
Advances In Interest Rate and Risk
Modeling

Dissertation an der Fakultät für Mathematik, Informatik und Statistik
der Ludwig-Maximillians-Universität München

vorgelegt von

Henry Alvorado Port

am 22ten Mai, 2020



1. Gutachter: Prof. Stefan Mittnik, PhD
2. Gutachter: Prof. Dr. Christian Pigorsch
3. Gutachter: Prof. Dr. Svetlozar Rachev

Tag der mündlichen Prüfung: 2ter September, 2020





Summary

This dissertation consists of two projects. The first one that is presented is titled
“Free CIR Processes” (Fink et al. (2019)). The Cox-Ingersoll-Ross (CIR) process is
the solution to the stochastic differential equation (SDE)

dx(t) = a − bx(t)dt + σ
√
x(t)dB(t), x(0) = x0 > 0,

for t ∈ [0,∞[, where a,b,σ > 0 and (B(t))t≥0 is a (classical) Brownian motion. Feller
showed in Feller (1951) that as long as the Feller condition 2a ≥ σ2 is satisfied the
SDE admits a unique positive solution. For this reason the CIR process initially was
used as a model for interest rates by Cox et al. (1985). We introduce a CIR equa-
tion in the context of Voicelescu’s free probability theory, which is a framework for
non-commutative random variables that allows for the computation of joint moments.
Although, as mentioned, the CIR model initially was introduced as an interest rate
model, the property of positivity of the solution shows that it is especially suited for
a volatility model as well, which is why it was implemented in the Heston framework
to model stochastic volatility (see Heston (1993)). Presently its validity as an interest
rate model is not given due to real-world interest rates not being bound below by zero
anymore. That is also why we introduced the free CIR equation as a model for volatil-
ity. Were it not for negative interest rates existing in reality, the free CIR equation
could be seen as an interest rate model as well (at least historically). In Fink et al.
(2019) the existence of the positive solution to such an equation is proven, wherein
a big challenge lies in ensuring the positivity of the solution in the framework of free
probability theory. The proof starts by showing the existence of a global positive so-
lution for a vector-valued version of the CIR equation. From there on we transform
the equation step-by-step into an operator-valued SDE driven by a free Brownian mo-
tion, the free counterpart to the classical Brownian motion. The transition from an
operator-valued SDE driven by a classical Brownian motion to one driven by a free
Brownian motion is done by establishing a isometry between both solutions and by
expanding the solution to the latter to a global one, constituting the most complex
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part in the proof.

The second project published in “Risks”, titled “The Impact of Sovereign Yield Curve
Differentials on Value-at-Risk Forecasts for Foreign Exchange Rates” (see Fink et al.
(2018)) introduces an ARMA-GARCH type time-series model for predicting the value-
at-risk (VaR) of foreign exchange (FX) rates rt by including the information of the
corresponding countries’ yield curve information. The motivation and speciality of
the ARMAFunX-GARCHFunX is the implementation of Sovereign rate yields as ex-
ogenous variables via the use of functional principal component analysis. These yield
curves map for each point in time t maturities m ∈ M to the corresponding yields
yt ∈ Y , resulting in a function yt ∶M → Y for each t. Functional principal component
analysis allows the implementation of basically the whole yield curve in a parsimonious
way, since this data can be transformed such that only a few data vectors, the principal
components, are needed to explain most of the variance in the data. We model the
one-day ahead forecasts for the risk measure VaR, given by

VaRt∣t−1(p) = inf
x
{x ∈ R∣P(rt < x∣Ft−1) ≥ p}, for 0 < p < 1,

where Ft−1 can be seen as the information available up to time t − 1 (see e.g. Kuester
et al. (2006). We estimate the VaR via

V̂aRt∣t−1(p) = µ̂t +Φ−1(p)σ̂t,

where Φ−1 is the inverse of the cumulative probability function of the standard normal
distribution and µ̂t and σ̂t are estimates for the conditional mean and conditional stan-
dard deviation, respectively, at time t, obtained via the ARMA and GARCH parts. In
Fink et al. (2018) we test and compare the efficiency of the model against competitors
by evaluating their respective forecasts via likelihood ratio tests as introduced e.g. in
Christoffersen (1998). Furthermore, we discard the myth of the 2-year yield curve
difference’s significance for modeling FX rates.
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Zusammenfassung

Die vorliegende Dissertation besteht aus zwei Projekten. Das zuerst präsentierte trägt
den Titel „Free CIR Process“(Fink et al. (2019)). Der sogenannte Cox-Ingersoll-Ross
(CIR) Prozess ist die Lösung der stochastischen Differentialgleichung (auf Englisch als
„SDE“ abgekürzt)

dx(t) = a − bx(t)dt + σ
√
x(t)dB(t), x(0) = x0 > 0,

für t ∈ [0,∞[, wobei a,b,σ > 0 und (B(t))t≥0 eine (klassische) Brownsche Bewegung
bezeichnet. Feller hat in Feller (1951) gezeigt, dass diese SDE eine eindeutige positive
Lösung besitzt, solange die Feller Bedingung 2a ≥ σ2 erfüllt ist. Aus diesem Grund
wurde der CIR Prozess ursprünglich von Cox et al. (1985) zur Modellierung von Zinsen
verwendet.
Wir präsentieren eine CIR Gleichung im Rahmen von Voicelescus freier Wahrschein-

lichkeitstheorie, welche einen Rahmen für nicht-kommutative Zufallsvariablen darstellt,
der erlaubt gemeinsame Momente dieser zu berechnen. Obwohl das CIR Modell, wie
bereits erwähnt, ursprünglich als Zinsmodell eingeführt worden ist, zeigt die Eigen-
schaft der Existenz einer positiven Lösung, dass es auch speziell als Volatilitätsmod-
ell geeignet ist, weswegen es auch im Heston Framework implementiert wurde, um
stochastische Volatilität zu modellieren (see Heston (1993)). In der heutigen Zeit ist
dessen Alleinstellungsmerkmal als Volatilitätsmodell ohnehin nicht mehr gegeben, da
Zinsen in der echten Welt nicht mehr nach unten durch Null beschränkt sind. Daher
haben wir die freie CIR Gleichung als Volatilitätsmodell eingeführt. Ohne Negativzin-
sen in der Realität könnte man die freie CIR Gleichung auch als Zinsmodell in Betracht
ziehen (zumindest historisch). In Fink et al. (2019) wird die Existenz der positiven
Lösung solch einer Gleichung bewiesen, wobei ein große Herausforderung darin beste-
ht, die Positivität solch einer Lösung im Rahmen der freien Wahrscheinlichkeitstheorie
zu erhalten. Der Beweis beginnt damit, die Existenz für eine Vektor-wertige Version
der CIR Gleichung zu zeigen. Von diesem Punkt ausgehend formen wir die Gleichung
Stück für Stück in eine Operator-wertige SDE, die von einer freien Brownschen Bewe-
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gung, dem freien Gegenstück zur klassischen Brownschen Bewegung, getrieben wird,
um. Der Übergang von einer Operator-wertigen SDE, getrieben von einer klassis-
chen Brownschen Bewegung, zu einer Operator-wertigen SDE, getrieben von einer
freien Brownschen Bewegung, wird geschaffen indem eine Isometrie beider Lösungen
gezeigt und die der letzteren zu einer globalen Lösung erweitert wird. Dies stellt den
aufwendigsten Abschnitt im Beweis dar.

Das zweite Projekt, welches in „Risks“ unter dem Titel „The Impact of Sovereign
Yield Curve Differentials on Value-at-Risk Forecasts for Foreign Exchange Rates“
(siehe Fink et al. (2018)) veröffentlicht wurde, führt ein Zeitreihenmodell des ARMA-
GARCH Typs zur Vorhersage des value-at-risk (VaR) von Wechselkursen (auf En-
glisch als „FX rates“ abgekürzt) rt ein, indem Informationen aus den Zinskurven
der entsprechenden Ländern einbezogen wird. Die Motivation und das Alleinstel-
lungsmerkmal des sogenannten ARMAFunX-GARCHFunX Modells ist das Mitein-
beziehen der Staatsanleihen als exogene Variablen mithilfe der funktionalen Haup-
tkomponentenanalyse. Diese sogennanten yield curves (die englische Bezeichnung ist
auch in der deutschen Sprache geläufig.) bilden für jeden Zeitpunkt t Laufzeiten
m ∈M (für den englischen Begriff „Maturity“) auf yields yt ∈ Y ab und sind dadurch
als Funktionen yt ∶ M → Y für jedes t darstellbar. Mithilfe der funktionalen Haup-
tkomponentenanalyse können wir quasi die gesamte yield curve auf eine sparsame Art
und Weise miteinbeziehen, da Daten so transformiert werden können, dass nur ein paar
Daten-Vektoren, die sogenannten Hauptkomponenten, nötig sind, um den Großteil der
Varianz in den Daten zu erklären. Wir modellieren Vorhersagen für einen Tag in der
Zukunft für das Risiko-Maß VaR(p), welches durch

VaRt∣t−1(p) = inf
x
{x ∈ R∣P(rt < x∣Ft−1) ≥ p}, for 0 < p < 1,

gegeben ist, wobei Ft−1 als die Information angesehen werden kann, welche bis zum
Zeitpunkt t− 1 verfügbar ist (siehe z.B. Kuester et al. (2006)). Wir schätzen den VaR
via

V̂aRt∣t−1(p) = µ̂t +Φ−1(p)σ̂t,

wobei Φ−1 die Inverse der kummulativen Wahrscheinlichkeitsfunktion der Standardnor-
malverteilung ist und µ̂t und σ̂t die Schätzer für den bedingten Erwartungswert und
die bedingte Standardabweichung zum Zeitpunkt t darstellen, die mit dem ARMA-
und dem GARCH-Teil erhalten werden. In Fink et al. (2018) testen wir die Effizienz
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unseres Modells und vergleichen sie mit der anderer Wettstreiter, indem wir die de-
mentsprechenden Vorhersagen mittels Likelihood ratios tests, welche zum Beispiel in
Christoffersen (1998) präsentiert werden, gegenüberstellen. Außerdem räumen wir mit
dem Mythos des signifikanten Einflusses der 2-Jahres Yield-Differenz für die Model-
lierung von Wechselkursen auf.

viii



Acknowledgements

There are a few people without whom I would have never made it to the end and a
few who influenced me to take this path to begin with.

First of all I thank my parents for always providing me with the support and security
I needed to make it through my studies and in particular through the last years.
Knowing they were always there for me no matter what gave me the strength I needed
to finish this thesis.

At school I struggled with mathematics and physics quite a lot. I did not have a
huge problem with English, Latin or French but nature’s native language did not open
up to me. I did not even understand what it was that I did not understand, which
is, as I learned later, the biggest problem for most. As a consequence I hired a tutor
to help me with my problem. He helped me seeing things from a different angle and
managed to strike my interest in this language by his caring guidance. From there on
I was hooked and followed the mathematical lectures at school with enthusiasm.

At the end of my time at school I asked my guitar teacher whether I should study
guitar or mathematics. Surprisingly he did not hesitate even for a second and strongly
recommended the latter. I followed through with this decision and have never regretted
it since.

I want to thank all my colleagues and friends at the institute, in particular Christoph
who had to endure all my worries and listen to my doubts.

I want to thank Holger for introducing me to the Institute, for his guidance and
especially for the unwavering support throughout my PhD studies.

Of course I have to mention the heart and soul of our chair. Martina has always
been taking care of all of us. Whenever I needed someone to talk to she always had
an open ear for me and encouraged me whenever I needed it.

Furthermore I want to thank Stefan for taking me in in the first place. He was
always there for me, providing unconditional support and was always able to brighten
my outlook into the future and to dissolve all my worries no matter what. He is taking
care of all of us. I know that I am speaking for all of us. Thank you so much for your

ix



support and your loving care.
And finally I want to thank Christina for her support and for always bringing me

back on track whenever I was struggling. Whenever I lost focus and my motivation
seemed to fade she always managed to straighten me up and to keep me going. I would
not have made it without her, at least not within this time frame and not like this.

x



Contents

I. Introduction And Methods 1
I.1. Free Probability Theory and free SDE . . . . . . . . . . . . . . . . . . . . 1

I.1.1. Non-commutative Probability Theory . . . . . . . . . . . . . . . . 1
I.1.2. Functional Calculus and Spectral Theorem . . . . . . . . . . . . . 7
I.1.3. Free Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
I.1.4. Free Partitions and the Free Central Limit Theorem . . . . . . . 17
I.1.5. Asymptotic Freeness . . . . . . . . . . . . . . . . . . . . . . . . . . 23
I.1.6. The Cauchy Transform . . . . . . . . . . . . . . . . . . . . . . . . . 30
I.1.7. Free Stochastic Differential Equations . . . . . . . . . . . . . . . . 30
I.1.8. Short Overview of the Existence Proof in “Free CIR Processes” . 33

I.2. The Impact of Yield Curves on FX rates . . . . . . . . . . . . . . . . . . . 36
I.2.1. Yield Curves, Data and Motivation . . . . . . . . . . . . . . . . . 36
I.2.2. ARMAFunX-GARCHFunX . . . . . . . . . . . . . . . . . . . . . . 39
I.2.3. Functional Principal Component Analysis . . . . . . . . . . . . . 40
I.2.4. Value-at-risk and Backtesting . . . . . . . . . . . . . . . . . . . . . 42

Bibliography 46

II. Free CIR Processes 49

III. The Impact of Sovereign Yield Curve Differentials on Value-at-Risk
Forecasts for Foreign Exchange Rates 73

xi





I. Introduction And Methods

I.1. Free Probability Theory and free SDE

In the following section the basic notions and ideas of free probability theory are pre-
sented. In the first subsection I.1.1 the basic structure and setup of non-commutative
probability spaces is developed. In particular von Neumann algebras are presented as
the structure of choice for the current work. Free independence, also referred to as
“freeness”, a rule to compute joint moments of non-commutative random variables is
introduced in I.1.3. In addition a few selected connections between classical and free
probability theory will be worked out in I.1.4. Consequently free stochastic differen-
tial equations are introduced in I.1.7 and finally the existence proof of the free CIR
equation in Fink et al. (2019) is discussed in I.1.8.

I.1.1. Non-commutative Probability Theory

Free probability can be seen as a non-commutative analogue to classical probability
theory with a law to calculate joint moments, given by the “freeness” property, an
analogous notion to (classical) independence. The most prominent examples of such
non-commutative random objects are operators and random matrices. Initially it
was “discovered” by Dan Voicelescu while dealing with an isomorphism problem in
the context of a special class of operator algebras, the von Neumann algebras. The
beginnings of free probability were purely operator-algebraic until it was discovered
that large limits of certain random matrix ensembles behave like these free objects
in distribution, a connection called “asymptotic freeness” (cf. Mingo and Speicher
(2017)). The foreword “Background and outlook” in Voiculescu et al. (2016) by the
aforementioned Dan Voicelescu gives a good overview of the subject. Analogous to
classical probability theory there are counterparts to the concepts of convolution (cf.
Mingo and Speicher (2017)) and the central limit theorem (cf. Nourdin and Taqqu
(2014)), where for the latter notion the corresponding limiting distribution is given by
the semicircular distribution.
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I. Introduction And Methods

Before proceeding we remind the reader of the following definition (see e.g. Murphy
(2014)). Note that we draw from Murphy (2014) for several definitions and notions in
this section.

I.1.1 Definition. An algebra A is a vector space over a field F together with an
associative F-bilinear map

A×A → A, (A,B) ↦ A ⋅B.

We call an element id of A (the) unit (of A) if it satisfies

id ⋅A = A ⋅ id, ∀A ∈ A.

An algebra containing a unit is referred to as unital algebra.

In general a non-commutative probability space is given by the tupel (A,ϕ), where
A1 is a unital algebra and the latter an element of its dual space2 s.t. the unit in
the algebra is mapped to 1, where the last part can be seen as an equivalent to the
postulation P(Ω) = 1 in classical probability theory for the probability measure P and
the whole event space Ω3 (see I.1.2). Note that this definition of a non-commutative
probability space does not have any analytical properties yet and is therefore sometimes
referred to as an algebraic non-commutative probability space (cf. Voiculescu et al.
(1992)).
Non-commutative probability spaces can be formulated on algebras, algebras with

an involution ∗ ∶ A → A (such as e.g. complex conjugation in the context of C),
C∗-algebras and von Neumann algebras, which are unital subalgebras of the bounded
linear operators on a Hilbert space H that are closed with respect to the weak operator
topology (weak continuity is discussed later), which is only one of a few equivalent
definitions (e.g. cf. Murphy (2014)). The choice depends on the context and its
applications. To give an example and motivation for such a particular choice we
shortly mention that in order to implement a notion of positivity for ϕ we need an
involution on the algebra. We remind the reader of the definition of an involution (see
e.g. Murphy (2014)).

1We will use this letter for different structures but it will always be clear from the context what is
meant.

2For a vector space V and a field F, in most cases chosen to be R or C, the dual space of V denoted
by V ∗ is the set of all linear maps V → F, referred to as functionals.

3See Tao (2012).
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I.1. Free Probability Theory and free SDE

I.1.2 Definition. An involution on an algebra A over a field F is a map

∗ ∶ A → A, A↦ A∗

such that

1. A∗∗ = A, ∀A ∈ A

2. (A +B)∗ = A∗ +B∗, ∀A,B ∈ A

3. (λA)∗ = λA∗, ∀A ∈ A and λ ∈ F

4. (AB)∗ = B∗A∗.
We refer to algebras with an involution as ∗-algebras or involutive algebras.

I.1.3 Definition. We call an homomorphism

f ∶ A → B

between ∗-algebras A and B a ∗-homomorphism (or involutive homomorphism) if

f(A∗) = (f(A))∗

for all A ∈ A.

I.1.4 Definition. The elements A ∈ A that satisfy A∗ = A are called self-adjoint.

Note that self-adjoint (continuous) operators A have a real spectrum (cf. Werner
(2018)). This is one of the reasons we will restrict our framework to self-adjoint random
variables.
We recall the definition of the spectrum of an operator in a normed vector space as

it is defined e.g. in Blackadar (2006):

I.1.5 Definition. Let A ∈ A for A a normed vector space. We define the spectrum of
A via

σ(A) = {λ ∈ C∣(A − λid)−1 does not exist}4.

As pointed out in Blackadar (2006) this can be seen as a generalization of the concept
of eigenvalues.

4id denotes the identity operator and is the unit in the corresponding algebra.
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I. Introduction And Methods

I.1.6 Definition. We call the functional ϕ on a ∗-algebra positive iff ϕ(A∗A) ≥ 0 for
all A ∈ A, whereas an operator is called positive if it is of the form B∗B for operators
B. These have a non-negative spectrum . We will denote positive operators by A ≥ 0

and strictly positive operators by A > 0. We remark that these are two different notions
of positivity. Positivity of a functional means that it maps positive elements (in this
context elements of the form A∗A) of the algebra to positive elements in R, where the
definition of positivity is known. Further note that ∣A∣ ∶=

√
A∗A.

If the spectrum of an operator is strictly positive, meaning not just non-negative but
in (0,∞), it is invertible. This property will play a crucial role in Fink et al. (2019).

Since von Neumann algebras, the structure of choice for our framework, are a special
class of C∗-algebras, we define the latter in the following before proceeding to von
Neumann algebras (see cf. Murphy (2014)).

I.1.7 Definition. A Banach ∗-algebra is a ∗-algebra A with a complete submultiplica-
tive norm s.t. ∥A∥ = ∥A∗∥ for A ∈ A. If the algebra is unital with ∥id∥ = 1 it is called a
unital Banach ∗-algebra.

I.1.8 Definition. A C∗-algebra is a Banach ∗-algebra s.t. ∥A∗A∥ = ∥A∥2 for all A ∈ A.

Furthermore von Neumann algebras are a special class of C∗-algebras which we will
define in the following.

I.1.9 Definition. Von Neumann algebras A are the unital ∗-subalgebras of the bounded
linear operators on a Hilbert space H, denoted by B(H)5, that are closed w.r.t. the weak
operator topology (and w.r.t. the strong operator topology). We remind the reader
that weakly closed in this context means that for A ∈ B(H) and a net6 Aα in A s.t.
⟨Aαu,v⟩ 7 converges to ⟨Au,v⟩ for u,v ∈ H we always have A ∈ A. Strongly closed is
defined accordingly w.r.t. the strong operator topology.

Recall that for such an A in B(H) that Ai → A in the weak (operator) topology on
B(H) if ⟨Aiξ, η⟩ → ⟨Aξ, η⟩ for all ξ, η ∈ H. The strong (operator) topology is given by
the operator norm ∥A∥ = sup∥v∥≤1∥Av∥ for v ∈ H.

5In this case the algebra’s multiplication is given by the composition of operators.
6A net in T is a map I → T , where I is a directed set (see e.g. Werner (2018)). A net with I = N
is just a sequence.

7⟨⋅, ⋅⟩ denotes the inner product the Hilbert space is endowed with.
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I.1. Free Probability Theory and free SDE

Another defining property of von Neumann algebras A is the fact that it is equal to
its bicommutant A′′. The commutant A′ is defined by

A′ = {B ∈ B(H)∣ for all A ∈ A ∶ BA = AB}

and with A′′ = (A′)′, the definition of the bicommutant is clear.
The von Neumann bicommutant theorem (see Neumann (1930)) states that the

following properties are equivalent:

1. A′′ = A
2. A is closed w.r.t. to the weak operator topology

3. A is closed w.r.t. to the strong operator topology

The third way to define a von Neumann algebra A among the C∗-algebras is the
existence of a unique predual A∗, that is a Banach space s.t. its dual (A∗)∗ is equal
A (see e.g. Sakai (2012)).
For our purposes we choose a von Neumann algebra with a faithful, normal and

unital trace. Before explaining all of these notions, we first mention that the von
Neumann algebras are classified into different types relating to their projections (see
e.g. Blackadar (2006)).

I.1.10 Definition. We call a p ∈ B(H) an (orthogonal) projection if it satisfies

p = p∗ = p2.

I.1.11 Remark. Von Neumann algebras, in contrast to general C∗-algebras, always
have projections (see e.g. Werner (2018)). See Remark I.1.25.

I.1.12 Definition. We call a (bounded) linear functional ϕ on a von Neumann algebra
A normal if for a bounded increasing net of positive Ai in A with A = supiAi we have
that ϕ(A) = limi→∞ϕ(Ai)8 and faithful if ϕ(A∗A) = 0 implies A = 0.

I.1.13 Definition. We call the linear functional ϕ a tracial state if we have ϕ(id) = 1

(unital), ϕ(A∗A) ≥ 0 (positive) and ϕ(AB) = ϕ(BA)9 for A,B ∈ A. We will refer to
such a ϕ simply as (unital) trace.

8See e.g. Blackadar (2006).
9This property sometimes referred to as traciality can be seen as giving the objects a bit of commu-
tativity back, as is pointed out in Tao (2012).
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I. Introduction And Methods

The following two examples of non-commutative probability spaces can be found
in Nica and Speicher (2006) and give a good introduction and feeling for this way of
non-commutative thinking.

I.1.14 Example. A simple and intuitive example of a non-commutative probability
space is given by choosing for A the algebra of N ×N-matrices over R or C and for
ϕ one chooses the normalized matrix-trace10 (normality is used to ensure that the unit
in the algebra is mapped to 1). That is the trace ϕ is defined via

ϕ(A) = 1

N

N

∑
k=1

akk,

where A ∈ A and A = (aij)1≤i,j≤N . This example will play a particular role when talking
about asymptotic freeness later on.

I.1.15 Example. Quite unintuitively we can represent a classical probability space
(Ω,F ,P), where Ω is a set, with F an appropriate σ-algebra and P a probability measure
as a non-commutative probability space. Now consider the algebra L∞(Ω,P) of bounded
random variables and the expectation, being an element from its dual space, defined by

E(X) = ∫
Ω
X(ω)d P(ω)

for X ∈ L∞(Ω,P). Then (A, ϕ) with A = L∞(Ω,P) and ϕ = E is a non-commutative
probability space. But we see the level on which free probability is formulated. It
basically represents the same thing as the classical formulation does, but the central
object of study is an algebra of objects rather than the particular object, in this case
the classical random variables.

As mentioned before there are different possible nuances for the definition of a non-
commutative probability space but for our purposes we will define a non-commutative
probability space the following way.

I.1.16 Definition. We call (A, ϕ) a non-commutative probability space, where A is a
von Neumann algebra and ϕ a faithful, normal and unital trace on A.

I.1.17 Remark. As mentioned before we will only consider self-adjoint elements.
10We will later denote the normalized matrix-trace, the trace divided by the dimension of the corre-

sponding matrix, by tr.
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I.1. Free Probability Theory and free SDE

Note that we did not not use the term “free” yet. As mentioned before, freeness
is essentially a rule to compute joint moments of non-commutative objects. Before
introducing the notion of freeness we first show the construction of such a functional
ϕ that can serve as the free counterpart11 to expectation in this setting.

I.1.2. Functional Calculus and Spectral Theorem

We will present the spectral theorem for self-adjoint operators of B(H) and introduce
the continuous and the (measurable) Borel functional calculus. A functional calculus
can be seen as a way to give meaning to the application of certain functions to oper-
ators. We will follow and heavily draw from Werner (2018)12 for this introduction.13

In this process the free counterpart to classical expectation is derived by introducing
the spectral measure. Note that this theory can be formulated in a more general way
for normal operators14 of B(H) (cf. Murphy (2014)) but we will introduce this slightly
easier theory and access to support the main understanding of the core idea. That
is why we introduce these concepts mainly for the self-adjoint bounded operators on
a Hilbert space since the generality suffices to transport the idea and to give a first
introduction to these concepts. We cite (Werner, 2018, Korollar VII.1.2.):

I.1.18 Theorem. For a self-adjoint A ∈ B(H) we have that σ(A) ⊂ R. We have
in particular σ(A) ⊂ [m(A),M(A)], where m(A) = inf{⟨Ax,x⟩ ∣∥x∥= 1} and where
M(A) = sup{⟨Ax,x⟩ ∣∥x∥= 1}. For a positive A we further have σ(A) ⊂ [0,∞).

I.1.19 Remark. Note that the numerical range

W (A) = {⟨Ax,x⟩ ∣∥x∥ = 1}

is bounded.

We proceed by defining the continuous functional calculus as in (Werner, 2018, Satz
VII.1.3):

11Technically it should be referred to as the non-commutative counterpart but we use the term “free”
here to contrast the free with the classical setting.

12Mostly from Chapters VII and IX in Werner (2018).
13For another prominent source see Blackadar (2006).
14An operator is referred to as normal if it commutes with its adjoint.
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I.1.20 Theorem. Let A ∈ B(H) be self-adjoint. Then there is a unique map

Φ ∶ C(σ(A))15 → B(H)

s.t.

1. Φ(id) = A and Φ(1) = id, where id is the identity function and 1 is the constant
function that maps to 1. 16

2. Φ is an involutive homomorphism of algebras, where we have in particular that
Φ(f ⋅ g) = Φ(f) ○Φ(g), with ○ denoting composition of operators.

3. Φ is continuous

I.1.21 Definition. We call the map Φ the continuous functional calculus of A and we
write f(A) ∶= Φ(f) for f ∈ C(σ(A)).

We state Satz VII.1.4. in Werner (2018) that describes several important properties
of the functional calculus:

I.1.22 Theorem. Let A be a self-adjoint element of B(H) and the map f ↦ f(A)
defines the continuous functional calculus on C(σ(A)). Then it holds that

1. ∥f(A)∥ = ∥f∥∞ = supλ∈σ(A) ∣f(λ)∣
2. For f ≥ 0 we have that f(A) ≥ 0

3. Ax = λx implies f(A)x = f(λ)x

4. σ(f(A)) = f(σ(A)) = {f(λ)∣λ ∈ σ(A)}

5. {f(A)∣f ∈ C(σ(A))} is a commutative algebra of operators. All f(A) are normal
in the sense that they commute with their adjoint. Furthermore f(A) is real-
valued iff f is self-adjoint.

The continuous functional calculus can be extended to elements in B(σ(A)), the
bounded measurable functions on σ(A), which is then referred to as the measurable
(Borel) functional calculus. We formulate the measurable functional calculus by the
following theorem (see (Werner, 2018, Satz VII.1.6.)).
15C(σ(A)) denotes the continuous functions on σ(A).
16id denotes, as before, the unit in the corresponding algebra.
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I.1.23 Theorem. Let A ∈ B(H) be self-adjoint. Then there is a unique map

Φ̂ ∶ B(σ(A)) → B(H)

s.t.

1. Φ̂(id) = A and Φ̂(1) = id

2. Φ̂ is an involutive homomorphism of algebras

3. Φ̂ is continuous

4. fn ∈ B(σ(A)) with supn∥fn∥∞ < ∞ and fn(t) → f(t) for all t ∈ σ(A) implies that
⟨Φ̂(fn)x, y⟩ → ⟨Φ̂(f)x,y⟩ for all x,y ∈ H.

We denote the characteristic function (or indicator function) on a set S by χS. It is
defined by

χS(t) =
⎧⎪⎪⎨⎪⎪⎩

1, for t ∈ S
0, else

.

We further have by (Werner, 2018, Lemma VII.1.7)):

I.1.24 Lemma. We have for Borel sets S ⊂ σ(A) that ES ∶= χS(A) is an orthogonal
projection.

I.1.25 Remark. As pointed out in Werner (2018), for a self-adjoint operator A in a
von Neumann algebra A we always have for S ⊂ σ(A) that ES ∈ A, a property that is
not guaranteed for general C∗-algebras.
I.1.26 Remark. Note that we apply the functional calculus to give meaning to the
expression χS(A).

We proceed by developing the notion of a projection-valued measure, the spectral
measure.
See (Werner, 2018, Lemma VII.1.8)):

I.1.27 Lemma. Let A ∈ B(H) be self-adjoint. Then we have that

1. χ∅(A) = 0, and χσ(A)(A) = id

9
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2. For pairwise disjoint Borel sets S1, S2, ⋅ ⋅ ⋅ ⊂ σ(A) and x ∈ H we have that

∞
∑
i=1

χS1(A)x = χ∪∞i=1Si
(A)x.

3. χS(A)χT (A) = χS∩T (A) for Borel sets S,T ⊂ σ(A).

Before applying both lemmata we give the definition of a spectral measure (see e.g.
(Werner, 2018, Definition VII.1.9)).

I.1.28 Definition. Let Σ be the Borel σ-algebra on R. We call a map

E ∶ Σ→ B(H), S ↦ ES

spectral measure if the ES are orthogonal projections and we have that

1. E∅ = 0 and ER = id

2. For pairwise disjoint S1, S2, ⋅ ⋅ ⋅ ∈ Σ we have

∞
∑
i=1

ESi
(x) = E∪∞i=1Si

(x) for all x ∈ H.

In particular E has compact support if there is a compact set K s.t. EK = id.

I.1.29 Remark. We have in particular that ESET = ETES = ES∩T .
By the two lemmata above this gives us that

E ∶ S ↦ χS∩σ(A)(A), for S ∈ Σ

is a spectral measure.
This allows the definition of the integral

∫ fdE

for a measurable function f with respect to a spectral measure E. This is done via
step functions (see Werner (2018)).

I.1.30 Remark. If E has compact support K, we may also denote this integral by

∫K f(λ)dEλ, where we define Eλ = E((−∞,λ]) for each λ. We may switch between
these notations depending on the context.

10
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We finally present the spectral theorem for self-adjoint bounded operators (see
(Werner, 2018, Theorem VII.1.13)):

I.1.31 Theorem. Let A ∈ B(H) be self-adjoint. Then there is a unique spectral mea-
sure with compact support on R, denoted by E s.t.

A = ∫
σ(A) λdEλ.

The map f ↦ f(A) = ∫ f(λ)dEλ defines the measurable functional calculus. We have
that f(A) is defined by

⟨f(A)x, y⟩ = ∫
σ(A) f(λ)d ⟨Eλx, y⟩ .

I.1.32 Remark. The above notation needs a bit of clarification. Since E is a spectral
measure, that is it maps Borel sets to projections, the notation d ⟨Eλx, y⟩ means inte-
gration with respect to the unique spectral measure for which the existence is ensured
by the above theorem, that is for the corresponding Borel sets S the map S ↦ ⟨ESx, y⟩ .

I.1.33 Remark. Note that we have for a measurable S ⊂ σ(A) in particular that

∫ χσ(A)dE = Eσ(A) = id.

These results can be generalized to normal operators, that is operators that commute
with their adjoints, which is trivially given for self-adjoint operators. We state the
following generalization given by (Werner, 2018, Korollar IX.3.8):

I.1.34 Theorem. Let A ∈ B(H) be a normal element. Then there is an isometric17

∗-homomorphism
Φ ∶ C(σ(A)) → B(H)

s.t.

1. Φ(id) = A

2. Φ(id) = A∗

3. Φ(1) = id.
17We call a map ι ∶ A → B between normed vector spaces (A, ∥⋅∥A) and (B, ∥⋅∥B) an isometry or

“isometric” if ∥ι(⋅)∥B = ∥⋅∥A.
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Having been introduced to the concepts of the functional calculus and the spectral
theorem for self-adjoint operators in B(H) we emphasize the following construction.

I.1.35 Remark. Note that we have in particular an isometric homomorphism

B(σ(A)) → ⟨A, id⟩ 18

for a self-adjoint A > 0. This construction is of special importance for the main proof
in Fink et al. (2019).

Now we can define our functional ϕ via

ϕ(A) = < Aξ,ξ >
= < ∫

σ(A) λ dEλξ, ξ >

= ∫
σ(A) λ d ⟨Eλξ, ξ⟩ ,

where ξ ∈ H is a unit vector, that is ∥ξ∥ = 1, and ⟨⋅,⋅⟩ denotes the inner product on
H (cf. Voiculescu (2002)). Defining the scalar-valued measure

dµ(⋅) = d ⟨E(⋅)ξ, ξ⟩

gives a scalar-valued “expectation”, where the real-valued measure µ is referred to
as the spectral (probability) distribution of A. This “expectation” can naturally be
generalized for certain functions of A via the functional calculus.

For our case (the case of a self-adjoint operator) µ is a compactly supported measure
on R (see e.g. Voiculescu (2002)). We therefore can unambiguously write

ϕ(Ak) = ∫
σ(A) λ

kdµ.

I.1.3. Free Independence

We proceed by finally introducing the notion of “freeness”. Let (A,ϕ) be a non-
commutative probability space in the sense of Definition I.1.16.

18This denotes the subalgebra generated by A and the identity.
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I.1.36 Definition. Let A1, . . . ,An be subalgebras of A. We call A1, . . . ,An free if

ϕ(Ai(1)⋯Ai(n)) = 0,

when
ϕ(Ai(s)) = 0 and i(s + 1) ≠ i(s) for all s.

Random variables are called free if the algebras they generate are free.

I.1.37 Definition. We call a non-commutative probability space together with the
notion of freeness a free probability space.

In order to motivate this, at first glance, rather unintuitive definition, we draw
from the introduction to the concept of free probability presented in Tao (2012) since
this section helps understanding the philosophy behind this concept and this way of
non-commutative thinking. Note that in this philosophical discussion we start with ex-
plaining the philosophy behind non-commutative probability theory before discussing
the concept of freeness. We point this out since although non-commutative probabili-
ty theory is a framework for possibly non-commutative random variables, commuting
random variables can be considered in a non-commutative probability space as well, as
we have seen in Example I.1.15, which makes the notion of a non-commutative proba-
bility space more general than a classical probability space. But freeness and therefore
free probability theory is a concept particularly for non-commutative objects, since
commuting random variables are free only in very specific situations, as we will see
with an example later on. Therefore, free probability theory is not to be seen as a
generalization of classical probability theory but rather as a parallel field of study. We
heavily draw from (Tao, 2012, Chapter 2.5., p. 155ff) in the following:

First off we try to explain how the transition from classical to non-commutative
probability is to be understood philosophically by comparing it with the transition
from measure theory to (classical) probability theory. The objects of study in the
former are the measurable sets and the measurable functions. As the name suggests,
these notions depend on a measure space which is presented as having a central and
defining property for those objects (see Tao (2012)). In (classical) probability theory
however the level on which we observe things (we can just think of this as an analogy
to working on the micro- and the macroscopic level) is the level of events and their
probabilities. We know of course that the events belong to a space but this is rather

13
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obscured. The notions “random variable” and “expectation” are then concepts evolving
from there or objects that can be defined on that level of abstraction.
The step from classical probability to non-commutative probability is similar. Now

we can abstract matters even more and view the structure of random variables and
the corresponding expectations, where the chosen structure is taken to be a specific
algebra (of random variables), as the central objects or the building blocks of the
theory. On this level the initial sample space, the algebra of the corresponding events,
as well as the initial probability measure are not central anymore. As before this can
be understood as viewing something on a microscope but not zoomed in enough to see
these underlying concepts.

As pointed out in Tao (2012) one reason for taking this further step of abstraction
is that constructs built on the levels of algebras and their expectation are rather
stable when taking particular limits. The example given in Tao (2012) is the limit of
normalized matrix moments, a construction that we will encounter later in the context
of approximate freeness.

The second reason is given by the simple fact that a free probability space does not
need to specify a sample space or an event space in the classical sense and allows,
as mentioned before, for a more general formulation by allowing non-commutative
random variables. This generality allows for the implementation of the spectral theory
of random matrices and operators into the context of probability theory in such a way
that the matrices, or operators, respectively, take over the role of random variables
with a corresponding expectation.

A corresponding notion of “independence” on this level obviously needs to be formu-
lated on the level of the central objects, which are the algebras of the random variables,
which are in turn random matrices or operators, in the context and abstraction level
of free probability. “Freeness” or “independence” can roughly be seen as the lack of
commutativity or dependence. There are structures that are more free than others.
To see how these notions can differ depending on the structure in question we present
the following demonstration given in (Tao, 2012, p. 157) that gives further insight in
the development of such a notion as “free independence”.

I.1.38 Example. Let us first consider the case of abelian groups. Trying to put as few
restrictions on the corresponding structure arising by two generators A and B but of
course obeying the axioms or properties of an abelian group we get the free abelian group
of words AnBm for n,m ∈ Z. Note that for an abelian group these words commute, since
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A and B commute by definition. This structure is isomorphic to the group Z2 = Z×Z.
So loosely speaking Z2 is as free as it gets for such an abelian group.
Let’s now relax the requirement of the structure in question and allow for general

groups. In this case the word An1Bm1⋯AnkBmk for ni,mi ∈ Z and 1 ≤ i ≤ k can not
be simplified to the form AnBm, since A and B no longer commute. Therefore this
structure, the free group F2, has a lot more elements than Z2.

Consider now two classical bounded and scalar-valued, in particular R-valued random
variables X and Y on a classical probability space (Ω,F ,P). In this setting we have
that X and Y are independent if

E(f(X)g(Y )) = 0 (I.1)

for all well-behaved19 functions f,g ∶ R→ R s.t. E(f(X)) = E(g(Y )) = 0.20 In this case
we have formulated classical independence “in the same form” as free independence.
The generalization to commuting bounded self-adjoint X and Y is straightforward. As
in the previous group-theoretic demonstration, the expectation of a product of multiple
such factors of corresponding functions depending on X or Y can be brought in such
a form as long as they commute; since multiplication is well-defined these can always
be ordered in the form in (I.1). Therefore, the definition of independence given above
suffices. But for non-commuting variables this is not the case anymore and therefore
such a product can not be arranged in such a way. Therefore we introduce another
form of independence for these objects, namely the following. We call X and Y free if

E(f1(X)g1(Y )⋯fk(X)gk(Y )) = 0

for all well-behaved functions fi, gi ∶ R → R s.t. E(fi(X)) = E(gi(Y )) = 0 for all
1 ≤ i ≤ k.

This example shows that the notion of “independence” or “freeness” changes depend-
ing on the corresponding structure and further illustrate how such an at first glance
unintuitive definition can be derived.

I.1.39 Definition. We refer to the self-adjoint elements of the free probability space
19An object is said to be well-behaved if it does not show extreme or unnatural behaviour. What it

means to be unnatural or extreme, of course, depends on the object in question. It more or less
just means to exclude certain edge-cases.

20See e.g. Whittle (2012).
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as (free) random variables.

We give an example to show how “freeness” behaves.21

I.1.40 Example. Let {A,C} and {B,D} be free.

1. We consider

ϕ((A − ϕ(A))(B − ϕ(B)) = ϕ(AB) − ϕ(A)ϕ(B)

and since ϕ(A − ϕ(A)) = ϕ(B − ϕ(B)) = 0 we get by the definition of freeness

ϕ(AB) = ϕ(A)ϕ(B),

which is what is to be expected coming from the classical situation. However, the
results do differ for higher moments.

2. In the same way we get

ϕ(ABCD) = ϕ(AC)ϕ(B)ϕ(D) + ϕ(A)ϕ(C)ϕ(BD) − ϕ(A)ϕ(C)ϕ(B)ϕ(D),

which differs from what one would expect from classical probability.

3. A special case of the above example, namely the case A = C, B =D with the addi-
tional property ϕ(A) = ϕ(B) = 0, shows the different natures of the commutative
and non-commutative world especially well. In the commutative case we would
get

ϕ(ABAB) = ϕ(A2)ϕ(B2),

which in general does not vanish. For the non-commutative case we have for free
A and B that

ϕ(ABAB) = 0

by the definition of freeness.

We mentioned before that commuting random variables are free only in very specific
situations. We illustrate this by the following example (see e.g. Nica and Speicher
(2006) or Mingo and Speicher (2017)):

21Such basic examples can be found in most of the standard texts to free probability
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I.1.41 Example. Let A,B be commuting random variables and let A and B be free.
Consider

ϕ(AABB) = ϕ(ABAB),

where the left side is equal to ϕ(A2)ϕ(B2) and we get for the right-hand side that it
simplifies to ϕ(A2)ϕ(B)2 + ϕ(A)2ϕ(B2) − ϕ(A)2ϕ(B)2. This yields

ϕ((A − ϕ(A))2)ϕ((B − ϕ(B))2) = 0

and by the properties of ϕ this implies that A or B must be scalar.

These examples hint towards the importance of non-crossing partitions and free
cumulants for free probability theory. We will shortly describe the relevance of set
partitions for classical probability and then establish the connection to the free case.
This will lead us to the free version of the central limit theorem (cf. Nourdin and
Taqqu (2014)) and we will see that the semicircular distribution takes over the role of
the Gaussian distribution in the free case.

I.1.4. Free Partitions and the Free Central Limit Theorem

As presented in Mingo and Speicher (2017) we present Wick’s formula (cf. Wick
(1950)) by recalling the notion of a Gaussian random vector. This formula gives an
interesting way of calculating joint moments via its covariances and has been known
for even longer (cf. Isserlis (1918)). We will present the free analogue to the Wick
formula to show the similarities between the free and the classical “version”. Finally
we formulate the free counterpart of the central limit theorem. We will see that the
semicircle law plays a similar role in free probability theory as the Gaussian distribution
does in the classical case. This has crucial implications for the theory of free stochastic
differential equations and their connection to the classical case. The similar properties
of these two distributions are necessary for the isometry argument in the main proof
of Fink et al. (2019).
For this, note that higher cumulants than the second of Gaussian random variables

vanish. Although the theory of cumulants and in particular their free counterparts,
is very interesting and gives deep insight into the structure of free random variables
and random variables in general, we will not go into detail but will only take away the
implications for calculating joint moments of (free) random variables. We heavily draw
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from Mingo and Speicher (2017)22 in the following. We start by defining a Gaussian
random vector (see e.g. Mingo and Speicher (2017)).

I.1.42 Definition. We call a random vector X = (X1, . . . ,Xn) Gaussian if there is a
positive definite n × n real symmetric matrix M s.t.

E(Xi1⋯Xik) = ∫Rn
ti1⋯tik

exp(− ⟨Mt, t⟩ /2)
(2π)n/2 det(M)−1/2dt,

where ⟨⋅,⋅⟩ denotes the corresponding inner product.

Let ii, . . . , ik ∈ [n] ∶= {1,2, . . . ,n} and P2(k) be the pairings of [k], that is the group-
ings of this set in distinct subsets containing exactly two elements. For such a pairing
π ∈ P2(k) we define, for an even k (see Mingo and Speicher (2017))

Eπ(X1, . . . ,Xk) = ∏(a,b)∈πE(XaXb). (I.2)

Wick’s formula gives

E(Xi1⋯Xik) = ∑
π∈P2(k)

Eπ(Xi1 , . . . ,Xik) where i1, . . . , ik ∈ [n].

Before proceeding to the pendant in free probability we give the following definition.

I.1.43 Definition. The number Cn defined by

Cn =
1

n + 1
(2n

n
) = (2n)!

n!(n + 1)!

is called the n-th Catalan number.

These numbers play a particular role in free probability theory. As mentioned before,
the semicircular distribution takes over the role of the Gaussian distribution and we
therefore use the following definition from Mingo and Speicher (2017).

I.1.44 Definition. A self-adjoint random variable S with vanishing odd moments and
even moments ϕ(S2n) = σ2nCn with σ > 0 constant is called a semicircular element of
variance σ2. For σ = 1 we call it a standard semicircular element.
22In this thesis we mostly draw from Chapters 1,2 and 4 in Mingo and Speicher (2017).
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In the following we give the probability density function of the semicircular proba-
bility distribution.

I.1.45 Definition. For r > 0 the probability density function, supported on the interval
[−r,r] given by

f(λ) =
⎧⎪⎪⎨⎪⎪⎩

2
πr2

√
(r2 − λ2), for λ ∈ [−r,r]

0, else
,

is referred to as semicircular distribution or sometimes as Wigner semicircle distribu-
tion to the honour of Eugene Wigner.

I.1.46 Remark. We have in particular the connection

Cn =
1

2π ∫
2

−2
λ2n

√
4 − λ2dλ,

which can e.g. be seen in Mingo and Speicher (2017). That means that the 2n-th
moment of the semicircular distribution with r = 2 is equal to the n-th Catalan number.

The free counterpart to Wick’s formula (with ϕ taking over the role of E in (I.2))
for semicircular elements Si23 is given by

ϕ(Si1⋯Sik) = ∑
π∈NC2(k)

ϕπ(Si1 , . . . , Sik), (I.3)

where NC2(k) denotes the non-crossing pairings of [k], where non-crossing is quite
intuitively explained by the following example.

I.1.47 Example. If we partition the set {1,2,3,4} in pairings we have that {(1,2),(3,4)}
is non-crossing, whereas {(1,3),(2,4)} is crossing. To visualize the process one can just
note the numbers side by side and drawing connecting lines between the pairings. When
connecting lines cross the pairing is crossing.

We furthermore state the free central limit theorem:

I.1.48 Theorem. If (Ai)i∈N are self-adjoint, freely independent and identically dis-
tributed with zero mean and variance σ2, we have that

∑l
k=1Ak√
l

→ S for l →∞

23For more details we refer the reader to Mingo and Speicher (2017).
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in distribution, where S is a centred semicircular element of variance σ2.

As pointed out in Mingo and Speicher (2017) this result was proven first in Voiculescu
(1985) and later on by Speicher (1990).

In the context of Wick’s formula we encountered the set of pairings P2(n) of [n].
Pairings are a special case of partitions, a notion we will shortly define (see Mingo and
Speicher (2017) and Speicher (2019)).

I.1.49 Definition. We call π = {V1, . . . , Vr} a partition of [n] if the following properties
hold:

1. The Vi are subsets of [n] and non-empty for i = 1, . . . ,r

2. The Vi are pairwise disjoint for i = 1, . . . ,r

3.
r

⋃
i=1

Vi = [n]

We call the Vi blocks and denote the set of all partitions of [n] by P([n]). We define
P(n) = P([n]).

Although the idea of generalizing pairings to general set partitions is straightforward
we recall the formal definition of non-crossing set partitions, as it is done in Mingo
and Speicher (2017).

I.1.50 Definition. We call a partition π ∈ P(n) non-crossing if there are no numbers
i,j,k,l ∈ [n] with i < j < k < l such that i and k are in the same block of π and j and l
are in the same block of π but i and j are not. The set of all non-crossing partitions
of [n] is denoted by NC(n).

To visualize this definition we refer the reader to Example I.1.47. It is the same core
idea but allowing general partitions, as long as the connecting lines do not cross.

The formula connecting moments and free cumulants can be seen as a generalization
of the free counterpart to Wick’s formula.

The connection between the Wick formula and its free counterpart hints towards
the special role of non-crossing partitions of a set for free probability theory. We close
this subsection with the introduction of the free cumulants and a formula connecting
moments and cumulants, that is a very useful tool for explicit computations of joint
moments of free random variables.
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The free cumulants are inductively (and implicitly) defined by the following defini-
tion (cf. Mingo and Speicher (2017)24).

I.1.51 Definition. Let (A,ϕ) be a non-commutative probability space. The corre-
sponding free cumulants

κn ∶ An → C

are defined by
ϕ(A1⋯An) = ∑

π∈NC(n)κπ(A1, . . . ,An), (I.4)

where for a partition π = {V1, . . . , Vr} we define

κπ(A1, . . . ,An) = ∏
V ∈π

V =(i1,...,il)
κl(Ai1 , . . . ,Ail).

Note that as mentioned in Mingo and Speicher (2017), the i1, . . . , il are ordered
increasingly.
We again analyze the corresponding situation in the classical counterpart in order to

help seeing the parallels and analogies between these different “probability theories”.
For classical random variablesX1, . . . ,Xn in a classical probability space (Ω,F ,P) we

obtain a similar relation between the classical cumulants kl25 by the following relation

E(X1⋯Xn) = ∑
π∈P(n)kπ(Xi, . . . ,Xn),

where
kπ(X1, . . . ,Xn) = ∏

V ∈π
V =(i1,...,il)

kl(Xi1 , . . .Xil).

We again see that in the classical setting we use all partitions in the set of partitions of
[n], denoted by P(n), whereas in the non-commutative setting only the non-crossing
are contributing.

I.1.52 Remark. Knowing that the k-th cumulants of a Gaussian and the k-th cumu-
lants of a semicircular random variable both vanish for k > 2 (cf. Mingo and Speicher
24For further reading we refer to Nica and Speicher (2006). Many of these concepts are introduced

there and discussed in more detail.
25These (classical) cumulants can be obtained via the series expansion of the corresponding logarithm

of the moment-generating function. We will only use them here for the sake of comparison with
regard to free cumulants and their corresponding roles.
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(2017)) gives further insight into the correspondence between Wick’s formula and its
free counterpart and stresses furthermore the correspondence and roles between those
distributions and therefore can serve as bridge between the classical and the free world.

We illustrate the procedure of computing free cumulants by the following examples26:

I.1.53 Example. We consider the most simple but nevertheless quite interesting cases
n = 1 and n = 2 first. Applying the formula given by (I.4) we get for the first case

ϕ(A1) = κ1(A1)

and for the second

ϕ(A1A2) = κ{(1,2)}(A1,A2) + κ{(1),(2)}(A1,A2)
= κ2(A1,A2) + κ1(A1)κ1(A2).

This gives us by the above

κ2(A1,A2) = ϕ(A1A2) − ϕ(A1)ϕ(A2).

Finally we present the final example from Mingo and Speicher (2017) to show the
recursive procedure.

I.1.54 Example. For the case n = 3 we get

ϕ(A1A2A3) = κ{(1,2,3)}(A1,A2,A3) + κ{(1,2),(3)}(A1,A2,A3) + κ{(1),(2,3)}(A1,A2,A3)
+ κ{(1,3),(2)}(A1,A2,A3) + κ{(1),(2),(3)}(A1,A2,A3)
= κ3(A1,A2,A3) + κ2(A1,A2)κ1(A3) + κ2(A2,A3)κ1(A1)
+ κ2(A1,A3)κ1(A2) + κ1(A1)κ1(A2)κ1(A3).

Inserting the second and first cumulants we can solve the above equation by κ3(A1,A2,A3)
and get

κ3(A1,A2,A3) = ϕ(A1A2A3) − ϕ(A1)ϕ(A2A3)
− ϕ(A2)ϕ(A1A3) − ϕ(A3)ϕ(A1A2) + 2ϕ(A1)ϕ(A2)ϕ(A3).

26Such basic examples can be found in most of the standard texts to free probability
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We conclude this section with another characterization of freeness by free cumulants.
We quote (Nica and Speicher, 2006, p. 173): “Free independence can be characterized
by the vanishing of mixed cumulants.” Thus we state accordingly Theorem 11.16 in
Nica and Speicher (2006):

I.1.55 Theorem. Let (A,ϕ) be a non-commutative probability space and let (κn)n∈N
be the corresponding free cumulants. Consider unital subalgebras (Ai)i∈I of A. Then
the following two statements are equivalent.

1. (Ai∈I) are freely independent.

2. We have for all n ≥ 2 and for all Aj ∈ Ai(j) (j = 1, . . . ,n) with i(1), . . . , i(n) ∈ I
that κn(A1, . . . ,An) = 0 whenever there exist 1 ≤ l, k ≤ n with i(j) ≠ i(k).

As pointed out in Nica and Speicher (2006) this simplifies things, since in contrast
to the aforementioned characterization neither the condition i(1) ≠ i(2) ≠ ⋯ ≠ i(n) nor
the assumption that the Ai are centred are necessary.

I.1.5. Asymptotic Freeness

As mentioned before, free probability was developed as a purely theoretic concept
and initially was not very appealing for data applications until connections between
the eigenvalue distribution of certain random matrices and free probability theory
had been discovered. “Asymptotic freeness”, as described for example in Mingo and
Speicher (2017), is the fact that some random matrices (with independent entries) are
free in the limit. That is why we can treat very large random matrices (asymptotically)
as free random random variables and employ the techniques of the free world.
We state the definition for asymptotic freeness from (Mingo and Speicher, 2017,

Definition 1., Chapter 4). The authors differentiate between “asymptotic freeness” and
“almost sure asymptotic freeness”. For the sake of completeness and interest we state
both of them as well.

I.1.56 Definition. Let (AN)N∈N and (BN)N∈N be sequences of random matrices s.t.
for each N the matrices AN an BN are defined on the probability space (ΩN ,PN), with
the corresponding expectation EN .

1. AN and BN are asymptotically free if An,BN ∈ (AN ,E(tr(⋅))), with An denoting
the algebra generated by AN and BN , converge in distribution to elements A and
B in a free probability space (A, ϕ) s.t. A and B are free.
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2. Consider the product space Ω = ∏
N∈NΩN and we have P = ∏

N∈NPN the product

measure of the PN on the product space Ω. We call AN and BN almost surely
asymptotically free, if there are free A,B in a non-commutative probability space
(A,ϕ) s.t. for almost all ω ∈ Ω we have that AN(ω),BN(ω) ∈ (MN(C), tr(⋅))
converge to the elements A,B ∈ (A,ϕ) in distribution.

We mention the specific limiting distributions for two prominent matrix ensembles,
the Gaussian unitary ensemble (GUE) ensemble and the Wishart matrices.27

I.1.57 Definition. A GUE matrix is N × N-matrix AN = (Aij)1≤i,j≤n with complex
random variables Aij such that Aji = Aij for i ≠ j and Aii = Ai and the additional
property that for all Aij with i < j we have

Aij = xij +
√
−1yij,

with xij, yij for 1 ≤ i < j ≤ N are independent real Gaussian with mean 0 and variance
1/(2N) each.

I.1.58 Definition. We refer to random matrices of the form 1
NX

∗X where X is a
N ×M-random matrix with independent Gaussian entries as Wishart matrices.

I.1.59 Definition. The law of the Marchenko-Pastur distribution (also referred to as
free Poisson law) with support on [a,b] for 0 < c < ∞ is given by

dνc(x) = (1 − c)δ0 +
√

(b − x)(x − a)
2πx

dx,

where δ0 is the Dirac-Delta function on 0.

It turns out that the limiting eigenvalue distribution of the GUE ensemble is given
by the semicircular distribution and of the Wishart ensemble by the Marchenko-Pastur
distribution, which can be seen as a free version of the Poisson distribution (cf. Mingo
and Speicher (2017)). Since independent matrices from the GUE and the Wishart
ensemble are asymptotically free we can derive the asymptotic eigenvalue distribution
of their sums via a free convolution (see Mingo and Speicher (2017)), a free counter-
part to the classical convolution of random variables. Due to their properties Wishart
27Note that the following definitions are standard but can be found e.g. in Mingo and Speicher

(2017).
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matrices are a suitable choice for the modeling of covariance matrices, a property that
can be exploited via asymptotic freeness. For an interesting application we further
mention Ryan and Debbah (2007) who use asymptotic freeness to denoise data via
free deconvolution. Applying this procedure for covariance matrices of portfolios (as
mentioned in e.g. Ryan (2008)) and modeling and forecasting e.g. eigenvalue distribu-
tions of explicit covariance (data) matrices by using asymptotic freeness might be an
interesting and promising start for future research to apply the results in Fink et al.
(2019) on real-world data. Consider in particular the asymptotic eigenvalue distribu-
tions (cf. Mingo and Speicher (2017)): We have in particular for N ×N -GUE matrices
AN that

lim
N→∞E(tr(AmN)) =

⎧⎪⎪⎨⎪⎪⎩

1
n+1

(2n
n
), m = 2n

0, m odd

and for N ×M -Wishart matrices A s.t. limN,M→∞ M
N = c ∈ (0,∞) we have that

lim
N,M→∞
M/N→c

E(tr(Ak)) = ∑
π∈NC(k) c

#(π),

where #(π) denotes the number of blocks of the partition π. As it is done in Mingo and
Speicher (2017) we illustrate the averaged and the almost sure approximations for the
GUE ensemble and the Wishart ensemble, or their empirical eigenvalue distribution,
respectively, via Figures I.1 and I.2 and Figures I.3 and I.4, respectively. For the
averaged version, the asymptotic freeness, we simulate 10k GUE matrices and plot the
histograms of the eigenvalues for all 10k matrices forN×N -matrices withN = 3, N = 15

and 40, together with its limiting distribution (see Figure I.1). Figure I.2 shows the
approximation for the almost sure version of asymptotic freeness. For this we used only
one realization for each plot for N = 15, N = 450 and N = 4500. The same illustration
is done in Figures I.3 and I.4 for N = 3 and M = 5, for the first plot, N = 6 and M = 10

for the second, and N = 60 and M = 100 for the third. The almost sure version is
shown for N = 36 and M = 60, and N = 360 and M = 600, and finally N = 3600 and
M = 6000.
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Figure I.1.: Histograms for 10k simulations of N ×N -GUE matrices with N = 3, N = 15 and
N = 40, respectively (from above to below) together with its limiting distribution

26



I.1. Free Probability Theory and free SDE

Figure I.2.: Histograms of N ×N -GUE matrices with N = 15, N = 450 and N = 4500, (from
above to below) together with its limiting distribution
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Figure I.3.: Histograms for 10k simulations of N×M -Wishart matrices with N = 3 and M = 5,
and N = 6 and M = 10, and N = 60 and M = 100, respectively (from above to
below) together with its limiting distribution28
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Figure I.4.: Histograms of N ×M -Wishart matrices with N = 36 and M = 60, and N = 360
and M = 600, and N = 3600 and M = 6000, respectively (from above to below)
together with its limiting distribution 29
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I.1.6. The Cauchy Transform

For the sake of completeness we will shortly mention the Cauchy transform, a valuable
tool in free probability that can be used to extract the information of a free random
variable’s distribution by its moments. This can be found e.g. in Kargin (2011) or
more detailed in Nica and Speicher (2006).

I.1.60 Definition. The Cauchy transform of a real-valued probability measure µ of a
self-adjoint A ∈ A is defined by

gA(z) = ∫
R
(a − z)−1dµ(a).

Defining the resolvent of A by GA(z) = (A − z)−1 shows that

gA = ϕ(GA).

There is a way to recover the measure µ given gA. This is done via the Stieltjes inversion
formula, given by the following connection.
For a Borel set B s.t. for its boundary ∂B we have that µ(∂B) = 0 it holds that

µ(B) = π−1 lim
ε↘0
∫
B
Im gA(a + iε)da,

where Im denotes the imaginary part of a complex number and i denotes the imaginary
unit i2 = −1.

This allows the extraction of the information about the distribution of A via only
knowing the expectation of its resolvent.
As we have seen there are many free counterparts to classical tools and theorems, like

the central limit theorem, independence or convolution (see e.g. Mingo and Speicher
(2017)). Therefore it should come as no surprise that there is also a free stochastic
calculus with its own counterparts to stochastic differential equations and Brownian
motion.

I.1.7. Free Stochastic Differential Equations

In this section we explain a few basic notions of the theory of free stochastic differential
equations that are needed and partly are introduced in Fink et al. (2019) as well.
The notion of stochastic differential equations necessitates free stochastic calculus,
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which was first mentioned in Speicher (1990). Before proceeding to free stochastic
differential equations we need a corresponding free counterpart to the driving process
in the classical sense, namely the free Brownian motion.
As defined e.g. in Kargin (2011)28 we introduce the free Brownian motion in the

following.

I.1.61 Definition. A free Brownian motion is a stochastic process (W (t))t≥0 of ele-
ments in a von Neumann algebra fulfilling the following three properties

1. W (0) = 0

2. The increments W (t) −W (s) are free from the algebra generated by W (τ) with
τ ≤ s for t > s

3. The increments W (t) −W (s) follow a semicircular distribution with expectation
0 and variance t − s

This definition shows that the semicircular distribution plays the same role the Gaus-
sian distribution does in the classical case. The fact that the increments of the classical
and the free Brownian motion have equal first and second moments respectively will
play a crucial role in the existence proof in Fink et al. (2019). In particular, when the
isometry between a stochastic process driven by a classical and and by a free Brownian
motion is established, this property is essential.
We introduce a simplified version of free stochastic differential equations in the

following to show their peculiarity. These are of the form

dX(t) = a(t,X(t))dt + b(t,X(t))dW (t)c(t,X(t)),

where (W (t))t≥0 denotes a free Brownian motion and a,b,c are operator-valued func-
tions. Due to the non-commutative nature of these random variables we have that in
general b(t,X(t))dW (t)c(t,X(t)) and b(t,X(t))c(t,X(t))dW (t) are different. There-
fore it is important from which side we multiply the Brownian motion. For the con-
struction of the free stochastic integral we refer the reader to Biane and Speicher
(1998).
We further mention the free Itô formula (cf. Biane and Speicher (1998)) in differen-

tial notation, as it is presented in Kargin (2011) and stated in Fink et al. (2019):
28This is not the first mentioning of the free Brownian motion but it is compactly presented there.
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I.1.62 Lemma. For operator-valued functions at, bt, ct, dt and a free Brownian motion
(W (t))t≥0 we have

atdt ⋅ btdt = atdt ⋅ btdW (t)ct = atdW (t)bt ⋅ ctdt = 0

atdW (t)bt ⋅ ctdW (t)dt = ϕ(btct)atdtdt.

I.1.63 Remark. Note that as Kargin (2011) does we will only consider functions that
do not explicitly depend on time.

Kargin (2011) showed the existence and uniqueness of a local solution to a certain
class of free stochastic differential equations with locally operator Lipschitz coefficients,
namely

dX(t) = a(X(t))dt +
m

∑
k=1

bk(X(t))dW (t)ck(X(t)),

or

X(t) =X0 + ∫
t

0
a(X(s))ds +

m

∑
k=1
∫

t

0
bk(X(s))dW (s)ck(X(s)), X(0) =X0, (I.5)

respectively, where (W (s))s≥0 is a free Brownian motion.
We remind the reader of the locally operator Lipschitz property as it is presented

e.g. in Kargin (2011):

I.1.64 Definition. A function f ∶ R → C is called locally operator Lipschitz if it
is locally bounded, measurable and that for all C > 0 there exists a K(C) > 0 s.t.
∥f(X)−f(Y )∥ ≤K(C)∥X−Y ∥, where X,Y are self-adjoint operators and ∥X∥, ∥Y ∥ < C.

Note that we will sometimes refer to this as “Lipschitz” but it will be clear what is
meant from the context.
We now state the local existence result in (Kargin, 2011, Theorem 3.1):

I.1.65 Theorem. Suppose that ai, bi and ci are locally operator Lipschitz functions and
X is bounded in operator norm. Then, there exists a T > 0 and a family of operators
X(t) defined for all t ∈ [0,T ) and bounded in operator norm, such that X0 = X, and
X(t) is a unique solution of (I.5) for t < T.

In Fink et al. (2019) we show the global existence of a positive (in the sense of having
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a strictly positive spectrum) solution to the free stochastic differential equation

dX(t) = (a − bX(t))dt + σ
2

√
X(t)dW (t) + σ

2
dW (t)

√
X(t),

with a,b,σ and X(0) =X0 being elements in the von Neumann algebra with a strictly
positive spectrum. Note that in the non-commutative world

dX(t) = (a − bX(t))dt + σ
√
X(t)dW (t)

differs from the equation above. Nevertheless, the existence of a solution to the latter
can be derived from the existence of a solution to the former via an argument involving
self-adjointness and the property of the trace.
Apart from the usual operator norm ∥⋅∥ defined by

∥A∥ = sup∥v∥≤1

∥Av∥

for A ∈ A and v ∈ H we can define the p-norms ∥A∥p via the trace ϕ by

∥A∥ = ϕ(∣A∣p)1/p for 1 ≤ p < ∞.

In Fink et al. (2019) we will use an isometry argument for the 2-norm given for a
self-adjoint A by ∥A∥2 = ϕ(A2)1/2. In particular the operator norm ∥⋅∥ and ∥⋅∥2 will be
of importance for the main proof in Fink et al. (2019).
Before giving a short overview of the existence proof in Fink et al. (2019) we mention

that the first section in Fink et al. (2019) provides an introduction to the CIR equation
and its connection to free probability theory.

I.1.8. Short Overview of the Existence Proof in “Free CIR

Processes”

In this section we give a short guideline and overview to the existence proof in Fink
et al. (2019).
As mentioned before, the CIR (stochastic differential) equation is of the form

dx(t) = a − bx(t)dt + σ
√
x(t)dB(t)29,

29In some literature the drift term is of the form a(b − x(t)) resulting in the corresponding Feller
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where a,b,σ > 0. As long as the Feller condition

2a ≥ σ2 (I.6)

is satisfied we have for x0 > 0 a strictly positive solution by Feller (1951). For a
historical overview we refer to the introduction in Fink et al. (2019).

We start by introducing a supplementary stochastic differential equation.

I.1.66 Definition. We call a stochastic differential equation of the form

dV (t) = (a − σ
2

2
) 1

2
V −1(t) − 1

2
bV (t)dt + σ

2
dD(t), V (0) = V0 > 0

“square-root process”, where (D(s))s≥0 is a classical or free Brownian motion and the
process (V (s))s≥0 can be scalar-valued, vector-valued or von Neumann algebra-valued.

We will work with this SDE and show that the existence of its (positive) solution
gives us the existence of the (positive) solution to the CIR equation in the free setting
due to the free Itô formula (cf. Biane and Speicher (1998)). Note that although V −1(t)
does appear in the drift we get a “Brownian motion part” that does not depend on
V (t). This trade-off is preferred for the purposes in this proof.

The first part of the proof is to show the existence of a positive solution to the
square-root process under Feller for a vector-valued process (V (t))t≥0. This is done by
employing point mass measures and the Feller condition.

The next step is to transform the vector-valued solution into the the general (non-
commutative) von Neumann algebra-valued case by employing the functional calculus
and the spectral theory which basically allows the applications of transformations of
functions defined on their respective spectra.

Via the functional calculus we have an isometric homomorphism

T ∶ B(σ(V0)) → ⟨V0,id⟩

between the function space of bounded, measurable functions on the spectrum of an
operator V0 > 0 denoted by B(σ(V0)) and the von Neumann algebra generated by the
identity operator and V0, denoted by ⟨V0, id⟩. In particular this induces a mapping

condition 2ab ≥ σ2. However, this formulation is equivalent to the one used here.
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between the corresponding dual spaces s.t. we can define EPϕ = T ∗(ϕ) given by

T ∗ϕ(g) = Eϕ(g) = ∫
σ(V0) gdPϕ = ϕ(T (g)) for all g ∈ B(σ(V0)).

This allows us to conclude the existence of a global positive solution for the general
(non-commutative) von Neumann algebra-valued case (driven by a classical Brownian
motion). Note that the corresponding Feller condition in the operator-valued case is
to be understood as the operator 2a − σ2 having a non-negative spectrum. When we
refer to the Feller condition (I.6) in the operator-valued context that is what is meant.
The main part of the existence proof lies in changing the driving process from a

classical Brownian motion to a free Brownian motion. This is done by showing that the
solutions to the von Neumann algebra-valued SDE with the classical Brownian motion
as the driving process (denoted by V ) and the one with the free Brownian motion as
the driving process (denoted by V ) are L2-isometric (with respect to the corresponding
expectations) on a common existence interval [0,T ] for a T > 0. A crucial part in this
proof are the similar properties of the classical and the free Brownian motions. We
shortly mention the following property from (Kargin, 2011, p. 829):

I.1.67 Remark. Let A be free from C and from D s.t. ϕ(A) = 0. We have that

ϕ(ACAD) = ϕ(A2)ϕ(C)ϕ(D).

Choosing A as an increment of a free or classical Brownian motion, respectively is
an essential part in establishing the isometry in the main proof in Fink et al. (2019).
The final part of the global existence proof is to extend the solution beyond T. This

is done by showing the invertability of V (T ).
Having established the global existence of a positive solution to the free square-

root process (driven by a free Brownian motion), applying the free pendant to the Itô
formula (cf. Biane and Speicher (1998) or Anshelevich (2002)) gives us the existence
of a unique positive solution to the free SDE

dX(t) = (a − bX(t))dt + σ
2

√
X(t)dW (t) + σ

2
dW (t)

√
X(t),

for t ∈ [0,∞[. We point out that in the non-commutative (free) world the equation

dX(t) = (a − bX(t))dt + σ
√
X(t)dW (t),
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is different to the one above but its solutions are isometric with respect to the trace
ϕ and therefore we have proven its existence as well. We will define these two free
stochastic processes:

I.1.68 Definition. Let (I.6), we then call the unique positive solution to the free SDE

dX(t) = (a − bX(t))dt + σ
2

√
X(t)dW (t) + σ

2
dW (t)

√
X(t),

for t ∈ [0,∞[, a non-classical free CIR process.

I.1.69 Definition. Let (I.6), we then call the unique positive solution to the free SDE

dX(t) = (a − bX(t))dt + σ
√
X(t)dW (t),

for t ∈ [0,∞[, a (classical) free CIR process.

I.2. The Impact of Yield Curves on FX rates

In the next sections we will introduce the necessary theory for the ARMAFunX-
GARCHFunX model. As mentioned in the introduction the basic idea is to increase
the accuracy of risk predictions for the EURUSD exchange rate via the implementa-
tion of corresponding sovereign rate curves. These curves can be estimated via the
use of functional principal component analysis. This makes it possible to dramatically
decrease the size of data by extracting its main factors, which are still able to explain
most of the data’s variance. We will discuss the basics of time-series models allowing
for the modeling of a conditional mean (ARMA) and a conditional variance (GARCH)
and how the data is processed via the functional principal component analysis. In
Fink et al. (2018) we compare the risk prediction performance of three models with
respect to likelihood ratio tests.

I.2.1. Yield Curves, Data and Motivation

The data in question is the EURUSD foreign exchange (FX) rate yt. To ensure station-
arity of our data we work, as it is custom in the literature, with returns, in particular
logarithmic returns. With that our time-series of returns is given by

rt = log ( yt
yt−1

) .
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The chosen time-frame of daily data is given by 15 August 2005 to 20 September 2016.
The exogenous data is given by the corresponding areas’ yield curves, or the difference
thereof, respectively. Yield curves can be viewed as mappings from a set of maturities
{0, . . . ,M} to yields for each observation time t. Note that we allow for a maturity
of zero. This is due to the fact that we incorporate overnight indexes, which can be
interpreted as having a maturity of zero. The shortest maturity will be denoted by
0 and the longest by M. For each t ∈ T = [0,T ] we have for the yield curve process
(xt)t∈T that it is of the form

xt ∶ {0, . . . ,M} → R, m↦ xt(m).

As a proxy for the risk-free rate for the US, we use government bonds and the fed-
eral funds rate for maturity zero. The corresponding proxy used for EUR in “The
Impact of Sovereign Yield Curve Differentials on Value-at-Risk Forecasts for Foreign
Exchange Rates” is given by the Overnight index Swaps on the EONIA (European
Overnight Index Average) and the EONIA itself for maturity zero. Figure I.5 shows
the surface areas of the corresponding yield curves. Note that we used cubic B-splines
to interpolate the missing maturities s.t. we ended up with 1 (for the overnight rate)
+ 120 = 121 maturities in months. This is necessary for taking the differences and to
ensure comparability. The nature of yield curve processes being maps for each point
in time t suggests the usage of functional data analysis. The idea is to include the
information of the relation of both yield curves, given by their difference, to use as
exogenous data for the modeling of the corresponding exchange rate EURUSD. Apart
from our ARMAFunX-GARCHFunX model, a model for the returns of the EURUSD
FX rate, incorporating yield curve data, we will analyse a classical ARMAX-GARCHX
model, that is an ARMA-GARCH model, with an exogenous term, to analyse the fore-
casting power of the 2-year yield difference of EUR and the US, which is assumed by
practitioners to have significant forecasting power.
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a) Yield curve surface for EUR

b) Yield curve surface for the US

Figure I.5.: Yield curve surfaces for EUR and the US in the time frame 15 August 2005 to
20 September 2016 (daily) and maturities 0 to 120 months
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I.2.2. ARMAFunX-GARCHFunX

ARMA-GARCH models are the bread and butter of time-series analysis in economet-
rics. It can be seen as a combination of, the autoregressive moving average (ARMA)
and the generalized autoregressive conditional heteroscedasticity model (GARCH) (cf.
Bollerslev (1986))30. The ARMA model is used to model a time-series with a con-
ditional mean µt, whereas the GARCH model is used to model a time-series with a
conditional variance σ2

t . The GARCH model is for example able to capture the phe-
nomenon of volatility clustering persistent in financial data, which is one of the stylized
facts of financial time-series. We will recall the corresponding definition shortly31:

I.2.1 Definition. We call a process (xt)t≥0 an ARMA(p,q)-GARCH(r,s) process if

xt = α0 +
p

∑
k=1

αkxt−k +
q

∑
l=1

βlεt−l + εt
εt = σtet

σ2
t = ω +

r

∑
m=1

δmσ
2
t−m +

s

∑
n=1

γnε
2
t−n,

where et ∼WN(0,1), a white noise process.

This is the basic setup of every ARMA-GARCH model. There exist several varia-
tions to this framework in the literature, among which the ARMA-logGARCH is of
particular interest for our purposes. The extension to such models including exogenous
variables, commonly referred to as ARMAX-GARCHX is straightforward. The exoge-
nous information in question is the information given by the differences of the two
yield curve processes for EUR and the US introduced earlier. The information of such
a possibly infinite-dimensional process32 xt will be encoded by ∫

M

0 λ(m)xtdm, where
λ serves as a weight function33. This particular exogenous ARMA-GARCH model is
defined by the following definition (see Fink et al. (2018)).

I.2.2 Definition. Let xt be drawn from a curve-valued exogenous process. Then rt

30This was anticipated by the ARCH model proposed in Engle (1982).
31For the sake of a simpler notation we will later work with p = q = r = s = 1.
32We can consider all maturities in the interval [0,M] ⊂ R.
33We will denote another weight function in the GARCH part by ρ.
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follows an ARMA(1,1)FunX-logGARCH(1,1)FunX process if

rt = α0 + αrt−1 + βεt−1 + εt + ∫
M

0
λ(m)xt−1dm

εt = σtet

logσ2
t = ω + γ log ε2t−1 + δ logσ2

t−1 + ∫
M

0
ρ(m)xt−1dm,

with et ∼WN(0,1), a white noise process.

The challenge herein lies in making this infinite-dimensional exogenous part usable
in practice. The motivation is to lose as little information as possible, while decreasing
the data size. Functional principal component analysis, or principal component analy-
sis in general, allows us to extract the most important information present in the data,
meaning the information explaining most of the variance, by a basis transformation
s.t. these new “vectors of data” represented via the new basis, share no information
due to the orthogonality of the basis vectors. This means that there is no redundant
information present in the transformed data. The more principal components or the
representation of the data by those, respectively, are added, the closer this representa-
tion is to the original data. Of course, the “approximation” by all principal components
is exact. However, in many cases as few as 3 principal components suffice to explain
most of the data’s variance.

In the following we explain the basic idea of functional principal component analysis
as it is done in Ramsay and Silverman (2005).

I.2.3. Functional Principal Component Analysis

We consider the exogenous process as an element of the Hilbert space L2([0,M]), that
is the Hilbert space of on [0,M] square-integrable real-valued functions. Naturally a
Hilbert space is endowed with an inner product, which is in our setting given by the
mapping

⟨⋅,⋅⟩ ∶ L2([0,M]) × L2([0,M]) → R, (a,b) ↦ ∫
M

0
a(s)b(s)ds.

Assuming stationarity we have a mean function µ(s) = E(xt(s)) and a covariance
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operator given by

C ∶ L2([0,M]) → L2([0,M]), f ↦ ∫
M

0
Cov(r,s)f(r)dr,

where Cov(r,s) = Covariance(xt(r), xt(s)), which both are independent of time.

This covariance can be written via the inner product as C(z) = E[⟨xt − µ,z⟩ (xt−µ)],
for a z ∈ L2([0,M]). We want to express our centered data xt − µ via a new basis s.t.
the variance of this projection has maximal (unconditional) variance. That is we need
γk ∈ L2([0,M]) s.t. the variance of the scores

ξk = ⟨γk, xt − µ⟩ = ∫
m

0
γk(s)(xt(s) − µ(s))

is maximal. These γk are exactly the eigenfunctions of C.
The key to representing the data via this new basis of orthonormal eigenvectors

(γk)k is the Karhunen-Loève theorem (see Karhunen (1947) and Loeve (1948)). This
allows us to represent the centred data in the eigenbasis (γk)k via

xt − µ =
∞
∑
k=1

ξk,tγk.

We refer to the scores as the principal components since the vector (ξk,t)k is the data-
vector at time t represented in the new basis (γk)k34.

Note that we have

E(ξk,t) = 0, E(ξk,tξl,t) =
⎧⎪⎪⎨⎪⎪⎩

0, k ≠ l
λk, else

.

This allows us to order the γk accordingly to their contribution in explaining the
process’ variation. Employing the properties of the orthonormal basis (γk)k we get the
following representation of our exogenous part:

∫
M

0
λ(m)xtdm ≈

K

∑
k=1

ξk,tbk + const.,

where the bk are real-valued coefficients that can be estimated by classical means.
During the estimation process the constant const. will be “captured” by the models’

34Note that some literature refers to the eigenfunctions as principal components.
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intercept. Note that the approximation is exact if we sum over all k. But as mentioned
in most cases only a small number of the ξk,t (ordered decreasingly by their explained
variation) will suffice to explain most of the variance.

In the case of Fink et al. (2018) the exogenous part is given by the difference of the
sovereign rate curve for EUR and for the US is given by

xt(⋅) = zEUR
t (⋅) − zUS

t (⋅),

where zUS
t (⋅) is the sovereign rate curve for the US and zEUR

t (⋅) is the sovereign rate
curve for EUR.

The ξk,t can be estimated via standard software for PCA (see Ramsay (2014)). This
allows us to estimate the model defined in I.2.2 by an ARMAX-GARCHX type model:

rt = α0 + αrt−1 + βεt−1 + εt +
K

∑
k=1

bkξ̂k,t−1

εt = σtet

logσ2
t = ω + γ log ε2t−1 + δ logσ2

t−1 +
L

∑
l=1

clξ̂l,t−1,

where ξ̂k,t−1 are estimates of the scores obtained by numerical integration. Instead of
estimating an infinite-dimensional weight function we now only have to estimate the
bk and cl, respectively.

I.2.4. Value-at-risk and Backtesting

This setup allows us to forecast (1-day ahead) the value-at-risk (VaR) of the return
process rt, defined by

VaRt∣t−1(p) = inf
x
{x ∈ R∣P(rt < x∣Ft−1) ≥ p}, for 0 < p < 1,

where Ft−1 denotes the information set up to t − 1. We estimate this quantity via
the forecasts for the conditional mean µ̂t∣t−1 and conditional standard deviation σ̂t∣t−1

obtained by the ARMAFunX-GARCHFunX model:

V̂aRt∣t−1(p) = µ̂t∣t−1 + σ̂t∣t−1Φ−1(p),
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where Φ−1(p) is the p-quantile of the standard normal distribution. We employ a
moving window approach for the 1-day ahead forecasts. The moving window approach
for our case can shortly be explained by the following.
Let [t0, T ] be the time-interval on which the return data is present. In order to

forecast the VaR we take a subset of the above interval, namely [α + t0, T − β] for
α,β ≥ 0 and use the data in this interval to estimate the VaR at T − β + 1. For the
estimate V̂aRT−β+2 the interval [α+ t0 +1, T −β +1] is used and so forth, such that the
length of the interval used for each forecast is constant. The choice of the interval’s
length depends among other factors on the length of the data set. The case for a k-day
ahead forecast is analogous35.
We want to point out that although we conducted model selection procedures on

the whole data set (see Section 4.1. in Fink et al. (2018)), we use the full models,
that is the models containing all parameters, for the VaR predictions. However, using
information outside your current window implies knowledge of the future. In order to
circumvent this issue one would need to select the model for each window separately
before the next forecast. We restrained from doing that to keep computations simple
and to allow for a better comparability of the models.
In Fink et al. (2018) we let three models compete against each other: the ARMAFunX-

GARCHFunX, a classical ARMA-GARCH and an ARMAX-GARCHX employing the
2-year yield difference for the exogenous part.
The measure of choice for the evaluation of the models’ performance is given by the

likelihood ratio tests presented in Christoffersen (1998), the unconditional coverage
test, the independence test and the conditional coverage test, where the latter can be
seen as a combination of the former two. In the following we will draw heavily from
Christoffersen (1998).
We define an indicator variable It by

It∣t−1 =
⎧⎪⎪⎨⎪⎪⎩

1, rt < V̂aRt∣t−1

0, else
.

An output of 1 is referred to as violation.
Consequently likelihood ratio tests evaluate the empirical number of violations against

the expected number. The unconditional coverage test checks how close the ratio of
the empirical and expected values is to 1, assuming independent violations. The inde-

35For the k-day ahead forecast it is assumed that β ≤ k.
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pendence test checks for dependence of the violations and the conditional coverage test
is a combination of the former two tests. We define ΨT to be the information set (of
the violations) up until T . The unconditional coverage test tests the null-hypothesis
E(It) = p against E(It) ≠ p, assuming an i.i.d. and Bernoulli distributed sequence of
violations It. That is the likelihood of a violation under the null-hypothesis is given
by log(L(p; ΨT ))36 and under the alternative to the null-hypothesis by log(L(π̂; ΨT ))
for a T < t. Let further N1 be the number of violations and N0 the number of times
It = 0. Then π̂, the empirical probability of a violation, is given by

π̂ = N1

N1 +N0

.

I.2.3 Definition. We then define the unconditional coverage statistics via

LRuc = −2 log(L(p; ΨT )) + 2 log(L(π̂; ΨT )),

and have that
LRuc ∼ χ2

1.

The independence test accounts e.g. for volatility clusters by checking for the inde-
pendence of the violations. For that we consider the transition probability matrix

Π1 =
⎛
⎝

1 − π01 π01

1 − π11 π11

⎞
⎠
,

where πij denotes the transition probability of It from the state i in t − 1 to the state
j in t. We therefore get

L(Π1; ΨT ) = (1 − π01)N00πN01
01 (1 − π11)N10πN11

11 ,

with Nij denoting the number of observations where the state i is followed by j.
Further we define

Π̂1 =
⎛
⎝

N00

N00+N01

N01

N00+N01

N10

N10+N11

N11

N10+N11

⎞
⎠
.

The null-hypothesis for the independence test corresponds to the violations being
independent, that is in our case, that the transition matrix is given by
36L(p; ΨT ) is given by (1 − p)N0pN1 .

44



I.2. The Impact of Yield Curves on FX rates

Π̂1 =
⎛
⎝

1 − π2 π2

1 − π2 π2

⎞
⎠
.

Under the null-hypothesis we have the likelihood

L(Π2; ΨT ) = (1 − π2)(N00+N10)π2
(N01+N11)

and its maximum likelihood estimator

Π̂2 = π̂2 =
N01 +N11

(N00 +N10 +N01 +N11)
.

I.2.4 Definition. We define the independence statistics via

LRind = −2 log(L(Π̂2; ΨT )) + 2 log(L(Π̂1; ΨT )),

and have that
LRind ∼ χ2

1.

Finally the combination of the former two is given by the joint test for coverage and
independence.

I.2.5 Definition. We define the conditional coverage statistics via

LRcc = −2 log(L(p; ΨT )) + 2 log(L(Π̂1; ΨT )),

and have that
LRcc

asymptotically∼ χ2
2.

In Fink et al. (2018) we derived the above coverage test statistics for our three mod-
els as a measure of the forecasting performance. Apart from introducing and testing
the ARMAFunX-GARCHFunX model, the second finding is that the 2-year yield dif-
ference does not seem to have a significant impact on the forecasting performance of
the corresponding FX rate, as is derived by establishing confidence intervals for the
corresponding parameter estimates. This is of particular interest since this spread’s
impact on the FX rate can be classified as a myth that is scattered in particular among
practitioners.
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abstract

For stochastic processes of non-commuting

random variables we formulate a

Cox-Ingersoll-Ross (CIR) stochastic differential

equation in the context of free probability theory

which was introduced by Voicelescu. By

transforming the classical CIR equation and the

Feller condition, which ensures the existence of a

positive solution, into the free setting (in the

sense of having a strictly positive spectrum), we

show the existence of a free CIR equation. The

main challenge lies in the transition from a

stochastic differential equation driven by a

classical Brownian motion to a stochastic

differential equation driven by the free analogue

to the classical Brownian motion, the so-called

free Brownian motion.
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1 Introduction

The Black-Scholes (BS) framework is considered as one of the benchmarks for modeling the price

process (X(t))t≥0 of an underlying asset. Initially mentioned in Black and Scholes (1973), it is based

on the stochastic differential equation (SDE)

dX(t) = µX(t)dt + σX(t)dB1(t),
for t ∈ [0,∞[, where µ ∈ R, σ > 0 and (B1(t))t≥0 denotes a Brownian motion.

One major drawback of this model is the fact that it does not account for certain common prop-

erties of financial data, known as stylized facts, in particular, volatility clustering and the so-called

leverage effect. The first term refers to the fact that volatility exhibits a highly autocorrelated struc-

ture and the second to the negative correlation between volatility and returns frequently found in

financial data (cf. Pagan (1996); Mandelbrot (1997); Cont (2001)).

A possible solution is to model the variance separately as a time-dependent stochastic process

that accounts for these effects. A desired property for such a model is to ensure that the variance

returns to an average value in finite time, which is referred to as mean-reversion. Therefore, the

Vasicek model (cf. Vasicek (1977)), which was originally developed to model the evolution of interest

rates, appears as a promising candidate. That means the variance process (s(t)2)t≥0 of (X(t))t≥0 is

modeled as the solution to the SDE

ds(t)2 = a(b − s(t)2)dt + σdB2(t),
for t ∈ [0,∞[, where b > 0 is referred to as the long term mean level, a > 0 is a measure of the time

it takes s(t)2 to return to b and σ > 0 signifies the influence of the random shocks and (B2(t))t≥0 is

another Brownian motion, correlating with (B1(t))t≥0 via

ρdt = dB1(t)dB2(t),
for t ∈ [0,∞[, where −1 ≤ ρ ≤ 1. This setup appears reasonable and sufficient at first glance but

unfortunately it can not guarantee positivity of (s(t)2)t≥0, which is of course a necessity for a variance

model.
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However, in 1993 Heston (1993) improved upon the BS framework by addressing the aforemen-

tioned issues, allowing the variance to be modeled by a separate SDE, namely the Cox, Ingersoll and

Ross (CIR) process as developed by Cox et al. (1985), via the SDE

ds(t)2 = (a − bs(t)2)dt + σ√s(t)2dB2(t),
for t ∈ [0,∞[, which allows for mean-reversion but also addresses the issue of negativity: Feller (1951)

has shown that as long as the so-called Feller condition

2a ≥ σ2 (1)

holds there exists a positive unique solution.

Since then, many researchers have been developing and generalizing this framework for volatility

modeling. Motivated by the limitation of not being able to recreate the term structure of the analyzed

asset, or interest rate, in question (cf. Hull and White (1990); Yang (2005); Keller-Ressel and Steiner

(2008)), the extended CIR equation was introduced in Maghsoodi (1996) allowing time dependency

for all parameters. In order to model potential long memory effects in volatility which were observed

by some researchers (cf. Baillie et al. (1996); Bollerslev and Mikkelsen (1996)), Comte and Renault

(1998) implemented a fractional Brownian motion as the driving process. This setup was adapted

by Comte et al. (2012) who proposed a fractional Heston model to explain the mystery of the steep-

ness present in volatility smiles of long term options. Schlüchtermann and Yang (2016) permitted

a dynamic term of the form σxq , where q ≥ 0, in the fractional setup and showed the existence

of a positive solution of these so called generalized fractional CLKS-type equations by imposing a

Feller-like condition on the coefficients, for pathwise forward integrals as well as for integrals in the

Wick sense. Fink and Schlüchtermann (2018) expanded the fractional CIR equation even further

to the Mandelbrot-Van Ness fractional Lévy process-driven case with time-dependent coefficients.

Yet another modification is the implementation of a Hurst index of H < 1
2
. The resulting so called

rough Heston models give a good mixture of a decent fit to historical data and implied volatility

without touching upon the curse of dimensions (cf. Gatheral et al. (2018); El Euch et al. (2018);

Jaber and Euch (2019); El Euch and Rosenbaum (2019); Bayer et al. (2019)).

The task of modeling prices for two or more assets on the other hand poses additional challenges.

Taking covariances into account necessitates a joint model. A promising candidate is given by Wishart
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autoregression processes, which were introduced in Bru (1991). Since Wishart processes do not need

additional constraints to ensure positive definiteness almost surely (cf. Gouriéroux (2006)), they are

suited especially well for the role of a matrix-valued CIR process.

Nevertheless, with an increasing number of assets the complexity of volatility models adequately

describing these systems increases rapidly, demanding the usage of more variables and therefore the

curse of dimension (cf. Gourieroux and Sufana (2010)) threatens a feasible application.

Some matrix ensembles such as the GUE (Gaussian unitary ensemble) and the Wishart ran-

dom matrices (these are of the form 1
N
XX∗, where X is N ×M random matrix with independent

Gaussian entries and X∗ denotes its adjoint) behave like so-called free random variables in (eigen-

value) distribution, when their size gets very large, which is referred to as ”asymptotic freeness” (cf.

Mingo and Speicher (2017)). The limiting eigenvalue distribution of the former is given by the semi-

circular distribution and for the latter by the Marchenko-Pastur distribution (also known as ”free

Poisson distribution”).

Since these matrix ensembles behave like free random variables in high dimensions we may em-

ploy the tools of free probability theory, which allow for concepts like convolution and a pendant to

the central-limit theorem (cf. Nourdin and Taqqu (2014)) to adequately work with random matrices

and operators in the probabilistic context. Free probability, developed by Dan Voiculescu (around

1986 while trying to solve an isomorphism problem about free groups (cf. ”Background and outlook”

in Voiculescu et al. (2016)), is a fitting framework to analyse the distribution of non-commutative

random objects in the desired generality. It can be considered as a non-commutative analogue to

classical probability theory together with the notion of freeness that allows the computation of the

joint distribution of non-commutative random variables. In the context of random matrices this

distribution can be understood as the spectral distribution. In particular, portfolio theory benefits

immensely from properties of free random variables, since it allows for cleaning of empirical correla-

tion matrices, which basically are Wishart matrices, to derive the distribution of a ”true” noise-free

correlation matrix via so-called ”free deconvolution” (cf. Ryan and Debbah (2007); Ryan (2008);

Bouchaud and Potters (2009)). Since free probability is a fitting framework for dealing with high-

or even infinite-dimensional random-matrices we can employ this setting to adequately describe a

volatility-model for high-dimensional portfolios, namely via a potential free CIR model. This idea

necessitates a free stochastic calculus.

Free stochastic calculus first appeared in Speicher (1990). This theory was further developed by
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Kümmerer and Speicher (1992), Biane (1997) and Biane and Speicher (1998), where among other

ground laying definitions the notion of free stochastic processes and a free Brownian motion were

introduced. For an in-depth study of the free Itô integral, we refer to Anshelevich (2002). This

framework allows for defining the notion of free SDEs. In particular free stochastic processes form

a vivid research area (cf. Biane (1998); Biane and Speicher (2001); Barndorff-Nielsen et al. (2002);

Fan (2006); Gao (2006); Gao et al. (2008); An and Gao (2015)).

Some processes, such as the item of interest of this paper, the CIR process, arise naturally as

the solution of SDEs. A special class of free SDEs are studied in depth in Kargin (2011), where the

author provided proofs for existence and uniqueness of a local solution of free SDEs of the form

dX(t) = a(X(t))dt + m∑
k=1 bk(X(t))dW (t)ck(X(t)),

for t ∈ [0,∞[, where (W (t))t≥0 is a free Brownian motion and a, bk, ck are locally operator Lipschitz

functions. To recall: We call a function f ∶ R → C locally operator Lipschitz, if it is locally bounded,

measurable and we also have that for all C > 0, there is a constant K(C) > 0, with the property that

∥f(X) − f(Y )∥ ≤ K(C)∥X − Y ∥, provided that X and Y both are self-adjoint operators such that

∥X∥, ∥Y ∥ < C, with ∥⋅∥ denoting the operator norm. Unfortunately due to the fact that the coefficient

functions do not fulfill the necessary locally operator Lipschitz condition, the local existence theorem

does not imply the existence of a solution to the classical free CIR equation of the form

dX(t) = (a − bX(t))dt + σ√X(t)dW (t), X(0) =X0 ∈ A+,
for t ∈ [0,∞[ and a,b,σ ∈ A+. We denote by A+ the self-adjoint elements of the von Neumann algebra

A with a strictly positive spectrum. Those are representable by the square of a self-adjoint operator

which gives meaning to the expression
√
A. Therefore a solution to this equation needs to be bounded

below by zero (in the sense of having a positive spectrum), just as in the scalar-valued case. We

introduce and show the existence of the free CIR equation and derive an equivalent condition to the

classical Feller condition. Note that for possibly time-dependent operators a(t), b(t), σ(t)2 the Feller

condition is to be understood in the sense of 2a(t) − σ(t)2 having a non-negative spectrum. When

refering to the Feller condition (1) in the context of operators that is how it is meant to be interpreted.

This paper is structured as follows: In Section 2 we cover the necessary basics of free probability

theory. Section 3 proves our main theorems on the existence and uniqueness of positive solutions for
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the free CIR setup.

2 Free Probability and Free Stochastic Calculus

In the following we give a short introduction to the theory of free probability and free SDEs. For the

theory of operator theory and in particular von Neumann algebras we refer the reader to the multivol-

ume works ”Theory of operator algebras” by Takesaki (cf. Takesaki (2002); Takesaki (2013); Takesaki

(2003)) and Murphy (2014). For an introduction to free probability we refer to Voiculescu et al.

(1992), Nica and Speicher (2006), Voiculescu et al. (2016) and Mingo and Speicher (2017). In the

following we will draw heavily on Biane and Speicher (1998) and Kargin (2011).

2.1 Definition. Let A be a type I von Neumann algebra and ϕ a faithful, normal and unital trace

on A. We call the tupel (A, ϕ) a non-commutative probability space and the self-adjoint elements of

X ∈ A are called (free) random variables. In this paper we only consider self-adjoint random variables.

The trace ϕ induces the p-norms ∥⋅∥p by

∥X∥p = ϕ (∣X ∣p) 1
p , 1 ≤ p ≤ ∞,

where ∥⋅∥ ∶= ∥⋅∥∞ is the operator norm. For more information on non-commutative integration see e.g.

Fack and Kosaki (1986) and Terp (1981).

We proceed by defining the notion of free independence or freeness, as introduced by Voiculescu.

2.2 Definition. Let A1, . . . ,An be subalgebras of A. We call A1, . . . ,An free if

ϕ (Ai(1) . . . Ai(m)) = 0
whenever

ϕ (Ai(s)) = 0 and i(s + 1) ≠ i(s) for each s.

We call random variables free if the algebras they generate are free.

In order to introduce free SDEs, a ”free” notion of Brownian motion is necessary.

2.3 Definition. A free Brownian motion is a stochastic process (W (t))t≥0 of elements in a von

Neumann algebra with the the three properties: W (0) = 0, the increments W (t) −W (s) are free from
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Ws = ⟨W (τ) ∣ τ ≤ s⟩ for t > s, and W (t) −W (s) follows a semicircular distribution with expectation

ϕ (W (t) −W (s)) = 0 and variance ϕ((W (t) −W (s))2) = t − s.
We proceed by introducing an integral of the form

I = ∫ T

0
a (X(s))dW (s)b (X(s)) ,

where a (X(s)) and b (X(s)) are operator-valued functions of X(s) and T > 0. Certain properties on

a resp. b will be specified later. For a detailed construction of this free stochastic integral, we refer to

Anshelevich (2002) or Biane and Speicher (1998). We will describe the general construction shortly

as it is done in Kargin (2011).

Given an interval [0,T ] and s ∈ [0,T ], we let as,bs ∈ Ws and assume that s ↦ as and s ↦ bs are

continuous maps w.r.t. to ∥⋅∥. Consider further s0, . . . ,sn,τ1, . . . ,τn ∈ R with 0 = s0 ≤ s1 ≤ ⋅ ⋅ ⋅ ≤ sn = T
and 0 ≤ τk ≤ sk−1. We denote the collection of all si and τj by ∆ ∶= {si,τj ∣ 0 ≤ i ≤ n , 1 ≤ j ≤ n}.
Consider the expression

I (∆) = n∑
i=1aτi (W (si) −W (si−1)) bτi .

For d (∆) =max1≤k≤n(sk − τk) we get that

lim
d(∆)→0

I (∆) = I,
where the limit is meant w.r.t. ∥⋅∥ and is independent of the choice of si and τi. I is called the ”free

stochastic integral”. The convergence relies heavily on the so called free Burkholder-Gundy inequality

(see (Biane and Speicher, 1998, Theorem 3.2.1)). In the following lemma we state the free analogues

of the Itô formula in an abbreviated form as we will use later on. For a detailed discussion we refer

to Biane and Speicher (1998).

2.4 Lemma (Free Itô). Let at, bt, ct, dt be operator-valued functions and (W (t))t≥0 as above. Then

atdt ⋅ btdt = atdt ⋅ btdW (t)ct = atdW (t)bt ⋅ ctdt = 0
atdW (t)bt ⋅ ctdW (t)dt = ϕ (btct)atdtdt

From here on we will restrict ourselves to coefficients that do not depend on time explicitly (as it

is done in the local existence results in Kargin (2011) as well) and will denote them by e.g. a(X(t)).
7



3 Free CIR equations

As mentioned in the introduction it is known in the (commutative) scalar-valued case that the Feller

condition (1) ensures for the CIR equation

dx(t) = (a − bx(t))dt + σ√x(t)dB(t), x(0) = x0 > 0,
for t ∈ [0,∞[, and a,b,σ > 0 a global positive solution, where (B(t))t≥0 is a (classical) Brownian motion.

Therefore it is natural to ask, if the above Feller condition guarantees global existence of a positive

solution for a free SDE

dX(t) = (a − bX(t))dt + σ√X(t)dW (t), X(0) =X0 ∈ A+, (2)

for t ∈ [0,∞[, and a,b,σ ∈ A+, where (W (t))t≥0 is a free Brownian motion. From here on we will refer

to the (classical) Brownian motion by (B(t))t≥0 and to the free Brownian motion by (W (t))t≥0.
Due to the non-commutativity of X(t) the free SDE, which we call (non-classical) free CIR

equation,

dX(t) = (a − bX(t))dt + σ

2

√
X(t)dW (t) + σ

2
dW (t)√X(t), X(0) =X0 ∈ A+, (3)

for t ∈ [0,∞[, and a,b,σ ∈ A+, may differ from the classical free CIR equation (2). But, since all

elements involved are self-adjoint, an easy argument shows that the traces of the solutions to (2) and

(3) coincide and therefore it is enough to show the existence of the solution to the latter.

We start showing existence and uniqueness of these free SDEs by introducing a SDE with a simple

additive Brownian motion term of the form

dV (t) = (a − σ2

2
) 1
2
V −1(t) − 1

2
bV (t)dt + σ

2
dB(t), V (0) = V0 > 0,

for t ∈ [0,∞[, and a,b,σ > 0, which we will refer to as square-root process (the reason for that will

become clear later), and by step by step transforming it into a free SDE (driven by a free Brownian

motion). Since the existence of a positive solution to a scalar-valued SDE of the form above and

the classical CIR equation are equivalent by the classical Itô lemma we know that such an equation
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has a positive solution as long as the Feller condition is satisfied. We will transform this connection

first into the setting of (commutative) function spaces (see Theorem 3.3), followed up by the general

(non-commutative) von Neumann algebra-valued case (see Theorem 3.5). Note that the driving

process is still a classical Brownian motion. The final and most elaborate part (Theorem 3.9) consists

of changing the driving process to a free Brownian motion. We will do this by showing that the

solutions to the von Neumann algebra-valued SDE driven by a classical and the one driven by a free

Brownian motion are L2-isometric for t ≥ 0. Finally the free Itô lemma gives us the existence of a

global solution to our free CIR equation (under Feller).

Given a positive V0 we can select a special probability space to transfer the SDE into a usual vector-

valued SDE. Using functional calculus resp. the spectral theorem we have an isometric homomorphism

T ∶ B(σ(V0)) Ð→ ⟨V0, id⟩ ,
where ⟨V0,id⟩ is the von Neumann algebra generated by V0 (and the identity) and B(σ(V0)) is the

function space of bounded, measurable functions on σ(V0), the spectrum of V0. If ϕ is a unital, faithful

trace, then consider EPϕ = T ∗(ϕ) with the identity

EPϕ(g) = ∫
σ(V0) gdPϕ = ϕ(T (g)) for all g ∈ B(σ(V0)).

Next, for dealing with operator-valued coefficients, we introduce the (free) conditional expectation

EB by the following lemma.

3.1 Lemma. Let B ⊂ A be a von Neumann subalgebra. Then there exists a conditional expectation

EB ∶ A Ð→ B
s.t.

ϕ(ab) = ϕ(EB(a)b) for all a ∈ A, b ∈ B.
(cf. Biane and Speicher (2001))

We fix a filtered probability space (Ω,F ,(Ft)t≥0,P) and start with a vector-valued version for the

existence of a local solution of a classical SDE. For this let (B(t))t≥0 be a classical Brownian motion

on (Ω,F ,(Ft)t≥0,P). First, we state a result which seems folklore, but is not cited explicitly.
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3.2 Theorem. Let E be a Banach space. Let a and bi for i = 1, . . . ,m be continuous and locally

Lipschitz. For V0 ∈ E there exists a T > 0 and a unique continuous solution V ∶ [0,T [→ E, such that

V (0) = V0, V ∈ C([0,T [,E) and for all t ∈ [0,T [
V (t) = V0 + ∫ t

0
a(V (s))ds + m∑

i=1∫
t

0
bi(V (s))dB(s).

Proof. The proof follows a standard argument via Picard approximations and the Banach fixed-point

theorem. Applying the Hahn-Banach theorem we use a x∗ ∈ X∗ in the dual of X to transform

our approximations into the real setting in order to make use of the (classical) Burkholder-Gundy

inequality. The details are analogous to the proof of (Kargin, 2011, Theorem 3.1.).

Having established the existence of a local solution we will show that the classical Feller condition

ensures a positive solution in the case of the commutative von Neumann algebra C(K) of continuous

functions of a compact Hausdorff space K. We further denote the positive cone by

C(K)+ = {f ∈ C(K) ∣ f(u) > 0, for all u ∈K}.
We note that using the Itô formula, under the Feller condition the square-root process V (t) enjoys

a global solution provided the initial condition is positive. We state a vector-valued extension.

3.3 Theorem. Let K ⊂]0,∞[ be compact. Let a,b,σ ∶ [0,∞[→ C(K)+ be continuous, such that (1)

holds and let V̂0 ∈ C(K)+. Then the SDE

dV̂ (t) = ((a(t) − σ2(t)
2
) 1
2
V̂ −1(t) − b(t)

2
V̂ (t))dt + σ(t)

2
1KdB(t), V̂ (0) = V̂0,

for t ∈ [0,∞[, has a global solution V ∈ C([0,∞[,L2(Pϕ,C(K)+)).
Proof. Consider a classical Brownian motion (B(t))t≥0 on the probability space (Ω,F ,Pϕ). Then using

point mass measures δk for k ∈K and the classical Feller condition prove the global existence of

dV̂k(t) = (ak(t) − σk(t)2
2
) 1
2
V̂ −1k (t) − 1

2
bk(t)V̂k(t)dt + σk(t)

2
dB(t), V̂k(0) = V̂0,k > 0,

for t ∈ [0,∞[.
Using a countable dense subset K̃ ⊂K and the point mass functional we show that the paths keep

positive except at a P-zero set N ∶= ⋃k∈K̃ Nk. So for all ω ∈ Ω ∖N the paths stay positive on [0,∞[
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for all k.

3.4 Corollary. Let K,a,b,σ be given as in Theorem 3.3. Then the generalized CIR equation

dX(t) = (a(t) − b(t)X(t))dt + σ(t)√X(t)dB(t), X(0) =X0 ∈ C(K)+,
for t ∈ [0,∞[, has a global solution.

Proof. The proof is immediate by Itô’s lemma.

The next step is to transform the square-root process into the setting of a non-commutative von

Neumann algebra A but still with a classical Brownian motion as driving process.

3.5 Theorem. Let V0 ∈ A+ and let a,σ,b ∶ [0,∞[→ ⟨V0,id⟩+ such that (1) holds for all t ∈ [0,∞[. Then

the SDE

dV (t) = ((a(t) − σ2(t)
2
) 1
2
V
−1(t) − b(t)

2
V (t))dt + σ(t)

2
dB(t), V (0) = V0, (4)

for t ∈ [0,∞[, has a global solution in V ∈ C([0,∞[, L2(Pϕ,A+)). Note that id is the unit in the

corresponding von Neumann algebra.

Proof. Let V̂ (t) be a global solution in C(K)+ by Theorem 3.3. By the functional calculus we see

that T (V̂ (t)) is a positive solution to (4) under the Feller condition, where T ∶ C(K) Ð→ ⟨V0,id⟩ is the

functional calculus mapping for the self-adjoint element V0. In particular we have that V (t) ∈ ⟨V0,id⟩+
for all t ∈ [0,∞[.

Using the Itô calculus we get:

3.6 Corollary. Let a(t),b(t),σ(t) be given as in Theorem 3.5. Then the generalized CIR equation

dX(t) = (a(t) − b(t)X(t))dt + σ(t)√X(t)dB(t), X(0) =X0 ∈ A+,
for t ∈ [0,∞[, has a global solution X ∈ C([0,∞[,L2(Pϕ,A+)).

In the above Theorem 3.5 we restricted the coefficient functions to the von Neumann subalgebra

⟨V0,id⟩+ . We now follow up with our main Theorem 3.9 where we show the existence of our solution
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in the case of a free Brownian motion. For this setting we can allow a ∶ [0,∞[→ A+ but will have to

restrict b this time to the case of a scalar b > 0.
3.7 Remark. 1. The last step we need for the existence of a positive solution in the context of

free probability, is to change the driving process in the general von Neumann algebra-valued

SDE from a classical Brownian motion to a free Brownian motion. Having established that

the corresponding SDE driven by a classical Brownian motion stays positive under Feller by

Theorem 3.5 we will show that both solutions (the classical and the free Brownian motion case)

are L2-isometric for all t ∈ [0,T ], a common existence interval of both solutions. Finally we will

prove, using the upcoming proposition, that V (T ), the solution to the free equation evaluated

at T, is invertible and therefore the free SDE has a global positive solution as well.

2. For a more convenient notation we may write ϕ instead of EPϕ in the sequel for the process

(V (t))t≥0. No confusion will arise at any point.

3. For Lipschitz-continuous and A-valued functions a,b,c we call a process

V (t) = V0 + ∫ t

0
a(V (s))ds + ∫ t

0
b(V (s))dW (s)c(V (s)),

for t ∈ [0,T [, a free Itô process. The existence is guaranteed by the main result due to Kargin

(2011).

Before stating the main result on the existence of a global solution, we formulate a result, which

may be of independent interest.

3.8 Proposition. Let T > 0 and let V ∈ C([0,T [,A) ∩ C([0,T ], L2(ϕ)) be a free Itô process and let

V ∈ C([0,T ],L2(Pϕ,A)) be a vector-valued Itô processes. Suppose for all t ∈ [0,T [ and all orthogonal

projections p free of V (t) that we have

∥pV (t)2p∥1 = ∥pV (t)2p∥1. (5)

1. If V (t) ∈ A and V (T ) ∈ L2(ϕ) then V (T ) ∈ A.

2. If V (t) is invertible for all t ∈ [0,T ], V (t) is invertible for all t ∈ [0,T [ and V (T ) ∈ A, then

V (T ) ∈ A is also invertible.
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Proof. 1. We suppose that V (T ) /∈ A. Then, since V (T ) ∈ L2(ϕ), we find a sequence of projections

(pn), such that
1

ϕ(pn)∥pnV (T )2pn∥1 ≥ n.
Since V ∈ C([0,T ],L2(Pϕ,A)), we find a T̃ < T such that

∥V (T )2 − V (T̃ )2∥1 < 1.
Since V (T ) ∈ A, we get

1

ϕ(pn)∥pnV (T )2pn∥1 ≤ ∥V (T )2∥ < ∞.

Since V (T ) = V (T̃ ) + (V (T ) − V (T̃ )), the element V (T ) is generated by the projections in

the von Neumann algebras AT̃ and AT , which are generated by {W (t) ∣ t ≤ T̃} ∪ {V0,id} and

V (T ) − V (T̃ ), respectively. Therefore AT̃ and AT are free. Consider two cases:

a) pn ∈ AT̃ for infinitely many n ∈ N. (For simplicity we assume for all n ∈ N). In this case

we consider a new starting value V (T̃ ) instead of V0 and instead of the interval [0,T ]
the interval [T̃ ,T ]. Then for all n ∈ N the projection pn is free of increments of the free

Brownian motion W (t) −W (s) for T̃ ≤ s < t ≤ T and the proof runs as in the case that all

pn ∈ ⟨V0,id⟩+ .
b) Only for finitely many n ∈ N we have pn ∈ AT̃ . Then we choose the infinitely many pn ∈ AT ,

for simplicity all n ∈ N. Here, all those pn are free of AT̃ and thus again we have that

W (t) −W (s) for 0 ≤ s < t ≤ T̃ are free of pn.

In both cases we get by (5)

ϕ(pnV (t)2pn) = ϕ(pnV (t)2pn) for t ∈ [0,T̃ ]. (6)
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Consequently, for both cases it holds that

∞ > ∥V (T )2∥ ≥ 1

ϕ(pn)∥pnV (T )2pn∥1
= 1

ϕ(pn)∥pn(V (T̃ )2 + (V (T )2 − V (T̃ )2))pn∥1≥(6) ∣ 1

ϕ(pn)∥pnV (T̃ )2pn∥1 − 1

ϕ(pn)∥pn(V (T )2 − V (T̃ )2)pn∥1∣> n − 1,
by the isometry (5). This is a contradiction.

2. Suppose V (T ) and hence V (T )2 is not invertible. We find a sequence of projections (pn) in the

von Neumann algebra generated by the self-adjoint element V (T ) such hat

αn = 1

ϕ(pn)∥pnV (T )2pn∥1 Ð→ 0, n→∞. (7)

We know that V (T ) is invertible and therefore we get by the properties of pn that

0 < 1∥(V (T )2)−1∥ ≤ 1

ϕ(pn)∥pnV (T )2pn∥1.

Since both processes are continuous mappings

V ,V ∶ [0,T ] Ð→ A,
i.e. V ,V ∈ C([0,T ],A), we can find a T̃ ∈]0,T [, s.t.

∣ 1∥(V (T )2)−1∥ − 1∥(V (T̃ )2)−1∥ ∣ < 1

4∥(V (T )2)−1∥
and

∥V (T )2 − V (T̃ )2∥ < 1

4∥(V (T )2)−1∥ .
Thus, for all n ∈ N ∶

βn = 1

ϕ(pn)∥pn(V (T )2 − V (T̃ )2)pn∥1 ≤ 1

ϕ(pn)ϕ(pn)∥V (T )2 − V (T̃ )2∥ < 1

4∥(V (T )2)−1∥ .

14



Again, since V (T ) = V (T̃ ) + (V (T )−V (T̃ )), we consider as in the proof to 1. two cases for the

projections (pn) and conclude by (5) that

ϕ(pnV (t)2pn) = ϕ(pnV (t)2pn) for t ∈ [0,T̃ ]. (8)

Consequently, it holds that

1

ϕ(pn)∥pnV (T )2pn∥1 = 1

ϕ(pn)∥pn(V (T̃ )2 + (V (T )2 − V (T̃ )2))pn∥1≥(8) ∣ 1

ϕ(pn)∥pnV (T̃)2pn∥1 − 1

ϕ(pn)∥pn(V (T )2 − V (T̃ )2)pn∥1∣
> 3

4∥(V (T )2)−1∥ − βn ≥ 1

2∥(V (T )2)−1∥ > 0.

This is a contradiction to the assumption (7) and hence V (T ) is invertible.

3.9 Theorem. Let V0 ∈ A+ be given. Let a ∶ [0,∞[→ A+, σ ∶ [0,∞[→ ⟨V0,id⟩+ and b > 0 a constant

such that (1) holds. Then the free SDE

dV (t) = ((a(t) − σ2(t)
2
) 1
2
V −1(t) − b

2
V (t))dt + σ(t)

2
dW (t), V (0) = V0, (9)

for t ∈ [0,∞[, has a global solution V ∈ C([0,∞[,A+).
Proof. 1. In the first step we choose a maximal interval [0,T [, where a solution of the equation

dV (t) = ((a(t) − σ2(t)
2
) 1
2
V −1(t) − b

2
V (t))dt + σ(t)

2
dW (t), V (0) = V0,

for t ∈ [0,T [, exists according to Kargin (2011). By Theorem 3.5 we know that the solution for

dV (t) = ((a(t) − σ2(t)
2
) 1
2
V
−1(t) − b

2
V (t))dt + σ(t)

2
dB(t), V (0) = V0,
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for t ∈ [0,∞[, exists globally. First we prove the following three isometries.

∥V (t)∥2 = ∥V (t)∥2 for t ∈ [0,T ] (10)

∥pV (t)2p∥1 = ∥pV (t)2p∥1 for t ∈ [0,T ] and p ∈ ⟨V0,id⟩+
∥pV (t)2p∥1 = ∥pV (t)2p∥1 for t ∈ [0,T ] and p free of V (t)

The third isometry directly follows from the first by freeness.

We approximate the solutions on [t0, T [ and thus, select a partition Z of the interval [t0,T ] namely

0 = t0 < t1 < ⋅ ⋅ ⋅ < tn = T. We will omit the variable ”t” in the expression of a and σ. The proof for the

isometry

∥V (t)∥2 = ∥V (t)∥2 for t ∈ [0,T ]
is basically a complete induction. We will show it for [t0, t1] and then the induction step from [t0, t1]
to [t1,t2] to illustrate the procedure. We start with the interval [t0,t1[. For t ∈ [t0,t1[ we have

V Z(t) = V0 + ∫ t

t0
((a − σ2

2
) 1
2
V
−1Z (s) − b

2
V Z(s))ds

and

VZ(t) = V0 + ∫ t

t0
((a − σ2

2
) 1
2
V −1Z (s) − b

2
VZ(s))ds.

Thus we have by an easy approximation by step functions that V Z(t), VZ(t) ∈ ⟨V0,id⟩+ and

ϕ(VZ(t)2) = ϕ(V Z(t)2).
By adding the classical Brownian motion term σ

2
B(t1) and the free Brownian motion term σ

2
W (t1),

respectively we define

V Z(t1) = V Z(t1−) + σ

2
B(t1)

VZ(t1) = VZ(t1−) + σ

2
W (t1),

where the first one is just a discretization of the global solution of Theorem 3.5 (which serves as our

”reference solution”) evaluated at t1 and VZ(t1−) and V Z(t1−), respectively is the local solution for

t ∈ [t0, t1[. Since σ ∈ ⟨V0,id⟩+ is free of W (t1) and ϕ(W (t1)) = 0, we conclude with (Kargin, 2011,
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p. 829) that

ϕ(σ
2
B(t1)σ

2
B(t1)) = ϕ(W (t1)σ

2
W (t1)σ

2
) = 1

4
ϕ(σ)2t1

and see by the independence, resp. the freeness that

ϕ(V Z(t1)2) = ϕ(VZ(t1)2).
On [t1, t2[ we again consider approximations of our solutions starting in V Z(t1) and VZ(t1), (not

equal but L2-isometric) respectively:

V Z(t) = V Z(t1) + ∫ t

t1
((a − σ2

2
) 1
2
V
−1Z (s) − b

2
V Z(s))ds

V Z(t) = VZ(t1) + ∫ t

t1
((a − σ2

2
) 1
2
V −1Z (s) − b

2
VZ(s))ds

Defining X(t) ∶= V Z(t)2, resp. X(t) ∶= VZ(t)2 and applying the trace we get a general ordinary

differential equation (ODE) of the form
dy
dt
= α − by

with α = ϕ(a − σ2

2
) and y ∈ {ϕ(X(t)), ϕ(X(t))} with the initial value

y(t1) = ϕ(X(t1)) = ϕ(X(t1)).
Since this ODE has a unique solution we get

∥V Z(t)∥22 = ϕ(X(t)) = ϕ(X(t)) = ∥VZ(t)∥22 for t ∈ [t1,t2[.
Again we add the classical Brownian motion term σ

2
(B(t2) −B(t1)) and the free Brownian motion

term σ
2
(W (t2) −W (t1)), respectively and get

V Z(t2) = V Z(t2−) + σ

2
(B(t2) −B(t1))

VZ(t2) = VZ(t2−) + σ

2
(W (t2) −W (t1)).
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As before by the independence, resp. freeness we conclude

ϕ(V Z(t2)2) = ϕ(VZ(t2)2).
We may extend V Z , resp. VZ beyond the interval [0,t2[. In the same respect as above we have for

both processes extensions on [0,tn[ such that

ϕ(V Z(t)2) = ϕ(VZ(t)2) for all t ∈ [0,tn[.
Since these isometries hold by the continuity of the solutions for all partitions of [0,T ], we see that

VZ converges for ∣Z∣ → 0, i.e. if the length of the partition converges to 0:

ϕ(V (t)2) = lim∣Z∣→0
ϕ(V Z(t)2) = lim∣Z∣→0

ϕ(VZ(t)2) = ϕ(V (t)2) for all t ∈ [0,T [.
We proceed by showing the second isometry of (10) and therefore introduce the equation

pV p(t) = pV0p + ∫ t

0
(p(a − σ2

2
)p1

2
(pV p)(s)−1 − p b

2
pV p(s))ds

+ ∫ t

0
p
σ

2
p dW (s)p, pV p(0) = pV0p ∈ pA+p,

with a ∈ A+, σ ∈ ⟨V0,id⟩+ and b > 0, all strictly positive, in pAp. Since p ∈ ⟨V0,id⟩+ by assumption, we

have pbp, pσp ∈ ⟨pV0p, id⟩+ and the proof for the L2-isometry above can be mimicked. For this we

consider d(pV p(t))2 = 2pV p(t) d(pV p(t)) to get a similar general ODE to the case above.

2. According to Kargin (2011), we know that the process V (t) exists for t < T . The reference

process V (t) exists globally with values in A. Because of the isometry we can define

V (T ) = L2 − lim
t→T

V (t) = V0 + ∫ T

0
(1
2
(a − σ2

2
)V −1(t) − bV (t))dt + σ

2
W (T ).

Using Proposition 3.8 (1.) we can deduce that V (T ) ∈ A.

3. Step 2 told us that V (T ) ∈ A. We want to extend the (unique) solution V (t) beyond T . To

apply the basic result in Kargin (2011), we need the invertibility of V (T ). This would allow us an

extension and the solution is global. Again by Proposition 3.8 (2.), we see that V (T ) is invertible.

Therefore the solution to (9) is global.
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Having established the existence of a global solution to the square-root process we now apply the

free Itô formula and get the global solution to the free CIR equation.

Let X(t) = V (t)2. Then according to the free Itô formula:

dX(t) = (V (t) + dV (t))2 − (V (t))2 = (dV (t))2 + dV (t)V (t) + V (t)dV (t)
= (2(a − σ2

2

2V (t) − b

2
V (t))V (t) + σ2

2
)dt + σ

2
V (t)dW (t) + σ

2
dW (t)V (t)

= (a − bV 2(t))dt + σ

2
V (t)dW (t) + σ

2
dW (t)V (t)

= (a − bX(t))dt + σ

2

√
X(t)dW (t) + σ

2
dW (t)√X(t),

for t ∈ [0,∞[. Thus, we state

3.10 Theorem. Let a,b,σ such that (1) and the assumptions made in (3.9) hold. Then the free SDE

dX(t) = (a − bX(t))dt + σ

2

√
X(t)dW (t) + σ

2
dW (t)√X(t), X(0) =X0 ∈ A+,

for t ∈ [0,∞[, has a global solution X ∈ C([0,∞[,A+).
3.11 Remark. As mentioned in the introduction the above theorem guarantees the existence of a

unique positive solution to the classical free CIR equation (2) as well and for a constant real-valued

σ the solutions even coincide.

4 Conclusion

We introduced the CIR equation to the world of free probability and made a contribution to the study

of free SDEs. Initially developed as a tool for solving operator-theoretic problems free probability

theory has been evolving into its own field of research inviting researchers from various disciplines

such as finance, physics and signal processing to profit from and contribute to. As motivated in the

introduction the connection between random matrix ensembles and their free operator-valued limit

arouses the interest of many researchers by its attractive properties. Having introduced the free CIR

equation(s) in this paper we paved the way for future applications to exploit this connection known

as asymptotic freeness to process our setting for utilization in the real world. In particular the recent

developments in big data and machine learning allow for the usage of very high-dimensional data as

e.g. very large random matrices, such as portfolios incorporating a huge number of assets. We hope
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that this paper will be used for portfolio optimization when the number of assets makes classical

probabilistic approaches unfeasible.
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Abstract: A functional ARMA-GARCH model for predicting the value-at-risk of the EURUSD
exchange rate is introduced. The model implements the yield curve differentials between EUR and
the US as exogenous factors. Functional principal component analysis allows us to use the information
of basically the whole yield curve in a parsimonious way for exchange rate risk prediction. The data
analyzed in our empirical study consist of the EURUSD exchange rate and the EUR- and US-yield
curves from 15 August 2005–30 September 2016. As a benchmark, we take an ARMA-GARCH
and an ARMAX-GARCHX with the 2y-yield difference as the exogenous variable and compare the
forecasting performance via likelihood ratio tests. However, while our model performs better in one
situation, it does not seem to improve the performance in other setups compared to its competitors.

Keywords: value-at-risk; GARCH; yield curve; functional data; PCA

1. Introduction

Forecasting foreign exchange (FX) rates and especially risk inherent in such FX markets is of
crucial importance to companies and individuals of Wall Street as well as Main Street. In particular,
for portfolio managers, corporations and the like, managing FX risk is essential. Accordingly, a large
amount of research is available in this field.

The work in, e.g., Meese and Rogoff (1983) analyzed FX rate models developed in the 1970s and
came to the conclusion that these did not perform better than random walks, which exemplifies the
difficulty in modeling spot FX rates. Even the addition of macroeconomic variables like expected
inflation and interest rate differentials (among others) did not lead to significant improvements. Similar
findings have been reported by Campbell and Clarida (1987), Meese and Rogoff (1988), Coughlin
and Koedijk (1990), Edison and Pauls (1993), Chinn and Meese (1995) and Frankel and Rose (1995).
Having said that, others disagree with the findings of the previous authors; see for instance Bjørnland
and Hungnes (2006), Ang and Chen (2010), Chen and Tsang (2013) and Grisse and Nitschka (2015).

However, the above discussion might not be that surprising as it basically boils down to the
question whether one believes in the efficient market hypothesis of Fama (1970). Nevertheless,
forecasting volatility, which is of crucial importance to risk management, is another matter: e.g., Baillie
and Bollerslev (1991) proposed a seasonal GARCH setup to model intraday FX rate volatility. In their
findings, they experienced volatility to follow patterns that were very much alike over various hours of
the day and to show a notable amount of serial correlation. For volatility based on daily FX spot levels,
Vilasuso (2002) employed the fractionally-integrated GARCH by Baillie et al. (1996) and reported

Risks 2018, 6, 84; doi:10.3390/risks6030084 www.mdpi.com/journal/risks
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a significant improvement in out-of-sample performance with respect to mean squared and mean
absolute errors, as well as to accuracy, in comparison to the simpler GARCH or IGARCH models.

Moreover, the assumption of financial market log-returns being normally distributed has been
criticized for a long time. Therefore, Hull and White (1998) introduced a model to estimate value-at-risk
(VaR) that does not postulate a normal distribution, producing promising results. A similar approach
was also adopted by Mittnik and Paolella (2000) and Kuester et al. (2006). The latter were able to
identify a clear overall winner in their comparison of different VaR forecasting techniques, which turns
out to be a combination of a heavy-tailed GARCH filter and extreme value theory approach.

Another approach to improve FX volatility and risk forecasting performance is to invoke external
factors, as carried out by, e.g., Benavides and Capistràn (2012), who made use of implied volatility
information from option prices. In line with the above-mentioned discussion on macroeconomic
variables for spot models, several authors have incorporated yield curve information into FX risk
models, as well; cf. Dominguez (1998), Neely (1999), Markiewicz (2012), Kočenda and Poghosyan
(2009) and Ichiue and Koyama (2011). See furthermore Morana (2009), who analyzed the influence of
macroeconomics, among which were interest rates, on FX rate volatility. When it comes to explicitly
forecasting FX rate volatility employing macro variables, we mention the usage of neural networks as
investigated, e.g., by Dunis and Huang (2002), who compared their model to GARCH models and
reported superior results with their setup, in which they included yield curve data, among other inputs.
Furthermore, we have Bauwens and Sucarrat (2010), who employed, among other macro variables,
interest rates for exchange rate volatility forecasts.

For a more general analysis on the influence of macroeconomic factors on volatility forecasts,
we refer to Christiansen et al. (2012), who found, in particular, more evidence for an influence of
macro variables on FX rate volatility forecasts. Finally, the use of Euro deposit rates as a measure of
performance for forecasts of FX volatility was introduced in West et al. (1993).

However, to the best of our knowledge, no one has yet investigated if using the complete sovereign
yield curve differential (in contrast to just some specific maturities) does effectively improve VaR
forecasting. The idea of using such functional exogenous parts in a GARCHX setup for volatility
modeling has been introduced before by Fuest and Mittnik (2015). We extend this approach to an
ARMAX-GARCHX-type setup, which allows the exogenous yield curve differential to influence both
return and volatility.

In particular, we want to investigate the following for EURUSD as our lead example: Does the
complete yield curve differential have significant effects on daily FX returns predictions? Does it
improve VaR forecasts? Does the proposed mathematical machinery pay off when comparing it to
a standard ARMA-GARCH model and an ARMAX-GARCHX with the 2y-yield difference as the
exogenous variable? We will investigate these questions by the analysis of confidence intervals and by
the evaluation of likelihood ratio tests.

Dealing with functional data, we conclude this section with a short survey on functional
time series research. A comprehensive treatment of functional data analysis (FDA) is
Ramsay and Silverman (2005). Models for functional time series have been pioneered in the seminal
treatment of Bosq (2000), where a generalization of pure autoregressive models to the functional case
was developed. More recently, dimension reduction techniques (Hörmann and Kokoszka 2010) and
dynamic models based on such techniques (Aue et al. 2015; Hyndman and Shang 2009) have been
proposed and investigated. The work in Klepsch et al. (2017) proposed functional ARMA models and
Hörmann et al. (2013) a functional version of the ARCH model. Functional time series approaches
have very recently also been employed to model yield curve dynamics Kowal et al. (2017a, 2017b).
In our study, however, a scalar time series is of primary interest. The idea to map the full information
inherent in functional data to first- and, possibly, higher-order moments of the conditional distribution
of a scalar time series has been put forward in Fuest and Mittnik (2015) and Brockhaus et al. (2017).

The remainder of this paper is structured as follows: In Section 2, we will present the data used
for our analysis and discuss the construction of the EUR- and US-yield curve. Section 3 starts with
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a short introduction to functional principal component analysis, which is followed by presenting
the method of implementation used in this investigation, as shown in Ramsay and Silverman (2005).
Having described the background mathematics, we introduce our model and the estimation procedure
applied later. In Section 4, we present our estimation results and discuss the implications. Finally we
conduct one-day VaR forecasts and compare these to predictions coming from the competing models.

All calculations have been performed with MATLAB (R2014b, MathWorks, Natick, MA, USA)
using the financial econometrics toolbox by Sheppard (2013) and the functional data toolbox
by Ramsay (2014).

2. Data

In this section, we shall briefly present the data used in our analysis to come. In particular, the
present paper considers daily prices of the EURUSD exchange rate and daily levels of the EUR- and
US-yield curves. Our time period ranges from 15 August 2005–30 September 2016, which leaves us
with a total sample of n = 2905 observations. Figure 1 shows the daily log-returns for the FX series,
while Figure 2 visualizes the yield curve differential via the 2y-yields.

Figure 1. Log-returns of the EURUSD exchange rate from 16 August 2005–30 September 2016.

To be precise, we constructed the yield curve for Europe by using the EONIA (European overnight
index average) offered rate for a maturity of 0 and the overnight index swap (OIS) rates based on
EONIA with maturities of 1–12 months, 15 months, 18 months, 21 months and 2–10 years. The EONIA
for the shortest maturity and the OIS for longer maturities are representative choices for constructing
a Euro yield curve (cf. FBE (2008)), since overnight index swaps have established themselves as a
benchmark proxy for the risk-free rate. (cf. Hull and White (2012) and Filipović and Trolle (2013),
among others.)

For the US-yield curve, we used the federal funds rate for a maturity of 0 and yields obtained from
US government bonds with maturities of 1, 3 and 6 months and 1–5, 7 and 10 years. Figure 3 visualizes
the varying shape of the resulting curves. Finally, we converted the obtained discrete yield curves into
functional data by using cubic B-splines. In the remainder of this paper, the terms “sovereign rate
curve”, “rate curve” and “yield curve” will be used interchangeably.
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Figure 2. 2y-yield EURUSD differential from 15 August 2005–30 September 2016.

Figure 3. Yield curves for EUR (left) and the US (right). Parallels to the y-axis mark the maturities
from the dataset.

3. Theory and Methods

In this section, we show how all the information contained in the yield curve at a given point in
time can be mapped to the mean and variance parameters of the conditional distribution of exchange
rate returns. The core technique we need for this purpose is functional principal component analysis
(FPCA). We will sketch the theory and present the method of implementation that we used for our
data, the implementation via basis expansion. As we will show, the estimated eigenfunctions from
FPCA are also used to conveniently represent and estimate the functional parameters of our model.
We will heavily draw on Ramsay and Silverman (2005), as well as Hörmann and Kokoszka (2012).
For details on FPCA theory, we refer to the former and for a comprehensive treatment of functional
regression models to the latter.

3.1. Functional Principal Components

We consider a stochastic process (xt)t∈T . In order to simplify notation, we use lowercase letters
for the processes, as well as for the realizations. For an ordered finite index set T , we index our
observations as x1, . . . , x|T |.
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Now, consider the xt as elements of the Hilbert space L2([0, M]). The Hilbert space L2([0, M]) is
endowed with the inner product:

〈x, y〉 =
∫ M

0
x(s)y(s) ds, ∀x, y ∈ L2([0, M]),

so we have that xt is square integrable.
Our curve valued process xt exhibits a mean function, µ(s) = E(xt(s)), and a covariance operator,

C : L2([0, M]) −→ L2([0, M]), f 7→
∫ M

0
Cov(r, s) f (r) dr.

with covariance kernel Cov(r, s) = Covariance(xt(r), xt(s)).
Both mean function and covariance kernel are assumed to be constant over time t ∈ T .

Further note that for a z ∈ L2([0, M]), we have C(z) = E[〈x− µ, z〉 (x− µ)].
Our goal is to find orthonormal weight functions, γk ∈ L2([0, M]), maximizing the unconditional

variance of the scores ξk = 〈γk, xt − µ〉 =
∫ M

0 γk(s)(xt(s)− µ(s)) ds, i.e.,

Var(ξk) =
∫ M

0

∫ M

0
γk(r)Cov(r, s)γk(s) dr ds. (1)

The weight functions, γk, are subject to orthonormality constraints, i.e., to:

〈γk, γl〉 =
∫ M

0
γk(s)γl(s) ds =

{
1 if k = l

0 if k 6= l.
(2)

Then, the weight functions γk happen to be the eigenfunctions of the covariance operator C. C
is a bounded, symmetric, positive operator, and its eigenfunctions γk form an orthonormal basis of
L2([0, M]). The so-called Fredholm (integral) equations:

∫ M

0
Cov(r, s) f (s) ds = λk f (r) (3)

give us the γk, which are ordered ascendingly as their corresponding eigenvalues λ1 ≥ λ2 ≥ · · · ≥ 0.
Finally, these eigenfunctions maximize (1).

Further note that Cov(r, s) is a Mercer kernel. In particular, this means that it can be represented
in terms of the eigenvectors, γk, and the eigenvalues, λk, of the covariance operator C,

Cov(r, s) =
∞

∑
k=1

λkγk(r)γk(s).

Now, applying the theorem of Karhunen–Loève, we are able to represent the centered (yield)
curve process, xt − µ, via its eigenbasis (γk)k,

xt − µ =
∞

∑
k=1

ξk,tγk,

where the eigenfunctions, γk, are the eigenvectors of the linear operator C, and the scores, ξk,t, have
the properties:

E(ξk,t) = 0, Var(ξk,t) = E(ξ2
k,t) = λk and E(ξk,t · ξl,t) = 0 for k 6= l.

Recall that the eigenvalues, λk, are ordered in a non-decreasing order, so that the functional
principal components are sorted by their contribution to the variation of the xt’s.
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Let K be the smallest number necessary to explain a certain amount of the curves’ total variation,
then we can approximate our curve by:

xt ≈ µ +
K

∑
k=1

ξk,tγk.

Consider a yield curve xt : Maturities→ Yields, observed at time t. The above result means that
we can approximate the information inherent in the yield curve over the entire range of observed
maturities by a (possibly small) set of K scalar values. Note, however, that real-world observed yield
curve data are only available for certain maturities m, which are, in most cases, not even structured in
an equidistant way.1 As is common practice in functional data analysis, we use spline interpolation of
the observed yields to obtain equidistant maturities.

The resulting approximations of the yield curve can then be implemented and analyzed in
our functional principal component analysis. There are several possibilities of implementing FPCA,
of which we chose the method of “basis expansion” in our application, as is presented in Ramsay and
Silverman (2005), which we briefly describe in the following.

We start by expressing our data, given by a matrix:




x1(0) · · · · · · x1(M)
...

. . . . . .
...

...
. . . . . .

...
x|T |(0) · · · · · · x|T |(M)




,

in terms of a basis B in order to obtain a curve xt. Thus, for each t ∈ T , we can represent xt by:

xt(s) =
|B|
∑
k=1

ct,kψk(s),

which is equivalent to:




x1
...
...

x|T |




= C ·ψ =




c1,1 · · · · · · c1,|B|
...

. . . . . .
...

...
. . . . . .

...
c|T |,1 · · · · · · c|T |,|B|



·




ψ1
...
...

ψ|B|




,

where |B| denotes the number of basis functions of the chosen basis B.
We then have:

Cov(r, s) = |T |−1ψ(r)TCTCψ(s).

Now, define the symmetric matrix:

W =
∫ M

0
ψ(s)ψ(s)T ds =

(∫ M

0
ψi(s)ψj(s) ds

)

i,j
.

1 “Observed” yield curves are actually estimates obtained from observed bond prices. In the present paper, as in almost all of
the literature (see for example Diebold and Li (2006)), we treat the yield curve data as if they had been observed directly.
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We assume that the eigenfunctions γk are representable using the basis B in the form:

γk =
|B|
∑
l=1

αk,lψl = ψTαk,

where αk = (αk,1, . . . , αk,|B|). Now, we express the Fredholm Equation (3) in terms of our basis B by
considering the left-hand side of (3) with f = γk,

∫ M

0
Cov(r, s)γk(s) ds =

∫ M

0
|T |−1ψ(r)TCTCψ(s)ψ(s)Tαk ds = ψ(r)T|T |−1CTCWαk.

Employing the basis representation of γk, the Fredholm equations then form:

ψ(r)T|T |−1CTCWαk = λkψ(r)Tαk

and we obtain:
|T |−1CTCWαk = λkαk.

Considering the orthogonality correspondence:

〈γk, γl〉 = 0 ⇔ αk
TWαl = 0,

we note that for ‖γk‖ = 1, we have αk
TWαk = 1, resulting in the same correspondence from above for

normality. By defining uk := W1/2αk, we arrive at the symmetric eigenvalue problem:

|T |−1W1/2CTCW1/2uk = λkuk.

Solving this problem gives us the uk, and in turn, we get:

αk = W−1/2uk.

The scores ξk,t are then obtained by:

ξk,t = 〈xt −E(xt), αk〉 .

Next, we shortly discuss how the mean, eigenfunctions and the corresponding scores can be
estimated from data. As mentioned above, we observe values of the yield curves xt on a (possibly
non-equidistant) grid of maturities. By spline interpolation, we obtain a discrete version of xt on an
equidistant grid of maturities 0, . . . , M. Therefore, the realization of each xt is an M + 1-dimensional
vector. Using interpolation, the number J + 1 of grid points can be chosen arbitrarily, and one obtains
an equidistant grid of the form m0 = 0, m1 = M/J, m2 = 2M/J, . . . , mJ−1 = (J − 1)M/J, mJ = M.
The more complex the variation pattern of the curves, the higher J has to be chosen. For yield curves,
the variation pattern is typically rather simple and the curves rather smooth, so that a moderate
M should be reasonable. We found that a grid distance of one month is sufficient for our purpose,
resulting in the choice J = 120.

The estimates of the mean function and the covariance kernel are given by:

µ̂(mj) =
1
|T |

|T |
∑
t=1

xt(mj), mj ∈ [0, M]

and:
Ĉov =

1
|T |X

cT
Xc,
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where |T | is the number of observations (e.g., the number of observed yield curves xt),
xt = [xt(0), . . . , xt(M)]T, µ̂ = [µ̂(0), . . . , µ̂(M)]T and Xc = [x1 − µ̂, . . . , x|T | − µ̂]T.

In this framework, the eigenvalues λ̂k and eigenvectors γ̂k of Ĉov can be estimated using standard
software for PCA. By means of numerical integration, we get empirical scores:

ξ̂k,t =
∫ M

0
(xt(m)− µ̂(m))γ̂k(m)dm.

The covariance operator C itself can be estimated by:

Ĉ(z) = 1
|T |

|T |
∑
t=1
〈xt − µ̂, z〉 (xt − µ̂) for z ∈ L2([0, M]).

3.2. Econometric Model

We now define our model, which incorporates curve-valued information into a (scalar)
ARMA-GARCH framework.

Definition 1 (ARMA(1,1)FunX-logGARCH(1,1)FunX process). Let xt be drawn from a curve-valued
exogenous process. Then, rt follows an ARMA(1,1)FunX-logGARCH(1,1)FunX process if:

rt = α0 + αrt−1 + βεt−1 + εt +
∫ M

0
λ(m)xt−1 dm,

εt = σtet,

log σ2
t = ω + γlog ε2

t−1 + δ log σ2
t−1 +

∫ M

0
ρ(m)xt−1 dm,

with et ∼WN(0, 1).

In our case, we have:

• rt is the FX rate EURUSD
• zUS

t (·) is the sovereign rate curve for the US
• zEUR

t (·) is the sovereign rate curve for EUR.
• xt(·) = zEUR

t (·)− zUS
t (·)

Estimation is rendered feasible by expressing all functional elements of the model within
an ARMAX(1,1)-log-GARCHX(1,1) framework, where the X-part is given by the K-dimensional
approximations of functional observations and parameters. Concerning the resulting Gaussian QML
estimators, there is some asymptotic theory for the GARCHX (see Han (2015), Han and Kristensen
(2014)) and ARMAX models (see Hannan et al. (1980)). However, according to Sucarrat et al. (2016),
Francq et al. (2013) and Hansen et al. (2012), there is none for the log-GARCHX case.

Remark 1. The generalization of our setup to an ARMAX(A,B)-log-GARCHX(1,1) or even an
ARMAX(A,B)-log-GARCHX(C,D), allowing for an arbitrary number of lags, is straightforward. For the
sake of brevity and conciseness, we will nevertheless work with the ARMAX(1,1)-log-GARCHX(1,1) case in
this paper, since the novelty and core idea of our model lies within the exogenous part.

As introduced in Section 3.1, we can approximate our curve-valued process xt by its first K
principal components:

xt ≈ µ +
K

∑
k=1

ξk,tγk.
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As in Fuest and Mittnik (2015), it is convenient to assume the existence of some K < ∞ such that:

∫ M

0

∞

∑
k=K+1

γk(m)xt(m) dm = 0

⇔
∫ M

0

∞

∑
k=K+1

∞

∑
l=1

γk(m)γl(m)ξl,t dm = 0

⇔
∫ M

0

∞

∑
k=K+1

∞

∑
l=K+1

γk(m)γl(m)ξl,t dm = 0.

In other words, we assume that the number of principal components that actually have an effect
on the return (ARMA-part) or the variance (GARCH-part) is finite. As they are ordered by their
contribution to the curves’ variation, the leading K components are the ones that explain the variation
best. However, there might still be dependencies between the first K and the remaining components.
We (realistically) assume that these lead/lag effects of components K + 1, . . . on the first K components’
scores are negligible.

Estimation of the model can then be accomplished in three steps:

1. Estimation of the curved valued process xt via an orthonormal FPC expansion:

x̂t = µ̂ +
K

∑
k=1

ξ̂k,tγ̂k,

where the true values of K, µ and γk are unknown and the ξ̂k,t are obtained via numerical
integration (see Section 3.1).

2. Estimation of the ARMA-FunX parameters using the scores ξ̂k,t for k = 1, . . . , K and t = 1, . . . , |T |
from Step 1 and the return data by Gaussian QML.

3. Gaussian QML estimation of the GARCH-FunX parameters using the scores ξ̂l,t for l = 1, . . . , L,
t = 1, . . . , |T | from Step 1 and the estimated errors from Step 2.

rt = α0 + αrt−1 + βεt−1 + εt +
K

∑
k=1

bk ξ̂k,t−1,

εt = σtet,

log σ2
t = ω + γ log ε2

t−1 + δ log σ2
t−1 +

L

∑
l=1

cl ξ̂l,t−1,

where et ∼ WN(0, 1) and ξk,t is the score of the k-th principal component of the functional PC
representation of xt.

Remark 2. To ensure the stationarity of our process, we restrict our parameters as follows:

• |α + β| < 1
• |γ + δ| < 1

Additionally, we employ the following assumptions:

• We force past volatility to influence present volatility positively, so we choose γ > 0. (see Francq et al. (2013).)
• Past errors should positively influence present volatility, leading to the choice δ > 0.
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We estimate the ARMA(1,1)-FunX parameters by means of non-linear least squares using the
function armaxfilter from the MFE toolbox by Kevin Sheppard. The conditional working distribution
of the logarithmic GARCH(1,1)-FunX is given by:

εt|FY
t−1 ∼ N(0, exp (ω + γ log ε2

t−1 + δ log σ2
t−1 +

∫ M

0
ρ(m)xt−1(m) dm)),

where FY
t−1 denotes the information set consisting of past returns plus yield curve differences at t− 1.

The Gaussian quasi-log-likelihood is then given by:

l(ε, x; ω, γ, δ, ρ) = −1
2

|T |
∑
t=2

(
σ2

t +
ε2

t
σ2

t

)
,

where ε is the vector of estimated errors from the ARMA(1,1)-FunX estimation and x is the “matrix” of
yield curve differences.

Drawing the attention to the integrals in our model equations, we want to find finite
representations of these infinite-dimensional terms. Employing the results of Section 3.1, we are
able to estimate the integrals in our model equation, which are of the form2:

∫ M

0
λ(s)xt(s) ds. (4)

In order to do so, we consider the approximation of our process, xt, by means of the first K
components of the Karhunen–Loève representation,

xt(s) ≈ µ(s) +
K

∑
k=1

ξk,tγk(s),

where the true µ and the true γk are unknown. Furthermore, we assume that our weight function λ is
representable by the eigenfunctions γk, which means we can approximate λ by:

λ(s) ≈
K

∑
j=1

bjγj(s).

Then, we can approximate: (4) by

∫ M

0
λ(s)xt(s) ds ≈

∫ M

0

K

∑
j=1

bjγj(s)(µ(s) +
K

∑
k=1

ξk,tγk(s)) ds.

We obtain:

∑
k,j

ξk,tbj

∫ M

0
γk(s)γj(s) ds +

K

∑
j=1

bj

∫ M

0
µ(s)γj(s) ds.

Since the γk form an orthonormal basis of L2([0, M]), we have:

K

∑
k=1

ξk,tbk +
K

∑
j=1

bj

∫ M

0
µ(s)γj(s) ds.

2 To simplify notation, we write xt instead of xt−1.
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Moreover, since µ = E(xt) is assumed to be constant for all t ∈ T , we have:

K

∑
k=1

ξk,tbk + const,

where the estimators ξ̂k,t of ξk,t are obtained as described in Section 3.1.
As a consequence, the task of estimating the infinite-dimensional integral (4) translates into

estimating b1, . . . , bk. Moreover, note that estimating the return rt for a centered process xt or a possibly
uncentered process xt only differs in the constant α0 or ω respectively in our model. Therefore, we can
assume w.l.o.g. that µ = E(xt) = 0. For a centered process xt, we have const. = 0.

All in all, estimating our model Definition 1 simplifies to estimating the coefficients from the basic
ARMA- and GARCH-parts and further K + L parameters for the integral parts, where K, L can be
chosen arbitrarily according to the application.

4. Results

In this section, we present an application of the model introduced in Section 3.2 to VaR forecasting
for the EURUSD exchange rate.

4.1. Model Fit

We start by considering the model fit of our new ARMAFunX-GARCHFunX setup taking a
classical ARMA-GARCH and an ARMAX-GARCHX with just the 2y-yield differential as the exogenous
variable and Gaussian errors for both as benchmarks. Table 1 shows the parameter estimates for all
three models. To assess the models’ convergence, which was discussed in Section 3.2, we carried
out a simulation study; For each setup, we simulated 10,000 paths of length 2903 using the initially
estimated parameters and re-estimated these based on each path. Table 1 now additionally contains
the means of these bootstrapped estimates and 95%-confidence intervals.

Considering the latter, we found that apparently the 2y-yield differential has no significant
effect on the ARMAX-GARCHX setup, contradicting the industry’s common belief.3 However, for
the functional setup, the situation looks much brighter even though there are parts without
significance, as well. To reduce dimensionality and ensure the models’ stabilities, we set all
non-significant parameters (expect the intercepts) to zero and re-estimated all setups, which led
to Table 2.4 By evaluating the models’ in-sample fit via AIC and BIC (Table 3), it can directly be seen
that the ARMAFunX-GARCHFunX exhibited the lowest AIC and BIC, i.e., fit the data best, with
the 2y-ARMAX-GARCHX coming in second. Restricting the models to significant parameters only
(Table 4) improved the fit for all models, but the 2y-ARMAX-GARCHX.

3 Traces of this assumption are scattered all over the Internet, but we restrain from quoting web pages.
4 Note that we will work with the full models in the following, as explained in Section 4.2.
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Table 1. Parameter estimates, bootstrapped means and bootstrapped 95%-confidence intervals using 10,000 simulated paths of length 2903.

ARMA-GARCH ARMAFunX-GARCHFunX 2y-ARMAX-GARCHX
Parameters Estimate Mean Confidence Interval Estimate Mean Confidence Interval Estimate Mean Confidence Interval

α0 1.12× 10−5 3.34× 10−5 [−5.12× 10−4, 6.06× 10−4] 1.21× 10−5 1.59× 10−5 [−1.71× 10−4, 2.22× 10−4] 2.02× 10−5 2.08× 10−5 [−3.24× 10−4, 3.65× 10−4]
α 6.09× 10−1 1.51× 10−3 [−9.37× 10−1, 9.41× 10−1] 5.82× 10−1 5.10× 10−1 [−1.99× 10−1, 8.34× 10−1] 4.05× 10−1 4.03× 10−1 [3.09× 10−1, 4.91× 10−1]
β −6.09× 10−1 −1.90× 10−3 [−9.43× 10−1, 9.38× 10−1] −6.11× 10−1 −5.41× 10−1 [−8.57× 10−1, 1.68× 10−1] −4.23× 10−1 1.62× 10−3 [−9.67× 10−2, 1.02× 10−1]
b1 − − − −1.48× 10−3 −1.47× 10−3 [−2.33× 10−3,−5.94× 10−4] −1.28× 10−2 −1.48× 10−3 [−8.93× 10−3, 6.21× 10−3]
b2 − − − −1.46× 10−4 −1.80× 10−4 [−1.91× 10−3, 1.48× 10−3] − − −
b3 − − − 6.80× 10−4 6.77× 10−4 [−1.91× 10−3, 3.27× 10−3] − − −
ω −2.10× 10−2 −3.21× 10−2 [−7.81× 10−2,−6.78× 10−4] −2.25× 10−2 −5.12× 10−2 [−8.26× 10−2,−1.40× 10−3] −4.48× 10−2 −6.91× 10−2 [−1.32× 10−1,−1.62× 10−2]
γ 2.15× 10−2 2.11× 10−2 [1.54× 10−2, 2.69× 10−2] 2.05× 10−2 1.86× 10−2 [1.27× 10−2, 2.46× 10−2] 2.22× 10−2 1.97× 10−2 [1.38× 10−2, 2.60× 10−2]
δ 9.73× 10−1 9.72× 10−1 [9.64× 10−1, 9.80× 10−1] 9.74× 10−1 9.73× 10−1 [9.66× 10−1, 9.83× 10−1] 9.70× 10−1 9.70× 10−1 [9.60× 10−1, 9.81× 10−1]
c1 − − − 6.50× 10−2 6.61× 10−2 [2.85× 10−2, 1.06× 10−1] −2.06× 10−1 −2.05× 10−1 [−5.48× 10−1, 1.22× 10−1]
c2 − − − −8.93× 10−2 −9.12× 10−2 [−1.60× 10−1,−2.38× 10−2] − − −
c3 − − − 1.07× 10−1 1.01× 10−1 [−5.41× 10−2, 2.56× 10−1] − − −

Table 2. Parameter estimates, bootstrapped means and bootstrapped 95%-confidence intervals using 10,000 simulated paths of length 2903 restricting the models from
Table 1 to significant parameters only.

ARMA-GARCH ARMAFunX-GARCHFunX 2y-ARMAX-GARCHX
Parameters Estimate Mean Confidence Interval Estimate Mean Confidence Interval Estimate Mean Confidence Interval

α0 3.18× 10−5 3.56× 10−5 [−4.44× 10−4, 5.05× 10−4] 3.19× 10−5 3.27× 10−5 [−3.50× 10−4, 4.06× 10−4] 3.11× 10−5 3.04× 10−5 [−3.97× 10−4, 4.55× 10−4]
α − − − − − − 5.98× 10−3 5.68× 10−3 [−3.51× 10−2, 4.50× 10−2]
β − − − − − − − − −
b1 − − − −1.21× 10−3 −1.21× 10−3 [−2.06× 10−3,−3.63× 10−4] − − −
b2 − − − − − − − − −
b3 − − − − − − − − −
ω −1.78× 10−2 −2.41× 10−2 [−7.00× 10−2, 5.07× 10−3] −2.21× 10−2 −3.04× 10−2 [−8.08× 10−2, 1.33× 10−3] −2.37× 10−2 −3.60× 10−2 [−8.24× 10−2,−2.31× 10−3]
γ 2.43× 10−2 2.57× 10−2 [1.93× 10−2, 3.24× 10−2] 2.33× 10−2 2.37× 10−2 [1.73× 10−2, 3.05× 10−2] 2.11× 10−2 2.06× 10−2 [1.51× 10−2, 2.65× 10−2]
δ 9.70× 10−1 9.68× 10−1 [9.58× 10−1, 9.76× 10−1] 9.71× 10−1 9.70× 10−1 [9.60× 10−1, 9.78× 10−1] 9.73× 10−1 9.72× 10−1 [9.64× 10−1, 9.81× 10−1]
c1 − − − 5.47× 10−2 5.37× 10−2 [1.36× 10−2, 9.31× 10−2] − − −
c2 − − − −1.16× 10−1 −1.17× 10−1 [−1.84× 10−1,−4.77× 10−2] − − −
c3 − − − − − − − − −
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Table 3. logL, AIC and BIC, corresponding to the full models from Table 1.

Model logL AIC BIC

ARMA-GARCH 10,826 −21,639 −21,604
ARMAFunX-GARCHFunX 10,868 −21,711 −21,640

2y-ARMAX-GARCHX 10,841 −21,666 −21,619

Table 4. logL, AIC and BIC, corresponding to the restricted models from Table 2.

Model logL AIC BIC

ARMA-GARCH 10,8325 −21,656 −21,632
ARMAFunX-GARCHFunX 10,863 −21,712 −21,670

2y-ARMAX-GARCHX 10,829 −21,649 −21,619

4.2. VaR Backtesting

In the next step, we wanted to assess the out-of-sample-fit of our setups and investigate further
whether the yield curve differential can effectively improve risk forecasts for the EURUSD exchange
rate. For computational simplicity and to ensure better comparability, we shall from now on work with
the full models depicted in Table 1 to avoid identifying the best model for each window separately.
In particular, we shall apply the well-known methods from Christoffersen (1998).6

Now, using a 500-day rolling window, we estimate the full models from Table 1 and calculate
one-day ahead VaR forecasts via:

V̂aRt|t−1(p) = µ̂t + Φ−1(p)σ̂t

for 1− p ∈ {99%, 97.5%, 95%}, the standard normal cumulative distribution function Φ and with µ̂t

being the estimated mean obtained from the ARMA parts and σ̂t the volatility estimated via GARCH,
respectively.

This leaves us with 2404 VaR forecasts for each model. Table 5 depicts the percentage of violations
and the likelihood ratio tests for unconditional coverage, independence and conditional coverage as
proposed by Christoffersen (1998). Figure 4 shows the standard 5%-VaR forecasts compared to the
actual log-returns for all three models.

5 The peculiarity of having a higher logL for the nested model in comparison to the full model of Table 3 arises due to using a
two-step procedure instead of estimating jointly.

6 Although, since then, various alternative backtests have been established as, e.g., in Ziggel et al. (2014) or Wied et al. (2016).
However, such new approaches would deviate too much from the core idea of the present paper, which is why we stick to
the classical procedure of Christoffersen (1998).
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Table 5. VaR prediction performance with a window size of 500 days for ARMA-GARCH,
ARMAFunX-GARCHFunX and 2y-ARMAX-GARCHX for 1− p ∈ {99%, 97.5%, 95%}. Bold numbers
denote significant values at the 5%-level.

Model p % Viol. LRuc LRind LRcc

ARMA-GARCH 1% 1.46× 10−02 4.42 × 1000 1.03× 1000 5.49× 1000

2.5% 2.79× 10−02 7.84× 10−01 6.19× 10−01 1.46× 1000

5% 5.20× 10−02 1.99× 10−01 4.15× 10−02 3.48× 10−01

ARMAFunX- 1% 1.50× 10−02 5.21 × 1000 1.10× 1000 6.34 × 1000

GARCHFunX 2.5% 2.83× 10−02 1.02× 1000 3.96 × 1000 5.04× 1000

5% 5.07× 10−02 2.82× 10−02 7.21 × 1000 7.34 × 1000

2y-ARMAX-GARCHX 1% 1.58× 10−02 6.96 × 1000 1.22× 1000 8.21 × 1000

2.5% 2.83× 10−02 1.02× 1000 5.66× 10−01 1.65× 1000

5% 5.20× 10−02 1.99× 10−01 1.23× 1000 1.53× 1000

In the following, we briefly recall the basic idea of these statistics.

• Firstly, we have the unconditional coverage (uc) test, which assumes the independence of the
violations and tests the hypothesis that the empirical percentage of violations is equal to the
expected p.

• The independence test (ind) checks for the independence of violations or detects
clustering, respectively.

• Finally, there is the conditional coverage (cc) test that compares the empirical percentage of
violations and the expected percentage as the unconditional coverage test does, but considers a
possible dependence structure of the violations. We may treat it as a combination of the former
two tests.

• The statistics LRuc and LRind for the uc test and the ind test are χ2-distributed with one degree of
freedom, whereas the LRcc, the one for the cc test, is χ2-distributed with two degrees of freedom.

Summing things up, Table 5 does not show an improvement in using the yield curve data, apart
from the 5%-VaR, where our functional model delivers a better unconditional coverage statistics than
the benchmark, which in this case means that the expected and the empirical numbers of violations are
very close. Even then, the ARMAXFunX-GARCHFunX exhibits a clustering of violations and therefore
a worse independence test and conditional coverage test statistics.

As mentioned before, the LRcc can be seen as a combination of the LRuc and the LRind. Therefore,
in most cases, LRcc had a high value whenever LRuc had one as well. The exceptions were the cases
in which the independence test statistics was unusually high. High values of LRind hinted towards
a clustering of violations. This phenomenon can especially be observed at the 5%-VaR from the
ARMAFunX-GARCHFunX, where the unconditional coverage test statistics was rather small and well
below the significance level, but because of the clustering, we had a significant LRcc.

Finally, we want to note that we carried out robustness checks regarding the actual number of
principal components for the functional setup. We experienced an increase of clustering of violations
while adding more principal components to our model, with the change from two to three principal
components having the biggest impact on the LRind. Note that, since LRcc can be seen as a combination
of LRuc and LRind, this influenced the conditional coverage, as well. This phenomenon appeared
to be capped at three principal components, which was observable in particular for the 5%-VaR.
Interestingly, using two principal components instead of just one achieved worse results for all
p ∈ {1%, 2.5%, 5%}. The performances of the models with three and four principal components did
not differ much, apart from a noticeably smaller LRind for the 2.5%-VaR. Finally, we want to point
out that our model, which used three principal components, had the smallest LRuc for the 5%-VaR
compared to incorporating 1, 2 or 4 principal components.
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Consequently, we can further confirm that employing yield curve information seemed to be able
to improve VaR forecasting for FX rates in some situations.

Figure 4. ARMA-GARCH, ARMAFunX-GARCHFunX, 2y-ARMAX-GARCHX: 1-day prediction:
5%-VaR.

5. Discussion

This paper introduces a new approach in implementing macroeconomic data, in particular yield
curve information in FX rate models. As we have shown in detail in Section 1, the general idea of
such an approach can be found throughout the literature. However, according to the efficient market
hypothesis, interest rate differentials cannot be used for forecasting FX rates in a sensible fashion.
We do not argue this and will not delve into a discussion about the failure of the uncovered interest
rate parity. Therefore, we utilize our ARMAXFunX-GARCHFunX for forecasting risk, in particular the
VaR of the EURUSD rate.
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The way our model sticks out and improves on older approaches is the use of functional principal
component analysis to implement the whole shape of the yield curve as an exogenous variable.

Applying principal components in this way has been done in a similar fashion before. We refer to
Fuest and Mittnik (2015), who presented the GARCH-FunXL model and used the functional approach
to model asset price volatility. The information contained in the stock exchange’s limit order book is
extracted by means of functional principal component analysis, and its impact on asset price volatility
is analyzed. The work in Fuest and Mittnik (2015) reported an improved forecasting performance
compared to models without liquidity impact.

We extend their GARCH-FunXL setup by allowing for an additional ARMAXFunX part and
invoke this more generalized setup to forecast the VaR of FX rates.

The data used for our yield curves consist of overnight index swaps on the EONIA and the
EONIA for shortest maturity and the US treasury yields, with the Fed Funds rate for the shortest
maturity. Interpolation and taking differentials7gives us the data matrix of the yield curve differentials
used for our analysis. We transform this matrix of yield differentials into functional data, which
means that we get a stochastic process (xt)t∈T , where each xt maps maturities to yields. The theory for
functional principal component analysis, which is needed to understand the basic idea of the model,
is introduced in Section 3.

Although our functional model exhibits clustering of violations, we experienced a smaller
unconditional coverage statistics for the 5%-VaR, which means that the estimated number of
violations was very close to the expected number. Summing up, we confirm that employing
yield curve information is able to improve VaR forecasting for FX rates in some situations.
This established connection between yield curve data and FX risk goes with the findings in the
literature: Dominguez (1998) modeled FX rate volatility via a GARCH(1,1) setup that incorporated,
among other variables, overnight index rate differentials corresponding to the FX rates in question as
exogenous variables, an approach similar to ours, and found the interest rate differentials to have a
significant impact on FX rate volatility. We further mention Neely (1999), who analyzed the connection
of realignment and conditional volatility in target zone exchange rate systems via a jump-diffusion
GARCH model, where they used interest rate differentials and a proxy for the domestic yield curve
to model a country-specific realignment probability or jump probability. Letting the jump-intensity
vary with dependence on the interest rates in this way allows the model to detect realignments
before they happen. With this setup, the precision of forecasts can be improved. As for a connection
between macroeconomic volatility and FX rate volatility, we recall Morana (2009). He used principal
component analysis to extract the relevant factors for macroeconomic volatility and FX rate volatility,
respectively, and showed that there is an influence from macro to FX, especially for the long-term.
Among other macro variables, he used short-term interest rates, in particular three-month government
bills. An improvement in out-of-sample forecasting performance, using this setup, was reported.
This result supports our findings, since we confirm that the yield curve information contains valuable
information for forecasting FX rate volatility, which is confirmed by Dunis and Huang (2002), as
mentioned in the Introduction. Finally, we mention Bauwens and Sucarrat (2010), who compared the
forecasting performance of several models of exchange rate volatility in the GETS (general-to-specific)
approach and did find evidence of an improvement by the inclusion of macro variables, such as
interest rates.

Summing up, this points towards an influence of macroeconomic or, in particular, yield curve
data on modeling FX risk. One property that most basic models of FX rates or FX rate volatility share
though is that an increase in the exogenous information used always leads to a higher number of
variables. Implementing the exogenous data as functional data and using the power of functional

7 We also take daily differences to ensure the stationarity of our yield curve process.
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principal component analysis allow us to contain almost all of the information contained within any
dataset by about three principal components, no matter the size of the matrix.

Coming to a conclusion, we find that the ARMAXFunX-GARCHFunX enriches the family of
ARMAX-GARCHX models by allowing the implementation of the information contained in a data
matrix via its principal components or its principal component scores, respectively, no matter how big
it is or, in our case, how many maturities we want to implement, a feature that is, as we have seen,
desirable when modeling and forecasting exchange rate volatility.

However, when it comes to actually using our newly-proposed forecasting setup, we see just
some minor improvements on a classical ARMAX-GARCHX benchmark containing just the 2y-yield
as the exogenous variable for, e.g., the 5%-VaR unconditional coverage, but are not able to detect a
more general advantage of the functional setup. However, considering different lags and (fat-tailed)
error distributions might be a fruitful start for future research in this area and might justify the usage
of, for example, more maturities, as discussed above.

Furthermore, we want to stress the fact that the data in the present study are based on first-step
estimates of the yield curve, which are evaluated at a rather small number of maturities. Recall the
construction of our yield curves: The EUR- and the US-yield curves were equivalently constructed by
using the available data as presented in Section 2 as follows. For each observation date, we used the
available data points (maturities) as nodes for spline interpolation. With this procedure, a yield curve
consisting of 121 maturities for EUR, as well as for the US is obtained. Taking the componentwise
difference of both yield curves, which are basically data matrices, we acquire the yield curve differential
of the EUR- and the US-yield curve.

Such estimates might be over-simplifying in the present context. Using the primary information
on the YTMs of single securities underlying the curve estimates, additional modes of variation may be
uncovered that are potentially useful to predict FX returns.
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