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1. Introduction

Bones are important constituents of the organ systems of the vertebrates providing body support,

physical protection for inner organs, movement facilitation, mineral storage and a niche for 

hematopoiesis [1, 2]. In human, there are more than 200 bones, which derive through two 

developmental pathways: 1) flat bones of the skull form directly from the condensation of the 

skeletogenic mesenchymal cells in the process of intramembranous ossification (IO); 2) while long 

bones of the appendicular and axial skeleton arise from intermediates of cartilaginous templates in the 

process of endochondral ossification (EO) [3]. EO starts with the condensation of the skeletogenic 

mesenchymal cells at the sites of the future bones, and the progenitor cells in these aggregates, under 

the guidance of various factors, differentiate into chondrocytes forming the cartilage template. 

Chondrocytes within the cartilage anlage begin to proliferate and synthesize cartilage-specific 

extracellular matrix, which is rich in collagen II and aggrecan [3]. The cartilage templates 

subsequently undergo maturation, hypertrophy, vascular invasion and mineralization, and the bones 

grow both laterally and longitudinally [4, 5]. As a result of the morphogenetic processes, embryonic 

cartilage is largely replaced by bone (transient cartilage), except the ends of long bones where it 

remains intact and forms the permanent articular cartilage [6, 7]. 

Articular cartilage (AC) is a highly hydrated, strong, resilient, avascular, alymphatic and aneural 

tissue. Covering the ends of long bones, AC is not only providing a lubricating, frictionless surface 

for the synovial, diarthrodial joints, but is also essential to distribute the mechanical loading generated 

during movement [8]. AC is composed of a relatively small number of chondrocytes, which lay down 

a specialized extracellular matrix (ECM). The major constituents of the ECM are the organic 

components (about 40%) and water (about 60%) [9, 10]. AC is characterized by a unique zonal 

structure with varying structural and biochemical properties. Generally, the AC is divided into four 

vertical layers: the superficial zone, the middle zone, the deep zone and the calcified cartilage 

zones[11]. All these zones have characteristic mechanical behavior for loading stimuli [12]. 

 The ECM of both the transient and permanent cartilage provides physical support for 

chondrocytes, and acts as a sponge reserving growth factors and other cytokines, which in turn could 

modulate cell proliferation and differentiation. The ECM is predominantly composed of fibrillary 
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 collagens, proteoglycans, and non-collagenous molecules [6, 13, 14]. These constituents interact with each 

other forming a unique protein network, which maintain the biochemical and biomechanical characters of the 

cartilage. The collagen fibrils provide tensile strength, whereas proteoglycans account for the elasticity of the 

tissue [13, 15]. The cartilage ECM is a dynamic network, which undergoes modeling and remodeling along 

the whole life.  Homeostasis of cartilage is maintained by complex mechanisms controlling the turnover 

of the ECM by regulating the balance between anabolic and catabolic processes [16]. Mutations in matrix 

proteins resulting in abnormal organization of the ECM could eventually affect the development of 

1.1. Bone and cartilage

      Bone is a dynamic organ, which form either endochondral ossification or intramembranous ossification [3, 

20].viscero-cranium, and a part of the clavicle develop by IO, while most bones in the body  including long 

bones of  the vertebral bodies and the ribs follow EO [7, 21]. In general, three types of cartilage can 

be defined in vertebrates: hyaline cartilage, elastic cartilage and fibrocartilage. Elastic cartilage, composed 

of collagen type II fibrils and elastic fibers, is found in the epiglottis, in the external ear, and in smaller 

laryngeal cartilages. Fibrous cartilage is rich in collagen type I, in addition to collagen II, and is mostly 

distributed in tissues with high shear stress such as the meniscus, the intervertebral discs and in 

pubic symphysis [7, 22]. Hyaline cartilage is the most widely distributed cartilage, typical for 

endochondral bone formation. The developing hyaline cartilage is surrounded by a perichondrium, and 

its ECM can be divided into three compartments relative to the chondrocytes: pericellular matrix, 

territorial matrix and interterritorial matrix. Hyaline cartilage stays permanent in the joints forming the 

articular cartilage, which characterized by a lubricated surface reducing the friction between the opposing bones 

making the movement more flexible [23]. 

1.1.1. Endochondral ossification 

Endochondral bone formation (Figure 1) is initiated by the condensation of committed mesenchymal cells 

at the places where the future bony elements form [24, 25]. Under the guidance of specific molecules including
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transcription factors, morphogens, cell-cell and cell-matrix adhesion molecules, the condensing progenitors 

form aggregates and most of them differentiate into chondrocytes, which synthetize cartilage-specific ECM and  

form aggregates and most of them differentiate into chondrocytes, which synthetize cartilage-specific ECM and 

form the initial cartilage template. Meanwhile, peripheral cells at the anlage elongate and make the 

perichondrium surrounding the cartilaginous core [15, 24, 26]. The early cartilage molds of long bones grow 

via the combination of chondrocyte proliferation and cartilage-specific ECM production, which is rich in 

collagen II and the proteoglycan aggrecan. Then, the proliferative chondrocytes in the central part of the anlage 

(diaphysis withdrawn from the cell-cycle, undergoing maturation and eventually transform into large, 

hypertrophic chondrocytes [27]. The hypertrophic cells produce specific ECM components like collagen X 

[28], express mineralization-inducing factors (e.g. alkaline phosphatase and matrix degrading enzymes (e.g. 

matrix metalloproteinase-13, MMP-13, and secrete vascular endothelial growth factor (VEGF, which attracts 

blood vessels invading the hypertrophic cartilage. The blood vessels recruit osteoclast/chondroclasts into the 

cartilage, which partially digest the ECM of the hypertrophic core; and osteoblasts which lay dawn trabecular 

bone on the remnants of the hypertrophic cartilage, thus forming the primary ossification center (POC at 

the diaphysis of the long bones. Simultaneously, perichondrial cells surrounding the hypertrophic core 

differentiate into osteoblasts, which secrete bone matrix and gradually form the bone collar. As the long bones 

grow, the POC is continuously expanding towards the two epiphyseal ends. The steps of endochondral 

ossification also occur later at the epiphyses establishing the secondary ossification centers (SOC) [29-31]. The 

narrow cartilaginous structure between the POC and SOC is the growth plate (GP), which is essentially 

responsible for spatially and timely coordinated maturation of the chondrocytes and for the longitudinal 

elongation of the endochondral bones. According to the metabolic status of the chondrocytes, the GP is 

organized into different horizontal zones: resting zone (RZ), proliferative zone (PZ) and hypertrophic zone (HZ) 

(Figure 2). In the RZ, the chondrocytes are rounded and they constitute a “germ-pool” of the cartilage. These 

progenitor cells after entering into the cell cycle generate the proliferative zone with chondrocytes characterized 

by columnar organization and high mitotic activity. At the lower part of the PZ, the cells stop to proliferate, 

mature and become hypertrophic. In the HZ, the chondrocytes enlarge, largely contributing for longitudinal 

elongation of long bones in mammalians,and secrete factors, which prepare the ECM for mineralization, 

vascular invasion, and for replacement of cartilage by bone. The last terminal layer of hypertrophic 

chondrocytes either die by apoptosis or transdifferentiate into osteoblasts.
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Figure 1: Endochondral bone formation. The figure is adapted and modified from Xie et.al, 2014 [32]. 

Plethora of molecules participate in the control of EO regulating mesenchymal condensation and aggregation, 

chondrocyte differentiation, proliferation, maturation and death. Fibroblast growth factors (FGFs), Sry-related 

high mobility group box (Sox) transcription factor 9 (Sox9) and Wnt signaling among the most important ones 

which direct the condensation process and the differentiation of precursors towards chondrogenic lineage. Sox9 

acts uninterruptedly during endochondral bone formation by regulating mesenchymal-chondrocyte transition, 

chondrocyte proliferation and maturation [33, 34]. Sox5 and Sox6 are also expressed during the early 

chondrocyte differentiation, but unlike Sox9, are not required for mesenchymal condensation [35, 36]. The 

Indian hedgehog-Parathroid hormone-related protein (Ihh-PTHrP) signaling pathway plays the most critical 

role during chondrocytes proliferation, chondrocyte and perichondreal osteoblast differentiation. Ihh is 

produced by pre-hypertrophic chondrocytes, it binds to its receptor Patched-1 (Ptc-1) thus activating 

Smoothened (Smo) and transcription factors of the Gli family, which then triggers transcription gene activation. 

The expression of Ihh promotes synthesis of PTHrP in periarticular chondrocytes at the end of the epiphysis, 

which diffuse back to the GP and prevent proliferative chondrocytes become hypertrophic. Hence, Ihh-PTHrP 

signaling forms a negative feedback loop that regulates chondrocyte maturation [36-38]. Bone morphogenetic 

protein (BMP) signaling another mechanism which is important during EO. BMPs could promote cell 

proliferation and inhibit the terminal hypertrophic; meanwhile, BMPs could increase the expression of Ihh, 

which is opposite to that of FGFs [26, 39]. Runx2 is well recognized for its functions in endochondral 

ossification through modulating the proliferation and hypertrophic of chondrocytes and osteoblast, but different 

from sox9, which initiates chondrogenesis, Runx2 is vital mainly for the late stages [33, 40-42].

https://jme.bioscientifica.com/search?f_0=author&q_0=Yangli+Xie
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Figure 2: Structure of the mouse epiphysis and the growth plate. AC, articular cartilage; GP, 

growth plate; HZ, hypertrophic zone; PZ, proliferative zone; RZ, resting zone; SOC, secondary 

ossification center.

1.1.2. Articular cartilage. 

Articular cartilage is hydrated, strong and resilient avascular hyaline cartilage. It covers the ends of long 

bones providing a lubricating, frictionless surface for the synovial joints and helps to distribute the loading 

generated during moving [8]. AC is characterized by a specialized ECM, which is produced by a relatively 

small number of chondrocytes. The ECM of the AC composed of the macromolecular assemblies of type II 

collagen fibrils and the proteoglycan aggregates aggrecan, which networks are interconnected via multiple 

adaptor glycoproteins [9]. The collagen network responsible for the tensile strength of the cartilage, while the 

aggrecan aggregates retain a huge amount of water and provide resistance against compressive forces. The 

chondrocytes are scattered throughout the ECM and, in contrast to cells in many other tissues, there is no direct 

chondrocyte-chondrocyte interactions, thus the cellular communication relies solely on the extracellular matrix 

[9, 10]. Throughout the AC, the orientation of the collagen fibrils, chondrocyte morphology and arrangement as 

well as the proteoglycan composition of the ECM greatly vary, allowing the separation of four distinct AC 

zones. In the uppermost superficial (or tangentional) zone (SZ), the chondrocytes are flattened and together 

with the tightly packed collagen fibrils align parallel to the joint surface. Compared to the other zones, the 

narrow SZ is further characterized by low proteoglycan content and by the expression of lubricating protein 

lubricin. The middle (or transitional) zone (MZ), is populated by roundish chondrocytes and contains highly 

intercrossed, obliquely oriented collagen fibrils. In the deep (or radial) zone (DZ), the chondrocytes form 

column-like structures and the thick collagen fibers align perpendicular to the surface. The DZ has the highest
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proteoglycan deposition and the lowest water content in the AC. The calcified zone (CZ) connects the 

non-mineralized AC to the subchondral bone, and contains hypertrophic-like chondrocytes. Notably, the 

interface between the DZ and the CZ, which is called the tidemark, has a peculiar high deposition of 

proteoglycans and glycoproteins [43, 44] (Figure 3. The unique structure and composition of different 

zones allow the AC to respond differently for loading stimuli. The SZ exhibits the lowest level of 

hydrostatic pressure and the highest resistance to shear stress. In contrast, the DZ bears the highest 

hydrostatic pressure and the greatest resistance to compression. The mechanical properties of the MZ range 

between the two flanking zones [45]. 

Figure 3: Structure of the articular cartilage. SZ- Superficial zone, MZ- Middle zone, DZ- Deep zone, CZ- Calcified zone 

SB- Subchondral bone. The figure is adapted from (Sam L. Francis, 2018)[46] 

Damaged articular cartilage is generally inefficient to recover after injury or chronic diseases like 

osteoarthritis (OA), primarily due to the lack of efficient regenerative capacity of the tissue [47, 48]. 

Owing to the lack of vessels and lymphatics, nutrients and waste exchange could only occur via 

diffusion of ECM. Absence of nerve fibers makes it difficult to transmit the damage signals to 

chondrocytes triggering adaptive changes. Furthermore, even though AC chondrocytes are metabolically 

active, they have a very restricted proliferative capacity [9, 10]. Although previous studies have 

identified a considerable number of progenitors at the SZ of articular cartilage, they are apparently unable to 
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rescue the tissue degradation [49]. Over the past decades, many efforts have been made in searching 

for cartilage regenerative therapies, some are even applied in the clinic, but none of them was 

found to be effective in the long term. Such a lack of success can be ascribed to the fact that 

current methods fail in eliciting repair with an outcome which would properly mimic the architecture 

and function of the native AC.  

1.2. Extracellular matrix of the hyaline cartilage 
The ECM determines the structural, mechanical and physico-chemical properties of the hyaline articular 

cartilage. The major components of the cartilage ECM are the collagen fibrils and the proteoglycans (PGs) 

(Figure 4, which form a specialized macromolecular network providing tensile strength and resilience for the 

tissue, respectively [13, 50]. Numerous non-collagenous proteins are also present in cartilage, which regulate 

matrix assembly and involved in chondrocyte adhesion. Cartilage collagens may include fibrillar collagens 

(collagen I, II, III, V, and XI), fibril-associated collagens with interrupted triple helix (FACITs) (collagens IX, 

XII, XIV, XVI, and XXII), short chain collagens (collagen X), network-forming collagens (collagen IV), and 

others (collagen VI, VII and XIII) [51]. Classical collagens build up the heterotypic collagen fibrils of the 

cartilage composed of type II, IX and XI collagens. The collagen meshwork entraps the proteoglycan 

aggregates composed of aggrecan molecules bound to a hyaluronan backbone via link protein. The two 

supramolecular components of the ECM, the collagen fibrils and the aggrecan gel, are mainly responsible for 

cartilage physical properties providing tensile strength and resistance against compressive forces. The 

non-collagenous glycoproteins, e.g. matrilins and cartilage oligomeric matrix protein (COMP), could 

bridge the collagen network and the hyaluronan-aggrecan gel together together contributing to the stability 

and integrity of cartilage. The cartilage ECM not only provides physical support for the chondrocytes but 

also functions as sponge reserving different kinds of growth factors and cytokines which modulate chondrocyte 

activities [9, 52-54]. Cartilaginous ECM undergoes continuous remodeling by the combination of synthesis and 

degradation, which in turn regulate cell behavior by modulating proliferation, survival and differentiation [55]. 

The ECM molecules in the cartilage are organized into different compartments according to the relative distance 

from the cell membrane and to the structural organization and abundance of the individual ECM components 

(Figure 4). The pericellular matrix (PM) is the nearest and narrowest ECM compartment, which surrounds each 

chondrocyte. PM contains mainly proteoglycans, adhesive glycoproteins and a very fine collagen fibrillary 
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network and is primarily mediates cell-matrix interactions [56]. The territorial matrix (TM) is 

situated around the PM of individual our grouped chondrocytes. This compartment is thicker than 

the PM, and it characterized by a relatively fine collagen fiber network which protects the cells 

from mechanical overload. The interterritorial matrix (ITM) makes the largest part of the 

ECM with collagen bundles and proteoglycans, hence, predominantly responsible for the 

mechanical properties of the cartilage [57, 58].      

1.2.1. Collagens 

Collagen II is the major component of the collagen fibrils and is ubiquitously present throughout of the 

cartilage ECM zones and compartments [59, 60]. Collagen II is a homotrimer of three identical α chains encoded by 

a single gene (COL2A1). The quantitatively minor collagen types IX and XI are also important constituents of the 

heterotypic collagen II/IX/XI fibrils controlling fibrillogenesis and lateral growth. The collagen fibers in developing 

cartilage are slightly different from that in permanent articular cartilage, characterized by changes from thin collagen 

fibers, consisting of 10% collagen IX, 10% collagen XI and 80% collagen II, to much thicker collagen fibrils, 

containing approximately 1% collagen IX, 3% collagen XI, and 90% collagen II [61, 62].

Mutations in collagen types II, IX and XI result in various chondrodysplasias ranging from lethal to mild 

phenotype. The other collagen types, including collagens III, VI, X, XII and XIV, may exist in minor amount and 

are considered as factors modulating matrix maturation [61, 63]. Specifically, collagen VI is enriched in PM 

surrounding the chondrocytes. It is involved in cell-matrix communication and mechano-transduction, allowing 

the chondrocytes to perceive its microenvironment changes and make adaptive reactions maintaining the tissue 

homeostasis. [59, 64]. Collagen X is mainly synthesized by hypertrophic chondrocytes, and it is an important 

differentiation marker for the hypertrophic zone and the calcified cartilage of the GP and the articular cartilage, 

respectively [65, 66]. FACIT collagens could only bind to the surface of the fibrils, where they participates in the 

stabilization and network organization of the fibrils [62, 63, 67-69].
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Figure 4: Extracellular matrix of hyaline cartilage. The figure is adapted and modified from Heinegård, 2009 [70]. 

1.2.2. Proteoglycans 

Proteoglycans (PGs) are complex molecules, which composed of a core protein and one or more 

covalently attached glycosaminoglycan (GAG) chains. The GAG chains build up from various repeating 

disaccharide units defining distinct GAGs: hyaluronan (HA), chondroitine sulphate (CS), keratine sulphate 

(KS), dermatan sulphate and heparin sulphate. Expect HA, all other GAGs are directly attached to a core 

protein and establishing the diverse superfamily of cartilage proteoglycans. The most abundant cartilage PG is 

the aggrecan, which form macromolecular aggregates binding to the elongated, linear HA via cartilage link 

protein (Figure 5. These PG aggregates occupy the space in between the collagen fibrils, due to their high 

water binding capacity, and are regarded as a main structural constituent of the cartilage ECM [71-73]. The 

aggrecan core protein carries two N-terminal globular domains, G1 and G2, an interglobular domain between 

G1 and G2, an extended domain for KS and CS chains, and one C-terminal globular domain (G3). Among all 

the composing unites, only G1 is involved in the aggregation processes with LP and HA [72, 74].  The function 

of the G2 domain is largely unknown, while the G3 region containing several disulfide-bonded domains with 

homology to epidermal growth factor (EGF), C-lectin and complements regulatory protein motifs is involved in 

interaction of other cartilage ECM proteins [50, 75-77]. The extended domain between the G2 and G3 bears 

more than hundred CS and about 30 KS chains. 100 CS and 30 KS chains. The high negative charge density of 

the CS chains attracts counter ions and draw H2O into the tissue creating a positive osmotic pressure, which 

https://www-sciencedirect-com.emedien.ub.uni-muenchen.de/topics/biochemistry-genetics-and-molecular-biology/epidermal-growth-factor
https://www-sciencedirect-com.emedien.ub.uni-muenchen.de/topics/biochemistry-genetics-and-molecular-biology/c-type-lectin
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endows articular cartilage to resist compressive forces. The KS chains mainly interact with the fibrillar 

collagens [78]. Besides the structural role, the aggrecan–hyaluronan aggregates also play important roles in 

cell-ECM crosstalk through their numerous CS chains. When the sulphation of aggrecan CS chains is impaired, 

Ihh signaling is reduced, thereby affecting the normal morphogenesis of the cartilage [79]. Small leucine-rich 

repeat proteoglycans (SLRPs) are another PGs present in the cartilage ECM. SLRPs belong to the leucine-rich 

repeat (LRR) protein superfamily and characterized by a central LRR region stabilized by N- and C-terminal 

cysteine bridges [80]. Decorin and biglycan are prominent members of the cartilage SLRPs, which able to bind 

to collagen fibrils and carry only one or two CS chains at the N-terminal extension [81, 82]. 

1.2.3. Perifibrillar adapter proteins 

Perifibrillar adapter proteins in the cartilage convey interactions between the collagen fibrils and the 

aggrecan aggregates, thereby stabilize those two supramolecular networks (Figure 4). This diverse group of 

ECM proteins includes collagens like the FACIT collagen type IX, SLRPs like decorin and biglycan, and other 

non-collagenous matrix glycoproteins such as matrilins and cartilage oligomeric matrix protein (COMP). The 

collagen IX molecule composed of three distinct polypeptide chains (α1/α2/α3) and it associates with the surface 

of collagen II/XI fibrils in an anti-parallel orientation. Its short arm at the N terminus sticks out of the fibril and 

provides binding sites for other perifibrillar adaptor proteins, whereas the long arm mediates covalent 

interactions with type II collagen and other collagen IX molecules [83-85]. The pentameric glycoprotein COMP 

belongs to the thrombospondin family and in the developing cartilage catalyzes collagen fibril formation. In 

more maturated cartilage in which fibrillogenesis is limited, however, it is functioning as cross-linker, thereby 

stabilizing the collagen network through binding to ECM proteins like collagen IX and matrilins. Furthermore, 

COMP connects the collagen network to the PG gel by binding to aggrecan [86-88]. Members of the matrilin 

family, such as matrilin-3, interact with collagen II/IX, COMP, biglycan, decorin and aggrecan forming a 

multimolecular complex, which interconnect collagen fibrils and aggrecan/HA aggregates via collagen VI 

microfibrils [89, 90]. In summary, perifibrillar adapter proteins are important for stabilization of the ECM by 

connecting of its constituents and for fibrillogenesis by controlling fibril diameter [91, 92]. Mutations or 

absences of perifibrillar adapter proteins results in a range of skeletal diseases including chondrodysplasias and 

premature osteoarthritis [93] .

1.2.4. Matrilins 

Matrilins are non-collagenous, oligomeric extracellular matrix proteins which form a family with four 
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members:  matrilin-1, matrilin-2, matrilin-3 and matrilin-4. All the four members share a similar modular 

protein structure containing one or two von Willebrand factor A-like (vWFA) domains, several epidermal 

growth factor-like domains and a C- terminal coiled-coil domain [94, 95] (Figure 6). In addition, matrilin-2 and 

matrilin-3 carry positively charged amino acids at the N termini, just before the vWFA domain, and matrilin-2 

has a unique domain preceding the coiled-coil domain. This modular structure enables matrilins with multiple 

molecular interactions [96, 97]. Through the C-terminal coiled-coil domain, matrilins form homo- or 

heterooligomers: matrilin-1 and matrilin-4 can form homotrimers, matrilin-2 and matrilin-3 form 

homotetramers, while only matrilin-1 and matrilin-3 able to form heterooligomers in cartilage with different 

stoichiometry [96]. No direct interactions exist between matrilin-2 and matrilin-3 or matrilin-3 and 

matrilin-4 [98]. Through their vWFA domain(s), matrilins bind to a diverse set of cartilage ECM 

constituents including COMP, decorin and biglycan, collagens II, IX and XI, and aggrecan, and contribute 

to matrix integrity and assembly [99-104]. Matrilin-3 consists of only one vWFA domain, while the other 

matrilins composed of two vWFA domains interconnected by the EGF-like motifs. Through the EGF- like 

domains, matrilins may interact with different growth factors such as bone morphogenetic protein-2 

(BMP-2) and TGF-beta [96, 97]. Matrilins can form both collagen-dependent and independent networks in 

the cartilage. The collagen-independent network is typically found in the pericellular matrix and it may 

have a role in mechanotransduction of chondrocytes. 

Figure 5: The domain structure of matrilins. The figure is adapted and modified from Wagener et al, 1998 [105]. 

1.2.4.1. Expression pattern and predicted functions of matrilins 

   According to tissue distributions in mice, matrilins can be sorted into two groups: matrilin-1 and 

matrilin-3 are almost exclusively cartilage-specific proteins, while matrilin-2 and matrilin-4 are present 

not only in cartilage but also in numerous extra-cartilaginous tissues.
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      Matrilin-1 (previously named cartilage matrix protein, CMP) first appearing around embryonic days 12.5 

(E12.5) in the differentiated cartilage templates of long bones, and is enriched in the epiphyseal and growth 

plate cartilages during limb development. At the layers of the forming articular cartilage matrilin-1 is absent. In 

the adult joint, however, matrilin-1 is weakly expressed at the peripheral areas of the articular cartilage [106]. 

Matrilin-1 may take part in collagen fibril assembly and interact with the aggrecan core protein bridging the 

two main ECM components together in cartilage [94, 97]. Matrilin-1 (Matn1-/-) knockout mice have no 

obvious skeletal phenotype, although ultrastructural irregularities of the collagen fibrils, and increased stiffness 

of the cartilage have been reported [98, 107]. Except for cartilaginous tissues, matrilin-1 exhibits minor 

expression in the heart and the eye[108].

Matrilin-2 is the biggest member of matrilin family and in the skeletal system it is first 

detectable in the developing limb cartilage at E13. Matrilin-2 is expressed in the proliferative 

and upper hypertrophic zones of the growth plate, in the superficial layer of the forming articular 

cartilage and in the perichondrium. Matrilin-2 is present in a broad range of extra-skeletal tissues 

including tendons, dermis, heart, smooth muscles, alimentary canal and peripheral nerves [98, 106, 

109]. The function of matrilin-2 in cartilaginous tissues largely remains unknown, hence Matn2-/- 

knockout mice have no reported skeletal abnormalities. Outside of the skeleton, matrilin-2 has been 

suggested to participate in peripheral nerve regeneration [110], muscle regeneration [111] and in the 

control hepatocarciogenesis [112] and autoimmune neuroinflammation[113].

Matrilin-3 also starts appearing in cartilage at E12.5 and displays largely an overlapping expression 

pattern with matrilin-1 [106, 109]. Matrilin-3 is expressed in the deep region of the developing articular 

cartilage, but it is present only in minor amount of the peripheral areas of the permanent articular cartilage. 

Similar to that of matrilin-1, matrilin-3 is primarily involved in connecting of the cartilage ECM networks and 

could modulate of the collagen diameter during fibrogenesis [64, 114]. Matrilin-3 deficient mice (Matn3-/-) 

generated in the Aszodi lab show onl ay slight ultrastructural abnormality of the collagen fibrils, while mice 

generated in the Chen lab display transiently accelerated hypertrophic chondrocyte differentiation and knee 

osteoarthritis in animals older than one year [115, 116]. Recently, a beneficial role of matrilin-3 for repair of 

osteoarthritic lesions has been suggested [117]. 

Matrilin-4, the last member of the family being discovered, exhibits the most ubiquitous expression 

pattern. Matrilin-4 is abundantly expressed in the growth plate and epiphyseal cartilage, and in the whole 

surface of the forming articular cartilage. In the growth plate, the deposition of matrilin-4 in the hypertrophic 
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zone is weaker compared with that in the proliferative zone. In the adult articular cartilage, matrilin-4, just like 

the other matrilins, is weakly expressed in the peripheral joint areas. Beyond the skeletal system, matrilin-4 can 

be found in the heart, lung, kidney, central and peripheral nervous system [109]. Matrilin-4 knockout mice 

(Matn4-/-) do not display obvious skeletal abnormalities by visual inspection but show abnormal proliferation of 

hematopoietic stem cells upon stress conditions [118].

1.3. Skeletal diseases associated with matrilins and aggrecan 
The chemical composition and the architecture of the ECM are pivotal the normal physical properties of 

the cartilage, for skeletal morphogenesis and for the normal functions of the AC. Defects in ECM assembly or 

abnormal ECM composition may results in pathological conditions including chondrodyslasias and 

degenerative joint diseases such as osteoarthritis. 

1.3.1. Chondrodysplasia 

Osteo-chondrodysplasias are heterogeneous genetic disorders with over 400 conditions affecting bone and 

cartilage development. Chondrodysplasias often result in disproportionate dwarfism due to defects in genes 

affecting growth plate structure and function. Mutations can alter the integrity of the cartilage matrix or disturb 

cell-matrix interactions leading to misguidance of proliferating cells into columns, which are essential for the 

elongation of long bones [119, 120]. Mutations in genes encoding various cartilage ECM proteins could induce 

chondrodysplasia, including mutations in matrilin-3 and aggrecan [121]. 

Although all the four matrilins are present in the cartilage throughout endochondral bone formation, only 

mutations in the human gene coding for matrilin-3 (MATN3) have been clearly assigned to any form of 

chondrodysplasias. Mutations in MATN3 are linked to the autosomal dominant form of multiple epiphyseal 

dysplasia (MED), a genetically heterogeneous, mild form of chondrodysplasia characterized by abnormal 

ossification of the epiphysis, joint stiffness and early onset of osteoarthritis. MED-causing MATN3 mutations 

are missense and are mainly located in β strands of the von Willebrand domain [122-125]. Mutations close to 

the β-sheet regions lead to bilateral hereditary micro-epiphyseal dysplasia (BHMED), a skeletal condition 

similar but still distinct to MED. Additional MED-like disorder is the spondylo-epi-metaphyseal dysplasia 

(SEMD), which can be caused by mutations in the EGF domain of matrilin-3 [123, 126]. Mechanistically, most 

MED and SEMD MATN3 mutations result in defective protein secretion and accumulation in the 

endoplasmatic reticulum. Furthermore, a linkage of MATN3 to spinal disc degeneration has been reported 

[127]. Mutations in the gene coding for matrilin-1 (MATN1) have been excluded from several types of
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osteochondrodysplasias (including MED), while the association of MATN1 with idiopathic scoliosis, 

mandibular prognathism and SEMD with joint laxity have been found [128]. To date, no genetic linkage 

between MATN2 and MATN4 to any heritable skeletal disorder has been identified. 

Mutations in the aggrecan gene (ACAN) cause various forms of skeletal dysplasias defining a 

still growing group of genetic disorders collectivelly called as aggrecanopathies [71, 129, 130]. The 

essential importance of aggrecan in cartilage development has been illustrated by the naturally 

occouring mutations in various species including the embryonic lethal cartilage matrix deficiency 

(cmd) in mouse and nanomelia in chicken, and the the recessive Dexter bulldog dwarfism. The cmd

-/- mice, which carry a functional null mutation of Acan, die shortly after birth, while the 

heterozygotes mice are born normal but suffer from late-onset of spinal disorder [130, 131]. Further 

ACAN mutations distributed all over the molecule cause SEMD, spondyloepiphyseal dysplasia 

Kimberley type, osteochondritis dissecans and various idiopathic short stature syndromes. [132]. 

Recent genetic studies on the variation of human height have suggested ACAN as a potential 

modulator of height [126]. Mechanistically, aggrecanopathies can be caused by mutations either 

leading to haploinsuffiency or inducing a dominant-negative pathomechanism disrupting the normal 

cartilage function[133]. 

1.3.2.  Osteoarthritis 

Osteoarthritis (OA) is a multifactor-induced disease characterized by progressive loss of the AC 

associated with limited joint flexibility, swelling, severe pain and stiff joints. OA is the major cause of disability 

in adults which seriously affects the life quality of middle-aged and elderly patients [134-136]. Besides AC 

destruction, OA impacts multiple joint tissues including the synovial membrane, subchondral bone, menisci, 

ligaments and tendons. Owing to the lack of effective therapies for rescuing the degraded cartilage, the long 

disease duration and high cost for joint replacement make OA one of the most concerned musculoskeletal 

disease worldwide [137-139]. Decades’ studies about the pathophysiology of OA have clarified that the OA is 

raised from an imbalance of cartilage homeostasis shifting from anabolism to catabolism [140-142], which is 

caused by multiple factors including genetic susceptibility, weight, inflammation and abnormal biomechanical 

stimuli [143-145]. As a net effect, degradation of aggrecan complexes and disruption of the collagen fibrillary 

network result in a structurally and biomechanically compromised tissue which eventually leads to cell death 

and progressive erosion of the AC [146, 147].
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  Matrilins, as integrative players of the cartilage ECM, can be indirectly or directly associated with 

osteoarthritis. MATN3 MED patients may have early onset osteoarthritis due to abnormal development and 

shaping of the epiphysis. In addition, a mutation in the first EGF domain of MATN3 has been associated with 

hand osteoarthritis but not with knee OA [148-150]. MATN3 expression is upregulated in the joint of OA 

patients [151-154] and in vitro studies revealed that it may play a complex role in the control of anabolism-

catabolism in the cartilage [155-157]. The weak association of MATN1 with OA has been reported [158] and 

the ectopic deposition of the matrilin-1 protein was demonstrated in the AC of human knee OA cartilage [159]. 

Dysregulation of MATN2 and MATN4 expression has been linked to the onset and progression of OA, 

respectively [160, 161].

Aggrecan endows the cartilage with load-bearing properties and plays essential roles in mediating 

acell-matrix interactions. Degradation of aggrecan is considered as a hallmark of early osteoarthritis 

which mainly attributed to the proteolytic activities of MMPs and aggrecanases (ADAMTS-4 and -5) 

[162, 163]. Decreased level of aggrecan molecules reduces the negative charge density of the sGAG 

chains leading to decreased osmotic swelling pressure accompanied by increased constraining matrix 

stress, and finally elevates the cartilage stiffness [164, 165]. Subsequently, collagenases (MMP-1 and 

-13) degrade the collagen fibrils initiating tissue erosion [162, 166]. Missense mutations in the G3

domain of ACAN result in skeletal dysplasias such us idiopathic short stature, SEMD or familial 

osteochondritis dissecans (OCD) [133, 167-170]. OCD is characterized by the separation of the 

subchondral bone and the AC and early onset osteoarthritis. A missense V2303M mutation in the G3 

domain of ACAN has been described which impairs protein interactions of aggrecan with other ECM 

molecules [170]. 
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1.4. Aim of the thesis 
The extracellular matrix is vital for the development of endochondral bones and for maintaining the 

homeostasis of the articular cartilage. Disturbances in the secretion, matrix assembly or molecular interactions 

of the composing macromolecules could induce a series of structural and metabolic abnormalities in the 

cartilage, which may accelerate pathological processes in the skeletal system. Despite the increasing information 

on the structural and functional importance of ECM constituents in cartilage physiology and pathophysiology, 

still a significant gap exists between the molecular structure of a matrix protein and its biochemical and 

biomechanical properties.  

In this thesis, therefore, our ultimate goal was to further understand the biological roles of cartilage ECM in 

the sequence of endochondral bone formation and articular cartilage physiology; and to elucidate its 

contribution for pathological conditions of the skeleton such as osteochondrodysplasias and osteoarthritis using 

genetically modified mice as model organism. Specifically, we aimed to investigate: 

1. the role of matrilin family of cartilage adaptor proteins in morphogenesis and function of the skeleton

utilizing a set of single or multiple matrilin knockout mice;

2. the consequence of reduced aggecan expression on cartilage properties by analysing the hypomorphic

Agc1CreERT2/CreERT2 mouse line.

Particularly, the following milestones were defined: 

1. clarifying possible functional compensation among matrilins in cartilage;

2. dissecting the role of matrilins in morphogenesis of the appendicular and axial skeleton;

3. understanding the role of matrilins for the structural biomechanical properties of the cartilage;

4. establishing the link between matrilin-deficiency and osteoarthritis;

5. assessing the contribution of aggrecan protein level to spontaneous, age-associated osteoarthritis.
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1.5.  Own contribution 
Paper I: I prepared all mouse tissue tissue samples and performed the whole-mount skeletal, histological, 

histochemical, in situ hybridization and immunohistochemical analyses. I isolated proteins from cartilage and 

performed the biochemical assays. I prepared all the samples for AFM measurement. I performed the 

morphometric measurements and the statistical analyses. I assessed articular cartilage degradation of the knee 

joint together with Paolo Alberton and Attila Aszodi. I wrote the manuscript together with Attila Aszodi and 

Paolo Alberton. 

Paper II: I performed the immunohistochemical analysis on articular cartilage samples. I did the OA scoring 

together with Paolo Alberton and Attila Aszodi.   
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2. SUMMARY
Cartilage is composed of chondrocytes and an abundant extracellular matrix (ECM), which consists of

macromolecular assemblies of collagen fibrils and aggrecan-hyaluronan aggregates interconnected with adaptor 

proteins. The cartilage ECM provides the proper microenvironment for chondrocytes and primarily determines 

the architecture, biomechanical and functional properties of the tissue. Spatially- and temporally-controlled 

ECM homeostasis through a sophisticated balance of protein synthesis and degradation is essential for both 

endochondral bone formation and the normal function of the permanent articular cartilage. Disturbance of 

cartilage ECM composition, assembly or turnover can lead to pathophysiological conditions such as 

chondrodysplasias or osteoarthritis. For a better understanding of the role of ECM macromolecules in cartilage 

physiology and pathology, we have focused our research on the characterization of the in vivo functions of the 1) 

matrilin family of adaptor proteins, and the 2) major cartilage proteoglycan aggrecan.   

Matrilins are structurally related, non-collagenous proteins belonging to the vWFA domain-containing 

superfamily of macromolecules. Four matrilins are known, matrilin-1, -2, -3 and 4, and each are expressed in the 

transient growth plate cartilage and, at low levels, in the permanent articular cartilage. Mutations in the human 

gene encoding matrilin-3 (MATN3) are associated with autosomal dominant skeletal disorders, and all matrilins 

(MATN1, MATN2, MATN3 and MATN4) have been implicated in human osteoarthritis. However, mouse 

models carrying single null allele for matrilins display no or relatively mild skeletal abnormalities suggesting 

functional compensation among the family members. In the first study (Paper I) we have challenged the 

compensation theory of matrilins by generating and analyzing multiple matrilin knockout mice. First, we 

demonstrated by protein analyses of knee cartilage of various compound knockout mice that MATN4 and 

MATN2 are indeed upregulated in the absence of MATN1 and MATN4, respectively, evidencing the existence 

of biochemical compensation mechanisms among matrilins. Second, we showed that quadruple knockout mice 

(Matn1-4-/-) have normal size, exhibit no obvious abnormalities in the overall structural and biomechanical 

properties of the growth plate, however, display a modestly increased mean diameter of the collagen fibrils. 

Third, we provided biochemical evidences that the lack of all matrilins in cartilage only mildly affect the 

extractability of their binding partners. Fourth, we showed that only Matn1-4-/- and Matn4-/- mice develop 

age-associated spontaneous osteoarthritis suggesting an important role of MATN4 for maintaining the normal 

physiological properties of the articular cartilage. Fifth, and most unexpectedly, we demonstrated that 

matrilin-deficiency in the axial skeleton lead to sacralization of the last lumbar vertebra in Matn4-/- mice. Taken 
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together, our data indicate that matrilins are largely dispensable for the growth of the appendicular skeleton, 

but are pivotal for correct patterning of the vertebral column and for preventing articular cartilage degradation.

    Aggrecan is the essential proteoglycan of the cartilage ECM which, due to the high negative charge 

density of its GAG chains, attracts water into the tissue allowing to resist compressive forces. The absence of 

aggrecan in cartilage results in lethal chondrodysplasia, while mutations in the human aggrecan gene 

(ACAN or AGC1) cause a broad range of skeletal disorders through dominant negative mechanisms 

disrupting cartilage structure or by inducing reduced ECM deposition of the protein 

(haploinsufficiency). The number of such aggrecanopathies still increasing, however, the relationship 

between the disease-causing mutation and the cartilage phenotype is remains to be elucidated. We have, 

therefore, investigated the impact of the reduced deposition of aggrecan on skeletal development and 

articular cartilage function using the Agc1CreERT2/+ and Agc1CreERT2/CreERT2 mouse models (Paper II). We 

demonstrated that both heterozygous and homozygous mutant mice are hypomorphic expressing aggrecan 

mRNAs below the normal levels. We showed that diminished deposition of aggrecan protein into the 

cartilage ECM leads to a dwarf phenotype in Agc1CreERT2/CreERT2 mice, which is persisted throughout the life. 

Most importantly, we found that Agc1CreERT2/CreERT2 mice develop severe, age-associated degeneration of the 

knee articular cartilage. The osteoarthritis-like phenotype was not due to upregulation of ECM degrading 

enzymes but was accompanied by increased stiffening of the articular cartilage. Thus, our findings suggest that 

a reduction in the normal collagen/aggrecan ratio in the articular cartilage makes harder the joint surface, which 

eventually predisposes for degradation. 
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3. ZUSAMMENFASSUNG
Knorpel setzt sich zusammen aus Chondrozyten und einer stark ausgeprägten extrazellulären Matrix (EZM),

welche aus makromolekularen Verflechtungen von Kollagenfibrillen und Aggrecan-Hyaluronan Molekülen 

besteht. Die Aggrecan-Hyaluronan Moleküle sind untereinander über Adapter-Proteine verbunden. Die EZM des 

Knorpels stellt nicht nur das angemessene mikrobiologische Milieu für die Chondrozyten breit, sondern ist zudem 

maßgeblich für die biomechanischen, architektonischen und funktionellen Eigenschaften des Gewebes 

verantwortlich. Die Homöostase der extrazellulären Matrix wird gewährleistet durch ein räumlich und zeitlich 

aufeinander abgestimmtes Gleichgeweicht von Proteinsynthese und -degradierung, welches darüber hinaus für 

eine regelrecht ablaufende enchondrale Ossifikation und Funktionsfähigkeit des artikulären Knorpels essentiell 

ist. Kommt es zu einem Ungleichgewicht in der Zusammensetzung der EZM oder einer Störung im Aufbau und 

Umsatz des Knorpels, kann dies zu schwerwiegenden Krankheitsbildern wie Chondrodysplasien oder 

Osteoarthirtis führen. Um ein tieferes Verständnis für die Bedeutung der extrazellulären Makromoleküle an der 

Physiologie und Pathophysiologie des Knorpels zu erlangen, haben wir unsere Forschungsschwerpunkte auf die 

Charakterisierung der 1) Matrilin-Familie, einer Gruppe von Adapter-Proteinen, und 2) Aggrecan, einem 

Hauptproteoglycan im Knorpel, gelegt. 

Matriline bilden eine Familie von extrazellulären und strukturell verwandten Proteinen mit modulärem 

Aufbau. Alle Matriline gehören zu einer Überfamilie der vWFA (von Willebrandfaktor A)-Domänen 

beinhaltenden Gruppe von Makromolekülen. Bisher sind vier Matriline, Matrilin-1, -2, -3, und -4, bekannt und 

alle werden im hohen Maße in der vorübergehenden Wachstumsplatte im Knorpel exprimiert. Geringe 

Expressionsraten der Matriline konnten im ortsständigen artikulären Knorpel nachgewiesen werden. Einige 

autosomal-dominant vererbte skelettale Erkrankungen sind assoziiert mit Mutationen im humanen Gen MATN3, 

welches für das Protein Matrilin-3 codiert. Jedoch zeigten Mausmodelle mit einem einzelnen Nullallel für 

Matriline keine, beziehungsweise, nur geringe Veränderungen des Skeletts. Diese Erkenntnisse lassen die 

Hypothese zu, dass es durch andere Mitglieder der Familie zu einer funktionellen Kompensation kommt. In einer 

vorherigen Studie (wissenschaftlicher Artikel I) haben wir diese Hypothese durch das Erstellen mehrerer Matrilin-

Knockout Mäuse genauer untersucht. Dazu haben wir zuerst mittels Proteinanalysemethoden von murinem 

Knorpel nachgewiesen, dass MATN4 und MATN2, bei gleichzeitig vorliegendem Knockout des jeweils anderen 

Gens, hochreguliert waren und somit einen funktionellen Kompensationsmechanismus unter den 

Familienmitgliedern bewiesen. Weiterhin konnten wir mittels eines vierfachen Knockouts (Matn-1-4 -/-) zeigen, 
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dass betroffene Mäuse eine normale Größe aufwiesen und zudem keine offensichtlichen Veränderungen bezüglich 

der strukturellen und biochemischen Eigenschaften der Wachstumsplatte zeigten. Ein Merkmal, welches 

allerdings auffiel, war ein moderat erhöhter Durchmesser der Kollagenfibrillen. Darüber hinaus haben wir 

aufgezeigt, dass ein Mangel an Matrilinen zu einer gering eingeschränkten Extrahierbarkeit der Bindungspartner 

führt. Der Befund, dass nur Matn-1-4 -/- Knockout Mäuse eine altersabhängige und spontane einsetzende 

Osteoarthritis aufwiesen, lässt auf eine wichtige Funktion von MATN4 für die Aufrechterhaltung normaler 

physiologischer Eigenschaften des artikulären Knorpels schließen. Zu Letzt, jedoch sehr unerwartet wiesen Matn4 

-/- Mäuse eine Fusion des letzten lumbalen Wirbelkörpers und des ersten sakralen Wirbelkörpers auf. 

Zusammenfassend weisen unsere Ergebnisse darauf hin, dass die Matriline bei der Entwicklung und Ausbildung 

des Extremitätenskeletts eine untergeordnete Rolle, jedoch bei der Untergliederung und Formierung der 

Wirbelsäule eine Schlüsselrolle einzunehmen scheinen. 

Aggrekan ist ein Proteoglykan und ein integraler Bestandteil der EZM des Knorpels, welches aufgrund der 

hohen negativen Ladung der Glykosaminoglykane-Ketten, Wasser anzieht, im Gewebe bindet und diesem so eine 

gewisse Elastizität verleiht. Fehlt Aggrekan gänzlich im Knorpel endet dies in letal verlaufenden 

Chondrodysplasien. Wohingegen Mutationen im humanen Agrrekan-Gen (ACAN oder AGC1) durch einen 

dominanten negativen Mechanismus zu einer Veränderung der Knorpelstruktur oder einer reduzierten EZM 

Ablagerung führen und somit ein breites Spektrum an skelettalen Erkrankungsbildern hervorrufen 

(Haploinsuffizienz). Obwohl die Anzahl an den neu endeckten Aggrekanopathien stetig zunimmt, bleibt die 

Beziehung zwischen krankheitsauslösenden Mutationen und dem Knorpelphenotypen weiterhin ungeklärt. Um 

diese Beziehung besser zu verstehen, haben wir den Einfluss einer verminderten Aggrekan Ablagerung auf die 

skelettale Entwicklung und die funktionellen Eigenschaften des Gelenkknorpels mittels dafür entwickelten 

Agc1CreERT2/+ und Agc1CreERT2/CreERT2 Mausmodellen untersucht (wissenschaftlicher Artikel II). Anhand dieser 

Modelle konnten wir aufzeigen, dass die Aggrekan mRNA Spiegel bei heterozygoten und homozygoten 

Mausmutanten unterexprimiert waren. Wir konnten zudem zeigen, dass eine verminderte Ablagerung von 

Aggrekanmolekülen in die EZM des Knorpels zu einem Zwergphenotypen in Agc1CreERT2/CreERT2 Mäusen führt. 

Dieser Phenotyp persistierte über die gesamte Lebensspanne der Mäuse. Besonders  hervorzuheben ist, dass 

Agc1CreERT2/CreERT2 Mäuse eine schwere und altersabhängige Degeneration des artikulären Knorpels der 

Kniegelenke aufwiesen und, dass dieser Osteoarthiris ähnliche Phänotyp nicht einer Hochregulation von EZM 

zersetzenden Enzymen zuzuschreiben war, sondern dass er mit einer erhöhten Steifheit des Knorpels resultierte. 

Daraus lässt sich ableiten, dass eine Verringerung des normalen Kollagen/Aggrekan-Verhältnisses im artikulären 
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Knorpel zu einer erhöhten Härte in der Gelenkoberfläche führt und diese damit anfällig für degenerative 

Veränderungen macht.  
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Abstract: Matrilins (MATN1, MATN2, MATN3 and MATN4) are adaptor proteins of the cartilage 
extracellular matrix (ECM), which bridge the collagen II and proteoglycan networks. In humans, 
dominant-negative mutations in MATN3 lead to various forms of mild chondrodysplasias. 
However, single or double matrilin knockout mice generated previously in our laboratory do not 
show an overt skeletal phenotype, suggesting compensation among the matrilin family members. 
The aim of our study was to establish a mouse line, which lacks all four matrilins and analyze the 
consequence of matrilin deficiency on endochondral bone formation and cartilage function. Matn1-
4−/− mice were viable and fertile, and showed a lumbosacral transition phenotype characterized by 
the sacralization of the sixth lumbar vertebra. The development of the appendicular skeleton, the 
structure of the growth plate, chondrocyte differentiation, proliferation, and survival were normal 
in mutant mice. Biochemical analysis of knee cartilage demonstrated moderate alterations in the 
extractability of the binding partners of matrilins in Matn1-4−/− mice. Atomic force microscopy 
(AFM) revealed comparable compressive stiffness but higher collagen fiber diameters in the growth 
plate cartilage of quadruple mutant compared to wild-type mice. Importantly, Matn1-4−/− mice 
developed more severe spontaneous osteoarthritis at the age of 18 months, which was accompanied 
by changes in the biomechanical properties of the articular cartilage. Interestingly, Matn4−/− mice 
also developed age-associated osteoarthritis suggesting a crucial role of MATN4 in maintaining the 
stability of the articular cartilage. Collectively, our data provide evidence that matrilins are 
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important to protect articular cartilage from deterioration and are involved in the specification of 
the vertebral column. 

Keywords: matrilin; cartilage; bone development; articular cartilage; osteoarthritis 

1. Introduction

Endochondral bone development is a complex process which requires the differentiation of 
chondrocytes and the production of a tissue-specific extracellular matrix (ECM) by forming 
cartilaginous templates of the future bones. Cartilage ECM provides physical support for 
chondrocytes maintaining the integrity and biomechanical properties of the cartilage, such as 
resistance against tensile strength and compressive forces. The typical transient hyaline cartilage of 
the developing bones and the permanent articular cartilage are composed of the heterotypic type 
II/IX/XI collagen fibrils and proteoglycans, mainly aggrecan, and numerous multi-domain adaptor 
proteins, which interconnect the two macromolecular networks. Among the perifibrillar adaptor 
proteins, matrilins (MATN) form a subfamily of modular, non-collagenous ECM proteins consisting 
of four members, namely matrilin-1, -2, -3, and -4 [1]. All matrilin members share similar structures 
containing one (matrilin-3) or two (matrilin-1, -3 and -4) von Willebrand factor A (VWA) domains, 
various numbers of epidermal growth factor (EGF) like domains and a coiled-coil (CC) α-helical 
oligomerization module. In mice, matrilin-1 (MATN1) and matrilin-3 (MATN3) are predominantly 
expressed in the developing epiphyseal and growth plate cartilages [2,3], while matrilin-2 (MATN2) 
and matrilin-4 (MATN4), besides cartilage, are also present in various extra-skeletal tissues [4,5]. 
Matrilins interacts with numerous cartilage ECM components including aggrecan (ACAN) [6], 
collagen II [7], collagen IX [8], cartilage oligomeric matrix protein (COMP) [9] and decorin [10], 
thereby may interconnect and stabilize the macromolecular networks of collagen fibrils and the 
aggregating proteoglycan aggrecan [1,10,11]. 

During skeletal development, MATN1, MATN3, and MATN4 display a largely overlapping 
expression pattern. These matrilins are abundant in epiphyseal and growth plate cartilage, whereas 
MATN2 is strongly expressed in the perichondrium/periosteum and moderately in the proliferative 
zone of the growth plate [12,13]. At the forming articular surface, the outermost superficial cell layers 
express MATN2 and MATN4, whereas the deeper cell layers of the articular surface express MATN3 
and MATN4 but not MATN1 [13]. In more mature articular cartilage, all matrilins are expressed at 
very low levels [13]. 

To date, the association of a human connective tissue disorder has been only identified in the 
genes coding for matrilin-3 and matrilin-1. Multiple epiphyseal dysplasia (MED) is a clinically and 
genetically heterogeneous skeletal dysplasia characterized by joint pain and stiffness, and early onset 
of osteoarthritis (OA). Autosomal dominant forms of MED are caused by mutations in the genes 
encoding matrilin-3 (MATN3), collagen IX chains (COL9A1, COL9A2 and COL9A3) and cartilage 
oligomeric matrix protein (COMP) [14]. The MED mutations identified in MATN3 are missense and 
predominantly confined to the β-sheet regions of the VWA domain [15–17]. In vitro experiments 
suggest that these mutations lead to the retention of the mutant MATN3 in the rough endoplasmic 
reticulum, where it accumulates as an unfolded intermediate and activates unfolded protein response 
[18–20]. In addition to MED, mutations in MATN3 have been described in bilateral hereditary micro-
epiphyseal dysplasia (BHMED) [21] and spondylo-epi-metaphyseal dysplasia (SEMD) [22] patients. 
Furthermore, a low occurrence of linkage of MATN3 to hand OA and spinal disc degeneration has 
been reported [23–25]. The association of MATN1 with osteoarthritis was described in the Dutch but 
not in the British population [26,27]. More recently, MATN1 was suggested as a candidate gene for 
idiopathic scoliosis [28] and mandibular prognathism [29], and as a genetic modifier of SEMD with 
joint laxity [30]. 

Despite the suggested integrative functions of matrilins in the cartilage ECM, ablation of matrilin 
genes in mice does not lead to an overt phenotype. Single knockout mice lacking matrilin-1 (Matn1−/−) 
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or matrilin-3 (Matn3−/−) [31,32] were generated in our laboratory and these null mice showed no signs 
of chondrodysplasia or any other obvious skeletal phenotype. In contrast, subtle defects were 
identified in other matrilin mutant strains generated by independent laboratories. Abnormal collagen 
II fibrils and stiffness of the cartilage ECM were reported in the matrilin-1 deficient mice [33,34], while 
accelerated differentiation of embryonic hypertrophic chondrocytes in the growth plate, increased 
bone mineral density and higher incidence of knee osteoarthritis were found in matrilin-3 knockout 
mice [35]. Although, we were unable to detect these skeletal phenotypes in our single knockout lines, 
we have reported a mild increase of collagen fibrillar thickness in Matn1−/−, Matn3−/− and matrilin-
1/matrilin-3 double deficient mice (Matn1−/−/Matn3−/−) by electron microscopy [36]. This finding 
implies that matrilin-1 and matrilin-3 may have only a minor role in the proper ultrastructural 
organization of collagen network in cartilage. Interestingly, matrilin-2 and matrilin-4 deficient mice, 
which also develop without obvious skeletal abnormalities [12,37], instead present extra-skeletal 
phenotypes. Matn2−/− mice display impaired functional recovery after femoral nerve lesion, indicating 
an essential role of matrilin-2 for peripheral nerve regeneration [38], while Matn4−/− mice show 
increased proliferation of hematopoietic stem cells upon myelosuppressive chemotherapy, 
inflammatory stress and transplantation [37]. 

The similar structure, function, and expression pattern of matrilins suggest compensation 
among the family members. Indeed, we previously demonstrated that matrilin-4 is up-regulated in 
the cartilage of Matn1−/− and Matn1−/−/Matn3−/− mice, providing the first experimental evidence that 
biochemical compensation could exist between matrilins in vivo [36]. In order to further extend our 
knowledge about the skeletal function of matrilins, herein we report the analysis of mice lacking all 
matrilins. Quadruple mutant mice (Matn1-4−/−) have a reduced number of lumbar vertebrae due to 
lumbosacral homeotic transition and osteoarthritic-like degeneration develops in mice older than 18 
months. Interestingly, similar articular cartilage degeneration was observed in aged matrilin-4 
deficient mice, indicating an unexpected role of matrilin-4 in protecting articular cartilage from age-
associated, spontaneous osteoarthritis. 

2. Results

2.1.  Biochemical Compensation in Cartilage of Mice Lacking Matrilins 

Previously we have demonstrated that knockout mice lacking matrilin-1 (Matn1−/−), matrilin-3 
(Matn3−/−) or both matrilin-1 and matrilin-3 (Matn1−/−/Matn3−/−) exhibit only mild ultrastructural 
abnormalities of the collagenous fibrillar network of the cartilage without manifestation of any 
obvious skeletal defects [31,32,36]. We have also found, however, that matrilin-4 (MATN4) is 
upregulated in Matn1−/− and Matn1−/−/Matn3−/− mice but not in Matn3−/− mice in knee cartilage tissues 
sequentially extracted with high salt containing 10 mM ethylenediaminetetraacetic acid (EDTA) 
(fraction II) and 4 M guanidine hydrochloride (GuHCl) (fraction III), while matrilin-2 (MATN2) was 
deposited normally in those mutants compared with controls [36]. In the present study, we have 
analyzed further compound knockout mice lacking MATN1, MATN2 and MATN3 in various 
combinations (Matn2−/−/Matn3−/−; Matn1-3−/−), and we could confirm that the homotrimeric form of 
MATN4 was consistently upregulated in fractions II and III, but not in neutral salt extracts (fraction 
I) of animals lacking MATN1 and/or MATN2 (Figure 1C). MATN4 compensatory upregulation was
especially prominent in mice, which lacked MATN2 in addition to MATN1 and/or MATN3, such as
Matn2−/−/Matn3−/− and Matn1-3−/− mice. Importantly, these multiple knockouts including the triple
mutant Matn1-3−/− mice had normal gross skeleton and displayed normal growth plate and articular
cartilage histoarchitectures at birth and at various postnatal stages (Figure 1A,B and not shown).
Similarly, mice lacking MATN4 developed a normal skeleton without apparent abnormalities of the
zonal and columnar structure of the cartilaginous growth plate of the long bones (Figure 1D).
Interestingly, immunohistochemical staining revealed an upregulation of MATN2 deposition in the
proliferative and hypertrophic zones of the newborn growth plate cartilage in Matn4−/− mice (Figure
1E). Using Western blots, we could confirm stronger signals for MATN2 in fractions II/III of matrilin-
4 mutant cartilage extracts compared with wild type, while the levels of MATN1 and MATN3 did
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not change significantly (Figure 1F). The expression of Matn2 at mRNA levels was comparable 
between control and Matn4−/− mice in newborn limb cartilage (data not shown). Collectively, our data 
demonstrate that MATN2 and MATN4 biochemically compensate for the lack of MATN4 and 
MATN1, respectively, in the newborn mouse knee cartilage. 

Figure 1. Biochemical compensation among matrilins. (A) Whole-mount skeletal staining at postnatal 
day 2 (P2) shows no obvious skeletal defects in mice lacking matrilin-1, -2 and -3 (Matn1-3−/−) 
compared to wild type. (B) HE staining of the proximal tibia (original magnification × 10) of the knee 
joint indicates normal growth plate and articular cartilage structures in Matn1-3−/− mice at 4 weeks of 
age. (C) Western blot analyses of sequential cartilage extracts (I-neutral salt; II-high salt/EDTA; III-
GuHCl) from newborn mice indicates upregulation of matrilin-4 in mice lacking matrilin-1 (m1), 
matrilin-2 and -3 (m23), matrilin-1 and -3 (m13), and matrilin-1, -2, and -3 (m123). (D) HE staining of 
the proximal tibia (original magnification × 10) of the knee joint at 4 weeks of age demonstrates that 
mice lacking matrilin-4 (Matn4−/−) have a normal structure of long bones. (E) Immunohistochemistry 
(IHC, original magnification × 10) indicates the increased deposition of matrilin-2 in the growth plate 
of the humerus (rectangle, original magnification × 20) of Matn4−/− mice. (F) Western blot analyses 
show increased amounts of matrilin-2 in cartilage extracts of Matn4−/− mice (m4), while the levels of 
matrilin-1 and matrilin-3 are unchanged. Abbreviation: MW-molecular weight marker. 

2.2. Loss of Matrilins Results in Modulation of Lumbosacral Identity of the Vertebrae 

In order to assess the role of matrilins in skeletal development, we have generated quadruple 
knockout mice lacking all members of the protein family (Matn1-4−/−). Homozygous mutant breeding 
revealed normal litter size with offspring, which had normal life span and developed no apparent 
gross abnormalities. However, we have noticed by regular inspection of the cages, that Matn1-4−/− 
mice showed reduced fear and anxiety when they were picked up by the tail and, in general, were 
physically less active and motile in the cage compared with control mice. In this study, we have 
focused on the skeletal analysis of the mice, therefore, the behavioural abnormalities were not 
investigated further. Alcian blue and alizarin red double whole-mount skeletal staining of mutant 
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and wild-type (control) mice at postnatal day 2 (P2) showed normal formation of the elements of the 
appendicular skeleton (Figure 2A). Closer inspection of the long bones on skeletal preparations or X-
ray micrographs demonstrated very moderate but significantly increased lengths of the tibia, femur, 
and the humerus at P2 in the Matn1-4−/− mice compared with control mice (p < 0.05). However, the 
lengths of these skeletal elements were comparable at the ages of four weeks and four months (Figure 
2A,C,E). Similarly, the whole body length (the distance between the nose and the tip of the tail) was 
comparable between wild-type and Matn1-4−/− animals at four weeks and four months of age (Figure 
2F). 

Figure 2. Skeletal phenotype in mice lacking all matrilins. (A) Skeletal staining at P2 showed normal 
formation of the elements of the appendicular skeleton. (B–D) Skeletal staining and X-ray analyses at 
P2 and 4 weeks of age revealed a highly penetrant homeotic transformation at the lumbar-sacral 
border of the axial skeleton. (B) Wild-type (control) mice have 6 lumbar (L1 to L6) and 4 sacral (S1 to 
S4) vertebrae, S1 articulates to the ilium and S1-S2-S3 are fused. In Matn1-4−/− mice, L6 is sacralized 
(S1*) resulting in 5 lumbar (L1 to L5) and 5 sacral vertebrae (S1 to S5). In the mutants, the sacralized 
L6 vertebra (S1*) gained the typical S1 wing shape (red arrows on B), S1* and S2 are articulate to the 
ilium and S1*/S2/S3/S4 are fused. The arrowheads depict the fusion between S3 and S4. The 
heterozygous offspring exhibit an intermediate pattern with only one side of L6 is sacralized (L6*) by 
gaining a wing-shaped transverse process and articulating to the ileum (L6*, red arrow), while the 
other side retained the lumbar identity. (C) Representative X-ray images of wild-type and Matn1-4−/− 
mice at 4 weeks. (D) Skeletal preparations at 4 weeks demonstrate the sacralization of L6 in the 
quadruple KO mice. (E) Measurements of the lengths of the appendicular skeletal elements indicate 
a moderate but significantly increased size of mutant long bones at P2. At 4 weeks and 4 months, 
there is no significant difference between the genotypes. Statistical significance calculated by Mann-
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Whitney U test where * p < 0.05. (F) Comparable body length of wild-type and Matn1-4−/− animals at 4 
weeks and 4 months of age. Abbreviations: FL-forelimb; HL-hindlimb. 

In contrast to the appendicular skeleton, skeletal staining and X-ray analyses revealed a highly 
penetrant homeotic transformation at the lumbar-sacral border of the axial skeleton (Figure 2B–D). 
The mouse axial skeleton typically consists of 30 pre-caudal vertebrae including 7 cervical (C), 13 
thoracic (T), 6 lumbar (L) and 4 sacral (S) ones giving the formulation of C7/T13/L6/S4 [39,40]. We 
found that 87.5% of Matn1-4−/− mice have five lumbar and five sacral vertebrae (C7/T13/L5/S5), while 
only 6.7% of wild-type animals presented this vertebral pattern (Figure 2B,C and Table 1). Apparently, 
the missing L6 vertebrae in the Matn1-4−/− mice gained a sacral identity (S1* in Figure 2B,D) resulting 
a sacral pattern of S1*/S2/S3/S4/S5. In control, S1 articulates to the ilium, S1/S2 acquire wing-shaped 
transverse processes and S1/S2/S3 are fused. In the mutants, the sacralized L6 vertebra (S1*) and the 
true S1 (now S2) articulate to the ileum (red arrows on Figure 2B), S1*/S2/S3 have wing-shaped 
transverse processes and S1*/S2/S3/S4 are fused. Interestingly, when a Matn1-4−/− male was crossed 
with a C57/BL6 female, the heterozygous offspring exhibited either the normal L6/S4 pattern (three 
out of seven mice), the homeotic transformed L5/S5 pattern (two out of seven) or an intermediate, 
asymmetric L6*/S4 pattern (two out of seven mice). In the latter case, only one side of L6 is sacralized 
(L6*) by gaining a wing-shaped transverse process and articulating to the ileum (Figure 2B, Matn1-
4+/−, L6*, arrows), while the other side retained the lumbar identity. 

Table 1. Axial skeletal phenotypes in the respective genotypes. 

Lumbosacral Pattern 
Control Matn1-4+/− Matn1-4−/− 
(n = 45) (n = 7) (n = 40) 

L6/S4 42 (93.3%) 3 (42.8%) 6 (12.5%) 
L6*/S4 0 2 (28.6%) 0 
L5/S5 3 (6.7%) 2 (28.6%) 34 (87.5%) 

2.3. Lack of Matrilins Has No Adverse Effect on Structural and Functional Properties of the Cartilaginous 
Growth Plate in Long Bones 

Next, we examined long bone development by histological tools at various developmental 
stages. Hematoxylin and eosin (HE) staining of the hindlimb at embryonic day 15 (E15) demonstrated 
that the length of the whole tibia and percentage of the hypertrophic zone relative to the entire 
cartilaginous mass were similar in Matn1-4−/− and control animals (Figure 3A,B). At E18, the proximal 
tibia exhibited comparable columnar organization of the growth plate (Figure 3C) and similar length 
of the proliferative and hypertrophic zones in control and Matn1-4−/− mice (Figure 3D). Similarly, the 
mineralization of the primary ossification center, judged by Safranin orange-von Kossa staining 
(Figure 3E), and the resorption at the chondro-osseous junction, visualized by tartrate resistant acid 
phosphatase (TRAP) activity staining (Figure 3F), were indistinguishable between control and 
quadruple mutant animals. At postnatal stage two weeks, the columnar organization of the growth 
plate was normal, and morphometric measurements of the lengths of the resting, proliferative and 
hypertrophic zones and the total growth plate showed no statistically significant difference between 
control and Matn1-4−/− mice (Figure 3G,H). 

Chondrocyte differentiation was investigated in the growth plate of newborn tibia by in situ 
hybridization. We found no difference in the expression domains of the typical differentiation 
markers between control and Matn1-4−/− mice (Figure 4A). It has been previously suggested that 
matrilin-3 inhibits chondrocyte hypertrophy by suppressing BMP-2/SMAD-1 signaling [41]. 
Therefore, we have investigated the activation of SMADs in protein extracts of primary mouse 
chondrocytes isolated from newborn rib cages using a phospho-specific antibody. Western blotting 
displayed similar phospho-SMAD-1/5/8 levels between the genotypes (Figure 4B,C), arguing against 
significantly altered BMP-2 signaling in cartilage lacking matrilins. 
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Figure 3. Normal cartilage development and growth plate structure in long bones of Matn1-4−/− mice. 
(A) HE-stained proximal tibiae at E15.5 show normal length, structure and hypertrophic zone (HZ)
in Matn1-4−/− mice. (B) Percentage of the hypertrophic zone relative to the entire cartilaginous mass of
the tibia was similar in Matn1-4−/− and in the control animals. (C) HE-stained proximal tibiae at E18
and morphometric measurements of the proliferative (PZ) and hypertrophic (HZ) zones (D)
demonstrate normal structure of the growth plate in the Matn1-4−/− mice. Safranin O-von Kossa (E)
and TRAP staining (F) show comparable mineralization and chondroclast/osteoclast activity at the
chondro-osseous junction in control and Matn1-4−/− mice. Quantification of the TRAP positive cells in
the tibial growth plate of control and Matn1-4−/− mice shows no difference at the chondro-osseous
junction. (G) HE-staining of the tibial growth plate at 2 weeks and morphometric analysis (H) of the
length of the entire growth plate (GP) and the separated growth plate zones (RZ-resting; PL-
proliferative; HZ-hypertrophic) indicate normal columnar organization of the chondrocytes and
normal GP zonality in Matn1-4−/− mice. Original magnifications: × 10 for (A), (C) and (E); x 20 for (F)
and (G).

Next, we analyzed the proliferation and survival of the chondrocytes in the tibial growth plate. 
Proliferation was assessed by bromodeoxyuridine (BrdU) incorporation assays, which revealed a 
similar proliferation rate in control and Matn1-4−/− mice at the newborn stage (Figure 4D,E) or at four 
and eight weeks of age (data not shown). We further investigated cell death by terminal 
deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay in newborn samples and found 
comparable numbers of apoptotic chondrocytes at the chondro-osseous junctions in both control and 
quadruple mutant mice (Figure 4F,G). 

Collectively, the data above demonstrate that chondrocyte differentiation, proliferation, and 
survival occur normally in the growth plate of long bones in mice lacking all matrilins. 
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Figure 4. Chondrocyte differentiation, proliferation and apoptosis are not altered in Matn1-4−/− mice. 
(A) Non-radioactive in situ hybridization for collagen II (Col2a1), collagen X (Col10a1), indian
hedgehog (Ihh), PTH/PTHrP receptor (Ppr) and matrix metalloproteinase-13 (Mmp13) show similar
expression pattern in newborn control and mutant mice. Western blotting (B) and densitometric
quantification (C) indicate normal activation of SMAD-1/5/8 in mutant primary chondrocytes. (D)
BrdU incorporation assay and quantification (E) at the newborn stage indicate normal chondrocyte
proliferation in the Matn1-4−/− growth plate. TUNEL staining (F) and quantification (G) do not reveal
any difference in cell death at the chondro-osseous junctions (white boxes) in newborn control and
Matn1-4−/− mice. Abbreviation: MW-molecular weight marker. Original magnifications: × 10 for (A),
(D) and (F).

2.4. Normal Deposition but Altered Extractability of Binding Partners in the Cartilage ECM of Quadruple 
Knockout Mice 

As matrilins are adaptor proteins of the cartilage ECM interacting with aggrecan, COMP, 
collagen fibrils, and small leucine-rich proteoglycans (e.g., biglycan and decorin) [1], we have 
investigated the expression and anchorage of some of these binding partners by 
immunohistochemistry and biochemical analysis. Immunostaining of the proximal tibia in newborn 
or four-week old limbs indicated no apparent differences in the deposition of collagen II, collagen VI, 
collagen IX, aggrecan and COMP between control and Matn1-4−/− mice (Figure 5A,B). Western blot 
analysis of sequential extracts of knee cartilage isolated from newborn animals showed slightly 
increased extractability of collagen II, collagen IX, aggrecan, collagen VI and COMP in fraction I 
(neutral salt) of Matn1-4−/− mice, when compared to wild-type controls. While the amount of matrilin 
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interacting proteins did not change in fraction II (high salt with 10 mM EDTA), weaker signals for 
collagen II, collagen IX, and COMP were detected in fraction III (4 M GuHCl) isolated from the 
cartilage of quadruple knockout mice compared with controls (Figure 5C). At four weeks, the amount 
of aggrecan increased in all fractions, the amount of collagen IX slightly increased in fraction II, and 
the amount of COMP moderately decreased in fraction III in Matn1-4−/− mice compared to control 
(Figure 5D). 

Figure 5. Immunohistochemical and biochemical analysis of the deposition and solubility of the 
binding partners of matrilins. Immunohistochemistry at newborn (A) and 4 weeks (B) stages indicates 
no apparent differences in the deposition of collagen II (COL II), collagen VI (COL VI), collagen IX 
(COL IX), aggrecan (ACAN) and cartilage oligomeric matrix protein (COMP) between control and 
Matn1-4−/− mice. Original magnifications: × 10 for (A) and (B); x 20 for inserts in (A). Western blot 
analysis of cartilage extracts in newborn (C) and 4 weeks old (D) animals. In newborn, slightly 
increased extractability of collagen II, collagen IX, aggrecan, collagen VI and COMP in buffer I and 
significantly weaker signals for collagen II, collagen IX and COMP were detected in fraction III 
isolated from the cartilage of quadruple knockout mice compared with controls (C). At 4 weeks, the 
amount of aggrecan is increased in all fractions, the amount of collagen IX is slightly increased in 
fraction II and the amount of COMP is moderately decreased in fraction III in M Matn1-4−/− mice 
compared with the control (D). Abbreviation: MW-molecular weight marker. 

To assess the consequence of the lack of matrilins on the ultrastructural and biomechanical 
properties of the cartilaginous ECM, we applied atomic force microscopy (AFM) (Figure 6). We 
investigated the proliferative zone of the growth plate at two weeks of age on non-fixed, native 
sections and recorded high resolution images of the interterritorial matrix (ITM) representing the 
intercolumnar areas. Topographical images revealed an elaborated network of collagen fibrils in both 
control and Matn1-4−/− mice (Figure 6A). Quantification of the diameter of heterotypic collagen fibrils 
revealed a significantly increased thickness of the fibers (Figure 6B), similar to the results reported 
earlier in Matn1−/−/Matn3−/− mice [36]. The mean fibril diameter was 45.64 ± 7.29 nm in control and 
61.50 ± 12.38 nm in Matn1-4−/− mice (p < 0.001). Interestingly, nanoindentation measurements indicated 
comparable compressive stiffness of the ITM. The frequency of the elastic moduli showed a bimodal 
distribution with a first peak (representing the proteoglycan moiety) at 45.17 ± 0.93 kPa in controls 
and at 47.91 ± 0.34 kPa in quadruple mutants, and with a second peak (representing the collagen 
fibrils) at 61.46 ± 7.79 kPa in controls and 59.48 ± 2.14 kPa in Matn1-4−/− mice (Figure 6C). 
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Figure 6. Normal growth plate cartilage stiffness but altered fibril diameter in Matn1-4−/− mice. (A) At 
2 weeks of age, high-resolution AFM images on tibial sections show comparable organization of the 
collagenous networks in the interterritorial matrix in control and the mutant animals. (B) 
Quantification of the fibrillar diameter demonstrates significant thickening of the collagen fibrils in 
the Matn1-4−/− mice (*** p < 0.001). (C) Histograms depicting a comparable, bimodal stiffness 
distribution between the genotypes determined by nano-scale AFM indentation. On each histogram, 
the solid line represents the sum of two Gaussian functions, whereas the dashed lines indicate 
individual fits representing proteoglycans (first peak, PG) and the collagen fibrils (second peak, COL). 

Taken together, although the expression and distribution of the analyzed matrilin binding 
partners were not obviously altered in the growth plate cartilage of Matn1-4−/− mice, the solubility of 
these proteins in the ECM is moderately affected by the loss of all matrilins. Despite this mild 
biochemical phenotype and the increased diameter of collagen fibrils, the biomechanical behavior of 
the cartilage ECM, characterized by the compressive stiffness, is apparently not affected in the growth 
plate of adolescent Matn1-4−/− mice. 

2.5. Depletion of All Matrilins in the Articular Cartilage Leads to Severe Spontaneous Osteoarthritis in Mice 

Next, we analyzed the consequence of the ablation of matrilin genes on age-associated changes 
of the articular cartilage. All matrilins are expressed in low amounts in peripheral articular cartilage 
areas of the knee joint in wild-type mice at one year of age (Figure 7A) [13]. We examined articular 
cartilage degeneration on HE-stained sections of control and Matn1-4−/− knee joints at six, 12, and 18 
months of age. We found no difference in articular cartilage degradation between the genotypes at 
six months of age (data not shown), however, histological signs of articular cartilage damage were 
observed in Matn1-4−/− mice at 12 and 18 months of age (Figure 7B). Applying a scoring system for 
articular cartilage degradation, ranging from normal appearance (score 0) to exposure of the 
subchondral bone (score 5) [36], the mean histological score was 1.4 for control (n = 8) and 2.5 for 
Matn1-4−/− mice (n = 10) at 12 months of age. At 18 months of age, the mean histology score was 1.3 
for control (n = 8) and 2.7 for mutant mice (n = 11) (p < 0.05) (Figure 7C). These results demonstrate 
that the lack of the complete matrilin family in cartilage leads to an osteoarthritic-like phenotype in 
aging mice from one year on, and strongly suggest that matrilins are protective for spontaneous 
osteoarthritis. 

Analyzing the expression of matrilins in healthy and osteoarthritic human knee cartilage by 
immunohistochemical staining further supported the participation of matrilins in OA progression 
(Figure 7D). In normal human articular cartilage, matrilins are weakly expressed in the middle and 
deep zones: MATN1 is localized to the nucleus; MATN2 and MATN4 are associated with the 
cytoplasm and diffusely with the ECM; while MATN3 displays mainly pericellular/territorial matrix 
deposition. All matrilins are upregulated in human OA cartilage samples with severe articular 
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cartilage degeneration (Figure 7D), which may implicate an attempt of repair by enhancing the 
expression of matrilin family members in the diseased ECM. 

Figure 7. Matn1-4−/− mice develop age-associated osteoarthritis. (A) Immunohistochemistry of knee 
joints demonstrates the moderate expression of matrilins in the articular cartilage of wild-type mice 
at 12 months of age. All matrilins have strong expression in the growth plate cartilage. Original 
magnifications: × 5 for overview pictures and x 20 for inserts. (B) HE staining of the knee joint at 12 
and 18 months old control and Matn1-4−/− mice. Original magnification × 10. (C) Histological grading 
for cartilage degradation indicates higher incidence and severity of osteoarthritic-like erosion in 
Matn1-4−/− mice compared to age-matched controls (* p < 0.05). (D) Analyzing the expression of 
matrilins in healthy (control) and osteoarthritic human knee articular cartilage derived from the tibia 
by immunohistochemistry demonstrates upregulation of all matrilins in the OA tissue. The depicted 
zones: S-superficial; M-middle and D-deep. Original magnifications: × 5 for overview pictures and x 
20 for inserts. 

The increased severity of spontaneous osteoarthritis in the Matn1-4−/− mice might be a 
consequence of the compromised biomechanical properties of the articular cartilage ECM. Therefore, 
we have investigated the topography and stiffness of the different articular cartilage zones by AFM 
on native tissue sections in quadruple mutant and control animals. High-resolution images at four 
months depicted the well-formed, striated collagen fibrillar network in both genotypes (Figure 8A). 
Quantification of the collagen fibril diameters revealed fibril thickening in the Matn1-4−/− mice (Figure 
8B) supporting the findings observed in the growth plate collagen fibrils. In the middle zone, the 
mean fibrillar diameter was 81.07 ± 17.23 nm in control and 95.31 ± 16.76 nm in Matn1-4−/− mice (p < 
0.01). In the deep zone, the mean fibrillar diameter was 75.52 ± 14.88 nm in control and 93.22 ± 14.71 
nm in Matn1-4−/− mice (p < 0.001). AFM nanoindentation in the superficial, middle and deep zones of 
the articular cartilage showed bimodal stiffness distribution for proteoglycans and collagen fibrils. 
At four months of age, we observed a stiffer superficial zone in the mutant compared with wild type, 
while the elastic moduli in the middle and deep zone were not changed significantly (Figure 8C). At 
12 months, in contrast, both peaks of the elastic moduli indicated softer superficial and middle zones 
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in the quadruple knockout mice compared to control (Figure 8D). Interestingly however, the deep 
zone was stiffer in the mutant articular cartilage than in the control (Figure 8D). 

Figure 8. Altered biomechanical properties of articular cartilage in Matn1-4−/− mice. High resolution 
AFM images of articular cartilage at 4 months (A) showed comparable organization of the collagenous 
networks in control and mutant. (B) Significant thickening of the collagen fibrils was detected in the 
middle (** p < 0.01) and the deep zones (*** p < 0.001) of the articular cartilage of Matn1-4−/− mice. (C) 
Nanoindentation AFM demonstrated stiffer mutant matrix in the superficial zone (SZ) at four months. 
(D) At 1 year, softer ECM was detected in the superficial and middle (MZ) zones, whereas a stiffer
matrix was observed in the deep zone (DZ) of the Matn1-4−/− mice. On each histogram, the solid line
represents the sum of two Gaussian functions, whereas the dashed lines indicate individual fits
representing proteoglycans (first peak, PG) and the collagen fibrils (second peak, COL).

To investigate whether matrilins may play a role in inflammation-mediated articular cartilage 
degradation, we performed an ex vivo explant culture experiment in which femoral heads were 
subjected or not to the influence of the pro-inflammatory cytokine interleukin-1 alpha (IL-1α). After 
four days in culture, the explants were investigated for proteoglycan loss by Safranin O staining on 
histological sections and for sulfated glycosaminoglycan (GAG) release into the medium (Figure 
9A,B). Both the histochemical staining and the GAG-release assay indicated no difference in IL-1α—
induced proteoglycan loss between the genotypes. 

Figure 9. Matrilins are not involved in the interleukin-1-mediated proteoglycan loss of the articular 
cartilage. (A) Safranin-O and Fast Green staining of hip explants after culturing for 4 days (d4) with 
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or without 10 ng/mL IL-1α. Note the similar loss of proteoglycans at the articular cartilage surface 
after IL-1α stimulation in control and Matn1-4−/− mice. (B) Quantification of the sulfated GAG release 
into the medium shows no difference after IL-1α stimulation between the genotypes. 

2.6. MATN4-Deficiency Also Enhances Age-Associated Articular Cartilage Degradation 

The development of spontaneous osteoarthritis in aged Matn1-4−/− mice raised the question about 
the contribution of the individual matrilins to the phenotype. Previously, we had not observed age-
associated osteoarthritis in single MATN1, MATN2, MATN3, or double MATN1/MATN3 deficient 
mice [12,31,32,36]. However, the MATN4 knockout mice (Matn4−/−) have not been yet analyzed for 
articular cartilage degeneration. Thus, we investigated the pathology of the knee joint in 18–24 month 
old Matn4−/− mice on HE-stained histological sections (Figure 10). Matn4−/− animals, similar to the 
Matn1-4−/− mice, exhibited severe osteoarthritis-like phenotype at the age of 24 months often leading 
to complete erosion of the articular cartilage and exposure of the subchondral bone (Figure 10A). We 
found that the mean articular cartilage degeneration score was 1.70 in wild-type mice and was 3.67 
in the Matn4−/− mice (p < 0.001) (Figure 10B), implying that MATN4 may protect against osteoarthritis. 
Interestingly, immunohistochemistry demonstrated that the deposition of MATN2 and MATN3, but 
not the expression of MATN1, is upregulated in the articular cartilage of the knee joint of aged mice 
(Figure 10C). 

Figure 10. The lack of matrilin-4 leads to age-associated, spontaneous osteoarthritis of the knee joint. 
(A) HE-stained Matn4−/− knee joint (original magnification × 10) at 24 months of age exhibited severe
osteoarthritis-like phenotype and (B) a significantly higher articular cartilage degeneration score
compared to wild type (*** p < 0.001). (C) Immunohistochemistry demonstrates upregulated
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expression of MATN2 and MATN3 in MATN4-deficient articular cartilage. Original magnifications: 
× 10 for overview pictures and x 20 for inserts. 

3. Discussion

Cartilage extracellular matrix consists of macromolecular suprastructures containing the 
aggregates of aggrecan and hyaluronan, which are embedded into the network of collagen types 
II/IX/XI fibrils [42,43]. In order to fulfil biological and biomechanical functions, these macromolecular 
assemblies are interconnected and stabilized by various adaptor proteins including the FACIT (fibril 
associated collagen with interrupted triple helices) collagen type IX, family members of 
thrombospondins (e.g., COMP or thrombospondin-5), small leucine-rich repeat proteoglycans (e.g., 
decorin and biglycan) and matrilins [8,10,11]. Matrilins are von Willebrand factor A domain 
containing multi-subunit adaptors with prominent expression in the skeleton, especially in the 
cartilage [1,13]. All matrilins (MATN1, MATN2, MATN3 and MATN4) are expressed in the growth 
plate and the articular surface suggesting important roles for both developing, transient and 
permanent cartilages [1,13]. Despite the anticipated importance of matrilins in the cartilaginous 
skeleton, no or relatively mild cartilage abnormalities have been reported in knockout mice carrying 
single or double deletions for matrilin genes, suggesting functional redundancy among the family 
members [12,32,33,36]. In this study, we have generated and analyzed further single and compound 
matrilin-deficient mouse lines. We found evidence for biochemical compensation within the matrilin 
family, which showed that matrilins are important for patterning of the vertebral column and they, 
especially MATN-4, protect articular cartilage against spontaneous, age-associated osteoarthritis. 

Sequential extraction of cartilage tissue is a well-established biochemical tool to assess the 
protein expression and ECM anchorage of matrilins, and to test their possible compensatory 
regulations [44]. MATN1 and MATN3 are largely insoluble and require strongly denaturing agent, 
like 4M GuHCl (buffer III), to be extracted from the tissue, while MATN2 and MATN4 can be partially 
extracted by milder buffers (e.g., high salt/EDTA, buffer II) [36,44]. We have previously shown by 
immunoblotting [36] and reproduced in this study (Figure 1C) that MATN4 is upregulated in buffers 
II and III in mouse strains lacking the matrilin-1 protein (Matn1−/− and Matn1−/−/Matn3−/−). We found 
even higher level of MATN4 upregulation when MATN2 was additionally missing in the cartilage of 
Matn2−/−/Matn3−/− and Matn1-3−/− mice (Figure 1C). Numerous non-skeletal tissues co-express MATN2 
and MATN4, including the brain, the eye, and the lung. Interestingly, in a previous study, we could 
not observe a similar upregulation of MATN4 protein in extracts of those tissues in Matn2−/− mice [12]. 
However, an increased level of Matn4 mRNA was reported in damaged sciatic nerves of Matn2−/− 
mice compared with control [38]. As we did not find enhanced Matn4 mRNA expression in cartilage 
of Matn1−/−, Matn3−/−, Matn1−/−/Matn3−/− [36] and Matn1-3−/− mice (data not shown), our data implicate 
that MATN4 may exhibit compensatory upregulation for MATN2 only at protein levels, and 
specifically in cartilage. Importantly, we showed in this study that only MATN2 is upregulated in 
cartilage of Matn4−/− mice, while the protein levels of MATN1 and MATN3 were unchanged in 
matrilin-4-deficient mice compared with control (Figure 1E,F). Taken together, accumulated evidence 
from our previous [36] and current studies demonstrate that MATN2 and MATN4 compensate each 
other mutually at the protein level in mouse cartilage tissue. 

The prominent expression of matrilins in the developing long bones and the chondrodysplasia 
phenotypes associated with dominant-negative mutations of the human MATN3 gene suggest a role 
of matrilins for skeletal growth. We showed previously that mice lacking MATN1, MATN2, MATN3 
and MATN1/MATN3 have normal skeleton, probably due to functional redundancy of the family 
members [12,31,32,36]. The lack of obvious cartilage abnormalities in Matn4−/− (Figure 1D) and Matn1-
3−/− mice (Figure 1A,B) further support this hypothesis, which prompted us to analyze skeletal 
development and cartilage functions in details in mice lacking all matrilins. Surprisingly, Matn1-4−/− 
mice show normal growth indicated by the comparable body weights and the similar length of the 
skeletal elements of the appendicular skeleton in adolescent (four weeks) and adult (four months) 
Matn1-4−/− mice and control mice (Figure 2A,C,E,F). However, we observed slightly but significantly 
increased lengths of the femur, tibia, and humerus in Matn1-4−/− mice just shortly after birth (P2), 
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which could possibly be explained by the differences in the genetic background. All matrilin single 
and multiple mutants were on C57BL/6 × 129/Sv background and Matn1-4−/− mice were kept in 
homozygous breeding. As control, we used wild-type mice on the same, mixed genetic background. 
However, we could not ensure the same ratio of the C57BL/6 and the 129/Sv genetic material in 
control and Matn1-4−/− mice. Inbred 129/Sv mice have longer gestation length, smaller litter size, and 
increased body weight at birth compared to inbred C57BL/6 mice [45], which suggest that even a 
mild shift towards higher 129/Sv contribution in Matn1-4−/− mice compared to wild type could result 
in an enlarged skeleton perinatally. In accordance with our observation that the lengths of skeletal 
elements were normal from four weeks of age in Matn1-4−/− mice, the two inbred strains display a 
similar body weight at 16 weeks [46]. 

Importantly, careful histological assessment of the development of the tibia at various 
embryonic and postnatal stages did not reveal any abnormalities of chondrocyte differentiation, 
growth plate structure and function in Matn1-4−/− mice (Figures 3 and 4). A previous in vitro study by 
Yang et al. showed that MATN3 binds to and inhibits BMP-2, which in turn suppresses SMAD-1/5 
promoter activity, reduces SMAD-1 phosphorylation and inhibits the expression of the hypertrophic 
chondrocyte marker gene collagen X (Col10a1) in cultured chondrocytes [41]. It has been also reported 
that Matn3−/− mice, established in the Chen laboratory, display premature hypertrophic 
differentiation in the embryonic tibial growth plate at E16.5 and E17.5 [35], but not at the newborn 
stage, which was associated with increased SMAD1 activation in the proliferative zone of the growth 
plate at E18.5 [41]. Interestingly, in another study, MATN3 induced the chondrogenesis of murine 
ATDC5 chondroprogenitor cells by elevating the gene expression of aggrecan (Acan) and collagen II 
(Col2a1), but did not alter the expression of Col10a1 [47]. In contrast, MED or SEMD mutant MATN3 
constructs abolished Acan and/or Col2a1 mRNAs expression and upregulated Col10a1 expression by 
interfering with TGF-β signaling [47]. Although these studies suggest a role of MATN3 for the 
modulation of hypertrophic differentiation of chondrocytes, Matn1-4−/− mice, however, do not show 
aberrant chondrogenic differentiation. Histomorphometry at different postnatal stages (Figure 
3C,D,G,H) and in situ hybridization at P2 (Figure 4A) indicated normal lengths of growth plate zones 
and the normal expression of chondrocyte differentiation markers, respectively. At E15.5, the ratio of 
the total tibial length and the length of the hypertrophic core was comparable between wild-type and 
Matn1-4−/− animals indicating that the hypertrophic differentiation rate is not affected by the lack of 
matrilins during embryonic development of long bones (Figure 3A). Furthermore, the normal 
proliferation rate of growth plate chondrocytes, the proper and timely formation and mineralization 
of the chondro-osseous junctions, and the normal columnar structure in Matn1-4−/− mice clearly 
indicate that matrilins are dispensable for growth plate morphogenesis. 

Matrilins interact through their VWA domains with other matrix constituents, including 
collagens (collagen types II, IX), proteoglycans (aggrecan, biglycan, decorin) [6], and COMP [9], and 
they can form both collagen-dependent and collagen-independent networks [3,48,49]. A growing 
body of evidence suggests that the disturbance of these interacting molecular assemblies could affect 
the integration of ECM molecules, collagen fibril formation and cartilage mechanical conditions. 
Ablation of collagen IX in mice results in abnormal perinatal organization of the growth plate 
architecture [50,51] associated with reduced integrations of COMP, MATN1, MATN3, and MATN4 
into the ECM [8,52–54], softer cartilage matrix [54], and increased collagen fibril diameter [8,51]. 
COMP deficiency mildly impacts growth plate structure [55] and moderately influences the 
deposition and fibrillar integration of MATN3, but has no apparent effect on collagen fibrillogenesis 
[8,51]. While collagen fibrils with larger diameters were also reported in Matn1−/− and 
Matn1−/−/Matn3−/− knockout mice [33,36], the solubility of the matrilin interacting partners biglycan, 
decorin, COMP and collagen II were not altered in the cartilage of Matn1−/−/Matn3−/− double deficient 
mice [36]. In the epiphyseal cartilage of Matn1-4−/− knockout mice, we did not observe an obvious 
difference in the deposition of ECM molecules such as aggrecan, COMP and collagen types II, IX, and 
VI using immunohistochemistry (Figure 5A,B). However, alterations in their extractability were 
noticed by Western blotting. At the newborn stage, when the cartilage ECM is less mature, all 
investigated proteins showed increased solubility in neutral salt (buffer I), while collagens II, IX and 
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COMP were present in a clearly reduced extractable amount in chaotropic buffer containing GuHCl 
(buffer III) (Figure 5C). At four weeks, when the cartilage matrix is undergoing a maturation process, 
the amount of extractable aggrecan was increased in all fractions of the cartilage of Matn1-4−/− mice 
compared with that in the control, whereas the solubility of the other ECM proteins did not change 
significantly (Figure 5D). These results suggest that matrilins may have a matrix-stabilizing role by 
supporting the firm anchorage of their interaction partners into the ECM when the cartilage 
undergoes extensive perinatal growth. Using high-resolution AFM imaging, we found collagen 
fibrils with increased diameters in the growth plate cartilage of two-week old Matn1-4−/− mice (Figure 
6B), confirming the established role of MATN1 and/or MATN3 in the control of lateral growth of 
collagen fibrils [33,36]. Nanoscale AFM indentation, however, demonstrated normal stiffness of the 
growth plate cartilage in Matn1-4−/− mice, which implies that matrilins are dispensable for cartilage 
biomechanics, at least at this stage of postnatal development. 

In humans, chondrodysplasia-causing mutations in COMP, collagen IX, or MATN3 are 
frequently associated with premature osteoarthritis. Matrilin-3 is present at low levels in the joint 
articular surface and its deposition is upregulated in cartilage and in the synovial fluid of patients 
with OA as a consequence of cartilage degradation [56–60]. Studies with recombinant MATN3 and 
human primary chondrocytes have revealed that MATN3 exhibits a context-dependent anabolic or 
catabolic function by influencing the expression of pro-inflammatory cytokines, ECM degradation 
enzymes, and ECM synthesis [59,61–63] through the modulation of protein kinase B (AKT) [59], 
interleukin-6 [62], and interleukin-1 [63,64] signaling pathways. The neoexpression of MATN1 was 
also observed in the cartilage of OA or rheumatoid arthritis patients [65,66], and MATN2 was recently 
observed in total knee arthroplasty and suggested as a biomarker for OA [67]. In contrast to other 
matrilins, down-regulation of MATN4 gene expression was reported to be associated with knee OA 
progression [68]. In the present study, we have performed, for the first time, a comprehensive 
immunohistochemical study to assess the deposition of matrilins in normal and osteoarthritic human 
knee articular cartilage (Figure 7D). We observed that matrilins are present at various amounts in the 
healthy articular cartilage, preferentially in the middle and deep zones. MATN1 shows a very weak, 
cell-associated staining pattern; MATN3 displays predominantly pericellular expression; MATN2 
and MATN4 exhibit moderate cellular staining. In severely damaged OA cartilage, all matrilins are 
upregulated, indicating that each member of the matrilin family participates in the cellular response 
for the advanced disease as an attempt to protect the tissue from further degradation. 

Indeed, the most striking phenotype of the Matn1-4−/− mice was the development of severe 
osteoarthritis in aged mice (Figure 7B,C). In mice, matrilins are differentially expressed in the 
developing and mature articular cartilage. MATN2 and MATN4 are present, whereas MATN1 and 
MATN3 are absent at the superficial zone of the growing epiphysis [12,13,31,69,70]. In adult joints, 
immunohistochemistry demonstrated a very moderate deposition of matrilins in the articular 
cartilage [13] (Figure 7A). Interestingly, a lineage tracing experiment, in which the matrilin-1-Cre 
(Matn1-Cre) knock-in mice were crossed with the floxed ROSA26-LacZ reporter mouse line (R26R), 
demonstrated the lack of beta-galactosidase signal at the joint surface, suggesting that matrilin-1 is 
not expressed in the mature articular cartilage [70]. The OA phenotype in the Matn1-4−/− mice was 
accompanied by increased collagen fibril diameter (Figure 8A,B), confirming our similar results 
obtained on the growth plate cartilage, and changes in the nanomechanical properties of the knee 
joint cartilage. Nano-scale indentation-type AFM recorded the typical bimodal stiffness distribution 
of the articular cartilage (representing proteoglycans and collagens) [71,72] and showed higher 
stiffness of both macromolecular assemblies at the superficial zone of the articular cartilage in Matn1-
4−/− mice compared to control already at 4 months of age before any histological sign of cartilage 
degeneration (Figure 8C). As the stiffness of the middle and deep zones were in the normal range at 
this age, it seems that matrilin-deficiency primarily affects ECM biomechanics in the outermost zone 
where the collagen fibrils are oriented parallel to the surface. Of note, a recent study found increased 
elastic moduli at the articular cartilage surface in Matn1−/− mice [34]. Furthermore, stiffening of the 
articular cartilage before the onset of OA has been also recently observed in hypomorphic aggrecan 
mutant mice [71]. When OA is histologically visible in one-year old Matn1-4−/− mice, the superficial 
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and middle zones exhibited a reduced Young’s modulus for both proteoglycans and collagens 
(Figure 8D), probably reflecting the advanced deterioration of the ECM [73]. The increased stiffness 
in the deep zone may be the consequence of a mechanical adaptation mechanism to the weakened 
upper zones. Importantly, the lack of matrilins did not influence GAG release in IL-1α stimulated hip 
explant culture (Figure 9), therefore reasonable to speculate that matrilins protect against OA through 
biomechanical stabilization of the articular cartilage ECM. 

Based on mouse models, the participation of the individual matrilins in OA is controversial. 
Spontaneous articular cartilage degradation was observed in 1 year old Matn3−/− mice generated by 
Chen and his colleagues [35], while Matn3−/− and Matn1−/−/Matn3−/− mice established in our laboratory 
showed no obvious signs of accelerated articular cartilage degradation in aged animals [32,36]. 
Similarly, no OA-related phenotype was reported in mouse strains carrying a human MATN3 MED 
mutation in wild-type [74] or in Matn1 null background [75]. Interestingly, a recent study 
demonstrated that the microRNA miR-483-5p targeted Matn3 and Timp2 (tissue inhibitor of 
metalloproteinase 2), which in turn accelerated articular cartilage degradation in mice with 
experimental OA [76]. Age-related, spontaneous OA has not been reported in mice lacking MATN1 
[31,33] or MATN2 [12]. However, more severe articular cartilage degeneration was observed after 
surgical destabilization of the medial meniscus in Matn1−/− mice compared to wild-type control [34]. 
Since the role of MATN4 in OA has not been investigated, we have also evaluated spontaneous 
articular cartilage degradation in aged Matn4−/− mice. MATN4 deficiency had a dramatic effect on the 
joint by exacerbating OA-like erosion of the articular cartilage at a similar level as we observed in the 
Matn1-4−/− mice (Figure 10). Consistent with the observation in the growth plate, we have also found 
a prominent upregulation of MATN2 expression in the MATN4 deficient articular cartilage (Figure 
10C) which, however, was unable to compensate for the lack of MATN4. These findings indicate for 
the first time that MATN4 is essential to maintain the integrity of the articular cartilage and protect 
the joints against age-associated osteoarthritis. 

The most surprising phenotype what we have observed in the Matn1-4−/− mice was the patterning 
defect of the axial skeleton manifested by the highly penetrant (nearly 90%) transition of the L6 
vertebra into a sacral identity (Figure 2B–D and Table 1). Disturbance of the vertebral column 
specification at the lumbosacral junction was also present in Matn1-4+/− mice demonstrated by partial 
(asymmetric) or complete sacralization of L6 in two-thirds of the investigated animals (n = 6). 
Congenital skeletal anomalies including sacralization of 6th lumbar vertebra (or 26th pre-caudal 
vertebra) are common in some inbred strains including the strain 129 [77,78]. Depending on 
environmental factors, the three vertebral types (L6, L6 to S1, asymmetric L6 to S1) occur about the 
same frequency in this strain [40,77], and the proportion of the normal L6 identity is significantly 
increased when 129 animals were raised in 129 x C57BL hybrid females upon ovary transplantation 
[78]. As we have not observed patterning defects of the vertebral columns in previous single or 
double knockout matrilin mutant mice [12,31,32,36] maintained on the mixed C57BL/6 × 129/Sv 
genetic background, and the Matn1-4−/− mice do not display other skeletal abnormalities of the 129 
strain (e.g., accessory sternebrae), we are convinced that the phenotype is the consequence of the lack 
of all matrilins in the axial skeleton. The molecular basis of how matrilins regulate vertebral 
specification is not clear and warrant further studies. Interestingly, it has been recently shown that 
mice lacking the nucleus accumbens-associated protein 1 (NAC1) also exhibit the L6 sacralization 
phenotype accompanied by the reduced mRNA expression of matrilins in Nacc1−/− chondrocytes, 
which is especially significant in case of Matn3 and Matn4 [79]. Furthermore, all matrilin family 
members are expressed in the developing vertebral bodies [12,13], and MATN1 and MATN3 have 
been implicated in chondrogenic differentiation in vitro [80]. 

4. Materials and Methods

4.1. Knockout Mice 

Outbred mice (C57BL/6 × 129/Sv) knockout for matrilin-1 (Matn1−/−), matrilin-2 (Matn2−/−), 
matrilin-3 (Matn3 −/−), and matrilin-4 (Matn 4−/−) were previously generated in our laboratory 
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[12,31,32,37]. Double knockout mice for matrilin-1 and -3 (Matn1−/−/Matn3−/−) [36], matrilin-2 and -3 
(Matn2−/−/Matn3−/−), triple knockout mice lacking matrilin-1, -2, and -3 (Matn1-3−/−), and quadruple 
knockout mice lacking all matrilins (Matn1-4−/−) [37] were generated by intercrossing single and 
multiple matrilin deficient mice. Wild-type littermates were used as control for single and double 
knockout mice. Triple and quadruple knockout mice were maintained in homozygous mutant 
breeding. Age-matched wild-type non-littermates on the same C57BL/6 x 129/Sv background were 
used as control for the Matn1-4−/− and Matn1-3−/− mice. Mice were kept under 12 h light/dark cycle, 
constant temperature, in individually ventilated cages in the Central Animal Facility at the Medical 
Faculty of the Ludwig-Maximilians-University. Mice were housed in groups of 2–5 per cage and 
received food and water ad libitium. The handling and breeding of all mouse strains have been 
approved by the government of Upper Bavaria (Application number: 55.2-1-54-2532-15-2016). 

4.2. Human Samples 

Human tibial plateau were obtained from patients undergoing total knee arthroplasty after 
written consent according to the ethical approval no. 238-15. The whole tissue explant was collected 
in phosphate buffered saline (PBS) pH 7.4 in the operation room of the Schön Klinik (Munich, 
Germany) and immediately delivered to our laboratory. Afterwards, cylindrical osteochondral plugs 
from differently degenerated or non-degenerated areas of the plateau were harvested with the aid of 
a 7 mm diameter trephine drill, washed once in PBS and fixed in 4% paraformaldehyde (PFA)/PBS 
overnight at 4 °C. Osteochondral plugs were decalcified in 10% formic acid/dH2O for 3 days at RT. 
After that, plugs were thoroughly washed in PBS, immersed in 20% sucrose/PBS for 24 h at 4 °C and 
embedded in Tissue-Tek cryomedia (Sakura Finetek, Alphen aan den Rijn, The Netherlands) and 
gradually frozen on a chilled copper plate placed on dry ice. Sagittal sections of 10 µm were cut using 
a cryotome (HM500 cryostat, Thermo Fischer Scientific, Waltham, MA, USA) and collected on 
Superfrost Plus glass slides (Thermo Fischer Scientific, Waltham, MA, USA). 

4.3. Antibodies 

For immunohistochemistry and Western blots, the following primary antibodies were used: 
Rabbit polyclonal antibodies against matrilin-1, matrilin-2, matrilin-3, matrilin-4, cartilage oligomeric 
protein (COMP) and collagen VI were described previously [36]. Antibodies against collagen IX were 
gifts of Susanne Grässel (University of Regensburg, Germany) and Frank Zaucke (Orthopaedic 
University Hospital Friedrichsheim, Germany). Rabbit polyclonal anti-aggrecan antibody (ab#1031) 
was obtained from Merck Millipore (Billerica, MA, USA); mouse monoclonal anti-collagen II 
antibody (CIIC1) was purchased from the Developmental Studies Hybridoma Bank (Iowa, IL, USA); 
and the rabbit monoclonal antibodies specific for SMAD-1 (D59D7, #6944) and for phospho-SMAD-
1/5/8 (D5B10, #13820) were obtained from Cell Signaling Technology (Beverly, MA, USA). Primary 
antibodies were diluted 1:400 for immunohistochemistry and 1:1000 for immunoblotting. 

4.4. Whole-Mount Skeletal Staining and X-ray Analysis 

For skeletal staining, 2-day and 4-week old mice were euthanized with carbon dioxide. De-
skinned and eviscerated specimens were fixed in 95% ethanol for 3 days and transferred into acetone 
for additional 2 days. The skeleton was stained with 0.6% Alcian Blue (for cartilage) and 0.02% 
Alizarin Red (for bone) (both Sigma-Aldrich, St. Louis, MO, USA) in 90% ethanol and 5% acetic acid 
for 3 days in a 37 °C incubator with continuous shaking. Samples were cleared by incubation in 
descending potassium hydroxide and ascending glycerol solutions, and were finally preserved in 
100% glycerol. To determine the length of the long bones, the humerus, the femur, and the tibia were 
dissected from five control and five Matn1-4−/− mice, photographed with a Stemi 1000 stereo 
microscope (Carl Zeiss, Jena, Germany) and measured with the ZEN software (Carl Zeiss, Jena, 
Germany). 

For X-ray analysis, 4-week, 4-month, and 1-year old mice were euthanized, and radiographs 
were taken using a sealed X-ray cabinet (FAXITRON 43855 A) at 35 kV, 2 mA, and 2 s exposure time. 
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Total body length (from the snout to the end of the tail) and the length of the skeletal elements (tibia, 
femur, and humerus) were analyzed with the distance measurement plug-in of the syngo Imaging 
XS-VA60B software (Siemens, Erlangen, Germany). 

4.5. Histology, Immunohistochemistry and In Situ Hybridization 

Mouse limbs were dissected from 15.5 and 18 day-old embryos (E15.5 and E18), and from 
newborn, 2-day (P2), 2-week, 4-week, 2-month, 4-month, 8-month, and 15–24 month old animals. The 
specimens were routinely fixed in 4% PFA/PBS at 4 °C for 12–24 h. Additionally, forelimbs were fixed 
in 95% ethanol and 1% acetic acid for immunohistochemical analysis. Samples from 2 weeks of age 
were decalcified in 15% ethylenediaminetetraacetic acid (EDTA) (Sigma-Aldrich, St. Louis, MO, USA) 
dissolved in PBS (pH 8.0) for 1–3 weeks. Specimens were processed either for standard paraffin or 
for cryo embedding. All the embedded tissues were cut into 8-µm thick sections using a microtome 
or cryotome. For routine histology, the sections were stained with hematoxylin and eosin (HE), 
Safranin orange and fast green (SO/FG), and Safranin orange-von Kossa (SO/vK) according to the 
standard protocols. Morphometric analyses of the growth plate zones were performed as described 
previously [81]. TRAP (tartrate resistant acid phosphatase) staining to visualize 
chondroclasts/osteoclasts at the chondro-osseous junction was performed with the leukocyte acid 
phosphatase kit (Sigma-Aldrich, St. Louis, MO, USA) according to manufacturer instructions. To 
assess articular cartilage degeneration on HE stained sections, a histological grading score for 
structural alteration was applied as follow: 0-normal articular cartilage; 1-surface irregularities; 2-
cleft to transition zone; 3-cleft to radial zone; 4-cleft extending to calcified zone; 5-exposure of 
subchondral bone [36]. 

For immunohistochemistry, paraffin sections were rehydrated in descending ethanol series, 
rinsed in PBS and treated with bovine testicular hyaluronidase (Sigma-Aldrich, St. Louis, MO, USA) 
(2 mg/mL in PBS, pH 5.0) for 30 min at 37 °C to facilitate antibody penetration. Primary antibodies 
were incubated overnight at 4 °C and the subsequent immunohistochemical detection was performed 
using the corresponding Vectastain ABC Elite kit (Vector Laboratories, Burlingame, CA, USA) and 
3,3-diaminobenzidine (DAB, Sigma-Aldrich, St. Louis, MO, USA) as chromogenic substrate. 

For non-radioactive in situ hybridization, deparaffinized sections were rinsed in Tris-buffered 
saline (TBS) pH 7.5, acetylated with 0.25% acetic anhydride (pH 8.0) for 10 min, rinsed in TBS and 
dehydrated in ethanol. Sections were hybridized at 70 °C overnight with digoxigenin (DIG)-UTP-
labelled antisense riboprobes specific for mouse collagen II (Col2a1), collagen X (Col10a1), indian 
hedgehog (Ihh), parathyroid hormone/parathyroid hormone-related peptide receptor (Ppr) and 
matrix metalloproteinase-13 (Mmp-13) as previously described [32]. After hybridization and 
subsequent washing in 2 X sodium citrate-chloride buffer (SSC) at 70 °C for 30 min, the sections were 
blocked with 2% goat serum for 1 h and incubated with a 1:500 diluted alkaline phosphatase-coupled 
anti-DIG antibody (Roche, Penzberg, Germany) for 2 h. Hybridization signals were detected using 
the p-nitroblue tetrazolium chloride/5-bromo-4-chloro-3-indolyl phosphate (NBT/BCIP) solution 
(Roche, Penzberg, Germany) according to the recommendation of the manufacturer. Brightfield 
microscopy images were acquired with an AxioObserver microscope (Carl Zeiss, Jena, Germany). 

4.6. Cell Proliferation and Cell Death Assays 

In vivo chondrocyte proliferation was analysed using the 5-bromo-2´-deoxyuridine (BrdU) 
incorporation assay as described previously [32]. Briefly, mice were injected intraperitoneally (50 
µg/g of body weight) with BrdU solution (10 mg/mL in PBS, pH 7.4). After 2 h, the animals were 
sacrificed, knee samples were dissected and embedded into paraffin. Deparaffinized sections were 
treated with 2 M HCl for 30 min, washed in PBS, and incubated with a peroxidase-conjugated 
antibody against BrdU (Roche, Penzberg, Germany). Detection of proliferative cells in the S phase of 
the cell cycle was performed with DAB as chromogen substrate. Analysis of apoptotic chondrocytes 
was carried out using the TUNEL assay according to the manufacturer’s instructions (In Situ Cell 
Death Detection Kit, Roche, Penzberg, Germany). 
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4.7. Protein Extraction and Western Blotting 

Knee joint cartilage was dissected from newborn and 4-week old Matn1-4−/− and control mice (n 
= 10). Specimens were weighed, cut into small pieces, and incubated in ten volumes of chilled 
extraction buffer I (0.15 M NaCl, 50 mM Tris, pH 7.4) overnight at 4 °C with continuous stirring. Next 
day, the mixture was centrifuged at 14,000 rpm for 1 h and the supernatant was stored at −20 °C, and 
the obtained pellet was incubated as above in buffer II (1 M NaCl, 10 mM EDTA, 50 mM Tris, pH 7.4) 
and subsequently in buffer III (4 M guanidine hydrochloride, 10 mM EDTA, 50 mM Tris, pH 7.4). All 
extraction buffers contained EDTA-free proteinase inhibitor cocktail (Roche, Penzberg, Germany). 
Aliquots (100 µL) of all extracts were precipitated with 96% ethanol and the pellets were processed 
and re-suspended in non-reducing SDS-PAGE (sodium dodecyl sulfate–polyacrylamide gel 
electrophoresis) sample buffer as described previously [32]. Samples were applied to 4–15% pre-
casted SDS-PAGE gels (Bio-Rad, Berkeley, CA, USA) and electrophoresis was performed using a Bio-
Rad apparatus. For Western blotting, proteins were transferred to a PVDF membrane (GE Healthcare, 
Chicago, USA) and incubated with primary antibodies diluted either in 5% skim milk (Sigma-Aldrich, 
St. Louis, MO, USA) or 5% bovine serum albumin (BSA) (Sigma-Aldrich, St. Louis, MO, USA) in 1X 
TBST (0.5% Tween 20 in TBS). Bound antibodies were detected by HRP-conjugated secondary 
antibodies, and the signal was developed using Luminata ECL Forte (Merck Millipore) and acquired 
on the GE Healthcare imaging system ImageQuant LAS 4000. 

Primary chondrocytes were isolated from newborn ribcage as described [71]. Single cell 
suspensions were lysed in RIPA buffer with phosphatase (PhosSTOP, Roche, Penzberg, Germany) 
and protease inhibitors. Total protein was normalized using the BCA assay (Themo Scientific, 
Waltham, MA, USA) and equal amounts of protein were subjected to 10% SDS-PAGE, transferred to 
PVDF membrane and imaged as above. 

4.8. Explant Culture 

Femoral heads were dissected from 4-week-old control and Matn1-4−/− mice and cultured in 
serum-free Dulbecco’s modified Eagle’s medium (DMEM) supplemented with streptomycin-
penicillin for 4 days at 37 °C and 5% CO2 in the absence or presence of the catabolic cytokine IL-1α 
(10 ng/mL) (R&D Systems, Minneapolis, MN, USA). After the culture period, femoral heads were 
fixed in 4% PFA, cryo-embedded, cut, and stained with SO to examine the loss of proteoglycans. 
Conditioned culture medium was also collected and analyzed for released sulfated 
glycosaminoglycan (sGAG) using the Blyscan B1000 GAG assay (Biocolor Ltd., Carrickfergus, UK) 
according to the instructions of the manufacturers. 

4.9. Atomic Force Microscopy (AFM) 

Knee joints from 2-week, 4-month, and 1-year-old control and Matn1-4−/− animals were dissected 
and immediately immersed into Tissue-Tek and snap frozen in a liquid nitrogen-cooled bath of 
isopentane. Sagittal sections (30 µm) of three animals per genotype were cut using two supportive 
tapes (one double adhesive and an adhesive) and a cryostat, and placed on Super Frost Plus glass 
slides as previously described [82]. Sections were stored at −20 °C until the analysis. AFM imaging 
and indentation measurements were carried out on sections equilibrated at room temperature using 
the NanoWizard 1 AFM (JPK Instruments, Berlin, Germany) in combination with an inverse optical 
microscope (Axiovert 200, Carl Zeiss, Göttingen, Germany) as previously described [82]. Briefly, for 
the growth plate measurements the Young’s modulus was determined at each indentation position 
by fitting a modified Hertz model (pyramidal indenter) to the respective approach curve, using the 
JPK data processing software (versions 4.2.20 and 5.0.96; JPK Instruments). The contact point was 
determined manually for each force curve, and the fit range was limited to a maximum indentation 
depth of 500 nm. For the articular cartilage measurements, the contact point was determined by 
fitting the modified Hertz model to the entire force range first and then using this fix contact point to 
fit only the first 500 nm indentation depth. To generate histograms and fitting Gaussian distributions, 
the data analysis software Origin 8.0 (OriginLab Corporation, Northampton, MA, USA) and Igor Pro 
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6.37 (Wavemetrix, London, UK) were used for growth plate and articular cartilage data, respectively. 
AFM imaging of the middle and deep zone of the articular cartilage was performed on 20 µm thick, 
PFA-fixed sections. 

4.10. Statistical Analysis 

Data are presented as mean ± SD (standard deviation). Statistical significance was assessed using 
the Mann-Whitney U test, p values less than 0.05 were considered significant. Histology data are 
representative of a minimum of six animals for each group. 

5. Conclusions

In summary, our data imply that the matrilin family of adaptor proteins is dispensable for the 
growth of the cartilaginous skeleton, but required for vertebral column specification and articular 
cartilage stability. Biochemical analyses of cartilages from various matrilin-deficient mouse lines 
showed compensation among the family members, and indicated that the lack of all four matrilins 
moderately changes the extractability of binding partners. Atomic force microscopy revealed that 
matrilins control collagen fibril diameters in the cartilage ECM and modulate the stiffness of the 
articular cartilage. Matn1-4−/− and Matn4−/− mice develop similar age-associated osteoarthritis 
suggesting a novel function of matrilin-4 for preventing articular cartilage degradation in the murine 
knee joint. 
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ACAN Aggrecan 
AFM Atomic force microscopy 
BMP-2 Bone morphogenetic protein-2 
BrdU Bromodeoxyuridine 
COL Collagen 
COMP Cartilage oligomeric matrix protein 
ECM Extracellular matrix 
EDTA Ethylenediaminetetracetic acid 
GAG Glycosaminoglycan 
HE Hematoxylin and eosin 
IL-1 Interleukin-1 
ITM Interterritorial matrix 
MATN Matrilin 
MED Multiple epiphyseal dysplasia 
OA Osteoarthritis 
PBS Phosphate buffered saline 
PFA Paraformaldehyde 
P2 Postnatal day 2 
SDS-PAGE Sodium dodecyl sulfate-polyacrylamide gel electrophoresis 
SEMD Spondylo-meta-epiphyseal dysplasia 
TRAP Tartrate-resistant acid phosphatase 
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TUNEL Terminal deoxynucleotidyl transferase dUTP nick end labeling 

References 

1. Klatt, A.R.; Becker, A.K.; Neacsu, C.D.; Paulsson, M.; Wagener, R. The matrilins: Modulators of
extracellular matrix assembly. Int. J. Biochem. Cell. Biol. 2011, 43, 320–330.

2. Aszodi, A.; Hauser, N.; Studer, D.; Paulsson, M.; Hiripi, L.; Bosze, Z. Cloning, sequencing and expression
analysis of mouse cartilage matrix protein cDNA. Eur. J. Biochem. 1996, 236, 970–977.

3. Klatt, A.R.; Nitsche, D.P.; Kobbe, B.; Morgelin, M.; Paulsson, M.; Wagener, R. Molecular structure and tissue
distribution of matrilin-3, a filament-forming extracellular matrix protein expressed during skeletal
development. J. Biol. Chem. 2000, 275, 3999–4006.

4. Piecha, D.; Muratoglu, S.; Morgelin, M.; Hauser, N.; Studer, D.; Kiss, I.; Paulsson, M.; Deak, F. Matrilin-2, a
large, oligomeric matrix protein, is expressed by a great variety of cells and forms fibrillar networks. J. Biol.
Chem. 1999, 274, 13353–13361.

5. Klatt, A.R.; Nitsche, D.P.; Kobbe, B.; Macht, M.; Paulsson, M.; Wagener, R. Molecular structure, processing,
and tissue distribution of matrilin-4. J. Biol. Chem. 2001, 276, 17267–17275.

6. Hauser, N.; Paulsson, M.; Heinegård, D.; Mörgelin, M. Interaction of Cartilage Matrix Protein with
Aggrecan. Increased covalent cross-linking with tissue maturation. J. Biol. Chem. 1996, 271, 32247–32252.

7. Winterbottom, N.; Tondravi, M.M.; Harrington, T.L.; Klier, F.G.; Vertel, B.M.; Goetinck, P.F. Cartilage
matrix protein is a component of the collagen fibril of cartilage. Dev. Dyn. 1992, 193, 266–276.

8. Budde, B.; Blumbach, K.; Ylostalo, J.; Zaucke, F.; Ehlen, H.W.; Wagener, R.; Ala-Kokko, L.; Paulsson, M.;
Bruckner, P.; Grassel, S. Altered integration of matrilin-3 into cartilage extracellular matrix in the absence
of collagen IX. Mol. Cell. Biol. 2005, 25, 10465–10478.

9. Mann, H.H.; Ozbek, S.; Engel, J.; Paulsson, M.; Wagener, R. Interactions between the cartilage oligomeric
matrix protein and matrilins. Implications for matrix assembly and the pathogenesis of chondrodysplasias.
J. Biol. Chem. 2004, 279, 25294–25298.

10. Wiberg, C.; Klatt, A.R.; Wagener, R.; Paulsson, M.; Bateman, J.F.; Heinegard, D.; Morgelin, M. Complexes
of matrilin-1 and biglycan or decorin connect collagen VI microfibrils to both collagen II and aggrecan. J.
Biol. Chem. 2003, 278, 37698–37704.

11. Wagener, R.; Ehlen, H.W.; Ko, Y.P.; Kobbe, B.; Mann, H.H.; Sengle, G.; Paulsson, M. The matrilins—
Adaptor proteins in the extracellular matrix. FEBS Lett. 2005, 579, 3323–3329.

12. Mates, L.; Nicolae, C.; Morgelin, M.; Deak, F.; Kiss, I.; Aszodi, A. Mice lacking the extracellular matrix
adaptor protein matrilin-2 develop without obvious abnormalities. Matrix Biol. 2004, 23, 195–204.

13. Klatt, A.R.; Paulsson, M.; Wagener, R. Expression of matrilins during maturation of mouse skeletal tissues.
Matrix Biol. 2002, 21, 289–296.

14. Briggs, M.D.; Chapman, K.L. Pseudoachondroplasia and multiple epiphyseal dysplasia: Mutation review,
molecular interactions, and genotype to phenotype correlations. Hum. Mutat. 2002, 19, 465–478.

15. Chapman, K.L.; Mortier, G.R.; Chapman, K.; Loughlin, J.; Grant, M.E.; Briggs, M.D. Mutations in the region
encoding the von Willebrand factor A domain of matrilin-3 are associated with multiple epiphyseal
dysplasia. Nat. Genet. 2001, 28, 393–396.

16. Mabuchi, A.; Haga, N.; Maeda, K.; Nakashima, E.; Manabe, N.; Hiraoka, H.; Kitoh, H.; Kosaki, R.;
Nishimura, G.; Ohashi, H.; et al. Novel and recurrent mutations clustered in the von Willebrand factor A
domain of MATN3 in multiple epiphyseal dysplasia. Hum. Mutat. 2004, 24, 439–440.

17. Jackson, G.C.; Barker, F.S.; Jakkula, E.; Czarny-Ratajczak, M.; Makitie, O.; Cole, W.G.; Wright, M.J.;
Smithson, S.F.; Suri, M.; Rogala, P.; et al. Missense mutations in the beta strands of the single A-domain of
matrilin-3 result in multiple epiphyseal dysplasia. J. Med. Genet. 2004, 41, 52–59.

18. Otten, C.; Wagener, R.; Paulsson, M.; Zaucke, F. Matrilin-3 mutations that cause chondrodysplasias
interfere with protein trafficking while a mutation associated with hand osteoarthritis does not. J. Med.
Genet. 2005, 42, 774–779.

19. Cotterill, S.L.; Jackson, G.C.; Leighton, M.P.; Wagener, R.; Makitie, O.; Cole, W.G.; Briggs, M.D. Multiple
epiphyseal dysplasia mutations in MATN3 cause misfolding of the A-domain and prevent secretion of
mutant matrilin-3. Hum. Mutat. 2005, 26, 557–565.

20. Nundlall, S.; Rajpar, M.H.; Bell, P.A.; Clowes, C.; Zeeff, L.A.; Gardner, B.; Thornton, D.J.; Boot-Handford,
R.P.; Briggs, M.D. An unfolded protein response is the initial cellular response to the expression of mutant
matrilin-3 in a mouse model of multiple epiphyseal dysplasia. Cell Stress Chaperones 2010, 15, 835–849.



Paper I   46 

21. Mostert, A.K.; Dijkstra, P.F.; Jansen, B.R.; van Horn, J.R.; de Graaf, B.; Heutink, P.; Lindhout, D. Familial
multiple epiphyseal dysplasia due to a matrilin-3 mutation: Further delineation of the phenotype including
40 years follow-up. Am. J. Med. Genet. A 2003, 120, 490–497.

22. Borochowitz, Z.U.; Scheffer, D.; Adir, V.; Dagoneau, N.; Munnich, A.; Cormier-Daire, V. Spondylo-epi-
metaphyseal dysplasia (SEMD) matrilin 3 type: Homozygote matrilin 3 mutation in a novel form of SEMD.
J. Med. Genet. 2004, 41, 366–372.

23. Stefansson, S.E.; Jonsson, H.; Ingvarsson, T.; Manolescu, I.; Jonsson, H.H.; Olafsdottir, G.; Palsdottir, E.;
Stefansdottir, G.; Sveinbjornsdottir, G.; Frigge, M.L.; et al. Genomewide scan for hand osteoarthritis: A
novel mutation in matrilin-3. Am. J. Hum. Genet. 2003, 72, 1448–1459.

24. Min, J.L.; Meulenbelt, I.; Riyazi, N.; Kloppenburg, M.; Houwing-Duistermaat, J.J.; Seymour, A.B.; van Duijn,
C.M.; Slagboom, P.E. Association of matrilin-3 polymorphisms with spinal disc degeneration and
osteoarthritis of the first carpometacarpal joint of the hand. Ann. Rheum. Dis. 2006, 65, 1060–1066.

25. Pullig, O.; Tagariello, A.; Schweizer, A.; Swoboda, B.; Schaller, P.; Winterpacht, A. MATN3 (matrilin-3)
sequence variation (pT303M) is a risk factor for osteoarthritis of the CMC1 joint of the hand, but not for
knee osteoarthritis. Ann. Rheum. Dis. 2007, 66, 279–280.

26. Meulenbelt, I.; Bijkerk, C.; Breedveld, F.C.; Slagboom, P.E. Genetic linkage analysis of 14 candidate gene
loci in a family with autosomal dominant osteoarthritis without dysplasia. J. Med. Genet. 1997, 34, 1024–
1027.

27. Loughlin, J.; Dowling, B.; Mustafa, Z.; Smith, A.; Sykes, B.; Chapman, K. Analysis of the association of the
matrillin-1 gene (CRTM) with osteoarthritis: Comment on the article by Meulenbelt et al. Arthritis Rheum.
2000, 43, 1423–1425.

28. Montanaro, L.; Parisini, P.; Greggi, T.; Di Silvestre, M.; Campoccia, D.; Rizzi, S.; Arciola, C.R. Evidence of a
linkage between matrilin-1 gene (MATN1) and idiopathic scoliosis. Scoliosis 2006, 1, 21.

29. Jang, J.Y.; Park, E.K.; Ryoo, H.M.; Shin, H.I.; Kim, T.H.; Jang, J.S.; Park, H.S.; Choi, J.Y.; Kwon, T.G.
Polymorphisms in the Matrilin-1 gene and risk of mandibular prognathism in Koreans. J. Dent. Res. 2010,
89, 1203–1207.

30. Chimusa, E.R.; Beighton, P.; Kumuthini, J.; Ramesar, R.S. Detecting genetic modifiers of
spondyloepimetaphyseal dysplasia with joint laxity in the Caucasian Afrikaner community. Hum. Mol.
Genet. 2019, 28, 1053–1063.

31. Aszodi, A.; Bateman, J.F.; Hirsch, E.; Baranyi, M.; Hunziker, E.B.; Hauser, N.; Bosze, Z.; Fassler, R. Normal
skeletal development of mice lacking matrilin 1: Redundant function of matrilins in cartilage? Mol. Cell.
Biol. 1999, 19, 7841–7845.

32. Ko, Y.; Kobbe, B.; Nicolae, C.; Miosge, N.; Paulsson, M.; Wagener, R.; Aszodi, A. Matrilin-3 is dispensable
for mouse skeletal growth and development. Mol. Cell. Biol. 2004, 24, 1691–1699.

33. Huang, X.; Birk, D.E.; Goetinck, P.F. Mice lacking matrilin-1 (cartilage matrix protein) have alterations in
type II collagen fibrillogenesis and fibril organization. Dev. Dyn. 1999, 216, 434–441.

34. Chen, Y.; Cossman, J.; Jayasuriya, C.T.; Li, X.; Guan, Y.; Fonseca, V.; Yang, K.; Charbonneau, C.; Yu, H.;
Kanbe, K.; et al. Deficient mechanical activation of anabolic transcripts and post-traumatic cartilage
degeneration in Matrilin-1 knockout mice. PLoS ONE 2016, 11, e0156676.

35. van der Weyden, L.; Wei, L.; Luo, J.; Yang, X.; Birk, D.E.; Adams, D.J.; Bradley, A.; Chen, Q. Functional
knockout of the matrilin-3 gene causes premature chondrocyte maturation to hypertrophy and increases
bone mineral density and osteoarthritis. Am. J. Pathol. 2006, 169, 515–527.

36. Nicolae, C.; Ko, Y.P.; Miosge, N.; Niehoff, A.; Studer, D.; Enggist, L.; Hunziker, E.B.; Paulsson, M.; Wagener,
R.; Aszodi, A. Abnormal collagen fibrils in cartilage of matrilin-1/matrilin-3-deficient mice. J. Biol. Chem.
2007, 282, 22163–22175.

37. Uckelmann, H.; Blaszkiewicz, S.; Nicolae, C.; Haas, S.; Schnell, A.; Wurzer, S.; Wagener, R.; Aszodi, A.;
Essers, M.A. Extracellular matrix protein Matrilin-4 regulates stress-induced HSC proliferation via CXCR4.
J. Exp. Med. 2016, 213, 1961–1971.

38. Malin, D.; Sonnenberg-Riethmacher, E.; Guseva, D.; Wagener, R.; Aszodi, A.; Irintchev, A.; Riethmacher,
D. The extracellular-matrix protein matrilin 2 participates in peripheral nerve regeneration. J. Cell. Sci. 2009,
122, 995–1004.

39. Green, E.L. Genetic and non-genetic factors which influence the type of the skeleton in an inbred strain of
mice. Genetics 1941, 26, 192–222.



Paper I   47 

40. Mc, L.A.; Michie, D. Factors affecting vertebral variation in mice. 4. Experimental proof of the uterine basis
of a maternal effect. Development 1958, 6, 645–659.

41. Yang, X.; Trehan, S.K.; Guan, Y.; Sun, C.; Moore, D.C.; Jayasuriya, C.T.; Chen, Q. Matrilin-3 inhibits
chondrocyte hypertrophy as a bone morphogenetic protein-2 antagonist. J. Biol. Chem. 2014, 289, 34768–
34779.

42. Gentili, C.; Cancedda, R. Cartilage and bone extracellular matrix. Curr. Pharm. Des. 2009, 15, 1334–1348.
43. Hedlund, H.; Hedbom, E.; Heineg rd, D.; Mengarelli-Widholm, S.; Reinholt, F.P.; Svensson, O. Association

of the aggrecan keratan sulfate-rich region with collagen in bovine articular cartilage. J. Biol. Chem. 1999,
274, 5777–5781.

44. Paulsson, M.; Wagener, R. Matrilins. Methods Cell. Biol. 2018, 143, 429–446.
45. Murray, S.A.; Morgan, J.L.; Kane, C.; Sharma, Y.; Heffner, C.S.; Lake, J.; Donahue, L.R. Mouse gestation

length is genetically determined. PLoS ONE 2010, 5, e12418.
46. Reed, D.R.; Bachmanov, A.A.; Tordoff, M.G. Forty mouse strain survey of body composition. Physiol. Behav.

2007, 91, 593–600.
47. Jayasuriya, C.T.; Zhou, F.H.; Pei, M.; Wang, Z.; Lemme, N.J.; Haines, P.; Chen, Q. Matrilin-3

chondrodysplasia mutations cause attenuated chondrogenesis, premature hypertrophy and aberrant
response to TGF-beta in chondroprogenitor cells. Int. J. Mol. Sci. 2014, 15, 14555–14573.

48. Chen, Q.; Johnson, D.M.; Haudenschild, D.R.; Tondravi, M.; Goetinck, P. Cartilage matrix protein forms a
type II collagen-independent filamentous network: Analysis in primary cell cultures with a retrovirus
expression system. Mol. Biol. Cell 1995, 6, 1743–1753.

49. Chen, Q.; Zhang, Y.; Johnson, D.M.; Goetinck, P.F. Assembly of a novel cartilage matrix protein filamentous
network: Molecular basis of differential requirement of von Willebrand factor A domains. Mol. Biol. Cell
1999, 10, 2149–2162.

50. Dreier, R.; Opolka, A.; Grifka, J.; Bruckner, P.; Grässel, S. Collagen IX-deficiency seriously compromises
growth cartilage development in mice. Matrix Biol. 2008, 27, 319–329.

51. Blumbach, K.; Bastiaansen-Jenniskens, Y.; DeGroot, J.; Paulsson, M.; Van Osch, G.; Zaucke, F. Combined
role of type IX collagen and cartilage oligomeric matrix protein in cartilage matrix assembly: Cartilage
oligomeric matrix protein counteracts type IX collagen–induced limitation of cartilage collagen fibril
growth in mouse chondrocyte cultures. Arthritis Rheum. 2009, 60, 3676–3685.

52. Blumbach, K.; Niehoff, A.; Paulsson, M.; Zaucke, F. Ablation of collagen IX and COMP disrupts epiphyseal
cartilage architecture. Matrix Biol. 2008, 27, 306–318.

53. Brachvogel, B.; Zaucke, F.; Dave, K.; Norris, E.L.; Stermann, J.; Dayakli, M.; Koch, M.; Gorman, J.J.; Bateman,
J.F.; Wilson, R. Comparative proteomic analysis of normal and collagen IX null mouse cartilage reveals
altered extracellular matrix composition and novel components of the collagen IX interactome. J. Biol. Chem.
2013, 288, 13481–13492.

54. Kamper, M.; Hamann, N.; Prein, C.; Clausen-Schaumann, H.; Farkas, Z.; Aszodi, A.; Niehoff, A.; Paulsson,
M.; Zaucke, F. Early changes in morphology, bone mineral density and matrix composition of vertebrae
lead to disc degeneration in aged collagen IX−/− mice. Matrix Biol. 2016, 49, 132–143.

55. Posey, K.; Hecht, J. The role of cartilage oligomeric matrix protein (COMP) in skeletal disease. Curr. Drug
Targets 2008, 9, 869–877.

56. Pullig, O.; Weseloh, G.; Klatt, A.; Wagener, R.; Swoboda, B. Matrilin-3 in human articular cartilage:
Increased expression in osteoarthritis. Osteoarthr. Cartil. 2002, 10, 253–263.

57. Firner, S.; Zaucke, F.; Michael, J.; Dargel, J.; Schiwy-Bochat, K.-H.; Heilig, J.; Rothschild, M.A.; Eysel, P.;
Brüggemann, G.-P.; Niehoff, A. Extracellular Distribution of Collagen II and Perifibrillar Adapter Proteins
in Healthy and Osteoarthritic Human Knee Joint Cartilage. J. Histochem. Cytochem. 2017, 65, 593–606.

58. Hosseininia, S.; Önnerfjord, P.; Dahlberg, L.E. Targeted proteomics of hip articular cartilage in OA and
fracture patients. J. Orthop. Res. 2019, 37, 131–135.

59. Vincourt, J.B.; Etienne, S.; Grossin, L.; Cottet, J.; Bantsimba-Malanda, C.; Netter, P.; Mainard, D.; Libante,
V.; Gillet, P.; Magdalou, J. Matrilin-3 switches from anti- to pro-anabolic upon integration to the
extracellular matrix. Matrix Biol. 2012, 31, 290–298, doi:10.1016/j.matbio.2012.03.004.

60. Vincourt, J.B.; Vignaud, J.M.; Lionneton, F.; Sirveaux, F.; Kawaki, H.; Marchal, S.; Lomazzi, S.; Plenat, F.;
Guillemin, F.; Netter, P. Increased expression of matrilin-3 not only in osteoarthritic articular cartilage but
also in cartilage-forming tumors, and down-regulation of SOX9 via epidermal growth factor domain 1-
dependent signaling. Arthritis Rheum. 2008, 58, 2798–2808.



Paper I   48 

61. Klatt, A.R.; Klinger, G.; Paul-Klausch, B.; Kuhn, G.; Renno, J.H.; Wagener, R.; Paulsson, M.; Schmidt, J.;
Malchau, G.; Wielckens, K. Matrilin-3 activates the expression of osteoarthritis-associated genes in primary
human chondrocytes. FEBS Lett. 2009, 583, 3611–3617.

62. Klatt, A.; Paul-Klausch, B.; Klinger, G.; Hillebrand, U.; Kühn, G.; Kobbe, B.; Renno, J.; Johannis, W.;
Paulsson, M.; Wagener, R. The matrilin-3 VWA1 domain modulates interleukin-6 release from primary
human chondrocytes. Osteoarthr. Cartil. 2013, 21, 869–873.

63. Jayasuriya, C.T.; Goldring, M.B.; Terek, R.; Chen, Q. Matrilin-3 induction of IL-1 receptor antagonist is
required for up-regulating collagen II and aggrecan and down-regulating ADAMTS-5 gene expression.
Arthritis Res. Ther. 2012, 14, R197.

64. Yang, H.; Wu, D.; Li, H.; Chen, N.; Shang, Y. Downregulation of microRNA-448 inhibits IL-1β-induced
cartilage degradation in human chondrocytes via upregulation of matrilin-3. Cell. Mol. Biol. Lett. 2018, 23,
7.

65. Okimura, A.; Okada, Y.; Makihira, S.; Pan, H.; Yu, L.; Tanne, K.; Imai, K.; Yamada, H.; Kawamoto, T.;
Noshiro, M. Enhancement of cartilage matrix protein synthesis in arthritic cartilage. Arthritis Rheum. 1997,
40, 1029–1036.

66. Ohno, S.; Murakami, K.; Tanimoto, K.; Sugiyama, H.; Makihira, S.; Shibata, T.; Yoneno, K.; Kato, Y.; Tanne,
K. Immunohistochemical study of matrilin-1 in arthritic articular cartilage of the mandibular condyle. J.
Oral Pathol. Med. 2003, 32, 237–242.

67. Zhang, S.; Peng, J.; Guo, Y.; Javidiparsijani, S.; Wang, G.; Wang, Y.; Liu, H.; Liu, J.; Luo, J. Matrilin-2 is a
widely distributed extracellular matrix protein and a potential biomarker in the early stage of osteoarthritis
in articular cartilage. BioMed Res. Int. 2014, 2014:986127.

68. Chou, C.-H.; Lee, M.T.M.; Song, I.-W.; Lu, L.-S.; Shen, H.-C.; Lee, C.-H.; Wu, J.-Y.; Chen, Y.-T.; Kraus, V.B.;
Wu, C.-C. Insights into osteoarthritis progression revealed by analyses of both knee tibiofemoral
compartments. Osteoarthr. Cartil. 2015, 23, 571–580.

69. Aszódi, A.; Módis, L.; Páldi, A.; Rencendorj, A.; Kiss, I.; Bösze, Z. The zonal expression of chicken cartilage
matrix protein in the developing skeleton of transgenic mice. Matrix Biol. 1994, 14, 181–190.

70. Hyde, G.; Dover, S.; Aszodi, A.; Wallis, G.A.; Boot-Handford, R.P. Lineage tracing using matrilin-1 gene
expression reveals that articular chondrocytes exist as the joint interzone forms. Dev. Biol. 2007, 304, 825–
833.

71. Alberton, P.; Dugonitsch, H.C.; Hartmann, B.; Li, P.; Farkas, Z.; Saller, M.M.; Clausen-Schaumann, H.;
Aszodi, A. Aggrecan hypomorphism compromises articular cartilage biomechanical properties and is
associated with increased incidence of spontaneous osteoarthritis. Int. J. Mol. Sci. 2019, 20, 1008.

72. Gronau, T.; Krüger, K.; Prein, C.; Aszodi, A.; Gronau, I.; Iozzo, R.V.; Mooren, F.C.; Clausen-Schaumann, H.;
Bertrand, J.; Pap, T. Forced exercise-induced osteoarthritis is attenuated in mice lacking the small leucine-
rich proteoglycan decorin. Ann. Rheum. Dis. 2017, 76, 442–449.

73. Mieloch, A.A.; Richter, M.; Trzeciak, T.; Giersig, M.; Rybka, J.D. Osteoarthritis Severely Decreases the
Elasticity and Hardness of Knee Joint Cartilage: A Nanoindentation Study. J. Clin. Med. 2019, 8, 1865.

74. Leighton, M.P.; Nundlall, S.; Starborg, T.; Meadows, R.S.; Suleman, F.; Knowles, L.; Wagener, R.; Thornton,
D.J.; Kadler, K.E.; Boot-Handford, R.P. Decreased chondrocyte proliferation and dysregulated apoptosis in
the cartilage growth plate are key features of a murine model of epiphyseal dysplasia caused by a matn3
mutation. Hum. Mol. Genet. 2007, 16, 1728–1741.

75. Bell, P.A.; Pirog, K.A.; Fresquet, M.; Thornton, D.J.; Boot-Handford, R.P.; Briggs, M.D. Loss of matrilin 1
does not exacerbate the skeletal phenotype in a mouse model of multiple epiphyseal dysplasia caused by
a Matn3 V194D mutation. Arthritis Rheum. 2012, 64, 1529–1539.

76. Wang, H.; Zhang, H.; Sun, Q.; Wang, Y.; Yang, J.; Yang, J.; Zhang, T.; Luo, S.; Wang, L.; Jiang, Y. Intra-
articular delivery of antago-miR-483-5p inhibits osteoarthritis by modulating matrilin 3 and tissue inhibitor
of metalloproteinase 2. Mol. Ther. 2017, 25, 715–727.

77. Runner, M.N. Inheritance of susceptibility to congenital deformity—Embryonic instability. J. Natl. Cancer
Inst. 1954, 15, 637–649.

78. Russell, W.L. Maternal influence on number of lumbar vertebrae in mice raised from transplanted ovaries.
Genetics 1948, 33, 627.

79. Yap, K.L.; Sysa-Shah, P.; Bolon, B.; Wu, R.-C.; Gao, M.; Herlinger, A.L.; Wang, F.; Faiola, F.; Huso, D.;
Gabrielson, K. Loss of NAC1 expression is associated with defective bony patterning in the murine
vertebral axis. PLoS ONE 2013, 8, e69099.



Paper I   49 

80. Pei, M.; Luo, J.; Chen, Q. Enhancing and maintaining chondrogenesis of synovial fibroblasts by cartilage
extracellular matrix protein matrilins. Osteoarthr. Cartil. 2008, 16, 1110–1117.

81. Aszodi, A.; Hunziker, E.B.; Brakebusch, C.; Fassler, R. Beta1 integrins regulate chondrocyte rotation, G1
progression, and cytokinesis. Genes Dev. 2003, 17, 2465–2479.

82. Prein, C.; Warmbold, N.; Farkas, Z.; Schieker, M.; Aszodi, A.; Clausen-Schaumann, H. Structural and
mechanical properties of the proliferative zone of the developing murine growth plate cartilage assessed
by atomic force microscopy. Matrix Biol. 2016, 50, 1–15.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 
article distributed under the terms and conditions of the Creative Commons Attribution 
(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 



50 

Paper II 



 International Journal of 
Molecular Sciences

Article

Aggrecan Hypomorphism Compromises
Articular Cartilage Biomechanical Properties
and Is Associated with Increased Incidence
of Spontaneous Osteoarthritis

Paolo Alberton 1,2,*, Hans Christian Dugonitsch 1, Bastian Hartmann 1,2,3 , Ping Li 1,
Zsuzsanna Farkas 1, Maximilian Michael Saller 1 , Hauke Clausen-Schaumann 2,3

and Attila Aszodi 1,2

1 Laboratory of Experimental Surgery and Regenerative Medicine, Clinic for General,
Trauma and Reconstructive Surgery, Ludwig-Maximilians University, 80336 Munich, Germany;
Hans.Dugonitsch@med.uni-muenchen.de (H.C.D.); bastian.hartmann@hm.edu (B.H.);
Ping.Li@med.uni-muenchen.de (P.L.); Zsuzsanna.Farkas@med.uni-muenchen.de (Z.F.);
Maximilian.Saller@med.uni-muenchen.de (M.M.S.); Attila.Aszodi@med.uni-muenchen.de (A.A.)

2 Center for Applied Tissue Engineering and Regenerative Medicine, Munich University of Applied Sciences,
80533 Munich, Germany; hauke.clausen-schaumann@hm.edu;

3 Center for NanoScience, Ludwig-Maximilians University Munich, 80799 Munich, Germany
* Correspondence: Paolo.Alberton@med.uni-muenchen.de; Tel.: +49-89-4400-55485

Received: 1 February 2019; Accepted: 21 February 2019; Published: 26 February 2019
����������
�������

Abstract: The gene encoding the proteoglycan aggrecan (Agc1) is abundantly expressed in cartilage
during development and adulthood, and the loss or diminished deposition of the protein results in a
wide range of skeletal malformations. Furthermore, aggrecan degradation is a hallmark of cartilage
degeneration occurring in osteoarthritis. In the present study, we investigated the consequences of a
partial loss of aggrecan in the postnatal skeleton and in the articular cartilage of adult mice. We took
advantage of the previously described Agc1tm(IRES-CreERT2) mouse line, which allows for conditional
and timely-regulated deletion of floxed, cartilage-expressed genes. As previously reported, the
introduction of the CreERT2 cassette in the 3’UTR causes a disruption of the normal expression of
Agc1 resulting in a hypomorphic deposition of the protein. In homozygous mice, we observed a
dwarf phenotype, which persisted throughout adulthood supporting the evidence that reduced
aggrecan amount impairs skeletal growth. Homozygous mice exhibited reduced proteoglycan
staining of the articular cartilage at 6 and 12 months of age, increased stiffening of the extracellular
matrix at six months, and developed severe cartilage erosion by 12 months. The osteoarthritis in the
hypomorph mice was not accompanied by increased expression of catabolic enzymes and matrix
degradation neoepitopes. These findings suggest that the degeneration found in homozygous mice is
likely due to the compromised mechanical properties of the cartilage tissue upon aggrecan reduction.

Keywords: aggrecan; articular cartilage; osteoarthritis; atomic force microscopy

1. Introduction

Osteoarthritis (OA) is a degenerative disorder of the synovial joints causing significant disability
and morbidity in the aging population. OA is the most common cause of disability in elderly with an
estimated prevalence of 10–15% of adults aged over 60. According to the United Nations, 130 million
people will suffer from OA by 2050, and among them one-third being severely disabled. Genetic and
numerous environmental risk factors (e.g., obesity, trauma, joint overuse) are responsible for the
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etiology of OA. Despite a widespread awareness of the disease, the pathogenesis of OA is not
completely understood. It is generally accepted that uncontrolled homeostasis of the extracellular
matrix (ECM) produced by chondrocytes is critical for the onset of the condition. Changes in the
composition and structural organization of cartilage ECM proteins may activate catabolic processes
degrading proteoglycans and the heterotypic collagen II/IX/XI fibrils, which in turn alter the
biomechanical properties of the tissue compromising the correct function of articular cartilage (AC),
therefore laying the foundations for the establishment of the disorder.

The large aggregating protein aggrecan is the most abundant proteoglycan of the typical
cartilaginous structures such us the growth plate and the articular cartilage (reviewed in [1,2]).
The 250 kDa aggrecan protein core is composed of three globular (G1, G2 and G3), and two interglobular
domains. The large interglobular region between the G2 and G3 domains carries about 100 chondroitin
sulphate (CS) and 30 keratan sulphate (KS) chains [3]. The high negative charge density of the CS
chains attracts counter ions and draw water molecules into the tissue, thus creating a positive osmotic
pressure which endows articular cartilage to resist compressive forces. Aggrecan molecules form
huge tertiary complexes in the cartilage ECM through interaction of the N-terminal G1 domain with
hyaluronan and link protein. The KS chains interact with fibrillar collagens [4], and the C-terminal G3
domain binds to multiple ECM proteins including tenascins and fibulins [1]. Apart from creating the
basis for the viscoelastic properties of cartilage, aggrecan–hyaluronan aggregates with their numerous
glycosaminoglycan chains are playing important roles in cell-ECM crosstalk, binding and release of
growth factors and morphogens [5,6]. In normal cartilage, aggrecan gene expression is sustained and
its protein turnover relatively rapid [7,8].

The critical importance of aggrecan for endochondral bone formation and the function of
permanent cartilage structures is demonstrated by numerous mutations identified in the gene coding
for aggrecan in both human and various animal species (reviewed in [9]). Mutations in the human
aggrecan gene (ACAN or AGC1) lead to a broad range of non-lethal skeletal dysplasia including
spondyloepimetaphyseal dysplasia (SEMD) [10], osteochondritis dissecans with early onset of OA [11],
and various short stature syndromes with accelerated bone maturation [12]. It has been recently
suggested that human aggrecanopathies are mechanistically caused by AGC1 mutations resulting
either in haploinsufficiency or disruption of the cartilage structure [9]. In animals including mice,
chicken and cattle, naturally occurring homozygous null or functional null mutations result in
embryonic lethality, while heterozygous animals display milder skeletal dysplasias [1,9]. In mice, the
cmd (cartilage matrix deficiency) and the cmd–bc deletion mutations lead to truncated aggrecan molecules
or the lack of aggrecan, respectively, and the lethal phenotype is characterized by disproportionate
dwarfism, short snout, protruding tongue and enlarged abdomen [13,14]. Heterozygous cmd/+ mice
are hypomorphic showing a reduced aggrecan mRNA level in embryonic limb cartilage (81% of the
wild type), and develop postnatal dwarfism, spinal misalignment and age-associated intervertebral
disc degeneration [15].

In modern functional genetics, generation of mouse lines which allow inducible gene deletion
is of great importance for studying gene function and generating animal models for human
disorders. Recently, the Agc1tm(IRES-CreERT2) mouse line, further referred to here as Agc1CreERT2,
has been established for inducible, conditional inactivation of genes floxed with loxP elements in
chondrocytes [16]. In this model, a transgene encoding the fusion polypeptide of the Cre recombinase
and a mutant ligand binding domain of the estrogen receptor (CreERT2) has been introduced (knocked
in) into the 3’ untranslated region (UTR) of the endogenous mouse aggrecan gene (Agc1). These mice
represent a precious tool, allowing the inducible inactivation of genes involved in cartilage degenerative
disorders in a spatially and temporally coordinated manner after tamoxifen administration [17–26].
However, we have noticed during breeding of the line in our animal facility that the homozygous
knock-in mice develop a postnatal dwarf phenotype. Indeed, it has been recently published that
Agc1CreERT2/CreERT2 mice have reduced body weight and length, and shorter endochondral bones
compared to wild type and heterozygous mice [27]. Histological analysis indicated reduced height
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of the growth plate and the articular cartilage. Further molecular and biochemical investigation
revealed that the homozygous animals express about 50% of both aggrecan mRNA and protein
in cartilage compared to the normal levels in wild type [27]. It was suggested that the decreased
Agc1 expression may have been caused by the deletion of a 760 bp region of the 3’UTR, disrupting
putative regulatory regions or by the negative effect of the targeting construct-derived pgk promoter
on the activity of the endogenous Agc1 promoter [27]. As a consequence of the disturbed skeletal
growth in Agc1CreERT2/CreERT2 mice, only heterozygous Agc1CreERT2/+ mice were suggested to be used
for conditional deletion of the floxed genes in chondrocytes [27].

In this study, we extended the analysis of the Agc1CreERT2 mice for the function of the articular
cartilage. We found that Agc1CreERT2/CreERT2 mice develop severe cartilage erosion of the knee joint at
12 months of age. Importantly, heterozygous Agc1CreERT2/+ mice also exhibited a tendency for increased
articular cartilage destruction compared with wild type animals. Applying nanoscale indentation-type
atomic force microscopy (IT-AFM) to characterize cartilage biomechanics, we demonstrated that
Agc1CreERT2/CreERT2 mice have stiffer cartilaginous ECM in the superficial, middle and deep zones of
the AC compared to control and heterozygous mice. We believe that this alteration in biomechanical
properties compromises the basic cushioning function of AC, eventually predisposing mice to develop
spontaneous OA. Thus, the Agc1CreERT2/CreERT2 mouse is a valuable model to investigate articular
cartilage degradation in dependence of aggrecan level.

2. Results

2.1. Agc1CreERT2/CreERT2 Dwarf Phenotype Persist through the Adulthood

In our breeding colony, we have observed that, after two weeks of age, both male and female
Agc1CreERT2/CreERT2 mice were consistently smaller compared to wild type confirming the previously
reported early postnatal dwarfism between one and three months [27]. We did not notice any other
gross visual abnormalities up to one year of age: the Agc1CreERT2/CreERT2 mice had apparently normal
gait and physical activity. X-ray analysis confirmed the dwarf phenotype of Agc1CreERT2/CreERT2 mice at
6 and 12 months of age without an apparent sign of spinal misalignment (Figure 1A).
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Figure 1.  Agc1CreERT2/CreERT2  mice develop dwarfism which is maintained after skeletal  maturation.
(A) representative X-ray images of  Agc1+/+,  Agc1CreERT2/+  and  Agc1CreERT2/CreERT2  mice  at  6 and 12 months of
age. (B–F) analysis of body weight (B), body length (C), L4 vertebra length (D), tibia length (E) and humerus
length (F) at 6 and 12 months of age. Bars represent the mean ± standard deviation (SD). n > Agc1+/+: 6(m)/4(f);
Agc1Cre/+: 6(m)/4(f); Agc1Cre/Cre: 6(m)/4(f) at six months; and n > Agc1+/+: 6(m)/6(f); Agc1Cre/+: 7(m)/7(f); Agc1Cre/Cre:
7(m)/5(f) at 12 months. Statistical significance calculated by one-way ANOVA where * p < 0.5; ** p < 0.01; *** p
< 0.001.
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In order to assess body parameters after the skeletal maturation, we have analyzed body weight,
body length, the length of the fourth lumbar (L4) vertebra, and the length of long bones of the
appendicular skeleton (tibia, femur and humerus) of homozygous Agc1CreERT2/CreERT2, heterozygous
Agc1CreERT2/+ and wild type Agc1+/+ animals at ages of 6 and 12 months. The body weight of both
genders was significantly lower in Agc1CreERT2/CreERT2 mice compared to Agc1+/+ mice (males: 9% and
29% reduction at 6 and 12 months, respectively; females: 18% and 27% reduction at 6 and 12 months,
respectively) (Figure 1B). Heterozygous Agc1CreERT2/+ mice showed the tendency for reduced weight,
which, however, only reached significance in 6-month-old males (7.6% reduction compared to wild
type). X-ray micrographs were used to measure the length of the body (from snout to the end of the tail),
the L4 vertebra, tibia, femur, and humerus, as characteristics for the size of the skeleton (Figure 1C,F
and not shown). The body length of both gender was significantly reduced in Agc1CreERT2/CreERT2 mice
compared to Agc1+/+ mice (males: 17% and 22% reduction at 6 and 12 months, respectively; females:
21% and 20% reduction at 6 and 12 months, respectively) (Figure 1C). Similarly, we found a statistical
significant decrease in the length of the L4 vertebra when comparing Agc1CreERT2/CreERT2 homozygous
to control mice of both sex (males: 16% and 14% reduction at 6 and 12 months, respectively; females: 9%
and 14% reduction at 6 and 12 months, respectively) (Figure 1D). Regarding long bones, the length of
the total tibia was significantly decreased in both male and female Agc1CreERT2/CreERT2 mice comparing
to Agc1+/+ mice (males: 17% and 22% reduction at 6 and 12 months, respectively; females: 21% and
20% reduction at 6 and 12 months, respectively) (Figure 1E). A similar trend was also observed in the
length of the femur (data not shown). In the forelimbs, the length of the humerus was significantly
reduced again in both male and female homozygous Agc1CreERT2/CreERT2 mice compared to controls
(males: 15% and 19% reduction at 6 and 12 months, respectively; females: 16% reduction at both 6
and 12 months) (Figure 1F). Interestingly, we found that heterozygous Agc1CreERT2/+ mice occasionally
exhibited significantly reduced skeletal parameters compared to Agc1+/+ animals: 6% decreased body
length in females at six months; 5.7% decreased body length in males at 12 months; 3.4% reduced
tibia length in 12-month-old males (Figure 1C,E). Taken together, our results indicate that the dwarf
phenotype of the Agc1CreERT2/CreERT2 mice is maintained after the end of skeletal maturation (about
four months of age) and there is no compensatory catch up during skeletal growth. It is important
to note that heterozygous Agc1CreERT2/+ mice displayed the tendency for reduced body weight, body
length and tibia length at almost all investigated postnatal stages.

2.2. Agc1CreERT2/CreERT2 Mice Are Characterized by Reduced Aggrecan Expression

As the expression level of aggrecan could crucially influence the phenotype, we have analyzed
aggrecan mRNA and protein by quantitative RT-PCR and immunohistochemistry, respectively, in all
genotypes. We have isolated total RNA from newborn rib cartilage (n = 3 for each genotype) and
performed qPCR using Agc1-specific TaqMan probe. The mRNA expression was reduced to 74% and
64% of the control in Agc1CreERT2/+ and Agc1CreERT2/CreERT2 mice, respectively, indicating that insertion
of the CreERT2 transgene into the 3´UTR affect total aggrecan gene expression in both homozygous and
heterozygous knock-in animals (Figure 2A).

Next, we performed immunohistochemical staining in knee joints of 6- and 12-month-old animals
using antibody against mouse aggrecan core protein (Figure 2B). The articular cartilage of the femur
and tibia showed strong, predominantly pericellular/territorial matrix localization of the aggrecan
protein in Agc1+/+ mice at 6 and 12 months of age. In Agc1CreERT2/CreERT2 mice, aggrecan was greatly
reduced at 6 and 12 months of age, whereas, in Agc1CreERT2/+ mice, aggrecan immunoreactivity was
comparable to wild type at six months and decreased at 12 months. As the level of aggrecan core
protein in the tissue correlates with the number of CS and KS chains, we also stained the knee joint
sections with Toluidine blue at pH = 2.5 to detect sulphated glycosaminoglycans (sGAGs) (Figure 2B).
The staining was intense in Agc1+/+ and Agc1CreERT2/+ cartilage, while the signal was reduced in
Agc1CreERT2/CreERT2 cartilage. Expression of cartilage fibril component type II collagen in the articular
cartilage was comparable in each genotype.



Paper II 56

Taken together, our expression analyses confirmed that Agc1CreERT2/CreERT2 mice are hypomorph, 
characterized by reduced Agc1 RNA expression in primary chondrocytes isolated from newborn rib 
cartilage and greatly diminished aggrecan protein deposition in adult articular cartilage. 

Agc1CreERT2/CreERT2, mice. The mean values ± SD from three independent animals of each genotype are

 with 

Figure 2. Expression of aggrecan in cartilage of mice carrying the CreERT2 transgene. (A) relative

shown; (B) sagittal sections of the knee joint were stained antibodies against aggrecan, collagen

type II, and with Toluidine blue. n = 5 mice per genotype
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2.3. Aggrecan Depletion Results in Stiffening of the Articular Cartilage

Reduced deposition of aggrecan and sulphated GAGs in the cartilage of Agc1CreERT2/CreERT2 micev 
may result in alteration of the biomechanical properties of the tissue. In order to assess this 
possibility, we applied nano-scaled indentation-type atomic force microscopy (IT-AFM) on 
native knee sections and recorded the compressive stiffness in the various zones (superficial, 
middle and deep) of the AC at six months of age (Figure 3A,B). For all measurements, we 
observed a bimodal distribution of the Young’s moduli, where the first peak (E1) on the 
histograms represents the softer proteoglycan moiety and the second peak (E2) is attributed to 
the stiffer collagen fibrils (Figure 3B) [28–30]. We found that, in the Agc1CreERT2/CreERT2 mice, both 
peaks were shifted towards 60%–80% higher values in each AC zone compared to Agc1+/+ mice 
indicating a general stiffening of the cartilage extracellular matrix. The values in wild type and 
Agc1CreERT2/CreERT2 superficial zone were E1 = 285.47/E2 = 484.61 kPa vs. E1 = 485.95 kPa/E2 = 
800.04 kPa; in the middle zone were E1 = 374.30 kPa/E2 = 673.63 kPa vs. E1 = 699.07 kPa/E2 = 1.08 
MPa; in the deep zone were E1 = 614.58 kPa/E2 = 1.01 MPa vs. E1 = 1.06 MPa/E2 = 1.84 MPa. In 
contrast, Agc1CreERT2/+ mice showed comparable stiffness values with Agc1+/+ mice, in a range of 
4% to 15% difference. All together, these data indicate that reduced amount of aggrecan in 
Agc1CreERT2/CreERT2 mice severely compromises nanomechanical properties of the matrix, making 
the articular cartilage stiffer.

Figure 3. IT-AFM reveals stiffening of articular cartilage in Agc1CreERT2/CreERT2 mice at six months of age. (A) 
Safranin Orange /Fast Green staining and an overview image of a native articular cartilage section show the 
zones assessed by IT-AFM (40× magnification); (B) histograms showing the stiffness distribution in various 
zones of the tibial plateau cartilage determined by nano-indentation (n = 3 animals in each group). On each 
histogram, the solid line represents the sum of two Gaussian functions, whereas the dashed lines indicate 
individual fits. The first and the second stiffness peaks (E1 and E2) represent the proteoglycan gel and the 
collagen fibrils, respectively. n = 3 animals per genotype
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2.4. Agc1CreERT2/CreERT2 Mice Develop Spontaneous Osteoarthritis during Aging

The development of articular cartilage deterioration was examined in control, heterozygous and homozygous 
knock-in animals at 6 and 12 months of age (Figure 4A). Safranin O-Fast Green staining on serial knee joint 
sections revealed normal or mildly affected articular cartilage at six months in each genotypes. At 12 months, all 
male Agc1CreERT2/CreERT2 mice (n = 7) showed complete degeneration of the articular cartilage with 
exposure of the subchondral bone (arrow). At this age, wild type and heterozygous Agc1CreERT2/+ mice 
frequently exhibited clefts extending into the calcified zone (arrow). Quantification of the cartilage damage 
according to the Osteoarthritis Research Society International (OARSI) histopathological recommendations 
(Figure 4B) revealed mildly decreased mean score in male Agc1CreERT2/+ mice compared to control and 
homozygous knock-in mice at six months of age. At 12 months, male but not female Agc1CreERT2/CreERT2 mice 
displayed significantly increased mean erosion score compared to wild type (males: 6.000 vs. 3.000, ** p < 0.01; 
females: 3.100 vs. 2.000). Control and heterozygous Agc1CreERT2/+ mice showed similar mean cartilage erosion 
scores (male: 3.000 vs. 3.285; female: 2.000 vs. 2.333) in both genders. However, male heterozygous 
Agc1CreERT2/+ mice had the tendency to develop more severe osteoarthritic damages exhibiting 25–50% 
erosion or complete eburnation of the AC surface. functions, whereas the dashed lines indicate individual fits. 
The first and the second stiffness peaks (E1 and E2) represent the proteoglycan gel and the collagen fibrils, 
respectively. n = 3 animals per genotype.

Figure 4. Agc1CreERT2/CreERT2 mice exhibit severe cartilage erosion at 12 months of age. (A) 
representative images of Safranin O/Fast Green stained knee articular cartilage of 6 and 12 months old 
Agc1+/+, Agc1CreERT2/+ and Agc1CreERT2/CreERT2 mice. Arrows indicate severe degeneration of the articular 
cartilage. Abbreviations: AC, articular cartilage; CZ, calcified zone; SB, subchondral bone. (B) 
quantification of spontaneous cartilage degeneration using the OARSI scoring system. Bars 
represent mean ± SD. n = Agc1+/+: 5(m)/2(f); Agc1Cre/+: 4(m)/4(f); Agc1Cre/Cre: 7(m)/2(f) at six months; and 
n = Agc1+/+: 6(m)/4(f); Agc1Cre/+: 7(m)/6(f); Agc1Cre/Cre: 7(m)/5(f) at 12 months. Statistical significance 
calculated by one-way ANOVA, where ** p < 0.01

     In order to assess the possibility that the onset of cartilage degradation in the hypomorphic mice 
was partially induced by the different cartilage volume at the load-bearing regions of the knee joint, 
we measured total articular cartilage thickness in 6-month-old animals. We found that the thickness of 
both the medial and lateral tibial plateau was slightly reduced in the hypomorphic mice compared to 
control; however, the difference was statistically not significant. At the medial plateau, the AC 
thickness was 128.94 ± 11.33 µm for wild type (n = 5 animals), 114.46 ± 15.74 µm for Agc1CreERT2/+ 

mice (n = 7) and 116.96 ± 12.92 µm for Agc1CreERT2/CreERT2 mice (n = 6). At the lateral tibial plateau, the 
AC thickness was 107.18 ± 7.65 µm for wild type, 102.43 ± 5.48 µm for Agc1CreERT2/+ mice and
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105.54 ± 10.33 µm for Agc1CreERT2/CreERT2 mice. These data indicate that articular cartilage thickness is
apparently not affected by the decreased aggrecan levels, and the thickness of the cartilage does not
contribute to cartilage degeneration in the hypomorphic mice per se.

2.5. Higher Incidence of OA in Agc1CreERT2/CreERT2 Mice Is Not Correlated with Increased AC Catabolism

The reduced amount of aggrecan and the stiffer biomechanical environment in the articular
cartilage might disturb metabolism inducing upregulation of catabolic enzymes which breakdown
the ECM. Therefore, we have analyzed the expression of several proteases, which are able to degrade
collagens or aggrecan by immunohistochemistry at 12 months of age. We found comparable expression
of Matrix Metalloproteinase-13 (MMP-13), a typical collagenase upregulated during OA, and the
aggrecanase A Disintegrin and Metalloproteinase with Thrombospondin Motifs-5 (ADAMTS-5) in
each genotype (Figure 5A). Similarly, immunostaining for MMP-3, MMP-9 and ADAMTS-4 showed
nodifference in the expression of these proteases in the articular cartilage of the Agc1CreERT2/CreERT2,
Agc1CreERT2/+ and Agc1+/+ mice (not shown). Immunostaining with the Collagen Type I and II Cleavage
(C1,2C) antibody (Figure 5A) and the Collagen Type II Cleavage (C2C) Elisa assay (Figure 5B), which
can detect collagen degradation products on tissue sections and in the urine, respectively, indicated no
difference for collagen breakdown between the genotypes. Interestingly, when we stained the articular
cartilage sections with an antibody recognizing the MMP-driven aggrecan degradation neo-epitope
VIDIPEN, we found gradually decreasing immunoreactivity in Agc1CreERT2/+ and Agc1CreERT2/CreERT2

mice compared to wild type.



Paper II 60 

Figure 5. Agc1CreERT2/CreERT2 mice develop dwarfism which is maintained after skeletal maturation. (A) 
representative X-ray images of Agc1+/+, Agc1CreERT2/+ and Agc1CreERT2/CreERT2 mice at 6 and 12 months of age. (B–F) 
analysis of body weight (B), body length (C), L4 vertebra length (D), tibia length (E) and humerus length (F) 
at 6 and 12 months of age. Bars represent the mean ± standard deviation (SD). n > Agc1+/+: 6(m)/4(f); Agc1Cre/+: 
6(m)/4(f); Agc1Cre/Cre: 6(m)/4(f) at six months; and n > Agc1+/+: 6(m)/6(f); Agc1Cre/+: 7(m)/7(f); Agc1Cre/Cre: 7(m)/5(f) 
at 12 months. Statistical significance calculated by one-way ANOVA where * p < 0.5; ** p < 0.01; *** p < 0.001.
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and permanent cartilaginous tissues. In this study, we have investigated the consequence of decreased
aggrecan expression for articular cartilage function by analyzing the hypomorphic Agc1CreERT2 mouse
line. We found that reduced aggrecan leads to increased stiffness of the articular cartilage, which in
turn results in severe age-associated osteoarthritis.

Mutations in the human aggrecan gene lead to aggrecanopathies, an increasing group of
skeletal dysplasias ranging from mild idiopathic short stature to severe chondrodysplasias [9].
Missense mutations typically found in the C-terminal G3 domain of the aggrecan core protein
are likely to disrupt interactions with other cartilage ECM proteins. The phenotypic spectrum of
these neomorphic mutations includes mild short stature with accelerated bone maturation [12];
osteochondritis dissecans with short stature and early-onset osteoarthritis [11]; and extreme short
stature with craniofacial and spinal abnormalities [10]. Heterozygous nonsense mutations accumulated
at the G1–G2 and CS1–CS2 domains introduce premature termination codon resulting in the formation
of truncated proteins or haploinsufficiency due to nonsense-mediated mRNA degradation [9,31].
These dominant mutations lead to spondyloepiphyseal dysplasia (SED) Kimberly type characterized
by proportionate short stature and severe premature osteoarthritis [32] or idiopathic short stature
associated with early-onset OA [12,33]. Null or functional null loss of function mutations in mice
(cmd, cmd–bc) [13,14], chicken (nanomelia) [34,35] or cattle (Dexter bulldog dwarfism) [36] are perinatal
lethal due to severely abnormal skeletal growth caused by the lack of aggrecan in the cartilage ECM.

Although the findings in human and other species indicate that the absence or reduction of the
aggrecan in the cartilage ECM leads to chondrodysplasias and osteoarthritis, the correlation between
the level of aggrecan expression and the clinical manifestation of the diseases is not clear. To date,
only two mouse models have been investigated in order to link aggrecan gene expression to skeletal
phenotype. The naturally occurring cartilage matrix deficiency (cmd) is caused by a 7 bp deletion in
exon 5 of Agc1 which leads to a premature stop codon in exon 6 and formation of a short, truncated
protein [13]. Homozygous (cmd/cmd) mice die at birth due to severe chondrodysplasia characterized
by a cleft palate, abnormal tracheal cartilage formation and dwarfism [13] caused by the loss of the
normal columnar structure of the growth plate [37]. Heterozygous cmd/+ mice, however, survive
and develop moderate proportional dwarfism at around one month of age. Furthermore, cmd/+ mice
exhibit misalignment of the spine at one year of age, which eventually results in premature death at
19 months due to eating difficulties [15]. In the Agc1CreERT2 mouse model, the 3´ UTR of the aggrecan
gene was disrupted by knocking in a Cre-ERT2 construct to generate an inducible, cartilage-specific
deleter mouse line [16]. Although the original publication did not describe a phenotype, it has later
been reported that Agc1CreERT2/CreERT2 mice develop dwarfism by one month of age associated with
shortening of the growth plate [27]. Now, here we show that the dwarf phenotype exists after the
end of skeletal maturation having about 10–20% smaller skeletal elements of the Agc1CreERT2/CreERT2

mice compared to wild type at 6 and 12 months of age (Figure 1). The size reduction affected both
the axial and the appendicular skeleton. Interestingly, we observed a mild, but sometimes statistically
significant, 3% to 6% reduction of the skeleton and body weight of Agc1CreERT2/+ mice indicating that
the skeletally mature heterozygous animals also exhibit a very slight dwarfism.

Insertion of an exogenous targeting construct with selection cassette into intronic or untranslated
regions of an endogenous gene could disrupt important regulatory domains, affect splicing or directly
influence promoter activity of the endogenous or neighboring genes [38–42]. The interference with the
endogenous gene activity leads to hypomorphic alleles with reduced mRNA and protein expression,
which is proved to be useful to study the effect of gene doses in various disorders [38,39,43]. It has
been previously reported that insertion of the CreERT2 targeting construct into the Agc1 gene causes
the lack of 760 bp of the 3´-UTR. This could affect RNA stability resulting in 20% and 50% reduction of
aggrecan mRNA in adult, three-month-old knee epiphyseal cartilage of heterozygous and homozygous
knock-in mice, respectively [27]. We found that Agc1 mRNA levels were reduced in newborn rib
cartilage to ~74% in Agc1CreERT2/+ mice and to 64% in Agc1CreERT2/CreERT2 mice compared to the wild
type levels (Figure 2A). These observations indicate that disruption of the 3´UTR by the transgene
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insertion causes a similar reduction of the Agc1 mRNA levels in chondrocytes regardless of the age
or location of the cartilage tissue. In the cmd model, the Agc1 mRNA in embryonic limb cartilage is
reduced to 41% in cmd/cmd mice and to 81% in cmd/+ mice [15]. Although the direct comparison
between the haploinsufficiency cmd/+ model and the hypomorph Agc1CreERT2 model is difficult due
to the different nature of the causative mutations, it is reasonable to speculate that about 25–50%
reduction in the normal Agc1 mRNA level is sufficient to generate a mild dwarf phenotype in mice.
The reduction of mRNA expression in this range affects the deposition of the aggrecan protein into the
ECM as demonstrated by 13% decreased the CS level in spinal cartilage from cmd/+ mice [15], ~50%
less aggrecan in knee joint extracts from Agc1CreERT2/CreERT2 mice [27] and the greatly reduced aggrecan
immunoreactivity in the articular cartilage of Agc1CreERT2/CreERT2 knee joints (Figure 2B).

The most dramatic phenotype we found in the adult Agc1CreERT2/CreERT2 mice is the severe
degeneration of the knee articular cartilage typical for late stage osteoarthritis (Figure 4). Since
OA was not described in aging cdm/+ mice, we hypothetise that Agc1CreERT2/CreERT2 mice have a
greater loss of aggrecan in the articular cartilage which impairs its function and eventually leads to
the complete erosion of the AC surface in males by 12 months of age. The aggrecan–hyaluronan
aggregates have a crucial role for maintaining the biomechanical properties of the articular cartilage by
immobilizing a vast amount of negative charges and generating an osmotic swelling pressure, which
provides the tissue with resistance against compressive forces [3]. Agc1CreERT2/CreERT2 mice displayed
reduced aggrecan and GAG content in the knee joint suggesting alterations in the biomechanics
of the articular cartilage. Applying nanoscale IT-AFM, we observed prominent stiffening of the
AC from Agc1CreERT2/CreERT2 mice (Figure 3B) at six months of age, when histological differences of
AC degeneration were not evident between the genotypes (Figure 4B). The increased stiffness was
detected in the superficial, middle and deep zones implying a systemic hardening of the whole
articular cartilage.

In normal cartilage, the swelling pressure is balanced by the tensile force of the collagen
network and modifying the collagen fibril-hydrated proteoglycan ratio could affect the swelling
and biomechanical properties of the tissue. Earlier studies have shown that porcine articular cartilage
incubated in hypotonic salt solution or digested with proteoglycan-degrading enzymes has increased
cartilage nanostiffness [28,44]. Accordingly, the reduced negative charge density of the sGAG chains
due to the decreased aggrecan level in the homozygous hypomorphic mice could result in reduced
tissue hydration, decreased swelling pressure and increased constraining matrix stress, which in turn
elevates cartilage stiffness. It is important to note, however, that the imbalance between osmotic
swelling pressure and the tensile forces apparently does not affect cartilage volume, as the thickness of
the tibial articular cartilage was not significantly altered in the Agc1CreERT2/CreERT2 mice.

We have previously shown that nanoscale indentation is a sensitive tool to assess cartilage
biomechanical properties of the growth plate, the articular cartilage and the intervertebral
disc [29,30,45–47]. We showed that IT-AFM depicts subtle biomechanical differences between wild
type and genetically modified mice carrying mutations, which affect the collagen network [45–47]
or the proteoglycans [30]. The method is capable of resolving the biomechanical properties of the
collagen fibrils and the entrapped proteoglycan gel resulting in a bimodal stiffness distribution on
the recorded histograms [28,29]. We observed a shift for the stiffness of both the collagens and
the proteoglycans in the Agc1CreERT2/CreERT2 mice compared to wild type and Agc1CreERT2/+ mice.
This general increase in stiffness of the major components of the cartilage matrix could lead to a
rigid AC surface, which is more susceptible for mechanical load-induced degradation. We have
previously found that mice lacking collagen IX, an essential component of the heterotypic cartilage
collagen fibrils, also display increased nanostiffness of the hip articular cartilage before obvious signs
of joint degeneration and the onset of osteoarthritis [45]. In human AC, nanostiffness is increasing by
age due to GAG loss-induced dehydration of the proteoglycan moiety [45] or stiffening of the collagen
fibrils [48] and could predispose for OA. However, disintegration of the cartilage extracellular matrix
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(e.g., the collagen meshwork) during the onset and progression of OA is accompanied by decreased
compressive stiffness in both animal models and human patients [45,49,50].

During the course of OA, usually degradation of aggrecan followed by breakdown of the collagen
network are critical steps for progressive cartilage destruction. In Agc1CreERT2/CreERT2 mice, the reduced
level of aggrecan apparently does not affect cartilage metabolism as demonstrated by the normal
expression of MMP-13, ADAMTS-5 and collagen and aggrecan degradation neoepitopes (Figure 5).
These findings suggest a physical activity-induced “wear and tear” mechanism for destruction of the
mechanically abnormal AC in the Agc1CreERT2/CreERT2 mice.

Epidemiological studies have shown that the prevalence, incidence and severity of osteoarthritis
are higher in postmenopausal women than men due to hormonal, anatomical and genetic factors [51,52].
In murine, however, sex hormones, body weight, behavior and activity differences between
genders lead to higher incidence of joint degeneration in male mice in both age-associated and
experimentally-induced osteoarthritis models [53–55]. In line with this evidence, the cartilage
destruction was more severe in male Agc1CreERT2/CreERT2 mice than in female mice implying that
physical activities (e.g., fighting) and high body weight could worsen the condition.

In summary, we have demonstrated that the hypomorphic Agc1CreERT2/CreERT2 mice develop
age-associated OA characterized by severe erosion of the articular cartilage by 12 months of age.
The phenotype was associated with stiffening of the AC, indicating that aggrecan level crucially affects
biomechanical properties of the cartilage matrix. As heterozygous mice occasionally show a tendency
for reduced length of skeletal elements and increased cartilage destruction, we advise the cartilage
field for a careful interpretation of experiments with cartilage specific-deletion of floxed genes using
the Agc1CreERT2 line. On the other hand, these hypomorphic mice are ideal models to study aggrecan
gene doses and skeletal phenotype correlation through the entire postnatal life with implications for
human aggrecanopathies.

4. Materials and Methods

4.1. Mouse Model and Husbandry

Agc1tm(IRES-CreERT2) [16] were purchased from the Jackson Laboratory (JAX stock #019148).
Upon arrival, mice were bred with 129/Sv outbred mice for at least two generations. Mice were
housed in groups of 2–4 per cage and received food and water ad libitum. They were maintained in
a temperature- and air- controlled environment, with 12 h light/dark cycle. Animals were handled
and housed according to the federal and institutional guidelines for the care and use of laboratory
animals, approved by the Central Animal Facility of the LMU Munich and the government of Upper
Bavaria (Application number: 55.2-1-54-2532-15-2016). For the sake of simplicity, control, heterozygous
and homozygous mice are denoted as Agc1+/+, Agc1CreERT2/+ and Agc1CreERT2/CreERT2, respectively.
Newborn, 6- and 12-month-old male and female mice were included in the study. Genotyping was
performed according to the Jackson Laboratory protocol. Mice were sacrificed via cervical dislocation
and tissue collection performed post mortem.

4.2. Radiography and Morphometry

X-ray images of euthanized mice were taken with a Faxitron X-ray cabinet (model 43855A) at 35 kV,
2 mA and 2 sec exposure time. Total body length (from the snout to the end of the tail) and the length of
the skeletal elements (4th lumbar vertebra, tibia, femur and humerus) were analyzed with the distance
measurement plug-in of the syngo Imaging XS-VA60B software (Siemens, Erlangen, Germany).

4.3. Sample Preparation

Hind limbs of euthanized mice were de-skinned and partially cleaned from the muscles around
the knee joints. For histology and immunohistochemistry, knee joints from the left side were fixed in
4% paraformaldehyde (PFA) in phosphate buffered saline (PBS) pH 7.4 (Sigma-Aldrich, Taufkirchen,
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Germany), overnight at 4 ◦C. The next day, samples were washed 3 times in PBS and afterwards
decalcified for approximately 4 weeks in a 20% ethylenediaminetetraacetic acid (EDTA)/PBS pH
8.0 solution (Sigma-Aldrich). Decalcified specimens were washed 3 times in PBS, then dehydrated
through an ascending row of ethanol, cleared in xylol and finally embedded in paraffin. Samples were
cut on a Rotary Microtome HM360 in 8 µm sagittal sections and placed on Superfrost plus glass slides
(Thermo Scientific, Madison, WI, USA). For AFM measurements, the correspondent right knee joints
were directly enclosed in Tissue-Tek cryomedia (Sakura, Zoeterwoude, NL, USA) on the base of plastic
disposable cassettes, and gradually frozen by transferring them on a chilled copper plate placed on
dry ice. Sagittal sections of 30 µm were cut with the aid of adhesive tape (as described in [29]) using a
Microm HM500 cyostat (Thermo Scientific) and kept at −20 ◦C until use.

4.4. Histology

For the histological examination of proteoglycan content, Toluidine blue and Safranin O/Fast
Green staining were performed. For Toluidine blue staining, tissue sections were deparaffinized,
rehydrated and incubated for 10 min in 0.1% Toluidine blue in toluidine buffer pH 2.5. Excess stain,
was adsorbed with Whatman paper and then slides were immersed in a 2% K3Fe(CN6)/dH2O solution
for 3 min. Finally, sections were directly mount with Roti-histokit (Roth, Karlsruhe, Germany).
For Safranin O/Fast Green staining a 0.5% hematoxylin staining solution (Roth) was used for 2 min
and then washed with tap water for 5 min. After dipping in 1% acetic alcohol (Merck, Darmstadt,
Germany). slides were incubated in a 0.02% fast green solution (Sigma-Aldrich) for 1 min. Next, tissue
sections were immersed in 1% acetic acid for 30 s and then a 1% Safranin O solution (Sigma-Aldrich)
was applied for 30 min. After three changes of 95% ethanol, and two of 100% ethanol, sections were
cleared in xylol and mounted with Roti-Histokit. The thickness of the tibial articular cartilage in
6-month-old animals was measured as previously described [56]. Briefly, representative micrographs
of Safranin O/Fast Green sections from the lateral and medial tibial plateau were analyzed by using
the linear measure tool of the ZEN 2.3 Lite image capturing and processing software (Carl Zeiss, Jena,
Germany). In each section, three regions of the articular cartilage extending from the surface to the
subchondral bone were measured. The mean of the three values was used to characterize the total
thickness of the articular cartilage. At least five animals of each genotype were evaluated.

4.5. Scoring of Articular Cartilage Erosion

The pathological scoring of AC has been performed on Safranin O/Fast Green stained sagittal
tissue sections. To have a full representation of the entire knee, about 10 slides, harvested at
approximately 80 µm intervals, were chosen. Slides were evaluated by two independent observers
in a blinded fashion. To assess cartilage degeneration, the OARSI scoring system was used [57].
Evaluation of articular cartilage structure comprehends eight grades as follows: 0—normal cartilage;
0.5—loss of proteoglycan stain without cartilage damage; 1—Surface fibrillations; 2—Cleft extending
just below the superficial zone; 3—Cleft/erosion to the calcified cartilage extending to < 25%
of the articular surface; 4—25–50% loss of articular surface; 5—50–75% loss of articular surface;
6—Eburnation with > 75% loss of cartilage. The means of the two independent observers of the
maximal histopathological scores obtained across the entire knee joints were presented

4.6. Immunohistochemistry

For immunohistochemistry, paraffin embedded sections were deparaffinized, rehydrated and
digested with 2 mg/mL bovine testicular hyaluronidase/PBS pH 5.0 at 37 ◦C for 30 min. Endogenous
peroxidase activity was quenched with a 0.3% H2O2/methanol solution for 30 min. Sections were
blocked with 1% bovine serum albumin/PBS for 60 min at room temperature. Afterwards, slides
were incubated overnight at 4 ◦C with the following antibodies diluted in blocking solution: aggrecan
(Millipore ab1031, 1:200, Beverly, MA, USA), collagen type II (DSHB CIICI, 5 µg/mL), MMP-13
(Sigma Aldrich MAB13424, 1:100), ADAMTS-5 (Abcam ab13976, 1:500, Cambridge, MA, USA),
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VIDIPEN (a gift of Amanda Fosang, University of Melbourne, 1:1000), and C1,2C (IBEX 50-1035, 1:400).
The next day, sections were incubated with the correspondent biotinylated secondary antibodies
and immunostained by the avidin-biotin complex (Vectastain ABC Elite kit) method or the Vector
M.O.M kit (both Vector Laboratories, Burlingame, CA, USA) and the 3,3’-diaminobenzidine (Sigma)
as chromogenic substrate. Finally, sections were counterstained with hematoxylin and mounted
with Roti-Histokit.

4.7. RNA Isolation and Quantitative RT-PCR

Total RNA was isolated from primary chondrocytes of newborn mice. Briefly, rib cages from
euthanized mice were dissected, cleaned from the attached tissues with forceps and digested
for 30 min in a solution of 2 mg/mL collagenase type 2 (Worthington, Malvern, PA, USA) in
Dulbecco’s Modified Eagle’s (DMEM)/Ham’s F12 1:1 (Thermo Fischer Scientific) supplemented with
1× penicillin/streptomycin (Biochrom, Berlin, Germany). After the first enzymatic digestion, the
perichondrium was removed and cleaned ribs were re-placed in a new collagenase solution for 3 h at
37 ◦C in a humidified incubator with 5% CO2. The obtained cell suspension was centrifuged at 500 g
for 5 min and washed with PBS. Total RNA isolation and cDNA synthesis were performed with the
Qiagen RNeasy Mini kit (Qiagen, Hilden, Germany) and the Transcriptor First-Strand cDNA Synthesis
kit (Roche, Basel, Switzerland), respectively, according to the manufacturer’s instructions. Quantitative
RT-PCR was performed using the gene specific TaqMan probes from Integrated DNA Technologies for
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) (Mm.PT.39a.1) and aggrecan (Mm.PT.58.10174685).
PrimeTime Gene Expression Master Mix, dH2O and cDNA samples were pipetted in triplicates in a
96-well plate and a PCR reaction was carried out in a LightCycler 96 thermocycler provided with the
LightCycler 96 Software (Roche). The relative gene expression is calculated against the housekeeping
gene GAPDH by the comparative ∆Ct method. Results in graph show the mean ± standard deviation
of two PCR runs from three mice per genotypes.

4.8. Atomic Force Microscopy

Nano-scale indentation-type atomic force microscopy (IT-AFM) was carried out using a JPK
NanoWizard®1 (JPK Instruments, Berlin, Germany) mounted on an inverse Axiovert 200 optical
microscope (Carl Zeiss, Jena, Germany) to enable a precise positioning of the AFM tip on the region of
interest. For measurements, silicon nitride cantilevers (MLCT, Cantilever E, Bruker) with a nominal
spring constant of 0.1 N/m and pyramidal tips with a nominal radius of 20 nm were used. All IT-AFM
measurements were carried out in PBS at pH 7.4. In order to determine the actual cantilever spring
constant, each cantilever was individually calibrated using the thermal noise method [58]. Every spring
constant determination was repeated three times and the mean value was used for data analysis. In each
cartilage zone (superficial, middle and deep) an area of 3 × 3 µm, 25 × 25 force-indentation curves
were recorded with a constant vertical tip velocity of 15 µm/s and a sampling rate of 5 kHz. For data
analysis, the JPK Data Processing Software was used (Version 6.1.102, JPK Instruments). The Young’s
modulus was extracted from the approach section of the force-indentation curves from the contact
point up to a maximum indentation depth of 500 nm, using a modified Hertz model for a pyramidal
indenter as described in [29,59]. For comparison, stiffness distributions (histograms) were calculated
for each developmental stage and genotype. Two sections per animal were scanned with a total of
3 × 625 force-indentation curves for each cartilage zone. To locate the maxima of these histograms,
a linear combination of two Gaussian distributions was fitted to each histogram using the Igor Pro
software (Version 6.3.7.2, WaveMetrics, Portland, OR, USA).

4.9. Enzyme-Linked Immunosorbent Assay

In order to detect the levels of collagen type 2 degradation products, the commercially available
Mouse Collagen Type 2 Cleavage ELISA kit (MyBioSource, MBS725817, San Diego, CA, USA) was
used according to the manufacturer instructions. Urine samples were collected from 12-month-old
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mice on the day of sacrification and kept at −80 ◦C until use. C2C levels are expressed in ng/mL
and were normalized to urinary creatinine concentration. Quantitative determination of creatinine
in urine samples was assessed with the Mouse Creatinine kit from Crystal Chem (Cat. 80350) as per
manufacturer protocol.

4.10. Statistical Analysis

Statistical significance was calculated after determination of the Gaussian distribution using
a one-way ANOVA test (GraphPad Prism, San Diego, CA, USA) with appropriate post hoc tests.
Statistical significance was assumed at a p-value of ≤ 0.05. All values represent the mean and the
standard deviation (SD). In all experiments, at least three animals were used (a list of the precise
number of animals used in each experiment is stated in figure legends).

5. Conclusions

In conclusion, our data demonstrate that Agc1CreERT2/CreERT2 mice have smaller skeleton, stiffer
articular cartilage and are prone to spontaneous, age-associated osteoarthritis owing to reduced
deposition of aggrecan in cartilage. Therefore, the homozygous Agc1CreERT2/CreERT2 mice should not
be used for conditional gene ablation experiments assessing gene function in the articular cartilage.
However, the Agc1CreERT2/CreERT2 mice could serve as valuable model for studying aggrecanopathies
caused by reduced aggrecan expression in the cartilaginous skeleton.
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