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1. INTRODUCTION 

The most fascinating feature of eukaryotic cells is their intra-cellular 

compartmentalization. During evolution, membrane-enclosed structures, or organelles, were 

formed to allow more efficient metabolic processes to occur. Organelles contain their own 

specific sets of enzymes, metabolites, structural elements and, in some cases, even their own 

genetic material, distinct from the nuclear genome. Mitochondria are involved in various vital 

cellular processes including energy metabolism, synthesis of a number of different 

biomolecules and various signaling events. It is thus not surprising that dysfunction of 

mitochondria is associated with a myriad of human diseases (Herzig and Shaw, 2018; Nunnari 

and Suomalainen, 2012). Mitochondria are double membrane-surrounded organelles, 

resulting in formation of four different subcompartments: from outside to the inside, the 

outer membrane (OM), intermembrane space (IMS), inner membrane (IM) and the innermost 

matrix. Even though they contain their own genetic material and complete transcription and 

translation systems, only 8 out of ca. 1000 proteins in yeast and 13 out of ca. 1500 proteins 

in humans are encoded by the mitochondrial DNA (mtDNA). All other mitochondrial proteins 

are expressed from nuclear DNA (ncDNA), translated on cytosolic ribosomes and require 

specialized translocation machineries for their correct targeting, translocation and sorting 

within mitochondria (Blobel, 1980; Chacinska et al., 2009; Kang et al., 2018; Neupert, 2015; 

Wiedemann and Pfanner, 2017).  

1.1 Protein translocation into mitochondria  

 Proteins destined to mitochondria are synthesized in the cytosol as precursor 

proteins with specific cleavable or internal targeting signals. These different mitochondrial 

targeting signals will guide the precursor proteins to their final destination within 

mitochondria (Figure 1.1) (Endo et al., 2011; Hansen and Herrmann, 2019; Mokranjac and 

Neupert, 2009; Wiedemann and Pfanner, 2017). Essentially all mitochondrial proteins use the 

TOM (translocase of the outer membrane) complex as a general gate for the passage through 

the OM and are subsequently handed over to the one of the downstream translocases. 

Below, the various mitochondrial protein translocation pathways are briefly described. 
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β-barrel proteins of the OM, such as porin, Tom40, Sam50/Tob55 and Mdm10, are 

initially translocated completely across the OM using the TOM complex. In the IMS, they are 

handled by the small TIM chaperones, which guide them to the TOB/SAM complex 

(topogenesis of mitochondrial OM β-barrel proteins/sorting and assembly machinery) for 

insertion into the OM from the IMS side. The single- and multi-spanning α-helical OM proteins 

use the TOM and MIM complexes for their insertion into the OM. Many small IMS proteins, 

including small TIMs, contain conserved cysteine motifs and undergo oxidative folding after 

they traverse the TOM complex. This process is mediated by the disulfide relay system, also 

called MIA (mitochondrial IMS assembly) pathway. Inner membrane proteins with multiple 

α-helical transmembrane segments (TMs), such as metabolite carriers and the core 

components of mitochondrial IM translocases, Tim23, Tim17 and Tim22, contain internal 

targeting signals and use the TIM22 complex (translocase of the inner membrane 22) for their 

insertion into the IM in a membrane potential (ΔΨ)-dependent manner. Like the clients of 

the TOB/SAM complex, the hydrophobic TIM22 substrates require small TIM proteins to 

chaperone them through the aqueous IMS from the TOM complex in the OM to the IM. 

Hydrophobic IM proteins that are encoded in the mtDNA and translated on mitochondrial 

ribosomes are inserted into the IM from the matrix side with the help of the OXA (oxidase 

Figure 1.1 An overview of mitochondrial protein translocation pathways. See text for details. OM, outer membrane; 

IMS, intermembrane space; IM, inner membrane. 
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assembly) complex. The vast majority of mitochondrial proteins, however, follow the so-

called presequence pathway. They contain N-terminal, cleavable presequences (also called 

matrix targeting signals) and are translocated by the TOM and TIM23 complexes across the 

OM and IM, respectively. The TIM23 complex utilizes the energy of ΔΨ across the IM and ATP 

in the matrix to translocate proteins across and insert them into the IM. Some IM proteins 

are first completely translocated into the matrix by the TIM23 complex and then inserted into 

the IM from the matrix side by the OXA complex. An IM-localized AAA-ATPase Bcs1 inserts 

Rip1, Rieske Fe-S protein of the complex III of the respiratory chain, into the IM insertion from 

the matrix side (Wagener et al., 2011). Whether Rip1 is the only substrate of Bcs1 remains 

unknown. 

My thesis deals with the TIM23 complex and therefore a more detailed description of 

this complex is given in the following sections.  

1.2 The presequence translocase, TIM23 complex 

The TIM23 complex tightly cooperates with the TOM complex during import of 

ncDNA-encoded mitochondrial proteins that have N-terminal presequences. Almost 70% of 

proteins targeted to mitochondria have this type of targeting signal (Vogtle et al., 2009). 

Presequences are usually 8 to 80 amino acid residues long and are typically found at the N-

terminal end of a protein. They are characterized by the ability to form an amphipathic helix 

with a net positive charge (+3 to +6) on one side and a hydrophobic surface on the opposite 

side (von Heijne, 1986). Once in the matrix, presequences are usually cleaved by 

mitochondrial processing peptidase and, in some cases, peptidases such as mitochondrial 

intermediate peptidase and Icp55 can further process incoming proteins (Mossmann et al., 

2012). 

By default, presequences target precursor proteins into the matrix. However, the 

TIM23 complex can also open laterally and release precursor proteins into the IM, if an 

additional downstream, hydrophobic lateral sorting (also known as a ‘stop-transfer’) signal is 

present. Some of the laterally sorted precursor proteins are further processed by the inner 

membrane peptidase on the IMS side of the IM, releasing soluble proteins into the IMS. In 
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case of presequence containing precursor proteins with multiple TMs, some TMs can be 

laterally sorted and some completely translocated by the TIM23 complex (Bohnert et al., 

2010; Hell et al., 1998; Meier et al., 2005b). The TIM23 complex can also import IM proteins 

with N-out, C-in topology, such as Bcs1 and Tim14. Here the amphipathic signal sequence was 

proposed to be formed by a tight hairpin structure between the TM and a positively charged 

patch directly behind it (Folsch et al., 1996). Besides import into the matrix, IM and IMS, the 

TIM23 complex was recently reported to be involved in an unusual import pathway of some 

OM proteins (Sinzel et al., 2016; Song et al., 2014; Wenz et al., 2014). 

1.2.1 Functional organization of the TIM23 complex 

The TIM23 complex can be functionally divided into the IMS-exposed receptors that 

recognize precursor proteins, the IM-integrated translocation channel through which the 

precursor proteins cross the IM in a ΔΨ-dependent manner and the matrix-exposed import 

motor that uses the energy of ATP hydrolysis to provide unidirectionality to the transport into 

the matrix (Figure 1.2).  

Figure 1.2 Schematic representation of the TIM23 complex. The TIM23 complex can be functionally divided into three 

functional units - receptors, translocation channel and import motor (left panel). Eleven subunits of the TIM23 complex 

were identified to date. These are Tim23, Tim17, Tim50, Tim44, Tim14, Tim16, mtHsp70 (Ssc1), Mge1, Tim21, Mgr2 and 

Pam17 (right panel). See text for details. IMS, intermembrane space; IM, inner membrane. 
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Genetic and biochemical studies, performed mainly with baker´s yeast, 

Saccharomyces cerevisiae, showed that at least eleven, highly evolutionary conserved 

subunits form the TIM23 complex. Eight of them, Tim23, Tim17, Tim50, Tim44, Tim16 

(Pam16), Tim14 (Pam18), mtHsp70 (Ssc1) and Mge1, are essential for yeast cell viability, 

demonstrating their essential roles in biogenesis of mitochondria. Deletions of the remaining 

three subunits, Tim21, Pam17 and Mgr2, which appear to modulate the import process, can 

be tolerated by yeast cells, at least under certain growth conditions. 

1.2.1.1 Receptors of the TIM23 complex receive incoming precursor proteins 

The first subunit of the TIM23 complex that recognizes presequences as they come 

from the TOM complex is the main receptor Tim50. It has a large C-terminal domain in the 

IMS, a single transmembrane segment in the IM and a short segment in the matrix (Geissler 

et al., 2002; Mokranjac et al., 2003a; Yamamoto et al., 2002). The C-terminal IMS domain of 

Tim50, that is sufficient to support the function of the full-length (FL) protein (Mokranjac et 

al., 2009), can be divided in two subdomains - a highly conserved core domain and a 

presequence binding domain (PBD) at the very C-terminus that appears to be fungi-specific. 

Tim50 is in close proximity of the TOM complex (Araiso et al., 2019; Shiota et al., 2011; 

Tamura et al., 2009; Waegemann et al., 2015) and recognizes presequences as soon as they 

appear at the outlet of the TOM complex (Mokranjac et al., 2003a; Mokranjac et al., 2009; 

Yamamoto et al., 2002). Both the core domain of Tim50 and the PBD were shown to bind to 

presequences (Lytovchenko et al., 2013; Rahman et al., 2014). However, how the two 

cooperate during translocation of proteins into mitochondria is still unknown.  

Tim50 cooperates with the IMS-exposed domain of Tim23 during recognition of 

presequences (Figure 1.3). Mutations that destabilize the interaction between Tim50 and 

Tim23 impair the receptor function of Tim50, reducing efficiency of import of proteins along 

the presequence pathway and impairing growth of yeast cells (Gevorkyan-Airapetov et al., 

2009; Mokranjac et al., 2009; Tamura et al., 2009). Intriguingly, mutations of Tim50 that 

impair binding to Tim23 map to two distinct patches on Tim50 (Dayan et al., 2019; Qian et 

al., 2011; Tamura et al., 2009). Whether these two patches are directly involved in Tim23 

binding remains unclear. The interaction between Tim50 and Tim23 is important for 
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maintaining the permeability barrier of the IM (Meinecke et al., 2006) and is also modulated 

by the lipid composition of the membrane (Malhotra et al., 2017). Moreover, cooperation of 

the two IMS domains is required for a proper communication between the TOM and TIM23 

complexes (Tamura et al., 2009; Waegemann et al., 2015).  

Like Tim50, the IMS exposed segment of Tim23 was also shown to directly bind 

presequences (Bauer et al., 1996; de la Cruz et al., 2010; Marom et al., 2011), suggesting a 

receptor function for this protein as well. Tim23 was also reported to dimerize in response to 

ΔΨ and that the dimers dissociate in response to presequence binding (Bauer et al., 1996). 

Protease accessibility experiments with intact mitochondria demonstrated that around 20 

residues at the very N-terminus of Tim23 can even extend outside of mitochondria (Donzeau 

et al., 2000). The exposure of Tim23 on the mitochondrial surface is regulated by Tim50, the 

TOM complex and the translocation activity of the TIM23 complex (Gevorkyan-Airapetov et 

al., 2009; Popov-Celeketic et al., 2008; Tamura et al., 2009; Waegemann et al., 2015). Besides 

with Tim50 and presequences, the intrinsically disordered Tim23IMS was also shown to 

interact with Tim21, Tom22 and mitochondrial membranes. These various interactions were 

Figure 1.3 Receptor subunits of the TIM23 complex. The IMS domain of Tim23 (blue) and Tim50 (cyan) cooperate during 

initial recognition of presequences and convey them to the core channel. 
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shown, in most cases only, in in vitro experiments using recombinantly expressed and purified 

proteins (Bajaj et al., 2014a; Bajaj et al., 2014b; de la Cruz et al., 2010; Marom et al., 2011). 

Molecular details of all these interactions, their in vivo significance and their dynamics during 

transfer of precursor proteins from the TOM complex in the OM to the channel of the TIM23 

complex in the IM still remain to be examined. It is, however, clear that a ΔΨ dependent step 

is required to transfer the precursor protein to the translocation channel and initiate its 

translocation across the IM. 

1.2.1.2 Aqueous channel allows precursors to pass the IM 

The molecular nature of the translocation channel of the TIM23 complex is still 

unclear. Tim17 and the C-terminal domain of Tim23 belong to same protein family and have 

four predicted transmembrane segments, which embed the proteins in the IM (Figure 1.4). 

Electrophysiological measurements with recombinant Tim23, upon expression in inclusion 

bodies and subsequent refolding, showed that Tim23 alone can form an aqueous channel 

(Meinecke et al., 2006; Truscott et al., 2001). Whether Tim17 contributes to the formation of 

the translocation channel is still not clear. A more regulatory role was proposed for this 

protein in stabilizing the twin pore structure of the TIM23 channel and regulating its voltage 

gating (Martinez-Caballero et al., 2007; Ramesh et al., 2016). Unlike Tim23, Tim17 does not 

Figure 1.4 Core channel of the TIM23 complex. Membrane embeded subunits Tim17 (light green) and Tim23 (blue) 

likely form the translocation channel. Energy from ΔΨ is required for translocation across the IM. 
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have a large N-terminal extension in the IMS. However, a ca. 10 amino acid long N-terminal 

extension of Tim17, which contains a conserved negatively charged motif, was reported to 

be important for gating of the TIM23 channel and thus for import of proteins (Meier et al., 

2005a). Gating of the TIM23 channel is also dependent on two conserved cysteine residues 

in Tim17 that form a disulfide bond locking TM1 and TM2 together (Ramesh et al., 2016; 

Wrobel et al., 2016). Both Tim17 and Tim23 contain multiple GxxxG motifs in their TMs. In 

Tim23, these motifs play an important role in maintaining the structural integrity of the TIM23 

complex and are thus likely involved in packing of the TMs (Demishtein-Zohary et al., 2015). 

TM1 and TM2 of Tim23 are in direct contact with translocating proteins (Alder et al., 2008a). 

TM2 and likely also TM1 are facing an aqueous environment and are hence likely directly 

forming the protein-conducting channel (Alder et al., 2008a). TM1 is in close proximity to 

Tim17 and Tim50 and, together with TM2, responds dynamically to the presence of ΔΨ by 

undergoing conformation changes that likely lead to channel opening (Alder et al., 2008b; 

Malhotra et al., 2013). Intriguingly, TM3 and TM4 of Tim23 were reported to be dispensable 

for yeast cell viability (Pareek et al., 2013). The GxxxG motifs in Tim17 were not analyzed at 

the beginning of my work. 

Membrane potential is required to activate the translocation channel of the TIM23 

complex. Even though the true nature of the voltage sensor of the TIM23 complex remains 

unclear, this role has been attributed to the IMS domain of Tim23, which can dimerize in 

response to ΔΨ (Bauer et al., 1996), and the conserved negatively charged residues in the N-

terminal stretch of Tim17 (Meier et al., 2005a). Membrane potential was also suggested to 

generate an electrophoretic force that would pull positively charged presequences towards 

the matrix (Roise and Schatz, 1988). On the matrix side of the channel, presequences are 

recognized by the import motor of the TIM23 complex. 

1.2.1.3 Import motor finalizes the import process 

Complete translocation into the matrix requires the ATP-dependent action of the 

import motor of the TIM23 complex. Tim44 is a peripheral membrane protein that couples 

the import motor to the translocation channel. It is comprised of an N-terminal intrinsically 

disordered domain (Ting et al., 2017) and a C-terminal globular domain (Josyula et al., 2006). 
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The C-terminal domain engages Tim17 and Tim23 and the N-terminal domain recruits the 

import motor components (Banerjee et al., 2015; Schiller et al., 2008; Ting et al., 2017). Tim44 

not only acts as a platform for recruitment of the import motor to the exit of the translocation 

channel, but it also interacts with presequences (Marom et al., 2011; Ting et al., 2017).  

The import motor components are mitochondrial Hsp70 (mtHsp70, also known as 

Ssc1 in yeast) and its co-chaperones Tim14 (Pam18), Tim16 (Pam16) and Mge1 (Figure 1.5). 

The energy of ATP is used by mtHsp70 for further import of precursor proteins into the matrix 

in a process that is regulated by other subunits of the motor. mtHsp70 is a member of the 

conserved family of Hsp70 chaperones (Rosenzweig et al., 2019). Hsp70s are comprised of an 

N-terminal nucleotide-binding domain (NBD) which binds ATP and a C-terminal substrate-

binding domain (SBD) which binds aggregation-prone stretches of hydrophobic amino acid 

residues that are exposed in unfolded proteins. When ATP is bound to the NBD, the SBD is in 

an open conformation, characterized by a low substrate affinity with high kon/off rates. When 

the ATPase activity is triggered, NBD hydrolyzes ATP to ADP and SBD closes, trapping the 

bound substrate. Upon ADP release and binding of a new molecule of ATP to NBD, the SBD 

Figure 1.5 Import motor of the TIM23 complex. Multiple Hsp70 cycles mediate unidirectional transport of precursors. 

Tim44 (green) is a peripheral inner membrane protein that serves as a scaffold of the import motor. mtHsp70, Ssc1 (red), 

is the ATP-consuming subunit. Tim14 (light green) and Tim16 (orange) are J and J-like proteins, controlling the ATP 

hydrolysis. Mge1 (purple), the nucleotide exchange factor, resets the cycle by exchanging ADP with a new ATP molecule.  
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opens, releasing the bound substrate. Two types of co-chaperones, J-proteins and nucleotide 

exchange factors (NEFs), enable this cycle to progress in a regulated and efficient manner. J-

proteins stimulate the ATPase activity of NBD and NEFs help the release of ADP, resetting the 

cycle by allowing a new ATP molecule to bind. In the TIM23 complex, Tim14 is the J-protein 

that stimulates the ATP hydrolysis by mtHsp70, and thus enables the tight binding of incoming 

proteins to mtHsp70 (D'Silva et al., 2003; Mokranjac et al., 2003b; Truscott et al., 2003). J-like 

protein Tim16 recruits Tim14 to the TIM23 complex and regulates the stimulatory activity of 

Tim14 (D'Silva et al., 2005; Frazier et al., 2004; Kozany et al., 2004; Li et al., 2004; Mokranjac 

et al., 2006). The molecular understanding of the function of the import motor is still missing. 

It is likely that, once the translocating protein is stably captured by mtHsp70 upon ATP 

hydrolysis, mtHsp70 is released from the channel into the matrix, taking along a segment of 

the translocating protein and leaving space for another molecule of mtHsp70 to bind to the 

next incoming segment of the translocating protein. In the matrix, the nucleotide exchange 

factor Mge1 exchanges the ADP molecule with an ATP, releasing the captured protein from 

mtHsp70 and resetting the cycle. mtHsp70 not only has a role during the import process, but 

is also important for folding of precursor proteins, which arrive in an unfolded state in the 

matrix. 

1.2.1.4 Lateral insertion by the TIM23 complex and regulatory subunits  

The TIM23 complex can import precursor proteins into the matrix and sort them 

laterally into the IM. The unique feature of the TIM23 complex among protein translocases 

in the cell is that it can discriminate between bona fide transmembrane segments. It can open 

laterally to release ‘stop-transfer’ signals into the IM but it can also translocate some 

transmembrane segments completely into the matrix. The latter ones are then inserted into 

the IM from the matrix side by the OXA complex. In comparison to the TMs that are 

translocated by the TIM23 complex, the TMs that are laterally sorted are slightly more 

hydrophobic, lack proline residues and are flanked by charged residues (Meier et al., 2005b). 

Which subunits of the TIM23 complex recognize lateral sorting signals and form the lateral 

gate and how TMs are laterally inserted into the IM remains unclear. Certain mutations of 

Tim17 specifically impaired lateral insertion and had no effect on translocation of proteins 
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into the matrix (Chacinska et al., 2005). In addition to stimulating the ATPase activity of Ssc1, 

Tim14 seems to have an additional active role during lateral insertion (Popov-Celeketic et al., 

2011; Schendzielorz et al., 2018).  

The roles of the three nonessential subunits of the TIM23 complex, Tim21, Pam17 and 

Mgr2 (Figure 1.6), also appear to be in differential sorting of proteins. Deletion of Mgr2 

promoted lateral insertion and its upregulation delayed it (Ieva et al., 2014). One model of 

function of the TIM23 complex proposed that lateral insertion is mediated by a Tim21-

containing, but motor-free TIM23 complex (Chacinska et al., 2005). However, subsequent 

experiments revealed that the import motor associates with the channel irrespective of the 

translocation activity of the TIM23 complex (Popov-Celeketic et al., 2008; Tamura et al., 

2006). These finding led to a proposal that the TIM23 complex functions as a single entity 

that is actively remodeled to translocate proteins across or insert them into the IM membrane 

(Popov-Celeketic et al., 2008). According to this model, conformational changes underlie 

differential sorting of proteins and they are driven by recognition of targeting signals in the 

translocating proteins and modulated by an antagonistic behavior of Tim21 and Pam17. 

Figure 1.6 Regulatory subunits of the TIM23 complex. Non-essential subunits of the TIM23 complex are required for 

optimal import activity. Tim21 (dark blue), Pam17 (indigo) and Mgr2 (fuschia). 
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Tim21 was also found to bind very efficiently to the TOM complex in vitro (Chacinska et al., 

2005; Mokranjac et al., 2005a), however, the in vivo significance of this finding appears 

limited (Waegemann et al., 2015). The IMS-exposed domain of Tim21 seems to modulate the 

interactions among the receptors of the TIM23 complex and their interplay with the 

presequences (Lytovchenko et al., 2013). Tim21 may also improve energetics of the TIM23 

complex by coupling it to the respiratory chain complexes (van der Laan et al., 2006). Pam17 

was recently reported to promote translocation of ΔΨ-hypersensitive precursor proteins into 

the matrix (Schendzielorz et al., 2017). These proteins appear to require ΔΨ not only for 

translocation of their presequences but also of their mature parts. 

1.3 The TIM23 complex and human diseases 

Inspection of the sequenced eukaryotic genomes showed that the components of the 

TIM23 complex are highly conserved over the course of evolution, suggesting that the 

structure and function of the complex are equally conserved. Direct analyses of the human 

TIM23 complex are still in their very early stages. The data available so far revealed only very 

few differences between yeast and human TIM23 complexes (Demishtein-Zohary and Azem, 

2017; Kang et al., 2018). Whereas in yeast all components are encoded by single genes 

(except for Tim14 that has a paralog Mdj2 (Mokranjac et al., 2005b)), human genome encodes 

for three different Tim17 (hTim17A, hTim17B1 and hTim17B2) and two different Tim14 

(DnaJC15 and DnaJC19) proteins. All other subunits have one corresponding homolog in 

humans, though an equivalent of Pam17 has not been identified yet. In addition, unlike its 

yeast counterpart, hTim50 was reported to possess a phosphatase activity (Guo et al., 2004), 

the role of which still needs to be resolved. So far, three distinct TIM23 complexes in human 

mitochondria were identified. Tim17A appears to associate only with DnaJC15 and Tim17B1 

and B2 with DnaJC19. Tim17B-containing complexes are essential for protein import into the 

matrix and, thus, cell viability, whereas the TIM23 complex containing Tim17A appears 

dispensable for cell growth (Sinha et al., 2014).  

Concerning the essential nature of the majority of the TIM23 components for 

biogenesis of mitochondria and viability of yeast cells, it has been assumed that loss-of-
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function mutations in TIM23 components would be embryonically lethal in humans. Indeed, 

homozygous Tim23 knockout is lethal in mice and heterozygous mice have neurological 

phenotypes and reduced life span (Ahting et al., 2009). It has therefore come as a surprise 

when point mutations and alteration in expression of different essential subunits of the 

TIM23 complex were identified in patients with different disorders. Mutations in hTim50 are 

associated with microcephaly, encephalopathy, epilepsy, delayed growth, vision loss, breast 

cancer and 3-methylglutaconic aciduria (Gao et al., 2016; Reyes et al., 2018; Shahrour et al., 

2017). hTim44 is linked to oncocytic thyroid carcinoma and diabetes (Bonora et al., 2006; 

Wang et al., 2015). hTim16 (Magmas) and hmtHsp70 (Mortalin) are found mutated in skeletal 

dysplasia (Mehawej et al., 2014; Royer-Bertrand et al., 2015). Mortalin is also linked to EVEN-

PLUS syndrome and Parkinson’s disease (Burbulla et al., 2010; Royer-Bertrand et al., 2015). 

Loss of DNAJC19 has been found in patients with DCMA syndrome (Davey et al., 2006). 

Certain cancer types showed changes in the expression levels of Tim17A, Tim50, Magmas, 

DnaJC15 and Mortalin (Gao et al., 2016; Jubinsky et al., 2005; Lu et al., 2011; Xu et al., 2010). 

Recently, it has been shown that mutant huntingtin protein, which causes Huntington’s 

disease, clogs the TIM23 channel and thereby prevents import of endogenous matrix proteins 

(Yablonska et al., 2019). In general, it is likely that any problem in the function of the TIM23 

complex will cause problems in biogenesis of mitochondria and will thus result in 

malfunctioning mitochondria. Why mutations identified so far display such specific 

phenotypes and tissue specificity remains to be determined. 

Gene complementation assays with different subunits of the TIM23 complex revealed 

remarkable similarities between yeast and human complexes. hTim16 (Magmas) and 

DnaJC15 can complement the functions of yTim16 and yTim14, respectively (Schusdziarra et 

al., 2013; Sinha et al., 2010). Moreover, a homozygous mutation of Magmas associated with 

early lethal skeletal dysplasia causes a temperature sensitive growth phenotype in yeast 

(Mehawej et al., 2014). On the other hand, hTim50 cannot rescue the function of yTim50 and 

the mutations in hTim50 that were identified in patients with encephalopathy, did not reveal 

any obvious growth defect when analyzed in yeast (Shahrour et al., 2017). A point mutation 

in Tim44 found in patients with oncocytic carcinoma (Bonora et al., 2006) similarly did not 
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cause a growth defect in yeast, but a reduction in protein stability was observed in this case 

(Banerjee et al., 2015). Thus, the analysis of the structure and function of the TIM23 complex 

in a simple eukaryote such as baker´s yeast not only contributes towards understanding the 

basic principles of function of eukaryotic cells but also provides important insights into 

molecular mechanisms of human diseases. 

1.4 Aim of the study 

The aim of this study was to gain new molecular insight into the structure and function 

of the TIM23 complex. Two homologous proteins, Tim23 and Tim17, were to be dissected in 

vivo using yeast as a model system. A reconstitution of the Tim17-Tim23 complex from 

recombinantly expressed proteins was to be attempted. 
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2. MATERIALS AND METHODS 

2.1 Molecular Biology 

2.1.1 Isolation of plasmid DNA from E. coli 

2.1.1.1 Large scale plasmid isolation (Midiprep) 

Isolation of plasmid DNA from E. coli was done using Pure Yield Plasmid Midiprep kit 

(Promega). Single colony was picked and inoculated into 40 ml of LB medium (see section 

2.3.1) containing 100 µg/ml of ampicillin. The culture was grown overnight at 37°C with 

vigorous shaking (150 rpm). Next morning, the cells were pelleted by centrifugation at 10,000 

x g for 10 min at RT. Then, the cells were resuspended with 6 ml of ‘Resuspension buffer’ (50 

mM Tris-HCl (pH 7.5), 10 mM EDTA (pH 8.0) and 100 µg/ml RNase A) followed by addition of 

6 ml of ‘Lysis buffer’ (0.2M NaOH, 1% (w/v) SDS). After mixing by gently inverting the tube 3 

to 5 times, the cells were incubated for additional 2 min for lysis at RT. Ten ml of 

‘Neutralization solution’ (4.09M guanidine hydrochloride (pH 4.2), 759 mM potassium 

acetate, 2.12M glacial acetic acid) was added, the solution was gently mixed by inverting the 

tube 3-5 times and then incubated for additional 2 min. Precipitated genomic DNA and 

aggregated proteins were removed by centrifugation at 27,000 x g for 10 min at RT. The 

supernatant was passed, by application of vacuum, through two columns, first through 

Cleaning and then through Binding column. The Cleaning column was subsequently discarded 

and the Binding column was first washed with 5 ml of ‘Endotoxin Removal Wash’ solution 

followed by 20 ml of ‘Column wash solution’ (162.8mM potassium acetate, 22.6mM Tris-HCl 

(pH 7.5), 0.109mM EDTA (pH 8.0)). Vacuum application for 30 s was done for removal of 

residual EtOH. Finally, the plasmid DNA was eluted using 600 µl of sterile distilled water and 

stored at -20°C until use. 

2.1.1.2 Small scale crude plasmid isolation (Miniprep) 

Colonies from LB+Amp plates were inoculated into 2 ml of LB+Amp and grown 

overnight at 37°C with vigorous shaking. Next day, cells were harvested at 16,100 x g for 1 

min and resuspended in 400 µl of E1 buffer (50 mM Tris-HCl, 10 mM EDTA, pH 8). Then, cells 
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were lysed by adding 400 µl of E2 (0.2 M NaOH, 1 % (w/v) SDS) and mixing by inverting the 

tube 10 times. The solutions were neutralized by adding 400 µl of E3 (3.1 M KAc in 99% acetic 

acid) and mixing as in the previous step. Lysates were clarified by centrifugation at 16,100 x 

g for 10 min at RT. To precipitate plasmid DNA, 850 µl of the supernatants were added to 600 

µl of isopropanol. After mixing thoroughly, the tubes were incubated for 2 min and 

centrifuged for 20 min at 16,100 x g. The supernatants were discarded and the pellets were 

washed with 200 µl of ice-cold 70% EtOH without resuspending the pellets. A 5 min 

centrifugation step was applied at 16,100 x g at RT. Finally, the pellets were resuspended in 

20 µl of sterile distilled water containing 0.1 mg/ml RNase and shaken for 15 min at RT. 

Plasmid DNA was subsequently stored at -20°C. 

2.1.2 Detection and analysis of DNA 

2.1.2.1 Agarose gel electrophoresis 

DNA fragments from PCR reactions or restriction enzyme digestions were analyzed by 

agarose gel electrophoresis. Agarose solution was prepared by weighing 0.8 g of agarose per 

100 ml of TAE buffer (40 mM Tris-acetate, 20 mM Na-acetate, 1 mM EDTA, pH 7.5) and boiling 

in a microwave oven until a clear solution was obtained. When the 0.8% agarose solution 

cooled to about 65°C, it was poured into a cast and 0.5 µg/ml of EtBr was added. After mixing 

with the pipette tip, a comb was inserted and the agarose solution was allowed to solidify 

after cooling under fume hood. 

DNA samples, mixed with Gel Loading Dye (6X concentrate from NEB: 15% Ficoll®-400, 

60mM EDTA, 19.8mM Tris-HCl, 0.48% SDS, 0.12% Dye1 (pink/red), 0.006% Dye2 (blue), pH 8), 

were loaded into the wells and the gel was run at constant voltage, 100-180V depending on 

the length of the gel. DNA fragments were visualized on a UV screen (366 nm). 

2.1.2.2 DNA extraction from the gel 

‘mi-Gel Extraction Kit’ from Metabion was used to extract DNA fragments from 

agarose gels. Using a scalpel, desired DNA fragment, visualized under UV light, was carefully 

cut out from the gel and placed into a 2 ml microcentrifuge tube. ‘GEX buffer’ (500µl per 50-

200 mg gel piece) was added into the tube and the gel was dissolved by vigorous shaking at 
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60°C for 5-10 minutes. When the gel piece was dissolved completely, the solution was passed 

through ‘GP column’ by centrifuging at 10,000 x g for 30 s. The column was washed with 500 

µl of ‘WN buffer’ followed by 500 µl of ‘WS buffer’. After a spin at 16,100 x g for 1 min to 

remove residual EtOH, the DNA fragment was eluted with 20-30 µl of sterile distilled water 

at 16,100 x g for 1-2 minutes. The eluted DNA was used immediately for further experiments. 

2.1.2.3 Concentration measurement of DNA samples 

The concentration of DNA samples was done by measuring absorbance at 260 nm 

using NanoDrop. One optical unit corresponds to 50 µg/ml of double stranded DNA. 

2.1.3 Enzymatic modification of DNA 

2.1.3.1 Restriction digestion 

Restriction enzymes from NEB were used for analysis or manipulation of DNA 

samples. Typically, 0.1 µg to 3 µg of DNA was digested with 10-20 units of enzyme per µg of 

DNA. Reaction buffer and temperature were chosen for each enzyme according to the 

instructions of the manufacturer (NEB). Following digestion reactions, DNA samples were 

analyzed by agarose gel electrophoresis. 

2.1.3.2 Ligation 

The vectors and the inserts, used for generation of plasmids used in this study, were 

digested with appropriate restriction enzymes to form DNA fragments with sticky ends, which 

provide desired directionality in the ligation procedure. After their extraction from the gel, 

about 100 ng of linearized vector was mixed with 5-10 molar excess of cut insert fragment in 

a ligation reaction with 10 U of T4 DNA ligase (NEB) and T4 ligase buffer (50 mM Tris-HCl, 10 

mM MgCl2, 1 mM ATP, 10 mM DTT, pH 7.5). Ligation reaction was incubated for 2 h at 25°C 

or overnight at 16°C. Then, 0.5-1 µl of the reaction was used to transform electrocompotent 

E. coli (MH1) cells. 

2.1.4 Preparation of electrocompetent E. coli 

Bacterial cells were cultured in 50 ml of LB medium and grown overnight at 37°C with 

vigorous shaking (150-160 rpm). Next day, 2 ml of the overnight culture was diluted into 1 L 



MATERIALS AND METHODS 
 

18 
 

of fresh LB medium and grown at 37°C until OD600 reached 0.5-0.6. The culture was cooled 

on ice for 30 min, and then centrifuged at 4,400 x g for 5 min at 4°C. Pellet was resuspended 

in 400 ml of 10% glycerol and the solution centrifuged again as above. This step was repeated 

twice, first using 200 ml and then 50 ml of 10% glycerol. Finally, the cells were resuspended 

in 1 ml of 10% glycerol, aliquoted in 45 µl aliquots and stored at -80°C until use. 

Table 2.1 E. coli strains used in this study. 

E. coli Strain Used for Reference 

MH1 Cloning (Casadaban and Cohen, 1980) 

C43(DE3) Membrane prot. expression and purification (Miroux and Walker, 1996) 

2.1.5 Transformation of E. coli cells by electroporation 

An aliquot of electrocompetent cells was taken from -80°C freezer and put 

immediately on ice. Once the cells were thawed, 0.5 – 1 µl of plasmid DNA or ligation mixture 

was mixed with the cells. Then, the mix was transferred into an ice-cold electroporation 

cuvette and high voltage pulse (2500 V) was applied using Eporator (Eppendorf). Transformed 

cells were resuspended in 1 ml of LB, transferred into a microfuge tube and incubated for 15-

20 min at 37°C with shaking at 150-160 rpm. Lastly, the cells were either directly diluted into 

liquid LB-Amp medium or plated on LB-Amp agar plates for overnight growth.  

2.1.6 Plasmid constructs used in this work 

Table 2.2 List of plasmid constructs used in this study. The constructs were named from p1 to p77 for simplicity and linked 

with the list of primers in Table 2.3. 

# Construct Vector Reference 

p1  prom-Tim23-flank pRS315 (Gevorkyan-Airapetov et al., 2009) 

p2  prom-Tim23Δ10-flank pRS315 This thesis 

p3  prom-Tim23Δ20-flank pRS315 This thesis 

p4  prom-Tim23Δ24-flank pRS315 This thesis 

p5  prom-Tim23Δ30-flank pRS315 This thesis 

p6  prom-Tim23Δ40-flank pRS315 This thesis 

p7  prom-Tim23Δ50-flank pRS315 (Waegemann et al., 2015) 

p8  prom-Tim23Δ60-flank pRS315 This thesis 
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p9  prom-Tim23Δ70-flank pRS315 This thesis 

p10  prom-Tim23Δ80-flank pRS315 This thesis 

p11  prom-Tim23Δ90-flank pRS315 This thesis 

p12  Tim23Δ30 p415 GPD This thesis 

p13  prom-Tim23-flank pRS314 (Waegemann et al., 2015) 

p14  prom-Tim23M51A7-flank pRS314 This thesis 

p15  prom-Tim23L58A5-flank pRS314 This thesis 

p16  prom-Tim23G63A5-flank pRS314 This thesis 

p17  prom-Tim23V68A-flank pRS314 This thesis 

p18  prom-Tim23V68A5-flank pRS314 This thesis 

p19  prom-Tim23V68A/D72A-flank pRS314 This thesis 

p20  prom-Tim23E69A-flank pRS314 This thesis 

p21  prom-Tim23E69A2-flank pRS314 This thesis 

p22  prom-Tim23E69A/L71A-flank pRS314 This thesis 

p23  prom-Tim23E69A3-flank pRS314 This thesis 

p24  prom-Tim23Y70A-flank pRS314 (Gevorkyan-Airapetov et al., 2009) 

p25  prom-Tim23Y70A2-flank pRS314 (Gevorkyan-Airapetov et al., 2009) 

p26  prom-Tim23L71A-flank pRS314 (Gevorkyan-Airapetov et al., 2009) 

p27  prom-Tim23D72A-flank pRS314 This thesis 

p28  prom-Tim23L73A5-flank pRS314 This thesis 

p29  prom-Tim23L78A5-flank pRS314 This thesis 

p30  prom-Tim23L81A5-flank pRS314 This thesis 

p31  prom-Tim23S84A5-flank pRS314 This thesis 

p32  prom-Tim23L87A5-flank pRS314 This thesis 

p33  prom-Tim23S90A5-flank pRS314 This thesis 

p34  prom-Tim23G92A3-flank pRS314 This thesis 

p35  prom-Tim23D95A2-flank pRS314 This thesis 

p36  prom-Tim23D95K2-flank pRS314 This thesis 

p37  prom-Tim23L97A3-flank pRS314 This thesis 

p38  Tim23-His9 p415 GPD This thesis 

p39  Tim23W3Bpa-His9 p415 GPD This thesis 

p40  Tim23K8Bpa-His9 p415 GPD This thesis 

p41  Tim23T11Bpa-His9 p415 GPD This thesis 

p42  Tim23N15Bpa-His9 p415 GPD This thesis 
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p43  Tim23V18Bpa-His9 p415 GPD This thesis 

p44  Tim23Q21Bpa-His9 p415 GPD This thesis 

p45  Tim23K25Bpa-His9 p415 GPD This thesis 

p46  Tim23L29Bpa-His9 p415 GPD This thesis 

p47  Tim23Q33Bpa-His9 p415 GPD This thesis 

p48  Tim23F37Bpa-His9 p415 GPD This thesis 

p49  Tim23N40Bpa-His9 p415 GPD This thesis 

p50  Tim23F37Bpa/L58A5-His9 p415 GPD This thesis 

p51  Tim23N40Bpa/L58A5-His9 p415 GPD This thesis 

p52  Tim23F37Bpa/Y70A2-His9 p415 GPD This thesis 

p53  Tim23N40Bpa/Y70A2-His9 p415 GPD This thesis 

p54  Tim23Q85Bpa-His9 p415 GPD This thesis 

p55  Tim23L87Bpa-His9 p415 GPD This thesis 

p56  Tim23I88Bpa-His9 p415 GPD This thesis 

p57  Tim23R91Bpa-His9 p415 GPD This thesis 

p58  prom-Tim23ΔTM4-flank pRS315 This thesis 

p59  prom-Tim23ΔTM3-4-flank pRS315 This thesis 

p60  prom-Tim17-flank pRS314 (Demishtein-Zohary et al., 2017) 

p61  prom-Tim17 ΔTM1-2-flank pRS314 This thesis 

p62  prom-Tim17ΔTM3-4-flank pRS314 This thesis 

p63  prom-Tim17G25L-flank pRS314 (Demishtein-Zohary et al., 2017) 

p64  prom-Tim17G29L-flank pRS314 (Demishtein-Zohary et al., 2017) 

p65  prom-Tim17G62L-flank pRS314 (Demishtein-Zohary et al., 2017) 

p66  prom-Tim17G66L-flank pRS314 (Demishtein-Zohary et al., 2017) 

p67  prom-Tim17G95L-flank pRS314 (Demishtein-Zohary et al., 2017) 

p68  prom-Tim17G99L-flank pRS314 (Demishtein-Zohary et al., 2017) 

p69  prom-Tim17V104A5-flank pRS314 This thesis 

p70  prom-Tim17R109A5-flank pRS314 This thesis 

p71  prom-Tim17R105A-flank pRS314 This thesis 

p72  prom-Tim17R105K-flank pRS314 This thesis 

p73  Tim17-His9 p415 GPD This thesis 

p74  Tim17G106Bpa-His9 p415 GPD This thesis 

p75  Tim17R105A/G106Bpa-His9 p415 GPD This thesis 

p76  pBpa2-PGK1 + 3SUP4-tRNACUA - (Chen et al., 2007) 
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p77  pET-Duet1- Tim23his9– Tim17strep pET-Duet1 This thesis 

p78  pET-Duet1- Tim23TEV-his9– 
Tim17strep 

pET-Duet1 This thesis 

 

2.1.7 Primer pairs used in this thesis 

Table 2.3 List of primer pairs used in this thesis. The sequences of primers were listed as pairs of forward (FP) and reverse 

(RP) from 5’ to 3’ end. Restriction enzymes used in the cloning method, template DNA used in the PCR reaction and the final 

construct were stated for each pair. Cl.- Cloning (section 2.1.8.1), SDM- Site directed mutagenesis (section 2.1.8.2). 
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Primers (5’3’) 
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Tim23 
Δ10 

FP CCCGGATCCATGACCGATGATGCGAATGCTGCC BamHI 
Cl. p1 p2 

RP CCCAAGCTTTCATTTTTCAAGTAGTCTTTTCTTGACAC HindIII 

Tim23 
Δ20 

FP CCCGGATCCATGCAAGATACAACCAAGCCTAAGG BamHI 
Cl. p1 p3 

RP Same as Tim23Δ10-RP HindIII 

Tim23 
Δ24 

FP CCCGGATCCATGAAGCCTAAGGAACTATCGTTG BamHI 
Cl. p1 p4 

RP Same as Tim23Δ10-RP HindIII 

Tim23 
Δ30 

FP CCCGGATCCATGTTGAAGCAGAGTTTAGGTTTCG BamHI 
Cl. p1 p5 

RP Same as Tim23Δ10-RP HindIII 

Tim23 
Δ40 

FP CCCGGATCCATGATCAATAACATAATATCAGGTC BamHI 
Cl. p1 p6 

RP Same as Tim23Δ10-RP HindIII 

Tim23 
Δ60 

FP CCCGGATCCATGTTGGCTGGTCTAGACAAGGG BamHI 
Cl. p1 p8 

RP Same as Tim23Δ10-RP HindIII 

Tim23 
Δ70 

FP CCCGGATCCATGTTAGATCTGGAAGAAGAACAAC BamHI 
Cl. p1 p9 

RP Same as Tim23Δ10-RP HindIII 

Tim23 
Δ80 

FP CCCGGATCCATGTTAGAAGGCTCACAGGGTCTG BamHI 
Cl. p1 p10 

RP Same as Tim23Δ10-RP HindIII 

Tim23 
Δ90 

FP CCCGGATCCATGCGTGGGTGGACCGATGACCTATG BamHI 
Cl. p1 p11 

RP Same as Tim23Δ10-RP HindIII 

Tim23 
M51A7 

FP AGCTGCCGCTGCGCTGCATCCTTTGGCTGGTC 
PvuII site 

added 
SDM p13 p14 

RP GCAGCCGCTCCACCAGGACCTGATATTATG 

Tim23 
L58A5 

FP CAGCTGCTGGTCTAGACAAGGGTGTGGAG 
PvuII site 

added 
SDM p13 p15 

RP CAGCCGCCCTAGCGGTGTCGACATGCATTCC 
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Tim23 
G63A5 

FP TGCGGCTGTGGAGTATTTAGATCTGGAAG 
PvuII site 

added 
SDM p13 p16 

RP GCTGCAGCAGCCAAAGGATGCAGCCTAGCG 

Tim23 
V68A 

FP GCGGAGTATTTAGACCTGGAAGAAG 
BglII site 
removed 

SDM p13 p17 
RP ACCCTTGTCTAGACCAGCCAAAGG 

Tim23 
V68A5 

FP TGCAGCACTGGAAGAAGAACAACTATCCTC 
PvuII site 

added 
SDM p13 p18 

RP GCTGCTGCACCCTTGTCTAGACCAGCCAAAG 

Tim23 
V68A/D72A 

FP GCGGAGTATTTAGCCCTGGAAGAAG 
BglII site 
removed 

SDM p13 p19 
RP Same as V68A-RP 

Tim23 
E69A 

FP TATTTAGACCTGGAAGAAGAACAAC 
BglII site 
removed 

SDM p13 p20 
RP CGCCACACCCTTGTCTAGACCAGCC 

Tim23 
E69A2 

FP CTTTAGACCTGGAAGAAGAACAAC 
BglII site 
removed 

SDM p13 p21 
RP CTGCCACACCCTTGTCTAGACCAGCC 

Tim23 
E69A/L71A 

FP TATGCAGACCTGGAAGAAGAACAAC 
BglII site 
removed 

SDM p13 p22 
RP Same as E69A-RP 

Tim23 
E69A3 

FP CTGCAGATCTGGAAGAAGAACAACTATC 
PvuII site 

added 
SDM p13 p23 

RP Same as E69A2-RP 

Tim23 
D72A 

FP GTGGAGTATTTAGCCCTGGAAGAAG 
BglII site 
removed 

SDM p13 p27 
RP Same as V68A-RP 

Tim23 
L73A5 

FP CTGCAGCACTATCCTCGTTAGAAGGCTC 
PvuII site 

added 
SDM p13 p28 

RP CTGCTGCATCTAAATACTCCACACCCTTG 

Tim23 
L78A5 

FP GCAGCAGCAGGCTCACAGGGTCTGATCCC 
PvuII site 

added 
SDM p13 p29 

RP AGCTGCTTGTTCTTCTTCCAGATCTAAATAC 

Tim23 
L81A5 

FP CTGCAGCGGGTCTGATCCCTTCCCGTGGG 
PvuII site 

added 
SDM p13 p30 

RP CTGCTGCCGAGGATAGTTGTTCTTCTTCC 

Tim23 
S84A5 

FP TGCAGCCCCTTCCCGTGGGTGGACCG 
PvuII site 

added 
SDM p13 p31 

RP GCTGCTGCGCCTTCTAACGAGGATAGTTG 

Tim23 
L87A5 

FP GCTGCAGCTGGGTGGACCGATGACCTATG 
PvuII site 

added 
SDM p13 p32 

RP TGCCGCACCCTGTGAGCCTTCTAACG 

Tim23 
S90A5 

FP GCAGCTGCAGATGACCTATGTTACGGTACC 
PvuII site 

added 
SDM p13 p33 

RP TGCGGCAGGGATCAGACCCTGTGAGC 

Tim23 
G92A3 

FP Same as Tim23S90A5-FP 
PvuII site 

added 
SDM p13 p34 

RP ACGGGAAGGGATCAGACCCTG 

Tim23 
D95A2 

FP GGACAGCTGCCCTATGTTACGGTACCGG 
PvuII site 

added 
SDM p13 p35 

RP ACCCGCGGGAAGGGATCAGACCCTG 
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Tim23 
D95K2 

FP GGACCAAGAAGCTTTGTTACGGTACCGG HindIII 
site 

added 

SDM p13 p36 
RP Same as Tim23D95A2-RP 

Tim23 
L97A3 

FP CTGCAGGTACCGGTGCCGTCTACC 
PvuII site 

added 
SDM p13 p37 

RP CTGCGTCATCGGTCCACCCACGGG 

Tim23 
W3Bpa 

FP TAGCTTTTTGGAGATAAGACACCTAC BamHI 
site 

removed 

SDM p38 p39 
RP CGACATTGATCCACTAGTTCTAGAATC 

Tim23 
K8Bpa 

FP TGGCTTTTTGGAGATTAGACACCTAC BamHI 
site 

removed 

SDM p38 p40 
RP Same as Tim23W3Bpa-RP 

Tim23 
T11Bpa 

FP TAGGATGATGCGAATGCTGCAGTGGG 
PstI site 
added 

SDM p38 p41 
RP AGGTGTCTTATCTCCAAAAAGCCAC 

Tim23 
N15Bpa 

FP ACCGATGATGCGTAGGCTGCAGTGGG 
PstI site 
added 

SDM p38 p42 
RP Same as Tim23T11Bpa-RP 

Tim23 
V18Bpa 

FP TAGGGTGGCCAAGATACAACCAAG 
MscI site 

added 
SDM p38 p43 

RP GGCAGCATTCGCATCATCGGTAGGTG 

Tim23 
Q21Bpa 

FP CCTAAGGAACTAAGCTTGAAGCAG HindIII 
site 

added 

SDM p38 p44 
RP CTTGGTTGTATCCTAGCCGCCCAC 

Tim23 
K25Bpa 

FP Same as Tim23Q21Bpa-FP HindIII 
site 

added 

SDM p38 p45 
RP CTAGGTTGTATCTTGGCCGCCCAC 

Tim23 
L29Bpa 

FP AGCCTAGGTTTCGAGCCAAACATC 
AvrII site 

added 
SDM p38 p46 

RP CTGCTTCAACGACTATTCCTTAGGC 

Tim23 
Q33Bpa 

FP Same as Tim23L29Bpa-FP 
AvrII site 

added 
SDM p38 p47 

RP CTACTTCAACGATAGTTCCTTAGGC 

Tim23 
F37Bpa 

FP TAGGAGCCAAACATCAATAACATAATATC 
AvrII site 

added 
SDM p38 p48 

RP ACCTAGGCTCTGCTTCAACGATAGTTC 

Tim23 
N40Bpa 

FP TTCGAGCCATAGATCAATAACATAATATC 
AvrII site 

added 
SDM p38 p49 

RP Same as Tim23F37Bpa-RP 

Tim23 
F37Bpa/ 
L58A5 

FP Same as Tim23L58A5-FP 
PvuII site 

added 
SDM p48 p50 

RP Same as Tim23L58A5-RP 

Tim23 
N40Bpa/ 

L58A5 

FP Same as Tim23L58A5-FP 
PvuII site 

added 
SDM p49 p51 

RP Same as Tim23L58A5-RP 

Tim23 
F37Bpa/ 
Y70A2 

FP Same as Tim23F37Bpa-FP 
PvuII site 

added 
SDM p25 p52 

RP Same as Tim23F37Bpa-RP 

Tim23 
N40Bpa/ 

Y70A2 

FP Same as Tim23F40Bpa-FP 
PvuII site 

added 
SDM p25 p53 

RP Same as Tim23F37Bpa-RP 
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Tim23 
Q85Bpa 

FP GATCCCTTCCCGTGGGTGGACCGATGACC 
None SDM p38 p54 

RP AGACCCTATGAGCCTTCTAACGAGG 

Tim23 
L87Bpa 

FP Same as Tim23Q85Bpa-FP 
None SDM p38 p55 

RP TAACCCTGTGAGCCTTCTAACGAGG 

Tim23 
I88Bpa 

FP GTAGCCTTCCCGTGGGTGGACCGATGACC 
None SDM p38 p56 

RP AGACCCTGTGAGCCTTCTAACGAGG 

Tim23 
R91Bpa 

FP GATCCCTTCCTAGGGGTGGACCGATGACC 
AvrII site 

added 
SDM p38 p57 

RP Same as Tim23I88Bpa-RP 

Tim23 
ΔTM4 

FP AAAGGATCCATGTCGTGGCTTTTTGGAGA BamHI 
Cl. p1 p58 

RP GGGAAGCTTTCATGAAGACTTGAACAAAGCGCCCG HindIII 

Tim23 
ΔTM3-4 

FP Same as Tim23ΔTM4-FP BamHI 
Cl. p1 p59 

RP GGGAAGCTTTCATAGTGCATCTATTGTAGAATTG HindIII 

Tim17 
ΔTM1-2 

FP CCCGGATCCATGGATTGCGCTGTGAAGGCCG SacI 
Cl. p60 p61 

RP GGGCTGCAGCTAAGCTTGCAGAGGTTGAG PstI 

Tim17 
ΔTM3-4 

FP CCCGAGCTCCAATACCATTCGGGTTATACTG SacI 
Cl. p60 p62 

RP GGGCTGCAGTCAGTCCTCTCTCTTTCTAACGG PstI 

Tim17 
V104A5 

FP GCTGCTAGGCATACAAGGAACAGTTCG 
SacII site 

added 
SDM p60 p69 

RP AGCCGCGGCAGCTAAAGCGCCACCAGTG 

Tim17 
R109A5 

FP GCTGCTAGTTCGATCACGTGTGCTTG 
SacII site 

added 
SDM p60 p70 

RP AGCCGCGGCCCAACCACCTCTTACAGCTAAAG 

Tim17 
R105A 

FP GCAGGTGGTTGGAGGCATACAAGG 
NheI site 

added 
SDM p60 p71 

RP TACAGCTAGCGCGCCACCAGTG 

Tim17 
R105K 

FP AAAGGTGGTTGGAGGCATACAAGG 
NheI site 

added 
SDM p60 p72 

RP Same as Tim17R105A-RP 

Tim17 
G106Bpa 

FP GTAAGATAGGGTTGGAGGCATACAAG 
NheI site 

added 
SDM p73 p74 

RP AGCTAGCGCGCCACCAGTGAAAAAC 

Tim17 
R105A/ 

G106Bpa 

FP GTAGCATAGGGTTGGAGGCATACAAGGAAC 
NheI site 

added 
SDM p73 p75 

RP Same as Tim17G106Bpa-RP 

Tim23his9 
for pET-
Duet1 

FP GGGCCATGGCATGGCTTTTTGGAGATAAGAC NcoI 
Cl. p1 

p77 

RP CCCAAGCTTTCAGTGATGGTGATGGTGATGGTGATGGTGTT
TTTCAAGTAGTCTTTTCTTG 

HindIII 

Tim17strep 
for pET-
Duet1 

FP GGAATTGCATATGTCAGCCGATCATTCGAG NdeI 
Cl. p60 

RP GGGCTCGAGCTATTTCTCAAATTGAGGGTGAGACCAACCAG
AAGCTTGCAGAGGTTGAGAGG 

XhoI 
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2.1.8 Amplification of DNA fragments and cloning procedure 

Polymerase chain reaction (PCR) was used to amplify DNA fragments. In this thesis, 

two types of PCR reactions were used (see sections 2.1.8.1 and 2.1.8.2). The primer pairs and 

the template DNA used in the PCR reaction and the type of PCR reaction together with the 

final product arose from the PCR reaction are summarized in Table 2.3 (Section 0). 

2.1.8.1 Cloning (Cl.) 

DNA fragment to be inserted into a vector was amplified in a PCR reaction consisting 

of 10 µl of 10X Taq buffer (NEB), 2.5 U Taq polymerase (NEB), 0.8 µl of dNTPs (10 mM each), 

2.5 µl of each forward and reverse primers (20 µM each), 20 ng of template DNA and sterile 

distilled water to a final volume of 100 µl. The following PCR program was used for 

amplification: 

 Temperature Time 

Initial denaturation 95°C 3 min 

PCR cycle: 30 cycle 

Denaturation 95°C 30 sec 

Annealing 50°C 30 sec 

Extension 72°C 1 min/kb 

Final extension 72°C 5 min 

Hold 8°C ∞ 

  

Following amplification by PCR, the PCR reaction was run on an agarose gel, the DNA 

fragment of the correct size excised and eluted from the gel and then cut (section 2.1.3.1) 

with the respective restriction enzymes shown in Table 2.3. In parallel, the vector was cut 

with the same enzymes. Both reactions were run on an agarose gel. After DNA extraction 

from the gel (section 2.1.2.2), they were ligated together (section 2.1.3.2), transformed into 

E. coli cells and the cells were plated on LB+Amp plate (section 2.3.1) for overnight growth. 

Two colonies from the plate were chosen for plasmid DNA isolation (section 2.1.1). Isolated 

plasmids were tested via restriction digestion (section 2.1.3.1) and positive clones were sent 

for sequencing for sequence confirmation. 
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2.1.8.2 Site directed mutagenesis (SDM) 

Site-directed mutagenesis was done using primers designed to modify the DNA 

sequence in order to introduce the desired mutation (see section 0). Additionally, the primers 

contained a silent mutation, which either added or removed a restriction site to help in 

identification of positive clones. Each primer used for SDM was first phosphorylated in a 

reaction containing 2 µl of 10X PNK buffer (NEB), 1 µl of T4 PNK (NEB), 7 µl of primer (100 

µM), 2 µl of ATP (10 mM) and 8 µl of sterile distilled water. The reactions were incubated for 

1 h at 37°C and then stopped by heating at 95°C for 5 min. The concentration of the primers 

was adjusted to 10 µM by adding 50 µl of sterile distilled water. Since the PCR products are 

directly ligated in this protocol, phosphorylation of the primers is required for efficient 

ligation reaction. 

In this method, instead of amplifying a small fragment of a plasmid, the whole plasmid 

was amplified using Phusion-HF (NEB) enzyme using phosphorylated primers. Each reaction 

contained 2 µl of 5X Phusion-HF buffer, 0.1 µl of Phusion-HF, 2-4 ng of template plasmid DNA, 

0.6 µl of each primer (10 µM) and sterile distilled water to a final volume of 10 µl. 5% DMSO 

was sometimes added, especially in case of high GC content. A gradient annealing step was 

used for most of the constructs in order to get the PCR products as clean as possible. The 

following PCR program was used for amplification: 

 Temperature Time 

Initial denaturation 95°C 5 min 

PCR cycle: 25 cycle 

Denaturation 95°C 30 sec 

Annealing 5070°C 30 sec 

Extension 72°C 1 min/kb 

Final extension 72°C 10 min 

Hold 8°C ∞ 

 

PCR reactions were analyzed by agarose gel electrophoresis and 2-5 µl of the cleanest 

PCR reaction were used directly for ligation. Alternatively, if all PCR reactions contained 

nonspecific bands, agarose gel separation followed by gel extraction were applied to get a 
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clean DNA fragment. Following ligation, E. coli cells were transformed and the cells were 

plated on LB+Amp plate (section 2.1.5) for overnight growth. Several colonies per plate were 

picked and inoculated for minipreps (section 2.1.1.2). Plasmid DNA isolated by miniprep was 

analyzed by restriction digestion for initial screening of positive colonies (section 2.1.3.1). 

Positive clones were inoculated for plasmid DNA isolation protocol (section 2.1.1), rechecked 

by restriction digestion and the mutations confirmed by sequencing.  

2.2 Yeast Genetics  

2.2.1 Yeast strains used in this study 

Table 2.4 Yeast strains used. Yeast strains, plasmids used to generate the strains (Table 2.2) and the parent strains are listed 

below. 

Name of the 

Strain/Mutant 

Used 

plasmid(s) 
Parent strain  Reference 

YPH499 - - (Sikorski and Hieter, 1989) 

Tim23 shuffling strain - YPH499ΔTIM23::KAN + 
pVT-102U-Tim23 

(Gevorkyan-Airapetov et al., 2009) 

Tim23 (WT) p1 YPH499ΔTIM23::KAN (Gevorkyan-Airapetov et al., 2009) 

tim23Δ10 p2 YPH499ΔTIM23::KAN This thesis 

tim23Δ20 p3 YPH499ΔTIM23::KAN This thesis 

tim23Δ24 p4 YPH499ΔTIM23::KAN This thesis 

tim23Δ30 p5 YPH499ΔTIM23::KAN This thesis 

tim23Δ40 p6 YPH499ΔTIM23::KAN This thesis 

tim23Δ50 p7 YPH499ΔTIM23::KAN (Waegemann et al., 2015) 

tim23Δ60 p8 YPH499ΔTIM23::KAN This thesis 

tim23Δ70 p9 YPH499ΔTIM23::KAN This thesis 

tim23Δ80 p10 YPH499ΔTIM23::KAN This thesis 

tim23Δ90 p11 YPH499ΔTIM23::KAN This thesis 

tim23Δ30↑ p12 YPH499ΔTIM23::KAN This thesis 

Tim23 (WT) p13 YPH499ΔTIM23::KAN (Waegemann et al., 2015) 

tim23M51A7 p14 YPH499ΔTIM23::KAN This thesis 

tim23L58A5 p15 YPH499ΔTIM23::KAN This thesis 

tim23G63A5 p16 YPH499ΔTIM23::KAN This thesis 
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tim23V68A p17 YPH499ΔTIM23::KAN This thesis 

tim23V68A5 p18 YPH499ΔTIM23::KAN This thesis 

tim23V68A/D72A p19 YPH499ΔTIM23::KAN This thesis 

tim23E69A p20 YPH499ΔTIM23::KAN This thesis 

tim23E69A2 p21 YPH499ΔTIM23::KAN This thesis 

tim23E69A/L71A p22 YPH499ΔTIM23::KAN This thesis 

tim23E69A3 p23 YPH499ΔTIM23::KAN This thesis 

tim23Y70A p24 YPH499ΔTIM23::KAN (Gevorkyan-Airapetov et al., 2009) 

tim23Y70A2 p25 YPH499ΔTIM23::KAN (Gevorkyan-Airapetov et al., 2009) 

tim23L71A p26 YPH499ΔTIM23::KAN (Gevorkyan-Airapetov et al., 2009) 

tim23D72A p27 YPH499ΔTIM23::KAN This thesis 

tim23L73A5 p28 YPH499ΔTIM23::KAN This thesis 

tim23L78A5 p29 YPH499ΔTIM23::KAN This thesis 

tim23L81A5 p30 YPH499ΔTIM23::KAN This thesis 

tim23S84A5 p31 YPH499ΔTIM23::KAN This thesis 

tim23L87A5 p32 YPH499ΔTIM23::KAN This thesis 

tim23S90A5 p33 YPH499ΔTIM23::KAN This thesis 

tim23G92A3 p34 YPH499ΔTIM23::KAN This thesis 

tim23D95A2 p35 YPH499ΔTIM23::KAN This thesis 

tim23D95K2 p36 YPH499ΔTIM23::KAN This thesis 

tim23L97A3 p37 YPH499ΔTIM23::KAN This thesis 

tim23ΔTM4 p58 YPH499ΔTIM23::KAN This thesis 

tim23ΔTM3-4 p59 YPH499ΔTIM23::KAN This thesis 

Tim17 shuffling strain - YPH499ΔTIM17::HIS3 + 
pVT-102U-Tim17 

(Demishtein-Zohary et al., 2017) 

Tim17 (WT) p60 YPH499ΔTIM17::HIS3 This thesis 

tim17ΔTM1-2 p61 YPH499ΔTIM17::HIS3 This thesis 

tim17ΔTM3-4 p62 YPH499ΔTIM17::HIS3 This thesis 

tim17G25L p63 YPH499ΔTIM17::HIS3 (Demishtein-Zohary et al., 2017) 

tim17G29L p64 YPH499ΔTIM17::HIS3 (Demishtein-Zohary et al., 2017) 

tim17G62L p65 YPH499ΔTIM17::HIS3 (Demishtein-Zohary et al., 2017) 

tim17G66L p66 YPH499ΔTIM17::HIS3 (Demishtein-Zohary et al., 2017) 

tim17G95L p67 YPH499ΔTIM17::HIS3 (Demishtein-Zohary et al., 2017) 

tim17G99L p68 YPH499ΔTIM17::HIS3 (Demishtein-Zohary et al., 2017) 

tim17V104A5 p69 YPH499ΔTIM17::HIS3 This thesis 
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tim17R109A5 p70 YPH499ΔTIM17::HIS3 This thesis 

tim17R105A p71 YPH499ΔTIM17::HIS3 This thesis 

tim17R105K p72 YPH499ΔTIM17::HIS3 This thesis 

Strains for in vivo site-specific photocrosslinking 

Tim23 (WT) p38, p76 YPH499ΔTIM23::KAN This thesis 

tim23W3Bpa p39, p76 YPH499ΔTIM23::KAN This thesis 

tim23K8Bpa p40, p76 YPH499ΔTIM23::KAN This thesis 

tim23T11Bpa p41, p76 YPH499ΔTIM23::KAN This thesis 

tim23N15Bpa p42, p76 YPH499ΔTIM23::KAN This thesis 

tim23V18Bpa p43, p76 YPH499ΔTIM23::KAN This thesis 

tim23Q21Bpa p44, p76 YPH499ΔTIM23::KAN This thesis 

tim23K25Bpa p45, p76 YPH499ΔTIM23::KAN This thesis 

tim23L29Bpa p46, p76 YPH499ΔTIM23::KAN This thesis 

tim23Q33Bpa p47, p76 YPH499ΔTIM23::KAN This thesis 

tim23F37Bpa p48, p76 YPH499ΔTIM23::KAN This thesis 

tim23N40Bpa p49, p76 YPH499ΔTIM23::KAN This thesis 

tim23F37Bpa/L58A5 p50, p76 YPH499 This thesis 

tim23N40Bpa/L58A5 p51, p76 YPH499 This thesis 

tim23F37Bpa/Y70A2 p52, p76 YPH499 This thesis 

tim23N40Bpa/Y70A2 p53, p76 YPH499 This thesis 

tim23Q85Bpa p54, p76 YPH499ΔTIM23::KAN This thesis 

tim23L87Bpa p55, p76 YPH499ΔTIM23::KAN This thesis 

tim23I88Bpa p56, p76 YPH499ΔTIM23::KAN This thesis 

tim23R91Bpa p57, p76 YPH499ΔTIM23::KAN This thesis 

Tim17 (WT) p73, p76 YPH499ΔTIM17::HIS3 This thesis 

tim17G106Bpa p74, p76 YPH499ΔTIM17::HIS3 This thesis 

tim17R105A/G106Bpa p75, p76 YPH499ΔTIM17::HIS3 + 
pVT-102U-Tim17 

This thesis 

 

2.2.2 Transformation of yeast cells 

Overnight culture of yeast cells was diluted to OD600 ~0.1 in 50 ml of YPD medium and 

grown until OD600 of 0.5-0.6. Cells were harvested at 3,000 x g for 5 min at RT and 

resuspended in 25 ml of sterile deionized water for washing. Centrifugation step was 

repeated and the supernatant was discarded. Cells were resuspended in 1 ml of 0.1 M lithium 
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acetate (LiAc) and transferred into a microfuge tube. Cells were harvested at 16,000 x g for 

30 s and resuspended with 400 µl of 0.1 M LiAc (final volume ~500 µl). Cell suspension was 

split into microfuge tubes using 50 µl of cell suspension per transformation reaction. The cells 

were pelleted by centrifugation at 3,000 x g for 5 min. The supernatants were discarded and 

the cells were overlaid with 240 µl of 50% (w/v) PEG without disturbing the cell pellet. The 

following solutions were then added carefully on top of the PEG solution, without disturbing 

the cell pellet, in the given order: 36 µl of 1 M LiAc, 5 µl of 10 mg/ml ssDNA (boiled for 5 min 

at 95°C and chilled quickly on ice prior to use), 60 µl of sterile water and 5 µl of plasmid DNA 

(0.1- 1 µg). Afterwards, tubes were vortexed rigorously for about 1 min and then incubated 

at 30°C for 30 min with vigorous shaking (~1,000 rpm). The incubation temperature was 

increased to 42°C and the samples incubated for additional 20-25 minutes. Transformed cells 

were pelleted at 4,000-6,000 x g for 30 s and the supernatant was discarded. Finally, the cells 

were resuspended in 150 µl of sterile water and plated on SD plates (see section 0) with 

required selection markers. 

2.2.3 Plasmid shuffling by 5FOA selection 

The ability of the various mutants of Tim23 and Tim17 to support the in vivo function 

of the wild type proteins was analyzed by plasmid shuffling in yeast. The yeast shuffling strains 

used in this thesis (section 2.2.1) are based on the haploid yeast strain YPH499. They contain 

a chromosomal deletion of the essential gene under study (TIM23 or TIM17) and are viable 

due to the presence of a URA3 plasmid (pVT-102U) encoding the wild type copy of the 

respective essential gene. 

For the analysis, shuffling strains were transformed (section 0) with plasmids encoding 

mutant versions of the protein (section 2.1.6) as well as with the empty plasmid and the 

plasmid encoding the wild type version of the protein which served as negative and positive 

controls, respectively. Transformation reactions were plated on SD plates with required 

markers to keep both of the URA3 and the other plasmid. Transformants, which appeared on 

selective plates after 2-3 days of growth at 30°C, were picked and streaked for single colonies 

on fresh SD plates. Single colonies were then amplified on the same type of selective plates 
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and then transferred to nonselective YPD plates (see section 2.3.2). Finally, the cells were 

plated on medium containing 5-fluoroorotic acid (5-FOA). Because URA3 gene encodes 

orotidine-5'-monophosphate decarboxylase which converts 5-FOA to toxic 5-fluoro uracil, 

only cells which lost the URA3 plasmid and contain the other plasmid with a functional copy 

of the essential gene survive on this medium. 

2.3 Cell Biology  

2.3.1 Bacterial culture 

E. coli cells were cultured in LB medium which contains 5 g/L yeast extract, 10 g/L 

bacto-tryptone and 10 g/L NaCl. The medium was sterilized by autoclaving and kept at RT. 

For the plates, 20 g/L bacto-agar was added prior to autoclaving. 

For preparation of LB-Amp medium, ampicillin was added to a sterile LB medium a 

final concentration of 100 µg/ml from a 100 mg/ml filter-sterilized stock. When preparing LB-

Amp plates, ampicillin is added when the medium cooled down to about 50°C. LB-Amp 

medium is stable for few weeks at 4°C. 

2.3.2 Yeast culture 

To prepare non-selective medium for yeast culture, YP medium (10 g/L yeast extract, 

20 g/L bacto-peptone, pH 5.0) was supplemented with 2% (w/v) glucose or galactose from 

autoclaved stock solutions (40% (w/v) glucose and 30% (w/v) galactose) to make YPD and 

YPGal media, respectively. To prepare YPLac medium, 2% lactic acid was added from 90% 

stock before pH adjustment. For the plates, complete medium was prepared with the 

addition of 2% (w/v) bacto-agar prior to autoclaving. For isolation of mitochondria, yeast cells 

were typically grown on Lactate medium (3 g yeast extract, 1 g KH2PO4, 1 g NH4Cl, 0.5 g 

CaCl2x2H2O, 0.5 g NaCl, 1.1 g MgSO4x6H2O, 0.3 ml 1% FeCl3 and 22 ml of 90% lactic acid for 1 

L medium and pH adjusted to 5.5 using KOH) supplemented with 0.1% glucose. 

SD medium was used to keep a selective pressure on yeast cells to keep plasmids. SD 

medium was made by diluting the required stock solutions (Table 2.5) to a final 1X 

concentration and glucose (from 40% stock) to a final concentration of 2% (w/v) with sterile 
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water. All stock solutions were sterilized by autoclaving, except tryptophan, which was filter-

sterilized. SD plates were made by mixing 500 ml of 4% (w/v) bacto-agar (pre-cooled to 65°C 

after autoclaving) and 500 ml of 2X SD medium with required markers before pouring the 

medium in Petri dishes. Plates were stored at 4°C until use. 

Table 2.5 Stock solutions for selective medium 

5X Synthetic minimal medium (5XS) 8.5 g yeast nitrogen base, 25 g (NH4)2SO4 in 1 L 

500X Histidine 10 mg/ml 

333X Leucine 10 mg/ml 

333X Lysine 10 mg/ml 

100X Uracil 2 mg/ml 

100X Adenine 2 mg/ml 

500X Tryptophan 10 mg/ml 
 

For 5-FOA plates, 1 g of 5-FOA was dissolved in 500 ml of 2X concentrated SD medium 

with required markers by shaking at 30°C and filter sterilized before mixing with autoclaved 

agar. 

For medium with 1 mM Bpa (p-benzoyl-L-phenylalanine), required amount of Bpa was 

dissolved in 1 M filter sterilized NaOH. Dissolved Bpa solution was added into SD medium, 

which was pre-heated to 65°C, dropwise with constant stirring to prevent precipitation of Bpa 

and the same volume of sterile 1 M HCl was subsequently added to the medium. Bpa 

containing medium was kept in the dark because of its reactivity in the presence of UV. 

2.3.3 Assays with yeast cells 

2.3.3.1 Serial dilution spot assay 

Growth of yeast cells was analyzed by serial dilution spot assay. Yeast strains to be 

analyzed were grown overnight in 20 ml of YPD or YPGal medium at 30°C with shaking at 160 

rpm. Next day, the cultures were diluted to OD600 0.1 and grown until they reached to OD600 

~0.5. Then, 0.5 OD600 of cells (1 ml for OD600 0.5) were transferred into a sterile tube and the 

cells pelleted at 3,000 x g for 5 min. The cells were resuspended in 500 µl of sterile water (1 

OD600/ml) and five times 10-fold serial dilutions were made. Finally, 2 µl of each cell 
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suspensions were spotted on YPD and YPLac plates and plates were incubated at different 

temperatures (24°C, 30°C and 37°C) for 2-5 days. 

2.3.3.2 Preparation of total cell lysates 

Yeast cells, grown overnight, were diluted in fresh medium and grown until they reach 

OD600 ~0.5 as for serial dilution spot assay (section 2.3.3.1). Three OD600 of cells were 

harvested in 15 ml falcon tube by centrifuging the culture at 3,000 x g for 5 min. Cell pellet 

was resuspended in 1 ml of water and transferred into a microcentrifuge tube followed by 

centrifugation at 16,000 x g for 1 min. The pellet was resuspended with 100 µl of water and 

100 µl of 0.2 M NaOH was added. Samples were vortexed and kept for 5 min at 25°C. The 

samples were centrifuged at 16,000 x g for 2 min and the pellets resuspended in 200 µl of 2X 

Laemmli buffer (120 mM Tris-HCl pH 6.8, 20% (v/v) glycerol, 4% (w/v) SDS, 0.02% (w/v) 

bromophenol blue) containing β-Mercaptoethanol (see section 2.4.1.1). After 5 min heating 

at 95°C, samples were centrifuged at 16,000 x g for 20-30 s and 10-20 µl was loaded on an 

SDS-PA gel, taking care not to disturb the pellet fraction. 

2.3.3.3 In vivo site-specific photocrosslinking (Total cell extracts and NiNTA pull 

down) 

In vivo site-specific photocroslinking is used to determine protein-protein interactions 

in vivo. For this, non-natural, photo-reactive amino acid, Bpa (p-benzoyl-L-phenylalanine), is 

incorporated into a specific position in a protein by changing the codon for that position into 

a premature stop codon, TAG (see section 0 and 2.1.8.2). Then, the mutated plasmid and an 

engineered plasmid encoding tRNACUA/aminoacyl-tRNACUA synthetase pair, for incorporation 

of Bpa into the premature stop codon, were transformed into yeast cells (see section 0). Yeast 

cells were grown in SD medium containing required selection markers and 1 mM Bpa until 

OD600 reached about 0.8. Typically, 40 ml of culture was grown for total cell extracts and 200 

ml culture for NiNTA pull-down. Cells were harvested by centrifugation at 3,000 x g for 10 

min at 4°C (60-80 OD600 per sample). Then, the cells were resuspended in 10 ml of ice-cold SD 

medium and split into two halves. One half was exposed to UV light (365 nm, 100 W, 230 V) 

for 1 h on ice while the other half was kept in dark. The cells were re-collected by 
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centrifugation at 3,000 x g for 10 min at 4°C. At this point, they were either flash frozen in 

liquid N2 and stored at -80°C until use or analyzed directly. 

To prepare total cell extracts of Bpa mutants, cells pellets were resuspended in 300 µl 

of water and 300 µl of 0.2 M NaOH was added. Samples were vortexed and kept for 5 min at 

25°C. The samples were centrifuged at 16,000 x g for 3 min and the pellets resuspended in 

200 µl of 2X Laemmli buffer (120 mM Tris-HCl pH 6.8, 20% (v/v) glycerol, 4% (w/v) SDS, 0.02% 

(w/v) bromophenol blue) containing β-Mercaptoethanol (see section 2.4.1.1). After 5 min 

heating at 95°C, samples were centrifuged at 16,000 x g for 20-30 s and 20 µl was loaded on 

an SDS-PA gel, taking care not to disturb the pellet fraction. 

To bind His-tagged protein and its crosslinked products to NiNTA-Agarose beads, a 

NiNTA pull down was done. The cells were resuspended 500 µl of water and 500 µl of 0.2 M 

NaOH was added. The samples were kept for 5 min at RT and centrifuged at 16,100 x g for 3 

min. The pellets were resuspended in 300 µl of solubilization buffer (50 mM Tris, 150 mM 

NaCl, 1% (w/v) SDS, pH 8) and, after adding PMSF to a final concentration of 1 mM, the 

samples were cooked for 5 min at 95°C. Following centrifugation at 16,100 x g for 30 s, 20 µl 

of samples were taken for totals. The rest of the supernatants were diluted with 3 ml of 50 

mM Tris, 300 mM NaCl, 0.5% (v/v) triton X-100, 20 mM imidazole, 1 mM PMSF and added to 

50 µl of NiNTA-Agarose beads (beads were previously washed twice with water and 

equilibrated with the same buffer). Samples were incubated at 4°C for 30 min using an 

overhead shaker. The beads were pelleted at 1,000 x g for 1.5 min at 4°C, transferred into 

microfuge tubes and washed three times with 300 µl of wash buffer (50 mM Tris, 300 mM 

NaCl, 0.1% (v/v) triton X-100, 20 mM imidazole, pH 8). Bound proteins were finally eluted 

with 60 µl of Laemmli buffer containing β-mercaptoethanol (see section 2.4.1.1) and 300 mM 

imidazole by incubating at 95°C for 5 min. The samples were split into two and loaded on two 

SDS-PA gels. 

2.3.3.4 Isolation of crude mitochondria 

Eight OD600 of yeast cells, in the exponential growth phase (see section 2.3.3.1), were 

transferred to a falcon tube and centrifuged at 3,000 x g at RT for 5 min. Following a wash 
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step with water, cells were resuspended in 300 µl of SHK buffer (0.6 M Sorbitol, 20 mM 

HEPES-KOH, pH 7.2, 80 mM KCl) and PMSF was added to a final concentration 1 mM. After 

addition of 0.3 g of glass beads (diameter 0.3 mm), the cells were lysed mechanically by 

vigorous vortexing four times 30 s with 30 s intervals on ice. Glass beads were removed by 

centrifugation at 1,000 x g for 3 min at 4°C. The supernatant, containing lysed yeast cells, was 

transferred to a new tube and crude mitochondria were collected by centrifugation at 18,000 

x g for 10 min. Mitochondrial pellet was resuspended in Laemmli buffer with β-

mercaptoethanol (see section 2.4.1.1). To analyze proteins that remain in the cytosolic 

fraction, 10 µl of 72% trichloroacetic acid (TCA) were added to 50 µl of the supernatant. 

Samples were mixed thoroughly and then incubated at -20°C for 20 min. Precipitated proteins 

were collected by centrifugation at 36,700 x g for 20 min at 4°C. The pellet was washed with 

200 µl of ice-cold acetone and the centrifugation step repeated for 10 min. Precipitated 

proteins from the cytosolic fraction were resuspended in Laemmli buffer with β-

mercaptoethanol. Following a 5 min incubation at 95°C, both cytosolic and mitochondrial 

fractions were loaded on an SDS-PA gel. 

2.3.3.5 Large-scale mitochondria isolation 

Yeast cells, grown until OD600 of about 0.8, were pelleted at 4,400 x g for 5 min at RT 

and washed with distilled water. The pellet was resuspended in DTT buffer (100 mM Tris-SO4, 

10 mM DTT, pH 9.4) to a final concentration of 0.5 g of yeast cells/ml buffer. The suspension 

was incubated with shaking at 30°C (or 24°C when temperature sensitive mutants were used) 

for 10 min. The cells were harvested by centrifugation at 4,400 x g for 5 min. Following a wash 

step with 100 ml of 1.2 M sorbitol, the cells were resuspended in sorbitol buffer (6.6ml of 1.2 

M sorbitol, 20 mM potassium phosphate-KOH, pH 7.5 per gram of cells). To digest the cell 

wall, 4 mg Zymolyase, per gram of cells, were added to the cell suspension and the suspension 

was incubated with shaking for 30-45 min at 30 or 24°C. Spheroplasts formation was 

determined by diluting 50 µl of cell suspension once into 2 ml of dH2O and once into 1.2 M 

sorbitol and measuring OD600. As spheroplasts burst in water, 80-90% reduction of OD600 of 

the solution in water, compared to the sorbitol one, confirms the formation of spheroplasts. 

Spheroplasts were harvested at 3,000 x g for 5 min at 4°C, resuspended at 0.15 g/ml in 
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homogenization buffer (0.6 M sorbitol, 10 mM Tris-HCl, 1mM EDTA, 0.2% (w/v) BSA, 1 mM 

PMSF, pH 7.4) and homogenized by ten strokes in Dounce-homogenizer. The cell debris was 

removed by centrifuging twice at 1,900 x g at 4°C for 5 min. The supernatant was transferred 

into a new tube and centrifuged at 17,400 x g for 12 min at 4°C. Pelleted mitochondria were 

resuspended in SH buffer (20 mM HEPES-KOH, 0.6 M sorbitol, pH 7.2) to a final concentration 

of 10 mg/ml and aliquoted. Aliquots were then flash frozen and stored at -80°C. 

2.4 Protein Biochemistry  

2.4.1 Protein detection and analysis 

2.4.1.1 SDS-PAGE 

Protein samples were analyzed via SDS-PAGE as published previously (Laemmli, 1970). 

SDS-PA gels consist of two layers - separating gel at the bottom is overlaid with a stacking gel 

on top. Composition of the gels and buffers is given below. 

Separating gel: 8-16% (w/v) acrylamide:bis-acrylamide mix (37.5:1), 375 mM Tris-Cl 

(pH 8.8), 0.1% (w/v) SDS, 0.05% (w/v) APS, 0.05% (v/v) TEMED. 

Stacking gel: 5% (w/v) acrylamide:bis-acrylamide mix (37.5:1), 60 mM Tris-Cl (pH 6.8), 

0.1% (w/v) SDS, 0.07% (w/v) APS, 0.35% (v/v) TEMED. 

Running buffer: 50 mM Tris-Cl, 384 mM glycine, 0.1% (w/v) SDS, pH 8.3 without 

adjustment. 

2X Laemmli buffer: 120 mM Tris-Cl (pH 6.8), 20% (v/v) glycerol, 4% (w/v) SDS, 0.02% 

(w/v) bromophenol blue. 

Samples resuspended in Laemmli buffer (at least 1X final concentration) with or 

without 3% β-mercaptoethanol were cooked for 95°C for 3-5 min and loaded into the wells 

of the SDS-PA gel, which was assembled in the chamber and filled with the running buffer. 

After loading, 35 mA constant current was applied for big gels (14x9x0.1 cm) for ca. 1 h 40 

min and 25 mA for small gels (10x5.5x0.075 cm) for ca. 50 min. 
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2.4.1.2 Western blotting 

Following SDS-PAGE, the proteins were transferred to a nitrocellulose membrane (0.2 

µm pore size) by semi-dry blotting method. Transfer was done for big gels at 250 mA constant 

current for 1 h (or 1 h 15 min for crosslinked products).  

Transfer buffer: 20 mM Tris, 150 mM glycine, 20% (v/v) methanol and 0.02% SDS. 

After the blotting procedure, the membrane was stained with Ponceau S (0.2% (w/v) 

Ponceau S in 3% (w/v) TCA) in order to evaluate the transfer efficiency and to cut the strips 

for immunodetection of different proteins. Membrane strips were completely destained in 

water and TBS (50 mM Tris-Cl, 150 mM NaCl, pH 7.5) and blocked with 5% (w/v) milk powder 

in TBS for at least 30 min at RT. The blocking solution was removed and the membranes 

incubated with primary antibodies, diluted 100-1000 fold in 5% milk in TBS, 1.5-3 h at RT or 

overnight in cold room. Membranes were washed once with TBS, once with TBS with 0.05% 

(v/v) Triton X-100 and once again with TBS for 10 min each. Membranes were then incubated 

with HRP-labeled secondary antibody, diluted 1:10,000 in 5% milk in TBS, for 1-2 h at RT. The 

washing steps were repeated and proteins visualized via chemiluminescence using X-ray films 

for signal detection. Chemiluminescent substrate of peroxidase was prepared by mixing equal 

volumes of ECL1 and ECL2 solutions. 

ECL1: 100 mM Tris-Cl, pH 8.5, 440 μg/mL luminol, 65 μg/mL p-coumaric acid. 

ECL2: 100 mM Tris-Cl, pH 8.5, 0.6% hydrogen peroxide. 

Antibodies used in this project are taken from the library of PD. Dr. Dejana Mokranjac. 

2.4.1.3 Determination of protein concentration 

Amount of proteins in samples were determined using Bradford assay (Bradford, 

1976). Five protein standards were prepared by serially diluting a 1.4 mg/ml IgG (Bio-Rad) 

stock solution to get 24 µg, 12 µg, 6 µg, 3 µg and 0 µg (as standard and also blank) of proteins 

per tube. Protein solutions of unknown concentrations were analyzed in parallel. 1 ml of 1:5 

diluted Bradford reagent (Bio-Rad) was added into each tube. The samples were incubated 
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for 10 min at RT and absorbance was measured at 595 nm. Protein concentration in the 

samples was calculated from the standard curve. 

2.4.1.4 Coomassie Brilliant Blue (CBB) staining 

Purified proteins were visualized via CBB staining. Ingredients of staining and 

destaining solution were given below. 

CBB staining solution: 0.1% (w/v) CBB R-250, 40% methanol, 10% glacial acetic acid 

CBB destaining solution: 40% methanol, 10% glacial acetic acid 

SDS-PA gel was incubated in CBB staining solution for 30 min by shaking at RT. After 

briefly rinsing with dH2O, excess CBB was removed using CBB destaining solution by shaking, 

until protein bands were clearly visible. 

2.4.2 In vitro import experiments 

2.4.2.1 Preparation of radioactive precursors 

Precursor proteins to be translated in vitro in this thesis are under the control Sp6 

promotor in pGEM vectors, which were taken from the library of PD. Dr. Dejana Mokranjac. 

a) Transcription of RNA 

20 µl of 5X transcription buffer (200 mM Tris-HCl, pH 7.5, 50 mM NaCl, 30 mM MgCl2, 

10 mM spermidine), 10 µl of 0.1 M DTT, 4 µl RNAsin (40 U/µl), 20 µl rNTPs (10 mM each), 5.2 

μl m7G(5´)ppp(5´)G, 3 µl Sp6-polymerase, 27 µl deionized water and 10 µl plasmid DNA were 

mixed in 100 µl of reaction mix. After incubation for 1 h at 37°C, 10 µl of 10 M LiCl and 300 µl 

of ethanol were added. Reaction mix was kept for 30 min at -20°C and RNA was pelleted at 

36,700 x g for 20 min. Pellet was washed with 70% (v/v) ice-cold ethanol and resuspended in 

100 µl H2O containing 1 µl RNAsin, and then stored at -80°C until use. (Modified from Melton 

et al. (1984)). 

b) In vitro translation 

A reaction mix comprised of 100 µl of lysate, 3.5 µl amino acid mix (1 mM from each 

except methionine), 20 U RNAsin, 7 µl of 15 mM Mg-acetate, 12 µl of 35S-methionine and 25 
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µl of RNA (section 2.4.2.1a) was incubated at 30°C for 1 h. 12 µl of 58 mM cold methionine 

and 24 µl of 1.5 M sucrose were added to the reaction. Cold methionine stops incorporation 

of radiolabeled methionine into polypeptide chain. Ribosomes and aggregated proteins were 

removed by centrifugation at 125,900 x g for 30 min at 4°C. Supernatant was split as single 

use aliquots and stored at -80°C. (Pelham and Jackson, 1976). 

c) TNT coupled reticulocyte lysate system 

Promega TNT coupled transcription/translation system was used as an alternative to 

above mentioned transcription and translation protocols. 

25 µl TNT rabbit reticulocyte lysate, 2 µl of TNT reaction buffer, 1 µl of TNT Sp6 RNA 

polymerase, 1 µl of amino acid mix, 2 µl of 35S-methionine, 1 µl RNAsin (40 U/µl) and 2 µl of 

plasmid DNA (~0.5 µg/µl) were mixed to have a 50 µl of reaction mix. After 1.5 h at 30°C, 

aggregated proteins and ribosomes were removed by centrifugation at 125,900 x g for 30 min 

at 4°C. Supernatant was split as single use aliquots and stored at -80°C. 

2.4.2.2 Import of radioactive precursors into isolated mitochondria 

Isolated mitochondria were resuspended at 0.5 mg/ml in SI buffer (50 mM HEPES-

KOH, 0.6 M sorbitol, 75 mM KCl, 10 mM Mg(Ac)2, 2 mM KH2PO4, 2.5 mM EDTA, 2.5 mM MnCl2, 

pH 7.2) supplemented with 2.5 mM ATP, 3.75 mM NADH, 10 mM phosphocreatine, 0.1 mg/ml 

creatine kinase and 0.5 mg/ml BSA. After a pre-incubation step at 25°C for 3 min, 35S-labeled 

precursor protein was added to the import reaction and the reaction incubated further at 

25°C. Import reaction was stopped at indicated time points by removing 90 µl of the reaction 

mix and diluting them into 810 µl of ice cold SH buffer (20 mM HEPES-KOH, 0.6 M sorbitol, 

pH 7.2) supplemented with 1 µM valinomycin. Two probes were taken out per each time 

point. One of the duplicates was treated with 35 µg/ml of proteinase K (PK) and the other 

one was kept as is. After 15 min incubation on ice, 5 µl of 0.2 M PMSF was added to stop PK. 

Mitochondria were collected by centrifugation at 18,000 x g for 10 min at 4°C and dissolved 

in Laemmli with β-mercaptoethanol. The samples were cooked for 5 min at 95°C and analyzed 

by SDS-PAGE and autoradiography. 
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2.4.3 ΔΨ measurements 

Membrane potential in isolated mitochondria was measured with the potentiometric, 

fluorescent dye, DiSC3(5) (3,3'-dipropylthiadicarbocyanine iodide). Fluorescence of the 

samples was measured using excitation and emission wavelengths of 622 nm and 670 nm, 

respectively. For the fluorescence measurements, Fluorolog-3 (Horiba Scientific, Jobin Yvon 

Technologies) was used. 

2.4.3.1 Measurement of mitochondrial ΔΨ 

1.5 ml of SI buffer (50 mM HEPES-KOH, 0.6 M sorbitol, 75 mM KCl, 10 mM Mg(Ac)2, 2 

mM KH2PO4, 2.5 mM EDTA, 2.5 mM MnCl2, pH 7.2) was mixed with 15 µl of 0.2 M NADH and 

3 µl of 250 µM DiSC3(5) and the fluorescent signal measured in real time. After 1 minute, 20 

µg of isolated mitochondria were added to the reaction and the measurement continued. 

Finally, after 8 minutes, 3 µl of 1 mM valinomycin were added to the reaction. Mitochondria 

take up the dye in a ΔΨ-dependent manner and this can be observed as a decrease in 

fluorescence. Valinomycin dissipates the ΔΨ, resulting an increase in the fluorescence. 

2.4.3.2 Measurement of ΔΨ in liposomes 

See section 2.4.8 for preparation of liposomes. 1.5 ml of Na+-import buffer (20 mM 

HEPES-NaOH, 100 mM NaCl, pH 7.5) was mixed with 3 µl of 250 µM DiSC3(5) and the 

fluorescent signal measured in real time. After 1 minute, 2.5 µl of liposome suspension was 

added and, 2 minutes later, 3 µl of 5 µM Valinomycin (10 nM final) was added to generate 

ΔΨ. By the addition of 50 µl of 1 M KCl, the ΔΨ was dissipated. Prior to addition of KCl, 50 µl 

of 1 M NaCl was used, as a control, to show that addition of Na+ do not affect the generated 

ΔΨ. 

2.4.4 Co-immunoprecipitation assay 

Co-immunoprecipitation assay was used to analyze protein complexes in solubilized 

mitochondria. For this, Protein A Sepharose CL-4B (PAS) beads were first washed with water 

and equilibrated with TBS (50 mM Tris-HCl, 150 mM NaCl, pH 7.5). Then, affinity purified 

antibodies to a protein of interest were added to the beads and incubated on an overhead 

shaker for 1 h or longer. Antibodies present in a preimmune serum were used as a negative 
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control. Unbound antibodies were removed with two washing steps with TBS and the beads 

equilibrated in 20 mM Tris-HCl, 80 mM KCl, 10% (v/v) glycerol, pH 8.0, containing 0.05% (w/v) 

digitonin. 

Isolated mitochondria, stored in SH buffer (20 mM HEPES-KOH, 0.6 M sorbitol, pH 

7.2), were diluted with 500 µl SH buffer and reisolated by centrifugation at 18,000 x g for 10 

min at 4°C. After removal of the supernatant, mitochondria were solubilized, at 1 mg/ml, in 

20 mM Tris-HCl, 80 mM KCl, 10% (v/v) glycerol, pH 8.0, containing 1% (w/v) digitonin and 2 

mM PMSF for 15 min in cold room. Non-solubilized material was removed by centrifugation 

at 124,500 x g for 20 min at 4°C. Solubilized mitochondria (200 µl) were added to the 

antibodies prebound to the PAS beads and incubated for 30 min at 4°C for binding. Then, the 

beads were washed three times 5 min at 4°C with 200 µl 20 mM Tris-HCl, 80 mM KCl, 10% 

(v/v) glycerol, pH 8.0, pH 8.0, containing 0.05% (w/v) digitonin. Finally, bound proteins were 

eluted with 60 µl of 2X Laemmli buffer by cooking at 95°C for 3 min, samples split into 2 equal 

aliquots and loaded on two SDS-PA gels. 

2.4.5 Chemical crosslinking 

DSG (disuccinimidyl glutarate) crosslinking was used to analyze the molecular 

environment of Tim23 in intact mitochondria. DSG is a homobifunctional, amine-reactive 

crosslinker with 7.7 Å spacer arm. Isolated mitochondria (0.5 mg/ml) in SI buffer (50 mM 

HEPES-KOH, 0.6 M Sorbitol, 75 mM KCl, 10 mM Mg(Ac)2, 2 mM KH2PO4, 2.5 mM EDTA, 2.5 

mM MnCl2, pH 7.2) supplemented with 2.5 mM ATP, 3.75 mM NADH, 10 mM 

phosphocreatine and 0.1 mg/ml creatine kinase, were pre-incubated at 25°C for 3 min and 

then put on ice. To one sample, DSG was added, to a final concentration of 200 µM, from a 

freshly made 100x stock in DMSO and, to the other, DMSO was added as a negative control. 

Reactions were kept on ice for 30 min. Excess of crosslinker was quenched by the addition 

glycine (pH 8.8) to a final concentration of 100 mM and a further 10 min incubation on ice. 

After addition of 500 µl of SH buffer, the samples were centrifuged at 18,000 x g for 10 min 

and mitochondria were dissolved in Laemmli containing β-mercaptoethanol, cooked for 5 

min and the samples analyzed by SDS-PAGE and Western Blotting. 
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2.4.6 Blue Native PAGE (BN-PAGE) 

Mitochondria were solubilized at 2mg/ml in 20 mM Tris-HCl, 80 mM KCl, 10% (v/v) 

glycerol, pH 8.0, containing 1% (w/v) digitonin and 2 mM PMSF by rotating on an overhead 

shaker for 15 min at 4°C. Insoluble material was removed by centrifugation at 124,500 x g for 

20 min at 4°C. Supernatant (40 µl) was mixed with 2 µl of NativePAGE 5% G-250 Sample 

Additive (Life Technologies). Then 10 µl of sample per lane was loaded on 4–16% Native PAGE 

Bis-Tris Gel (Life Technologies) which was assembled in gel running chamber. In the 

beginning, gels were run at 150 V for 30 min at 4°C with 1X NativePAGE dark blue cathode 

buffer and 1X NativePAGE anode buffer. Voltage was increased to 250 V and run until dye 

reaches ca. 1/3 of the gel. Then, cathode buffer was changed with 1X NativePAGE light blue 

cathode buffer and gel was run until the dye reaches to the bottom of the gel. The proteins 

were transferred to a PVDF membrane at 130 mA, 7 V for 1 h. Finally, the proteins were 

visualized by Western blotting (section 2.4.1.2). 

For 1X NativePAGE anode buffer, 30 ml of 20X Native PAGE Anode Buffer (Life 

Technologies) was diluted to 600 ml with deionized water. 

For 1X NativePAGE dark blue cathode buffer, 10 ml of 20X Native PAGE Anode Buffer 

and 10 ml of 20X NativePAGE Cathode Additive (Life Technologies) were diluted to 200 ml 

with deionized water. 

For 1X NativePAGE light blue cathode buffer, 10 ml of 20X Native PAGE Anode Buffer 

and 1 ml of 20X NativePAGE Cathode Additive were diluted to 200 ml with deionized water. 

2.4.7 Purification of recombinant Tim17-Tim23 complex 

2.4.7.1 Co-expression of Tim17 and Tim23 

E. coli C43(DE3) cells were transformed with pET-Duet1 vector construct carrying 

Tim23his9 and Tim17strep (section 2.1.5). Transformed cells were diluted in 120 ml of LB-Amp 

medium and grown overnight at 37°C, 160rpm. Next day, the overnight culture was diluted 

in 6 L of LB-Amp prewarmed at 30°C. The culture was grown until OD600 reached ~0.6-0.7 and 

expression of proteins were induced by addition of 0.5 mM IPTG for 3 more hours at 30°C, 
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shaking at 160 rpm. Finally, cells were harvested at 4500 x g for 10 min at 4°C and cell pellet 

was stored at -20°C until use. 

2.4.7.2 Isolation of E.coli membranes 

Cell pellets were resuspended in 150 ml of 50 mM Tris-HCl, 250 mM NaCl, 20 mM 

imidazole, 4 mM β-mercaptoethanol, 1 mM PMSF, pH 8.0. Cells were broken mechanically 

using high-pressure homogenizer at max pressure (18,000 psi) with three passes on ice. A 

clarification centrifuge was applied at 27,200 x g for 20 min at 4°C. Then, cell membranes 

were harvested at 186,000 x g for 2 h at 4°C and homogenized in 20 ml of cell resuspension 

buffer using Dounce-homogenizer. Protein concentration of homogenized membranes was 

measured using Bradford assay (section 2.4.1.3) and the membranes were flash frozen using 

liquid-N2 and stored at -80°C. 

2.4.7.3 Purification of recombinant membrane Tim17-Tim23 complex from isolated 

membranes 

Isolated membranes were solubilized in 50 mM Tris-HCl, 250 mM NaCl, 20 mM 

imidazole, 1 mM PMSF, 0.75% (w/v) Fos-choline 12 (FC12), pH 8.0 at 15 mg/ml final protein 

concentration in cold room by stirring for 1.5 h. Insoluble material was removed by 

centrifugation at 257,000 x g for 40 min at 4°C. Supernatant was loaded on NiNTA agarose 

column equilibrated with 50 mM Tris-HCl, 250 mM NaCl, 20 mM imidazole, 0.05% (w/v) FC12, 

pH 8.0. Then, NiNTA column was washed with at least 10 column volume (CV) of same buffer 

and histidine tagged proteins were eluted with 50 mM Tris-HCl, 250 mM NaCl, 300 mM 

imidazole, 0.05% (w/v) FC12, pH 8.0 as 1 ml fractions. Protein content of the fractions were 

quickly checked by dropping 2 µl from each on a nitrocellulose membrane and staining with 

Ponceau S (see section 2.4.1.2 for recipe). The most intense fractions were combined and 

loaded on Strep-tactin column equilibrated with 20 mM HEPES-KOH, 100 mM KCl, 0.05% 

(w/v) FC12, pH 8.0. Streptactin column was washed again with 10 CV of the same buffer and 

strep-tagged proteins were eluted with the same buffer containing 2.5 mM desthiobiotin. 

Protein concentration of the fractions were measured using Bradford assay (section 2.4.1.3) 

and purified proteins were flash frozen and stored at -80°C until use. 
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All of the purification steps mentioned above were performed at 4°C. 

2.4.8 Reconstitution of recombinant Tim17-Tim23 in proteoliposomes 

E. coli polar lipid extract (Avanti) and cardiolipin (1,1’2,2’-Tetraoleoyl Cardiolipin from 

Avanti), both in chloroform, were mixed in a glass tube to obtain a mixture containing 10% 

(mol/mol) final cardiolipin. Lipid mix was dried slowly by rotating under a stream of N2. Dried 

lipids were resuspended in liposome storage buffer (20 mM HEPES-KOH, 50 mM KCl, 2 mM 

DTT, pH 8.0) at 20 mg/ml and the suspension was homogenized by using a bath sonicator for 

10 min at max frequency. Four times freeze-thaw cycles were applied using liquid N2 and 

room temperature. Following an incubation at 65°C for 1h, resulting suspension was passed 

11 times through a mini extruder with 400 nm pore sized membrane. Suspension was diluted 

to 4 mg/ml using buffer R (20 mM HEPES-KOH, 100 mM KCl, 1 mM DTT, pH 8.0). 400 µl of 

liposome suspension was mixed with 400 µl purified complex (75 µg of protein) (section 

2.4.7.3) and incubated by shaking head-over-head for 30 min in cold room. 400 µl of buffer R 

was added to the mixture and the detergent was removed gradually by incubating with Bio-

beads SM-2 (Bio-Rad), pre-equilibrated in buffer R. Bio-Beads SM2 (50 mg) were added to the 

samples and incubated with shaking on an overhead shaker 2 h at 4°C. This step was repeated 

once again and finally 100 mg of Bio-Beads SM2 were added for an overnight incubation in 

cold room. After each step, used Bio-Beads were rinsed with 100 µl of buffer R and the rinsed 

volume was added to liposome suspension. Next morning, the proteoliposomes were 

collected at 200,000 x g for 30 min at 4°C, resuspended in 1ml buffer R for washing and the 

centrifugation repeated. Pellet was resuspended in 200 µl of buffer R containing 1.4 M 

sucrose, overlayed with 500 µl of buffer R containing 1 M sucrose and subsequently overlayed 

with 200 µl of buffer R to form a gradient. Proteoliposomes were floated at 225,000 x g for 

45 min at 4°C. Floated liposomes were collected carefully and diluted 5 times with buffer R. 

Following centrifugation at 200,000 x g for 30 min at 4°C, pellet was resuspended in 1 ml of 

Na+-import buffer (20 mM HEPES-NaOH, 100 mM NaCl, 1 mM DTT, pH 7.5) and centrifugation 

was repeated. Finally, proteoliposomes were resuspended in 250 µl of Na+-import buffer and 

used immediately or kept 1-2 days at 4°C for further experiments. 
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Control liposomes were made in parallel, using Streptactin elution buffer, instead of 

purified proteins.  

2.4.8.1 Na2CO3 extraction 

50 µl of ice-cold Na2CO3 (0.1 M, pH 11.5) was added onto 50 µl of purified protein (2 

µg in Streptactin elution buffer, section 2.4.7.3) and proteoliposome suspension (2 µg protein 

in Na+-import buffer, section 2.4.8). After incubation for 20 min on ice, samples were pellet 

by ultracentrifugation at 166,500 x g for 1 h. Supernatants were mixed with 20 µl of 72% 

trichloroacetic acid (TCA). Samples were mixed thoroughly and then incubated at -20°C for 

20 min. Precipitated proteins were collected by centrifugation at 36,700 x g for 20 min at 4°C. 

The pellet was washed with 200 µl of ice-cold acetone and the centrifugation step repeated 

for 10 min. Precipitated proteins from the supernatant fractions and pellets from 

ultracentrifugation were resuspended in Laemmli buffer with β-mercaptoethanol and 

analyzed by SDS-PAGE (section 2.4.1.1) and Western blotting (section 2.4.1.2). 

2.4.8.2 Precursor binding to proteoliposomes 

10 µl of liposome suspension and 2 µl of radioactive lysate were mixed in 200 µl of 

Na+-import buffer containing 2 mM ATP and incubated together for 10 min at 25°C. 90 µl of 

the sample was kept as total and the other 90 µl aliquot was centrifuged at 50,000 x g for 20 

min at 4°C to separate bound from unbound fractions. 20 µl of 72% (w/v) TCA were added to 

total and the supernatant (unbound fraction) samples. After 20 min incubation at -20°C, 

samples were centrifuged (36,700 x g, 20 min at 4°C), pellets were washed with 200 µl ice-

cold acetone and the centrifugation step repeated for 10 min. Following removal of acetone, 

pellets were resuspended in Laemmli buffer with β-mercaptoethanol. For the bound fraction, 

the pellet from the first centrifugation step was resuspended in 500 µl Na+-import buffer 

containing 1.4 M and transferred to a SW60 rotor tube. The sample was overlayed with 1 ml 

of Na+-import buffer containing 1 M sucrose and then with 500 µl Na+-import buffer without 

sucrose. Liposomes were floated by ultracentrifugation at 200,000 x g for 1 h at 4°C. Area 

between Na+-import buffer and Na+-import buffer containing 1 M sucrose was collected and 

diluted 5X with Na+-import buffer. Ultracentrifugation step was repeated and the pellets 
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were resuspended in Laemmli buffer with β-mercaptoethanol. Finally, all samples were 

cooked for 5 min at 95°C and analyzed by SDS-PAGE and autoradiography. 
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3. RESULTS 

Tim17 and Tim23 are two homologous proteins that form the core of the TIM23 

complex onto which all other subunits of the complex assemble (Dekker et al., 1997; Kozany 

et al., 2004). Both Tim17 and Tim23 are anchored to the inner mitochondrial membrane with 

4 predicted transmembrane segments (Figure 3.1). In addition, Tim23 has a ca. 100 amino 

acid residues long segment that is exposed to the IMS. In the first part of my thesis, I dissected 

Tim23 in vivo.  

3.1 In vivo dissection of Tim23 

3.1.1 Evolutionary conservation of Tim23 

Sequence conservation analysis of 795 Tim23 sequences identified in the work of 

Zarsky and Dolezal (2016) showed that the C-terminal region of Tim23, which contains the 

predicted TMs, is well conserved over the entire region (Figure 3.2). On the other hand, the 

N-terminal, IMS-exposed region of Tim23 shows a relatively poor sequence conservation 

especially over the first 50 residues. 

The ca. 100 amino acid residues long IMS domain of Tim23 is predicted to be 

intrinsically disordered and the purified domain indeed shows little, if any, structural features 

(de la Cruz et al., 2010; Gevorkyan-Airapetov et al., 2009). Still, this domain was shown to be 

Figure 3.1 Schematic representation of Tim23 and Tim17. Predicted TM segments of Tim23 (blue) and Tim17 (green) 

are indicated with the residue numbers in the IMS and the matrix side of the IM (grey). 
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involved in many interactions (Bajaj et al., 2014a; Bajaj et al., 2014b; Bauer et al., 1996; de la 

Cruz et al., 2010; Gevorkyan-Airapetov et al., 2009; Lytovchenko et al., 2013; Marom et al., 

2011; Tamura et al., 2009). These interactions, summarized in Figure 3.3, were mostly 

demonstrated in in vitro studies using purified protein domains and the significance of many 

of the identified interaction sites was never analyzed in vivo. In this part of my thesis, a 

systematic, in vivo mutational analysis was carried out to understand the function of the IMS 

domain of Tim23. 

3.1.2 Deletion of the first 70 residues of Tim23 can be tolerated by yeast cells 

To understand the importance of the IMS domain of Tim23, truncated versions from 

the N-terminus were generated in a centromeric plasmid with the endogenous TIM23 

promoter and 3’UTR (section 2.1.8.1) and their ability to support the function of the full 

length protein was analyzed by plasmid shuffling (section 2.2.3). Tim23 shuffling strain is a 

haploid yeast strain in which the chromosomal copy of the TIM23 gene is replaced with a KAN 

cassette. Since deletion of TIM23 is lethal, a URA3 plasmid containing wild-type (WT) Tim23 

is introduced to make the strain viable. Upon transformation of the shuffling strain with 

Figure 3.2 Sequence conservation of yeast Tim23. Multiple sequence alignment of Tim23 was converted to logo chart 

via WebLogo creation tool at weblogo.berkeley.edu/logo.cgi. Size of the letters depicts the conservation of the individual 

residues. X-axis shows the sequence of Saccharomyces cerevisiae Tim23. Predicted TM segments are indicated with grey 

bars. Y-axis shows the conservation (Max value: log220=4.3 for 20 possible amino acids). 

Figure 3.3 Schematic representation of Tim23IMS with its proposed interaction regions. Previously proposed 

interaction regions are indicated as straight horizontal double-sided arrows. Interaction partners are indicated on the 

right. See text for details. 
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plasmids encoding truncated versions of Tim23, 5-FOA selection is used to eliminate cells with 

the URA3 plasmid, and thereby the WT TIM23 encoded on it. In this way, only cells with a 

functional copy of Tim23 present on the transformed plasmid remain alive. 

The cells expressing the wild-type (WT) Tim23 were viable on plates containing 5-FOA, 

whereas cells transformed with an empty plasmid were not (Figure 3.4). N-terminal 

truncations encompassing up to 70 residues were able to support the function of the FL 

Tim23, but further deletions (Δ80 and Δ90) were not. This result demonstrates that a large 

portion of the IMS-exposed segment of Tim23 is dispensable for cell viability. 

To test whether the deletions of up to 50 residues support the function of Tim23 fully 

or only partially, serial dilution spot assay (section 2.3.3.1) was performed on fermentable 

Figure 3.5 Growth phenotype of N-terminal truncations of Tim23. WT and the mutants with N-terminally truncated 

versions of Tim23 were grown to same OD in YPD and 10-fold serially diluted cells were dropped onto YPD and YPLac 

plates. The plates were incubated at indicated temperatures for 2-5 days. 

Figure 3.4 Rescue of the function of Tim23 by N-terminally truncated versions of Tim23. Tim23 shuffling strain was 

transformed with the plasmids encoding indicated truncated versions of Tim23 and the viability of the cells was analyzed 

on 5-FOA selection plates. FL construct (WT) and the empty vector were used as positive and negative controls, 

respectively. 
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(YPD) and non-fermentable (YPLac) media at three different temperatures (24, 30 and 37°C) 

(Figure 3.5). None of the mutants showed any obvious growth defect on YPD medium at any 

of the tested temperatures. This is in agreement with the fact that, on glucose-containing 

medium, yeast cells can use glycolysis for ATP production and therefore do not rely heavily 

on mitochondria for this purpose. YPLac medium, on the other hand, does not contain a 

fermentable carbon source and yeast cells require mitochondria to produce ATP they need 

by oxidative phosphorylation. On a non-fermentable medium, Δ10 and Δ20 grew like WT and 

the growth of Δ24 was only marginally defective at 37°C. Interestingly, Δ30 showed a 

relatively strong temperature sensitive growth defect, compared to other truncations. This 

result is particularly interesting since longer truncations (Δ40 and Δ50), covering the deletion 

of the first 30 residues, showed a milder phenotype compared to Δ30. 

3.1.3 Deletion of the first 30 residues of Tim23 reduces levels of Tim23 protein 

To understand the molecular basis of the impaired growth, expression levels of Tim23 

were analyzed with antibodies against the C-terminal peptide of Tim23 after SDS-PAGE 

analysis of mitochondria isolated from the truncation mutants (Figure 3.6). Tim23 levels were 

severely reduced in Δ30 compared to WT and to the other N-terminal truncation mutants. In 

addition, a slight decrease in Δ50 was observed but this decrease apparently did not cause as 

strong growth defect as seen with Δ30 (Figure 3.5). 

If the growth phenotype was caused by the reduced levels of the protein, then the 

overexpression of the protein should rescue the growth defect, at least to a certain degree. 

Figure 3.6 Expression of N-terminal truncations of Tim23 in isolated mitochondria. Mitochondria isolated from WT and 

the mutant strains were analyzed by SDS-PAGE and immunostaining. Antibodies against the C-terminal peptide of Tim23 

were used to detect WT and the N-terminally truncated proteins; from left to right WT, Δ10, Δ20, Δ24, Δ30, Δ40 and 

Δ50. Tom40 was used as control. 
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To test this hypothesis, tim23Δ30 was cloned into a yeast expression plasmid with a GPD 

promoter and the growth of the yeast strains expressing tim23Δ30 under different promoters 

was analyzed by the serial dilution spot assay (section 2.3.3.1). The overexpression strain 

(Δ30↑) grew better than the strain expressing tim23Δ30 under the endogenous promoter 

(Δ30) (Figure 3.7a). The level of Tim23Δ30 expression under GPD promoter was higher than 

of the WT (Figure 3.7b) and an additional band of around 18 kDa (indicated as *), which likely 

corresponds to a degradation product, was observed. This result suggests that the impaired 

growth of tim23Δ30 is likely caused by the reduced levels of truncated Tim23. 

3.1.4 Removal of the first 10 residues from Tim23 does not impair binding of 

Tim50 and Tim21 to the TIM23 complex 

I observed no effect on growth when the first 10 residues of Tim23 were deleted, 

however, this segment was previously implicated in binding of Tim50 and Tim21 when 

binding between recombinant proteins was analyzed in vitro (Figure 3.3) (Bajaj et al., 2014a). 

To analyze whether the first 10 residues of Tim23 play a role in either Tim50 or Tim21 binding 

also in organello, a co-immunoprecipitation experiment (section 2.4.4) from digitonin-

solubilized mitochondria was performed. Since the antibody against the C-terminal part of 

Tim23 does not work in immunoprecipitation (data not shown) and the N-terminal antibody 

does not recognize the mutants with N-terminal truncations, antibodies against Tim17 were 

used instead for immunoprecipitation. As seen in Figure 3.8, antibodies against Tim17 

depleted both Tim17 and Tim23 from the supernatants and both proteins were found in the 

immunoprecipitated fractions (Pel.) when WT mitochondria were analyzed. Fractions of 

Figure 3.7 Overexpression of Tim23Δ30 largely rescues the growth defect. a) The growth of Δ30 strains expressing 

Tim23Δ30 under endogenous and GPD promoter was compared in serial dilution spot assay. b) Protein levels of 

Tim23Δ30 were detected by immunostaining with antibodies against the C-terminal part of Tim23. Tom40 was used as 

a loading control. *-degradation product of Tim23Δ30. 
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Tim21 and of Tim50 were also co-immunoprecipitated. In Δ10 mitochondria, no alteration in 

the levels of co-immunoprecipitated Tim50 or Tim21 was observed compared to WT. 

Similarly, the amounts of Tim17 and Tim23 co-immunoprecipitated with antibodies against 

Tim50 were also essentially the same in WT and Δ10 mitochondria. These results suggest that 

the first 10 residues of Tim23 may contribute to but are not essential for either Tim21 or 

Tim50 binding. 

3.1.5 Protein import into mitochondria from Δ10 is slightly reduced 

In order to see directly whether deletion of the first 10 residues of Tim23 affects 

import of proteins via the TIM23 pathway, the ability of mitochondria isolated from WT and 

Δ10 cells to import in vitro translated and 35S-labeled precursors was analyzed. Figure 3.9 

shows that mitochondria isolated from Δ10 cells imported both matrix-targeted, Su9(1-

69)DHFR and Jac1, and laterally sorted, DLD, precursors slightly less efficiently. Import of 

Tim23, which uses the TIM22 complex for its import, was not affected, suggesting a TIM23 

complex-specific import defect in Δ10. However, the observed import defect was apparently 

not rate limiting for cell growth under any of the conditions tested (Figure 3.5).  

Figure 3.8 Immunoprecipitation of Tim21 and Tim50 with Tim23Δ10. Isolated mitochondria from WT and Δ10 cells 

were solubilized with digitonin containing buffer and subjected to immunoprecipitation using antibodies against Tim17 

and Tim50. Samples were analyzed by SDS-PAGE and immunostaining. PI: Pre-immune serum, Sup.: Supernatant, Pel.: 

Pellet. Totals and Supernatants- 20% and Pellets- 100%. 
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3.1.6 Alanine scanning mutagenesis of the region between amino acid 

residues 51 and 100 of Tim23 identifies three distinct functionally 

important regions 

Since the second half of the IMS-exposed region of Tim23 shows a higher degree of 

sequence conservation (see Figure 3.2, residues 51-100), a more conservative approach was 

used for its analysis. The plasmid encoding WT Tim23 under the control of its endogenous 

promoter and 3’UTR was mutated so that patches of 2 to 7 amino acid residues at the time 

were changed to alanines (section 2.1.8.2). Thirteen different mutants, with or without 

overlapping residues, were generated. Overlapping mutations were designed to obtain a 

better resolution when assigning the effects to individual residues towards the end of the 

domain in the screening procedure. All of the mutants created were viable after 5-FOA 

selection (data not shown), demonstrating that they are able to support the function of 

Tim23. When analyzed by serial dilution spot assay (Figure 3.10), only one of the mutants, 

V68A5 (indicated with red star), showed a very severe growth defect in all tested conditions, 

pointing towards an essential role of this region. The analysis of the C-terminal region of the 

Figure 3.9 In vitro protein import into Δ10 mitochondria. Isolated mitochondria were incubated with in vitro translated, 

radioactively labeled precursor proteins in an import buffer. Import reactions were stopped at indicated time points and 

half of the samples were treated with proteinase K (PK) to degrade non-imported precursors. After re-isolation of 

mitochondria, mitochondrial lysates were analyzed by SDS-PAGE and autoradiography. p- precursor and m- mature 

forms of precursor proteins. Tim23*- clipped version of Tim23 generated in intact mitochondria by externally added PK 

(Donzeau et al., 2000). Lower panels represent quantifications of the import reactions. The amount of PK-protected 

mature form in the longest time point of import into WT mitochondria was set to 100%. For quantification of Tim23 

import, total amount of Tim23 and Tim23* was used. 
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domain identified several overlapping mutants with impaired growth that mapped to two 

distinct regions, separated by residues 92-94. Two mutants from this region, L87A5 and 

D95A2 (indicated with blue stars) were chosen for further analysis due to their strongest 

growth defects.  

3.1.7 The region around amino acid residue 40 of Tim23 is in close proximity 

to Tom22 

The first 50 residues of Tim23 also contain a site where Tim23 can be crosslinked to 

Tom22. Namely, using site-specific photocrosslinking, Endo group previously showed that 

position 41 of Tim23 is in close vicinity to Tom22 (Tamura et al., 2009). This approach is based 

on introduction of a non-natural amino acid, Bpa (p-benzoyl-l-phenylalanine) which crosslinks 

to the nearby molecules upon illumination with UV light (Chen et al., 2007). In order to 

introduce Bpa residue into specific positions of a C-terminally Histidine tagged-Tim23, the 

endogenous codons at the chosen positions were individually mutated to amber stop codons, 

TAG. The amber stop codon can be suppressed in vivo by co-transforming yeast cells with an 

engineered plasmid encoding an orthogonal tRNA/aminoacyl-tRNA synthetase pair specific 

for Bpa. When these cells are grown in the presence of Bpa, Bpa will be incorporated in Tim23 

at the position defined by the amber stop codon. 

Figure 3.10 Alanine scanning mutagenesis of the region 51 to 100 of Tim23. Growth of WT and indicated mutant cells 

were analyzed by serial dilution spot assay on YPD and YPLac plates at indicated temperatures. Nomenclature: The first 

number and letter define the first mutated residue in the patch, the second number defines the number of residues 

mutated from the first residue and the letter in between specifies what they were mutated to (e.g. V68A5: 5 residues 

from V68 to D72 were mutated to Alanine). 
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To understand the interaction between Tim23 and Tom22 in more detail and to map 

it more precisely, Bpa was introduced at eleven different positions within the first 40 residues 

of Tim23 (Trp3, Lys8, Thr11, Asn15, Val18, Gln21, Lys25, Leu29, Gln33, Phe37 and Asn40). 

Upon exposure of cells to UV light, total cell extracts (section 2.3.3.3) were prepared and 

analyzed by SDS-PAGE and immunoblotting. Antibodies against Tom22 showed an additional, 

UV-specific band at around 50 kDa for positions 37 and 40 (Figure 3.11). These residues are 

in the immediate neighborhood of residue Ile41 identified by Tamura et al. (2009). Thus, a 

more central region of the IMS-exposed domain of Tim23, rather than its more N-terminal 

part, is in contact with Tom22.  

Tom22-Tim23 interaction was also previously analyzed using recombinant proteins 

(Bajaj et al., 2014a). This study suggested that the region between residues 58 and 62 of 

Tim23 was involved in the interaction with Tom22. To analyze the importance of this segment 

for Tim23-Tom22 interaction in vivo, Bpa was introduced into L58A5 in which the segment 

between residues 58 and 62 is mutated to alanines. Figure 3.12 shows that the Tim23-Tom22 

photocrosslinks were not dramatically reduced in L58A5 mutant, neither when Bpa was in 

position F37Bpa nor in N40Bpa (see F37Bpa/L58A5, +UV lane at Figure 3.12a and 

N40Bpa/L58A5, +UV lane at Figure 3.12b). These results suggest that amino acid residues 58 

to 61 may not be essential for Tim23 interaction with Tom22. 

Figure 3.11 Site specific photo-crosslinking of IMS exposed segment of Tim23 with Tom22. Yeast cells expressing C-

terminally His-tagged Tim23 and carrying an amber stop codon for Bpa incorporation at the indicated positions were 

grown in the presence of 1mM Bpa. Cells were harvested and one half was illumunated with UV while the other half 

was kept in dark. Total cell extracts were made and samples were analyzed by SDS-PAGE and immunostaining with 

αTom22. Non-specific bands are indicated with *. 
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The same approach was used to analyze a potential effect of Tim23-Tim50 interaction 

on Tim23-Tom22 interaction by combining F37Bpa and N40Bpa with a mutant in which 

residues Tyr70 and Leu71 were mutated to alanines (Y70A2) (Figure 3.12a and b, last lanes). 

This mutation abolishes the interaction between Tim23 and Tim50 (Gevorkyan-Airapetov et 

al., 2009). Also in this case, no major effect of the mutation was observed, suggesting that 

Tim23 interactions with Tom22 and Tim50 may be independent of each other. 

3.1.8 Tim50 binding region on Tim23 is larger than described previously 

V68A5 mutant contains two conserved residues, Tyr70 and Leu71, which were 

previously found to be important for the interaction of Tim23 with the main receptor Tim50 

(Gevorkyan-Airapetov et al., 2009; Tamura et al., 2009). Still, while mutation of these two 

residues cause a temperature sensitive growth defect at 37°C on a non-fermentable medium, 

V68A5 mutant made here showed a much stronger growth defect, implying the importance 

of the other residues in Tim50 binding, or possibly, an additional role for them. 

The alignment in Figure 3.2 shows that the adjacent residue, Glu69, is as conserved as 

Tyr70 and Leu71. Therefore, a detailed mutational analysis for this region was carried out 

using single, double or triple mutants (Figure 3.13). None of the single mutants, including 

Figure 3.12 Tim23-Tom22 crosslinks in L58A5 and Y70A2 backgrounds. Yeast cells expressing C-terminally His-tagged 

Tim23 with an amber stop codon at a) Phe37 and b) Asn40 for Bpa incorporation and additional mutations indicated, 

were grown in the presence of 1mM Bpa. Cells were harvested and one half was illumunated with UV while the other 

half was kept in dark. Following cell lysis, NiNTA pull down was carried out to enrich His-tagged products. Total (7%) 

and the NiNTA-bound (100%) fractions were analyzed by SDS-PAGE followed by immunostaining with αTom22. *- 

Tim23-Tom22 crosslinks. **- non-specific bands. 
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E69A, showed any obvious growth phenotype, in agreement with what was previously shown 

for Y70A and L71A mutants (Gevorkyan-Airapetov et al., 2009). The double mutant E69A2 

also grew like WT while Y70A2 and E69A/L71A showed temperature sensitive growth (Figure 

3.13a). The effect in the latter was slightly less pronounced. Combination of all three 

mutations in the E69A3 mutant affected the cell growth even more but not as much as in 

V68A5. This shows that all five residues contribute to the observed phenotype. Mutating 

Val68 and Asp72, individually or together, did not lead to any growth phenotype (Figure 

3.13b). Thus, the effects of the individual mutations on cell growth can be ordered as 

Leu71>Tyr70>Glu69>Val68 and Asp72.  

In order to determine whether Glu69 also plays a role in Tim50 binding, isolated 

mitochondria were analyzed by co-immunoprecipitation (Figure 3.14). As shown previously, 

Tim50 binding to Tim23 in the Y70A2 double mutant was completely abolished (Gevorkyan-

Airapetov et al., 2009). I observed the same in L71A mitochondria. Yet in E69A, the Tim23-

Figure 3.13 Detailed analysis of residues 68 to 72 of Tim23. Contributions of a) the conserved amino acid residues 69 

to 71 and b) neighbouring residues Val68 and Asp72 to the growth phenotype of V68A5 were analyzed as single, double 

or triple mutations by serial dilution spot assay on YPD and YPLac plates at indicated temperatures. See Figure 3.10 for 

the nomenclature. 
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Tim50 interaction was reduced, but not completely abolished. These results suggest that the 

interaction site on Tim23 for Tim50 is larger than previously reported. The interaction 

appears to mainly rely on hydrophobic interactions and residue Leu71 in particular. 

3.1.9 TIM23-mediated protein import is impaired in the tim23L87A5 mutant 

The next mutant identified in the alanine scanning mutagenesis approach and 

analyzed here is the L87A5 mutant. To understand the molecular basis of the observed 

growth defect, mitochondria were isolated from the mutant cells, and WT as a control, and 

protein levels of a number of mitochondrial proteins were analyzed by immunodecoration. 

The levels of all tested proteins from different subcompartments of mitochondria were 

comparable between the mutant and WT (Figure 3.15). The only observed difference was the 

Figure 3.14 The effect of E69A and L71A mutations on Tim23-Tim50 interaction. Isolated mitochondria from WT and 

E69A, L71A and Y70A2 mutants were solubilized with digitonin-containing buffer and antibodies against Tim23 and 

Tim50 were used for immunoprecipitation of the TIM23 complex. Samples were analyzed by SDS-PAGE and 

immunostaining. Totals are 20% of the immunoprecipitated fractions. PI: Pre-immune serum.  

Figure 3.15 Comparison of protein profiles of isolated mitochondria from WT and L87A5 cells. Increasing amounts of 

mitochondria were analyzed by SDS-PAGE and immunostaining with antibodies against subunits of the TIM23 complex 

and various other proteins from different compartments of mitochondria. 
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altered migration of mutant Tim23. This demonstrates that the changed protein levels or 

altered protein stability are not the reason behind the impaired growth. 

To test whether reduced import via the TIM23 pathway is responsible for the growth 

impairment, the ability of isolated mitochondria to import matrix targeted precursors, b2(1-

167)ΔDHFR, Su9(1-69)DHFR, Jac1, F1β and Tim44, and laterally sorted precursor, b2(1-

167)DHFR, was analyzed (Figure 3.16). In addition, a carrier protein of the IM, AAC, which is 

imported via the TIM22 complex, was used as a control. All tested clients of the TIM23 

complex, matrix targeted ones in particular, were imported poorly into mitochondria isolated 

from L87A5 mutant cells. On the other hand, import of AAC was as efficient as in WT 

Figure 3.16 In vitro protein import into mitochondria isolated from L87A5 mutant cells. Isolated mitochondria were 

incubated with in vitro translated, radioactively labeled precursor proteins in an import buffer. Import reactions were 

stopped at indicated time points and, where indicated, samples were treated with proteinase K (PK) to digest non-

imported precursors. Following re-isolation of mitochondria, samples were analyzed by SDS-PAGE and autoradiography. 

p- precursor, i- intermediate and m- mature forms of precursor proteins. Graphs show quantifications of the import 

reactions. Amount of PK-protected mature form at the longest time point of import into WT mitochondria was set to 

100%. 
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mitochondria. These results show that there is no general problem with mutant mitochondria 

but rather that the TIM23-mediated import is affected, revealing the reason behind the 

growth defect.  

To further exclude general effects of the mutation on mitochondria, the ability of the 

mutant mitochondria to generate ΔΨ was tested by using a potentiometric, fluorescent dye, 

DiSC3(5) (3,3'-dipropylthiadicarbocyanine iodide) (section 2.4.3.1). Figure 3.17 shows that 

mitochondria isolated from L87A5 cells can generate ΔΨ as efficiently as the ones isolated 

from WT cells. Therefore, the observed import defect of TIM23-dependent precursors is due 

to a direct effect of the mutation.  

3.1.10  Interaction of Pam17 with Tim23 is reduced in L87A5 mutant 

In order to investigate the reason for the import defect in mitochondria isolated from 

L87A5 cells, the assembly of the TIM23 complex was examined by co-immunoprecipitation 

using antibodies against Tim23 and Tim50 (Figure 3.18). Both antibodies co-precipitated all 

subunits of the TIM23 complex in similar amounts from WT and the mutant mitochondria, 

except for Pam17. The amount of Pam17 co-precipitated with antibodies against Tim23 was 

reduced in the mutant, suggesting that the impaired Tim23-Pam17 interaction may be the 

reason behind the impaired import into mutant mitochondria.  

Figure 3.17 ΔΨ measurement of mitochondria isolated from WT and L87A5. Isolated mitochondria were added to the 

buffer containing NADH and the fluorescent dye DiSC3(5). Fluorescence was observed at excitation and emission 

wavelengths 622 and 670 nm, respectively. ΔΨ was dissipated by addition of a K+ transporter, valinomycin. Down arrows 

indicate when mitochondria and valinomycin were added to the sample.  
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Another way to analyze the interaction between Tim23 and Pam17 is chemical 

crosslinking in isolated mitochondria with an amino group specific homobifunctional 

crosslinker, DSG (disuccinimidyl glutarate) (section 2.4.5). When DSG crosslinking is 

performed with isolated WT mitochondria and analyzed with antibodies against Tim23, two 

crosslinking products are observed – Tim23 dimers and Tim23-Pam17 crosslink (Popov-

Celeketic et al., 2008). Consistent with the co-immunoprecipitation experiment, in L87A5, the 

crosslink between Tim23 and Pam17 was diminished while the Tim23 dimers were not 

Figure 3.18 Assembly of the TIM23 complex in L87A5. Isolated mitochondria from WT and L87A5 solubilized with 

digitonin-containing buffer and antibodies against Tim23 and Tim50 were used for immunoprecipitation. Samples were 

analyzed with SDS-PAGE and immunostaining. Totals are 20% of the immunoprecipitated fractions. PI: Pre-immune 

serum. 

Figure 3.19 DSG crosslinking of Tim23 in L87A5. Isolated mitochondria were incubated on ice in the absence or presence 

of the crosslinker, DSG. Following quenching of the crosslinker and reisolation of mitochondria by centrifugation, the 

samples were analyzed by SDS-PAGE and immunostaining with αTim23N antibody. *- Unknown crosslinking product. 
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affected (Figure 3.19). In addition, an unknown DSG-specific crosslink band was observed 

below Tim23-Pam17 crosslink (indicated with *) for mitochondria isolated from L87A5 cells.  

3.1.11  Pam17 is in direct contact with Tim23 in the IMS  

Pam17 has only a small loop exposed to the IMS and this loop does not contain any 

amino group (van der Laan et al., 2005), suggesting that the DSG crosslinking must take place 

at the matrix side of the IM. To address whether Pam17 and Tim23 are in close contact also 

in the IMS, site-specific photo crosslinking approach (section 2.3.3.3) was used. Four different 

positions (Gln85, Leu87, Ile88 and Arg91) were chosen to introduce Bpa around residues 87-

91 of Tim23. After growing yeast cells in Bpa-containing medium and exposure to UV light, 

total cell extracts were made and His-tagged Tim23 and its crosslinks were enriched on 

NiNTA-agarose. A crosslinking product between Tim23I88Bpa and Pam17 was detected with 

an antibody against Pam17 (Black arrowhead in Figure 3.20). The in vivo site-specific 

crosslinking in I88Bpa mutant suggests that, indeed, Pam17 is in close contact with Tim23 on 

the IMS side of the IM. Interestingly, this implies that changes in the IMS can be transduced 

from the IMS, across the IM, into the matrix. 

Figure 3.20 Direct interaction of Tim23 with Pam17 in the IMS. The yeast cells expressing His-tagged Tim23 at the C-

terminus and carrying an amber stop codon for Bpa incorporation at the indicated positions were grown in the presence 

of 1mM Bpa. Cells were harvested and one half was illumunated with UV while the other half was kept in the dark. After 

cell lysis, His-tagged Tim23 and its crosslinks were enriched by binding to the NiNTA-agarose. Totals (7%) and NiNTA-

bound (100%) fractions analyzed by SDS-PAGE followed by immunostaining with αPam17. * and ** indicate non-specific 

bands and black arrow indicates the UV specific Tim23-Pam17 crosslink. 
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3.1.12  Negative charges at positions 95 and 96 are required for optimal cell 

growth 

The last mutant that was identified by alanine scanning and analyzed here is D95A2. 

The negatively charged residues towards the end of the IMS domain of Tim23 at position 95 

and 96 are relatively well conserved and mutating them to alanine caused a temperature 

sensitive growth defect at 37°C on YPLac medium (Figure 3.10). In order to understand the 

importance of the two negative charges, in addition to the alanine mutants, the two residues 

were also mutated to positively charged lysine. Reversing the charges caused an additional 

stress on the cells and the growth phenotype of D95K2 was clearly worse than that of D95A2 

(Figure 3.21). This suggests that the negative charges in these positions are essential for 

optimal cell growth. 

3.1.13  Protein import is impaired in D95A2 and D95K2 mutant mitochondria 

Isolated mitochondria showed similar amounts of various mitochondrial proteins 

from different compartments, suggesting no major changes caused by the mutations (Figure 

3.22). In order to see the effect of the mutations directly on protein import, isolated 

mitochondria from D95A2 and D95K2 mutant cells were analyzed in in vitro import 

experiments. Import of precursors using the TIM23 complex was impaired in mutant 

mitochondria (Figure 3.23). Matrix targeted precursors, b2(1-167)ΔDHFR, F1β and Tim44, and 

laterally sorted precursors, DLD and b2(1-167)DHFR, were imported less efficiently in the 

mutant mitochondria. In all cases, imports in the charge-reversal mutant mitochondria were 

impaired more than in the alanine mutant, in agreement with the observed growth 

phenotypes. Control precursor AAC was imported equally efficiently into both types of 

mutant mitochondria as in WT. Additionally, ΔΨ measurements showed that both types of 

Figure 3.21 Importance of negative charges at positions 95 and 96 of Tim23. Alanine and lysine mutants together with 

WT Tim23 were grown to same OD in YPGal and analyzed by serial dilution spot assay at indicated temperatures on YPD 

and YPLac plates. 
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mutant mitochondria were able to generate membrane potential as efficiently as WT 

mitochondria (Figure 3.24), suggesting that the observed import defects are the direct effect 

Figure 3.22 Comparison of isolated mitochondria from WT, D95A2 and D95K2. Increasing amounts of mitochondria 

were lysed in 2X Laemmli buffer, separated via SDS-PAGE and analyzed by immunostaining with antibodies against the 

TIM23 complex subunits and other mitochondrial proteins. 

Figure 3.23 In vitro protein import into mitochondria from D95A2 and D95K2. Isolated mitochondria were subjected to 

an in vitro import assay with in vitro translated, radioactively labeled precursor proteins. Samples were analyzed by SDS-

PAGE and autoradiography. p- precursor, i- intermediate and m- mature forms of precursor proteins. Quantifications of 

import reactions were shown in the lower panels. Amount of PK-protected mature form at the longest time point of import 

into WT mitochondria was set to 100%. 
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of the mutation on the activity of the TIM23 complex.  

3.1.14  Residues 95 and 96 alter conformation of Tim23 in the IMS 

To reveal the molecular reason behind the growth defects and the impaired 

mitochondrial import in D95A2 and D95K2 mutants, the composition and the conformation 

of the TIM23 complex were analyzed. DSG crosslinking in mitochondria from D95A2 and 

D95K2 demonstrated different crosslinking patterns compared to WT (Figure 3.25). 

Interestingly, Tim23 dimers were highly reduced in D95A2 and essentially absent in D95K2, 

recapitulating the severity of their growth phenotypes. Additionally, the crosslinks between 

Tim23 and Pam17 were slightly reduced in both mutants. However, neither of the mutations 

affected interaction of Tim23 with any other subunit of the TIM23 complex, as judged by the 

co-immunoprecipitation experiment (Figure 3.26). All tested subunits of the TIM23 complex 

Figure 3.25 DSG crosslinking of Tim23 in D95A2 and D95K2 mitochondria. Isolated mitochondria were incubated on ice 

in the presence or absence with the crosslinker, DSG. Following quenching of the crosslinker and reisolation of 

mitochondria, samples were analyzed by SDS-PAGE and immunostaining with αTim23N antibody. 

Figure 3.24 ΔΨ measurement of WT, D95A2 and D95K2 mitochondria. Isolated mitochondria were incubated with the 

fluorescent dye, DiSC3(5), and NADH. The kinetics of dye uptake was observed at excitation and emission wavelengths, 

622 and 670 nm. Dissipation of ΔΨ was provided with addition of a K+ transporter, valinomycin. Down arrows indicate 

the time points of the addition of respective component. 
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were coprecipitated by the antibody against Tim23 in comparable amounts as in WT. These 

results suggest that, when the residues 95 and 96 are mutated, conformation or dynamics of 

the IMS domain of Tim23 may change in a way that does not allow the transfer of the 

precursors to the translocation channel in the IM. 

3.1.15  TMs 3 and 4 of Tim23 are not essential for cell viability  

Residues 95 and 96 are predicted to be in the immediate vicinity of the translocation 

channel of the TIM23 complex, which is at least in part formed by the C-terminal domain of 

Tim23. The C-terminal domain of Tim23 is embedded in the IM with four predicted TM 

segments (Figure 3.1). The first two TMs of Tim23 were implicated in the channel formation 

(Alder et al., 2008b; Demishtein-Zohary et al., 2015) whereas a recent random mutagenesis 

screen suggested that TM3 and TM4 may not be essential for Tim23 function (Pareek et al., 

2013). 

To check whether the last two TMs of Tim23 are indeed not essential for Tim23 

function, plasmids expressing Tim23 truncated by the TM4 alone (ΔTM4) and by both TM3 

and TM4 (ΔTM3-4) under endogenous promoter were transformed into Tim23 shuffling 

strain. ΔTM4 and ΔTM3-4 were generated by adding a stop codon after Ser192 and Leu169, 

respectively. 5-FOA selection plates showed that both mutants were indeed viable, 

Figure 3.26 Assembly of the TIM23 complex in D95A2 and D95K2 mutant mitochondria. Isolated mitochondria from 

WT, D95A2 and D95K2 were solubilized with digitonin-containing buffer and incubated with antibodies against Tim23 

and Tim50. Samples were analyzed with SDS-PAGE and immunostaining. Totals are 20% of the immunoprecipitated 

fractions. PI: Pre-immune serum. 
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confirming the previously published data (Pareek et al., 2013). However, only a few colonies 

survived the selection procedure, suggesting a severe functional defect of the TIM23 complex 

(Figure 3.27). The growth of the C-terminally truncated mutants of Tim23 was analyzed by 

serial dilution spot assay (Figure 3.28). Both mutants showed severe temperature sensitive 

growth defects and were inviable at 37°C on either fermentable or non-fermentable carbon 

source. On a non-fermentable carbon source, they were growing very poorly even at 30°C.  

3.1.16  Import into ΔTM4 and ΔTM3-4 is impaired 

To understand whether impaired growth is due to the reduced efficiency of import 

via the TIM23 complex, isolated mitochondria from WT and the mutant strains were analyzed 

in in vitro import experiments. Import efficiencies of matrix targeted precursors, b2(1-

167)ΔDHFR and Jac1, and of a laterally sorted substrate, DLD, were drastically reduced in 

mitochondria expressing the C-terminally truncated versions of Tim23 (Figure 3.29). 

However, import of Tim23, used as a control precursor, which uses the TIM22 pathway for its 

import, was similar to WT. This demonstrates that mitochondria isolated from ΔTM4 and 

Figure 3.27 C-terminal truncations of Tim23 rescues the function of the FL Tim23 (WT). Tim23 shuffling strains was 

transformed with the C-terminally truncated versions of Tim23 (ΔTM4 and ΔTM3-4) and the viability of the cells were 

analyzed on 5-FOA selection plates. FL construct and the empty vector were used as positive and negative controls, 

respectively. 

Figure 3.28 Growth of C-terminal truncation mutants of Tim23. WT and C-terminally truncated versions of Tim23 were 

grown to same OD in YPGal and serially diluted cells were dropped onto YPD and YPLac plates. The plates were incubated 

at the indicated temperatures. 
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ΔTM3-4 were specifically defective in import via the TIM23 pathway. Interestingly, the 

clipped version of the imported Tim23 (Tim23*) was more prominent after import into the 

mutant mitochondria than into WT. This result suggests that newly imported WT Tim23 can 

assemble more easily into the TIM23 complex in mutant than in WT mitochondria. A similar 

observation was previously made when WT version of Tim23 was imported into mitochondria 

containing a mutant version of Tim23 that cannot assemble with Tim17 (Dekker et al., 1997), 

raising the possibility that the assembly of the TIM23 complex may be impaired in the 

mutants. 

3.1.17  Last two transmembrane segments of Tim23 are important for 

stabilization of Tim23 interaction with Tim17 

To address whether the impaired assembly of the TIM23 complex is the reason behind 

the impaired import into the mitochondria carrying the C-terminally truncated versions of 

Tim23, the expression levels of the C-terminally truncated mutants of Tim23 were analyzed 

first. Even though it was previously reported that C-terminal truncations did not affect the 

expression levels of Tim23 (Pareek et al., 2013), an analysis of total cell extracts using 

antibodies against the N-terminal part of Tim23 showed that Tim23 levels were reduced in 

both mutants (Figure 3.30). Thus, newly imported Tim23 could probably assemble with the 

surplus of available Tim17. 

 

Figure 3.29 In vitro protein import into ΔTM4 and ΔTM3-4 mitochondria. Isolated mitochondria were subjected to in 

vitro import experiments as described previously. Samples were analyzed by SDS-PAGE and autoradiography. p-

precursor, i-intermediate and m-mature forms of precursor proteins. Tim23*- clipped version of Tim23. Quantifications 

of import reactions were shown in the lower panels. Amount of PK-protected mature form at the longest time point of 

import into WT mitochondria was set to 100%. 



RESULTS 
 

69 
 

The mitochondrial import signal of Tim23 was previously shown to reside in its C-

terminal domain (Davis et al., 1998). Therefore, localization of the truncated Tim23 proteins 

was checked in subcellular localization experiment using crude mitochondria isolated by 

differential centrifugation and the corresponding cytosolic fractions (section 2.3.3.4). Figure 

3.31 demonstrates that both C-terminally truncated versions of Tim23 were exclusively 

present in mitochondria. Whether the reduced levels of Tim23 arose from lower 

transcription, translation, increased degradation, within or outside of mitochondria, or 

reduced import efficiency of C-terminally truncated Tim23 remains currently unclear. 

The lower expression levels of Tim23 could explain the observed phenotypes. 

However, it is still possible that the assembly of the TIM23 complex is impaired in cells 

expressing the C-terminally truncated versions of Tim23. To study the assembly of the TIM23 

complex in ΔTM4 and ΔTM3-4, co-immunoprecipitation experiment was done with digitonin-

Figure 3.31 Localization of the C-terminal truncation mutants of Tim23. Mitochondrial localization of the proteins was 

assessed by isolating crude mitochondria from yeast cells. The cells were lysed mechanically by vigorous vortexing with 

glass beads and mitochondria were isolated by differential centrifugation. Supernatant (S) fraction remaining after 

pelleting of mitochondria, which corresponds to the cytosol, and mitochondrial (M) fractions were analyzed by SDS-

PAGE and immunoblotting against αTim23N. 

Figure 3.30 Expression of C-terminally truncated versions of Tim23. Total cell extracts of WT and the mutant strains 

were analyzed by SDS-PAGE and immunostaining. Antibodies against the N-terminal peptide of Tim23 were used to 

detect WT and the C-terminally truncated proteins. Tim17 and Porin were used as loading controls. 
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solubilized mitochondria using antibodies against Tim17 and Tim23. The analysis of the input 

samples (Total) revealed that, except for the reduced levels of truncated versions of Tim23 in 

the mutant mitochondria, all other analyzed subunits of the TIM23 complex were present in 

comparable amounts as in WT. When the precipitated fractions were analyzed, similar results 

were obtained with mitochondria isolated from ΔTM4 (Figure 3.32a) and ΔTM3-4 (Figure 

3.32b) mutants. Most prominently, both C-terminally truncated versions of Tim23 showed an 

impaired interaction with Tim17. This can be most easily seen when comparing the amounts 

of Tim17 and Tim23 co-precipitated with the antibody against the other protein. In WT 

mitochondria, both Tim17 and Tim23 antibodies immunoprecipitated both proteins in similar 

amounts. In contrast, in the mutant, each antibody immunoprecipitated prominently only its 

own target. Though reduced levels of Tim17 co-precipitated with antibodies against Tim23 

could potentially be explained by lower endogenous Tim23 levels, the fact that also 

antibodies against Tim17 co-precipitated less of Tim23 in mutant mitochondria clearly shows 

that Tim17-Tim23 interaction is impaired when the last or the last two TMs of Tim23 are 

missing. Consistent with previous observations that the interaction of Tim50 with the rest of 

the TIM23 complex is mediated mainly through Tim23 (Geissler et al., 2002; Mokranjac et al., 

2003a; Mokranjac et al., 2009; Yamamoto et al., 2002), antibodies against Tim17 co-

precipitated less of Tim50 from mutant mitochondria than did antibodies against Tim23, 

further supporting the notion that the interaction between Tim17 and Tim23 is impaired in 

Figure 3.32 Assembly of the TIM23 complex in ΔTM4 and ΔTM3-4. Isolated mitochondria from WT, a) ΔTM4 and b) 

ΔTM3-4 were solubilized with digitonin-containing buffer and antibodies against Tim17 and Tim23 were used for 

immunoprecipitation. Samples were analyzed with SDS-PAGE and immunostaining with indicated antibodies. Totals are 

20% of immunoprecipitated samples. PI: Pre-immune serum. 
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the mutants. On the other hand, within one type of mitochondria, import motor subunit, 

Tim16, was co-precipitated equally efficiently with both Tim17 and Tim23 antibodies, 

confirming the previous finding that the import motor binds only to the assembled Tim17-

Tim23 core of the TIM23 complex. The levels of co-precipitated import motor subunit were, 

however reduced in the mutants, again speaking for the impaired interaction between Tim17 

and Tim23 in the Tim23 C-terminally truncated mutants. 

In summary, in vivo dissection of Tim23 showed that distinct regions in the IMS 

domain of Tim23 play different roles during protein import by the TIM23 complex. Tim50 

binding region was found larger than previously proposed and mutation of the region 

dramatically impaired growth of yeast cells. Detection of an unexpected interaction in the 

IMS with Pam17 pointed out that the IMS domain not only acts as a hub for the initiation for 

the import process, but also it regulates the later stages of it. The conserved negative charges 

at positions 95 and 96 were found to be important for the function of Tim23. In addition, 

dissection of the TM domain of Tim23 demonstrated that the last two TMs of Tim23 are 

required for stable interaction with Tim17 and, thus, also import motor recruitment. 

3.2 In vivo dissection of Tim17  

3.2.1 TMs of Tim17 are essential 

Since Tim23 and Tim17 belong to the same family of proteins and the deletion of the 

last two TMs of Tim23 can be tolerated by yeast cells, role of the TMs of Tim17 was analyzed. 

Figure 3.33 Rescue of the function of Tim17 by the truncated versions of Tim17. Tim17 shuffling strain was transformed 

with plasmids encoding the truncated versions of Tim17 (ΔTM3-4 and ΔTM1-2) and the cell viability was checked on 5-

FOA selection plates. Plasmid encoding the wild-type version of Tim17 (WT) and the empty vector were used as positive 

and negative controls, respectively. 
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Constructs were generated in which either the last two or the first two TMs of Tim17 were 

deleted, and the truncated proteins were expressed under the control of the endogenous 

TIM17 promoter and 3’UTR in a Tim17 shuffling strain. Neither of the truncated versions of 

Tim17 gave viable cells on a 5-FOA selection plate (Figure 3.33), suggesting that all the TMs 

of Tim17 are essential, unlike the ones in Tim23. 

3.2.2 Mutations in GxxxG motifs in the first 3 TMs of Tim17 result in defective 

import via the TIM23 complex 

Sequence alignment of 920 Tim17 sequences (Zarsky and Dolezal, 2016) revealed 

highly conserved GxxxG motifs in first three transmembrane segments of Tim17 (indicated 

with red stars in Figure 3.34). GxxxG motifs in the TMs of membrane proteins function as the 

structural contact sites to maintain inter- or intra-molecular tight packing of the TMs (Teese 

and Langosch, 2015). By replacing the glycine residues in the motifs with bulky residues such 

as leucine, the effects of TM packing in Tim17 were analyzed in collaboration with the group 

of Prof. Azem at the Tel Aviv University, as it was done previously for Tim23 (Demishtein-

Zohary et al., 2015; Pareek et al., 2013). Azem group observed temperature sensitive growth 

phenotype when several glycine residues in TM1, TM2 and TM3 were replaced with bulky 

leucine residues (Demishtein-Zohary et al., 2017). In agreement with the growth phenotypes, 

all of the mutants demonstrated impaired import of both matrix-targeted, b2(1-167)ΔDHFR, 

and laterally sorted, b2(1-167)DHFR and b2(1-220)DHFR, precursor proteins (Figure 3.35). The  

Figure 3.34 Sequence conservation of yeast Tim17. Multiple sequence alignment of Tim17 was converted to logo chart 

via WebLogo creation tool at weblogo.berkeley.edu/logo.cgi. Sizes of the letters depict the conservation of the residues. 

X-axis shows the sequence of Saccharomyces cerevisiae Tim17. TM segments are indicated with grey bars. Y-axis shows 

the conservation (Max value: log220=4.3 for 20 possible amino acids). Red stars indicate residues in GxxxG motifs that 

were analyzed here. 
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Figure 3.35 Protein import into GxxxG motif mutants of Tim17. Isolated mitochondria were incubated with in vitro 

translated, radioactively labeled precursor proteins in an import buffer. Import reactions were stopped at indicated 

time points and samples were treated with proteinase K (PK), where indicated. PK removes precursors which are not 

imported. After re-isolation of mitochondria, mitochondrial lysates were analyzed by SDS-PAGE and 

autoradiography. p-precursor and m-mature forms of precursor proteins. Quantifications of import reactions are 

shown in the lower panels (PK-protected mature form at the longest time point of import into WT mitochondria was 

set to 100%). 
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import defect of matrix-targeted precursor was more prominent than of the laterally sorted 

ones. Import of AAC, on the other hand, was not affected in any of the mutants, showing that 

the effect is specific for the TIM23 complex clients. 

3.2.3 Mutations of GxxxG motifs in TM segments of Tim17 differently affect 

assembly of the TIM23 complex 

To understand the reason behind the impaired growth and defective import via the 

TIM23 complex, the effects of the mutations on the assembly of the TIM23 complex were 

analyzed. Isolated mitochondria were solubilized with digitonin and analyzed for the 

assembly of the TIM23 complex by BN-PAGE and for protein levels by SDS-PAGE (Figure 3.36). 

SDS-PAGE analysis revealed that all analyzed subunits of the TIM23 complex, Tim17, Tim23, 

Tim44, Tim50 and Tim16 were present in similar amounts in all mutants, as compared to WT. 

BN-PAGE analysis indicated that the Tim17-Tim23 complex formation was impaired in 

mutants mapping to TM1 and TM2 (G25L and G29L on TM1 and G62L and G66L on TM2). 

However, mutations in the GxxxG motif in TM3 (G95L and G99L) did not affect the Tim17-

Tim23 complex formation. Thus, import defects and growth phenotypes of TM1 and TM2 

Figure 3.36 Assembly of the TIM23 complex in GxxxG motif mutants of Tim17. Isolated mitochondria from WT and the 

GxxxG motif mutants were solubilized with digitonin and the samples were analyzed by BlueNative (upper panel) and 

SDS-PAGE (lower panel) followed by immunoblotting.  
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mutants could be explained by defective formation of the Tim17-Tim23 core of the TIM23 

complex but not in the TM3 mutants. 

3.2.4 N-terminal part of loop 3 of Tim17 is essential for cell viability 

Co-immunoprecipitation experiments done with the GxxxG motif mutants confirmed 

the results obtained by BN-PAGE that mutations in TM1 and TM2 of Tim17 impair Tim17-

Tim23 interaction and showed that TM3 mutants are impaired in import motor recruitment 

(Demishtein-Zohary et al., 2017). In the light of these results and considering previous finding 

from our group that Tim17 directly interacts with Tim44 (Banerjee et al., 2015) and that Ting 

et al. (2014) found no interaction of Tim44 with the loop 1 of Tim17, an analysis on the matrix 

exposed loop between TM3 and TM4 (loop 3) of Tim17 was done in order to identify a 

possible Tim44-binding site. Two alanine mutants of this loop were created in which five 

consecutive residues were mutated to alanines (V104A5 and R109A5). Interestingly, V104A5 

mutant produced no viable clones upon 5-FOA selection, suggesting an essential role for this 

region (Figure 3.37).  

3.2.5 Conserved residue Arg105 is important for cell viability 

Alignment of Tim17 from different species demonstrated a highly conserved arginine 

residue at position 105 within the first alanine patch (residues 104-108) (Figure 3.34). 

Therefore, a R105A mutant was generated and a serial dilution spot assay of the single 

mutant together with the second alanine patch mutant, which was viable on 5-FOA plate 

(Figure 3.37), was done (Figure 3.38). The R109A5 mutant did not cause any growth defect at 

any of the tested condition. Mutating Arg105 to alanine, on the other hand, caused a very 

Figure 3.37 Alanine scanning of matrix exposed loop 3 of Tim17. Tim17 shuffling strain was transformed with plasmids 

encoding alanine mutants of Tim17 (V104A5 and R109A5) and the viability of the corresponding cells was checked on 5-

FOA selection plates. WT construct and the empty vector were used as positive and negative controls, respectively. 
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severe growth defect and the mutant was essentially inviable on a non-fermentable medium. 

To address the importance of the positive charge at position 105, the arginine residue was 

mutated to a lysine, keeping the charge and the length of the residue very similar. However, 

this conservative mutation (R105K) could improve the growth only marginally and only on a 

fermentable medium (Figure 3.39), demonstrating that the charge of the residue is not the 

most important feature for this position. 

3.2.6 Protein import via the TIM23 complex is defective in R105A mutant 

For further analysis, mitochondria were isolated from WT and R105A cells. To assess 

whether mitochondrial protein profiles were affected by the mutation, a number of 

mitochondrial proteins were immunostained after SDS-PAGE. No major difference between 

mitochondria isolated from WT and R105A cells was found (Figure 3.40). Still, precursors 

using the TIM23 complex were imported into R105A mitochondria with reduced efficiencies 

Figure 3.38 The effect of mutating conserved Arg105 on growth of yeast cells. WT and the indicated mutants were 

grown to same OD in YPGal. 10-fold serial dilution of cells were made and cells were spotted onto YPD and YPLac plates. 

The plates were incubated at indicated temperatures. 

Figure 3.39 The effect of positive charge at position 105 of Tim17 on growth of yeast cells. WT, R105A and R105K were 

tested by serial dilution spot assay at indicated temperatures. The cells were grown in YPGal medium prior to dropping 

on YPD and YPLac plates. 
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compared to WT, irrespective whether matrix targeted or laterally sorted ones were 

analyzed. However, a TIM23-independent precursor AAC was imported in mutant 

mitochondria as efficiently as in WT (Figure 3.41), confirming a TIM23-specific defect. 

3.2.7 Import motor interaction in R105A mutant is impaired 

To analyze the assembly of the TIM23 complex in R105A, a co-immunoprecipitation 

experiment was carried out (Figure 3.42). Similar to the glycine mutants of TM3, import motor 

subunits could not be co-precipitated using antibodies against Tim17 and Tim23. In addition, 

antibodies against Tim16 could not co-precipitate Tim17-Tim23 core of the TIM23 complex. 

All these results are in agreement with that the notion that the loop 3 of Tim17 and residue 

Arg105 in particular are crucial for import motor recruitment. 

Figure 3.41 In vitro protein import into R105A. Mitochondria isolated from WT and R105A cells were subjected to in 

vitro import experiment using in vitro translated, radioactively labeled precursor proteins as describled in section 2.4.2. 

p-precursor, i-intermediate and m-mature forms of precursor proteins. Quantifications of PK-protected samples were 

shown in lower panels. Amount of PK-protected mature form at the longest time point of import into WT mitochondria 

was set to 100%. 

Figure 3.40 Comparison of isolated mitochondria from WT and R105A cells. Increasing amounts of mitochondria were 

lysed in 2X Laemmli buffer, separatedby SDS-PAGE and analyzed by immunostaining with antibodies against the TIM23 

complex subunits and the various other mitochondrial proteins. 
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3.2.8 Loop 3 of Tim17 is in direct contact with Tim44  

To analyze whether there is a direct contact between loop 3 of Tim17 and Tim44, 

three Bpa mutants at positions 104, 106 and 108 of Tim17 were generated. Only when Bpa 

was incorporated at position 106, a direct interaction was observed with antibodies against 

Tim44 (Demishtein-Zohary et al., 2017). To test whether this contact is dependent on Arg105, 

the site specific crosslinking was done in the R105A background. Therefore, a version of 

Tim17 was made in which Bpa at position 106 was combined with R105A mutation. As the 

respective plasmid gave no viable clones in Tim17 shuffling strain (data not shown), it was 

analyzed in WT background. Whereas the plasmid-borne version of Tim17 carrying Bpa at 

position 106 gave a prominent crosslink to Tim44 also in WT background, no Tim44-Tim17 

crosslink was observed when the Tim17 version carrying the R105A mutation in addition was 

used. This confirms the role of Arg105 in Tim17-Tim44 interaction (Figure 3.43). 

Taken together, in vivo dissection of Tim17 revealed that all its TM segments are 

essential for the function of the protein – the first two are important for Tim17-Tim23 

interaction and the last two, and the matrix-exposed loop between them in particular, for 

recruitment of the import motor. 

Figure 3.42 Assembly of the TIM23 complex in tim17R105A mutant. Isolated mitochondria from WT and R105A cells 

were solubilized with digitonin and antibodies against Tim17, Tim23 and Tim16 were used for immunoprecipitation. 

Samples were analyzed with SDS-PAGE and immunostaining. Totals are 20% of the pellet fractions PI: Pre-immune 

serum. 
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3.3 Purification and reconstitution of the recombinant Tim17-Tim23 

core of the TIM23 complex 

3.3.1 Expression and purification of the recombinant Tim17-Tim23 complex 

Experiments described so far identified many functionally important segments of 

Tim17 and Tim23 and revealed the previously unknown contacts within the TIM23 complex. 

However, mechanistic understanding of the function of the TIM23 complex would require the 

availability of a robust in vitro system reconstituted from recombinantly expressed subunits. 

To this end, a C-terminally His-tagged version of Tim23 (Tim23his9) and a Strep-tagged version 

of Tim17 (Tim17strep) were cloned into two multiple cloning sites of pET-Duet1 vector. 

Following transformation of the plasmid into E. coli C43(DE3) cells, expression of the proteins 

was induced by addition of IPTG. Indeed, Tim23 and Tim17 can be co-expressed 

recombinantly in E. coli cells (Figure 3.44). 

Localization of Tim17 and Tim23 in bacterial cells was tested by differential 

centrifugation. After lysing the cells mechanically, a low-speed clarification centrifugation 

step was applied to remove unbroken cells, large cellular debris and inclusion bodies. 

Cytosolic and membrane fractions were subsequently separated by ultracentrifugation. 

Figure 3.43 Requirement of Arg105 for the interaction between Tim17 and Tim44. WT cells were transformed with 

plasmids expressing C-terminally His-tagged Tim17 and carrying a premature stop-codon at position 106 in the presence 

or absence of R105A mutation. The cells were grown in the presence of 1mM Bpa. Cells were harvested and one half 

was illumunated with UV light while the other half was kept in dark. Total cell extracts were analyzed by SDS-PAGE and 

immunostaining with αTim44. 

Figure 3.44 Recombinant expression of Tim23his9 and Tim17strep in E. coli cells. Total cell extracts 

of E. coli C43(DE3) cells transformed with the plasmid encoding Tim17strep and Tim23his9 were 

made before and after induction (U- Uninduced, I- Induced) with IPTG. Samples were analyzed 

by SDS-PAGE and western blot using antibodies against Histidine-tag and Tim17. 
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Recombinantly expressed Tim23 and Tim17 were predominantly co-localized with an E. coli 

membrane protein, membrane protein insertase, YidC (Figure 3.45). The cytosolic E. coli 

Hsp70 chaperone, DnaK, on the other hand, was predominantly present in the soluble 

fraction after ultracentrifugation. This result shows that eukaryotic mitochondrial inner 

membrane proteins, Tim23 and Tim17, were correctly targeted to membranes in prokaryotic 

E. coli cells. 

To check whether Tim17 and Tim23 also form a complex in E. coli membranes, isolated 

membranes were solubilized in a buffer containing Fos-choline 12 (FC12) and the proteins 

were purified using two affinity chromatography steps (Figure 3.46). A previous postdoctoral 

researcher in the group identified FC12 as the optimal detergent for solubilization of E. coli 

membranes without disrupting Tim17-Tim23 interaction (Du Plessis, unpublished 

observation). The identity of Tim17 and Tim23 in the elution fractions from Streptactin-

Sepharose column was confirmed by western blotting (data not shown). The CBB-staining of 

the same fractions demonstrated that Tim23 and Tim17 were the only proteins present in 

the fractions, showing that a certain fraction of the expressed proteins formed the complex 

in E. coli membranes and could successfully be purified as the recombinant Tim17-Tim23 

complex. A large fraction of Tim23 was, however, present in the flow-through fraction of the 

Streptactin column (see FT lane of Streptactin purification), suggesting that Tim17-Tim23 

Figure 3.45 Membrane isolation from E. coli cells expressing recombinant Tim17 and Tim23. a) Scheme of membrane 

isolation protocol (see section 2.4.7.2). b) Samples from each step were analyzed by SDS-PAGE and immunostaining 

using antibodies against Histidine-tag, Tim17, YidC and DnaK. CL- Cell lysate, Cl. cfg- Clarification centrifuge, sup.- 

supernatant and pel.- pellet fractions. 
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complex formation is not as efficient as in mitochondria. Nonetheless, the final amount of 

the eluted complex was sufficient for further experiments. 

3.3.2 Reconstitution of the recombinant Tim17-Tim23 complex in liposomes 

To reconstitute, recombinant Tim17-Tim23 complex into proteoliposomes, the 

purified complex was mixed with the liposomes and the detergent was removed gradually 

from the solution (see section 2.4.8 for details). To mimic the lipid composition of the 

mitochondrial inner membrane, liposomes with 10% (mol/mol) cardiolipin were generated 

by mixing E. coli polar lipid extract with cardiolipin. Figure 3.47 follows the distribution of 

Tim17 and Tim23 during the various steps of reconstitution protocol, from the starting mix 

to the final proteoliposome suspension. Comparison of the band intensities in the starting 

mix and in the pellet after the final wash indicates that most of the core complex was 

reconstituted in proteoliposomes.  

To test the integration of the proteins in the lipid bilayer, a carbonate extraction 

method was employed (section 2.4.8.1). In this assay, membranes are incubated with Na2CO3 

solution. The high pH (11.5) extracts peripheral membrane proteins and sometimes 

membrane proteins with a single TM whereas integral membrane proteins with multiple TM 

segments cannot be extracted out of the membranes (Fujiki et al., 1982). When the purified 

Figure 3.46 Purification of recombinant Tim17-Tim23 complex from E. coli membranes. The Tim17-Tim23 complex was 

purified via two affinity chromatography steps, using NiNTA-Agarose and Streptactin Sepharose beads, after 

solubilization of isolated membranes in a buffer containing Fos-choline 12. Samples were analyzed by SDS-PAGE and 

visualized by CBB staining. FT- Flow through. 
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Tim17-Tim23 complex was subjected to Na2CO3 extraction, the majority of Tim17 and Tim23 

stayed in the supernatant. However, the Tim17-Tim23 complex reconstituted in the 

proteoliposomes remained in the pellet fraction after carbonate extraction (Figure 3.48), 

suggesting that it got integrated in the membrane during reconstitution procedures. 

3.3.3 Reconstituted Tim17 and Tim23 complex can specifically recognize 

presequences 

To test the biological activity of the reconstituted complex, binding of radiolabeled 

presequence containing-proteins to empty liposomes and Tim17-Tim23 proteoliposomes 

Figure 3.48 Integration of Tim17-Tim23 complex in proteoliposomes. Purified complex was subjected to Na2CO3 

extraction before and after reconstitution to test integration of proteins in the lipid bilayer (section 2.4.8.1). Sup.- 

supernatant and Pel.- Pellet. * indicates degradation product of Tim17. 

Figure 3.47 Reconstitution of the Tim17-Tim23 complex into proteoliposomes. a) A scheme for reconstitution protocol 

(see section 2.4.8 for details). b) Liposomes and the purified recombinant Tim17-Tim23 complex were mixed 1:1 (V:V) 

ratio and FC12 was removed gradually for assembly of the proteoliposomes. Proteoliposomes were collected by 

ultracentrifugation, washed once and then purified by floatation through a sucrose density gradient. Floated 

proteoliposomes were collected and washed again. Finally, they were resuspended in Na+-import buffer. Suc. Grad. rest 

indicates the sample from the rest of floatation solution. Samples were loaded as equivalent amounts from the 

respective volumes. Sup.- supernatant and Pel.- Pellet. 
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was analyzed (Figure 3.49). All precursors with a presequence (Su9(1-69)DHFR, Cox4(1-

25)DHFR, b2(1-167)ΔDHFR and b2(1-55)DHFR), were specifically bound by the 

proteoliposomes containing reconstituted Tim17 and Tim23. Importantly, DHFR, which does 

not contain a presequence, and SynB2DHFR, which contain a scrambled and therefore non-

functional presequence (Allison and Schatz, 1986), did not bind to proteoliposomes. These 

results indicate that the recombinant Tim17-Tim23 complex reconstituted in 

proteoliposomes can recognize precursor proteins in a presequence-specific manner.  

3.3.4 Reconstituted proteoliposomes can generate membrane potential 

The TIM23 complex requires ΔΨ for its function. In mitochondria, ΔΨ is generated 

through the activity of the respiratory chain complexes. Interestingly, protein import into 

mitochondria can also be driven by the valinomycin-induced K+ diffusion potential (Pfanner 

and Neupert, 1985). Hence, to generate ΔΨ across lipid bilayer of proteoliposomes, the 

proteoliposomes were prepared in a buffer containing K+ and resuspended in a Na+-

containing buffer. Valinomycin is an ionophore that allows passage of K+ ions across lipid 

bilayer, but not of Na+. Since interior of the liposomes contain K+ ions and exterior contain 

Na+ ions, addition of valinomycin causes the release of K+ from the interior volume, and thus, 

Figure 3.49 Binding of presequence-containing precursor proteins to Tim17-Tim23 proteoliposomes. Proteoliposomes 

containing reconstituted Tim17-Tim23 complex (Proteolip.) and empty liposomes (Control) were incubated with 

indicated radiolabeled proteins. Liposomes were collected by centrifugation, purified via sucrose gradient floatation and 

reisolated by centrifugation. Samples were analyzed by SDS-PAGE and autoradiography. “-“ samples did not contain any 

liposomes. T- total, B- bound and U- unbound fractions. Unbound fraction is the supernatant after collection of 

proteoliposomes in the first centrifugation step. 
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makes the exterior more positive than the interior. Like with isolated mitochondria, 

generation of ΔΨ in the liposomes can be monitored by DiSC3(5) uptake (Figure 3.50) (see 

section 2.4.3.2 for details). Both empty liposomes as well as Tim17-Tim23 proteoliposomes 

generated ΔΨ. Addition of NaCl did not affect the generated ΔΨ but addition of KCl dissipated 

it by abolishing the ion imbalance. 

Taken together, the presented data demonstrate that Tim17 and Tim23 can be 

recombinantly expressed and purified Tim23 and Tim17 as a complex. Furthermore, the 

complex can be reconstituted into proteoliposomes. These proteoliposomes can generate 

membrane potential and specifically recognize presequence-containing proteins, providing 

the solid basis for future import experiments. 

  

 

 

 

Figure 3.50 ΔΨ measurement of liposomes. Liposomes, with or without reconstituted Tim17-Tim23 complex were 

added to Na+-import buffer containing DiSC3(5). ΔΨ was generated by addition of valinomycin and the kinetics of the 

uptake of the dye was observed at excitation and emission wavelengths 622 and 670 nm, respectively. ΔΨ was 

dissipated by addition of KCl. Down arrows indicate the time point of addition of respective component. Control samples 

do not contain reconstituted complex. Proteoliposomes contain reconstituted Tim17-Tim23 complex. 
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4. DISCUSSION 

4.1 IMS domain of Tim23 does more than orchestrating the IMS part 

of the TIM23 complex 

Mitochondrial proteins, which are translated in the cytosol, use specialized 

translocases to reach their specific subcompartment within mitochondria. About 70% of 

mitochondrial proteins contain N-terminal matrix targeting signals (MTS), also called 

presequences, and use the TIM23 complex to reach the final place of their function within 

mitochondria. Therefore, understanding the molecular mechanisms of function of the TIM23 

complex in protein translocation is essential for uncovering the mechanisms of mitochondrial 

biogenesis and diseases associated with them. In this thesis, I have dissected the channel 

forming subunits of the TIM23 complex, Tim23 and Tim17, in vivo to gain a better mechanistic 

understanding of function of the complex. 

Tim23 is the central subunit of the TIM23 complex and consists of an N-terminal 

mostly unstructured domain in the IMS and a C-terminal domain embedded in the IM. While 

the TM segments anchor the protein in the IM with matrix and IMS exposed loops, the IMS 

domain can extend to the cytosol spanning the OM (Donzeau et al., 2000). Thus, the topology 

of Tim23 is unique among mitochondrial proteins – it is exposed to all four subcompartments 

of mitochondria and to the cytosol. Previous experiments showed that the exposure of Tim23 

on the cytosolic surface of mitochondria is a dynamic process that depends on Tim23 

interaction with Tim50, the dynamics of the TOM complex and the translocation activity of 

the TIM23 complex (Gevorkyan-Airapetov et al., 2009; Popov-Celeketic et al., 2008; Tamura 

et al., 2009; Waegemann et al., 2015). Furthermore, the IMS domain of Tim23 was shown to 

interact with many components of the TOM and TIM23 complexes, summarized in Figure 3.3, 

and many of the proposed interaction sites overlapped with each other. These results suggest 

that the IMS domain of Tim23 needs to alter its conformation to provide efficient transfer of 

precursor proteins. Multiple sequence alignment of Tim23 showed that the IMS domain is 

not highly conserved, especially over the first 50 residues. All the characteristics of the 

domain of Tim23 in the IMS thus reflect properties of classical intrinsically disordered 
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proteins (IDPs). They do not form a defined and properly folded 3D structure and they can 

adapt their structure for different binding states (Kim et al., 2008). Here, an in vivo mutational 

approach combined with biochemical experiments was used to study the function of the IMS 

domain of Tim23. Presented data demonstrate that even though a large portion of this 

domain is not essential for cell viability, different regions of the IMS domain of Tim23 have 

different functions and, more importantly, that this domain not only acts as a hub in the IMS 

for initiation of the import process but also regulates later stages of the import process 

(Figure 4.1).  

My in vivo analysis could not confirm the involvement of the first 10 residues of Tim23 

in interaction with Tim21 and Tim50 that was previously suggested based on an NMR analysis 

(Bajaj et al., 2014a). Deletion of the first 10 residues of Tim23 neither impaired growth of 

yeast cells nor affected Tim23 interaction with Tim21 and Tim50. Since NMR measurements 

require highly concentrated purified proteins, it is possible that non-physiological 

interactions may have been detected. However, it is also possible that the importance of the 

first 10 residues for the interactions may be overlooked in vivo due to the stabilizing effects 

of other interaction points between the proteins. Still, it is clear that this segment of Tim23 

is not essential for the interaction with either Tim21 or Tim50, though its involvement in the 

interaction cannot be excluded. 

Figure 4.1 Three distinct functional regions of the IMS domain of Tim23 identified in this thesis. The region between 

residues 68-72 (red) is essential for Tim50 binding while the region between residues 87-91 (blue) interacts with Pam17 

and the negative residues at positions 95 and 96 (green) affects the conformation of the IMS domain of Tim23. 
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The analysis of N-terminally truncated mutants of Tim23 revealed different effects on 

the stability of the protein. Truncating the first 30 residues of Tim23 resulted in a temperature 

sensitive growth phenotype with highly reduced protein amounts within mitochondria. 

Interestingly, further truncations did not result in such a defect, even though they also 

contain the deletion of the first 30 residues. The ‘N-end rule’, which determines the half-life 

of proteins depending on their N-terminal amino acid residues adjacent to the initiator 

methionine (Bachmair et al., 1986), may be a possible explanation for enhanced degradation 

of Tim23Δ30. This rule works differently in different organisms and, in mitochondria, 

prokaryotic rules may apply (Tobias et al., 1991; Vogtle et al., 2009). According to the ‘N-end 

rule’, WT protein, Δ10, Δ20, Δ40 and Δ50 are predicted to be stable because they have Ser, 

Thr, Gln, Ile and His, respectively, adjacent to the initiator methionine. On the other hand, 

Δ24 and Δ30 have Lys and Leu, respectively, and these residues are considered as 

destabilizing signals, marking the proteins for faster degradation either in the cytosol before 

their translocation or in mitochondria after complete translocation. However, lysine residue 

for Δ24, in this case, did not cause a growth phenotype as defective as Δ30, but only slightly. 

Thus, the growth phenotype observed for these specific mutants could be caused by 

destabilization of the respective Tim23 variants according to the N-end rule. 

The essential interaction of the IMS domain of Tim23 is with the major receptor of the 

TIM23 complex – subunit Tim50. Although this interaction was previously studied in some 

detail (Geissler et al., 2002; Gevorkyan-Airapetov et al., 2009; Mokranjac et al., 2009; Tamura 

et al., 2009; Yamamoto et al., 2002), alanine scanning mutagenesis performed in this work 

showed that the binding site for Tim50 on Tim23 is larger than previously proposed (Tyr70 

and Leu71). Using the genetic approach, we found that the more residues in this region were 

mutated, the stronger the growth phenotype became, with V68A5 having the most severe 

growth defect. Especially the three conserved residues, Glu69, Tyr70 and Leu71, seem to be 

the important ones for Tim50 binding (Figure 3.13). However, unlike Tyr70 and Leu71 

(Gevorkyan-Airapetov et al., 2009), E69A did not show complete impairment of Tim50 

binding. It seems that the interaction between Tim23 and Tim50 is mainly mediated through 

hydrophobic interactions and partly through negatively charged Glu69. 
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The alanine scanning mutagenesis screen also revealed novel interactions of Tim23 in 

the IMS. A particularly interesting one is a direct interaction with Pam17. Though initially 

identified as a component of the import motor (van der Laan et al., 2005), subsequent 

experiments showed that Pam17, structurally and functionally, interacts with the Tim17-

Tim23 core of the TIM23 complex (Hutu et al., 2008; Popov-Celeketic et al., 2011; Schilke et 

al., 2012; Ting et al., 2014). Still, all so far known direct interactions of Pam17 with Tim17 and 

Tim23 were mapped to the matrix, where the major part of Pam17 resides (Hutu et al., 2008; 

Popov-Celeketic et al., 2008; Ting et al., 2014). Here, a direct interaction of Pam17 with Tim23 

at the IMS side of the IM membrane was identified for the first time. Even though the exact 

role of Pam17 is still not clear, the results presented here suggest another level of regulation 

of function of the TIM23 complex mediated by the IMS-exposed domain of Tim23 through 

Pam17. Interestingly, Schendzielorz et al. (2017) recently showed that Pam17 might have a 

role in the ΔΨ-dependent import of mature parts of translocating precursors. iMTS-Ls 

(internal MTS-like signals), which share common features with presequences, may be 

responsible for this phenomenon (Backes et al., 2018). Import experiments performed here 

with mitochondria isolated from the 87A5 mutant recapitulated the observations made by 

Schendzielorz et al. (2017), suggesting that the effects of Pam17 may be initiated by Tim23 in 

the IMS. Taken together, the IMS domain of Tim23 seems to have an active role in regulating 

ΔΨ-dependent and import motor-dependent steps of the import process by communicating 

with the subunits in the matrix side of the IM through Pam17 interaction. It is tempting to 

speculate that the conformational changes of the TIM23 complex occurring at different 

stages of the import process need to be reset or catalyzed depending on the requirements 

for translocation of specific regions of the incoming polypeptide chains. 

Lastly, another mutant identified in the screen encompasses two conserved negatively 

charged residues, Asp95 and Asp96. Although sequence-wise, D95A2 and D95K2 mutants 

map very close to the 87A5 mutant, they showed clearly different characteristics. Crosslinking 

and import experiments showed that the interaction with Pam17 was largely unaffected in 

D95A2 and D95K2 mutants. In contrast, the crosslinked dimers were reduced dramatically. It 

seems that the mutation of the negatively charged residues affects the conformation of the 
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complex without making major changes in the composition of the complex, at least within 

the monomers. Another intriguing possibility is that the alteration of the negative charges 

may affect the interaction of Tim23 with positively charged presequences. It has been 

hypothesized that positively charged presequences sequentially bind to the acidic patches on 

the subunits of the TOM and TIM23 complexes on their way into the mitochondrial matrix 

(Komiya et al., 1998). Since Asp95 and Asp96 are predicted to be at the entrance of the 

translocation channel of the TIM23 complex, they may have a role in properly directing the 

precursor proteins into the channel. Reverting the charges may cause a repulsive effect on 

the presequences at the entrance. It will be interesting to see in the future whether the two 

residues have a direct role in recognition and binding of presequences and guiding them to 

the translocation channel in the inner membrane. 

4.2 Last two TMs of Tim23 are required for stabilization of Tim17-

Tim23 interaction 

The translocation channel of the TIM23 complex is likely formed by the IM embedded 

domains of both Tim23 and Tim17. Both proteins belong to the same protein family and 

contain four predicted TM segments. It has been shown before that TM1 and TM2 of Tim23 

are essential for the formation of the aqueous channel (Alder et al., 2008a) whereas TM3 and 

TM4 were dispensable for the function of the protein (Pareek et al., 2013). The analysis 

presented here confirmed that the last two TMs of Tim23 are indeed dispensable for viability 

of yeast cells. However, the C-terminal truncation mutants described here showed strong 

growth defects, in contrast to the previous report (Pareek et al., 2013). Moreover, in the same 

publication, protein levels of Tim23 and the interaction between Tim17 and Tim23 were not 

affected by the absence of last two TMs of Tim23. Different genetic backgrounds of the 

parental yeast strains could be a possible explanation for the differences in growth 

phenotypes and expression levels of Tim23 observed in the two studies. Recently, it has also 

been revealed that certain motifs, called C-degrons, at the C-terminus of proteins determine 

half-life of proteins in mammalian cells (Koren et al., 2018). Even though such motifs await to 

be explored in yeast, C-terminal degron of the mouse ornithine decarboxylase was shown to 
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destabilize proteins also in yeast when it was added to the C-terminus of proteins (Hoyt et 

al., 2003), showing conservation of the mechanism. Therefore, it is tempting to speculate that 

a change in the C-terminus of Tim23 may alter the stability of the C-terminally truncated 

versions of Tim23, resulting in reduced level of the mutant protein observed in this thesis. 

Still, on the molecular level, the interaction between Tim23 and Tim17 should have been 

affected in the same way in both studies. Whether the different buffer compositions used for 

immunoprecipitation may be the reason behind observed differences remains currently 

unclear. Taken together, TM3 and TM4 of Tim23 are not essential for the function of the 

protein and thereby for cell viability but they considerably contribute to the stabilization of 

the Tim17-Tim23 interaction. However, how this contribution takes place – via direct contact 

or allosteric effects – awaits a high-resolution structure of the TIM23 complex. 

4.3 Tim17 has a role in coupling the import motor complex to the 

translocation channel of the TIM23 complex 

Despite belonging to the same protein family and sharing a considerable sequence 

homology in the transmembrane segments, Tim17 and Tim23 cannot substitute for each 

other (Ryan et al., 1994). This finding is further supported by the result reported here that, 

unlike in Tim23, all TMs of Tim17 are essential for cell viability. Our data, presented here and 

in Demishtein-Zohary et al. (2017), suggests that, like in Tim23, the first two TMs of Tim17 

are involved in Tim17-Tim23 interaction. It is tempting to speculate that TM1 and TM2 of 

Tim17 also contribute to the formation of the translocation channel of the TIM23 complex, 

however, there is currently no experimental evidence available to support this notion. 

Interestingly, the experiments shown here demonstrate that the last two TMs of Tim17, and 

the loop between them in particular, play an essential role in recruiting the import motor to 

the translocation channel. Using a combination of alanine scanning mutagenesis and in vivo 

site-specific photocrosslinking, a conserved arginine residue at position 105, in the matrix-

exposed loop of Tim17, was identified as a direct interaction point between Tim17 and Tim44. 

This result is in line with the previous finding of our group that the C-terminal domain of 

Tim44 directly binds to Tim17 (Banerjee et al., 2015). Furthermore, subsequently published 



DISCUSSION 
 

91 
 

report identified surface exposed residues on the C-terminal domain of Tim44 that are in 

direct contact with Tim17 and also Tim23 (Ting et al., 2017). Taken together, the data 

presented here support a model in which Tim17 recruits the import motor complex to the 

exit of translocating channel by interacting with Tim23 through its two TMs and with Tim44 

through the loop between its last two TMs (Figure 4.2).  

Overall, presented data in this thesis provides new molecular insights into the 

structure and function of the TIM23 complex. The current model of function of the TIM23 

complex suggests that the presequence containing precursor proteins are recognized in the 

IMS by the receptor subunits of the complex, after their emergence from the TOM complex. 

Then, the precursors are transferred to the translocation channel in the inner membrane by 

a coordinated action of the subunits in the IMS and, in a ΔΨ-dependent step, driven through 

the translocation channel. At the matrix face of the channel, import motor captures incoming 

precursors to complete the translocation process using the energy from ATP. The data 

presented here update this model in the way that novel interaction of the IMS-exposed 

domain of Tim23 were identified, revealing a role of this domain as a hub that not only 

regulates initial recognition of presequences in the IMS but also contributes to later stages of 

protein translocation across inner membrane through an interaction with Pam17. Also, an 

Figure 4.2 A model for the bridging role of Tim17 in recruitment of the import motor to the core channel. Tim17 

(orange) interacts with Tim23 (blue) in the IM and the matrix exposed loops of both recruit Tim44 (green). 
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essential role of Tim17 in coupling the import motor to the translocation channel was 

uncovered. 

4.4 The Tim17-Tim23 core of the TIM23 complex can be purified 

recombinantly and reconstituted in proteoliposomes 

Testing of any model of function of the TIM23 complex would be greatly simplified by 

the availability of a biochemically defined system consisting of recombinant proteins. Except 

for Tim17-Tim23 core, all other essential subunits of the TIM23 complex are already available 

in their recombinant forms (Mokranjac et al., 2006; Qian et al., 2011; Sichting et al., 2005; 

Weiss et al., 1999). To fill this gap, a recombinant expression and purification system of the 

Tim17-Tim23 core of the complex was developed here. The two proteins can indeed be co-

expressed and co-purified as a complex. The complex was also successfully reconstituted in 

proteoliposomes, which could specifically bind presequence-containing precursors (Figure 

3.49). Thus, the initial steps of the import process by the TIM23 complex were successfully 

reconstituted. I also showed that ΔΨ could be generated in proteoliposomes (Figure 3.50). 

These experiments lay a solid foundation for the future investigations to address the channel 

activity of the reconstituted complex as well as the actual translocation process across and 

into the membrane. It is likely that incorporation of other essential subunits of the TIM23 

complex into the system will be necessary to observe any translocation activity.  
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5. Summary 

Protein import into mitochondria is an essential process for all eukaryotic cells 

because 99% of proteins that function in mitochondria are made in the cytosol as precursor 

proteins. About 70% of them are targeted to the organelle by N-terminal, positively charged 

presequences. The TIM23 complex is the major protein translocase of the mitochondrial inner 

membrane that recognizes precursor proteins with presequences, as they appear at the 

outlet of the TOM complex in the outer membrane, and mediates their translocation across 

and insertion into the inner membrane in a membrane potential- and ATP-dependent 

manner. This highly evolutionary conserved complex is comprised of at least 11 subunits and 

can be divided into three functional units - the receptor part facing the intermembrane space, 

the translocation channel in the inner membrane and the import motor facing the matrix. 

This study provides new insights into the structure and function of Tim23 and Tim17, the 

inner membrane-embedded subunits of the translocation channel of the TIM23 complex. 

Both Tim23 and Tim17 contain four predicted transmembrane segments in the inner 

membrane, which likely together form the translocation channel of the TIM23 complex. 

Tim23 has an additional, intrinsically disordered domain exposed to the intermembrane 

space. In vivo dissection of the intermembrane space-exposed domain of Tim23 performed 

here identified its novel interaction partners and crystallized this domain as an organizational 

hub that not only coordinates transfer of proteins between TOM and TIM23 complexes but 

also regulates later stages of protein translocation across mitochondrial inner membrane. 

The analysis of membrane embedded segments of Tim23 revealed that the last two 

transmembrane segments, though not essential for cell viability, contribute to the stability of 

Tim17-Tim23 interaction and thus to the import process. On the other hand, the first two 

transmembrane segments of Tim17 are required for Tim17-Tim23 interaction and the last 

two, and in particular, the matrix exposed loop between them, for recruitment of the import 

motor. Thus, the data suggest an essential role of Tim17 in transferring the precursor proteins 

from the translocation channel in the inner membrane to the import motor during their 

translocation into mitochondria. 
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In addition to the in vivo analyses, a system for recombinant expression and 

purification of Tim17 and Tim23 was established. The purified Tim17-Tim23 complex was 

reconstituted in proteoliposomes, which specifically recognized presequence-containing 

precursor proteins. Thus, a solid basis has been laid for future experiments towards 

establishing a simple, robust and biochemically defined system needed to obtain a 

mechanistic understanding of protein translocation across mitochondrial inner membrane 

and biogenesis of mitochondria.  
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6. Zusamenfassung 

Proteintransport in Mitochondrien ist ein essentieller Prozess aller eukaryotischer 

Zellen, da 99% der Proteine, die ihre Funktionen in Mitochondrien entfalten, im Zytosol als 

Vorläuferproteine synthetisiert werden. Rund 70% dieser Proteine werden durch N-

terminale, positiv geladene Präsequenzen zum Organell dirigiert. Der TIM23 Komplex ist die 

Hauptproteintranslokase der mitochondrialen Innenmembran. Er erkennt Vorläuferproteine 

mit Präsequenzen, nachdem diese durch den TOM Komplex die mitochondriale 

Außenmembran durchquert haben, und vermittelt die membranpotential- und ATP-

abhängige Translokation durch, sowie die Insertion in die Innenmembran. Dieser evolutionär 

hoch konservierte Komplex besteht aus mindestens 11 Komponenten und kann in drei 

funktionelle Einheiten eingeteilt werden: der Rezeptorteil, welcher dem Intermembranraum 

zugewandt ist, der Translokationskanal in der Innenmembran und der Importmotor in der 

Matrix. In dieser Arbeit werden neue Erkenntnisse über die Struktur und Funktion von Tim23 

und Tim17, die Untereinheiten des Translokationskanals des TIM23 Komplexes in der 

Innenmembran, beleuchtet.  

Sowohl Tim23 als auch Tim17 besitzen vier vorhergesagte Transmembransegmente 

in der mitochondrialen Innenmembran, welche vermutlich den Translokationskanal des 

TIM23 Komplexes bilden. Tim23 verfügt zusätzlich über eine intrinsisch ungeordnete 

Domäne, die dem Intermembranraum zugewandt ist. Mittels in vivo Analyse der Tim23-

Domäne im Intermembranraum konnten neue Interaktionspartner identifiziert werden. Dies 

bekräftigt die Rolle von Tim23 als organisatorisches Element im Intermembranraum, welches 

sowohl den Proteintransfer zwischen TOM und TIM23 Komplexen koordiniert als auch 

spätere Phasen der Proteintranslokation durch die mitochondriale Innenmembran reguliert. 

Die Analyse der in der Membran integrierten Tim23 Segmente zeigte, dass die beiden letzten 

Transmembransegmente zur Stabilität der Tim17-Tim23 Interaktion sowie zum 

Proteintransport beitragen, obwohl diese für das Überleben der Zelle nicht essentiell sind. 

Dahingegen werden die beiden ersten Transmembransegmente von Tim17 für die Interaktion 

zwischen Tim17 und Tim23 benötigt. Die beiden Letzten, vor allem der zur Matrix gewandte 
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Loop dazwischen, vermitteln die Rekrutierung des Importmotors. Diese Ergebnisse deuten 

auf eine essentielle Rolle von Tim17 beim Transport von Vorläuferproteinen vom 

Translokationskanal in der Innenmembran bis zum Importmotor in der Matrix während der 

Proteintranslokation in Mitochondrien.  

Zusätzlich zur in vivo Analyse wurde eine Methode zur rekombinanten Expression und 

Aufreinigung von Tim17 und Tim23 etabliert. Der aufgereinigte Tim17-Tim23 Komplex wurde 

in Proteoliposomen rekonstituiert, welcher spezifisch Vorläuferproteine mit Präsequenzen 

erkannte. Dadurch konnte eine solide Grundlage für zukünftige Experimente gelegt werden, 

um ein einfaches und biochemisch definiertes System zu entwickeln, dass eine 

mechanistische Untersuchung der Proteintranslokation durch die mitochondriale 

Innenmembran und Biogenese der Mitochondrien ermöglicht. 
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Abreviations 

5-FOA 5-fluoroorotic acid 

AAC ADP/ATP carrier 

ADP Adenosine diphosphate 

Amp Ampicillin 

APS Ammonium persulfate  

ATP Adenosine triphosphate 

BN-PAGE Blue native polyacrylamide gel electrophoresis 

Bpa p-benzoyl-L-phenylalanine 

BSA Bovine serum albumin 

C- Carboxy- 

DHFR Dihydrofolate reductase 

DiSC3(5) 3,3'-Dipropylthiadicarbocyanine Iodide 

DMSO Dimethyl sulfoxide 

DNA Deoxyribonucleic acid 

dNTP Deoxyribonucleoside triphosphate 

DSG Disuccinimidyl glutarate 

DTT Dithiotreitol 

E. coli Escherichia coli 

EDTA Ethylendiaminetetraacetate 

F1β F1β subunit of the ATP synthase 

FL Full length 

FP Forward primer 

GPD glyceraldehyde-3-phosphate dehydrogenase 

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

His Histidine 

Hsp Heat shock protein 

Igg Immunoglobuline G 

IM Inner membrane 

IMS Inter membrane space 

IP Immunoprecipitation 

kDa Kilodalton 

LB Luria Bertani 

mtDNA Mitochondrial DNA 

MTS Mitochondrial targeting sequence 

N- Amino- 

NADH nicotinamide adenine dinucleotide 
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NBD Nucleotide binding domain 

ncDNA Nuclear DNA 

NEF Nucleotide exchange factor 

NiNTA Nickel-nitrilotriacetic acid 

NMR Nuclear magnetic resonance 

ODx Optical density at x nm wavelength 

OM Outer membrane 

OXA Oxidase assembly 

PAGE Polyacrylamide gel electrophoresis 

PAS Protein A sepharose 

PCR Polymerase chain reaction 

PEG Polyethylene glycol 

PI Pre-immune serum 

PK Proteinase K 

PMSF Phenylmethylsulfonyl fluoride 

prom-X-flank promoter-X (gene)-flanking region 

PVDF Polyvinylidene difluoride 

RNA Ribonucleic acid 

RNase Ribonuclease 

RP Reverse primer 

RT Room temperature 

S. cerevisiae  Saccharomyces cerevisiae 

SAM Sorting and assembly machinery 

SBD Substrate binding domain 

SC Sub-cloning 

SD Synthetic defined 

SDM Site directed mutagenesis 

SDS Sodium dodecyl sulphate 

TAE Tris base, acetic acid, EDTA 

TBS Tris-buffered saline 

TCA Trichloroacetic acid 

TEMED N,N,N',N'-tetramethylene-1,2-diamine 

TIM Translocase of the inner mitochondrial membrane 

TM Transmembrane segment 

TOB Topogenesis of mitochondrial outer membrane β-barrel proteins 

TOM Translocase of the outer mitochondrial membrane 

Tris Tris(hydroxymethyl)aminomethane 

v/v Volume per volume 
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w/v Weight per volume 

WT Wild type 

YPD Yeast extract-Peptone-Dextrose 

YPGal Yeast extract-Peptone-Galactose 

YPLac Yeast extract-Peptone-Lactate 

ΔΨ Membrane potential 
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