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München 2020





Effects and Adaptation of Particle Noise in
Large-Scale PIC Simulations

Nils Moschüring
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Zusammenfassung



viii Zusammenfassung

Die Particle-In-Cell (PIC) Technik findet in der Modellbildung einer großen Anzahl von wis-
senschaftlichen Problemen Anwendung. PIC Simulationen können die nicht-linearen Prozesse
der Laser-Plasma-Interaktion abbilden, und benötigen hierfür relativ wenig Rechenleistung. Ein
gutes Verständnis dafür, wie verlässlich die Ergebnisse dieser Simulationen sind, und wie nah
sie an experimentelle Resultate heran kommen, ist hierbei unerlässlich. Eine der wichtigsten
Messgrößen hierfür ist das Teilchenrauschen. Durch die Existenz von diskreten Teilchen, in der
Realität wie auch im PIC Modell, zeigen ein Großteil der Messgrößen ein gewisses Rauschen um
einen Mittelwert herum. Die Rechenersparnis, die das PIC Modell auszeichnet, wird zu einem
großen Teil dadurch erreicht, dass sogenannte Quasiteilchen eingesetzt werden. Diese Stellver-
treterteilchen repräsentieren jeweils eine große Zahl von physikalischen Teilchen und reduzie-
ren somit die Anzahl der nötigen mathematischen Operationen um mehrere Größenordnungen.
Durch die stark reduzierte Anzahl von interagierenden Teilchen erhöht sich jedoch das Rau-
schen in den Messgrößen. Diese Dissertation untersucht mehrere Facetten dieses unphysikali-
schen Quasiteilchenrauschens.

Als erstes wird eine Theorie entwickelt, die die Auswirkungen der Quasiteilchen auf das Teil-
chenrauschen beschreibt. Zu den Ergebnissen dieser Theorie gehören Gleichungen die das Si-
gnal-Rausch-Verhältnis von PIC Simulationen für erste Ordnung Teilchen mit zwei verschiede-
nen Teilchengewichten beschreiben. Aus den Gleichungen folgt, dass die Anzahl der Quasiteil-
chen sowie ihre Gewichtsverteilung entscheidend für die Verlässlichkeit der Simulation sind.

Neben der Bedeutung für die Verlässlichkeit einer Simulation, ist die Anzahl der Quasiteilchen
auch noch der wichtigste Faktor für ihren Rechenaufwand. Somit ist die dynamische Kontrolle
und Anpassung der Quasiteilchenanzahl und deren Gewichte, auch während einer Simulation,
von großem Interesse und Vorteil. Ein neuartiger Algorithmus mit der Fähigkeit Quasiteilchen
zu splitten (zu zerteilen) und zu mergen (zu vereinigen) wurde entwickelt. Dieser Algorithmus
garantiert eine größtmögliche Anzahl an Erhaltungssätzen in möglichst genereller Form. Hierbei
ist hervorzuheben, dass keine unphysikalische Divergenz in der Simulation entsteht und durch
die Nutzung von Initialmomenta auch die Impulsraumverteilung sehr gut erhalten bleibt. Dies
wird mit ausführlichen Benchmarks und Vergleichen, auch mit einem Algorithmus anderer Wis-
senschaftler, verdeutlicht.

In der zweiten Hälfte werden zwei peer-reviewed Erstautorpublikationen von Nils Moschüring
vorgestellt. Diese sind in Zusammenarbeit mit der AWAKE Kollaboration entstanden, die die
Möglichkeit eines protonengetriebenen Kielfeld-Beschleunigers untersucht. Die erste Publika-
tion stellt eine neuartige Methode vor, um kontrolliertes Quasiteilchenrauschen in PIC Simu-
lationen zu generieren. Dies erlaubt die verbesserte Extrapolation von Simulationsergebnissen
zu Experimenten, mit dem Ziel optimierter Parameter nicht nur für das AWAKE Experiment.
Die zweite Publikation enthält die Auswertung von Simulationsergebnissen einer großskaligen
PIC Simulationskampagne auf SuperMUC. Die finale Simulation verbrauchte ca. 22 Mch an Re-
chenleistung und lief auf 32768 Kernen. Sie wurde durch eine Vielzahl von technischen Entwick-
lungen und Anpassungen ermöglicht. Die Analyse der resultierenden Daten ergab interessante
neuartige Effekte während der Teilcheninjektion. Der erfolgreiche Abschluss der Kampagne be-
weist, dass der PSC nun fähig ist großskalige Simulationen effizient auszuführen.



Introduction and abstract



x Introduction and abstract

Particle-In-Cell (PIC) codes are used on a large variety of scientific problems. Their ability
to model non-linear processes, combined with a reduced computational load, in comparison to
fluid codes, makes them a good tool to investigate all kinds of laser-plasma interaction. It is
very important to properly understand the faithfulness of these simulations with regard to actual
experiments.

One very important characteristic, in order to adjudicate this faithfulness, is the amount of ex-
hibited particle noise. The computational savings, generated by PIC codes, is mainly due to the
employment of so-called quasi-particles. These entities represent a large number of actual phys-
ical particles and are therefore able to reduce the amount of necessary computations by several
orders of magnitude in many cases. A drawback is the, on average, meaningfully higher particle
noise in PIC simulations when compared to experiments. The reduced number of interacting par-
ticles results in this increased noise. This thesis will investigate multiple facets of this unphysical
quasi-particle noise.

For a brief introduction into the employed unit system, the finite-difference time-domain tech-
nique and the PIC method, please refer to chapter 2-4 of my diploma thesis [22].

In chapter 1 of this dissertation, a theory to model the impact of the number of quasi-particles on
the particle noise is developed. This chapter gives formulas describing the signal-to-noise ratio
of PIC simulations using zeroth-order quasi-particles with a single common weight, first-order
quasi-particles with a single common weight and first-order quasi-particles with two different
weights. A very general approach has been taken for these derivations and only a small amount
of assumptions have been made. This leads to results that are very generally applicable. The two
main conclusions from this model are that i) more quasi-particles lead to a higher signal-to-noise
ratio and ii) employing particles with different weights leads to a lower signal-to-noise ratio.
Therefore, the amount and the weight of the quasi-particles in a simulation are fundamental to
the faithfulness of the results.

This conclusion leads directly to the work that is presented in chapter 2. Since the amount
and the weight of the quasi-particles is so important for PIC simulations, algorithms to directly
control these parameters during a running simulation are valuable. Additionally, the number of
quasi-particles is the main driving factor for the computational cost of a simulation.

In order to reduce and increase the number of quasi-particles in a simulation, so-called quasi-
particle merging and splitting is performed. During this process, quasi-particles are either merged
into a lower number of bigger quasi-particles or split up into a higher number of smaller quasi-
particles. This must be done very carefully in order to keep any newly introduced numerical
errors to a minimum. It must also be done in a way that tries to respect as many conservation laws
in their most general form as possible. A novel algorithm with splitting and merging capabilities
has been developed during this thesis and is presented in chapter 2. The number of parameters
of this algorithm is intentionally kept to a minimum in order to make a correct usage simpler and
more likely.

First, multiple stages of sorting are performed, which are detailed in chapter 2.2. This ensures
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that particles undergoing the merging/splitting process are similar to each other, which reduces
the introduced errors. It also enables the possibility of selectively merging the smallest particles
and splitting the biggest particles, which reduces the variety in weight space.

In the case of merging, the targeted particles then need to be gathered at shared spatial loca-
tions, without introducing spurious electromagnetic fields. A special algorithm that performs
this movement has been developed. It is detailed in chapter 2.3.1. This algorithm works flaw-
lessly for first-order particles with the effect that no unphysical divergence in the electric fields
is generated. For second-order particles it is shown in chapter 2.3.1 that a deterministic flawless
algorithm is impossible, as solutions to non-linear equations are required in that case. Splitting
quasi-particles does not need any special treatment regarding the spatial location of the targeted
quasi-particles.

In the last step, the momenta of the new quasi-particles are computed, using a sophisticated al-
gorithm. This step is explained in chapter 2.3.2. In the case of merging, a localized redistribution
of the total energy allows for a re-usage of initial momenta values. This special method is able
to, on average, preserve the distribution in momentum space well, including outliers. Computing
the momenta of the resulting quasi-particles after a splitting process is much simpler and more
straightforward. Nonetheless, a novel technique is presented in chapter 2.4.2, which redistributes
energies, and is able produce a more diverse momentum distribution.

Finally, chapter 2.6 describes an additional and optional adaptation step, which reduces the
amount of different weights in the simulation, and chapter 2.7 gives the necessary modifications
to the algorithm to enable its use on photons.

In order to verify the algorithm and ensure that it fulfills its stated goals, chapter 3 presents a
host of benchmarks and various results of applications. To achieve this, the given algorithm
was implemented in the PIC code PSC. Chapter 3.1 first shows the repercussions of merging/
splitting on the momentum space for an exhaustive list of parameters for the well-known two-
stream problem. After that, a detailed comparison to a previously published algorithm [29] is
given in chapter 3.2. This comparison shows that, in relation to the considered error metrics, the
algorithm presented in this thesis is able to outperform the previously published algorithm.

This concludes the previously unpublished part of this dissertation. The subsequent chapters
include two peer-reviewed publications with Nils Moschüring as the first author. Following the
theoretical examination of particle noise and an algorithm to manipulate it, these chapters present
an application of the gathered knowledge to simulations for an experiment. This experiment is
called AWAKE (”Advanced Proton Driven Plasma Wakefield Acceleration Experiment“). It is
an international collaboration that aims at investigating a novel particle acceleration scheme,
employing proton-driven plasma-wakefields.

Chapter 4 provides an introduction and the full text of the first peer-reviewed publication. This
publication is concerned with the generation of controllable quasi-particle noise for proton-driven
plasma-wakefield PIC simulations. In order to achieve this controlled quasi-particle noise, it
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investigates the difference between experimental shot-noise (particle noise of actual beam par-
ticles) and the quasi-particle noise of a PIC simulation. Finally, it proposes a simulation setup,
which makes it possible to control the quasi-particle noise in simulations by employing a special
noise generating assembly of quasi-particles. This controlled quasi-particle noise enables an im-
proved extrapolation of simulation results to experiments. The main hindrance in achieving this
proper setup was the emergence of numerical Cerenkov radiation. This hindrance was overcome
by choosing sinusoidal shapes for the noise generating assembly of quasi-particles.

It was originally planned to use this novel setup scheme to find optimized experimental parame-
ters by running a series of PIC simulations. Due to the complex nature of the experiment, these
simulations are quite expensive, and the series of simulations has not been completed. Nonethe-
less, one large-scale simulation was finished successfully. The results of this run have shown
interesting novel effects, which lead to a second peer-reviewed publication.

The final chapter of this thesis, chapter 5, provides an introduction and the full text of this second
publication. In this publication the results of the large-scale PIC simulation are presented. The
publication describes the complex setup, the special modules and optimizations to the PSC, the
actual run of the simulation, and finally analyzes the resulting data. The simulation needed to run
on 32768 cores due to its size, consuming about 22 Mch of computing resources, which made
it a difficult technical challenge as well. Novel effects were found in the resulting data of the
simulation and these are subsequently exposed through a series of elaborate figures and plots.
These novel effects happen during the electron injection process, a vital process for AWAKE.
The simulations decisively helped in furthering the understanding of this process.

This successful completion proves the capability of the PSC to perform large-scale simulations.
Using the developed test case, it is now possible to finish the proposed series of simulations. It
is also possible to further investigate the electron injection process. This process is highly non-
linear, three dimensional and is currently not well-understood. The PSC, equipped with the new
test case and optimized for this large-scale simulation, is uniquely able to model that scenario,
thanks to the work performed for this dissertation.
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2 1 Merging/Splitting Theory

In order to evaluate the effectiveness of a possible merging or splitting algorithm, it is important
to develop a theoretical understanding of the importance and the implications of the number of
employed quasi-particles. The number of particles per cell determines many statistical properties
of a PIC simulation. The process of measuring the particle density at a particular point (or any
other physical property that is derived from the quasi-particle distribution), can be viewed as
performing a number of measurements equal to the number of quasi-particles in the respective
cell. The results of this chapter were presented in the Laser Experiment Theory Seminar at the
Max-Planck-Institute for Quantum Optics in Garching in January 2014.

1.1 Zeroth-order form factor

The fraction of the total density in a specific cell at a specific time t is derived from the Vlasov
equation to be ∫

cell f( #»x , t)d3x∫
V
f( #»x , t)d3x

, (1.1)

where the momentum integration of f is implicitly assumed. The distribution function is now
sampled, using a finite number of quasi-particles with a zeroth-order particle shape. The proba-
bility of finding k of the total N quasi-particles in a specific cell is then given by

Pk,cell =

(
N

k

)
pkcell (1− pcell)

N−k , where
(
N

k

)
(1.2)

is the binomial coefficient of N and k, and

pcell(t) =

∫
cell f( #»x , t)d3x∫
V
f( #»x , t)d3x

. (1.3)

Equation (1.2) corresponds to a binomial distribution. The expectation value and the standard
deviation of the particle number in a specific cell is therefore given by

µppc = Npcell and (1.4)

σppc =
√
Npcell (1− pcell), (1.5)

respectively. The subscript ppc stands for particles per cell. If the total charge is assumed to be
equal toQ (i.e. one quasi-particle carries the charge Q/N), and the weight of each particle is equal
to one, the average charge density and the standard deviation of the charge density in a cell can
be calculated to be

ρ =
Q

N
µppc = Qpcell and (1.6)

σρ =
Q

N
σppc = Q

√
Npcell (1− pcell)

N
= Q

√
pcell (1− pcell)√

N
, (1.7)
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respectively. The quantity (1.7) can be interpreted as the error of the employed sampling. For
an infinite amount of quasi-particles it tends to zero. In order to make the interpretation of
the numerical results simpler, the relative standard deviation instead of the absolute one (given
in (1.7)), will be used. The relative standard deviation is commonly called the coefficient of
variation, and is given by

cv =
1

SNR(0)
1

=
σρ
|ρ| =

1√
N

√
1− pcell

pcell
, (1.8)

where SNR(0)
1 refers to the signal-to-noise ratio of a distribution of quasi-particles with a zeroth-

order form factor (SNR(0)
1 , please note the boldface 0 that signifies the form factor) and a uniform

weight, i.e. the distribution contains only quasi-particles of a single weight species (SNR(0)
1 ,

please note the boldface 1 that signifies the number of weight species).

In the case of a constant density f( #»x ,t) = c, pcell = 1
Ncells

for all cells, were Ncells is the number
of cells in the simulation, and Nppc = N/Ncells is the number of particles per cell. This leads to

cv =
1√
N

√
Ncells − 1

Ncells�1≈ 1√
Nppc

, and (1.9)

SNR(0)
1 =

√
Nppc

Ncells

Ncells − 1
. (1.10)

1.2 Higher-order form factors

The analysis in this chapter is confined to one-dimensional considerations. The density that is
deposited on one grid-point with index j and coordinate Xj is defined as

νNj =
N∑
i=1

ζ
(n)
j (xi) , (1.11)

where xi is the coordinate of the ith particle and ζ(n)
j is the density deposition function or in-

tegrated shape function in the x-direction of nth order and of grid-point j. The variable
(
νNj
)
s

is now used as a random variable with the sample number s. Each sample s is constructed via
N uniformly distributed particle coordinates xi. The goal is to determine the structure of the
statistical distribution of this random variable. This means determining νNj and σNνj . In order to

do this, the probability distribution function f (n),N
ν,j (ν) must be found. This function returns the

probability of getting ν as the deposited density on grid-point j.

In order to simplify the problem, f (n)
ν,j (ν), the probability distribution function for a single quasi-

particle with coordinate xi (i.e. N = 1), will be derived first. The variable w(n)
ζ is defined by
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the equation supp(ζ(n)) = [−w(n)
ζ ,w

(n)
ζ ], where supp(ζ(n)) is the support of the integrated shape

function ζ(n) and w(n)
ζ is its width. The form factor is assumed to be a symmetric, continuous and

differentiable function. It is also assumed that this function is strictly monotonic decreasing from
its center. In the following, the given particle density distribution f(x) will be transformed into
a distribution governed by the integrated shape function ζ(n)

j , which can be related to f (n)
ν,j (ν).

With N = 1, and leaving out N , equation (1.11) becomes

νj = ζ
(n)
j (xi) . (1.12)

If there is a single particle at position x depositing the density ν on grid-point j and Xj ≤ x ≤
Xj +w

(n)
ζ , then the probability of having the charge ν deposited on this grid-point must be equal

to the probability of finding that particle at position x:

|f (n)
ν,j (ν)dν| = |f(x)dx| (1.13)

⇒ f
(n)
ν,j (ν) =

∣∣∣∣dxdν
∣∣∣∣ f(x) =

∣∣∣∣ ddν (ζ(n)
j

)−1

(ν)

∣∣∣∣ f ((ζ(n)
j

)−1

(ν)

)
(1.14)

The strict assumptions about x and ζ(n)
j were necessary in order to have a bijective integrated

shape function ζ(n)
j , without which (ζ

(n)
j )−1(ν) would not be well-defined. This condition will

be relaxed in the following paragraph.

In order to relax the above conditions for the form factor (symmetric, continuous, differentiable,
strictly monotonic decreasing from its center), the form factor needs to be separated into sections
for which an inverse function exists. Under that condition equation (1.14) can be applied to each
section individually. The resulting values, for each section for which (ζ

(n)
j )−1(ν) is defined, are

summed up. The total sum of all contributions gives the probability for this specific ν. The only
remaining condition for the form factor is therefore that its invertible sections are differentiable.

Furthermore, the probability that one particle contributes some density > 0 to a specific grid-
point Xj is needed. It is given by

Pj = P (Xj) =

∫ Xj+wζ
Xj−wζ f(x)dx∫

V
f(x)dx

. (1.15)

The probability that it will not contribute any density is therefore given by 1 − Pj . Using all
previous results and extending them in a straightforward matter, f (n)

ν,j (ν) is given by:

f
(n)
ν,j (ν) =



0 ν < 0

(1− Pj)δ(ν) ν = 0∑n(ν)
m=1

∣∣∣∣[ d
dν

(
ζ

(n)
j

)−1
]
m

∣∣∣∣ f ((ζ(n)
j

)−1

m

)
0 < ν ≤ 1

0 ν > 1

(1.16)
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−0.5 0 1 1.5

0

1
2
Pj

Pj

1− Pj

ν

f
(1)
ν,j (ν)

Fig. 1.1 – Probability density distribution of the density deposited on the grid-point Xj by one first-
order quasi-particle. This function gives the probability of having the charge ν deposited
on grid-point Xj . Variable Pj is defined in (1.15). The value of this function at ν = 0 is
given by (1− Pj)δ(ν), which is not represented in the figure.

Here, n(ν) is the number of invertible sections of ζ(n)
j (x) that are well-defined for the value

ν,
(
ζ

(n)
j

)−1

m
are the different values of the inverse functions at ν and

[
d
dν

(
ζ

(n)
j

)−1
]
m

are the

different values of the derivative of the inverse function at ν. The inclusion of the δ-distribution
normalizes this function,∫ ∞

−∞
f

(n)
ν,j (ν)dν =

∫ ≤0

−∞
f

(n)
ν,j (ν)dν +

∫ ≤1

>0

f
(n)
ν,j (ν)dν +

∫ ∞
>1

f
(n)
ν,j (ν)dν

= 1− Pj + Pj + 0 = 1,

(1.17)

where the second integral is over the invertible sections. This enables the application of the
mathematical properties of probability distribution functions.

In the following, the first-order form factor, given in (2.30), which is bijective for x > 0 and
symmetric, is examined. For f(x) = const, f (1)

ν,j (ν) can then be defined as shown in Fig. 1.1.
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The values of ν1
j and σ1

νj
, where 1 signifies the number of quasi-particles N = 1, can now be

determined:

ν1
j =

∫ ∞
−∞

νf
(1)
ν,j (ν)dν = Pj

∫ 1

0

νdν =
1

2
Pj (1.18)

σ1
νj

=

√∫ ∞
−∞

(
ν − ν1

j

)2
f

(1)
ν,j (ν)dν =

√∫ ∞
−∞

(
ν − 1

2
Pj

)2

f
(1)
ν,j (ν)dν

=

√∫ ∞
−∞

(
ν2 − 2ν

1

2
Pj +

1

4
P 2
j

)
f

(1)
ν,j (ν)dν

=

√∫ 1

0

ν2Pjdν − 2
1

2
Pj

∫ 1

0

νPjdν +
1

4
P 2
j

∫ ∞
−∞

f
(1)
ν,j (ν)dν

=

√
E [ν2]−

(
ν1
j

)2

=

√(
1

3
− 1

4
Pj

)
Pj,

(1.19)

where E is the expected value of a random variable. Using the formulas

µ(kX) = kµ(X) and (1.20)
σ (kX) = |k|σ(X), (1.21)

the random variable νj can be scaled with the charge per particle Q
N

, resulting in

ρ1
j =

Q

N
ν1
j =

Q

N

1

2
Pj and (1.22)

σ1
ρj

=
|Q|
N
σ1
νj

=
Q

N

√(
1

3
− 1

4
Pj

)
Pj. (1.23)

In order to extend these derivations to N > 1 the following identities for standard deviations and
means are employed:

µ

(∑
N

X

)
= Nµ(X) (1.24)

σ (X + Y ) =
√

Var (X) + Var (Y ) + 2Cov(X,Y ) (1.25)

⇒ σ

(∑
N

X

)
=
√
Nσ(X) (1.26)

The transformations to the standard deviation, done in equation (1.23) and (1.26), can also be
understood as a sampling of the probability distribution with quasi-particles and computing the
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standard error of the mean of this sampling, given, in general, by

σ
(
X
)

=
√

Var
(
X
)

=

√√√√Var

(
1

N

N∑
i=1

Xi

)
=

√√√√ 1

N2
Var

(
N∑
i=1

Xi

)
=

1√
N
σ (X) . (1.27)

Here, a property of the variance, Var(aX) = a2 Var(X), as well as the analogue variance prop-
erty to (1.26), given by Var(

∑
N X) = N Var(X), was used. Equation (1.21) may seem like it

contradicts (1.26). This is not the case. The first examines the random outcome of the random
variable X , multiplies every outcome with a constant and computes the standard deviation of
this distribution. The second, on the other hand, generates two independent random outcomes
of a random variable, sums these outcomes and computes the standard deviation of this new
distribution. Essentially, σ(2X) 6= σ(X +X).

Assuming that the charge distributions from the different quasi-particles are independent, the
values of ρNj and σNρj are then given by

ρNj =
Q

2
Pj and (1.28)

σNρj =
|Q|√
N

√(
1

3
− 1

4
Pj

)
Pj. (1.29)

The signal-to-noise ratio on grid-point j for a single weight species and first-order particle shapes
is therefore given by

SNR(1)
1 =

|ρNj |
σNρj

=
1

2

√
NPj

1
3
− 1

4
Pj
. (1.30)

Again, the subscript 1 in SNR(1)
1 refers to the number of different weight species. In general, if

f(x) is constant inside the volume of one quasi-particle (which is a relatively weak condition, as
the PIC algorithm already assumes that f(x) = const inside a grid-cell), it holds that

Pj = fj2wζ , where fj = f(x) ∀ Xj − w1
ζ ≤ x ≤ Xj + w1

ζ . (1.31)

A plot of (1.30) can be found in Fig. 1.2. Since Pj ∝ f , c.f. to (1.31), it can be concluded that
areas in the simulation with a lower particle density have a strictly worse signal-to-noise ratio
in comparison to areas with a higher density. The reason for this is the decreased likelihood
of quasi-particles inhabiting that volume. Because of this, it is key to increase the number of
quasi-particles in lower density areas. This can be achieved by using the new merging/splitting
algorithm.

In order to illustrate (1.30), one-dimensional simulations with f(x) = const were performed.
For the first-order particle shape, it holds that w1

ζ = ∆x, where ∆x is the size of one cell, c.f.
equation (2.30), and using (1.31),

Pj = fj2∆x =
1

Ncells∆x
2∆x =

2

Ncells
, (1.32)
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Fig. 1.2 – Plot of SNR(1)
1 (Pj), defined in equation (1.30).

where Ncells is the number of cells in the simulation. If equation (1.32) holds for all values of j,
periodic boundary conditions are implied, as otherwise the left- and rightmost cells would have
a different probability of only 1/Ncells. This result, in combination with (1.30) and N = NppcNcells,
where Nppc is the number of particles per cell, gives

SNR(1)
1 =

√
3

2
Nppc

Ncells

Ncells − 3
2

. (1.33)

Comparing this formula with the formula for the zeroth-order form factor, given in equation
(1.10), it can be seen that the factor k in SNR(Nppc) = k

√
Nppc has changed. In the first-

order case, and for Ncells → ∞, k =
√

3/2 ≈ 1.2247. In comparison, the zeroth-order form
factor has k = 1, which is strictly worse. Therefore, higher-order form factors strictly increase
the signal-to-noise ratio in a simulation. This modified factor k needs to be taken into account
when assessing the advantages of higher particle orders in comparison to their computational
performance penalty.

In order to test equation (1.33), simulations using different numbers of particles per cell Nppc

and different numbers of cells Ncells were conducted. For each configuration, Nsamples = 2048
simulations were run, computing the mean and standard deviation of the resulting plasma den-
sity at the final timestep 1200. Each of these 2048 simulations uses a different initialization of
the pseudo-random number generator, leading to different momenta and locations of the initial
particles. The PIC code PSC [8] was used for these simulations.

One important assumption of the presented derivations is the random distribution of quasi-
particles over the whole simulation domain. This is not supported by the PSC, as this is not
especially useful as a feature for PIC codes in general. The PSC will always create an equal
amount of quasi-particles in cells with the same prescribed particle density.
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Parameter & notation Value
Initial constant plasma density, n0 1× 1016 cm−3

Plasma initial temperature 5 KeV
Number of quasi-particles Varying
Spatial grid size, ∆x Varying
Courant-Friedrichs-Lewy number, fc [4] 0.75
Number of timesteps 1200

Timestep size, dt fcdx
c

Box size in x-direction 2.5µm

Table 1.1 – Parameters of the SNR analytics verification simulations. The constant c refers to the
velocity of light.

In order to approximate the assumption of a uniform quasi-particle distribution over the whole
domain, a one-dimensional simulation, with the parameters given in Tab. 1.1, was used. Impor-
tantly, a large number of 1200 timesteps with a very high plasma temperature was simulated. The
high plasma temperature of 5 KeV results in an average of 1200 · 1/c ·fc

√
2 · 5 KeV/me = 125.90

cells traveled by each quasi-particle over the course of the simulation. Here, c is the velocity of
light and me is the mass of an electron. Additionally, the precise starting location inside the cell
of each quasi-particles was randomized.

Through these measures, the goal of approximating a randomized distribution of quasi-particles
was accomplished and the above theory agrees very well with the results of the PIC simulations,
given in Fig. 1.3 and Fig. 1.4. Both parameter dependencies are correctly represented in the
resulting data, confirming that the above model is likely correct.

1.3 Multiple weight species

In order to understand the repercussions of the particle merging and splitting algorithm, explained
in chapter 2, the above analysis needs to be extended to multiple weight species. When merging
or splitting particles, the resulting configuration will necessarily include particles of different
weights. Particles with a common weight are designated as belonging to the same weight species.
It will be shown in this chapter that multiple weight species will strictly generate more noise than
the same amount of particles with only a single weight.

The above analysis assumes a single weight species. Because of this assumption it follows that
any process that leaves a single weight species of particles, for example an algorithm that splits
all available particles in half, will be governed by (1.10) and (1.33). A process of this kind will
not suffer from any increase in noise due to different weight species.

In order to calculate the SNR value for the case of two weight species, the formula to sum up two
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Fig. 1.3 – Comparison of simulation results, using different values for Nppc, with the predictions of
equation (1.33). For each case, Nsamples = 2048 and Ncells = 128 holds. The lower plot
depicts the normalized mean density and the normalized one-σ error region around it. The
solid lines in the upper plot show the SNR values of the simulations, derived from the
mean density and σ value given in the lower plot. The dashed lines in the upper plot give
the theoretical prediction from equation (1.33).

random variables is used (c.f. equation (1.26), again for independent random variables), as each
species produces its own random charge assignment on each grid-point, which is then summed
up over all participating weight species:

µ = µ1 + µ2 (1.34)
σ2 = σ2

1 + σ2
2 (1.35)

→ SNR =
µ

σ
=

µ1 + µ2√
σ2

1 + σ2
2

(1.36)

Putting in (1.28) and (1.29), this equation becomes

SNR(1)
2 =

Q1 +Q2√
Q2

1

N1
+

Q2
2

N2

1

2

√
Pj

1
3
− 1

4
Pj

=
Q1 +Q2√
Q2

1

N1
+

Q2
2

N2

1√
N

SNR(1)
1 , (1.37)
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Fig. 1.4 – Comparison of simulation results, using different values for Ncells, with the predictions of
equation (1.33). For each case, Nsamples = 2048 and Nppc = 200 holds. The lower plot
depicts the normalized mean density and the normalized one-σ error region around it. The
solid lines in the upper plot show the SNR values of the simulations, derived from the
mean density and σ value given in the lower plot. The dashed lines in the upper plot give
the theoretical prediction from equation (1.33).

where SNR(1)
1 is defined in equation (1.30) or (1.33), Q1 + Q2 = Q with Qi the total charge of

particles of species i, and N1 + N2 = N with Ni > 0 the total number of particles of species i.
It was also assumed that P1j = P2j = Pj . From

Q = Q1 +Q2 =
Q1

N1

N1 +
Q2

N2

N2, (1.38)

a suitable definition for the charge of each quasi-particle of species i is derived to be Qi/Ni. Using
this definition, it is straightforward to set the weight of each quasi-particle of species i to

wi =

Qi
Ni
Q
N

, (1.39)

which is a unit-less quantity. In this model and if there is only one weight species all quasi-
particles have w = 1. The charge of a single quasi-particle of species i is then given by wi QN =
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Qi
Ni

. From these definitions it follows that

w1N1 + w2N2 = N (1.40)
⇔ w1N1 + w2N2 = N1 +N2. (1.41)

With this definition of wi, equation (1.37) can be written as

SNR(1)
2 =

√
N1ppc +N2ppc

N1ppcw2
1 +N2ppcw2

2

SNR(1)
1 , (1.42)

where Nippc = Ni
Ncells

.

When comparing (1.33) to (1.42), it is apparent that the existence of two weight species manifests
itself in the additional factor √

N1ppc +N2ppc

N1ppcw2
1 +N2ppcw2

2

. (1.43)

This factor vanishes for w1 = w2, as expected. In order to understand the repercussions of
multiple weight species it is helpful to show that√

N1ppc +N2ppc

N1ppcw2
1 +N2ppcw2

2

≤ 1, (1.44)

which means that the SNR value of a simulation that uses two different weight species to rep-
resent N particles is strictly worse than the SNR value of a simulation that uses only a single
weight species. Starting from (1.44),√

N1ppc +N2ppc

N1ppcw2
1 +N2ppcw2

2

≤ 1 (1.45)

⇔ N1ppc +N2ppc ≤ N1ppcw
2
1 +N2ppcw

2
2 (1.46)

and with w1
(1.41)
= 1 + (1− w2) N2

N1
,

⇔ (1− w2)2

(
1 +

N2

N1

)
≥ 0. (1.47)

This equation holds true since N1 ∈ N+ ∧ N2 ∈ N+. The above derivations can be extended to
more than two weight species in a straightforward manner. It can therefore be concluded that it
is always beneficial to employ the smallest possible amount of different weight species.

It might be of interest to consider some examples in order to better understand the alteration of
the SNR value when performing merging or splitting operations. The first example concerns
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particle splitting. A fraction 0 ≤ f ≤ 1 of all initial particles N will be split and doubled,
while conserving the total charge. The different respective quantities of interest are then given
by (primed values are values after splitting)

N ′1 = (1− f)N, (1.48)
N ′2 = 2fN, (1.49)
N ′ = (1 + f)N, (1.50)
Q′1 = (1− f)Q, (1.51)
Q′2 = fQ and (1.52)
Q′ = Q. (1.53)

Using (1.39), the weights of the two final particle groups are then given by

w′1 =
N ′

N
= 1 + f and (1.54)

w′2 =
1

2

N ′

N
=

1

2
(1 + f). (1.55)

Using these values, the effect on the particle signal-to-noise ratio can be calculated to be

SNR′(1)
2

SNR(1)
1

=

√
N ′1 +N ′2

N ′1w
′2
1 +N ′2w

′2
2

·
√

3

2
N ′

1

Ncells − 3
2

/√
3

2
N

1

Ncells − 3
2

=

√
1

1− 1
2
f
.

(1.56)

When increasing f from 0 to 1, this function strictly monotonically increases from 1 to
√

2. For
f = 1 the number of particles is doubled, resulting in an increase in the SNR value by a factor
of
√

2, as expected. For all values between 0 and 1, eq. (1.56) shows that increasing the particle
number strictly improves the signal-to-noise value, even though two weight species are used. Of
course, the simulation will also need more computational resources as the number of particles
increases. The resulting SNR value is still smaller than the SNR value for the case that uses only
one weight species for representing the increased particle number N ′ (which was also shown in
general in eq. (1.47)), as

SNR′(1)
2

SNR′(1)
1

=

√
N ′1 +N ′2

N ′1w
′2
1 +N ′2w

′2
2

·
√

3

2
N ′

1

Ncells − 3
2

/√
3

2
N ′

1

Ncells − 3
2

=

√
1

(1− 1
2
f)(1 + f)

< 1 for 0 < f < 1.

(1.57)

Eq. (1.57) gives the general formula for the amount of SNR a simulation is missing out on when
employing two weight species instead of only a single weight species. The minimum value of
SNR′(1)

2 /SNR′(1)
1 in [0,1] is given by 2/3

√
2 ≈ 0.94 for f = 1/2.
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The second example concerns particle merging. A fraction 0 ≤ f ≤ 1 of all initial particles N
will be merged and halved, while conserving the total charge. The different respective quantities
of interest are then given by (primed values are values after merging)

N ′1 = (1− f)N, (1.58)

N ′2 =
1

2
fN, (1.59)

N ′ = (1− 1

2
f)N, (1.60)

Q′1 = (1− f)Q, (1.61)
Q′2 = fQ and (1.62)
Q′ = Q. (1.63)

Using (1.39), the weights of the two final particle groups are then given by

w′1 =
N ′

N
= 1− 1

2
f and (1.64)

w′2 = 2
N ′

N
= 2− f. (1.65)

Taking the same approach as before, the effect on the SNR value can be calculated:

SNR′(1)
2

SNR(1)
1

=

√
N ′1 +N ′2

N ′1w
′2
1 +N ′2w

′2
2

·
√

3

2
N ′

1

Ncells − 3
2

/√
3

2
N

1

Ncells − 3
2

=

√
1

1 + f

(1.66)

This function is strictly monotonically decreasing from 1 to 1/
√

2, as expected. Merging will
therefore make the signal-to-noise ratio strictly worse, but will save computational resources due
to the reduction in particles.
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2.1 Introduction

The PIC method makes use of quasi-particles to represent the particle distribution function. One
very common occurrence of such a distribution function is in the relativistic Vlasov-Maxwell
(RVM) system. The number of quasi-particles is a crucial parameter when performing these
simulations. An algorithm that is able to merge and split particles is called an Adaptive-Particle-
Refinement (APR) algorithm. It enables the modification of the number of quasi-particles during
the run-time of a simulation using an explicit scheme. The number of quasi-particles has impor-
tant implications for a variety of problems:

1. The number of quasi-particles determines the magnitude of plasma fluctuations and noise
([12], [2], [23], [3]). In current simulations these fluctuations (also called discrete particle
noise) are always much larger than those encountered in experiments ([14], [25]). At the
same time, it is known that many instabilities in plasmas depend on the level of this noise.
The number of quasi-particles is identified to be the singular most important property that
determines the signal-to-noise ratio for various derived quantities (c.f. chapter 1).

2. If a process does not conserve the charge density, for example in the case of cascading
(e+e−-pair and photon production) in ultra-intense laser fields, plasma discharges [19] or
ionization, the particle load can grow exponentially. The implication for simulations is that
they can become unsustainable in terms of their computational costs, unless the particle
load is mitigated by a refinement process.

3. For Monte-Carlo simulations, for example Monte-Carlo-Collisional (MCC) or Monte-
Carlo self-field simulations, particles involved in the process must have an equal weight in
order for the algorithm to be correct. APR can be capable of breaking down distributions
composed of quasi-particles of non-equal weights into distributions of quasi-particles of
equal weights. For this to work well, the number of different weights has to be restricted.
Multiples of the merging and splitting factor of the APR algorithm work well in this case.
Furthermore, keeping the amount of different weight species low is important, as multi-
ple particle weights lead to more fluctuations in the simulation, as shown in chapter 1.3,
especially equations (1.42) and (1.44).

4. Adaptive-Mesh-Refinement-PIC (AMR-PIC) techniques are considered in order to enable
the adaptation of the resolution in configuration space. This method therefore leads to
non-constant electromagnetic grids. APR is a candidate to solve the issue of representing
particle distributions on non-constant grids.

The number of quasi-particles is often the main contributor to the computational cost of a simu-
lation. The APR method can be used to keep the computational load on sustainable levels, while
keeping noise properties inside acceptable limits. After changing the quasi-particles on-the-fly,
during the run-time of an explicit scheme, the simulation will not follow the characteristics of
the Vlasov equation anymore. Loosing out on this mathematical guarantee is troublesome, but
it may be a necessity in order to enable the other important advantages of APR. Nonetheless, it
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is very important to limit non-physical repercussions of APR as much as possible. In order to
dynamically adapt the number of quasi-particles in a PIC simulation in an optimal fashion, the
following 11 topics are therefore of interest:

1. Total mass and charge conservation

2. Total momentum conservation

3. Total energy conservation

4. Obey special relativity

5. Charge density conservation at each grid-
point

6. Current density conservation at each
grid-point

7. Momentum space distribution function
conservation

8. The number of different weight species

9. Conservation of higher orders of the dis-
tribution function

10. The supported number of dimensions in
phase space

11. The computational performance of the
algorithm

Many different approaches have been published, each one addressing certain subsets of this list
of topics of interest:

1. One of the most general methods was developed by Assous et al. [1]. It can be applied to
different grids (finite difference, finite volume, finite element on unstructured or structured
grids) and very different particle shapes. The proposed scheme is non-relativistic and
produces a wide array of resulting weights. It can also require the solution of relatively
large systems of equations. Moreover, making the method energy conserving demands
excessive computational power.

2. Making use of the results from [1], Welch et al. [30] implemented a merging/splitting al-
gorithm for 2D/3D orthogonal grids and first-order particle shapes. This entails the above
mentioned problems of a large weight spread, inherent to the approach of Assous. Welch’s
method requires solving an 8 × 8 system of equations, where the existence of a solution
can not be guaranteed. An expansion leading to relativistically correct merging/splitting
is detailed in the paper. It requires the solution of a non-linear equation. In addition, al-
gorithms to preserve the momentum distribution in a better way by incorporating approx-
imate higher-order statistical momenta (e.g. kurtosis) are introduced. These additional
algorithms only work for symmetric distributions in momentum space.

3. One of the most well-known publications about particle merging/splitting is the paper by
Lapenta [13]. The paper classifies algorithms into two groups: i) binary and ii) ternary
schemes. Binary schemes are given for up to three dimensions in configuration space.
However, they only conserve the total energy or momentum for merging operations and
conserve the grid moments only for first-order particle shapes. The ternary scheme con-
serves both the total energy and total momentum as well as the grid moments. For this
scheme, merging is only possible in 1D and approximations have to be made for higher
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dimensions. Both groups, the group of binary and the group of ternary schemes, do disturb
the velocity distribution and make no special attempts to correct it. They are given for the
non-relativistic regime only.

4. One of the most recent publications about particle merging is from Teunissen et al. [29]. It
follows the work of Lapenta [13], inheriting most of its properties. It explores the capabil-
ities of the binary scheme, testing different methods and presents a well suited algorithm
to find particles that are close to each other in 6D space. One of the presented methods
offers very good preservation of the velocity distribution by picking previously existing
momenta. However, if that method is used, the total momentum is not preserved.

5. Frignani et al. [9] present an algorithm similar to Lapenta [13] and Shon et al. [27].

This chapter presents a new APR scheme, which combines many ideas from previous papers
in a unique way. Referencing the list of the previously established topics of interest above, the
method proposed in this dissertation achieves the following:

1. Total mass and charge conservation X

2. Total momentum conservation X

3. Total energy conservation X

4. Obey special relativity X

5. Charge density conservation at each grid-
point X

6. Current density conservation at each
grid-point X:
The method is specialized to electro-
magnetic field solvers that make use of
only the charge density via a current-
conserving integration scheme [5].

7. Momentum space distribution function
conservation:
In order to enhance the fidelity in mo-
mentum space, previous momenta are
used and modified slightly in order to
guarantee momentum conservation. This
method is similar to the approach de-
scribed in [29], but has the added benefit
of total momentum conservation.

8. The number of different weight species:
The present algorithm favors merging/

splitting particles with similar weights
and keeps the number of weight species
small by presorting in weight space. An
additional step that reduces the number
of different weight species is described
as well.

9. Conservation of higher orders of the dis-
tribution function:
The present algorithm does not preserve
any higher orders of the distribution
function.

10. The supported number of dimensions in
phase space:
A full description in one, two and three
spatial as well as momentum dimensions
is given.

11. The computational performance of the
algorithm:
The computational demand is compara-
ble to the demand of the particle pusher.
Most of it is generated by sorting the par-
ticles in 6D phase space, which could
be mitigated by more complex particle
structures.
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The goal of this new algorithm is to achieve the conservation of the largest possible number of
system properties. Properties that can not be preserved perfectly are preserved in an optimal way.
Since the errors, which are introduced into the system by a particle merging/splitting algorithm,
are very hard to quantify systematically and, in many cases, depend on the specific system under
consideration, the best next target to aim at is to try to introduce the least possible amount of
those errors.

Additionally, the algorithm requires very few parameters to be set at simulation start. It is there-
fore not necessary to guess multiple characteristics of the targeted non-linear system. Briefly
summarized, the present approach ensures that the merging/splitting process has the least pos-
sible impact on the physics, while also being easy to configure and having good performance
properties.

The method is only applicable to regular grids. The full preservation properties are reliably
achievable only for first-order particles. For second-order particles a non-linear equation must
be solved. This dissertation does not give a proof of existence for the solution of this equation,
but it has been found to exist in the majority of tested cases. Still, due to the unpredictability of
a non-linear equation solver, and the amount of times these equations would need to be solved,
the present work focuses on first-order particles.

After this introduction, the algorithmic steps that are used to identify groups of particles as merg-
ing or splitting targets are described. Particles in these groups share their particle kind (their mass
and charge) as well as their cell. The weight and momentum of all particles in a group is subject
to certain similarity conditions, which are used to establish the quality of merging and splitting.
These similarity conditions may be controlled using parameters. The impact of these parameters
on the faithfulness of the algorithm is investigated subsequently in chapter 3.

Preferential treatment of particles with lower weights, in the case of merging, or higher weights,
in the case of splitting, helps lowering the weight diversity of the resulting particles. This is
advantageous to the resulting signal-to-noise ratio of the system, as discussed in chapter 1.

After describing the algorithm that identifies viable groups of particles, the process to compute
the final locations and final momenta of the resulting after-merge or after-split particles is de-
tailed. Since the process for splitting is very different compared to the process for merging, the
two are discussed separately.

The progress of this work has been presented by Nils Moschüring at multiple international con-
ferences. Some first details were presented at the Conference on Computational Physics (CCP)
in October 2012 in Kobe, Japan. In the year 2014, Nils Moschüring gave a public update on
his progress at the CCP in August in Boston, USA, and at the spring meeting of the Deutsche
Physikalische Gesellschaft (DPG) in March in Berlin.

Quasi-particles have the following normalized properties: #»x i (position), #»p i (momentum), wi
(weight) and mi (mass). The normalized particle energy (the energy of every particle inside a
quasi-particle) is given by Ei = mi

me
wi
√
p2
i + 1. Merging and splitting is restricted to particles of

equal mass and therefore the factor mi/me can be omitted.
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2.2 Finding groups of target particles

In order to determine groups of particles that can be merged or split, the sorting procedures
detailed in 2.2.1, 2.2.2 and 2.2.3 will be used. The original unsorted particle array is only given
as an input in step 2.2.1. Each consecutive step is applied to each resulting particle group created
by the previous step.

2.2.1 Sort particles by cell and by kind

The merging/splitting algorithm only works on particles that share a cell and that have the same
kind. The kind of a particle is an abbreviation for its charge and mass. The sorting algorithm,
used for grouping the particles by cell and kind, does not require any particular properties. The
simulation code that was used for the examples in this dissertation, for example, uses a standard
count sort implementation. Some codes store quasi-particles in different arrays, depending on
their kind and cell. These codes do not need to perform this step.

A result of this grouping is N cell, the number of particles, of a specific kind, in each cell. All
subsequent formulas assume that the considered particles have the same kind. In order to de-
termine if merging or splitting should happen, the algorithm needs a range

[
N cell

min, N
cell
max

]
. The

current amount of particles in each group is compared to this range. The action to be taken by
the algorithm is chosen according to the following list:

N cell < N cell
min ⇒ split

N cell
min ≤ N cell ≤ N cell

max ⇒ skip

N cell > N cell
max ⇒ merge

(2.1)

Quasi-particle groups that are not skipped due to this prerequisite are supplied to the next step.

2.2.2 Sort particles by weight

This step starts with the previously determined groups of particles (sorted by kind and cell).
Inside each of these groups, subgroups are created, according to the particle weight. It was
shown in chapter 1.3, especially (1.42), that it is beneficial to have the smallest possible amount
of different particle weight species. Therefore, in order to keep the spread of particle weights
in the simulation as small as possible, an algorithm should try to merge light particles and split
heavy particles. This necessitates a complete sort of particles according to their weight. The
algorithm will then either i) start merging from the lower end of the weight-sorted particle array
up until the number is sufficiently reduced, or ii) start splitting from the upper end down until the
number has sufficiently increased. In order to save computational load this sort can be relaxed to
only sort the particle array according to two weight bins given by [wmin, wavg] and [wavg, wmax].



2.2 Finding groups of target particles 21

Nonetheless, it was found that a more rigorous presort can be very beneficial. In order to mini-
mize the amount of different weight species in the simulation, rigorous presorting is done using
an amount of bins equal to the number of different weights in the cell. Any merging is done ex-
clusively on these bins. Then, if all particles start with the same weight, and merging and splitting
procedures are restricted to initial/final ratios of 1/2 and 2 respectively, the particle weights in the
simulation can only become powers of 2. This decreases the variety in weight space and there-
fore increases the statistical significance of the simulation results, as shown in chapter 1. It also
makes it much easier to guarantee certain weights, if that is necessary for certain algorithms, for
example for MCC algorithms.

The weight sort is also used to impose a lower limit on the particle weight. All particles below
a certain minimal weight are not included in any resulting particle group that is destined for
particle splitting. This imposes a minimum resolution for the resulting density distribution.

2.2.3 Sort particles by momentum

Again, this step starts with the previously determined groups of particles (now grouped by kind,
cell and weight) and further refines these groups. Before the process of merging or splitting
can finally be started the presorted particles are now clustered in momentum space. In order
to achieve a high fidelity in momentum space, the momenta of particles that are selected for
merging or splitting should be close together. If they are close together, the sum or fraction
of the momentum is similar (per mass) to the value of the original particles, which makes the
resulting momentum distribution similar as well. For most of the existing schemes the distance
in momentum or configuration space is directly correlated to the quality of the merging process
([29], [13]). Closeness is not that vital for the present scheme, since it will choose the momenta of
original quasi-particles for most of the resulting quasi-particles. Nonetheless, it will be verified
to still be an important element.

A binary tree is used to perform the clustering of the three dimensional momentum-space. This
algorithm is shown in Fig. 2.1. This clustering algorithm provides i) a dynamically adapted
bucket size and ii) dynamically adapted bucket boundaries. This means that it is possible to
choose between sorting into fixed buckets, or sorting as long as there are too many particles left
in a bucket by adapting the bucket size.

First, the size of the underlying problem is determined by computing the minimum and maximum
momentum value

pk,min = min
particles

pk and (2.2)

pk,max = max
particles

pk ∀k ∈ {x, y, z} (2.3)

of all particles in a group for every dimension. Second, the recursive algorithm divides one
dimension in half, sorting the particles, and then acts on each of the two halves, dividing them
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start

c = 0
istart = 0
iend = N
f = {}

d = c mod 3
l = bc/3c

n = iend − istart

n < N sort
min

n < N sort
max

∧ l ≥ lmin

stop

f = f ∪ {[istart, iend]}

m = ([ #»p max]d − [ #»p min]d) /2
imid = sort (d, istart, iend,m)

c = c + 1

[ #»p max]d = m
iend = istart + imid

[ #»p min]d = m
istart = istart + imid

yes

no

yes

no

Fig. 2.1 – Flow diagram of the binary tree recursive clustering algorithm. The expression [ #»p ]d refers
to the d’th element of vector #»p . The variable c gives the depth of the recursion, istart, iend
and imid are indexes of particles inside the particle array, d gives the currently treated di-
mension, l the current level inside the binary tree and n the number of particles for the
current recursive depth. The function sort(d, i1, i2,m) sorts the particle array by the mo-
mentum dimension d, only considering particles between index i1 and i2 and producing two
buckets [i1, imid[ and [imid, i2], where the first buckets contains the particles with momen-
tum [ #»p ]d < m and the second bucket contains the particles with momentum [ #»p ]d ≥ m.
The bifurcation point is marked by the light red box. With the exception of f , all variables
need to be duplicated for their respective branch at this point. The variable f is the set of
buckets that are eligible for further processing. f is updated for each recursive iteration in
a global manner.
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in a different dimension and so on. This process cycles through the momentum dimensions px,
py and pz. The recursive binning algorithm in momentum space stops as soon as each of the bins
holds a number of particles N < N sort

max, where

N sort
max (2.4)

is a predefined number of maximum allowed particles in a momentum bin. If a branch contains
fewer particles than needed for the subsequent merging/splitting algorithm N sort

min , the recursion
stops as well. The whole process is illustrated in Fig. 2.1.

N sort
max is a key parameter to control the fidelity to the initial shape of the shape of the distribution

function in momentum space after splitting or merging. Setting N sort
max to a smaller value will

provide smaller particle clusters, which lie closer together. The initial number of particles for
a merging/splitting process Ninitial is bounded by N sort

min and N sort
max. In this way, the merging or

splitting ratio

Q =
Ninitial

Nfinal
(2.5)

is also influenced by these two values. Furthermore, Q depends on the number of final particles
in the merging or splitting algorithm Nfinal, for which some bounds will be defined later on.

When recursion stops in a certain subspace of phase space, particle splitting or merging can
be performed on the particles in this subspace. The value of l, which describes the number of
divisions of all dimensions during the recursive process, as shown in Fig. 2.1, can be used to
determine the current size of the respective subspace in momentum space. Thus, using equations
2.2 and 2.3, a certain maximum distance dpk, where k ∈ {x, y, z}, between to be merged or split
particles can be enforced by setting a minimum splitting level

lmin = max
k={x,y,z}

{⌈
log2

pkmin − pkmax

dpk

⌉}
. (2.6)

The minimum splitting level lmin can be revised and enhanced to a vector value. This way, the
different momentum dimensions can have their own individual resolution. This change requires
some rewiring in the binary tree algorithm and may not always be worthwhile. In many appli-
cations it is very helpful to define a minimum value for lmin that is independent of dpk. The
two-stream instability, for example, benefits greatly from forcing lmin ≥ 1, since quasi-particles
of the two counter-propagating streams should never be merged.

Since the algorithm acts on a, to a certain degree, random distribution, it is very important to not
introduce biases into the system. The following list gives six important additions to the binning
algorithm, which help accomplish this goal:

1. The minimum and maximum values for each dimension have been modified. The new
values are given by pmod

kmin = pkmin−rlk and pmod
kmax = pmod

kmin+2lk, where r is a random number
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in the range [0, 1[ and lk = pkmax − pkmin. This ensures that pmod
kmin < pkmin, pmod

kmax > pkmax

and that

∀p ∈ [pkmin, pkmax] : P

(
p =

(
pmod
kmax − pmod

kmin

)
2

)
= const, (2.7)

where P is the probability over the random variable r. This ensures that there is no prefer-
ential value in momentum space after splitting and merging. This preferential value exists,
if the respective dimension is always divided along the same line (while the momentum
distribution in the cell stays approximately the same). Consistently dividing along the
same line leads to spikes in the momentum distribution. In general, this modification ne-
cessitates an increase in lmin by one in order to maintain the same maximum distance in
momentum space dpk. This, in turn, increases the computational demand of the algorithm.

2. The order of the momentum dimensions in each full iteration of all momentum dimensions
is chosen randomly. This ensures that there is no preferential momentum dimension with
a consistently higher or lower enforced resolution.

3. It is helpful to implement an lmax value as well. The binary tree stops at every leaf that
reaches this maximum level. It is even better to implement a vector value for it. The
algorithm can avoid stack overflows by adhering to lmax (if the algorithm is implemented
recursively). It is also possible to exclude specific momentum dimensions from merging/
splitting, if a vector valued lmax is available. Finally, the current implementation of this
algorithm offers the possibility to decide what is done with a bin that is not being divided
anymore, due to it being over the lmax limit. Either that bin is included in possible merging/
splitting operations, or it is excluded. In the case of merging, it is commonly advantageous
to still merge the particles in those bins. They are already too similar with respect to their
momentum, so merging them is desired. In the case of splitting the opposite is commonly
true. The desired resolution in momentum space is already reached and splitting these
particles is therefore not desired. It does still provide more quasi-particles, and if there is
another process that increases momentum space coverage it may still be useful.

4. The binary tree produces two branches at each recursive iteration. The algorithm chooses
randomly, which one of these two branches is pursued first. In doing this, the order of
the recursive calls becomes arbitrary, which ensures that particle groups for merging or
splitting are selected randomly. Since the algorithm stops merging and splitting particles in
each cell when N cell is within

[
N cell

min, N
cell
max

]
, it is important to make sure that the algorithm

does not always refine the same regions in phase space. The same effect can be achieved
by randomizing the order of the resulting, after-binning, particle groups.

5. In modifying the previous point, one can opt to sort the resulting particle groups by their
depth in the recursive tree, instead of randomizing them. In that case, the merging and
splitting algorithm uses the groups that are deepest in the tree first, which will provide the
highest resolution in momentum space. When doing this, specific parts of the momentum



2.3 Determination of particle properties after merging 25

space are merged or split preferentially, in comparison to other parts. This will lead to prob-
lems if the merging/splitting introduces large errors in the momentum space distribution
(i.e. the momentum distribution gets distorted in a meaningful manner by the algorithm).
If N cell is large enough, this should not be a problem with the proposed algorithm, since it
is very faithful in preserving the momentum space. For the later examples, the algorithm
therefore always sorts the resulting particle groups by their depth in momentum space.

6. Finally, an anisotropic binary tree resolution was implemented as well. When activating
this modification, each bin in the binary tree can only be further refined and processed, if it
shares a boundary with [pkmin, pkmax]. This makes the resolution more coarse in the center
of phase space, allowing for more merges to happen. In most applications, more particles
will reside in this center region and therefore merging will mostly happen there. The outer
regions oftentimes need a higher resolution due to having fewer particles representing
them. This modification therefore increases the resolution in regions which might need
it, while facilitating merging in regions that require a lower resolution. A further extension
of this feature allows for setting a threshold region [pkthstart, pkthend]. In that case, only bins
that lie completely outside or overlap with this threshold region are allowed to be refined.
This enables specific phase space regions to be resolved coarsely, which may be valuable
for certain applications.

This concludes the particle grouping part of the algorithm. The result of this effort is a list of
particle groups, where all particles in a specific group share certain properties: i) they are of the
same kind ii) they reside in the same cell in configuration space, iii) they have similar weights and
finally iv) they fulfill customizable requirements regarding their closeness in momentum space.

2.3 Determination of particle properties after merging

Following the procedure laid out in the previous section, there is now a list of particle groups,
with each group consisting of a number of particles between N sort

min and N sort
max. These particle

groups are ordered by weight from smaller to larger, as described in chapter 2.2.2. The groups
will now be processed, taking advantage of this order, with the goal of decreasing the number
of quasi-particles (merging). In this section, the necessary algorithms to perform a merging
operation are detailed. They will decrease the number of particles in each distinct group.

2.3.1 Determination of final locations

This scheme is tailored for PIC algorithms that calculate currents by depositing charge on a grid,
followed by solving the continuity equation in order to achieve charge conservation [5]. One
example of such an algorithm is detailed in [26].
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j merge = 0
#»
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Fig. 2.2 – Process to accumulate 3 particles at a single location and merging them into 2 particles,
accompanied by two particle push steps. The diagram depicts two spatial dimensions. The
superscript of each quantity describes its respective timestep, with n being an arbitrary

timestep of the simulation. The quantity #»x
n− 1

2
1 therefore describes the location of the

first particle at timestep n − 1
2 , while

#»
j n describes a current density at timestep n. The

primed quantities are locations of the final particles after merging. The value #»x t is a target
location of the accumulation process. If a correct merging location #»x t can be found, the
spurious current density

#»
j merge will be 0 and the process is free of any spurious divergence

in the electric field. It will be shown that each merging process may contain multiple target
locations, and t will index these locations.

First, the algorithm needs to accumulate all particles of a group on several distinct locations.
The number of these distinct locations must be smaller than the number of initial particles. Each
merging operation will result in fewer particles, which means that multiple initial particles must
share a location. A simple representation of this process is shown in Fig. 2.2. If the initial
particles do not share a location, merging the particles will create spurious divergence in the
electric fields. The source of this divergence is found in

∂

∂t
(ρ− #»∇ · #»

E) = 0, (2.8)

which can be derived from (2.9) and Maxwell’s equations. From this equation, it follows that
any change in the charge distribution will result in a change in the divergence of the electric
field vector. This change in divergence is equal to the electric fields that would be produced by
moving the initial particles to that shared location. In order to avoid this change in divergence,
this movement has to be done in a very specific manner, a manner that does not produce any
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Fig. 2.3 – Decoupled x-direction particle accumulation. The final particles (orange) have a common
x-coordinate. The initial particles (green) do not have this property.

additional divergence. From
∂

∂t
ρ+

#»∇ · #»
j = 0, (2.9)

the continuity equation, it follows that particle movement will not introduce any spurious diver-
gence into the system if it does not entail any current (

#»
j merge in Fig. 2.2). Movement without

currents will not change the charge deposited on the grid cells, which will, in turn, guarantee that
the change in divergence is zero. Achieving this specific movement is detailed in the following
section.

In order to conserve the distribution function in configuration space, the charge deposition on
each grid-point of each affected cell must stay invariant during a merge operation. From eq. 2.9,
it was already deduced that if a scheme does not produce any currents, it will also not produce any
change in the deposited charge on the grid. Naturally, movements along a specific axis will only
produce currents in that specific direction. As a consequence, the problem of shifting particles
to a common location without changing the deposited charge can be reduced to the problem of
solving three sets of independent problems. First, the target merge position in the x-direction xt
(Fig. 2.3) must be found. Second, using xt the target merge position yt can be found (Fig. 2.4).
Third, making use of xt and yt, the algorithm finds the target merge position zt (Fig. 2.5).

This way it is possible to find a target position #»x t =
(
xt yt zt

)
with the following character-

istics:
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yt

Fig. 2.4 – Decoupled y-direction particle accumulation, to be performed after the x-direction step,
shown in Fig. 2.3. The final particles (orange) have a common x- and y-coordinate. The
initial particles (green) do not have this property.

• All particles can be moved to #»x t in three steps. First, going along the x-axis, the y and z
coordinates of the particles are left unchanged. Next, the particles move along the y-axis,
making use of the position xt, and leaving the z coordinates of the particles unchanged.
Finally, the particles are moved along the z-axis, with fixed positions xt and yt (the steps
are shown in Fig. 2.3 - Fig. 2.5).

• No current is produced if all initial particles are moved in this manner to #»x t.

Discretizing (2.9), the current density j for the x-direction (the formulas for the y and z directions
are derived analogously) can be calculated as follows [26, (4.146)]:

jn+1
j+ 1

2
kl

= jn+1
j− 1

2
kl

+
∆x

∆t

(
ρ
n+ 3

2
jkl − ρ

n+ 1
2

jkl

)
, (2.10)

where ∆x and ∆t are the grid size in x-direction and the time step size, respectively. Fig. 2.6
gives the definition of the grid coordinates j, k and l. The total charge contribution of a sin-
gle quasi-particle located at #»x onto the spatial nodes at j∆x, k∆y and l∆z is obtained by the
following expression [26, (4.136)]

Σjkl∆x∆y∆z ζjkl (
#»x ) = Σjkl

∫ xj+
∆x
2

xj−∆x
2

dw1

∫ yk+ ∆y
2

yk−∆y
2

dw2

∫ zl+
∆z
2

zl−∆z
2

dw3 S ( #»x − #»w) , (2.11)
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Fig. 2.5 – Decoupled z-direction particle accumulation, to be performed after the y-direction step,
shown in Fig. 2.4. The final particles (orange) share the same location.

where ζjkl ( #»x ) is the charge distribution of a quasi-particle with the shape function

S ( #»x ) = S1 (x)S2 (y)S3 (z) (2.12)

at location #»x over the nodes at j∆x, k∆y and l∆z with coordinates (xj, yk, zl) of the grid. The
structure of S will be given later. This requires that [26, (4.137)]

ζjkl (
#»x ) = ζ1j (x) ζ2k (y) ζ3l (z) =

1

∆x∆y∆z

∫ xj+
∆x
2

xj−∆x
2

dw1

∫ yk+ ∆y
2

yk−∆y
2

dw2

∫ zl+
∆z
2

zl−∆z
2

dw3 S ( #»x − #»w) . (2.13)

Since, instead of performing a full time step, only the current for an arbitrary particle displace-
ment is determined, (2.10) can be written as

jj+ 1
2
kl = jj− 1

2
kl +

∆x

∆t
∆ρjkl, (2.14)

where, for one dimensional particle movement ([26, (4.145)]),

∆ρjkl = wζjkl (
#»x + δx #»e x)− wζjkl ( #»x )

= w [ζ1j (x+ δx)− ζ1j (x)] ζ2k (y) ζ3l (z) ,
(2.15)
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here, #»x is the particle position with components x, y and z , #»e x is the unit vector in x-direction
and δx = xt − x. Equation (2.15) can now be used to set ∆ρ to zero at an arbitrary position jkl,
using a total number of particles N :

∆ρjkl =
N−1∑
i=0

wi [ζ1j (xi + δxi)− ζ1j (xi)] ζ2k (yi) ζ3l (zi)

= 0,

(2.16)

where δxi = xt − xi is the shift of the ith particle. The value ∆ρjkl refers to the total charge
difference of all participating particles. T is the number of final particle positions. The final
positions of the particles are then given by

xi + δxi = xt, where 0 ≤ t ≤ T − 1. (2.17)

Since there should be fewer final positions than initial positions, it holds that

GT = N, (2.18)

with G > 1, G ∈ N. Factoring out the common form factors as particles start to share the same
point in space, equation (2.16) can be written as

T−1∑
t=0

ζ1j (xt)
G−1∑
g=0

wGt+gζ2k (yGt+g) ζ3l (zGt+g) =
N−1∑
i=0

wiζ1j (xi) ζ2k (yi) ζ3l (zi) . (2.19)

In this equation, G (the merge group size) is the number of particles that will share a location,
and that will therefore be able to be merged into fewer particles. This equation assumes a specific
distribution of the initial particles to the final positions. In the following it will be seen that the
specific choice of this distribution is of significance. The goal is to find a value for every xt
so that (2.19) holds for every element of a specific group of jkls. This can be impossible for a
certain choice of distributing the initial particles to the final positions. Nonetheless, studying the
permutations shows that testing out different distributions can lead to a solvable system (see also
the later section in this chapter Permutations).

For each j, the previous equation (2.19) constitutes a system of linear equations:

A
#          »

ζ1j (x) =
#»

bj , (2.20)

where A ∈ RC×T ,
#          »

ζ1j (x) ∈ RT and
#»

bj ∈ RC are given by

Art =
G−1∑
g=0

wGt+gζ2k (yGt+g) ζ3l (zGt+g) (2.21)

#          »

ζ1j (x) =
(
ζ1j (x0) . . . ζ1j (xT−1)

)
(2.22)

bjr =
N−1∑
i=0

wiζ1j (xi) ζ2k (yi) ζ3l (zi) (2.23)
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Fig. 2.6 – Illustration of the charge deposition for first-order particle shapes. The eight corners of the
red cube, marked with red balls, will experience charge deposition from particles inside the
red cube.

with

r : {1, . . . ,K · L} → {k1, . . . ,kK} × {l1, . . . ,lL},
r 7→ (k,l),

(2.24)

and C = K · L. The new variable r maps onto all values of k and l for which ∆ρjkl = 0 should
hold. K and L denote the amount of values for k and l.

First-order form factor

In this chapter, equation (2.19) will be solved for first-order form factors. Since, in this case,
there are only two layers of cells that are affected with current by the movement of particles (cf.
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Fig. 2.6) equation (2.14) can be written as:

j 1
2
kl =

∆x

∆t
∆ρ0kl (2.25)

j 3
2
kl = j 1

2
kl +

∆x

∆t
∆ρ1kl (2.26)

=
∆x

∆t
(∆ρ0kl + ∆ρ1kl) (2.27)

The particles reside in the cube spanned by the coordinates j = k = l = 0 and j = k = l = 1
(cf. Fig. 2.6). Total charge conservation guarantees that

j 3
2
kl = 0 ⇔ ∆ρ0kl + ∆ρ1kl = 0. (2.28)

From this it follows that nullifying (2.25) will result in perfect divergence-free movement. This
is equivalent to solving (2.20) with j = 0. The shape factor for first-order particle shapes is given
by

S
(1)
1 (x) = ρ0

{
0 |x| > ∆x

2
1

∆x
|x| ≤ ∆x

2

, (2.29)

where ρ0 is an arbitrary charge density, which depends on the normalization. Shape factors S(1)
2

and S(1)
3 are found by substituting ∆x for ∆y and ∆z, respectively. Using (2.13), the integrated

particle shape function (i.e. the charge deposition function) for a first-order particle shape is
given by

ζ
(1)
1j (x) = ρ0

{
0 |x− xj| > ∆x

1− |x−xj |
∆x

|x− xj| ≤ ∆x
. (2.30)

The integrated particle shape functions ζ(1)
2k and ζ(1)

3l are found by substituting ∆x for ∆y and ∆z,
respectively, and xj for yk and zl, respectively. Specializing (2.20) for j = 0 and K = L = 2 (cf.
Fig. 2.6), results in a system of linear equations:

A
#            »

ζ
(1)
10 (x) =

#»

b0, (2.31)

where A ∈ R4×T ,
#            »

ζ
(1)
10 (x) ∈ RT and

#»

b0 ∈ R4 are given by

Art =
G−1∑
g=0

wGt+gζ2k (yGt+g) ζ3l (zGt+g) (2.32)

#            »

ζ
(1)
10 (x) =

(
ζ

(1)
10 (x0) . . . ζ

(1)
10 (xT−1)

)
(2.33)

b0r =
N−1∑
i=0

wiζ
(1)
10 (xi) ζ

(1)
2k (yi) ζ

(1)
3l (zi) (2.34)

with r : {1, . . . ,4} → {0,1}2 , r 7→ (k,l). (2.35)
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The variable r maps onto the 4 points in the first slab. Therefore, in order to make (2.31) a
solvable equation, at least four degrees of freedom are required. Accordingly, this demands that
T ≥ 4. In the presented algorithm and its test cases T = 4. The formulas governing energy and
momentum conservation, which are derived in chapter 2.4.2, require at least 3 initial particles for
each merge operation. Therefore a minimum of

N sort
min = 3 · 4 = 12 (2.36)

initial particles is needed. N sort
min has been introduced in chapter 2.2.3.

The presented algorithm solves the system of equations (2.31) using a standard LU decompo-
sition with simple row wise pivoting. Using this solution and the inverse of ζ(1)

10 (xt), the target
positions for each spatial dimension can be found. Since the final particles are not allowed to
cross cells, which would deposit current on additional cells, the inverse of ζ(1)

10 (xt) is, using
(2.30), given by (

ζ
(1)
10

)−1

(ρ) =

{
undefined ρ > ρ0(

1− ρ
ρ0

)
∆x+ xj 0 ≤ ρ ≤ ρ0

. (2.37)

Unfortunately, a condition for (2.31) to be solvable for the target positions (this includes the case
where (ζ

(1)
10 )−1(ρ) is undefined) for a given grouping of initial particles was not found. Therefore,

the final algorithm tries each particle group, including a certain amount of its permutations, and
simply skips the group if a solution can not be found. The solution for problems with fewer
spatial dimensions is straightforward:

• For 2D, the problem reduces to a R2×2 matrix that can be solved more easily. This also
means that only

T = 2→ N sort
min = 3 · 2 = 6 (2.38)

initial particles are needed.

• For 1D, the problem reduces to a single equation. This means that only

T = 1→ N sort
min = 3 · 1 = 3 (2.39)

initial particles are needed.

N sort
min was introduced in chapter 2.2.3.

Second-order form factor

In the case of second-order form factors, current will be deposited on the 27 grid-points shown in
Fig. 2.7. It will be shown that this inevitably leads to non-linear equations that can not be solved
analytically, and that may potentially take some time to be solved numerically. Since there are
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Fig. 2.7 – Illustration of the charge deposition for second-order particle shapes. Particles inside the
red cube deposit charge on each of the 27 grid-points marked with red balls. For clarity, the
coordinate definitions have been omitted in this figure. They can be found in Fig. 2.6. The
smallest coordinate of the red cube is given by
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and its largest coordinate is given by(
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, the center of the red cube is at
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three layers of cells that are affected with current by movement of particles, (2.14) can be written
as:

j− 1
2
kl =

∆x

∆t
∆ρ−1kl (2.40)

j 1
2
kl = j− 1

2
kl +

∆x

∆t
∆ρ0kl (2.41)

=
∆x

∆t
(∆ρ−1kl + ∆ρ0kl) (2.42)

j 3
2
kl = j 1

2
kl +

∆x

∆t
∆ρ1kl (2.43)

=
∆x

∆t
(∆ρ−1kl + ∆ρ0kl + ∆ρ1kl) (2.44)

Since the current deposition scheme conserves the total charge, the following will automatically
be true (as before, no particle will be allowed to leave the initial cell as a result of the merging
procedure):

j 3
2
kl = 0 ⇔ ∆ρ−1kl + ∆ρ0kl + ∆ρ1kl = 0 (2.45)
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This equation holds for every particle by itself as well. The proposed method needs to ensure
that (2.40) - (2.44) are all zero for every (k,l) ∈ {−1,0,1}2. This requires solving 27 equations.
These 27 equations correspond to three equations of type (2.20) and are found by considering
this type of equation with (j,k,l) ∈ {−1,0,1}3 (K = L = 3). Nine of these equations are
solved by (2.45). This leaves 18 equations. Nullifying the first slab, j = −1, requires solving
one system of linear equations of type (2.20). This sets (2.40) to zero and solves another nine
equations given by

T−1∑
t=0

ζ
(2)
1−1 (xt)

G−1∑
g=0

wGt+gζ
(2)
2k (yGt+g) ζ

(2)
3l (zGt+g) =

N−1∑
i=0

wiζ
(2)
1−1 (xi) ζ

(2)
2k (yi) ζ

(2)
3l (zi) , (2.46)

which can be written as a system of linear equations

A
#              »

ζ
(2)
1−1 (x) =

#   »

b−1, (2.47)

where A ∈ R9×T ,
#              »

ζ
(2)
1−1 (x) ∈ RT and

#   »

b−1 ∈ R9 are given by

Art =
G−1∑
g=0

wGt+gζ
(2)
2k (yGt+g) ζ

(2)
3l (zGt+g) (2.48)

#              »

ζ
(2)
1−1 (x) =

(
ζ

(2)
1−1 (x0) . . . ζ

(2)
1−1 (xT−1)

)
(2.49)

b−1r =
N−1∑
i=0

wiζ
(2)
1−1 (xi) ζ

(2)
2k (yi) ζ

(2)
3l (zi) (2.50)

with r : {1, . . . ,9} → {−1,0,1}2 , r 7→ (k,l). (2.51)

The variable r maps onto the nine points in the first slab. It follows, that in order to make
this a solvable equation it is required that T ≥ 9 (a minimum of nine degrees of freedom for
nine linear equations). As mentioned in the first-order particle shape section, the energy and
momentum conservation formulas, derived in chapter 2.4.2, require at least 3 initial particles for
each merge operation. Therefore, the full merge operation requires a minimum of 3 · 9 = 27
initial particles. The shape factor for second-order particle shapes is given by [26, (4.139)]

S
(2)
1 (x) = ρ0

{
0 |x| > ∆x

1− |x|
∆x

|x| ≤ ∆x
. (2.52)

The shape factors S(2)
2 and S

(2)
3 are defined by substituting ∆x for ∆y and ∆z, respectively.

The integrated particle shape function ζ for a second-order particle shape is then given by (using
(2.13)) [26, (4.140)]:

ζ
(2)
1j (x) = ρ0


0 |x− xj| > 3∆x

2

1
2

(
3
2
− |x−xj |

∆x

)2
∆x
2
< |x− xj| ≤ 3∆x

2

3
4
− |x−xj |2

∆x2 |x− xj| ≤ ∆x
2

(2.53)
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The integrated particle shape functions ζ(2)
2k and ζ(2)

3l are found by substituting ∆x for ∆y and
∆z, respectively, and xj for yk and zl, respectively. Since, in the j = −1 case, the second row
of this piecewise definition is used, the solution to (2.47) can be used to identify the correct final
positions of the particles. Thereby, the first and the last slab is set to zero. Unfortunately, this
leaves the middle slab carrying current. Since the form factors in the first and the middle slab
are not linearly dependent (cf. to the middle and last row of (2.53)), nullifying the first slab will
not guarantee anything about the value of the second slab. Permutation of the nullified ∆ρ (to a
different j) will not ameliorate this situation:

• Setting ∆ρ−1kl = 0⇒ j− 1
2
kl = 0 ∧ j 3

2
kl = 0

• Setting ∆ρ0kl = 0⇒ j 3
2
kl = 0 (∧∆ρ−1kl = −∆ρ1kl)

• Setting ∆ρ1kl = 0⇒ j 1
2
kl = 0 ∧ j 3

2
kl = 0

This means that in order to guarantee divergence-free merging in the case of second-order form
factors, one would have to solve

A
#              »

ζ
(2)
1−1 (x) =

#   »

b−1 ∧ A
#            »

ζ
(2)
10 (x) =

#»

b0, (2.54)

with the definitions given in (2.48) - (2.51). The definition of ζ(2)
1j , given in (2.53), makes this

a system of 18 coupled non-linear equations for the final coordinates xt. It is very expensive to
solve three of these (one per dimension) per single merge operation. There is a high likelihood
that an increased number of final and therefore initial particles is needed as well. This would
entail more than 27 initial particles. 27 particles per cell is already a very expensive prospect for
many applications.

Using a different nonlinear form factor does not remedy the situation, as the charge deposition
in neighboring slabs always brings an extra additive constant in the argument of ζ , making the
slabs independent. Switching to first-order form factors and using a broader function does not
increase the order of the calculation.

Because of these considerations all test cases and results in this thesis use first-order particle form
factors. A simple way of getting an approximate solution when using second-order form factors,
is to use the algorithm given in the first-order form factor section for second-order particles.
This will introduce unphysical divergence in the electric fields, but should nonetheless be a good
approximation, keeping these errors minimal.

Permutations

The distribution of initial particles to final positions is not uniquely defined. The initial particles
must be grouped together, to form the new and smaller number of particles. The specific choice
of grouping can make the underlying equations solvable or unsolvable. Another thing to consider



2.3 Determination of particle properties after merging 37

0 10 20 30 40
Number of permutations

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

F
ra

ct
io

n
 o

f 
su

cc
e
ss

fu
l 

sa
m

p
le

s

 30% after zero

 64% after four

 99% after 100

0 10 20 30 40
Number of permutations

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

F
ra

ct
io

n
 o

f 
su

cc
e
ss

fu
l 

sa
m

p
le

s

 44% after zero

 80% after four

 99% after 100

Fig. 2.8 – Relative frequency distribution of required permutations to successfully find a grouping
with a viable target location. The search was performed in 3D on randomly distributed
particles using a randomized position and weight, occupying 20 % of configuration space
and having randomized weights between 0.5 < w < 1.5. The operation for the right figure
applied presorting in the x-direction.

is to presort the particles spatially before assigning them to their final positions. This will bring
particles together that are close to each other in a certain direction. A scheme to test out different
permutations, with and without sorting, has been implemented.

Multiple different cases where tested and the resulting statistics were evaluated. 12 particles
where set up in 3D space, using randomized locations. The accessible space inside the cell for
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Fig. 2.9 – Relative frequency distribution of required permutations to successfully find a grouping
with a viable target location. The search was performed in 3D on randomly distributed
particles using a randomized position and weight, occupying 80 % of configuration space
and having randomized weights between 0.5 < w < 1.5. The operation for the right figure
applied presorting in the x-direction.
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this randomization has been varied between two values, 20 % (Fig. 2.8) and 80 % (Fig. 2.9). The
figure on the right in each of these figures uses presorting in the x-direction, while the figure on
the left does not. The weights were randomized between 0.5 < w < 1.5. Using the above first-
order form factor algorithm a search for 4 final locations was performed. If a position could not
be found, a permutation of the same particle configuration is tested, up to a maximum amount
of 100 permutations. This does not mean that it is indeed unsolvable as the total amount of
permutations is given by(

12

3

)
·
(

9

3

)
·
(

6

3

)
·
(

3

3

)
= 369600, where

(•
•

)
is the binomial coefficient. (2.55)

In order to increase the statistical significance, the whole process was repeated 1500 times.

The results very clearly show that presorting is very beneficial. In both cases of configuration
space accessibility, a solvable configuration was found after fewer permutations. This was even
more true for the case that allowed for more configuration space to be accessed (Fig. 2.9), where
the amount of successful operations after zero permutations jumped from 15 % to 58 %. In the
case of zero permutations only the initial configuration is tested. Additionally, it is found that
trying a minimal amount of only four permutations increases the odds of finding a successful
particle distribution significantly. In all four cases, independent of the size of the accessible con-
figuration space and whether presorting was applied or not, the odds of successfully finding a
solvable distribution increases quite meaningfully. In most cases the odds even double, when
trying four permutations instead of zero. Another very promising result is that a solvable permu-
tation is found in almost all cases. Only a very small amount of configurations are abandoned
after the maximum of 100 permutations.

Applying the above findings, all test cases in this dissertation use presorting and try five different
permutations of each particle group before skipping it.

More sophisticated methods, for example trying to minimize the distance between merge part-
ners, are found to not be particularly effective and need a significant amount of computational
resources. From the figures, it is apparent that presorting can be very beneficial in speeding up
the merge process. In order to speed-up the algorithm, the matrices and vectors of (2.31) for the
permutations can be found using the Steinhaus-Johnson-Trotter-algorithm in conjunction with a
numerically stable variation of the Sherman-Morrison-Woodsbury-Formula, instead of calculat-
ing them from scratch.

2.3.2 Determination of final momenta

Chapter 2.2 resulted in a list of particle groups with certain properties: all particles in each group
i) are of the same kind ii) reside in the same cell in configuration space, iii) have similar weights
and finally iv) fulfill customizable requirements regarding their closeness in momentum space.
Each group contains an amount of particles N ∈ [N sort

min , N
sort
max]. Particles in each group represent
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merge or split targets, since they fulfill the configured closeness criteria. The goal is to achieve
energy and momentum conservation for each distinct group. This way, the parameters governing
the previously explained grouping algorithm fulfill their stated purpose of providing a lever for
controlling the fidelity of the merge or split operation. The following algorithm conserves energy
and momentum and has a low disturbance effect on the momentum distribution.

From now on, each group inside this list is called a cluster of particles. In the previous chap-
ter 2.3.1, the algorithm took this list of clusters and, for each distinct cluster, gathered the particles
inside it on a number of locations T . On each of these locations G particles have been gathered
(c.f. (2.18)). The initial group of particles with size G on a certain location is called Ig. The final
group will consist of exactly two particles and is called Fg.

If a fixed merge factor Q (2.5) is desired, it is helpful to subdivide each cluster into collections of
groups. These collections are called ranges. Each range contains T groups and is the result of a
single application of the location finding algorithm (chapter 2.3.1). Without the notion of ranges,
all particles in a cluster must be merged/split. If a constant merge factor Q is desired, the sorting
algorithm needs to be configured in a way as to result in Ninitial = QNfinal particles. If the sorting
process produces more particles, the overhanging particles can not be processed, if it produces
fewer particles, the whole cluster can not be processed. Since a binary tree is used to produce
the initial particles, it therefore becomes unlikely to find suitable groups of particles. Allowing
for ranges relaxes this condition, since it enables larger groups of particles to be eligible as well.
If no fixed merge factor is desired, the introduction of ranges is not needed. In this case, the
resulting merge factor can then fall between N sort

max/Nfinal and N sort
min/Nfinal. Since a fixed merge factor is

essential to minimizing the amount of different weight species, the following considerations will
include the notion of ranges.

On the one hand, the more groups in each cluster, the more faithful the final momenta are to the
previous momenta in the cluster. This will be made clear in the final energy conservation step of
this algorithm. Having more particles in a cluster enables the creation of more particle groups.
On the other hand, it is clear that a finer clustering, i.e. fewer particles per cluster, will also
contribute to the faithfulness in momentum space, as this corresponds to a less granular particle
grouping, i.e. more restricting sorting parameter N sort

max. These two distinct and opposing effects
will be investigated after the explanation of the algorithm itself in this chapter.

In the following some examples for the different parameter configurations are given. If, for
example, one choses Q = 2, i.e. all particle merging processes will decrease the number of
particles in a merge cluster by a factor of 2, and if the underlying problem is three dimensional,
and the merge cluster contains N sort

min = N sort
max = 16 (see chapter 2.2.3) particles, 4 final groups

would be processed. One could increase the number of groups by setting N sort
max = 32, which

could generate up to 8 final groups. As mentioned before, the collection of groups of a particular
cluster are called a range. The first of the above cases would constitute one range, the second one
comprises two. It is not sensible to set N sort

max = k ∗ 16, k ∈ N+ since this would rarely produce
additional groups due to the sorting process, which will most likely not return exact multiples
of 16. It is more sensible to set N sort

max = k ∗ 16 + 8, k ∈ N+. The same holds true for the other
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dimensions usingN sort
min = 8, N sort

max = k∗8+4, k ∈ N+ for 2D andN sort
min = 4, N sort

max = k∗4+2, k ∈
N+ for 1D (for Q = 2).

Fig. 2.10 gives an overview of the momentum determining algorithm. The algorithms for “choose
from I•” and “adapt to conserve E” are given in the following under the headings Random se-
lection of initial momenta values and Adaptation of chosen momenta to conserve energy
using the original standard deviation, respectively. This algorithm conserves the total mo-
mentum between each initial group Ig and their final two particles in Fg. In contrast, Ig and
Fg do not have the same total energy. The subscript g enumerates all groups. The algorithm
will redistribute the energy over all groups in a cluster in order to enable the possibility of an
increased fidelity in momentum space (c.f. εspare in Fig. 2.10). Nonetheless, the total energy of
each cluster is conserved. This fits the description of the sorting parameters, as the result of the
sorting process, the clusters, define the degree of energy and momentum fidelity. This is the
crucial idea, the key component to enabling an increased re-usage of initial momentum values,
which is the best way of preventing a perturbation in the momentum distribution. Not re-using
momentum values risks the development of momentum configurations that favor mean values
and tend to inhibit non-linear effects. The present algorithm under-girds this effort by a novel
method of fixing energy mistakes by adapting the momenta using the original standard deviation
of a group.

First, the algorithm needs to calculate certain values for a given list of groups of a cluster (i,
j loop over all particles in the cluster, ig loops over all particles in group g, g loops over all
groups, subscript i, j denote values corresponding to single particles, subscript g denotes a value
corresponding to a group and bc is short for barycenter and êk are the unit vectors in momentum
space):

w = Σiwi (2.56)
wg = Σigwig (2.57)

( #»σ · êk)2 =
N

N − 1

1

w
Σiwi ((

#»p i − Σjwj
#»p j) · êk)2 (2.58)

#»p bc
g =

1

wg
Σigwig

#»p ig (2.59)

εbc
g = wg

√
1 +

∣∣ #»p bc
g

∣∣2 (2.60)

εspare = Σiwi

√
1 + | #»p i|2 − Σgε

bc
g (2.61)

The unbiased sample variance #»σ is calculated following [31] in a stable and incremental fashion.
The final values are denoted by a prime. Each group Ig will produce a group Fg with two final
particles denoted with subscripts 1 and 2. Their respective weights are given by:

w′g1 =
wg
2

(2.62)

w′g2 =
wg
2

(2.63)
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F1 · · · FT ·M
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Cluster of N ∈ [N sort
min , N

sort
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Range 1 Range M
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Fig. 2.10 – Flow diagram for the merging algorithm. Light-blue boxes stand for groups of particles.
I•• and I• are each T ·M groups of G initial particles, where for each group, all G parti-
cles share a location. F ′• and F• are T ·M groups of two final particles, where for each
group, all two particles share a location. Light-purple boxes stand for algorithms, which
transform the position or momenta of particles. The “Find final locations” algorithm is
detailed in chapter 2.3.1. All other algorithms are detailed in chapter 2.3.2. The green
star boxes give significant parameters. The light-red box contains a certain amount of en-
ergy. Grey arrows signify particle streams from groups or algorithms into other groups or
algorithms. Green arrows signify parameters being used in algorithms. Light-red arrows
signify streams of energy. M is the number of ranges. T is the number of final locations
of each range (c.f. (2.31) and (2.47)). Q = Ninitial/Nfinal is the merge factor.
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This choice keeps the number of weight species to a minimum. The final momentum for the two
final particles in each group Fg is given by

#»p ′g1 = #»p bc
g +

#»

Πg + ξg
#»σ mod and (2.64)

#»p ′g2 = #»p bc
g −

#»

Πg − ξg #»σ mod, (2.65)

where

#»σ mod =
(
λxσz λyσy λzσz

)
, (2.66)

with λi ∈ {−1,1} randomly and σk = #»σ · êk. The values of
#»

Πg and ξg will be determined in
the next two sections. Constructing #»σ mod in this way makes sure that there is no preferential
direction in momentum space for the final particles in relation to their standard deviation. From
these definitions, the conservation of momentum in each group is guaranteed:

w′g1
#»p ′g1 + w′g2

#»p ′g2 = 2
wg
2

#»p bc
g = 2

wg
2

1

wg
Σigwig

#»p ig = Σigwig
#»p ig (2.67)

Additionally, the construction of this algorithm guarantees that the dimensionality of the momen-
tum space is conserved. Since the final momenta are constructed using either initial momenta or
barycenter momenta that are only adapted in the direction of the initial standard deviation, the
final momenta occupy the same momentum space as the initial momenta.

Random selection of initial momenta values

This will determine
#»

Πg. The algorithm will randomly chose momenta from the list of initial
momenta while conserving the total momentum. This will be done individually for each mo-
mentum dimension. The total energy will be conserved in the second step. This first step needs
to comply to certain restrictions in order to enable the second step to conserve the total energy.
The first thing to calculate is the momentum space range per dimension that is accessible for
the final particles. In order to preserve the momentum space distribution every particle should
be close to the mean, or barycenter, momentum of each group. Therefore, only the spare energy
εspare will be redistributed to the final particles. The accessible momentum range is determined by
this excess energy. From all initial momenta, which lie in this accessible range, a momentum is
chosen randomly for one of the final particles. The second final particle is set in order to achieve
local momentum conservation, c.f. to (2.64) and (2.65). The value

εg =
2

wg

(
εspare + εbc

g − εspend) (2.68)

is the normalized energy available to group g with

εspend =Σ
#»
Πgdefined
g

(
w′g1

√
1 +

∣∣∣ #»p bc
g +

#»

Πg

∣∣∣2 + w′g2

√
1 +

∣∣∣ #»p bc
g −

#»

Πg

∣∣∣2) (2.69)
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being the energy spend by randomly selecting initial momenta in already finished groups. The
algorithm’s goal is to find momenta in the pool of all momenta of all particles in Ig for which
εg ≥ 0. Because of this attribute of the algorithm and since εspend = 0 for the first group, it holds
that εg ≥ 0 at all times. In order to determine the momentum range that is accessible through εg
the solution ∆p to

εg =

√
εoc

1 +
(
pbc
g + ∆p

)2
+

√
εoc

2 +
(
pbc
g −∆p

)2 (2.70)

is needed. It is given by

∆p1,2 =
1

ε2g − 4
(
pbc
g

)2

[
(εoc

1 − εoc
2 ) pbc

g

±1

2
εg

√(
ε2g − 4

(
pbc
g

)2 − (εoc
1 + εoc

2 )
)2

− 4εoc
1 ε

oc
2

]
,

(2.71)

where pbc
g is a specific component of #»p bc

g and εoc
i are the energies of the other components (oc)

plus the rest energy of the two final particles (a formula is given further below). The values ∆p1,2

are ordered in a way so that ∆p1 ≤ ∆p2.

The second derivative of (2.70) with respect to ∆p is given by

∂2εg
∂∆p2

=
εoc

1

[εoc
1 + (pbc

g + ∆p)2]
3
2

+
εoc

2

[εoc
2 + (pbc

g −∆p)2]
3
2

. (2.72)

It holds that

∂2εg
∂∆p2

≥ 0 ∀∆p ∈ R, (2.73)

which, coupled with the fact that (2.70) only has a maximum of two solutions (c.f. (2.71)) and
that

lim
∆p→±∞

[√
εoc

1 +
(
pbc
g + ∆p

)2
+

√
εoc

2 +
(
pbc
g −∆p

)2
]

=∞, (2.74)

leads to the conclusion that√
εoc

1 +
(
pbc
g + p

)2
+

√
εoc

2 +
(
pbc
g − p

)2 ≤ εg ∀∆p1 ≤ p ≤ ∆p2. (2.75)

Equation (2.70) is a deformed parabola with a lower minimum (i.e. it is opening upwards, in the
positive εg direction).

This defines the accessible momentum ranges for the two final particles. The momentum range
needed to be searched for eligible initial particle momenta is given by

A = [pbc
g −∆p2, p

bc
g −∆p1] ∪ [pbc

g + ∆p1, p
bc
g + ∆p2], (2.76)
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for a specific dimension.

Using these formulas, the value of
#»

Πg can be determined for each group. First, a random momen-
tum dimension order k, l, m is determined. In the following, all scalar values of vector entities
are the respective components for the currently processed dimension. Then, the following steps
are performed successively for each dimension in a group and for each group Ig in a cluster:

1. Apply the above formulas to find the accessible momentum range A, using (2.76). The
specific values of εoc

1 , εoc
2 , pbc

g and Πg for each iteration are given after this list.

2. Find the set of all momenta of particles in Ig, which satisfy

{p | p ∈ A}. (2.77)

If {p | p ∈ A} = ∅ set
#»

Πg =
#»
0 (this fixes all components of

#»

Πg and ends the loop over the
momentum dimensions).

3. Choose one particle momentum pj at random from this set and

• if pj ∈ A− [pbc
g −∆p2, p

bc
g −∆p1] set

Πg = pj − pbc
g , (2.78)

i.e. the first final particle gets this momentum value (refer to (2.64)),

• or if pj ∈ A− [pbc
g + ∆p1, p

bc
g + ∆p2] set

Πg = pbc
g − pj, (2.79)

i.e. the second final particle gets this momentum value (refer to (2.65)),

• or if pj ∈ [pbc
g + ∆p1, p

bc
g + ∆p2] ∩ [pbc

g −∆p2, p
bc
g −∆p1] set

Πg = pbc
g − pj or Πg = pj − pbc

g , (2.80)

randomly, i.e. the first or second final particle gets this momentum value at random.

The construction of εspare (2.61) and the design of this algorithm make sure that most groups will
find a momenta in the set of initial momenta. The likelihood does decrease when moving along
all the groups in a cluster, but one of the smallest momenta in each group should stay a viable
candidate in most cases. It may still happen that a group can not find an initial momentum, since,
if a momentum with a large magnitude is chosen for a previous group, it will consume a lot of
εspare, leaving only little energy for the later groups in a cluster. This is by design, as choosing
outliers from the initial momenta distribution is an integral part of the algorithm and part of its
strength.
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The values of εoc
1 , εoc

2 and pbc
g for each dimension iteration as well as the resulting component of

#»

Πg are given in the following list:

First dimension k

εoc
1 = 1 +

(
#»p bc
g · êl

)2
+
(

#»p bc
g · êm

)2
(2.81)

εoc
2 = εoc

1 (2.82)

pbc
g = #»p bc

g · êk (2.83)

⇒ Πg =
#»

Πg · êk (2.84)

Second dimension l

εoc
1 = 1 +

[(
#»p bc
g +

#»

Πg

)
· êk
]2

+
(

#»p bc
g · êm

)2
(2.85)

εoc
2 = 1 +

[(
#»p bc
g −

#»

Πg

)
· êk
]2

+
(

#»p bc
g · êm

)2
(2.86)

pbc
g = #»p bc

g · êl (2.87)

⇒ Πg =
#»

Πg · êl (2.88)

Third dimension m

εoc
1 = 1 +

[(
#»p bc
g +

#»

Πg

)
· êk
]2

+
[(

#»p bc
g +

#»

Πg

)
· êl
]2

(2.89)

εoc
2 = 1 +

[(
#»p bc
g −

#»

Πg

)
· êk
]2

+
[(

#»p bc
g −

#»

Πg

)
· êl
]2

(2.90)

pbc
g = #»p bc

g · êm (2.91)

⇒ Πg =
#»

Πg · êm (2.92)

After performing the iterations over all three momentum dimensions all components of
#»

Πg are
fixed for this group. The process is then repeated for all groups Ig, with successively smaller εg,
as the value of εspend increases.

Adaptation of chosen momenta to conserve energy using the original standard
deviation

This will determine the value of ξg. In order to achieve energy conservation the momenta found
in the above algorithm (in section Random selection of initial momenta values) need to be
adapted. The momentum distribution should not, on average, deteriorate too much through this
adaptation. The remaining spare energy will be distributed evenly on the final particles. This dis-
tribution is done in a way that ensures an approximation to the initial three dimensional standard
deviation in momentum space. Since the above algorithm can fail for specific groups (if there is
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not enough remaining energy to find any suitable initial momenta), formulas are needed for two
cases: i) particles with a randomly chosen initial momentum and ii) particles without that. Each
group gets a specific portion of the remaining energy, given by

κ =
wg
w
. (2.93)

The following has to be done for all groups in a cluster after the previous step (the one described
in section Random selection of initial momenta values) has finished for all groups. The energy
that will be distributed on the final two particles in each group is given by

εg =
2

wg

(
κ
(
εspare − εspend)+ w′g1

√
1 +

∣∣∣ #»p bc
g +

#»

Πg

∣∣∣2 + w′g2

√
1 +

∣∣∣ #»p bc
g −

#»

Πg

∣∣∣2) , (2.94)

where εspend (defined in (2.69)) now contains energy from every group. In order to find the
maximum viable shift in the direction of the original standard deviation, the following equation
needs to be solved for ξg,

εg =

√
1 +

∣∣∣ #»p bc
g +

#»

Πg + ξg
#»σ mod

∣∣∣2
+

√
1 +

∣∣∣ #»p bc
g −

#»

Πg − ξg #»σ mod

∣∣∣2, (2.95)

which gives

ξg =
ε2g(

#»

Πg · #»σ mod)− 4(
#»

Πg · #»p bc
g )( #»p bc

g · #»σ mod)±
√
S

D
, (2.96)

where

S =
(
ε2g(

#»

Πg · #»σ mod)− 4(
#»

Πg · #»p bc
g )( #»p bc

g · #»σ mod)
)2

−D
[

1

4
ε4g − ε2g

(∣∣∣ #»

Πg

∣∣∣2 +
∣∣ #»p bc

g

∣∣2 + 1

)
+ 4(

#»

Πg · #»p bc
g )2

]
and

(2.97)

D = 4( #»p bc
g · #»σ mod)

2 − ε2g | #»σ mod|2 . (2.98)

The ± sign will be set at random. If the randomized search for an initial momentum failed, the
group will still be included in the final energy correction scheme. This ensures, that the final
particles are not completely equal. For these groups

#»

Πg =
#»
0 holds, and (2.96) simplifies to

ξg = ±εg
2

√√√√4
(

1 +
∣∣ #»p bc

g

∣∣2)− ε2g
D

, (2.99)
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with D given in (2.98), and the ± sign chosen at random again.

This finalizes the determination of the momenta of the two final particles. The complete values
can now be computed by replacing

#»

Πg and ξg in (2.64) and (2.65) with the determined values.
These momenta will guarantee momentum as well as energy conservation. The method detailed
in chapter 2.5 can now be used to increase diversity in the final particle locations.

The most expensive operations in the determining formulas are square roots: one per group in
(2.60), (2.71) and (2.96) or (2.99), two per group in (2.94), two per group, except for the first
group, in (2.69), and one per initial particle in (2.61). The total number of square roots per initial
particle is therefore given by

3TM + 4TM −M + TMG

TMG
=

7

G
− 1

TG
+ 1. (2.100)

For typical values of T = 4 and G = 4, this formula gives a total of 2.6875 square roots per
initial particle.

Effects of the different parameters controlling the particle grouping

A suite of parameters governing the particle grouping has been introduced. The main parameters
from chapter 2.2 are N sort

min and N sort
max, which set limits for the cluster size. The last sections

introduced some more parameters, which further group the particles of a cluster. They are

1. the number of ranges in a cluster M ,

2. the number of groups in a range T and

3. the number of particles in a group G.

From these, only the value of M can be modified, which also changes the value of G. The
number of groups per range is fixed by the location-finding algorithm. For a fixed merge factor
Q (2.5), the number of ranges is determined by the number of particles in a cluster, and can
therefore not be changed.

The number of particles in a cluster is the main parameter for the particle sorting algorithms.
Increasing this value will decrease the fidelity as more particles, in a larger phase space, will be
part of a merge process.

When looking at the algorithm developed above, it is clear that more groups in a cluster will
permit more momenta to be chosen from initial ones, as a larger pool of spare energy is available.
It can also be assumed that the final distribution of energy, in the adaptation to the original
standard deviation step, will be less destructive.

The benefits of smaller groups, i.e. smaller values of G, are given by the fact that the algorithm
that choses initial momenta does not assign full three dimensional initial momenta. It choses
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the new momenta on a per dimension basis. This makes the new momenta inhabit a momentum
space formed by the cube of the minimum and maximum initial momenta in each group. Smaller
groups counteract this emergence of wrong momenta.

Unfortunately, assigning three dimensional momenta is a highly nonlinear process. Determining
the momentum space from which initial momenta may be assigned becomes highly non-trivial.
The fastest solution would be to test all initial momenta for their eligibility, but this would involve
calculating the energy of the momentum on the other side of the barycenter. The calculation of
energies is one of the most expensive operations in this algorithm as it involves a square root.

Another point to consider is the usage of the cluster wide #»σ value (2.58) and the usage of the
group-wise barycenter (2.59). These get increasingly less accurate for increasing cluster or group
sizes.

The main parameters to control fidelity should therefore still be the parameters introduced in
chapter 2.2. In the case of a non-constant Q (2.5), the number of ranges M can be a lever to
optimize the performance of the algorithm. It is very hard to construct a well-defined analytic
measure to derive an optimal value for M . For a fixed Q there are no additional degrees of
freedom, other than the ones introduced in chapter 2.2.

2.4 Determination of particle properties after splitting

The algorithm, laid out in chapter 2.2, results in a list of particle groups, with each group con-
sisting of a number of particles between N sort

min and N sort
max. These particle groups are ordered by

weight from smaller to larger, as described in chapter 2.2.2. The groups will now be processed,
taking advantage of this order, with the goal of increasing the number of quasi-particles (split-
ting). In this section the necessary algorithms to perform a splitting operation are detailed. They
will increase the number of particles in each distinct group.

2.4.1 Determination of final locations

This is not as big of an issue as in the case of merging since the final particles can just be created
at the location of the former particles. In doing this, the charge and current densities on the grid
will remain constant, and there is no unphysical divergence. The method detailed in chapter 2.5
can be used to increase diversity in the final particle locations.

2.4.2 Determination of final momenta

Separating a single initial quasi-particle into multiple final quasi-particles is trivially possible.
The weight of a quasi-particle is proportional to the amount of real particles per quasi-particle,
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given by

n∆x∆y∆z

Npercell
, (2.101)

with n the physical particle density in the cell, ∆x, ∆y and ∆z the grid size of the PIC code
and Npercell the number of quasi-particles in each cell. Of course, this quasi-particles-as-bunches-
of-real-particles view is not supported by the underlying mathematics, but it sometimes helps in
modeling the algorithms.

Splitting up a particle is therefore trivially possible by just generating two particles with the
exact properties of the initial particle except for their weight, which is set to w/2, with w the
weight of the initial particle. This keeps the number of weight species low and conserves the
total momentum and energy:

#»

P = w #»p =
w

2
#»p +

w

2
#»p , (2.102)

E = w
√

#»p 2 + 1 =
w

2

√
#»p 2 + 1 +

w

2

√
#»p 2 + 1. (2.103)

Unfortunately, this will produce two completely equivalent particles.

Using the method detailed in chapter 2.5, the particle position of the generated particles may
be safely modified, if first-order particles are used. This can be deemed a sufficient amount of
diversity. Diversifying the momentum space as well may still be advantageous, since it adds
more variety to the generated particles.

It can also be deemed detrimental, as it messes with the momentum distribution. In the case of
setups with fewer than three momentum dimensions, the below adaptation algorithm will even
very likely result in final momenta that are not part of the initial momentum space. It may be
possible to improve the algorithm to accommodate for those setups. These improvements are not
part of this dissertation.

If the physical properties of the system under investigation allow for broad momentum distribu-
tions, like in thermal plasmas, increasing the diversity in momentum space can be very beneficial
for the signal-to-noise ratio. In contrast, systems with more strict demands for the momentum
distribution, like particle accelerator simulations, may suffer from the introduced perturbations.

The algorithm that is used to determine the final momenta for splitting processes is detailed
in the following sections. It will generate additional diversity by modifying the final momenta
and energies. First, it will be shown that it is impossible to divide a single quasi-particle into
multiple distinct quasi-particles, while preserving the total energy and momentum. From this
it is concluded that a minimum of two quasi-particles is needed, which can then be split into
four quasi-particles. The solution to the problem of generating four different momenta from two
initial ones is shown subsequently.
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Energy and momentum conservation for splitting N ≥ 1 quasi-particles into two
quasi-particles

The following quantities are needed for the algorithm in this section and the next section,

εi =
√
p2
i + 1, (2.104)

#»

P =
N∑
i=0

wi
#»p i, (2.105)

ε =
N∑
i=0

wi

√
p2
i + 1, (2.106)

W =
N∑
i=0

wi, (2.107)

where εi is the weightless normalized energy of a single particle,
#»

P is the total momentum of
the initial particles, ε is the total energy of the initial particles and W is the total weight of the
initial particles. All particle attributes for the two new quasi-particles need to be computed in a
way so that the total energy, total momentum, total mass and total weight are conserved. This
leaves eight degrees of freedom (three for the momenta plus one for the weight for each of the
two particles) in the final particles. The final weights and final energies are given by

w′1 = w′2 =
W

2
, and (2.108)

ε′1 = ε′2 =
ε

W
. (2.109)

Again, this choice will keep the number of weight species minimal. The prime always refers to
the attributes of the final two particles. Using this definition the energy is conserved:

ε′ = w′1ε
′
1 + w′2ε

′
2 =

W

2

ε

W
+
W

2

ε

W
= ε (2.110)

For momentum conservation
#»

P ′ = w′1
#»p ′1 + w′2

#»p ′2 =
#»

P
(2.108)⇔ W

2
( #»p ′1 + #»p ′2) =

#»

P needs to hold.
This gives the following three equations,

(p′1x + p′2x) =
2Px
W

= a, (2.111)(
p′1y + p′2y

)
=

2Py
W

= b, (2.112)

(p′1z + p′2z) =
2Pz
W

= c, (2.113)
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leaving three degrees of freedom. According to (2.104) the following two equations must hold:

p′21x + p′21y + p′21z = ε′21 − 1
(2.109)

=
( ε

W

)2

− 1 = d (2.114)

p′22x + p′22y + p′22z = ε′22 − 1
(2.109)

=
( ε

W

)2

− 1 = d (2.115)

Equations (2.111) - (2.115) constitute five equations for the six undetermined momentum values.
This leaves one degree of freedom, which can be set arbitrarily. It will be randomized in a later
step. It is helpful to rotate the coordinate system so that ã = 2 |

#»
P |/W , b̃ = 0 and c̃ = 0. Variables

with ˜ reside in the rotated coordinate system. This corresponds to the coordinate system where
P̃y = 0 and P̃z = 0. It holds that d̃ = d. The solution to (2.111) - (2.115) in that system is given
by

#»

p̃ ′1 =
1

2

 ã√
−ã2 + 4d− k√

k

 and (2.116)

#»

p̃ ′2 =
1

2

 ã

−
√
−ã2 + 4d− k
−
√
k

 , (2.117)

where 0 ≤ k ≤ 4d− ã2. This expression can be written as

4d− ã2 = 4

(
ε2

W 2
− 1

)
−
(

2| #»P |
W

)2

= 4

(
ε2 − #»

P 2

W 2
− 1

)
. (2.118)

This gives a condition for the solubility of the problem:

4d− ã2 < 0⇒ no solutions (2.119)
4d− ã2 = 0⇒ one solution: equal particles (2.120)
4d− ã2 > 0⇒ two solutions: different particles (2.121)

In the case of 4d− ã2 ≥ 0, the two momentum vectors can rotate around a circular plane with a
constant total energy. This rotation is determined by the value of k and is shown in Fig. 2.11.

The value of | #»r | in Fig. 2.11 is determined by an “available energy”

Eavail = | #»r | Fig. 2.11
=

√
#»p ′21 −

(
1

2

2

W

#»

P

)2
(2.114)

=

√
d−

#»

P 2

W 2
=

√
ε2 − #»

P 2

W 2
− 1, (2.122)

which is a measure of the amount of variation of the momenta in the initial particles. This gives
a condition for deciding if the problem is solvable,√

ε2 − #»

P 2

W 2
− 1 > 0, (2.123)



52 2 Merging/Splitting Algorithm

2
W

#»

P

#»p ′
1

#»p ′
2

#»r

Fig. 2.11 – The two resulting momenta #»p ′1 and #»p ′2 in relation to the total initial momentum
#»

P .

which, using (2.118), is easily shown to be the same condition as (2.121). If all initial particles
have the same momentum (trivially given in the case of N = 1) Eavail = 0 and #»p ′1 = #»p ′2. This
shows that it is impossible to create two different particles from a single initial particle. Equa-
tions (2.116) and (2.117) (with the appropriate back-rotation) and equation (2.108) constitute
the solution to the problem of this section. The equations developed here will prove helpful in
the next section. The coordinate system rotations can easily be implemented as matrix-vector
multiplications, with the original momentum vector determining the transformation matrix.

Energy and momentum conservation for splitting two quasi-particles into four
quasi-particles

It was shown in the previous section that a single particle can not be divided into two quasi-
particles that are different in momentum and/or energy. This means that, in order to produce new
and different quasi-particles (with respect to their momentum), a more sophisticated route must
be taken:

1. Choose two particles as initial particles

2. Calculate the total momentum and the total energy

3. Divide the total momentum into two parts, this may be done in a random fashion
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4. Produce two particles from each initial particle using the algorithm given in the previous
section

The algorithm starts with two initial particles with the attributes w1, #»p 1 and w2, #»p 2. These will
be split into four particles, where the first two particles with attributes w′1, #»p ′1, w′2 and #»p ′2 will be
generated at the location of the first initial particle and the second two particles, with attributes
w′3, #»p ′3, w′4 and #»p ′4 will be generated at the location of the second initial particle. This will keep
the charge density constant. The weight of the final particles is given by

w′1 = w′2 =
w1

2
, (2.124)

w′3 = w′4 =
w2

2
, (2.125)

keeping the number of weight species to a minimum. As before,

ε′1 = ε′2 = ε′3 = ε′4 =
ε

W
, (2.126)

is chosen. The final particles will therefore have the same energy per weight. Getting rid of
this assumption will generate more diversity in the final particles. This will not be shown in this
dissertation. Instead the algorithm will generate particles with different momenta per weight.

The initial total momentum is then given by
#»

P = w1
#»p 1 + w2

#»p 2 =
#»

P 1 +
#»

P 2, with
#»

P 1 and
#»

P 2

the total momentum of the two initial particles. Repeating the analysis of the previous section,
but now using these four instead of two final particles, equations (2.111) - (2.115) become

w′1
#»p ′1 + w′2

#»p ′2 + w′3
#»p ′3 + w′4

#»p ′4 =
#»

P ′ =
#»

P , (2.127)

| #»p ′1| =
ε2

W 2
− 1 = d, | #»p ′2| =

ε2

W 2
− 1 = d, (2.128)

| #»p ′3| =
ε2

W 2
− 1 = d, | #»p ′4| =

ε2

W 2
− 1 = d. (2.129)

From these, equation (2.127) can be written as

w1

2
( #»p ′1 + #»p ′2) +

w2

2
( #»p ′3 + #»p ′4) =

#»

P (2.130)

⇔ #»

P ′1 +
#»

P ′2 =
#»

P , (2.131)

with
#»

P ′1 and
#»

P ′2, the total momentum of the final particles at the first and second location, re-
spectively. This equation can be split up into two problems, which have the same structure as the
problem that was solved in the previous section:

#»p ′1 + #»p ′2 =
2

#»

P ′1
w1

(2.132)

#»p ′3 + #»p ′4 =
2

#»

P ′2
w2

(2.133)
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If both of these equations, (2.131), (2.128) and (2.129) hold, the problem is solved, conserving
the total energy and momentum, while producing four different final particles.

Equations (2.132) in combination with (2.128), and (2.133) in combination with (2.129), can be
solved using the algorithm of the previous chapter. In order to do this, the values of

#»

P ′1 and
#»

P ′2
must be defined. A simple way of guaranteeing (2.131) is given by choosing

#»

P ′1 =
#»

P 1 and
#»

P ′2 =
#»

P 2. (2.134)

The total energy gets redistributed between the two locations, making four particles with the
same energy per weight. This makes it possible to generate different final particles from the
initial particles, since the two pairs may not share the same point in space, may have different
weights, and, according to the analytics surrounding Fig. 2.11 the randomly chosen k will result
in different momenta per pair as well.

A more general approach offers an additional degree of freedom, which can be used to increase
the variety in the momentum distribution of the final particles. This brings with it the caveats
discussed at the beginning of chapter 2.4.2. This approach is similar to the approach taken in
chapter 2.3.2, in that the total momentum of the two groups will be distributed over the two
groups. Instead of using (2.134),

#»

P ′1 = m
#»

P and
#»

P ′2 = (1−m)
#»

P (2.135)

is used. Eq. (2.131) holds and another degree of freedom, in the form of m, is gained. Another
advantage is the fact that both problems (2.132) and (2.133) now use the same back-rotation, as
they both use the same vector on the right-hand side, which saves on computational resources.

The momentum and the energy are conserved for this process:

#»

P ′ =
∑
i

w′i
#»p ′i =

w1

2
( #»p ′1 + #»p ′2) +

w2

2
( #»p ′3 + #»p ′4)

=
#»

P ′1 +
#»

P ′2 = m
#»

P + (1−m)
#»

P =
#»

P

(2.136)

ε′ =
w1

2
(ε′1 + ε′2) +

w2

2
(ε′3 + ε′4) = w1

ε

W
+ w2

ε

W
=
w1 + w2

W
ε = ε (2.137)

Taking advantage of this additional degree of freedom, m can be chosen randomly, which will
increase the diversity of the momenta in the system, carrying with it the above mentioned advan-
tages and disadvantages. It is unlikely to randomly choose a value of m that leads to completely
equal particles in one pair.

If a randomly determined m is desired, it is important to adhere to certain restrictions for the
value ofm. As was shown before, there is a prerequisite that ensures total energy and momentum
conservation per final pair is possible. The availability of so-called “available energy” (2.122) is
a necessity for splitting particles. Only when Eavail > 0, the two initial particles are not totally
equal. This prerequisite imposes extra constraints on the new variable m.
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The distribution of the “available energy” must happen in a way that ensures that the two final
pairs each have some of it available. Equation (2.121) gives a criteria for the required amount
of “available energy”. Using the right-hand side of (2.132), with (2.135), for ã (which is the
absolute value of the vector on the right-hand side):

4d− ã2 > 0 (2.138)

⇔ 4d−
(

2|m #»

P |
w1

)2

> 0 (2.139)

This is a downward pointing parabola in m, with zero points at

m = ±w1

√
d

| #»P |
. (2.140)

Therefore, all m for which

−w1

√
d

| #»P |
< m <

w1

√
d

| #»P |
(2.141)

holds, are solutions to equation (2.139). Equation (2.121) must also hold for the right hand side
of (2.133), again with (2.135). This gives another downward pointing parabola, comparable to
(2.139). Its solutions m are given by

1− w2

√
d

| #»P |
< m < 1 +

w2

√
d

| #»P |
. (2.142)

Finally, the complete boundaries for m are found to be

max

(
−w1

√
d

| #»P |
, 1− w2

√
d

| #»P |

)
< m < min

(
w1

√
d

| #»P |
, 1 +

w2

√
d

| #»P |

)
. (2.143)

These are the boundaries for the value of m in (2.132) and (2.133), with (2.135). The actual
value for m is chosen randomly inside these limits.

It will be shown in the following, that if the two initial particles were not completely equal, the
set of possible values for m is never empty. Since the mean value of the set (2.141), given by

1

2

(
−w1

√
d

| #»P |
+
w1

√
d

| #»P |

)
= 0, (2.144)

is smaller than the mean value of the set (2.142), given by

1

2

(
1− w2

√
d

| #»P |
+ 1 +

w2

√
d

| #»P |

)
= 1, (2.145)
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it suffices to show that the upper boundary of (2.141) is bigger than the lower boundary of
(2.142):

w1

√
d

| #»P |
> 1− w2

√
d

| #»P |
(2.146)

⇔ w1 + w2 >
| #»P |√
d

(2.147)

⇔
√
ε2 −W 2

#»

P 2
> 1 (2.148)

Since equation (2.123) must hold, as it corresponds to (2.121),√
ε2 − #»

P 2

W 2
− 1 > 0 ⇔ ε2 − #»

P 2 −W 2

W 2
> 0 ⇔ ε2 −W 2 − #»

P 2 > 0, (2.149)

it follows that √
ε2 −W 2

#»

P 2
=

√
ε2 −W 2 − #»

P 2

#»

P 2
+ 1 > 1. (2.150)

Therefore a suitable m can always be found.

This concludes the algorithm to determine the momenta of the final particles after a splitting
operation. Compared to the merging operation, the presented algorithm is very cheap in terms of
its computational cost.

2.5 Modification of final locations for first-order
particles

After merging or splitting is finished, pairs of final particles are located on a common location.
If first-order particle shapes are used, it is possible to shift these particles from their common
location, without disturbing the charge or current density distribution. Starting with (2.16) and
(2.30) and using N = 2 it follows that if two first-order particles have w = w1 = w2, i.e. equal
weights, and start at the same location #»x = #»x 1 = #»x 2, the change in charge distribution ∆ρjkl,
by moving them δx in opposite x-directions, is given by

∆ρjkl = wζ
(1)
2k (y) ζ

(1)
3l (z)

[
ζ

(1)
1j (x+ δx)− ζ(1)

1j (x) +

ζ
(1)
1j (x− δx)− ζ(1)

1j (x)
]
.

(2.151)
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Assuming that the particles start in one cell and that they do not leave the cell due to the move-
ment by δx, this equation can be written as

∆ρjkl = wζ
(1)
2k (y) ζ

(1)
3l (z) ·

· −|x+ δx− xj| − |x− δx− xj|+ 2|x− xj|
∆x

.
(2.152)

Evaluating this expression for the two affected slices of grid-points gives

∆ρ0kl = wζ
(1)
2k (y) ζ

(1)
3l (z) ·

· −(x+ δx− xj)− (x− δx− xj) + 2(x− xj)
∆x

= 0, and (2.153)

∆ρ1kl = wζ
(1)
2k (y) ζ

(1)
3l (z) ·

· (x+ δx− xj) + (x− δx− xj)− 2(x− xj)
∆x

= 0. (2.154)

In conclusion, it is possible to shift two first-order particles at the same location and with equal
weight in opposite directions, along an arbitrary dimension axis, without introducing unphysical
divergence into the system, as long as both particles do not cross cell boundaries. Unfortunately,
this simple shift is not possible for second-order particles. This can be easily seen by performing
the above analysis and replacing ζ(1) with ζ(2) (2.53). The non-linear nature of this particle shape
makes it necessary that the corresponding shifts are different for the two particles.

Shifting the final particles in this way, will increase diversity in the new particles, as they quit
sharing their spatial location. The specific dimension for this shift will be chosen at random. All
subsequent test cases employ this shift for the final particles after both, merging and splitting,
operations.

2.6 Minimization of the number of different weight
species

The amount of different weight species, present in each cell, is bound to vary when employ-
ing a particle merge/split module. More quasi-particles in each cell are generally desirable as
they increase the statistical significance of the simulation result. A multitude of weight species
counteracts this advantage as can be easily seen when imagining a very heavy particle in a cell
containing many very light particles. The density variation will be governed by the heavy parti-
cle, while the light particles only add computational load. The exact analytical correlation of this
was shown in chapter 1.3, especially equation (1.42) with equation (1.44).
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In order to improve the statistical significance of particles a second adjustment step has proven
to be beneficial. It consists of the above detailed merging and splitting algorithm with the re-
striction that the particle number in each cell can not change. By identifying the number of
quasi-particles with a weight above and below the average weight, a maximum number of pos-
sible merges and splits can be found, that, when performed, leave the number of particles in a
cell constant. Merging and splitting particles in these specific weight groups, in the correct ratio,
will decrease the number of weight species, but will keep the total number of particles in a cell
constant. This increases the statistical significance of each quasi-particle, while decreasing the
computational demand of the simulation. Unfortunately, these savings in computational demand
need to be counterbalanced by the extra amount of computations the adjustment step takes. It
still seems reasonable to perform the extra step in many cases, since particle processing should
not be necessary for every time step. It only needs to be performed during an amount of time
steps orders of magnitude fewer than that. Performing particle processing too frequently has also
been observed to unnecessarily inflate the number of weight species in the system.

In order to adjudicate the efficiency of this extra step, two different setups were considered. The
first setup consists of a hot (T = 1 keV), one dimensional plasma slab with a length of 0.5µm,
which expands unhindered, except by electromagnetic forces, into a vacuum box of size 2.5µm.
In this setup all particles are initially generated with the same weight.

The second setup consists of a hot (T = 1 keV), one dimensional gaussian plasma distribution
with σ = 0.25µm, which expands unhindered, except by electromagnetic forces, into a vacuum
box of size 2.5µm. In this case, the initial particle setup could not solely contain particles of
the same weight, as the density distribution was not constant. A special setup was written that
ensured that only particle weights of a power of two were employed.

All boundaries are periodic. The grid size is 128 points. The simulation only performs calcula-
tions for the electrons, the ions are stationary. The number of particles per cell is adjusted at each
time step, in order to keep it at a high level of 200± 20 particles per cell.

In this way, the number of particles inside the initial plasma, as well as in the regions of vacuum
that get populated by plasma, need to be continuously increased via splitting. Merging and
splitting was performed with Q = 2. It was triggered every 50th time step, starting with the first.

Results of the first test case are shown in Fig. 2.12. The first test case shows the proper func-
tionality of the algorithm. As the plasma expands into the vacuum, the algorithm increases the
number of particles from 5200 to ≈ 25000, a factor of 5, which is the fraction of space that ini-
tially contained plasma. The plasma therefore occupies the whole box using 200 quasi-particles
in each cell.

In order to do this, two main weight species are needed: 1/8 and 1/4. In this case, the additional
adjustment does not improve the results. It employs the same amount of weight species with
a very similar number of quasi-particles. The reason for this is that the standard algorithm is
carefully avoiding the creation of too many species as well. By always merging the lightest
and splitting the heaviest particles, which is guaranteed by the weight sorting step, detailed in
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Fig. 2.12 – Results of a simple PIC simulation to illustrate the effects of an extra adjustment step. All
graphs show the number of particles N for the different weight species w in the simula-
tion. Three cases are shown: i) splitting and merging followed by an additional adjustment
step (blue), ii) only splitting and merging (green), iii) no splitting or merging (red). The
specific number of particles for each bar is plotted above or below the respective bar. Each
graph contains the respective time step and the total number of performed particle pro-
cessing operations. The total particle number for the blue case and per plotted timestep is
given by 7460, 16542, 23954 and 24892 quasi-particles, respectively. For the green case
it is 7588, 16180, 23854 and 24818, respectively. For the red case this number is constant
for all time steps: 5200.
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Fig. 2.13 – Results of a simple PIC simulation to illustrate the effects of an extra adjustment step in
order to reduce the number of different weight species. All graphs show the number of
particles N for the different weight species w in the simulation. Three cases are shown: i)
splitting and merging followed by an additional adjustment step (blue), ii) only splitting
and merging (green), iii) no splitting or merging (red). The specific number of particles for
each bar is plotted above or below the respective bar. Each graph contains the respective
time step and the total number of performed particle processing operations. The total
particle number for the blue case and per plotted timestep is given by 19222, 23322,
24744 and 25320 quasi-particles, respectively. For the green case the respective particle
numbers are given by 19136, 22222, 24682 and 24936. For the red case this number is
constant for all time steps: 14212.
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chapter 2.2.2, the amount of weight species is kept in check. This example shows the ability of
the algorithm to minimize the number of weight species. In order to show the advantages of the
additional post-processing step, a more complex case has to be constructed.

Results of the second test case are shown in Fig. 2.13. It has a much more complex initial weight
distribution (shown in red), caused by the more complex plasma density and the specific particle
setup algorithm. Initially, this setup already consists of 10 different weight species, given by
powers of two from w = 1/512 to w = 1 (the red bars in Fig. 2.13). The outpouring plasma then
requires a lot of splitting to keep the number of particles per cell at 200.

In this case the additional adjustment processing is beneficial. The last graph, the one for time
step 1725, shows one very dominant weight species for the blue data, while the green data has a
total of two important weight species. As given in the caption to Fig. 2.13, both, the blue and the
green simulation, have approximately the same amount of quasi-particles, in accordance with the
definition of the additional processing step.

When looking closely at the data in Fig. 2.13, it can be seen that the additional particles blue is
exhibiting in the dominant w = 1/4 species, come from the lighter weight species with w < 1/4.
This is reasonable, as the additional adjustment step enables the algorithm to more effectively
get rid of these species when they are not needed anymore.

This shows, that the utility of this additional post-processing step is heavily dependent on the
characteristics of the physical problem under consideration. An interesting observation is the
amount of failed searches for initial momenta during the Random selection of initial momenta
values algorithm detailed in chapter 2.3.2. In these simple test cases only ≈ 3.64 % of all the
searches (over all groups, cells, and processing steps) failed to find an initial momentum. This
number did not depend heavily on the specific setup and configuration.

The spatial location search, detailed in chapter 2.3.1, was successful in all (over all groups,
cells, and processing steps) cases. This is probably due to the test cases being one-dimensional
problems.

Another algorithmic detail is a possible restriction of splitting to only the heaviest particles in
each cell. The heaviest particles are the particles with the highest weight. This restriction does
not need an additional sorting step, as sorting by weight is already done. The splitting algorithm
always starts with the heaviest particles. After any amount of particles in the bin with the heaviest
particles have been split (and the target number of particles has not been reached), the algorithm
will only proceed to the next (lighter) weight bin, if it was able to split all particles in that heaviest
bin. If it was not possible to split all particles with the largest weight, (probably due to the sorting
algorithm in momentum space failing to find suitable candidates), splitting is stopped for this cell
and this processing iteration.

This may decrease the amount of created particles, but it especially helps in the case of Q = 2.
In this case, the relevancy of each quasi-particle (in terms of its effect on the signal-to-noise
ratio) decreases exponentially if the heavier particles remain in the cell. This increases the com-
putational cost with little justification or payback. Thus, it is important to restrict the number of
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weight species in a cell to two, which can be achieved by only splitting the heaviest particles.
This modification is enabled for all simulations with Q = 2, except when noted otherwise.

2.7 Adapting the algorithm for photons

It does not require fundamental modifications to extend the algorithm to be able to handle pho-
tons. The main differences are:

1. Photons do not have different kinds, which reduces the amount of necessary sorting.

2. Photons do not have a charge, which makes moving them in a cell much simpler, as they
do not interact with the electromagnetic fields. Therefore, the algorithm, detailed in chap-
ter 2.3.1, is unnecessary for photons. Photons can be shifted at will, without introducing
errors in the electromagnetic field values.

3. Photons have a different normalized energy, since they have zero mass.

The last point leads to the following modifications to the previously established equations. Equa-
tions (2.60) and (2.61) become

εbc
g = wg

∣∣ #»p bc
g

∣∣ and (2.155)

εspare = Σiwi | #»p i| − Σgε
bc
g , (2.156)

respectively, equation (2.69) becomes

εspend =Σ
#»
Πgdefined
g

(
w′g1

∣∣∣ #»p bc
g +

#»

Πg

∣∣∣
+w′g2

∣∣∣ #»p bc
g −

#»

Πg

∣∣∣) , (2.157)

equation (2.81) becomes

εoc
1 =

(
#»p bc
g · êl

)2
+
(

#»p bc
g · êm

)2
, (2.158)

equations (2.85) and (2.86) become

εoc
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respectively, equations (2.89) and (2.90) become
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respectively, equation (2.94) becomes

εg =
2
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(
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equation (2.95) becomes
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equation (2.97) becomes
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and equation (2.99) becomes

ξg = ±εg
2

√√√√4
(∣∣ #»p bc

g

∣∣2)− ε2g
D

. (2.166)

In the splitting part, the following modifications are necessary. Equation (2.103) becomes

E = w| #»p 2| = w

2
| #»p |+ w

2
| #»p |, (2.167)

while equation (2.106) becomes

ε =
N∑
i=0

wi|pi|. (2.168)

The variable d in (2.114), (2.115), (2.128) and (2.129) becomes

d =
ε2

W 2
. (2.169)

Equation (2.118) becomes
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, (2.170)
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while equation (2.122) becomes

Eavail =

√
ε2 − #»

P 2

W 2
, (2.171)

and equation (2.123) becomes √
ε2 − #»

P 2

W 2
> 0. (2.172)

Equation (2.148) becomes

ε

| #»P |
> 1, (2.173)

which can be shown to hold true analogously to the equation for the particles. Since equation
(2.149) becomes √

ε2 − #»

P 2

W 2
> 0 ⇔ ε2 − #»

P 2 > 0, (2.174)

which is now using (2.172), and therefore, analogously to the original version in (2.150), it
follows that

ε

| #»P |
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√
ε2
#»

P 2
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√
ε2 − #»

P 2

#»

P 2
+ 1 > 1, (2.175)

which means that, in the case of photons as well, a suitable m will always be found.
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The complete algorithm, detailed in chapter 2, has been implemented for the PIC code PSC in
1D, 2D and 3D. The implementation comprises about 6000 lines of C code. Special care was
taken to produce a maintainable, readable, efficient and well-engineered code.

Extensive test cases have been written as well. A total of 90 different test configurations have
been designed to ensure that the algorithm fulfills its stated targets. The tested goals are momen-
tum conservation, energy conservation and freedom of any spurious divergence. These targets
are tested for one-, two- and three-dimensional simulations and for a variety of other parameters,
including a fixed or variable Q, employment of the additional adjustment step, electromagnetic
interaction, different particle sorting methods and check-pointing. The code performs perfectly
for all test cases. The stated goals are achieved up to machine precision for all configurations.
The test suite has been run after all major changes to the code in order to ensure a predictable
performance, and has been integrated into the standard test suite of the PSC.

In this chapter, the performance of the algorithm will be evaluated. For this purpose multiple
test cases have been established and analyzed. First, the well known two-stream instability is
investigated for a multitude of different parameters. Second, the presented algorithm will be
compared to a published algorithm, using the same metrics as in the publication.

The test cases will exclusively employ first-order particles. Therefore, in all cases, it suffices
to only show the momentum space and its development, as the algorithm will not affect the
configuration space in any way. The splitting/merging process will modify the quasi-particle
positions, but it will leave the charge density undisturbed.

3.1 Two-stream instability

In order to evaluate the quality of the conservation properties of the scheme, the well-known two-
stream problem in one spatial and one momentum dimension (i.e. in a two-dimensional phase
space) is investigated. Two counter-propagating plasma streams, each with a certain temperature,
move through each other, while exhibiting heavy particle merging or splitting. The quality of
conservation is measured by comparing phase space plots of these two streams for different
cases. A two-dimensional phase space was chosen, as it provides the possibility of giving the
whole momentum space picture with just one figure.

It is important to note that in the case of splitting, the particles do start in a two-dimensional phase
space, but due to the splitting algorithm, which tries to increase the variation in momentum space,
the particles gain momenta in the off-directions (c.f. to Fig. 2.11, the resulting momenta #»p ′1 and
#»p ′2 are not in the same plane as the total initial momentum

#»

P ). Still, since the particles do no start
with any momentum in the off-directions, the algorithm will not be able to improve the situation
in the monitored momentum direction meaningfully, as there is no additional “available energy”
(2.122). Interestingly, initializing the simulations with a three-dimensional momentum space
distribution, with a temperature in all three momentum directions and without requiring strong
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fidelity in those extra dimensions, improves the results for both merging (through additional εspare

(2.61)) and splitting (through additional “available energy” (2.122)). Since these results are not
really meaningful for actual simulations, they are not shown here.

The generation of off-direction momenta during splitting could be remedied by switching the
additional variation generating part of the algorithm off. It could also prove worthwhile to spe-
cialize the presented splitting algorithm to fewer momentum dimensions. Since the goal of this
chapter is to test the given algorithm, this is not done for the test cases in this section.

The merging algorithm does not exhibit this momentum space expanding behavior. The result-
ing momenta of the merging algorithm are initial momenta or barycenter momenta, which are
not in the off-directions by definition, that are modified to distribute the remaining energy. This
distribution is done by going in the direction of the standard deviation of the initial momentum
distribution. This standard deviation, also by definition, lies in the initial one-dimensional mo-
mentum space as well. This way, if the initial particles start in a two-dimensional phase space
the merged particles will inhabit the same two-dimensional phase-space. This conservation has
also been verified for all merging results.

The complete physical and numerical parameters can be found in Tab. 3.1. The plasma density
and the number of quasi-particles is spatially constant. All boundaries of the simulation box
are periodic for particles and fields. The simulations in this section are not meant to reproduce
actual physical processes. Due to the very limited amount of only 10 timesteps, the evolution
of the plasma is not meaningfully explored. The point of these simulations is to benchmark the
fidelity in momentum space the merging/splitting algorithm is able to guarantee for different sets
of parameters independent of any physical evolution. In order to investigate this, the particles are
merged or split every timestep, which will not commonly happen in real scientific simulations.
It is verified that the 10 simulated timesteps suffice to reach a converged particle number in all
considered test cases. The results will therefore present the amount of momentum space preser-
vation the algorithm is able to guarantee in the most extreme case. Additionally, the parameter
set that guarantees a very competitive amount of preservation is identified as well.

The additional step, introduced in chapter 2.6, is not employed in order to make the results easier
to analyze. All simulations restrict the weight space to powers of two and therefore Q = 2
(2.5) for every merging or splitting operation. This also requires a weight sorting, introduced in
chapter 2.2.2, that exclusively sorts into bins of powers of two.

Figures in this section always show two different cases. The first case is a phase space diagram
after merging or splitting up or down from a specific particle number. This is shown in red. The
second case is a fresh setup, using a random number generator to fill the temperature defined
momentum space, employing the resulting number of particles from the first case for the specific
respective timestep (rounded up to a multiple of the number of plasma streams times the number
of grid-points, which is equal to 2000). Therefore the distribution for this second case is strictly
better than the distribution that is attainable by the merge/split procedure, and can therefore serve
as a fidelity optimum. It is shown in blue.
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Parameter & notation Value
Plasma density, n0 1× 1016 cm−3

Plasma initial x-direction temperature 0.1 eV
Plasma normed momentum separation ±0.002
Initial number of quasi-particles for merging 100000
Initial number of quasi-particles per cell per stream for merging, Nmerge 50
Initial number of quasi-particles for splitting 20000
Initial number of quasi-particles per cell per stream for splitting, Nsplit 10
Courant-Friedrichs-Lewy number [4] 0.75
Number of timesteps 10
Timestep size 6.25× 10−18 s
Number of momentum bins, Nbins 256
Evaluated normed momentum range, [rs, re] [−0.004, 0.004]
Normed momentum bin size, ∆p = 0.008

Nbins
3.125× 10−5

Box size in x-direction 2.5µm
Number of spatial bins, Ngrid 1000
Spatial grid size, ∆x 2.5× 10−3 µm

Table 3.1 – Parameters of the two-stream simulations. Numbers typed in italic are approximate val-
ues.

The data for these two cases is the result of performing each setup Nsamples = 1024 times and
calculating the mean value and the standard deviation of the density in phase space for the last
timestep, timestep number 10. Particle numbers are always given for the whole simulation box.
If a particle number is followed by a ±-value, the number is the average value over all samples
and the number after the ± symbol is its standard deviation. The dashed lines and the colored
regions in each figure give the standard deviation of the respective mean quantities. The different
samples use different initializations of the random number generator, leading to different particle
setups as well as different results in the merging/splitting algorithm. The standard deviation is
calculated separately for values above and below the mean, as the distribution is non-symmetric
for values close to zero.

Figures in this chapter depict the mean of the binned momentum density ρp, which is a dis-
cretization of the quasi-particle distribution. The quasi-particles have a 0th-order form factor in
momentum space (a δ-distribution). The binned momentum density ∀ pi ∈ {rs +(i− 1/2)∆p | i ∈
[1,Nbins]} is therefore given by

ρp (pi) =
1

NtNgrid∆p

∑
{j | pi− 1

2
∆p≤pj<pi+ 1

2
∆p}

wjpj, (3.1)

where Nt is either Nmerge or Nsplit, pj are the quasi-particle momenta in the x-direction and wj
are their weights. The factor Nt is necessary, as, for a constant n0, the PSC will need to scale
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the particle weights with the number of quasi-particles per cell. The mean µ(ρp) and standard
deviation σ(ρp) of this quantity is calculated discreetly for each bin pi over all samples Nsamples.

Different values for N sort
max (equation (2.4) defined in chapter 2.2.3) and lmin (2.6) for the under-

lying momentum sort parameters were tested, representing different requirements for the faith-
fulness in momentum space. Parameter N sort

max fixes the amount of quasi-particles per momentum
space volume, while lmin divides the momentum space up into buckets of a certain size, allowing
particle processing only for particles inside the same bucket. It is important to note that these
buckets are not symmetrically aligned over the momentum space. Due to the modifications to
the minimum and maximum values for each momentum dimension, explained in list item one in
chapter 2.2.3, the specific bisection point inside the momentum space is chosen randomly. For
lmin = 1 there are two buckets in the box, except for two singular cases, where the bisection point
is exactly at the original minimum or maximum value, in which case there is only one bucket.
The amount of buckets increases exponentially with the value of lmin. For lmin = 2 there is a
maximum of four buckets in the box, randomly placed over it, and so on. The number and size
of the buckets defines a certain requested resolution in momentum space.

The following two sections will show thatN sort
max is a more important parameter for splitting, while

lmin is more important for merging.

3.1.1 Merging performance

First, the merging behavior of the algorithm is explored. Switching off splitting and forcing
aggressive merging can be done by setting N cell

min = 0 and N cell
max = 1 in equation (2.1), which

means that the algorithm tries to reduce the total number of particles to Ngrid = 1000. This
number is never reached and therefore ensures that, if it is able to find appropriate target groups,
the algorithm never stops merging. This way, these test cases show the most extreme results,
and also provide information about the minimum particle number that is needed to represent the
distribution. The different tested values for N sort

max and lmin are given by N sort
max = [12, 26, 8000] and

lmin = [0, 2, 4].

In the case of Q = 2, 1D merging, each merging event needs a minimum of four initial particles,
three particles because of the analysis shown in (2.39), plus one to get Q = 2. Therefore, setting
N sort

max = 12 results in approximately two merge ranges in each bin (one range needs four particles
that are merged to two final particles at a common location). This way, the range capability and
the redistribution of energy between ranges is tested. The different values for N sort

max also lead to
different rates of merging per timestep, as can be seen in the number of particles in the box.

The results for N sort
max = 8000 and lmin = 0 are shown in Fig. 3.1. It is obvious that these param-

eters do not work well for this particular problem. The particle momenta after merging are still
representing a two-stream situation, but the two streams are much less distinct. In this figure, as
well as in all the following figures, the sampling standard deviation (the vertical variation) of the
merged distribution is very similar to the sampling standard deviation of the fresh setup. It seems
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Fig. 3.1 – The red line shows the mean momentum space density after 10 timesteps of heavy merging,
with the parameters N sort

max = 8000 and lmin = 0. The total number of particles was reduced
from 100000 particles at timestep zero to an average of 8102±18 particles at timestep 10.
The blue line shows a fresh setup with 10000 particles.

that the merging algorithm is very deterministic, even though it contains a fair amount of random
numbers. In the following sections, the impact of modifying N sort

max and lmin will be investigated.

Scan over different values for N sort
max

In this section the impact of decreasing the value of N sort
max from 8000 to 12 will be investigated.

The results forN sort
max = 26 are shown in Fig. 3.2. They have improved a bit from the values shown

in Fig. 3.1. Due to the stricter requirements, the algorithm was not able to reduce the number of
particles as much as before. The average final particle number is given by 11657±43, while it
previously was only 8102±18.

The remnants of the two-stream setup are a bit more pronounced. But overall, the momentum
phase structure is still meaningfully different and it is not expected that the physical processes
will be adequately reproduced.

Further reducingN sort
max to 12 yields the values shown in Fig. 3.3. The final number of particles has

increased again. Unfortunately, compared to the previous case shown in Fig. 3.2, the momentum
space structure has not improved a lot. It still is too different to expect a reasonable fidelity to
the physical characteristics of the un-merged setup.

In conclusion, parameterN sort
max is not very well positioned to guarantee faithfulness in momentum
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Fig. 3.2 – The red line shows the mean momentum space density after 10 timesteps of heavy merging,
with the parameters N sort

max = 26 and lmin = 0. The total number of particles was reduced
from 100000 particles at timestep zero to an average of 11657±43 particles at timestep 10.
The blue line shows a fresh setup with 12000 particles.
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Fig. 3.3 – The red line shows the mean momentum space density after 10 timesteps of heavy merging,
with the parameters N sort

max = 12 and lmin = 0. The total number of particles was reduced
from 100000 particles at timestep zero to an average of 13550±79 particles at timestep 10.
The blue line shows a fresh setup with 14000 particles.
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Fig. 3.4 – The red line shows the mean momentum space density after 10 timesteps of heavy merging,
with the parameters N sort

max = 8000 and lmin = 2. The total number of particles was reduced
from 100000 particles at timestep zero to an average of 23261±82 particles at timestep 10.
The blue line shows a fresh setup with 24000 particles.

space for the merging operation. Even for the very restrictive N sort
max = 12, the results are not

very convincing. The fact that the initial number of quasi-particles is not constant over the
momentum space, coupled with this parameter’s increased rate of merging in places with more
particles, deteriorates the momentum space distribution meaningfully. The second parameter lmin

will prove to be much better suited for this benchmark.

Scan over different values for lmin

The impact of different values for lmin on the merging operation is investigated in this section. It
will be seen that this parameter is substantially more important. Fig. 3.4 uses lmin = 2. Compared
to all previous tests shown in Fig. 3.2 and Fig. 3.3, the momentum space fidelity is already much
better. Unfortunately, the two streams are now made up of four peaks instead of only two. This
case uses an average of four buckets in momentum space, which is too coarse for the investigated
distribution. The two distinct peaks therefore get washed out into four peaks. Still, guaranteeing
a certain minimum momentum resolution generates a much better result than what was possible
by modifying N sort

max.

This assessment is confirmed when considering the results for lmin = 4, shown in Fig. 3.5. Again,
these results are much better than the ones shown in Fig. 3.3. Increasing the minimum sort level
to four increases the fidelity in momentum space to a very respective level. The difference to
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Fig. 3.5 – The red line shows the mean momentum space density after 10 timesteps of heavy merging,
with the parameters N sort

max = 8000 and lmin = 4. The total number of particles was reduced
from 100000 particles at timestep zero to an average of 42572±125 particles at timestep
10. The blue line shows a fresh setup with 44000 particles.

the optimal setup is minimal. The final number of particles is considerably higher (42572±125)
in comparison to the most restrictive N sort

max = 12 case (13550±79), but in turn, the fidelity in
momentum space is unmatched.

Merging with very restrictive parameters

Finally, Fig. 3.6 shows results for a run with N sort
max = 12 and lmin = 4. The difference to the data

shown in Fig. 3.5 is minimal, but it still constitutes a small improvement. The momentum space
fidelity is great, even though the merging algorithm was not specialized for this problem. Even
the standard deviation (the vertical colored region) of the merged case (shown by the dashed red
lines) is approximately the same as the optimal one (shown by the dashed blue lines). Expectedly,
the final amount of particles 44494±129 is the largest amount of all tests. Still, the number of
quasi-particles has been reduced by more than half of the initial amount. It seems that at least 44
quasi-particles per cell are needed to adequately resolve the two-stream setup.

In conclusion, it is important to be aware of the approximate shape of the distribution function in
momentum space when setting the merging parameters. The amount of distinct features present
in the momentum space prescribes the value of the minimum sorting level lmin. For lmin = 4 the
two-stream setup can be adequately resolved. Therefore, lmin = 4 is chosen for the benchmarks
shown later in chapter 3.2. Parameter lmin is more important and restrictive thanN sort

max, and should
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Fig. 3.6 – The red line shows the mean momentum space density after 10 timesteps of heavy merging,
with the parameters N sort

max = 12 and lmin = 4. The total number of particles was reduced
from 100000 particles at timestep zero to an average of 44494±129 particles at timestep
10. The blue line shows a fresh setup with 46000 particles.

always be at least> 0, if a temperate plasma needs to be resolved. It is also of importance to tailor
the parameters to the amount of merging needed for the problem, as more restrictive parameter
values may not be able to provide for a sufficiently momentous decrease in quasi-particles.

3.1.2 Splitting performance

After the investigation into the merging behavior in the previous section, the splitting behavior
of the algorithm, with respect to the two-stream problem, is explored. Switching off merging and
forcing aggressive splitting can be done by setting N cell

min = 100 and N cell
max = 10000 in equation

(2.1), which means that the algorithm tries to increase the total number of particles to 100000,
100 particles per cell. Each cell starts with 20 quasi-particles.

In comparison with the results shown in the previous section, the standard deviation in this sec-
tion will be much smaller for many figures, at least for the optimal case. The reason for this is
the increased number of quasi-particles in the last timestep, which leads to a decrease in the stan-
dard deviation, as shown in chapter 1. It is important to disable the restriction of only splitting
the heaviest particles, detailed in the last paragraph of chapter 2.6, for the simulations shown in
this chapter. This restriction does not work well for repeated calls to the algorithm. The bench-
marks execute the splitting algorithm ten times in a row, which prohibits most quasi-particles
from switching the cell. Splitting only the heaviest particles therefore leads to the situation,
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Fig. 3.7 – The red line shows the mean momentum space density after 10 timesteps of heavy split-
ting, with the parameters N sort

max = 4000 and lmin = 0. The total number of particles was
increased from 20000 particles at timestep zero to an average of 99690±18 particles at
timestep 10. The blue line shows a fresh setup with 100000 particles.

where a very small number of residual heavy quasi-particles in a cell completely stop any further
splitting, leading to untypical results.

Again, different values for N sort
max = [6, 13, 4000] (equation (2.4) defined in chapter 2.2.3) and

lmin = [0, 2, 4] (2.6) for the underlying momentum sort parameters were tested.

In contrast to the previous chapter, we use a different range of values for N sort
max. Each test in the

case of splitting will be investigated using an N sort
max value that is half of the value that was used

for the merging tests. The reason for this difference can be found in the amount of particles
per merging/splitting event. In the case of Q = 2, 1D merging, each merging event needs a
minimum of four initial particles, three particles because of the analysis shown in (2.39), plus
one to get Q = 2. In contrast to that value, splitting only needs two initial particles per Q = 2
event. This was shown in (2.123) and the subsequent reasonings. Therefore, it holds that if
N sort

max,merge = 2 · N sort
max,split the amount of possible merge/split events is the same for both types

of operations. Thus, choosing the parameters in this way makes the two cases comparable,
when investigating the amount of distortions introduced into the momentum space distribution.
This relation must be kept in mind when comparing the different figures in chapter 3.1.1 and
chapter 3.1.2.

The results for N sort
max = 4000 and lmin = 0 are shown in Fig. 3.7. As it was found for the

merging case, these weak parameters do not lead to an appreciable fidelity in momentum space.
Nevertheless, these results are better than the results for the merge case, shown in Fig. 3.1. The
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Fig. 3.8 – The red line shows the mean momentum space density after 10 timesteps of heavy splitting,
with the parameters N sort

max = 13 and lmin = 0. The total number of particles was increased
from 20000 particles at timestep zero to an average of 99606±20 particles at timestep 10.
The blue line shows a fresh setup with 100000 particles.

two counter-propagating streams are more visible and have not been deteriorated as much by the
algorithm. Again, the sampling standard deviation (the vertical variation) of the distribution after
splitting is very similar to the sampling standard deviation of the fresh setup. It seems that the
splitting algorithm is very deterministic as well. In the following sections the impact of varying
N sort

max and lmin will be investigated.

Scan over different values for N sort
max

In this section, the impact of decreasing the value of N sort
max from 4000 to 6 will be investigated.

The result for N sort
max = 13 is shown in Fig. 3.8. It has markedly improved from the values shown

previously in Fig. 3.7, without affecting the amount of final particles. The average final particle
number is given by 99606±20, while it was 99690±18 before. The two streams are very clearly
visible, the main difference to the optimal distribution, shown in blue, is given by a different
shape of the two streams. The two streams do not follow the correct Gaussian distribution, as
they exhibit a smaller temperature, signified by the smaller width of the two peaks.

Further reducing N sort
max to 6 yields the values shown in Fig. 3.9. This step fixes the previous

problem of smaller temperatures in the two streams. The two Gaussian distributions now very
closely resemble the optimal distributions, given in blue. The final number of particles is still
exactly the requested amount of approximately 100000 quasi-particles. The main difference can
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Fig. 3.9 – The red line shows the mean momentum space density after 10 timesteps of heavy splitting,
with the parameters N sort

max = 6 and lmin = 0. The total number of particles was increased
from 20000 particles at timestep zero to an average of 99621±20 particles at timestep 10.
The blue line shows a fresh setup with 100000 particles.

be found in the standard deviation (the vertical colored region), which is about double the size
for the split results. This means, that particle splitting is introducing some added variance into
the momentum distribution. Comparing these results with Fig. 3.3, it is immediately apparent
that splitting benefits much more from stricter N sort

max values than merging does. The next section
will show that the inverse is true for lmin.

Scan over different values for lmin

The impact of different values for lmin is investigated in this section. In contrast to the merging
case, it will be shown that this parameters has less impact for splitting. Setting N sort

max to 6 already
provided a very good result and it will be seen that parameter lmin can not challenge it. Fig. 3.10
uses lmin = 2. It is quite a bit worse than Fig. 3.8, which is the opposite behavior as was seen
in the case of merging (Fig. 3.4 and Fig. 3.2). The problem of the decreased temperature in
the two counter-propagating streams appears with an even higher magnitude than before. These
parameters really push the momentum density into the two beams and therefore do not provide
appreciable results.

The results for lmin = 4 are shown in Fig. 3.11. These results are slightly worse than the ones
shown in Fig. 3.9. Still, increasing lmin does fix the problem of the decreased temperature like
decreasing N sort

max does, but the peak value is still a bit too high, compared to the optimal setup. As



78 3 Merging/Splitting Results

−4 −3 −2 −1 0 1 2 3 4

px[10−3]

0

200

400

600

800

1000

1200

1400

1600
µ

(ρ
p
),
σ

(ρ
p
)

Fig. 3.10 – The red line shows the mean momentum space density after 10 timesteps of heavy split-
ting, with the parameters N sort

max = 4000 and lmin = 2. The total number of particles was
increased from 20000 particles at timestep zero to an average of 99612±21 particles at
timestep 10. The blue line shows a fresh setup with 100000 particles.
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Fig. 3.11 – The red line shows the mean momentum space density after 10 timesteps of heavy split-
ting, with the parameters N sort

max = 4000 and lmin = 4. The total number of particles was
increased from 20000 particles at timestep zero to an average of 99638±22 particles at
timestep 10. The blue line shows a fresh setup with 100000 particles.
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Fig. 3.12 – The red line shows the mean momentum space density after 10 timesteps of heavy split-
ting, with the parameters N sort

max = 6 and lmin = 4. The total number of particles was
increased from 20000 particles at timestep zero to an average of 99633±21 particles at
timestep 10. The blue line shows a fresh setup with 100000 particles.

in the previous case, Fig. 3.9, the standard deviation is again too large, compared to the optimal
case. The final number of particles is still the requested amount (99638±22), and about the
same value as in the most restrictive N sort

max = 6 case (99621±20). Overall, these results are good
enough, the momentum fidelity should be sufficient for most cases.

Splitting with very restrictive parameters

Finally, Fig. 3.12 shows the results for a run with N sort
max = 6 and lmin = 4. The momentum space

fidelity is great, even though the splitting algorithm does not take any additional properties of
the specific test case into account. The difference to Fig. 3.9 is minimal. The final amount of
particles (99633±21) is again exactly as it was requested from the algorithm.

In summary, for splitting, increasing lmin seems to not be very important, even though it still im-
proves the results. It also seems to be less important to know about the approximate shape of the
distribution function in momentum space when setting the parameters in general. This is reason-
able, as the splitting algorithm is much more localized, as it does not combine parameters of that
many different particles. Contrary to the case of merging, parameter N sort

max is more powerful than
lmin. It does not seem very important to tailor the parameters to the amount of splitting needed
for the problem, as more restrictive parameter values do not hinder a sufficiently momentous
increase in quasi-particles.
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Parameter & notation Value
Plasma density, n̄0 3.14× 108 cm−3

Plasma thermal x-direction velocity, v̄th 1× 107 m
s

Plasma initial temperature, T = mev̄
2
th 0.57 KeV

Plasma drift velocity, v̄d ±4v̄th

Plasma frequency, ωp 1× 109 1
s

Initial number of quasi-particles for merging 2000000
Final number of quasi-particles after merging 160000
Initial number of quasi-particles per cell per stream for merging, Nmerge 1000
Final number of quasi-particles per cell per stream after merging 80
Courant-Friedrichs-Lewy number [4] 0.98
Number of timesteps 30592
Timestep size 3.27× 10−12 s
Number of momentum bins, Nbins 200
Evaluated velocity range, ±2 · v̄d [−8v̄th, 8v̄th]
Velocity bin size, ∆v̄ = 2·8v̄th

Nbins
0.08v̄th

Evaluated normed momentum range, [rs, re], ±2 · γv̄d/c [−0.267, 0.267]
Normed momentum bin size, ∆p = 2·0.267

Nbins
2.67× 10−3

Box size in x-direction, L 1 m
Number of spatial bins, Ngrid 1000
Spatial grid size, ∆x 1 mm
Maximum number of particles per bin after sorting (2.4), N sort

max,merge 12
Maximum number of particles per bin after sorting (2.4), N sort

max,split 6
Minimum sort binary tree splitting level (2.6), lmin 4

Table 3.2 – Parameters of the two-stream simulations replicating [29] chapter 4.4. Numbers typed in
italic are approximate values. Parameter me is the electron mass.

3.2 Comparison with a different published algorithm

In this chapter, results of the newly established algorithm are compared to results published in
[29]. To this end, tests as well as their respective analysis from [29] chapter 4.4 are reproduced
and run using the presented algorithm and the PSC. It was possible to generate very comparable
results with decisive advantages and improvements.

The parameters for these simulations can be found in Tab. 3.2. The previous chapter 3.1, espe-
cially section 3.1.1, was essential to finding the optimal values for the parameters of the merging
algorithm, and led to choosing N sort

max,merge = 12 and lmin = 4. In contrast with the previous chap-
ter, the additional step, introduced in chapter 2.6, is employed, with the hope that it increases the
SNR value of the simulations. All simulations restrict the weight space to powers of two and
therefore Q = 2 (2.5) for every merging or splitting operation. This also requires weight space
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sorting, introduced in chapter 2.2.2, exclusively sorting into bins of powers of two.

The paper describes the setup in plasma units and uses velocity instead of momentum throughout.
The reason for this is that the paper does not present a relativistic algorithm. The PSC setup was
done using SI units. In order to be a faithful representation of the simulations that were presented
in [29] chapter 4.4, the parameters in SI units need to fulfill the following equations,

v̄d = ±4v̄th, (3.2)

λD =

√
ε0T

n0e2
=

L

100
, (3.3)

where λD is the Debye length, ε0 is the permittivity of the vacuum and e is the elementary charge.
All other values are defined in Tab. 3.2. Equation (3.3) can be written as

ωp =

√
n0e2

meε0
= 100

v̄th

L
. (3.4)

The SI values, given in Tab. 3.2, satisfy these conditions. This guarantees that the present setup
and the one that was reported about in the paper by Teunissen and Ebert, are equal. In the
following it will be seen that the results are comparable as well.

The first result is given in Fig. 3.13. Like the test cases shown in [29], merging is performed
in five consecutive timesteps, going from a total number of about 2 × 106 quasi-particles (106

quasi-particles per stream) to about 16 × 104 (8 × 104 per stream) quasi-particles. The paper
[29] identifies an important additional parameter for the quality of the merging process. This
parameter is the point in time at which the particle number is reduced. It turns out that earlier
merging will be more detrimental to the fidelity of the simulation. The non-linear evolution of
the two-stream mixing process is perturbed and evolves very differently if the merging happens
before meaningful changes in the phase space occur. In order to study this effect, two different
points in time for the merging to start are identified and compared. The merging therefore either
happens at t = 5/ωp or at t = 20/ωp. This can be seen in the second and third row of the phase
space plots in Fig. 3.13. The last row, for which the merging started at t = 20/ωp, generates a
very comparable phase space diagram in comparison to the reference case shown in the first row.
The second row behaves much worse, with the phase space evolution being very different from
the reference case. This is the same conclusion that can be derived from Fig. 7 and Fig. 8 in [29].
Since these plots only show a qualitative measure it is very hard to glean any more information
from them.

In order to do that, more quantitative measures need to be established. The first step in this
direction is shown in Fig. 3.14. It reproduces the analysis of Fig. 9 in [29]. The results of the
new algorithm are very similar to the results of the vr algorithm of Teunissen and Ebert, while
they decisively outperform the results of all other shown algorithms. For these parameters and for
this merge ratio (about 100000⇒ 80000 quasi-particles per stream) the new algorithm is able to
almost exactly preserve the momentum distribution. This is also related to the fact, that the final
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17/ωp 34/ωp 51/ωp 67/ωp 84/ωp 91/ωp 100/ωp

merge at t = 5/ωp

merge at t = 20/ωp

Fig. 3.13 – Phase space plots of the two-stream reference case. The horizontal axis is the x-axis and
the vertical axis is the px-axis, conforming to the corresponding Fig. 7 and Fig. 8 in [29].
The columns correspond to different times in the evolution of the simulation, while the
rows depict different starting times for the merging algorithm. The first row does not
utilize any merging and instead uses 2000 quasi-particles per cell (1000 quasi-particles
per stream and cell) for the whole simulation. It serves as a baseline for the phase space
fidelity.

number of 160 quasi-particles per cell can very comfortably represent a two-stream scenario. In
the last chapter, it was shown that much more restrictive scenarios are still sufficient to produce
a very desirable fidelity in momentum space. As shown in Fig. 3.6, only about 44 quasi-particles
per cell are needed to resolve the two-stream scenario.

The only difference between the red (with merging) and the blue (without merging) line in
Fig. 3.14, is the size of the sampling standard deviation, given by the dashed lines and the colored
regions. The standard deviation of the merge case is bigger. This is expected, as the case with
merging has fewer particles available to represent the momentum distribution. As was shown in
chapter 1, a smaller number of quasi-particles always leads to more noise in the simulation.

As a last step, a very rigorous quantitative measure is established. Equation 4 from [29] uses the
relative difference of the velocity distribution function, given by

|fv (t)− fv,0 (t)|
|fv,0 (t)| , (3.5)

where fv (t) denotes the velocity distribution with merging, fv,0 (t) denotes the velocity distribu-
tion without merging and | · | is the L2 norm, as a way to meaningfully adjudicate the quality of
the merging algorithm. The quantities in this equation are vector quantities, as they hold a value
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Fig. 3.14 – Results of the two-stream instability configuration as defined in [29], chapter 4.4, com-
parable to Fig. 9. The red line shows the mean momentum space density shortly after
merging took place at t = 5/ωp, computed analogously to (3.1). The total number of
particles decreased from 2000000 particles at timestep zero to an average of 160058±67
particles at timestep 1541. The blue line shows the mean momentum space density from
the simulation without merging at the same point in time. The dashed lines give the stan-
dard deviation of their respective mean quantities, with the colored regions marking the
distance to the mean value. In contrast to this figure, Fig. 9 in [29] does not show results
without merging. A total number of Nsamples = 1056 simulations were performed and av-
eraged for both the red and the blue line. The particle numbers given here are a factor of
two bigger in comparison to the numbers given in the caption of [29], Fig. 9. The reason
for this is that the particle numbers given by Teunissen and Ebert are always per stream,
while the numbers given here are for the whole simulation box.

for each of the 200 momentum bins in the simulation. The difference is calculated for each pair
of momentum bins in fv (t) and fv,0 (t). Using this equation, it is possible to attach a relative
error to every timestep of the simulation. This is done in Fig. 10 of [29]. Fig. 3.15 reproduces
this measurement, using the presented algorithm, and can therefore be directly compared to that
figure. The only difference between the two results is the fact that the present result uses the
momentum distribution instead of the velocity distribution. Since the relativistic factor is only
γ = 1/

√
1− (4v̄th)2/c2 ≈ 1.009, the considered quantity is a relative quantity and switching

to the momentum only changes the employed bins and not the actual value of the distribution
function, this will not meaningfully affect the results.

Compared to the number of samples in the paper Nsamples = 100, a much higher number of
samples Nsamples = 1056 was used for the PSC case. This brings the measured empirical proba-
bility closer to the real probability. In order to achieve these results a complex array of run and
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Fig. 3.15 – Comparison data for Fig. 10 in [29]. The blue line is the resulting mean relative difference
in the momentum distribution function for merging at time t = 5/ωp, the orange line
corresponds to merging at time t = 20/ωp. The capped vertical solid light blue and light
orange lines represent the standard deviation of each mean value over all samples. The
vertical dashed blue and orange lines give the starting point of the merging process. A
total of Nsamples = 1056 simulations were run to generate these results.

post-processing scripts was necessary. Each sample, out of the total amount of 1056 samples, is
processed in the following sequence:

1. Start a total of three runs, one for the case of no merging, one for the case of merging at
t = 5/ωp and one for the case of merging at t = 20/ωp, using the same random number
seed for each of them. Employing the same random number seed guarantees an equivalent
setup of the quasi-particles for each case.

2. For every 400th timestep, the current quasi-particles are binned in 200 momentum bins.
This gives two (for the different merging times) vector (for the different momentum bins)
values for fp (t) and one vector value for fp,0 (t) for each timestep.

3. After all three runs have finished, equation (3.5) can be used to compute the relative dif-
ference in the momentum distribution function for each timestep and for each of the two
merging times.

The final relative differences of the momentum distribution function for each timestep and for all
samples are then put together and the mean and standard deviation of these quantities are calcu-
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lated over all samples. The shown results required simulations totaling ≈ 5.3 Kch to compute.
The result of this whole process is shown in Fig. 3.15.

The mean error values are consistently below the best case values of [29]. The presented algo-
rithm is a combination of all presented schemes in [29] but has the additional feature of being free
of spurious divergence. Through combining the different schemes from [29], the algorithm pre-
sented in this dissertation achieves improved results. Additionally, it is not necessary to choose
a specific scheme at the start of the simulation, which was necessary for the algorithm presented
in [29]. The different schemes are summarized in the caption of Table 1 in [29]. It can be hard
to adjudicate if the investigated physical process favors a scheme that conserves the energy, or
that conserves the momentum, or that uses randomly chosen previous velocities (which are op-
tionally scaled to conserve energy). The new algorithm simultaneously achieves the properties
of all the different schemes and surpasses their performance when regarding the difference of the
momentum distribution function measure.
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After giving a theoretical model of quasi-particle noise in chapter 1 and following that up with
the description of a novel algorithm to adapt and modify this noise in chapter 2 and chapter 3, this
chapter and chapter 5 will outline an experimental application of the previous work. This appli-
cation will not include the actual merging/splitting algorithm. Nonetheless, this algorithm may
be useful for future work, as, for example, the particle injection may be heavily influenced by the
amount of quasi-particles in the injected beam. The experimental application was done within
the AWAKE (”Advanced Proton Driven Plasma Wakefield Acceleration Experiment“) collabo-
ration. In order to become a part of this collaboration it was necessary to prove the capabilities
of the PSC. Furthermore, the specific goal of this participation needed to be established and well
justified. This chapter will describe the process of earning the trust of the collaboration and of
nailing down the targets of the cooperation. A peer-reviewed publication, a result of this cooper-
ation, will be presented in the last section. This chapter aims at giving a thorough understanding
of the respective share of the work for this publication that was completed by Nils Moschüring.
To this end, it is written in the first person.

4.1 Becoming a member of AWAKE

I followed the progress of the AWAKE collaboration very closely during my time at the LMU.
Through regular participation at the annual collaboration meetings, where I gave frequent talks
on my progress, the simulation coordinator, Konstantin Lotov, was able to make sure my targets
aligned well with the targets of the collaboration. Leading up to the first (found in this chapter)
and second (found in chapter 5) peer-reviewed publication, I participated in five AWAKE collab-
oration meetings: The meeting in Lisbon in June 2012, the meeting in Düsseldorf in June 2013,
the meeting at CERN in March 2015, the meeting in Lisbon in March 2016 and the meeting at
CERN in September 2018. Each time, I gave a detailed report of my progress. I also presented
the results and status updates on two international conferences, the Conference on Computa-
tional Physics in July 2016 in Johannesburg, South Africa, and the Laser-Plasma Accelerator
Workshop 2019 in May 2019 in Split, Croatia.

My first presentation, which can be viewed as an application to participate in the collaboration,
was in June 2012, at the collaboration meeting in Lisbon. This meeting was hosted by the
IST, which is home to the OSIRIS PIC code, and my talk was a basic introduction to the PSC
and its capabilities. I also presented some very early simulation results of a 2D simulation,
with parameters that were close to some AWAKE models, of which you can find a sample in
Fig. 4.1. Resulting from this first meeting, the determination to work together was formed. In
order to qualify as a contributor, our simulation capabilities needed to be up to par. To test this,
Konstantin Lotov supplied multiple fixed criteria the PSC had to fulfill in order to be accepted
as a source of trusted results. These criteria are i) Ez wakefield strength stability with driver
distance, ii) the reproduction and stability of the plasma wavelength in the resulting wakefield,
iii) an acceptable amount of lateral wakefield deformation with propagation distance and iv)
an acceptable amount of numerical heating. After the collaboration meeting, Tobias Kleine,



4.2 Enabling a large-scale simulation of the AWAKE baseline case 89

Fig. 4.1 – Two figures from my presentation at the IST in Lisbon in 2012. Two consecutive points in
time of a 2D simulation of proton-driven wakefield generation are shown. The application
of dynamic patches can be seen in the switch-off of the lowest patch in the figure on the
right.

a diploma student, investigated these issues in collaboration with me. From this work Tobias
Kleine achieved his diploma in 2013 [11].

Chapter 6 in [11] discusses the wakefield stability. In this chapter, Fig. 6.1 and Fig. 6.2 as well as
Table 6.1 are of special interest. They depict theEz stability, in terms of the field strength and the
wavelength, as well as the lateral field deformation with the propagation distance. Additionally,
Table 1 shows the generated plasma wavelength. The work of Tobias Kleine [11] discusses the
numerical heating properties of the code as well. Fig. 5.9 in chapter 5 as well as Fig. 6.5 in
chapter 6 and the contents of chapter 7 contain an in-depth investigation into this problem. The
different benchmark results demonstrate the good performance of the PSC. They are also very
important in order to gauge the required resolutions to achieve the desired faithfulness.

I presented the results of these benchmarks at the next collaboration meeting in June 2013 at the
Heinrich-Heine University in Düsseldorf. The results were welcomed and deemed sufficient to
show that the PSC is a good candidate for providing results for the AWAKE effort.

4.2 Enabling a large-scale simulation of the AWAKE
baseline case

With this confirmation and validation I started investing more time into preparing large-scale sim-
ulations. The full resolution requires multiple Mch of computational resources and was therefore
not suitable as a test system for the simulations. Therefore, I used smaller resolutions in order to
regularly verify my efforts. It took some time to prepare a simulation test case that offered all the
necessary parameters and capabilities. This case should offer multiple charged particle beams
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Fig. 4.2 – Verification of the setup of (a) the proton transversal emittance, where the area A enclosed
by the blue ellipsis satisfies εnb = γbβb

A
π = γbβbσθσrb = γbβb 0.2 mm 0.042 mrad ≈

3.6 mm mrad, (b) the electron transversal emittance, where the area A enclosed by the blue
ellipsis satisfies εne = γeβe

A
π = γeβeσθσre = γeβe 0.25 mm 0.26 mrad ≈ 2 mm mrad

and (c) the proton longitudinal emittance, where the red lines signify the energies E =
400 GeV ± 0.35

100 400 GeV.

with a full configuration (population N , length σz, radius σr, energy W , energy spread δW and
angular spread δα) and a plasma column with a complex density profile.

Results for this new simulation case, using an updated baseline configuration, were presented
by me at the AWAKE collaboration meeting in March 2015 at CERN. The updated baseline
configuration uses on-axis injection of the witness electron beam, which makes it much simpler
than the final configuration. The simulation contains the full 10 m propagation, but uses a reduced
resolution of Nperλp = 51, which makes its runtime much shorter than the final configuration
will require. Since the runtime is directly proportional to the resolution to the fourth power,
the runtime with the reduced resolution is only (51/130)4 ≈ 2.4 % of the runtime of the final
configuration. In this case, the plasma takes the shape of a truncated cone. The remaining
parameters can be found in Table 1 in [17]. In order to carefully verify the validity of this
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Fig. 4.3 – Verification of the Ez field evolution. The plot shows the results of my test case, where
Ez(z) = maxx,y,tEz(x,y,z,t) and other parameters as given in Table 1 in [17]. The red
line in this plot is a moving window average of the data plotted in blue. It can be compared
directly with Fig. 1 (b) in [16], which shows results of LCODE simulations using different
values for the proton bunch population Nb. The red line, with Nb = 3× 1011, in Fig. 1 (b)
of [16] corresponds to the data in this plot.

improved test case I prepared a couple of diagnostics. Fig. 4.2 shows the results of applying these
diagnostics. They focus on the correctness of the emittance as this is an important parameter,
which is not straightforward to implement. All diagnostics verified that the improved test case
represented the physics correctly.

I was also able to produce some meaningful results from this simulation. Fig. 4.3 shows the
evolution of the maximum in-plasma Ez field value over all time and lateral space in the sim-
ulation. It can be directly compared with Fig. 1 (b) in [16]. This is very important data as a
correctly-simulated maximum Ez field value depends on a multitude of non-linear processes.

It includes the correct interaction of the proton beam with the plasma, which needs to exhibit
the self-modulation instability, followed by the de-phasing of the proton-beam particles, which
leads to the subsequent dissipation of the generated strong wakefield. In summary, in order to
reproduce the correct Ez field values the whole highly non-linear interaction of the plasma and
the ion-beam has to evolve correctly.

Another important comparison is made possible by the data plotted in Fig. 4.4. This figure
shows the final energy of the witness electrons of the simulation. It can be directly compared
with Fig. 5 (b) in [17], which shows results of LCODE and Osiris. The final witness beam energy
depends on the non-linear processes as well and is therefore a very good measure for the overall
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Fig. 4.4 – Verification of the final electron energy of the simulation. The plot shows the final wit-
ness electron energy of the PSC simulation. These results can be directly compared with
Fig. 5 (b) in [17], which shows comparable results of LCODE and Osiris. Since the PSC
simulation uses a periodic boundary in the transversal directions, the re-entering of witness
particles was possible. This leads to the non-zero values in the left part of the plot. Particles
can only exit the simulation through deceleration, which rarely happens.

correctness of the setup. In summary, Fig. 4.3 and Fig. 4.4 lead to the conclusion that the PSC,
equipped with the new test case, is able to reproduce complex processes and to generate results
that are equivalent to trusted community codes.

Equipped with these good results, a proposal for a new and bigger simulation was made at that
same meeting at CERN in 2015. After a lengthy application for computing time through the
GCS (Gauss Centre for Supercomputing) Call for Large-Scale Projects, a total budget of 35 Mch
was acquired. A major part of this budget was reserved for AWAKE collaboration simulations.

With these resources, the following general simulation outline is conceivable: i) full 3D, ii)
fully kinetic, iii) non-quasistatic, iv) 130 grid-points per plasma wavelength and v) three quasi-
particles per cell per species. A simple cost estimate was presented at the conference, omitting all
output and field solving as well as the proton and witness beam simulation, since they represent
four orders of magnitude fewer quasi-particles in comparison to the plasma.

Using the parameters given in Table 1 in [17], the plasma filled truncated cone volume is cal-
culated to be V = Lmaxπ(r2

0 + r0r1 + r2
1)/3 ≈ 5 · 10−5m3. For ∆x = λp/Nperλp , ∆t =

kcfl

√
∆x2/(3c2), where kcfl is the Courant–Friedrichs–Lewy factor [4], an estimated number

of particles pushed per second per core of fpps = 1.2 · 106, the computational time per core can
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be estimated by

tpc =
V Nppc

∆x3fpps

Lmax

c∆t

Lwindow

Lmax
=

√
3V Lwindow

λ4
pfppskcfl

N4
perλp

Nppc (4.1)

⇒ tpc = 3.15 · 10−3 ·N4
perλp

Nppc ch = 2.7 Mch. (4.2)

The plan was to run on four islands of SuperMUC phase 1, which total 32768 cores, giving an
estimated walltime of the simulation of tW = 2.7 · 106/32768 cpuh ≈ 82 cpuh. At a cost of
≈ 0.01 - 0.013 e per 1 ch [20] one run of the simulation was estimated to cost about 27000 -
35000 e. The simulation would need about 2 TB out of the available 50 TB of memory. It was
anticipated that these simulations would be finished in 2015.

The justification to perform these simulations is given in the following. The simulations would
help to again justify the remaining assumptions in baseline simulations, which are the suffi-
ciency of the quasistatic and cylindrically symmetrical two-dimensional approach. Furthermore,
it would be possible to study the transversal beam filamentation for the first time. They would
also enable a direct code comparison to other simulation codes and the direct comparison of PSC
results with potential measurements. Finally, large-scale PIC simulations are relatively rare and
it would be worthwhile to gather some experience with them. There were also other possible
options, including the study of the plasma density step behavior [15], but in the end we settled
on the large-scale simulation.

4.3 Quasi-particle noise and lateral beam filamentation

In May 2015, Konstantin Lotov proposed a road-map to properly investigate the shot-noise to
lateral beam filamentation [10] relation in simulations and extrapolate possible findings to the
experiment.

The lateral beam instability leads to an effect called hosing or beam filamentation. The ion beam
breaks up laterally and dissolves into filaments. If this effect would happen in an experiment
it would be very detrimental. In order to minimize the risk of this happening the baseline case
incorporates a relatively low plasma density and ion beam radius, which are decisive parameters
for this effect. The side-effect of this generous safety margin is a greatly reduced accelerating
potential. An improved understanding of the lateral beam filamentation would enable an increase
in plasma density or ion beam radius resulting in a much higher acceleration of the witness beam.

Unfortunately, the source of this non-linear effect is the shot-noise, which is not an easily con-
trollable parameter. This is unlike the source of the self-modulation instability, which is triggered
by a seed perturbation, in AWAKEs case the half-cut of the beam. Since noise is always mas-
sively over-estimated in PIC simulations, the predictions derived from the simulations only offer
an upper bound for the onset of the filamentation instability. If specific parameters do not lead
to beam filamentation in the simulation it is almost guaranteed that it will work in an experiment



94 4 Generation of controllable plasma wakefield noise in particle-in-cell simulations

bc
bcbc
bc
bcbc bc

plasmabc
bcbcbc

bcbc
bc
bc bc
bc

noise generator (heavy)ion beamnoise wakefield

Fig. 4.5 – Sketch of the setup of controlled noise simulations.

as well. But finding the beam filamentation threshold in simulations will not provide any infor-
mation about the threshold in the experiments. The simulations will produce beam filamentation
much earlier than the experiments, due to their increased shot-noise. Therefore, the experiments
may very well be fine for much larger plasma densities, since their shot-noise is much lower.
Finding the safe plasma density or ion beam radius threshold would enable increased accelera-
tion gradients, as shown in Fig. 1 (a) in [16]. Increased acceleration gradients would, in turn,
lead to higher final witness energies, which is very important for AWAKE.

Since the lateral beam instability competes with the desired self-modulation instability, both
must be simulated at the same time. This means that this problem requires a full 3D, fully kinetic
simulation. Furthermore, solving this issue needs many medium-scale runs and some large-scale
runs, in other words a large amount of computing resources, which makes this problem a good
fit for the GCS budget.

The first step on Konstantin Lotov’s proposed road-map is finding a way to introduce controlled
noise into the simulation. The lateral beam filamentation is triggered by the noise of the randomly
distributed beam particles, the so-called shot-noise. If we can understand, generate and control
this shot-noise we achieve controlled noise. The straightforward way to generate this controlled
noise is by inserting randomly distributed infinitely heavy particles in front of our setup (c.f. to
Fig. 4.5).

After implementing a proper way to achieve controlled noise, the road-map to higher accelerating
gradients in AWAKE would follow the sketches in Fig. 4.6. The well-understood controlled noise
level may therefore serve to find the scaling of the filamentation threshold with the different
parameters of the simulation. Using experimental beam noise thresholds, these scalings can then
be corrected and improved. Finally, we can extrapolate the corrected scalings of the controlled
noise simulations to predict filamentation thresholds for AWAKE, which has a much lower noise
level than the simulations. These predictions should then be verified using large-scale AWAKE
baseline simulations with under- and over-threshold plasma densities. It should then be possible
to demonstrate energy gains that exceed the baseline values.

The above road-map needs an additional simulation capability. For the task of understanding
controlled noise and scanning the different parameter spaces for their filamentation threshold, a
simpler test case, in comparison to the AWAKE baseline case, is utilized. This simpler test case
was quick and easy to implement. It uses a constant current beam, which means that the beam
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Fig. 4.6 – Three sketches illustrating the road-map to exploit controlled noise for predicting the lat-
eral beam filamentation instability emergence. In the plots σr is the beam radius and ε is
the beam emittance. Sketch (a) describes scanning the beam radius in order to find the
filamentation threshold. This is then repeated for different noise levels in sketch (b), en-
abling intra- and extrapolation of the filamentation threshold in relation to the noise level.
Finally, sketch (c) shows a scan over the emittance, resulting in predictive capabilities for
the filamentation threshold in relation to the beam radius and the emittance.

has a longitudinally uniform density. The radial dependency is still Gaussian. The maximum
beam density nb0 is again very small in comparison to the plasma density. This results in a
completely linear plasma response to the beam. Furthermore, only the first 15 periods of the
plasma wavelength are simulated, and a very fast γ = 400 positron beam, with a very small
emittance, is used. This makes the simulations faster as the beam keeps pace with the light.

With this extra test case, we were ready to tackle the first item on the road-map. The achievement
of properly understanding and generating controlled noise is validated by a publication [21],
which is also included in this dissertation in chapter 4.4. All simulation results for this paper
have been created and post-processed by me, using the previously explained simple test case. I
also participated heavily in optimizing and enhancing the PSC itself. Chapter 1, the introduction
of the paper, was written by me and Konstantin Lotov. In chapter 2 the main idea of the paper
is explained. While this chapter was written by Konstantin Lotov, and the idea of cosine-shaped
rods, which serve to get rid of spurious Cherenkov radiation, was brought up by him as well,
my simulations were key in recognizing the problem and subsequently defining and solving it.
Chapter 3 was written mainly by Konstantin Lotov, with the mathematical expressions verified
analytically and numerically by me. Chapter 4 was written mainly by me, except for the last part,
starting with formula (15), which was written by Roman Spitsyn. The summary was a joint effort
of all authors. Fig. 3, Fig. 5, Fig. 6, and their respective captions have been created and written
by me. Fig. 7 uses the results from my simulation, including its post-processing. I contributed
heavily in the editing of the whole paper, restructuring sentences and correcting mistakes. In the
end, I was very happy to achieve a peer-reviewed publication participating in this international
collaboration.
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Numerical simulations of beam-plasma instabilities may produce quantitatively incorrect results

because of unrealistically high initial noise from which the instabilities develop. Of particular

importance is the wakefield noise, the potential perturbations that have a phase velocity which is

equal to the beam velocity. Controlling the noise level in simulations may offer the possibility of

extrapolating simulation results to the more realistic low-noise case. We propose a novel method

for generating wakefield noise with a controllable amplitude by randomly located charged rods

propagating ahead of the beam. We also illustrate the method with particle-in-cell simulations. The

generation of this noise is not accompanied by parasitic Cherenkov radiation waves. Published by
AIP Publishing. https://doi.org/10.1063/1.4986399

I. INTRODUCTION

Understanding a collective interaction of relativistic

charged particle beams with plasmas is important for a wide

variety of physical problems. Among them are space plas-

mas,1 fast ignition schemes for inertial fusion,2,3 turbulent

plasma heating for magnetic fusion,4–6 positron bunch insta-

bilities driven by an electron cloud in colliders,7 plasma

wakefield acceleration,8–10 and many others. In most cases,

the interaction has the form of an instability that develops

starting from some low-amplitude shot noise.

A realistic noise level11 is difficult to reproduce in

numerical simulations, since the number of simulated quasi-

particles (or macro-particles) is usually much smaller than

the number of real particles in the system. Fewer quasi-

particles, each carrying a larger charge, produce random

fields with amplitudes which are orders of magnitude too

high in comparison with the experiment. This, in turn, may

result in faster growth of unstable perturbations and quantita-

tively wrong simulation results.

Since one-to-one simulations of typical beam-plasma sys-

tems of interest fall far beyond state-of-the-art computational

capabilities, the only available choices are ordered initial dis-

tributions of particles11 and extrapolating high-noise simula-

tion results to low-noise physical systems. The second

approach is schematically illustrated in Fig. 1. Obviously, it

would benefit from having several simulation points with dif-

ferent noise levels. This makes it desirable to develop a simple

method with the capability to produce a noise field with a con-

trollable amplitude. For reliable extrapolation, the noise level

must be controlled independently of key simulation parame-

ters, like the grid resolution or the number of quasi-particles.

For many instabilities of relativistic beams, the noise har-

monics of interest are potential (Langmuir) plasma waves

with a phase velocity which is close to the speed of light c and

the wavevector ~k directed along the axis of beam propagation.

These waves are excited by individual beam particles just as

regular plasma wakefields are excited by the drive beam as a

whole. We will call these waves wakefield noise. Properties of

the wakefield noise were studied in Ref. 11. At first glance, a

controllable wakefield noise might be easily excited by an

ensemble of randomly located point-like quasi-particles prop-

agating ahead of the beam (Fig. 2) or inside the beam. By

changing the charge of the quasi-particles and their number, it

is possible to control the noise level. However, relativistic

quasi-particles usually emit numerical Cherenkov radiation, if

simulated using particle-in-cell (PIC) codes.12–15 This radia-

tion critically affects a clean study of the beam instability and

must therefore be avoided.

In this paper, we propose a novel method for generating

wakefield noise with a controllable amplitude by randomly

located charged rods (Sec. II). The noise is free from para-

sitic Cherenkov radiation. We also give expressions for the

relations between the amplitude of the noise field and the rod

parameters (Sec. III) and illustrate the method using particle-

in-cell (PIC) simulations (Sec. IV). The main findings are

summarized in Sec. V. Studies of particular beam instabil-

ities fall beyond the scope of this paper.

For all simulations detailed in this paper we use the PIC

code PSC.16 The coordinates are either Cartesian (x, y, z) or

cylindrical ðr;/; zÞ with the z-axis being the direction of

beam propagation. The co-moving coordinate n ¼ z� ct is

used wherever convenient.

FIG. 1. Illustration of the extrapolation approach.
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II. THE IDEA OF CHARGED RODS

The problem of numerical Cherenkov radiation depends

on the details of the numerical solver. In the present paper,

we use the finite-difference time-domain (FDTD) scheme.

The discretization of the FDTD scheme leads to a phase

velocity of the propagated radiation, which is strictly smaller

than the velocity of light. A quasi-particle with sufficient

energy can therefore travel faster than the radiation on the

grid. This leads to numerical Cherenkov radiation, as illus-

trated in Fig. 3(a). A point-like charge Q moving with the

speed of light emits short-wavelength electromagnetic radia-

tion, the amplitude of which is much higher than the ampli-

tude of the useful plasma wave. The radiation wavelength is

of the order of the grid size and is much shorter than the

plasma wavelength kp ¼ 2pk�1
p . The plasma wavelength is

determined by the plasma density n0 through the plasma

wavenumber kp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pn0e2=ðmc2Þ

p
, where e is the elemen-

tary charge and m is the electron mass. The amplitude of the

emitted Cherenkov electromagnetic waves is proportional to

the amplitude of short-wavelength harmonics in the Fourier

spectrum of the emitting charge. More specifically, the z-

component of the wavevector is of importance. This already

hints at the idea of how the numerical Cherenkov radiation

can be reduced in comparison to the longer-wavelength

plasma waves: The radiating source must be long and

smooth. In other words, it should be shaped like a charged

rod.

We consider two variants of rods: (i) rectangular rods

with the linear charge density

kðnÞ ¼ kpQ=p; �kp=2 < n� n0 < 0; (1)

and (ii) cosine-shaped rods with

kðnÞ¼ kpQ

p
ð1�cosð2kpðn�n0ÞÞÞ; �kp=2<n�n0<0: (2)

For efficient excitation of Langmuir waves, the rod length

must be /kp. We set it to kp=2. This value does not maxi-

mize the wakefield of the rod and is chosen only for the

simplification of the subsequent analytical calculations it

provides.

The Fourier spectra

FðkzÞ ¼
����
ð1
�1

kðnÞeikzndn

���� (3)

of these rods and for the point charge Q are shown in Fig. 4.

For the wave number of plasma waves holds that kz � kp

(vertical dotted line in Fig. 4) and they are excited equally

well by all charge distributions. Numerical Cherenkov waves

for typical resolutions of PIC code simulations have wave

numbers for which kz=kp � 102–103 (shaded area in Fig. 4)

holds, and their excitation is suppressed by some orders of

magnitude in the case of cosine-like rods. The smoothness

degree of the charge distribution kðnÞ determines the

decrease rate of the spectrum FðkzÞ for high kz. In the case of

the cosine-like distribution, this decrease rate is given by

FðkzÞ / k�3
z .

FIG. 3. Simulated wake patterns for moving objects of different shapes:

point-like charge (a), rectangular-shaped rod (b), and cosine-shaped

rod (c).

FIG. 2. Illustration of the controllable noise generation.
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A “beam” of equally charged rods would produce not

only the noise field, but also a regular wakefield which is

excited by the total rod charge. This is undesirable. To get

rid of the regular field, the sign of the charge of the different

rods must be chosen randomly.

Another necessary condition for achieving a correct

noise is the equivalence of all wakefield phases. The contri-

butions of different rods must, on average, uniformly cover

the whole period of the plasma wave. Using alternating rod

charges the minimum length of the rod area is kp=2, as rods

of opposite charge contribute to opposite half-periods of the

wave.

Note that an exact nulling of the total charge of the rod

ensemble, for example, by choosing an equal number of pos-

itively and negatively charged rods, is erroneous. This addi-

tional constraint on the rod ensemble would break the

equivalence of wakefield phases. This can be easily seen in

the extreme case of two oppositely charged rods.

III. AMPLITUDE OF THE WAKEFIELD NOISE

In this section, we will analytically calculate the root

mean square (rms) of the longitudinal electric field excited

by an ensemble of cosine-shaped rods (2). Assume that the

rod heads (characterized by random coordinates ~r?0 and n0)

are uniformly distributed in the z-direction over an infinitely

wide layer of thickness pk�1
p . The average density in this

region is given by 2n, with n being the average number den-

sity of rods of each charge sign (Q or –Q).

We will first find an expression for the wakefield of a

single rod. Given the charge density of the rod

qð~r?; nÞ ¼ dð~r?ÞkðnÞ; ~r? ¼ ðx; yÞ (4)

the longitudinal component of the wakefield is17

Ezð~r?; nÞ ¼ 2k2
p

ð1
n

dn0
ð

d~r 0? qð~r 0? ; n0Þ

� K0 kpj~r? �~r 0? j
� �

cos ðkpðn� n0ÞÞ

¼
2k2

pQ

p
K0ðkprÞGðn� n0Þ; (5)

where K0 is the modified Bessel function of the second kind,

and

GðnÞ ¼ kp

ð0

maxð�pk�1
p ;nÞ

dn0ð1� cos ð2kpn
0ÞÞ cos ðkpðn� n0ÞÞ

¼

� 8

3
sin ðnÞ; kpn < �p;

2

3
ðsin ð2nÞ � 2 sin ðnÞÞ; �p < kpn < 0;

0; n > 0:

8>>>>>><
>>>>>>:

(6)

In Ref. 11, the rms noise field of N charges is calculated

as

E2
rms ¼ NhE2

z i; (7)

where the angle brackets denote the averaging of the field of

a single charge over possible locations of this charge with

respect to the observation point. We have to modify our

approach in this case, as we take the number of rods to be

infinite, which makes the average field vanish. Assume the

rods occupy a cylindrical area with a large radius R. Then

N ¼ 2p2k�1
p R2n (8)

and the average field

E2
rmsðnÞ¼N

*
2k2

pQ

p
K0ðkprÞGðn�n0Þ

� �2+

¼2n
4k4

pQ2

p2

ðR

0

2prK2
0ðkprÞdr

ð0

n
G2ðn�n0Þdn0

¼
8k2

pQ2n

p
ð1þk2

pR2ðK2
0ðkpRÞ�K2

1ðkpRÞÞÞ

�
ð0

n
G2ðn�n0Þdn0: (9)

In the limit R!1 it holds that

E2
rmsðnÞ ¼

8k2
pQ2n

p

ð0

n
G2ðn� n0Þ dn0; (10)

and for n < �pk�1
p (trailing the rods)

E2
rmsð�1Þ ¼

256kpQ2n

9
: (11)

IV. WAKEFIELD NOISE IN PIC SIMULATIONS

We now describe our approach to the production of

wakefield noise in three-dimensional PIC simulations, how

the noise looks like, and which additional actions are

required to observe a close quantitative agreement between

simulation results and the developed theory.

We configure the code to use widespread algorithms: a

standard Boris pusher18 with second order particles to per-

form particle pushing and a standard FDTD-scheme19 to per-

form field pushing. The simulation window moves with the

speed of light in a patch-based manner, that is, by appending

a simulation grid and quasi-particles on one end of the box

FIG. 4. Fourier spectra of various charge distributions. For large kz, only the

envelopes of the oscillating spectra are shown.
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and detaching the same amount of volume on the opposite

side. This process is iterated continuously. The window size

is given by X � Y � Z with X ¼ Y ¼ 0:3kp; Z ¼ 2:02kp. The

boundary conditions are periodic in transverse dimensions (x
and y) and reflecting in the z dimension. The simulated prop-

agation length, moving in the z direction, is 10kp. Initially,

the plasma is cold and uniform. It is composed using 3

quasi-particles per cell for the electrons, while the ions are

not simulated and treated as immobile charges. The spatial

resolutions are Dx ¼ Dy ¼ Dz ¼ kp=130 � 0:05k�1
p and the

time step is Dt ¼ 0:99Dx= c
ffiffiffi
3
p� �

� 0:28x�1
p . The simulated

time for the whole simulation is given by T ¼ 10kp=c, which

results in a number of time steps of about 2260.

At the start of the simulation, 100 random positions are

computed in the cuboid given by 0 � x < X; 0 � y < Y and

1:5kp � z � 2kp. These positions ðxi; yi; ziÞ are used as head

positions for 100 rods of length kp=2. The rods are constructed

as strings of quasi-particles with a distance of Dz between

each adjacent pair. The strings start at ðxi; yi; zi � 0:5DzÞ and

continue with decreasing z-coordinates. These quasi-particles

have the same shape as the plasma quasi-particles, a relativis-

tic factor of c ¼ 1010, and a charge that varies according to

the cosine-like distribution (2). The total charge of a single

rod (the sum of all charges in the constituting string of quasi-

particles) is jQj � 1:8� 10�3en0k�3
p , where the sign of the

charge is chosen randomly. This charge is sufficiently high for

a clear observation of the wakefield and sufficiently low to

stay within the regime of a linear plasma response.

To enhance the wakefield noise against other noise har-

monics (which are always present in PIC simulations), we

average the fields over many time steps according to the

formula

�Ez x; y; nð Þ ¼ 1

1000

X2200Dt

t¼1201Dt

Ez x; y; n; tð Þ: (12)

This averaging strongly suppresses all perturbations except

those propagating with the speed of light and being station-

ary in the co-moving frame.

The simulation is then run for a large number of samples

ns with different random number generator seeds, which

leads to different rod positions. Examples of the produced

field distributions are shown in Fig. 5. Since the frequency

xp and the phase velocity c of the perturbation are fixed, the

wavelength kp is fixed as well, which makes the wakefield

noise periodic in n. It therefore does not look like usual

noise. The transverse distance for field correlations is about

k�1
p , which makes random field changes in transverse direc-

tions only visible in the case of wider simulation areas. The

amplitude and the phase of the generated fields are quite ran-

dom even for narrow simulation areas (Fig. 6), and their

properties can be characterized by the mean value lðnÞ and

the standard deviation rðnÞ

lðnÞ ¼ 1

ns

Xns

i¼1

�E
i
z xm; ym; nð Þ; (13)

rðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

ns � 1

Xns

i¼1

�E
i
z xm; ym; nð Þ � l nð Þ

� 	2
s

; (14)

where the superscript i denotes the sample number, and xm

and ym are the coordinates of the observation line. For the

following, we put xm ¼ ym ¼ 0:15kp.

The resulting values for lðnÞ and rðnÞ are shown in

Fig. 7. The dotted line in Fig. 7 gives the value of Erms

FIG. 5. The longitudinal wakefield �Ezðx; y; nÞ at y ¼ 0:15kp for several rod

distributions.

FIG. 6. The longitudinal wakefield �EzðnÞ at x ¼ y ¼ 0:15kp generated by

100 cosine rods for 32 different random seeds.

FIG. 7. The mean lðnÞ and the standard deviation rðnÞ of the simulated

wakefield (using 11 264 rod samples with 100 rods each) and the calculated

average ErmsðnÞ with (dashed line) and without (dotted line) taking into

account correlation effects due to the periodical boundary conditions.
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calculated for these rods according to the formula (10). It is

substantially lower than the established average field in sim-

ulations. The difference results from the periodical boundary

conditions. Each rod in the simulation domain has an infinite

number of replicas, the positions of which are correlated

with the rod position (Fig. 8). Consequently, for correct com-

parison of the theory and the simulation results, the radial

averaging in (9) has to be modified

ðR

0

2prK2
0ðkprÞdr !

ðX=2

�X=2

ðY=2

�Y=2

dx dy
X

i;j

K2
0ðkprijÞ; (15)

where

rij ¼ j~r? þ iX~ex þ jY~eyj; (16)

~ex and ~ey are unit vectors, and indices i; j 2 Z, where i ¼ j
¼ 0 corresponds to the position of one specific rod (situated

in the pink area in Fig. 8) and all other values correspond to

the positions of its replicas (situated in gray boxes in Fig. 8).

The dashed line in Fig. 7 shows the modified values for the

average field.

V. SUMMARY

We have shown a reliable method of producing control-

lable noise levels in PIC simulations. This controllable wake-

field noise does not suffer from numerical Cherenkov

radiation. Analytical expressions for the rms amplitude of

this noise have been given. These expressions include formu-

las for two different external boundaries, namely, for

periodic boundaries as well as for open or absorbing bound-

aries. These expressions and the method in general were

illustrated using very common PIC simulation techniques,

making them very comparable and applicable for the

research community. A very good agreement has been

found. This method can be used to perform noise level scans

for a multitude of noise seeded physical processes. This

paper also provides an understanding of the to-be-expected

noise structure. Using these noise level scans, the correct

behavior can be predicted by extrapolation of the generated

data points. Further research should focus on the application

of this novel method on specific beam-plasma non-

linearities.
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5 First fully kinetic three-dimensional
simulation of the AWAKE baseline
scenario
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Chapter 4.3 introduced a road-map for the study of the relation between the quasi-particle noise
and the lateral beam filamentation. Continuing this previously established road-map, this chap-
ter presents the results of a large-scale simulation of the AWAKE baseline case. This simula-
tion yielded a peer-reviewed publication as well. This chapter and chapter 4 aim at establish-
ing clearly, which share of the overall work for these publications has been achieved by Nils
Moschüring. Therefore, this chapter is written in the first person as well.

5.1 Improved and updated baseline test case

While investigating the controlled noise, I continuously improved the capabilities of the baseline
test case as well. This test case is needed for the final verification of the predicted filamentation
threshold. The capabilities were improved to accommodate for the new baseline case ([20],
Table 1), which includes oblique witness beam injection at a shallow angle and a plasma density
ramp.

In-line data analysis is data post-processing that is performed during the simulation, instead
of after the simulation has finished. Therefore, it is able to use the full computational power
and parallelism of the used supercomputer. It may also make writing intermediary data to disk
unnecessary, saving a lot of run-time.

By implementing a host of new in-line data analysis, the performance was improved and a lot of
hard disk space and I/O bandwidth was saved. The following values were calculated in-line and
∀x = j∆x,∀y = k∆y,∀z = l∆z,∀t = n · 1000∆t, ∀s ∈ {beam, plasma,witness}:

Ez,max (z) = max
t

max
r<rp

Ez (r,z,t) (5.1) ns (pz,t) (5.2)

Ez,beam (z,t) = Ez (xb,yb,z,t) (5.3) ns (p⊥,t) (5.4)

Ez,avg (x,z,t) =
t∑

t̂=t−1000

Ez
(
x,yb,z,t̂

)
(5.5) ns (γ,t) (5.6)

εs,x (z,t) =
√
〈x2

s〉〈p2
s,x〉 − 〈xsps,x〉2 (5.7) Xs,0 (z,t) = 〈xs〉 (5.8)

εs,y (z,t) =
√
〈y2
s〉〈p2

s,y〉 − 〈ysps,y〉2 (5.9) Ys,0 (z,t) = 〈ys〉 (5.10)

ns (z,t) (5.11) Xs (z,t) =
√
〈x2

s〉 −X2
s,0 (5.12)

ns,wf (z,t) =
∑
r< c

ωp

ns (r,z,t) (5.13) Ys (z,t) =
√
〈y2
s〉 − Y 2

s,0 (5.14)

Here,Ez is the z-component of the electric field, xb and yb are the initial location of the maximum
density of the ion beam in the x- and y-direction, rp is the plasma radius, xs is the x-coordinate
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of a quasi-particle of species s, ys is the y-coordinate of a quasi-particle of species s, px,s is
the x-coordinate of the momentum of a quasi-particle of species s, py,s is the y-coordinate of
the momentum of a quasi-particle of species s, 〈·〉 averages its respective argument over all
quasi-particles in all cells with a specific value range [z − ∆z/2, z + ∆z/2] in the z-direction,
r =

√
(x− xb)2 + (y − yb)2, ns is the density of quasi-particles of species s (summed over

all dimensions not present in its arguments) and is the result of binning all quasi-particles into
certain slices of configuration space, for spatial dimensions ns =

∑N
i=1wi,sζjkl(

#»x i,s) with ζ
from (2.53) and N the total number of quasi-particles, while for momentum dimensions 0-th
order shape functions (δ functions) and 16384 bins are used, ns,wf is the same quantity restricted
to the core wakefield, γ = 1/

√
1− v2/c2, c is the speed of light and ωp is the plasma frequency.

These values were saved to disk immediately, which enabled a very close observation of the
simulation development as well as the possibility to immediately correct any emerging problems.
This is especially important for the large-scale simulation, as it can not be repeated due to its high
cost.

The code was also configured to provide full dumps of the complete simulation data at 11 differ-
ent points in time. These points in time were chosen in order to provide diagnostic information
of several important milestones in the developing simulation (tsim is the total run-time of the
simulation):

2 % · tsim Initial configuration
4 % · tsim Beam entry into plasma
7 % · tsim Seed wakefield settled
15 % · tsim Merging of the witness electrons
19 % · tsim Trapping finished
31 % · tsim Wave growth

41 % · tsim Wakefield maximum reached
50 % · tsim Established wave phase
93 % · tsim Just before any exit effects
96 % · tsim Beam exit from the plasma
100 % · tsim Final configuration

I added individual particle tracking to the code as well. It was configured to track 50 individual
quasi-particles of each species during the whole simulation and to write their complete config-
uration to disk every 20 timesteps. This output was buffered in order to get rid of the disc I/O
latency. The resulting trajectories were very helpful in analyzing the processes happening during
the simulation. The data is also the source of a major part of the final figures in the paper as well
as the videos.

Very critical performance benchmarks are the scaling properties of the code. The proposed
simulation would need to scale up to at least 4 islands (32768 cores), but it would benefit from
scaling to even more cores, up to the maximum of 18 islands on SuperMUC phase 1.

In this regard, many modules of the PSC were optimized. The load balancer was improved and
specialized for the AWAKE test case. Furthermore, the I/O system of the PSC was specialized, in
cooperation with Karl-Ulrich Bamberg, for the SuperMUC GPRS file system. Very importantly,
a rigorous scalability analysis was performed. Any data structure that did not scale adequately
needed to be identified and possibly removed or improved. Several critical code paths were
corrected during this effort.
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3 
 

challenge. In addition, since the AWAKE simulations now run on 8 islands I/O had to be optimized to 
avoid overloading of the shared file system. Also volume checkpoints needed to restart simulations 
have increased to about 30 TB. Checkpointing at this level is all but trivial. Due to the dedicated sup-
port from the LRZ and specifically the Astrolab and the commitment of  Karl-Ulrich Bamberg and Nils 
Moschüring I/O issues for 8 island simulations were resolved. I/O is now fast and reliable and can be 
triggered on a frequent scale. The setup for AWAKE has reached turn key level. 
 
During the initial experimental campaign plasma densities are low and plasma channels are limited to 
a few 10 meters. However, extrapolation to TeV electron energies based on those initial plasma pa-
rameters would require plasma channels that are 
kilometers long. No one honestly believes that a 
several kilometer long plasma channel can or 
should be built. Hence, the conceptual question is 
if higher plasma densities in the channel are pos-
sible. Prior to an experimental campaign solid 
theoretical predictions of plasma wake field gen-
eration and related instabilities are needed. 
 
The long term goal of reliable simulations for 
these new parameters closely related to a future 
experiment requires numerical resolution levels 
that are impractical with present day computing 
power. They would exceed the capacity of 
SuperMUC by far. Hence, we propose to simulate 
at much lower resolution and to work out scaling 
laws for the impact of numerical noise. Our hope 
is that we will be able to extrapolate our simula-
tions to the experimental situation while saving 
tremendous computational effort. The baseline 
for this approach is the introduction of controlled 
noise. In the proposed experiment two main 
plasma instabilites are competing against each other. The first instability is given by the longitudinal 
filamentation which leads to the desired micro-bunching of the ion 
beam. This is very desirable and makes a non-linear wakefield growth possible. The second instability 
is given by the lateral filamentation, which destroys the beam and any generated wakefield. In order 
to properly guarantee that the lateral beam filamentation will not occur at higher plasma densities, 
an understanding of the origin of this instability is necessary. Residual plasma noise is triggering this 
instability. Unfortunately, particle-in-cell simulations always overestimate this noise by a large mar-
gin, since they use much less quasi-particles in comparison to the number of real particles in the ex-
periment. This makes it necessary to study the dependency of the filamentation on the plasma noise 
and extrapolate this result to the situation in the experiment. Controlled noise is an artificially intro-
duced plasma noise which enables proper examination of instability onset. 
 
For the campaign discussed in this proposal we plan to prepare a test case in PSC for which we would 
like to carry out two separate large scale simulations at higher plasma density. One of them is above 
a density level for which lateral filamentation is to be expected and the second one is at a density 
below. Based on our prior efforts with the AWAKE baseline case we expect that each of the two sim-
ulations will require 15 million CPU hours on 8 islands on SuperMUC phase 1. 
  

Fig A2: Part of the simulation state after 5m of beam propagation 
inside the plasma. The ion beam micro-bunch contour plot at density 
1e-9 is colored green.   The 2D slice represents the background plas-
ma density, showing the generated wakefield. The red and orange 
colored contours at density 1e-11 represent the trapped electron 
witness beam. All particle densities are normalized to             .  

 

Fig. 5.1 – Simulation state after 5m of beam propagation inside the plasma. The three-dimensional
green structures are the ion beam micro-bunches with density 1.9 · 1012cm−3. The three-
dimensional red and orange structures are parts of the trapped electron witness beam at
density 1.9 ·1010cm−3. The color legend gives the density in units of 1.9 ·1021cm−3 of the
2D plane.

5.2 Preliminary runs and final large-scale simulation

New results, using these new capabilities but with reduced resolutions, were presented by me at
two different conferences, the AWAKE collaboration meeting in March 2016 in Lisbon, Portu-
gal and the Conference on Computational Physics in July 2016 in Johannesburg, South Africa.
Fig. 5.1 and Fig. 5.2 show some of these results, configured to use 65 points per λp, which is half
of the necessary final spatial resolution. These reduced resolution runs were needed in order to
gain experience with the simulation and to find potential pitfalls and problems. They also served
as a last check before committing to the full run, which would use up a lot of the granted budget,
therefore essentially being a point of no return.

After finalizing these new simulation capabilities, making them in tune with the experimental
work, a run using the full resolution was performed. Making this large-scale run took a lot of
extra work. The reduced stability of cutting-edge hardware, like SuperMUC phase 1, for runs
using a large part of their total computational capabilities, made adaptations as well as several
restarts necessary. The simulation also ran into trouble with the implementation of MPI used
on the system, which only materialized when scaling to the total amount of resources. This re-
quired additional modifications to different algorithms. Luckily, Karl-Ulrich Bamberg had a lot
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I) AWAKE II – Filamentation analysis 

x Prof. Dr. Hartmut Ruhl (PI , scientific head) 
x Dipl . Phys . Nils Moschüring (scientific lead) 

x Dipl . Phys . Karl -Ulrich Bamberg (technical  advisor) 
x M. Sc. Fabian Deutschmann (code support) 

 
The AWAKE project is an international collaboration between many teams with substantial expertise 
in the field of laser-plasma science and technology. The goal of AWAKE is to explore a plasma based 
acceleration concept that is capable of extending electron and positron energies into the TeV range. 
AWAKE plans to make use of the SPS proton beam at CERN. The beam passes through plasma and 
splits up longitudinally. The resulting bunches of protons then drive a wake field in the plasma. The 
plasma density is about 100 times higher than the ion beam density, making AWAKE target the linear 
regime of plasma wake fields. 
 

 
 

Besides many technological and experimental challenges AWAKE has a cutting edge simulation as-
pect. The base line scenario of AWAKE is the detailed investigation of a 400 GeV proton bunch pass-
ing through a 10 meter plasma channel. Our group has started an accompanying simulation effort 
last year. The PSC has been streamlined to accommodate simulations of the AWAKE base line case. 
Our AWAKE simulations are very large, making use of up to 8 SuperMUC islands. In the beginning of 
the campaign we expected to get along with less machines and longer run times. Several factors, 
however, contributed to larger memory requirements. The first and most important one, is the need 
for absorbing field boundaries. Electromagnetic energy needs to be taken out of the system and may 
not be allowed to interact with later parts of the pulse. Another factor is the peak electric accelerat-
ing field in the plasma, which must be calculated inline due to storage capacity limits. During the 
streamlining phase of our simulation campaign we encountered several  severe technological chal-
lenges while investigating the scaling behavior of the simulation on SuperMUC: Beam loading is one 
of the most important conceptual challenges of wake field accelerators. Since we are able  to simu-
late the 10 meter base line case of AWAKE on SuperMUC the decision has been made to investigate 
beam loading during our simulation campaign. The setup of simulations for beam loading is inhomo-
geneous in  configuration space. A consequence is that load balancing (see technical part) becomes a 

Maximum of the    field amplitude averaged over 1000  time steps at each x-z-position of simulation space after 5m of beam propaga-
tion inside the plasma. Averaging gets rid of plasma noise in the field amplitude. The generated linear wakefields are clearl y visible. 
These wake fields are directly related to the possible final electron witness beam energy. 

Fig. 5.2 – Maximum Ez field amplitude averaged over 1000 time steps at each x-z-position of simu-
lation space after 5m of beam propagation inside the plasma.

of valuable experience with the SuperMUC system through his work on a KONWIHR (Kompe-
tenznetzwerk für Technisch-Wissenschaftliches Hoch- und Höchstleistungsrechnen in Bayern)
project. The run was finally finished after a total run-time of about 28 days. The results of this
run were analyzed and showed some very interesting properties and novel effects, especially dur-
ing the electron injection process. This process is vital for the success of AWAKE and needs to
be well understood in order to achieve the proposed goals.

I presented these findings at the AWAKE Collaboration Meeting at CERN in September 2018
and at the Laser-Plasma Accelerator Workshop 2019 in May 2019 in Split, Croatia. Because
of the very relevant and interesting results it was decided to publish the results of this run. The
tremendous preparatory work and final execution was rewarded with another peer-reviewed paper
[20]. This paper is included in this dissertation in chapter 5.3.

While the bulk of the work has been done by Konstantin Lotov and me, the other authors are
included for their vital effort in helping to achieve the large-scale simulation. These contri-
butions mainly include code optimization, fruitful discussions and organizing the large-scale
runs and computational resources. Karl-Ulrich Bamberg has been especially helpful in running
the code and managing the access to SuperMUC, as well as in the data management and data
backup. All simulation results have been produced using my test case, which has about 4000
lines of C code, and have been post-processed by me. The abstract has been written by me.
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Chapter 1 and chapter 2 have been written by Konstantin Lotov. Chapter 3 has been written by
me. Chapter 4 and chapter 5 have been written by Konstantin Lotov. The summary is a joint
effort of all authors. Fig. 2, Fig. 3 and Fig. 4 and their respective captions have been created
and written by me. Fig. 5 and Fig. 6 have been created by Konstantin Lotov, using my simula-
tion results and post-processing. I have written about 3000 lines of python code to perform the
post-processing and plotting. Additionally, multimedia files, available on the IOP website of the
paper under the heading Supplementary data, called trapping and acceleration.mp4
and dynamic domain.mp4, were created by me and show graphs that are very similar to
Fig. 5 and Fig. 6. These videos very nicely illustrate the physical processes and enable a better
understanding of the newfound phenomena. Furthermore, I heavily contributed in the editing of
the whole paper. I was also the corresponding author and processed most of the questions of the
referees. In total, I submitted 15 pages, containing the questions and answers as well as a list of
changes to the paper to the referees. These 15 pages were mostly written and compiled by me.
Konstantin Lotov provided a small amount of answers totaling about one page.
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Abstract
The ‘Advanced Proton Driven Plasma Wakefield Acceleration Experiment’ (AWAKE) aims to
accelerate leptons via proton-beam-driven wakefield acceleration. It comprises extensive numerical
studies as well as experiments at the CERN laboratory. The baseline scenario incorporates a plasma
volume of approximately 62 cm3. The plasma wavelength is about 1.25mm and needs to be
adequately resolved, using a minimum of 130 points per plasma wavelength, in order to accurately
reproduce the physics. The baseline scenario incorporates the proton beam micro-bunching, the
concurrent nonlinear wakefield growth as well as the off-axis electron beam injection, trapping and
acceleration. We present results for the first three-dimensional simulation of this baseline scenario
with a full model, using a sufficient resolution. The simulation consumed about 22Mch of computer
resources and scaled up to 32 768 cores, thanks to a multitude of adaptions, improvements and
optimization of the simulation code PSC. Through this large-scale simulation effort we were able to
verify the results of reduced-model simulations as well as identify important novel effects during the
electron injection process.

Supplementary material for this article is available online

Keywords: plasma wakefield acceleration, proton driver, numerical simulations, particle-in-cell

(Some figures may appear in colour only in the online journal)

1. Introduction

Proton-beam-driven plasma wakefield acceleration promises
to increase the lepton energy which is available to scientific
laboratories [1–3]. The first step towards future colliders
based on this principle is the AWAKE experiment at
CERN [4–6], which has already demonstrated controlled self-
modulation of the proton beam [7, 8] (the key element of the
concept) as well as electron acceleration in the proton-driven
wakefield [9].

In order to better understand the physics of proton and
electron beam interaction with plasma, a massive simulation
campaign accompanied the experiment from its very early

stages [1, 4, 10–25]. However, because of the large beam and
plasma sizes, large when compared to the scale which needs
to be resolved [26], simulations were limited to reduced
models. These models include the quasi-static approximation
[27] or the axially symmetric two-dimensional (2D) geo-
metry. There is an obvious need of three-dimensional (3D)
simulations based on first principles to check the validity of
the reduced models and to search for new effects which might
have been missed in these reduced models. In this paper we
report the first fully kinetic 3D simulation of the baseline
AWAKE variant. We show that 2D quasi-static models ade-
quately describe the proton beam dynamics, while the elec-
tron injection needs a 3D treatment and is rich in novel
effects.

Plasma Physics and Controlled Fusion

Plasma Phys. Control. Fusion 61 (2019) 104004 (9pp) https://doi.org/10.1088/1361-6587/ab411e

4 Author to whom any correspondence should be addressed.

0741-3335/19/104004+09$33.00 © 2019 IOP Publishing Ltd Printed in the UK1

5.3 Full-text of the publication 111



We describe the simulated AWAKE scenario in section 2
and the simulation details in section 3. Then we discuss the
self-modulation of the proton beam in section 4 and the
trapping of externally injected witness electrons in section 5.
In section 6, we summarize the main findings.

2. AWAKE baseline scenario

The simulated scenario is close to the scenario used in
[4, 5, 24], except the electron beam has no initial angular
spread. It includes a sharp plasma boundary in the radial
direction [28], realistic longitudinal density transitions at the
plasma cell orifices [29], a positive density gradient along the
plasma cell [21], and oblique electron injection at a shallow
angle [24]. The initial angular spread (or emittance) of the
electron beam can be neglected and taken as zero, if the
spread gained during injection to the wave is much larger than
the initial value. The complete set of physical parameters is
listed in table 1. Here m is the electron mass, e>0 is the
elementary charge, c is the speed of light, and ωp is the
electron plasma frequency.

We either use cylindrical coordinates (r, j, z) or Carte-
sian coordinates (x, y, z) with the z-axis being the direction of
the beam propagation. We additionally consider the co-
moving coordinate x = -z ct . The longitudinal plasma

density profile n(z) is
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and zero otherwise. The orifice diameter D determines the
density profile near the entrance to and exit from the plasma
cell (located at z=0 and z=L). The plasma is radially
uniform within the radius rp and composed of single ionized
rubidium ions.

Before entering the plasma, the beam density is
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and zero otherwise. The tail of the driving beam at the
simulation start is positioned at = -z L tr (figure 1). The cut
density profile (2) mimics plasma creation through rapid
ionization of a neutral gas by a co-propagating short and

Table 1. Parameters of the simulated variant. Numbers typed in italic are approximate values.

Parameter and notation Value Dimensionless value (unit)

Reference plasma density, n0 7´ -10 cm14 3 1 (n0)
Plasma skin depth, c/ωp 0.2 mm 1 (c/ωp)
Plasma length, L 10 m 50 000 ( wc p)
Transition area half-length, Ltr 40 cm 2000 (c/ωp)
Plasma radius, rp 1.4 mm 7 ( wc p)
Orifice diameter, D 10 mm 50 (c/ωp)
Plasma ion-to-electron mass ratio, Mi 157 000 157 000
Wavebreaking field, E0=mcωp/e 2.54 GV m−1 1 (E0)
Plasma initial temperature, Te 0.1 eV 2×10−7 (mc2)
Uncut driver population, Nb ´3 1011 3×1011

Driver length, σzb 12 cm 600 (c/ωp)
Driver radius, σrb 0.2 mm 1 (c/ωp)
Driver energy, Wb 400 GeV 783 000 (mc2)
Driver energy spread, δWb 0.35% 2740 (mc2)
Driver angular spread, δαb 4.5×10−5 4.5×10−5

Maximum driver density, nb0 4´ -10 cm12 3 0.0056 (n0)
Electron beam population, Ne 1.25×109 1.25×109

Electron beam length, sze 1.2 mm 6 (c/ωp)
Electron beam radius, σre 0.25 mm 1.25 (c/ωp)
Electron beam energy, We 16 MeV 32 mc2( )
Electron beam energy spread, δWe 0 0
Electron beam angular spread, δαe 0 0
Maximum electron beam density, ne0 1´ -10 cm12 3 0.0015 (n0)
Injection angle for electron beam, α0 0.0028 0.0028
Injection delay, ξe 11.5 cm 575 (c/ωp)
Intersection of beam trajectories, z0 142 cm 7100 (c/ωp)
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intense laser pulse. The electron beam has the density profile
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and zero otherwise. Here

a= -x z z tan 40 0 0( ) ( )
is the transverse location of the electron beam center. All
electrons have the same initial momentum (−α0p0, 0, p0)
with p0=We/c.

3. Simulations

The simulation is realized using the fully relativistic 3D
particle-in-cell (PIC) code PSC [30], utilizing a standard
Boris particle pusher [31] with second-order quasi-particles,
and a finite-difference-time-domain field solver [32]. A col-
lection of numerical parameters of the simulation is shown in

table 2. This full 3D fully kinetic simulation of the AWAKE
baseline requires substantial computational resources. We
acquired the considerable amount of 25 Mch at the Super-
MUC Phase 1 supercomputer in Munich through the Gauss
Center for Supercomputing.

The PSC offers a powerful mechanism, which provides
several key capabilities for this simulation. This mechanism
subdivides the simulation box into several smaller groups of
grid points, called patches. These patches can then be freely
distributed over the available resources and can also be acti-
vated or deactivated. Taking full advantage of this dynamic
patch system enables three very important ways to save on
computational resources. First, it makes the usage of a mov-
ing Galilean window possible (figure 2). This window moves
at the same speed as the proton beam. Through this, we
reduce the active simulation domain to ps »1.01 2 31 cmzb

in the z-direction. Second, we shrink the simulation domain
by ≈48% after ≈17% of the simulation by switching off the
space occupied by the witness beam after its entry into the
plasma cylinder (figure 2). Third, we meaningfully reduce
load imbalance by continuously rearranging the patches on
the participating resources. Patches with less quasi-particles
are grouped and assigned to cores in a way which aims at
achieving an equal distribution of quasi-particles to cores.
This is done while maintaining a consecutive spatial order of
the patches along a space-filling curve, which is necessary to
keep the communication costs low.

The boundary conditions in the lower and upper z-
direction are fairly straightforward as they do not affect the
physics at all. The reason for this is that no field or quasi-
particle can reach the upper boundary as the boundary travels
with the same velocity as the particle beam. The lower
boundary is continuously moving as well, which gets rid of

Table 2. Simulation parameters. Numbers typed in italic are approximate values.

Parameter and notation Value Dimensionless value (unit)

Minimum number of grid points per λp=2πc/ωp 130
Timestep size 1.6´ -10 14 s 0.025 (1/ωp)
Spatial grid size, Δx 9.40 μm 0.047 (c/ωp)
Spatial grid size, Dy 9.38 μm 0.047 (c/ωp)
Spatial grid size, Dz 9.59 μm 0.048 (c/ωp)
Initial box size in x-direction 0.8124 cm 40.62 ( wc p)
Reduced box size in x-direction 0.42 cm 21 (c/ωp)
Box size in y-direction 0.42 cm 21 (c/ωp)
Full box size in z-direction 11.1008 m 55 504 (c/ωp)
Galilean window size in z-direction, Lw 30.38 cm 1519 (c/ωp)
Initial grid size 864 × 448 × 1157120 = 5 × 1011

Reduced grid size (Galilean, beams merged) 448 × 448 × 32400 = 6 × 109

Initial number of patches 54×28×72 320
Reduced number of patches (Galilean, beams merged) 28×28×2025
Number of timesteps 2198 134
Number of quasi-particles per cell for each species 3
Courant–Friedrichs–Lewy number [33] 0.9
Real particles per quasi-particle with weight 1, Nreal 7.35 × 107

Plasma peak real particles per quasi-particle, N n nreal 0 0 7.35 × 107

Driver peak real particles per quasi-particle, N n nbreal 0 0 4.13 × 107

Electron peak real particles per quasi-particle, N n nereal 0 0 1.10 × 107

Average number of quasi-particles in box 7.4 × 107

Figure 1. Scheme of beam injection into the plasma.
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any spurious fields and particles before they can return and
interact with the simulation. This makes it reasonable to
choose a very simple and predictable reflecting boundary in
the positive and negative z-direction. Unfortunately, the
transversal direction proves to be very tricky. After trying out
different implementations of universal perfectly-matched
layers [34, 35] and conducting boundaries we come to the
conclusion that it is too risky to run the full simulation with
these boundaries. The boundary cells exhibit a certain degree
of nonlinear numerical field growth in all tested cases which
make the results unreliable. This may be remedied in future
simulations by improvements to the patch mechanism in
conjunction with the boundary algorithms. Spurious currents
and the continuously charging wall make it very questionable
to just delete exiting particles. Because of this, we implement
periodic boundaries in the transversal direction for particles
and fields. Periodic boundaries are very easy to predict and
are very unlikely to behave in an unexpected manner. Since
the plasma provides very strong electromagnetic shielding
and the Galilean window guarantees a maximum number of

box traversals for electromagnetic waves, there is no effect to
the particle dynamics by recurring waves. Unfortunately,
recurring particles are a problem in the case of the electron
beam. Because of the periodic boundary conditions in the
transversal direction, witness beam particles can only leave
the simulation box via deceleration. This enables the trapping
of witness particles which had already left the plasma after
interacting with the beam, particles which, in the experiment,
would be lost. Because of this effect, we can not make proper
observations of the captured charge. An easy solution to this
problem would have been to flag each electron quasi-particle
which traverses the periodic boundaries. This would have
made it possible to identify and filter these particles during the
post-processing step of the simulation. Unfortunately, this
was not implemented for the present simulation, and the
simulation could not be repeated due to its high cost.

The simulation uses three different particle species:
plasma electrons, ion beam particles and electron beam par-
ticles. Since ion motion was shown to be negligible for these
beam parameters [4, 19], the rubidium ions are assumed to be
stationary and are not simulated. The charge-conserving
particle pushing algorithm [36] of the PSC assumes a
balanced charge distribution at the start of the simulation. Not
generating any quasi-particles for the rubidium ions therefore
acts in the same way as having fixed positive charges at the
initial positions of the plasma electrons. These fixed charges
consume no computing resources. Each kind uses three quasi-
particles per cell. The weight of a quasi-particle is given by
n/n0, nb/n0 and ne/n0, respectively, where the density is
taken at the center of the cell where the quasi-particle is
created. The number of real particles per quasi-particle with a
weight of 1 is given by = ´ D ´ D ´ DN n x y z3real 0 .
This number is valid for quasi-particles of all species. It
is also the peak number of real particles per plasma quasi-
particle, since in this case, n/n0=1, which makes plasma
quasi-particles at locations with a peak plasma density have a
weight of 1. Each cell with a nonzero density value for a
specific kind contains three particles of that kind. We thereby
achieve a good resolution of the particle dynamics even in
low density areas of the simulation. These formulas generate
quasi-particles with weights which differ by orders of mag-
nitude. Since we do not use any Monte-Carlo collisions, this
does not affect the quality of our results. On average ≈16.3%
of the quasi-particles are driver particles, ≈0.3% are electron
beam particles and ≈83.4% are plasma particles. This makes
the number of quasi-particles per cell, which are used to
represent the plasma, a dominating factor in determining the
cost of the simulation. We choose to use 3 quasi-particles per
cell for the plasma in order to keep the simulation cost rea-
sonable. Since the plasma exhibits only linear dynamics, this
number suffices to accurately represent the physics. By using
3 quasi-particles for the beam and electron species as well,
our simulation has a two orders of magnitude smaller amount
of real particles per quasi-particle for these species, and
therefore supplies a sufficient resolution for their nonlinear
dynamics. The non-peak value of the number of particles per
quasi-particle is even lower, which gives the slopes of the
Gaussian-distributed beam and electron densities, and

Figure 2. The upper figure shows the initial simulation setup
containing the ion beam in red and the witness beam in yellow,
offset in the x-direction. The blue-gray boxes represent the patches.
The real simulation uses many more patches in all three directions as
given in table 2. The lower figure shows the configuration of the
simulation after the witness and ion beam have merged. The upper
patches have been disabled. A patch in front of the beam has been
added, while the patches in the back of the beam have been disabled.
The PSC continuously generates and removes patches in this manner
in order to realize the Galilean window. Disabled patches are
represented by having a higher transparency.
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therefore the majority of the volume, an even higher resolu-
tion. The plasma quasi-particles have an additional restriction:
only cells with a plasma density >0.01n0 receive three quasi-
particles, other cells receive zero quasi-particles. This sets a
sensible cutoff point for the quasi-particle generation without
meaningfully altering the physics. There is no overlap
between the driver and the plasma quasi-particles at the start
as the plasma density is below this threshold in the regions
where driver particles are setup. The only purpose of the
initial plasma temperature Te is to generate distinguishable
quasi-particles in each cell. Since all three quasi-particles are
initialized at the same location inside their respective cell,
they would not behave differently if they had equal
momentum values. The value of Te leads to an approximate
difference in location of ´ D »L c T m x2 20w e e cells at
the end of the lifetime of a plasma quasi-particle. Therefore,
the quasi-particles are sufficiently different a short time after
their initialization.

Using a simple model we can calculate a lower bound for
the computational cost. For this model we assume that (a) a
single core can push one million particles per second and
that there is no (b) communication, (c) field solving, (d) data
output cost and (e) load imbalance. With this model the
computational cost of the simulation can be approximated to
be ´ ´ ´ =7.4 10 10 s 219 813 1 c 4.5 Mch9 6( ) . The
total computational cost of the final simulation turns out to be
about 22Mch. From the cost of about 85M € for building
SuperMUC Phase1, the total number of cores, which is
18 432×8 (Intel Xeon E5-2680) + 820×10 (Intel Xeon
E7-4870) = 155 656, and a total runtime of approximately 6
years we can calculate a very conservative price per core-hour
of about 85×106/(155 656×6×356×24)≈0.01 €.
This lower bound fits well to scientific evaluations [37]. From
this follows that the minimal total cost of this simulation
amounts to»220 k€. This cost makes multiple simulations at
the required resolution prohibitive.

It is extremely valuable to incorporate most of the data
analysis into the simulation code itself. This enables the
exploitation of the supercomputer resources for post-proces-
sing and reduces the amount of written data and successive
disk input/output (I/O). Every 1000th timestep, the code
provides outputs of a variety of smoothed field values with
already performed additional processing like averaging and
maximum finding. Furthermore it generates processed particle
data like emittance, average locations and respective standard
deviations as well as several different kinds of densities for
different projections of the configuration and momentum
space. This reduces the output data size immensely and makes
it possible to continuously monitor the simulation. Addi-
tionally, ten specific timesteps are saved to disk in their
entirety. These timesteps are chosen to portray important
milestones in the evolving simulation, like the orifice entry,
the merging of the witness beam, reaching the wakefield
maximum, and exiting the plasma through the second orifice.
Another very important data output is the full configuration of
50 particles of each kind every 20 timesteps.

We identify several key I/O parameters of the respective
supercomputer and use these parameters for our optimization.

These parameters may differ for different kinds of file systems
and may therefore not easily transfer to other supercomputers.
Two very important parameters of this kind are the number of
active concurrent file-streams and the number of files per
directory for which the I/O performance remains acceptable.
For SuperMUC Phase 1ʼs file system it is necessary to keep
both of these numbers below 1000. It is also of paramount
importance to only access each individual directory from a
single node at a time. Using these findings, we carefully
designed a parallel output algorithm which serializes the
access to directories in an optimal way. We also tested output
libraries, like MPI-IO, but found that due to the PIC data
configuration, which consists of large chunks of unscattered
data, these libraries did not perform well and did not improve
performance meaningfully. Finally, we are able to achieve a
data rate of 105 GByte s−1. The theoretical machine max-
imum is given at 125 GByte s−1. A full checkpoint, which is
necessary to be written regularly because of the maximum job
time length, had an initial size of 120 TByte and took 2.5 h to
write. We reduced the data size to 12 TByte and are able to
write it to disk in three minutes. This is achieved by
exploiting additional features like in-memory compression
and optimized data structures.

The second area of improvement is concerned with the
scalability of the code. Running on 32 768 cores simulta-
neously, will uncover any non-scaling code structure. We got
rid of a slew of unnecessary data duplication and output files.
Due to the need for large amounts of memory as well as an
optimized scaling behavior of the code, we find that 32 768
cores is the optimal amount of cores for our case.

4. Proton beam self-modulation

The plasma transforms the long proton beam into a train of
short micro-bunches, which resonantly drive the plasma
wave. A good quantitative measure of this process is the
generated longitudinal electric field (figure 3). From com-
paring runs with different resolutions, we find that a fine grid
is necessary in order to adequately represent the physical
processes in the system. For a sufficiently small grid step size
of l w» c130 0.05p p, the results of the 3D PSC simulation
closely agree with the high resolution reference simulation of
the 2D quasi-static code LCODE [27, 38], with a grid step
size of 0.01c/ωp.

Both high-resolution runs show the typical stages of
wakefield evolution as the beam propagates through the
plasma [39]. During the first meter in the plasma the
wakefield stays at approximately the seed level. This is
then followed by exponential growth, which changes into
non-exponential growth after 2 m. The beam is fully micro-
bunched at about 4 m (figure 4(a)) into the plasma and at this
point it excites the strongest wakefield. After this, the wake-
field decays because the micro-bunches do not fully reside in
the focusing phase of the wave, and their defocused parts
gradually erode [40] (figure 4(b)). The field spike near the exit
appears, because the plasma wavelength slightly increases
as the plasma density decreases. The micro-bunches then
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gradually shift into the stronger decelerating phase of the
wave. Particles in this phase drive the wake more efficiently,
which increases the field values. However, this occurs at the
expense of a weaker to non-existing radial focusing, which is
why the reduced plasma density can only boost the wakefield
for a short distance.

We particularly emphasize that we did not find any sign of
beam hosing (figure 4). Even the tail bunches, which are not
perfectly symmetric, follow the head bunches perfectly. Theory
[41, 42] and simulations of shorter beams [13, 42–44] predicted
that the seeded self-modulation suppresses the hosing, but this is
the first observation of no hosing occurring in full scale simu-
lations of AWAKE. The seeding of the hosing instability in the
simulation is even stronger than in reality, because the number
of beam quasi-particles in the simulation is smaller than the
number of protons in the real beam (table 2) [13]. Therefore,
when considering a particle-noise-induced hosing instability, it
has an even lower probability to develop in experiments.

5. Electron injection

As the electron bunch approaches and crosses the plasma
boundary, it experiences a strong force which is caused by the
redistribution of charges in the plasma (figure 5). The force is
both focusing the bunch and attracting the bunch to the
plasma boundary. The force action starts in the vacuum and
increases as the bunch approaches the boundary (figure 5(a)).
In the plasma, the force is strong enough to keep most of the
bunch tightly focused. The transverse momentum, delivered
by this force to individual electrons, depends on the electron
position in the bunch and is very large, which makes the beam
emittance blow up during the boundary crossing (figure 5(b)).

Most of the electrons in the beam head are simply
reflected from the plasma (figure 6). They enter the plasma,

experience a positive radial force, turn around and travel away
from the plasma. An example for this behavior is particle 1 in
figure 6. During their time in the plasma, they create a
wakefield that can focus the rest of the beam. The wakefield
force is the gradient of the wakefield potential Φ shown in
figure 6(a). Here, red regions are potential wells for the
electrons, and blue regions are potential humps. As we see
from the potential map, the head particles are reflected from
the proton beam wakefield, which is mostly repelling for
electrons during the first two meters of propagation.

Particles further downstream (like particles 2–4) are
confined by the potential well created by upstream particles
and can even make several small-amplitude transverse oscil-
lations in the well. This potential well traps most of the beam
electrons and makes them move in a very similar manner. The
transverse positions of particles 2–4 at z=1.25 m almost
coincide (figure 6(b)) in spite of their different initial positions
and their acquired transverse momenta. The potential well
follows the transverse position of the electron beam head and
eventually comes out of the plasma, pulling the beam body
along with it. Most of the electrons trapped in the well have
sufficient transverse momenta and are able to overcome the
plasma attraction and fly away (particle 2). A few, however,
remain close to the plasma and oscillate near the boundary
(particles 3 and 4).

As the proton beam self-modulates, the potential wells
produced by the proton driver become deeper and wider,
eventually reaching the plasma boundary and attracting electrons
to inner plasma areas (particle 4 at z≈3.5m). Electrons in
opposite wakefield phases (potential humps in the inner area) get
locked between the hump and the boundary and oscillate there
until they drift to the well. This eventual drifting is possible
because of the difference between the wakefield phase velocity
and the electron longitudinal velocity (particle 3, which enters
the central area only at z≈5.5 m).

Shortly after the self-modulation, the driver wakefield has
the following structure: the wave phase in the region with
rc/ωp, which is driven by defocused protons, is opposite to
the wave phase in the region around r=0, which is driven by
the remaining protons. Because of this structure, electrons can
oscillate for a time around a non-zero radial position inside the
plasma (particle 4 at z≈4m), before they are finally able to
reach the near-axis region (particle 4), return back to the
boundary (particle 3), or get lost (not shown). Close to the axis,
the wakefield is strong, and the electron energy quickly grows as
high as 2 GeV (particle 4). There are, however, only a few
monitored electrons exhibiting a behavior like this.

Since all wakefields, including the wakefield the electron
bunch generates in its rear part, are oscillating with the same
plasma wavelength, there is a chance for electrons to squeeze
through the boundary wakefields and to directly arrive at the axis
(particle 5). These particles are very small in number, as well.

6. Summary

Even at the minimum acceptable resolution, full 3D simulations
of proton-driven plasma wakefield acceleration require huge

Figure 3. Comparison of the maximum accelerating gradient
=E z E x y z tmax , , ,z x y t z,max , ,( ) ( ) (PSC) and =E zz,max ( )

E r z tmax , ,r t, z ( ) (LCODE) for different resolutions using the PSC
and the quasi-static code LCODE. The numbers in the legend for the
first three lines refer to the number of points per λp when using the
PSC. The dashed line refers to the reference simulation with LCODE
using ≈628 points per λp. In order to reduce clutter, resulting from a
lot of noise, the 33 points per λp results have been capped at
0.7 GV m−1 maximum field value.
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computational resources and should give way to reduced models
wherever possible. The seeded self-modulation of proton beams
is one such effect, which can reliably be simulated with axially

symmetric quasi-static codes. In contrast, however, electron
injection into the wakefield needs 3D simulations even if the
electron bunch charge is small compared to the proton beam

Figure 4. Proton density ρ(y, z) integrated in x-direction (a) in the middle of and (b) near the exit from the plasma section. The shown figure
corresponds to the perspective of the electron beam, which is looking down onto the driver. The colorbar unit ρ0 corresponds to the density at
the center of the unperturbed beam. The green dashed lines in the insets show the propagation axis.

Figure 5. Parts of typical electron trajectories in (a) real and (b) momentum space. The small red circle in (b) corresponds to a beam with
radius σre, energy We, and normalized emittance 10 mm mrad.
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charge. When a low-energy electron bunch crosses the plasma
boundary, it induces its own wakefield in the plasma, which, in
combination with the peripheral proton wakefield, results in the
reflection of most of the beam from the plasma and blowing up
the angular spread of the remaining part. This effect may be
responsible for the lower amount of accelerated charge [9],
compared to the predictions made with reduced models [4], in
experiments.
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122 6 Conclusions

This dissertation contains two main topics. The first topic, discussed in chapter 1 to 3, concerns
the dynamic adaptation of the number of quasi-particles in a PIC simulation. The chapters first
present a suitable theory describing the effects of adapting the quasi-particle number, followed by
an algorithm that is able to perform these adaptations during a simulation, and finally a selection
of simulations with interesting results and benchmarks. A direct comparison to previous work on
this topic suggests that the newly developed algorithm is uniquely able to perform very efficient
and correct Adaptive-Particle-Refinement (APR) during a simulation.

For future work, it seems viable to try to link the quasi-particle number in the simulation with
the theoretical SNR implications of it. An algorithm can be envisioned that does not focus on
keeping the actual number of quasi-particles in a certain range, but instead guarantees a certain
SNR value for each cell. In doing this, a scientist performing the simulation would need to
solely fix a desired SNR value for regions in the simulation, which is much more meaningful in
comparison to demanding a certain number of quasi-particles.

Furthermore, it would be very interesting to make use of the APR scheme for other problems.
Setups that experience a large temporal and spatial variance in the particle distribution are prime
candidates to potentially benefit from employing an APR scheme. A good example for this
behavior is the bubble regime ([24], [18], [6], [7]) of laser-driven plasma wakefield acceleration
(LWFA) [28]. The self-injection of accelerated charges happens in a regime with very low plasma
densities at the bubble border. If the quasi-particle size, and therefore the minimal plasma density,
is chosen at the beginning of the simulation and subsequently stays fixed, it is necessary to either
use a large number of particles at the start of the simulation, when it is not yet necessary, or have
a very low SNR value during the injection process. This problem can be solved elegantly using
an APR scheme. Future work could employ the algorithm presented in this work, and investigate
its impact on the reliability of the obtained results.

Another interesting possibility derives from the fact that the momentum space adaptation part of
the algorithm does not rely on the employed electromagnetic field solver. Therefore, this part
can also be used for grid-less simulation codes.

The second main topic of this dissertation is the meaningful contribution to the AWAKE ex-
periment, shown in chapter 4 and chapter 5. Of special additional importance are the many
contributions that were made to the PSC code. Using these contributions an adaptive simulation
box was realized, which saved a lot of computational resources.

Since the experiment is ongoing, there is a host of possible directions for future work. One
obvious objective is to finish the campaign that is outlined in chapter 4.3. Fig. 4.6 gives the
general overview of this proposed campaign. Finishing these investigations, using the developed
test case, is certainly viable and could result in important benefits for the AWAKE effort.

Other research possibilities are the investigation of the side-injection efficiency, multi-stage se-
tups, or on-axis injection schemes. It might also be viable to include the APR scheme for several
of these problems, as the particle density undergoes heavy variations. The side-injection scheme
harbors a lot of unknowns and thereby offers a tremendous amount of interesting investigative
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directions. Again, the developed test case should make this viable and straightforward. It might
prove important to develop a setup, where the simulation may be started shortly after the micro-
bunching has finished and shortly before the external beam enters the plasma. This would save
a lot of computational resources, but it necessitates the development of some additional code
infrastructure.

The viability of multi-stage setups, setups with multiple plasma columns that are exited and
entered by the proton beam, is also of interest. This would enable different injection schemes as
well as modifications to the accelerating plasma length and density. The beam stability during
the exiting and entering of multiple plasma columns is the main topic of interest in this case.

Finally, the on-axis injection scheme may be a more reliable alternative to the side-injection
scheme. The results, published in [20] and printed here in chapter 5, suggest that side-injection
may pose meaningful difficulties. These may be overcome by switching to on-axis injection.
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