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Abstract

The capability of learning from rewards obtained by interactions with the environ-

ment is one of the key features of human intelligence. The goal of reinforcement

learning is to provide similar abilities to artificial agents. This dissertation ex-

plores state-of-the-art reinforcement learning methods and extends them to be

applicable to real-world dialog settings and sparse-reward robotic tasks. The

thesis starts by introducing the paradigm of reinforcement learning and classical

algorithmic learning approaches. Subsequently, we discuss how a dialog agent can

be trained efficiently to complete tasks by means of deep reinforcement learning

in the visually-ground dialog settings. Furthermore, we show that importance

sampling helps to increase sample-efficiency in real-world dialog systems. The

second part of the thesis focuses on developing core deep reinforcement learn-

ing approaches and evaluates them in the continuous control domain. We derive

the trajectory energy function and use it for improving the learning-efficiency

of a robotic agent. We also developed a curiosity-based experience prioritiza-

tion strategy, which improves the agent’s learning efficiency by a factor of two.

Subsequently, we derive the mathematical link between the curiosity-driven pri-

oritization framework and the maximum entropy principle. Finally, we consider

the more general case, when the external reward signal is unavailable, and we

investigate the topic of intrinsically motivated reinforcement learning and pro-

pose a novel mutual information-based state-control method. By using this novel

method, the agent is able to learn control behaviors and discover a diverse set of

control skills without hand-engineered task rewards.



Zusammenfassung

Die Fähigkeit, die durch Interaktionen mit der Umwelt erzielt werden, ist eines der

Hauptmerkmale der menschlichen Intelligenz. Das Ziel des Reinforcement Learn-

ings besteht darin, künstlichen Intelligenz ähnliche Fähigkeiten zu verleihen. In

dieser Dissertation werden die neuesten Methoden von Reinforcement Learning

untersucht und erweitert, um sie auf reale Dialogeinstellungen und Roboterauf-

gaben mit geringer Reward anzuwenden. Die Arbeit beginnt mit der Einführung

des Paradigmas des Reinforcement Learnings und klassischer algorithmischer Ler-

nansätze. Anschließend diskutieren wir, wie ein Dialogagent effizient geschult

werden kann. Darüber hinaus zeigen wir, dass wichtige Stichproben dazu beitra-

gen, die Lerneffizienz in realen Dialogsystemen zu steigern. Der zweite Teil der

Arbeit konzentriert sich auf die Entwicklung zentraler Lernansätze von Reinforce-

ment Learning und bewertet diese im Bereich der kontinuierlichen Kontrolle. Wir

leiten die Trajektorienergiefunktion ab und verwenden sie zur Verbesserung der

Lerneffizienz eines Roboteragenten. Wir haben auch eine neugierige Strategie

zur Priorisierung von Erfahrungen entwickelt, die die Lerneffizienz des Agen-

ten verbessert. Anschließend leiten wir den mathematischen Zusammenhang

zwischen dem neugierigen Priorisierungsrahmen und dem Maximum-Entropie-

Prinzip ab. Schließlich betrachten wir den allgemeineren Fall, in dem das externe

Rewardssignal nicht verfügbar ist, und untersuchen das Thema des intrinsisch

motivierten Reinforcement Learning und schlagen eine neuartige Methode zur

Mutual-Informationsbasierten Zustandskontrolle vor. Mithilfe dieser neuartigen

Methode kann der Agent Kontrollverhalten erlernen und eine Vielzahl von Kon-

trollfähigkeiten ohne handgefertigte Rewardsfunktionen entdecken.
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Chapter 1

Introduction

1.1 Reinforcement Learning

Reinforcement learning is about learning by interacting with the environment.

This learning scheme is very similar to how we as humans learn in our daily lives.

For example, in our childhood, we interacted with the environment with our

hands by playing with toys and eating food. The interactions include sequences

of actions, observations, and consequences. We can learn how to interact with

the world without an explicit teacher, only based on the rich information about

actions and their effects. Through these experiences, we also learn to achieve

goals. Learning from interactions is a common idea underlying many intelligent

organisms.

In this dissertation we explore this computation approach of learning from

interactions, mapping from observations to actions, and maximizing a numerical

reward signal. This paradigm is reinforcement learning. In reinforcement learn-

ing, the agent is not told which actions to take but must discover the actions that

lead to the maximum accumulated future reward by itself. In challenging cases,

the rewards are delayed and sparse. This is also the setting that we consider

in this dissertation, Chapter 2-7, including the real-word dialog settings and the

robotic tasks in simulations. A reinforcement learning problem is often formu-

lated as a Markov decision process. The Markov decision process includes three
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important aspects—state, action, and goal—in its simplest form. Any approach

that solves such problems can be considered as a reinforcement learning method.

Reinforcement learning is different from supervised learning. In supervised

learning, a training set with the labeled data is given. Each data point describes

the situation and the label can be seen as the action that should be taken given

the observation. The objective of supervised learning is to generalize the agent’s

responses when the situation is not presented in the dataset. Through supervised

learning, the agent learns to imitate expert behaviors but this doesn’t give an

optimal solution in many cases. Therefore, the agent must learn from its own

interactions with the environment and search for the optimal policy via the reward

signal.

Reinforcement learning is also different from unsupervised learning. In un-

supervised learning, the objective is to discover the underlying structure in the

unlabeled data. In comparison, reinforcement learning attempts to find an opti-

mal policy that maximizes a reward signal instead of finding the hidden structure

in the data. However, understanding the structure of the collected data will cer-

tainly help a reinforcement learning agent to achieve high rewards. We consider

reinforcement learning as a third machine learning paradigm, along with super-

vised learning and unsupervised learning.

One of the challenges in reinforcement learning is to find a balance between

exploration and exploitation. An agent needs to choose the optimal actions which

have led to high rewards. Concurrently, it also needs to try new actions in

order to discover better policies. The dilemma is that neither exploration nor

exploitation alone will solve the tasks. The agent must try different actions

and progressively favor these actions that lead to high rewards. Normally, in a

stochastic environment, an action has to be tried many times until the agent has a

reliable estimation of the expected accumulated future rewards. The exploration

and exploitation trade-off has been studied for many years in the reinforcement

learning literature. In Chapter 2, we study and explore such trade-off in a real-

word dialog setting.

Another key challenge in reinforcement learning is how to learn efficiently from
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the collected experience. Depending on how the experience is collected, the rein-

forcement learning methods can be classified as on-policy and off-policy methods.

On-policy means that the behavior policy used for collecting the experience is the

same at the policy that we aim to optimize. On the contrary, off-policy means

that the behavior policy used for exploration is different from the policy being

optimized. To make the on-policy reinforcement learning methods off-policy and

sample-efficient, we can use importance sampling to correct the bias introduced

by the behavior policy. We explore this direction in the dialog settings in Chap-

ter 3. Furthermore, to make the off-policy methods more sample-efficient, we can

use various prioritized sampling frameworks. We develop and evaluate a variety

of sampling strategies in Chapter 4. Chapter 5, and Chapter 6.

Beyond the traditional reinforcement learning paradigm of learning from an

external reward signal, the topic of intrinsically motivated reinforcement learning

is even more challenging and interesting. This learning paradigm is more closer

to how the human learns. For example, an infant learns to explore and interact

with the world only through its curiosity. These collected experience helps the

infant to build up its knowledge base about the world and accelerates its learning

process for achieving goals in future tasks. When there is no external reward

signal, an intrinsic reward can guide the agent to explore the environment and

learn useful interaction behaviors or skills. Later, when the task is defined, the

agent should be able to learn to solve the down-stream tasks more efficiently using

the learned behaviors or skills. In Chapter 7, we research the intrinsic motivation

for the robotic agents in manipulation and navigation tasks.

1.1.1 Reinforcement Learning Terminology

Similar to the term agent and environment, there are some other terms in rein-

forcement learning, such as a policy, a reward signal, and a value function.

A policy means the agent’s behavior at a given state. More specifically, a

policy is a mapping from a specific state or observation to the action. The policy

can be represented as a lookup table or a function. If the function is a deep neural
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network, then it is called deep reinforcement learning, which takes advantage of

using deep learning techniques. The policy is a key concept in reinforcement

learning, as it alone can define the agent’s behavior given a state. The policy can

be deterministic or stochastic.

A reward signal defines what the goal the agent should achieve. At each step,

the agent receives a scalar feedback signal from the environment, which is the

reward. For example, if the agent achieves the goal, then it receives a positive

reward, otherwise, it receives a negative reward signal. The objective of the

agent is to maximize the total reward over the trajectory. The reward defines

what events are good and what are bad, which is analog to the pleasure and pain

sensations in the human brain.

A similar but different concept is return, which means the expected accumu-

lated reward over future. Intuitively, return represents how good it looks like in

the long run. Whereas the reward defines how good it is at the current step. A

value function predicts the value of a state, which is the total reward that the

agent expected to collect over the future, starting from the current state. The

value of the state takes into account the follow-up states and their corresponding

rewards. For example, if the immediate reward of the current state is low, but

the follow-up state has a high reward, then the value of the current state could

still be high.

1.1.2 Reinforcement Learning Methods

An important reinforcement learning method based on the value functions is

temporal-difference learning. Imagine a 2D-maze environment, the goal for the

agent is to navigate from the left-bottom corner to the right-upper corner. During

learning, the agent constantly updates the value estimation for each state. The

updating mechanism “back-ups” the value of the next state after a greedy action

to the current state. In another word, the value of the current state is updated

to be closer to the value of the later state. This is done by adding a fraction of



1.1 Reinforcement Learning 5

the value difference between the current and the next state, mathematically,

V (s)← V (s) + α[r + V (s′)− V (s)], (1.1)

where we use s to denote the state and s′ to denote the next state. V (s) rep-

resents the value function of state s and α represents the step-size parameter,

which is a small positive fraction. This is an example of the temporal-difference

learning methods, which uses the value difference V (s′) − V (s) to update the

value function.

Another example of the temporal-difference learning method is Q-learning. A

Q-function Q(s, a) represents how good it is at state s and selecting the action

a. The Q-function can also be updated through temporal-difference learning, as

follows:

Q(s, a)← Q(s, a) + α[r + max
a
Q(s′, a)−Q(s, a)], (1.2)

where s denotes state; a denotes action; r denotes the immediate reward at the

current step.

Another class of reinforcement learning method is called policy gradient,

which learns directly a mapping from states to actions instead of learning a value

function or a Q-function. An example of policy gradient methods, REINFORCE

or Monte Carlo policy gradient, is introduced in this Chapter, Section 1.2.2. Pol-

icy gradient and value or Q-functions can be combined, which results in a new

class of reinforcement learning methods, namely Actor-Critic methods. The Ac-

tor means the policy and the Critic means the value function or the Q-function.

For instance, the actor is trained to maximize the value estimation from the

critic. An example of the actor-critic methods, Deep Deterministic Policy Gra-

dient (DDPG), is introduced in this Chapter, Section 1.3.1.

In the following sections, I will introduce deep reinforcement learning methods

that I used in dialog systems and robotic tasks, including some baseline methods

and the method that I newly developed.
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1.2 Deep Reinforcement Learning of Dialogues

A cognitive dialog system consists of a visual perception module and a language

processing module [Das et al., 2017a, de Vries et al., 2017]. The visual perception

module is represented by a Convolution Neural Network (CNN) [LeCun et al.,

1998, Simonyan and Zisserman, 2014] and the language processing module is

modeled with a Recurrent Neural Network (RNN) [Hochreiter and Schmidhuber,

1997, Graves et al., 2013].

1.2.1 Deep Neural Networks

A CNN simulates human visual system and extracts a hierarchy of features from

the image input [Zeiler and Fergus, 2014]. An RNN mimics the human lan-

guage competence and models the inter-correlations among phrases in a sen-

tence [Karpathy et al., 2015]. With the CNN and RNN, a dialog agent can

process image and text inputs and results into two fixed-length latent represen-

tations [Das et al., 2017a, de Vries et al., 2017]. A full-connected layer combines

these two kinds of representations and transforms them into a fixed-length latent

representation. With deep neural networks, raw image and text inputs can be

encoded into more structured latent representations.

Based on RNNs, a Memory Network utilizes multiple RNN heads to process

the dialog sequence in parallel [Weston et al., 2014, Sukhbaatar et al., 2015, Tresp

et al., 2015]. Each head processes a different question-answer pair. The processed

the information is stored into a memory bank. An attention mechanism helps

to query the memory bank for a given key [Mnih et al., 2014, Xu et al., 2015].

An attention mask is generated based on the input key and then acts over the

memory bank and emphasizes on the most relevant information.

An RNN decoder is trained to generate a sentence word by word via unrolling

over time, given a context representation [Sutskever et al., 2014, Das et al., 2017a].

The context information comes from the raw images and/or the history dialogs,

which are processed by deep neural nets. The RNN decoder can be trained with a

maximum likelihood objective to match the distribution of a given dataset [Mur-
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Figure 1.1: Deep neural nets-based dialog models: Here are two examples
of the dialog models used in Chapter 2 “Learning goal-oriented visual dialog via
tempered policy gradient”.

phy, 2012]. The RNN decoder can also be trained via reinforcement learning,

such as policy gradient, to shape the policy for maximizing the future accumu-

lated rewards [Strub et al., 2017, Sutton and Barto, 2018]. An example of the

dialog system, including the memory network [Weston et al., 2014], the atten-

tion mechanism [Xu et al., 2015], and the sequence-to-sequence encoder-decoder

model [Sutskever et al., 2014] is shown in Figure 1.1.

1.2.2 Policy Gradient

Compared to imitating human utterances, directly maximizing the task complete

rate with reinforcement learning has a better performance [Strub et al., 2017,

Zhao and Tresp, 2018d]. A standard policy gradient method used widely in

the dialog setting is the Monte Carlo Policy Gradient (REINFORCE) [Williams,

1992, Das et al., 2017a, Strub et al., 2017, Zhao and Tresp, 2018d]. It is a

weight update rule that makes weight adjustments to the agent in the direction

of the estimated gradient of expected reward signals E(r | w). The REINFORCE

updating rule is:

∆wi = αi(r − bi)∂lnf/∂wi, (1.3)

where ∆wi denotes the weight adjustment of weight wi, αi is a nonnegative

learning rate factor, and bi is a reinforcement baseline [Williams, 1992].

The particular task we are addressing in Chapter 2 “Learning goal-oriented

visual dialog via tempered policy gradient” and Chapter 3 “Efficient Dialog Pol-

icy Learning via Positive Memory Retention” is to efficiently train goal-oriented
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dialogue agents, which generate words per time-step to formulate complete sen-

tences in order to achieve a goal.

1.2.3 Tempered Policy Gradient

In this section, I introduce the work in paper “Learning Goal-Oriented Visual

Dialog via Tempered Policy Gradient” [Zhao and Tresp, 2018d], included in

Chapter 2. The previous works on visual dialog policy learning use behavior

clone [Strub and de Vries, 2017] and vanilla policy gradient [Strub et al., 2017].

To improve the current dialog agents, we made two contributions in Chapter 2

“Learning Goal-Oriented Visual Dialog via Tempered Policy Gradient”.

The first contribution is using the advanced RNN structures, including the

memory networks [Weston et al., 2014] with attention [Xu et al., 2015], and the

sequence-to-sequence model [Sutskever et al., 2014], as shown in Figure 1.1.

The second contribution is the development of the Tempered Policy Gra-

dient methods, which improves the exploration of the dialog agents. In general,

we use a parameter τ , the sampling temperature of the probabilistic language

model, which allows us to explicitly control the strengths of the exploration.

We use the temperature parameter τ ≥ 0 to adjust the language model to be

more conservative or more diversified to achieve exploitation or exploration. The

output probability of each word is parameterized by a temperature scalar as:

f τ (y = n | π(x | w)) =
f(y = n | π(x | w))

1
τ

ΣN
m=1f(y = m | π(x | w))

1
τ

. (1.4)

We use notation f τ to denote a probability mass function f that is parameterized

by a temperature scalar τ . When the temperature is high, τ > 1, the distribution

becomes more uniform; when the temperature is low, τ < 1, the distribution

appears more spiky. We improve the sampling strategy during exploration based

on the term frequency inverse document frequency. The essential idea is that we

use a heuristic function h to assign the temperature τ to the word distribution at

each time step, t. The temperature is bounded in a predefined range [τmin, τmax].
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The heuristic function we used here is based upon the term frequency inverse

document frequency, tf-idf [Leskovec et al., 2014]. In the context of goal-oriented

dialogues, we use the counted number of each word as term frequency tf and the

total number of generated dialogues during training as document frequency df.

We use the word that has the highest probability to be sampled at current time-

step, y∗t , as the input to the heuristic function h. Here, y∗t is the maximizer of the

probability mass function f , which is defined as y∗t = argmax(f(π(x | w))). We

propose that tf-idf(y∗t ) approximates the concentration level of the distribution,

which means that if the same word is always sampled from a distribution, then

the distribution is very concentrated. Too much concentration prevents the model

from exploration, so that a higher temperature is needed. In order to achieve this

effect, the heuristic function is defined as

τht = h(tf-idf(y∗t )) = τmin + (τmax − τmin)
tf-idf(y∗t )− tf-idfmin
tf-idfmax − tf-idfmin

. (1.5)

With this heuristic, words that occur very often are depressed by applying a

higher temperature to those words, making them less likely to be selected in the

near future. In the forward pass, a word is sampled using yτ
h
t ∼ f τ

h
t (π(x | w)).

In the backward pass, the weights are updated correspondingly:

∆wi = αi(r − bi)∂lnf(yτ
h
t | π(x | w))/∂wi, (1.6)

where τht is the temperature calculated from the heuristic function.

In experiments, we found that Tempered Policy Gradient improving the per-

formance as well as helping to produce diverse utterances, see Table 1.1. Tem-

pered Policy Gradient is a generic strategy to encourage word exploration on top

of policy gradients and can be applied to any dialog agents. For more details

about the method, please refer to Chapter 2 “Learning Goal-Oriented Visual

Dialog via Tempered Policy Gradient”.
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Image Policy Gradient Tempered Policy Gradient

Is it in left? No

Is it in front? No

Is it in right? Yes

Is it in middle? Yes

Is it person? No

Is it ball? No

Is it bat? No

Is it car? Yes

Status: Failure

Is it a person? No

Is it a vehicle? Yes

Is it a truck? Yes

Is it in front of photo? No

In the left half? No

In the middle of photo? Yes

Is it to the right photo? Yes

Is it in the middle of photo? Yes

Status: Success

Is it in left? No

Is it in front? Yes

Is it in right? No

Is it in middle? Yes

Is it person? No

Is it giraffe? Yes

Is in middle? Yes

Is in middle? Yes

Status: Failure

Is it a giraffe? Yes

In front of photo? Yes

In the left half? Yes

Is it in the middle of photo? Yes

Is it to the left of photo? Yes

Is it to the right photo? No

In the left in photo? No

In the middle of photo? Yes

Status: Success

Table 1.1: Some samples generated by our improved models using REINFORCE
(left column: “Policy Gradient”) and Dynamic-TPG (right column: “Tempered
Policy Gradient”). The green bounding boxes highlight the target objects; the
red boxes highlight the wrong guesses.

1.2.4 Positive Memory Retention

In this section, I introduce the work in paper “Efficient Dialog Policy Learning

via Positive Memory Retention” [Zhao and Tresp, 2018a], included in Chapter 3.

In Chapter 3, we research on improving the sample-efficiency of a dialog agent.

A recent neuroscience literature [Gruber et al., 2016] concludes that in human

memory retention, focusing on rewarded events has been discovered to be a pre-

ferred strategy in the post-learning phase happening in the hippocampus area

of the brain. Additionally, Tresp et al. [2015] argue that the brain’s memory

functions might inspire technical solutions requiring memory traces.

We believe that this fact also intuitively applies to RL since non-rewarded

trajectories do not contribute directly to the estimated gradient to increase the
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expected return, since the return of the trajectory is zero. The high efficiency

of positive memory retention can also be derived from Importance Sampling

(IS) [Murphy, 2012]. Consider that the expectation we want to estimate is the

expected return E[R(τ)], where τ represents the trajectory. Motivated by the

concept of importance sampling, to estimate the expected return E[R(τ)], it is

more efficient to sample from q(τ) ∝ R(τ)p(τ) than to sample from p(τ).

In order to reuse the past positive trajectories in the memory, we need to

correct the bias introduced by using samples from the proposal distribution, i.e.

the behavior policy. As a second application of importance sampling, we can

sample from a behavior policy and then simply re-weight the samples to obtain

an unbiased estimate [Jie and Abbeel, 2010]. We can estimate the expected return

of a target policy p(τ (i)|πθ) as:

Ĵ(θ) =
1

n

n∑

i=1

ω(τ (i))R(τ (i)), with τ (i) ∼ q and ω(τ (i)) =
p(τ (i)|πθ)
q(τ (i)|πθ′)

=

∏T
t=1 πθ(at|st)∏T
t=1 πθ′(at|st)

where n is the number of trajectories used to estimate the expected return J(θ) =

E[R(τ)|πθ] and
∏T

t=1 πθ(at|st) needs to be calculated from the target policy, and
∏T

t=1 πθ′(at|st) has already been calculated from the behavior policy. Therefore,

the importance weighted policy gradient is:

∇θĴ(θ) = ∇θEq [ω(τ)(R(τ)− b)logπθ(at|st)] . (1.7)

This estimator is unbiased, but it suffers from very high variances because it

involves a product of a series of unbounded importance weights. To prevent the

importance weight from exploding, we select to use the samples that are not far

from the target policy.

Through literature [Murphy, 2012], we know that Kullback–Leibler divergence

is used to measure the dissimilarity of two probability distributions p and q:

KL(p ‖ q) ≈∑K
k=1 pklog pk

qk
. However, KL-divergence is asymmetric, so it cannot

directly be used as a distance. To evaluate the distance, we use a symmetric
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# Question Answer
1 Is it 2 in the image? No
2 Is it in a yellow background? No
3 Is it 9 in the image? Yes
4 Is it in a white background? Yes
5 Is it a stroke style digit? Yes
6 Is it a digit in blue? No

Guess: row 1 column 3 4

Figure 1.2: MNIST GuessNumber dataset example: Each sample con-
sists of an image (left), a set of sequential questions with answers (right), and
a target digit. The goal of this game is to find out the target digit by a multi-
round question-answering. The dataset is available at https://github.com/

ruizhaogit/MNIST-GuessNumber

version of the KL-divergence, i.e. the Jensen-Shannon divergence [Lin, 1991]:

JS(p, q) = 0.5KL(p ‖ 0.5(p+ q)) + 0.5KL(q ‖ 0.5(p+ q)). (1.8)

We now derive a formulation of the JS-divergence, as a distance metric, which is

related to the importance weight ω:

JS(p, q) ≈ 0.5
K∑

k=1

pklog
2

1 + ωk
+ 0.5

K∑

k=1

qklog
2

1
ωk

+ 1
(1.9)

We can see that the distance between the proposal distribution q and the op-

timal solution p depends on both ωk and 1/ωk. To limit the variance of the

importance sampling, we limit the importance weight as ωk ≤ ωmax and its in-

verse as 1/ωk ≤ ωmax. Subsequently, we define a trust region of importance

weights, ωk ∈ [1/ωmax, ωmax] and only use trajectories whose importance weights

fall within this range. This stabilizes the training. Similar to this Bounded Im-

portance Weight Proposal, we propose to use several other tricks to stabilize the

training, such as Probability Updating and Policy Search via Early Stopping, for

more detail see Chapter 3 “Efficient Dialog Policy Learning via Positive Memory

Retention”.

To test the proposed method, we synthesize a visual dialog dataset based on

https://github.com/ruizhaogit/MNIST-GuessNumber
https://github.com/ruizhaogit/MNIST-GuessNumber


1.3 Deep Reinforcement Learning for Robotics 13

MNIST, named MNIST GuessNumber, see Figure 1.2. On this synthetic dataset,

we run the ablation study of each module. Afterwards, we show that with positive

memory retention, the sample-efficiency is improved by a factor of two in both

the synthetic dataset and the real-world dataset.

The main contribution of Chapter 3 is that we show that our proposed

mechanisms permit an efficient reuse of past samples in on-policy policy gra-

dients methods. These extensions also work well in dialog settings, which are

challenging due to the sparse reward and the large action space. For more de-

tailed information, please refer to Chapter 3 “Efficient Dialog Policy Learning

via Positive Memory Retention”.

1.3 Deep Reinforcement Learning for Robotics

In this section, we are more focused on the core reinforcement learning design

and evaluate the developed methods in the continuous control domain. First, we

will briefly introduce the baseline methods, including Deep Deterministic Policy

Gradient [Lillicrap et al., 2016] in Section 1.3.1 and Hindsight Experience Re-

play [Andrychowicz et al., 2017] in Section 1.3.2. Then, we will dive into the

newly developed reinforcement learning frameworks in Section 1.3.3, 1.3.4, 1.3.5,

and 1.3.6. Some of these works draw inspirations from the cognitive neuro-

science [Gazzaniga et al., 2006, Sansone and Harackiewicz, 2000, Gruber et al.,

2014], such as the curiosity-driven experience prioritization framework in Sec-

tion 1.3.4, which is also proven to connect to the maximum entropy principle in

Section 1.3.5. Furthermore, we design an internal drive for reinforcement learning

agents based on the mutual information in Section 1.3.6, to enable the agent to

learn meaningful behaviors.

1.3.1 Deep Deterministic Policy Gradient

First of all, we consider the robotic tasks, shown in Figure 1.3, as Markov Decision

Processes (MDP). We assume the environment is fully observable, including a set
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Figure 1.3: Robot arm Fetch and Shadow Dexterous hand environment in Ope-
nAI Gym: FetchPush, FetchPickAndPlace, FetchSlide, HandManipulateEgg,
HandManipulateBlock, and HandManipulatePen.

of state S, a set of action A, a distribution of initial states p(s0), transition prob-

abilities p(st+1|st, at), a reward function r: S×A → R, and also a discount factor

γ ∈ [0, 1]. These components formulate a Markov decision process represented as

a tuple, (S,A, p, r, γ). A policy π maps a state to an action, π : S → A.

For each episode, an initial state s0 is sampled from the distribution p(s0).

At each timestep t, an agent performs an action at at the current state st, which

follows a policy at = π(st). Afterwards, a reward rt = r(st, at) is produced by the

environment and the next state st+1 is sampled from the distribution p(·|st, at).
The reward might be discounted by a factor γ at each timestep. The goal of the

agent is to maximize the accumulated reward, Rt =
∑∞

i=t γ
i−tri, over all episodes,

which is equivalent to maximizing the expected return, Es0 [R0|s0].

The objective Es0 [R0|s0] can be maximized using temporal difference learn-

ing, policy gradients, or the combination of both, i.e. the actor-critic methods

[Sutton and Barto, 2018]. For continuous control tasks, Deep Deterministic

Policy Gradient (DDPG) shows promising performance, which is essentially an

off-policy actor-critic method [Lillicrap et al., 2016]. DDPG has an actor net-

work, π : S → A, that learns the policy directly. It also has a critic network,

Q : S ×A → R, that learns the action-value function, i.e. Q-function Qπ. During

training, the actor network uses a behavior policy to explore the environment,

which is the target policy plus some noise, πb = π(s) + N (0, 1). The critic is

trained using temporal difference learning with the actions produced by the ac-

tor: yt = rt + γQ(st+1, π(st+1)). The actor is trained using policy gradients by

descending on the gradients of the loss function, La = −Es[Q(s, π(s))], where

s is sampled from the replay buffer. For stability reasons, the target yt for the

actor is usually calculated using a separate network, i.e. an averaged version of
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the previous Q-function networks [Mnih et al., 2015, Lillicrap et al., 2016, Polyak

and Juditsky, 1992]. The parameters of the actor and critic are updated using

backpropagation.

1.3.2 Hindsight Experience Replay

For multi-goal continuous control tasks, DDPG can be extended with Universal

Value Function Approximators (UVFA) [Schaul et al., 2015]. UVFA essentially

generalizes the Q-function to multiple goal states g ∈ G. For the critic network,

the Q-value depends not only on the state-action pairs, but also depends on the

goals: Qπ(st, at, g) = E[Rt|st, at, g].

For robotic tasks, if the goal is challenging and the reward is sparse, then the

agent could perform badly for a long time before learning anything. Hindsight

Experience Replay (HER) encourages the agent to learn something instead of

nothing. During exploration, the agent samples some trajectories conditioned on

the real goal g. The main idea of HER is that during replay, the selected tran-

sitions are substituted with achieved goals g′ instead of the real goals. In this

way, the agent could get a sufficient amount of reward signal to begin learning.

Andrychowicz et al. [2017] show that HER makes training possible in challeng-

ing robotic environments. However, the episodes are uniformly sampled in the

replay buffer, and subsequently, the virtual goals are sampled from the episodes.

More sophisticated replay strategies are requested for improving sample-efficiency

[Plappert et al., 2018].

1.3.3 Energy-based Hindsight Experience Prioritization

In this section, I introduce the work in paper “Energy-based Hindsight Experience

Prioritization” [Zhao and Tresp, 2018b], included in Chapter 4. Prior to the

energy-based hindsight experience prioritization method, we illustrate here the

work-energy principle using robotic manipulation examples. In physics, a force is

said to do work if, when acting, there is a displacement of the point of application

in the direction of the force [Tipler and Mosca, 2007]. For instance, a robot arm
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picks up an object from the floor, and places it on the shelf. The work done on

the object is equal to the weight of the object multiplied by the vertical distance

to the floor. As a result, the potential energy of the object becomes higher.

The work-energy principle states that the work done by all forces acting on

a particle equals the change in the kinetic energy of the particle [Meriam and

Kraige, 2012]. That is, the work W done by a force on an object (simplified as a

particle) equals the change in the object’s kinetic energy Ek [Young et al., 2006],

W = ∆Ek = 1
2
mv2

2 − 1
2
mv2

1, where v1 and v2 are the speeds of the object before

and after the work is done, respectively, and m is its mass. As the robot arm is

moving the object towards the shelf, the work is being done by the robot on the

object. Consequently, the kinetic energy of the object increases.

Consider a robotic manipulation task. We observe that in order to complete

the tasks, the robot needs to apply force and do work on the object. Typically, the

more difficult a task is, the more work from the robot is required. Consequently,

the energy of the object is changed by the robot. Thus, our hypothesis is that,

in robotic manipulation tasks, the trajectory energy of the object indicates the

difficulty level of the tasks.

From the perspective of curriculum learning, we want to assign the right level

of curriculum to the agent. The curriculum should not be too difficult to achieve,

also not too simple to learn. We use the trajectory energy to evaluate the difficulty

level of the curriculum, and then prioritize the difficult but still achievable tasks

for the agent. In this way, the agent might learn with higher sample-efficiency. In

robotic tasks, training samples are expensive to acquire, making sample-efficiency

in learning important.

Now, we formally introduce the trajectory energy function. First, the total

energy of a state st includes the potential energy, the kinetic energy, and the

rotation energy: E(st) = Ep(st) + Ek(st) + Er(st).

We define the transition energy as the total energy increase from the previous

state st−1 to the current state st: Etran(st−1, st) = clip (E(st)− E(st−1), 0, Emax
tran) ,

where t ≥ 1 and Emax
tran is the predefined maximal transition energy value. The clip

function limits the transition energy value in an interval of [0, Emax
tran ]. Here, we
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are only interested in the positive transition energy because the energy increase

of the object is only due to the work done by the robot. The robot does work on

the object, consequently, the total energy of the object increases. In practice, to

mitigate the influence of some particular large transition energy, we find it useful

to clip the transition energy with a threshold value Emax
tran .

Given the definition of the transition energy, we define the trajectory en-

ergy as the sum of the transition energy over all the timesteps in the trajectory,

mathematically: Etraj(T ) = Etraj(s0, s1, ..., sT ) =
∑T

t=1Etran(st−1, st)

During experience replay, the agent uses the trajectory energy values directly

as the probability for sampling. This means that the high energy trajectories have

higher priorities to be replayed. Mathematically, the probability of a trajectory

Ti to be replayed after the prioritization is: p(Ti) = Etraj(Ti)/
∑N

n=1Etraj(Tn)

where N is the total number of trajectories in the buffer.

The main contribution here is the invention of the energy-based prioritiza-

tion framework. Our empirical results show that our proposed method surpasses

state-of-the-art approaches in terms of both performance and sample-efficiency

on different robotic tasks, without increasing computational time. We also find

that the trajectory energy is correlated with the TD-errors during training. For

more details, please refer to Chapter 4 “Energy-based hindsight experience pri-

oritization”.

1.3.4 Curiosity-driven Experience Prioritization

In this section, I introduce the work in paper “Curiosity-Driven Experience Prior-

itization via Density Estimation” [Zhao and Tresp, 2019], included in Chapter 5.

Moving further with the energy-based prioritization approach, we think about

that how can we enable the agent to self-learn to prioritize the experiences. The

recent neuroscience research [Gruber et al., 2014] has shown that curiosity can

enhance learning. They discovered that when curiosity motivated learning was

activated, there was increased activity in the hippocampus, a brain region that

is important for human memory. During memory replay, people are more cu-
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rious about the episodes that are relatively different and focus more on those.

This curiosity mechanism could help a reinforcement learning agent learn more

efficiently.

Therefore, we propose the curiosity-driven prioritization framework. In a nut-

shell, we first estimate the density of each trajectory according to its achieved

goal states, then prioritize the trajectories with lower density for replay. We es-

timate the distribution of the data in the replay buffer using a density model,

such as a Gaussian Mixture Model (GMM). The density model fits on the data

in the memory buffer every epoch and refreshes the density for each trajectory in

the buffer. ρ = GMM(T ) =
∑K

k=1 ckN (T |µk,Σk) where T = (s0‖s1‖...‖sT ) and

each trajectory T has the same length. The symbol ‖ denotes concatenation. We

normalize the trajectory densities using ρi = ρi/
∑N

n=1 ρn where N is the number

of trajectories in the memory buffer. Now the density ρ is between zero and

one, i.e. 0 ≤ ρ ≤ 1, After calculating the trajectory density, the agent stores the

density value along with the trajectory in the memory buffer for later prioritiza-

tion. During replay, the agent puts more focus on the under-represented achieved

states and prioritizes the according trajectories. We defined the complementary

trajectory density as: ρ̄ ∝ 1 − ρ. When the agent replays the samples, it first

ranks all the trajectories with respect to their complementary density values ρ̄,

and then uses the ranking number (starting from zero) directly as the probability

for sampling. Mathematically, the probability of a trajectory to be replayed after

the prioritization is: p(Ti) = rank(ρ̄(Ti))/
∑N

n=1 rank((ρ̄(Tn)) where N is the total

number of trajectories in the buffer, and rank(·) ∈ {0, 1, ..., N − 1}.
The main contribution here is the development of the curiosity-driven pri-

oritization framework. Compared to the energy-based approach, the curiosity-

based variant learns to estimate the distribution of the trajectories in the re-

play buffer and prioritize these rare trajectories by itself. However, this learning

process does take more computational time in comparison to the energy-based

approach. This curiosity-based method also improve the final performance and

the sample-efficiency and could be applied to a wider range of tasks. For more

details, please refer to Chapter 5 “Curiosity-Driven Experience Prioritization via
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Density Estimation”.

1.3.5 Maximum Goal Entropy Reinforcement Learning

In this section, I introduce the work in paper “Maximum Entropy-Regularized

Multi-Goal Reinforcement Learning” [Zhao et al., 2019], included in Chapter 6.

Take a deeper look at the curiosity-driven prioritization framework, we derive

a connection to the maximum entropy principle in the Multi-Goal Reinforcement

Learning settings. In Multi-Goal Reinforcement Learning, an agent learns to

achieve multiple goals with a goal-conditioned policy. During learning, the agent

first collects the trajectories into a replay buffer, and later these trajectories are

selected randomly for replay. However, the achieved goals in the replay buffer are

often biased towards the behavior policies. From a Bayesian perspective, when

there is no prior knowledge about the target goal distribution, the agent should

learn uniformly from diverse achieved goals. Therefore, we first propose a novel

multi-goal RL objective based on weighted entropy.

We want to encourage the agent to traverse diverse goal-state trajectories,

and at the same time, maximize the expected return. This is like maximizing the

empowerment [Mohamed and Rezende, 2015] of an agent attempting to achieve

multiple goals. We propose the reward-weighted entropy objective for multi-goal

RL, which is given as

ηH(θ) = Hw
p (T g) = Ep

[
log

1

p(τ g)

T∑

t=1

r(St, G
e) | θ

]
. (1.10)

For simplicity, we use p(τ g) to represent
∑

ge pR(τ g, ge | θ), which is the oc-

currence probability of the goal-state trajectory τ g. The expectation is calculated

based on p(τ g) as well, so the proposed objective is the weighted entropy [Guiaşu,

1971, Kelbert et al., 2017] of τ g, which we denote as Hw
p (T g), where the weight

w is the accumulated reward
∑T

t=1 r(st, g
e) in our case.

The objective function, Equation (1.10), has two interpretations. The first in-

terpretation is to maximize the weighted expected return, where the rare trajec-
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tories have larger weights. Note that when all trajectories occur uniformly, this

weighting mechanism has no effect. The second interpretation is to maximize

a reward-weighted entropy, where the more rewarded trajectories have higher

weights. This objective encourages the agent to learn how to achieve diverse

goal-states, as well as to maximize the expected return.

In Equation (1.10), the weight, log (1/p(τ g)), is unbounded, which makes the

training of the universal function approximator unstable. Therefore, we propose

a safe surrogate objective, ηL, which is essentially a lower bound of the original

objective. To construct the safe surrogate objective, we sample the trajectories

from the replay buffer with a proposal distribution, q(τ g) = 1
Z
p(τ g) (1− p(τ g)).

p(τ g) represents the distribution of the goal trajectories in the replay buffer. The

surrogate objective is given in Theorem 1, which is proved to be a lower bound

of the original objective, Equation (1.10).

Theorem 1. The surrogate ηL(θ) is a lower bound of the objective function

ηH(θ), i.e., ηL(θ) < ηH(θ), where

ηH(θ) = Hw
p (T g) = Ep

[
log

1

p(τ g)

T∑

t=1

r(St, G
e) | θ

]
(1.11)

ηL(θ) = Z · Eq
[

T∑

t=1

r(St, G
e) | θ

]
where q(τ g) =

1

Z
p(τ g) (1− p(τ g)) (1.12)

Z is the normalization factor for q(τ g). Hw
p (T g) is the weighted entropy [Guiaşu,

1971, Kelbert et al., 2017], where the weight is the return
∑T

t=1 r(St, G
e).

Proof. See the appendix of Chapter 6 “Maximum Entropy-Regularized Multi-

Goal Reinforcement Learning”.

To optimize the surrogate objective, Equation (1.12), we cast the optimiza-

tion process into a prioritized sampling framework, which is very similar to the

curiosity-driven prioritization in Section 1.3.4. We name this as the Maximum

Entropy-based Prioritization (MEP) and summarize the process in Figure 1.4.
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Figure 1.4: MEP Algorithm: We update the density model to construct a
higher entropy distribution of achieved goals and update the agent with the more
diversified training distribution.

At each iteration, we first construct the proposal distribution q(τ g), which

has a higher entropy than p(τ g). This ensures that the agent learns from a more

diverse goal-state distribution. In Theorem 2, we prove that the entropy with

respect to q(τ g) is higher than the entropy with respect to p(τ g).

Theorem 2. Let the probability density function of goals in the replay buffer be

p(τ g),where p(τ gi ) ∈ (0, 1) and
N∑

i=1

p(τ gi ) = 1. (1.13)

Let the proposal probability density function be defined as

q(τ gi ) =
1

Z
p(τ gi ) (1− p(τ gi )) , where

N∑

i=1

q(τ gi ) = 1. (1.14)

Then, the proposal goal distribution has an equal or higher entropy

Hq(T g)−Hp(T g) ≥ 0. (1.15)

Proof. See the appendix of Chapter 6 “Maximum Entropy-Regularized Multi-

Goal Reinforcement Learning”.

To optimize the surrogate objective with prioritized sampling, we need to

know the probability distribution of a goal-state trajectory p(τ g). We use a
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Latent Variable Model (LVM) [Murphy, 2012] to model the underlying distribu-

tion of p(τ g), since LVM is suitable for modeling complex distributions. Specif-

ically, we use p(τ g | zk) to denote the latent-variable-conditioned goal-state

trajectory distribution, which we assume to be Gaussians. zk is the k-th la-

tent variable, where k ∈ {1, ..., K} and K is the number of the latent vari-

ables. The resulting model is a Mixture of Gaussians(MoG), mathematically,

p(τ g | φ) = 1
Z

∑K
i=k ckN (τ g|µk,Σk), where each Gaussian, N (τ g|µk,Σk), has its

own mean µk and covariance Σk, ck represents the mixing coefficients, and Z is

the partition function. The model parameter φ includes all mean µi, covariance

Σi, and mixing coefficients ck.

In prioritized sampling, we use the complementary predictive density of a goal-

state trajectory τ g as the priority, which is given as p̄(τ g | φ) ∝ 1 − p(τ g | φ).

The complementary density describes the likelihood that a goal-state trajectory

τ g occurs in the replay buffer. A high complementary density corresponds to

a rare occurrence of the goal trajectory. We use the complementary density

to construct the proposal distribution as a joint distribution q(τ g) ∝ p̄(τ g |
φ)p(τ g) ∝ (1 − p(τ g | φ))p(τ g). With prioritized sampling, the agent learns to

maximize the return of a more diverse goal distribution.

The main contribution here is the derivation of the mathematical connec-

tion between a proposed maximum-entropy regularized multi-goal RL objective

and the developed prioritization framework. The Maximum Entropy-based Pri-

oritization method improves both the final performance and the sample-efficiency

and is applicable to any multi-goal RL agents. For more details, please refer to

Chapter 6 “Maximum Entropy-Regularized Multi-Goal Reinforcement Learning”.

1.3.6 Mutual Information-based State-Control

In this section, I introduce the work in paper “Mutual Information-based State-

Control for Intrinsically Motivated Reinforcement Learning” [Zhao et al., 2020],

included in Chapter 7.

In psychology [Sansone and Harackiewicz, 2000], behavior is considered in-
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trinsically motivated when it originates from an internal drive. An intrinsic mo-

tivation is essential to develop behaviors required for accomplishing a broad range

of tasks rather than solving a specific problem guided by an external reward.

Motivated by the idea that an agent should be “prepared” to control the

goal state with its own directly controllable state, we formulate the problem of

learning without external supervision as one of learning a policy πθ(at | st) with

parameters θ to maximize intrinsic MI rewards, r = I(Sg;Sc). Our framework

simultaneously learns a policy and an intrinsic reward function by maximizing

the MI between the goal states and the controllable states. Mathematically, the

MI between the goal state random variable Sg and the controllable state random

variable Sc is represented as follows:

I(Sg;Sc) = H(Sg)−H(Sg | Sc) (1.16)

= DKL(PSgSc || PSg ⊗ PSc) (1.17)

= sup
T :Ω→R

EPSgSc [T ]− log(EPSg⊗PSc [e
T ]) (1.18)

≥ sup
φ∈Φ

EPSgSc [Tφ]− log(EPSg⊗PSc [e
Tφ ]) = IΦ(Sg;Sc), (1.19)

where PSgSc is the joint probability distribution; PSg ⊗ PSc is the product of

the marginal distributions PSg and PSc ; KL denotes the Kullback-Leibler (KL)

divergence. Equation (1.16) tells us that the agent should maximize the entropy

of goal states H(Sg), and concurrently, should minimize the conditional entropy

of goal states given the controllable states H(Sg | Sc). When the conditional

entropy H(Sg | Sc) is small, it becomes easy to predict the goal states based on

the controllable states. Equation (1.17) gives us MI in the KL divergence form.

MI is notoriously difficult to compute in real-world settings [Hjelm et al.,

2019]. Motivated by MINE [Belghazi et al., 2018], we use a lower bound to

approximate the MI quantity I(Sg;Sc). First, we rewrite Equation (1.17), the

KL formulation of the MI objective, using the Donsker-Varadhan representation,

to Equation (1.18) [Donsker and Varadhan, 1975]. The input space Ω is a compact

domain of Rd, i.e., Ω ⊂ Rd, and the supremum is taken over all functions T such
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that the two expectations are finite. Secondly, we lower bound the MI in the

Donsker-Varadhan representation with the compression lemma in the PAC-Bayes

literature and then derive Equation (1.19) [Banerjee, 2006, Belghazi et al., 2018].

The expectations in Equation (1.19) are estimated by using empirical samples

from PSgSc and PSg ⊗ PSc . We can also sample the marginal distributions by

shuffling the samples from the joint distribution along the axis [Belghazi et al.,

2018]. The derived MI reward function, r = IΦ(Sg;Sc), can be trained by gradient

ascent. The statistics model Tφ is parameterized by a deep neural network with

parameters φ ∈ Φ, which is capable of estimating the MI with arbitrary accuracy.

However, for evaluating the MI, this lower bound, Equation (1.20) Left-Hand

Side (LHS), is time-consuming to calculate because it needs to process on all

the samples from the whole trajectory. To improve its scalability and efficiency,

we derive a surrogate objective, Equation (1.20) Right-Hand Side (RHS), which

is computed much more efficiently. Each time, to calculate the MI reward for

the transition r = Iφ(Sg;Sc | T ′), the new objective only needs to calculate

over a small fraction of the complete trajectory, τ ′. The trajectory fraction, τ ′, is

defined as adjacent state pairs, τ ′ = {st, st+1}, and T ′ represents its corresponding

random variable. In the paper we derive the following Lemma 3:

Lemma 3. The mutual information quantity Iφ(Sg;Sc | T ) increases when we

maximize the surrogate objective EPT ′ [Iφ(Sg;Sc | T ′)], mathematically,

Iφ(Sg;Sc | T ) n EPT ′ [Iφ(Sg;Sc | T ′)], (1.20)

where Sg, Sc, and T denote goal states, controllable states, and trajectories, re-

spectively. The trajectory fractions are defined as the adjacent state pairs, namely

T ′ = {St, St+1}. The symbol n denotes a monotonically increasing relationship

between two variables and φ represents the parameter of the statistics model in

MINE. Proof. See Chapter 7 “Mutual Information-based State-Control for In-

trinsically Motivated Reinforcement Learning” Section “Efficient Learning State-

Control ”. �
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Figure 1.5: MISC Algorithm: We update the estimator to better predict the
mutual information (MI), and update the agent to control goal states to have
higher MI with the controllable states.

The derived MI surrogate objective, Equation (1.20) RHS, brings us two im-

portant benefits. First, it enables us to estimate the MI reward for each transition

with much less computational time because we only use the trajectory fraction,

instead of the trajectory. This approximately reduces the complexity from O(t∗)

to O(1) with respect to the trajectory length t∗. Secondly, this way of estimat-

ing MI also enables us to assign rewards more accurately at the transition level

because now we use only the relevant state pair to calculate the transition re-

ward. Formally, we define the transition MI reward as the MI estimation of each

trajectory fraction, namely

rφ(at, st) := Iφ(Sg;Sc|T ′) = 0.5
∑t+1

i=tTφ(sgi , s
c
i)− log(0.5

∑t+1
i=t e

Tφ(sgi ,s̄
c
i )), (1.21)

where (sgi , s
c
i) ∼ PSgSc|T ′ , s̄ci ∼ PSc|T ′ , and τ ′ = {st, st+1}. In case that the esti-

mated MI value is particularly small, we scale the reward with a hyper-parameter

α and clip the reward between 0 and 1. Overall, the agent is rewarded for con-

trolling the goal states to have higher mutual information with its controllable

states, which is considered the “preparedness” to achieve any future goal. We

summarize the complete training algorithm in Figure 1.5.

The main contribution here is the introduce of Mutual Information-based

State-Control (MISC), an unsupervised RL framework for learning useful con-

trol behaviors. The derived efficient mutual information-based theoretical ob-
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jective encourages the agent to control states without any task reward. MISC

enables the agent to self-learn different control behaviors, which are non-trivial,

intuitively meaningful, and useful for learning and planning. Additionally, the

pretrained policy and the mutual information estimator significantly acceler-

ate learning in the presence of task rewards. For more details, please refer to

Chapter 7 “Mutual Information-based State-Control for Intrinsically Motivated

Reinforcement Learning”. A video showing experimental results is available at

https://youtu.be/CT4CKMWBYz0.

https://youtu.be/CT4CKMWBYz0
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ABSTRACT

Learning goal-oriented dialogues by means of deep reinforce-
ment learning has recently become a popular research topic.
However, commonly used policy-based dialogue agents of-
ten end up focusing on simple utterances and suboptimal
policies. To mitigate this problem, we propose a class of
novel temperature-based extensions for policy gradient meth-
ods, which are referred to as Tempered Policy Gradients
(TPGs). On a recent AI-testbed, i.e., the GuessWhat?! game,
we achieve significant improvements with two innovations.
The first one is an extension of the state-of-the-art solutions
with Seq2Seq and Memory Network structures that leads
to an improvement of 7%. The second one is the applica-
tion of our newly developed TPG methods, which improves
the performance additionally by around 5% and, even more
importantly, helps produce more convincing utterances.

Index Terms— Goal-Oriented Dialog System, Deep Re-
inforcement Learning, Recurrent Neural Network

1. INTRODUCTION

In recent years, deep learning has shown convincing perfor-
mance in various areas such as image recognition, speech
recognition, and natural language processing (NLP). Deep
neural nets are capable of learning complex dependencies
from huge amounts of data and its human generated annota-
tions in a supervised way. In contrast, reinforcement learning
agents [2] can learn directly from their interactions with the
environment without any supervision and surpass human per-
formance in several domains, for instance in the game of GO
[3], as well as many computer games [4]. In this paper we are
concerned with the application of both approaches to goal-
oriented dialogue systems [5, 6, 7, 8, 9, 10, 11, 7, 12, 13, 14],
a problem that has recently caught the attention of machine
learning researchers. De Vries et al. [6] have proposed as
AI-testbed a visual grounded object guessing game called
GuessWhat?!. Das et al. [7] formulated a visual dialogue
system which is about two chatbots asking and answering
questions to identify a specific image within a group of im-
ages. More practically, dialogue agents have been applied

This paper is an extended version of the IJCAI workshop paper [1].

to negotiate a deal [12] and access certain information from
knowledge bases [13]. The essential idea in these systems
is to train different dialogue agents to accomplish the tasks.
In those papers, the agents have been trained with policy
gradients, i.e. REINFORCE [15].

In order to improve the exploration quality of policy gra-
dients, we present three instances of temperature-based meth-
ods. The first one is a single-temperature approach which is
very easy to apply. The second one is a parallel approach with
multiple temperature policies running concurrently. This sec-
ond approach is more demanding on computational resources,
but results in more stable solutions. The third one is a tem-
perature policy approach that dynamically adjusts the tem-
perature for each action at each time-step, based on action
frequencies. This dynamic method is more sophisticated and
proves more efficient in the experiments. In the experiments,
all these methods demonstrate better exploration strategies in
comparison to the plain policy gradient.

We demonstrate our approaches using a real-world dataset
called GuessWhat?!. The GuessWhat?! game [6] is a vi-
sual object discovery game between two players, the Ora-
cle and the Questioner. The Questioner tries to identify an
object by asking the Oracle questions. The original works
[6, 8] first proposed supervised learning to simulate and op-
timize the game. Strub et al. [8] showed that the perfor-
mance could be improved by applying plain policy gradient
reinforcement learning, which maximizes the game success
rate, as a second processing step. Building on these previ-
ous works, we propose two network architecture extensions.
We utilize a Seq2Seq model [16] to process the image along
with the historical dialogues for question generation. For the
guessing task, we develop a Memory Network [17] with At-
tention Mechanism [18] to process the generated question-
answer pairs. We first train these two models using the plain
policy gradient and use them as our baselines. Subsequently,
we train the models with our new TPG methods and com-
pare the performances with the baselines. We show that the
TPG method is compatible with state-of-the-art architectures
such as Seq2Seq and Memory Networks and contributes or-
thogonally to these advanced neural architectures. To the best
of our knowledge, the presented work is the first to propose
temperature-based policy gradient methods to leverage explo-



ration and exploitation in the field of goal-oriented dialogue
systems. We demonstrate the superior performance of our
TPG methods by applying it to the GuessWhat?! game.

2. PRELIMINARIES

In our notation, we use x to denote the input to a policy net-
work π, and xi to denote the i-th element of the input vector.
Similarly, w denotes the weight vector of π, and wi denotes
the i-th element of the weight vector of that π. The output
y is a multinoulli random variable with N states that follows
a probability mass function, f(y = n | π(x | w)), where
ΣNn=1f(y = n | π(x | w)) = 1 and f(·) ≥ 0. In a nutshell, a
policy network parametrizes a probabilistic unit that produces
the sampled output, mathematically, y ∼ f(π(x | w)).

Typically, the expected value of the accumulated re-
ward, i.e. return, conditioned on the policy network param-
eters E(r | w) is used. Here, E denotes the expectation
operator, r the accumulated reward signal, and w the net-
work weight vector. The objective of reinforcement learning
is to update the weights in a way that maximizes the ex-
pected return at each trial. In particular, the REINFORCE
updating rule is: ∆wi = αi(r − bi)ei, where ∆wi de-
notes the weight adjustment of weight wi, αi is a nonneg-
ative learning rate factor, and bi is a reinforcement base-
line. The ei is the characteristic eligibility of wi, defined as
ei = (∂f/∂wi)/f = ∂lnf/∂wi. Williams [15] has proved
that the updating quantity, (r − bi)∂lnf/∂wi, represents an
unbiased estimate of ∂E(r | w)/∂wi.

3. TEMPERED POLICY GRADIENT

In order to improve the exploration quality of REINFORCE
in the task of optimizing policy-based dialogue agents, we
attempt to find the optimal compromise between exploration
and exploitation. In TPGs we introduce a parameter τ , the
sampling temperature of the probabilistic output unit, which
allows us to explicitly control the strengths of the exploration.

3.1. Exploration and Exploitation

The trade-off between exploration and exploitation is one of
the great challenges in reinforcement learning [2]. To obtain
a high reward, an agent must exploit the actions that have al-
ready proved effective in getting more rewards. However, to
discover such actions, the agent must try actions, which ap-
pear suboptimal, to explore the action space. In a stochastic
task like text generation, each action, i.e. a word, must be
tried many times to find out whether it is a reliable choice
or not. The exploration-exploitation dilemma has been inten-
sively studied over many decades [19, 20, 21]. Finding the
balance between exploration and exploitation is considered
crucial for the success of reinforcement learning [22].

3.2. Temperature Sampling

In text generation, it is well-known that the simple trick of
temperature adjustment is sufficient to shift the language
model to be more conservative or more diversified [23]. In
order to control the trade-off between exploration and ex-
ploitation, we borrow the strength of the temperature param-
eter τ ≥ 0 to control the sampling. The output probability of
each word is transformed by a temperature function as:

fτ (y = n | π(x | w)) =
f(y = n | π(x | w))

1
τ

ΣNm=1f(y = m | π(x | w))
1
τ

.

We use notation fτ to denote a probability mass function f
that is transferred by a temperature function with temperature
τ . When the temperature is high, τ > 1, the distribution
becomes more uniform; when the temperature is low, τ < 1,
the distribution appears more spiky.

3.3. Tempered Policy Gradient Methods

Here, we introduce three instances of TPGs in the domain
of goal-oriented dialogues, including single, parallel, and dy-
namic tempered policy gradient methods.

Single-TPG: The Single-TPG method simply uses a
global temperature τglobal during the whole training pro-
cess, i.e., we use τglobal > 1 to encourage exploration. The
forward pass is represented mathematically as: yτglobal ∼
fτglobal(π(x | w)), where π(x | w) represents a policy neu-
ral network that parametrizes a distribution fτglobal over the
vocabulary, and yτglobal means the word sampled from this
tempered word distribution. After sampling, the weight of
the neural net is updated using,

∆wi = αi(r − bi)∂lnf(yτglobal | π(x | w))/∂wi.

Noteworthy is that the actual gradient, ∂lnf(yτglobal | π(x |
w))/∂wi, depends on the sampled word, yτglobal , however,
does not depend directly on the temperature, τ . With Single-
TPG and τ > 1, the entire vocabulary of a dialogue agent is
explored more efficiently than by REINFORCE, because non-
preferred words have a higher probability of being explored.

Parallel-TPG: A more advanced version of Single-TPG
is the Parallel-TPG that deploys several Single-TPGs con-
currently with different temperatures, τ1, ..., τn, and updates
the weights based on all generated samples. During the for-
ward pass, multiple copies of the neural nets parameterize
multiple word distributions. The words are sampled in par-
allel at various temperatures, mathematically, yτ1 , ..., yτn ∼
fτ1,...,τn(π(x | w)). After sampling, in the backward pass the
weights are updated with the sum of gradients. The formula
is given by

∆wi = Σkαi(r − bi)∂lnf(yτk | π(x | w))/∂wi,

where k ∈ {1, ..., n}. The combinational use of higher and
lower temperatures ensures both exploration and exploitation



at the same time. The sum over weight updates of paral-
lel policies gives a more accurate Monte Carlo estimate of
∂E(r | w)/∂wi, due to the nature of Monte Carlo meth-
ods [24]. Thus, compared to Single-TPG, we would argue
that Parallel-TPG is more robust and stable, although Parallel-
TPG needs more computational power. However, these com-
putations can easily be distributed in a parallel fashion using
state-of-the-art graphics processing units.

Dynamic-TPG: As a third variant, we introduce the
Dynamic-TPG, which is the most sophisticated approach in
the current TPG family. The essential idea is that we use a
heuristic function h to assign the temperature τ to the word
distribution at each time step, t. The temperature is bounded
in a predefined range [τmin, τmax]. The heuristic function we
used here is based upon the term frequency inverse document
frequency, tf-idf [25]. In the context of goal-oriented dia-
logues, we use the counted number of each word as term fre-
quency tf and the total number of generated dialogues during
training as document frequency df. We use the word that has
the highest probability to be sampled at current time-step, y∗t ,
as the input to the heuristic function h. Here, y∗t is the maxi-
mizer of the probability mass function f . Mathematically, it
is defined as y∗t = argmax(f(π(x | w))). We propose that
tf-idf(y∗t ) approximates the concentration level of the distri-
bution, which means that if the same word is always sampled
from a distribution, then the distribution is very concentrated.
Too much concentration prevents the model from exploration,
so that a higher temperature is needed. In order to achieve
this effect, the heuristic function is defined as

τht = h(tf-idf(y∗t ))

= τmin + (τmax − τmin)
tf-idf(y∗t )− tf-idfmin
tf-idfmax − tf-idfmin

.

With this heuristic, words that occur very often are depressed
by applying a higher temperature to those words, making
them less likely to be selected in the near future. In the for-
ward pass, a word is sampled using yτ

h
t ∼ fτht (π(x | w)). In

the backward pass, the weights are updated correspondingly:

∆wi = αi(r − bi)∂lnf(yτ
h
t | π(x | w))/∂wi,

where τht is the temperature calculated from the heuris-
tic function. Compared to Parallel-TPG, the advantage of
Dynamic-TPG is that it assigns temperature more appropri-
ately, without increasing the computational load.

4. GUESSWHAT?! GAME

We evaluate our methods using a recent testbed for AI,
called the GuessWhat?! game [6], available at https:
//guesswhat.ai. The dataset consists of 155 k dia-
logues, including 822 k question-answer pairs, each com-
posed of around 5 k words, about 67 k images [26] and 134 k

LSTM LSTM LSTM LSTM LSTM

Is it a person ?

MLP
Spatial

MLP
Category

MLP
No
Yes
N.A.

Fig. 1: Oracle model

objects. The game is about visual object discovery trough a
multi-round QA among different players.

Formally, a GuessWhat?! game is represented by a tuple
(I,D,O, o∗), where I ∈ RH×W denotes an image of height
H and width W ; D represents a dialogue composed of M
rounds of question-answer pairs (QAs), D = (qm, am)Mm=1;
O stands for a list of K objects O = (ok)Kk=1; and o∗ is the
target object. Each question is a sequence of words, qm =
{ym,1, ......, ym,Nm} with length Nm. The words are taken
from a defined vocabulary V , which consists of the words and
a start token and an end token. Each answer is either yes, no,
or not applicable, i.e. am ∈ {yes, no, n.a.}. For each object
ok, there is a corresponding object category ck ∈ {1, ......, C}
and a pixel-wise segmentation mask Sk ∈ {0, 1}H×W . Fi-
nally, we use colon notation (:) to select a subset of a se-
quence, for instance, (q, a)1:m refers to the first m rounds
of QAs in a dialogue.

4.1. Models and Pretraining

Following [8], we first train all three models in a supervised
fashion.

Oracle: The task of the Oracle is to answer questions
regarding to the target object. We outline here the simple
neural network architecture that achieved the best perfor-
mance in the study of [6], and which we also used in our
experiments. The input information used here is of three
modalities, namely the question q, the spatial information
x∗spatial and the category c∗ of the target object. For en-
coding the question, de Vries et al. first use a lookup ta-
ble to learn the embedding of words, then use a one layer
long-short-term-memory (LSTM) [27] to encode the whole
question. For spatial information, de Vries et al. extract an
8-dimensional vector of the location of the bounding box
[xmin, ymin, xmax, ymax, xcenter, ycenter, wbox, hbox],
where x, y denote the coordinates and wbox, hbox denote
the width and height of the bounding box, respectively. De
Vries et al. normalize the image width and height so that the
coordinates range from -1 to 1. The origin is at the image
center. The category embedding of the object is also learned
with a lookup table during training. At the last step, de Vries
et al. concatenate all three embeddings into one feature vec-
tor and fed it into a one hidden layer multilayer perceptron
(MLP). The softmax output layer predicts the distribution,
Oracle := p(a | q, c∗, x∗spatial), over the three classes,
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including no, yes, and not applicable. The model is trained
using the negative log-likelihood criterion. The Oracle struc-
ture is shown in Fig. 1.

Question-Generator: The goal of the Question-Generator
(QGen) is to ask the Oracle meaningful questions, qm+1,
given the whole image, I , and the historical question-answer
pairs, (q, a)1:m. In previous work [8], the state transition
function was modelled as an LSTM, which was trained using
whole dialogues so that the model memorizes the historical
QAs. We refer to this as dialogue level training. We develop
a novel QGen architecture using a modified version of the
Seq2Seq model [16]. The modified Seq2Seq model enables
question level training, which means that the model is fed
with historical QAs, and then learns to produce a new ques-
tion. Following [8], we first encode the whole image into a
fixed-size feature vector using the VGG-net [28]. The fea-
tures come from the fc-8 layer of the VGG-net. For process-
ing historical QAs, we use a lookup table to learn the word
embeddings, then again use an LSTM encoder to encode the
history information into a fixed-size latent representation, and
concatenate it with the image representation:

sencm,Nm = encoder((LSTM(q, a)1:m),VGG(I)).

The encoder and decoder are coupled by initializing the
decoder state with the last encoder state, mathematically,
sdecm+1,0 = sencm,Nm. The LSTM decoder generates each word
based on the concatenated representation and the previous
generated word (note the first word is a start token):

ym+1,n = decoder(LSTM((ym+1,n−1, s
dec
m+1,n−1)).

The decoder shares the same lookup table weights as the en-
coder. The Seq2Seq model, consisting of the encoder and
the decoder, is trained end-to-end to minimize the negative
log-likelihood cost. During testing, the decoder gets a start
token and the representation from the encoder, and then gen-
erates each word at each time step until it encounters a ques-
tion mark token, QGen := p(ym+1,n | (q, a)1:m, I). The
output is a complete question. After several question-answer
rounds, the QGen outputs an end-of-dialogue token, and stops
asking questions. The overall structure of the QGen model is
illustrated in Fig. 2.

Guesser: The goal of the Guesser model is to find out
which object the Oracle model is referring to, given the com-
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plete history of the dialogue and a list of objects in the im-
age, p(o∗ | (q, a)1:M , x

O
spatial, c

O). The Guesser model has
access to the spatial, xOspatial, and category information, cO,
of the objects in the list. The task of the Guesser model is
challenging because it needs to understand the dialogue and
to focus on the important content, and then guess the object.
To accomplish this task, we decided to integrate the Memory
[17] and Attention [18] modules into the Guesser architecture
used in the previous work [8]. First, we use an LSTM header
to process the varying lengths of question-answer pairs in par-
allel into multiple fixed-size vectors. Here, each QA-pair has
been encoded into some facts, Factm = LSTM((q, a)m),
and stored into a memory base. Later, we use the sum of
the spatial and category embeddings of all objects as a key,
Key1 = MLP(xOspatial, c

O), to query the memory and calcu-
late an attention mask, Attention1(Factm) = Factm�key1,
over each fact. Next, we use the sum of attended facts and
the first key to calculate the second key. Further, we use the
second key to query the memory base again to have a more
accurate attention. These are the so called “two-hops" of at-
tention in the literature [17]. Finally, we compare the attended
facts with each object embedding in the list using a dot prod-
uct. The most similar object to these facts is the prediction,
Guesser := p(o∗ | (q, a)1:M , x

O
spatial, c

O). The intention of
using the attention module here is to find out the most relevant
descriptions or facts concerning the candidate objects. We
train the whole Guesser network end-to-end using the nega-
tive log-likelihood criterion. A more graphical description of
the Guesser model is shown in Fig. 3.

4.2. Reinforcement Learning

Now, we post-train the QGen and the Guesser model with
reinforcement learning. We keep the Oracle model fixed. In
each game episode, when the models find the correct object,
r = 1, otherwise, r = 0.

Next, we can assign credits for each action of the QGen
and the Guesser models. In the case of the QGen model, we
spread the reward uniformly over the sequence of actions in
the episode. The baseline function, b, used here is the running
average of the game success rate. Consider that the Guesser
model has only one action in each episode, i.e., taking the
guess. If the Guesser finds the correct object, then it gets an



immediate reward and the Guesser’s parameters are updated
using the REINFORCE rule without baseline. The QGen is
trained using the following four methods.

REINFORCE: The baseline method used here is REIN-
FORCE [15]. During training, in the forward pass the words
are sampled with τ = 1, ym+1,n ∼ f(QGen(x | w)). In the
backward pass, the weights are updated using REINFORCE,
w = w + α(r − b)∇wlnf(ym+1,n | QGen(x | w)).

Single-TPG: We use temperature τglobal = 1.5 during
training to encourage exploration, mathematically, yτglobalm+1,n ∼
fτglobal(QGen(x | w)). In the backward pass, the weights
are updated using w = w + α(r − b)∇wlnf(y

τglobal
m+1,n |

QGen(x | w)).
Parallel-TPG: For Parallel-TPG, we use two temper-

atures τ1 = 1.0 and τ2 = 1.5 to encourage the explo-
ration. The words are sampled in the forward pass using
yτ1m+1,n, y

τ2
m+1,n ∼ fτ1,τ2(QGen(x | w)). In the backward

pass, the weights are updated using w = w + Σ2
k=1α(r −

b)∇wlnf(yτkm+1,n | QGen(x | w)).
Dynamic-TPG: The last method we evaluated is Dynamic-

TPG. We use a heuristic function to calculate the tempera-
ture for each word at each time step: τhm+1,n = τmin +

(τmax−τmin)
tf-idf(y∗m+1,n)−tf-idfmin

tf-idfmax−tf-idfmin
,where we set τmin = 0.5,

τmax = 1.5, and set tf-idfmin = 0, tf-idfmax = 8. Af-
ter the calculation of τhm+1,n, we substitute the value into
the formula at each time step and sample the next word using

y
τhm+1,n

m+1,n ∼ fτ
h
m+1,n(QGen(x | w)). In the backward pass, the

weights are updated using w = w+α(r−b)∇wlnf(y
τhm+1,n

m+1,n |
QGen(x | w)). For all four methods, we use greedy search
in evaluation.

5. EXPERIMENT

We first train all the networks in a supervised fashion, and
then optimize the QGen and the Guesser model using rein-
forcement learning. Our implementation 1 uses Torch [29].

5.1. Pretraining

We train all three models using 0.5 dropout [30] during train-
ing, using the ADAM optimizer [31]. We use a learning rate
of 0.0001 for the Oracle model and the Guesser model, and a
learning rate of 0.001 for QGen. All the models are trained
with at most 30 epochs and early stopped within five epochs
without improvement on the validation set. We report the per-
formance on the test set which consists of images not used in
training. We report the game success rate as the performance
metric for all three models, which equals to the number of
succeeded games divided by the total number of all games.
Compared to previous works [6, 8, 32], after supervised train-
ing, our models obtain a game success rate of 48.77%, that

1https://github.com/ruizhaogit/GuessWhat-TemperedPolicyGradient

# Method Accuracy
1 Strub et al., 2017 [8] 52.30%
2 Strub and de Vries, 2017 [32] 60.30%
3 Our Torch reimplementation of (# 2) 62.61%
4 (# 3) + new QGen (Seq2Seq) 63.47%
5 (# 4) + new Guesser (Memory Nets) 68.32%
6 (# 5) + new Guesser (REINFORCE) 69.66%
7 (# 6) + Single-TPG 69.76%
8 (# 6) + Parallel-TPG 73.86%
9 (# 6) + Dynamic-TPG 74.31%

Table 1: Performance comparison and ablation tests

is 4% higher than state-of-the-art methods [32], which has
44.6% accuracy.

5.2. Reinforcement Learning

We first initialize all models with pre-trained parameters from
supervised learning and then post-train the QGen using either
REINFORCE or TPG for 80 epochs. We update the parame-
ters using stochastic gradient descent (SGD) with a learning
rate of 0.001 and a batch size of 64. In each epoch, we sample
each image in the training set once and randomly pick one of
the objects as a target. We track the running average of the
game success rate and use it directly as the baseline, b, in RE-
INFORCE. We limit the maximum number of questions to 8
and the maximum number of words to 12. Simultaneously, we
train the Guesser model using REINFORCE without baseline
and using SGD with a learning rate of 0.0001. The perfor-
mance comparison is shown in Tab. 1.

Ablation Study: From Tab. 1 (# 2 & 3), we see that our
reimplementation using Torch [29] achieves a comparable
performance compared to the original TensorFlow imple-
mentation [32]. We use our reimplementation as the baseline.

Upon the baseline, the new QGen model with Seq2Seq
structure improves the performance by about 1%, see Tab. 1
(# 3 & 4). With the Seq2Seq structure, our QGen model is
trained in question level. This means that the model first
learns to query meaningfully, step by step. Eventually, it
learns to conduct a meaningful dialog. Compared to directly
learning to manage a strategic conversation, this bottom-up
training procedure helps the model absorb knowledge, be-
cause it breaks large tasks down into smaller, more manage-
able pieces. This makes the learning for QGen much easier.

The next improvement is because of our new Guesser
model, which uses Memory Network with two-hops atten-
tion [17]. The memory and attention mechanisms bring an
improvement of 4.85%, as shown in Tab. 1 (# 4 & 5). Fur-
thermore, we train the new Guesser model additionally via
REINFORCE (# 6). In this way, the Guesser and the QGen
learn to cooperate with each other and improve the perfor-
mance by another 1.34%, as shown in Tab. 1 (# 5 & 6).



Image Policy Gradient Tempered Policy Gradient

Is it in left? No
Is it in front? No
Is it in right? Yes
Is it in middle? Yes
Is it person? No
Is it ball? No
Is it bat? No
Is it car? Yes
Status: Failure

Is it a person? No
Is it a vehicle? Yes
Is it a truck? Yes
Is it in front of photo? No
In the left half? No
In the middle of photo? Yes
Is it to the right photo? Yes
Is it in the middle of photo? Yes
Status: Success

Is it in left? No
Is it in front? Yes
Is it in right? No
Is it in middle? Yes
Is it person? No
Is it giraffe? Yes
Is in middle? Yes
Is in middle? Yes
Status: Failure

Is it a giraffe? Yes
In front of photo? Yes
In the left half? Yes
Is it in the middle of photo? Yes
Is it to the left of photo? Yes
Is it to the right photo? No
In the left in photo? No
In the middle of photo? Yes
Status: Success

Table 2: Some samples generated by our improved models using REINFORCE (left column: “Policy Gradient”) and Dynamic-TPG (right
column: “Tempered Policy Gradient”). The green bounding boxes highlight the target objects; the red boxes highlight the wrong guesses.

Here, we take a closer look at the improvement brought by
TPGs. From Tab. 1, we see that compared to the REINFORCE-
trained models (# 6), Single-TPG (# 7) with τglobal = 1.5
achieves a comparable performance. With two different tem-
peratures τ1 = 1.0 and τ2 = 1.5, Parallel-TPG (# 8) achieves
an improvement of approximately 4%. Parallel-TPG requires
more computational resources. Compared to Parallel-TPG,
Dynamic-TPG only uses the same computational power as
REINFORCE does and still gives a larger improvement by
using a dynamic temperature, τht ∈ [0.5, 1.5]. After compar-
ison, we can see that the best model is Dynamic-TPG (# 9),
which gives a 4.65% improvement upon new models (# 6).

TPG Dialogue Samples: The generated dialogue sam-
ples in Tab. 2 can give some interesting insights. First of all,
the sentences generated from TPG-trained models are on av-
erage longer and use slightly more complex structures, such
as “Is it in the middle of photo?" instead of a simple form “Is
it in middle?". Secondly, TPGs enable the models to explore
better and comprehend more words. For example, in the first
task (upper half of Tab. 2), both models ask about the cate-
gory. The REINFORCE-trained model can only ask with the
single word “car" to query about the vehicle category. In con-
trast, the TPG-trained model can first ask a more general cat-
egory with the word “vehicle" and follows up querying with
a more specific category “trucks". These two words “vehi-
cle" and “trucks" give much more information than the single
word “car", and help the Guesser model identify the truck
among many cars. Lastly, similar to the category case, the
models trained with TPG can first ask a larger spatial range

of the object and follow up with a smaller range. In the sec-
ond task (lower half of Tab. 2), we see that the TPG-trained
model first asks “In the left half?", which refers to all the three
giraffes in the left half, and the answer is “Yes”. Then it asks
“Is it to the left of photo?", which refers to the second left
giraffe, and the answer is “Yes”. Eventually the QGen asks
“In the left in photo?”, which refers to the most left giraffe,
and the answer is “No”. These specific questions about loca-
tions are not learned using REINFORCE. The REINFORCE-
trained model can only ask a similar question with the word
“left". In this task, there are many giraffes in the left part of
the image. The top-down spatial questions help the Guesser
model find the correct giraffe. To summarize, the TPG-trained
models use longer and more informative sentences than the
REINFORCE-trained models.

6. CONCLUSION

Our paper makes two contributions. Firstly, by extending
existing models with Seq2Seq and Memory Networks we
could improve the performance of a goal-oriented dialogue
system by 7%. Secondly, we introduced TPG, a novel class of
temperature-based policy gradient approaches. TPGs boosted
the performance of the goal-oriented dialogue systems by
another 4.7%. Among the three TPGs, Dynamic-TPG gave
the best performance, which helped the agent comprehend
more words, and produce more meaningful questions. TPG
is a generic strategy to encourage word exploration on top of
policy gradients and can be applied to any dialog agents.
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ABSTRACT
This paper is concerned with the training of recurrent neural
networks as goal-oriented dialog agents using reinforcement
learning. Training such agents with policy gradients typically
requires a large amount of samples. However, the collection
of the required data in form of conversations between chat-
bots and human agents is time-consuming and expensive. To
mitigate this problem, we describe an efficient policy gradient
method using positive memory retention, which significantly
increases the sample-efficiency. We show that our method is
10 times more sample-efficient than policy gradients in exten-
sive experiments on a new synthetic number guessing game.
Moreover, in a real-word visual object discovery game, the
proposed method is twice as sample-efficient as policy gradi-
ents and shows state-of-the-art performance.

Index Terms— Goal-Oriented Dialog System, Deep Re-
inforcement Learning, Recurrent Neural Network

1. INTRODUCTION

In recent years, advances in Deep Learning (DL) and Rein-
forcement Learning (RL) have led to tremendous progress
across many areas of natural language processing (NLP) and
gameplay [1, 2, 3, 4, 5]. This progress, in turn, generated an
emerging research area, the learning of goal-oriented dialogs
[6]. This research involves agents that conduct a multi-turn
dialogue to achieve some task-specific goal, such as locating
a specific object in a group of objects [7], inferring which im-
age the user is thinking about [8], and providing customer ser-
vices and restaurant reservations [6]. All these tasks require
that the agent possesses the ability to conduct a multi-round
dialog and to track the inter-dependence of each question-
answer pair. Eventually, the agent learns an optimal policy
through trial-and-error. The reward signal of each trail is de-
layed, and is only available at the end of the dialog. Also
the reward signal is very sparse compared with a vocabulary
size that often exceeds several thousands. Due to these chal-
lenges, in practice, policy gradient methods [9] perform more
favorably than Q-learning methods [10].

Consider a simple goal-oriented dialog example from our
synthetic dataset in Figure 1. We initialize three roles in this
number guessing game, i.e. a questioner, an answerer, and a

# Question Answer
1 Is it 2 in the image? No
2 Is it in a yellow background? No
3 Is it 9 in the image? Yes
4 Is it in a white background? Yes
5 Is it a stroke style digit? Yes
6 Is it a digit in blue? No

Guess: row 1 column 3 4

Fig. 1: MNIST GuessNumber dataset example: Each sample con-
sists of an image (left), a set of sequential questions with answers
(right), and a target digit. The goal of this game is to find out the
target digit by a multi-round question-answering.

guesser. The questioner and the guesser try to infer which
number the answerer is thinking about. First, the questioner
asks questions about the target digit given the image, such
as the color of the digit, the background color, the style of
the digit, and also the number itself. Then the answerer re-
sponses with a yes/no answer. The questioner needs to reason
based on the history dialog and keeps querying with mean-
ingful questions. At the end, when the maximum number of
questions is reached, the guesser analyzes the whole conver-
sation along with the image, and takes a guess. If the guess
is correct, then the task is completed successfully, and the
questioner gets a positive reward signal. Otherwise the task
is counted as a failure, and the questioner gets a non-positive
reward signal.

The training of chat-bots using on-policy policy gradient
methods requires numerous training samples. When the sam-
ples are generated through human-machine-interaction, e.g.
by using the Amazon Mechanical Turk or in real-world ap-
plications, the collection of the data is time-consuming and
expensive [11]. Hence, sample-efficiency receives increas-
ingly more attention in dialog policy learning. We improve
sample-efficiency using a novel on-off-policy policy gradient
method relying on a biologically inspired mechanism [12],
termed positive memory retention. This mechanism employs
a bounded importance weight proposal on past positive trajec-
tories, i.e. the behavior policy [13], to train the target policy
network. The retention stops automatically when no further
improvement occurs in a predefined number of iterations. The
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Fig. 2: GuessNumber Gameplay: The gameplay of the guessing
game involves three plays, a questioner, an answerer, and a guesser.
In our settings, we first pretrain all three models, then post-train only
the questioner using RL. For each gameplay, the questioner first asks
a question word by word, a1,1, a1,2, ..., ?, then the answerer re-
sponses with an answer, A1. This question-answering repeats for a
predefined number of rounds. Finally, the guesser reads in the dia-
log and makes a guess. If the guess is correct, then the questioner
receives a reward r = 1, otherwise, r = 0.

bounded importance weight proposal tackles the problem of
high variance in importance sampling. To reduce variance
even further, we use recent behavior policies to update the
probability in the memory buffer. An early-stopping mech-
anism within each epoch provides a trade-off between the
sample-efficiency and the computational cost.

Contributions: (1) We introduce positive memory reten-
tion for efficient dialog policy learning, which uses bounded
importance sampling, probability updating, and adaptively
adjusts the retention times via early stopping within epochs.
(2) We perform a comprehensive study about the perfor-
mance of our method for goal-oriented dialog tasks using
a new synthetic number guessing game and verify the high
sample-efficiency of our algorithm. (3) The proposed model
is also tested on a real-world benchmark GuessWhat?! game
[14] and shows state-of-the-art performance, and an increased
sample-efficiency by a factor of two.

2. BACKGROUND

This section introduces recurrent language models, Markov
decision process, policy gradient, and importance sampling.

Recurrent Language Models: The goal of a recurrent
neural network (RNN) based language model in NLP is to
produce an output sequence y = [a1, a2, ..., aT ] given a con-
text x as input [15]. Here ai ∈ A whereA is the word vocab-
ulary. For each step, the recurrent unit processes the previous
word along with the context, and outputs a new word. At
each time step t, the state st is the context input x and the
words yt−1 = [a1, ..., at−1] produced by the RNN so far, i.e.
st = (x, yt−1). We sample the next word at from this proba-
bility distribution π(·|st), then update our state st+1 = (x, yt)
where yt = [yt−1, at], and repeat in a similar fashion.

Markov Decision Process and Policy Gradient: We for-
malize a simplified Markov decision process (MDP) to our
setting. In the MDP, an agent takes an action a in a state s
and transitions to a new state s′. A trajectory τ refers to a
sequence of transitions until the agent enters a terminal state
where it receives a reward from the environment.

In our guessing games, a trajectory τ is (x, a1,1, a1,2, ...,
?, A1, a2,1, a2,2, ..., ?, A2, ..., G, r), where x is the context
(image); ai is the word sequence in question i; ? is the ques-
tion mark that only occurs at the end of each question; Ai is
the answer to question i; G is the output of the guesser; r is
the reward for being correct or incorrect. See also Figure 2.

Formally, the simplified MDP is a triple of (S,A, R)
where S, A, and R represent a set of states, actions, and
rewards, respectively. A policy π is a function that chooses
an action at a given state, e.g. π : A × S → R, where
π(a|s) refers to the probability of executing action a at the
state s. When we sample an action at ∼ π(·|st), we transi-
tion into state (x, [yt−1, at]). We overload notation and let
R(τ) =

∑T
t=1R(st) be the accumulated reward of a trajec-

tory τ . We define that R(τ) = 1, if the task is a success;
R(τ) = 0, if the task is a failure. The policy network π is a
recurrent language model, parametrized by a vector θ ∈ Rn,
i.e. πθ. The expected return of a policy πθ is:

J(θ) = E[R(τ)|πθ].

Our goal is to learn θ to maximize the expectation of the
return J(θ). The objective function can be optimized with
an on-policy policy gradient method, known as REINFORCE
[9]. The gradient is calculated as:

∇θJ(θ) = ∇θE [(R(τ)− b)logπθ(at|st)]

where b is an optional baseline function used to reduce the
variance of the gradient estimate [9].

Importance Sampling: Importance sampling (IS) is a
general technique to estimate an integral

∫
f(x)p(x)dx of a

function f(x), with distribution p(x) [16]. IS samples from
an appropriate proposal distribution q(x), and then uses the
samples to estimate the integral:

I = E[f ] =

∫
f(x)

p(x)

q(x)
q(x)dx ≈ 1

N

N∑

n=1

ωnf(x(n)) = Î ,

where ωn = p(x(n))/q(x(n)) are the importance weights.
The goal is to minimize the variance of the estimate Î , which
is proportional to varq[f(x)ω(x))] = Eq[f2(x)ω2(x)] − I2.
Since the last term is independent of q, we can ignore it. Us-
ing Jensen’s inequality, we have the following lower bound:

Eq[f2(x)ω2(x)] > (Eq[|f(x)ω(x)|])2 =

(∫
|f(x)|p(x)dx

)2

The lower bound is obtained when using the optimal impor-
tance distribution: q∗(x) = |f(x)|p(x)/

∫
|f(x′)|p(x′)dx′.

Interestingly, to estimate an integral, it is more efficient to
sample from q(x) ∝ |f(x)|p(x) than to sample from p(x). Of
course, if f(x) is unknown, it is best to sample from q(x) =
p(x) [17].



3. POSITIVE MEMORY RETENTION

This section contains our main contribution, the positive
memory retention method. The reuse of past positive trajec-
tories in policy learning is enabled by several contributions:
first, sample efficiency is improved by concentration of past
positive trajectories; secondly, the sampling bias is corrected
by importance sampling in policy gradients; thirdly, the sta-
bility is ensured by introducing bounds on the important
weights; fourthly, the variance is reduced by probability up-
dating of the proposal distribution; finally, the stability is
improved by policy search via early stopping.

Positive Memory Matters: In human memory retention,
focusing on rewarded events has been discovered to be a pre-
ferred strategy in the post-learning phase happening in the
hippocampus area of the brain [12]. We believe that this fact
also intuitively applies to RL since non-rewarded trajectories
do not contribute directly to the estimated gradient to increase
the expected return,∇θJ(θ), since R(τ) is zero.

In a more general case, consider the policy updating with
a baseline function, e.g. 0 < b < 1. The gradient of non-
rewarded trajectories is opposite to the direction of the gradi-
ent of the current policy,∇θlogπθ(at|st), becauseR(τ)−b <
0. This means that the weights are changed in a way to de-
press the current policy πθ, which is not necessarily equiva-
lent to maximizing the expected return. However, it might be
helpful, in a way to encourage exploration.

The high efficiency of positive memory retention can also
be derived from importance sampling. Consider that the ex-
pectation we want to estimate is the expected return E[R(τ)],
so R(τ) assumes the role of f(x) in Section 2. The proposal
distribution q should thus be of the form q(τ) ∝ R(τ)p(τ),
thus we only need to consider successful memory trajectories.

Policy Gradient with Importance Sampling: However,
memory trajectories cannot be directly applied to policy gra-
dient methods. The main reason is that the training requires
trajectories from the target policy p(τ |πθ) with the current pa-
rameter vector θ, whereas the memory trajectories were gen-
erated by q(τ |πθ′) = p(τ |πθ′) with a different parameter vec-
tor θ′. We again can use the concept of IS and obtain

Ĵ(θ) =
1

n

n∑

i=1

p(τ (i)|πθ)
q(τ (i)|πθ′)

R(τ (i)), with τ (i) ∼ q

where n is the number of trajectories used to estimate the ex-
pected return J(θ) [18]. In the equation above, we assume
q(τ) = 0⇒ p(τ) = 0. This is readily true, since each action
is sampled from the defined action space A. The importance
weights are evaluated using:

ω(τ (i)) =
p(τ (i)|πθ)
q(τ (i)|πθ′)

=

∏T
t=1 πθ(at|st)∏T
t=1 πθ′(at|st)

where
∏T
t=1 πθ(at|st) needs to be calculated from the target

policy, and
∏T
t=1 πθ′(at|st) has already been calculated from

the behavior policy. Finally, the importance weighted policy
gradient is:

∇θĴ(θ) = ∇θEq [ω(τ)(R(τ)− b)logπθ(at|st)] . (1)

Bounded Importance Weight Proposal: This estimator
is unbiased, but it suffers from very high variances because
it involves a product of a series of unbounded importance
weights. To prevent the importance weight from “exploding”,
the goal is now to select only samples that are not far from the
target policy.

To evaluate the distance, we use a symmetric version of
the KL-divergence, i.e. the Jensen-Shannon divergence [19]:

JS(p, q) = 0.5KL(p ‖ 0.5(p+ q)) + 0.5KL(q ‖ 0.5(p+ q)).

We now derive a formulation of the JS-divergence, as a dis-
tance metric, which is related to the importance weight ω:

JS(p, q) ≈ 0.5
K∑

k=1

pklog
2pk

pk + qk
+ 0.5

K∑

k=1

qklog
2qk

pk + qk

= 0.5
K∑

k=1

pklog
2

1 + ωk
+ 0.5

K∑

k=1

qklog
2

1
ωk

+ 1

We can see that the distance between the proposal distribu-
tion q and the optimal solution p depends on both ωk and
1/ωk. To limit the variance of the importance sampling, we
limit the importance weight as ωk ≤ ωmax and its inverse
as 1/ωk ≤ ωmax. Subsequently, we define a trust region of
importance weights, ωk ∈ [1/ωmax, ωmax] and only use tra-
jectories whose importance weights fall within this range.

Essentially, we use the importance weight ω as a value to
select high quality trajectories, filtering out those that deviate
far from the current policy. In this way, we shape the proposal
distribution into a safe one. The bound ωmax of the distribu-
tion can be selected by observing the learning curve during
training.

Probability Updating: Another way to reduce the vari-
ance is to adapt the proposal distribution, q(x), to make it as
close as possible to p(x). After updating the target policy with
Equation 1, we use the current target policy as a behavior pol-
icy for retention in the future. In this way, the memory buffer
is being continuously updated and the proposal distribution is
also updated.

Policy Search via Early Stopping: In order to make the
best use of the memory, the learning process is verified using
a group of validation samples. During the training process,
the model remembers the positive trajectories within the cur-
rent epoch for later retention. During the retention phase, the
model first goes through the memory buffer, and updates the
model using Equation 1 with the bounded importance weight
proposal. After each iteration, the model verifies the learned
policy on a validation set. If the policy becomes better than
the previous policy, then it is saved. If the policy has not been



Algorithm 1 Positive Memory Retention (PMR)

Require: pretrained RNN language model πθ
1: for iteration in range(max iterations) do
2: for t = 1 to T do
3: (at, pt) = πθ(x, yt−1), yt = (yt−1, at)

4: r = R(y)← Environment
5: for t = T to 1 do
6: θ = θ + α(r − b)∇θlogπθ(at|(x, yt−1))

7: if r > 0 then
8: memory← τ = (x, y, p, r)

9: validating(πθ), θ′ = θ
10: for trajectory τ in memory do # memory retention
11: x, y, p, r ← τ
12: for t = 1 to T do
13: qt = pt, (at, pt) = πθ(x, yt−1)
14: memory← pt # probability updating
15: ω =

∏T
t=1 pt/

∏T
t=1 qt

16: if ω ∈ [1/ωmax, ωmax] then
17: for t = T to 1 do
18: θ = θ + αω(r − b)∇θlogπθ(at|(x, yt−1))

19: validating(πθ)
20: if no improvement for nmax iterations then
21: θ = θ′

22: if improvement then
23: θ′ = θ

improved for a limited number of iterations nmax, then mem-
ory retention is stopped and the training of the model with
REINFORCE continues. This mechanism helps the model
make the best use of the past training samples and makes the
learning more stable.

Complete Training Algorithm: We summarize the com-
plete method in Algorithm 1. Note that, before training the
language model with RL, we pretrained the model in a super-
vised fashion for a kickstart policy.

4. EXPERIMENTS

We conduct two sets of experiments to verify the proposed
method. To highlight the methods’ ability to boost sample-
efficiency, we first create and experiment with a synthetic
dataset 1. We then show that the method also works well on a
real-word benchmark, GuessWhat?! [14].

4.1. MNIST GuessNumber Dataset

Experiment setting: We create a synthetic dataset, named
MNIST GuessNumber, which is designed for quick testing
and analysis of RL methods in the task of visual-grounded
goal-oriented dialog systems. The creation of the dataset

1https://github.com/ruizhaogit/MNIST-GuessNumber

is inspired by [20]. Each image in MNIST GuessNumber
contains a 3 × 3 grid of MNIST digits and each MNIST
digit in the grid has four randomly sampled attributes, i.e.
color = {red, blue, green, purple, brown}, bgcolor =
{cyan, yellow, white, silver, salmon}, number = {x|0 ≤
x ≤ 9} and style = {flat, stroke}, as illustrated in Figure 1.

Given the generated image from MNIST GuessNumber,
we automatically generate questions and answers about a set
of the digits in the grid that focus on one of the four attributes.
During question generation, the target subset for a question is
selected based on the previous target subset referred by the
previous QA, as shown in Figure 1. For answer generation,
we generate a yes/no answer based on whether the questioned
attribute matches with the target digit. The QA is repeated un-
til there is only one digit in the target subset. We generated
30 K, 10 K, and 10 K images for training, validating, and test-
ing, respectively, and one successful game for each unique
image. In each grid image, there are nine cells. Each cell
contains four attributes, including the color, bgcolor, number,
and the style.

Model details and pretraining: There are three roles in
this number guessing game, a questioner, an answerer, and
a guesser. The word and the image embeddings are trained
end-to-end using lookup table layers. The questioner model
that we used is a long short-term memory (LSTM) [21] of
256 units conditioned on a given image. The answerer model
takes in the question along with the target digit and outputs
a yes/no answer. The answer model is based on an LSTM
with 64 units. The last one is the guesser model. The guesser
uses an LSTM with 64 units to process the whole dialog, and
compares it with each digit using a dot product on their re-
spective latent representations. The prediction is the most
similar digit. We train all three models for 30 epochs using
the maximum likelihood criterion. The pretrained models ob-
tain a game success rate of 63.09% on the test split with a
maximum of four rounds of QA.

Reinforced training: After pretraining, we keep the an-
swerer and the guesser fixed and train the questioner model
with RL. Given the unique images in the training set, for each
game, the answerer randomly picks a digit in the image as
the target and lets the questioner ask. The baseline method
is the REINFORCE. For positive memory retention, we set
the parameter ωmax = 10, and the early stopping threshed
nmax = 2. The ωmax is selected on the validation set. An
extensive evaluation of the impact of ωmax is shown in Ta-
ble 1 lower part. When we use ωmax = 10, we observe that
about 65% of the positive trajectories are used for weight up-
dating. So, ωmax can be considered as a trade-off between
sample reuse ratio and the variance introduced by importance
sampling. The early stopping threshed nmax is a trade-off
between sample-efficiency and computational power. Our im-
plementation 2 uses Torch7 [22].

Results: From Figure 3 left, we can see that at the 10th

2https://github.com/ruizhaogit/PositiveMemoryRetention



0 10 20 30 40 50 60 70 80 90 100
55%

60%

65%

70%

75%

(epoch)

REINFORCE

Positive Memory Retention

Validation Accuracy on MNIST GuessNumber

0 10 20 30 40 50 60 70 80 90 100
45%

50%

55%

60%

65%

70%

(epoch)

REINFORCE

Positive Memory Retention

Validation Accuracy on GuessWhat?!

Fig. 3: Experimental results: The left figure shows that at the 10th epoch, the model trained with positive memory retention obtains about
70% accuracy on the validation set, which is is equivalent to the same model trained with REINFORCE for 100 epochs, which obtains 69.92%
accuracy. The right figure shows that the model trained with REINFORCE for 100 epochs, obtains 63.39% accuracy on the validation split.
At the 50th epoch, the same model trained with our proposed method has a better result, 63.44%.

epoch, the model trained with positive memory retention, ob-
tains about 70% accuracy on the validation set, which is com-
parable with the same model trained with REINFORCE for
100 epochs with an accuracy of 69.92%. After training, we
evaluated the best model on the test set. REINFORCE and
positive memory retention obtain 69.86% and 70.27% accu-
racy on the test split, respectively. However, the memory
positive attention only needs one-tenth of the training sam-
ples. The experiment on MNIST GuessNumber shows that
the sample-efficiency has been improved by a factor of 10.

Ablation tests: A summary of the ablation tests is shown
in Table 1. We can see that the bounded importance weight
proposal is critical for policy gradient with importance sam-
pling. Without this component, the model diverges quickly,
shown in Table 1 (# 3-4). The other proposed innovations all
improve model performance as well, as shown in Table 1 (# 5-
9). One can also see that the choice of the bound parameter
ωmax has a major influence on the performance.

4.2. GuessWhat?! Game

Experiment settings: In the GuessWhat?! dataset [14] the
dialogs are collected using Amazon Mechanical Turk with re-
spect to MS-COCO [23] images. Each game is composed of
an image, a target object in the image, the spatial information
of the objects, the category of the objects, and the QA-dialogs.
Unlike the MNIST GuessNumber, the questions in the train-
ing set are in free form text. The answers are still in the yes/no
form. This dataset is more challenging due to its large vo-
cabulary size (5 K), and long dialog sequences. Due to the
large action space and the extremely delayed reward signals,
the importance sampling estimates have very large variances.
In our experiment, when we first attempted to retain with all
past trajectories, and without the weight bound, the model di-
verged quickly, as in the MNIST GuessNumber experiments,
see Table 1 (# 3). Our proposed method reduces the variance
and makes the sample reuse possible for real-word sceneries.

Model details and pretraining: Each game in the Guess-

What?! contains three roles, a questioner, an answerer, and
a guesser. As our aim is to compare the sample-efficiency
of our proposed model with other strong baselines, we use
the same model structure as was used in [7]. The questioner
model is a one layer LSTM with 512 units and conditioned
on the VGG16-CNN-FC8 [24] features of the image. The an-
swerer model deploys an LSTM with 512 units to process the
question along with spatial and categorical information of the
target object. The guesser model uses an LSTM to process the
whole dialog and can consider all the spatial and categorical
information of the objects in the image. The guesser com-
pares the similarities between the dialog representation and
each object representation with a dot product, and then takes
the guess. All these three models are pretrained with MLE for
30 epochs for a kickstart policy. We reproduced the paper’s
experimental results using Torch7 [22], and obtained 41.41%
accuracy on the test split after supervised training.

Reinforced training: With the pretrained models, we
keep the answerer and the guesser fixed and train the ques-
tioner model. We train the model for 100 epochs, using
REINFORCE with a learning rate α of 0.0001 and a running
average as the baseline b. Our reimplementation using Torch
obtains 62.61% accuracy on the test split, about 2% higher
than their result of 60.3% from the original implementation
[25], due to some technical differences. We use our reim-
plementation as the REINFORCE baseline, in Figure 3, to
eliminate the influence of these technical differences for a
fair comparison. For positive memory retention, Algorithm
1, we use weight bound ωmax = 5, so that ω ∈ [1/5, 5], to
stabilize the training. We use the early stopping threshed in
each epoch as nmax = 2. We observe that with ωmax = 5,
about 85% of the trajectories in the memory contribute to the
model weight updates. This high ratio of reuse is also due to
the probability updating mechanism, which bridges the gap
between the behavior policies and the target policy.

Results: From Figure 3 right, we can see that the model
trained with REINFORCE obtains 63.39% accuracy on the
validation split after training for 100 epochs. However, at the



Table 1: Ablation tests on MNIST GuessNumber: Notations: RF
denotes the REINFORCE; IS is importance sampling; PM means
using positive memory only, otherwise all memory; UB denotes the
upper bound ωmax; LB represents the lower bound 1/ωmax; PB is
the probability updating trick: ES means the early stopping within
epochs, if use ES, then the early stopping threshold is 2, otherwise
train for 3 iterations; (%) is the accuracy on the test split using the
best model selected via validation split during 10 epochs of training.
The upper part above the middle horizontal line shows the ablation
test of different components in the positive memory retention. Here,
ωmax = 10, and (# 1) is the performance of the kickstart policy af-
ter supervised training. Note that (# 3) and (# 4) diverges quickly,
which means that the testing accuracies are lower than 20.0% after
10 epochs of training. UB makes the stable training of RF+IS pos-
sible, shown in (# 5). PM, LB, PB, ES, contribute 0.76%, 1.18%,
0.73%, and 1.54%, respectively. The lower part below the middle
horizontal line shows the extensive evaluation regarding to the upper
bound parameter ωmax.

# RF IS PM UB LB PB ES (%)

1 – – – – – – – 63.09
2 X – – – – – – 65.40
3 X X – – – – – < 20.
4 X X X – – – – < 20.
5 X X – X – – – 66.06
6 X X – X X – – 67.24
7 X X X X X – – 68.00
8 X X X X X X – 68.73
9 X X X X X X X 70.27

10 X X X 1 X X X 66.24
11 X X X 5 X X X 65.69
12 X X X 10 X X X 70.27
13 X X X 20 X X X 69.38
14 X X X 30 X X X 69.09
15 X X X 100 X X X 65.39

50th epoch, the same model trained with positive memory re-
tention reaches 63.44% validation accuracy. After training,
we evaluated the best model on the test set. REINFORCE
and positive memory retention obtain 62.61% and 63.17%
accuracy on the test split, respectively. We can see that the
proposed method provides state-of-the-art performance with
double sample-efficiency on the GuessWhat?! dataset.

5. RELATED WORK

Goal-Oriented Dialogs: Recently, researchers started ex-
ploring intensively deep RL for goal-oriented dialogs [6, 7,
8, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40],
focusing on learning to achieve a goal via dialog. Bordes and
Weston [6] pointed out that the recent success in chit-chat di-
alogs may not carry over to goal-oriented settings. Strub et al.
[7] and Das et al. [8] conduct the task-oriented conversation
over image guessing games. In [7], the dialog aims at object

discovery through a series of yes/no QAs. Policy gradient is
used to improve performances of dialog agents in terms of
task completion rate. Das et al. [8] use policy gradient to train
two chat-bots to play image guessing games and show that
they establish their own communication style. Both works
use on-policy policy gradient methods. Sample-efficient on-
off-policy learning methods, as developed in this paper, have
not yet been explored in the field of goal-oriented dialog.

Sample-Efficient RL: While the goal-oriented dialog us-
ing RL is a recent research direction, control tasks via RL
have been studied extensively and importance sampling based
actor-critic methods have been known to be beneficial for
sample-efficiency [18, 13, 41, 42, 43, 44]. However, the con-
trol tasks are inherently different from dialog tasks in the as-
pect of action space. For example, in Atari games, the agents
normally have less than 20 actions to explore; in contrast, the
action space, i.e. the vocabulary, contains thousands of words
in dialogs. Moreover, the reward of a dialog is only available
at the end, which is much more sparse and delayed than in
Atari games. In these games, there are intermediate rewards
prior to the game ending. The long trajectories in dialog tasks
make the often observed problem of exploding importance
weights even more extreme. Even if an explosion does not
occur, the variance of the importance sampling increases. To
overcome these challenges, new solutions must be introduced.

Memory Retention: The use of positive memory reten-
tion is inspired by recent neuroscience research, which con-
cludes that the brain prioritizes those high-reward memories,
which might be the most important for obtaining future re-
wards [12]. Tresp et al. [45] argue that the brain’s memory
functions might inspire technical solutions requiring memory
traces. Biologically-inspired experience replay [46], was used
to stabilize the training process in RL and and thereby was
quite successful. These papers used Q-learning, which is an
off-policy method that is able to use the past trajectories di-
rectly. However, on-policy policy gradients cannot reuse past
samples directly [18, 13]. The main contribution of this paper
is that we show that our extensions permit an efficient reuse
of past samples in on-policy policy gradients methods. These
extensions also work well in dialog settings, which are chal-
lenging due to the sparse reward and the large action space.

6. CONCLUSION

We proposed a novel positive memory retention mechanism
for improving sample-efficiency in dialog policy learning,
using past positive trajectories and low-variance importance
sampling estimates. The model reuses past positive samples
as behavior policies, samples from a bounded importance
weight proposal, and updates the target policy with an im-
portance weight correction. We tested on both synthetic
and real-word datasets and illustrated dramatically improved
sample-efficiency. We demonstrate that policy gradient can
successfully be trained using past trajectories in dialog tasks.
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Abstract: In Hindsight Experience Replay (HER), a reinforcement learning agent
is trained by treating whatever it has achieved as virtual goals. However, in pre-
vious work, the experience was replayed at random, without considering which
episode might be the most valuable for learning. In this paper, we develop an
energy-based framework for prioritizing hindsight experience in robotic manipu-
lation tasks. Our approach is inspired by the work-energy principle in physics.
We define a trajectory energy function as the sum of the transition energy of
the target object over the trajectory. We hypothesize that replaying episodes
that have high trajectory energy is more effective for reinforcement learning in
robotics. To verify our hypothesis, we designed a framework for hindsight ex-
perience prioritization based on the trajectory energy of goal states. The tra-
jectory energy function takes the potential, kinetic, and rotational energy into
consideration. We evaluate our Energy-Based Prioritization (EBP) approach on
four challenging robotic manipulation tasks in simulation. Our empirical results
show that our proposed method surpasses state-of-the-art approaches in terms
of both performance and sample-efficiency on all four tasks, without increas-
ing computational time. A video showing experimental results is available at
https://youtu.be/jtsF2tTeUGQ.

Keywords: Prioritized Replay, Hindsight Experience, Energy (Physics)

1 Introduction

Reinforcement learning techniques [1] combined with deep neural networks [2] led to great suc-
cesses in various domains, such as playing video games [3], challenging the World Go Champion
[4], and learning autonomously to accomplish robotic tasks [5, 6, 7, 8, 9].

In robotic tasks, autonomous agents are expected to achieve multiple goals in different scenarios.
Standard approaches are based on goal-conditioned policies that allow agents to learn different po-
lices concurrently [10, 11, 12, 13, 14]. Alternatively, the agent exploits what alternative goals it
has achieved, learns from these achieved states, and further attempts to achieve the real goal. This
kind of goal-conditioned curriculum learning has recently been introduced as hindsight experience
replay (HER) [9]. HER lets an agent learn from undesired outcomes and tackles the problem of
sparse rewards in Reinforcement Learning (RL).

However, HER samples episodes uniformly from the memory buffer for replay. Subsequently, in
the selected episode, the virtual goals are sampled randomly at a future timestep with respect to
a randomly chosen state. The replay process does not consider which episodes or states might be
the most valuable for learning [15]. It would be more efficient in training to prioritize the more
important and valuable episodes. The challenge now is how to judge which episodes are more
valuable for learning. We define the trajectory energy as the sum of the transition energy of the
object over all timesteps of the trajectory, see more detail in Section 3.2. Our hypothesis is that
the trajectory energy is an effective metric for indicating which episode is more difficult to achieve.
This is readily true in most robotic manipulation tasks. Imagine a robot arm with an end effector,
attempting to pick up an object on the floor and place it on a shelf. The achieved goal state is the
position of the object at each timestep. In an unsuccessful scenario, the robot arm attempts to reach
the object but fails, leaving the object on the floor. The total energy of the object, including the
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potential energy and the kinetic energy, does not change during the episode because of Newton’s
laws of motion or, equivalently, the work-energy principle. Therefore, the trajectory energy of the
object remains zero. In a somewhat better scenario, the robot arm picks up the object successfully,
but accidentally drops the object before it reaches the shelf. In this case, the trajectory energy of the
object rises because the robot arm does work on the object. This case can be explained by the work-
energy principle in physics. In a successful scenario, the robot arm picks up the object and transfers
the object to the goal position on the shelf. Here, the trajectory energy is the highest among all
three scenarios; the robot arm does the most work on the object and fulfills the task. Obviously, the
successful episode is the most valuable for replay. The first scenario is the least important episode
because the object state is barely correlated with the trajectory of the robot arm. In this robotic task
example, we can see that the trajectory energy indeed indicates the importance of episodes.

In almost all robotic tasks, goal states can be expressed with physics quantities. In these cases,
the energy-based prioritization method is applicable. Based on the position and the orientation of
the object, we can calculate the linear and the angular velocity, as well as the kinetic energy and
the rotational energy. Based on the height of the object, we can calculate the potential energy. We
callculate the energy increases from state to state as the transiton energy, see Equation (1). We sum
the transition energy over time to have the trajectory energy, see Equation (2). Using the trajectory
energy function, in our approach, we prioritize the episodes with higher trajectory energy to speed
up the training. In order to verify our hypothesis, we implemented and tested our prioritization
framework in four simulated robotic tasks. These tasks include pick-and-place with a robot arm and
manipulating a block, an egg, and a pen with a Dexterous robot hand. The tasks are simulated with
the MuJoCo physics engine [16] and runs in the OpenAI Gym environment [17, 15].

In this paper we propose to use the trajectory energy function of achieved goal states as a metric
to evaluate which episodes are more difficult to achieve. Subsequently, we introduce Energy-Based
Prioritization (EBP) with hindsight experience replay. EBP prioritizes the trajectories with higher
energy during training to improve sample-efficiency. The proposed technique is applicable to any
robotic manipulation task, whenever multi-goal off-policy RL algorithms apply. The core idea of
EBP is to prioritize the explored episode, which is relatively difficult to achieve. This can be con-
sidered as a form of curriculum learning, which selects difficult yet achievable episodes for replay.

2 Background

In this section, we introduce the preliminaries, such as the used reinforcement learning approaches
and the work-energy principle in physics.

2.1 Markov Decision Process

We consider an agent interacting with an environment. We assume the environment is fully observ-
able, including a set of state S, a set of action A, a distribution of initial states p(s0), transition
probabilities p(st+1|st, at), a reward function r: S × A → R, and also a discount factor γ ∈ [0, 1].
These components formulate a Markov decision process represented as a tuple, (S,A, p, r, γ). A
policy π maps a state to an action, π : S → A.

At the beginning of each episode, an initial state s0 is sampled from the distribution p(s0). Then,
at each timestep t, an agent performs an action at at the current state st, which follows a policy
at = π(st). Afterwards, a reward rt = r(st, at) is produced by the environment and the next state
st+1 is sampled from the distribution p(·|st, at). The reward might be discounted by a factor γ at
each timestep. The goal of the agent is to maximize the accumulated reward, i.e. the return, Rt =∑∞
i=t γ

i−tri, over all episodes, which is equivalent to maximizing the expected return, Es0 [R0|s0].

2.2 Deep Deterministic Policy Gradient

The objective Es0 [R0|s0] can be maximized using temporal difference learning, policy gradients, or
the combination of both, i.e. the actor-critic methods [1]. For continuous control tasks, Deep Deter-
ministic Policy Gradient (DDPG) shows promising performance, which is essentially an off-policy
actor-critic method [18]. DDPG has an actor network, π : S → A, that learns the policy directly. It
also has a critic network, Q : S ×A → R, that learns the action-value function, i.e. Q-function Qπ .
During training, the actor network uses a behavior policy to explore the environment, which is the
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target policy plus some noise, πb = π(s) +N (0, 1). The critic is trained using temporal difference
learning with the actions produced by the actor: yt = rt + γQ(st+1, π(st+1)). The actor is trained
using policy gradients by descending on the gradients of the loss function, La = −Es[Q(s, π(s))],
where s is sampled from the replay buffer. For stability reasons, the target yt for the actor is usually
calculated using a separate network, i.e. an averaged version of the previous Q-function networks
[3, 18, 19]. The parameters of the actor and critic are updated using backpropagation.

2.3 Hindsight Experience Replay

For multi-goal continuous control tasks, DDPG can be extended with Universal Value Function
Approximators (UVFA) [10]. UVFA essentially generalizes the Q-function to multiple goal states
g ∈ G. For the critic network, the Q-value depends not only on the state-action pairs, but also
depends on the goals: Qπ(st, at, g) = E[Rt|st, at, g].

For robotic tasks, if the goal is challenging and the reward is sparse, then the agent could perform
badly for a long time before learning anything. Hindsight Experience Replay (HER) encourages the
agent to learn something instead of nothing. During exploration, the agent samples some trajectories
conditioned on the real goal g. The main idea of HER is that during replay, the selected transitions
are substituted with achieved goals g′ instead of the real goals. In this way, the agent could get
a sufficient amount of reward signal to begin learning. Andrychowicz et al. [9] show that HER
makes training possible in challenging robotic environments. However, the episodes are uniformly
sampled in the replay buffer, and subsequently, the virtual goals are sampled from the episodes.
More sophisticated replay strategies are requested for improving sample-efficiency [15].

2.4 Work-Energy Principle

Prior to the energy-based hindsight experience prioritization method, we illustrate here the work-
energy principle using robotic manipulation examples. In physics, a force is said to do work if,
when acting, there is a displacement of the point of application in the direction of the force [20]. For
instance, a robot arm picks up an object from the floor, and places it on the shelf. The work done on
the object is equal to the weight of the object multiplied by the vertical distance to the floor. As a
result, the potential energy of the object becomes higher.

The work-energy principle states that the work done by all forces acting on a particle equals the
change in the kinetic energy of the particle [21]. That is, the work W done by a force on an object
(simplified as a particle) equals the change in the object’s kinetic energy Ek [22], W = ∆Ek =
1
2mv

2
2 − 1

2mv
2
1 , where v1 and v2 are the speeds of the object before and after the work is done,

respectively, and m is its mass. As the robot arm is moving the object towards the shelf, the work is
being done by the robot on the object. Consequently, the kinetic energy of the object increases.

3 Method

In this section, we formally describe our approach, including the motivation, the derivation of the
trajectory energy function, the energy-based prioritization framework, and a comparison with prior-
itized experience replay [23].

3.1 Motivation

Consider a robotic manipulation task. We observe that in order to complete the tasks, the robot
needs to apply force and do work on the object. Typically, the more difficult a task is, the more work
from the robot is required. Consequently, the energy of the object is changed by the robot. Thus,
our hypothesis is that, in robotic manipulation tasks, the trajectory energy of the object indicates the
difficulty level of the tasks.

From the perspective of curriculum learning, we want to assign the right level of curriculum to the
agent. The curriculum should not be too difficult to achieve, also not too simple to learn. We use the
trajectory energy to evaluate the difficulty level of the curriculum, and then prioritize the difficult but
still achievable tasks for the agent. In this way, the agent might learn with higher sample-efficiency.
In robotic tasks, training samples are expensive to acquire, making sample-efficiency in learning
important.
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3.2 Trajectory Energy Function

In this section, we introduce the trajectory energy function formally.

A complete trajectory T in an episode is represented as a tuple (S,A, p, r, γ). A trajectory contains
a series of continuous states st, where t is the timestep t ∈ {0, 1, .., T}. The interval between
each timestep, ∆t, corresponds to the sampling frequency in the system, such as ∆t = 0.04 in
our experiments. Each state st ∈ S also includes the state of the achieved goal, meaning the goal
state is a subset of the normal state. Here, we overwrite the notation st as the achieved goal state,
i.e. the state of the object. A trajectory energy function, Etraj , only depends on the goal states,
s0, s1, ..., sT , and represents the total energy of a trajectory.

Each state st is described as a state vector. In robotic manipulation tasks, we use a state vector st =
[xt, yt, zt, at, bt, ct, dt] to describe the state of the object. In each state st, x, y, and z specify the
object position in the Cartesian coordinate system; a, b, c, and d of a quaternion, q = a+bi+cj+dk,
describe the orientation of the object. The total trajectory energy consists of three parts, namely the
potential energy, the kinetic energy, and the rotational energy.

Potential Energy: The potential energy of the objectEp at the state st is calculated using: Ep(st) =
mgzt, where m denotes the mass of the object, and g ≈ 9.81 m/s2 represents the gravity of earth.

Kinetic Energy: To calculate the kinetic energy, we need the velocity of the object. The velocity
along the x-axis can be calculated using vx,t ≈ (xt − xt−1)/∆t. Similarly, the velocities along
the y-axis and the z-axis are calculated as vy,t ≈ (yt − yt−1)/∆t and vz,t ≈ (zt − zt−1)/∆t,
respectively. The kinetic energy at st can be approximated as:

Ek(st) =
1

2
mv2x,t +

1

2
mv2y,t +

1

2
mv2z,t ≈

m
(
(xt − xt−1)2 + (yt − yt−1)2 + (zt − zt−1)2

)

2∆t2
.

Rotational Energy: For the rotational energy function, we have the quaternion in the simulation
[15], q = a+bi+cj+dk, representing the object orientation. First, we need to convert the quaternion
representation to Euler angles, (φ, θ, ψ), where φ, θ, and ψ represents the rotations around the x, y,
and z-axises, respectively. The Euler angles are obtained from quaternion using [24]:

[
φ
θ
ψ

]
=




arctan 2(ab+cd)
1−2(b2+c2)

arcsin(2(ac− db))
arctan 2(ad+bc)

1−2(c2+d2)


 =




atan2(2(ab+ cd), 1− 2(b2 + c2))
asin(2(ac− db))

atan2(2(ad+ bc), 1− 2(c2 + d2))


 .

Note that to obtain full orientations we use atan2 in the implementation instead of the regular atan
function because atan2 allows calculating the arc-tangent of all four quadrants. Atan only allows
calculating of quadrants one and four. The rotational energy in physics is defined as: Er = 1

2Iω
2,

where I is the moment of inertia around the axis of rotation; ω is the angular velocity and Er is
the rotational energy, also termed as angular kinetic energy. The angular velocity around the x-
axis is: ωx,t ≈ (φt − φt−1)/∆t. Similarly, for the y and z-axises ωy,t ≈ (θt − θt−1)/∆t and
ωz,t ≈ (ψt − ψt−1)/∆t. We approximate the rotational energy as:

Er(st) =
1

2
Ixω

2
x,t +

1

2
Iyω

2
y,t +

1

2
Izω

2
z,t ≈

Ix(φt − φt−1)2 + Iy(θt − θt−1)2 + Iz(ψt − ψt−1)2

2∆t2
.

Total Energy: The total energy is defined as: E(st) = Ep(st) +Ek(st) +Er(st). The total energy
includes the potential energy, the kinetic energy, and the rotation energy. Since for prioritizing
different trajectories, we are only interested in the relative differences of the trajectory energy, these
constant variables, including m, Ix, Iy , and Iz , can be set as a constant, such as m = Ix = Iy =
Iz = 1 used in our experiments.

Transition Energy: We define the transition energy as the total energy increase from the previous
state st−1 to the current state st, mathematically:

Etran(st−1, st) = clip (E(st)− E(st−1), 0, Emaxtran) (1)

where t ≥ 1 and Emaxtran is the predefined maximal transition energy value. The clip function limits
the transition energy value in an interval of [0, Emaxtran]. Here, we are only interested in the positive
transition energy because the energy increase of the object is only due to the work done by the
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robot. The robot does work on the object, consequently, the total energy of the object increases.
In practice, to mitigate the influence of some particular large transition energy, we find it useful to
clip the transition energy with a threshold value Emaxtran . This trick makes the training stable. The
threshold value can either be tuned as a hyperparameter or estimated using the energy functions.

Trajectory Energy: Given the definition of the transition energy, we define the trajectory energy as
the sum of the transition energy over all the timesteps in the trajectory, mathematically:

Etraj(T ) = Etraj(s0, s1, ..., sT ) =
T∑

t=1

Etran(st−1, st) (2)

3.3 Energy-Based Prioritization

In this section, we describe the Energy-Based Prioritization (EBP) framework. In a nutshell, we first
calculate the trajectory energy, then prioritize the trajectories with higher energy for replay.

At the beginning of each episode, the agent uses random policies to start to explore the environment.
The sampled trajectories are stored in a replay buffer. When the agent acquires a new trajectory,
the agent calculates the energy by using the trajectory energy function, Equation (2), and stores the
energy value along with the trajectory in the replay buffer for later prioritization.

During sampling from the replay buffer, the agent uses the trajectory energy values directly as the
probability for sampling. This means that the high energy trajectories have higher priorities to be
replayed. Mathematically, the probability of a trajectory Ti to be replayed after the prioritization is:

p(Ti) =
Etraj(Ti)∑N
n=1Etraj(Tn)

(3)

where N is the total number of trajectories in the buffer.

Complete Algorithm: We summarize the complete training algorithm in Algorithm 1.

Algorithm 1 HER with Energy-Based Prioritization (EBP)

Given:
• an off-policy RL algorithm A . e.g. DQN, DDPG
• a reward function r : S ×A× G → R. . e.g. r(s, a, g) = −1 if fail, 0 if success

Initialize neural networks of A and replay buffer R
for episode = 1, N do

Sample a goal g and an initial state s0.
for t = 0, T − 1 do

Sample an action at using the behavioral policy from A:
at ← πb(st‖g) . ‖ denotes concatenation

Execute the action at and observe a new state st+1

end for
Calculate trajectory energy Etraj(s0, s1, ..., sT ) via Equation (1) and (2) . trajectory energy
Calculate priority p(T ) based on Equation (3)
for t = 0, T − 1 do

rt := r(st, at, g)
Store the transition (st‖g, at, rt, st+1‖g, p, Etraj) in R
Sample trajectory T for replay based on priority p(T ) . prioritization
Sample transitions (st, at, st+1) from T
Sample virtual goals g′ ∈ {st+1, ..., sT−1} at a future timestep in T
r′t := r(st, at, g

′) . recalculate reward (HER)
Store the transition (st‖g′, at, r′t, st+1‖g′, p, Etraj) in R

end for
for t = 1,M do

Sample a minibatch B from the replay buffer R
Perform one step of optimization using A and minibatch B

end for
end for
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Figure 1: Robot arm Fetch and Shadow Dexterous hand environment: FetchPickAndPlace,
HandManipulateBlock, HandManipulateEgg, and HandManipulatePen.

3.4 Comparison with Prioritized Experience Replay

To the best our knowledge, the most similar method to EBP is Prioritized Experience Replay (PER)
[23]. To combine PER with HER, we calculate the TD-error of each transition based on the randomly
selected achieved goals. Then we prioritize the transitions with higher TD-errors for replay. It is
known that PER can become very expensive in computational time. The reason is that PER uses
TD-errors for prioritization. After each update of the model, the agent needs to update the priorities
of the transitions in the replay buffer with the new TD-errors, and then ranks them based on the
priorities and samples the trajectories for replay. In our experiemnts, see Section 4, we use the
efficient implementation based on the ”sum-tree” data structure, which can be relatively efficiently
updated and sampled from [23].

Compared to PER, EBP is much faster in computational time because it only calculates the trajec-
tory energy once, when a new trajectory becomes available. Due to this reason, EBP is much more
efficient than PER in computational time and can easily be combined with any multi-goal RL meth-
ods, such as HER. In the experiments Section 4, we first compare the performance improvement
of EBP and PER. Afterwards, we compare the time-complexity of PER and EBP. We show that
EBP improves performance without additional computational time. However, PER consumes much
more computational time with less improvement. Furthermore, the motivations of PER and EBP are
different. The former uses TD-errors, while the latter is based on the energy in physics.

4 Experiments

In this section, we first introduce the robot simulation environment used for evaluation. Then, we
investigate the following questions:
- Does incorporating energy-based prioritization bring benefits to hindsight experience replay?
- Does energy-based prioritization improve the sample-efficiency in robotic manipulation tasks?
- How does the trajectory energy relate to the TD-errors of the trajectory during training?

Our code is available at this link1.

Environments: The environment we used throughout our experiments is the robotic simulations
provided by OpenAI Gym [17, 15], using the MuJoCo physics engine [16].

The robotic environment is based on currently existing robotic hardware and is designed as a stan-
dard benchmark for Multi-goal RL. The robot agent is required to complete several tasks with differ-
ent goals in each scenario. There are two kinds of robot agents in the environment. One is a 7-DOF
Fetch robotic arm with a two-finger gripper as an end-effector. The other is a 24-DOF Shadow Dex-
terous robotic hand. We use four challenging tasks for evaluation, including pick & place, and hand
manipulation of block, egg, or pen, see Figure 1.

The states in the simulation consist of positions, orientations, linear and angular velocities of all
robot joints and of an object. Goals represent desired position and orientations of the the object.
There is a tolerant range around the desired positions and orientations. In all environments, we
consider sparse rewards. If the object is not in the tolerant range of the goal, the agent receives
reward signal -1 for each transition; otherwise the reward signal is 0.

Performance: To test the performance difference between vanilla HER, HER with PER, and HER
with EBP, we run the experiment in all four challenging object manipulation robotic environments.

1https://github.com/ruizhaogit/EnergyBasedPrioritization
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Figure 2: Mean test success rate with standard deviation range for all four environments

Table 1: Final Mean Success Rate for all four environments
Pick & Place Block Egg Pen

Vanilla HER 93.78% 20.32% 76.19% 27.28%
HER + PER 93.66% 18.95% 75.46% 27.74%
HER + EBP 94.84% 25.63% 80.42% 31.69%

We compare the mean success rates. Each experiment is carried out across 5 random seeds and the
shaded area represents the standard deviation. The learning curve with respect to training epochs is
shown in Figure 2. For all experiments, we use 19 CPUs. For the robotic arm environment, we train
the model for 50 epochs with Emaxtran = 0.5 . For the robotic hand environment, we train the agent
for 200 epochs with Emaxtran = 2.5. After training, we use the best learned policy as the final policy,
and test it in the environment. The testing results are the final mean success rates. A comparison of
the final performances is shown in Table 1.

From Figure 2, we can see that HER with EBP converges faster than do both vanilla HER and HER
with PER in all four tasks. The agent trained with EBP also shows a better performance, at the end of
the training time. This is attractive, since HER with EBP consumes nearly the same computational
time as vanilla HER, as shown in Table 2. However, we see that HER with PER consumes about 10
times the training time as vanilla HER or HER with EBP does in the robot hand environments.

From Table 1, we can see that HER cooperating with EBP gives a better performance in all four
tasks. The improvement varies from 1 percentage point to 5.3 percentage points compared to HER.
The average improvement over the four tasks is 3.75 percentage points. We can see that EBP is
a simple yet effective method, without increasing computational time, but still, improves current
state-of-the-art methods.

Sample-Efficiency: To compare the sample-efficiency of vanilla HER and HER with EBP, we com-
pare the number of training samples needed for a certain mean test success rate. The comparison is
shown in Figure 3.

From Figure 3, in the FetchPickAndPlace-v0 environment, we can see that for the same 93.8%
mean test success rate, HER needs 93,100 samples for training, while HER with EBP only needs
48,000 samples. In this case, HER with EBP is nearly twice (1.94) as sample-efficient as vanilla
HER. Similarly, in the other three environments, EBP improves sample-efficiency by factors of
1.49, 1.69, and 2.72, respectively. In conclusion, for all four testing environments, EBP is able to
improve sample-efficiency by an average factor of two (1.96) over vanilla HER’s sample-efficiency.

Insights: We also investigate the correlation between the trajectory energy and the TD-errors of the
trajectory. The Pearson correlation coefficient, i.e. Pearson’s r [25], between the energy and the TD-
errors of the trajectory is shown in Figure 4. The value of Pearson’s r is between 1 and -1, where 1
is total positive linear correlation, 0 is no linear correlation, -1 is total negative linear correlation. In
Figure 4, we can see that the trajectory energy is correlated with the TD-errors of the trajectory with

Table 2: Training time (hours:minutes:seconds) in all four environments (single run)
Pick & Place Block Egg Pen

Vanilla HER 01:32:40 08:28:19 07:19:59 07:33:29
HER + PER 03:07:45 80:43:27 79:51:55 81:10:38
HER + EBP 01:29:57 07:28:29 07:28:25 07:35:48
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Figure 4: Pearson correlation between the trajectory energy and TD-errors in the middle of training

an average Pearson’s r of 0.6. This proves that high energy trajectories are relatively more valuable
for learning. Therefore, it is helpful to prioritize high energy trajectories during training.

5 Related Work

Experience replay was proposed by Lin [26] in 1992 and became popular due to the success of DQN
[3] in 2015. In the same year, prioritized experience replay was introduced by Schaul et al. [23] as
an improvement of the experience replay in DQN. It prioritized the transitions with higher TD-error
in the replay buffer to speed up training. This idea is complementary to our method.

In 2015, Schaul et al. [10] proposed universal function approximators, generalizing not just over
states but also over goals. There are also many other research works about multi-task RL [27, 28,
29, 30, 31, 32, 33]. Hindsight experience replay [9] is a kind of goal-conditioned RL that substitutes
any achieved goals as real goals to encourage the agent to learn something instead of nothing.

Our method can be considered as a form of curriculum learning [34, 35, 36, 37, 38, 39]. The essence
of our method is to assign priority to the achieved trajectories with higher energy, which are relatively
difficult to achieve. In RL, curriculum generation can be traced back to 2004. Schmidhuber [40]
used a program search to construct an asymptotically optimal algorithm to approach the problem.
Recently, Florensa et al. [41] trained the agent reversely, from the start states near the goal states,
gradually to the states far from the goals. Our method bares a similar motivation, but is orthogonal
to these previous works and can be combined with them.

6 Conclusion

In conclusion, we proposed a simple yet effective energy-based approach to prioritize hindsight ex-
perience. Energy-Based Prioritization shows promising experimental results in all four challenging
robotic manipulation tasks. This method can be combined with any off-policy RL methods. We
integrated physics knowledge about energy into the modern reinforcement learning paradigm, and
improved sample-efficiency by a factor of two and the final performance by about four percentage
points on top of state-of-the-art methods, without increasing computational time.
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Abstract

In Reinforcement Learning (RL), an agent explores the environment and collects
trajectories into the memory buffer for later learning. However, the collected
trajectories can easily be imbalanced with respect to the achieved goal states. The
problem of learning from imbalanced data is a well-known problem in supervised
learning, but has not yet been thoroughly researched in RL. To address this problem,
we propose a novel Curiosity-Driven Prioritization (CDP) framework to encourage
the agent to over-sample those trajectories that have rare achieved goal states. The
CDP framework mimics the human learning process and focuses more on relatively
uncommon events. We evaluate our methods using the robotic environment pro-
vided by OpenAI Gym. The environment contains six robot manipulation tasks.
In our experiments, we combined CDP with Deep Deterministic Policy Gradient
(DDPG) with or without Hindsight Experience Replay (HER). The experimen-
tal results show that CDP improves both performance and sample-efficiency of
reinforcement learning agents, compared to state-of-the-art methods.

1 Introduction

Reinforcement Learning (RL) [49] combined with Deep Learning (DL) [17, 24, 18, 56] led to great
successes in various tasks, such as playing video games [29], challenging the World Go Champion
[46], conducting goal-oriented dialogues [5, 54, 55, 52], and learning autonomously to accomplish
different robotic tasks [32, 36, 25, 9, 1].

One of the biggest challenges in RL is to make the agent learn sample-efficiently in applications with
sparse rewards. Recent RL algorithms, such as Deep Deterministic Policy Gradient (DDPG) [26],
enable the agent to learn continuous control, such as manipulation and locomotion. Furthermore,
to make the agent learn faster in the sparse reward settings, Andrychowicz et al. [1] introduced
Hindsight Experience Replay (HER) that encourages the agent to learn from whatever goal states
it has achieved. The combination use of DDPG and HER lets the agent learn to accomplish more
complex robot manipulation tasks. However, there is still a huge gap between the learning efficiency
of humans and RL agents. In most cases, an RL agent needs millions of samples before it becomes
good at the tasks, while humans only need a few samples [29].

One ability of humans is to learn with curiosity. Imagine a boy learning to play basketball and he
attempting to shoot the ball into the hoop. After a day of training, he replayed the memory about the
moves he practiced. During his recall, he realized that he missed most of his attempts. However, a
few made contact with the hoop. These near successful attempts are more interesting to learn from.
He will put more focus on learning from these. This kind of curiosity-driven learning might make the
learning process more efficient.

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.



Similar curiosity mechanisms could be beneficial for RL agents. We are interested in the RL tasks, in
which the goals can be expressed in states. In this case, the agent can analyze the achieved goals and
find out which states have been achieved most of the time and which are rare. Based on the analysis,
the agent is able to prioritize the trajectories, of which the achieved goal states are novel. For example,
the goal states could be the position and the orientation of the target object. We want to encourage
the agent to balance the training samples in the memory buffer. The reason is that the policy of the
agent could be biased and focuses on a certain group of achieved goal states. This causes the samples
to be imbalanced in the memory buffer, which we refer to as memory imbalance.

To overcome the class imbalance issue in supervised learning, such as training deep convolutional
neural networks with biased datasets, researchers utilized over-sampling and under-sampling tech-
niques [14, 7, 16]. For instance, the number of one image class is significantly higher than another
class. They over-sampled the training images in the smaller class to balance the training set and
ultimately to improve the classification accuracy. This idea could be combined with experience replay
in RL. We investigate into this research direction and propose a novel curiosity-based prioritization
framework for RL agents.

In this paper, we introduce a framework called Curiosity-Driven Prioritization (CDP) which allows
the agent to realize a curiosity-driven learning ability similar to humans. This approach can be
combined with any off-policy RL algorithm. It is applicable whenever the achieved goals can be
described with state vectors. The pivotal idea of CDP is to first estimate the density of each achieved
goal and then prioritize the trajectories with lower density to balance the samples that the agent learns
from. To evaluate CDP, we combine CDP with DDPG and DDPG+HER and test them in the robot
manipulation environments.

2 Background

In this section, we introduce the preliminaries, such as the reinforcement learning approaches and the
density estimation algorithm we used in the experiments.

2.1 Markov Decision Process

We consider an agent interacting with an environment. We assume the environment is fully observable,
including a set of state S , a set of actionA, a distribution of initial states p(s0), transition probabilities
p(st+1|st, at), a reward function r: S × A → R, and also a discount factor γ ∈ [0, 1]. These
components formulate a Markov decision process represented as a tuple, (S,A, p, r, γ). A policy π
maps a state to an action, π : S → A.

At the beginning of each episode, an initial state s0 is sampled from the distribution p(s0). Then, at
each timestep t, an agent performs an action at at the current state st, which follows a policy at =
π(st). A reward rt = r(st, at) is produced by the environment and the next state st+1 is sampled
from the distribution p(·|st, at). The reward might be discounted by a factor γ at each timestep. The
goal of the agent is to maximize the accumulated reward, i.e. the return, Rt =

∑∞
i=t γ

i−tri, over all
episodes, which is equivalent to maximizing the expected return, Es0 [R0|s0].

2.2 Deep Deterministic Policy Gradient

The objective Es0 [R0|s0] can be maximized using temporal difference learning, policy gradients,
or the combination of both, i.e. the actor-critic methods [49]. For continuous control tasks, Deep
Deterministic Policy Gradient (DDPG) shows promising performance, which is essentially an off-
policy actor-critic method [26]. DDPG has an actor network, π : S → A, that learns the policy
directly. It also has a critic network, Q : S × A → R, that learns the action-value function, i.e.
Q-function Qπ . During training, the actor network uses a behavior policy to explore the environment,
which is the target policy plus some noise, πb = π(s) + N (0, 1). The critic is trained using
temporal difference learning with the actions produced by the actor: yt = rt + γQ(st+1, π(st+1)).
The actor is trained using policy gradients by descending on the gradients of the loss function,
La = −Es[Q(s, π(s))], where s is sampled from the replay buffer. For stability reasons, the target
yt for the actor is usually calculated using a separate network, i.e. an averaged version of the
previous Q-function networks [29, 26, 39]. The parameters of the actor and critic are updated using
backpropagation.
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2.3 Hindsight Experience Replay

For multi-goal continuous control tasks, DDPG can be extended with Universal Value Function
Approximators (UVFA) [41]. UVFA essentially generalizes the Q-function to multiple goal states
g ∈ G. For the critic network, the Q-value depends not only on the state-action pairs, but also depends
on the goals: Qπ(st, at, g) = E[Rt|st, at, g].

For robotic tasks, if the goal is challenging and the reward is sparse, then the agent could perform
badly for a long time before learning anything. Hindsight Experience Replay (HER) encourages the
agent to learn from whatever goal states that it has achieved. During exploration, the agent samples
some trajectories conditioned on the real goal g. The main idea of HER is that during replay, the
selected transitions are substituted with achieved goals g′ instead of the real goals. In this way, the
agent could get a sufficient amount of reward signal to begin learning. Andrychowicz et al. [1] show
that HER makes training possible in challenging robotic environments. However, the episodes are
uniformly sampled in the replay buffer, and subsequently, the virtual goals are sampled from the
episodes. More sophisticated replay strategies are requested for improving sample-efficiency [38].

2.4 Gaussian Mixture Model

For estimating the density ρ of the achieved goals in the memory buffer, we use a Gaussian mixture
model, which can be trained reasonably fast for RL agents. Gaussian Mixture Model (GMM) [13, 31]
is a probabilistic model that assumes all the data points are generated from K Gaussian distributions
with unknown parameters, mathematically: ρ(x) =

∑K
k=1 ckN (x|µk,Σk). Every Gaussian density

N (x|µk,Σk) is a component of the GMM and has its own mean µk and covariance Σk. The
parameters ck are the mixing coefficients. The parameter of GMM is estimated using Expectation-
Maximization (EM) algorithm [12]. EM fits the model iteratively on the training data from the agent’s
memory buffer.

In our experiments, we use Variational Gaussian Mixture Model (V-GMM) [4], a variation of GMM.
V-GMM infers an approximate posterior distribution over the parameters of a GMM. The prior for
the weight distribution we used is the Dirichlet distribution. This variational inference version of
GMM has a natural tendency to set some mixing coefficients ck close to zero. This enables the model
to choose a suitable number of effective components automatically.

3 Method

In this section, we formally describe our approach, including the motivation, the curiosity-driven
prioritization framework, and a comparison with prioritized experience replay [42].

3.1 Motivation

The motivation of incorporating curiosity mechanisms into RL agents is motivated by the human
brain. Recent neuroscience research [19] has shown that curiosity can enhance learning. They
discovered that when curiosity motivated learning was activated, there was increased activity in the
hippocampus, a brain region that is important for human memory. To learn a new skill, such as
playing basketball, people practice repeatedly in a trial-and-error fashion. During memory replay,
people are more curious about the episodes that are relatively different and focus more on those. This
curiosity mechanism has been shown to speed up learning.

Secondly, the inspiration of how to design the curiosity mechanism for RL agents comes from
the supervised learning community, in particular the class imbalance dataset problem. Real-world
datasets commonly show the particularity to have certain classes to be under-represented compared
to other classes. When presented with complex imbalanced datasets, standard learning algorithms,
including neural networks, fail to properly represent the distributive characteristics of the data and
thus provide unfavorable accuracies across the different classes of the data [20, 16]. One of the
effective methods to handle this problem is to over-sample the samples in the under-represented class.
Therefore, we prioritize the under-represented trajectories with respect to the achieved goals in the
agent’s memory buffer to improve the performance.
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3.2 Curiosity-Driven Prioritization

In this section, we formally describe the Curiosity-Driven Prioritization (CDP) framework. In a
nutshell, we first estimate the density of each trajectory according to its achieved goal states, then
prioritize the trajectories with lower density for replay.

3.2.1 Collecting Experience

At the beginning of each episode, the agent uses partially random policies, such as ε-greedy, to start
to explore the environment and stores the sampled trajectories into a memory buffer for later replay.

A complete trajectory T in an episode is represented as a tuple (S,A, p, r, γ). A trajectory contains
a series of continuous states st, where t is the timestep t ∈ {0, 1, .., T}. Each state st ∈ S also
includes the state of the achieved goal, meaning the goal state is a subset of the normal state. Here,
we overwrite the notation st as the achieved goal state, i.e. the state of the object. The density of a
trajectory, ρ, only depends on the goal states, s0, s1, ..., sT .

Each state st is described as a state vector. For example, in robotic manipulation tasks, we use a state
vector st = [xt, yt, zt, at, bt, ct, dt] to describe the state of the object, i.e. the achieved goals. In each
state st, x, y, and z specify the object position in the Cartesian coordinate system; a, b, c, and d of a
quaternion, q = a+ bi+ cj + dk, describe the orientation of the object.

3.2.2 Density Estimation

After the agent collected a number of trajectories, we can fit the density model. The density model
we use here is the Variational Gaussian Mixture Model (V-GMM) as introduced in Section 2.4. The
V-GMM fits on the data in the memory buffer every epoch and refreshes the density for each trajectory
in the buffer. During each epoch, when the new trajectory comes in, the density model predicts the
density ρ based on the achieved goals of the trajectory as:

ρ = V-GMM(T ) =
K∑

k=1

ckN (T |µk,Σk) (1)

where T = (s0‖s1‖...‖sT ) and each trajectory T has the same length. The symbol ‖ denotes
concatenation. We normalize the trajectory densities using

ρi =
ρi∑N
n=1 ρn

(2)

where N is the number of trajectories in the memory buffer. Now the density ρ is between zero and
one, i.e. 0 ≤ ρ ≤ 1, After calculating the trajectory density, the agent stores the density value along
with the trajectory in the memory buffer for later prioritization.

3.2.3 Prioritization

During replay, the agent puts more focus on the under-represented achieved states and prioritizes the
according trajectories. These under-represented achieved goal states have lower trajectory density.
We defined the complementary trajectory density as:

ρ̄ ∝ 1− ρ. (3)

When the agent replays the samples, it first ranks all the trajectories with respect to their comple-
mentary density values ρ̄, and then uses the ranking number (starting from zero) directly as the
probability for sampling. This means that the low-density trajectories have high ranking numbers,
and equivalently, have higher priorities to be replayed. Here we use the ranking instead of the density
directly. The reason is that the rank-based variant is more robust because it is not affected by outliers
nor by density magnitudes. Furthermore, its heavy-tail property also guarantees that samples will be
diverse [42]. Mathematically, the probability of a trajectory to be replayed after the prioritization is:

p(Ti) =
rank(ρ̄(Ti))∑N

n=1 rank((ρ̄(Tn))
(4)

where N is the total number of trajectories in the buffer, and rank(·) ∈ {0, 1, ..., N − 1}.
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3.2.4 Complete Algorithm

We summarize the complete training algorithm in Algorithm 1.

Algorithm 1 Curiosity-Driven Prioritization (CDP)

Given:
• an off-policy RL algorithm A . e.g. DDPG, DDPG+HER
• a reward function r : S ×A× G → R. . e.g. r(s, a, g) = −1 (fail), 0 (success)

Initialize neural networks of A, density model V-GMM, and replay buffer R
for epoch = 1, M do

for episode = 1, N do
Sample a goal g and an initial state s0.
Sample a trajectory T = (st‖g, at, rt, st+1‖g)Tt=0 using πb from A
Calculate the densities ρ and ρ̄ using Equation (1), (2) and (3) . estimate density
Calculate the priority p(T ) using Equation (4)
Store transitions (st‖g, at, rt, st+1‖g, p, ρ̄)Tt=0 in R
Sample trajectory T from R based on the priority, p(T ) . prioritization
Sample transitions (st, at, st+1) from T
Sample virtual goals g′ ∈ {st+1, ..., sT−1} at a future timestep in T
r′t := r(st, at, g

′) . recalculate reward (HER)
Store the transition (st‖g′, at, r′t, st+1‖g′, p, ρ̄) in R
Perform one step of optimization using A

end for
Train the density model using the collected trajectories in R . fit density model
Update the density in R using the trained model . refresh density

end for

3.3 Comparison with Prioritized Experience Replay

To the best our knowledge, the most similar method to CDP is Prioritized Experience Replay (PER)
[42]. To combine PER with HER, we calculate the TD-error of each transition based on the randomly
selected achieved goals. Then we prioritize the transitions with higher TD-errors for replay. It is
known that PER can become very expensive in computational time. The reason is that PER uses
TD-errors for prioritization. After each update of the model, the agent needs to update the priorities
of the transitions in the replay buffer with the new TD-errors. The agent then ranks them based on
the priorities and samples the trajectories for replay. In our experiments, see Section 4, we use the
efficient implementation based on the "sum-tree" data structure, which can be relatively efficiently
updated and sampled from [42].

Compared to PER, CDP is much faster in computational time because it only updates the trajectory
density once per epoch. Due to this reason, CDP is much more efficient than PER in computational
time and can be easily combined with any multi-goal RL methods, such as DDPG and HER. In the
experiments, Section 4, we first compare the performance improvement of CDP and PER. Afterwards,
we compare the time-complexity of PER and CDP. We show that CDP improves performance with
much less computational time than PER. Furthermore, the motivations of PER and CDP are different.
The former uses TD-errors, while the latter is based on the density of the trajectories.

4 Experiments

In this section, we first introduce the robot simulation environment used for evaluation. Then, we
investigate the following questions:
- Does incorporating CDP bring benefits to DDPG or DDPG+HER?
- Does CDP improve the sample-efficiency in robotic manipulation tasks?
- How does the density ρ̄ relate to the TD-errors of the trajectory during training?

Environments: The environment we used throughout our experiments is the robotic simulations
provided by OpenAI Gym [6, 38], using the MuJoCo physics engine [51].

5



Figure 1: Robot arm Fetch and Shadow Dexterous hand environment: FetchPush,
FetchPickAndPlace, FetchSlide, HandManipulateEgg, HandManipulateBlock, and
HandManipulatePen.

Epoch

M
e
a
n

 S
u

cc
e
ss

 R
a
te

0 50 100 150 200

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
HandManipulatePenRotate-v0

DDPG+HER+CDP

DDPG+HER

DDPG+HER+PER

0 50 100 150 200

0.0

0.2

0.4

0.6

0.8

HandManipulateEggFull-v0

DDPG+HER+CDP

DDPG+HER

DDPG+HER+PER

0 50 100 150 200

0.00

0.05

0.10

0.15

0.20

0.25

HandManipulateBlockFull-v0

DDPG+HER+CDP

DDPG+HER

DDPG+HER+PER

0 50 100 150 200

0.0

0.2

0.4

0.6

0.8

FetchSlide-v0

DDPG+CDP

DDPG

DDPG+PER

0 50 100 150 200

0.0

0.2

0.4

0.6

0.8

1.0

FetchPush-v0

DDPG+CDP

DDPG

DDPG+PER

0 50 100 150 200

0.0

0.2

0.4

0.6

0.8

FetchPickAndPlace-v0

DDPG+CDP

DDPG

DDPG+PER

Figure 2: Mean test success rate with standard deviation in all six robot environments

The robotic environment is based on currently existing robotic hardware and is designed as a standard
benchmark for Multi-goal RL. The robot agent is required to complete several tasks with different
goals in each scenario. There are two kinds of robot agents in the environment. One is a 7-DOF Fetch
robotic arm with a two-finger gripper as an end-effector. The other is a 24-DOF Shadow Dexterous
robotic hand. We use six challenging tasks for evaluation, including push, slide, pick & place with
the robot arm, and hand manipulation of the block, egg, and pen, see Figure 1.

States: The states in the simulation consist of positions, orientations, linear and angular velocities of
all robot joints and of an object.

Goals: The real goals are desired positions and orientations of the object.

Rewards: In all environments, we consider sparse rewards. There is a tolerant range between the
desired goal states and the achieved goal states. If the object is not in the tolerant range of the real
goal, the agent receives a reward signal -1 for each transition; otherwise, the reward signal is 0.

Performance: To test the performance difference among DDPG, DDPG+PER, and DDPG+CDP,
we run the experiment in the three robot arm environments. We use the DDPG as the baseline here
because the robot arm environment is relatively simple. In the more challenging robot hand environ-
ments, we use DDPG+HER as the baseline method and test the performance among DDPG+HER,
DDPG+HER+PER, and DDPG+HER+CDP.

We compare the mean success rates. Each experiment is carried out across 5 random seeds and the
shaded area represents the standard deviation. The learning curve with respect to training epochs is
shown in Figure 2. For all experiments, we use 19 CPUs and train the agent for 200 epochs. After
training, we use the best-learned policy as the final policy and test it in the environment. The testing
results are the final mean success rates. A comparison of the final performances along with the
training time is shown in Table 1.
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Table 1: Final mean success rate (%) and the training time (hour) for all six environments
Push Pick & Place Slide

Method success time success time success time

DDPG 99.90% 5.52h 39.34% 5.61h 75.67% 5.47h
DDPG+PER 99.94% 30.66h 67.19% 25.73h 66.33% 25.85h
DDPG+CDP 99.96% 6.76h 76.02% 6.92h 76.77% 6.66h

Egg Block Pen

Method success time success time success time

DDPG+HER 76.19% 7.33h 20.32% 8.47h 27.28% 7.55h
DDPG+HER+PER 75.46% 79.86h 18.95% 80.72h 27.74% 81.17h
DDPG+HER+CDP 81.30% 17.00h 25.00% 19.88h 31.88% 25.36h
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Figure 3: Number of training samples needed with respect to mean test success rate for all six
environments (the lower the better)

From Figure 2, we can see that CDP converges faster in all six tasks than both the baseline and PER.
The agent trained with CDP also shows a better performance at the end of the training, as shown in
Table 1. In Table 1, we can see that the training time of CDP lies in between the baseline and PER.
To be more specific, CDP consumes much less computational time than PER does. For example in
the robot arm environments, on average DDPG+CDP consumes about 1.2 times the training time of
DDPG. In comparison, DDPG+PER consumes about 5 times the training time as DDPG does. In this
case, CDP is 4 times faster than PER.

Table 1 shows that baseline methods with CDP give a better performance in all six tasks. The
improvement goes up to 39.34 percentage points compared to the baseline methods. The average
improvement over the six tasks is 9.15 percentage points. We can see that CDP is a simple yet
effective method, improves state-of-the-art methods.

Sample-Efficiency: To compare the sample-efficiency of the baseline and CDP, we compare the
number of training samples needed for a certain mean test success rate. The comparison is shown
in Figure 3. From Figure 3, in the FetchPush-v0 environment, we can see that for the same 99%
mean test success rate, the baseline DDPG needs 273,600 samples for training, while DDPG+CDP
only needs 112,100 samples. In this case, DDPG+CDP is more than twice (2.44) as sample-efficient
as DDPG. Similarly, in the other five environments, CDP improves sample-efficiency by factors of
2.84, 0.92, 1.37, 1,28 and 2.87, respectively. In conclusion, for all six environments, CDP is able to
improve sample-efficiency by an average factor of two (1.95) over the baseline’s sample-efficiency.
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Figure 4: Pearson correlation between the density ρ̄ and TD-errors in the middle of training

Insights: We also investigate the correlation between the complementary trajectory density ρ̄ and
the TD-errors of the trajectory. The Pearson correlation coefficient, i.e. Pearson’s r [3], between the
density ρ̄ and the TD-errors of the trajectory is shown in Figure 4. The value of Pearson’s r is between
1 and -1, where 1 is total positive linear correlation, 0 is no linear correlation, -1 is total negative
linear correlation. In Figure 4, we can see that the complementary trajectory density is correlated with
the TD-errors of the trajectory with an average Pearson’s r of 0.7. This proves that the relatively rare
trajectories in the memory buffer are more valuable for learning. Therefore, it is helpful to prioritize
the trajectories with lower density during training.

5 Related Work

Experience replay was proposed by Lin [27] and became popular due to the success of DQN [29]. In
the same year, prioritized experience replay was introduced by Schaul et al. [42] as an improvement of
the experience replay in DQN. It prioritized the transitions with higher TD-error in the replay buffer
to speed up training. Schaul et al. [41] also proposed universal function approximators, generalizing
not just over states but also over goals. There are also many other research works about multi-task
RL [45, 8, 11, 23, 37, 15, 50]. Hindsight experience replay [1] is a kind of goal-conditioned RL that
substitutes any achieved goals as real goals to encourage the agent to learn something instead of
nothing.

Curiosity-driven exploration is a well-studied topic in reinforcement learning [33, 34, 43, 44, 48].
Pathak et al. [35] encourage the agent to explore states with high prediction error. The agents are also
encouraged to explore "novel" or uncertain states [2, 28, 40, 22, 30, 10, 47].

However, we integrate curiosity into prioritization and tackle the problem of data imbalance [16]
in the memory buffer of RL agents. A recent work [53] introduced a form of re-sampling for RL
agents based on trajectory energy functions. The idea of our method is complementary and can be
combined. The motivation of our method is from the curiosity mechanism in the human brain [19].
The essence of our method is to assign priority to the achieved trajectories with lower density, which
are relatively more valuable to learn from. In supervised learning, similar tricks are used to mitigate
the class imbalance challenge, such as over-sampling the data in the under-represented class [21, 20].

6 Conclusion

In conclusion, we proposed a simple yet effective curiosity-driven approach to prioritize agent’s expe-
rience based on the trajectory density. Curiosity-Driven Prioritization shows promising experimental
results in all six challenging robotic manipulation tasks. This method can be combined with any
off-policy RL methods, such as DDPG and DDPG+HER. We integrated the curiosity mechanism via
density estimation into the modern RL paradigm and improved sample-efficiency by a factor of two
and the final performance by nine percentage points on top of state-of-the-art methods.
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Abstract

In Multi-Goal Reinforcement Learning, an agent
learns to achieve multiple goals with a goal-
conditioned policy. During learning, the agent
first collects the trajectories into a replay buffer,
and later these trajectories are selected randomly
for replay. However, the achieved goals in the re-
play buffer are often biased towards the behavior
policies. From a Bayesian perspective, when there
is no prior knowledge about the target goal dis-
tribution, the agent should learn uniformly from
diverse achieved goals. Therefore, we first pro-
pose a novel multi-goal RL objective based on
weighted entropy. This objective encourages the
agent to maximize the expected return, as well
as to achieve more diverse goals. Secondly, we
developed a maximum entropy-based prioritiza-
tion framework to optimize the proposed objec-
tive. For evaluation of this framework, we com-
bine it with Deep Deterministic Policy Gradient,
both with or without Hindsight Experience Re-
play. On a set of multi-goal robotic tasks of Ope-
nAI Gym, we compare our method with other
baselines and show promising improvements in
both performance and sample-efficiency.

1. Introduction
Reinforcement Learning (RL) (Sutton & Barto, 1998) com-
bined with Deep Learning (DL) (Goodfellow et al., 2016)
has led to great successes in various tasks, such as playing
video games (Mnih et al., 2015), challenging the World Go
Champion (Silver et al., 2016), and learning autonomously
to accomplish different robotic tasks (Ng et al., 2006; Peters
& Schaal, 2008; Levine et al., 2016; Chebotar et al., 2017;
Andrychowicz et al., 2017).
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One of the biggest challenges in RL is to make the agent
learn efficiently in applications with sparse rewards. To
tackle this challenge, Lillicrap et al. (2015) developed the
Deep Deterministic Policy Gradient (DDPG), which enables
the agent to learn continuous control, such as manipulation
and locomotion. Schaul et al. (2015a) proposed Universal
Value Function Approximators (UVFAs), which general-
ize not just over states, but also over goals, and extend
value functions to multiple goals. Furthermore, to make
the agent learn faster in sparse reward settings, Andrychow-
icz et al. (2017) introduced Hindsight Experience Replay
(HER), which encourages the agent to learn from the goal-
states it has achieved. The combined use of DDPG and
HER allows the agent to learn to accomplish more complex
robot manipulation tasks. However, there is still a huge gap
between the learning efficiency of humans and RL agents.
In most cases, an RL agent needs millions of samples before
it is able to solve the tasks, while humans only need a few
samples (Mnih et al., 2015).

In previous works, the concept of maximum entropy
has been used to encourage exploration during training
(Williams & Peng, 1991; Mnih et al., 2015; Wu & Tian,
2016). Recently, Haarnoja et al. (2017) introduced Soft-
Q Learning, which learns a deep energy-based policy by
evaluating the maximum entropy of actions for each state.
Soft-Q Learning encourages the agent to learn all the poli-
cies that lead to the optimum (Levine, 2018). Furthermore,
Soft Actor-Critic (Haarnoja et al., 2018c) demonstrated a
better performance while showing compositional ability
and robustness of the maximum entropy policy in locomo-
tion (Haarnoja et al., 2018a) and robot manipulation tasks
(Haarnoja et al., 2018b). The agent aims to maximize the ex-
pected reward while also maximizing the entropy to succeed
at the task while acting as randomly as possible. Based on
maximum entropy policies, Eysenbach et al. (2018) showed
that the agent is able to develop diverse skills solely by
maximizing an information theoretic objective without any
reward function. For multi-goal and multi-task learning
(Caruana, 1997), the diversity of training sets helps the
agent transfer skills to unseen goals and tasks (Pan et al.,
2010). The variability of training samples mitigates overfit-
ting and helps the model to better generalize (Goodfellow

This paper is based on our 2018 NeurIPS Deep RL workshop
paper (Zhao & Tresp, 2019).
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Figure 1. Robot arm Fetch and Shadow Dexterous hand environment: FetchPush, FetchPickAndPlace, FetchSlide,
HandManipulateEgg, HandManipulateBlock, and HandManipulatePen.

et al., 2016). In our approach, we combine maximum en-
tropy with multi-goal RL to help the agent to achieve unseen
goals by learning uniformly from diverse achieved goals
during training.

We observe that during experience replay the uniformly sam-
pled trajectories are biased towards the behavior policies,
with respect to the achieved goal-states. Consider train-
ing a robot arm to reach a certain point in a space. At the
beginning, the agent samples trajectories using a random
policy. The sampled trajectories are centered around the
initial position of the robot arm. Therefore, the distribution
of achieved goals, i.e., positions of the robot arm, is sim-
ilar to a Gaussian distribution around the initial position,
which is non-uniform. Sampling from such a distribution is
biased towards the current policies. From a Bayesian point
of view (Murphy, 2012), the agent should learn uniformly
from these achieved goals, when there is no prior knowledge
of the target goal distribution.

To correct this bias, we propose a new objective which com-
bines maximum entropy and the multi-goal RL objective.
This new objective uses entropy as a regularizer to encour-
age the agent to traverse diverse goal-states. Furthermore,
we derive a safe lower bound for optimization. To optimize
this surrogate objective, we implement maximum entropy-
based prioritization as a simple yet effective solution.

2. Preliminary
2.1. Settings

Environments: We consider multi-goal reinforcement
learning tasks, like the robotic simulation scenarios pro-
vided by OpenAI Gym (Plappert et al., 2018), where six
challenging tasks are used for evaluation, including push,
slide, pick & place with the robot arm, as well as hand ma-
nipulation of the block, egg, and pen, as shown in Figure 1.
Accordingly, we define the following terminologies for this
specific kind of multi-goal scenarios.

Goals: The goals g are the desired positions and the orienta-
tions of the object. Specifically, we use ge, with e standing
for environment, to denote the real goal which serves as the
input from the environment, in order to distinguish it from
the achieved goal used in Hindsight settings (Andrychowicz
et al., 2017). Note that in this paper we consider the case
where the goals can be represented by states, which leads

us to the concept of achieved goal-state gs, with details
explained below.

States, Goal-States and Achieved Goals: The state s con-
sists of two sub-vectors, the achieved goal-state sg, which
represents the position and orientation of the object being
manipulated, and the context state sc, i.e. s = (sg‖sc),
where ‖ denotes concatenation.

In our case, we define gs = sg to represent an achieved
goal that has the same dimension as the real goal ge from
the environment. The context state sc contains the rest
information about the state, including the linear and angular
velocities of all robot joints and of the object. The real goals
ge can be substituted by the achieved goals gs to facilitate
learning. This goal relabeling technique was proposed by
Andrychowicz et al. (2017) as Hindsight Experience Replay.

Achieved Goal Trajectory: A trajectory consisting solely
of goal-states is represented as τ g. We use τ g to de-
note all the achieved goals in the trajectory τ , i.e., τ g =
(gs0, ..., g

s
T ).

Rewards: We consider sparse rewards r. There is a toler-
ated range between the desired goal-states and the achieved
goal-states. If the object is not in the tolerated range of
the real goal, the agent receives a reward signal -1 for each
transition; otherwise, the agent receives a reward signal 0.

Goal-Conditioned Policy: In multi-goal settings, the agent
receives the environmental goal ge and the state input
s = (sg‖sc). We want to train a goal-conditioned policy to
effectively generalize its behavior to different environmental
goals ge.

2.2. Reinforcement Learning

We consider an agent interacting with an environment. We
assume the environment is fully observable, including a set
of state S, a set of action A, a distribution of initial states
p(s0), transition probabilities p(st+1 | st, at), a reward
function r: S ×A → R, and a discount factor γ ∈ [0, 1].

Deep Deterministic Policy Gradient: For continuous con-
trol tasks, the Deep Deterministic Policy Gradient (DDPG)
shows promising performance, which is essentially an off-
policy actor-critic method (Lillicrap et al., 2015).

Universal Value Function Approximators: For multi-
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goal continuous control tasks, DDPG can be extended by
Universal Value Function Approximators (UVFA) (Schaul
et al., 2015a). UVFA essentially generalizes the Q-function
to multiple goal-states, where the Q-value depends not only
on the state-action pairs, but also on the goals.

Hindsight Experience Replay: For robotic tasks, if the
goal is challenging and the reward is sparse, the agent could
perform badly for a long time before learning anything.
Hindsight Experience Replay (HER) encourages the agent to
learn from whatever goal-states it has achieved. Andrychow-
icz et al. (2017) show that HER makes training possible in
challenging robotic tasks via goal relabeling, i.e., randomly
substituting real goals with achieved goals.

2.3. Weighted Entropy

Guiaşu (1971) proposed weighted entropy, which is an ex-
tension of Shannon entropy. The definition of weighted
entropy is given as

Hw
p = −

K∑

k=1

wkpk log pk, (1)

where wk is the weight of the elementary event and pk is
the probability of the elementary event.

3. Method
In this section, we formally describe our method, includ-
ing the mathematical derivation of the Maximum Entropy-
Regularized Multi-Goal RL objective and the Maximum
Entropy-based Prioritization framework.

3.1. Multi-Goal RL

In this paper, we consider multi-goal RL as goal-conditioned
policy learning (Schaul et al., 2015a; Andrychowicz et al.,
2017; Rauber et al., 2017; Plappert et al., 2018). We denote
random variables by upper case letters and the values of
random variables by corresponding lower case letters. For
example, let Val(X) denote the set of valid values to a
random variable X , and let p(x) denote the probability
function of random variable X .

Consider that an agent receives a goal ge ∈ Val(Ge) at
the beginning of the episode. The agent interacts with the
environment for T timesteps. At each timestep t, the agent
observes a state st ∈ Val(St) and performs an action at ∈
Val(At). The agent also receives a reward conditioned on
the input goal r(st, ge) ∈ R.

We use τ = s1, a1, s2, a2, . . . , sT−1, aT−1, sT to denote a
trajectory, where τ ∈ Val(T ). We assume that the probabil-
ity p(τ | ge,θ) of trajectory τ , given goal ge and a policy

parameterized by θ ∈ Val(Θ), is given as

p(τ | ge,θ) = p(s1)
T−1∏

t=1

p(at | st, ge,θ)p(st+1 | st, at).

The transition probability p(st+1 | st, at) states that the
probability of a state transition given an action is indepen-
dent of the goal, and we denote it with St+1 ⊥⊥ Ge | St, At.
For every τ , ge, and θ, we also assume that p(τ | ge,θ) is
non-zero. The expected return of a policy parameterized by
θ is given as

η(θ) = E

[
T∑

t=1

r(St, G
e) | θ

]

=
∑

ge

p(ge)
∑

τ

p(τ | ge,θ)
T∑

t=1

r(st, g
e).

(2)

Off-policy RL methods use experience replay (Lin, 1992;
Mnih et al., 2015) to leverage bias over variance and poten-
tially improve sample-efficiency. In the off-policy case, the
objective, Equation (2), is given as

ηR(θ) =
∑

τ , ge

pR(τ , ge | θ)
T∑

t=1

r(st, g
e), (3)

whereR denotes the replay buffer. Normally, the trajecto-
ries τ are randomly sampled from the buffer. However, we
observe that the trajectories in the replay buffer are often
imbalanced with respect to the achieved goals τ g . Thus, we
propose Maximum Entropy-Regularized Multi-Goal RL to
improve performance.

3.2. Maximum Entropy-Regularized Multi-Goal RL

In multi-goal RL, we want to encourage the agent to tra-
verse diverse goal-state trajectories, and at the same time,
maximize the expected return. This is like maximizing the
empowerment (Mohamed & Rezende, 2015) of an agent at-
tempting to achieve multiple goals. We propose the reward-
weighted entropy objective for multi-goal RL, which is
given as

ηH(θ) = Hw
p (T g)

= Ep

[
log

1

p(τ g)

T∑

t=1

r(St, G
e) | θ

]
. (4)

For simplicity, we use p(τ g) to represent
∑

ge pR(τ g, ge |
θ), which is the occurrence probability of the goal-state
trajectory τ g . The expectation is calculated based on p(τ g)
as well, so the proposed objective is the weighted entropy
(Guiaşu, 1971; Kelbert et al., 2017) of τ g , which we denote
asHw

p (T g), where the weight w is the accumulated reward∑T
t=1 r(st, g

e) in our case.
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The objective function, Equation (4), has two interpretations.
The first interpretation is to maximize the weighted expected
return, where the rare trajectories have larger weights. Note
that when all trajectories occur uniformly, this weighting
mechanism has no effect. The second interpretation is to
maximize a reward-weighted entropy, where the more re-
warded trajectories have higher weights. This objective
encourages the agent to learn how to achieve diverse goal-
states, as well as to maximize the expected return.

In Equation (4), the weight, log (1/p(τ g)), is unbounded,
which makes the training of the universal function approx-
imator unstable. Therefore, we propose a safe surrogate
objective, ηL, which is essentially a lower bound of the
original objective.

3.3. Surrogate Objective

To construct the safe surrogate objective, we sample the
trajectories from the replay buffer with a proposal distribu-
tion, q(τ g) = 1

Z p(τ
g) (1− p(τ g)). p(τ g) represents the

distribution of the goal trajectories in the replay buffer. The
surrogate objective is given in Theorem 1, which is proved
to be a lower bound of the original objective, Equation (4).

Theorem 1. The surrogate ηL(θ) is a lower bound of the
objective function ηH(θ), i.e., ηL(θ) < ηH(θ), where

ηH(θ) = Hw
p (T g)

= Ep

[
log

1

p(τ g)

T∑

t=1

r(St, G
e) | θ

]
(5)

ηL(θ) = Z · Eq

[
T∑

t=1

r(St, G
e) | θ

]
(6)

q(τ g) =
1

Z
p(τ g) (1− p(τ g)) (7)

Z is the normalization factor for q(τ g). Hw
p (T g) is the

weighted entropy (Guiaşu, 1971; Kelbert et al., 2017), where
the weight is the accumulated reward

∑T
t=1 r(St, G

e), in
our case.

Proof. See Appendix.

3.4. Prioritized Sampling

To optimize the surrogate objective, Equation (6), we cast
the optimization process into a prioritized sampling frame-
work. At each iteration, we first construct the proposal
distribution q(τ g), which has a higher entropy than p(τ g).
This ensures that the agent learns from a more diverse goal-
state distribution. In Theorem 2, we prove that the entropy

with respect to q(τ g) is higher than the entropy with respect
to p(τ g).

Theorem 2. Let the probability density function of goals in
the replay buffer be

p(τ g),where p(τ g
i ) ∈ (0, 1) and

N∑

i=1

p(τ g
i ) = 1. (8)

Let the proposal probability density function be defined as

q(τ g
i ) =

1

Z
p(τ g

i ) (1− p(τ g
i )) , where

N∑

i=1

q(τ g
i ) = 1.

(9)
Then, the proposal goal distribution has an equal or higher
entropy

Hq(T g)−Hp(T g) ≥ 0. (10)

Proof. See Appendix.

3.5. Estimation of Distribution

To optimize the surrogate objective with prioritized sam-
pling, we need to know the probability distribution of a
goal-state trajectory p(τ g). We use a Latent Variable Model
(LVM) (Murphy, 2012) to model the underlying distribu-
tion of p(τ g), since LVM is suitable for modeling complex
distributions.

Specifically, we use p(τ g | zk) to denote the latent-variable-
conditioned goal-state trajectory distribution, which we as-
sume to be Gaussians. zk is the k-th latent variable, where
k ∈ {1, ...,K} and K is the number of the latent variables.
The resulting model is a Mixture of Gaussians(MoG), math-
ematically,

p(τ g | φ) =
1

Z

K∑

i=k

ckN (τ g|µk,Σk), (11)

where each Gaussian,N (τ g|µk,Σk), has its own mean µk

and covariance Σk, ck represents the mixing coefficients,
and Z is the partition function. The model parameter φ in-
cludes all mean µi, covariance Σi, and mixing coefficients
ck.

In prioritized sampling, we use the complementary pre-
dictive density of a goal-state trajectory τ g as the priority,
which is given as

p̄(τ g | φ) ∝ 1− p(τ g | φ). (12)

The complementary density describes the likelihood that a
goal-state trajectory τ g occurs in the replay buffer. A high
complementary density corresponds to a rare occurrence
of the goal trajectory. We want to over-sample these rare
goal-state trajectories during replay to increase the entropy
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Algorithm 1 Maximum Entropy-based Prioritization (MEP)
while not converged do

Sample goal ge ∼ p(ge) and initial state s0 ∼ p(s0)
for steps per epoch do

for steps per episode do
Sample action at ∼ p(at | st, ge,θ) from behavior policy.
Step environment: st+1 ∼ p(st+1 | st, at).
Update replay bufferR.
Construct prioritized sampling distribution:
q(τ g) ∝ (1− p(τ g | φ))p(τ g) with higherHq(T g).
Sample trajectories τ ∼ q(τ g | φ)
Update policy (θ) to max. Eq [r(S,G)] via DDPG, HER.

Update density model (φ).

Figure 2. MEP Algorithm: We update the density model to construct a higher entropy distribution of achieved goals and update the agent
with the more diversified training distribution.

of the training distribution. Therefore, we use the comple-
mentary density to construct the proposal distribution as a
joint distribution

q(τ g) ∝ p̄(τ g | φ)p(τ g)

∝ (1− p(τ g | φ))p(τ g)

≈ p(τ g)− p(τ g)2.

(13)

3.6. Maximum Entropy-Based Prioritization

With prioritized sampling, the agent learns to maximize the
return of a more diverse goal distribution. When the agent
replays the samples, it first ranks all the trajectories with
respect to their proposal distribution q(τ g), and then uses
the ranking number directly as the probability for sampling.
This means that rare goals have high ranking numbers and,
equivalently, have higher priorities to be replayed. Here, we
use the ranking instead of the density. The reason is that the
rank-based variant is more robust since it is neither affected
by outliers nor by density magnitudes. Furthermore, its
heavy-tail property also guarantees that samples will be di-
verse (Schaul et al., 2015b). Mathematically, the probability
of a trajectory to be replayed after the prioritization is:

q(τ g
i ) =

rank(q(τ g
i ))

∑N
n=1 rank(q(τ g

n))
, (14)

where N is the total number of trajectories in the replay
buffer and rank(·) is the ranking function.

We summarize the complete training algorithm in Algo-
rithm 1 and in Figure 2. In short, we propose Maximum
Entropy-Regularized Multi-Goal RL (Section 3.2) to enable
RL agents to learn more efficiently in multi-goal tasks (Sec-
tion 3.1). We integrate a goal entropy term into the normal
expected return objective. To maximize the objective, Equa-
tion (4), we derive a surrogate objective in Theorem 1, i.e.,
a lower bound of the original objective. We use prioritized

sampling based on a higher entropy proposal distribution
at each iteration and utilize off-policy RL methods to maxi-
mize the expected return. This framework is implemented
as Maximum Entropy-based Prioritization (MEP).

4. Experiments
We test the proposed method on a variety of simulated
robotic tasks, see Section 2.1, and compare it to strong
baselines, including DDPG and HER. To the best of our
knowledge, the most similar method to MEP is Prioritized
Experience Replay (PER) (Schaul et al., 2015b). In the
experiments, we first compare the performance improve-
ment of MEP and PER. Afterwards, we compare the time-
complexity of the two methods. We show that MEP im-
proves performance with much less computational time
than PER. Furthermore, the motivations of PER and MEP
are different. The former uses TD-errors, while the latter is
based on an entropy-regularized objective function.

In this section, we investigate the following questions:

1. Does incorporating goal entropy via MEP bring ben-
efits to off-policy RL algorithms, such as DDPG or
DDPG+HER?

2. Does MEP improve sample-efficiency of state-of-the-
art RL approaches in robotic manipulation tasks?

3. How does MEP influence the entropy of the achieved
goal distribution during training?

Our code is available online at https://github.com/
ruizhaogit/mep.git. The implementation uses Ope-
nAI Baselines (Dhariwal et al., 2017) with a backend of
TensorFlow (Abadi et al., 2016).
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Figure 3. Mean success rate with standard deviation in all six robot environments

Table 1. Mean success rate (%) and training time (hour) for all six environments

Push Pick & Place Slide

Method success time success time success time

DDPG 99.90% 5.52h 39.34% 5.61h 75.67% 5.47h
DDPG+PER 99.94% 30.66h 67.19% 25.73h 66.33% 25.85h
DDPG+MEP 99.96% 6.76h 76.02% 6.92h 76.77% 6.66h

Egg Block Pen

Method success time success time success time

DDPG+HER 76.19% 7.33h 20.32% 8.47h 27.28% 7.55h
DDPG+HER+PER 75.46% 79.86h 18.95% 80.72h 27.74% 81.17h
DDPG+HER+MEP 81.30% 17.00h 25.00% 19.88h 31.88% 25.36h

4.1. Performance

To test the performance difference among methods includ-
ing DDPG, DDPG+PER, and DDPG+MEP, we run the
experiment in the three robot arm environments. We use
the DDPG as the baseline here because the robot arm en-
vironment is relatively simple. In the more challenging
robot hand environments, we use DDPG+HER as the base-
line method and test the performance among DDPG+HER,
DDPG+HER+PER, and DDPG+HER+MEP. To combine
PER with HER, we calculate the TD-error of each transition
based on the randomly selected achieved goals. Then we
prioritize the transitions with higher TD-errors for replay.

Now, we compare the mean success rates. Each experiment
is carried out with 5 random seeds and the shaded area repre-
sents the standard deviation. The learning curve with respect
to training epochs is shown in Figure 3. For all experiments,

we use 19 CPUs and train the agent for 200 epochs. After
training, we use the best-learned policy for evaluation and
test it in the environment. The testing results are the mean
success rates. A comparison of the performances along with
the training time is shown in Table 1.

From Figure 3, we can see that MEP converges faster in all
six tasks than both the baseline and PER. The agent trained
with MEP also shows a better performance at the end of the
training, as shown in Table 1. In Table 1, we can also see that
the training time of MEP lies in between the baseline and
PER. It is known that PER can become very time-consuming
(Schaul et al., 2015b), especially when the memory size N
is very large. The reason is that PER uses TD-errors for
prioritization. After each update of the model, the agent
needs to update the priorities of the transitions in the replay
buffer, which is O(logN). In our experiments, we use
the efficient implementation based on the “sum-tree” data
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Figure 4. Number of training samples needed with respect to mean success rate for all six environments (the lower the better)

structure, which can be relatively efficiently updated and
sampled from (Schaul et al., 2015b). To be more specific,
MEP consumes much less computational time than PER.
For example in the robot arm environments, on average,
DDPG+MEP consumes about 1.2 times the training time
of DDPG. In comparison, DDPG+PER consumes about 5
times the training time as DDPG. In this case, MEP is 4
times faster than PER. MEP is faster because it only updates
the trajectory density once per epoch and can easily be
combined with any multi-goal RL methods, such as DDPG
and HER.

Table 1 shows that baseline methods with MEP result in
better performance in all six tasks. The improvement in-
creases by up to 39.34 percentage points compared to the
baseline methods. The average improvement over the six
tasks is 9.15 percentage points. We can see that MEP is a
simple, yet effective method and it improves state-of-the-art
methods.

4.2. Sample-Efficiency

To compare sample-efficiency of the baseline and MEP, we
compare the number of training samples needed for a certain
mean success rate. The comparison is shown in Figure
4. From Figure 4, in the FetchPush-v0 environment,
we can see that for the same 99% mean success rate, the
baseline DDPG needs 273,600 samples for training, while
DDPG+MEP only needs 112,100 samples. In this case,
DDPG+MEP is more than twice (2.44) as sample-efficient
as DDPG. Similarly, in the other five environments, MEP
improves sample-efficiency by factors around one to three.
In conclusion, for all six environments, MEP is able to

improve sample-efficiency by an average factor of two (1.95)
over the baseline’s sample-efficiency.

4.3. Goal Entropy

To verify that the overall MEP procedure works as expected,
we calculated the entropy value of the achieved goal distri-
bution Hp(T g) with respect to the epoch of training. The
experimental results are averaged over 5 different random
seeds. Figure 5 shows the mean entropy values with its
standard deviation in three different environments. From
Figure 5, we can see that the implemented MEP algorithm
indeed increases the entropy of the goal distribution. This
affirms the consistency of the stated theory with the imple-
mented MEP framework.

5. Related Work
Maximum entropy was used in RL by Williams & Peng
(1991) as an additional term in the loss function to encour-
age exploration and avoid local minimums (Mnih et al.,
2016; Wu & Tian, 2016; Nachum et al., 2016; Asadi &
Littman, 2016). A similar idea has also been utilized in the
deep learning community, where entropy loss was used as a
regularization technique to penalize over-confident output
distributions (Pereyra et al., 2017). In RL, the entropy loss
adds more cost to actions that dominate quickly. A higher
entropy loss favors more exploration (Mnih et al., 2016).
Neu et al. (2017) gave a unified view on entropy-regularized
Markov Decision Processes (MDP) and discussed the con-
vergence properties of entropy-regularized RL, including
TRPO (Schulman et al., 2015) and A3C (Mnih et al., 2016).
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Figure 5. Entropy values of the achieved goal distributionHp(T g) during training

More recently, Haarnoja et al. (2017) and Levine (2018)
proposed deep energy-based policies with state conditioned
entropy-based regularization, which is known as Soft-Q
Learning. They showed that maximum entropy policies
emerge as the solution when optimal control is cast as prob-
abilistic inference. Concurrently, Schulman et al. (2017)
showed the connection and the equivalence between Soft-Q
Learning and policy gradients. Maximum entropy policies
are shown to be robust and lead to better initializations for
RL agents (Haarnoja et al., 2018a;b). Based on maximum
entropy polices, Eysenbach et al. (2018) developed an in-
formation theoretic objective, which enables the agent to
automatically discover different sets of skills.

Unlike aforementioned works (Williams & Peng, 1991;
Mnih et al., 2016; Haarnoja et al., 2017), the information
theoretic objective (Eysenbach et al., 2018) uses state, not
actions, to calculate the entropy for distinguishing different
skills. Our work is similar to this previous work (Eysen-
bach et al., 2018) in the sense that we also use the states,
instead of actions, to calculate the entropy term and encour-
age the trained agent to cover a variety of goal-states. Our
method generalizes to multi-goal and multi-task RL (Kael-
bling, 1993; Sutton et al., 1999; Bakker & Schmidhuber,
2004; Sutton et al., 2011; Szepesvari et al., 2014; Schaul
et al., 2015a; Pinto & Gupta, 2017; Plappert et al., 2018).

The entropy term that we used in the multi-goal RL objec-
tive is maximized over goal-states. We use maximum goal
entropy as a regularization for multi-goal RL, which en-
courages the agent to learn uniformly with respect to goals
instead of experienced transitions. This corrects the bias
introduced by the agent’s behavior policies. For example,
the more easily achievable goals are generally dominant in
the replay buffer. The goal entropy-regularized objective
allows the agent to learn to achieve the unknown real goals,
as well as various virtual goals.

We implemented the maximum entropy regularization via
prioritized sampling based on achieved goal-states. We
believe that the most similar framework is prioritized experi-
ence replay (Schaul et al., 2015b). Prioritized experience re-
play was introduced by Schaul et al. (2015b) as an improve-

ment to the experience replay in DQN (Mnih et al., 2015).
It prioritizes the transitions with higher TD-error in the re-
play buffer to speed up training. The prioritized experience
replay is motivated by TD-errors. However, the motivation
of our method comes from information theory–maximum
entropy. Compared to prioritized experience replay, our
method performs superior empirically and consumes much
less computational time.

The intuition behind our method is to assign priority to those
under-represented goals, which are relatively more valuable
to learn from (see Appendix). Essentially, our method sam-
ples goals from an entropy-regularized distribution, rather
than from a true replay buffer distribution, which is biased
towards the behavior policies. Similar to recent work on
goal sampling methods (Forestier et al., 2017; Péré et al.,
2018; Florensa et al., 2018; Zhao & Tresp, 2018; Nair et al.,
2018; Warde-Farley et al., 2018), our aim is to model a goal-
conditioned MDP. In the future, we want to further explore
the role of goal entropy in multi-goal RL.

6. Conclusion
This paper makes three contributions. First, we propose
the idea of Maximum Entropy-Regularized Multi-Goal RL,
which is essentially a reward-weighted entropy objective.
Secondly, we derive a safe surrogate objective, i.e., a lower
bound of the original objective, to achieve stable optimiza-
tion. Thirdly, we implement a novel Maximum Entropy-
based Prioritization framework for optimizing the surrogate
objective. Overall, our approach encourages the agent to
achieve a diverse set of goals while maximizing the expected
return.

We evaluated our approach in multi-goal robotic simulations.
The experimental results showed that our approach improves
performance and sample-efficiency of the agent while keep-
ing computational time under control. More precisely, the
results showed that our method improves performance by 9
percentage points and sample-efficiency by a factor of two
compared to state-of-the-art methods.
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A. Proof of Theorem 1
Theorem 1. The surrogate ηL(θ) is a lower bound of the objective function ηH(θ), i.e., ηL(θ) < ηH(θ), where

ηH(θ) = Hw
p (T g) = Ep

[
log

1

p(τ g)

T∑

t=1

r(St, G
e) | θ

]
(1)

ηL(θ) = Z · Eq

[
T∑

t=1

r(St, G
e) | θ

]
(2)

q(τ g) =
1

Z
p(τ g) (1− p(τ g)) (3)

Z is the normalization factor for q(τ g). Hw
p (T g) is the weighted entropy (Guiaşu, 1971; Kelbert et al., 2017), where the

weight is the accumulated reward
∑T

t=1 r(St, G
e) in our case.

Proof.

ηL(θ) = Z · Eq

[
T∑

t=1

r(St, G
e) | θ

]
(4)

=
∑

τg

Z · q(τ g)
T∑

t=1

r(st, g
e) (5)

=
∑

τg

Z

Z
p(τ g)(1− p(τ g))

T∑

t=1

r(st, g
e) (6)

<
∑

τg

−p(τ g) log p(τ g)
T∑

t=1

r(st, g
e) (7)

= Ep

[
log

1

p(τ g)

T∑

t=1

r(St, G
e) | θ

]
(8)

= Hw
p (T g) (9)

= ηH(θ) (10)

In the inequality, we use the property log x < x− 1.
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B. Proof of Theorem 2
Theorem 2. Let the probability density function of goals in the replay buffer be

p(τ g),where p(τ g
i ) ∈ (0, 1) and

N∑

i=1

p(τ g
i ) = 1. (11)

Let the proposal probability density function be defined as

q(τ g
i ) =

1

Z
p(τ g

i ) (1− p(τ g
i )) , where

N∑

i=1

q(τ g
i ) = 1. (12)

Then, the proposal goal distribution has an equal or higher entropy

Hq(T g)−Hp(T g) ≥ 0. (13)

Proof. For clarity, we define the notations in this proof as pi = p(τ g
i ) and qi = q(τ g

i ).

Note that the definition of Entropy is
Hp =

∑

i

−pi log(pi), (14)

where the ith summand is pi log(pi), which is a concave function. Since the goal distribution has a finite support I , we have
the real-valued vector (p1, . . . , pN ) and ( 1

Z q1, . . . ,
1
Z qN ).

We use Karamata’s inequality (Kadelburg et al., 2005), which states that if the vector (p1, . . . , pN ) majorizes
( 1
Z q1, . . . ,

1
Z qN ) then the summation of the concave transformation of the first vector is smaller than the concave transfor-

mation of the second vector.

In our case, the concave transformation is the weighted information at the ith position -pi log(pi), where the weight is
the probability pi (entropy is the expectation of information). Therefore, the proof of the theorem is also a proof of the
majorizing property of p over q (Petrov).

We denote the proposal goal distribution as

qi = f(pi) =
1

Z
pi(1− pi). (15)

Note that in our case, the partition function Z is a constant.

Majorizing has three requirements (Marshall et al., 1979).

The first requirement is that both vectors must sum up to one. This requirement is already met because
∑

i

pi =
∑

i

qi = 1. (16)

The second requirement is that monotonicity exits. Without loss of generality, we assume the probabilities are sorted:

p1 ≥ p2 ≥ . . . ≥ pN (17)

Thus, if i > j then

f(pi)− f(pj) =
1

Z
pi(1− pi)−

1

Z
pj(1− pj) (18)

=
1

Z
[(pi − pj)− (pi + pj)(pi − pj)] (19)

=
1

Z
(pi − pj)(1− pi − pj) (20)

≥ 0. (21)
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which means that if the original goal probabilities are sorted, the transformed goal probabilities are also sorted,

f(p1) ≥ f(p2) ≥ . . . ≥ f(pN ). (22)

The third requirement is that for an arbitrary cutoff index k, there is

p1 + . . . pk < q1 + . . .+ qk. (23)

To prove this, we have

p1 + . . .+ pk =
p1 + . . .+ pk

1
(24)

=
p1 + . . .+ pk
p1 + . . .+ pN

(25)

≥ f(p1) + ...+ f(pk) (26)

=
1

Z
[p1(1− p1) + ...+ pk(1− pk)] (27)

=
1

Z
[p1 + . . .+ pk − (p21 + . . .+ p2k)] (28)

Note that, we multiply Z ∗ 1 to each side of

Z = p1(1− p1) + . . .+ pN (1− pN ). (29)

Then we have
(p1 + . . .+ pk)Z ∗ 1 ≥ p1 + . . .+ pk − (p21 + . . .+ p2k) ∗ 1. (30)

Now, we substitute the expression of Z and then have

(p1 + . . .+ pk)[p1(1− p1) + . . .+ pN (1− pN )] ≥ [p1 + . . .+ pk − (p21 + . . .+ p2k)] ∗ 1. (31)

We express 1 as a series of terms
∑

i pi, we have

(p1+. . .+pk)[p1(1−p1)+. . .+pN (1−pN )] ≥ [p1+. . .+pk−(p21+. . .+p2k)]∗[(p1+. . .+pk)+(pk+1+. . . pN )]. (32)

We use the distributive law to the right side and have

(p1 + . . .+ pk)[p1(1− p1) + . . .+ pN (1− pN )]

≥[p1 + . . .+ pk] ∗ [(p1 + . . .+ pk) + (pk+1 + . . . pN )]− [(p21 + . . .+ p2k)] ∗ [(p1 + . . .+ pk) + (pk+1 + . . . pN )].
(33)

We move the first term on the right side to the left and use the distributive law then have

(p1 + . . .+ pk)[−1 ∗ (p21 + . . .+ p2N ))] ≥ −[(p21 + . . .+ p2k)] ∗ [(p1 + . . .+ pk) + (pk+1 + . . . pN )]. (34)

We use the distributive law again on the right side and move the first term to the left and use the distributive law then have

(p1 + . . .+ pk)[−1 ∗ (p2k+1 + . . .+ p2N ))] ≥ −[(p21 + . . .+ p2k)] ∗ [(pk+1 + . . . pN )]. (35)

We remove the minus sign then have

(p1 + . . .+ pk)[(p2k+1 + . . .+ p2N ))] ≤ [(p21 + . . .+ p2k)] ∗ [(pk+1 + . . . pN )]. (36)

To prove the inequality above, it suffices to show that the inequality holds true for each associated term of the multiplication
on each side of the inequality.
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Suppose that
i ≤ k < j (37)

then we have
pi > pj . (38)

As mentioned above, the probabilities are sorted in descending order. We have

pip
2
j − p2i pj = pipj(pj − pi) < 0 (39)

then
pip

2
j < p2i pj . (40)

Therefore, we have proved that the inequality holds true for an arbitrary associated term, which also applies when they are
added up.

C. Insights
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Figure 1. Pearson correlation between the complementary density p̄(τ g) and TD-errors in the middle of training

To further understand why maximum entropy in goal space facilitates learning, we look into the TD-errors during training.
We investigate the correlation between the complementary predictive density p̄(τ g | φ) and the TD-errors of the trajectory.
The Pearson correlation coefficients, i.e., Pearson’s r (Benesty et al., 2009), between the density p̄(τ g | φ) and the TD-errors
of the trajectory are 0.63, 0.76, and 0.73, for the hand manipulation of egg, block, and pen tasks, respectively. The plot
of the Pearson correlation is shown in Figure 1. The value of Pearson’s r is between 1 and -1, where 1 is total positive
linear correlation, 0 is no linear correlation, and -1 is total negative linear correlation. We can see that the complementary
predictive density is correlated with the TD-errors of the trajectory with an average Pearson’s r of 0.7. This proves that
the agent learns faster from a more diverse goal distribution. Under-represented goals often have higher TD-errors, and
thus are relatively more valuable to learn from. Therefore, it is helpful to maximize the goal entropy and prioritize the
under-represented goals during training.
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Abstract
In reinforcement learning, an agent learns to reach
a set of goals by means of an external reward
signal. In the natural world, intelligent organ-
isms learn from internal drives, bypassing the
need for external signals, which is beneficial for
a wide range of tasks. Motivated by this ob-
servation, we propose to formulate an intrinsic
objective as the mutual information between the
goal states and the controllable states. This ob-
jective encourages the agent to take control of its
environment. Subsequently, we derive a surro-
gate objective of the proposed reward function,
which can be optimized efficiently. Lastly, we
evaluate the developed framework in different
robotic manipulation and navigation tasks and
demonstrate the efficacy of our approach. A
video showing experimental results is available at
https://youtu.be/CT4CKMWBYz0.

1. Introduction
In psychology (Sansone & Harackiewicz, 2000), behavior is
considered intrinsically motivated when it originates from
an internal drive. An intrinsic motivation is essential to
develop behaviors required for accomplishing a broad range
of tasks rather than solving a specific problem guided by an
external reward.

Intrinsically motivated reinforcement learning (Chentanez
et al., 2005) equips an agent with various internal drives
via intrinsic rewards, such as curiosity (Schmidhuber, 1991;
Pathak et al., 2017; Burda et al., 2018), diversity (Gregor
et al., 2016; Haarnoja et al., 2018; Eysenbach et al., 2019),
and empowerment (Klyubin et al., 2005; Salge et al., 2014;
Mohamed & Rezende, 2015), which allow the agent to de-

1Horizon Robotics, Cupertino, California, United States
2Faculty of Mathematics, Informatics and Statistics, Ludwig Maxi-
milian University of Munich, Munich, Bavaria, Germany 3Siemens
AG, Munich, Bavaria, Germany. Correspondence to: Rui Zhao
<zhaorui.in.germany@gmail.com>.

The work was done during an internship at Horizon Robotics. After
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velop meaningful behaviors for solving a wide range of
tasks. Mutual information is a core statistical quantity that
has many applications in intrinsically motivated reinforce-
ment learning. Still & Precup (2012) calculate the curiosity
bonus based on the mutual information between the past and
the future states within a time series. Mohamed & Rezende
(2015) developed a scalable approach to calculate a common
internal drive known as empowerment, which is defined as
the channel capacity between the states and the actions. Ey-
senbach et al. (2019) use the mutual information between
skills and states as an intrinsic reward to help the agent to
discover a diverse set of skills. In multi-goal reinforcement
learning (Schaul et al., 2015; Andrychowicz et al., 2017;
Plappert et al., 2018), Warde-Farley et al. (2019) propose to
utilize the mutual information between the high-dimensional
observation and the goals as the reward signal to help the
agent to learn goal-conditioned policies with visual inputs.
To discover skills and learn the dynamics of these skills for
model-based reinforcement learning, Sharma et al. (2020)
recently designed an approach based on maximizing the
mutual information between the next state and the current
skill, conditioned on the current state.

In this paper, we investigate the idea that agent’s “pre-
paredness” to control the states to reach any potential goal
would be an effective intrinsic motivation for Reinforcement
Learning (RL) agents. We formulate the “preparedness” of
control as the mutual information between the goal states
and agent’s controllable states. This internal drive extends
agent’s controllability from controllable states to goal states
and subsequently prepares the agent to reach any goal. It
makes learning possible in the absence of hand-engineered
reward functions or manually-specified goals. Furthermore,
learning to “master” the environment potentially helps the
agent to learn in sparse reward settings. We propose a new
unsupervised reinforcement learning method called Mutual
Information-based State-Control (MISC). During the learn-
ing process of the agent, a Mutual Information (MI) estima-
tor is trained to evaluate the mutual information between
the goal states and agent’s controllable states. Concurrently,
the agent is rewarded for maximizing the MI estimation.

This paper contains the following five contributions. First,
we introduce Mutual Information-based State-Control for in-
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Figure 1. Fetch robot arm manipulation tasks provided by OpenAI Gym and a navigation task based on the Gazebo simulator:
FetchPush, FetchPickAndPlace, FetchSlide, SocialBot-PlayGround.

trinsically motivated RL. Secondly, we derive a scalable MI
surrogate objective for optimization. Thirdly, we evaluate
the developed framework for the robotic tasks of manipu-
lation and navigation and demonstrate the control behavior
that agents learned purely via the intrinsic reward. Fourthly,
incorporating the intrinsic reward with the task reward, we
compare our approach with state-of-the-art methods. Last
but not least, we observe that the learned MI estimator from
one task can be transferred to a different task and still accel-
erate learning.

2. Preliminaries
2.1. Environments

We consider multi-goal reinforcement learning tasks, like
the robotic simulation scenarios provided by OpenAI
Gym (Plappert et al., 2018), where four tasks are used for
evaluation, including push, slide, pick & place with the robot
arm, and a newly designed navigation task with a mobile
robot in Gazebo (Koenig & Howard, 2004), as shown in Fig-
ure 1. Accordingly, we define the following terminologies
for these scenarios.

2.2. Goal States and Controllable States

The goals g in the manipulation tasks are the desired posi-
tions of the object. For the navigation task, the goal for the
robot is to navigate to the ball. These goals are sampled
from the environment. Note that in this paper we consider
that the goals can be represented by states (Andrychowicz
et al., 2017), which leads us to the concept of goal states sg .
The goal state sg has the same dimension as the real goal
from the environment but represents the achieved states of
the object being manipulated or the target ball position in
the navigation task. The controllable state sc is the state
that can be directly influenced by the agent (Borsa et al.,
2019), such as the state of the robot and its end-effector. The
goal states and the controllable states are mutually exclusive.
The state split is under the designer’s control. Using states is
common in reinforcement learning (Sutton & Barto, 2018).

2.3. Reinforcement Learning Settings

We consider an agent interacting with an environment. We
assume the environment is fully observable, including a set

of state S, a set of action A, a distribution of initial states
p(s0), transition probabilities p(st+1 | st, at), a reward
function r: S ×A → R, and a discount factor γ ∈ [0, 1].

2.4. Notations

In this paper, we use upper letters, such as S, to denote
random variables and the corresponding lower case letter,
such as s, to represent the values of random variables.

3. Method
We focus on agents learning to control goal states purely
by using its observations and actions without supervision.
Motivated by the idea that an agent capable of controlling
the goal state sg to obtain high mutual information with its
controllable state sc has been “prepared” to reach any future
goal, we formulate the problem of learning without external
supervision as one of learning a policy πθ(at | st) with
parameters θ to maximize intrinsic mutual information re-
wards, r = I(Sg;Sc). In this section, we formally describe
our method, mutual information-based state control.

3.1. Mutual Information Reward Function

Our framework simultaneously learns a policy and an intrin-
sic reward function by maximizing the mutual information
between the goal states and the controllable states. Math-
ematically, the mutual information between the goal state
random variable Sg and the controllable state random vari-
able Sc is represented as Equation (1, 2):

I(Sg;Sc) = H(Sg)−H(Sg | Sc) (1)
= DKL(PSgSc || PSg ⊗ PSc) (2)

= sup
T :Ω→R

EPSgSc [T ]− log(EPSg⊗PSc [eT ]) (3)

≥ sup
φ∈Φ

EPSgSc [Tφ]− log(EPSg⊗PSc [eTφ ]) (4)

= IΦ(Sg;Sc), (5)

where PSgSc is the joint probability distribution; PSg ⊗PSc
is the product of the marginal distributions PSg and PSc ;
DKL denotes the Kullback-Leibler (KL) divergence. Equa-
tion (1) tells us that the agent should maximize the entropy
of goal states H(Sg), and concurrently, should minimize
the conditional entropy of goal states given the control-
lable states H(Sg | Sc). When the conditional entropy
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Learned

Fixed

ENVIRONMENT

Sample trajectories 
from environments

Update policy to maximize 
the mutual information reward

AGENT MI ESTIMATOR

Estimator predicts MI from 
states. Update estimator to 
maximize MI. 

Algorithm 1 Mutual Information-based State Control (MISC)
while not converged do

Sample an initial state s0 ∼ p(s0).
for t← 1 to steps per episode do

Sample the action from policy at ∼ πθ(at | st).
Step environments st+1 ∼ p(st+1 | st, at).
Update the replay buffer.
Sample trajectories τ and transitions from the buffer.
Set intrinsic MI reward r = Iφ(Sg;Sc | T ′).
Update agent’s policy (θ) via DDPG or SAC.
Update the MI estimator (φ) with SGD.

Figure 2. MISC Algorithm: We update the estimator to better predict the mutual information (MI), and update the agent to control goal
states to have higher MI with the controllable states.

H(Sg | Sc) is small, it becomes easy to predict the goal
states based on the controllable states. For instance, we can
see that the robot is controlling an object when it becomes
easy to tell what the object state is, based on the robot state.
Equation (2) gives us the mutual information in the KL
divergence form.

Mutual information is notoriously difficult to compute in
real-world settings (Hjelm et al., 2019). Motivated by Belg-
hazi et al. (2018), we use a lower bound to approximate the
mutual information quantity I(Sg;Sc). First, we rewrite
Equation (2), the KL formulation of the mutual informa-
tion objective, using the Donsker-Varadhan representation
(Donsker & Varadhan, 1975), to Equation (3). The input
space Ω is a compact domain of Rd, i.e., Ω ⊂ Rd, and the
supremum is taken over all functions T such that the two ex-
pectations are finite. Secondly, we lower bound the mutual
information in the Donsker-Varadhan representation with
the compression lemma in the PAC-Bayes literature (Baner-
jee, 2006) and then derive Equation (4). The expectations in
Equation (4) are estimated by using empirical samples from
PSgSc and PSg ⊗ PSc . We can also sample the marginal
distributions by shuffling the samples from the joint distri-
bution along the axis (Belghazi et al., 2018). The derived
mutual information reward function, r = IΦ(Sg;Sc), can
be trained by gradient ascent. The statistics model Tφ is
parameterized by a deep neural network with parameters
φ ∈ Φ, which is capable of estimating the mutual informa-
tion with arbitrary accuracy.

3.2. Efficient Learning State-Control

At the beginning of each episode, the agent takes actions
at following a partially random policy, such as ε-greedy,
to explore the environment and collects trajectories into a
replay buffer. The trajectory τ contains a series of states,
τ = {s1, s2, . . . , st∗}, where t∗ is the time horizon of the
trajectory. Its random variable is denoted as T . Each state

st consists of goal states sgt and controllable states sct .

For training the mutual information estimator network, we
first randomly sample the trajectory τ from the replay buffer.
Then, the states sct used for calculating the product of
marginal distributions are sampled by shuffling the states sct
from the joint distribution along the temporal axis t within
the trajectory, see Equation (6,7). Note that we calculate
the mutual information by using the samples from the same
trajectory. If the agent does not alter the goal states during
the episode, then the mutual information between the goal
states and the controllable states remains zero.

We use back-propagation to optimize the parameter (φ) to
maximize the MI lower bound, see Equation (7). However,
for evaluating the mutual information, this lower bound,
Equation (7), is time-consuming to calculate because it
needs to process on all the samples from the whole trajec-
tory. To improve its scalability and efficiency, we derive a
surrogate objective, Equation (11), which is computed much
more efficiently. Each time, to calculate the MI reward for
the transition r = Iφ(Sg;Sc | T ′), the new objective only
needs to calculate over a small fraction of the complete
trajectory, τ ′. The trajectory fraction, τ ′, is defined as ad-
jacent state pairs, τ ′ = {st, st+1}, and T ′ represents its
corresponding random variable. The derivation of the new
MI surrogate objective Equation (11) is shown as follows:

Iφ(Sg;Sc | T ) (6)

=EPSgSc |T [Tφ]− log(EPSg|T ⊗PSc|T [eTφ ]) (7)

nEPSgSc |T [Tφ]− EPSg|T ⊗PSc|T [eTφ ] (8)

=EPT ′ [EPSgSc |T ′ [Tφ]− EPSg|T ′⊗PSc|T ′ [e
Tφ ]] (9)

nEPT ′ [EPSgSc |T ′ [Tφ]− log(EPSg|T ′⊗PSc|T ′ [e
Tφ ])] (10)

=EPT ′ [Iφ(Sg;Sc | T ′)], (11)

where Tφ represents a neural network, whose inputs are
state samples and the output is a scalar. For simplicity,
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we use the symbol n to denote a monotonically increasing
relationship between two variables, for example, log(x)nx
means that as the value of x increases, the value of log(x)
also increases and vice versa.

To decompose the lower bound Equation (7) into small parts,
we make the following derivations, see Equation (8,9,10).
Deriving from Equation (7) to Equation (8), we use the
property that log(x) n x. Here, the new form, Equation (8),
allows us to decompose the MI estimation into the expecta-
tion over MI estimations of each trajectory fractions, Equa-
tion (9). To be more specific, we move the implicit expec-
tation over trajectory fractions in Equation (8) to the front,
and then have Equation (9). The quantity inside the expec-
tation over trajectory fractions is the MI estimation using
only each trajectory fraction, see Equation (9). We use the
property, log(x) n x, again to derive from Equation (9) to
Equation (10).

The derived mutual information surrogate objective, Equa-
tion (11), brings us two important benefits. First, it enables
us to estimate the MI reward for each transition with much
less computational time because we only use the trajectory
fraction, instead of the trajectory. This approximately re-
duces the complexity from O(t∗) to O(1) with respect to
the trajectory length t∗. Secondly, this way of estimating
MI also enables us to assign rewards more accurately at the
transition level because now we use only the relevant state
pair to calculate the transition reward.

Formally, we define the transition MI reward as the MI esti-
mation of each trajectory fraction, τ ′ = {st, st+1}, mathe-
matically,

rφ(at, st) = clip [αIφ(Sg;Sc | T ′), 0, 1] ,

where α is a scale hyper-parameter, which is tuned in con-
junction with the learning rate, in case that the estimated MI
value, Iφ(Sg;Sc | T ′), is particularly small. The clipping
function limits the range of the MI reward between 0 and 1.

3.3. Implementation

We combine MISC with both deep deterministic policy gra-
dient (DDPG) (Lillicrap et al., 2016) and soft actor-critic
(SAC) (Haarnoja et al., 2018) to learn a policy πθ(a | s)
that aims to control the goal states. In comparison to DDPG
and SAC, the DDPG method improves the policy in a more
“greedy” fashion, while the SAC approach is more con-
servative, in the sense that SAC incorporates an entropy
regularizer H(A | S) that maximizes the policy’s entropy
over actions.

3.4. Complete Algorithm

Overall, the agent is rewarded for controlling the goal states
to have higher mutual information with its controllable

states, which is considered the “preparedness” to achieve
any future goal. We summarize the complete training algo-
rithm in Algorithm 1 and in Figure 2.

3.5. MISC Variants with Task Rewards

We propose three ways of using MISC to accelerate learning
in addition to the task reward. The first method is using the
MISC pretrained policy as the parameter initialization and
fine-tuning the agent with rewards. We denote this variant
as “MISC-f”, where “-f” stands for fine-tuning. The second
variant is to use the MI intrinsic reward to help the agent
to explore high mutual information states. We name this
method as “MISC-r”, where “-r” stands for reward. The
third approach is to use the mutual information quantity
from MISC to prioritize trajectories for replay. We name this
method as “MISC-p”, where “-p” stands for prioritization.

3.6. Skill Discovery with MISC and DIAYN

One of the most relevant works on unsupervised reinforce-
ment learning, DIAYN (Eysenbach et al., 2019), introduces
an information-theoretical objective FDIAYN, which learns
diverse discriminable skills indexed by the latent variable
Z, mathematically,

FDIAYN = I(S;Z) +H(A | S,Z)

≥ EPZPS [log qφ(z | s)− log p(z)] +H(A | S,Z).

The first term, I(S;Z), in the objective, FDIAYN, is imple-
mented via a skill discriminator, which serves as a vari-
ational lower bound of the original objective (Barber &
Agakov, 2003; Eysenbach et al., 2019). The skill discrim-
inator assigns high rewards to the agent, if it can predict
the skill-options, Z, given the states, S. The second term,
H(A | S,Z), is implemented through SAC (Haarnoja et al.,
2018) conditioned on skill-options (Szepesvari et al., 2014).

We adapt DIAYN to goal-oriented tasks by replacing the full
states, S, with goal states, Sg, as I(Sg;Z). In comparison,
our method MISC proposes to maximize the mutual infor-
mation between the controllable states and the goal states,
I(Sc;Sg). These two methods can be combined as follows:

FMISC+DIAYN = I(Sc;Sg) + I(Sg;Z) +H(A | S,Z).

The combination of MISC and DIAYN helps the agent to
learn control primitives via skill-conditioned policy for hier-
archical reinforcement learning (Eysenbach et al., 2019).

4. Experiments
To evaluate the proposed methods, we used the robotic ma-
nipulation tasks provided by OpenAI Gym and also a newly
designed navigation task using Gazebo, see Figure 1 (Brock-
man et al., 2016; Plappert et al., 2018). First, we analyze the
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control behaviors learned purely with the intrinsic reward
(refer to the video starting from 0:04 and Figure 8 in Ap-
pendix B). Secondly, we show that the pretrained models can
be used for improving performance in conjunction with the
task rewards. Interestingly, we show that the pretrained MI
estimator can be transferred among different tasks and still
improve performance. We compared MISC with other meth-
ods, including DDPG (Lillicrap et al., 2016), SAC (Haarnoja
et al., 2018), DIAYN (Eysenbach et al., 2019), PER (Schaul
et al., 2016), VIME (Houthooft et al., 2016), ICM (Pathak
et al., 2017), and Empowerment (Mohamed & Rezende,
2015). Thirdly, we show some insights about how the MISC
rewards are distributed across a trajectory. The experimen-
tal details are shown in Appendix C. Our code is available
at https://github.com/ruizhaogit/misc and
https://github.com/HorizonRobotics/alf.

4.1. Analysis of the Learned Behaviors

Question 1. What behavior does MISC learn?

We tested MISC in the robotic manipulation tasks. The
object is randomly placed on the table at the beginning of
each episode. During training, the agent only receives the
intrinsic MISC reward. In all three environments, the behav-
ior of reaching objects emerges. In the push environments,
the agent learns to push the object around on the table. In
the slide environment, the agent learns to slide the object
into different directions. Perhaps surprisingly, in the pick
& place environment, the agent learns to pick up the object
from the table without any task reward. All the observations
are shown in the uploaded video starting from 0:04.

We implemented MISC with both DDPG and SAC and
ran the experiments with 5 different random seeds. To
compare DDPG+MISC and SAC+MISC, we ran 20 trials
using the learned policy in the pick & place environment
with each seed. We observed that, in all the 5 random seed
settings, SAC+MISC learns the picking-up behavior, while
DDPG+MISC learns to pick up an object in only 1 out of 5
random seed settings. Mostly, the agent learns to push, flip,
or grip the object. These observations show that the entropy
bonus,H(A | S), of SAC can incorporate with MISC and
helps the agent to better explore the behavior space.
Question 2. Can we use learned behaviors to directly max-
imize the task reward?

We tested our method in the navigation task, which is based
on the Gazebo simulator. The task reward is 1 if the agent
reaches the ball, otherwise, the task reward is 0. We com-
bined our method with PPO (Schulman et al., 2017) and
compared the performance with ICM (Pathak et al., 2017)
and Empowerment (Mohamed & Rezende, 2015). During
training, we only used one of the intrinsic rewards such
as MISC, ICM, or Empowerment to train the agent. Then,
we used the averaged task reward as the evaluation metric.
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Figure 3. Experimental results in the navigation task

The experimental results are shown in Figure 3 (left). The
y-axis represents the mean task reward and the x-axis de-
notes the training epochs. From Figure 3 (left), we can see
that the proposed method, MISC, has the best performance.
Empowerment has the second-best performance. Figure 3
(right) shows that the MISC reward signal I(Sc, Sg) is rela-
tively strong compared to the Empowerment reward signal
I(A,Sg). Subsequently, higher mutual information reward
encourages the agent to explore more states with higher mu-
tual information. A theoretical connection between Empow-
erment and MISC is shown in Appendix A. Furthermore,
the ICM method does not enable the agent to navigate to the
ball because it seeks only novel states and does not control
these states. The uploaded video starting from 1:44 shows
the learned navigation behaviors.

Question 3. How does MISC compare to DIAYN?

We compared MISC, DIAYN and MISC+DIAYN in the pick
& place environment. For implementing MISC+DIAYN,
we first pre-train the agent with only MISC, and then fine-
tune the policy with DIAYN. After pre-training, the MISC-
trained agent learns manipulation behaviors such as, reach-
ing, pushing, sliding, and picking up an object. Compared to
MISC, the DIAYN-trained agent rarely learns to pick up the
object. It mostly pushes or flicks the object with the gripper.
However, the combined model, MISC+DIAYN, learns to
pick up the object and moves it to different locations, de-
pending on the skill-option. These observations are shown
in the video starting from 0:48. In short, MISC helps the
agent to learn the DIAYN objective. The agent first learns
to control the object with MISC, and then discovers diverse
manipulation skills with DIAYN.

4.2. Accelerating Learning with MISC

Question 4. How can we use the learned behaviors or the
trained MI estimator to accelerate learning?

We investigated three ways of using MISC to accelerate
learning in addition to the task reward, see Section 3.5. We
combined these three variants with DDPG and SAC and
tested them in the multi-goal robotic tasks. The environ-
ments, including push, pick & place, and slide, have a set
of predefined goals, which are represented as the red dots,
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Figure 4. Mean success rate with standard deviation: The percentage values after colon (:) represent the best mean success rate during
training. The shaded area describes the standard deviation.

as shown in Figure 1. The task for the RL agent is to ma-
nipulate the object to the goal positions. We ran all the
methods in each environment with 5 different random seeds
and report the mean success rate and the standard deviation,
as shown in Figure 4. The percentage values alongside the
plots are the best mean success rates during training. Each
experiment is carried out with 16 CPU-cores.

From Figure 4, we can see that all these three methods,
including MISC-f, MISC-p, and MISC-r, accelerate learning
in the presence of task rewards. Among these variants, the
MISC-r has the best overall improvements. In the push and
pick & place tasks, MISC enables the agent to learn in a
short period of training time. In the slide tasks, MISC-r also
improves the performances by a decent margin.

We also compare our methods with more advanced RL meth-
ods. To be more specific, we compare MISC-f against the
parameter initialization using DIAYN (Eysenbach et al.,
2019); MISC-p against Prioritized Experience Replay
(PER), which uses TD-errors for prioritization (Schaul et al.,
2016); and MISC-r versus Variational Information Maxi-
mizing Exploration (VIME) (Houthooft et al., 2016). The
experimental results are shown in Figure 5. From Figure 5
(1st row), we can see that MISC-f enables the agent to learn,
while DIAYN does not. In the 2nd row of Figure 5, MISC-r
performs better than VIME. This result indicates that the

mutual information between states is a crucial quantity for
accelerating learning. The mutual information intrinsic re-
wards boost performance significantly compared to VIME.
This observation is consistent with the experimental results
of MISC-p and PER, as shown in Figure 5 (3rd row), where
the MI-based prioritization framework performs better than
the TD-error-based approach, PER. On all tasks, MISC
enables the agent to learn the benchmark task more quickly.

4.3. Transfer Learning with MISC

Question 5. Can the learned MI estimator be transferred
to new tasks?

It would be beneficial if the pretrained MI estimator could
be transferred to a new task and still improve the perfor-
mance (Pan et al., 2010; Bengio, 2012). To verify this idea,
we directly applied the pretrained MI estimator from the
pick & place environment to the push and slide environ-
ments, respectively. We denote this transferred method as
“MISC-t”, where “-t” stands for transfer. The MISC re-
ward function trained in its corresponding environments
is denoted as “MISC-r”. We compared the performances
of DDPG baseline, MISC-r, and MISC-t. The results are
shown in Figure 6. Perhaps surprisingly, the transferred
MISC still improved the performance significantly. Further-
more, as expected, MISC-r performed better than MISC-t
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Figure 5. Performance comparison: We compare the MISC variants, including MISC-f, MISC-r, and MISC-p, with DIAYN, VIME,
and PER, respectively.

M
e

a
n

 S
u

c
c
e

s
s
 R

a
te

Epoch

Figure 6. Transferred MISC

in both tasks. We can see that the MI estimator can be
trained in a task-agnostic (Finn et al., 2017) fashion and
later utilized in unseen tasks.

4.4. Insights and More

Question 6. How does MISC distribute rewards over a
trajectory?

Figure 7. MISC rewards over a trajectory

To understand why MISC works and how MISC distributes
rewards, we visualize the learned MISC rewards in Figure 7
and in the uploaded video starting from 1:32. From Figure 7,
we can observe that the mutual information reward peaks
between the fourth and fifth frame, where the robot quickly
picks up the cube from the table. Around the peak reward
value, the middle range reward values are corresponding
to the relatively slow movement of the object and the grip-
per (see the third, ninth, and tenth frame). When there is
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no contact between the gripper and the cube (see the first
two frames in Figure 7), or the gripper holds the object
still (see the sixth to eighth frames) the intrinsic reward
remains nearly zero. From this example, we see that MISC
distributes positive intrinsic rewards when the goal state has
correlated changes with the controllable state.

Question 7. Can MISC help the agent to learn control
behaviors when there are no objects involved?

In the navigation task, we define the MISC objective to be
the MI between the left wheel and the right wheel. We
observe that the agent learns to balance itself and run in a
straight line, as shown in the video starting from 2:14.

Question 8. What happens if there are multiple objects
involved?

When there are multiple objects to control, we define the
MISC objective as follows:

FMISC = ΣiI(Sc;Sgi ).

In the case that there is a red and a blue ball on the ground,
with MISC, the agent learns to reach both balls and some-
times also learns to use one ball to hit the other ball. The
results are shown in the uploaded video starting from 2:29.

4.5. Summary

From these examples, we can see that, with different com-
binations of the goal states and the controllable states, the
agent is able to learn different control behaviors. When
there are no specific goal states involved, we can train a
skill-conditioned policy corresponding to different combi-
nations of the two sets of states and later use the pretrained
policy for the tasks at hand.

5. Related Work
Deep RL led to great successes in various tasks (Ng et al.,
2006; Peters & Schaal, 2008; Mnih et al., 2015; Levine et al.,
2016; Zhao & Tresp, 2018a;c). However, RL via intrinsic
motivation is still a challenging topic. Intrinsic rewards are
often used to help the agent learn more efficiently to solve
tasks. For example, Jung et al. (2011) and Mohamed &
Rezende (2015) use empowerment, which is the channel ca-
pacity between states and actions, for intrinsically motivated
RL agents. A theoretical connection between MISC and
empowerment is shown in Appendix A. VIME (Houthooft
et al., 2016) and ICM (Pathak et al., 2017) use curiosity
as intrinsic rewards to encourage the agents to explore the
environment more thoroughly.

Another line of work on intrinsic motivation for RL is to dis-
cover meaningful skills. Variational Intrinsic Control (VIC)
(Gregor et al., 2016) proposes an information-theoretical
objective (Barber & Agakov, 2003) to jointly maximize the

entropy of a set of options while keeping the options distin-
guishable based on the final states of the trajectory. Recently,
Eysenbach et al. (2019) introduced DIAYN, which maxi-
mizes the MI between a fixed number of skill-options and
the entire states of the trajectory. Eysenbach et al. (2019)
show that DIAYN can scale to more complex tasks com-
pared to VIC and provides a handful of low-level primitive
skills as the basis for hierarchical RL.

Intrinsic motivation also helps the agent to learn goal-
conditioned policies. Warde-Farley et al. (2019) proposed
DISCERN, a method to learn a MI objective between the
states and goals, which enables the agent to learn to achieve
goals in environments with continuous high-dimensional
observation spaces. Based on DISCERN, Pong et al. (2019)
introduced Skew-fit, which adapts a maximum entropy strat-
egy to sample goals from the replay buffer (Zhao & Tresp,
2019; Zhao et al., 2019) in order to make the agent learn
more efficiently in the absence of rewards. More recently,
Hartikainen et al. (2019) proposed to automatically learn
dynamical distances, which are defined as a measure of the
expected number of time steps to reach a given goal that
can be used as intrinsic rewards for accelerating learning to
achieve goals.

Based on a similar motivation as previous works, we intro-
duce MISC, a method that uses the MI between the goal
states and the controllable states as intrinsic rewards. MISC
enables the agent to learn control behaviors without supervi-
sion. Our method is complementary to the previous works,
such as DIAYN, and can be combined with them. The idea
of MISC is to encourage the agent to learn to be “prepared”
to reach any goal, as one step forward towards mastery of
the environment. Inspired by previous works (Schaul et al.,
2016; Houthooft et al., 2016; Zhao & Tresp, 2018b; Ey-
senbach et al., 2019), we additionally demonstrate three
variants, including MISC-based fine-tuning, rewarding, and
prioritizing mechanisms, to accelerate learning in the case
when the task rewards are available.

6. Conclusion
This paper introduces Mutual Information-based State-
Control (MISC), an unsupervised RL framework for learn-
ing useful control behaviors. The derived efficient mu-
tual information-based theoretical objective encourages the
agent to control states without any task reward. MISC
enables the agent to self-learn different control behaviors,
which are non-trivial, intuitively meaningful, and useful for
learning and planning. Additionally, the pretrained policy
and the mutual information estimator significantly accel-
erate learning in the presence of task rewards. We evalu-
ated three MISC-based variants in different environments
and demonstrate a substantial improvement in learning effi-
ciency compared to state-of-the-art methods.
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A. Connection to Empowerment
The state S contains the goal state Sg and the controllable state Sc. For example, in robotic tasks, the goal state and
the controllable state represent the object state and the end-effector state, respectively. The action space is the change of
the gripper position and the status of the gripper, such as open or closed. Note that, the agent’s action directly alters the
controllable state.

Here, given the assumption that the transform, Sc = F (A), from the action, A, to the controllable state, Sc, is a smooth and
uniquely invertible mapping (Kraskov et al., 2004), then we can prove that the MISC objective, I(Sc, Sg), is equivalent to
the empowerment objective, I(A,Sg).

The empowerment objective (Klyubin et al., 2005; Salge et al., 2014; Mohamed & Rezende, 2015) is defined as the
channel capacity in information theory, which means the amount of information contained in the action A about the state S,
mathematically:

E = I(S,A). (12)

Here, we replace the state variable S with goal sate Sg , we have the empowerment objective as follows,

E = I(Sg, A). (13)

Theorem 1. The MISC objective, I(Sc, Sg), is equivalent to the empowerment objective, I(A,Sg), given the assumption
that the transform, Sc = F (A), is a smooth and uniquely invertible mapping:

I(Sc, Sg) = I(A,Sg) (14)

where Sg , Sc, and A denote the goal state, the controllable state, and the action, respectively.

Proof.

I(Sc, Sg) =

∫ ∫
dscdsgp(sc, sg) log

p(sc, sg)

p(sc)p(sg)
(15)

=

∫ ∫
dscdsg

∥∥∥∥
∂A

∂Sc

∥∥∥∥ p(a, sg) log

∥∥ ∂A
∂Sc

∥∥ p(a, sg)∥∥ ∂A
∂Sc

∥∥ p(a)p(sg)
(16)

=

∫ ∫
dscdsgJA(sc)p(a, sg) log

JA(sc)p(a, sg)

JA(sc)p(a)p(sg)
(17)

=

∫ ∫
dadsgp(a, sg) log

p(a, sg)

p(a)p(sg)
(18)

= I(A,Sg) (19)

B. Learned Control Behaviors without Supervision
The learned control behaviors without supervision are shown in Figure 8

C. Experimental Details
The experiments of the robotic manipulation tasks in this paper use the following hyper-parameters:

• Actor and critic networks: 3 layers with 256 units each and ReLU non-linearities

• Adam optimizer (Kingma & Ba, 2014) with 1 · 10−3 for training both actor and critic

• Buffer size: 106 transitions
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Figure 8. Learned Control behaviors with MISC: Without any reward, MISC enables the agent to learn control behaviors, such as
reaching, pushing, sliding, and picking up an object. The learned behaviors are shown in the uploaded video starting from 0:04.

• Polyak-averaging coefficient: 0.95

• Action L2 norm coefficient: 1.0

• Observation clipping: [−200, 200]

• Batch size: 256

• Rollouts per MPI worker: 2

• Number of MPI workers: 16

• Cycles per epoch: 50

• Batches per cycle: 40

• Test rollouts per epoch: 10

• Probability of random actions: 0.3

• Scale of additive Gaussian noise: 0.2

• Scale of the mutual information reward: 5000

All hyper-parameters are described in greater detail at https://github.com/ruizhaogit/misc/tree/
master/params.
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Gellért Weisz, Pawe l Budzianowski, Pei-Hao Su, and Milica Gašić. Sample effi-
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