L be fixed. Let I(N) ∶= {1,⋯,N}.
We first concern ourselves with the peculiar geometry of the graph VNL and its graph
norm.

Definition 4.4.3. For any two points x, y ∈ VNL let

u ∶= (u(0),⋯, u(k)) ∈
k

⨉
l=0

VNL = (VNL )k+1 (4.119)

be called a path from x to y of length k ∈ N0, if and only if u(0) = x, u(k) = y and
dNL (u(l−1), u(l)) = 1 for all l ∈ {1,⋯, k}. If k = dNL (x, y), then we call u a shortest path
from x to y.

We first prove an auxiliary lemma necessary for showing the second equality (4.118).

Lemma 4.4.4. Let x, y ∈ VNL and let u be a shortest path from x to y of length k =
dNL (x, y). Let k0 ∈ {0,⋯, k},

v ∶= (u(0),⋯, u(k0)) and w ∶= (u(k0),⋯, u(k)). (4.120)

Then v is a shortest path from x to u(k0) and w is a shortest path from u(k0) to y.
Moreover,

dNL (x, y) = dNL (x,u(k0)) + dNL (u(k0), y). (4.121)

Proof. The path v is a path from x to u(k0) of length k0. Therefore dNL (x,u(k0)) ≤ k0.
Analogously, w is a path from u(k0) to y of length k − k0 with dNL (u(k0), y) ≤ k − k0.
Hence,

k = dNL (x, y) ≤ dNL (x,u(k0)) + dNL (u(k0), y) ≤ k0 + (k − k0) = k. (4.122)

This implies equality in (4.122) and consequently dNL (x,u(k0)) = k0 and dNL (u(k0), y) =
k − k0.

As we have emphasised before, it will be useful to consider each element z ∈ VNL as a
set of N distinguishable, hard-core particles. We use the following convention to label
each individual particle: For each z ∈ VNL there exists a unique (z1,⋯, zN) ∈ (VL)N with
z1 < z2 < ⋯ < zN such that z = {zj ∶ j ∈ I(N)}. We want to track each particle along the
path u from x to y. To this end, we now construct a sequence (ũ(l))l≤k ⊆ (VL)N with the

property that u(l) = {ũ(l)
j ∶ j ∈ I(N)} for all 0 ≤ l ≤ k. Firstly, we set ũ(0) ∶= (z1,⋯, zN).

For all 1 ≤ l ≤ k, we then define

⎧⎪⎪⎨⎪⎪⎩

ũ
(l)
j ∶= ũ(l−1)

j for all j ∈ I(N) with ũ
(l−1)
j ∈ u(l),

ũ
(l)
j ∈ u(l)/u(l−1) else.

(4.123)
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Note that ũ(l) is well-defined for all 1 ≤ l ≤ k, since the configuration u(l) is obtained by
moving exactly one particle in u(l−1) to an unoccupied neighbouring site in VL. Hence,
there is always exactly one j0 ∈ I(N) such that ũ

(l+1)
j0

≠ ũ(l)
j0

.
For the next lemma we require the following definition. For any j ∈ I(N) we denote

by

Lu
j ∶=

k

∑
l=1

dL(ũ(l−1)
j , ũ

(l)
j ) (4.124)

the distance which the j-th particle has travelled along the path u.

Lemma 4.4.5. For any x, y ∈ VNL the graph distance is given by

dNL (x, y) = min
σ∈Scyc

N

N

∑
j=1

dL(xj, yσ(j)) = min
σ∈SN

N

∑
j=1

dL(xj, yσ(j)). (4.125)

Here, S
(cyc)
N denotes the set of (cyclic) permutations of the set I(N).

Proof. Let u be an arbitrary shortest path from x to y of length k ∶= dNL (x, y). For any
l ∈ {0,⋯, k} let τl ≡ τl(u) ∈SN be the uniquely defined permutation such that

0 ≤ ũ(l)

τl(1)
< ũ(l)

τl(2)
< ⋅ ⋅ ⋅ < ũ(l)

τl(N)
≤ L − 1. (4.126)

We now claim that τl ∈Scyc
N for all 0 ≤ l ≤ k, which we prove by induction. For the base

case l = 0, the statement is true since τ0 = id ∈ Scyc
N . Now assume that for l < k, there

exists a τl ∈Scyc
N such that (4.126) is satisfied. To show that the statement is then also

true for l + 1, we distinguish three cases:

• First case: ũ
(l)

τl(1)
= 0 and ũ

(l+1)

τl(1)
= L − 1. This implies ũ

(l+1)

τl(N)
< L − 1. According to

the induction hypothesis we have 0 = ũ(l)

τl(1)
< ũ(l)

τl(2)
< ⋅ ⋅ ⋅ < ũ(l)

τl(N)
< L − 1, therefore

we conclude
0 < ũ(l+1)

τl(2)
< ũ(l+1)

τl(3)
< ⋅ ⋅ ⋅ < ũ(l+1)

τl(N)
< ũ(l+1)

τl(1)
= L − 1. (4.127)

The permutation τl+1 = τl ○σ satisfies (4.126) at the position l + 1, where σ ∈Scyc
N

is the uniquely defined cyclic permutation with σ(1) = 2. This implies clearly
that τl+1 ∈Scyc

N , since the composition of two cyclic permutations is cyclic.

• Second case: ũ
(l)

τ(N)
= L − 1 and ũ

(l+1)

τl(N)
= 0. By a completely analogous argument

as for the first case, we get τl+1 = τl ○ σ−1 ∈Scyc
N .

• The third case covers any other situation. Let j0 ≤ N be the unique index for
which {ũ(l)

τl(j0)
, ũ

(l+1)

τ(j0)
} ∈ EL. Since the previous two cases have been excluded,

observe that the only two possibilities are ũ
(l+1)

τ(j0)
= ũ(l)

τl(j0)
± 1 ≠ ũ(l)

τl(j0±1)
. In either

case, it is important to note that this implies

ũ
(l)

τl(j0−1)
= ũ(l+1)

τl(j0−1)
< ũ(l+1)

τl(j0)
< ũ(j+1)

τl(j0+1)
= ũ(l)

τl(j0+1)
. (4.128)

Hence, τl+1 = τl ∈Scyc
N .
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Since each step on the path moves exactly one particle to a neighbouring position we
have

k =
k

∑
l=1

N

∑
j=1

dL(ũ(l)
j , ũ

(l−1)
j ) =

N

∑
j=1

Lu
j . (4.129)

Moreover, for any j ∈ I(N) we have

dL(xj, yτ−1
k

(j)) = dL(ũ(0)
j , ũ

(k)
j ) ≤

k

∑
l=1

dL(ũ(l−1)
j , ũ

(l)
j ) = Lu

j . (4.130)

Since τ−1
k ∈Scyc

N and since (4.129) is true we obtained:

min
τ∈ScycN

N

∑
j=1

dL(xj, yτ(j)) ≤
N

∑
j=1

Lu
j = k. (4.131)

On the other hand, it was shown in detail in [FS18, Appendix A] that
dNL (x, y) = minσ∈SN ∑N

j=1 dL(xj, yσ(j)). Since Scyc
N ⊆SN , we immediately obtain

k = dNL (x, y) = min
σ∈SN

N

∑
j=1

dL(xj, yσ(j)) ≤ min
σ∈ScycN

N

∑
j=1

dL(xj, yσ(j)) , (4.132)

which concludes the proof.

Corollary 4.4.6. Let x, y ∈ VNL , k ∶= dNL (x, y), and let u be a shortest path between x
and y. Then

Lu
j = dL(ũ

(0)
j , ũ

(k)
j ) ≤ L/2 (4.133)

and ũ
(k)
j ∈ {(xj ±Lu

j )modL} for all j ∈ I(N).

Proof. Equation (4.125) immediately implies equality in (4.130) and (4.131). Due to
the definition of dL we have

Lu
j = dL(ũ

(0)
j , ũ

(k)
j ) = dL(xj, yτ−1

k
(j)) ≤ L/2. (4.134)

This already yields ũ
(k)
j ∈ {(xj ±Lu

j )modL} for all j ∈ I(N).

Corollary 4.4.6 implies that along any shortest path u from x to y of length k, each
individual particle moves, if at all, either clockwise or counter-clockwise. We therefore
define

Iu
±
∶= {j ∈ I(N) ∶ Lu

j ≠ 0 and ∃l ∈ {0,⋯, k} with ũ
(l)
j = (ũ(0)

j ± 1)modL} and (4.135)

Iu0 ∶= {j ∈ I(N) ∶ Lu
j = 0} . (4.136)

Note that I(N) = Iu
+
⊍ Iu

−
⊍ Iu0 for any shortest path u. The definition of Lu

j as well as
(4.133) imply that

{u(l)
j ∶ 0 ≤ l ≤ k} = {(xj ± ξ)modL ∶ 0 ≤ ξ ≤ Lu

j } for all j ∈ Iu
±
∪ Iu0 . (4.137)
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Let κ
(l)
j ≡ κ(l)

j (u) ∈ {0,⋯, Lu
j } for any j ∈ I(N) and any l ∈ {0,⋯, k} such that

ũ
(l)
j = (ũ(0)

j ± κ(l)
j )modL for all j ∈ Iu

±
∪ Iu0 . (4.138)

It follows from the previous observations that the quantity κ
(l)
j is well-defined.

The next lemma further establishes that we can indeed consider u as a path of
hard-core particles that cannot move past each other.

Lemma 4.4.7 (hard-core particle property). Let e0 ∶= {0, L−1} ∈ EL, c ∈ DNL with e0 ⊈ c
and x ∈ VNL . Moreover, let u be a shortest path from c to x of length k ∶= dNL (c, x).
Then:

(i) If i, j ∈ Iu
−

with i < j then κ
(l)
i ≥ κ(l)

j for all l ∈ {0,⋯, k}.

(ii) If i, j ∈ Iu
+

with i < j then κ
(l)
i ≤ κ(l)

j for all l ∈ {0,⋯, k}.

(iii) We have the following inequalities:

sup Iu
−
≤ inf(Iu0 ∪ Iu+ ) and sup(Iu

−
∪ Iu0 ) ≤ inf Iu

+
, (4.139)

where we use the convention that inf ∅ = ∞ and sup∅ = −∞.

(iv) If 1 ∈ Iu
−
∪ Iu0 and N ∈ Iu

+
∪ Iu0 then

Lu
1 +Lu

N ≤ L −N. (4.140)

Proof. Since c ∈ DNL with e0 ⊈ c we have cj = c1 + j − 1 for all j ∈ I(N). Let J ≡ J(k) ∶=
{0,⋯, k}.

(i) It suffices to show that if j, j + 1 ∈ Iu
−

, then κ
(l)
j ≥ κ(l)

j+1 for all l ∈ J . Let us define

f ∶ J → Z, l ↦ κ
(l)
j − κ(l)

j+1. Suppose there exists a k0 ∈ J such that f(k0) < 0. Due
to the definition of the path we have f(0) = 0 and ∣f(l) − f(l − 1)∣ ∈ {0,1} for all
l ∈ J ∖ {0}. Now, suppose there exists a k0 ∈ J such that f(k0) < 0. This would
imply that there exist a k1 ∈ J , k1 ≤ k0, with f(k1) = −1. Hence

u
(k1)

j = (cj − κ(k1)

j )modL = (cj − f(k1) − κ(k1)

j+1 )modL = u(k1)

j+1 , (4.141)

since cj − f(k1) = cj+1, which is a contradiction.

(ii) Analogous to (i).

(iii) We only prove the first inequality in (4.139). The right-hand side follows anal-
ogously. If Iu

−
= ∅, then the result is trivial. So, from now on, we assume that

Iu
−
≠ ∅. Suppose inf(Iu0 ∪ Iu

+
) < sup Iu

−
. This implies that there exists a j ∈ Iu

−

such that j − 1 ∈ Iu0 ∪ Iu
+

. Consider the function g ∶ J → Z, l ↦ κ
(l)
j + κ(l)

j−1. We
again have g(0) = 0, g(k) ≥ Lu

j ≥ 1 and ∣g(l) − g(l − 1)∣ ∈ {0,1} for all l ∈ J ∖ {0}.
Hence, there exists k0 ∈ J with g(k0) = 1. This implies

ũ
(k0)

j−1 = (cj−1 + κ(k0)

j−1 )modL = (cj−1 + g(k0) − κ(k0)

j )modL = ũ(k0)

j , (4.142)

which is a contradiction.
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(iv) Let us consider the function p ∶ J → N0, l ↦ κ
(l)
1 +κ(l)

N . Suppose Lu
1 +Lu

N > L−N .
Since p(k) = Lu

1 + Lu
N and p(l) − p(l − 1) ∈ {0,1} for all l ∈ J ∖ {0}, we conclude

that there exists a k0 ∈ J with p(k0) = L−N +1. Hence, by using cN = c1+N −1 =
c1 − p(k0) +L, we obtain

u
(k0)

1 = (c1 − κ(k0)

1 )modL = (c1 − p(k0) + κ(k0)

N )modL = u(k0)

N , (4.143)

which is a contradiction.

Recall from Section 4.4.1 that our strategy to calculate the graph distance of two
configurations relies on cutting the ring open alongside a suitable edge e. Given a path
u of length k and an edge e ∈ EL, we say that u does not cross e, if u(l−1) △ u(l) ≠ e for
all l ∈ {1,⋯, k}.

Lemma 4.4.8 (cutting lemma). Let N < L/2. Let c ∈ DNL and x ∈ VNL . Then there
exists a shortest path u from c to x and an edge e ∈ EL with minm∈c dL(m,e) ≥ ⌈L/2⌉−N
such that u does not cross e.

Proof. Due to the translational symmetry of the system we may assume w.l.o.g. that
c = {0,⋯,N − 1}. Let u be a shortest path of length k ∶= dNL (c, x) connecting c and
x. To prove the lemma, we have to show that there exists an e ∈ EL such that for all
l ∈ {1,⋯, k} we have u(l−1) △ u(l) ∈ EL ∖ {e}. However, it suffices to show that for all

j ∈ I(N) we have e ⊈ {u(l)
j ∶ 0 ≤ l ≤ k}. We distinguish between three cases.

• First case: Iu
−
= ∅, which means that no particle moves clockwise. Let e ∶=

{N − 1 + ⌊L/2⌋,N + ⌊L/2⌋}. For all l ∈ {0,⋯, k} and for all j ∈ I(N) we have

{u(l)
j ∶ 0 ≤ l ≤ k} = (j − 1) + {0,⋯, Lu

j } ⊆ {0,⋯,N − 1 + ⌊L/2⌋}, (4.144)

where we used Corollary 4.4.6 for the second inclusion. Since e is not a subset of
the right-hand side of (4.144), this proves the claim for this case.

• Second case: Iu
+
= ∅ , which means no particle moves anti-clockwise. Analogously

to the first case, we see that the edge e ∶= {⌈L/2⌉ − 1, ⌈L/2⌉} satisfies the claim.

• Third case: both Iu
−

and Iu
+

are non-empty. Let us first note that due to
Lemma 4.4.7 (iii) max Iu

−
≤ min(Iu0 ∪Iu+ ) and max(Iu0 ∪Iu− ) ≤ min Iu

+
. This implies

that N ∈ Iu
+

and 1 ∈ Iu
−

. According to Lemma 4.4.7 (iv) we have Lu
1 +Lu

N ≤ L−N
and thus

ũ
(k)
1 = L −Lu

1 > N +Lu
N − 1 = ũ(k)

N . (4.145)

Let e ∈ EL with e ⊂ {ũ(k)
N ,⋯, ũ(k)

1 }. For any j ∈ Iu
+
∪ Iu0 and any l ∈ {0,⋯, k} we

have
ũ
(l)
j ∈ (j − 1) + {0,⋯, κ(l)

j } ⊆ {0,⋯, ũ(k)
N } =∶ A+, (4.146)

where we used Lemma 4.4.7 (ii) for the second inclusion. Analogously, for any
j ∈ Iu

−
∪ Iu0 and any l ∈ {0,⋯, k} we have

u
(l)
j ∈ {0,⋯,N} ∪ {L −Lu

1 ,⋯, L − 1} =∶ A−. (4.147)
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Since e ⊈ A±, this shows that u does not cross e.

Moreover, since ũ
(k)
N ≤ N − 1 + ⌊L/2⌋ and ũ

(k)
1 ≥ ⌈L/2⌉ there exists at least one

edge e ∈ EL with e ⊆ {⌈L/2⌉,⋯,N − 1 + ⌊L/2⌋} ⊆ {ũ(k)
1 ,⋯, ũ(k)

N } such that e has a
distance of at least ⌈L/2⌉ −N to any m ∈ c.

Recalling the definition of a droplet on the infinite line (4.116), we now introduce
a notation for a droplet in VNL centred around a site m ∈ VL on the ring

cNL,m ∶= {jmodL ∶ j ∈ cNm}. (4.148)

Analogously to (4.117), for any x ⊆ VL, ∣x∣ > 0, we define the set of centres of
droplets that are closest to this configuration

WL(x) ∶= {m ∈ VL ∶ d∣x∣L (x, c∣x∣L,m) = d∣x∣L (x,D∣x∣
L )}. (4.149)

Recall from (4.117) that on the line, the set W(x) is explicitly known and contains
the middle element xκ for

κ ≡ κ(N) ∶= ⌊N + 1

2
⌋. (4.150)

By applying the cutting lemma we want to apply this result to the ring.

Lemma 4.4.9. Let N < L/2 and x ∈ VNL . Then

WL(x) ∩ x ≠ ∅. (4.151)

Furthermore, let m ∈ WL(x) ∩ x. If there exists a shortest path u from cNL,m to x that

does not cross e0 ∶= {0, L − 1} and e0 ⊈ cNL,m, then m = xκ.

Proof. Let ν ∈ WL(x) and define c ∶= cNL,ν . According to Lemma 4.4.8 there exists a
shortest path u from c to x and an edge e ∈ EL with minj∈c dL(j, e) > ⌈L/2⌉ − L/2 ≥ 0
such that u does not cross e. This implies e ⊈ c. Let us assume w.l.o.g. that e = e0.
In any other case we can choose a suitable rotation by γ ∈ Z such that T γLe = e0 and
consider T γLx, T γLc and the path uγ ∶= (T γLu(0),⋯, T γLu(k)) instead.

Since u does not cross e0, it can also be viewed as a path on the infinite line GN .
Therefore, we have dNL (x, c) = dN(x, c). Let us consider the droplet c′ ∶= cNxκ = cNL,xκ . In
this case, (4.117) states that {xκ} = W(x) ∩ x. Hence,

dNL (x,DNL ) = dN(x, c) ≥ dN(x, c′) =
N

∑
j=1

∣c′j − xj ∣ ≥
N

∑
j=1

dL(c′j, xj) ≥ dNL (c′, x), (4.152)

where we applied Lemma 4.4.5 to achieve the final estimate. Recall from (4.115) that
dN denotes the graph distance on the infinite line. Since c′ ∈ DNL we have equality in
(4.152) and therefore xκ ∈ WL(x) ∩ x. Moreover, if ν ∈ x it follows immediately that
ν = xκ, since dN(x, c) = dN(x, c′) and the set W(x) ∩ x contains only one element.
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By making further assumptions on the configuration x, we are able to determine
WL(x) ∩x precisely. For now, let us only consider configurations that are contained in
a sufficiently small sector of the ring.

Here, a sector of size θ ∈ ]0,1/2[ around a site m ∈ VNL is given by

SL,m(θ) ∶= {k ∈ VL ∶ dL(k,m) < θL}. (4.153)

Lemma 4.4.10. Let M ∶= ⌊(L − 1)/2⌋, β ∈ ]0,1/4[, N < βL and x ∈ VN(SL,M(1/4 −
β/2)). Then

{xκ} = WL(x) ∩ x, (4.154)

where κ was defined in (4.150).
Furthermore, no shortest path u from cNL,xκ to x crosses e0 ∶= {0, L − 1}. Moreover,

we have {1,⋯, κ} ⊆ Iu0 ∪ Iu− and {κ,⋯,N} ⊆ Iu0 ∪ Iu+ .

Proof. Let ν ∈ SL,M(1/4 − β/2). We claim that no shortest path u from cNL,ν to x

crosses the edge e0. Let c ∶= cNL,ν and k ∶= dNL (x, c). As in the proof of Lemma 4.4.8, it

is sufficient to show that for any j ∈ I(N) we have e0 ⊈ {ũ(l)
j ∶ 0 ≤ l ≤ k}.

Suppose there exists a j ∈ I(N) such that e0 ⊆ Zj ∶= {ũ(l)
j ∶ 0 ≤ l ≤ k}, which readily

implies j ∉ Iu0 . But according to (4.137), we know that for any j ∈ Iu
±

, we have

∣Zj ∣ = ∣{cj,⋯, (cj ±Lu
j )modL}∣ = Lu

j + 1 ≤ ⌊L/2⌋ + 1, (4.155)

where we used Corollary 4.4.6 to estimate Lu
j . W.l.o.g., let us assume j ∈ Iu

−
. Since we

assumed e0 ⊆ Zj, we deduce from (4.137) that

{cj, (cj −Lu
j )modL} ∪ (SL,M(1/4))c ⊆ Zj. (4.156)

Notice that both cj ∈ SL,M(1/4) and cj −Lu
j ∈ x ⊆ SL,M(1/4). Hence,

∣Zj ∣ ≥ 2 + ∣(SL,M(1/4))c∣ ≥ 2 + ⌊L/2⌋, (4.157)

which is a contradiction.
Since no shortest path u from cNL,ν to x crosses e0, observe that u can also be viewed

as a path on the graph induced by N particles on the infinite line. Hence,

dNL (x, cNL,xj) = d
N(x, cNL,xj) (4.158)

and WL(x) ∩ x = W(x) ∩ x = {xκ} according to (4.117).
Let us now consider a shortest path v from c′ ∶= cNL,xκ to x. Lemma 4.4.7 implies

that ṽ
(k)
j = xj and Lv

j = dL(xj, c′j) for all j ∈ I(N). Hence, Lv
κ = 0 and therefore κ ∈ Iz0 .

The rest of the statement follows from Lemma 4.4.7 (iii).

4.4.3 The mass of the droplet configurations

Let γ ∈ VL. We are now able to estimate the contribution of droplet configurations to
the eigenstate ∣ϕNL,γ(∆)⟩.

First, we need two auxiliary results to estimate the sum over all non-droplet con-
tributions. The first of these lemmata is an adaptation of a similar result in [ARFS20,
Proof of Theorem 6.1].
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Lemma 4.4.11. Let N ∈ N and

XN ∶= {χ = (χ1,⋯, χN) ⊆ NN
0 ∶ χ1 ≤ ⋯ ≤ χN}. (4.159)

Then for all µ ≥ ln 2 we have

∑
χ∈XN∖{0}

e−µ∣χ∣1 ≤ 30e−µ, (4.160)

where ∣ ⋅ ∣1-denotes the `1-norm of ZN .

Proof. Let Ψ ∶ NN
0 → XN with

x↦ Ψ(x) ∶= (Ψ1(x),⋯,ΨN(x)) , (4.161)

where for each j ∈ I(N) we have defined Ψj(x) ∶= ∑j
i=1 xi. Note that Ψ is a bijection.

For any x ∈ NN
0 we therefore get

∣Ψ(x)∣1 =
N

∑
j=1

Ψj(x) =
N

∑
k=1

(N − k + 1)xk (4.162)

and since Ψ is a bijection, we have

∑
χ∈XN

e−µ∣χ∣1 = ∑
x∈NN0

e−µ∣Ψ(x)∣1 = ∑
x∈NN0

N

∏
k=1

e−µ(N−k+1)xk , (4.163)

which yields

∑
χ∈XN

e−µ∣χ∣1 =
N

∏
k=1

∞

∑
y=0

e−µy(N−k+1) =
N

∏
k=1

1

1 − e−µ(N−k+1)
. (4.164)

We obtain the following estimate, which is uniform in N :

∑
χ∈XN

e−µ∣χ∣1 ≤
∞

∏
m=1

1

1 − e−µm
≤ exp ( 2e−µ

1 − e−µ
) , (4.165)

where we have used that ln(1 − λ)−1 ≤ 2λ, whenever λ ∈ ]0,1/2] and e−µ ≤ 2−1 for
µ ≥ ln 2. Hence,

∑
χ∈XN∖{0}

e−µ∣χ∣1 ≤ exp ( 2e−µ

1 − e−µ
) − 1 ≤ 4e2e−µ, (4.166)

since eλ − 1 ≤ λeλ for all λ ≥ 0.

Lemma 4.4.12. Let N < L/2 and µ ≥ ln 2. Then

∑
x∈VNL

e−µd
N
L (x,DNL ) ≤ L(1 + 29e−µ). (4.167)
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Proof. For any m ∈ VL let

BNL,m ∶= {x ∈ VNL ∶ m ∈ WL(x) ∩ x}. (4.168)

By Lemma 4.4.9 we have

⋃
m∈VL

BNL,m = VNL . (4.169)

Let x ∈ BNL,m. According to Lemma 4.4.8, there exists an edge e with maxj∈c dL(j, e) >
0 and a shortest path u from c ∶= cNL,m to x that does not cross e. Pick γ ∈ Z such

that T γLe = e0 ∶= {0, L − 1}. Let x′ ∶= T γLx, c′ ∶= T γLc and v ∶= {T γLu(0),⋯, T γLu(k)}, where
k ∶= dNL (x, c). Let us define χ− ≡ χ−(x) ∈ Nκ−1

0 , χ+ ≡ χ+(x) ∈ NN−κ
0 by

χ−,j ∶= dL(x′κ−j, c′κ−j) for j ≤ κ − 1, (4.170)

χ+,j ∶= dL(x′κ+j, c′κ+j) for j ≤ N − κ. (4.171)

We want to show that χ+ ∈ XN−κ and χ− ∈ X κ−1. Since v does not cross e0 we have
v
(k)
j = x′j for all j ∈ I(N). By Lemma 4.4.9 we have x′κ = c′κ. Hence κ ∈ Iv0 , since Lv

κ =
dL(x′κ, c′κ) = 0. As a consequence of Lemma 4.4.7 (iii) we conclude {1,⋯, κ} ⊆ Iv0 ∪ Iv−
and {κ,⋯,N} ⊆ Iv0 ∪ Iv+

By Lemma 4.4.7 (i), we get

χ−,j = Lv
κ−j ≤ Lv

κ−j−1 = χ−,j+1 for all 1 ≤ j < κ − 1, (4.172)

and therefore χ− ∈ X κ−1. Analogously χ+ ∈ XN−κ. Furthermore,

dNL (x, c) = dNL (x′, c′) =
N

∑
j=1

Lv
j = ∣χ−∣1 + ∣χ+∣1. (4.173)

Note that each pair (χ−, χ+) ∈ X κ−1 × XN−κ corresponds to one x ∈ BNL,m only, since

x = {(m+ j +χ+,j)modL ∶ j ≤ N −κ}∪{m}∪{(m− j −χ−,j)modL ∶ j ≤ κ−1}. (4.174)

We therefore obtain

∑
x∈BNL,m

e−µd
N
L (x,c) ≤ ∑

χ−∈Xκ−1

∑
χ+∈XN−κ

e−µ(∣χ−∣1+∣χ+∣1) ≤ (1 + 30e−µ)2 ≤ 1 + 29e−µ (4.175)

where we applied Lemma 4.4.11 and µ ≥ ln 2. Together with (4.169), this concludes
the proof.

We now turn our attention to the low-energy eigenfunctions of HN
L (∆). Let us

examine the contribution of the droplet configurations.

Lemma 4.4.13. Let L,N ∈ N with N < L/2. Let γ ∈ VL and ∆ > 3 such that µ1(∆) ≥
ln 2, where µ1 was defined in (4.16). Then

1

L
(1 − 217e−2µ1) ≤ ∣ ⟨δLx , ϕNL,γ⟩ ∣2 ≤

1

L
(4.176)

for all x ∈ DNL , where ∣ϕNL,γ(∆)⟩ was defined in Remark 4.2.11 (i).
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Proof. Analogously to (4.83), the definition of ∣ϕNL,γ⟩ implies that

∣ ⟨δLx , ϕNL,γ⟩ ∣ = ∣ ⟨δLx0
, ϕNL,γ⟩ ∣ (4.177)

for all droplets x ∈ [x0], where x0 ∈ V̂NL ∩ DNL is the unique representative in V̂NL of a
droplet. Hence, by the results of Theorem 4.2.1, we have

1 = L∣ ⟨δLx0
, ϕNL,γ⟩ ∣2+ ∑

x∈VNL ∖D
N
L

∣ ⟨δLx , ϕNL,γ⟩ ∣2

≤ L∣ ⟨δLx0
, ϕNL,γ⟩ ∣2 + ∑

x∈VNL ∖D
N
L

28

L
e−2µ1d(x,D

N
L ). (4.178)

The first equality already yields the upper bound in (4.176). For the lower bound, we
use Lemma 4.4.12 to estimate the last term on the right-hand side of (4.178) in the
following way

1 ≤ L∣ ⟨δLx0
, ϕNL,γ⟩ ∣2 + 217e−2µ1 . (4.179)

This concludes the proof.

Lemma 4.4.14. Let L,N ∈ N with N < L/2. Let γ ∈ VL and ∆ > 3 such that µ1(∆) ≥
ln 2. Then for all x,x′ ∈ VNL we have

∣ ⟨δLx , (ρ(ϕNL,γ) − ρNL,γ)δLx′⟩ ∣ ≤
217

L
{ e−2µ1 if x,x′ ∈ DNL ,

e−µ1[d
N
L (x,DNL )+dNL (x′,DNL )] else.

(4.180)

Proof. Let again x0 ∈ V̂NL ∩DNL . We only need to discuss the case x,x′ ∈ [x0] = DNL . All
other cases follow immediately from Theorem 4.2.1, since ⟨δLx , ρNL,γδLx′⟩ = 0 if either x or

x′ are not an element of DNL . Let x = T ζLx̂0 and x′ = T ξLx0 for some ξ, ζ ∈ VL. Remark
4.2.11 implies that

⟨δLx , ρ(ϕNL,γ)δLx′⟩ = e
2πi
L

(ζ−ξ)γ ⟨δLx0
, ρ(ϕNL,γ)δLx0

⟩ = e
2πi
L

(ζ−ξ)γ ∣ ⟨δLx0
, ϕNL,γ⟩ ∣2, (4.181)

while Definition (4.86) implies

⟨δLx , ρNL,γδLx′⟩ = e
2πi
L

(ζ−ξ)γ ⟨δLx0
, ρNL,γδ

L
x0
⟩ = 1

L
e

2πi
L

(ζ−ξ)γ. (4.182)

By applying Lemma 4.4.13 we obtain

∣ ⟨δLx , (ρ(ϕNL,γ) − ρNL,γ)δLx′⟩ ∣ ≤
217

L
e−2µ1 . (4.183)

4.4.4 Moving particles to the boundary of ΛL

In this section, we construct the shortest path from a given configuration x to the
closest droplet configuration, which was depicted in Figure 4.6. In the following, we
will require some further assumptions on ΛL and N .
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Assumption 4.4.15. Let ε ∈ ]0,1/16[ and θ ∈ ]ε,1/16[ be fixed. For L ∈ N let N ≡
N(ε,L) ∶= ⌊εL⌋. Let

ΛL ≡ ΛL(θ) ∶= SL,M(θ) = {λ−,⋯, λ+} ⊆ VL, (4.184)

where M ∶= ⌊(L − 1)/2⌋, λ− ≡ λ−(θ,L) ∶= min ΛL and λ+ ≡ λ+(θ,L) ∶= max ΛL.

Let us now introduce some additional notation to classify configurations. Let Γ =
{γ−,⋯, γ+} ⊆ SL,M(1/4) with γ− < γ+ be a connected subset.

For x ⊆ VL let

xin ≡ xin(Γ) ∶= x ∩ Γ, (4.185)

xout ≡ xout(Γ) ∶= x ∖ Γ. (4.186)

If ∣xin∣, ∣xout∣ > 0, let `, r ∈ N0 be arbitrary such that ` + r = ∣xout∣. The idea is to
further split xout into a configuration of ` particles which are thought of as being close
to γ− and a configuration of r particles close to γ+. Note that for every such ` and r,
there exists a unique permutation σ`,r ≡ σ`,r(x,Γ) ∈Scyc

N with the property that

xin = {xσ`,r(j) ∶ ` < j ≤ N − r}. (4.187)

We then define

x`,out− ≡ x`,out− (x,Γ) ∶= {xσ`,r(j) ∶ j ≤ `} and

xr,out+ ≡ xr,out+ (x,Γ) ∶= {xσ`,r(j) ∶ j > N − r}.
(4.188)

We have xout = x`,out− ∪ xr,out+ . For an example see Figure 4.7.

L− 10
1

2

x5 x6

elements in x3,out
+

elements in x2,out
−

elements in xin

γ+

Γ

x1 = xσ2,3(8)

x7

x8

x2 = xσ2,3(1)

x3

x4
γ−

Figure 4.7: Example for the separation of a configuration x in xin, x3,out
+ and x2,out

−

For any j ∈ I(N) let

a±,j(Γ) ∶= (γ± ± j)modL. (4.189)
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Then there exist unique χ`
−
≡ χ`

−
(x,Γ) = (χ`

−,1,⋯, χ`−,`) ∈ X ` and χr
+
≡ χr

+
(x,Γ) =

(χr
+,1,⋯, χr+,r) ∈ X r with χ`

−,`, χ
r
+,r < L such that

xσ`,r(ζ) = (a−,`−ζ+1 − χ`−,`−ζ+1)modL for all 1 ≤ ζ ≤ `, (4.190)

xσ`,r(N+1−ξ) = (a+,r−ξ+1 + χr+,r−ξ+1)modL for all 1 ≤ ξ ≤ r. (4.191)

Finally, let us denote the special configuration in V`+rL (Γc) that consists of two clusters
of size ` and r at the boundary of Γc by

b`,r ≡ b`,r(Γ) ∶= {a−,j ∶ j ≤ `} ∪ {a+,j ∶ j ≤ r}. (4.192)

Lemma 4.4.16. Let ε, θ and N satisfy Assumption 4.4.15. Let Γ = {γ−,⋯, γ+} ⊆
SL,M(θ+2ε). Moreover, let n ∈ N with n < N and x ∈ VNL with ∣xin(Γ)∣ = n. Let r, ` ∈ N0

such that ` + r = N − n and c ∈ DNL with {cj ∶ ` < j ≤ N − r} ⊆ Γ. Assume that u is a
shortest path from c to x of length k ∶= dNL (c, x) such that

ũ
(k)
j = xσ`,r(j) for all j ∈ I(N) (4.193)

and in addition that

{1,⋯, `} ⊆ Iu0 ∪ Iu− and cζ ≥ a−,`−ζ+1 for ζ ≤ `, (4.194)

{N − r + 1,⋯,N} ⊆ Iu0 ∪ Iu+ and cN+1−ξ ≤ a+,r−ξ+1 for ξ ≤ r. (4.195)

Then there exists a shortest path v from c to x and k0 ∈ {0,⋯, k} with

v(k0) = xin ∪ b`,r(Γ) ⊆ SL,M(1/4 − ε/2). (4.196)

Furthermore,

k − k0 =
`

∑
ζ=1

χ`
−,ζ +

r

∑
ξ=1

χr
+,ξ = ∣χ`

−
(x,Γ)∣1 + ∣χr

+
(x,Γ)∣1. (4.197)

Proof. For all j ∈ I(N) let

Zj ∶= {ũ(l)
j ∶ 0 ≤ l ≤ k}. (4.198)

We claim that for all j ∈ {` + 1,⋯,N − r} ∩ (Iu0 ∪ Iu± ) one has

Zj = {cj,⋯, (cj ±Lu
j )modL} ⊆ Γ. (4.199)

Suppose this is not true. This would imply that there exists a j ∈ I(N) with Γc ∪
{ũ(0)

j , ũ
(k)
j } ⊆ Zj. By Assumption (4.193) we have ũ

(k)
j = xσ`,r(j) ∈ Γ and ũ

(0)
j = cj ∈ Γ for

all ` < j ≤ N − r. Hence,

∣Zj ∣ = ∣Γc∣ + 2 > L/2 + 1 ≥ Lu
j + 1 = ∣Zj ∣, (4.200)

where we used ∣Γc∣ ≥ ∣(SL,M(1/4))c∣ > L/2 − 1. This is a contradiction.
We claim that for all ζ ≤ ` and for all ξ ≤ r we have

a−,`−ζ+1 ∈ Zζ = {cζ ,⋯, (cζ −Lu
ζ )modL}, (4.201)

a−,r−ξ+1 ∈ ZN+1−ξ = {cN+1−ξ,⋯, (cN+1−ξ +Lu
N+1−ξ)modL}. (4.202)
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We only present a proof for (4.201), since (4.202) follows analogously. For ζ = ` we have

ũ
(k)
` ∈ xout(Γ) ⊆ Γc according to Assumption (4.193). Together with Assumption (4.194)

this implies γ− − 1 = a−,1 ∈ Z`. The claim now follows from an inductive argument as
well as from Lemma 4.4.7 (i).

Let us define

K−,` ∶= { dL(c`, a−,1) for ` > 0,
0 for ` = 0,

and K+,r ∶= { dL(cN+1−r, a+,1) for r > 0,
0 for r = 0.

(4.203)

Then (4.201) and (4.202) imply that for all ζ ≤ ` and for all ξ ≤ r

K−,` = dL(cζ , a−,`−ζ+1) ≤ Lu
ζ and K+,r = dL(cN+1−ξ, a−,r−ξ+1) ≤ Lu

N+1−ξ. (4.204)

Let us now give an iterative construction of a path v = (v(0),⋯, v(k)) starting from
c. To this end, set ṽ(0) ∶= (c1,⋯, cN). For ζ ∈ {1,⋯, `} and l ∈ (ζ − 1)K−,` + {1,⋯,K−,`},
let

ṽ(l) ∶= (ṽ(l−1)
1 ,⋯, ṽ(l−1)

ζ − 1,⋯, ṽ(l−1)
N ). (4.205)

Let k1 ∶= `K−,`. For ξ ∈ {1,⋯, r} and l ∈ k1 + (ξ − 1)K+,r + {1,⋯,K+,r} let

ṽ(l) ∶= (ṽ(l−1)
1 ,⋯, ṽ(l−1)

N+1−ξ + 1,⋯, ṽ(l−1)
N ). (4.206)

The path v has the property that it moves all particles of the configuration {cj ∶ j ≤
` or j > N − r} into the configuration b`,r(Γ) outside the boundary of Γ.

In the next step, we move the particles that are still remaining inside of Γ into
the configuration xin = xin(Γ). Let k2 ∶= k1 + rK+,r. Let `′ ∶= ∣{j ∈ Iu

−
∶ j > `}∣,

r′ ∶= ∣{j ∈ Iu
+
∶ j ≤ N − r}∣. For ζ ∈ {1,⋯, `′} and l ∈ k2 +∑ζ−1

j=1 L
u
`+j + {1,⋯, Lu

ζ } we set

ṽ(l) ∶= (ṽ(l−1)
1 ,⋯, ṽ(l−1)

`+ζ − 1,⋯, ṽ(l−1)
N ). (4.207)

Let k3 ∶= k2 + ∑`′

j=1L
u
`+j. For ξ ∈ {1,⋯, r′} and l ∈ k3 + ∑ξ−1

j=1 L
y
N−r−j + {1,⋯, LN−r−ξ} we

set
ṽ(l) ∶= (ṽ(l−1)

1 ,⋯, ṽ(l−1)
N−r−ξ + 1,⋯, ṽ(l−1)

N ). (4.208)

The fact that this construction is well-defined follows from the statement in (4.199),
since no particle with index j ∈ {`+1,⋯,N −r} leaves Γ and therefore does not intersect
the configuration b`,r. In the last step, we move the configuration b`,r into xout(Γ). Let

k0 ∶= k3 + ∑r′

j=1L
u
`+j. By construction we have v(k0) = b`,r ∪ xin(Γ). Notice that by

definition of χ`
−
≡ χ`

−
(x,Γ) and χr

+
≡ χr

+
(x,Γ), we obtain for all ζ ≤ ` and ξ ≤ r that

χ`
−,`−ζ+1 = dL(ũ

(k)
ζ , a−,`−ζ+1) = Lu

ζ −K−,`, (4.209)

χr
+,r−ξ+1 = dL(ũ

(k)
N+1−ξ, a+,r−ξ+1) = Lu

N+1−ξ −K+,r. (4.210)

For all ζ ∈ {1,⋯, `} and l ∈ k0 +∑ζ−1
j=1 χ

`
−,`−j+1 + {1,⋯, χ`

−,`−ζ+1} we set

ṽ(l) ∶= (ṽ(l−1)
1 ,⋯, (ṽ(l−1)

ζ − 1)modL,⋯, ṽ(l−1)
N ). (4.211)
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Let k4 ∶= k0 + ∑`
ζ=1 χ

`
−,ζ . For ξ ∈ {1,⋯, r} and l ∈ k4 + ∑ξ−1

j=1 χ
r
+,r−j+1 + {1,⋯, χr

+,r−ξ+1} we
set

ṽ(l) ∶= (ṽ(l−1)
1 ,⋯, (ṽ(l−1)

N+1−ξ + 1)modL,⋯, ṽ(l−1)
N ). (4.212)

By construction, v is a shortest path from c to x, since it has a length of k = ∑N
j=1L

u
j

and ṽ(k) = x. Moreover, by construction as well as (4.209) and (4.210), we get

k − k0 =
`

∑
ζ=1

χ`
−,ζ +

r

∑
ξ=1

χr
+,ξ. (4.213)

Finally, we note that v(k0) ⊆ SL,M(1/4 − ε/2). This follows from the fact that for
all m ∈ b`,r, one has dL(m,M) < (θ + 2ε)L + (` + r) ≤ (1/4 − ε/2)L, where we used
` + r ≤ N/2 < εL/2 and ε < θ < 1/16.

To apply Lemma 4.4.16 to any configurations x and a set Γ we have to make sure
that the rather technical conditions (4.193)-(4.195) are met. A sufficient condition for
these assumptions to be satisfied is c ⊆ Γ.

Lemma 4.4.17. Let L > 8. Let ε, θ and N satisfy Assumption 4.4.15. Let Λ′

L ∶=
SL,M(θ + 2ε). Fix n ∈ N such that N/2 < n < N and x ∈ VNL with xin(Λ′

L) ∈ Vn(Λ′

L). Let
c ∈ DNL , with c ⊆ Λ′

L and set k ∶= dNL (x, c). Then there exists r, ` ∈ N0 with r + ` = N − n
and a shortest path v from c to x such that ṽ

(k)
j = xσ`,r(j) for all j ∈ I(N). Moreover,

there exists a k0 ∈ {0,⋯, k} such that

v(k0) = xin(Λ′

L) ∪ b`,r(Λ′

L) ⊆ SL,M(1/4 − ε/2). (4.214)

Proof. Let λ′
−
∶= min Λ′

L and λ′
+
∶= max Λ′

L. Then Λ′

L = {λ′
−
,⋯, λ′

+
}.

Let u be a shortest path from c to x. According to Lemma 4.4.8 there exists an
edge e ∈ EL with maxj∈I(N) dL(cj, e) ≥ (1/2 − ε)L, which is not crossed by the path u.
Notice that this implies e ⊆ (Λ′

L)c, since L > 8. We define the index sets

Ju,in
± ∶= {j ∈ Iu

±
∶ ũ(k)

j ∈ xin(Λ′

L)} and Ju,out
± ∶= {j ∈ Iu

±
∶ ũ(k)

j ∈ xout(Λ′

L)}. (4.215)

We claim that

maxJu,in
+ ≤ minJu,out

+ and maxJu,out
− ≤ minJu,in

− . (4.216)

These statements are a consequence of Lemma 4.4.7. Here, we only prove the first
inequality, the other one follows analogously. Suppose that maxJu,in

x > minJu,out
+ . This

implies that there exists a j ∈ Ju,out
+ such that j+1 ∈ Ju,in

+ . According to Lemma 4.4.7 (i)
we have Lu

j ≤ Lu
j+1 and therefore also

λ′
+
≥ ũ(k)

j+1 = cj+1 +Lu
j+1 > cj +Lu

j = ũ
(k)
j ≥ λ′

−
, (4.217)

which is a contradiction to j ∈ Ju,out
+ .

Let ` ∶= ∣Ju,out
− ∣ and r ∶= ∣Ju,out

+ ∣. Together with (4.216) this implies {j ∶ j ≤ `} =
Ju,out
− ⊆ Iu

−
and {j ∶ j > N − r} = Ju,out

+ ⊆ Iu
+

. Furthermore, Lemma 4.4.7 yields ũ
(k)
j =

xσ`,r(j) for all j ∈ I(N). Moreover, for all ζ ∈ {1,⋯, `} we have cζ ≥ λ− > a−,`−ζ+1(Λ′

L)
and for all ξ ∈ {1,⋯, r} we have cN+1−ξ ≤ λ+ < a+,r−ξ+1(Λ′

L), since c ⊆ Λ′

L.
Lemma 4.4.16 now yields the proposition.
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Let us now define the set of negligible configurations that are in a large enough
distance to the set of cluster configurations. This set is given by

CNL ∶= {x ∈ VNL ∶ dNL (x,DNL ) ≥ L3/2}. (4.218)

Lemma 4.4.18. Let ε, θ,N and ΛL satisfy Assumption 4.4.15. There exists a L0 ≡
L0(ε) > 0 such that for all L ≥ L0, n ∈ N with N/2 < n < N and x ∈ VNL ∖ CNL with
x ∩ΛL ∈ Vn(ΛL) one has

WL(x) ⊆ SL,M(θ + ε) . (4.219)

Moreover, for all m ∈ WL(x) we have

cNL,m ⊆ SL,M(θ + 2ε). (4.220)

Proof. Let us first show (4.219). Let ν ∈ (SL,M(θ + ε))c. Then for all ξ ∈ cNL,ν one has

dL(ξ,ΛL) ≥ dL(ν,ΛL) − ⌈(N + 1)/2⌉ ≥ εL − 2εL/3 (4.221)

for all L ≥ L1 with L1 ≡ L1(ε) ∶= 9/ε. Since n particles of x are located inside of ΛL we
have

dNL (x, cNL,ν) ≥ nεL/3 ≥ ε2L2/6, (4.222)

where we applied Lemma 4.4.5. Let L0 ≡ L0(ε) > L1, such that ε2L
1/2
0 /6 > 1. For any

L ≥ L0 this implies dNL (x, cNL,ν) ≥ L3/2. Since x ∉ CNL by assumption, we conclude that
ν ∉ WL(x).

For all L ≥ L0 and m ∈ WL(x) ⊆ SL,M(θ + ε), observe that for all ξ ∈ cNL,m, we have

dL(ξ,M) ≤ dL(ξ,m) + dL(m,M) < ⌈(N + 1)/2⌉ + (θ + ε)L ≤ (θ + 2ε)L , (4.223)

from which we conclude cNL,m ⊆ SL,M(θ + 2ε). This concludes the lemma.

Combining Lemma 4.4.17 and Lemma 4.4.18 enables us to construct a path satis-
fying Assumptions (4.193)-(4.195) for an arbitrary configuration x ∈ VNL ∖ CNL .

Lemma 4.4.19. Let ε, θ,N and ΛL satisfy Assumption 4.4.15. Let L ≥ L0, with L0

as in Lemma 4.4.18. Let n ∈ N with N/2 < n < N , y ∈ Vn(ΛL), x ∈ VNL ∖ CNL with
xin(ΛL) = y. Then there exist `, r ∈ N0 with r + ` = N − n such that yκ−` ∈ WL(x) for
κ ∶= ⌊(N + 1)/2⌋ and

cNL,yκ−` ⊆ SL,M(1/4 − ε/2). (4.224)

Furthermore, there exists a shortest path v from cNL,yκ−` to x and a k0 ∈ {1,⋯, k} with

k ∶= dNL (x,DNL ) such that

v(k0) = y ∪ b`,r(ΛL) ⊆ SL,M(1/4 − ε/2), (4.225)

and

k − k0 =
`

∑
ζ=1

χ`
−,ζ +

r

∑
ξ=1

χr
+,ξ = ∣χ`

−
(x,ΛL)∣1 + ∣χr

+
(x,ΛL)∣1. (4.226)
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Proof. By Lemma 4.4.9 there exists m ∈ WL(x) ∩ x. From Lemma 4.4.18 we know

c ∶= cNL,m ⊆ Λ′

L ∶= SL,M(θ + 2ε) ⊆ SL,M(1/4 − ε/2). (4.227)

According to Lemma 4.4.17 there exists a shortest path u from c to x and `′, r′ ∈ N0

with `′ + r′ = N − ∣xin(Λ′

L)∣ and k1 ∈ {0,⋯, k} such that

z ∶= u(k1) = b`′,r′(Λ′

L) ∪ xin(Λ′

L) ⊆ SL,M(1/4 − ε/2), (4.228)

and ũ
(k)
j = xσ`′,r′(j) for all j ∈ I(N).

Let us define

` ∶= `′ + ∣{ν ∈ xin(Λ′

L) ∶ ν < λ−}∣ = ∣{j ∈ I(N) ∶ zj < λ−}∣ and (4.229)

r ∶= r′ + ∣{ν ∈ xin(Λ′

L) ∶ ν > λ+}∣ = ∣{j ∈ I(N) ∶ zj > λ+}∣. (4.230)

These quantities satisfy ` + r = N − ∣{j ∈ I(N) ∶ zj ∈ ΛL}∣ = N − n. Note that by this

definition σ`′,r′(x,Λ′

L) = σ`,r(x,ΛL). Hence, ũ
(k)
j = xσ`,r(j) for all j ∈ I(N) and yj = zj+`

for all j ∈ {1,⋯, n}.
Next, we show that m = zκ. First, we claim that

m ∈ WL(z). (4.231)

To see this, take any ν ∈ WL(z) and any shortest path v from c′ ∶= cNL,ν to z. Lemma 4.4.4
indicates that

k2 ∶= dNL (z, c′) = dNL (z,DNL ) ≤ dNL (z, c) = k1. (4.232)

The path {v(0),⋯, v(k2), u(k1+1),⋯, u(k)} is therefore a path from c′ to x of length k +
(k2 − k1) and therefore – using (4.232) – we get

k = dNL (x,DNL ) ≤ k + (k2 − k1) ≤ k. (4.233)

Hence k1 = k2. Equality in (4.232) implies m ∈ WL(z). According to Lemma 4.4.18
we have WL(z) ⊆ SL,M(θ + ε) ⊆ Λ′

L, since dNL (z,DNL ) ≤ dNL (x,DNL ) < L3/2, because
x ∈ VNL ∖ CNL . Hence

m ∈ x ∩WL(z) = x ∩WL(z) ∩Λ′

L = z ∩WL(z) = {zκ}, (4.234)

where we used z ⊆ SNL,M(1/4−ε/2) together with Lemma 4.4.10. Thereforem = zκ = yκ−`.
Lemma 4.4.4 states that w ∶= (u(0),⋯, u(k1)) is a shortest path from c to z. Ac-

cording to Lemma 4.4.10 we have κ ∈ Iw0 , since m = zκ. This also implies κ ∈ Iu0 , since

by construction of the path u, for all l ∈ {k1,⋯, k} one has ũ
(l)
κ = ũ(k1)

κ . In this case,
it follows from Lemma 4.4.7 (iii) that {j ∶ j ≤ `} ⊆ {0,⋯, κ} ⊆ Iu0 ∪ Iu− and for all ζ ≤ `
holds

a−,`−ζ+1 ≤ z`+1 − (` − ζ + 1) ≤ c`+1 − (` − ζ + 1) = cζ . (4.235)

Analogously, we have {j ∶ j > N −r} ⊆ {κ,⋯,N} ⊆ Iu0 ∪Iu+ and for all ξ ≤ r one therefore
gets

a+,r−ξ+1 ≥ cN+1−ξ. (4.236)

Thus, according to Lemma 4.4.16 there exists a path v with all the properties stated
in the proposition.
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4.4.5 Proof of Lemma 4.4.1

Before we prove Lemma 4.4.1 we show the estimate (4.114).

Lemma 4.4.20. Let ε, θ,N and ΛL satisfy Assumption 4.4.15. There exists L0 ≡
L0(ε) > 0 such that for all L ≥ L0, n ∈ N with N/2 < n < N , y ∈ Vn(ΛL) and µ ≥ ln 2
one has

∑
z∈VN−n(ΛcL),
z∪y∉DN

L

e−µd
N
L (y∪z,DNL ) ≤ 333e−µe−µh

n
L(y), (4.237)

where hnL was defined in (4.111).

Proof. Let

A′(y) ∶= {z ∈ VN−n(Λc
L) ∶ y ∪ z ∉ CNL } ⊆ VN−n(Λc

L), (4.238)

A(y) ∶= {z ∈ A′(y) ∶ y ∪ z ∉ DNL } ⊆ A′(y). (4.239)

There exists L1 ∈ N such that L1/2 − lnL/ ln 2 ≥ L1/4 for all L ≥ L1. Hence for all L ≥ L1

we get

∑
z∈(A(y))c

e−µd
N
L (y∪z,DNL ) ≤ ∣(A(y))c∣e−µL3/2 ≤ e−µL

5/4 ≤ e−µe−µh
n
L(y), (4.240)

where we used ∣(A(y))c∣ ≤ ∣Λc
L∣N−n ≤ LL as well as µ ≥ ln 2. We partition A(′)(y) into

smaller subsets. For any `, r ∈ N0 with `+r = N −n let c` ∶= cNL,yκ−` with κ ∶= ⌊(N +1)/2⌋.
Let us further define

A(′)

`,r(y) ∶= {z ∈ A(′)(y) ∶ dNL (y ∪ z,DNL ) = dNL (c`, y ∪ b`,r) + dNL (y ∪ b`,r, y ∪ z),

dNL (y ∪ b`,r, y ∪ z) =
`

∑
ζ=1

χ`
−,ζ +

r

∑
ξ=1

χr
+,ξ}, (4.241)

where χ`
−
(x,ΛL) ∈ X ` and χr

+
(x,ΛL) ∈ X r were defined in (4.190) and (4.191).

Lemma 4.4.4 and Lemma 4.4.19 imply immediately that there exists a L2 ≡ L2(ε) >
L1 such that for all L ≥ L2 we get the equality

A(y) = ⋃
`,r∈N0 ∶
`+r=N−n

A`,r(y) = AN−n,0(y) ∪ A0,N−n(y) ∪ ⋃
`,r∈N∶

`+r=N−n

A′`,r(y). (4.242)

Let us first consider the case `, r ∈ N. Definition (4.241) implies, together with
Lemma 4.4.11 for µ ≥ ln 2 that

∑
z∈A′

`,r
(y)

e−µd
N
L (y∪z,DNL ) ≤ e−µd

N
L (c`,y∪b`,r)( ∑

χ`∈X `

e−µ∣χ
`
∣1)( ∑

χr∈X r
e−µ∣χ

r
∣1)

≤ e−µd
N
L (c`,y∪b`,r)(1 + 30e−µ)2. (4.243)

Now we estimate the first factor on the right-hand side of (4.243) uniformly in `, r. Both
c` and y∪b`,r are subsets of SL,M(1/4−ε/2). By Lemma 4.4.10 we have yκ−` ∈ WL(y∪b`,r)
with

dNL (y ∪ b`,r, c`) = dN(y ∪ b`,r, c`) ≥
n

∑
j=1

∣yj − c`j+`∣ + ∣a−,1 − c``∣ + ∣a+,1 − c`N−r+1∣, (4.244)
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where we applied (4.158) and (4.115). For all ` ∈ {1,⋯,N − n − 1} we have

∣a−,1 − c``∣ + ∣a+,1 − c`N−r+1∣ ≥ ∣a+,1 − a−,1∣ − ∣c`N−r+1 − c``∣ ≥ 2θL − (n + 1) ≥ εL, (4.245)

where we used that a+,1−a−,1 ≥ dL(a+,1,M)+dL(a−,1,M) ≥ 2θL, as well as n+1 ≤ N < εL
and θ > ε. Hence, for all y ∈ Vn(ΛL) we have either ∣a−,1 − c``∣ ≥ εL/2 ≥ εL/4 + 1 or
∣a+,1 − c`r+`+1∣ ≥ εL/2 ≥ εL/4 + 1 for all L ≥ L0 ≡ L0(ε) ∶= max{L2,4/ε}. This implies,
together with (4.244) that

dNL (y ∪ b`,r, c`) − 1 ≥ hnL(y) + εL/4. (4.246)

Hence, by combining (4.243) and (4.246) we find

∑
`,r∈N,

`+r=N−n

∑
z∈A′

`,r
(y)

e−µd
N
L (y∪z,DNL ) ≤ 2e−1/ ln(2)(1 + 30e−µ)2e−µe−µh

n
L(y) ≤ 272e−µe−µh

n
L(y),

(4.247)
where we used that (N − n)e−µεL/4 ≤ (εL/2)2−εL/4 ≤ 2e−1/ ln(2) for all µ ≥ ln 2.

Let us now consider the case ` = 0 or r = 0. There are only two configurations
y ∈ Vn(ΛL) such that there exists a z ∈ VN−n(Λc

L) with y ∪ z ∈ DNL , namely yn
+

and yn
−
.

The configurations zn
−
≡ zn

−
(ΛL) ∶= bN−n,0 and zn

+
≡ zn

+
(ΛL) ∶= b0,N−n satisfy yn

±
∪ zn

±
∈ DNL .

There are no other configurations in VN−n(Λc
L) with this property. We further restrict

ourselves to the case ` = N − n and r = 0. The other case can be treated analogously.
Now our approach depends on whether y = yn

−
or not. We have

AN−n,0(y) ⊆ { A
′

N−n,0(y) for y ≠ yn
−
,

A′N−n,0(y) ∖ {zn
−
} for y = yn

−
.

(4.248)

Analogous to (4.243) we obtain

∑
z∈AN−n,0(y)

e−µd
N
L (y∪z,DNL ) ≤ e−µd

N
L (y∪bN−n,0,c

N−n
) { ∑χ∈XN−n e−µ∣χ∣1 for y ≠ yn

−
,

∑χ∈XN−n∖{0} e−µ∣χ∣1 for y = yn
−
,

(4.249)

and for all y ∈ VnL(ΛL)

dNL (y ∪ bN−n,0, cN−n) ≥ dn+1
L (y ∪ {a−,1},Dn+1

L ) ≥ { hnL(y) + 1 for y ≠ yn
−
,

hnL(y) for y = yn
−
.

(4.250)

Lemma 4.4.11 then implies

∑
z∈AN−n,0(y)

e−µd
N
L (y∪z,DNL ) ≤ { (1 + 30e−µ)e−µe−µh

n
L(y) for y ≠ yn

−
,

30e−µe−µh
n
L(y) for y = yn

−
.

(4.251)

Hence, by (4.242), (4.247) and (4.251), as well as the definition of hnL

∑
z∈A(y)

e−µd
N
L (y∪z,DNL ) ≤ 332e−µe−µh

n
L(y) (4.252)

where we used µ ≥ ln 2. Together with (4.240), this concludes the proof.
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We are now able to prove Lemma 4.4.1 by combining the results of Section 4.4.3
and Lemma 4.4.20.

Proof of Lemma 4.4.1. Let zn
−
≡ zn

−
(ΛL) ∶= bN−n,0 and zn

+
≡ zn

+
(ΛL) ∶= b0,N−n. Then for

all y ∈ Vn(ΛL) and all z ∈ VN−n(Λc
L) ∖ {zn

±
} we have that y ∪ z ∉ DNL is not a droplet

configuration. By Lemma 4.3.1 we obtain for all y, y′ ∈ Vn(ΛL) that

∣ ⟨δΛL
y ,DN,n

L,ΛL,γ
(∆)δΛL

y′ ⟩ ∣ ≤ ∑
η∈{±}

∣ ⟨δLy∪znη , (ρ[ϕ
N
L,γ(∆)] − ρNL,γ)δLy′∪znη ⟩ ∣

+ ∑
z∈VN−n

ΛL
∖{zn± }

∣ ⟨δLy∪z, ρ[ϕNL,γ(∆)]δLy′∪z⟩ ∣. (4.253)

By Theorem 4.2.1 and Lemma 4.4.20, using Cauchy–Schwarz, we further estimate

∑
z∈VN−n

ΛL
∖{zn± }

∣ ⟨δLy∪z, ρ(ϕNL,γ)δLy′∪z⟩ ∣ ≤
28

L
333e−2µ1e−µ1(h

n
L(y)+h

n
L(y

′
)), (4.254)

for all L ≥ L0, where L0 ≡ L0(ε) was given in Lemma 4.4.20. Moreover, according to
Lemma 4.4.14 we derive the estimate

∣⟨δLy∪znη , [ρ(ϕ
N
L,γ) − ρNL,γ]δLy′∪znη ⟩∣

≤ 217

L
{ e−2µ1 if y = y′ = ynη ,

e−µ1(d
N
L (y∪znη ,D

N
L )+dNL (y′∪znη ,D

N
L )) else

(4.255)

for all η ∈ {±}. Lemma 4.4.20 implies for all L ≥ L0, η ∈ {±} and all y ∈ Vn(ΛL) ∖ {ynη }
that

e−µ1d
N
L (y∪znη ,D

N
L ) ≤ 333e−µ1e−µ1h

n
L(y), (4.256)

since in this case y ∪ znη ∉ DnL. On the other hand, if y = ynη we have

e−µ1d
N
L (ynη ∪z

n
η ,D

N
L ) = 1 = e−µ1h

n
L(y

n
η ). (4.257)

Finally, if y, y′ ∈ {yn
±
} with y′ ≠ y we have

e−µ1[d
N
L (y∪znη ,D

N
L )+dNL (y′∪znη ,D

N
L )] ≤ e−µ1 . (4.258)

By combining (4.253), (4.254), (4.255), (4.256), (4.257) and (4.258), we conclude the
proof.

4.5 The logarithmic lower bound

4.5.1 General idea and strategy

The last remaining step to prove Theorem 4.1.1 is to show the estimate (4.105). We
achieve this by estimating the singular values of DN,n

L,ΛL,γ
(∆) in turn.

Bounds for the entries of DN,n
L,ΛL,γ

(∆) were already given in Lemma 4.4.1. We note
that most entries are exponentially small with respect to the distance function hnL. The
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large entries are concentrated in configurations that are both close to being a droplet
configuration and near the boundary of ΛL. Let us order the contributions in Vn(ΛL)
with respect to hnL. We introduce a bijective map

Ξn
L ∶ {1,⋯,m} → Vn(ΛL) (4.259)

where m ∶= ∣Vn(ΛL)∣ with the property that hnL ○ Ξn
L is monotonously increasing. If

we take a look at a matrix representation of DN,n
L,ΛL,γ

(∆) with respect to the basis

{ ∣δΛL
ΞnL(j)

⟩ ∶ j ∈ {1,⋯,m}} we see that the large entries are found in the upper left corner

of the matrix.
We exploit the structure of DN,n

L,ΛL,γ
(∆) to estimate its eigenvalues. To this end, we

split up DN,n
L,ΛL,γ

(∆) into a sum of operators of lower rank. For all j ∈ {0,⋯,m} we
define

RN,n
L,ΛL,γ,j

≡ RN,n
L,ΛL,γ,j

(∆) ∶= ∑
r,s∈N∶
j<r,s≤m

⟨δΛL
ΞnL(r)

,DN,n
L,ΛL,γ

(∆)δΛL
ΞnL(s)

⟩ ∣δΛL
ΞnL(r)

⟩⟨δΛL
ΞnL(s)

∣ (4.260)

and
SN,nL,ΛL,γ,j

≡ SN,nL,ΛL,γ,j
(∆) ∶=DN,n

L,ΛL,γ
(∆) −RN,n

L,ΛL,γ,j
(∆). (4.261)

For an illustration of this partition see Figure 4.8.




∗ . . . ∗ ∗ . . . ∗
...

. . .
...

...
. . .

...
∗ . . . ∗ ∗ . . . ∗
∗ . . . ∗
...

. . .
...

∗ . . . ∗







∗ . . . ∗
...

. . .
...

∗ . . . ∗
∗ . . . ∗
...

. . .
...

∗ . . . ∗




+DN,n
L,ΛL,γ =

00

00

= SN,n
L,ΛL,γ,j = RN,n

L,ΛL,γ,j

Ξn
L(j + 1)

Ξn
L(j + 1)

Ξn
L(1)

︸ ︷︷ ︸︸ ︷︷ ︸

Figure 4.8: Partition of DN,n
L,ΛL,γ

(∆)

We can estimate maximal singular values of the smaller operator RN,n
L,ΛL,γ,j

by cal-
culating the maximum absolute row sum norm of the operators. We show for all
j ∈ {1,⋯,m} that

λ1(RN,n
L,ΛL,γ,j

) ≲ L−1e−µ1e−µ1h
n
L○Ξ

n
L(j), (4.262)

where (λs)s≤m denotes the non-increasing set of singular values. The rank of the op-
erator SN,nL,ΛL,γ,j

on the other hand is by definition lower or equal than 2j. Hence, by
using Inequality (3.61) for singular values, we get for any j ∈ N with j ≤ ∣Vn(ΛL)∣ the
following bound

λ2j+1(DN,n
L,ΛL,γ

) ≤ λ2j+1(SN,nL,ΛL,γ,j
) + λ1(RN,n

L,ΛL,γ,j
) = λ1(SN,nL,ΛL,γ,j

) ≲ L−1e−µ1e−µ1h
n
L○Ξ

n
L(j).

(4.263)
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Since the singular values in (4.263) are exponentially decreasing with respect to
hnL○Ξn

L, we are able to derive (4.105) with a similar method as presented in the previous
section.

4.5.2 Estimating the von Neumann–Schatten quasinorm of
DN,n
L,ΛL,γ

The objective here is to prove the convergence of ρnΛL[ϕ
N
L,γ(∆)] to ρnL,ΛL,γ in the von

Neumann–Schatten quasinorm ∥ ⋅ ∥1/p for a any p ∈ ]1,∞[.
Before we estimate the von Neumann–Schatten quasinorm of DN,n

L,ΛL,γ
, we show the

following auxiliary result.

Lemma 4.5.1. Let ε, θ,N and ΛL satisfy Assumption 4.4.15. There exists L0 ≡ L0(ε) >
0 such that for all L ≥ L0, n ∈ N with N/2 < n < N and µ ≥ ln 2 holds

∑
y∈Vn(ΛL)∖{y

n
±}

e−µh
n
L(y) ≤ 211e−µ. (4.264)

Proof. For any y ∈ Vn(ΛL), we have y′ ∶= y∪{a+,1} ⊆ SL,M(1/4−ε/2). Hence, according
to Lemma 4.4.10, we have yκ ∈ WL(y′) with κ ∶= ⌊(n+2)/2⌋. For any t ∈ {0,⋯, ∣ΛL∣ −n}
let

Bnt ∶= {y ∈ Vn(ΛL) ∶ yκ = λ+ − (n − κ + t)}. (4.265)

Hence,

Vn(ΛL) =
∣ΛL∣−n

⋃
t=0

Bnj . (4.266)

Let us now consider a y ∈ Bnt for a t ∈ {0,⋯, ∣ΛL∣ − n}. Let c ∶= cn+1
L,yκ

. We define
χ′
−
≡ χ′

−
(y) ∈ X κ−1 and χ′

+
≡ χ′

+
(y) ∈ X n−κ such that

χ′
−,j(y) ∶= ∣(yκ − j) − cκ−j ∣ for 1 ≤ j ≤ κ − 1, (4.267)

χ′
+,j(y) ∶= ∣(yκ + j) − cκ+j ∣ for 1 ≤ j ≤ n − κ. (4.268)

Then, according to Lemma 4.4.10,

dn+1
L (y ∪ {a+,1},Dn+1

L ) = dn+1(y ∪ {a+,1},Dn+1
L ) =

κ−1

∑
j=1

χ′
−,j +

n−κ

∑
j=1

χ′
+,j + t. (4.269)

Hence, according to Lemma 4.4.11, we obtain for all t ∈ {0,⋯, ∣ΛL∣ −n} and all µ ≥ ln 2,

∑
y∈Bnt

e−µd
n+1
L (y∪{a+,1},D

n+1
L ) ≤ e−µt(1 + 30e−µ)2. (4.270)

Therefore, by (4.266) we have

∑
y∈Vn(ΛL)∖{y

n
+}

e−µd
n+1
L (y∪{a+,1},D

n+1
L ) ≤ (1 + e−µ

1 − e−µ
)(1 + 30e−µ)2 − 1 ≤ 1022e−µ (4.271)

where we used that µ ≥ ln 2. By an analogous method we obtain the same bound for
the sum over exp(dn+1

L (y ∪ {a−,1},Dn+1
L )).
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Let L0 ∈ N such that L
1/4
0 − lnL0 > 2. By using n ≤ N < µL, we get for all L ≥ L0

that

∑
y∈Vn(ΛL)∖{y

n
±}

e−µ(L
5/4

−1) ≤ Lne−µ(L
5/4

−1) ≤ e−µ(L(L
1/4

−lnL)−1) ≤ e−µ (4.272)

By the definition of hnL in (4.111) we obtain

∑
y∈Vn(ΛL)∖{y

n
±}

e−µh
n
L(y) ≤ ∑

η∈{±}

∑
y∈Vn(ΛL)∖{ynη }

eµe−µd
n+1
L (y∪{aη,1},D

n+1
L ) + e−µ ≤ 211e−µ, (4.273)

where we used (4.271).

Now we prove Estimate (4.263) with the method which we presented in the previous
section.

Lemma 4.5.2. Let γ ∈ VL. Let ε, θ,N and ΛL satisfy Assumption 4.4.15 and let n ∈ N
with N/2 < n < N . Let ∆ > 3 such that µ1 ≥ ln 2. Then, there exists a L0 ≡ L0(ε) > 0
such that for all L ≥ L0 and all j ∈ N with j ≤ dimHn

ΛL
we have

λj(DN,n
L,ΛL,γ

) ≤ 245e−µ1

L
e−µ1h

n
L○Ξ

n
L(⌈j/2⌉). (4.274)

Proof. Let m ∶= dimHn
Λ = ∣Vn(Λ)∣. Recall from (4.260) and (4.261) that for any j ∈

{0,⋯,m} we have
DN,n
L,ΛL,γ

= RN,n
L,ΛL,γ,j

+ SN,nL,ΛL,γ,j
. (4.275)

First, we estimate the largest singular value of Rn
j for all j ∈ {0,⋯,m}. We obtain

λ1(RN,n
L,ΛL,γ,j

) ≤ sup
ψ≠0

∥RN,n
L,ΛL,γ,j

ψ∥∞
∥ψ∥∞

= max
k>j

∑
l>j

∣ ⟨δΛL
Ξn(k)

,DN,n
L,ΛL,γ

δΛL
Ξn(l)

⟩ ∣, (4.276)

where ∥ ⋅ ∥∞ denotes the supremum norm on Hn
Λ ≅ Cm. The right-hand side of (4.276)

is sometimes referred to as the maximum absolute row sum norm. According to
Lemma 4.5.1 and Lemma 4.4.1 there exists a L0 ≡ L0(ε) such that

λ1(RN,n
L,ΛL,γ,j

) ≤ 234

L
e−µ1e−µ1h

n
L○Ξ

n
L(j+1)∑

l>j

e−µ1h
n
L○Ξ

n
L(l) ≤ 245

L
e−µ1e−µ1h

n
L○Ξ

n
L(j+1) (4.277)

for all L ≥ L0, where we used the monotonicity of hnL○Ξn
L and µ1 ≥ ln 2. Since RN,n

L,ΛL,γ,0
=

DN,n
L,ΛL,γ

this also implies

λ2(DN,n
L,ΛL,γ

) ≤ λ1(DN,n
L,ΛL,γ

) ≤ 245e−µ1

L
= 245

L
e−µ1e−µ1h

n
L○Ξ

n
L(1), (4.278)

where we used that hnL(Ξn
L(1)) = hnL(yn±) = 0. By definition of RN,n

L,ΛL,γ,j
we have

rank(SN,nL,ΛL,γ,j
) ≤ 2j. Hence,

λ2j+1(SN,nL,ΛL,γ,j
) = 0. (4.279)
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By the well-known Inequality (3.61), we deduce that for all j ∈ N with 2j + 1 ≤ m or
2j + 2 ≤m we have

λ2j+2(DN,n
L,ΛL,γ

) ≤ λ2j+1(DN,n
L,ΛL,γ

) ≤ λ2j+1(SN,nL,ΛL,γ,j
) + λ1(RN,n

L,ΛL,γ,j
)

≤ 245e−µ1

L
e−µ1h

n
L○Ξ

n
L(j+1), (4.280)

where we used (4.277) and (4.279). This concludes the proof.

We are now finally able to show the estimate anticipated in (4.105).

Lemma 4.5.3. Let γ ∈ VL. Let ε, θ,N and ΛL satisfy Assumption 4.4.15 and let n ∈ N
with N/2 < n < N . Let p ∈ ]1,∞[ and ∆ > 3 such that µ1/p ≥ ln 2. Then there exists a
L0 ≡ L0(ε) > 0 such that for all L ≥ L0 we obtain

∥DN,n
L,ΛL,γ

∥1/p

1/p
≤ 256

L1/p
e−µ1/p. (4.281)

Proof. Again, let m ∶= dimHn
ΛL

. Then

∥DN,n
L,ΛL,γ

∥1/p

1/p
=

m

∑
j=1

λ
1/p
j (DN,n

L,ΛL,γ
). (4.282)

We remark that {yn
±
} ⊆ {y ∶ hnL(y) = 0}. Therefore, by Lemma 4.5.1 and Lemma 4.5.2,

there exists a L0 ≡ L0(ε) > 0 such that for all L ≥ L0 holds

∥DN,n
L,ΛL,γ

∥1/p

1/p
≤ 245/pe−µ1/p

L1/p
(2 + 211e−µ1/p) ≤ 256

L1/p
e−µ1/p, (4.283)

where we used that µ1/p ≥ ln 2.

4.5.3 Proof of Theorem 4.1.1

We are now prepared to prove the logarithmically enhanced area law as stated in
Theorem 4.1.1 by implementing the strategy that was outlined in Section 4.3.

Lemma 4.5.4. Let H be a finite dimensional Hilbert space, A,T ∈ L(H) be self adjoint
operators such that σ(A), σ(A + T ) ⊆ [0,1]. Let p, q ∈ ]1,∞[ such that 1/p + 1/q = 1.
Then

∣ tr{s(A + T ) − s(A)}∣ ≤ ∥T ∥1/p

1/p
(1 + ∥ ln(⋅)1]0,1[(⋅)∥q). (4.284)

Proof. Krĕın’s theorem for the spectral shift function [Sch12] states that

tr{f(A + T ) − f(A)} = ∫
R
f ′(t)ξ(t) dt (4.285)

for any compactly supported and smooth function f ∈ C∞

c (R), where

ξ ∶ R ∋ t↦ tr{1≤t(A + T ) − 1≤t(A)} (4.286)
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denotes the spectral shift function. Since s is not differentiable at 0, we cannot apply
this result directly. We therefore define a family of suitable auxiliary functions (sη)η∈N ⊆
C∞

0 (R) such that limη→∞ sη(t) = s(t) for all t ∈ [0,1]. Let χ ∈ C∞(R) be a function
such that χ(R) = [0,1], χ(t) = 0 for t ≤ 1/2 and χ(t) = 1 for t ≥ 1. For η ∈ N and τ ∈ R
let

sη(τ) ∶= χ(2 − τ)∫
τ

0
s′(t)χ(ηt) dt. (4.287)

Since both sη(0) = s(0) = 0 and limη→0 ∥(s′η−s′)1]0,1[∥p = 0 for all p ∈ [1,∞[ we conclude
that limη→∞ sη(t) = s(t) for all t ∈ [0,1]. Both A and A + T have a finite number of
eigenvalues. Hence,

lim
η→∞

∣ tr{sη(A + T ) − sη(A)} − tr{s(A + T ) − s(A)}∣ = 0. (4.288)

For any p, q ∈ ]1,∞[, 1/p+ 1/q = 1, and η ∈ N we obtain by applying (4.285) to sη that

∣ tr{sη(A + T ) − sη(A)}∣ ≤ ∥ξ∥p∥s′η1]0,1[∥q, (4.289)

where we used that ξ(s) = 0 for s > 1. According to [CHN01, Thm. 2.1] the first term

of the right-hand side is bounded by ∥T ∥1/p

1/p
. We estimate the second term by

∥s′η1[0,1[∥q = ∥s′(⋅)χ(η⋅)1]0,1[(⋅)∥q ≤ ∥s′1]0,1[∥q ≤ 1 + ∥ ln(⋅)1]0,1[(⋅)∥q. (4.290)

Together with (4.288), this yields (4.284).

Remark 4.5.5. Observe that with the simple substitution y = ln(1/x) we obtain for all
q ∈ ]1,∞[ the elementary estimate

∥ ln(⋅)1]0,1[(⋅)∥q = (∫
1

0
dx ln(1/x)q)

1/q

= (∫
1

0
dy yqe−y)

1/q

= Γ(q + 1)1/q ≤ ⌈q⌉ ≤ 2q,

(4.291)
where Γ denotes the Gamma function. Here we used, Γ(q + 1) ≤ ⌈q⌉! ≤ ⌈q⌉⌈q⌉−1.

Proof of Theorem 4.1.1. By (4.48), for every E ∈ σ(HN
L ) ∩ I1 there exists at least one

γ ∈ VL such that E = inf σ(ĤN
L,γ). Let ∣ϕNL,γ⟩ be the corresponding eigenvector, which

was defined in Remark 4.2.11 (i).
The state ∣ϕNL,γ⟩ is an eigenstate of the unitary translation operator T̃ σL for all σ ∈ Z,

too. Therefore, for any two sets Γ(′) ⊆ VL with Γ′ = T σLΓ for some σ ∈ Z we have

trΓ′ {ρ(ϕNL,γ)} = trΓ {ρ(ϕNL,γ)}. (4.292)

We therefore assume w.l.o.g. that ΛL is defined as in Assumption 4.4.15.
Let n ∈ N with N/2 < n < N and p, q > 1 such that 1 = 1/p + 1/q. Let ∆ > 3 such

that µ1(∆)/p ≥ ln 2. According to Lemma 4.5.3, Lemma 4.5.4 and Remark 4.5.5, there
exists a L′0 ≡ L′0(ε) > e2 such that

∣ tr{s(ρnΛL(ϕ
N
L,γ)) − s(ρnL,ΛL,γ)}∣ ≤

256

L1/p
e−µ1/p

1 + 2q

ln 2
(4.293)

for all L ≥ L′0.
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We choose p, q > 1 to depend on L as follows: Let

q ≡ q(L) ∶= ln(L) and p ≡ p(L) ∶= (1 − 1/ ln(L))−1. (4.294)

This implies L1/p = e−1L. For all L ≥ e2 and ∆ > 25 we have 1/p ≥ 1/2 and µ1(∆)/p > ln 2.
For any L ≥ L′0 we bound (4.293) by

∣ tr{s(ρnΛL(ϕ
N
L,γ)) − s(ρnL,ΛL,γ)}∣ ≤

257

L
e−µ1/2(2 + 2 log2(L)). (4.295)

Corollary 4.2.10 implies that µ1(∆) diverges for ∆ → ∞. Therefore, there exists a
∆0 > 25 such that

257e−µ1/2 ≤ 1

2
(4.296)

for all ∆ ≥ ∆0. Hence, by applying (4.97) as well as (4.296), we obtain

tr{s(ρnΛL(ϕ
N
L,γ))} ≥ tr{s(ρnL,ΛL,γ)} − ∣ tr{s(ρnΛL(ϕ

N
L,γ)) − s(ρnL,ΛL,γ)}∣

≥ log2L − 1

L
. (4.297)

For the entanglement entropy this implies

S(ΛL;VL, ϕNL,γ(∆)) ≥ ∑
n∈N∶

N/2<n<N

tr{s(ρnΛL(ϕ
N
L,γ))} ≥ (N/2 − 1) log2L − 1

L
. (4.298)

We notice that limL→∞
N/2−1
L = ε/2. Hence, for all ∆ ≥ ∆0 we have

lim inf
L→∞

S(ΛL;VL, ϕNL,γ(∆))
lnL

≥ ε

2 ln 2
. (4.299)



Appendix A

Auxiliary results concerning the
definition of the entanglement
entropy

A.1 Connection between spin system and fermionic

Fock space

Let d ∈ N and Γ ⊆ Zd be a finite set. We want to show that we can identify the Fock
space F−(`2(Γ)) with HΓ.

Let us first construct a basis to HΓ. Recall that the canonical basis to the single
spin space C2 is given by {∣↑⟩ , ∣↓⟩} with ∣↑⟩ = ( 1

0 ) and ∣↓⟩ = ( 0
1 ). A natural basis of

eigenvectors for HΓ is given by { ∣δΓ
x ⟩ }x∈P(Γ)

, where ∣δΓ
∅
⟩ = ∣↑⟩⊗∣Γ∣

and

∣δΓ
x ⟩ = (∏

j∈x

S−j ) ∣δΓ
∅
⟩ for all ∅ ≠ x ∈ P(Γ). (A.1)

Recall that S−j denotes the spin lowering operator acting on the site j ∈ Γ, where
S− = ( 0 0

1 0 ).
On the other hand, we can construct a basis for F−(`2(Γ)) with the help of the

formalism of second quantisation. By a slight abuse of notation, we denote by {∣δj⟩}j∈Γ
the canonical basis of the single-particle space `2(Γ). Furthermore, for any j ∈ Γ we
denote by a∗j ∶ F−(`2(Γ)) → F−(`2(Γ)) the creation operator, which creates a particle
in the state ∣δj⟩. Let ∣0⟩ denote the vacuum state. The vectors

(∏
j∈x

a∗j ) ∣0⟩ for all ∅ ≠ x ∈ P(Γ) (A.2)

form an orthonormal basis of F−(`2(Γ)).
We point out that the spin lowering operator S−j in (A.1) has the same function

as the creation operator in a∗j in (A.2). Therefore, we define the isometry Φ ∶ HΓ →
F−(`2(Γ)) by Φ(∣δΓ

x ⟩) ∶= (∏j∈x a
∗

j ) ∣0⟩ for all x ∈ P(Γ). This identifies F−(`2(Γ)) with

HΓ.
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Appendix B

Auxiliary results concerning the
stability of enhanced area laws

B.1 Contour integral representation of the Fermi

projection

The following representation (B.2) of the Fermi projection in terms of a Riesz projec-
tion with the integration contour cutting through the continuous spectrum is a key
ingredient to our proof of Lemma 3.2.3. However, it may be of independent interest.

Theorem B.1.1. Let K be a densely defined self-adjoint operator in a Hilbert space
H, which is bounded from below and satisfies a limiting absorption principle at E ∈ R
in the sense that there exists a bounded operator B on H with inverse B−1 which is
possibly only densely defined and unbounded, such that

SE ∶= sup
z∈C∶Re z=E, Im z≠0

∥B 1

K − zΠc(K)B∥ < ∞. (B.1)

Here, Πc(K) denotes the projection onto the continuous spectral subspace of K. Let
A1,A2 be two bounded operators on H such that ∥A1B−1∥ < ∞ and ∥B−1A2∥ < ∞.
Finally, we assume that there are no eigenvalues of K near E, i.e. dist (σpp(K),E) > 0.
Then we have the representation

A11<E(K)A2 = −
1

2πi

¿

γ

dz A1
1

K − z A2. (B.2)

The right-hand side of (B.2) exists as a Bochner integral with respect to the operator
norm ∥ ⋅⋅⋅ ∥, and the integration contour γ is a closed curve in in the complex plane
C which, for s > 0, traces the boundary of the rectangle {z ∈ C ∶ ∣ Im z∣ ≤ s, Re z ∈
[−1 + inf σ(K),E]} once in the counter-clockwise direction.

Proof. Let ε > 0 and let γε be the curve γ without the vertical line segment from E − iε
to E + iε. Since ∥(K − z)−1∥ is uniformly bounded for z in the image of γε, it suffices
to verify that

∫
ε

−ε
dη ∥A1

1

K −E − iη
A2∥ < ∞ (B.3)
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in order to show the existence of the right-hand side of (B.2) as a Bochner integral
with respect to the operator norm. But

∥A1
1

K −E − iη
A2∥ ≤ ∥A1

1

K −E − iη
Πpp(K)A2∥

+ ∥A1B
−1∥∥B−1A2∥∥B

1

K −E − iη
Πc(K)B∥

≤ ∥A1∥∥A2∥
dist (σpp(K),E)

+ ∥A1B
−1∥∥B−1A2∥SE (B.4)

uniformly in η ∈ [−ε, ε], and the estimate (B.3) holds.
It remains to prove the equality in (B.2). Let ϕ,ψ ∈ H. Since the contour integral

along γ exists in the Bochner sense with respect to the operator norm, we equate

⟨ϕ,(
¿

γ

dz A1
1

K − z A2)ψ⟩ = lim
ε↘0
∫
γε

dz ⟨ϕ,A1
1

K − z A2ψ⟩

= lim
ε↘0
∫
R

dµ(A∗1ϕ),(A2ψ)(λ) ∫
γε

dz
1

λ − z , (B.5)

where we introduced the complex spectral measure µϕ,ψ ∶= ⟨ϕ,1●(K)ψ⟩ of K and used
Fubini in the last step. On the other hand, we apply the residue theorem to conclude

−2πi ⟨ϕ,A11<E(K)A2ψ⟩ = ∫
R

dµ(A∗1ϕ),(A2ψ)(λ) ∫
γ

dz
1

λ − z , (B.6)

which is justified because E is not an eigenvalue of K. The right-hand side of (B.6)
equals

lim
ε↘0
∫
R

dµ(A∗1ϕ),(A2ψ)(λ) ∫
γε

dz
1

λ − z + i lim
ε↘0
∫
R

dµ(A∗1ϕ),(A2ψ)(λ)∫
ε

−ε
dη

1

λ −E − iη
. (B.7)

The explicit computation, using symmetry,

∫
ε

−ε
dη

1

λ −E − iη
= ∫

ε

−ε
dη

λ −E
(λ −E)2 + η2

= 2 arctan ( ε

λ −E ) (B.8)

holds for every real λ ≠ E. Therefore, dominated convergence implies that the second
limit in (B.7) vanishes. Here, we used again that E is not an eigenvalue of K. Since ϕ
and ψ are arbitrary, the theorem follows from (B.5) to (B.7).

Remark B.1.2. Theorem B.1.1 readily generalises from Fermi projections to spectral
projections of more general intervals.

B.2 Estimates of h

Lemma B.2.1. For all s ∈ ]0,1[ and all x ∈ [0,1] we have

−x log2 x ≤
xs

1 − s. (B.9)
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and

g(x) ≤ h(x) ≤ 6

1 − s(g(x))
s
, (B.10)

where g was defined in (3.11).

Proof. We introduce the continuous function ϕ ∶ [0,1] → [0,∞[, x ↦ −x1−s log2 x. The
first claim follows from the observation

0 ≤ ϕ ≤ 1

1 − s, (B.11)

which is true because ϕ(1) = ϕ(0) = 0 and ϕ has a unique maximum at e−1/(1−s).
Due to the symmetry h(x) = h(1 − x) and g(x) = g(1 − x) for all x ∈ [0,1] it is

sufficient to prove (B.10) for all x ∈ [0,1/2] only. As for the upper bound in (B.10), we
note that with ψ ∶ [0,1/2] → [0,∞[, x↦ −(1 − x) log2(1 − x), we have

ψ(x) ≤ x

ln 2
≤ xs

ln 2
for all x ∈ [0,1/2], (B.12)

because ψ(0) = 0 and ψ′ ≤ 1/ ln 2. This and (B.11) imply

h(x) = xsϕ(x) + ψ(x) ≤ xs( 1

ln 2
+ 1

1 − s) ≤
6

1 − s (x(1 − x))s (B.13)

for all x ∈ [0,1/2].
The argument for the lower bound is similar to the above. Since h(0) = g(0) = 0

it suffices to show h′ ≥ g′ on ]0,1/2]. We observe h′(1/2) = g′(1/2) = 0, introduce
γ(y) ∶= g′(−y + 1/2) = 2y, η(y) ∶= h′(−y + 1/2) = log2((1 + 2y)/(1 − 2y)) for y ∈ [0,1/2[
and verify η′ ≥ 2 = γ′. This yields the claim.

Lemma B.2.2. For every x ∈ [0,1] we have

−g(x) log2 g(x) ≤ h(x) ≤ −3g(x) log2 g(x). (B.14)

Proof. Since g(x) ≤ min{x,1−x} for all x ∈ [0,1], the left inequality of the claim follows
from

−g(x) log2 g(x) = −g(x)( log2 x + log2(1 − x)) ≤ h(x). (B.15)

For the right inequality we consider only x ∈ [0,1/2], which suffices by symmetry. We
rewrite

−3g(x) log2 g(x) − h(x) = −xp(x) log2 x − q(x) log2(1 − x) (B.16)

with p(x) ∶= 2 − 3x and q(x) ∶= −1 + 4x − 3x2. The polynomial q is negative on the
interval [0,1/3[ and positive on ]1/3,1/2] while p is positive everywhere on [0,1/2].
Therefore, for all x ∈ [1/3,1/2] we have

−3g(x) log2 g(x) − h(x) ≥ 0. (B.17)

On the other hand, we claim that

log2(1 − x) ≥ 2x log2 x (B.18)
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for all x ∈ [0,1/3] because the function [0,1/2] ∋ x ↦ −2x log2 x + log2(1 − x) vanishes
at x = 0 and at x = 1/2 and is concave. Therefore, it must be non-negative. Inserting
(B.18) into (B.16), we obtain

−3g(x) log2 g(x) − h(x) ≥ −x(log2 x)(p(x) + 2q(x)) ≥ 0 (B.19)

because p(x) + 2q(x) = 5x − 6x2 ≥ 0 for all x ∈ [0,1/3].
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Auxiliary results concerning the
XXZ spin ring

C.1 Uniqueness of fibre operator ground states

Lemma C.1.1. Let ∆ > 2, let L,N ∈ N with 1 < N < L. Then for any γ ∈ VL, the
operator ĤN

L,γ has exactly one eigenvalue in [1− 1
∆ ,1] and no eigenvalues in ]1,2− 2

∆[.

Proof. By Lemma 4.2.7, we get

ĤN
L,γ = −

1

2∆
ÂNL,γ + ŴN

L,γ ≥ (1 − 1

∆
) ŴN

L,γ ≥ (1 − 1

∆
) . (C.1)

There exists exactly one element x̂0 ∈ V̂NL ∩ DNL . Clearly, it satisfies W (x̂0) = 1. For

any other x̂ ∈ V̂NL ∖ {x̂0} we have W (x̂) ≥ 2. Let φ̃NL,γ ∈ SNL,γ be defined by φ̃NL,γ(σ, x̂) ∶=
δγ,σδx̂0,x̂.

Hence, the operator

ĤN
L,γ + (1 − 1

∆
) ∣φ̃NL,γ⟩⟨φ̃NL,γ ∣ ≥ (1 − 1

∆
)(ŴN

L,γ + ∣φ̃NL,γ⟩⟨φ̃NL,γ ∣) ≥ (2 − 2

∆
) (C.2)

is a rank-one perturbation of ĤN
L,γ. Therefore, according to the min-max-principle, the

unperturbed operator ĤN
L,γ has at most one eigenvalue below (2 − 2

∆). On the other

hand, since ⟨φNL,γ,0, ĤN
L,γφ

N
L,γ,0⟩ = 1, there exists at least one eigenvalue ≤ 1. By assuming

∆ > 2 we get 1 < 2 − 2
∆ . This concludes the proof.

For γ = 0, it follows from the explicit structure of the fibre operator ĤN
L,0 that it has

a unique ground state ϕ̂NL,0 which can be chosen to be strictly positive. The same is

true for the original operator HN
L . This will allow us to conclude that ϕNL,0 ∶= (FNL )∗ϕ̂NL,0

is the ground state of HN
L . The main tool for our result will be an idea presented in

[YY66], where the existence of a strictly positive ground state for the XXZ model on
the ring was established. However, let us also point out that this piece of the proof
follows from the Allegretto–Piepenbrink theorem shown in [HK11].
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Lemma C.1.2. Let N,L ∈ N, 0 < N < L. Moreover, let E0 ≡ E0(L,N,∆) = inf σ(ĤN
L,0).

Then E0 is non-degenerate and the corresponding eigenvector ϕ̂NL,0 ∈ SNL,0 can be chosen

such that ∥ϕ̂NL,0∥ = 1 and ϕ̂NL,0(0, x̂) > 0 for all x̂ ∈ V̂NL . In addition, ϕNL,0 ∶= (FNL )∗ϕ̂NL,0 is

the unique ground state of HN
L .

Proof. Firstly, note that if we choose the constant C > 2N ≥ ∥WN
L ∥ = ∥ŴN

L,0∥, we get
that the matrix representations with respect to the canonical basis of both operators
A1 ∶= (C1HNL

−HN
L ) and A2 ∶= (C1SNL,0

−ĤN
L,0) have only non–negative entries. Moreover,

note that since A1 and A2 are irreducible, we can choose D ≥ dim(HN
L ) large enough,

such that the matrix entries of AD1 and AD2 will all be strictly positive. Hence, by the
Perron-Frobenius Theorem, the largest eigenvalue of each of these operators AD1 and
AD2 is positive, non-degenerate and the corresponding eigenfunctions can be chosen
to be strictly positive. Let ϕNL,0 and ϕ̂NL,0 denote the eigenfunctions for AD1 and AD2
respectively, that satisfy these properties. Clearly, ϕNL,0 and ϕ̂NL,0 will then be the

eigenfunctions of HN
L and ĤN

L,0 corresponding to the respective minima E0 and Ê0 of the

spectra. Now, since HN
L and ĤN

L are unitarily equivalent via the Fourier transform FNL ,

the function (FNL )∗ϕ̂NL,0 is also an eigenfunction of HN
L and thus Ê0 ∈ σ(HN

L ). However,

from the explicit form of (FNL )∗ as given in (4.27), one sees that since ϕ̂NL,0 ∈ SNL,0 we

get that (FNL )∗ϕ̂NL,0 is a strictly positive eigenfunction of HN
L . Thus, we conclude that

(FNL )∗ϕ̂NL,0 = ϕNL,0 and consequently E0 = Ê0.
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AG, Basel, 2011.

[HIZ05] A. Hamma, R. Ionicioiu and P. Zanardi, Ground state entanglement and
geometric entropy in the Kitaev model, Phys. Lett. A 337, 22–28 (2005).

[HSS12] E. Hamza, R. Sims and G. Stolz, Dynamical localization in disordered
quantum spin systems, Commun. Math. Phys. 315, 215–239 (2012).

[Has07] M. B. Hastings, An area law for one-dimensional quantum systems, J.
Stat. Mech. 2007, P08024-1–14 (2007).

[HLS11] R. Helling, H. Leschke and W. Spitzer, A special case of a conjecture by
Widom with implications to fermionic entanglement entropy, Int. Math.
Res. Not. 2011, 1451–1482 (2011).

[HW14] J. Helmes and S. Wessel, Entanglement entropy scaling in the bilayer
Heisenberg spin system, Phys. Rev. B 89 (2014).

[HHHH09] R. Horodecki, P. Horodecki, M. Horodecki and K. Horodecki, Quantum
entanglement, Rev. Mod. Phys. 81, 865–942 (2009).
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