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IV. Summary 
 

Karrikins (KARs) are small, bicyclic compounds that derive from the combustion 

of plant material. Initially, karrikins were associated with the promotion of seed 

germination of fire-following plants. However, karrikins promote the germination of a 

wide range of flowering plant species, including those that generally do not grow in fire-

prone environments, such as Arabidopsis thaliana. Karrikin perception requires the 

α/β-fold hydrolase receptor KAI2. The study of karrikin perception (kai2) mutants has 

increased our understanding of the importance of karrikin signalling in plant 

development. For instance, KAI2 in Arabidopsis regulates hypocotyl elongation, 

cotyledon expansion and drought resistance. Therefore, karrikins likely mimic 

endogenous unknown plant hormones, currently denominated as KAI2-ligands (KL).  

 

Recent studies have demonstrated that the perception of karrikins/KL is closely 

related to that of strigolactones (SLs), a group of plant hormones that are perceived by 

the related α/β-fold hydrolase DWARF14 (D14). Both signalling pathways converge 

upon the F-box protein MAX2 for ubiquitylation and subsequent degradation of the 

members of a group of repressors, belonging to the SMXL family of proteins. SLs have 

been associated with the regulation of plant development, including shoot branching, 

leaf senescence or root and root hair development. However, most works focused on 

understanding the role of SLs controlling root and root hair development in Arabidopsis 

have used max2 mutants and the unspecific strigolactone analogue rac-GR24. 

Because the non-specific max2 mutants and rac-GR24 do not distinguish between KL 

and SL signalling, it remained unclear whether SL and/or KL control root and root hair 

development. 

 

In this doctoral thesis, I dissected the roles of D14- and KAI2-mediated 

signalling in root and root hair development in Arabidopsis. We demonstrate that SL 

and KL signalling regulate lateral root density and root epidermal cell length. I further 

describe that KAI2-mediated signalling regulates root skewing, straightness, diameter 

and root hair density and length. Furthermore, I report that all KAI2 effects in 

Arabidopsis roots can be explained by the activity of the canonical repressor of karrikin 

signalling, SMAX1/SMXL2.  To facilitate the quantification of root skewing and root 

straightness, I established a script to automate the calculation of skewing to the left or 

right-slanted and root straightness. 



 17 

 

Second, I contributed to finding new interactors of KAI2. A large-scale yeast-2-

hybrid screen was conducted for KAI2 interactors and detected several novel rac-

GR24-dependent KAI2-interactors, among them the phosphatase PP2AA2. To confirm 

a jointly mediate signalling pathway, I analysed root hair length (RHL) and density 

(RHD) in pp2aa2 mutants. I found that both RHL and RHD in Arabidopsis pp2aa2 

mutants are strongly decreased, which perfectly phenocopied the root hair phenotypes 

of kai2 mutants. Interestingly, pp2aa2 mutants did not respond to exogenous karrikin 

treatment for root hair growth. These results suggest that KAI2 in concert with PP2AA2 

mediates the regulation of root hair development in Arabidopsis roots. 

 

Finally, I observed that mutations in KL signalling perception attenuate the root 

hair response to external phosphate deficiency. Upon phosphate starvation, auxin 

signalling induces the elongation of root hairs, presumably to increase the root surface 

area and acquire phosphate. Therefore, I hypothesised that KL signalling might 

regulate root hair development in cross-talk with auxin biosynthesis, signalling and/or 

transport. To determine this, I first examined the expression of genes involved in auxin 

signalling and transport. I found that karrikin perception mutants showed significantly 

reduced expression levels of the AUXIN RESPONSE FACTOR (ARF) genes, ARF7 

and ARF19. These results indicate that auxin signalling is perturbed in karrikin 

signalling mutants. Therefore, we examined auxin signalling in kai2 mutants by 

analysing the expression of the auxin reporter DR5v2:GFP. We observed 

that kai2 mutants show a reduced DR5v2:GFP expression in the root meristem. These 

results suggest that kai2 mutants may be impaired in auxin sensitivity or distribution. I 

next demonstrated that external auxin treatment rescued the root hair phenotype 

of kai2 to the wild-type level. Therefore, impaired auxin sensitivity is likely not the cause 

for the alteration in root hair development in karrikin signalling mutants. The auxin influx 

carrier AUX1 is the principal transporter for auxin uptake in root hairs. Hence to 

ascertain whether KL signalling regulates root hair development through AUX1, I 

analysed AUX1-YFP protein accumulation upon activation of karrikin signalling. I 

observed that exogenous KAR treatment induces accumulation of AUX1-YFP in the 

epidermal cell layer above the lateral root cap. Furthermore, aux1 mutants are resistant 

to the effects of karrikin on root hair development. Thus, I conclude that deficient AUX1 
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accumulation in the root epidermis of KL signalling mutants disrupts auxin distribution 

in the root tip region and causes the root hair phenotypes.  
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V. Zusammenfassung 
 
Karrikine sind kleine, bizyklische Signalmoleküle, die bei der Verbrennung von 

pflanzlichem Material entstehen. Ursprünglich waren Karrikine mit der Förderung der 

Samenkeimung feuerfolgender Pflanzen assoziiert. Karrikine fördern jedoch die 

Keimung einer Vielzahl von Blütenpflanzen, einschließlich solcher Pflanzen wie 

beispielsweise Arabidopsis thaliana, die im Allgemeinen nicht in feuergefährdeten 

Umgebungen wachsen. Die Karrikin-Wahrnehmung erfordert den α/β-fachen 

Hydrolase-Rezeptor KAI2. Die Untersuchung von Karrikin-Wahrnehmungsmutanten 

(kai2) hat unser Verständnis über die Bedeutung der Karrikin-Signalübertragung für 

die Pflanzenentwicklung verbessert. KAI2 reguliert beispielsweise die 

Hypokotylelongation, Keimblattausdehnung und Trockenresistenz in Arabidopsis. 

Daher ahmen Karrikine vermutlich unbekannte endogene Pflanzenhormone nach, die 

derzeit als KAI2-Liganden (KL) bezeichnet werden. 

 

Jüngste Studien haben gezeigt, dass die Wahrnehmung von Karrikinen/KL eng mit der 

von Strigolaktonen (SLs), einer Gruppe von Pflanzenhormonen, die von der analogen 

α/β-fachen Hydrolase DWARF14 (D14) wahrgenommen werden, verwandt ist. Beide 

Signalwege konvergieren auf dem F-Box-Protein MAX2 zur Ubiquitinierung und 

anschließendem Abbau der Mitglieder einer Gruppe von Repressoren, die zur SMXL-

Proteinfamilie gehören. SLs wurden mit der Regulierung der Pflanzenentwicklung in 

Verbindung gebracht. Dies beinhaltet unter anderem Sprossverzweigung, 

Blattalterung oder Wurzel- und Wurzelhaarentwicklung. Die meisten Arbeiten zum 

Verständnis der Rolle von SLs, die die Wurzel- und Wurzelhaarentwicklung bei 

Arabidopsis steuern, verwendeten jedoch max2 Mutanten und das unspezifische 

Strigolakton-Analogon rac-GR24. Da die unspezifischen max2 Mutanten und rac-

GR24 nicht zwischen KL- und SL-Signalen unterscheiden, blieb unklar, ob SL und/oder 

KL die Wurzel- und Wurzelhaarentwicklung kontrollieren. 

 

In dieser Doktorarbeit habe ich die Rolle der D14- und KAI2-vermittelten 

Signalübertragung in der Wurzel- und Wurzelhaarentwicklung in Arabidopsis 

untersucht. Wir zeigen, dass SL- und KL-Signale die laterale Wurzeldichte und die 

Länge der epidermalen Wurzelzellen regulieren. Zudem beschreibe ich, dass die KAI2-

vermittelte Signalübertragung die Wurzelkrümmung und -geradlinigkeit, den 

Durchmesser der Wurzel, sowie die Dichte und Länge der Wurzelhaare reguliert. 
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Darüber hinaus berichte ich, dass alle KAI2-Effekte in Arabidopsis-Wurzeln durch die 

Aktivität des kanonischen Repressors der Karrikin-Signalübertragung SMAX1/SMXL2 

erklärt werden können. Um die Quantifizierung der Wurzelkrümmung und der 

Wurzelgeradlinigkeit zu erleichtern, habe ich ein Skript erstellt, um die Berechnung der 

Krümmung nach links oder rechts und die Geradheit der Wurzel zu automatisieren. 

 

Zusätzlich habe ich dazu beigetragen, neue Interaktoren von KAI2 zu finden. Ein Hefe-

2-Hybrid-Screening in großem Maßstab wurde für KAI2-Interaktoren durchgeführt und 

mehrere neue rac-GR24-abhängige KAI2-Interaktoren, darunter die Phosphatase 

PP2AA2, identifiziert. Um einen gemeinsam vermittelten Signalweg zu bestätigen, 

wurde die Wurzelhaarlänge (RHL) und -dichte (RHD) in pp2aa2 Mutanten analysiert.  

Ich fand heraus, dass sowohl RHL als auch RHD in Arabidopsis pp2aa2 Mutanten 

stark verringert sind, was die Wurzelhaar-Phänotypen von kai2 Mutanten perfekt 

kopierte. Interessanterweise reagierten pp2aa2 Mutanten nicht auf eine exogene 

Karrikin-Behandlung für das Wurzelhaarwachstum. Diese Ergebnisse legen nahe, 

dass KAI2 zusammen mit PP2AA2 die Regulation der Wurzelhaarentwicklung in 

Wurzeln von Arabidopsis vermittelt. 

 

Abschließend beobachtete ich, dass Mutationen in der KL-Signalwahrnehmung die 

Wurzelhaarreaktion auf externen Phosphatmangel abschwächen. Bei 

Phosphatmangel induziert der Auxin-Signalweg die Verlängerung der Wurzelhaare, 

vermutlich um die Wurzeloberfläche zu vergrößern und Phosphat aufzunehmen. 

Daher stellte ich die Hypothese auf, dass die KL-Signalübertragung die 

Wurzelhaarentwicklung im Nebensprechen mit der Auxin-Biosynthese, der Auxin-

Signalübertragung und/oder dem Transport von Auxin regulieren könnte. Um dies 

festzustellen, untersuchte ich zunächst die Expression von Genen, die an der 

Signalübertragung und dem Transport von Auxin beteiligt sind. Ich fand heraus, dass 

Karrikin-Wahrnehmungsmutanten signifikant reduzierte Expressionsniveaus der 

AUXIN RESPONSE FACTOR (ARF)-Gene ARF7 und ARF19 zeigten. Diese 

Ergebnisse zeigen, dass die Auxin-Signalweiterleitung in Karrikin-Signalmutanten 

gestört ist. Daher untersuchten wir die Auxin- 

Signalweiterleitung in kai2 Mutanten durch Analyse der Expression des Auxin 

reporters DR5v2:GFP. Wir beobachteten, dass kai2 Mutanten eine verringerte 

DR5v2:GFP-Expression im Wurzelmeristem zeigen. Diese Ergebnisse legen nahe, 
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dass kai2 Mutanten in der Sensitivität gegenüber Auxin oder der Verteilung von Auxin 

beeinträchtigt sein können. Als nächstes zeigte ich, dass eine externe Behandlung mit 

Auxin den Wurzelhaar-Phänotyp von kai2 auf das Wildtyp-Niveau rettete. Daher ist 

eine beeinträchtigte Auxin-Empfindlichkeit wahrscheinlich nicht die Ursache für die 

Veränderung der Wurzelhaarentwicklung in Karrikin-Signalmutanten. Der Auxin-

Zufluss-Träger AUX1 ist der Haupttransporter für die Auxin-Aufnahme in 

Wurzelhaaren. Um festzustellen, ob die KL-Signalübertragung die 

Wurzelhaarentwicklung durch AUX1 reguliert, analysierte ich die AUX1-YFP-

Proteinakkumulation bei Aktivierung der Karrikin-Signalübertragung. Ich beobachtete, 

dass eine exogene Karrikin-Behandlung eine Akkumulation von AUX1-YFP in der 

epidermalen Zellschicht über der lateralen Wurzelkappe induziert. Darüber hinaus sind 

aux1 Mutanten gegen die Auswirkungen von Karrikin auf die Wurzelhaarentwicklung 

resistent. Daher schließe ich, dass eine mangelnde AUX1-Akkumulation in der 

Wurzelepidermis von KL-Signalmutanten die Verteilung von Auxin in der 

Wurzelspitzenregion stört und die Wurzelhaar-Phänotypen verursacht. 
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VI. Introduction 
 
 
1. The karrikin family 
 

Seed germination is a crucial event in the life cycle of higher plants, while seed 

dormancy is critical to limit germination under disadvantageous environmental 

conditions. In many regions, wildfires provide an excellent opportunity for different plant 

species to experience reduced competition for essential resources such as space, 

light, water, and nutrients (Staden et al., 2000; Dixon et al., 2009). These species, 

known as fire-following plants, have evolved to break seed dormancy immediately after 

fire. Heat is not required for seed germination (Roche et al., 1997; Roche et al., 1998),  

but it is now well known that smoke is an effective stimulant of germination (Dixon et 

al., 2009).  

 

Attempts to find the bioactive smoke-compound that stimulates seed 

germination culminated in the isolation of the butenolide 3-methyl-2H-furo [2,3-c] 

pyran-2-one, or karrikin 1 (KAR1). This compound defined a new family of butenolide 

molecules known as karrikins (KARs) (Flematti et al., 2004; Flematti et al., 2009). Until 

now, almost 50 analogues of KAR have been synthesized (Flematti et al., 2007; Sun 

et al., 2008) and six KAR molecules have been identified in plant-derived smoke 

(Figure 1), which differ in their methyl substitutions (Flematti et al., 2009).  KARs can 

stimulate the germination of dormant seeds of plants from numerous families at low 

concentrations, including species that are not considered as fire-following plants 

(Chiwocha et al., 2009; Flematti et al., 2009; Nelson et al., 2009; Waters et al., 2012b). 

Thanks to this breakthrough, a new research area started to move towards the broader 

biological significance of the KAR signalling pathway. 
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Figure 1: Representative structures of the karrikins (KAR1 to KAR6). Germination 

activity of karrikin half maximal effective concentration (EC50) using Solanum 

orbiculatum are shown in parenthesis (Modified from Guo et al., 2013). 

 

2. KAI2 is the receptor of KARs  
 

KARs not only induces germination but also increase the response to light 

in Arabidopsis thaliana hypocotyls (Nelson et al., 2010). KAR treatment inhibits 

hypocotyl elongation and cotyledon expansion (Nelson et al., 2010). Based on these 

responses to KAR, a forward genetic screen identified the first karrikin insensitive (kai) 

mutant in Arabidopsis. Sequencing of two kai mutants revealed two frameshift 

mutations in a gene encoding an F-box protein MAX2 (MORE AXILLARY GROWTH 

2) that forms part of the SCF class of E3 ubiquitin ligase complexes and was previously 

known to act in strigolactone signalling (Nelson et al., 2011). This finding revealed the 

first F-box protein involved in two plant hormone signalling pathways responsive to 

KARs and strigolactones (SLs) (Gomez-Roldan et al., 2008; Umehara et al., 2008; 

Nelson et al., 2011). 

 

For other plant hormones, such as auxin or jasmonate, the F-box proteins 

directly bind the hormone and selectively target downstream repressor proteins for 

their degradation (Abd-Hamid et al., 2020). However, the perception of SLs requires 

the α/β hydrolase DWARF14 (D14) (Arite et al., 2009; Waters et al., 2012a; Yao et al., 

2016). This evidence, together with the insensitivity of max2 mutants to both SLs and 

KARs and the insensitivity of d14 to only SL (Waters et al., 2012b), suggested a 

different KAR receptor. Phylogenetic analysis proposed that the Arabidopsis and rice 



 24 

D14 paralogue, D14-LIKE (D14L), serves as the KAR receptor (Waters et al., 2012b). 

Indeed, genetic dissection demonstrated that D14L and D14 are required for normal 

KAR and SL responses, respectively, and that both signalling pathways converge upon 

MAX2 (Waters et al., 2012b). Mutations in D14L lead to INSENSITIVITY TO KAR; 

therefore, D14L is now renamed as KAI2 (Waters et al., 2012b).   

The identification of the two receptors for KAR and SL provided the molecular 

basis to separate the regulation of KAR and SL signalling by MAX2. The similarity 

between KAI2 and D14 signalling pathways raises the intriguing question of how these 

mechanisms have evolved. D14 can only be found in Angiosperms and Gymnosperms 

(Delaux et al., 2012; Waters et al., 2015; Waters et al., 2017). However, non-vascular 

plants, such as the moss Physcomitrella patens, produce SLs (Proust et al., 

2011). KAI2 orthologues have been identified in mosses, liverworts and charophytes 

(Delaux et al., 2012) (Figure 2). Thus, these observations suggest that KAI2 proteins 

may perceive SLs in non-vascular plants. Phylogenetic studies showed that D14 and 

KAI2 evolved from a common KAI2-like lineage present in streptophyte algae (Bythell-

Douglas et al., 2017) and that gene amplification events from KAI2 paralogues 

specifically occurring in parasitic plants within the Orobanchaceae family (Toh et al., 

2014; Conn et al., 2015; Tsuchiya et al., 2015). A functional approach demonstrated 

that KAI2-like genes from Selaginella moellendorfii (lycophytes) could partially 

substitute the activity of KAI2 in Arabidopsis. However, KAI2-like genes from 

Marchantia polymorpha (liverworts) and Selaginella could not substitute the activity 

of D14 (Waters et al., 2015). Taken together, the available evidence indicates that D14 

evolved from KAI2 paralogues (Machin et al., 2020). 
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Figure 2: Phylogeny of the KAI2 and D14 protein family. Gene duplication events 

are indicated as D1, before the emergence of tracheophytes, and D2 after the split of 

angiosperms and gymnosperms (From Waters et al., 2015).  

 

3. KAI2-ligands: putative endogenous hormones 
 

The wide evolutionary conservation of KAI2 proteins underlines that the primary 

function of KAI2 is improbable to be the perception of bioactive molecules from fire 

(Nelson et al., 2010). Recent studies have promoted the biological significance and 

role of KAI2 in plant development and interaction with other organisms. KAI2 is 

required for different developmental traits in Arabidopsis (Li et al., 2006) (Waters et al., 

2012b; Waters et al., 2013; Conn and Nelson, 2016; Li et al., 2017; Wang et al., 2018; 

Swarbreck et al., 2019; Villaécija-Aguilar et al., 2019; Wang et al., 2020). The kai2 

mutant has an elongated hypocotyl and epinastic cotyledons. During vegetative 

development, kai2 leaves are elongated with curled margins (Waters et al., 2012b). 

KAI2 promotes drought resistance (Li et al., 2017) and is also required for arbuscular 

mycorrhizal symbiosis in rice and petunia (Gutjahr et al., 2015; Liu et al., 2019). 
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Therefore, KARs are assumed to mimic the action of a yet unknown putative 

endogenous hormone family, denominated KAI2-ligands (KLs) (Conn and Nelson, 

2016). 

 

4. Strigolactones: chemistry and biosynthesis 

 

SLs are a family of terpenoid lactone hormones with a wide range of functions 

in plants, algae, bryophytes and arbuscular mycorrhizal fungi (Akiyama and Hayashi, 

2006; Bouwmeester et al., 2007; Yoneyama et al., 2007; Umehara et al., 2008; Xie et 

al., 2010; Yoneyama et al., 2010; Proust et al., 2011; Ruyter-Spira et al., 2011; Delaux 

et al., 2012; Brewer et al., 2013). Their collective name come from the first discovered 

SL in root exudates of cotton that functions as stimulator of seed germination of the 

parasitic weed Striga lutea (Butler, 1995). Since then, at least 25 characterized 

naturally SLs occurring have been isolated (Saeed et al., 2017). 

 

Although SL biosynthesis can occur in different parts of the plants, SLs are 

mainly produced in roots (Koltai and Beveridge, 2013). SLs are carotenoid derivatives 

defined by the presence of a structure consisting of a butenolide ring (D ring) linked in 

the stereochemical R configuration to a second variable moiety (Matusova et al., 2005; 

Al-Babili and Bouwmeester, 2015; Jia et al., 2017). Genes involved in the SL 

biosynthetic pathway have been identified in several plant species (Waters et al., 

2017). The production of a central metabolite carlactone from β -carotene involves the 

all-trans/9-cis-β-carotene isomerase DWARF27 (D27), followed by the next enzymes 

in the pathway, the carotenoid cleavage dioxygenases CCD7, and CCD8, which supply 

the last enzymatic steps of the core pathway. Carlactone is then modified by different 

enzymes, including the cytochrome P450 (CYP) of the MAX1 sub-family, leading to 

different types of SLs (Jia et al., 2017). Depending on the structure of their variable 

moiety, SLs are classified into canonical, if they contain a conserved tricyclic lactone 

(ABC ring) or non-canonical, if they contain a different structure such as zealactone 

(Charnikhova et al., 2018), methyl carlactonoate (Abe et al., 2014) or helialactone 

(Ueno et al., 2014). The differences in the stereochemistry of the BC ring junction 

divided the canonical SLs into strigol-type or orobanchol-type (Ueno et al., 2011; Xie 

et al., 2013). Orobanchol-type is synthesized from ent-2´-epi-5-deoxystrigol (Yokota et 

al., 1998) and contains the C ring in α orientation, while strigol-type is derived from 5-
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deoxystrigol and contains the C ring in β orientation (Jia et al., 2017) (Figure 3). The 

two canonical SLs, strigol and orobanchol are named due to their activity in triggering 

seed germination in Striga and Orobanche species respectively (Cook et al., 1972; 

Siame et al., 1993; Yokota et al., 1998). It is common to use strigol and orobanchol as 

references in the terminology of other structurally related SLs or stereoisomers of the 

chiral centre at the C2´atom, the BC ring junction, or both. The 

abbreviations ent- and epi- is frequently employed to designate two types of 

stereoisomers, enantiomer, which is a mirror from the reference, and epimer, with an 

opposite orientation at a single C atom.  

 

The chemical synthesis of natural SLs is an arduous work due to their complex 

structure and the presence of chiral centres. Besides, it is generally unknown, which 

SLs are responsible for different biological activity. Therefore, SL research strongly 

depends on the synthetic analogue rac-GR24, which is a racemic mixture of two 

different enantiomers, GR245DS and GR24ent-5DS (Figure 3). Although the synthetic 

production of GR24 can also generate two other different enantiomers, GR244DO and 

GR24ent-4DO, these compounds are not regularly used in biological experiments 

(Scaffidi et al., 2014). KAI2 and D14 are capable of detecting synthetic rac-GR24. 

While GR24ent-5DS appears to stimulate KAI2 signalling (Scaffidi et al., 2014; Waters et 

al., 2015), D14 signalling seems to preferentially respond to GR245DS (Nakamura et 

al., 2013; Scaffidi et al., 2014; Waters et al., 2015; Zhao et al., 2015). 
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Figure 3. Structures of Strigolactones (SLs).  Representative structures of the two 

major classes of naturals SLs and the synthetic analogue of SL, GR24. (Morffy et al., 

2016). 

 

 

5. Proteasome targets of SL/KL signalling pathways 
 

Previous studies contend that in complex with MAX2, D14 or KAI2 target a 

group of repressors of the SMXL (SUPPRESSOR OF MAX2 1-LIKE) family of proteins. 

Eight genes have been identified in Arabidopsis to belong to the SMXL gene family 

(Stanga et al., 2016). In Arabidopsis, loss-of-function of SMAX1 and/or SMXL2, 

suppresses KL-signalling related max2 phenotypes (Stanga et al., 2013; Soundappan 

et al., 2015; Wang et al., 2015; Swarbreck et al., 2019; Villaécija-Aguilar et al., 2019; 

Wang et al., 2020), while loss-of-function of the redundant SMXL6, SMXL7 and 

SMXL8, suppress SL-related max2 phenotypes (Soundappan et al., 2015; Wang et 

al., 2015) (Figure 4). Other three genes form a new subclade of the SMXL gene family, 
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SMXL3, SMXL4 and SMXL5 which are redundant central regulators of phloem 

formation, interestingly independent of SL and KL signalling (Wallner et al., 2017). 

 

 

 

Figure 4: Model for KAI2 and D14 signalling pathways. Upon perception of KL or 

SL, KAI2 and D14 bind to the F-box protein MAX2 to trigger the degradation of SMXLs. 

(Modified from Villaécija-Aguilar et al., 2019). 

 

SMXL proteins have a weak homology to the Class 1 HsP100/ClpB proteins 

(Jiang et al., 2013; Stanga et al., 2013; Zhou et al., 2013; Moturu et al., 2018). 

However, their exact function remains unclear. Previous investigations suggested that 

SMXLs are associated with transcriptional regulation, due to their interaction with 

TOPLESS (TPL) and TOPLESSRELATED (TPR) co-repressor proteins (Zhou et al., 

2013; Soundappan et al., 2015; Wang et al., 2015).  Similar to Aux/IAA proteins in 

auxin signalling and JAZ proteins in jasmonate signalling, SMXL proteins lack DNA-

binding motifs. Aux/IAA interact with TPL/TPR proteins to recruit auxin response 

factors (ARFs) via an EAR motif (Ethylene-responsive element binding factor-

associated amphiphilic repression) (Kagale and Rozwadowski, 2011). Upon auxin 

perception, the auxin receptor TIR1 F-box protein targets Aux/IAA for its degradation, 
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which activates auxin signalling. Analogously, jasmonate perception via the F-box 

protein COI1 targets JAZ for degradation and activation of jasmonate signalling. 

Although some JAZ has an EAR motif, others associate TPL/TPR by binding NINJA, 

which has an EAR motif (Szemenyei et al., 2008; Pauwels et al., 2010; Kagale and 

Rozwadowski, 2011; Causier et al., 2012). Similarly, SMXLs might interact with 

TPL/TPR via their EAR motif to recruit transcription factors. The EAR motif is 

conserved among the members of the SMXL protein family (Soundappan et al., 2015). 

Yeast two-hybrid assays, immunoprecipitation and bimolecular fluorescence 

complementation assays have proven that TPL/TPR interactions with SMXL proteins 

are EAR motif-dependent (Jiang et al., 2013; Soundappan et al., 2015; Wang et al., 

2015; Liang et al., 2016). Deletion of a phosphate-binding P-loop similar to the EAR 

motif in SMXL7 leads to degradation resistance of the protein (Liang et al., 2016).  

 
6. SL and KL signalling cross-talk with signalling pathways of other 
phytohormones 
 

A range of complex interactions of hormone signalling systems regulates crucial 

aspects of plant development. Auxin, cytokinin (CK), ethylene, gibberellin acid (GA), 

abscisic acid (ABA), and brassinosteroids exhibit either synergistic or antagonistic 

interactions (Vanstraelen and Benková, 2012). Previous research has investigated the 

interaction of SLs with signalling pathways of other hormones (Waters et al., 2012a; 

Shinohara et al., 2013; Soundappan et al., 2015; Duan et al., 2019; Omoarelojie et al., 

2019). In rice roots, prolonged GA treatment suppresses SL exudation (Ito et al., 2017). 

SL and CK signalling coordinately control bud outgrowth in Pisum sativum (Duan et 

al., 2019). In Arabidopsis shoots, SL biosynthesis and signalling mutants display an 

increase in auxin transport (Bennett et al., 2016), presumably due to over-

accumulation of the auxin efflux carrier PIN-FORMED1 (PIN1) at the plasma 

membrane (Shinohara et al., 2013; Soundappan et al., 2015). Treatments with rac-

GR24 altered the localization of PIN1 in a MAX2-dependent manner. Also, mutations 

in pin3 pin4 and pin7 lead to partial suppression of max2 phenotype (van Rongen et 

al., 2019). At the root level, rac-GR24 treatment promotes PIN2 endocytosis (Pandya-

Kumar et al., 2014) and reduces PIN protein levels in the root meristem (Ruyter-Spira 

et al., 2011). Nevertheless, whether rac-GR24 regulates auxin transport via D14- or 

KAI2-mediated signalling pathways is unknown. Few pieces of evidence link SL and 
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ethylene signalling. For example, it was proposed that ethylene signalling is required 

for the control of root hair elongation by MAX2 (Koltai et al., 2010; Kapulnik et al., 

2011b; Kapulnik et al., 2011a; Mayzlish-Gati et al., 2012). However, it remains unclear 

if ethylene is epistatic to SLs or KL signalling in the context of root-hair development, 

due to the use of max2 mutants perturbed in both pathways. 

 

Little research has been conducted to investigate cross-talk between KL and 

other phytohormone signalling pathways. Recent reports suggest that Arabidopsis kai2 

plants are hyposensitive to ABA in stomatal closure and cotyledon opening, suggesting 

a link between KL and ABA signalling (Li et al., 2017). Besides, GA biosynthesis and 

perception are partially required for the induction of seed germination by KARs, 

indicating that KL signalling acts upstream of GA signalling for seed germination 

(Nelson et al., 2009). In summary, while the interconnection between SL and auxin 

signalling has been quite well explored, the interaction between SL and/or KL signalling 

with other plant hormones is still understudied.  

 

7. Participation of protein phosphatases in plant hormone signalling 
 

Phytohormone regulation of plant development is mediated through a wide 

range of proteins, including phosphatases. Most of the Ser/Thr phosphatase activities 

in eukaryotic cells are controlled by the PROTEIN PHOSPHATASE 2A (PP2A) 

(Millward et al., 1999). PP2A proteins are constituted by a catalytic subunit (PP2Ac), 

and one or more regulatory subunits, the scaffolding/regulatory (A) subunit and the 

regulatory (B) (Hendrix et al., 1993; Strack et al., 1998; Janssens and Goris, 2001). 

Genetics approaches have shown that PP2A and its subunits regulate plant growth 

(Garbers et al., 1996). In Arabidopsis, mutations in PP2A genes cause hypocotyl hook 

formation, root agravitropism and root meristem collapse (Garbers et al., 1996; Zhou 

et al., 2004; Michniewicz et al., 2007). PP2A plays important roles in stress response 

and hormone signalling. Under osmotic stress, ABA binds to its receptor PYL to inhibit 

the activity of PP2A, which leads to the regulation of auxin transport by PIN 

dephosphorylation (Zhou et al., 2004; Li et al., 2020). PP2A mediates the regulation of 

ethylene production by controlling the stability of specific 1-aminocyclopropane 1-

carboxylate synthase (ACS) enzymes (Skottke et al., 2011). Besides, PP2A positively 

regulates the transcription factor BZR1 (Tang et al., 2011), which controls 
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brassinosteroid-responsive gene expression (Gendron and Wang, 2007; Kim et al., 

2009; Tang et al., 2010). The fact that most signalling processes involved 

phosphorylation and dephosphorylation events suggests that PP2A might also be 

required for KL and/or SL mediate signalling. 

 

8. Arabidopsis root development and behaviour  
 

Root growth and development is essential to ensure efficient uptake of water 

and nutrients in vascular plants. Because of its relatively simple root structure, 

Arabidopsis roots have been extensively studied (Scheres and Wolkenfelt, 1998; 

Masson et al., 2002; Benfey et al., 2010). The root system of Arabidopsis included a 

primary root, lateral roots, adventitious roots and root hairs (Smith and De Smet, 2012). 

 

The primary root is developed from embryonical meristematic tissue. A central 

vascular column consists of xylem and phloem, and a pericycle that constitutes the 

stele, surrounded by epidermal, cortical and endodermal tissues (Bennett and 

Scheres, 2010). At the root tip, meristematic cells are the basis for other cells type in 

the root. In this area is located the root cap and columella cells, involved in the control 

of root gravitropism (Swarup et al., 2005; Guyomarc'h et al., 2012). Lateral roots (LRs) 

emerge from the primary root, and they are crucial to increase root surface area and 

biomass (López-Bucio et al., 2002; Tian et al., 2014; Robbins and Dinneny, 2015; Sun 

et al., 2017). The formation of LRs begins in the root meristem, and it involves the 

oscillation of over 3.000 genes (Moreno-Risueno et al., 2010). When the cells move 

into the differentiation zone, LR originator cells encounter a series of division 

(Dubrovsky et al., 2009; Dubrovsky and Forde, 2012). LR development has been 

divided into eight different stages.  Stage I from the first asymmetric division, stages II-

VII through following rounds of cells division, and stage VIII for LR emergence.  LRs 

development requires the coordinated regulation of multiple phytohormones, such as 

BR, ABA, ethylene, auxin or SLs (De Smet et al., 2007; Ivanchenko et al., 2008; Negi 

et al., 2008; Fukaki and Tasaka, 2009; Kapulnik et al., 2011b; Ruyter-Spira et al., 2011; 

Mayzlish-Gati et al., 2012; Péret et al., 2012; Jiang et al., 2015). However, a role of KL 

signalling controlling root development remained unknown 
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Changes in root movements are also essential to maximize plant fitness in a 

large variety of environmental conditions.  The studies of the movement of plants have 

been in high interest in plant biology for longer than a hundred years. The first studies 

go back to Charles Darwin in his book, The Power of Movement in Plants (Darwin, 

1897). Nevertheless, how plants control root behaviour continues being an enigma, 

and it is difficult to identify a simple model that explains this process (Roy and 

Bassham, 2014) (Figure 5). When germinating Arabidopsis seedlings on a hard agar 

surface in a petri dish, the root cannot penetrate the agar, causing morphological 

changes such as root skewing and waving. Skewing was first described in Arabidopsis 

wild type of the ecotype Landsberg erecta (Ler) as the deviation of the root growth from 

the vertical, always as right-slanted (Okada and Shimura, 1990; Vaughn and Masson, 

2011). Prior research has highlighted shown that root skewing is likely the result of a 

touch, rather than the gravity stimulus (Millar et al., 2011; Roy and Bassham, 2014).  

 

 

Figure 5. Control of root skewing and waving (from Roy and Bassham 2014). 
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9. Regulation of root hair development in Arabidopsis 
 

Root hairs can account for up to 70% of the total root surface area in Arabidopsis 

seedlings (López-Bucio et al., 2002). Thus, the number and size of root hairs influence 

the total area/volume ratio of the roots system (López-Bucio et al., 2002; Choi and 

Cho, 2019).  Changes in root hair development are controlled by several essential 

transcription factors (TFs). R2R3-type MYB transcription factor WER (WEREWOLF) 

(Lee and Schiefelbein, 1999), GL3 (GLABLA3), a basic helix-loop-helix (bHLH)-type 

transcription factor or its homologue EGL3 (ENHANCER OF GLABLA3) (Bernhardt et 

al., 2003), and TTG1 (TRANSPARENT TESTA GLABLA1), a WD repeat protein 

(Galway et al., 1994), form a complex that enhances the expression of GL2 

(GLABLA2). GL2 is a negative regulator of root hair formation in non-hair cells (Di 

Cristina et al., 1996; Masucci and Schiefelbein, 1996). Thus, the lack of GL2 function 

causes the formation of root hairs from non-hair cell files. In contrast, to promote root 

hair identity, the WER-GL3-TTG1 complex induces the expression of CPC (CAPRICE), 

a mobile R3-Type MYB transcription factor (Wada et al., 1997), in non-root hair cells. 

CPC moves to hair forming cells, where it interacts with TTG1 and GL3 or EGL3. 

Besides, the CPC homologues ETC1 (ENHANCER OF TRY AND CPC1), or TRY 

(TRIPTYCON) (Schellmann et al., 2002; Simon et al., 2007) can act in a partially 

redundant manner (Ishida et al., 2008; Bruex et al., 2012; Grierson et al., 2014; 

Salazar-Henao et al., 2016). CPC or its homologues induce the expression of RHD6 

(ROOT HAIR DEFECTIVE 6), a bHLH transcription factor, which determines root hair 

identity (Masucci and Schiefelbein, 1994; Menand et al., 2007). RHD6 and its 

homologue RSL1 (ROOT HAIR DEFECTIVE 6 LIKE1) initiate the root hair polar 

growth, then promoting the transcription of other bHLH transcription factors, RSL2 and 

RLS4, during the elongation phase (Menand et al., 2007; Yi et al., 2010). RSL4 bind 

to a cis-element called RHE (Root Hair Element) to promote the expression of RHS 

(ROOT HAIR SPECIFIC) genes (Kim et al., 2006; Won et al., 2009; Hwang et al., 

2017). Mutations in the RSL2 or RSL4 genes cause a reduction in root hair length in 

Arabidopsis (Yi et al., 2010; Mangano et al., 2018). However, overexpression of RSL2 

does not increase root hair elongation, suggesting that RSL2 alone is not sufficient to 

promote root hair growth (Yi et al., 2010). 
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Several plant hormones, such as auxin and ethylene, regulate RSL2 and RSL4 

expression to induce root hair growth. Auxin and ethylene are essential for root hair 

formation (Feng et al., 2017; Bhosale et al., 2018). Exogenous auxin and ethylene 

treatment increases root hair density and length (Pitts et al., 1998), while defects in 

auxin and ethylene biosynthesis and/or signalling reduce root hair formation 

(Velasquez et al., 2016; Feng et al., 2017). Auxin induces the expression of ARFs 

(AUXIN RESPONSE FACTORS), such as ARF5, ARF7, ARF8 and ARF19 that bind 

to the promoter of RSL4 to upregulate its expression (Mangano et al., 2018). Besides, 

ARF19 activates the expression of RSL2. However, it remains unclear whether ARF19 

can bind directly to the promoter of RSL2 (Bhosale et al., 2018). Ethylene increases 

root hair development by inducing the expression of RSL4 (Zhang et al., 2016) through 

the transcription factor EIN3 (ETHYLENE INSENSITIVE 3), which directly binds to the 

promoter of RSL4 (Feng et al., 2017). Auxin and ethylene also act systemically to 

transduce nutrient deficiency signals, such as Pi starvation.  Pi deficiency stimulates 

auxin biosynthesis at the root tip (Bhosale et al., 2018). Auxin is then transported from 

the root tip to non-root hair cells by the auxin influx carrier AUX1 (AUXIN RESISTANT 

1) to promote root hair elongation mediated by ARF19, RSL2 and RSL4 (Bhosale et 

al., 2018). The importance of auxin levels in root hair cells have also been previously 

surveyed. Expression of six different auxin efflux carriers, PINs (PIN-FORMED), inhibit 

the formation of root hair, likely by altering the levels of auxin in those cells (Ganguly 

et al., 2010). In addition, Pi deficiency increases the levels of EIN3, which can promote 

root hair development by direct binding of root hair specific genes (Song et al., 2016).  
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VII. Aims of the thesis 
 

Several studies have investigated the role of SLs in the regulation of root and 

root hair development in Arabidopsis thaliana. However, since max2 mutants are 

perturbed in both SL and KL signalling pathway and rac-GR24 stimulate D14- and 

KA2-mediated signalling, it remained unclear whether the observed phenotypes were 

associated with (lack of) SL or KL signalling.  

 

Therefore, the first major goal of my work was to dissect the roles of KL and SL 

signalling pathways in root and root hair development in Arabidopsis, and to 

understand, whether they are mediated by canonical receptor target interactions. For 

this purpose, I aimed to study different root parameters, such as root diameter, 

epidermal cell length, root skewing, root straightness, and root hair density and length.  

I found that mutations on KAI2 and MAX2 strongly reduced root hair development. 

Thus, the second major aim of my thesis was to understand how KL signalling 

regulates root hair development. To this end I phenotypically characterized the role of 

a KAI2 interactor PP2AA2 (identified by collaborating with the laboratory of Pascal 

Falter-Braun). Furthermore, root hair growth is controlled by several hormones, 

including auxin. Previous reports proposed the interaction between auxin and SL 

signalling. However, those studies were again based on max2 mutants and rac-GR24 

treatments. Here my aim was to understand whether there is an interaction between 

KL signalling and auxin signalling, biosynthesis and/or transport in the control of root 

hair development. 
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VIII. Results 
 
Paper I: SMAX1/SMXL2 regulate root and root hair development downstream of 

KAI2-mediated signalling in Arabidopsis 
 

Reference: Villaécija-Aguilar, J.A.; Hamon-Josse, M.; Carbonnel, S.; Kretschmar, A.; 

Schmidt, C.; Dawid, C.; Bennett, T.; Gutjahr, C. SMAX1/SMXL2 regulate root and root 

hair development downstream of KAI2-mediated signalling in Arabidopsis. PLoS 
Genet. 2019, 15, e1008327. 
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Abstract

Karrikins are smoke-derived compounds presumed to mimic endogenous signalling mole-

cules (KAI2-ligand, KL), whose signalling pathway is closely related to that of strigolactones

(SLs), important regulators of plant development. Both karrikins/KLs and SLs are perceived

by closely related α/β hydrolase receptors (KAI2 and D14 respectively), and signalling

through both receptors requires the F-box protein MAX2. Furthermore, both pathways trigger

proteasome-mediated degradation of related SMAX1-LIKE (SMXL) proteins, to influence

development. It has previously been suggested in multiple studies that SLs are important reg-

ulators of root and root hair development in Arabidopsis, but these conclusions are based on

phenotypes observed in the non-specific max2 mutants and by use of racemic-GR24, a mix-

ture of stereoisomers that activates both D14 and KAI2 signalling pathways. Here, we dem-

onstrate that the majority of the effects on Arabidopsis root development previously attributed

to SL signalling are actually mediated by the KAI2 signalling pathway. Using mutants defec-

tive in SL or KL synthesis and/or perception, we show that KAI2-mediated signalling alone

regulates root hair density and root hair length as well as root skewing, straightness and

diameter, while both KAI2 and D14 pathways regulate lateral root density and epidermal cell

length. We test the key hypothesis that KAI2 signals by a non-canonical receptor-target

mechanism in the context of root development. Our results provide no evidence for this, and

we instead show that all effects of KAI2 in the root can be explained by canonical SMAX1/

SMXL2 activity. However, we do find evidence for non-canonical GR24 ligand-receptor inter-

actions in D14/KAI2-mediated root hair development. Overall, our results demonstrate that

the KAI2 signalling pathway is an important new regulator of root hair and root development

in Arabidopsis and lay an important basis for research into a molecular understanding of how

very similar and partially overlapping hormone signalling pathways regulate different pheno-

typic outputs.
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Author summary

Karrikins are plant signaling compounds from smoke, which induce germination of fire-
following plants. They likely mimic endogenous plant hormones (KAI2-ligand, KL),
because Arabidopsis karrikin receptor mutants display shoot developmental phenotypes.
Perception of karrikins/KL is very similar to that of another plant hormone class, strigo-
lactones (SLs). Both hormones bind to the related α/β-fold hydrolase receptors KAI2 and
D14 respectively, which both interact with the F-box protein MORE AXILLIARY
BRANCHES2 (MAX2), for ubiquitylation and subsequent degradation of KL- or SL-sig-
nalling specific proteins of the SMXL family. Based on max2 mutant phenotypes it has
been suggested that the development of Arabidopsis root architecture and root hairs is
regulated by SL signaling. However, max2 does not distinguish between the two signalling
pathways. We genetically dissected the role of KL and SL signalling in root and root hair
development in Arabidopsis seedlings and show that most root traits are regulated by KL
and not by SL signaling: lateral root density is controlled by KL and SL signalling together,
while root growth direction, root straightness and root hair development are determined
by KL signalling alone. Thus, KL signalling regulates vital plant traits for nutrient and
water uptake as well as anchorage to the ground.

Introduction

Plant roots continually integrate environmental information to make decisions about their
development, and to optimize their growth for optimal nutrient uptake and anchorage.
Increased lateral root formation and root hair growth are necessary to compensate for low
nutrient availability in the soil by increasing the root surface area for nutrient uptake, while
directional growth is required to avoid stressors such as salt, obstacles or to reach moisture [1–
5]. Root development is regulated by a number of phytohormones, low-molecular-weight sig-
nalling molecules, which mediate localized developmental responses as well as transmission
and integration of information across long distances. Among them, SLs have been suggested
to act as important regulators of Arabidopsis seedling root architecture and root hair develop-
ment [6–9]. However, the exact role of SLs in root development remains uncertain, due to
interpretational difficulties inherent in the materials used by those studies, namely max2
mutants and the synthetic strigolactone racemic-GR24 (see below, [10]).

Genes involved in SL biosynthesis have been identified in several plant species [10]. The
universal SL precursor carlactone is synthesized from β-carotene by a core pathway of three
enzymes; the isomerase DWARF27, and the carotenoid cleavage dioxygenases CCD7 and
CCD8 (MAX3 and MAX4 in Arabidopsis) [11]. Carlactone is then modified by a variety of
enzymes, including the cytochrome P450s of the MAX1 sub-family, to create a range of active
SL molecules [12]. SLs are perceived and hydrolysed by the α/β hydrolase receptor DWARF14
(D14) [13–16]. D14 interacts with the SCFMAX2 E3 ubiquitin ligase complex to induce ubiqui-
tylation and subsequent degradation of target proteins, essential to trigger SL signal transduc-
tion [15, 17].

A second, closely related signalling pathway also acts through the SCFMAX2 complex [18,
19]. In this pathway MAX2 is thought to interact with KAI2 (KARRIKIN-INSENSITIVE2), an
α/β hydrolase receptor protein, which is encoded by an evolutionary older paralog of D14 [20–
22]. KAI2 was originally identified as a receptor for karrikins, a family of butenolide com-
pounds found in the smoke of burnt plant material [19, 23]. In fire-following species, karrikins
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are used as germination cues, indicating the removal of competing plants. However, karrikins
promote germination in a range of flowering plant species, which do not germinate after fire
[24–26] and KAI2 is required for a number of developmental traits in Arabidopsis not related
to germination as well as for arbuscular mycorrhiza symbiosis in rice [19, 27–30]. Because of
these roles of KAI2, karrikins are thought to mimic the action of a yet unknown endogenous
plant signalling molecule, which is currently denoted KAI2-ligand (KL) [31–33].

Since KAI2 and D14 act through the same F-box protein MAX2, max2 mutants are insensi-
tive to both SLs and karrikins, and display the combined phenotypes of d14 and kai2 mutants
[18, 19, 27, 28]. Most studies aimed at understanding the role of SLs in Arabidopsis root devel-
opment have used max2 mutants—likely for historical reasons because they were available
prior to d14 and kai2. However, if only max2 mutants are employed without comparison with
the specific receptor mutants, the root phenotypes cannot be reliably attributed to either SL or
KL signalling. The second difficulty in interpreting previously published root phenotypes
arises from the experimental use of the strigolactone analog GR24, which in standard prepara-
tions is a racemic mix of two stereoisomers (rac-GR24). While one stereoisomer (GR245DS) is
a potent activator of D14 signalling, the non-natural stereoisomer (GR24ent-5DS) appears to
stimulate KAI2 signalling [31, 34]. As such, the indiscriminate use of rac-GR24 has created a
legacy of interpretational problems in previous studies, and incorrect attribution of phenotypic
effects to SL signalling [10, 34].

Genetic and biochemical evidence indicates that the D14-SCFMAX2 and the KAI2-SCFMAX2

complex target a group of regulators–the SMXL (SMAX1-LIKE) family of proteins with weak
homology to ClpB type chaperonins–for ubiquitylation and subsequent proteolytic degrada-
tion. In Arabidopsis, the genetically defined degradation targets of KL signalling are SMAX1
(SUPPRESSOR OF MAX2 1) and SMXL2, while the targets of SL signalling are SMXL6,
SMXL7 and SMXL8 (hereafter SMXL678) [27, 35–37]. In the shoot, the hormone-induced
turnover of SMXL678 proteins is key to correctly shaping shoot architecture [38]. The exact
molecular function of the SMXL proteins is poorly understood. SMXL678 and their rice ortho-
log D53 have been associated with transcriptional regulation, since they physically interact
with TOPLESS-RELATED (TPR) co-repressor proteins [27, 39, 40]. Rice D53 interacts with
IPA1, a SQUAMOSA PROMOTER-BINDING FAMILY LIKE (SPL) transcription factor in
the regulation of shoot branching and may recruit TPR to repress IPA1-mediated transcrip-
tion [41]. However, they have also been found to be involved in enhancing PIN1 accumulation
at the basal membrane of stem xylem parenchyma cells and auxin transport [38]. The role of
SMXL proteins in root and root hair development has not been comprehensively addressed.
Initial observations suggested mutations of SMXL678 suppress the enhanced lateral root den-
sity phenotype of max2 [27], while unexpectedly the increased root skewing phenotype,
recently described for kai2 and max2 mutants was also suppressed by smxl678 [29]. These data
have been used to propose the existence of non-canonical D14/KAI2 signalling cascades in the
context of lateral root development and root skewing [10, 29].

In this study, we dissected the roles of SLs and KLs in the control of root development in
Arabidopsis. We aimed to test the important hypothesis that root development might be medi-
ated by non-canonical receptor-target interactions between D14, KAI2 and SMAX1/SMXL2,
SMXL678. Our results show that KAI2 is much more important than previously realized in the
regulation of root development, and that many effects previously attributed to SL signalling
are actually mediated by KAI2 (and therefore KL signalling). We find no evidence for non-
canonical receptor-target interactions, but conversely find surprising evidence of non-canoni-
cal GR24 ligand-receptor interactions in both KAI2 and D14 signalling.
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Results

Strigolactones have relatively minor effects on seedling root architecture

SLs have previously been described to regulate primary root length (PRL), lateral root density
(LRD) and root hair development [6, 8, 9, 42]. We re-assessed the specific roles of SL signalling
in root development in mutants specifically affected in SL biosynthesis, namely the SL biosyn-
thesis mutants max3-9, max4-5 and max1-1 (here arranged in pathway order). Surprisingly,
we found that SLs only have subtle effects on root architecture. We observed decreased pri-
mary root length (PRL) and increased lateral root density (LRD) in SL biosynthesis mutants
across many experiments, but rarely at the same time (summarized in S1 Fig). For instance,
Fig 1A shows reduction in PRL relative to Col-0 in all SL biosynthesis mutants, but in the same
experiment LRD was not altered (S1 Fig). Conversely, Fig 1B shows increased LRD in SL bio-
synthesis mutants relative to Col-0, but PRL was not altered in the same experiment (S1 Fig).
Thus, consistent with previous reports [8], we found that SL signalling has subtle, and possibly
mutually exclusive, effects on PRL and LRD of Arabidopsis, which appear to be sensitive to
small differences in growth conditions.

We also examined root hair formation in the suite of SL biosynthesis mutants. Contrary to
previous assumptions [7] we found that neither root hair density (RHD) nor root hair length
(RHL) are altered in any of the SL biosynthesis mutants (Fig 2A, 2C and 2D). Thus, the previ-
ously observed root hair phenotypes of max2 mutants must be caused by defects other than SL
signalling, for example in KL signalling.

D14 and KAI2 co-regulate lateral root density

The phenotypes present in SL-specific biosynthesis mutants are insufficient to account for pre-
viously described effects of max2 on root development. We therefore hypothesized that KAI2
signalling may play an important role in the regulation of root and root hair development, and
we therefore compared and contrasted root development in d14 and kai2 mutants. In the case
of LRD, we observed that d14-1 causes increased LRD and/or reduced PRL, consistent with
the phenotypes of SL biosynthesis mutants (Fig 1A–1D). We also observed that two allelic kai2
mutants (kai2-1, kai2-2) in the Col-0 background, showed increased LRD of around the same
magnitude as d14-1 (Fig 1D, S2A Fig), with no clear effect on PRL (Fig 1C). This phenotype in
kai2 was particularly evident at 6dpg, and became less evident at later time points. For d14, the
opposite pattern was seen, and the LRD phenotype only became evident at later time points
(Fig 1D, S2B Fig). Thus, at least some of the confusion about the role of these pathways in reg-
ulation of lateral root development may result from the staging of experiments. Taken
together, our results suggest that both SL and KL signalling regulate LRD in Arabidopsis. We
further tested this idea by examining LRD in d14 kai2 double mutants. The d14-1 kai2-2
mutant showed a very strong and consistent increase in LRD in comparison to Col-0, d14-1
and kai2-2 (Fig 1D, S2B Fig). The increase in LRD was always greater in d14-1 kai2-2 than in
the single mutants (Fig 1D). Thus, both KL and SL signalling regulate LRD in an additive man-
ner, possibly by affecting lateral root development at different developmental stages and time
points.

KAI2 but not D14 regulates root hair development

Given the lack of root hair phenotype in SL biosynthesis mutants, we hypothesized that KAI2
and not D14 signalling would regulate root hair development. Consistent with this hypothesis,
we observed no RHD or RHL phenotype in d14-1 (Fig 2B–2F). Conversely, RHD and RHL
were strongly decreased in two allelic kai2 mutants in Col-0 as well as Ler, and they perfectly
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phenocopied the root hair phenotype of max2 mutants (Fig 2B, 2E–2H). Thus, the root hair
phenotypes previously observed in max2 mutants and attributed to the lack of SL signalling
are actually caused by a lack of KL signalling. To confirm this, we assessed whether root hair
development can be influenced by exogenous addition of karrikin. Treatment with 1 μM
KAR2 increased RHD and RHL relative to control treatments in a KAI2 and MAX2-dependent
manner (Fig 2G and 2H), corroborating the role of KL-signalling in promoting root hair
development.

KAI2 signalling regulates root skewing and waving

In addition to lateral root and root hair phenotypes, we observed that kai2 mutants display
increased skewing along the surface of vertically-oriented agar plates, in the Col-0 and in the
Ler ecotype (Fig 3A–3D, S3 Fig), consistent with a recent report that described this phenotype
in kai2 mutants in Ler [29]. This right-handed skewing is a well-established effect of growing
Arabidopsis roots on the surface of agar plates, and probably arises from a combination of

Fig 1. SL and KL signalling additively regulate lateral root density. (A) Primary root length (experiment 3 in S1 Fig) and (B) lateral root density
(experiment 1 in S1 Fig) of Col-0 wild type, the strigolactone perception mutant d14-1 and the strigolactone biosynthesis mutants max3-9, max4-5
and max1-1 (arranged in pathway order). (C) Primary root length and (D) lateral root density in the d14-1 kai2-2 double mutant and the respective
single mutants. Data in (C) form part of the same dataset in (A), and PRL for the Col-0 and d14-1 genotypes are also shown in (A). LRD was recorded
at 10 dpg. The outline of the violin plots represents the probability of the kernel density. Black boxes represent interquartile ranges (IQR), with the red
horizontal line representing the median; whiskers extend to the highest and lowest data point but no more than ±1.5 times the IQR from the box;
outliers are plotted individually. Different letters indicate different statistical groups (ANOVA, posthoc Tukey, p 0.001 (A) F4,111 = 11.81, n = 19–25
(B) F4,58 = 5.626, n = 8–18 (C) F3,88 = 17,83, n = 21–26 (D) F3,63 = 19.82, n = 11–18).

https://doi.org/10.1371/journal.pgen.1008327.g001
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circumnutation and thigmotropic responses [43, 44]. Increased skewing is also observed for
max2 mutants, but not for SL biosynthesis mutants, nor d14 (Fig 3B and 3C; S3A Fig). The
skewing phenotype of the d14-1 kai2-2 double mutant in the Col-0 background is equal to
kai2-2 (Col-0), confirming that SL perception is not involved in regulating root growth direc-
tion (Fig 3C).

The increased skewing in the kai2 and max2 mutants is accompanied by increased root
waving, which is displayed as a decrease in root ‘straightness’ (Fig 3A, 3E and 3F, S3B Fig).
Again, this waving phenotype is not observed in d14-1 or SL biosynthesis mutants (Fig 3E, S3B
Fig). The waving phenotype is separable from the skewing phenotype, and growth on plates
inclined at 45˚ generally increases waving relative to plates grown at 90˚, while altering skew-
ing only in the Ler but not in the Col-0 wild type (S3C–S3G Fig).

KAI2 regulates skewing independently of epidermal cell elongation and
root diameter

Skewing is often associated with epidermal cell file rotation [44]. To determine whether skew-
ing of kai2 and max2 mutants is associated with cell file rotation [45], we inspected epidermal
cells between 2 and 3mm above the root tip in kai2 mutants. Cell length was reduced in kai2
and max2 mutants relative to wild-type in both Col-0 and Ler backgrounds (with a concomi-
tant increase in cells/mm) (Fig 4A and 4C, S4A and S4C Fig). However, a careful microscopic
inspection of the root surface of kai2 and max2 mutants did not show any signs of epidermal
cell file rotation, instead they were clearly vertically orientated (Fig 4B, S4B Fig). This is in con-
trast to the results of [29], who observed increased cell file rotation in kai2 and max2 mutants
in Ler at a 45˚ growth angle. Since at a 90˚ growth angle we observed a skewing phenotype but
no cell file rotation, we conclude that there is likely no connection between any cell file rota-
tion phenotype in KL perception mutants and their skewing phenotype. Interestingly, also the
SL perception mutant d14 displayed the short epidermal cell phenotype but had no skewing
phenotype, clearly demonstrating that there is no connection between epidermal cell length
and skewing in these receptor mutants (Fig 4A and 4C; S4A and S4C Fig).

It has also been speculated that a smaller root cell diameter in kai2 mutants may cause tissue
tensions leading to skewing [29]. We also observed that kai2 mutants in both the Col-0 and
Ler background had thinner primary roots than wild-type. Quantification of root diameter at
2.5 mm above the root tip confirmed that the primary roots of kai2 and max2 mutants but not
of the d14 mutant are thinner than those of the wild type (Fig 4D, S4D Fig). This indicates that
the regulation of root thickness is specific to KL signalling. However, we could genetically sep-
arate the thin root diameter from the skewing and waving phenotypes because the root diame-
ter phenotype of max2 could be suppressed by smax1 without altering the waving phenotypes.
Conversely, the max2 root diameter phenotype could not be suppressed by smxl2 alone, but

Fig 2. KL perception mutants are impaired in root hair development. (A) Diagram showing the primary root zone used for root
hair phenotyping (curly bracket). Root hair density and length were quantified in 1 mm primary root length between 2 and 3 mm
from the root tip. (B) Representative images of root hair phenotypes of the indicated genotypes. Scale bar, 1 mm. (C,E,G) Root hair
density and (D,F,G) root hair length in (C,D) Col-0 wild type, the strigolactone perception mutant d14-1 and the strigolactone
biosynthesis mutants max3-9, max4-5 and max1-1 (arranged in pathway order), (E,F) the indicated karrikin perception mutants
and (G,H) Ler wild type and indicated karrikin perception mutants, treated with solvent (70% Methanol) or 1 μM KAR2.. The
outline of the violin plots represents the probability of the kernel density. Black boxes represent interquartile ranges (IQR), with the
red horizontal line representing the median; whiskers extend to the highest and lowest data point but no more than ±1.5 times the
IQR from the box; outliers are plotted individually. Different letters indicate different statistical groups (ANOVA, posthoc Tukey,
(C) F4,65 = 0.242, n = 10–18; p0.05, (D) F4,718 = 1.291, n = 10–13, p0.05, (E) F4,88 = 28.9, n = 11–24, p0.001), (F) F4,825 = 23.43,
n = 10–13, p 0.001, (G) F7,96 = 60.79, n = 10–15, p 0.001, (H) F7,975 = 45.39, n = 10–13, p 0.001).

https://doi.org/10.1371/journal.pgen.1008327.g002

SMXL1/SMXL2 regulate root development

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008327 August 29, 2019 7 / 27



 45 

  

Fig 3. KL perception mutants display exaggerated skewing and waving. (A) Diagram showing how skewing-angle and root straightness
were determined. Skewing was quantified by measuring the angle between the vertical axis (Ly) defined as 0˚, and the root tip. Right or
left skewing is indicated by positive or negative values, respectively. Straightness was calculated as the ratio of the straight line between the
hypocotyl-root junction and the root tip (green line, Lc) and the total root length (L). (B) Images of representative 5-days-old seedlings of
the indicated genotypes. Scale bars, 1 mm. (C, D) Root skewing and (E and F) root straightness of the indicated genotypes. The outline of
the violin plot represents the probability of the kernel density. Black boxes represent interquartile ranges (IQR), the red horizontal line
representing the median; whiskers extend to the highest and lowest data point but no more than ±1.5 times the IQR from the box; outliers
are plotted individually. Different letters indicate different statistical groups (ANOVA, posthoc Tukey, p 0.001, (C) F3,315 = 16.08,
n> 60 (D) F4,347 = 4.762, n> 50 (E) F3,315 = 13.62, n> 60 (F) F4,347 = 4.28, n> 50).

https://doi.org/10.1371/journal.pgen.1008327.g003
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smxl2 was sufficient to suppress the skewing phenotype (Fig 5A and 5C; S5A and S5C Fig).
Thus, decreased root diameter is unlikely to cause the skewing and waving phenotypes in kai2
and max2 as previously suggested [29].

KAI2 regulates skewing and waving through SMAX1/SMXL2

The mechanism by which KAI2 regulates root skewing has been proposed to include the non-
canonical degradation of SMXL678 [29]. We tested this important hypothesis in more detail,
by using different combinations of smxl alleles. We observed that, for skewing, smax1 or smxl2
were both independently sufficient to suppress the max2 phenotype (Fig 5A and 5B, S1 Table),
indicating that skewing may be very sensitive to the stoichiometry of SMXL proteins or that
SMAX1 and SMXL2 act in different cells. smax1 and smxl2 could not suppress the max2 wav-
ing phenotype individually, but in combination they were able to completely suppress this

Fig 4. KL perception mutants exhibit decreased epidermal cell lengths and root diameter. (A) Number of root epidermal cells per mm of the indicated
genotypes. (B) Images of representative roots between 2 and 3 mm from the root tip of 5-days-old seedlings of the indicated genotypes. Scale bars, 0.1 mm.
(C) Root cell length and (D) root diameter of the indicated genotypes. The outline of the violin plots represents the probability of the kernel density. Black
boxes represent interquartile ranges (IQR), the red horizontal line representing the median; whiskers extend to the highest and lowest data point but no
more than ±1.5 times the IQR from the box; outliers are plotted individually. Different letters indicate different statistical groups (ANOVA, posthoc Tukey,
(A) F4,52 = 4.715, n = 9–13, p 0.01, (C) F3,392 = 10.64, n = 10–11, p 0.001, (D) F4,50 = 15.95, n = 10–12, p0.001).

https://doi.org/10.1371/journal.pgen.1008327.g004
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phenotype (Fig 5C and 5D, S1 Table), indicating that SMAX1 and SMXL2 act redundantly to
promote waving. These results are thus consistent with SMAX1 and SMXL2 acting genetically
downstream of KAI2 and MAX2 to regulate root growth patterns. Notably, the effect of kai2,

Fig 5. SMAX1 and SMXL2 regulate skewing and root straightness. (A, B, E, F) Root skewing and (C, D, G) root straightness in Col-0 wild type and the indicated
genotypes (the mutant alleles are max2-1, smax1-2, smxl2-1, smxl6-4, smxl7-3 and smxl8-1). The outline of the violin plot represents the probability of the kernel density.
Black boxes represent interquartile ranges (IQR), with the red horizontal line representing the median; whiskers extend to the highest and lowest data point but no more
than ±1.5 times the IQR from the box; outliers are plotted individually. Different letters indicate different statistical groups (ANOVA, posthoc Tukey, p0.001 (A) F3,345

= 7.612, n> 60; (B) F5,259 = 5.051, n> 30; (C) F3,440 = 16.32, n> 60; (D) F5,261 = 6.57, n> 30 (E) F3,209 = 8.784, n> 45 (F) F3,209 = 10.22, n> 45; (G) F5,127 = 21.07,
n = 21). [M] = experiment performed in Munich, [L] = experiment performed in Leeds.

https://doi.org/10.1371/journal.pgen.1008327.g005
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smax1 and smxl2 on skewing was consistent between plants grown in Munich [M] and Leeds
[L].

Consistent with the results of [29], we observed a reduction in skewing in smxl678 max2-1
relative to max2-1 in plants grown in Munich [M] (Fig 5E). However, this was not the case in
Leeds [L], where root skewing was often increased in smxl678 relative to wild-type, and in
which there was an additive increase in skewing in smxl678 max2-1 (Fig 5G). We also did not
observe any suppression of the max2-1 waving phenotype in smxl678 (Fig 5F). Thus, our anal-
ysis of smxl678 mutants indicates that SMXL678 proteins likely do not act downstream of
KAI2/MAX2 in the regulation of root growth patterns, but rather, that SMXL678 regulates
skewing in parallel to the KAI2-SMAX1/SMXL2 pathway.

SMAX1, SMXL2 as well as SMXL678 regulate lateral root density

Previous results showed that the max2 LRD phenotype was suppressed in a smxl678 back-
ground but not in a smax1 background [27], suggesting that the max2 LRD phenotype arises
solely from excess SMXL678 protein accumulation. Since our results show that both D14 and
KAI2 regulate LRD, this would again imply non-canonical regulation of SMXL678 by KAI2.
To again test this hypothesis, we re-examined the regulation of LRD using more recently-avail-
able smax1 smxl2 double mutants [35]. We found that smax1 smxl2 was as efficient in reducing
LRD of max2 as smxl678 (Fig 6). However, consistent with a role of both SL and KL signalling
in regulating LRD neither smax1 smxl2 nor smxl678 appeared to be completely epistatic to
max2 (Fig 6). The most parsimonious explanation for these results is that the max2 LRD phe-
notype arises from the accumulation of both SMAX1/SMXL2 and SMXL678, and that SL and
KL signalling act together in the regulation of LR development by their canonical pathways: SL
signalling by promoting SMXL678 turnover, and KL signalling by promoting SMAX1 SMXL2
turnover.

SMAX1 and SMXL2 but not SMXL678 regulate root hair development

We also assessed, whether regulation of RHD and RHL by KAI2 occurs through canonical or
non-canonical signalling. For both RHD and RHL, we found that smax1 smxl2 have increased
RHD and RHL, and are epistatic to max2-1 in both of these phenotypes. smxl2 but not smax1
single mutants display an increased RHL with respect to the wild type, suggesting that SMXL2
may be more important in regulating RHL than SMAX1. Conversely, smxl678 mutants have
no RHD or RHL phenotype, and no effect on the max2 phenotype (Fig 7A–7F). This is consis-
tent with our observation that kai2 and not d14 phenocopies the root hair phenotype of max2
and that root hair development is regulated by KL signalling under standard conditions.

The stereoisomers GR245DS and GR24ent-5DS non-specifically enhance root
hair development through both D14 and KAI2

As a final test for non-canonical signalling in root development, we examined ligand-receptor
interactions, using the easily scorable, karrikin-responsive root hair phenotypes as a system.
Exogenous application of rac-GR24 was previously shown to promote root hair elongation [7,
42]. In light of the effects of KAI2 mutations on root hair development, we hypothesized that
rac-GR24, and in particular the GR24ent-5DS stereoisomer, would modulate RHD and RHL, in
a manner dependent on KAI2 [34]. Similar to KAR2, rac-GR24 treatment increased both RHD
and RHL in Col-0 (Fig 8A and 8B), and this effect was dependent on MAX2 as previously
reported [7, 42]. However, unexpectedly, it was independent of KAI2, suggesting that rac-
GR24 might promote RHD and RHL via D14 (Fig 8A and 8B). We assessed this in detail
and quantified RHD and RHL after treatment with the pure stereoisomers GR245DS and
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GR24ent-5DS, which are thought to specifically activate D14 and KAI2, respectively [34]. We
observed that both GR245DS and GR24ent-5DS promote RHD and RHL in the wild-type, but
their effects in d14 and kai2 mutants were intriguingly divergent from expectations. In d14-1,
only GR24ent-5DS promotes RHD (as expected), but both GR245DS and GR24ent-5DS promote
RHL to a similar degree in kai2, suggesting that both can be perceived by KAI2 to promote
RHL (Fig 3A and 3B). Furthermore, both stereoisomers cause increased RHD and RHL in
kai2-2, although the ‘canonical’ D14 ligand GR245DS has a significantly stronger effect than
GR24ent-5DS (Fig 8A and 8B). Neither stereoisomer promoted RHD and RHL in the d14-1 kai2-2
double and max2-1 mutants (Fig 8), confirming that no additional unknown receptor is involved
in the response to rac-GR24. The first major implication of these results is that D14 can act to pro-
mote root hair development, when stimulated with ligand, even if that is not the standard function
of D14 (Fig 2). The second major implication is that in roots, contrary to previous suggestions for
the regulation of Arabidopsis hypocotyl elongation [34], D14 can perceive GR24ent-5DS ligands
when KAI2 is absent, and KAI2 can perceive GR245DS ligands when D14 is absent.

Since these results are unexpected we wondered whether the GR24 stereoisomers we used
are really pure and determined their purity by nuclear magnetic resonance (NMR), circular
dichroism (CD) spectroscopy and polarimetry (S6 Fig). Both 1H-NMR, 13C-NMR and CD as
well as rotation values determined by means of polarimetric measurements confirmed the
purity of the compounds and recapitulated previously published NMR- and CD-spectra for
(+)-5-Desoxystrigol and (–)-ent-5-Desoxystrigol [46, 47]. Since the stereoisomers are pure, we
conclude that they do not specifically act through KAI2 or D14 but that both molecules can
bind to and trigger both receptors in the context of root hair development.

Fig 6. Lateral root density is regulated by both SMAX1/SMXL2 and SMXL678. Lateral root density in Col-0 wild
type and the indicated genotypes (the mutant alleles are max2-1, smax1-2, smxl2-1, smxl6-4, smxl7-3 and smxl8-1). The
outline of the violin plots represents the probability of the kernel density. Black boxes represent interquartile ranges
(IQR), with the red horizontal line representing the median; whiskers extend to the highest and lowest data point but
no more than ±1.5 times the IQR from the box; outliers are plotted individually. Asterisks indicate a significant
difference with wild type (ANOVA, posthoc Dunnett´s test comparing to wild-type, F5,90 = 10.62, n = 10–17; ⇤p 0
.05, ⇤⇤p 0.01, ⇤⇤⇤p 0.001).

https://doi.org/10.1371/journal.pgen.1008327.g006
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Previous Arabidopsis hypocotyl elongation assays suggested specific roles of GR245DS and
GR24ent-5DS in triggering D14- vs KAI2-mediated signalling respectively because GR245DS

suppressed hypocotyl elongation specifically in kai2 mutants and GR24ent-5DS in d14 mutants
[34]. We re-examined the effects of the GR24 stereoisomers on hypocotyl elongation (S7 Fig).
Similar to root hair elongation and contrary to a previous report [34] the d14-1 mutant
responds equally to GR245DS and GR24ent-5DS with a decrease in hypocotyl growth, showing
that in the hypocotyl KAI2 can mediate responses to both molecules. The kai2-1 mutant also
responds to both molecules but to a lesser extent to GR24ent-5DS, suggesting together with the
above results that D14 is more effective in mediating responses to its previously suggested
ligand GR245DS than to GR24ent-5DS [34]. Similar to root hair development, the d14-1 kai2-2
double mutant and the max2-1 mutant do not respond to any molecule in this assay, confirm-
ing that in the hypocotyl response to the GR24 stereoisomers no additional receptor is
involved. In summary, we show that GR245DS and GR24ent-5DS can activate both signalling
through KAI2 and through D14 in the regulation of RHL as well as hypocotyl elongation.

Fig 7. SMAX1 and SMXL2 regulate root hair development. (A, C, E) Root hair density and (B, D, F) root hair length in Col-0 wild type and the indicated genotypes
(the mutant alleles are max2-1, smax1-2, smxl2-1, smxl6-4, smxl7-3 and smxl8-1). The outline of the violin plot represents the probability of the kernel density. Black
boxes represent interquartile ranges (IQR), with the red horizontal line representing the median; whiskers extend to the highest and lowest data point but no more than
±1.5 times the IQR from the box; outliers are plotted individually. Different letters indicate different statistical groups (ANOVA, posthoc Tukey, p 0.001 (A) F17,385 =
79.17, n = 9–13 (B) F3,44 = 67.45, n = 9–11 (C) F3,39 = 20.33, n = 9–11 (D) F3,615 = 30.02, n = 9–11 (E) F3,44 = 67.45, n = 9–15 (F) F3,410 = 38.66, n = 8–11).

https://doi.org/10.1371/journal.pgen.1008327.g007
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Discussion

Root systems flexibly adapt their architecture and morphology to heterogeneous soil environ-
ments and to the physiological needs of the plant. A network of plant hormone signalling
pathways is essential for translating environmental signals and physiological states into devel-
opmental outputs [48]. Strigolactones (SLs) have been assumed to play an important role in
modulating root development [7–9]. Here we demonstrate that under standard growth condi-
tions KL signalling plays a much larger role than SL signaling in shaping root and root hair
development (Fig 9).

KL signalling regulates lateral root density together with SL signalling

Previous reports showed increased LRD in max2 and suppression of lateral root emergence by
rac-GR24 [8, 9]. Our study indicates that these effects are mediated through both the KAI2
and D14 signalling pathways, in an additive manner. We observed that lateral root density
(LRD) is consistently higher in kai2 mutants than wild type (particularly at earlier time points).
We found SL biosynthesis and perception mutants also displayed subtle changes in root archi-
tectural parameters, such as primary root length (PRL) and LRD. In a range of experiments
with SL mutants, we either observed strongly decreased PRL or strongly increased LRD, but
not both phenotypes together. This suggests that the effects of SL signalling on PRL or LRD
are to some extent mutually exclusive, and that expression of one phenotype reduces expres-
sion of the other, which may explain some of the previous contradictory reports regarding
effects of SLs on root development [8, 9]. We also found that the time after germination mat-
ters for the LRD phenotypes. Thus, confusion about the role of SLs in LR development may
also reflect differences in the physiological timing of observations within experiments. The d14
kai2 double mutant showed a much larger increase in LRD compared to the single mutants,
indicating that both signalling pathways contribute additively to modulating LRD, and that
previously reported max2 phenotypes reflect a lack of both signalling pathways. This is further
supported by suppression of the max2 LRD phenotype by mutants in both the targets of KL
signalling (SMAX1/SMXL2) and SL signalling (SMXL678).

KL signalling is a key regulator of root hair development

A major finding of our work is the important role of KL signalling in root hair development.
Root hair density (RHD) and root hair length (RHL) are strongly reduced in kai2 and max2
mutants and increased in smax1 smxl2 mutants, as well as by karrikin treatment of wild type
roots. Our results thus present compelling evidence that KL signalling is a key regulator of
root hair development. KAI2 being a major regulator of root hair development rather than
D14 seems to make sense from an evolutionary point of view. Root hair development and tip
growth in Arabidopsis rely on conserved functions and genes that also operate in the develop-
ment of rhizoids of Marchantia polymorpha gametophytes, which appear to be homologous to
root hairs [49–51]. D14 occurs only in genomes of seed plants while KAI2 is already present in
algae [19, 20, 22]. Thus, it is possible that KAI2-SMAX1 module is part of an ancient and con-
served pathway regulating tip growth of epidermal cells.

Fig 8. The two GR24 stereoisomers regulate root hair development through both D14 and KAI2. (A) Root hair density and (B) root hair
length of the indicated genotypes treated with solvent (acetone), 1 μM μM GR24ent-5DS, 1 μM GR245DS or 1 μM rac-GR24. The outline of the
violin plot represents the probability of the kernel density. Black boxes represent interquartile ranges (IQR), with the red horizontal line
representing the median; whiskers extend to the highest and lowest data point but no more than ±1.5 times the IQR from the box; outliers are
plotted individually. Different letters indicate different statistical groups (ANOVA, posthoc Tukey, n = 8–11 (A) F19,3740 = 1.983; p 0.01 (B)
F19,3740 = 57.83, p 0.001).

https://doi.org/10.1371/journal.pgen.1008327.g008
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We did not find any impact of d14 and SL biosynthesis mutants on root hair development in
our study. However, we found that D14 signalling can be triggered to promote root hair devel-
opment, if the correct ligand is present and KAI2 is absent. This is very similar to the hypocotyl,
in which D14-mediated SL perception can regulate hypocotyl elongation, but is not actually
required to do so [19, 34]. This suggests that there may be a role for D14 signalling in root hair
development under certain environmental conditions, when SL levels are very high, for example
under phosphate starvation [52]. Previous studies, [53, 54] found a small decrease in RHD of
the SL biosynthesis mutant max4-1, which could be rescued by adding GR245DS [54]. This is
inconsistent with our observations here, but might reflect differences in the growth conditions
used, and indeed these studies used low phosphate media. Thus, further investigation of the role
of D14 signalling in environment-dependent root hair development is warranted.

KL signalling suppresses skewing and waving independently of root cellular
parameters

No single signalling pathway for control of root skewing and straightness has been identified,
but several studies have exposed different pathways impinging on these root behaviors
(reviewed in Roy and Bassham. 2014). The activities of multiple hormones, such as auxin and

Fig 9. Model for KL and SL signalling regulating Arabidopsis root development. SL and KL signalling act through the
proteasomal degradation of SMXLs in Arabidopsis roots. As in the shoot [30] SMAX1 and SMXL2 are targets of KL perception,
while SMXL6,7,8 are targets of SL perception. SMAX1 represses root diameter. SMAX1 and SMXL2 repress root hair development
and promote root skewing and root straightness. SMAX1, SMXL2, and SMXL6,7,8 promote lateral root development and probably
repress cell elongation. Relationships, which are inferred from circumstantial evidence (or for KL signalling from SL signalling) are
shown by a dashed arrow or frame.

https://doi.org/10.1371/journal.pgen.1008327.g009
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ethylene, are among the candidates [55, 56]. Here we demonstrate that KL signalling is a novel
regulator of root skewing and root straightness. The increased skewing and waving phenotypes
of KL perception mutants were found in both the Col-0 and Ler background although Ler
shows an intrinsically higher tendency to skew than Col-0. Our results are broadly consistent
with the recent report of [29], but our interpretation of the cause of the phenotype differs.
Swarbreck et al. [29], speculated that skewing may be caused by increased epidermal cell file
rotation and/or smaller root diameter of kai2 mutants. Under our conditions, we did not
observe epidermal cell file rotation in kai2 and max2, but rather shorter epidermal cells. Since
both kai2 and d14 have a reduced epidermal cell length, but skewing only occurs in kai2, we
conclude that epidermal cell length is not related to skewing. Interestingly, in the experiments
in which epidermal cell length was inspected, PRL was not significantly altered. This implies
that a compensatory increase in epidermal cell division must occur in both the KL and SL per-
ception mutants, which would be consistent with increased cell division in the primary root
meristem. Alternatively, the epidermal cell length may differ among different root zones thus
compensating for the shorter epidermal cell length in the zone 2–3 mm above the root tip. We
also show that the reduced root diameter of KL perception mutants does not cause either
skewing or waving since smax1 alone suppresses the root diameter but not the waving pheno-
type of max2, and smxl2 suppresses the max2 skewing but not the root diameter phenotype.

KL and SL signalling in the root employ the canonical receptor-target pairs

We have previously highlighted some phenotypic characteristics suggesting that KL and SL signal-
ling in the root might not act through the canonical KAI2-SMAX1 and D14-SMXL678 receptor-
target pairs [10]. The main reason for this suggestion was that max2 mutants had stronger LRD
phenotypes than SL biosynthesis mutants [7–9], which suggested that KAI2 regulates lateral root
emergence rather than or in addition to D14, while mutations of the genes encoding the canonical
SL signalling targets SMXL678 were able to completely suppress the max2 LRD phenotype with
smax1 being unable to do so [10, 27]. Similarly, Swarbreck et al. [29] suggested that non-canonical
signalling may occur in skewing responses, since smxl678 mutants can completely suppress the
max2 skewing phenotype, which arises solely through lack of KAI2 signalling.

We have now robustly tested this hypothesis, and find no evidence for non-canonical KL
and SL signalling in roots under our growth conditions. Using smax1 smxl2 double mutants,
we show that every effect of loss of KAI2 activity can be suppressed by loss of SMAX1 and
SMXL2 (or only one of the two), and that similarly, all effects of loss of D14 activity can be sup-
pressed by loss of SMXL678. In the case of LRD, we show that smax1 smxl2 mutants can sup-
press the phenotype of max2, demonstrating that the canonical KL signalling targets are
involved in regulating lateral root emergence and that SMXL2 compensates for the absence of
functional SMAX1 in lateral root development [27]. The suppression of the max2 LRD pheno-
type by smxl678 as well as smax1 smlx2 is consistent with our observation that both D14 and
KAI2 regulate LRD. Thus, the accumulation of both SMAX1/SMXL2 and SMXL678 contrib-
utes to max2 LRD phenotypes and there is no need to invoke non-canonical receptor-target
pairs to explain the effects of KAI2 and D14 on LRD.

We also reject the idea that KL signalling regulates skewing through SMXL678 [29]. We
find that smxl2 mutations are sufficient to suppress skewing in max2, consistent with canonical
KAI2-SMAX1/SMXL2 signalling acting in this response. It is certainly interesting that
smxl678 mutants suppress skewing of max2 under some conditions, which does not reflect any
known effect of D14 signalling. However, we show that this phenotype is highly variable, and
under our growth conditions in Leeds, smxl678 mutants actually increased root skewing addi-
tively with max2. Thus, although SMXL678 can certainly regulate skewing, this appears to be
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unrelated to the clearly defined and consistent effect of KL signalling on skewing. In fact, it
appears consistent with the observation that rac-GR24 treatment–which stimulates SMXL678
degradation–causes an increase in root skewing in the wild type [29]. The location-dependent
skewing behaviour of smxl678 mutants suggests that the role of SMXL678 in skewing may
strongly depend on environmental conditions, and it will be interesting to identify the mecha-
nisms underlying this phenomenon in the future.

The case is even more clear-cut for RHL, RHD, root straightness and root diameter, for
which only kai2 and max2 mutants show a phenotypic difference to wild type, and which can
only be suppressed by mutating SMAX1 and SMXL2. Interestingly, the smxl2 mutant alone
has longer root hairs than wild-type showing for the first time a phenotype in which SMXL2
plays a more important role than SMAX1, although it is alone not sufficient to suppress the
max2 phenotype. In the case of root diameter, mutation of SMAX1 is sufficient to suppress the
max2 phenotypes (S2 Table). This partial redundancy of SMAX1 and SMXL2 is also seen in
seed germination, hypocotyl growth and leaf shape [27, 35]. This likely arises from different
expression patterns of the two genes: in tissues where only one of the two proteins is expressed,
removing this one is sufficient to suppress the phenotype. Conversely, in the case of skewing,
removing either SMAX1 or SMXL2 alone suffices to suppress the max2 phenotype (S1 Table),
suggesting that skewing is particularly sensitive to SMAX1/SMXL2 levels or stoichiometry or
that SMAX1 or SMXL2 regulate skewing in different tissues.

D14 and KAI2 are not completely ligand stereo-specific

In contrast to the lack of evidence for non-canonical receptor-target interactions, we uncovered
unexpected evidence for non-canonical receptor ligand interactions in the context of root develop-
ment. The two stereoisomers of rac-GR24, GR245DS and GR24ent5DS have been suggested to
specifically activate D14 and KAI2 respectively in the regulation of hypocotyl growth [34]; and
GR24ent5DS showed only a very low efficiency in inhibiting shoot branching in Arabidopsis and
rice [34, 57]. However, our study shows that there is very little specificity of the two receptors for
the two stereoisomers, as both d14 and kai2 mutants respond to both with increased RHL and
even with decreased hypocotyl elongation. This result is strengthened by confirming the purity
of the employed compounds via NMR and CD. It has been shown by differential scanning
fluorimetry (DSF) in vitro that D14 can bind both GR245DS and GR24ent-5DS but KAI2 only bound
GR24ent-5DS [31]. However, the situation in vivo may be different and binding of both ligands to
both α/β hydrolase receptors D14 and KAI2 may be stabilized through receptor protein complexes.
Although binding of the ‘wrong’ stereoisomer to the α/β hydrolase receptor may be less efficient
than binding of the ‘correct’ one, it may suffice to trigger developmental responses, which are very
sensitive to removal of SMXL proteins, or which may require additional interaction partners in the
receptor complex that stabilize the complex in presence of the hypo-specific ligand. Independent
of the mechanism, our results show that GR245DS and GR24ent-5DS cannot safely be used to specifi-
cally trigger D14 and KAI2-mediated signalling, respectively. This also implies that the community
urgently needs an affordable synthetic SL that triggers D14 in a highly specific manner.

Regulation of root development by KAI2 and D14 signalling

Overall our results show that KL signaling and therefore SMAX1 and SMXL2 play an impor-
tant role in controlling root architecture and root hair development (Fig 9). However, some
traits such as LRD and epidermal cell length are regulated by both SMAX1/SMXL2 and
SMXL678. Key challenges for future studies will be to understand how exactly SMXL proteins
regulate root architecture. Ruyter-Spira et al. [8] previously suggested that the impact of SLs
on root development might be best understood as a reflection of their effect on the auxin
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landscape, and we hypothesize that this may also be the case for KAI2 signalling. Most of the
traits we have examined are known to be regulated by auxin, and SL signalling in the shoot is
known to modulate auxin transport by regulating PIN protein abundance [27, 58]. Thus, it is
very possible that the KAI2-SMAX1/SMXL2 and D14-SMXL678 pairs regulate the auxin land-
scape of the root, for example by controlling the abundance of auxin transport proteins. Such a
scenario might underlie the variability in phenotypes observed in the mutants in our study
(for instance, the strong variation in smxl678 skewing phenotype), since environmental
parameters such as light or temperature are known to affect endogenous auxin levels [59, 60].

We do not currently know enough about the upstream inputs into the KL signalling path-
way to understand the aetiology of KAI2-induced root development, but undoubtedly the phe-
notypes described here will provide important clues and tools in this regard. SL production
increases in several plant species upon phosphate starvation [12, 61–63] and the effect of SL
biosynthesis on root architecture was suggested to depend on the sucrose level in the medium
and thus on the carbon-status of the plants [8], but it is yet unknown whether KL signalling is
also influenced by mineral nutrient levels. However, expression of KAI2 does respond to light
conditions, and thus KL signalling could potentially integrate light cues into root development
[64]. Indeed, it is likely that both signalling pathways are influenced by multiple abiotic and
perhaps biotic stimuli, and it will be exciting to learn how SL and KL signalling tune root
development to environmental conditions.

Materials and methods

Plant material

Arabidopsis thaliana genotypes were in Columbia-0 (Col-0) or Landsberg erecta (Ler) parental
backgrounds. The following mutants were used: Ler: max2-8 [18], kai2-1, kai2-2 [18], Col-0:
kai2-2 [28], max3-9 [65], max4-5, d14-1 kai2-2 [66], d14-1 [19], max1-1, max2-1, max2-2 [67],
smax1-2, max2-1 smax1-2 [37], smax1-2 smxl2-1, max2-1 smax1-2 smxl2-1 [35], smxl6-4
smxl7-3 smxl8-1, max2-1 smxl6-4 smxl7-3 smxl8-1 [27].

Plant growth conditions

For analysis of root growth, Arabidopsis thaliana seeds were grown in axenic conditions on
12x12cm square plates containing 60 ml agar-solidified medium. Seed were surface sterilized
either by vapour sterilization, or by washing with 1 ml of 70% (v/v) ethanol and 0.05% (v/v)
Triton X-100 with gentle mixing by inversion for 6 minutes at room temperature, followed by
1 wash with 96% ethanol and 5 washes with sterile distilled water. For primary root length and
lateral root density plants were grown in Cambridge and Leeds on plates containing ATS
medium [68] supplemented with 1% sucrose (w/v) and solidified with 0.8% ATS. For measure-
ments of skewing, waving, cell length, root diameter, root hair density and root hair length,
seedlings were grown in Munich on plates containing 0.5X Murashige & Skoog medium,
pH5.8 (½ MS) (Duchefa, Netherlands), supplemented with 1% sucrose and solidified with
1.5% agar. Plates were stratified at 4˚C for 2–3 days in the dark, and then transferred to a
growth cabinet under controlled conditions at 22˚C, 16-h/8-h light/dark cycle (intensity
~120 μmol m-2 s-1). Unless otherwise indicated, the plates were placed vertically.

Phytohormone treatments

rac-GR24 was purchased from Chiralix (Nijmegen, The Netherlands), GR24ent5DS and
GR245DS from Strigolab (Turin, Italy), and KAR2 from Olchemim (Olomouc, Czech Repub-
lic). For treatment with rac-GR24, GR24ent5DS or GR245DS, 1 mM stock solutions were
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prepared in 100% acetone. KAR2 was dissolved in 70% methanol for the preparation of 1 mM
stock. The volume required to reach the final concentration of these different stock solutions
was added to molten media prior to pouring Petri dishes. In each experiment, an equivalent
volume of solvent was added to Petri dishes for untreated controls.

Primary and lateral root quantification

For quantification of primary root length and lateral root number, seedlings were grown as
described above in Cambridge and Leeds for 10 days post germination (dpg). This allowed for
the emergence of lateral roots sufficient for quantification in wild-type seedlings. A dissecting
microscope was used to count emerged lateral roots in each root system, and images of the
plates were then taken using a flatbed scanner. Primary root length was quantified using
Image J. Separate experiments were primarily used to assess root skewing (see below), but root
skewing angles were also measured from these images generated in these experiments.

Root skewing and straightness assay

The root slanting assay was modified from the method described by [69]. Arabidopsis seed-
lings were grown in Munich under the conditions described above (except for Fig 8G for
which plants were grown in Leeds). Images were taken 5 days post germination (dpg) using an
Epson Perfection V800 Pro Scanner. Images were analysed using the Simple Neurite Tracer
plug-in of Fiji (https://imagej.net/Fiji/Downloads) to determine the following parameters as
illustrated in Fig 4; root length (L), ratio of the straight line between the hypocotyl-root junc-
tion and the root tip (Lc), and vertical axis (Ly). These measurements were taken from at least
60 individual roots per genotype and used to calculate the root skewing angle (α) and root
straightness (Lc/L) as previously described [70, 71].

Determination of root hair density, length and position

Root hair growth was examined in Munich on the same Arabidopsis roots, which were used
for determining root skewing and straightness. Images were taken at 2 mm from the root tip
of a minimum of 8 roots per genotype and treatment with a Leica DM6 B microscope
equipped with a Leica DFC9000 GT camera. The number of root hairs was determined by
counting the root hairs between 2 and 3 mm from the root tip on each root, and root hair
length was measured for 10–18 different root hairs per root using Fiji. The root hair position
was determined following the method described by [72] for 5–15 root hairs per root and a
minimum of 8 roots per genotype.

Root diameter and cell length analysis

Using the same images as for root hair quantification, root diameter, root cell length and num-
ber of cells were analysed in Munich using Fiji. Root diameter was measured at 2.5 mm from
the root tip. The number of cells was defined as the number of epidermal cells that crossed a
1-mm-long straight line drawn between 2 to 3 mm from the root tip. Root cell length was mea-
sured for at least 10 different epidermal cells per individual root in a minimum of 10 roots per
genotype, between 2 to 3 mm from the root tip.

Determination of purity of GR24 stereoisomers

Chemicals. The following compounds were obtained commercially from the sources
given in parentheses: formic acid, chloroform (HPLC grade) (Merck, Darmstadt, Germany);
acetonitrile (MS grade, J. T. Baker, Deventer, Netherlands); (CD3)2CO was obtained from
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Euriso-Top (Gif-Sur-Yvette, France). Water for UHPLC separation was purified by means of a
Milli-Q water advantage A 10 water system (Millipore, Molsheim, France).

General experimental procedures. 1H NMR experiments were performed on an Avance
III 400 MHz spectrometer with a BBI probe (Bruker, Rheinstetten, Germany) at 298 K.
(CD3)2CO was used as solvent and chemical shifts are reported in parts per million, relative to
solvent signal: 1H NMR: 2.05 ppm and 13C NMR: 29.84 ppm. Data processing was performed
by using Topspin software (version 2.1; Bruker) as well as MestReNova software (version 5.2.3;
Mestrelab Research, Santiago de Compostella, Spain). For circular dichroism (CD) spectros-
copy, sample solutions of compounds were analysed by means of a Jasco J-810 spectropolari-
meter (Hachioji, Japan). High-resolution mass spectra were measured on a TripleTOF 6600
mass spectrometer (Sciex, Darmstadt, Germany) equipped with a DuoSpray source (Sciex),
running in ESI positive mode, connected to a Nexera X2 UHPLC (Shimadzu, Duisburg, Ger-
many), consisting of two LC pump systems 30AD, a DGU-20A5 degasser, a SIL-30AC auto-
sampler, a CTO-30A column oven and a CBM-20A controller. Calibration of the mass
spectrometer was performed after every 5 samples using a Calibrant Delivery System (Sciex)
linked to the APCI probe of the DuoSpray source and either positive or negative APCI Cali-
bration solution (Sciex). Rotation values were determined by means of a P3000 polarimeter
(Krüss, Hamburg, Germany). The structures of compound of GR245DS and GR24ent-5DS were
characterized, by means of UHPLC-TOF-MS, 1H NMR, CD spectroscopy and polarimetric
experiments.

GR245DS: LC-TOF-MS: m/z 299.0915 (measured), m/z 299.0919 (calcd. for [C17H14O5+
H+]+); 1H NMR (400 MHz, (CD3)2CO): δ/ppm: 7.56 (d, J = 2.6 Hz, 1H, H-C(6´)), 7.44 (d,
J = 7.4 Hz, 1H, H-C(8)), 7.36–7.21 (m, 3H, H-C(5–7)), 6.55 (t, J = 1.4 Hz, 1H, H-C(2´)), 5.94
(d, J = 7.9 Hz, 1H, H-C(3´)), 4.02–3.93 (m, 1H, H-(3a)), 3.40 (dd, J = 16.9, 9.3 Hz, 1H, H-C
(4α)), 3.08 (dd, J = 16.9, 3.3 Hz, 1H, H-C(4β)), 1.95 (t, J = 1.5 Hz, 3H, H-C(7´)). 13C NMR (100
MHz, (CD3)2CO): δ/ppm: 171.29 (C = O), 171.28 (C = O), 152.73 C(6´), 143.85 C(8a), 143.24
C(3´), 140.55 C(4a), 135.56 C(4´), 130.59 C(5), 128.09 C(7), 127.04 C(8), 126.09 C(6), 113.45 C
(3), 102.24 C(2´), 86.25 C(8b), 39.60 C(3a), 37.85 C(4), 10.60 C(7´). CD(20˚C; ACN; c = 0.01
mM) λmax (Δε) 262 (–1.7), 230 (25.5) nm. [α]D

15 +420˚ (CDCl3, c 0.25 mM) [+436˚, [46]].
GR24ent-5DS: LC-TOF-MS: m/z 299.0920 (measured), m/z 299.0919 (calcd. for [C17H14O5+

H+]+); 1H NMR (400 MHz, (CD3)2CO): δ/ppm: 7.56 (d, J = 2.6 Hz, 1H, H-C(6´)), 7.44 (d,
J = 7.4 Hz, 1H, H-C(8)), 7.36–7.19 (m, 3H, H-C(5–7)), 6.55 (t, J = 1.4 Hz, 1H, H-C(2´)), 5.94
(d, J = 7.9 Hz, 1H, H-C(3´)), 4.07–3.92 (m, 1H, H-(3a)), 3.40 (dd, J = 16.9, 9.3 Hz, 1H, H-C
(4α)), 3.08 (dd, J = 16.9, 3.3 Hz, 1H, H-C(4β)), 1.95 (t, J = 1.5 Hz, 3H, H-C(7´)). 13C NMR (100
MHz, (CD3)2CO): δ/ppm: 171.29 (C = O), 171.28 (C = O), 152.73 C(6´), 143.85 C(8a), 143.24
C(3´), 140.55 C(4a), 135.56 C(4´), 130.59 C(5), 128.09 C(7), 127.04 C(8), 126.09 C(6), 113.45 C
(3), 102.24 C(2´), 86.25 C(8b), 39.60 C(3a), 37.85 C(4), 10.60 C(7´). CD (20˚C; ACN; c = 0.01
mM) λmax (Δε) 262 (1.7), 230 (–26.9) nm. [α]D

15–427˚ (CDCl3, c 0.25 mM) [–446˚, [46]].
Purity of both isomers. 93–95% (1H NMR).

Statistical analysis

Statistical analyses were performed in R-studio, using one-way Analysis of Variance
(ANOVA), followed by Tukey HSD or Dunnett´s post hoc test.

Accession numbers

Sequence data for the genes mentioned in this article can be found in The Arabidopsis Infor-
mation Resource (TAIR; https://www.arabidopsis.org) under the following accession num-
bers: MAX3, AT2G44990; MAX4, AT4G32810; MAX1, AT2G26170; D14, AT3G03990; KAI2,
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AT4G37470; MAX2, AT2G42620; SMAX1, AT5G57710; SMXL2 AT4G30350; SMXL6,
AT1G07200; SMXL7, AT2G29970; SMXL8, AT2G40130.

Supporting information

S1 Fig. Variation in root growth parameters in strigolactone synthesis and perception
mutants. Mean primary root lengths (PRL) and mean lateral root densities (LRD) for strigo-
lactone synthesis mutants (max1-1, max3-9, max4-5) and perception mutants (d14-1) across 5
different experiments. Values shown are quoted as a percentage, relative to the mean value for
the Col-0 wild-type control in the same experiment (set to 100). Shading of cells represents
percent below or above the mean of the wild type. Strong reductions in PRL are never accom-
panied by strong increase in LRD, and strong increases in LRD are never accompanied by
strong reductions in PRL.
(TIFF)

S2 Fig. KL signaling regulates lateral root density. (A) Lateral root density of the indicated
genotypes. (B) Lateral root density at 6, 8 or 10 days post germination (dpg). The outline of
the violin plot represents the probability of the kernel density. Black boxes represent interquar-
tile ranges (IQR), with the red horizontal line representing the median; whiskers extend to the
highest and lowest data point but no more than ±1.5 times the IQR from the box; outliers are
plotted individually. Percentage numbers indicate the percent significant difference between
the median of each indicated genotype and the median of the wild type at the same time point.
Different letters indicate different statistical groups (A) ANOVA, posthoc Tukey, F2,79 = 5.29,
n = 24–30, p<0.01. Asterisks indicate a significant difference compared to wild type for each
time point. (B) ANOVA, post-hoc Dunnett’s tests comparing to wild-type, at each time-point,
F11,239 = 47.87, n = 14–24; ⇤p 0.05, ⇤⇤p 0.01, ⇤⇤⇤p 0.001).
(TIFF)

S3 Fig. KAR perception mutants respond to tilted agar surface. (A, D, E) Root skewing and
(B, F, G) root straightness of the indicated genotypes. In (A, B) plants were grown at a 90˚
angle. (D-E) Plants were grown either at a 90˚ angle (white violins) or a 45˚ angle (grey violins)
as shown in the diagram in (C). The outline of the violin plots represents the probability of the
kernel density. Black boxes represent interquartile ranges (IQR), with the red horizontal line
representing the median; whiskers extend to the highest and lowest data point but no more
than ±1.5 times the IQR from the box; outliers are plotted individually. Different letters indi-
cate different statistical groups (ANOVA, posthoc Tukey, p0.001, n > 40 (A) F5,333 = 5.057
(B) F4,290 = 7.168 (D) F7,383 = 5.788 (E) F7,472 = 12.54 (F) F7,430 = 25.89 (G) F7,497 = 18.36).
(TIFF)

S4 Fig. KL perception mutants in the Ler background exhibit decreased epidermal cell
lengths and root diameter. (A) Number of root epidermal cells per mm of the indicated geno-
types. (B) Images of representative roots between 2 and 3 mm from the root tip from 5-days-
old seedlings of the indicated genotypes. Scale bars, 0.1 mm. (C) Root cell length and (D) and
root diameter of the indicated genotypes. The outline of the violin plots represent the probabil-
ity of the kernel density. Black boxes represent interquartile ranges (IQR), with the red hori-
zontal line representing the median; whiskers extend to the highest and lowest data point but
no more than ±1.5 times the IQR from the box; outliers are plotted individually. Different let-
ters indicate different statistical groups (ANOVA, posthoc Tukey, p0.001 (A) F2,43 = 9.58,
n = 13–18 (C) F2,191 = 43.1, n = 10–11 (D) F2,64 = 77.45, n = 21).
(TIFF)
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S5 Fig. Regulation of root skewing by KAI2 can be genetically separated from root diame-
ter. (A, B, C) Root diameter of Col-0 wild type and the indicated genotypes (the mutant alleles
are max2-1, smax1-2, smxl2-1, smxl6-4, smxl7-3 and smxl8-1). The outline of the violin plot
represents the probability of the kernel density. Black boxes represent interquartile ranges
(IQR), with the red horizontal line representing the median; whiskers extend to the highest
and lowest data point but no more than ±1.5 times the IQR from the box; outliers are plotted
individually. Different letters indicate different statistical groups (ANOVA, posthoc Tukey,
p0.001, (A) F3,38 = 15.04, n = 10–11 (B) F3,38 = 15.04, n = 8–21 (C) F3,47 = 8.221, n = 10–11).
(TIFF)

S6 Fig. Purity evaluation of SL stereoisomers. (A) Chemical structures of GR245DS and
GR24ent-5DS. (B) CD spectra of GR245DS and GR24ent-5DS. (C) 1H-NMR (400 MHz, 298 K,
(CD3)2CO) of GR245DS. (D) 13C-NMR (100 MHz, 298 K, (CD3)2CO) of GR245DS. (E)
1H-NMR (400 MHz, 298 K, (CD3)2CO) of GR24ent-5DS. (F) 13C-NMR (100 MHz, 298 K,
(CD3)2CO) of GR24ent-5DS. For more information see Materials and Methods.
(TIFF)

S7 Fig. GR24 stereoisomers regulate hypocotyl length through D14 and KAI2. Hypocotyl
length of the indicated genotypes treated with solvent (acetone), 1 μM μM GR24ent-5DS, 1 μM
GR245DS or 1 μM rac-GR24. The outline of the violin plot represents the probability of the
kernel density. Black boxes represent interquartile ranges (IQR), with the red horizontal line
representing the median; whiskers extend to the highest and lowest data point but no more
than ±1.5 times the IQR from the box; outliers are plotted individually. Different letters indi-
cate different statistical groups (ANOVA, posthoc Tukey, F2,43 = 9.58, n = 32–42, p0.001).
(TIFF)

S1 Table. Summary of effects of SMXL mutations on max2 root phenotypes.
(PDF)

S2 Table. Raw data for all figures.
(XLSX)

Acknowledgments

We thank David Nelson (UC Riverside, USA) and Mark Waters (University of Western Aus-
tralia) for providing mutant seeds. The Gutjahr group is grateful to Jürgen Soll (LMU Munich,
Germany) for generously providing space in his Arabidopsis growth chamber.

Author Contributions
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Formal analysis: José Antonio Villaécija-Aguilar, Corinna Dawid, Tom Bennett, Caroline
Gutjahr.

Funding acquisition: Corinna Dawid, Tom Bennett, Caroline Gutjahr.
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S1 Fig. Variation in root growth parameters in strigolactone synthesis and perception 
mutants. Mean primary root lengths (PRL) and mean lateral root densities (LRD) for 
strigolactone synthesis mutants (max1-1, max3-9, max4-5) and perception mutants (d14-1) 
across 5 different experiments. Values shown are quoted as a percentage, relative to the mean 
value for the Col-0 wild-type control in the same experiment (set to 100). Shading of cells 
represents percent below or above the mean of the wild type. Strong reductions in PRL are 
never accompanied by strong increase in LRD, and strong increases in LRD are never 
accompanied by strong reductions in PRL. 
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S2 Fig. KL signaling regulates lateral root density. (A) Lateral root density of the indicated 
genotypes.  (B) Lateral root density at 6, 8 or 10 days post germination (dpg). The outline of 
the violin plot represents the probability of the kernel density. Black boxes represent 
interquartile ranges (IQR), with the red horizontal line representing the median; whiskers 
extend to the highest and lowest data point but no more than ±1.5 times the IQR from the box; 
outliers are plotted individually. Percentage numbers indicate the percent significant difference 
between the median of each indicated genotype and the median of the wild type at the same 
time point.  Different letters indicate different statistical groups  (A) ANOVA, posthoc Tukey, 
F2,79 = 5.29, n = 24–30, p<0.01. Asterisks indicate a significant difference compared to wild 
type for each time point.  (B) ANOVA, post-hoc Dunnett’s tests comparing to wild-type, at each 
time-point, F11,239 = 47.87, n = 14–24; *p ≤ 0.05, **p≤0.01, ***p≤ 0.001). 
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S3 Fig. KAR perception mutants respond to tilted agar surface. (A, D, E) Root skewing 
and (B, F, G) root straightness of the indicated genotypes. In  (A, B) plants were grown at a 
90˚ angle.  (D-E) Plants were grown either at a 90˚ angle (white violins) or a 45˚ angle (grey 
violins) as shown in the diagram in  (C). The outline of the violin plots represents the probability 
of the kernel density. Black boxes represent interquartile ranges (IQR), with the red horizontal 
line representing the median; whiskers extend to the highest and lowest data point but no more 
than ±1.5 times the IQR from the box; outliers are plotted individually. Different letters indicate 
different statistical groups (ANOVA, posthoc Tukey, p≤0.001, n > 40  (A) F5,333 = 5.057  (B) 
F4,290 = 7.168  (D) F7,383 = 5.788  (E) F7,472 = 12.54  (F) F7,430 = 25.89  (G) F7,497 = 
18.36). 
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S4 Fig. KL perception mutants in the Ler background exhibit decreased epidermal cell 
lengths and root diameter. (A) Number of root epidermal cells per mm of the indicated 
genotypes.  (B) Images of representative roots between 2 and 3 mm from the root tip from 5-
daysold seedlings of the indicated genotypes. Scale bars, 0.1 mm.  (C) Root cell length and 
(D) and root diameter of the indicated genotypes. The outline of the violin plots represent the 
probability of the kernel density. Black boxes represent interquartile ranges (IQR), with the red 
horizontal line representing the median; whiskers extend to the highest and lowest data point 
but no more than ±1.5 times the IQR from the box; outliers are plotted individually. Different 
letters indicate different statistical groups (ANOVA, posthoc Tukey, p≤0.001  (A) F2,43 = 9.58, 
n = 13–18  (C) F2,191 = 43.1, n = 10–11  (D) F2,64 = 77.45, n = 21). 
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S5 Fig. Regulation of root skewing by KAI2 can be genetically separated from root 
diameter. (A, B, C) Root diameter of Col-0 wild type and the indicated genotypes (the mutant 
alleles are max2-1, smax1-2, smxl2-1, smxl6-4, smxl7-3 and smxl8-1). The outline of the violin 
plot represents the probability of the kernel density. Black boxes represent interquartile ranges 
(IQR), with the red horizontal line representing the median; whiskers extend to the highest and 
lowest data point but no more than ±1.5 times the IQR from the box; outliers are plotted 
individually. Different letters indicate different statistical groups (ANOVA, posthoc Tukey, 
p≤0.001,  (A) F3,38 = 15.04, n = 10–11  (B) F3,38 = 15.04, n = 8–21  (C) F3,47 = 8.221, n = 
10–11). 
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S6 Fig. Purity evaluation of SL stereoisomers. (A) Chemical structures of GR245DS and 
GR24ent-5DS.  (B) CD spectra of GR245DS and GR24ent-5DS.  (C) 1H-NMR (400 MHz, 298 
K, (CD3)2CO) of GR245DS.  (D) 13C-NMR (100 MHz, 298 K, (CD3)2CO) of GR245DS.  (E) 
1H-NMR (400 MHz, 298 K, (CD3)2CO) of GR24ent-5DS.  (F) 13C-NMR (100 MHz, 298 K, 
(CD3)2CO) of GR24ent-5DS. For more information see Materials and Methods. 
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S7 Fig. GR24 stereoisomers regulate hypocotyl length through D14 and KAI2. Hypocotyl 
length of the indicated genotypes treated with solvent (acetone), 1 μMμMGR24ent-5DS, 1 μM 
GR245DS or 1 μMrac-GR24. The outline of the violin plot represents the probability of the 
kernel density. Black boxes represent interquartile ranges (IQR), with the red horizontal line 
representing the median; whiskers extend to the highest and lowest data point but no more 
than ±1.5 times the IQR from the box; outliers are plotted individually. Different letters indicate 
different statistical groups (ANOVA, posthoc Tukey, F2,43 = 9.58, n = 32–42, p≤0.001). 
  



 73 

 
 
 
 
 
 
 
 

smax1 smxl2 smax1 smxl2 smxl6,7,8

Lateral root density + +
Root hair density - - + -
Root hair length - - + -
Root skewing + + + +/-
Root straightness - - + -
Root diameter + - + -
+ Suppression of max2  phenotypes
-  No suppression of max2  phenotypes

+/- Opposite effects in Munich (+) and Leeds (-)

max2

Supplemental Table S1.  Summary of effects of SMXL  mutations on max2  root 
phenotypes.
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Paper II: Extensive signal integration by the phytohormone protein network 
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Plant hormones orchestrate responses to environmental cues with 

developmental programs1, and are fundamental for stress resilience and 

agronomic yield2. The core signaling pathways have been elucidated by genetic 

screens and hypothesis-driven approaches, and extended by interactome 

studies for select pathways3. However, fundamental questions remain about 

how information from different pathways is integrated. Genetically most 

phenotypes are regulated by multiple hormones, whereas transcriptional 

profiling suggests that hormones trigger largely exclusive transcriptional 

programs4. We hypothesized that protein-protein interactions play an important 

role in phytohormone signal integration. Therefore, we generated experimentally 

a systems-level map of the Arabidopsis phytohormone signaling network 

consisting of more than 2,000 binary protein-protein interactions. In the highly 

interconnected network, pathway communities and hundreds of novel pathway 

contact points can be identified that represent potential points of crosstalk. 

Functional validation of candidates in seven hormone pathways demonstrate 

novel functions for 74% of tested proteins in 84% of candidate interactions, and 

indicate that a large majority of signaling proteins function pleiotropically in 

multiple pathways. Moreover, we identify several hundred largely small-

molecule-dependent interactions of hormone receptors. Comparison with 

previous reports suggests that non-canonical and non-transcription mediated 

receptor-signaling is more common than currently appreciated.  

Phytohormone network mapping and analysis 
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To examine phytohormone signal integration by the plant protein network we first 

identified 1,252 genes with likely or genetically demonstrated functions in 

phytohormone signaling (Fig. 1a, Supplementary Table 1). The corresponding 

network of literature curated binary interactions (LCI) from the IntAct database5 (LCIIntA) 

shows extensive intra-pathway but sparse inter-pathway connectivity (Extended Data 

Fig. 1), which could reflect an insulated organization of hormone signaling or be an 

artifact of inspection biases6. We therefore experimentally generated a systematic 

(unbiased design) map of the phytohormone signaling network. After cloning open 

reading frames (ORFs) for 1,226 (98%) of the selected genes (PhyHormORFeome), 

five-fold interrogation of the pairwise matrix using a high-quality yeast-2-hybrid (Y2H)-

based mapping pipeline7 yielded the phytohormone interactome main (PhIMAIN) 

network. To find links into the broader Arabidopsis network, PhyHormORFeome was 

screened against ~13,000 Arabidopsis ORFs8 resulting in an asymmetric PhIEXT 

dataset. Moreover, we conducted focused screens for pathway-specific repressors 

with transcription factors9 (TFs), and for hormone-dependent interactions of 

phytohormone receptors. In the stringent final step of the common Y2H pipeline all 

candidate pairs were four-fold verified (Fig. 1b). The combined PhI network contains 

2,072 interactions, of which 1,572 are novel (Fig. 1c, Extended Data Fig. 1, 

Supplementary Table 2). The interaction-density in the symmetrically interrogated 

PhIMAIN (0.4‰) is higher than in the proteome-scale Arabidopsis Interactome-1 (AI-1, 

0.1‰)10, but lower than in the ABA-focused interactome (7.5‰)3. Likely, the increasing 

focus on functionally coherent proteins is underlying this trend, but also system 

differences11 and screening parameters12 affect overall sensitivity. We implemented 

our interactome mapping framework6,12 to compare PhI to literature-based network 

maps from IntAct and BioGrid13 (LCIBioG). Sampling sensitivity of PhIMAIN after five 

repeat screens was 86% ± 5% (Fig. 1d). For benchmarking, we recurated12 a positive 
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and a random reference set (PRSPhI/RRSPhI) of 92 and 95 protein pairs 

(Supplementary Table 2), respectively. Benchmarking our Y2H system yielded an 

unconditional assay sensitivity of 20.4% (Fig. 1e); excluding hormone-dependent 

PRSPhI interactions increased this to 23%. The resulting overall completion of 16.0% ± 

6.8% matches the overlap with LCI datasets (Fig. 1g). Thus, missed interactions 

explain the incomplete overlap between PhIMAIN and LCIPhI suggesting a low false-

discovery rate. This is substantiated by the observation that no RRSPhI pair scored 

positive (Fig. 1e). To further assess PhI quality, we used a pull-down assay in which 

protein pairs are expressed in wheat-germ lysate and, following an anti-FLAG 

immunoprecipitation, interactions are detected via activity of renilla luciferase-fused 

second protein. Benchmarking this assay with PRSPhI/RRSPhI revealed an assay 

performance similar to previous implementations10,11; the slightly increased 

background likely results from the functionally relative coherent search space from 

which RRS was sampled. Subsequent testing of 285 interactions from the 

unconditional PhIMAIN, PhIEXT, and PhIREP subsets yielded a PhI validation rate of 

22.5%, which is indistinguishable from PRSPhI (23.5%, Fig. 1f) and similar for the 

individual subsets (Extended Data Fig. 1). These data demonstrate that PhI is a high-

quality map of the Arabidopsis phytohormone signaling network on par with high-

quality literature data. 

For hypothesis generation and local network analyses the full PhI will be most useful. 

For topological and systems-level questions the symmetrically mapped PhIMAIN should 

be employed to avoid biases6. PhIMAIN has a scale-free degree-distribution and, in 

contrast to LCIPhI networks, a hierarchical modularity as expected for unbiased network 

maps (Fig. 1h, Extended Data Fig. 1)14. We used PhIMAIN to investigate the topological 

organization of phytohormone signaling pathways. 
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Important features of hierarchical networks are highly connected hubs and 

interconnected communities14. Using an edge-betweenness-based detection 

algorithm15, we identified 21 network communities in PhIMAIN, of which nine were 

significantly enriched in different phytohormone pathways (Fig. 1i, Extended Data Fig. 

2, Supplementary Tables 3, 4). Thus, the topology of PhIMAIN recapitulates biological 

knowledge and confirms that at least some pathway proteins are highly interconnected. 

Additionally, most communities encompass proteins from different pathways that 

possibly mediate crosstalk. In the JA community, e.g., the canonical JA TF MYC2 is 

physically linked to ABA signaling via interaction with the protein kinase CIPK14 (Fig. 

1j), validated by in vitro pull-down and bimolecular fluorescence complementation 

(BiFC) (Extended Data Fig. 2). Additional pathway contacts occur between different 

communities (Fig. 1j). However, on average only 27% of pathway proteins reside 

within the corresponding communities indicating that phytohormone signaling may not 

be predominantly organized in topological communities (Supplementary Table 3).  

We next analyzed inter-pathway connectivity. The distances between the 

phytohormone pathways are considerably shorter in PhIMAIN than in LCIPhI (Fig. 1k, l). 

This is mirrored by significantly more pathway contact points (PCPs) in PhIMAIN than 

LCIPhI, i.e. protein interaction-mediated contacts between different pathways. As some 

proteins operate in multiple pathways, we distinguished 192 Type I PCPs (PCPI) of 

proteins with strictly different annotations from 248 Type II PCPs (PCPII), where the 

interactors share annotations, but at least one has additional functions (Fig. 1m). 

Bootstrap subsampling confirmed that PhIMAIN contains significantly more PCPI (Fig. 

1n), but not PCPII (not shown), than LCIIntA or LCIBioG, and this is valid for essentially 

all pathway-pairs (Extended Data Fig. 3). Each PCP supports a specific crosstalk 

hypothesis and the abundance of PCPs suggests extensive protein-interaction 

mediated information exchange among pathways.  
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Validation of pathway contact points 

We experimentally tested if PCPs reflect yet unknown functions of the interacting 

partners. Assays for most hormones are established in seedlings. Therefore, and for 

standardization, we focused on seedling-expressed PCP interaction pairs. Validated 

homozygous T-DNA lines for 19 pairs were evaluated in response-assays for six 

different phytohormones to establish whether the candidates function in the pathway 

of their respective partner (Fig. 2a - f, Extended Data Figs. 4 - 7, Supplementary 

Table 5).  

ABA regulates seed germination and desiccation stress responses including root 

growth16. In the presence of 0.3 μM ABA, germination of WT seeds was ~40% 

decreased. In contrast, the candidate lines ddlLit_ET and eds1Lit_SA displayed a similar 

ABA-hypersensitivity as the rcar1 control. Root growth was significantly less affected 

in five candidate lines resulting in altogether six lines (66%) with a novel ABA 

phenotype (Fig. 2a, b, Extended Data Fig. 4).  

Anthocyanin production is a widely used assay for CK signaling17. At low 

concentrations CK-induced anthocyanin accumulation was impaired in the candidate 

lines similar to the spy control. At higher concentrations myc2Lit_JA/ABA remained similar 

to spy whereas jaz1Lit_JA/ABA over-accumulated anthocyanin indicating complexity in CK 

signaling (Fig. 2c, d).  

For ET we assayed the triple response, i.e. formation of exaggerated apical hooks 

(loops) and development of shorter and thicker roots and hypocotyls in dark-grown 

seedlings18. Ten of our twelve candidates (83%) displayed an apical loop phenotype; 

seven of these additionally displayed a root growth phenotype, and ttl also had a 

hypocotyl growth defect following ACC treatment (Fig. 2e, Extended Data Fig. 5). To 

ensure specificity we tested six mutant lines for proteins in PhI that showed no 

interaction with ET annotated proteins. Of these controls only one displayed a weak 
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root growth phenotype and none exhibited a hypocotyl or loop formation defect (Fig. 

2e, Extended Data Fig. 6).  

Salicylic acid (SA) mediates defense responses to (hemi-) biotrophic pathogens19. 

Following inoculation with Pseudomonas syringae pv. tomato (Pst), titers in the giLit_GA 

mutant were significantly elevated indicating enhanced disease susceptibility and 

impaired SA signaling. Similarly, leaves of mature rcar1Lit_ABA and pp2caLit_ABA plants 

supported enhanced Pst growth (Fig. 2f). Assays for root growth inhibition by 

brassinosteroids, gibberellins, and jasmonates revealed new phenotypes for two or 

one candidates, respectively (Extended Data Fig. 4).  

Altogether, interactome-guided phenotyping revealed a function in new pathways for 

74% of tested proteins (20/27) involved in 84% of interactions in the validation set (Fig. 

2g; Extended Data Fig. 7). Notably, for all PCPI pairs a novel function was revealed 

for at least one partner, such that all interactions are substantiated by phenotypes in 

at least one common pathway (Fig. 2g). For three of the six PCPII pairs an additional 

common pathway was identified, such that more than half (11/19) of all PCP pairs 

genetically operate in two common pathways (Fig. 2g). To support these functional 

data we demonstrate for nine pairs in planta interactions by BiFC (Fig. 2h, Extended 

Data Fig 7). Intriguingly, prior to our experiments a large majority of signaling proteins 

in the literature and in our validation set were considered pathway-specific (Fig. 2i). 

After the interactome-guided phenotyping however, 82% of proteins in the validation 

set are known to function in multiple pathways, whereas only one-fifth is single-

pathway specific (Fig. 2g, i). The new annotations are distributed across different 

pathways (Extended Data Fig. 7) and the network degree is not correlated to the 

number of phenotypes (not shown). As the validation set is not obviously biased, the 

observation of widespread pleiotropy may extrapolate to most of the phytohormone 

signaling network. Thus, our data point to a highly integrated central signal-processing 
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network that channels different inputs into a balanced multifactorial output. To facilitate 

further studies, we provide an expression-based ‘edge-score’ indicating the possibility 

of each PhI interaction occurring in different plant tissues (Supplementary Table 6). 

Hormone-receptor interactions 

Input into the central processing unit is provided by hormone receptors, which often 

initiate signaling via small molecule-regulated protein-interactions20. To better 

understand initial phytohormone-signaling, we conducted interaction screens with 

soluble hormone receptors in the presence and absence of their cognate hormone. 

For ABA, GA, IAA, KAR, SA, and SL-receptors 241 interactions were identified, of 

which 101 are hormone-dependent. Re-identified pairs include interactions of GA-

receptors with DELLA proteins, and of RCAR/PYR/PYL ABA-receptors with type 2C 

protein phosphatases (PP2Cs) (Fig. 3a, Extended Data Fig. 8), which display known 

patterns of hormone dependence21. Notably, several ABA-receptors interacted also 

with TFs and other non-PP2C proteins (Fig. 3a). As some of these additionally link to 

PP2Cs, we wondered if interactions are combinatorially modulated and investigated 

by yeast-3-hybrid the effect of different PP2Cs on RCAR1/PYL9 interactions with MYB-

family TFs. The RCAR1-MYB73 interaction was blocked by several PP2Cs, whereas 

the RCAR1-MYB77 interaction was enabled by ABI1/2, together demonstrating 

dynamic modulation of complex formation (Fig. 3b, c). In addition, PP2C-independent 

RCAR-functions have been described for RCAR9/PYL6 via MYC222 and for 

RCAR3/PYL8 via MYB7723. Our data suggest that such core-pathway-independent 

functions may be more widespread. The independently validated interaction of DELAY-

OF-GERMINATION 1 (DOG1) with PP2Cs24 similarly points to non-canonical PP2C-

signaling mechanisms. Thus, core-pathway independent signaling and complex 
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multimeric interaction-regulation are important mechanisms underlying the functional 

diversification in the ABA signaling system.   

Receptors for the defense hormone SA are the NON-EXPRESSOR OF PATHOGEN 

RELATED PROTEIN 1 (NPR1) and its orthologues NPR3 and NPR425. While NPR1 is 

a well-studied positive regulator of defense-gene transcription, NPR3 and NPR4 are 

emerging as alternative negative or complementary transcriptional regulators25,26. The 

pattern of SA-regulated NPR3 interactions (Fig. 3d; Extended Data Fig. 9), especially 

with NIMIN proteins, differs from the described NPR1 pattern27, suggesting dynamic 

complexity of this signaling system. EMB1968/RFC4, a member of the replication 

factor C (RFC) complex, is a new interactor common to NPR1 and NPR3 possibly 

integrating defense with DNA repair or replication. Most novel NPR3/NPR4 interactors 

can be linked to immunity via mutant phenotypes or known interactions with virulence 

effectors and immune receptors8 (Fig. 3d; Extended Data Fig. 9). These data support 

the biological validity of the interactions and indicate that SA-receptors also act via 

non-transcriptional signaling.  

The karrikin (KAR) and strigolactone (SL) pathways have been discovered most 

recently and mediate germination (KAR) and diverse aspects of development and 

organismal interactions28. We screened the KAR-receptor KAI2 and SL-receptor D14 

together with the F-box protein MAX2 in the absence and presence of a stereoisomer-

mix of two synthetic strigolactones, which bind to D14 and KAI2, respectively29. For 

KAI2 we found the previously described interaction with MAX2 and 21 novel interactors 

of which fifteen were hormone-dependent (Fig. 3f, g; Extended Data Fig. 9). Recently 

we described that KAI2 regulates root hair length (RHL) and density (RHD)30. As both 

phenotypes are also regulated by auxin, and the hormone-dependent KAI2-interactor 

PP2AA2 regulates PIN auxin exporters we wondered whether PP2AA2 mediates the 

KAR effect on these phenotypes. Similar to kai2-2, pp2aa2-2 displayed a lower RHL 
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and RHD than Col-0 (Fig. 3h, i) (Supplementary Table 5). Strikingly, in both kai2-2 

and pp2aa2-2 the response to exogenous karrikin treatment was abolished, indicating 

that they jointly mediate signaling by the karrikin pathway.  

Transcriptional changes are common outcomes of phytohormone signaling. 

Investigating PhIREP we found no evidence of significant hormone crosstalk at the level 

of transcriptional regulators from different pathways converging on TFs (not shown). 

Nonetheless, only a quarter of TFs interacting with regulators were previously 

implicated in hormone signaling (Extended Data Fig. 10). While most pathways 

converge on TCP-family TFs, which are known for their high connectivity10 the vast 

majority of TFs interacts with repressors from one to three pathways suggesting more 

specific signal integration at this level. 

Taken together, we present a systematic map of the Arabidopsis phytohormone 

signaling network, which reveals an unexpectedly high interconnectivity of the 

signaling pathways. If the observed level of functional pleiotropy extends into the larger 

hormone signaling network, the concept of dedicated signal transduction pathways 

may need to be revised in favor of network based models. The small-molecule 

dependent interactions of hormone-receptors point towards prominent roles for non-

canonical signaling mechanisms. We expect that our findings and the PhI resource will 

stimulate important mechanistic and systems-level analysis in Arabidopsis with a 

significant outreach into crops. 
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Fig. 1 | Phytohormone network mapping and analysis. a, Mutant phenotypes and 
overrepresented families in PhyHormORFeome candidates. b, Protein interaction 
mapping pipeline c, Phytohormone interactome (PhI) network. Node colors: hormone 
annotations (legend in a). d,  PhIMAIN sampling sensitivity: verified interactions of first 
three primary-screen repeats (black dots; n = 3); screen saturation model based on 
three repeats (black line, grey corridor: standard error); identified interactions after five 
repeats (blue dot). e, Y2H assay sensitivity: positive fractions of PRSPhI (n = 92) and 
RRSPhI (n = 95). Error bars: standard error. f, Validation results: positive fractions of 
PRSPhI (n = 69), RRSPhI (n = 83) and PhI (n = 285). One-sided Fisher-exact, error bars: 
standard error of proportion. Overlap of PhIMAIN with LCIIntA (n = 109) and LCIBioG (n = 
150 interactions). Error bars: propagated standard error. h, PhIMAIN degree and 
clustering coefficient distribution .i, Number of hormone-signaling-function enriched 
communities in PhIMAIN (red arrow) compared to n = 1,000 randomized control networks 
(experimental P < 0.001). j, JA- and CK-enriched community links (node colors: legend 
in a). k, l, Distances between pathway combinations in PhIMAIN (k) and LCIIntA (l). Color: 
average shortest distance, circle size: connection count. Insets: shortest distance 
distributions. m, Count of type I (n = 192) and type II PCPs (n = 248) in PhIMAIN – P 
from analysis in n. n, Proportion of PCPI in PhIMAIN and LCI networks from bootstrap 
subsampling (n = 1,000) of 100 interactions (two-sided Welch two sample t-test). 
Boxes: interquartile range (IQR) and median; whiskers: highest and lowest data point 
within 1.5 IQR; outliers plotted individually. Pathway abbreviations throughout 
manuscript: ABA - abscisic acid, AUX - auxin, BR - brassinosteroids, CK - cytokinins, 
ET - ethylene, GA - gibberellic acid, JA - jasmonic acid, KAR - karrikin, SA - salicylic 
acid, SL - strigolactone. 
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Figure 2 | Validation of pathway contact points. a, Proportion of germinating seeds in 
absence (MS) or presence of 0.3 μM ABA (n ≥ 20, three repeats). b, Root elongation in 
absence (MS) or presence of 30 μM ABA. Boxes represent the interquartile range (IQR), with 
the bold black line representing the median; whiskers indicate highest and lowest data point 
within 1.5 IQR; outliers are plotted individually (n ≥ 8; two repeats). c, d, CK-dependent 
anthocyanin accumulation in response to indicated concentrations of 6-benzylamino purine 
(BA). c, Seedlings at 10 d after stratification following the indicated treatment. d, Quantified 
anthocyanin content per g fresh weight for lines in c (n = 15; four repeats). e, ET induced apical 
loop formation in response to 10 µM 1-aminocyclopropane-carboxylic acid (ACC) (n ≥ 10; three 
repeats). f, SA-associated phenotypes in response to inoculation with Pseudomonas syringae 
pv. tomato (Pst). In planta Pst titers (n = 9). g, Summary of hormone validation assays for 19 
PCP. Node colors indicate known pathway annotations. Square colors indicate new 
phenotypes. Colors according to legend in 1a. h, Bimolecular fluorescent complementation 
assay of indicated PCPI candidate pairs and matched negative controls. Scale-bar: 10 μm. 
Assay was performed in duplicate for all constructs. i, Literature reported specificity (single 
pathway annotation) and pleiotropy (multiple pathway annotations) of genes encoding 1,252 
target proteins (total) and 27 proteins in validation set (above line), updated specificity and 
pleiotropy after hormone validation assay (below line). In a, b, d – f, Two sided t-test * P ≤ 
0.05, ** P ≤ 0.01, *** P ≤ 0.001. a – f, Precise P values, biological repeats, and n for each test 
are shown in Extended Table 5. 
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Fig. 3 | Hormone receptor interactions. a, ABA-dependent Y2H interactions. All identified 
interactors were systematically tested against all receptors in presence and absence of ABA. 
b, c, Y3H assays for indicated protein triplets. In all sets DB-RCAR1 is tested for interactions 
with AD-MYB proteins in the presense of the indicated PP2Cs and in presence and absence 
of ABA. b, One of four representative Y3H results. * indicates ABA-dependent interaction. c, 
Y3H subnetwork of data in b. d, SA-dependent interactors of NPR1,3,4. e, One representative 
yeast colony of four repeats in presence and absence of 100 µM SA for identified NPR 
interactors. f, Hormone-dependent and -independent interactions of KAI2, D14 and MAX2. g, 
One representative of four yeast spots for selected KAI2 interactors in presence and absence 
of rac-GR24. h, Representative images for analysis in i show root hair phenotypes of the 
indicated genotypes. Scale bar: 1 mm. i, Quantification of RHD (right top) and RHL (right 
bottom) after indicated treatment. Letters indicate statistical groups (ANOVA, post-hoc Tukey, 
P ≤ 0.05). Boxes represent interquartile range (IQR) and bold line median; whiskers indicate 
highest and lowest data point within 1.5 IQR; outliers plotted individually. Precise n and P 
values for all group comparisons in Supplementary Table 5. a, c, d, g, Modulated interactions 
are represented by line shape as in legend c. Node colors represent hormone annotations as 
in legend g.  
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Material and Methods 
 
PhyHormORFeome selection and cloning. We selected target genes with i) a known 

mutant phenotype in phytohormone signaling based on AHD2.031 annotations, ii) all 

members of gene families were enriched in (ii) and iii) input from colleagues. In total 

1,252 genes were selected, for which 1,226 full-length Open Reading Frames (ORFs) 

could be obtained. To physically assemble the PhyHormORFeome, 688 ORFs were 

picked from our published AtORFeome collection8, 276 ORFs were obtained from 

ABRC, 11 ORFs were obtained from colleagues and 277 ORFs were amplified from 

Col-0 cDNA-mix from different tissues. For RNA extraction, 6-10 d old Arabidopsis 

thaliana Col-0 seedlings, separated organs and plant organs from mature plants were 

used (flower and silique - all developmental stages, node, internode, rosette leaves, 

cauline leaves, root from 15 d old plants grown on solid MS agar plates in vertical 

orientation, imbibed seeds). From all plant organs, tissue types, and seedlings, specific 

total RNA was extracted using the NucleoSpin RNA kit from Macherey and Nagel, 

following the manufacturer’s recommendations. For cDNA synthesis, Superscript III 

(Thermo Fisher 18080044) protocol was modified using 25 ng random primers and 

250 ng oligo d(T) 16 per 1 µg total RNA. Mixture was heated to 70 °C/5 min and 

incubated at 21°C/10 minutes. A mixture of 2.5 µl (0.1 µM) DTT, 10 U RNase OUT (40 

U/µl), 250 U SSIII (200 U/µl), 4 µl SSIII 5x buffer, 2.5 µL 2 µM dNTPs was added and 

incubated at 21 °C for 10 minutes followed by 42 °C for 120 min incubation. To 

generate cDNA longer than 5 KB an additional 250 U of SSIII (200 U/µl) were added 

to the mixture followed by 55 °C for 30 minutes incubation for elongation and 70 °C for 

15 minutes inactivation. All generated cDNAs from different organs, tissues and 

seedlings were mixed in equal amounts and 2 µl non diluted cDNA mixture (~100 ng) 

was used to amplify the ORFs of interest. ORF amplification was conducted as nested 

PCR to attach attB cloning-sites for further Gateway cloning. The specific primers 
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consist of 18 bp specific and 12 bp of a partial attB site (for attB overhang - 

GCAGGCTCAGGA, rev attB overhang – GAAAGCTGGGTC). All ORFs were 

generated with a stop codon. In the second PCR, full attB sites were added to the 

ORFs (attB for – GGGACAAGTTTGTACAAAAAAGCAGGCTCAGGAATG, attB rev – 

GGGGACCACTTTGTACAAGAAAGCTGGGTC). Gateway cloning and yeast 

transformation were performed as described7. ORFs cloned in this project are available 

from stock centers.                         

Y2H interaction mapping pipeline. Network mapping was performed according to 

Altmann et al., 20187. Briefly, bait ORFs were expressed as genetic fusions to the 

GAL4 DNA binding domain (pDEST-DB), prey ORFs were expressed as genetic 

fusions to the minimal GAL4 activation domain. Both constructs were maintained on 

low copy centromeric (cen) plasmids (pAD-DEST) and expressed from weak adh2 

promoters. Primary screening was done by mating individual DB plasmid-containing 

haploid yeast strains (Y8930, MATα) with a mini-pool of haploid Y8800 (MATa) AD-

plasmid containing strains. Following 3 day selection on selective plates containing 

1mM 3-Amino-1,2,4-triazole to repress background HIS3 activity, positive single 

colonies were picked and retested on selective media and cycloheximide control 

plates. Colonies showing specific selective growth were lysed, the respective ORFs 

amplified with generic primers that include position-specific barcodes and 

subsequently identified using the kiloSeq service by seqWell (Beverly, MA, US). All 

primary Y2H screens were performed once, except for the PhIMAIN screen, which was 

performed with five repeats. The receptor screens and the PhIREP screen were verified 

systematically, i.e. in the final verification all identified interaction candidates were 

tested against all receptors or repressors/regulators, respectively. The receptor 

screens were performed in the absence and presence of the respective 

phytohormones applied to the selective media. For the ABA receptor screen, 30 µM 
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abscisic acid was used, for the IAA receptor screen 100 µM indol-3-acetic acid, for the 

GA receptor screen 100 µM GA3 and for the SA receptor screen 100 µM salicylic acid 

was used. The receptors of strigolactone (D14) and karrikin (KAI2) signaling pathways 

were both screened with 5 µM rac-GR24.  

Y3H assay. RCAR1 was genetically fused to the GAL4 DNA binding domain using 

pDEST DB, the MYB proteins were genetically fused to the minimal GAL4 activation 

domain using pAD-DEST. To test for modulation of these interactions, the indicated 

PP2Cs were expressed from the helper plasmid pVTU-DEST maintained via the URA3 

selection marker. All combinations RCAR1 and PP2Cs were transformed into the 

haploid yeast strain Y8930 and mated against Y8800 transformed with the AD-MYB 

constructs. The Y3H assays were performed in four independent repeats in presence 

and absence of 30 µM ABA treatment on selective plates (Sc-W-L-U-H) containing 1 

mM 3-Amino-1,2,4-triazole to repress activity of background HIS3 reporter activity. 

Interactions that were verified in three repeats were counted as Y3H interactions. 

Protein-protein interaction reference set. Candidate interactions for the positive 

reference set (PRS) were compiled from protein-protein interactions from IntAct 

(downloaded august 2014)5 and BioGRID (Version 3.2.115)32. At this time, the IntAct 

dataset contained 17,574 interactions and the BioGRID dataset contained 21,474 

interactions among Arabidopsis thaliana molecules. In both datasets protein-DNA 

interactions, interactions derived from papers that reported more than 100 interactions, 

and non-binary interactions in protein complexes were removed. Subsequently, both 

datasets were filtered for interactions described in at least two publications or identified 

in at least two binary interaction detection methods. This resulted in 233 interactions 

from which 140 interactions described in 247 publications were randomly picked for re-

curation. This recuration yielded a selection of 92 highly reliable binary protein-protein 

interactions, which constitute the PRSPhI. 10 of these 92 interactions were 
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phytohormone dependent interactions. To assemble the random reference set 

(RRSPhI) we sampled randomly 95 protein pairs from proteins in our 

PhyHormORFeome, excluding already described protein-protein interaction pairs.  

Implementation of interaction mapping framework parameters. To assess the 

quality of PhI map, i.e. false positive and false negative interactions, the interactome 

mapping framework was implemented as described33 and the assay sensitivity, 

sampling sensitivity, precision and completeness were estimated.  

Completeness of the PhIMAIN screening space, i.e. the proportion of tested protein pairs 

in comparison to the theoretical number in the full search space was based on the 

number of available ORFs in PhyHormORFeome. The initially defined search space 

comprised 1,252 loci and thus 1,567,504 possible protein pairs. For the screen of 

PhIMAIN 1,254 ORFs corresponding to 1,199 gene loci were tested, of which 1,179 were 

present as AD- and DB-hybrid constructs, 15 only as AD-hybrid constructs, and 5 only 

as DB-hybrid constructs. Together, AD- and DB-hybrid constructs for 90.2% of locus 

combinations were tested for interactions, corresponding to the completeness.  

The assay sensitivity of our Y2H system for detection of phytohormone signaling 

related proteins was estimated by benchmarking the system using PRSPhI/RRSPhI. Of 

the 92 tested PRSPhI pairs 19 pairs were detected, whereas no RRSPhI scored positive, 

thus yielding an assay sensitivity of 20.7% ± 4.2%. Excluding the 9 interactions from 

PRSPhI that are dependent on presence of a phytohormone, none of which was 

detected by the unconditional Y2H, resulted in an unconditional assay sensitivity of 

22.8% ± 4.6%.  

Sampling sensitivity was estimated as described10. Briefly, a modified Michaelis-

Menten function was fitted to the number of identified interactions with increasing 

number of iterations of the experiment using the R-package drc (3.0-1). Using the first 

three repeats of the PhIMAIN screen for developing the saturation model we estimated 
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saturation to occur at 616 ± 38 interactions. The model was then challenged by two 

additional repeats of the primary screen. These resulted in a dataset of 529 

interactions, which matches the model prediction of 519 ± 31 interactions after 5 

repeats.  

Overall sensitivity is the product of assay sensitivity and sampling sensitivity. With an 

assay sensitivity of 20.7% ± 4.2% and sampling sensitivity of 85.9% ± 5.3%, the overall 

sensitivity is 17.8% ± 6.8% including conditional interactions in PRSPhI. The 

unconditional overall sensitivity of 19.4% ± 7.0% is the product of the unconditional 

assay sensitivity of 22.8% ± 4.6% and sampling sensitivity of 85.9% ± 5.3%. Overall 

completion of the screen was estimated as the product of overall sensitivity and 

completeness of the screen; overall completion of PhIMAIN is thus 16.0% ± 6.8%.  

Luciferase validation assay. Protein expression: Proteins constituting PRSPhI/RRSPhI 

pairs and the interaction pairs from the different subsets were expressed in cell-free 

coupled transcription translation wheat-germ lysate (Promega, L3260) using SP6 

promoters. Of each protein pair, one partner was expressed as an N-terminal FLAG-

fusion protein, the second protein carried an N-terminal renilla luciferase fusion. 

Protein pairs were co-expressed according to the manufacturer’s protocol, except that 

the amounts were proportionally adjusted to 20 μl final reaction volume. Input DNA 

plasmids were isolated from 1.5 ml bacterial cultures grown in Terrific Broth for 20 h 

on a vibration platform shaker (Union Scientific) using a Qiagen Biorobot3000 and 

Turbo Prep 96-well plasmid isolation kits. These yielded approximately 20-40 ng μl-1 

DNA of which 4 μl were used in a 20 μl fv. TnT reaction. Protein expression was done 

by incubating the reaction mixture containing both plasmids for 2 h at 30 °C. 

Immunoprecipitation (IP) plate preparation: anti-FLAG antibody coated plates were 

made in-house by incubating white 96-well Lumitrac high binding plates (Greiner) over 

night at 4 °C with 75 μl PBS (pH 7.4) per well containing 8 μg ml-1 M2 anti-Flag antibody 
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(Sigma). 2 h before use, the antibody solution was replaced with 100 μl blocking buffer 

containing 10 μg μl-1 bovine serum albumin (BSA) followed by 2 h shaking at room 

temperature. Following protein expression 2 μl lysate were diluted in 28 μl PBS (pH7.4) 

to quantify expression of the prey protein by addition of 10 μl Renilla glow luciferase 

substrate. The remaining expression lysate was diluted in 42 μl blocking buffer and 

added to the empty wells of the IP plates. The plates were incubated with gentle 

shaking for 2 h at 4 °C, washed 3 times with 100 μl blocking buffer. Co-IP efficiency 

was determined by addition of 10 μl Renilla glow luciferase substrate (Promega) diluted 

in 30 µl PBS (pH7.4). Interaction pairs were scored as positive when the expression 

level was at least 10% of the median of the respective plate (expression positive), the 

immunoprecipitation (IP) exceeded the median IP of the plate (min IP signal) and the 

Z-test on the IP efficiency gave a score greater that 0.4 (IP ratio of sample relative to 

those of the plate). For determination of dataset precision a total of 446 pairs were 

tested from PRSPhI (78), PRSunc (69), RRSPhI (83), PhIMAIN (115), PhIEXT (110), PhIREP 

(60). Dataset differences were statistically compared using one-sided Fisher exact test.   

Network topology. To determine network topology of PhIMAIN the distributions of 

degree and clustering coefficients were calculated for the indicated networks using the 

igraph package. The distributions were used to determine the underlying network 

topology34.  

Network visualization and annotation. Networks were visualized with Cytoscape35 

(v. 3.7.2) using protein annotations from Araport1136. Hormone annotations were 

downloaded from AHD2.0, and extracted from TAIR10 GO annotations (03/08/2018). 

Hormone annotations were inferred from GO annotations when a gene has a GO term 

that contains one of these key words: "auxin", "abscisic acid", "brassinosteroid", 

"cytokinin", "ethylene", "gibberellin", "jasmonic acid", "salicylic acid", "strigolactone", 

"karrikin". GO annotations with evidence code IEP were excluded from all analyses.  
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Community detection. Communities in PhIMAIN were determined using the edge 

betweenness algorithm15 implemented in R-package igraph (v. 1.2.4)37.  

Hormone enrichment. Communities were tested for enrichment with proteins 

functioning in the hormone signaling pathways using the hormone annotations from 

AHD2.0 and TAIR10. For each community the number of proteins with a given pathway 

annotation was compared to the total in the full PhIMAIN network using two-sided 

Fisher’s exact test and multiple hypothesis corrected with Benjamini-Hochberg 

algorithm. 

GO enrichment. All communities were tested for GO enrichment using R package 

GOstats (2.50.0)38. GO annotation data were derived from R package GO.db (3.7.0). 

Communities were tested for overrepresentation of GO terms using a hypergeometric 

test function hyperGTest invoked with parameter conditional = TRUE. P values of each 

community were corrected for testing multiple GO terms using the Benjamini-Hochberg 

method.  

Pathway distance calculation. To determine the distance between different hormone 

pathways, all shortest paths between proteins of the respective hormone signaling 

pathways were determined. Only shortest paths were considered that do not contain 

proteins in the same pathways as those under consideration. The mean path length 

was calculated from all shortest paths between the two pathways.  

Pathway contact point determination and network comparison. Hormone pathway 

annotations from AHD2.0 and GO were used for this analysis. From the PhIMAIN 

network we extracted interactions between two proteins annotated with distinct 

hormone signaling pathways (Type I) and for interactions between two proteins 

involved in distinct but also common pathways (Type II). To compare the number of 

PCPs in PhIMAIN with LCI networks, we used a subsampling bootstrapping approach. 

From each network we conducted 1,000 iterations of sampling 100 interactions without 
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replacement. For each sampling the total number of PCPs of type I and type II and the 

number of PCPs for each specific hormone combination were determined. The derived 

distributions for total PCPs from PhIMAIN were compared to the distributions obtained 

from LCI networks using a two-sided Welch Two-Sample t-test. The distributions of 

hormone combination-specific PCPs were compared using a two-sided Wilcoxon test 

and multiple testing corrected by the number of hormone combinations tested (45). 

Literature curated interactions. Interactions curated from literature were 

downloaded from IntAct5 and BioGRID39. Arabidopsis protein-protein interactions were 

extracted from IntAct database downloaded in June 2016 and from BioGRID database 

version 3.4.142 (downloaded November 2016).  

Phytohormone sources. 1-aminocyclopropane-carboxylic acid (ACC) from SIGMA 

(A-3903), 6-benzylamino purine (BA) from SIGMA (B3408), brassinolide (BL) from 

SIGMA (B1439), karrikin2 (KAR2) from Olchemim (025 682), karrikin2 (KAR2) from 

Toronto Research Chemicals (F864800) for Y2H experiments, gibberellic acid 3 (GA) 

from Duchefa (G0907),  rac-GR24 from Chiralix (CX23880), indol-3-acetic acid (IAA) 

from SIGMA (I2886), paclobutrazol (Pac) from Duchefa (P0922), salicylic acid from 

SIGMA (S5922), abscisic acid (ABA) from SIGMA (A1049), and methyl-jasmonate 

(Me-JA) from SIGMA (392707). 

Plant material and growth conditions. All Arabidopsis thaliana lines, i.e. WT, ahp2, 

as1, bee1, bee2, bim1, bpm3, cbl9, cos1,cpk1, ddl, eds1, ga3ox1, gai, gi, hub1, ibr5, 

jaz1, jaz3, kai2-2, myb77, myc2, nap1;1, nia2, pks1, pp2aa2-2, pp2ca, rcar1, rcn1, 

rgl1, tt4, ttl, wrky54, rga, rga-28, spy, and ein3 are in the Col genetic background. 

Seeds were obtained from NASC and propagated for three generations in a 

greenhouse environment at 21 °C and LD light (16 h / 8 h). For genotyping, one leaf of 

a 12 - 14 days old plant was frozen in liquid nitrogen and genomic DNA was extracted 

in 1.5 ml tubes using Edwards DNA extraction buffer40. For expression level analysis 
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of the mutant lines, RNA was extracted using NucleoSpin RNA kit from Macherey-

Nagel and the M-MuLV Reverse Transcriptase (Biozym 350400201) according to the 

manufacturer’s recommendations. All seeds were surface sterilized and stratified for 3 

d at 4 °C in the dark on MS plates or plates containing the indicated additives. LD light 

conditions were 75-85 µM m-2 s-1 measured with LI-250A light sensor (LI-COR). 

Nicotiana benthamiana seeds were spread on soil and grown in a greenhouse 

environment with 23 °C and LD light (16 h / 8 h). For all assays, measurements were 

done with distinct samples (no repeat measurements on the same sample). For 

statistical tests of significance a normal distribution of the measured variable (e.g. root 

length) was assumed; hormone treatments and genotype were tested as covariates. 

ET triple response measurement. Sterile seeds were placed directly on standard MS 

or 10 µM ACC containing plates, stratified for 3 d at 4 °C in the dark, transferred into 

light for 1 h to induce germination, and then incubated for 3 d at 23 °C in the dark. 

Apical hook vs loop formation was scored visually, image analysis for hypocotyl and 

root length determination was performed using the Fiji imaging software41 and herein 

the Simple Neurite Tracer42 plugin (v 3.1.3).  

Root elongation measurements. Seedlings were grown on MS plates to 5 DAG and 

then transferred to MS mock plates or MS containing the appropriate phytohormone 

additive as indicated in the figures (Pac 0.5 µM, 1.0 µM; BL 0.1 µM, 0.5 µM; 25 µM 

Me-JA). Transferred seedlings grew in vertical position for another 4 days at 23 °C in 

LD light conditions (16 h / 8 h). Root lengths were determined as described above.  

Anthocyanin accumulation. Anthocyanin content in response to the indicated 

treatments was determined as described by Nakata et al, 201443 and expressed per g 

fresh weight.  

Root hair growth. Analysis was performed according to Villaécija-Aguilar et al., 201944 

using 1 µM KAR2. Arabidopsis seeds were stratified in the dark for 3 d at 4 °C and 
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then transferred to a growth cabinet at 22 °C, 16 h / 8 h light/dark cycle (intensity ~100 

µM m-2 s-1).  Images were taken with a Zeiss SteREO Discovery.V8 microscope (Carl 

Zeiss, Germany) equipped with a Zeiss Axiocam 503 color camera (Carl Zeiss, 

Germany). The number of root hairs was determined by counting the root hairs 

between 2 and 3 mm from the root tip on each root, and root hair length was measured 

for 10 - 12 different root hairs per root as described above. For karrikin treatments, 

KAR2 (Olchemim, Olomouc) was dissolved in 75% methanol for the preparation of a 

10 mM stock solution. Analysis and data are based on two repeats. 

Infection assay. To measure bacterial proliferation in 4 - 5 week old plants, assays 

were conducted as described18 using Pseudomonas syringae pv. tomato DC3000. To 

prepare the inoculum, bacteria were grown overnight on NYGA medium (5 g/l 

bactopeptone, 3 g/l yeast extract and 20 m/l glycerol) and resuspended and diluted to 

5 x 105 colony forming units ml-1 in 10 mM MgCl2. Bacteria were inoculated by syringe 

infiltration of two leaves per plant, and harvested at 4 days post inoculation as 

described45. In short, 3 leaf discs per sample were incubated for 1 hour in 10 mM MgCl2 

containing 0.01% Silwett.  The resulting suspension was then serially diluted, 20 µl of 

each dilution were plated, and colonies were counted after two days.  

Bimolecular fluorescent complementation assay (BiFC). For BiFC the vectors 

pMDC43-YFC, pMDC43-YFN46, and pDEST-VYNE(R), pDEST-VYCE(R)47 were used. 

After Gateway recombination, the ORF-containing destination clones were introduced 

into Agrobacterium tumefaciens GV3101 strain. Transformed A. tumefaciens cells 

were grown overnight and resuspended in infiltration buffer (10 mM MgCl2, 10 mM 

MES pH 5.6, and 150 µM acetosyringone) with a final OD600 of 0.3 for each expression 

vector. The abaxial leaf surface of N. benthamiana plants was transiently transformed 

by A. tumefaciens, harboring the constructs and the p19 silencing inhibitor protein, by 

infiltration using a needleless syringe. Two days after infiltration, two leaves from two 
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independently transformed plants were used for fluorescence detection. Reconstitution 

of fluorescence was observed under an epifluorescence microscope (Olympus BX61) 

using YFP and RFP band-pass filters for the YFC-MYC2 and YFN-CIPK14 interaction, 

and either a TCS SP8 (Leica) or a LSM880 laser scanning confocal microscope (Carl 

Zeiss) was used for the remaining BiFC assays. Laser excitation wavelength for both 

microscopes was 488 nm and the detection band was set to 493-545 for Venus protein. 

The objectives were a PL APO 40x/1.10 and a Plan-Apochromat 20x/0.8 M27 for the 

TCS SP8 and LSM880, respectively. Image analysis was performed using the Fiji 

imaging software41. Analyses were performed in duplicate for all constructs. 

In vitro pull-down assays. For in vitro pull down assays, Amylose Resin (New 

England Biolabs) coated with MBP-MYC2 was incubated for 2 hours at 4 °C with 

equimolar amount of purified GST-CIPK14. Wash and elution steps were performed 

following manufacturer’s instructions. Pull-downs were analyzed by western blot using 

α-GST (Amersham Biosciences) and α-MBP (New England Biolabs) antibodies.  

Estimation of the protein-protein interaction likely scores We developed the Edge-

score model to determine the protein-protein interaction likely score in different plant 

tissues and development states. The Edge-score modelling was designed to exploit 

transcript abundance to estimate possibility and to some extent likelihood of an 

interaction taking place in a given tissue and condition. It is based on using transcript 

abundance as a proxy for protein concentration and modeling binary complex 

formation by the law of mass action. Tissue specific transcriptome data were collected 

from Kleptikova48. FastQC (v0.11.7) was used for read quality control before and after 

trimming. Adaptor sequences and low quality reads were trimmed with Trimmomatic 

v0.3649, using the ILLUMINACLIP:TruSeq3-SE.fa:2:30:10, LEADING:3, TRAILING:3, 

SLIDING WINDOW:4:15 and MINLEN:36 options. High quality reads were mapped to 

the Arabidopsis thaliana (TAIR10) reference genome. The estimation of gene 
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abundance was performed with Kallisto v0.4550. To estimate the chance of two proteins 

𝑖 and 𝑗 to interact in a given condition, the law of mass action was used to obtain a 

quantitative estimate of their interaction feasibility. The amount of protein 𝑖 and 𝑗 was 

estimated using their respective transcript levels as proxy 𝑡$ and 𝑡%. Edge-scores were 

calculated using the following scheme: The score of the interaction between protein 𝑖 

and protein 𝑗 in tissue 𝑡& sets as 𝑆$%
() (Equation 1). In each tissue, let 𝑡$

() and 𝑡%
() denote 

the abundance of genes 𝑖 and 𝑗 in tissue 𝑡&. 

𝑆$%
() = 𝑡$

() ∗ 𝑡%
()  (1) 

After obtaining a score for each interaction in each tissue, the Edge-score of a specific 

interaction in tissue 𝑡& was computed with Z-transformation (Equation 2). 

𝑒𝑠$%
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1)

4
564 (5

/84 ./0
1)	3	./0

1)):
  (2) 

Finally, we normalized this score to fit the range of [0, 1] (Equation 3). 

𝑒𝑠$%
() =

;<=/0
1)	3	>?@	(;<A/0

1))

>BC ;<A/0
1) 3>?@	(;<A/0

1))
  (3) 

A higher Edge-score indicates that an interaction in this tissue is more likely as both proteins 

are expressed jointly. A higher Z-score indicates that an interaction in this tissue is more likely 

as both proteins are expressed jointly. 

 

Data Availability 

All functional, genetic, and interaction data generated in this study are available as 

supplementary information. The genes selected for interactome mapping (search 

space) are presented in Supplementary Information Table 1. All protein-protein 

interaction data acquired in this study can be found in Supplementary Information 
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Table 2. The data for genetic validation assays can be found in Supplementary 

Information Table 5. The preliminary edge-scores for all interactions identified in this 

study are presented in Supplementary Information Table 6. Additionally, all protein 

interactions from this work have been submitted to the IMEx 

(http://www.imexconsortium.org) consortium through IntAct5 and assigned the 

identifier IM-27834. 

 

Code Availability 

Custom scripts used in this manuscript are available at https://github.com/INET-

HMGU/PhyHormInteractome 
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Extended Data Fig. 1 | Network analyses. a, Network map of binary protein-protein 
interactions among search space proteins derived from IntAct (LCIIntA). Color code 
indicates hormone pathway annotations as indicated in legend. b, Degree distribution 
and clustering coefficient distribution on log-log scale of network in a. c, Network map 
of binary protein-protein interactions among search space proteins derived from 
BioGRID (LCIBioG). Color code indicates hormone pathway annotations as indicated 
in the legend. d, as in b, but for network shown in c. e, number of proteins and 
interactions in the PhI interactome subsets. f, number of total and new interactions in 
PhI for all proteins belonging to each pathway and the non-redundant total for PhI. g, 
Fraction of positive scoring pairs of PRSPhI (78), PRSunc (hormone-independent PRS 
interactions) (69), RRSPhI (85), combined PhI subsets (green) (285) and the individual 
subsets from the single Y2H screens: PhIEXT (110), PhIMAIN (115), and Rep-TF (60). 
Error bars indicate standard error of proportion. Individual results for all pairs are 
provided in Supplementary Table 2. 

 



 110 

 Extended Data Fig. 2 | Communities and validation. a, Communities with three or 
more nodes identified in PhIMAIN. Community numbers correspond to the numbering in 
Supplementary Table 3. Color code indicates hormone pathway annotations as 
indicated in legend. Node labels are gene symbols when available, otherwise Locus 
IDs. b, Bimolecular fluorescence complementation (BiFC) for CIPK14-MYC2. 
Nicotiana benthamiana epidermal leaves transiently co-expressing cYFP-MYC2 and 
nYFP-CIPK14 restore YFP fluorescence, whereas co-expression of the non-
interacting cYFP-JAZ1 and nYFP-CIPK14 does not. c, maltose-binding-protein (MBP) 
pull-down of MBP-MYC2 and glutathione-S-reductase (GST) tagged CIPK14 shows 
specific co-purification of the latter. b, c Shown are representative results of two 
experiments with similar results. 
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Extended Data Fig. 3 | Pathway contact points enrichment. a, Number of pathway 
contact points (PCPs) per hormone combination for type I and type II are shown. * 
indicates a significantly higher number of PCPs compared to LCIIntA as obtained by 
bootstrap subsampling analysis (n = 1,000) of 100 interactions followed by two-sided 
Welch two sample t-test. Precise P Values for PCPI and PCPII  and pathway 
combinations are listed in Supplementary Table 2.  
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Extended Data Fig. 4 | Hormone response assays I. a, ABA germination rate for 
Col-0 (WT background), cbl9, gai, myc2, ibr5, rcar1 and rcn1 (positive controls), ahp2, 
as1, bee1, bee2, bim1, ddl, eds1, jaz3, myb77 and wrky54 in absence (MS) or 
presence of 0.3 μM ABA. b, Root elongation in absence (MS) or presence of 30 μM 
ABA for the same lines as in a. c, BR root length inhibition in absence (mock) or 
presence of indicated concentrations of BL for Col-0 (WT background), bee1, bee2, 
bim2 (controls), and ddl, rcn1, and ttl (candidates) lines. d, GA root length inhibition in 
the presence of indicated concentrations of Paclobutrazol (Pac) for Col-0 (WT 
background), as1, gai, gi, rga and rga-28 (controls) and hub1, jaz3, nia2, and rcn1 
(candidate) lines. b – d, Boxes represent IQR, bold black line represents median; 
whiskers indicate highest and lowest data point within 1.5 IQR; outliers are plotted 
individually. a – d, Two sided t-test * P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001. Precise n for 
each repeat and precise P values are provided in Supplementary Table 5. 
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Extended Data Fig. 5 | Hormone response assays II. a, SA-associated phenotypes: 
Pst titers following 3 dpi with Pseudomonas syringae pv. tomato (Pst) by syringe 
infiltration. In planta Pst titers were elevated in mature plants of indicated genotypes 
relative to WT Col-0 plants. b, JA root growth in absence (MS) or presence of 25 µM 
Me-JA. c – f, ET triple response in control conditions compared to Col-0. Apical hook 
formation graph indicates hook or loop formation following 10 µM ACC treatment. The 
hypocotyl and root length values are shown with and without 10 µM 1-
aminocyclopropane-carboxylic acid (ACC) treatment. c, Apical hook formation in 
absence or presence of 10 µM ACC. Representative results underlying quantitation in 
d. d, Proportion of apical loop formation in presence of ACC treatment for same lines 
as in c. e, Hypocotyl length in absence or presence of 10 µM ACC for same lines as in 
d. f, Root elongation in absence or presence of 10 µM ACC for same lines as in d. Two 
sided t-test * P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001. b, e, f, Boxes represent IQR, black 
line represents median; whiskers indicate highest and lowest data point within 1.5 IQR; 
outliers are plotted individually. a, b, d – f, Two sided t-test * P ≤ 0.05, ** P ≤ 0.01, *** 
P ≤ 0.001. Precise n for each repeat and exact P values are provided in 
Supplementary Table 5. 
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Extended Data Fig. 6 | ET triple response assays (negative controls). ET triple 
response in negative control lines compared to Col-0 and ein3. a, proportion of apical 
loop formation in response to 10 µM ACC. b, Hypocotyl length in absence or presence 
of 10 µM ACC. d, Root elongation in absence or presence of 10 µM ACC. Two sided 
t-test * P ≤ 0.05, ** P ≤ 0.01. b, c, Boxes represent IQR, black line represents median; 
whiskers indicate highest and lowest data point within 1.5 IQR; outliers are plotted 
individually. Precise n for each repeat and precise P values are provided in 
Supplementary Table 5. 



 116 

  
  



 117 

Extended Data Fig. 7 | PCP validation. a, Summary of hormone-assay results for 27 
candidate genes. Light colors indicate known hormone pathway annotations. Bright 
colors indicate significant new phenotypes observed in validation assays. b, 
Bimolecular fluorescent complementation assay (BiFC) in N. benthamiana of two PCPI 
pairs (AHP2-MYC2, MYB77-RCAR1) and five PCPII pairs (CBL9-IBR5, PP2CA-IBR5, 
TT4-COS1, AS1-NIA2, EDS1-HUB1). PCP pairs are additionally tested with one or two 
negative controls in the BiFC assay. Each construct was tested in duplicate and in two 
independent assays and one representative result is shown. Scale-bar = 10 μm. 
Extended Data Fig. 8 ABA Y2H interactions. a, ABA-dependent and -independent 
interactions of RCAR1-14 ABA receptors. All identified interactors were systematically 
tested against all receptors in presence and absence of 30 μM ABA. Except for PP2Cs, 
single RCAR-specific interactors are displayed above, interactors common to multiple 
RCARs are displayed below receptors. Color of nodes represent hormone annotations. 
Solid lines indicate ABA independent interactions, dashed lines indicate ABA-
dependent interactions as indicated in legend. b – f, one representative set of Y2H 
results, out of four repeats, showing yeast growth on selective media in presence and 
absence of 30 µM ABA as indicated. All candidate interactors identified in primary 
screens were tested systematiclly against all receptors in the shown representative 
verification experiments. g, plate layout of candidate-interactors tested with the 
indicated RCARs in b-f.  
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Extended Data Fig. 8 ABA Y2H interactions. a, ABA-dependent and -independent 
interactions of RCAR1-14 ABA receptors. All identified interactors were systematically 
tested against all receptors in presence and absence of 30 μM ABA. Except for PP2Cs, 
single RCAR-specific interactors are displayed above, interactors common to multiple 
RCARs are displayed below receptors. Color of nodes represent hormone annotations. 
Solid lines indicate ABA independent interactions, dashed lines indicate ABA-
dependent interactions as indicated in legend. b – f, one representative set of Y2H 
results, out of four repeats, showing yeast growth on selective media in presence and 
absence of 30 µM ABA as indicated. All candidate interactors identified in primary 
screens were tested systematiclly against all receptors in the shown representative 
verification experiments. g, plate layout of candidate-interactors tested with the 
indicated RCARs in b-f.  
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Extended Data Fig. 9 Hormone dependent Y2H interactions. a, SA-dependent 
interactors of NPR1,3,4. in presence and absence of 100 µM SA. b, Evidence for NPR4 
interactor functions in defense. c, MAX2, D14 and KAI2 interactions in presence and 
absence of 5 µM rac-GR24. a, c One representative set of Y2H results, out of four, 
showing yeast growth in presence and absence of hormone. All candidate interactors 
identified in primary screen were tested against all receptors in the shown 
representative verification experiments. 
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Extended Data Fig. 10 | Pathway convergence on transcription factors. a, Y2H-
derived interaction map of repressor and non-DNA binding transcriptional regulators 
(boxed and color coded for the respective main pathway involvement) with Arabidopsis 
TFs. Above repressors are TFs interacting specifically with regulators from one 
pathway. Lower layers show the TFs intecating with regulators from multiple number 
of pathways. Node annotations are represented by color-code as indicated. 
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Method book chapter I Bioassays for the effects of strigolactones and other small 

molecules on root and root hair development 
 
 
Reference: Villaécija-Aguilar, J.A.; Struk S.; Goormachtig S.; Gutjahr, C. Bioassays 

for the effects of strigolactone and strigolactone-like molecules on root and root hair 

development. MIMB. Accepted and soon to be published in the book “Strigolactones” 

edited by SpringerNature. 
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and root hair development 
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1 Plant Genetics, TUM School of Life Sciences Weihenstephan, Technical University of Munich 

(TUM), Freising, Germany, 2 Department of Plant Biotechnology and Bioinformatics, Ghent 

University, Ghent, Belgium, 3 Center for Plant Systems Biology, VIB, Ghent, Belgium. 

 
Abstract 
Growth and development of plant roots are highly dynamic and adaptable to 

environmental conditions. They are under the control of several plant hormone 

signalling pathways, and therefore root developmental responses can be used as 

bioassays to study the action of plant hormones and other small molecules. In this 

chapter, we present different procedures to measure root traits of the model plant 

Arabidopsis thaliana. We explain methods for phenotypic analysis of lateral root 

development, primary root length, root skewing, straightness and root hair density and 

length. We describe optimal growth conditions for Arabidopsis seedlings for 

reproducible root and root hair developmental outputs; and how to acquire images and 

measure the different traits using image analysis with relatively low-tech equipment. 

We provide guidelines for a semi-automatic image analysis of primary root length, root 

skewing and straightness in Fiji and a script to automate the calculation of root angle 

deviation from the vertical and root straightness. By including mutants defective in 

strigolactones (SL) or KAI2 ligand (KL) synthesis and/or signalling, these methods can 

be used as bioassays for different SLs or SL-like molecules. In addition, the techniques 

described here can be used for studying seedling root system architecture, root 

skewing, and root hair development in any context. 

 

Key words Arabidopsis root, lateral root, root hair, root skewing, ImageJ 

 
1 Introduction 
Growth of vascular plants depends to a great extent on root growth and development, 

as roots are essential for the uptake of water and nutrients, anchorage and interaction 

with soil organisms. Roots are subjected to continuous changes and patchy variations 

in their soil environment. Therefore, for optimal function, root systems dynamically 
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adapt their morphology to the local soil environment. In developmental studies, trait-

based phenotyping is important to investigate the actions of different proteins and 

molecules. However, this is challenging due to the belowground location of roots. For 

this reason, root development, especially for the model plant Arabidopsis thaliana is 

commonly analyzed on agar surface in Petri dishes. In these conditions, several traits, 

such as root hair length and density, lateral root density, root straightness or skewing, 

are easily assessed.  

 

Lateral roots contribute to the increase of root surface area and biomass, probably to 

ensure a higher water and nutrient uptake (1-3). Hence, the variability of lateral root 

growth is considered as an important factor for root system efficiency (4-5). There are 

different methods to measure the impact of environmental or genetic factors on lateral 

root development. Because the number of lateral roots increases with the length of the 

main root, often the lateral root density, calculated as a ratio between the number of 

lateral roots and the total length of the primary root, is reported instead of the number 
(6). This easy measurement is then the start for more detailed methods to investigate 

at which stage the lateral root development is affected, for example at lateral root 

priming, lateral root outgrowth or others (7-8). 
 

Arabidopsis roots growing on hard agar surface cannot penetrate the agar, causing 

morphological changes such as root skewing and waving (9-12). Skewing was initially 

described in Arabidopsis wild type roots of the ecotype Landsberg erecta (Ler) as the 

tendency of the root to deviate their growth progressively away from the vertical, 

always as right-slanted (13-14). Although less well studied than other architectural root 

parameters, recent studies have highlighted the importance of root skewing in 

understanding root growth behavior and demonstrated that it is likely the result of a 

touch, rather than the gravity stimulus (12,15-16). Thus far, most of the studies used 

laborious image analysis and calculations to quantify skewing in Arabidopsis roots (10-
11). In this chapter, we describe an easy method for semi-automatic image analysis in 

Fiji to determine the angle of deviation from the gravity vector as well as root 

straightness and a script to automate the calculation of root skewing to the left or right 

and of root straightness.  

Root hair length and density are highly responsive to environmental conditions and 

represent another trait that is often used as a read-out for root responses to external 
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cues or to small molecules. In Arabidopsis seedlings, root hairs greatly expand the 

total root surface area, increasing nutrient and water absorption (17). The knowledge 

on root hair development is rapidly increasing (18). Thus, several manual and semi-

automatic methods have been described for root hair quantification (19-24). However, 

some of these methods include machine learning approaches and manual analysis of 

images to train an algorithm for automated detection. Hence, here we describe a 

simple and easily accessible manual method to measure root hair density and length 

of Arabidopsis roots using microscopy images in Fiji.  

 

All traits described above are regulated by plant hormones that can act both as 

systemic integrators as well as locally (25). Among them, strigolactones (SLs), have 

been suggested to play a role in different aspects of plant and root development (26-
28). The perception of SLs is closely related to that of karrikins (KARs), molecules 

released from burning vegetation considered to mimic unknown endogenous plant 

hormones, called KAI2-ligands (KLs) (29,27,30). Lateral root density is controlled by 

both SL and KL signalling, while KL signalling regulates root hair development and root 

skewing (31-33,7). 
 

SLs and KARs/KLs are perceived by the α/β-hydrolase receptor DWARF14 (D14) (34-
37) and its homolog KARRIKIN INSENSITIVE 2 (KAI2) (38-41), respectively. SL and 

KL signalling share the F-box protein MORE AXILLARY GROWTH 2 (MAX2) (42-
43,39,44-49). Hence, phenotypes resulting from the loss-of-function of MAX2 are the 

consequence of the combination of the phenotypes of d14 and kai2 mutants 

(43,39,32,50-51). Therefore, to understand the specific roles of SL and SL-like 

molecules in root and root hair development and to assign their function to the correct 

signalling pathway, it is necessary to use d14 and kai2 single mutants specific for SL 

and KL perception, respectively. Furthermore, pharmacological treatments with SL 

currently largely depend on the use of synthetic SL analogue, rac-GR24 (52-53). 
However, rac-GR24 consists of two stereoisomers, GR245DS and GR24ent5DS, that 

stimulate both D14 and KAI2 (52,54,32,55). Furthermore, a contaminat ‘contalactone’, 

which also acts as an SL mimic through D14 and KAI2 has been detected in several 

preparations of rac-GR24 (56). Therefore, the use of single and pure stereoisomers in 

combination with pathway-specific mutants is warranted.  
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Here we present methods for genetic and phenotypic analysis of lateral root 

development, root skewing, root straightness and root hair density and length in 

Arabidopsis thaliana. These methods allow dissection of SL and KL signalling 

pathways and can be used as bioassays for SLs and SL-like molecules or any other 

signalling compounds. 

 
2 Material 
2.1 Seed sterilization 

1. Arabidopsis seeds. 

2. Sterilizing solution: 70% (v/v) ethanol and 0.05% (v/v) Triton X-100 or 0.05% 

(w/v) dodecyl sulfate sodium salt (SDS). Store at room temperature. 

3. 96% (v/v) ethanol.  

4. Sterile water. 

5. Pipette for 1000 µl. 

6. Sterile tips for 1000 µl. 

7. Eppendorf tube. 

8. Eppendorf tube rotator or shaker. 

9. Laminar air flow cabinet. 

 

2.2 Growth conditions 
1. Murashige and Skoog (MS) medium.  

2. Sucrose.  

3. Bactoagar.  

4. Agar, plant tissue culture.  

5. MES monohydrate.  

6. Myo-inositol. 

7. Distilled water (dH2O). 

8. Sterile toothpicks.  

9. Milligram scale. 

10. KOH. 

11. pH meter. 

12. Autoclave. 

13. 500 mL or 1 L glass bottle. 

14. Square Petri dishes: 120 x 120 mm. 
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15. Autoclaved graduated cylinder.  

16. Pipette for 200 µl. 

17. Sterille tips for 200 µl. 

18. Laminar air flow cabinet. 

19. Parafilm. 

20. Microtape. 

21. Aluminium foil or dark box to keep Petri dishes containing seeds in dark 

during the stratification period. 

22. Cold room at 4ºC. 

23. Rack or other support to maintain the square Petri dishes in vertical position. 

24. Growth cabinet: 21°C, 16-h light /8-h dark photoperiod. Humidity at 50-60%. 

Light intensity 120 µmol m-2 s-1. 

 

2.4 Phytohormones treatments 
 

1. rac-GR24 (Chiralix, Nijmegen, The Netherlands; Strigolab, Turin, Italy; or 

Olchemim, Olomouc, Czech Republic). 

2. GR24ent5DS (Strigolab, Turin, Italy). 

3. GR245DS (Strigolab, Turin, Italy). 

4. KAR1 or KAR2 (Olchemim, Olomouc, Czech Republic). 

5. 100% acetone. 

6. 70% (v/v) methanol. 

 
2.3 Image and data acquisition  

1. High resolution scanner with a minimum of 800 dpi (dots per inch). 

2. Root hairs: stereo microscope equipped with a camera. 

3. Lateral roots: binocular S4E microscope.  

4. Computer with Fiji software. 

 

3 Methods  
3.1 Seed sterilization  

1. Place 1 ml of sterilization solution in an Eppendorf tube containing a 

maximum of approximately 200 Arabidopsis seeds per tube and wash with 
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gentle mixing by inversion on a tube rotator or shaker for 6 minutes at room 

temperature. 

2. Remove sterilization solution and briefly wash seeds once with 96% (v/v) 

ethanol under sterile conditions. For primary and lateral root analysis go 

directly to step 5.  

3. Wash four times with sterile water under sterile conditions.  

4. Suspend the seeds in 100-200 µL of sterile water. The volume varies 

depending on the number of seeds. Work under sterile conditions. 

5. Discard the solution and leave the Eppendorf tube open in the laminar air 

flow cabinet until the seeds are completely dry. 

 

3.2  Growth conditions 
3.2.1. Primary and lateral root analysis  

Plants are grown in Petri dishes (120 x 120 mm) on solid half MS medium 

supplemented with sucrose. For one biological repeat at least 30 seedlings are 

tested for each genotype and treatment. 

1. Solid half-strength MS medium: 2.151 g/L MS, 1% (w/v) sucrose, 0.5 g/L MES, 

0.1 g/L Myo-inositol, and 800 ml of dH2O. Adjust the pH to 5.8 (with KOH), top 

up to 1 L with dH2O and add 8 g/L plant tissue culture agar. Autoclave the 

medium at 121 °C for 20 min. 

2. When testing phytohormone effect see point 3.3. 

3. Use an autoclaved graduated cylinder to pour 60 mL of medium in each square 

Petri dish, to ensure equal medium thickness among Petri dishes. 

4. Use sterile toothpick to equally distribute 12 seeds on the surface of solidified 

medium (see Note 1). 

5. Seal the plate with micropore tape. 

6. Place the plates at 4°C for 2-3 days for stratification in the dark. 

7. Transfer the plates to suitable growth chambers, 21°C with a photoperiod of 16-

h light/8-h dark; 120 µE light intensity, and place them vertically with a distance 

of approx. 4 cm between plates.  

8. Grow the seedlings vertically for 10 days. 

 
3.2.2. Analysis of root skewing, straightness and root hair development  
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Plants are grown in Petri dishes (120 x 120 mm) on solid half MS medium 

supplemented with sucrose. For one biological repeat at least 50 seedlings are 

for each genotype and treatment for root skewing and straightness analysis, or 

at least 10 seedlings are tested for each genotype and treatment for root hair 

analysis. 

1. Solid half-strength MS medium: add into distilled water 2.151 g/L MS and 1% 

(w/v) sucrose. Adjust the pH to 5.8 (with KOH) and add 15 g/L Bactoagar. 

Autoclave the medium at 121 °C for 20 min.  

2. Use an autoclaved graduated cylinder to pour 60 mL of medium in each square 

Petri dish, to ensure equal medium thickness among Petri dishes. 

3. Pipette seeds resuspended in water with 200 µL sterile tips.  

4. Remove sterile tip from the pipette and position the pipette tip over the surface 

of the agar. Dispense single seeds with a maximum of 20 seeds per row (see 

Note 2-4). 

5. Seal ¾ of the Petri dish with parafilm and ¼ with micropore tape to increase 

transpiration and avoid an accumulation of water in the dish (see Note 5).  

6. Place the Petri dishes at 4°C for 2-3 days for stratification in the dark. 

7. Transfer the plates to suitable growth chambers, 21°C with a photoperiod of 16-

h light/8-h dark; 120 µE light intensity, and place them vertically with a distance 

of approx. 4 cm between plates.  

8. Grow the seedlings vertically for 5 days  

9. Image acquisition using a scanner for root skewing or stereo microscope for 

root hair analysis are described below.  

 

 

3.3 Phytohormone treatments 
 

1. Prepare 1 mM stock solutions in 100% acetone for rac-GR24 (Chiralix, 

Nijmegen, The Netherlands), GR24ent5DS (Strigolab, Turin, Italy) or GR245DS 

(Strigolab, Turin, Italy) or in 70% (v/v) methanol for KAR1 or KAR2 (Olchemim, 

Olomouc, Czech Republic). 

2. Add the required volume of stock solution to reach your desired final 

concentration (for example 1 µM) to molten, slightly cooled (approx. 60°C) 

media prior to pouring it into Petri dishes. 
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3. For untreated controls, add an equivalent volume of solvent to molten media 

prior to pouring it into Petri dishes.  

 

3.4 Data acquisition and analysis 
Image analysis for primary root length, root skewing, root straightness, root hair density 

and root hair length quantification are implemented in the open-source package Fiji of 

ImageJ (https://doi.org/10.1038/nmeth.2019). Fiji is freely available for different 

operating systems from https://imagej.net/Fiji/Downloads 

 

3.4.1 Analysis of lateral roots 
 

1. Count the number of all visible emerged lateral roots in 10-day-old seedlings 

under a binocular S4E microscope (see Note 6). 

2. Take images of Petri dishes containing 10-day-old seedlings next to a ruler 

using a high-resolution scanner with a minimum of 400 dpi (dots per inch).  

3. To measure main root length, follow 6-19 points described in 3.4.2 

4. Lateral root density is calculated by dividing the number of lateral roots by the 

corresponding primary root length. 

 

3.4.2 Analysis of primary root length, root skewing and root straightness using 
Fiji 
 

1. Take images of Petri dishes containing 5-day-old seedlings next to a ruler using 

a high-resolution scanner with a minimum of 800 dpi (dots per inch) (see Note 
6 and 7).  

2. Open your image in Fiji. 

3. To calculate the angle of the deviation from the vertical and root straightness, 

we provide the following script: 

 

IJ.renameResults("Branch information", "Results"); 

 

for(i=0; i<nResults; i++) { 

 x1 = getResult("V1 x", i); 

 y1 = getResult("V1 y", i); 
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 x2 = getResult("V2 x", i); 

 y2 = getResult("V2 y", i); 

 rootlength = getResult("Branch length", i); 

  

 opposite = abs(x1-x2); 

 adjacent = abs(y1-y2); 

 normalize = (y2-y1); 

 hypotenuse = sqrt(((y2-y1)*(y2-y1))+((x2-x1)*(x2-x1))); 

 straightness = (hypotenuse/rootlength); 

  

 angle = atan2(opposite, adjacent)*(180/PI); 

if (normalize<0) { 

 angle = atan2(opposite, adjacent)*(-180/PI); 

} 

 setResult("Primary root length", i, rootlength);  

 setResult("Angle", i, angle); 

 setResult("Straightness", i, straightness); 

}  

 

4. To insert the script into Fiji go to File -> New -> Script… and select Language -

> IJ1 Macro. 

5. Copy the script provided above and paste it inside the new Macro. Save the 

script using Edit -> Save as. 

6. Open images using Fiji.  

7. Using the segmented line tool of Fiji, draw a line of 1 cm on the ruler picture. 

8. Go to Analyze -> Set Scale. Change “Known distance” to 10 and “Unit of length” 

to mm (millimeter). 

9. After setting the scale go to Plugins -> Segmentation -> Simple Neurite Tracer. 

10. Convert RGB image to an 8-bit luminance image first. 

11. To start the quantification, click at the beginning and at the end of the root. 

Tracing will automatically trace a line between these two points (Fig. 1a)   

12. If the trace is correct, click “Y” (Yes) followed by clicking “F” (Finish Path). 

13. If the trace is not correct, we can improve the segmentation using “Pick Sigma 

Manually” or “Pick Sigma Visually” in the Simple Neurite Tracer plugin.  
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14. Go to the next seedling and proceed again from point 11 to 13.  

15. If two roots are in contact, the trace will be segmented, and therefore it will not 

be useful for either root length or root skewing quantification (see Note 7). 

16. After completing the paths for all the roots, in the Simple Neurite Tracer plugin, 

go to Analysis -> Render/Analyze Skeletonized Path and select Run “Analyze 

Skeleton” plugin.  

17. In the next window of Analyze Skeleton do not use any Prune cycle method. 

Only select “Show detailed info”.  

18. Two new windows containing the Branch information and Results will appear.  

19. Branch length provides the root length results for each of the roots analyzed. 

20. Open the script saved in 5 and run it. Three new columns will appear in the table 

“Results”, called “Primary root length”, “Angle” and “Straightness”. For Angle, 

negative or positive values will indicate left or right skewing, respectively (Fig. 

1b).  

21. Save the table “Results” as a text file. 

22. Open the text file in Excel for further statistical analysis.  

 

3.4.3 Analysis of root hair density and length 
 
We suggest to analyse the root hair density and length in a specific part of the root 

between 2 and 3 mm from the root tip.  

 

1. Take images of a minimum of 10 roots per genotype and treatment with a stereo 

microscope equipped with a camera. The pictures should cover at least 3 mm 

from the root tip (see Note 6 and 7). 

2. Open images using Fiji.  

3. Using segmented line tool of Fiji, draw a line from root tip to 2 mm (Fig. 2a). Use 

Edit -> Draw to permanently keep the line on the image. 

4. Using arrow tool of Fiji, draw an arrow to 2 mm from the root tip (Fig. 2b). Use 

Edit -> Draw to permanently keep the arrow on the image.  

5. Using segmented line tool of Fiji, draw a line between 2 to 3 mm (Fig. 2b). Use 

Edit -> Draw to permanently keep the line on the image. 

6. Using arrow tool of Fiji, draw another arrow to 3 mm from the root tip (Fig. 2b). 

Use Edit -> Draw to permanently keep the arrow on the image.  
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7. For quantification of root hair density count all the root hairs between the 2 

arrows (2 to 3 mm from the root tip) and write the number of root hairs in an 

excel file for further statistical analysis.  

8. For quantification of root hair length use segmented line tool of Fiji to draw 

a line from the base of a root hair to the end of the root hair (yellow line in Fig. 

2c). Click “M” to measure the length.  

9. Measure a minimum of 10 root hairs length per root.  

10. After finishing all measurements from one root, select and copy the table in the 

“Results” windows of Fiji and paste it into an excel file. The root hair length will 

appear in the column “Length” which can be used for further statistical analysis.  

 

4 Notes 
 

1. Equal distribution of seeds can be facilitated by use of a paper template with 

indicated seed position below the Petri dish.  

2. For root skewing and root straightness, it is possible to use 3 rows of seeds, 

at 3 cm, 5.5 cm and 8 cm from the top of the Petri dish.  

3. Root hair development is very sensitive to light conditions. To avoid 

influences on root hair development by different light conditions among 

seedlings, place the 20 seeds as described above in only one row, 3 cm 

from the top of the Petri dish for root hair density and length analysis. Avoid 

multiple rows below as light intensity increases further down. 

4. If using different genotypes, it is recommendable to divide the plate in 2, with 

seedlings of genotype “A” in the left and genotype “B” in the right. In that 

case, differences between plates are easily observable. 

5. Hermetic sealing of Petri dishes using parafilm can reduce gas exchange 

and subsequently increase ethylene accumulation in the Petri dish. Ethylene 

modulates root skewing, root hair density and length (57-58,24). Therefore, 

a complete sealing of the plate or different sealing between plates might alter 

the outcome of the experiment. The same is true for the number of seedlings 

per plate: too many seedlings may increase the amount of ethylene. 

Therefore, we recommend only 20 seedlings per plate for the particularly 

sensitive root hair assays. 
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6. For all the root parameters described in this chapter, roots that are growing 

not on the surface but inside the agar should be excluded from the analysis. 

7. Root hair development, root skewing and root straightness will be altered if 

different roots touch each other. Therefore, a minimum space between 

seedlings is necessary. Thus, roots in contact with each other should be 

excluded from the analysis of these root parameters.   
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Figure 1. (a) Visualization of the path using Simple Neurite Tracer plugin for primary 

root length, root skewing and root straightness quantification. (b) Schematic diagram 

showing how primary root length, skewing-angle and root straightness are determined. 

Skewing is calculated as the angle between the vertical, defined as 0° and the root tip. 

Straightness is measured as the ratio of the chord line between the hypocotyl-root 

junction and the root tip (H) and the primary root length (PRL).  
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Figure 2. Root hair density and length quantification using Fiji. (a) Output of drawing 

a line between the root tip and 2 mm above the tip. (b) Output of drawing a line between 

2 and 3 mm from the root tip and drawing arrows in 2 mm position and 3 mm position. 

(c) Output of using the segmented tool for root hair length quantification. Text has been 

added using Adobe Illustrator for a better explanation. Scale bar, 100µm. 
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Abstract:  
 
KARRIKIN INSENSITIVE 2 (KAI2) is the receptor of still unknown endogenous plant 

hormones, called KAI2-ligands (KLs), which mimic karrikins, small molecules found in 

germination inducing wildfire smoke. Recent genetic studies have shown that the KL 

signalling pathway is an essential regulator of root hair development. However, the 

downstream mechanisms by which KL signalling regulates root hair growth remain 

unknown. Here we show that KL signalling mutants attenuate the root hair elongation 

response to low external phosphate, which is known to be mediated by auxin transport. 

Our qPCR analysis and the DR5 based auxin response reporter suggested that auxin 

signalling and/or distribution, is altered in KL perception mutant roots. Pharmacological 

treatment with NAA but not fully with 2,4D rescues the root hair phenotype of kai2, 

indicating that disruption in auxin influx is the likely causes of the kai2 root hair 

phenotype. In fact, auxin influx carrier aux1 mutants are resistant to KAR treatment for 

induction of root hair growth. Furthermore, exogenous KAR induces the accumulation 

of AUX1-YFP in the epidermal cell layer above the lateral root cap. Thus, our results 

suggest that KL signalling regulates root hair elongation by controlling the 

accumulation of AUX1 and thereby auxin influx into the epidermis above the lateral 

root cap. 

 
Introduction: 
The alpha-beta hydrolase KARRIKIN INSENSITIVE 2 (KAI2) is the receptor of 

karrikins, molecules produced upon wild-fire and considered to mimic unknown 

endogenous plant hormones, called KAI2-ligands (KLs) (Waters et al., 2012; Conn and 
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Nelson, 2016). Karrikin perception is similar to that of strigolactones (SLs), a group of 

plant hormones, which are perceived by the related alpha-beta hydrolase receptor 

DWARF14 (D14) (Hamiaux et al., 2012; de Saint Germain et al., 2016; Yao et al., 

2016). Perception of both Karrikins and SLs requires the F-box protein MAX2 for 

ubiquitylation and subsequent degradation of a group of repressors, members of the 

SMXL protein family (Stanga et al., 2013; Soundappan et al., 2015; Wang et al., 2015; 

Stanga et al., 2016; Khosla et al., 2020; Wang et al., 2020). SUPPRESSOR OF MAX2 

1 (SMAX1) and SMAX1-LIKE2 (SMXL2) act downstream of the KAI2-MAX2 complex 

to regulate the plant physiological responses to KAR/KL (Morffy et al., 2016; Stanga et 

al., 2016; Bhosale et al., 2018; Villaécija-Aguilar et al., 2019; Khosla et al., 2020; Wang 

et al., 2020). In a previous study, we demonstrated that KL signalling is a new regulator 

of root hair development in Arabidopsis thaliana (Villaécija-Aguilar et al., 2019). KL 

receptor mutants have lesser and shorter root hairs when compared to wild type roots. 

In contrast, smax1 smxl2 mutants show enhanced root hair density and length. Thus, 

SMAX1 and SMXL2 act as repressors of root hair development downstream of the 

complex KAI2-MAX2 (Villaécija-Aguilar et al., 2019). 

 

The number and size of root hairs determine the total area/volume ratio of the whole 

roots, profoundly; and root hairs (RH) are critical determinants of nutrient and water 

uptake as well as anchorage to the soil, especially in the seedling stage (López-Bucio 

et al., 2005; Li et al., 2017). Root hair growth is controlled by different hormones, such 

as brassinosteroids, cytokinin, strigolactone, ethylene, KL and auxin (Koltai et al., 

2010; Kapulnik et al., 2011b; Kapulnik et al., 2011a; Mayzlish-Gati et al., 2012; 

Vanstraelen and Benková, 2012; Villaécija-Aguilar et al., 2019). In particular, auxin is 

essential for root hair formation (Feng et al., 2017; Bhosale et al., 2018). Exogenous 

auxin increases root hair density and length (Pitts et al., 1998), while defects in auxin 

biosynthesis, signalling and/or transport reduce root hair formation (Pitts et al., 1998; 

Rahman et al., 2002; Swarup et al., 2004; Lee and Cho, 2008; Velasquez et al., 2016; 

Bhosale et al., 2018; Giri et al., 2018).  

 

Plants adapt to variable soil conditions and especially phosphate by regulating their 

root hair elongation, with increased root hair growth under low phosphate and vice 

versa (Foehse and Jungk, 1983; Bates and Lynch, 1996; Ma et al., 2001; Williamson 

et al., 2001; Linkohr et al., 2002; López-Bucio et al., 2002; Müller and Schmidt, 2004; 
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López-Bucio et al., 2005; Nacry et al., 2005; Brown et al., 2013; López-Arredondo et 

al., 2014; Bhosale et al., 2018; Giri et al., 2018). Interestingly, KL perception mutants 

growing in ½ Murashige & Skoog medium with sufficient phosphate of 625 µM Pi 

phenocopy the effects of high Pi conditions in the RHL of Arabidopsis wild type 

seedlings (Bhosale et al., 2018; Villaécija-Aguilar et al., 2019). In concordance, 

previous studies suggested that MAX2 mediates the root hair responses to low Pi 

conditions (Mayzlish-Gati et al., 2012).  Besides, the repressor double mutant smax1 

smxl2 shows a RHL comparable to that of wild type under low Pi conditions (Bhosale 

et al., 2018; Villaécija-Aguilar et al., 2019). Recent studies have demonstrated that low 

phosphorus induces root hair elongation by stimulating auxin biosynthesis in the root 

cap and auxin transport to the root hair differentiation zone mediated by the auxin influx 

carrier AUX1 (Bhosale et al., 2018; Giri et al., 2018). Increased auxin levels lead to the 

activation of root hair specific genes mediated by the AUXIN RESPONSE FACTOR19 

(ARF19). ARF19 induces the expression of the bHLH transcription factors RSL2 and 

RSL4 (Bhosale et al., 2018; Mangano et al., 2018). Next, RSL2 and RSL4 activate the 

expression of root hair specific genes (Menand et al., 2007; Yi et al., 2010). Based on 

these observations we hypothesized that KL signalling may regulate root hair 

development in an auxin-dependent manner.  

 
Here, we demonstrate that KL signalling is required for the regulation of root hair 

elongation in Arabidopsis under external Pi changes. We show that the expression of 

the auxin reporter DR5v2:GFP is reduced in the root meristem of kai2 mutants; and 

that external NAA but not 2,3D treatment rescued the root hair phenotype of kai2 to 

the wild-type level, suggesting that import is altered in KL perception mutants. Finally, 

we present evidence that KL signalling regulates root hair elongation by controlling the 

accumulation of AUX1 in the epidermis above the lateral root cap.  

 

Results: 
 

The root hair response to low phosphate requires KL signalling 
 

Since it was previously suggested that SL signalling regulates the root hair response 

to Pi mediated by MAX2 (Mayzlish-Gati et al., 2012), we first examined the effect of 

three different Pi concentrations, low Pi (2 µM Pi), medium Pi (625 µM) and high Pi (2 

mM Pi) on KL and SL perception and signalling mutants. Consistent with previous 
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reports (Foehse and Jungk, 1983; Bates and Lynch, 1996; Ma et al., 2001; Williamson 

et al., 2001; Linkohr et al., 2002; López-Bucio et al., 2002; Müller and Schmidt, 2004; 

López-Bucio et al., 2005; Nacry et al., 2005; Brown et al., 2013; López-Arredondo et 

al., 2014; Bhosale et al., 2018; Giri et al., 2018), low Pi lead to an increase in RHL and 

high Pi caused a reduction in RHL in wild type relative to medium Pi (Figure 1). We 

observed similar RHL responses to low and high Pi in the SL receptor mutant d14 

when compared to wild type (Figure 1), indicating that SL signalling is not required for 

the RH response to phosphate. However, kai2 and max2 mutants showed a reduced 

root hair response to phosphate starvation with a similar RHL at medium Pi as wild 

type at high Pi and a similar RHL at low Pi as wild type at medium Pi. Conversely, while 

RHL of smax1 smxl2 mutants was similar to wild type at high Pi, is was longer than for 

wild type at medium and high Pi (Figure 1). Hence, we conclude that KL signalling, but 

no SL signalling, is required for the root hair growth response to Pi availability.  

 
SMAX1 and SMXL2 regulate root hair positioning downstream of KAI2-mediated 
signalling 
 

Because auxin is essential for the promotion of RHL upon Pi starvation (Bhosale et al., 

2018; Giri et al., 2018), we hypothesised that KL signalling may regulate auxin 

signalling, transport and/or biosynthesis to control root hair development. Auxin is a 

key regulator of the planar polarity of root hair positioning (Fischer et al., 2006). 

Therefore, we postulated that if KL signalling converges with auxin signalling to 

regulate root hair development, KL signalling mutants may show an altered root hair 

positioning. Consistent with our hypothesis, we observed that most root hairs of kai2 

and max2 emerge from a more intermediate position than in the wild-type (Figure 2A 

and B). In contrast, in smax1 smxl2 and max2 smax1 smxl2 mutants, a more 

substantial proportion of root hairs than in wild type emerges from a more basal 

position (rootward) (Figure 2A and B). Hence, we considered that KL signalling 

mutants might be perturbed in auxin biosynthesis, sensitivity or distribution.  

 

KL signalling regulated auxin import in Arabidopsis root tips   
 

To confirm that auxin signalling is altered in KL perception mutants, we investigated 

the expression of DR5v2:GFP, an auxin-sensitive reporter (Liao et al., 2015), in the 

root meristem of wild type, kai2-2 and the SL receptor mutants d14-1, as a control as 
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d14 mutants do not show an altered root hair growth (Villaécija-Aguilar et al., 2019). 

Consistent with our hypothesis, we observed a significant reduction of DR5v2:GFP 

expression in the root meristem of kai2 as compared to wild type (Figure 3A and B). 

This difference in DR5v2:GFP expression was not observed in the SL receptor mutant 

d14 (Figure 3C). Taken together, these data support the hypothesis that KL signalling 

regulates root hair development by modulating auxin biosynthesis, signalling and/or 

distribution. 

 
To examine whether this could be due to altered auxin biosynthesis or transport, we 

examined the expression of genes involved in these processes. Transcripts of auxin 

biosynthesis genes, TAA1, YUC3, YUC6, DAO1, DAO2, auxin transporter genes 

AUX1, PIN2, PIN3, PIN7, as well as the auxin the receptor gene TIR1 accumulated to 

similar levels as the wild type (Supplementary Figure 1), although the transcript level 

of the KL signalling marker gene DLK2 was significantly reduced (Figure 6), suggesting 

that auxin biosynthesis and transport are not affected, at least at the transcriptional 

level.  

 

We evaluated the effect of the synthetic auxins NAA and 2,4-D, on RHL in wild type 

and KL signalling mutant. NAA and 2,4-D have different properties. While the 

translocation of NAA to the cell mainly depends on efflux carrier activity, 2,4-D 

accumulation is controlled by an uptake carrier (Ma et al., 2018). We found that the 

application of 1nM NAA completely restores RHL of the KL signalling mutants to the 

level of wild type (Figure 4A). When treated with 2,4-D, KL signalling mutants were 

insensitive to 1nM 2,4-D and less sensitive to 10 nM 2,4-D than wild type (Figure 

4B). Consistent with these results, DR5v2:GFP expression in the root meristems of 

kai2-2 was also less sensitive to 2,4-D than to NAA (Figure 4C). Overall, our data 

suggest that kai2 and max2 might have decreased auxin levels in specific cell types, 

and that a defect in auxin import in kai2 and max2 mutants might reduce its sensitivity 

to 2,4-D treatment. 

 

KL signalling regulates root hair development by modulating AUX1 abundance 
 

Functional characterization of the auxin-influx carrier AUX1 has shown that 2,4-D is a 

substrate of AUX1 (Yang et al., 2006). In addition, root hair length is severely disrupted 
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in aux1 mutants (Pitts et al., 1998; Rahman et al., 2002; Swarup et al., 2004; Bhosale 

et al., 2018; Giri et al., 2018). In Villaecija-Aguilar et al., 2019, we demonstrated that 

exogenous application of KAR promotes root hair elongation. Thus, we examined the 

effect of KAR2 treatment on RHL in wild type, and aux1 mutants and max2 as a 

negative control. Supporting our hypothesis, we observed that max2 and aux1 mutants 

are resistant to the effects of KAR treatment for RHL (Figure 5A). In Arabidopsis roots, 

AUX1 is expressed in different tissues, including columella, proto-phloem, lateral root 

cap (LRC), and epidermal cells (Swarup et al., 2004; Péret et al., 2012). Previous 

studies suggested that the expression of AUX1 in the LRC and epidermal cells 

contribute up to 80% of mobilized auxin required for root hair development (Jones et 

al., 2009; Dindas et al., 2018). We observed that exogenous application of KAR2 during 

2 hours induces the accumulation of AUX1-YFP in the epidermal cell layer above the 

LRC (Figure 5B and C). The activity of AUX1 in the epidermis is required for the root 

hair elongation response to external phosphate (Bhosale et al., 2018; Giri et al., 2018). 

Hence, we conclude that KL signalling regulates those responses by positively 

regulating AUX1 accumulation, likely at the post-transcriptional level (compare 

Supplementary Figure 1).  

 

ARF7 but not ARF19 regulates root hair elongation in response to KAR treatment 
 
Auxin signalling requires the activation of auxin response factors (ARFs) to activate 

the expression of auxin-inducible genes (Zenser et al., 2001; Remington et al., 2004; 

Dharmasiri et al., 2005; Overvoorde et al., 2005; Tan et al., 2007; Mockaitis and 

Estelle, 2008; Szemenyei et al., 2008). In root hair cells, ARF7 and ARF19 are the two 

most abundant ARFs (Bargmann et al., 2013). In addition, arf7 and arf19 mutants 

display a reduced root hair length (Okushima et al., 2005; Bhosale et al., 2018). To 

investigate whether ARF7 and ARF19 may be involved in regulating root hair 

development downstream of KL signalling and AUX1 accumulation, we examined their 

transcript accumulation in kai2-2 and max2-8 mutants. Transcript levels of both genes 

were significantly reduced in these mutants, while this was not the case for ARF5 and 

ARF8 (Figure 6A). Furthermore, and consistent with an important role of KAI2-

mediated signalling in root hair development, the expression levels of RSL2, RSL4, the 

expansin EXP7 and the phosphatidylinositol transfer protein-encoding gene COW1 

were significantly reduced in kai2-2 and max2-8 compared to wild type (Figure 6A).   
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To confirm a role of ARF7 and ARF19 downstream of KL signalling in controlling RHL, 

we evaluated the effect of KAR2 on RHL in arf7, arf19 and arf7 arf19 mutants. 1µM 

KAR2 significantly increased RHL in wild type and arf19 mutants (Figure 6B). In 

contrast, single arf7 and double arf7 arf19 mutants were resistant to the effect of KAR 

for root hair elongation (Figure 6B). Therefore, we conclude that ARF7, but not ARF19, 

represent a crucial regulator for KAR/KL-inducible root hair elongation. 

 
Discussion: 
 
Changes in root hair growth are important adaptive responses to external cues. 

Nutrient deficiency, such as to potassium, nitrate or phosphate, promotes the 

elongation of root hairs presumably to increase the root surface for nutrient uptake 

(Bates and Lynch, 1996; Williamson et al., 2001; Høgh-Jensen and Pedersen, 2003; 

Brown et al., 2013; Canales et al., 2017; Klinsawang et al., 2018). The root hair 

responses to changes in the soil environment are controlled by several 

phytohormones, such as ethylene, brassinosteroids, cytokinin and auxin (Vissenberg 

et al., 2020). In particular, auxin biosynthesis, transport and signalling control the root 

hair responses to Pi deficiency in Arabidopsis and rice roots (Bhosale et al., 2018; Giri 

et al., 2018). Here we report that KL signalling is a new player in the mediation of root 

hair growth under Pi starvation and controls one of the critical components for this 

response, the auxin carrier AUX1. 

 

Our study demonstrates that mutations in KL signalling attenuate the promotion of RHL 

by low external Pi. While low Pi significantly increases RHL, high Pi suppresses RHL 

in Arabidopsis wild type roots. In contrast, KL signalling mutants are at least partially 

resistant to those responses, with receptor mutants showing reduced RHL at low Pi 

and repressor mutants showing enhanced RHL at high Pi (Figure 1). It yet remains 

unclear, whether KL signalling is involved in the sensing of phosphate or whether it 

solely controls the root hair growth response. 

 

In Arabidopsis roots, the auxin biosynthesis genes TAA1 and DAO1, are upregulated 

under low Pi conditions (Bhosale et al., 2018). Hence, we hypothesised that KL 

signalling might regulate auxin biosynthesis in Arabidopsis roots. However, our qPCR-
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based gene expression analysis revealed that transcript accumulation of the auxin 

biosynthesis genes TAA1 and DAO1 is unchanged in KL perception mutants roots 

(Supplementary Figure 1). These results suggest that KL signalling does not regulate 

auxin biosynthesis in the roots, at leat not at the transcriptional level. However, it is 

unclear if KL signalling regulates auxin synthesis in the shoots and whether this would 

alter the total auxin content in the roots (Goldsmith, 1977; Petrášek and Friml, 2009). 

Arabidopsis max2 mutants display increased auxin transport in shoots, presumably by 

over-accumulation of auxin efflux carriers, such as PIN1 (PIN-FORMED 1) (Crawford 

et al., 2010; Shinohara et al., 2013). Thus, an increase of auxin transport toward the 

root might increase the total auxin levels in KL signalling mutant roots. Nevertheless, 

pharmacological treatment with auxin increases root hair density and length (Pitts et 

al., 1998). Accordingly, defects in auxin signalling and/or biosynthesis reduce root hair 

growth (Velasquez et al., 2016). Therefore, an increase of total root auxin levels in the 

roots could not explain the reduction of root hair growth in the KL perception mutants. 

However, a reduction of auxin accumulation in the root as indicated by reduced 

DR5v2:GFP expression (Figure 3A and B)  appears to explain the root hair phenotypes 

in KL signalling mutants.   

 

Furthermore, we show that ARF7, ARF19 expression are significantly reduced in kai2 

and max2 mutants (Figure 6A).  Our analysis of the root hair response to KAR of the 

single arf7, arf19 and double arf7 arf19 mutants revealed that KAR induces root hair 

elongation in wild-type and arf19 single mutants, but not in arf7 single or arf7 arf19 

double mutants (Figure 6B). These results indicate that ARF7 is the major downstream 

player in KL mediation regulation of root hair elongation. This appears to be partially 

contradictory with a role of KL signalling on root hair response to low Pi. Bhosale et al., 

2018 concluded that ARF19, rather than ARF7, is the crucial transcription factor in root 

hair responses to low Pi. This contradiction may be resolved by considering that in our 

KAR treatment assay, we used ½ MS medium containing a medium Pi concentration 

of 625µM. ARF19 expression decrease at 325 µM Pi and ARF7 at 500µM Pi (Niu et 

al., 2015; Bhosale et al., 2018). ARF19 and ARF7 are functionally redundant, and 

changes in expression level and/or pattern, rather than aminoacid sequencing, are 

critical determinants for the function of those two transcription factors (Li et al., 2006). 

Perhaps, higher expression levels and/or a different expression pattern of ARF19 

under lower Pi conditions could activate an ARF19 mediated root hair elongation 



 152 

response to KAR, while ARF7 may be more strongly expressed at medium to high Pi 

concentrations.  Further investigations are needed to evaluate the roles of ARF19 and 

ARF7 mediating the root hair response upon KAR treatment under different Pi 

concentrations.  

ARFs are regulated by another protein family, the Aux/IAA transcriptional repressors 

(Remington et al., 2004; Overvoorde et al., 2005). In the presence of auxin, the auxin 

receptor TIR1 F-box proteins interact with Aux/IAA proteins to mediate their 

ubiquitination and subsequent degradation to release transcriptional responses to 

auxin (Zenser et al., 2001; Dharmasiri et al., 2005; Tan et al., 2007; Mockaitis and 

Estelle, 2008). In contrast, at low auxin levels, Aux/IAA proteins interact with ARFs to 

inhibit their activity by recruiting co-repressors of the TOPLESS (TPL) family, leading 

to the repression of auxin-responsive genes (Szemenyei et al., 2008). To test, whether 

KL signalling directly regulates auxin signalling or controls auxin distribution, we 

treated KL perception mutants, with external auxin. Because the synthetic auxin NAA, 

but not 2,4-D, treatment fully rescued the root hair phenotypes of kai2 and max2 

(Figure 5), we conclude that auxin import and distribution, rather than auxin signalling, 

might be altered in KL perception mutants.  We next show that the auxin influx carrier 

AUX1 is required for the regulation of root hair elongation by KL signalling (Figure 5A). 

Our data further suggest that KL induces the accumulation of AUX1 in the epidermis 

above the lateral root cap (Figure 5B and C).  The importance of AUX1 in the epidermis 

and lateral root cap for the regulation of root hairs has been previously reported (Jones 

et al., 2009; Bhosale et al., 2018). Besides, protein expression and promoter activity 

pattern analysis indicates that SMAX1 localises principally to the lateral root cap and 

columella in the roots of Arabidopsis seedlings (Soundappan et al., 2015; Khosla et 

al., 2020). Therefore, it is plausible that SMAX1 and SMXL2 proteins suppress root 

hair growth in Arabidopsis by repressing AUX1 accumulation in the epidermis above 

the lateral root cap.  

Currently, it is unknown how SMAX1 and/or SMXL2 regulate AUX1 accumulation 

and/or activity. AUX1 is regulated by different plant hormones, including ethylene and 

cytokinin (Růžička et al., 2007; Street et al., 2016). In particular, treatment with an 

inhibitor of ethylene biosynthesis, AVG, reduced AUX1 accumulation in the root tip 

(Street et al., 2016), while treatment with the ethylene precursor enhanced it (Růžička 

et al., 2007), indicating a direct role of ethylene in AUX1 accumulation. Besides, 
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ethylene treatment induces root hair elongation in Arabidopsis (Pitts et al., 1998). 

Therefore, it is plausible that ethylene regulates root hair elongation via AUX1 

accumulation. Recent studies suggested that SMAX1 inhibits ethylene biosynthesis in 

Lotus japonicus (Carbonnel et al., in revision). We may deduce that Arabidopsis 

SMAX1 and/or SMXL2 play similar roles in the control of ethylene synthesis, which 

may result in AUX1 accumulation and leading to changes in root hair development. 

Supporting this hypothesis, AVG treatment suppresses the root hair elongation 

response to rac-GR24 (one stereoisomer of which, acts through KAI2) in Arabidopsis 

(Kapulnik et al., 2011b; Kapulnik et al., 2011a). Therefore, ethylene biosynthesis is 

likely critical for the control of RHL by KL signalling.  

 
In summary, our study suggests a complex interaction between the signalling 

pathways of different hormones. Perhaps, low Pi conditions lead to an increase in 

biosynthesis of the still unknown KL, inducing KL signalling. The activation of KL 

signalling might lead to an increase in ethylene biosynthesis, resulting in AUX1 

accumulation in the epidermis above the lateral root. Changes in auxin influx mediated 

by AUX1 causes the accumulation of auxin in specific cell types, stimulating auxin 

signalling mediated by ARFs. Next, ARFs trigger the activation of the transcription 

factors RSL2 and RLS4, which lead to the induction of genes, such 

as COW1 and EXP7, thus initiating the root hair elongation machinery. 
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Material and methods: 
 
Plant material 
Genotypes of Arabidopsis thaliana were in Columbia-0 (Col-0) or Landsberg erecta 

(Ler) parental backgrounds. The following mutants were used: Ler: kai2-2, max2-8 

(Nelson et al., 2011). Col-0: d14-1, kai2-2 (Bennett et al., 2016), max2-1 (Stirnberg et 

al., 2002), smax1-2 smxl2-1 (Stanga et al., 2016), aux1-7 (Pickett et al., 1990), arf7-1, 

arf19-1 (Harper et al., 2000), arf7-1 arf19-1 (Okushima et al., 2005), DR5v2:GFP (Liao 

et al., 2015).   

 

Plant growth conditions 
For analysis of root hair length, Arabidopsis thaliana seeds were grown in axenic 

conditions on 12x12cm square plates containing 60 ml agar-solidified medium. Seed 

were surface sterilized by washing with 1 ml of 70% (v/v) ethanol and 0.05% (v/v) Triton 

X-100 with gentle mixing by inversion for 6 minutes at room temperature, followed by 

1 wash with 96% ethanol and 5 washes with sterile distilled water. Seedlings were 

grown on plates containing 0.5X Murashige & Skoog medium, pH5.8 (½ MS) (Duchefa, 

Netherlands), supplemented with 1% sucrose and solidified with 1.5% agar. For root 

hair length experiment under different phosphate conditions, seedlings were grown on 

plates containing modified ½ MS medium, with low (2 μM), medium (625 μM) or high 

(2 mM) Pi with KH2PO4, pH 5.8, supplemented with 1% sucrose and solidified with 

1.5% agar. Potassium concentrations were adjusted with KCl. Plates were stratified at 

4°C for 2-3 days in the dark, and then transferred to a growth cabinet under controlled 

conditions at 22 °C, 16-h/8-h light/dark cycle (intensity ~120 µmol m-2 s-1) with plates 

vertically placed.   

 
Phytohormone treatments 
NAA was purchased from Sigma-Aldrich (St. Louis, United States). 2,4-D was 

purchased from Duchefa (Netherlands). KAR2 was purchased from Olchemim 

(Olomouc, Czech Republic). NAA or 2,4-D were dissolved in either 2% DMSO, 70% 

ethanol for a 1mM stock, or 100% ethanol for the preparation of 10 mM stock solution. 

KAR2 was purchased from Olchemim (Olomouc, Czech Republic). For treatment with 

KAR2, 1 mM stock solutions were prepared in 70% methanol. The volume required to 

reach the final concentration of these stock solutions was added to molten media prior 
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to pouring Petri dishes for root hair elongation experiments. In each root hair elongation 

experiment, an equivalent volume of solvent was added to Petri dishes for untreated 

controls. For confocal experiments with KAR2, the volume required to reach the final 

concentration of these stock solutions was added to ½ MS liquid medium. For this 

experiment, an equivalent volume of solvent was added to ½ MS liquid medium for 

untreated controls. 

 
Determination of root hair length and position 
For root hair length experiments, images of a minimum of 10 roots per genotype and 

treatment were taken with a Zeiss Discovery V8 microscope equipped with a Zeiss 

Axiocam 503 camera. Root hair length was measured for 10 different root hairs per 

root, between 2 and 3 mm from the root tip using Fiji. For root hair position, images 

between 2 and 3 mm from the root tip were taken with a Leica DM6 B microscope 

equipped with a Leica DFC9000 GT camera. The root hair position was determined 

following the method described by (Masucci and Schiefelbein, 1994) for 5-15 root hairs 

per root and a minimum of 8 roots per genotype. 

 

Confocal microscopy 
Laser-scanning confocal microscopy for DR5v2:GFP expression was performed using 

either Zeiss LSM700 or LSM880 imaging system with a 20X lens. Roots were stained 

with propidium iodide (10ug/ml) and mounted on slides. GFP excitation was performed 

using a 488 nm laser, and fluorescence was detected between 488 and 555nm. 

Propidium iodide excitation was performed using a 561 nm laser, and fluorescence 

was detected between above 610nm. The same detection settings were used for all 

images captured in a single experiment. GFP quantification was performed on non-

saturated images, using Zeiss ‘ZEN’ software. For AUX1-YFP expression laser-

scanning confocal microscopy was performed using Leica SP8 imaging system with 

20X or 40X lens. YFP excitation was detected between 520 and 550nm.  

 

RNA extraction and gene expression analysis 
For qRT-PCR analysis, at least 100 roots per sample was rapidly shock frozen in liquid 

nitrogen. RNA was extracted using NucleoSpin RNA plant and fungi kit (Macherey-

Nagel). The concentration and purity of RNA were evaluated with DS-11 FX+ 
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spectrophotometer/fluorometer (DeNovix). First-strand cDNA was produced in a 20 µL 

reaction volume using the Superscript IV kit (Invitrogen).   

 

The cDNA was diluted with water in a 1:20 ratio and 2 µL of this solution was used for 

qRT-PCR in a 7 µL reaction volume using a EvaGreen Mastermix (Metabion, 

UNG+/ROX+ 2x conc.) and primers shown in Supplementary Table 1. To quantify the 

expression of the different genes, the qPCR reaction was carried out using a CFX384 

TouchTM RT-PCR detection system (Bio-Rad). Thermal cycler conditions were: 95°C 

2 min, 40 cycles of 95°C 30s, 55°C 30s and 72°C 20 s, followed by dissociation curve 

analysis. For the calculation of the expression levels, we followed the ΔΔCt method 

(6). For each genotype three biological replicates were analyzed. Each sample was 

represented by 3 technical replicates.  

 
Statistical analysis 
Statistical analyses were performed in R-studio, using one-way Analysis of Variance 

(ANOVA), followed by Tukey HSD post hoc test or using Student´s t-test. 

 

Accession numbers 
Sequence data for the genes mentioned in this article can be found in The Arabidopsis 

Information Resource (TAIR; https://www.arabidopsis.org) under the following 

accession numbers: MAX3, AT2G44990; MAX4, AT4G32810; MAX1, AT2G26170; 

D14, AT3G03990; KAI2, AT4G37470; MAX2, AT2G42620; SMAX1, AT5G57710; 

SMXL2 AT4G30350; SMXL6, AT1G07200; SMXL7, AT2G29970; SMXL8, 

AT2G40130; PIN1, AT1G73590; PIN2, AT5G57090; PIN3, AT1G70940; PIN4, 

AT2G01420; PIN7, AT1G23080; ARF5, AT1G19850; ARF7, AT5G20730; ARF8, 

AT5G37020; ARF19, AT1G19220; RSL2, AT4G33880; RSL4, AT1G27740; EXP7, 

AT1G12560; COW1, AT4G34580; DLK2, AT3G24420, TAA1, AT1G70560; DAO1, 

AT1G14130, DAO2, AT1G14120; YUC3, AT1G04510; YUC9, AT1G04180; TIR1, 

AT3G62980; AUX1, AT2G38120; EF1α, AT5G60390. 
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Figure 1. Mutants in KL signalling attenuate the root hair elongation responses to Pi.  
Root hair length (µm) of the indicated genotypes under low Pi (2µM Pi), medium Pi (625µM Pi) or 
high Pi (2mM Pi) conditions. The black dotted line indicates the median of wild type at medium Pi. 
The grey dotted lines indicate the median of wild type at low and high Pi. The outline of the violin 
plot represents the probability of the kernel density.  Black boxes represent interquartile ranges 
(IQR), with the red horizontal line representing the median; whiskers extend to highest and lowest 
data point but no more than ±1.5 times the IQR from the box; outliers are plotted individually. 
Different letters indicate different statistical groups (ANOVA, posthoc Tukey, p≤0.05).   
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Figure 2. KL signalling controls root hair positioning at the epidermal cell.  
(A) Images of representative trichoblasts showing sites of root hair emergence. Arrows indicate 
the most apical end of the cell. (B) Frequency distribution of different root hair positions 
observed in the indicated genotypes. 
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Figure 3. KL perception mutants show reduced DR5v2:GFP expression in the root 
meristem. 
(A and C) Fluorescence intensity (arbitrary units, A.U.) of DR5v2:GFP of the indicated 
genotypes. The outline of the violin plot represents the probability of the kernel density.  Black 
boxes represent interquartile ranges (IQR), with the red horizontal line representing the 
median; whiskers extend to highest and lowest data point but no more than ±1.5 times the IQR 
from the box; outliers are plotted individually. Different letters indicate different statistical 
groups (ANOVA, posthoc Tukey, p≤0.05). (B) Confocal images of representative root tips of 
Col-0 wild type and kai2-2 expressing the auxin reporter DR5v2:GFP.  
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Figure 4. KL signalling mutants show different sensitivity to NAA than to 2,4-D. 
Root hair length (µm) of the indicated genotypes, treated with (A) solvent (96% Ethanol), 1 nM 
NAA or 10 nM NAA, (B) solvent (96% Ethanol), 1 nM 2,4-D or 10 nM 2,4-D. (C) Fluorescence 
intensity (arbitrary units, A.U.) of DR5v2:GFP of the Col-0 wild type and kai2-2 genotypes, 
treated with solvent (96% Ethanol), 1 nM 2,4-D or 10 nM 2,4-D, 1 nM NAA or 10 nM NAA. The 
outline of the violin plot represents the probability of the kernel density.  Black boxes represent 
interquartile ranges (IQR), with the red horizontal line representing the median; whiskers 
extend to highest and lowest data point but no more than ±1.5 times the IQR from the box; 
outliers are plotted individually. Different letters indicate different statistical groups (ANOVA, 
posthoc Tukey, p≤0.05).  
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Figure 5. KL signalling control root hair development by modulating AUX1 
accumulation.  
(A) Root hair length (µm) of the indicated genotypes treated with solvent (70% methanol) or 1 
μM KAR2. The outline of the violin plot represents the probability of the kernel density.  Black 
boxes represent interquartile ranges (IQR), with the red horizontal line representing the 
median; whiskers extend to highest and lowest data point but no more than ±1.5 times the IQR 
from the box; outliers are plotted individually. Different letters indicate different statistical 
groups (ANOVA, posthoc Tukey, p≤0.05). (B) Confocal images of representative root tips of 
Col-0 wild type treated with solvent (70% methanol) or 1 μM KAR2 for 2 hours. (B) 
Fluorescence intensity (arbitrary units, A.U.) of AUX1:YFP of the indicated genotypes treated 
with solvent (70% methanol) or 1 μM KAR2 for 2 hours.  Black boxes represent interquartile 
ranges (IQR), with the red horizontal line representing the median; whiskers extend to highest 
and lowest data point but no more than ±1.5 times the IQR from the box; outliers are plotted 
individually. Asterisks indicate a significant difference from the solvent (Studen´s t-test, 
p≤0.05). 
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Figure 6. ARF7 acts downstream of KL signalling in controlling root hair length.  
(A)Transcript accumulation in roots of the indicated genotypes. Expression levels of 3 
biological replicates are normalized against those of EF1α. Different letters indicate different 
statistical groups (ANOVA, posthoc Tukey, p≤0.05). (B) Root hair length (µm) of the indicated 
genotypes treated with solvent (70% methanol) or 1 μM KAR2. The outline of the violin plot 
represents the probability of the kernel density.  Black boxes represent interquartile ranges 
(IQR), with the red horizontal line representing the median; whiskers extend to highest and 
lowest data point but no more than ±1.5 times the IQR from the box; outliers are plotted 
individually. Different letters indicate different statistical groups (ANOVA, posthoc Tukey, 
p≤0.05). 
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Supplementary Figure 1. Auxin biosynthesis and transport gene expression. 
Transcript accumulation of DLK2, TAA1, DAO1, DAO2, YUC3, YUC9, TIR1, AUX1, PIN2, PIN3 
and PIN7 in roots of the indicated genotypes. Expression levels of 3 biological replicates are 
normalized against those of EF1α (ANOVA, posthoc Tukey, p≤0.05). 
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Supplemental Table 1. List of primers used for qPCR analysis. 
    
Gene Direction Sequence References 

ARF5 Forward TACGCCACTTAGAACCAGGCCATC   
Reverse  GTTCCCATGTACCTTCGTTTCCCG   

ARF7 Forward GCTCATATGCATGCTCCACA Singh et al., 
2012 

Reverse  CAGCAGGAGCAGCCCACCT   

ARF8 Forward ACATGGAGGGTTTTCTGTTCC   
Reverse  TGGCACTGACAAAGACACTCCATC 		

ARF19 Forward TCTTGCAGCTATCCCAACCA   
Reverse  CGATGGCCTCGAATGATAATGTAA 		

RSL2 Forward TCCCCAATGGAACAAAGGTC Yi et al., 
2010 Reverse  TCTCGGTGAGCTGAGACCAA 

RSL4 Forward GTGCCAAACGGGACAAAAGT Yi et al., 
2010 Reverse  TTGTGATGGAACCCCATGTC 

EXP7 Forward AACCATGGGTGGTGCATG Zhang et al., 
2016 

Reverse  CCGCATCCGTAACCATCA   

COW1 Forward CCACATGATGCTTCGATTTTTGAG Zhang et al., 
2016  Reverse  TAGCCTTGAGGGTAGTGC 

DLK2 Forward GCTGCTTCTCCAAGGTATATAA Waters et al., 
2012  Reverse  GAAATCAACCGCCCAAGCT 

TAA1 Forward ATCTTACCCTGCGTTTGCGT   
Reverse  AGCATGCTGACTCGGACATGC   

DAO1 Forward CTGCAGATCAAAGGGAGATT   
Reverse  TCTCAACCAGCCCGTAACTC   

DAO2 Forward TGGTGACATGGCTACGATATG   
Reverse  CTTCAAGATCTCTATCCACTGG   

YUC3 
Forward TCGTAGCGCTGTTCATGTTT   

Reverse  GCGAGCCAAACGGGCATATACTTC Liu et al., 
2017  

YUC9 Forward AGTCCGGCGAGAAATTCAGAGG Liu et al. 
2017 PNAS Reverse  AACATGAACCGAGCTTCTAACGAC 

TIR1 Forward GCCACTTGCAGGAATCTGAA   
Reverse  TGAGAGACTTGAGATTGGGACA   

AUX1 Forward GCTGTCGGTGCTCTTCTTG   
Reverse  CTTCTCCGCCGCATTCTGA   

PIN2 Forward TCACGACAACCTCGCTACTAAAGC Niu et al., 
2015 Reverse  GTCTTGGTCCATTTCCACATGCC 

PIN3 Forward GAGCACCTGACAACGATCAAGG Niu et al., 
2015 

Reverse  GATGAGCTACAGCTTTGGTC   

PIN7 Forward GGAGCCAATGAACAAGTCGG D´alessandro 
et al., 2015  

Reverse  TCATCGGACCAGCTTTGTTT   

EF1α Forward GGTGGTGGCATCCATCTTGTTACA Yi et al., 
2010 Reverse  TGAGCACGCTCTTCTTGCTTTCA 
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IX. General discussion 
 

1. KL signalling is a major regulator of root and root hair development in 
Arabidopsis thaliana 

 
Architecture and morphology changes of root growth and development are crucial 

for the adaption of plants to different soil environments.  SL signalling has been 

assumed to control root and root hair development (Koltai et al., 2010; Kapulnik et al., 

2011b; Kapulnik et al., 2011a; Ruyter-Spira et al., 2011; Mayzlish-Gati et al., 2012; 

Jiang et al., 2015). However, the use of mutants commonly perturbed in SL and KL 

signalling and the use of an unspecific strigolactone analogue in previous studies have 

led to incorrect attribution of phenotypes to SL signalling. This problem can be solved 

by studying KL and SL signalling specific mutants and thereby dissecting the function 

of the two pathways in the control of root and root hair development. In this thesis, I 

performed a detailed phenotypic analysis of different Arabidopsis seedling root 

parameters of SL synthesis and KL and SL signalling mutants.  

 

1.1 KL signalling regulates root development and root growth behaviour in 
Arabidopsis thaliana 

Because of the challenges associated with the measurement of below-ground 

plant organs, such as roots, Arabidopsis plants are commonly grown on hard agar 

surfaces for root studies. In these conditions, the roots cannot penetrate the agar, 

causing changes in the root growth direction, such as skewing and waving (Vaughn 

and Masson, 2011). Regulation of skewing and waving includes several cellular and 

physiological aspects (Roy and Bassham, 2014), including different hormone 

signalling pathways, such as auxin in root skewing and waving (Qi and Zheng, 2013) 

(Soeno et al., 2010) or ethylene in root waving (Buer et al., 2003). In this thesis, I found 

that in addition, KL signalling is involved in the regulation of root growth direction, as 

KL perception mutants showed an exaggeration of root skewing and increased waving 

(Paper I). However, the SL receptor mutant d14 and SL biosynthesis mutants showed 

similar skewing and waving as wild type. Therefore, I propose that KL and no SL 

signalling is an important player in the regulation of root skewing and waving under 

controlled conditions.  Because these conclusions are based on root-agar medium 

interactions, the roles of KL signalling in the root growth patterns in the soil need further 

investigation.  
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Supporting our findings, a recent report (Swarbreck et al., 2019) suggested that 

KL signalling controls root skewing and waving. Currently, it is not possible to provide 

a mechanism by which KL signalling pathway regulates root skewing and waving. 

However, Swarbreck et al., 2019 speculated that an increased epidermal cell file 

rotation together with a thinner root diameter in KL perception mutants might be the 

cause of root skewing in kai2. In that study, cell fill rotation was the result of measuring 

the total number of epidermal cells that crossed a 1 mm line. I did not find a shred of 

evidence that supports epidermal cell file rotation, but rather a reduction in the 

epidermal cell length. Besides, this reduction can also be observed in SL receptor 

mutants, while skewing only occurs in KL perception mutants. Hence, the reduced 

epidermal cell length is not likely the causes for increased skewing in KL perception 

mutants. Another interesting observation, is the difference in root diameter of the KL 

signalling mutants: in concordance with Swarbreck et al., 2019, I found that KL 

perception mutants but not SL perception mutants, showed thinner roots when 

compared to wild-type. A reduction of root diameter can account for a reduction in root 

surface area, which could lead to lessened friction with the medium. Considering that 

root skewing and waving is often explained as the result of physical interaction 

between the root and the growth media (Roy and Bassham, 2014), a decrease in root 

friction seems contradictory with the root skewing and waving phenotypes in kai2 and 

max2 mutants.   

 

Swarbreck et al., 2019 also demonstrated that mutations in SMAX1 or SMXL678 

suppressed the root skewing phenotype of Arabidopsis max2 mutants. Because KL 

signalling, but not SL signalling, regulates root skewing (Swarbreck et al., 2019; 

Villaécija-Aguilar et al., 2019), these results suggest a surprising receptor target 

interaction between KAI2 and SMAX1 as well as SMXL678. This challenges the 

current KL and SL signalling model, in which D14-MAX2 interacts with SMXL6, 

SMXL7, and SMXL8, while KAI2-MAX2 interacts with SMAX1 and SMXL2 for the 

control of plant development (Morffy et al., 2016). Mutations in SMXL6/7/8 suppress 

SL-related max2 phenotypes, such as increased shoot branching and lateral root 

density or the reduced petiole and blade length phenotypes (Soundappan et al., 2015; 

Bennett et al., 2016). SMAX1 suppresses seed germination, while SMXL2 acts 

redundantly with SMAX1 to increase hypocotyl elongation, both mediated by KL 

signalling (Stanga et al., 2013; Soundappan et al., 2015; Stanga et al., 2016). Yeast 
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two-hybrid (Y2H) studies demonstrated that SL- or SL- analogues induce the 

interactions between D14 and MAX2, SMXL6 and SMXL7 (Umehara et al., 2008; Zhou 

et al., 2013; Wang et al., 2015; Seto et al., 2019). Besides, co-immunoprecipitation 

and Y2H analysis suggested the interaction between KAI2 and MAX2, SMAX1 or 

SMXL2 (Khosla et al., 2020; Wang et al., 2020). Nonetheless, rac-GR24 inhibits 

hypocotyl elongation through KAI2 and D14, indicating that D14 can act upon SMAX1 

and SMXL2 (Scaffidi et al., 2014). Accordingly, synthetic SL treatment triggers the 

polyubiquitination and degradation of SMXL2 via D14 and KAI2 (Wang et al., 2020). 

rac-GR24 treatment also induces the interaction between SMXL6 or SMXL7 with both 

KAI2 and D14 (Khosla et al., 2020; Wang et al., 2020). Therefore, although most 

evidence favours the current model, it is possible that KAI2 interacts with SMXL678 to 

regulate root growth movements, such as root skewing and waving. We decided to 

evaluate this hypothesis in more detail by using different combinations of higher order 

mutants with max2 in two different laboratories, Munich [M] and Leeds [L]. We found 

that single mutations in SMAX1 or SMXL2 suppress the root skewing phenotype of 

max2, while only a double mutation in SMAX1 and SMXL2 suppress the root waving 

of max2. These results indicate that root skewing and waving are controlled by the KL 

signalling pathway independently of each other. We next analysed the effect of a triple 

mutation in SMXL6,7,8 in the root skewing and waving phenotypes of max2. We did 

not observe a suppression of the root waving phenotype of max2 mutants, but we 

found a reduction in skewing in smxl678 max2 when compared to max2 in [M]. This 

was not consistent with our observations in [L], where root skewing was increased in 

smxl678 relative to wild-type in [L]. Thus, I conclude that while SMAX1 and SMXL2 

increase root skewing, SMXL6/7/8 suppress it. SMXLs proteins can form complex with 

themselves or other SMXLs in vitro (Khosla et al., 2020). Hence, it is possible that the 

loss of SMXL6/7/8 somehow stabilizes SMAX1 and/or SMXL2, which could explain the 

exaggerated root skewing in smxl6/7/8 mutants. However, since our results vary 

between laboratories, those interactions might be susceptible to environmental 

differences. Further studies are needed to demonstrate that SMXLs can interact with 

each other in vivo and whether this would affect root skewing in Arabidopsis.  

 

We next analysed the regulation of lateral root density (LRD) by MAX2, which 

was previously described (Kapulnik et al., 2011b; Ruyter-Spira et al., 2011; 

Soundappan et al., 2015). In collaboration with Dr. Tom Bennett, we demonstrated that 
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LRD in Arabidopsis is regulated by both KL and SL signalling pathways, by targeting 

the co-repressor SMAX1, SMXL2, SMXL6, SMXL7 and SMXL8 (Paper I). We 

observed that KL and SL biosynthesis and/or signalling mutants showed increased 

LRD when compared to wild type, while mutations in SMAX1, SMXL2 or SMXL678 

genes suppressed the LRD phenotype of max2. However, it remains to be established 

why both KAI2 and D14 are redundant in the control of LRD. One possibility is that 

different external stimuli activate KL or SL signalling for the suppression of lateral root 

development. Apart from dissecting the role of KL and SL signalling and regulating root 

architectural traits, our root skewing, waving and lateral root analysis support that KL 

and SL signalling employ the canonical KAI2-SMAX1/SMXL2 and D14-SMXL678 

receptor-target pairs. 

 

Further work is needed to establish a mechanism that explains the roles of KAI2, 

D14 and MAX2 in the control root development and behaviour. Additionally, since this 

study has been performed using Arabidopsis, investigations in other plant species will 

be needed for translating research to economically important plants. 

 

1.2 KL signalling regulates root hair development 
 

Previous reports showed decreased root hair density and length in max2 

mutants and increased root hair growth after treatment with rac-GR24 (Kapulnik et al., 

2011b). However, it was unclear whether KL and/or SL signalling mediate the MAX2 

regulation of root hair growth in Arabidopsis. KL signalling has been suggested as a 

critical regulator of plant survival in a post-fire environment and promotes drought 

resistance in Arabidopsis plants (Nelson et al., 2010; Li et al., 2017; Wang et al., 2018). 

Fire is an important disturbance factor in many terrestrial ecosystems, which can 

induce soil alterations (Kutiel and Inbar, 1993; Shakesby et al., 1993; MacDonald and 

Huffman, 2004; Chafer, 2008; Tessler et al., 2008; Fernández et al., 2010; Shakesby, 

2011; Prats et al., 2016). Upon soil disruption, a short primary root and root hairs are 

the only opportunity for anchoring to the soil for young seedlings. Besides, the 

importance of root hair development also extends to water holding capacity of the root 

(Choi and Cho, 2019).  Hence, it is possible that KL signalling serves as an integrator 

of different environmental signals, such as changes in soil and water availability, to 

modulate root hair development.  
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In this study, I evaluated the roles of both KL and SL signalling pathways in root 

hair density (RHD) and length (RHL) (Paper I). SL biosynthesis and d14 mutants did 

not show a significant difference in root hair development when compared to wild type. 

Conversely, kai2 and max2 showed a reduction in RHD and RHL (Figure 6). Taken 

together, these results indicate that KL signalling, but not SL signalling, is a major 

regulator of root hair development in Arabidopsis. This appears to be conserved in 

other plant species. Brachypodium distachyon kai2 mutants also show a reduction in 

root hair growth (Varshney and Gutjahr, unpublished). However, whether SLs have an 

influence on root hair development in other species is still unknown. 

 

Our findings seem to be partially contradictory with the previously suggested 

role of the SL signalling pathway in the control of root hair growth (Koltai et al., 2010; 

Kapulnik et al., 2011b; Kapulnik et al., 2011a; Mayzlish-Gati et al., 2012). Here I 

demonstrated that external rac-GR24 treatments stimulate root hair density and 

elongation via D14- and KAI2- mediated signalling (Paper I). Thus, it is plausible that 

SL signalling does not play a role in root hair development in our controlled conditions, 

but upon exposure to different external cues, which may induce SL biosynthesis, SL 

signalling seems to initiate the root hair growth machinery. Indeed, the production of 

SLs is affected by nutrient availability (Xie et al., 2010). Phosphate starvation increases 

SL biosynthesis, leading to changes in root system architecture (Yoneyama et al., 

2007; Kohlen et al., 2011; Ruyter-Spira et al., 2011; Yoneyama et al., 2013). In 

sorghum roots, nitrogen deficiency induces SL production (Yoneyama et al., 2013). 

Therefore, we can speculate that changes in environmental signals trigger the 

biosynthesis of different ligands, to either activate D14- or KAI2- mediated signalling.  

 

Based on the KL and SL signalling model discussed above, in which D14-MAX2 

interacts with SMXL6/7/8 and KAI2-MAX2 interacts with SMAX1 and SMXL2, I 

hypothesised that KL signalling regulates root hair growth through SMAX1 and/or 

SMXL2. Accordingly, mutations in SMAX1 and SMXL2 suppressed the root hair 

phenotype of max2 mutants and have an increased RHD and RHL when compared to 

wild-type (Figure 6), while mutations in SMXL6/7/8 could not suppress those 

phenotypes. These results indicate that RHD and RHL are indeed controlled by the 

repressors SMAX1 and SMXL2.  Since rac-GR24 stimulates root hair development via 
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SL and KL signalling simultaneously, this opens the question of whether SL treatment 

induces root hair growth mediated via D14 in interaction with SMAX1/SMXL2 or 

SMXL6/7/8. rac-GR24 treatment can induce the interaction between D14 and SMAX1 

or SMXL2 (Khosla et al., 2020; Wang et al., 2020). Thus, the interaction D14-

SMAX1/SMXL2 in the presence of rac-GR24 might leads to increased root hair growth 

in the absence of KAI2. 

 

 

 

 
Figure 6: Schematic representation of root hair density and length phenotype in 
roots of Arabidopsis KL and SL signalling mutants.  
 

2. Ligand stereo-specific of D14 and KAI2 
 

Prior research proposed that the different stereoisomers of rac-GR24, GR245DS and 

GR24ent5DS act specifically through D14 and KAI2, respectively (Scaffidi et al., 2014). 

Thus, I evaluated whether GR245DS and GR24ent5DS incite root hair growth in a D14 or 

KAI2 specific manner. Surprisingly, both D14 and KAI2 responded to GR245DS and 

GR24ent5DS for root hair elongation and inhibition of hypocotyl length, implying control 

of root hair development by both signalling pathways (Paper I). Recent reports showed 

that synthetic rac-GR24 contains a strigolactone mimic contaminant, named 

contalactone (de Saint Germain et al., 2019). However, we confirmed the purity of the 
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employed stereoisomers via NMR and CD (Villaécija-Aguilar et al., 2019), making the 

participation of contaminants unlikely.   

 

The ligand binding by D14 and KAI2 has been extensively studied in the last 

decade (Kagiyama et al., 2013; Zhao et al., 2013; Conn et al., 2015; Waters et al., 

2015; Obando et al., 2016; Xu et al., 2016; Bythell-Douglas et al., 2017; Hameed et 

al., 2018; Bürger et al., 2019). In most Angiosperms, KAI2 does not act as strigolactone 

receptor. However, in parasitic plants of the Orobanchaceae family, KAI2 has 

duplicated several times, diversified and some isoforms evolved to perceive SLs from 

the rhizosphere to promote germination (Conn et al., 2015). SLs but not KAR can act 

through these KAI2 versions, which contain a bigger binding pocket than the KAR 

receptors KAI2 (Conn et al., 2015; Conn and Nelson, 2016; Xu et al., 2016; Xu et al., 

2018; Machin et al., 2020). Similarly, in Arabidopsis and rice, D14 has a larger binding 

pocket than KAI2 (Kagiyama et al., 2013; Zhao et al., 2013; Xu et al., 2016). Hence, 

the binding-specificity between D14 and KAI2 might be determined by the size of this 

deep binding pocket that contains a conserved catalytic triad of serine, histidine, 

aspartate (Kagiyama et al., 2013; Zhao et al., 2013).  However, KAI2 can recognize 

the different stereoisomers of rac-GR24, which have a similar size to strigolactones 

(Scaffidi et al., 2014; Waters et al., 2015; Morffy et al., 2016). This suggests that the 

D14 pocket is bigger than necessary to bind SL, presumably for the recognition of non-

canonical SLs. Likewise, the KAI2-like pocket is larger than needed to bind karrikins, 

and not all KAI2-like proteins bind karrikin (Machin et al., 2020), suggesting that KL is 

bigger than karrikin or that KAI2 might recognize a broad range of KL molecules. In 

conclusion, the evolutionary conservation of larger pocket sizes might have diminished 

the binding selectivity of KAI2 and D14, which could explain their affinity for multiple 

synthetic SLs, such as GR245DS and GR24ent5DS. An essential goal in the field remains 

to find and produce a specific synthetic ligand of D14 for pharmacology studies of the 

SL signalling pathway. 

 

3. Protein-protein interaction plays an important role in KL signal integration 
 

To better understand the KL signalling pathway, I contributed to a study on the 

identification of new protein interactors of KAI2 (Paper II). We found in a large-scale 

yeast-2-hybrid screen fifteen hormone-dependent novel interactors of KAI2, including 



 179 

the GR24-dependent interactor PP2AA2. PP2AA2 represents one of the three Ser/Thr 

protein phosphatase 2A subunits (PP2A) in Arabidopsis (Janssens and Goris, 2001; 

Cho and Xu, 2007). Mutations in PP2AAs causes abnormalities in root growth, such 

as root agravitropism and root meristem collapse through seedling development (Zhou 

et al., 2004; Michniewicz et al., 2007). Hence, I hypothesised that PP2AA2 might 

participate in the regulation of root hair development by KAI2. Accordingly, I found a 

severely decreased root hair growth in Arabidopsis pp2aa2 mutants, which 

phenocopied the root hair phenotypes of the KL receptor mutants (Altmann and 

Altmann et al., 2020). Besides, kai2 and pp2aa2 mutants did not respond to exogenous 

karrikin treatment for root hair growth, supporting that they jointly mediate KL 

signalling. Changes in PP2A activity lead to defects in hormone signalling (DeLong, 

2006). For instance, mutations in PP2AA2 alter auxin signalling in Arabidopsis 

seedlings roots, probably caused by a disruption in auxin flux (Michniewicz et al., 

2007). This raised the intriguing question, whether an alteration in auxin transport 

and/or signalling is the cause of the root hair phenotypes in kai2 and pp2aa2 mutants.   

 

4. KL signalling modulates auxin influx in response to low external Pi 
 

Root hairs elongate to increase the root surface upon mineral nutrient deficiency, 

such as the deficiency of potassium, nitrate or phosphate (Bates and Lynch, 1996; 

Williamson et al., 2001; Høgh-Jensen and Pedersen, 2003; Brown et al., 2013; 

Canales et al., 2017; Klinsawang et al., 2018). The regulation of root hair development 

during Pi deficiency requires the activity of auxin biosynthesis, transport and 

transcriptional regulation of auxin signalling components in Arabidopsis and rice roots 

(Bhosale et al., 2018; Giri et al., 2018). Our study reveals that mutations in KL signalling 

perception attenuate the root hair response to low external Pi, suggesting a cross-talk 

of KL signalling with auxin biosynthesis or signalling (Manuscript I). Using qPCR-based 

gene expression analysis and the DR5 based auxin response reporter, I demonstrated 

that auxin signalling or distribution, but not auxin biosynthesis, is altered in the roots of 

KL perception mutants. Currently it is unclear whether endogenous auxin content is 

disrupted in KL signalling mutants roots since the alteration of auxin biosynthesis in 

the shoots system and/or changes in auxin transport from the shoot to the root might 

alter the total auxin amount in the roots (Brumos et al., 2018). In Arabidopsis roots, 

most of the auxin responsive gene expression is regulated by the auxin response 
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factors ARF7 and ARF19 (Okushima et al., 2007). Bhosale et al., 2018 showed that 

changes in auxin accumulation in the epidermis above the lateral root cap leads to the 

activation of the auxin-inducible transcription factor genes ARF19, which trigger the 

induction of the transcription factors RSL2 and RSL4, which are regulators of root hair 

growth. In my qPCR analysis, ARF7 and ARF19 are less expressed in roots of the KL 

perception mutants as compared to wild type. Therefore, I analysed the root hair 

response to KAR of arf7 and arf19 mutants. I found that arf7 but not arf19 mutants are 

resistant to KAR with respect root hair development, indicating that ARF7 acts 

downstream of KL signalling to regulate root hair development positively. Since 

ARF19, rather than ARF7 appears to be a key transcription factor in response to low 

external Pi (Bhosale et al., 2018) our observations seem contradictory with a role of 

KL signalling in controlling the root hair response to low Pi. Perhaps, the perception of 

different ligands leads to the activation of ARF7 or ARF19. Thus, it is possible that 

upon KAR treatment, KL signalling regulates root hair growth through ARF7. However, 

low external Pi conditions might induce the biosynthesis of unknown endogenous KL 

in specific cell types activating ARF19 downstream of KL signalling. 

 

To test whether an alteration in auxin signalling is the cause of the root hair 

phenotypes of the KL perception mutants, we evaluated the effect of exogenous 

synthetic auxin on root hair growth in those mutants.  Treatment with the synthetic 

auxin analogue NAA fully rescued the root hair phenotype of kai2 and max2, indicating 

that impaired auxin signalling in kai2 and max2 is not likely the cause for the root hair 

phenotypes, but suggesting an alteration of auxin levels in specific cell types. To 

corroborate this hypothesis, I used another auxin analogue, 2,4-D. NAA and 2,4-D 

have differential transport characteristics. While NAA is lipophilic and can be 

transported by efflux carriers or taken up by diffusion through the membrane, 2,4-D is 

more hydrophilic and requires the activity of auxin influx carriers (Ma et al., 2018). 

Surprisingly, treatments with low concentrations of 2,4-D could not rescue the root hair 

phenotypes of the KL perception mutants, indicating that in the absence of functional 

KL signalling, auxin signalling is not affected per se, but auxin influx is disrupted. As a 

consequence, auxin might not be correctly distributed within the root system, leading 

to a reduction in root hair development.  
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Functional activity of the auxin influx carrier AUX1 (AUXIN RESISTANT 1) is 

required for auxin import and the root hair response to low external Pi in Arabidopsis 

(Michniewicz et al., 2007; Petrášek and Friml, 2009; Bhosale et al., 2018; Dindas et 

al., 2018; Giri et al., 2018). AUX1 is not detected in root hair cells, but rather in non-

hair cells, indicating that hair cells do not require auxin influx to ensure auxin supply. 

However, auxin transport through non-hair cells might provide auxin supply to growing 

hair cells as the distance from the root tip increases (Jones et al., 2009). Upon Pi 

deficiency auxin is transported from the root tip to non-root hair cells via AUX1 to 

promote root hair elongation mediated by ARF19 (Bhosale et al., 2018; Giri et al., 

2018). Hence, I investigated whether KL signalling affects the expression or distribution 

of AUX1-YFP-fusion proteins expressed under the control of the endogenous AUX1 

promoter. While AUX1 transcript accumulation did not significantly change between 

wild type and kai2 or max2 mutants, AUX1-YFP accumulated to increased levels in the 

epidermis above the lateral root cap after KAR treatment. Next, I analysed the effect 

of KAR treatment, which increases KL mediated signalling, on root hair growth of aux1 

mutants. I demonstrated that aux1 mutants are resistant to the effects of KAR for 

induction of root hair growth. These results, together with the role of SMAX1 and 

SMXL2 in root hair development (Villaécija-Aguilar et al., 2019), suggest that SMAX1 

and SMXL2 positively influence auxin influx through promoting the accumulation of 

AUX1 in epidermal cells above the lateral root cap. Supporting this hypothesis, 

expression pattern analysis indicates that SMAX1 promoter activity and SMAX1 

localised principally to the lateral root cap and columella in the roots of Arabidopsis 

seedlings (Soundappan et al., 2015; Khosla et al., 2020). Further investigation will be 

needed to demonstrate whether and how SMAX1 and/or SMXL2 regulate AUX1 

activity.  

 

Previous studies have also suggested crosstalk between ethylene and auxin 

transport in Arabidopsis roots (Roman et al., 1995; Stepanova et al., 2007; Negi et al., 

2008). Ethylene-based mutant screens identified that aux1 mutants are insensitive to 

the inhibitory effects of ethylene on root growth (Roman et al., 1995; Stepanova et al., 

2007; Negi et al., 2008). In Arabidopsis, ethylene is perceived by a family of five 

different ethylene receptor members, including ETR1, ERS1 (ethylene response 

sensor 1), ERS2, ETR2, and EIN4 (Zhao et al., 2002). In the absence of ethylene, 

these receptors negatively regulate downstream ethylene signalling, which culminates 
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in the activation of the transcription factors EIN2 and EIN3 (ETHYLENE RESPONSE 

FACTOR2 and(Cho et al., 2018)  3) (Bleecker and Kende, 2000; Wang et al., 2002; 

Guo and Ecker, 2003; Cho et al., 2018). Ethylene signalling promotes root hair growth 

through EIN3 activity (Feng et al., 2017). EIN3 activation indirectly triggers the 

expression of PSI genes (PHOSPHATE STARVATION INDUCED GENES) through 

the induction of the transcription factor PHR1 (PHOSPHATE STARVATION 

RESPONSE 1) (Nilsson et al., 2007; Nilsson et al., 2012; Liu et al., 2017). Ethylene 

mediates the root hair development response to Pi starvation (Song et al. 2016). Thus, 

ethylene-mediated stimulation of auxin transport may increase root hair formation by 

promoting auxin accumulation in the epidermis above the lateral root cap (Růžička et 

al., 2007),  required for the root hair response of low external phosphate (Bhosale et 

al., 2018).  Previous work in our group (Carbonnel et al., in revision) revealed that 

SMAX1 inhibits ethylene biosynthesis in Lotus japonicus. It is plausible that 

Arabidopsis SMAX1 and/or SMXL2 may play similar roles, and this finding may, 

therefore, be extrapolated to Arabidopsis. Hence, there is a possibility that regulation 

of auxin import by KL signalling is dependent on ethylene signalling. Accordingly, 

previous studies suggested that the ethylene signalling pathway is required for the 

MAX2 control of root hair development (Kapulnik et al., 2011b; Kapulnik et al., 2011a; 

Mayzlish-Gati et al., 2012). In conclusion, further analysis will be required to 

demonstrate how KL signalling controls auxin influx, but this work provides important 

clues for a mechanistic framework including KL signalling, ethylene and auxin 

signalling pathways in the regulation of root hair formation. 
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X. Outlook 

 
This doctoral work has shown the roles of SL and KL signalling in the regulation 

of root and root hair development in Arabidopsis thaliana. Members of the SMXL 

protein family regulate root and root hair development downstream of D14 and KAI2 in 

Arabidopsis. Although the exact function of the SMXLs remains unknown, previous 

research suggested that they are associated with transcriptional regulation, due to their 

interaction with TOPLESS (TPL) and TOPLESSRELATED (TPR) co-repressor 

proteins (Kagale and Rozwadowski, 2011; Zhou et al., 2013; Soundappan et al., 2015; 

Wang et al., 2015). Supporting this hypothesis, D53, encoded by the orthologue of 

SMAXL6,7,8 in rice (Oryza sativa), promotes assembly of a corepressor-nucleosome 

complex with TPR2 (Ma et al., 2017). Currently, only one transcription factor 

downstream of SL signalling has been identified. D53 interacts with and suppresses 

the transcriptional activation activity of Ideal Plant Architecture 1 (IPA1) to regulate tiller 

number in rice (Song et al., 2017). The identification of new transcription factors (TFs) 

targeted SMAX1 and SMXL2 downstream of KL signalling will help to increase our 

knowledge of the KL signalling pathway and its importance in the control of plant 

development. One of the possible approaches to finding TFs downstream of KL 

signalling includes the transcriptome comparison of wild-type and smax1 smxl2 double 

mutants by RNAseq in Arabidopsis thaliana. Because SMAX1 and SMXL2 are partially 

redundant for the control of seedling growth, root and root hair development (Stanga 

et al., 2016; Villaécija-Aguilar et al., 2019), it is possible that both repressors regulate 

the same plant traits in interaction with common TFs. These transcriptome analyses 

will help to identify common downstream targets of SMAX1 and SMXL2, which can 

include suppression or induction of transcriptional activity by SMAX1 and SMXL2 

removal. A set of transcription factors can be predicted according to TF-binding sites 

in the promoters of the genes with altered expression in smax1 smxl2 double mutants 

(Rhee et al., 2003; Yilmaz et al., 2011; Austin et al., 2016; Dai et al., 2016; Jayaram et 

al., 2016; Mele, 2016; Becker et al., 2017). Next, it would be interesting to investigate 

whether the predicted TFs have physical interaction with SMAX1 and/or SMXL2. 

Further, it will be necessary to functionally validate the selected TFs. Since mutations 

in SMAX1 and SMXL2 increase root hair density and length, we could hypothesise that 

loss of at least one of the TFs confirmed in the last step should show an alteration in 

root hair growth. If SMAX1 and SMXL2 repress the activity of those TFs, loss of 
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function of the TFs should decrease root hair density and length. However, if SMAX1 

and SMXL2 activate those TFs, loss of functions of the TFs should lead to a similar 

smax1 smxl2 root hair phenotype TFs can also be regulated by phosphatase proteins. 

For instance, PP2A positively regulates the TF BZR1, which controls brassinosteroid-

responsive genes (Gendron and Wang, 2007; Tang et al., 2011). Thus, it will be 

interesting whether the KAI2 interactor PP2AA2 revealed in this thesis, also regulates 

TFs interacting with SMAX1 and/or SMXL2.  

 

A significant finding of this work is the importance of KL signalling in root hair 

development. I showed that KL signalling coordinates the root hair response to low 

phosphate and regulates one of the critical components for this response, the auxin 

carrier AUX1. However, ethylene is another regulator of root hair development under 

phosphate starvation and of auxin influx (Nilsson et al., 2007; Negi et al., 2008; Nilsson 

et al., 2012) . Previous research in our group demonstrated that SMAX1 suppresses 

ethylene biosynthesis in Lotus japonicus (Carbonnel et al. in revision). Therefore, 

investigating whether and how KL signalling cross-talks with ethylene in the regulation 

of root hair development in Arabidopsis will be a step towards understanding how KL 

signalling interacts with other hormonal signalling pathways to regulate the nutritional 

status of the plant. 
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