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Publication 1 | Kater et al. (2017)

This study reports the structures of five nucleolar assembly intermediates of the
large ribosomal subunit. It shows how the rRNA of the large subunit is incorpo-
rated stepwise but not following the transcriptional 5’ - 3’ sequence, first forming the
solvent exposed back side, and later the peptide exit tunnel and intersubunit sur-
face. I performed the cryo-electron microscopy (cryo-EM) data processing as well as
molecular model building and refinement. Furthermore, I contributed to the struc-
tural analysis and interpretation. Also, I prepared the figures for the manuscript
and contributed to its writing.

Publication 2 | Thoms et al. (2018)

This study reports on suppressor mutants that bypass Cgr1 function, thereby elu-
cidating the role of this protein in a central maturation event during the assembly
of the large ribosomal subunit: rotation of the central protuberance (CP). Cgr1 is
required for stabilization of the CP after this rotation, as the cgr1∆ mutation causes
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an arrest prior to this central maturation step. Using cryo-EM we showed a partial
reversion of this phenotype by an rrs1 E102D suppressor mutation. Here, I per-
formed the cryo-EM data processing and as well as analysis and interpretation of the
structural data. Also, I prepared figures and contributed to writing the manuscript.

Publication 3 | Kater et al. (2019)

In this publication we present the structure of the Sec translocon in a lipid nanodisc
bound to a translationally stalled 70S ribosome. The reported structure shows how
binding of the ribosome nascent chain complex to SecYEG leads to an unzipping-
like opening of the lateral gate of the translocon. Molecular dynamics simulations of
this system were performed to corroborate the structural findings. I supported this
publication by performing the cryo-EM data processing as well as the model building
and refinement. Furthermore, I contributed to the analysis and interpretation of the
structural data. I supported the manuscript with figures and writing.

Publication 4 | Kater et al. (2020b)

Here we present the structure of the AAA-protein (ATPases associated with diverse
cellular activities) Bcs1 in different conformational states. The presented structures
allowed us to propose an airlock-like mechanism for the folded protein translocation
through the inner mitochondrial membrane (IM) by Bcs1. For this study I performed
the cryo-EM grid preparation and contributed to the microscopic screening and cryo-
EM data collection. I furthermore performed the processing of the cryo-EM data
and built and refined the molecular structures. Additionally, I supported analysis
and interpretation of the structural models as well as writing of the manuscript, to
which I contributed the figures.

Publication 5 | Kater et al. (2020a)

In this publication we present three structures of ribosomal large subunit biogenesis
intermediates. These structures provide insight into two major restructuring events
occurring during 60S biogenesis in the nucleoplasm: assembly of the mature-like
L1-stalk and rotation and maturation of the CP. For this study I performed the
cryo-EM grid preparation and contributed to the microscopic screening and cryo-
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EM data collection. Furthermore, I performed the cryo-EM data evaluation and
processing as well as building and refinement of the molecular models. Also, I
prepared the figures for publication and contributed to writing the manuscript.
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Summary

Three publications of this cumulative dissertation use cryo-electron microscopy (cryo-
EM) to dissect the assembly pathway of the eukaryotic large ribosomal subunit
(LSU). This pathway commences with freshly transcribed and initially unfolded
rRNA in the nucleolus, which folds and incorporates ribosomal proteins while trav-
eling to the cytoplasm, ultimately culminating in the mature LSU. During this
highly complex pathway, the yeast cell must assemble four rRNAs and 79 ribosomal
proteins with the help of over 200 assembly factors (AFs). Using cryo-EM, struc-
tures of nucleoplasmic and cytoplasmic assembly intermediates of the LSU could
be solved in recent years, thus shedding light on the later stages of LSU formation.
Early assembly steps remain enigmatic, as nucleolar LSU assembly intermediates
have been biochemically but not structurally characterized.

Taken together, we solved the structure of seven nucleolar or early nucleoplasmic
intermediates at resolutions ranging from 3.3 to 4.5 Å, showing a linear assembly
sequence. The first five structures show how the rRNA of the LSU is incorporated
stepwise, in a non-transcriptional sequence, first forming the solvent exposed back
side, and later the peptide exit tunnel and parts of the intersubunit surface (ISS). At
the late nucleolar stage, the L1-stalk rRNA of domain V blocks the site of central
protuberance (CP) assembly and is stabilized in a premature conformation by a
range of AFs associated with the meandering, long N-terminal tail of Erb1.

Two further structures show progression from this stage after release of the Erb1-
Ytm1 complex by the Rea1 remodeling machinery. These intermediates, purified via
Nop53, show dissociation of many early AFs from the premature ISS and destabi-
lization of the L1-stalk. After subsequent release of the Spb1 methyltransferase, the
L1-stalk rRNA can be accommodated in its mature conformation. This allows the
premature CP to form, leading to a previously characterized nucleoplasmic inter-
mediate, with a formed but premature CP. This particle is the substrate for the
second Rea1 mediated structural remodeling, an intermediate of which we resolved
to molecular resolution revealing Ipi1 as a central integrator for the Rix1-Ipi1-Ipi3
complex on this pre-60S particle.

The binding of the Rix1-Rea1 remodeling machinery at this nucleoplasmic stage
progresses maturation by inducing a 180◦ rotation of the 5S ribonucleoprotein par-
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ticle (5S RNP) and CP. Using a combination of yeast genetics and cryo-EM we
investigated the function of the AF Cgr1 in this maturation step. We showed that
Cgr1 is required for CP rotation to take place, likely by stabilizing the rotated con-
formation. The Cgr1 function can be bypassed by introducing suppressor mutations
in Rpf2 and Rrs1, two factors stabilizing the CP prior to rotation.

Apart from ribosome biogenesis, two additional publications of this dissertation
address protein translocation machinery, required for transport of proteins across
or into membranes. The Sec translocon allows co- and posttranslational transloca-
tion of mostly unfolded substrates across the bacterial plasma and the eukaryotic
endoplasmic reticulum (ER) membrane. We solved the structure of a stalled 70S
ribosome-nascent chain complex (RNC) bound to the SecYEG translocon in a na-
tive like environment provided by a large lipid nanodisc. The structure shows all
three subunits of the bacterial SecYEG complex and displays the lateral gate at a
defined, early stage of opening or unzipping on the cytoplasmic side upon insertion
of the signal anchor domain of the nascent chain.

Specific pathways, such as the assembly of the mitochondrial bc1 respiratory
chain complex, require folding of proteins in one compartment before translocation
across a membrane to allow the protein to be active in another compartment. The
bc1-complex component Rip1 folds in the mitochondrial matrix and assembles a 2Fe-
2S cluster before being translocated across the inner mitochondrial membrane (IM)
by the AAA-protein Bcs1. We solved the structure of Bcs1 in an ADP-bound state
and two apo states, displaying a heptameric ring of Bcs1 protomers. Bcs1 forms two
large aqueous vestibules separated by a seal forming middle domain. One vestibule
is accessible from the matrix side and one lies within the inner mitochondrial mem-
brane. The architecture and structural dynamics between the three states suggest
an airlock like mechanism, allowing transport of folded Rip1 while maintaining the
permeability barrier of the membrane.
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1 Introduction
Ribosomes are the cellular machinery for the synthesis of proteins. They fulfill this
task by translating mRNA into polypeptide chains with the help of aminoacylated
tRNAs. Ribosomes themselves consist of rRNA and ribosomal proteins, which must
in turn be synthesized and assembled in a highly orchestrated fashion to form this
complex machinery. Once matured and active, they are a hub for various cellular
processes, such as mRNA turnover, regulation of gene expression, and protein tar-
geting. This dissertation covers two ribosome associated pathways: the formation of
the large ribosomal 60S subunit, as well as cotranslational protein translocation via
the universally conserved Sec translocation system. Finally, it covers an exceptional,
non-ribosome driven pathway of folded protein translocation in the mitochondria,
enabled by the AAA-protein Bcs1.

1.1 The Structure and Function of the Ribosome

A hallmark of all cells is that translation of genetic information, protein biosynthesis,
is conducted by large molecular machines, the ribosomes. The principal architecture,
the functional sites and the catalytic mechanism are conserved over all kingdoms of
life: bacteria, archaea and eukaryotes. Historically, the dimensions of ribosomes, and
the small and large subunit (SSU and LSU) as their major subcomplexes, have been
reported based on their sedimentation coefficients (S: Svedberg). The eukaryotic
cytoplasmic ribosome is thus referred to as the 80S ribosome, consisting of the 40S
(SSU) and 60S (LSU) subunit, whereas the 70S prokaryotic ribosome consists of the
30S (SSU) and 50S (LSU) subunit. The building blocks of all ribosomes are rRNA
and ribosomal proteins. In the yeast Saccharomyces cerevisiae the LSU consists
of the 25S, 5.8S and 5S rRNA moieties and 46 ribosomal proteins, whereas the
SSU is composed of the 18S rRNA and 33 ribosomal proteins. As indicated by the
sedimentation coefficients, eukaryotic ribosomes are larger than their prokaryotic
counterparts, comprising additional rRNA expansion segments (ES) and ribosomal
proteins.

To perform the task of protein biosynthesis, the two subunits act together in
decoding the mRNA and translating it into proteins (Crick, 1958). The mRNA
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Figure 1: Overview of the Eukaryotic 80S Ribosome
A) Schematic of the ribosome showing the SSU and LSU, mRNA, three tRNAs,
the peptidyl-transfer center (PTC) and the nascent polypeptide chain in the
peptide exit tunnel.
B) Side view of the Saccharomyces cerevisiae 80S ribosome (EMD-4474, Tesina
et al., 2019).
C) and D) views on the intersubunit surface (ISS) of the SSU and LSU respec-
tively.
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consists of non-overlapping, adjacent trinucleotide codons, that each code for one
amino acid (Crick et al., 1961). With the exception of the three stop codons, there
is a 3’-aminoacylated tRNA with a matching anti-codon for every codon of the
mRNA (Nirenberg et al., 1965). Complementarity of codons and anti-codons is
ensured through base pairing and non-perfect wobble base-pairing, allowing a single
tRNA to match multiple codons (Crick, 1966). The translational process has been
extensively reviewed (Frank and Gonzalez, 2010; Ramakrishnan, 2002; Schmeing and
Ramakrishnan, 2009) and it can be briefly summarized in three phases: i) initiation,
when the two ribosomal subunits are joined on the mRNA and find the translation
start site. ii) Elongation, during which the ribosome reads along the mRNA and
translates it via tRNAs into a polypeptide chain and iii) Termination and recycling,
where translation is completed by release of the newly formed polypeptide chain
and the ribosomal subunits are recovered for reuse. All of these steps are associated
with the activity of a plethora of additional factors.

The assembled ribosome displays a globular shape with a cleft between both
subunits, which harbors three distinct tRNA binding sites: the A-, P-, and E- site
(see Figure 1A, 1B and Agrawal et al., 1996). The SSU shows an elongated shape
with a head, containing a protrusion called the beak, and a body. During translation,
the 5’ end of the mRNA threads through the entry tunnel, passes through a groove
between head and body and leaves the SSU at the mRNA exit site between SSU
platform and head (Schluenzen et al., 2000). During translation, the mRNA that
passes through the groove between head and body (Figure 1C) exposes nucleotides
towards the ISS, where these can be matched with corresponding tRNAs in the
mRNA decoding center (Ogle et al., 2001). The fidelity of this decoding process is
supervised by the rRNA of the decoding center of the SSU (Carter et al., 2000; Ogle
et al., 2001). During initiation, the SSU serves as an assembly platform to form the
initiation complex, consisting of an initiator tRNA, initiation factors, the mRNA
and the SSU (Aitken and Lorsch, 2012).

The LSU has a flattened spherical shape with three structural protrusions at the
ISS: the L1-stalk, CP and P-stalk. This results in the characteristic crown shape,
when viewed from the ISS (Figure 1D). The L1-stalk, consisting of rRNA helices
75–78 and the ribosomal protein uL1 is required for efficient release of tRNA from
the E-site (Cornish et al., 2009; Trabuco et al., 2010) but also serves as a binding
site for factors such as eIF5A (Schmidt et al., 2016). The CP consists of rRNA
helices 80–88, the 5S rRNA and ribosomal proteins uL5 and uL18. It provides
an intersubunit bridge connecting the LSU to the SSU (Frank et al., 1991) with
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key functionalities in binding of tRNAs (Agrawal et al., 1996) and the elongation
factor eEF3 in fungi (Andersen et al., 2006). The P-stalk consists of the ribosomal
proteins uL11, P1 and P2 and together with the sarcin-ricin-loop forms the GTPase-
associated center (GAC), a region essential for the interaction with translational
GTPases (Diaconu et al., 2005; Huang et al., 2010; Nomura et al., 2012). The
central feature of the ribosome, the peptidyl transferase center (PTC) is also located
on the LSU (see Figure 1A and Traut and Monro, 1964). Here, formation of the
peptide bond takes place by transferring the nascent peptide chain from the P-
site tRNA onto the aminoacylated A-site tRNA, thus elongating it by one amino
acid(Frank and Gonzalez, 2010). The PTC marks the beginning of the the peptide
exit tunnel which spans the entire LSU. The N-terminal end of the nascent chain
exits the catalytic site and later the ribosome through this tunnel. The peptide
tunnel exit site, located on the solvent exposed backside of the LSU, is an important
interaction hub for various factors involved in cotranslational targeting, folding or
modification of the nascent chain. For example chaperones like RAC (Gautschi et al.,
2001), nascent chain modifying enzymes (metAPs and NATs, Gautschi et al., 2003;
Giglione et al., 2015; Knorr et al., 2019) as well as co-translational protein targeting
and translocation factors (e.g SRP and the Sec translocon, Beckmann et al., 1997;
Görlich et al., 1992; Halic et al., 2004) bind in close proximity to the peptide exit
tunnel.

1.2 Eukaryotic Ribosome Biogenesis

The investigation of ribosome assembly began with the reconstitution of bacterial
ribosomes from their individual components: rRNA and ribosomal proteins (Held
et al., 1973; Nierhaus and Dohme, 1974). Since then, more elaborate techniques
have enabled the study of this process in eukaryotes, especially using the yeast
Saccharomyces cerevisiae as a model organism. As such, genetic screening and bio-
chemical approaches have revealed numerous auxiliary proteins required for ribosome
assembly and have provided insights into pre-rRNA processing. Affinity purification
combined with mass spectrometry analysis has been used to characterize distinct
assembly intermediates (Woolford and Baserga, 2013). Regarding the economics
of ribosome production: a typical yeast cell harbors approximately 200,000 cyto-
plasmic ribosomes. Under ideal conditions, such a cell can reproduce every 90-100
minutes, thus requiring the production of circa 130,000 ribosomes per hour or equiv-
alently 10 million ribosomal proteins and around one billion nucleotides of rRNA
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Figure 2: Schematic of 35S pre-rRNA, its Processing and Secondary
Structure of the Products
A) Schematic of the 35S pre-rRNA, the encompassed rRNA moieties, processing
and cleavage sites (Henras et al., 2015).
B) Schematic of the pre-rRNA processing pathway through the eukaryotic cell
(Henras et al., 2015).
C) and D) secondary structure diagrams of the SSU and LSU rRNA, colored
by domain (Petrov et al., 2014). Important regions are highlighted with a red
outline. 3’m: 3’ minor domain ; 3’M: 3’ major domain; C: central domain; CP:
central protuberance; ES: expansion segment; H, h: helix of the LSU and SSU,
respectively.
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(Warner, 1999). This process consumes the major part of the cellular energy and
thus presents an enormous logistic feat for the cell (Warner, 1999). Consequently,
production of ribosomes is tightly regulated and involves a plethora of more than
200 AFs guiding and supporting this assembly process, providing directionality, as
well as guaranteeing efficiency and accuracy (Kressler et al., 2010; Thomson et al.,
2013; Woolford and Baserga, 2013).

Starting point for eukaryotic ribosome biogenesis is the nucleolus, a sub-com-
partment of the nucleus and the transcription site of the bulk of rDNA (Perry,
1962). Here, the RNA polymerase I (Pol I) transcribes a polycistronic precursor,
the 35S pre-rRNA in yeast (47S pre-rRNA in higher eukaryotes) (see Figure 2A and
Nogi et al., 1991). This precursor RNA harbors the 18S rRNA of the SSU, as well
as the 5.8S and 25S rRNA moieties of the LSU (Udem and Warner, 1972). These
RNA species are connected via the internal transcribed spacer 1 and 2 (ITS1 and
ITS2) and flanked by the 5’ and 3’ external transcribed spacers (5’ ETS and 3’ ETS)
(Johnston et al., 1997). Thus, to obtain the final rRNA species, a series of rRNA
processing steps is required. While Pol I transcription appears to be strictly localized
to the nucleolus, the location of 5S rRNA transcription by RNA polymerase III (Pol
III) varies by organism, cell and tissue type and is not necessarily nucleolar (Haeusler
and Engelke, 2006; Highett et al., 1993; Pardue et al., 1973). Once transcribed, the
pre-rRNA must be processed and, together with ribosomal proteins, assembled to
form the previously described complex tertiary structure (Figure 1B, 2C and 2D).
Electron microscopy of nucleolar chromatin spreads has revealed that assembly of
the ribosomal particles starts parallel to transcription (Miller and Beatty, 1969;
Mougey et al., 1993; Osheim et al., 2004). These spreads show “christmas tree”-like
structures where the rDNA corresponds to the stem of the tree. Numerous actively
transcribing polymerases sit at branching points along the rDNA with the rRNA
transcripts forming the branches of the tree. The branches terminate in knob-like
structures, which are a result of the compaction of the transcribed rRNA and thus
assembly of early pre-ribosomal particles (Mougey et al., 1993; Osheim et al., 2004).

Apart from processing events leading to the removal of the ETS and ITS se-
quences, the pre-rRNA also undergoes a high number of RNA modification events.
The bulk of rRNA modifications are introduced by small nucleolar RNA (snoRNA)
containing RNPs (snoRNPs), of which there are several types: box H/ACA snoRNPs
catalyze pseudouridylation at 44 known sites in yeast, while the box C/D snoRNPs
catalyze 2’-O-ribose methylation at 67 known sites (Balakin et al., 1996; Ganot
et al., 1997; Kiss-László et al., 1996; Liang et al., 2009; Watkins and Bohnsack,
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2012). These RNPs are guided to their respective target sites via base complemen-
tarity between the rRNA and their snoRNA component (Nicoloso et al., 1996; Qu
et al., 1995). Apart from snoRNPs, additional modifications are introduced by en-
zymatic AFs such as the methyltransferases Bud23, Nop2 or Spb1 (Kressler, 1999;
Lapeyre and Purushothaman, 2004; Sharma et al., 2013; White et al., 2008).

1.2.1 Formation of the Small Ribosomal Subunit

Early Nucleolar Steps of SSU Assembly

Determined by the sequence of rRNAs encoded on the 35S pre-rRNA, assembly of
ribosomal particles starts with the SSU, as its 18S rRNA is transcribed first (Figure
2A). The first assembly intermediates purified containing the 35S precursor rRNA
is the 90S particle, which, apart from RNA also contains ribosomal proteins, AFs
and snoRNAs (Dragon et al., 2002; Grandi et al., 2002; Trapman et al., 1975).
Strikingly, while these particles contain the 35S precursor rRNA, they are only asso-
ciated with ribosomal proteins of the SSU, thus giving it the name SSU processome
(Dragon et al., 2002; Grandi et al., 2002). Key components of this particle are a
set of structurally autonomous complexes: the U3 snoRNP, as well as the U3 small
nucleolar RNA-associated protein modules A, B and C (UTP-A, -B and -C), the
Mpp10-Imp3-Imp4 module and the Bms1-Rcl1 module (Chaker-Margot et al., 2015;
Pérez-Fernández et al., 2011; Zhang et al., 2016). Binding of the UTP-A module
to the 5’ ETS initiates assembly of the SSU processome and is followed by sub-
sequent incorporation of the UTP-B module and the U3 snoRNP (Chaker-Margot
et al., 2015; Dutca et al., 2011; Hunziker et al., 2016). The U3 snoRNP plays a
significant role in early folding events of the 5’ ETS and 18S rRNA, as it prevents
premature formation of the central pseudo knot structure found in mature SSU
(Dutca et al., 2011; Kudla et al., 2011; Marmier-Gourrier et al., 2011). It is aided
by the Mpp10-Imp3-Imp4 module, which has been shown to stimulate the formation
of RNA duplexes between the U3 snoRNA and 5’ ETS and 18S sequences of the
35S precursor in vitro (Gerczei et al., 2009). By arresting the assembly of the SSU
processome at different time points of rRNA transcription, the association of these
modules could be mapped to different rRNA regions, showing that after the asso-
ciation of the UTP-A, UTP-B, U3 snoRNP and Mpp10-Imp3-Imp4 modules to the
forming 5’ ETS domain, the UTP-C module associates to later transcripts harboring
both the 5’ and central domain of the 18S rRNA (see also Figure 2C and Chaker-
Margot et al., 2015; Zhang et al., 2016). The following domains of the SSU rRNA
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are all associated with distinct sets of ribosomal AFs. Several cryo-EM structures
have revealed the architecture of the SSU processome (Chaker-Margot et al., 2017;
Cheng et al., 2017; Kornprobst et al., 2016; Sun et al., 2017). These structures show
how the 5’ ETS together with the UTP-A and UTP-B modules act as a mold or a
scaffold to allow for a separate, sequential and seemingly independent maturation of
the 18S rRNA domains, with the U3 snoRNP acting as a central organizing element.
Proceeding from 90S SSU processome particle to mature SSU particles requires pro-
cessing of the 35S pre-rRNA at sites A0 and A1 in the 5’ ETS and at site A2 in
the ITS1, where both Rcl1 and Utp24 have been implied as required endonucleases
(Horn et al., 2011; Tomecki et al., 2015). Nucleolytic cleavage of the rRNA at these
sites results in the separation of the rRNA into the 5’ ETS, the 20S pre-rRNA and
the 27S pre-rRNA (Figure 2A and 2B). While the 5’ ETS is degraded by the nuclear
exosome and 5’ exonucleases (Allmang et al., 2000; Petfalski et al., 1998), the 20S
and 27S pre-rRNA moieties continue to separately mature into the SSU and LSU.

Late Steps of SSU Assembly

Proceeding from the large SSU processome state to pre-40S particles requires dis-
mantling of the 90S particle, removing the UTP modules, the U3 snoRNP and the 5’
ETS RNA (Schäfer et al., 2003; Grandi et al., 2002). The ATP dependent helicase
Dhr1 plays a key role in this disassembly process, facilitating the removal of the
U3 snoRNP (Sardana et al., 2015). Biochemical data indicate that this dismantling
step occurs as a fast, transient process, quickly leading from the complex 90S SSU
processome to a much less complex 20S pre-rRNA containing particle (Schäfer et al.,
2003). Structural data depicting this dismantling remains to be published. While a
large part of the early AFs is removed and recycled, a set of AFs including Dim1,
Enp1, Rrp12 and Hrr25 further accompany the maturing pre-40S particle (Schäfer
et al., 2003). Kinetic and ultrastructural analysis combined with localization studies
of pre-40S associated AFs indicates that once the nascent SSU has passed the 90S
stage, pre-40S particles are rapidly exported into the cytoplasm where final mat-
uration takes place (Gleizes et al., 2001; Schäfer et al., 2003; Udem and Warner,
1973). Nevertheless, to achieve nuclear export competency, pre-40S particles must
complete a series of steps, among these is the incorporation of ribosomal proteins
eS17 and uS19 (Ferreira-Cerca et al., 2005; Léger-Silvestre et al., 2004; O’Donohue
et al., 2010). A series of high resolution cryo-EM structures provide insight into
these late nuclear and early cytoplasmic yeast and human pre-40S assembly inter-
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mediates (Ameismeier et al., 2018; Heuer et al., 2017; Scaiola et al., 2018). These
structures reveal that while the 40S body is mostly in a close to mature conforma-
tion, the head and thus the 3’ major and 3’ minor domains of the 18S rRNA (Figure
2C) are yet to form and mature (Ameismeier et al., 2018; Heuer et al., 2017; Scaiola
et al., 2018). Structures of the assembling human pre-40S indicate that assembly
of the head starts in the nucleus (Ameismeier et al., 2018). Here Rrp12, a remnant
of the SSU processome (Cheng et al., 2019), plays a major role, initially stabilizing
rRNA in premature conformations and potentially acting as a quality control factor
(Ameismeier et al., 2018).

Finally, export through the nuclear pore complex (NPC) is dependent on a set of
nuclear export sequence containing proteins (Rio2, Pno1 and Ltv1) and the export
adaptors Rrp12 and Slx9, of which the latter was indicated to bind both Rio2 and
Gsp1/Ran-GTP and furthermore facilitates recruitment of the transport receptor
Crm1 (Fischer et al., 2015; Hurt et al., 1999; Oeffinger et al., 2004; Seiser et al., 2006;
Vanrobays et al., 2008; Zemp et al., 2009). During the final maturation steps in the
cytoplasm, the remaining AFs, including the nuclear export factors are removed,
remaining ribosomal proteins are incorporated and final rRNA maturation occurs.
As many of the remaining AFs could be located to functionally important sites on the
SSU, it was proposed that these factors prevent premature association of unfinished
pre-40S with the active translation machinery (Strunk et al., 2011). Release of Ltv1
and Enp1 from the maturing head allows binding of a cluster of ribosomal proteins,
eS10, uS3, uS10 and uS14, resulting in a mature-like beak on the head of the pre-
40S (Mitterer et al., 2016; Ameismeier et al., 2018). To enable finalization of the A-
and P-site as well as the decoding center, Tsr1 and Rio2 must dissociate, allowing
helix 44 to assume its mature conformation (Ameismeier et al., 2018; Heuer et al.,
2017; Scaiola et al., 2018). Finally, a cleavage step at site D of the SSU pre-rRNA
via Nob1 is required to produce mature 18S rRNA (Fatica et al., 2004; Lamanna
and Karbstein, 2009; Lebaron et al., 2012). In yeast, these finishing steps appear
to include a translation like step, where Nob1 containing pre-40S particles associate
with mature 60S particles and the GTPase Fun12 perform a final proof-reading step
resulting in mature and translationally competent SSU particles (Lebaron et al.,
2012; Strunk et al., 2012).
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1.2.2 Formation of the Large Ribosomal Subunit

As mentioned above (see 1.2.1: Early Nucleolar Steps of SSU Assembly), nucleolytic
cleavage at site A2 sets both SSU and LSU maturation on independent tracks and
thereby paves the way for the formation of the LSU. From there on, LSU biogenesis
can be subdivided into three main phases defined by three different cellular com-
partments. In the first phase, initial formation of the pre-60S particle occurs in a
series of steps in the nucleolus (de la Cruz et al., 2015; Kressler et al., 2017). In
the nucleoplasmic phase, large parts of the pre-60S have already reached a mature
like state (Barrio-Garcia et al., 2016; Bradatsch et al., 2012; Leidig et al., 2014; Wu
et al., 2016). While progressing further, large scale restructuring events take place,
including processing of the ITS2 (Fromm et al., 2017; Gasse et al., 2015) and mat-
uration of the CP (Barrio-Garcia et al., 2016; Leidig et al., 2014; Wu et al., 2016).
Upon licensing for export, the pre-60S particles pass the NPCs and enter the final
phase in the cytoplasm where maturation completes and translational competency
is achieved (Greber, 2016; Kressler et al., 2017). Similar to formation of the 40S, this
process is accompanied by a large number of AFs, which transiently bind the form-
ing pre-particles, aid in the assembly process, perform regulatory tasks and consume
energy to provide directionality (Greber, 2016; Kressler et al., 2017; Woolford and
Baserga, 2013). While in the SSU processome the individual rRNA domains mature
mostly in an independent fashion (Chaker-Margot et al., 2017; Cheng et al., 2017;
Kornprobst et al., 2016; Sun et al., 2017), the mature LSU forms a more monolithic
structure, with the rRNA domains intertwined (Ben-Shem et al., 2010), hinting at
differences in assembly and folding between SSU and LSU.

Early Nucleolar Steps of Large Subunit Assembly

Similar to the SSU processome, formation of the LSU commences with complex
assembly intermediates bearing many different AFs, which decrease in complexity
during the course of their maturation (Nissan et al., 2002; Wu et al., 2016). Using
the AF Npa1 as bait, a pre-60S particle bearing mainly the early 27SA2 pre-rRNA
intermediate can be isolated (Figure 2A and 2B and Dez et al., 2004). As it is
also the only particle known to contain a number of the early acting snoRNPs, this
particle represents one of the earliest assembly intermediates of the LSU (Dez et al.,
2004). Furthermore, this particle also enriches a number of RNA helicases, including
Dbp3, Dbp6, Dbp7, Dbp9, Drs1 and Has1, indicating ongoing folding and assembly
of the pre-rRNA. While the 27SA2 pre-rRNA is already associated with many LSU
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ribosomal proteins (Dez et al., 2004; Fatica et al., 2002), systematic studies of LSU
assembly phenotypes caused by depletion of ribosomal proteins indicate that as-
sembly of the LSU happens in hierarchical steps, with groups of ribosomal proteins
essential for early, intermediate and late assembly (Gamalinda et al., 2014). The
clustering of the ribosomal proteins of these groups within the structure of the LSU
indicates that the solvent exposed back of the LSU is among the first structures to
assemble, followed by the peptide exit tunnel region, and finally the CP and ISS.
Integration of ribosomal protein uL3, a member of the group of ribosomal proteins
essential during early assembly, is thought to be among the earliest LSU assembly
steps and was shown to be required for correct and efficient processing of 27SA2

pre-rRNA (Gamalinda et al., 2014; Kruiswijk et al., 1978; Rosado et al., 2007b).
This protein connects the 5’ (domain II) and the 3’ (domain VI) portion of the 25S
rRNA (Ben-Shem et al., 2010). Its assembly into the maturing LSU requires a spe-
cific complex of AFs consisting of Dbp6, Npa1/Urb1, Npa2/Urb2, Nop8 and Rsa3
(Rosado et al., 2007a). Thus, both 5’ terminal and 3’ terminal segments of the 27S
pre-RNA are required for these early folding and assembly steps.

Via Ssf1, a later nucleolar intermediate of the assembling LSU can be isolated
which co-purifies 27SA2 and 27SA3 and 27SB pre-rRNA (Dez et al., 2004; Fatica
et al., 2002; Kressler et al., 2008). Both the Npa1 and the Ssf1 particle show AFs
known to bind the ITS2 organizing structure termed the foot, indicating that this
structure already forms during these early steps of LSU assembly (Dez et al., 2004;
Fatica et al., 2002; Kressler et al., 2008; Wu et al., 2016). A particle further down-
stream can be purified via Nsa1 (Kressler et al., 2008). Nsa1 is mainly associated
with 27SB pre-rRNA, where processing of residual ITS1 at the 5’ end has fully taken
place (see Figure 2B and Kressler et al., 2008). Furthermore, at this stage, incor-
poration of the 5S rRNA has also occured. This involves a set of five proteins, the
two ribosomal proteins uL5 and uL18, the AFs Rpf2 and Rrs1 and the auxiliary
protein Syo1 (Calviño et al., 2015; Kharde et al., 2015; Madru et al., 2015; Zhang
et al., 2007). Syo1 is a nuclear import adaptor, synchronizing import of the ribo-
somal proteins uL5 and uL18 (Kressler et al., 2012). It was furthermore indicated
to act as a chaperone for assembly of the 5S RNP consisting of the 5S rRNA, uL5
and uL18, as well as the AFs Rpf2 and Rrs1 (Calviño et al., 2015; Kharde et al.,
2015). Moreover, Syo1 was proposed to aid in the subsequent integration of the 5S
RNP into the LSU precursor, where it binds to H84 in domain V of the 25S rRNA
(see also Figure 2D, Ben-Shem et al., 2010; Calviño et al., 2015; Kharde et al.,
2015; Leidig et al., 2014). The Nsa1 particle is also characterized by the presence
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of the ITS2 organizing factors Cic1/Nsa3, Nop7, Rlp7 and Nop15, which form the
previously mentioned foot structure (Kressler et al., 2008; Wu et al., 2016), as well
as Erb1 and Ytm1, a heterodimer of β-propellers known to interact with Nop7 of
the foot (Kressler et al., 2008; Miles et al., 2005; Tang et al., 2008; Thoms et al.,
2016; Wegrecki et al., 2015). Both Nsa1 and Ytm1 are dependent on the activity of
the AAA-proteins Rix7 and Rea1, respectively, to be dissociated from the matur-
ing pre-60S particles (see also 1.4: AAA-Proteins: a Versatile Clade of Molecular
Machines and Bassler et al., 2010; Kressler et al., 2008). The motor protein Rix7,
required for stripping Nsa1 from pre-60S particles, is a type II AAA-protein and
shows similarities to the hexameric unfoldase Cdc48 (Gadal et al., 2001b; Kressler
et al., 2008; Xia et al., 2016). Rea1, on the other hand, is a large dynein related
protein, which harbors six AAA+ modules, as well as a long N-terminal tail bearing
a metal ion dependent adhesion domain (MIDAS) (Garbarino and Gibbons, 2002).
MIDAS domains are homologous to the I-domain of integrins, which mediate tensile
force resistant substrate binding via a coordinated metal ion (Arnaout et al., 2005;
Craig et al., 2004; Garbarino and Gibbons, 2002). It was demonstrated that Rea1
is required for two subsequent steps of pre-60S remodeling: release of the Erb1-
Ytm1 subcomplex, which is thought to occur at the transition between nucleolus
and nucleoplasm and release of the Rsa4 AF in the nucleoplasm (Bassler et al.,
2010; Ulbrich et al., 2009). To do so, the MIDAS domain binds the ubiquitin like
(UBL) domain of its substrate proteins, Rsa4 and Ytm1. Based on immuno-labeled
negative stain electron microscopy images, the MIDAS domain was thought to be
localized at the tip of the long, structured tail protruding from the ring of AAA+
domains, putatively enabling Rea1 to act like a mechano-chemical spring (Ulbrich
et al., 2009). Removal of the Erb1-Ytm1 subcomplex via Rea1 precedes a large re-
structuring event, during which many early acting AFs are lost and is linked to the
nucleolar to nucleoplasmic transition of pre-60S particles. Disruption of this release
step via overexpression of the dominant-negative Ytm1 E80A mutant, rendering it
incapable of binding the Rea1 MIDAS domain, retains and accumulates pre-60S
particles in the nucleolus (Bassler et al., 2010). Thus, this release step is a necessary
requirement for progression of the maturing LSU into the nucleoplasm.

Nucleoplasmic Restructuring Events Leading to Export Competency

Multiple nucleoplasmic intermediates have been structurally characterized via cryo-
EM, the earliest of which is the Arx1/Nog2 particle that can be purified via Alb1,
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Figure 3: The Nucleoplasmic Restructuring Step of the Rix1-Rea1
Remodeling Machinery
A) Transition from the Arx1/Nog2 particle (EMD-6615, Wu et al., 2016) to
the Rix1-Rea1 particle (EMD: 3199, Barrio-Garcia et al., 2016) showing ITS2
processing and maturation of the central protuberance. Step 1: rotation of
the CP and 5S RNP requiring binding of the Rix1-complex and Rea1. Step 2:
Release of Rsa4 by Rea1 causing dissociation of Rea1, the Rix1-complex and
Sda1. rRNA and ribosomal proteins are depicted in gray, assembly factors are
depicted in color.
B) For comparison, a mature LSU viewed in the same orientation as (A) with
central hallmarks indicated (EMD-6478 Passmore and Russo, 2016).

a binding partner of Arx1, and via Nog2 (Bradatsch et al., 2012; Leidig et al.,
2014; Wu et al., 2016). Overall, this particle bears 19 AFs and 36 of the 46 LSU
ribosomal proteins (Wu et al., 2016). Most of the rRNA of this particle is already
stably folded. Particularly the early-forming solvent side is largely in a mature
state (Bradatsch et al., 2012; Leidig et al., 2014; Wu et al., 2016). AFs cluster at
functionally important sites. Arx1 and Alb1 are bound at the peptide exit tunnel
(Bradatsch et al., 2012). A series of AFs decorate the immature ISS and CP, covering
an arch-like section of the LSU precursor, reaching from the CP along the edge of the
ISS and the P-stalk region towards the peptide exit tunnel (Leidig et al., 2014; Wu
et al., 2016). Apart from the characteristic ITS2-bearing foot structure (see 1.2.2:
Early Nucleolar Steps of Large Subunit Assembly), the hallmark of this particle is
the configuration of the CP, showing the 5S RNP stabilized in a premature state.
To reach its final cytoplasmic conformation it requires a 180◦ rotation (Figure 3).
The 5S RNP and CP are anchored and stabilized in this premature configuration
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by the AFs Cgr1, Rsa4 and the Rpf2-Rrs1 heterodimer.
Notably, a reoccuring theme in ribosomal biogenesis are AFs with long mean-

dering extensions that act as a connection and interaction hub. In this case the
GTPases Nog1 and Nog2 and also the 5S RNP factors Rpf2 and Rrs1 show such
extensions (Wu et al., 2016). Nog1 forms an N-terminal tripod like helical bundle
blocking the premature A- and P-sites, with its GTPase domain in close proximity
to the AF Tif6 and the sarcin-ricin loop of the LSU (Leidig et al., 2014; Wu et al.,
2016). Its long C-terminal tail stretches along the side of the ISS past Tif6, mak-
ing contacts with Rlp24. It then crosses the solvent exposed back side of the LSU,
where it interacts with Arx1 and finally threads into the forming peptide exit tunnel
(Wu et al., 2016). Nog2 sits at the base of the premature ISS, contacting multiple
rRNA segments of 25S rRNA domain IV and making multiple interactions with its
C-terminal tail with the AFs Nog1, Nsa2, Rpf2, Rrs1 and Rsa4 (Wu et al., 2016).

As indicated above, Rsa4, the second substrate of the AAA-protein Rea1 is
present in these early nucleoplasmic particles (Ulbrich et al., 2009; Wu et al., 2016).
Binding of the Rea1 remodeling machinery, consisting of the Rix1-Ipi1-Ipi3 subcom-
plex (in short: Rix1-complex), Sda1 and the Rea1 AAA protein, is the onset of a
large restructuring event of the CP and ISS of the maturing 60S particle (Barrio-
Garcia et al., 2016; Bassler et al., 2014; Ulbrich et al., 2009). In a cryo-EM study,
particles purified via Rix1 and Rea1 show Sda1 binding on the premature ISS be-
tween the L1-stalk and the CP. Here, it acts as an adapter or as a binding platform
for a globular protein density, which was previously assigned to the Rix1-complex
(Barrio-Garcia et al., 2016; Wu et al., 2016). The approximately 280 Å long Rea1
protein is attached with its ring of AAA+ motor domains to three binding sites:
the CP, H38 and Rsa4. Its long and structured N-terminal tail protrudes away from
the LSU (Barrio-Garcia et al., 2016). In contrast to the Arx1/Nog2 particle, this
particle shows the 5S RNP and CP in a conformation close to its mature state,
indicating a significant previous remodeling event, resulting in the 180◦ rotation of
the 5S RNP (Barrio-Garcia et al., 2016; Leidig et al., 2014; Wu et al., 2016). It
was shown that binding of Rea1, but not ATP hydrolysis is required for this re-
structuring to take place (Barrio-Garcia et al., 2016). Apart from rotation of the 5S
RNP, the restructuring of the CP goes hand in hand with a repositioning of H38, a
shift in the interaction with Rsa4, both of which are binding sites of Rea1, as well
as a conformational change in Cgr1 (Barrio-Garcia et al., 2016; Wu et al., 2016).
The observed Rix1-Rea1 particle appears to be in a pre-release state, with the Rea1
ATPase bound to its substrate Rsa4, even though the MIDAS domain, critical to
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the release reaction, could not be identified (Barrio-Garcia et al., 2016). It was pro-
posed that the placement of the Rix1-complex and Rea1 at the CP allows sensing
its maturation. The observed Rix1-Rea1 particle thus would serve as a checkpoint,
which then would allow unidirectional progression of the LSU precursor along the
maturation pathway through release of Rsa4.

A further notable process taking place in the transition between the Arx1/Nog2
particle and the later Rix1-Rea1 defined particle is the processing of the ITS2 and
thus removal of the foot structure (see Figure 3A and Barrio-Garcia et al., 2016;
Wu et al., 2016). First, the 27SB pre-rRNA bearing the full ITS2 is cleaved at site
C2 by the Las1 endonuclease, which forms a stable complex with the polynucleotide
kinase Grc3, the 5’ - 3’ exonuclease Rat1 and its activating cofactor Rai1 (Braglia
et al., 2010; Castle et al., 2013; Fromm et al., 2017; Gasse et al., 2015; Geerlings
et al., 2000; Xiang et al., 2009). The result of this cleavage reaction is the 2’,3’-
cyclic phosphate bearing 7S and the 5’ OH bearing 26S pre-rRNA (Gasse et al.,
2015). The 7S pre-rRNA is processed to 6S pre-rRNA by the nuclear exosome, in
combination with the Mtr4 helicase, responsible for unwinding the ITS2 rRNA and
dismantling the foot structure (Fromm et al., 2017). Nop53, a component of the
foot in nucleoplasmic pre-60S particles acts as an exosome adapter by specifically
binding the Mtr4 helicase, thus targeting the 3’ - 5’ RNA processing machinery to
the pre-ribosome (Thoms et al., 2015; Wu et al., 2016). The 26S pre-rRNA on the
other hand is first phosphorylated by Grc3, facilitating subsequent processing via
the Rat1-Rai1 module, resulting in 25S pre-rRNA (Gasse et al., 2015). Maturation
of 6S pre-rRNA to 5.8S rRNA takes place later, after nuclear export of the LSU
precursors to the cytoplasm (Thomson and Tollervey, 2010). While rotation of the
5S RNP and CP and the processing of the ITS2 appear as independent events in vitro
(Fromm et al., 2017), the exact mechanisms governing the timing and coordination
of these events remain unclear. The fact that the human ortholog of Las1 (LAS1L)
is a part of the human Rix1-complex (PELP1-complex in humans) indicates that
the Rix1-complex might be a central coordinator between CP maturation and ITS2
processing (Castle et al., 2012, 2013).

Similar to the SSU, export of the large ribosomal precursor particles is dependent
on the presence of an array of export adaptors and auxiliary export factors, which
are required to pass the hydrophobic phenylalanine-glycine-repeat (FG-repeat) mesh
of the NPCs (Adams et al., 2010; Gerhardy et al., 2014). These factors shield the
hydrophilic patches of the ribosomal particles and mediate interactions with the hy-
drophobic FG-repeats (Tran and Wente, 2006). The Ran-GTP system additionally
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provides directionality in the export process (Güttler and Görlich, 2011). Thus,
export into the cytoplasm marks a critical, because non-reversible checkpoint in ri-
bosome biogenesis (Gerhardy et al., 2014; Kressler et al., 2017). To obtain export
competence, release of Rsa4 by Rea1 coincides with the release of the Rix1-Rea1
remodeling machinery from the pre-60S particle (Matsuo et al., 2014; Ulbrich et al.,
2009). Concomitant GTP hydrolysis-dependent release of the Nog2 GTPase requires
Rea1 action and frees the binding site of the export adapter Nmd3 (Ma et al., 2017;
Malyutin et al., 2017; Matsuo et al., 2014). Binding of the nuclear export sequence
containing adaptor Nmd3 is a key step in establishing export competence. It recruits
the Ran-GTP dependent Crm1, thus contributing to export of the particle through
the NPC (Gadal et al., 2001a; Ho et al., 2000). A further role of Nmd3 appears to
be compaction of the pre-60S particle by stabilizing the L1-stalk in an inward facing
conformation and by binding H38 of the 25S rRNA, perhaps thereby facilitating
passage through the NPC (Ma et al., 2017; Malyutin et al., 2017). Furthermore, the
heterodimeric export adapter Mex67-Mtr2 is required for the cytoplasmic export of
the LSU precursor (Lo and Johnson, 2009; Yao et al., 2007). It shows two distinct
binding sites on pre-60S particles, at the 5.8S rRNA and at the site of the prema-
ture P0-stalk, apparently coupling export with maturation of the P-stalk (Sarkar
et al., 2016). Arx1, already present in early nucleoplasmic LSU precursor particles
also interacts with FG-repeats and is thus involved in conferring export competence
(Bradatsch et al., 2007; Hung et al., 2008). Similar to Nmd3, Arx1 also helps com-
pact the pre-60S particle by binding the long and flexible expansion segment ES27
(Bradatsch et al., 2012). Taken together, export competence relies on key matu-
ration steps at the CP, ISS and P-stalk, allowing export adapters to bind which
facilitate traversal of the NPCs to reach the cytoplasm.

Final Maturation Checkpoints in the Cytoplasm

LSU precursors are exported to the cytoplasm in a functionally inactive state re-
quiring final rRNA processing and completion of assembly by release of AFs and
coordinated incorporation of the remaining LSU ribosomal proteins (Kressler et al.,
2017; Konikkat and Woolford, 2017). With respect to rRNA processing, the LSU
undergoes a final cytoplasmic exonucleolytic maturation step: 3’ - 5’ trimming of
the 6S pre-rRNA via the non-essential exonucleases Ngl2, Rex1 and Rex2 to form
the final 5.8S rRNA (van Hoof et al., 2000; Thomson and Tollervey, 2010). The re-
maining assembly steps focus on the functionally most important sites of the LSU:
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the catalytic PTC, the GAC and the tRNA binding sites on the ISS and finally the
peptide exit tunnel (Figure 1). These steps constitute a series of checkpoints and
proofreading processes validating the assembly of the LSU (Kressler et al., 2017;
Konikkat and Woolford, 2017). Release of the GTPase Nog1 and the ribosomal
protein placeholder Rlp24 requires a further AAA-protein, Drg1 (Lo et al., 2010;
Pertschy et al., 2007). While Rlp24, which recruits and activates Drg1, is replaced
by its paralog, ribosomal protein eL24, the peptide exit tunnel probing C-terminus of
Nog1 is replaced by another AF, Rei1 (Greber et al., 2016; Lo et al., 2010; Pertschy
et al., 2007). Rei1 in turn, together with Jjj1 and the Hsp70 protein Ssa1 are re-
quired for recycling of the export adapter Arx1 and its binding partner Alb1 (Greber
et al., 2012; Lo et al., 2010; Meyer et al., 2007, 2010). Surprisingly, after release of
Rei1 during Arx1 dissociation, AF Reh1 inserts into the tunnel, further blocking
this functionally important site (Greber et al., 2016; Ma et al., 2017). On the ISS,
several maturation steps are required for completion of the PTC and P-stalk. Re-
lease of the helicase Mrt4 at the site of the yet to form P-stalk requires binding of
the Yvh1 phosphatase, which in turn is replaced by the Mrt4 paralog uL10 (Kemm-
ler et al., 2009; Lo et al., 2010; Sarkar et al., 2016). Release and recycling of the
export adapter Nmd3 requires the GTPase Lsg1 and is coupled to assembly of the
ribosomal protein uL16 at the CP and PTC (Hedges et al., 2005; Hofer et al., 2007;
West et al., 2005). Finally, only Tif6, a component of the pre-60S particles since the
nucleolus stage, inhibits translational engagement of the quasi complete LSU with
the SSU, implying that Tif6 dissociation via Sdo1 and Efl1 is the ultimate step in
the assembly pathway of the LSU (Finch et al., 2011; Gartmann et al., 2010; Menne
et al., 2007; Senger et al., 2001). The human ortholog of Sdo1, SBDS, was shown to
probe multiple functional sites including the P-site and the P-stalk prior to inducing
Tif6 release by stimulating GTP hydrolysis of Efl1, thus completing a final check
point in the assembly of the LSU (Weis et al., 2015).

1.3 Protein Translocation

One of the core tasks of cells is to ensure the correct transport of newly synthesized
proteins from the cytosol to their final cellular destination (Berks, 2015; Christie,
2019; Green and Mecsas, 2016; Rapoport et al., 2017). In prokaryotes, possible tar-
get sites are the plasma membrane, the extracellular space and, in gram-negative
bacteria, also the periplasmic space and the outer membrane. In eukaryotes, pos-
sible targets also include the ER membrane and lumen and the various organelles.
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To do so, proteins encode signal sequences, stretches within the polypeptide, that
encode a designated cellular localization signal to allow efficient sorting (Blobel,
1980). Prokaryotes have evolved a large number of different and specialized secre-
tory pathways for protein translocation (Christie, 2019; Green and Mecsas, 2016).
While some of these have homologous counterparts in the mitochondria and plas-
tids of eukaryotic cells (Bonnefoy et al., 1994; Celedon and Cline, 2013; Kozjak
et al., 2003; Schuenemann et al., 1998; Tu et al., 1999), the Sec translocation sys-
tem stands out as the main prokaryotic and eukaryotic translocation and secretion
pathway (Elvekrog and Walter, 2015; Rapoport et al., 2017; Zimmermann et al.,
2011). Protein targeting and translocation into and within the mitochondria and
chloroplasts is more complex, yielding a plethora of different pathways to target the
individual sub-organellar compartments and membranes (Bölter, 2018; Celedon and
Cline, 2012; Wiedemann and Pfanner, 2017).

1.3.1 The Sec Translocation Pathway

The SecYEG/Sec61 protein conducting channel—also called the Sec translocon—is a
membrane protein complex required for translocation of unfolded proteins across, or
insertion of proteins into membranes (Rapoport et al., 2017). This complex is highly
conserved and present in all kingdoms of life. It is located in the plasma membrane
of bacteria and archaea and in the ER-membrane of eukaryotes (Pohlschroder et al.,
1997; Stephenson, 2005). Additionally, chloroplasts and also a few mitochondria
make use of this system (Burger et al., 2013; Celedon and Cline, 2013). Substrates
of this pathway are targeted to the Sec translocon by a signal sequence. This
sequence typically contains a stretch of hydrophobic residues at the N-terminus and
can be either cleavable or form an integral transmembrane α-helix (TMH) (Walter
et al., 1981). As indicated above, the Sec translocon supports two different modes:
translocation through the membrane via an aqueous central pore or lateral insertion
of an integral TMH into the lipid phase of the membrane via a lateral gate (Rapoport
et al., 2017). The distinction between lateral insertion into the membrane and
translocation across the membrane is likely based on biophysical properties of the
peptide sequence, such as length, hydrophobicity and nature of flanking residues
(Hessa et al., 2005, 2007).
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Figure 4: Architeture of the SecYEG Translocon
A) Overview of the bacterial ribosome bound to SecYEG.
B) Architecture of the SecYEG translocon showing the lateral gate (blue helices
and dashed line), as well as the plug (red) and the ribosome interacting loops
between TMH 6 and 7 (Loop 6-7) and between TMH 8 and 9 (Loop 8-9).
All structures based on PDB 5GAE and EMD-8001 (Jomaa et al., 2016).

Architecture of the Sec Translocon

Multiple structures of the Sec translocon have been solved from bacteria, archaea
and eukaryotes, reflecting different conformational states and portraying various
steps of the translocation pathway (e.g. Van den Berg et al., 2004; Egea and Stroud,
2010; Gogala et al., 2014; Tsukazaki et al., 2008). Neglecting variations in the
auxiliary subunits, the overall architecture and mechanism appears to be universally
conserved (Rapoport et al., 2017). The Sec translocon itself is a complex of α-
helical, integral membrane proteins called SecY, SecE and SecG in bacteria and
Sec61α, Sec61γ and Sec61β in eukaryotes, respectively (Figure 4). The crystal
structure of the archaeal SecY-SecE complex from Methanocaldococcus jannaschii
reveals the translocon in a closed or idle state and gives detailed insight on its core
features (Van den Berg et al., 2004). It reveals SecY as the pore-forming subunit,
consisting of 10 TMH separated into two linked halves, TMH 1–5 and 6–10, which
form a clam-like arrangement. Viewed from the side, it resembles an hourglass,
with aqueous funnel-like openings on both sides of the membrane, separated by a
central constriction site. This constriction is lined with a ring of six hydrophobic
residues with their side chains pointing into the pore. In the closed, resting state,
TMH 2A forms a plug at the constriction site in the extracellular funnel-like cavity,
blocking passage of proteins or small molecules (Van den Berg et al., 2004; Park and
Rapoport, 2011). TMH 2 and TMH 7 form a seam along the central channel, which is
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is also called the lateral gate, through which TMHs can insert into the hydrophobic
membrane phase (Van den Berg et al., 2004; Egea et al., 2004; Tsukazaki et al.,
2008). SecE consists of two alpha-helices, an N-terminal interfacial amphipathic
alpha helix and a TMH, which together act like a clamp, stabilizing the two halves
of SecY (Van den Berg et al., 2004; Tsukazaki et al., 2008). SecE subunits of gram-
negative bacteria show two additional, non-essential N-terminal helices providing
further stability (Nishiyama et al., 2000). The auxiliary and non-essential SecG
subunit is not conserved and consists of one or two TMH near the N-terminus of
SecY, contributing to SecY-SecE complex stability and performing a stimulatory
role during translocation (Belin et al., 2015; Nishiyama et al., 1993; Tanaka et al.,
2015). Furthermore, in a peptide bound crystal structure of Thermus thermophilus
SecYEG, the loop connecting the two TMH of SecG caps the cytoplasmic SecY
funnel opening (Tanaka et al., 2015). Nevertheless, while SecY and SecE form a
stable complex, SecG appears to be less stably bound (Joly et al., 1994).

Targeting of Translocation Substrates

Targeting of proteins to the Sec translocon follows two different pathways: cotrans-
lational and posttranslational targeting (Rapoport et al., 2017). While integral
membrane proteins are usually targeted cotranslationally, many secretory proteins
in yeast and bacteria are targeted in a posttranslational manner (Ast et al., 2013;
Ng et al., 1996; Schibich et al., 2016). To be able to pass the narrow central pore of
the translocon, these posttranslational substrates must be kept in a loosely folded
or unfolded state, which is usually maintained by cytosolic chaperones (Ast et al.,
2013; Huber et al., 2005; Schierle et al., 2003). Targeting of these fully translated
proteins to the translocon is not completely understood (Rapoport et al., 2017). In
yeast, Sec72, a component of the posttranslational translocon, is capable of binding
chaperones and may serve as a substrate receptor (Tripathi et al., 2017). Posttrans-
lational targeting in bacteria relies on cytosolic chaperones such as SecB and the
ATPase SecA to transfer the substrates to the translocon (Hartl et al., 1990). The
driving force of this translocation type is provided by the cytosolic ATPase SecA
and an electrochemical gradient at the inner membrane called the proton motive
force (PMF). The import machinery in eukaryotes is located in the ER-lumen and
usually consists of the DnaK-like Hsp70 chaperone BiP, which acts in concert with
its J-domain containing partner Sec63 in the ER membrane. Together they prevent
back-sliding of the translocating peptide and thus provide directionality (Chatzi
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et al., 2014; Matlack et al., 1999).
To date, cotranslational translocation is much better understood. It typically

involves the signal recognition particle SRP and its receptor, SRP receptor (SR, or
FtsY in bacteria). Both factors are required for targeting translating ribosomes to
the Sec translocon (Elvekrog and Walter, 2015). The SRP is an RNP consisting
of six proteins and a 7S RNA in eukaryotes and a single protein, Ffh, bound to a
4.5S or 6S RNA in bacteria (Poritz et al., 1990; Rosenblad et al., 2009; Walter and
Blobel, 1980, 1982). SRP binds to hydrophobic signal sequences in nascent chains
as they emerge from the ribosomal peptide exit tunnel with the methionine-rich M
domain of SRP54 and to the ribosome via its N-terminal and GTPase (NG) domain
(Janda et al., 2010; Voorhees and Hegde, 2015). When the SRP has engaged an
RNC, it can be delivered to the translocon via an interaction of the SRP with the
SR (Gilmore et al., 1982). Once targeted to the SR, the NG-domain of the SRP
and the homologous NG domain of the SR co-activate, triggering GTP hydrolysis
resulting in a handover of the RNC to the translocon where translation continues
parallel to translocation or membrane insertion (Egea et al., 2004; Focia et al., 2004;
Valent et al., 1998).

Dynamics of the Translocon during Cotranslational Translocation

In the idle state, the Sec translocon shows the central pore plugged and the gate
in a closed conformation (Van den Berg et al., 2004; Tsukazaki et al., 2008). For
protein translocation or membrane insertion, the translocon can undergo a series
of conformational changes. First, the translocon is primed, followed by an opening
of the channel, the insertion of the signal sequence and subsequent translocation
of hydrophilic stretches or membrane insertion of hydrophobic stretches (Rapoport
et al., 2017). In the cotranslational pathway, the Sec translocon is primed by binding
of the ribosome to the cytosolic loops between TMH 6 and TMH 7, as well as
between TMH 8 and TMH 9 of the C-terminal half of the SecY channel (Becker
et al., 2009; Gogala et al., 2014; Voorhees et al., 2014). Binding of the ribosome
causes conformational changes in these loops, which are transmitted to the adjacent
helices, causing this slight opening of the cytosolic side of the gate, while the plug
remains closed (Gogala et al., 2014; Voorhees et al., 2014). In the case of a secretory
protein, the signal sequence engages Sec at its lateral gate, whereby the translocating
peptide passes through the central pore. In many secretory proteins, as well as for
certain types of membrane proteins, the N-terminus is consequently oriented towards
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the cytosol and the helical signal sequence supplanting TMH 2 of the gate, leading
to a loop-insertion of the nascent peptide. This is commonly accompanied by a
displacement of the plug, as well as a further opening of the engaged lateral gate
(Voorhees and Hegde, 2016). Accommodation of a TMH likely follows the same
mechanism as signal sequence recognition in the lateral gate. Subsequent release of
the TMH is thought to occur by partitioning of the THM into the lipid phase of the
membrane, at least for single-spanning transmembrane proteins (Gogala et al., 2014;
Heinrich et al., 2000; Li et al., 2016; Voorhees and Hegde, 2016). In combination
with cleavage of the signal sequence, this mechanism would provide the correct
topology for the nascent chain to translocate through the protein conducting channel
(Rapoport et al., 2017). Further translocation of the hydrophilic nascent chain can
occur with an essentially closed gate and only a slightly rearranged central channel
(Gogala et al., 2014).

1.3.2 Folded Protein Translocation

Typically, transmembrane transport is mediated by translocators dealing with un-
folded proteins. These are, for example, the previously described Sec translocon or
the general import machinery of mitochondria consisting of the TOM and TIM23
complexes (Rapoport et al., 2017; Wiedemann and Pfanner, 2017). This allows them
to handle a plethora of different substrates with a small protein conducting pore.
Yet, a limited set of proteins require translocation across a membrane in a folded
state. So far, a set of scenarios necessitating folded protein translocation have been
identified. For instance, certain proteins require insertion of complex cofactors such
as Fe-S, Ni-Fe or molybdopterin clusters via enzymatic AFs prior to translocation
(Berks, 1996; Santini et al., 1998; Sargent et al., 1998; Wagener et al., 2011). Fur-
thermore, the lack of specific metal ions in the extracellular milieu requires some
enzymes to bind these ions to their folded active site prior to export (Monteferrante
et al., 2012; Tottey et al., 2008). Additionally, multimeric complexes have been
identified that require assembly prior to translocation (Rodrigue et al., 1999). Fi-
nally, as an adaptation to extreme environmental conditions, specific proteins have
been found to fold very rapidly after translation, thus requiring translocation in a
folded state (Rose et al., 2002). For such cases, a specialized translocation pathway
exists, called the twin-arginine translocase pathway (Tat-pathway). Moreover, for a
unique case of the Fe-S cluster bearing Rieske protein, a dedicated system evolved
in mitochondria, involving the unusual AAA-ATPase Bcs1, which replaced the Tat
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system for this specific substrate.

The Twin-Arginine Folded Proteins Translocation System

The primary pathway associated with the translocation of folded proteins is the Tat
system. This system plays a key role in a number of processes, such as phosphate
and iron acquisition (Letoffe et al., 2009; Ize et al., 2004), symbiotic nitrogen fixation
(Basile et al., 2018; Meloni et al., 2003), as well as photosynthetic and respiratory
pathways (Aldridge et al., 2008; Bachmann et al., 2006; Molik et al., 2001; Rodrigue
et al., 1999; Santini et al., 1998; Sargent et al., 2002). Homologues of the Tat system
are present in many bacteria, archaea and in chloroplasts (Berks, 2015; Patel et al.,
2014). While mitochondrial Tat systems are present in some eukaryotic lineages,
including plants, jakobid protists and a number of sponges (Burger et al., 2013;
Carrie et al., 2016; Pett and Lavrov, 2013), most mitochondria appear to have lost
this translocation pathway. The minimal working Tat systems utilizes only two sub-
units: TatA (Tha4 in chloroplasts) and TatC (Jongbloed et al., 2004). Nevertheless,
the thylakoid Tat systems and many other bacterial Tat systems such as that of
the E. coli model organism require a third subunit, TatB (Hcf106 in chloroplasts),
to function (Sargent et al., 1998). While TatB is a functionally distinct paralog of
TatA, bacteria often possess further, functionally equivalent paralogs of TatA, such
as TatE. In the trimeric Tat system, TatB and TatC form an oligomeric membrane
complex (TatBC) of so far unclear stoichiometry (Celedon and Cline, 2012). Sub-
strate recognition and engagement occurs when the name-giving, N-terminal twin-
arginine containing signal sequence of the substrate protein binds to the TatBC
complex (Alami et al., 2003; Cline and Mori, 2001). Initial binding of the substrate
causes recruitment of free TatA subunits, a process that is driven by the PMF
(Alami et al., 2003; Mori and Cline, 2002). While TatBC is required for substrate
recognition and TatA recruitment, TatA appears to transiently form the protein con-
ducting pore (Alcock et al., 2013; Rose et al., 2013; Rodríguez-Galán et al., 2013).
This relatively small subunit forms only one TMH and an amphipathic alpha-helix,
thus requiring the concerted action of many subunits to transiently form the protein
conducting pore (Rodríguez-Galán et al., 2013). The undefined oligomerization and
transient assembly explain the flexibility of the system with respect to substrate size.
It may also explain, why acquisition of high-resolution structural data depicting the
active translocation process or the pore is difficult. Thus, mechanistic insights into
the modes of action of Tat proteins remained largely elusive so far.
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Figure 5: Assembly Scheme of the Rieske Protein
Translocation and assembly scheme of the S. cerevisiae Rieske protein Rip1
showing import of the unfolded precursor into the mitochondrial matrix, folding
of the C-terminal domain, assembly of the 2Fe-2S cluster, and finally transloca-
tion across the inner mitochondrial membrane by Bcs1 (Wagener et al., 2011).

Translocation of the Rieske Protein by Bcs1

The Rieske protein, Rip1 in S. cerevisiae, is a small, Fe-S cluster containing pro-
tein. It was for the first time isolated from bovine mitochondria as part of the bc1
respiratory chain complex, which is also known as complex III (Rieske et al., 1964).
Bc-1 is a complex of the inner mitochondrial membrane (IM) and constitutes a key
component of the mitochondrial respiratory chain. Essentially, it is responsible for
oxidation of the membrane pool of ubiquinol and reduction of cytochrome c in the
mitochondrial intermembrane space (IMS) (Crofts, 2004; Xia et al., 2013). It uses
energy derived from these redox reactions to act as a proton pump, thus helping to
create the pH gradient across the IM used for ATP synthesis (Crofts, 2004; Reid
et al., 1966; Xia et al., 2013). Functionally, the Rieske protein constitutes one of the
electron-conducting centers of the bc1-complex. Its Fe-S center is one of the two
initial electron acceptors in the quinol oxidation reaction (Link, 1997; Trumpower
and Edwards, 1979). Apart from mitochondrial bc1-complexes, Rieske proteins are
also found in other electron transport chains such as bacterial bc-1 complexes, the
cytochrome b6f complex in chloroplasts and photosynthetic bacteria (Malkin and
Bearden, 1978) and bacterial dioxygenases (Mason and Cammack, 1992). It is a
small integral membrane protein with an N-terminal TMH and the 2Fe-2S cluster
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bearing C-terminal domain, which is exposed to the IMS (Harnisch et al., 1985).
While iron atoms in 2Fe-2S clusters are commonly coordinated by four cysteine
residues, the Rieske proteins show coordination by two cysteine and two histidine
residues (Gurbiel et al., 1989; Iwata et al., 1996).

Mitochondrial assembly of Rip1 and its insertion into the bc1-complex is a com-
plicated process (Figure 5). After cytoplasmic translation of the Rip1 precursor,
which contains a mitochondrial localization signal, it is initially imported into the
mitochondria via the TOM and Tim23 complexes (Hartl et al., 1986; van Loon and
Schatz, 1987). Once in the matrix, the 30 amino acid long mitochondrial targeting
pre-sequence is removed in two processing steps (Graham and Trumpower, 1991)
and the C-terminal domain folds and acquires its 2Fe-2S cluster (Kispal et al., 1999;
Wagener et al., 2011). To prevent aggregation and proteolytic decay while in the ma-
trix, Rip1 is associated with the small chaperone Mzm1 for stabilization (Cui et al.,
2012). Considering that folding of Rip1 takes place in the matrix and its final local-
ization is in the inner membrane with the folded C-terminus located in the IMS, Rip1
is a target for folded protein translocation (Wagener et al., 2011). While in bacteria
and chloroplasts, the Rieske protein is a substrate for the previously described Tat
translocation system (Aldridge et al., 2008; Bachmann et al., 2006; De Buck et al.,
2007), most mitochondria have lost this pathway (see 1.3.2: The Twin-Arginine
Folded Proteins Translocation System). Instead, Bcs1, the name-giving representa-
tive of an outlying clade of AAA-proteins (Frickey and Lupas, 2004) was found to
mediate the selective back-translocation of Rip1 in the yeast S. cerevisiae (Wagener
et al., 2011). Rip1 integration into bc1-precomplexes via Bcs1 is a prerequisite for
the final maturation and the formation of bc1-complex dimers and supercomplexes
(Cruciat et al., 1999).

1.4 AAA-Proteins: a Versatile Clade of Molecular

Machines

AAA-proteins—the ATPases associated with diverse cellular activities—are a large
family of ATPases sharing a conserved, common ATPase module (Erdmann et al.,
1991; Tomoyasu et al., 1993). As the name implies, these molecular machines are
involved in a wide range of processes such as membrane fusion (Woodman, 1997),
protein degradation (Yedidi et al., 2017) or peroxisome biogenesis (Grimm et al.,
2016). A core feature of these proteins is the highly conserved P-loop NTPase
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Figure 6: Structural Overview of the AAA Cassette and the Hand-
Over-Hand Translocation Mechanism
A) Overview of the AAA cassette showing the AAA large domain (LD) and small
domain (SD), the Walker A/B and intersubunit sensing motifs, the arginin fin-
gers (R-fingers) and pore loops 1 and 2.
B) Hexameric assembly of AAA cassettes, with two protomers highlighted.
Dashed gray line delineates the protomer 1, the dashed red line indicates the
location of the central pore.
C) Spirale staircase like arrangement of the pore loops of all six protomers (or-
ange) with substrate polypeptide that is translocated through the central pore.
P1–P6: Protomeres 1–6. All structures based on PDB: 6AZ0 (Puchades et al.,
2017).

domain, featuring around 220–250 amino acids (Wendler et al., 2012). Structurally
the AAA cassette consists of two subdomains, the AAA-large domain (also called
additional strand conserved E, in short ASCE domain) and small domain, henceforth
referred to as LD and SD (Figure 6A and Lupas and Martin, 2002; Wendler et al.,
2012). A core feature of the LD is the central five stranded parallel β-sheet, following
a 5-1-4-3-2 order of the individual strands (Iyer et al., 2004; Wendler et al., 2012).
This sheet is sandwiched between α-helices and bears the Walker A and B motifs
required for ATP binding and hydrolysis at the tips of β-strands 1 and 3, respectively
(Walker et al., 1982; Wendler et al., 2012). It furthermore harbors the intersubunit
sensing region involved in communication between individual protomers when in
multimeric assemblies, as well as the second region of homology (SRH), which can
contain one or more catalytically important arginine fingers (Augustin et al., 2009;
Tomoyasu et al., 1993). The SD, on the other hand, consists of a bundle of 3–5
α-helices (Lupas and Martin, 2002; Wendler et al., 2012). The nucleotide binding
pocket lies in close proximity to the Walker A motif, and is formed by the LD and SD
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of one protomer and the LD of a further protomer in oligomeric assemblies (Wendler
et al., 2012).

AAA-proteins and the encompassing superfamily of AAA+ or extended AAA-
proteins are constructed in a modular fashion combining one (Type I), two (Type
II) or more AAA cassettes often with additional enzymatic, regulatory, binding or
transmembrane domains within a single polypeptide (Grimm et al., 2016). As such,
Rea1, a AAA+ protein required for LSU biogenesis (see 1.2.2: Formation of the
Large Ribosomal Subunit) combines six AAA cassettes and additional functional
domains such as the MIDAS domain (Garbarino and Gibbons, 2002). Rix7, a fur-
ther AAA+ protein involved in LSU biogenesis is a Type II AAA+ protein showing
two AAA (D1 and D2) domains (Kressler et al., 2008). The FtsH family of proteins
including Yme1 and AFG3L2, specialized in protein quality control of membrane
proteins, consist of an N-terminal domain, a transmembrane domain, a AAA cas-
sette, and a metalloprotease domain (Janska et al., 2013). Virtually all studied
AAA+ proteins are known to form ring-like structures, typically as homohexamers
(see Figure 6B and Iyer et al., 2004; Vale, 2000). Notable exceptions are for instance
the AAA+ clade of clamp loaders, which are known to form pentameric rings (Yao
et al., 2003) and the σ54 activator, which forms heptameric and hexameric rings
(Batchelor et al., 2009). A slight deviation from this rule is also presented by Rea1
and Dynein: these form rings of six AAA cassettes, yet all are encoded on a single
polypeptide chain (Garbarino and Gibbons, 2002; Neuwald et al., 1999). Complexes
bearing two AAA cassettes, such as type II AAA+ proteins Rix7 or Cdc48, or
AAA+ proteins containing extra domains, such as Yme1, result in structures of
stacked rings (Lo et al., 2019; Puchades et al., 2017; Twomey et al., 2019). These
assemblies all have a central pore and the SRH of one subunit is located in such
a way that one or more arginines in the SRH can reach towards the γ-phosphate
of the ATP bound to the adjacent subunit, thus resembling the arginine fingers
found in some small GTPases (see Figure 6A, 6B and Ogura et al., 2004; Scheffzek
et al., 1997; Wendler et al., 2012). The intersubunit sensing region shows a similar
arrangement as the SRH and allows one subunit to sense the presence of ATP in
the adjacent, a feature vital to coordinated ATP-hydrolysis (Augustin et al., 2009;
Puchades et al., 2017).

Many of the so far characterized AAA+ proteins use ATP hydrolysis for sub-
strate unfolding and translocation through the central pore of their ring-like assem-
bly (Gates and Martin, 2020; Niwa et al., 2002; Ortega et al., 2000; Reid et al.,
2001). They possess specialized loops within the AAA cassette, called pore loops,
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that line the central pore and engage with the substrate via conserved aromatic
residues in an ATP dependent manner (Graef and Langer, 2006; Martin et al., 2008;
Niwa et al., 2002; Wang et al., 2001). Initial structures have shown planar and sym-
metric hexameric rings, displaying all six protomers trapped in the same state of
the ATP hydrolysis cycle (Bieniossek et al., 2006; Huyton et al., 2003; Stinson et al.,
2013). In contrast, more recent structural analysis of substrate-engaging AAA+
complexes have revealed an asymmetric assembly, showing a common mechanism
for these machines, which is referred to as a spiral staircase or hand-over-hand mech-
anism (see Figure 6C and Gates and Martin, 2020; Puchades et al., 2017; Twomey
et al., 2019). These structures show asymmetric assemblies with different co-existing
nucleotide states. They typically display multiple ATP bound subunits, an ADP
bound and/or an apo-subunit. Binding of ATP coincides with substrate engage-
ment via the conserved pore loops, whereas ATP hydrolysis occurs with substrate
release. Four successive subunits are typically bound to ATP, whereas the fifth sub-
unit can be either ADP bound or in an apo state, placing the ATP hydrolysis event
between the fourth and fifth subunit. The presence of different nucleotide states in
a single assembly results in the individual subunits not forming a planar ring but
a split washer- or right handed spiral staircase-like assembly with the apo-subunit
at the top and the ADP bound subunit at the bottom of the “staircase” (Figure
6B and 6C). Thus, ATP hydrolysis occurs in a coordinated around-the-ring fash-
ion, resulting in a stepwise substrate translocation. In the sixth subunit, after ATP
hydrolysis, release of the phosphate and opening of the nucleotide binding pocket
results in a disengagement from the bottom subunit of the spiral and its transition
towards the top of the spiral, thus completing one translocation cycle. For reviews
of this mechanism see Gates and Martin (2020) and Puchades et al. (2019).

28



2 Aims of this Thesis

2.1 Publications 1, 2 and 5 | Structural Analysis of

Eukaryotic Large Ribosomal Subunit Biogenesis

Eukaryotic ribosomal subunits must be built from their base components, the 5S,
5.8S, 18S and 25S rRNA and 79 ribosomal proteins in yeast (Kressler et al., 2017).
This highly complex assembly process, which spans the nucleolus, nucleoplasm and
cytoplasm, requires the coordinated action of over 200 AFs (Woolford and Baserga,
2013). Cryo-EM structures of pre-60S particles have provided insight into interme-
diate and late stages of the LSU assembly pathway, showing large parts of the LSU
fully constructed (Barrio-Garcia et al., 2016; Bradatsch et al., 2012; Leidig et al.,
2014; Ma et al., 2017; Wu et al., 2016). Conversely, the early steps of LSU biogene-
sis, involving initial rRNA folding, assembly of ribosomal proteins, and the function
of early AFs remained largely enigmatic. Therefore, the aim of publication 1 (Kater
et al., 2017) was to address these open questions by structurally characterizing het-
erogenous, nucleolar, and thus early stage pre-60S intermediates obtained by affinity
purifications targeting early acting 60S AFs.

In publication 2 (Thoms et al., 2018) we aimed to investigate the function of
the nucleoplasmic AF Cgr1. This protein is involved in a large-scale remodeling
of intermediate, nucleoplasmic pre-60S particles, the rotation of the 5S RNP and
maturation of the CP (Barrio-Garcia et al., 2016; Wu et al., 2016). Nevertheless,
its exact function in this process remained unclear. We aimed to find suppressor
mutants which bypass the function of Cgr1. By structurally characterizing pre-
60S intermediates depleted of Cgr1 and intermediates rescued by such a suppressor
mutation, we intended to dissect the role of Cgr1 in rotation of the 5S RNP.

The aim of Publication 5 (Kater et al., 2020a) was to analyze the transition
between late nucleolar particles presented in publication 1 and the nucleoplasmic
Arx1 particle by investigating the two large-scale remodeling steps associated with
the Rix1-Rea1 remodeling machinery. This machinery is required for two key disso-
ciation events, release of the nucleolar Erb1-Ytm1 complex and the nucleoplasmic
Rsa4 AF (Bassler et al., 2010; Ulbrich et al., 2009). Using cryo-EM, we aimed to
solve high resolution structures of this remodeling machinery and gain insight into
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the transition triggered by Rea1 mediated Erb1-Ytm1 release.

2.2 Publication 3 | Partially Inserted Nascent Chain

Unzips the Lateral Gate of the Sec Translocon.

The Sec-pathway is universally conserved and can be found in all kingdoms of life
(Pohlschroder et al., 1997; Stephenson, 2005). It allows translocation of secretory
proteins across and integration of integral membrane proteins into the cytoplasmic
membrane in bacteria and the ER membrane in eukaryotes (Rapoport et al., 2017).
In the cotranslational translocation pathway, ribosomes directly associate with the
Sec translocon to couple protein synthesis with protein translocation. The vast
majority of ribosome bound translocon structures are based on detergent solubilized
complexes. Notably, some of these studies have yielded contradictory results with
respect to the dynamics of this complex (Egea and Stroud, 2010; Gogala et al., 2014;
Voorhees and Hegde, 2016), possibly a result of the translocon subjected to a non-
native detergent environment. In publication 3 (Kater et al., 2019) we aimed to solve
the complete structure of the E. coli RNC bound Sec translocon in a lipid nanodisc at
a defined, early stage of translocation. By reconstituting SecYEG in a lipid nanodisc,
our goal was to obtain the structure of this complex in a close to native environment.
Using a combination of cryo-EM, biochemical crosslinking and molecular dynamics
simulation, our intention was to gain insight into the conformational dynamics of
the SecYEG lateral gate during this early stage of translocation.

2.3 Publication 4 | Structure of the Bcs1 AAA-ATPase

Suggests an Airlock-like Translocation Mecha-

nism for Folded Proteins.

Some proteins require completion of folding before translocation across a membrane
into another cellular compartment. Rip1, a subunit of the bc1 respiratory chain
complex is imported from the cytosol into the mitochondrial matrix via the Tom
and Tim23 complexes, where it folds and incorporates an Fe-S cluster (Kispal et al.,
1999; Wagener et al., 2011). To assemble the bc1-complex, the folded C-terminal
domain of Rip1 must be translocated across, while its N-terminal TMH is inserted
into the inner mitochondrial membrane. This process was shown to require the
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AAA-ATPase Bcs1 (Wagener2011). In publication 4 (Kater et al., 2020b) we aimed
to solve cryo-EM structures of Bcs1 oligomers to understand how an AAA-protein
can perform the task of translocating a folded protein across a membrane while
maintaining its permeability barrier.
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3 Discussion and Outlook

3.1 Biogenesis of the Large Ribosomal Subunit

After separation of the 90S SSU precursor, assembly, folding and maturation of the
large ribosomal subunit can be divided into three phases: i) initial compaction of the
rRNA, associated ribosomal proteins and early acting AFs in the nucleolus (Kater
et al., 2017; Sanghai et al., 2018; Zhou et al., 2019a), ii) formation and maturation
of the L1-stalk and CP in the nucleoplasm (Barrio-Garcia et al., 2016; Kater et al.,
2017; Wu et al., 2016) and iii) nuclear export of the pre-60S and finalization of the
ISS in the cytoplasm (Greber et al., 2012, 2016; Kargas et al., 2019; Ma et al., 2017;
Weis et al., 2015; Zhou et al., 2019b).

Cryo-EM structures presented in the publications associated with this disserta-
tion provide seven distinct snapshots in the early formation of the LSU, starting in
the nucleolus and leading up to the well-studied Arx1/Nog2 particle (Kater et al.,
2017, 2020a). With structures published by others supporting these findings (Sang-
hai et al., 2018; Zhou et al., 2019a), the steps of phase (i) can be summarized as
follows (Figure 7): Initial compaction of the LSU commences with the solvent ex-
posed shell. Folding of additional segments of rRNA and associated proteins into a
stable core occurs in sequential steps. First the solvent exposed back is completed
and then the peptide exit tunnel is closed (Kater et al., 2017). Thereby, rRNA com-
paction and maturation does not follow a transcriptional 5’ - 3’ sequence, but rather
a sequence from scaffold to function, allowing structural elements to form first as a
support for the later completion of functionally important sites (Kater et al., 2017;
Sanghai et al., 2018; Zhou et al., 2019a). Phase (i) is then completed by the release
of the Nsa1 module.

At the late nucleolar stage, a plethora of AFs occupies the ISS and stabilizes
the L1-stalk in a premature conformation, blocking access to the later site of CP
formation (see states D and E in Kater et al., 2017, and Figure 8). Progression from
this stage, in phase (ii), requires the first action of the Rix1-Rea1 remodeling ma-
chinery, which removes the Erb1-Ytm1 complex from these early particles (Bassler
et al., 2010; Kater et al., 2017). Upon removal of this complex, many of the factors
associated with the long meandering N-terminal tail of Erb1 dissociate (Kater et al.,
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Figure 7: Schematic of Early, Nucleolar Steps of pre-60S Assembly.
Maturation of the pre-60S particle from state A to state E (Kater et al., 2017),
shown as top views. Dashed gray arrows indicate the three main steps of this
early phase: formation of the solvent exposed back side, closure of the peptide
exit tunnel and release of the Nsa1 module consisting of Mak16, Nsa1, Rpf1 and
Rrp1 (see dashed box).
Assembly factors and the L1-stalk rRNA are displayed in color, other rRNA
and ribosomal proteins in light gray. Roman numerals indicate which parts of
25S rRNA domains are incorporated in the transition between two states. The
dashed box shows the back side of state A, the viewing direction is as indicated
by the eye symbol. RP: ribosomal protein. Ytm1*: Ytm1 becomes visible
in state E, but is previously flexibly attached to the unresolved C-terminus of
Erb1. Unk: unidentified assembly factor(s). Assignment of Rrp14 and Spb4 as
suggested by Sanghai et al. (2018).

2020a). As a result, the L1-stalk rRNA is at first destabilized, but ultimately ac-
commodates in its mature position after additional release of Spb1, Nog2 and Nip7.
This lays the ground for assembly and maturation of the ISS and CP. Incorpora-
tion of the CP and 5S RNP initially occurs in a premature configuration, requiring
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a 180◦ rotation triggered by binding of the Rix1-Rea1 complex via Sda1 and Ipi1
(Barrio-Garcia et al., 2016; Kater et al., 2020a; Leidig et al., 2014; Wu et al., 2016).
In this context, the pentameric Rix1-complex, targeted to the pre-60S with the help
of Ipi1, appears to be a link connecting processing of the ITS2 via the Grc3-Las1
endonuclease complex and rotation of the CP and 5S RNP via Rea1 (Barrio-Garcia
et al., 2016; Castle et al., 2012, 2013; Kater et al., 2020a). Surprisingly, the ver-
satile Rix1-Rea1 remodeling machinery fulfills multiple roles during maturation of
nucleolar and nucleoplasmic stages of LSU assembly, but also as a central compo-
nent in regulation of heterochromatin (Bassler et al., 2010; Kater et al., 2017, 2020a;
Shipkovenska et al., 2019; Ulbrich et al., 2009).

A reoccurring concept in both LSU and SSU biogenesis is the initial assembly
of rRNA structures in a premature conformation, usually requiring energy intensive
restructuring at a later point to reach a more mature state. This is often the case on
a small scale, where individual AFs induce or stabilize non-mature conformations in
the rRNA. Brx1 for instance, blocks formation of a three-way interaction between
the tips of helices H22, H68 and H88 of the 25S rRNA in the nucleolus (Kater et al.,
2017). Similarly, presence of Sda1 coincides with distortion of helices H68 and H81
in the nucleoplasm (Kater et al., 2020a). In the SSU, Tsr1 prevents maturation of
helix h44 of the 18S rRNA via its N-terminal helix (Heuer et al., 2017; Scaiola et al.,
2018). On a larger scale, assembly of the LSU shows two stages where big segments
of the rRNA are first stabilized in a premature conformation by the concerted action
of multiple AFs: the L1-stalk in late nucleolar particles and the 5S RNP and CP
in nucleoplasmic particles (Kater et al., 2017; Leidig et al., 2014; Wu et al., 2016).
The restructuring events necessary to remodel these premature rRNA structures
represent checkpoints in the assembly process, where progression occurs only after
fulfilling certain criteria. The passing of these points typically requires the expen-
diture of energy, and thus drives the assembly forward. During construction of the
LSU, they mark important transitions in terms of cellular localization and particle
composition. The first checkpoint is thought to coincide with the transition from
nucleolus to nucleoplasm, whereas the second checkpoint is a key step for gaining
nuclear export competency (Barrio-Garcia et al., 2016; Kater et al., 2017, 2020a;
Matsuo et al., 2014). Interestingly, a conceptually similar situation is present in the
90S particle prior to Utp24 mediated cleavage at the A1 site (Cheng et al., 2017). An
RNA conformational change triggered by the formation of helix h1 of the 18S rRNA
is required to bring the A1 cleavage site into proximity of the Utp24 endonuclease,
allowing separation of the 5’ ETS from the maturing SSU and thus maturation to
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Figure 8: Schematic of CP Formation in the Nucleoplasm.
Starting with late nucleolar state E (Kater et al., 2017), the formation of the CP
is depicted in five steps. In brief, triggered by release of the Erb1-Ytm1 complex
via Rea1 in the nucleolus, the prematurely stabilized L1-stalk is released in state
NE1 and takes a mature-like conformation in state NE2 (Kater et al., 2020a).
This enables formation of the premature CP in the Arx1/Nog2 particle, which
is further matured by the Rix1-Rea1 remodelling machinery.
Assembly factors, important rRNA segments and ribosomal proteins are high-
lighted in color, other rRNA and ribosomal proteins are displayed in light gray.
*: the 5S RNP including Rpf2 and Rrs1 becomes stably integrated in the
Arx1/Nog2 particle, yet it is already associated to flexible portions of the pre-60S
particle in earlier stages. Figure adapted from Kater et al. (2020a).

progress (Cheng et al., 2017, Cheng et al. 2020 in press).
While both of the above-mentioned LSU checkpoints require the Rix1-Rea1 re-

modeling machinery (Bassler et al., 2010; Kater et al., 2017, 2020a; Ulbrich et al.,
2009), so far, the mechanisms or triggers determining when to activate Rea1 and
thus overcome these checkpoints remain unclear. Nevertheless, structural data of
the nucleolar intermediate state E (see Kater et al., 2017) allow speculation on how
energy expenditure of Rea1 is communicated to trigger a large-scale structural re-
modeling of the nascent LSU. Rea1 interacts with state E particles by binding the
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Ytm1-UBL via its MIDAS domain, allowing it to dissociate the Erb1-Ytm1 com-
plex (Bassler et al., 2010; Kater et al., 2017). As mentioned above, Erb1 possesses
a long and essential N-terminal tail that wraps around half of the maturing pre-
60S particle, thereby connecting numerous AFs (Kater et al., 2017; Konikkat et al.,
2017). As progression from state E requires dissociation of many of these factors,
the Erb1 N-terminal extension may be the entity that links Rea1 ATP hydrolysis
to this large-scale dissociation and restructuring event (Kater et al., 2017, 2020a).
The second checkpoint requires the coupled action of Rea1 and the Nog2 GTPase
to license the LSU precursor for nuclear export (Barrio-Garcia et al., 2016; Matsuo
et al., 2014; Ulbrich et al., 2009). As mentioned above, Nog2 also has a long mean-
dering C-terminal tail, which makes interactions with both Rsa4 and Nsa2 (Kater
et al., 2017; Wu et al., 2016). Thus, similar to Erb1 in the first Rea1 step, this C-
terminal tail could potentially act as a sensor coupling Rea1 mediated Rsa4 release
to Nog2 GTP hydrolysis.

In conclusion, the structural and biochemical data presented in the publications
1, 2 and 5 of this dissertation (Kater et al., 2017; Thoms et al., 2018; Kater et al.,
2020a, respectively) provide an important cornerstone to understand early and in-
termediate events of LSU formation, including the mechanisms governing initial
compaction and remodeling of the rRNA. In addition, the structures presented in
these publications provide a wealth of data on dozens of AFs, guiding further char-
acterization of these proteins and thus enabling hybrid approaches to dissect their
function. In this manner, we used yeast genetics coupled with structural biology
to analyze the function of Cgr1, revealing its role in stabilizing the CP after its
180◦ rotation upon binding of Rea1 (Thoms et al., 2018). Furthermore, these data
constitute important groundwork both for the analysis of LSU formation in higher
eukaryotes such as humans, but also provide the foundation to investigate the ri-
bosomal assembly process in situ through methods such as cellular cryo-electron
tomography.

3.2 Early Steps in SecYEG Mediated Protein Inser-

tion

The Sec pathway is the main pathway to target and translocate secretory and mem-
brane proteins in bacteria and eukaryotes (Rapoport et al., 2017). While cotrans-
lational protein translocation and membrane insertion has been structurally inves-
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Figure 9: Structure of the RNC:SecYEG:Nanodisc Complex
(A) Overview of the cryo-EM structure showing the ribosomal subunits and the
SecYEG:nanodisc, independently refined using multi body refinement (Kater
et al., 2019).
(B) Model of the E. coli SecYEG complex showing the accessory helices of SecE
in proximity to the lateral gate (blue helices), which is in an early stage of
unzipping on the cytoplasmic side.
ND: nanodisc.

tigated in both eukaryotes and bacteria (Gogala et al., 2014; Jomaa et al., 2016;
Voorhees et al., 2014), many details of the underlying mechanism of TMH and sig-
nal sequence insertion, especially the dynamics of the lateral gate, are yet to be
fully understood. Publication 3 of this dissertation (Kater et al., 2019) presents
the to date most complete structure of the bacterial SecYEG complex, bound to
a translationally stalled 70S ribosome (Figure 9). For the first time, this structure
shows the accessory TMHs of SecE interacting with the lateral gate, possibly mod-
ulating the gate dynamics and assisting in membrane insertion. The lateral gate
itself is slightly opened, induced by binding of the RNC to the cytoplasmic loops as
indicated by molecular dynamics simulations. Previous analysis of the lateral gate
dynamics yielded controversial results (Egea and Stroud, 2010; Gogala et al., 2014;
Voorhees and Hegde, 2016), with conformational changes through a non-native en-
vironment and detergent solubilization being a plausible cause (Cross et al., 2013).
In this study, SecYEG was prepared in a large nanodisc, which allows it to be
surrounded by phospholipids and providing sufficient space to mimic a native en-
vironment, enabling native conformations and dynamics (Kater et al., 2019). This
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structure highlights an early step in the insertion of the signal sequence, contribut-
ing to our understanding of cotranslational insertion of TMH. To achieve this, the
nascent chain was designed to be long enough to interact with the lateral gate but
of insufficient length to form a TMH in the correct topology. While crosslinking
could confirm the presence of the signal sequence at the lateral gate, density for
the nascent chain outside of the ribosomal exit tunnel could not be traced read-
ily, suggesting conformational heterogeneity. Compared to previous structures, the
SecY lateral gate shows a conformation between the “primed” state, where the gate
is slightly opened and the “inserting” state, where the signal sequence has displaced
TMH 2 of the lateral gate (Kater et al., 2019; Voorhees et al., 2014; Voorhees and
Hegde, 2016).

While this structure presents an important step towards understanding the con-
formational dynamics of SecYEG in a native environment, it also illustrates the
difficulties of this undertaking. The absence of nascent chain density at the lateral
gate could indicate a high degree of flexibility at this stage. Surprisingly, even with
the onset of direct electron detectors routinely enabling high resolution structure
determination, well resolved structures of SecYEG bound to the ribosome remain
elusive. While the ribosome itself can typically be resolved to high resolution, Se-
cYEG, placed at the periphery of the structure shows a prominent drop in local
resolution (see for example: Gogala et al., 2014; Jomaa et al., 2016; Kater et al.,
2019; Voorhees and Hegde, 2016). Considering the small size of SecYEG (approx-
imately 75 kDa) and the inherently heterogeneous lipid or detergent environment
surrounding this small complex, this sample still presents a challenge for cryo-EM
methods such as multi body refinement. It thus highlights the importance of hy-
brid approaches combining structural biology with biochemical data and molecular
dynamics simulations.

3.3 Folded Protein Translocation by the Heptameric

Bcs1 AAA-ATPase

Assembly of the bc1 respiratory chain complex requires translocation of the folded,
Fe-S cluster bearing Rip1 protein from the mitochondrial matrix into the IMS and
inner membrane (Wagener and Neupert, 2012). This act of folded protein transloca-
tion requires Bcs1, an outlier of the AAA family of ATPases (Wagener et al., 2011).
In Publication 4 of this dissertation we solved the oligomeric structure of yeast Bcs1
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by cryo-EM in two apo states and one ADP bound state (Kater et al., 2020b).
These structures reveal that the Bcs1 monomer consists of three domains, an N-
terminal TMH, a β-sheet containing middle domain and a C-terminal AAA cassette
(Kater et al., 2020b). Unlike classical hexameric AAA-proteins like Yme1 or Cdc48,
Bcs1 forms an unusual homo-heptameric assembly, resulting in two large aqueous
vestibules, one on the matrix side formed by the seven AAA cassettes and one in
the inner membrane formed by the seven TMHs (Kater et al., 2020b). The middle
domain forms a seal-like structure separating the two vestibules that can transiently
open up through conformational changes. The architecture of the heptameric assem-
bly, combined with the structural transitions reflecting different nucleotide states of
the ATPase, suggest an airlock-like mechanism for the translocation of Rip1 (see
Figure 10).

Figure 10: Model for translocation of folded Rip1 protein by Bcs1.
The different structures of Bcs1, either bound to ATPγS, ADP or in a nucleotide
free state suggest an airlock like translocation mechanism. Simplified, this model
comprises three steps:
(1) a loading step, where Rip1 is accommodated into the matrix vestibule of the
Bcs1 heptamer
(2) a gating step, where the seal pore opens to allow passage of Rip1 from the
matrix vestibul into the IM vestibule and
(3) a release step, where the globular domain of Rip1 is releasd into the IMS,
and the N-terminal TMH is laterally integrated into the IM. This likely coincides
with closing of the seal pore and is probably enabled by opening of the bundle
of TMH of Bcs1.
Figure adapted from Kater et al. (2020b).

A recent publication presenting structures of the mouse ortholog of Bcs1 cor-
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roborate our findings and propose a similar translocation mechanism (Tang et al.,
2020). These structures also show C7 symmetric heptameric assemblies and, in ad-
dition to an apo and ADP-bound state, an ATPγS state is presented. While the
two published ADP structures show highly similar conformations of the AAA ring
and the middle domain, the mouse structure resolves only the C-terminal 19 amino
acids of the TMH, resulting in a flattened basket and indicating higher flexibility in
the mouse TMH (Kater et al., 2020b; Tang et al., 2020). Surprisingly, the overall
conformation of the mouse ADP state corresponds to that of the mouse apo state,
showing only minor differences around the nucleotide binding pockets (Tang et al.,
2020). This presents a strong contrast to our structures in yeast, where a transition
between the ADP and both apo states results in the inward rolling of the AAA
cassettes and thus the narrowing of the central pore (Kater et al., 2020b). The rea-
sons for these discrepancies remain unclear at this point. They may be a result of
differences in sample preparation or perhaps caused by a lack of substrate protein.

Inward rolling of the AAA cassettes, similar to what we observed in the yeast
apo states, is observed in the mouse ATPγS state (Tang et al., 2020). This state
shows a stronger similarity to the yeast Apo 2 state, where a long β-hairpin termed
the connector haipin is flipped outward, away from the central symmetry axis. This
coincides with an opening of the seal domain as the middle domain is rotated away
from the membrane plane (Kater et al., 2020b; Tang et al., 2020). While the yeast
Apo 2 and mouse ATPγS show a similar conformation, the ATPγS state shows a
more compacted form, with the matrix vestibule significantly contracted and thus
reduced in size (Tang et al., 2020). In this state, the matrix vestibule is too small to
harbour the Rip1 folded domain. Coincidentally, while the TMH of the yeast Apo 2
state are less well resolved, the TMH of the mouse ATPγS are entirely delocalized,
indicating that this change in conformation results in a destabilization of the IM
basket of TMHs (Kater et al., 2020b; Tang et al., 2020). This delocalization of the
TMHs could reflect the opening of the IM vestibule towards the IMS, necessary
for release of the Rip1 cargo. Thus, this state could be similar to the release state
during Rip1 translocation (see step 3 in Figure 10).

Taken together, these studies cover the three different nucleotide states and show
how nucleotide-driven conformational changes are translated from the AAA cassettes
to the middle domains and TMHs (Kater et al., 2020b; Tang et al., 2020). All of
these structures support the proposed airlock-like mechanism for Rip1 translocation
(Figure 10). Furthermore, they suggest a concerted mechanism of action, as opposed
to the spiral staircase, hand-over-hand translocation mechanism performed by clas-
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sical AAA proteins. This is supported by several findings, including the phylogenetic
placement of Bcs1 in an outlying clade of AAA proteins with unique features, such
as a seven stranded central β-sheet in its AAA cassette and the lack of pore loops
(Frickey and Lupas, 2004; Kater et al., 2020b; Tang et al., 2020). In addition, the
Bcs1 AAA cassette was found to be more similar to domain D2 in type II AAA pro-
teins, which, during substrate translocation remain in a planar configuration (Tang
et al., 2020). On the other hand, initial structures of classical AAA proteins solved
without substrate and with defined nucleotide conditions resulted in symmetric as-
semblies (Bieniossek et al., 2006; Huyton et al., 2003; Stinson et al., 2013). Such
structures are now thought to represent inactive ground states, resulting from a
lack of bound substrate (Puchades et al., 2019). Thus, solving structures of Bcs1 in
complex with the Rip1 substrate protein will be key to a full understanding of the
details of its translocation mechanism.
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SUMMARY

Eukaryotic 60S ribosomal subunits are comprised of

three rRNAs and �50 ribosomal proteins. The initial

steps of their formation take place in the nucleolus,

but, owing to a lack of structural information, this

process is poorly understood. Using cryo-EM, we

solved structures of early 60S biogenesis intermedi-

ates at 3.3 Å to 4.5 Å resolution, thereby providing

insights into their sequential folding and assembly
pathway. Besides revealing distinct immature rRNA

conformations, we map 25 assembly factors in six

different assembly states. Notably, the Nsa1-Rrp1-

Rpf1-Mak16 module stabilizes the solvent side of

the 60S subunit, and the Erb1-Ytm1-Nop7 complex

organizes and connects through Erb1’s meandering

N-terminal extension, eight assembly factors, three

ribosomal proteins, and three 25S rRNA domains.
Our structural snapshots reveal the order of integra-

tion and compaction of the six major 60S domains

within early nucleolar 60S particles developing step-

wise from the solvent side around the exit tunnel to

the central protuberance.

INTRODUCTION

Eukaryotic ribosomes, the protein-synthesizing molecular

machines, consist of a small subunit (SSU) (40S) and a large

subunit (LSU) (60S), which comprise four ribosomal RNAs

(18S, 5S, 5.8S, and 25S/28S) and around 80 ribosomal pro-

teins (RPs). The assembly of ribosomal subunits starts in the

nucleolus, where RNA polymerase I transcribes the rRNA pre-

cursor (35S pre-RNA in yeast), from which, after processing

and removal of the external and internal transcribed spacers

(ETS and ITS), the mature 18S, 5.8S, and 25S rRNAs are

generated (Woolford and Baserga, 2013). The pre-RNA is

modified during transcription by small nucleolar ribonu-

cleoproteins (snoRNPs), processed by RNA nucleases, and

assembled with numerous RPs (Turowski and Tollervey,

2015). After endonucleolytic cleavage of the rRNA precursor

at site A2 in yeast, the pre-40S and pre-60S subunits follow

separate biogenesis routes.

Co-transcriptional folding and assembly intermediates of pre-

ribosomes were first visualized as compact knobs on rDNA-

chromatin spreads, representing the 90S pre-ribosome or SSU

processome (Grandi et al., 2002; Miller and Beatty, 1969).

Here, the modular assembly of the 90S particle provides a scaf-

fold for the domain-wise folding of the 18S precursor rRNA

(Chaker-Margot et al., 2017; Kornprobst et al., 2016; Sun et al.,

2017). In contrast to the 40S subunit, the architecture of the

60S subunit is more complex with its six highly intertwined do-

mains of the 25S rRNA (Ben-Shem et al., 2011). Around 90 as-

sembly factors (AFs) have been associated with 60S biogenesis

(Woolford and Baserga, 2013). Proteomic analysis has revealed

that early nucleolar intermediates show a high degree of

complexity with respect to AF association and that the number

of AFs generally decreases throughout the maturation pathway

(Nissan et al., 2002; Wu et al., 2016). During this development,

it is thought that the incorporation of RPs occurs hierarchically

via the sequential integration of early-, middle-, and late-acting

groups of RPs (Gamalinda et al., 2014).

Complex early pre-60S intermediates containing the 27SB

pre-rRNA and the 5S rRNA could be isolated by affinity purifi-

cation methods based on tagged assembly factors, among

which Nsa1 yielded a nucleolar pre-60S particle of distinct

protein and rRNA composition (Kressler et al., 2008). Notably,

these particles contained numerous early-acting AFs, including

the conserved Erb1-Ytm1 complex (Kressler et al., 2008).

Release of Nsa1 and the Erb1-Ytm1 complex from these parti-

cles is mediated through the action of the remodeling AAA-

ATPases Rix7 and Rea1, respectively (Bassler et al., 2010;

Kressler et al., 2008). To date, however, nothing is known about

the structure of such early biogenesis intermediates, and,

accordingly, it remains to be determined how pre-60S subunits

form and evolve during the first steps of their nucleolar assem-

bly. Major structural transitions are expected to occur during

this early phase, as indicated by the finding that the release

of the Erb1-Ytm1 complex is linked to the exit of the particle

Cell 171, 1599–1610, December 14, 2017 ª 2017 The Authors. Published by Elsevier Inc. 1599
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).



from the nucleolus to the nucleoplasm (Bassler et al., 2010).

Here, another set of AFs associates with these intermediate

pre-60S particles, including the Arx1-Alb1 dimer that binds at

the already formed ribosomal tunnel exit site (Bradatsch

et al., 2012; Leidig et al., 2014; Wu et al., 2016). As there is

no structural characterization of any nucleolar intermediate,

this nucleoplasmic Arx1-containing particle (also referred to

as Arx1 or Nog2 particle) represents the earliest observed

pre-60S structure at present. In addition to Arx1, this pre-60S

particle is associated with further AFs, including Rsa4, Nog2,

and the Rpf2-Rrs1 complex, in the area of the unrotated 5S

RNP (Bradatsch et al., 2012; Leidig et al., 2014; Nissan et al.,

2002; Ulbrich et al., 2009; Wu et al., 2016) and typically exhibits

a landmark structure, called ‘‘foot,’’ consisting of five biogen-

esis factors (Nop15, Cic1, Nop7, Rlp7, and Nop53) and partially

processed ITS2 (Wu et al., 2016). Surprisingly, in this interme-

diate, the central protuberance (CP) together with the bound

5S RNP (5S rRNA and RPs uL18 and uL5) is stabilized in an

immature, 180�-rotated state (Leidig et al., 2014; Wu et al.,

2016). However, apart from the CP, several helices on the

inter-subunit side and the ITS2, the rRNA within the Arx1 parti-

cle has acquired a close-to-mature globular conformation. Prior

to nuclear export, the Rix1-Rea1 complex exerts a further re-

modeling step, likely releasing the Rpf2-Rrs1 complex and re-

sulting in the rotation of the 5S RNP, as well as the release of

Rsa4 (Barrio-Garcia et al., 2016; Ulbrich et al., 2009; Wu

et al., 2016). Export competence of the particle is achieved in

two steps, release of the guanosine triphosphase (GTPase)

Nog2 allows recruitment of the export adaptor Nmd3, whereas

Yvh1-binding-mediated release of Mrt4 allows binding of the

export receptor Mex67-Mtr2 (Matsuo et al., 2014; Sarkar

et al., 2016). Upon exit into the cytoplasm, the pre-60S particle

undergoes final maturation, which is mostly dedicated to AF

removal and incorporation of the last remaining RPs (Lo

et al., 2010). Here, Drg1, a further AAA-type ATPase, is required

for the recycling of the assembly factors Rlp24 and Nog1, re-

sulting in an ordered cascade of assembly factor release

events (Kappel et al., 2012; Lo et al., 2010; Pertschy et al.,

2007). The removal of the export factor Nmd3 is enabled

through incorporation of the RP uL16 and the action of the

GTPase Lsg1 (Ma et al., 2017; Malyutin et al., 2017). It is

thought that in a final step, removal of the anti-association

factor Tif6 by the combined action of the Shwachman-Bodian-

Diamond syndrome homolog Sdo1 and the elongation factor

G homolog Efl1 leads to translationally competent LSU (Menne

et al., 2007; Weis et al., 2015).

The known pre-60S structures depict the rRNA to a large

extent already in a mature state. As even the nucleoplasmic

Arx1 or Nog2 particle only show rRNA at the intersubunit

side and the central protuberance in a pre-mature state, the

question arises of how the majority of the rRNA folds in pre-

ceding nucleolar pre-60S intermediates to adopt a monolithic

and intertwined conformation. To elucidate the order of these

folding events and the underlying mechanisms, we have per-

formed a cryoelectron microscopy (cryo-EM) analysis of nucle-

olar pre-60S particles isolated from yeast. This analysis

provided insight into the nucleolar pre-60S assembly steps,

which allowed us to assign roles to the multiple biogenesis

factors and deduce the principles of rRNA folding during 60S

biogenesis.

RESULTS

Cryo-EM Analysis of Stage-Ordered Nucleolar Pre-60S

Particles

We selected several biogenesis factors that allow isolation of

nucleolar pre-60S particles upon affinity purification following

two different strategies. First, we applied the split-tag affinity

purification method (based on two different bait proteins, each

labeled with a different affinity tag followed by two subsequent

affinity purifications) to restrict the pool of assembly intermedi-

ates. Second, we aimed to isolate early pre-60S particles via a

single bait protein from yeast mutants arresting at, and thus

accumulating, a distinct stage during early pre-60S biogenesis.

Following the first strategy, we affinity purified bona fide

pre-60S particles from wild-type yeast cells using combinations

of tagged early pre-60S assembly factors, the first pair consist-

ing of Nsa1 and Ytm1 (Nsa1-TAP, Flag-Ytm1) and expected to

enrich nucleolar pre-60S assembly intermediates, and the

second pair of Rix1 and Rpf2 (Rix1-TAP, Rpf2-Flag), which could

enrich further progressed pre-60S particles (Figures S1A

and S1B). Regarding the mutant approach, we selected the

dominant-lethal TAP-tagged Ytm1 E80A allele (Figures S1C

and S1D), which allows affinity purification of a distinct

pre-60S particle. It harbors a single amino-acid substitution in

the N-terminal ubiquitin-like (UBL) domain of Ytm1, and, similar

to the complete deletion of the UBL domain, this mutant is

impaired in the interaction with the AAA-type ATPase Rea1.

Consequently, Rea1 cannot remove the Erb1-Ytm1 complex,

thereby blocking further maturation (Bassler et al., 2010). When

all these different affinity purified pre-60S particles were

analyzed by single-particle cryo-EM and 3D classification, six

distinct and stable pre-60Smaturation states could be obtained,

which in the following will be referred to as states A to F (Figures

1A, S2, and S3). These intermediates were put into a consecutive

order (from states A to F), based on the increase of structured

rRNA and incorporation of RPs, which are thought to follow a

hierarchical assembly pathway (Gamalinda et al., 2014) (Figures

1A and S4). Consistent with our experimental design, the four

earliest intermediates (A to D) were isolated via the Nsa1-Ytm1

baits, whereas the Rix1-Rpf2 pair yielded the intermediates of

the two later states (E and F). Importantly, only state F pre-60S

particles displayed a clearly visible and stably incorporated

5S RNP module. This state represents the previously observed

nucleoplasmic pre-60S particle, which can be affinity purified

with either Arx1 or Nog2 as bait (Leidig et al., 2014; Wu et al.,

2016). Therefore, we used the Arx1/Nog2 particle model as basis

for the interpretation of the State F map (Wu et al., 2016). Using

the dominant-lethal Ytm1 E80A mutant to affinity purify pre-60S

subunits, we indeed observed an enrichment of particles, which

are structurally indistinguishable from type E particles derived

from wild-type cells (Rix1-TAP/Rpf2-Flag), with only a minor

portion of particles resembling earlier intermediates similar

to states A–C. Importantly, the state E pre-60S population

yielded the highest resolved structure at 3.3 Å average resolution

(Figures 1A, S2, and S3).
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Atomic Structure of Early States C and E Pre-60S

Particles

We built atomic structures for the two highest resolved

pre-60S particles, states C and E, with average resolutions

of 3.6 Å and 3.3 Å, respectively. These models comprise a total

of 25 localized ribosome assembly factors, of which 13 were

built de novo, including Nsa1, Rrp1, Rpf1, Mak16, Erb1,

Has1, Nop16, Ebp2, Brx1, Noc3, Nop2, Nip7, and Spb1 (Fig-

ures 1B and S5). The models for Nsa1 and Rrp1 agree nicely

with the respective crystal structures, indicating that both
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Figure 1. Cryo-EM Structures of Nucleolar Pre-60S Assembly Intermediates

(A) Cryo-EM densities filtered to 10 Å in the case of states A, B, D, and F. Maps of states C and E are filtered to 3.6 Å with the identified biogenesis factors

highlighted in color. Below each map, the overall resolution (res.), the number ribosomal proteins (RPs), and assembly factors (AFs), which are stably associated

with the core particle and thus are resolved in the cryo-EM structures, are shown. The resolution of state E corresponds to the Ytm1-E80A particle-derived map.

(B and C) Front and top views of the model of state C (B) and state E (C). rRNA and RPs are colored in light and dark gray, respectively. Biogenesis factors are

highlighted in color. Helices 76–79 of the L1 stalk (C) are shown as backbone only and not included in the deposited model.

See also Figures S2 and S4.
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behave as rigid bodies in the pre-60S particles (Figures S6B

and S6C).

The nucleolar pre-60S particles in states A–C show a charac-

teristic arch-like morphology. This strongly deviates from the

later D, E, and F state particles, which already display a globular

shape similar to the mature 60S (Figure S2A). However, states

A–C already contain a hallmark structure typically seen on Arx1

or Nog2 particles, termed the ‘‘foot,’’ which is formed by ITS2

rRNA and its associated ‘‘A3’’ cluster factors Cic1/Nsa3, Nop7,

Nop15, and Rlp7 (Bradatsch et al., 2012; Leidig et al., 2014;

Wu et al., 2016). In contrast to the ‘‘foot’’ in the Arx1 particle,

the A–C state particles contain a part of the Erb1 N terminus

(amino acid residues 328–400) instead of Nop53 (Figure 1B).

More importantly, however, adjacent to the foot, the 5.8S portion

of the pre-rRNA and the 25S rRNA domains I and II and the

increasing parts of domain VI complete, together with eventually

21 RPs (in state C), the solvent-exposed back side of these

pre-60S particles. Strikingly, in state C the polypeptide exit tun-

nel (PET) and the entire inter-subunit side, including the CP, the

peptidyl transferase center, and the L1 stalk, are not yet formed,

since domains III and IV and most of domain V of the 25S rRNA

are not stably incorporated into the core particle (Figures

1A–1C). Notably, these domains are inevitably tethered to the

particle (linked between domains II and VI); however, they are

not yet rigidly oriented with respect to the developing core parti-

cle. Therefore, we cannot draw any conclusion regarding their

intra-domain folding state and association mode of ribosomal

and non-ribosomal proteins. However, we can clearly observe

how the core particle develops, which apparently starts with

the formation of the solvent side of the 60S subunit. Here, a clus-

ter of four AFs—the Nsa1 module—is positioned; it consists of

the b-propeller protein Nsa1 (used as a bait), the a-helical protein

Rrp1, and the Brix-fold protein Rpf1 with its known interaction

partner Mak16 (Baßler et al., 2017; McCann et al., 2015). The

Nsa1 module binds the rRNA expansion segment (ES) 7a, which

adopts a distinct L-shaped conformation, and thereby interacts

with and clamps together rRNA domains I and II (Figure 2). This

solvent-side location of Nsa1 explains why failure of its removal

during 60S biogenesis, due to an N-terminal deletion in the Rix7

AAA ATPase, still allows the formation of functional 80S ribo-

somes and polysomes (Kressler et al., 2008). The loop between

the fourth and fifth b-blade of Nsa1 (Loop 4D-5A) (Figure 2A) was

described to mediate the interaction between the human homo-

logs of Nsa1 (WDR74) and Rix7 (NVL2) (Lo et al., 2017). Yet in

yeast, we found that the Nsa1 loop 4D-5A is involved in interac-

tions with ES7a and Mak16; it is therefore not readily accessible

for interaction with Rix7 (Figure 2A). Thus, a conformational rear-

rangement may be required for Rix7-mediated dissociation of

Nsa1 from the pre-60S particle.

Another assembly factor of the Nsa1 module, prominently

seen in our pre-60S particle, is the Brix protein Rpf1 (Wehner

and Baserga, 2002). Notably, its N terminus extends from the

solvent side of the particle to a location where later the PET

will form and, moreover, binds close to helix H24 of the 25S

rRNA and the RP uL24 (Figure 2B). This N-terminal helix remains

in place during the further construction of the tunnel until state D,

thus it may act as a ‘‘placemarker’’ for where the PETwill be con-

structed. After dissociation of the Nsa1module from the pre-60S

particle, likely triggered by Rix7, the tunnel is seen unoccupied in

state E, but becomes filled with the C-terminal extension of Nog1

in state F, where typically Arx1-Alb1 decorate the exit site (Fig-

ure 2B) (Bradatsch et al., 2012; Wu et al., 2016). In addition to

the aforementioned assembly factors, state C particles already

contain a subset of the so-called B-factors: Nog1, Mrt4, Tif6,

and Rlp24, which are essential for the later separation of the

27SB precursor into 26S and 7S pre-rRNA (Talkish et al.,

2012). These B-factors, together with the N-terminal anchor

helices of Nsa2 and Nug1, bind to the side of the pre-60S particle

opposing the ‘‘foot’’ (Figure 1B). Notably, although present from

state C onward, Nog1’s C-terminal extension, which can

reach toward and into the peptide exit tunnel, is not localized

at states C–E.

Erb1 Functions as a Multivalent Interaction Hub

In the further matured states D and E, the rRNA domain III with

parts of domain IV and additional stretches of domain V of the

25S rRNAbecomevisibleafter incorporation into thecoreparticle,

resulting in the lateral closure and, thus, completion of exit tunnel

formation. This correlates with the stable incorporation of nine

additional RPs (Figure S4) and five AFs (Nip7, Noc3, Nop2,

Spb1, and Ytm1) at the maturing inter-subunit interface of

state E, which are not seen in state C (Figure 1). Notably, state E

pre-60S particles are very similar to state D particles, except

that in state E the Nsa1 module is absent and RP uL15 has been

acquired. This suggests thatE-typepre-60Sparticleshaveunder-

gone the AAA-type ATPase Rix7-mediated dissociation of Nsa1.

A central assembly factor already present on the earliest

pre-60S particles is Erb1, for which a large number of biochem-

ical, structural, and genetic data have been obtained in previous

studies (Konikkat et al., 2017; Miles et al., 2005; Thoms et al.,

2016; Wegrecki et al., 2015). It is composed of an N-terminal

region containing the nuclear localization signal, a long N-termi-

nal stretch, and a C-terminal b-propeller domain (Konikkat

et al., 2017; Pestov et al., 2001; Thoms et al., 2016; Wegrecki

et al., 2015). Whereas part of its N terminus is already visible in

states A–C, most of Erb1 (amino acids 125 to 807 of 807) can

only be seen in the states D and E particles (Figure 3A). Here,

the Erb1 b-propeller binds at the edge of the maturing inter-sub-

unit side, in close proximity to the RPs eL27 and eL38, rRNA helix

H58, and ES20a and ES27 (Figure 3). Notably, Erb1 contacts its

nearby interaction partner Ytm1, as previously observed in the

crystal structure of the Chaetomium thermophilum Erb1-Ytm1

complex (Thoms et al., 2016; Wegrecki et al., 2015). Ytm1 con-

tains an N-terminal domain, called MIDO (MIDAS-interacting

domain) or UBL domain, which binds the MIDAS (metal ion-

dependent adhesion site) domain of Rea1 during the first Rea1

remodeling step (Bassler et al., 2010). However, due to flexibility

theMIDO is not well resolved in state D and E. Based on the crys-

tal structure of Ytm1 (Thoms et al., 2016; Wegrecki et al., 2015),

the Ytm1-UBL domain is strategically located at the distal edge

of the pre-60S particle, thus allowing access for the Rea1

MIDAS-domain and enabling the Rea1-mediated removal of the

Ytm1-Erb1 heterodimer from the pre-ribosomal particle.

Following the Erb1 N-terminal tail meandering over the

pre-60S particle reveals a number of different AFs contacts on

the early pre-60S particles (states A–E). In state D and E, it
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extends toward the base of the foot, where it interacts with Nop7

and forms a short two-stranded intermolecular b sheet with the

N terminus of Rlp7. The Erb1 tail then wraps along the back

side of the ‘‘foot’’ to the top of the pre-60S particle, where it

comes in contact with Nop16, the helicase Has1, and RP eL36.

From there, it proceeds to the rather immature inter-subunit

side, where it interacts with further four AFs: the C terminus of

the Spb1 methyltransferase (Kressler et al., 1999; Lapeyre and

Purushothaman, 2004), Noc3, Ebp2 and its binding partner

Brx1. In this way, the Erb1 N-terminal extension coordinates

three 25S rRNA domains (I, III, and IV), three ribosomal L-pro-

teins, and nine different biogenesis factors, in total reaching

around half of the pre-60S particle (Figures 3A–3C). Thus, our

cryo-EM structures explain at molecular level many of the

described in vivo effects of the A3-factor Erb1 and its partner

Ytm1, and clarify its key role as coordination hub in the early

nucleolar pre-60S particles of states D and E.

Notably, although the state E pre-60S particle is well on its way

toward maturation by compaction of domains III, IV, and V, it is

striking to see that the CP (i.e., the area around 5S RNP in the

mature 60S) has not developed at all, and that the L1-stalk

(rRNA H74-H79) exhibits a strong displacement from its mature

position in the 60S subunit to a stable immature conformation

in the pre-60S particle. Specifically, a rotation of the L1 stalk at

Figure 2. Nsa1 Module and Formation of the PET

(A) Binding site of the Nsa1 module consisting of Mak16 (red), Nsa1 (orange), Rpf1 (purple), and Rrp1 (dark blue) bound to ES7a (light gray). A back and side view

of the particle is shown. Densities for rRNA domains I, II, and VI as well as the 5.8S rRNA are, respectively, colored in light pink, purple, green, and beige. The

vertical dashed line through the particle in the upper left view indicates the clipping plane for the cropped density. Loop 4D-5A, suggested to interact with the

AAA-ATPase Rix7, is indicated in blue.

(B) Maturation of the PET from states C–F. The N terminus of Rpf1 occupies the tunnel in states A–D; state E shows a free tunnel; and state F displays the

C terminus of Nog1 residing in the tunnel.
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the base of helix H74 is required to bring this hallmark structure of

the large subunit from its outward conformation to themature po-

sition. Interestingly, the immature position of rRNA helices H76 to

H79 is similar to the immature non-rotated location of the 5S

rRNP in the later Arx1 particle (Leidig et al., 2014) (Figures 1

and 4). The L1 stalk RNA is chaperoned and kept in this unusual

conformation by a set of five AFs, consisting of the C terminus of

Ebp2, Noc3, the methyltransferase domain of Nop2 (Sharma

et al., 2013) its binding partner Nip7 (Talkish et al., 2012), and

the C-terminal b-barrel domain of Nsa2. As a consequence, ac-

commodation of the entire rRNA segment, later forming the L1

stalk, into the conformation observed in the further progressed

F state particles (also Arx1 particles) is prevented (Bradatsch

et al., 2012; Leidig et al., 2014; Wu et al., 2016). Thus, a set of

factors, including Nip7, Nop2, Noc3, and Ebp2, has to dissociate

from the developing pre-60S particle before the L1 stalk domain

can adopt its mature position. Importantly, the E state structure

reveals how the rearrangement of the L1-stalk toward a more

mature conformation as seen in state F particles is linked to

distinct changes in the ‘‘foot’’ structure (Figures 4C and 4D).

Removal of Erb1-Ytm1 from the pre-60S particle by Rea1 will

also disrupt a small antiparallel b sheet between Erb1 and Rlp7,

which in turn allows the adjoining C-terminal a helix of Rlp7 to

rotate toward the ‘‘foot.’’ One long distance effect of this b sheet

splitting is that the rotation of the entire L1 stalk becomes

possible, which otherwise would clash with Rlp7 via its rRNA

ES31. Another consequence is that the exosome recruiting factor

Nop53 (Thomset al., 2015;Wu et al., 2016) canbe recruited to the

position previously occupied by Erb1 (Figures 4C and 4D), ex-

plaining why 7S pre-rRNA processing by the nuclear exosome

can only occur after the first Rea1 remodeling step.

Figure 3. Erb1 Functions as a Multivalent

Interaction Hub

(A) Overview of the Erb1 domain archi-

tecture showing the extended N terminus and

the doughnut-shaped WD40 repeat domain. In-

teractions with rRNA are indicated in gray.

(B) Localization of Erb1 in the state E particle

(gray silhouette) with interacting AFs.

(C) Schematic overview of protein contacts be-

tween Erb1 and other AFs and RPs.

Sequential Incorporation of the Six

25S rRNA Domains into the

Developing Pre-60S Core Particle

The 25S rRNA can be divided into six

domains (I–VI) that assemble into amono-

lithic compact mature 60S subunit (Ben-

Shem et al., 2011). We analyzed the

immature pre-60S states A–F to derive

the most plausible order of 25S rRNA

domain folding and compaction, when

transiting from state A to F (Figure 5).

The very early state A pre-60S particle

shows density only for 5.8S rRNA, ITS2,

and 25S rRNA domain I, whereas 25S

rRNA domains II and VI are only partly

visible and domains III to V are not at all visible. Structure-

wise, this corresponds to the ‘‘foot’’ and the adjacent portion

of the solvent-exposed (back) side of the pre-60S particle.

Upon progression to state B, the solvent side becomes

enlarged with the full incorporation of domain VI. Upon further

progression to state C, the additional folding of helices

H42–H44 of domain II and of helices H89–H91 of domain V

can be seen. As maturation progresses further to state D, the

PET and the tunnel exit site are formed, with the stable folding

of domain III and stabilization of the L1 stalk in its premature

state. States D and E show very similar rRNA conformation,

except for the 50-nt-long ES7a, which is only rigidly incorpo-

rated up to state D particles, stabilized by the Nsa1 module.

As the L1 stalk moves into a mature-like position in state F,

domains IV and V and the rotated 5S RNP form additional

domains at the inter-subunit face and the immature CP (Leidig

et al., 2014; Wu et al., 2016). Notably, the 5S RNP, comprising

5S rRNA, uL5, and uL18, and its assembly factors Rpf2 and

Rrs1 are all present in nucleolar pre-60S particles affinity puri-

fied via the Nsa1 bait (Kressler et al., 2008) or in our early

pre-60S particles (corresponding to states A–D), obtained via

the Nsa1-Ytm1 split-tag approach (see above) (Figure S1).

This suggests that the 5S RNP associates from very early on

with the nucleolar pre-60S particles, before it becomes stably

incorporated as domain V into the developing pre-60S core

particle, which is prior to formation of the CP.

Finally, our structures agree with the postulated hierarchical

incorporation of ribosomal L-proteins into the newly forming

60S subunit (Gamalinda et al., 2014). We observe that

many newRPs become stably incorporated into the core particle

upon rRNA compaction, from 18 in the earliest particle (state A)
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to the 35 in the latest particle (state F) (Figure S4). Along the

maturation trajectory, the AF composition varies in complexity,

with distinct sets of AFs, such as the Nsa1module, being present

only for a certain assembly interval in a subset of states (Fig-

ure 5C). Altogether, these data indicate that folding and stable

integration of rRNA domains into the developing 60S core parti-

cle proceeds in a non-transcriptional yet linear series of steps by

first forming the solvent-exposed side like an exoskeleton, fol-

lowed by formation of the exit tunnel and the inter-subunit

interface at last.

DISCUSSION

Function of Assembly Factors Nsa1, Erb1, and Rea1

The Nsa1 module was identified on the early pre-60S particles

(states A–D) at a position where it clamps the early-forming

23°

180°

H74

H76
H79

H76

H74

ES31

ES31
H76 L1-Stalk

L1-Stalk

A B

C

ITS2

D

ITS2

State E State F

State E State E to F

Figure 4. Maturation of the L1-Stalk Segment Is Linked to ‘‘Foot’’ Remodeling

(A) The L1 segment (rRNA helices H74–H79, gold) is stabilized in a pre-mature conformation by a set of AFs, including Ebp2 (green), Nip7 (magenta), Noc3

(purple), Nop2 (brown), and Nsa2 (turquoise).

(B) The L1 segment undergoes large-scale conformational changes during maturation, which requires an outward rotation of the Rlp7 N-terminal a helix. The

conformations as observed in states D and E of the L1 segment and Rlp7 are colored in gold and turquoise. Gray denotes their conformation as observed

in state F.

(A and B) Helices H76–H79 are displayed as backbone only and are not included in the provided model. In states D and E, the position of ES31 (gold, semi-

transparent, backbone only) is indicated based on connectivity to helix H79, but not observed in the respective maps because of flexibility.

(C and D) Structure of the ‘‘foot’’ in states E (C) and F (D). In state F, Nop53 takes the place of Erb1, resulting in a conformational change in the N terminus of Rlp7.

The molecular interpretation of state F is based on the Arx1/Nog2 particle model (PDB: 3JCT) (Wu et al., 2016).
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rRNAdomains I and II andmarks the future PET construction site,

explaining why the Nsa1 module has a key role in the early steps

of 60S assembly. Many interactions involving the Nsa1 module

are clustered at the rRNA expansion segment ES7a. Besides

ES7a, ES27 also has been observed to interact with AFs, namely

with the Erb1-Ytm1 complex in the nucleolus and Arx1 during

later stages of 60S assembly (Bradatsch et al., 2012; Greber

et al., 2012; Leidig et al., 2014; Wu et al., 2016). Therefore, our

findings support the importanceof ES in eukaryotic rRNA for ribo-

somal assembly (Ramesh andWoolford, 2016), likely by acting as

a binding hub for assembly factors and eukaryote-specific exten-

sions of RPs (Bradatsch et al., 2012; Granneman et al., 2011;

Greber et al., 2012; Leidig et al., 2014; Wu et al., 2016).

In addition to the Nsa1 module, we identified Erb1 as a key

connector, which wraps around the maturing 60S subunit with

its long N-terminal extension, thereby establishing a multitude

of interactions with different rRNA domains, AFs, and RPs (Fig-

ure 3). Our structural data explain why deletions in the Erb1

N-terminal extension caused many different in vivo defects in

60S biogenesis (Konikkat et al., 2017).

The C-terminal b-propeller domain of Erb1 forms a tight com-

plex with Ytm1 and removal of the Erb1-Ytm1 heterodimer from

Figure 5. Sequential Incorporation of the rRNA Domains into a Developing Pre-60S Core Particle

(A) Front and top views of structural rRNA representations based on Chimera molmaps for states A–F. The molmaps are color-coded by the rRNA domains:

domain 0, ITS2, and the 5.8S rRNAportions are displayed in light brown; the 5S rRNA is in orange; domains I–VI are inmagenta, blue, red, yellow, cyan, and green,

respectively.

(B) Secondary structure plots indicating folded rRNA for each state following the same color-code used in (A).

(C) Schematic representation of AFs associatedwith all states. Clustering and coloration is based on the time point of stable association and dissociation from the

maturing particle as indicated by the horizontal lines. (*) Ytm1 was clustered with Erb1, as the two proteins form a tight complex (Thoms et al., 2016; Wegrecki

et al., 2015), and it was used as a bait protein to purify states A–D. It is therefore clear that Ytm1 is present in these states (A–D), but not yet stably localized in the

core particle.

The molecular interpretation of state F is based on the Arx1/Nog2 particle model (PDB: 3JCT) (Wu et al., 2016).
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the early pre-60S particles by Rea1 is an essential remodeling

step to induce the transition from the nucleolus to the nucleo-

plasm (Bassler et al., 2010). While investigating the structure of

the pre-60S particle isolated from the dominant-lethal Ytm1

E80Amutant accumulating in state E, we found that this interme-

diate is identical to wild-type pre-60S particles split-tag affinity

purified via Rix1-TAP/Rpf2-Flag (state E), indicating that the

impaired release of the Erb1-Ytm1 complex blocks further matu-

ration, with the L1-stalk domain stabilized by several AFs in its

pre-translocation conformation. To overcome this immature

state and allow rRNA helices H74–H79 to properly rearrange,

dissociation of multiple factors (Ebp2, Noc3, the Nop2-Nip7

sub-complex, and the C terminus of Spb1) and remodeling of

Rlp7 are required (Figure 4). As many of these factors directly

interact with Erb1, we suggest that the timely release of Erb1-

Ytm1 is the trigger for the observed large-scale rearrangement

at the inter-subunit face that eventually leads to the stabilization

of rRNA domains IV and V (as observed in state F). Notably, a

related restructuring step from a stabilized immature rRNA

conformation occurs during the 180� rotation of the 5S rRNA

on a later pre-60S particle, which was suggested to be part of

a checkpoint control (Barrio-Garcia et al., 2016; Wu et al.,

2016). Thus, it is intriguing that these two large-scale rRNA reor-

ganization steps during 60S biogenesis rely on Rea1 AAA-type

ATPase, which apparently facilitates the transition from one state

characterized by a stabilized immature rRNA conformation

(of the L1 domain and 5S RNP, respectively) to the next, more

mature state. For the remodeling step allowing 5S RNP rear-

rangement, the Rix1-Rea1 complex was found to bind at the

inter-subunit surface and the CP (Barrio-Garcia et al., 2016).

Interestingly, the structural landscape of this area is completely

different in the nucleolar pre-60S particles. Nevertheless, Rix1

as a bait can be used to purify nucleolar state E particles (Figures

1 and S1). This suggests that Rix1 might also be involved in the

nucleolar Rea1 remodeling step. Taken together and consid-

ering the distinct positions of the Rea1 target proteins Ytm1

and Rsa4, Rea1 appears to employ two distinct interaction

modes with pre-60S particles.

Early 60S Assembly Employs a Sequential rRNA Folding

Pathway

The diverse structural states observed in the nucleolar pre-60S

particles are likely to be of physiological relevance since they

were affinity purified via functional bait proteins from wild-type-

like yeast cells (Figures S1A and S1B). Analyzing these states

provided mechanistic insight into how the six rRNA domains

(I to VI) are compacted and subsequently decorated with a num-

ber of ribosomal L-proteins, finally leading to monolithic 60S

core particles. Our structural data do not point to parallel 60S

assembly pathways, as suggested for bacterial 50S subunits

(Davis et al., 2016). However, this previous study was based

on 50S assembly intermediates obtained from bacterial cells,

in which the early RP bL17 was depleted, causing a severe

growth defect and a 20-fold reduced ribosome assembly rate.

Hence, the isolated 50S assembly intermediates may have

used alternative assembly pathways for compensation. Impor-

tantly, however, there are major kingdom-specific differences

between eukaryotic and bacterial ribosome assembly, which is

illustrated by the almost complete lack of ribosomal AFs in the

observed bacterial pre-50S intermediates (Davis et al., 2016).

During the earliest steps of 60S assembly, the different rRNA

domainsmay already have folded into their secondary structures

and recruited the earliest ribosomal L-proteins to these sites,

which in consequence may stabilize first tertiary folds. For

Figure 6. Assembly Sequence of the Pre-rRNA Domains

Assembly of RPs and AFs to the nascent 35S rRNA precursor starts co-transcriptionally. Very early, the pre-rRNA is circularized as domain VI binds to domains

I and II and the 5.8S portion of the precursor rRNA. The formation of the PET (displayed here as a black circle) starts with this circularization. Its maturation

progresses as rRNA domains fold following this order: VI, V, III, and IV. Full assembly of the PET is only achievedwhen domain V is completely folded as observed

in state F. After that, only few nucleoplasmic steps need to occur before the particles are exported to the cytoplasm, where they undergo final maturation.
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example, nucleolar pre-60S particles purified via Nsa1 contain

already the 5S RNP, but it can only be seen as a structurally

distinct entity in the 60S core when reaching state F (Arx1/

Nog2 particle). Therefore, when analyzing and interpreting ribo-

somal assembly intermediates, one has to distinguish between

initial rRNA secondary structure formation, partial tertiary struc-

ture construction, ordered incorporation into the core particle,

and, eventually, condensation into a fully mature conformation.

Similarly, RPs may already bind early during the assembly pro-

cess, but become part of the core particle only later, and when

absent could prevent further maturation. In the past, different

approaches have been used to follow the consecutive steps in

60S assembly, e.g., by using truncated rDNA transcripts (Chen

et al., 2017) or by depletion of specific RPs (Davis et al., 2016;

Gamalinda et al., 2014). However, blocking formation of full-

length rRNA particles, as in the first case, may lead to kinetic

off-path intermediates, and the absence of a given RP, as in

the second case, can identify its rate limiting role during 60S

assembly, but without a clear connection to its initial or later

interaction characteristics in the evolving particle.

On the basis of these considerations, we propose a model for

the early structural assembly of the 60S subunit. A hallmark of

this model is that in the nucleolus, after circularization of rRNA do-

mains, early 60S assembly into a growing core particle is carried

out in a sequential fashion (Figure 6): as RNA-polymerase-I-driven

transcription of the 35S pre-rRNAproceeds, fast secondary struc-

ture formation and assembly of first AFs and RPs is thought to

begin co-transcriptionally. However, instead of following the tran-

scriptional sequence, circularization of the pre-rRNA is one of the

first steps in the formation of a rigid core structure, as only the 5.8S

portion, ITS2, and domains I and II and partially domain VI are

folded in the earliest observed intermediate (state A). Thus, initially

the solvent-exposed back side of the LSU forms like an exoskel-

eton and construction proceeds by formation of the exit tunnel,

which is in agreementwith a previously suggestedmodel of hierar-

chical folding based on RP depletion phenotypes (Gamalinda

et al., 2014). Although the very late-folding peptidyl transferase

center is the evolutionary oldest part of the ribosome, it is likely

that folding the solvent side first brings the advantage of providing

a stable scaffold for the developing 60S subunit.
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Thoms, M., Stier, G., Ismail, S., Kharde, S., et al. (2017). Interaction network of

the ribosome assembly machinery from a eukaryotic thermophile. Protein Sci.

26, 327–342.

Ben-Shem, A., Garreau de Loubresse, N., Melnikov, S., Jenner, L., Yusupova,

G., and Yusupov, M. (2011). The structure of the eukaryotic ribosome at 3.0 Å
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Roland

Beckmann (beckmann@lmb.uni-muenchen.de).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Plasmid constructs and yeast strains

Recombinant DNA techniques were performed using standard procedures. Cloning and plasmid propagation was carried out with

E. coli DH5a. Cloned DNA fragments obtained by PCR amplification were verified through sequencing. Plasmids used in this study

are listed in Table S1. S. cerevisiae strains used and generated in this study are listed in Table S2. Genomic tagging was performed as

previously described according to standard procedures (Janke et al., 2004; Longtine et al., 1998).

METHOD DETAILS

Affinity purifications from S. cerevisiae

The NSA1-TAP Flag-YTM1 and the RIX1-TAP RPF2-Flag strains were grown in YPD medium and harvested at an OD600 of 2.0-2.5.

For the YTM1 wild-type, ytm1 DUBL and ytm1 E80A alleles plasmids were generated harboring the respective coding sequences

fused to an N-terminal TAP-Flag tag under control of the endogenous PYTM1 promoter. The plasmids were transformed into a

wild-type strain (W303) (Thomas and Rothstein, 1989) and selected on SDC-Leu. Cultures were grown over-night in SDC-Leu

medium and shifted to YPD for additional 6-7 h until the cultures reached an OD600 of 2.0-2.5. Cell pellets were harvested by

centrifugation, flash frozen in liquid nitrogen and stored at �20�C.

The affinity purifications were performed as described previously (Barrio-Garcia et al., 2016). Cells were disrupted by cryogenic

grinding with a Retch grinding mill (MM 400) and the cell powder was incubated with lysis buffer containing 50 mM Tris pH 7.5,

100 mMNaCl, 5 mMMgCl2, 5% (v/v) glycerol, 1 mMDTT and 0.1% (w/v) NP40 supplemented with protease inhibitors (SIGMAFAST,

Sigma Aldrich). The lysate was cleared by centrifugation and incubated with IgG Sepharose 6 Fast Flow (GE Healthcare) for 90 min

at 4�C to enrich for the TAP tagged bait protein. Beads were collected and washed once with 25 mL lysis buffer (batch wash) and

additionally with 10 mL lysis buffer by gravity flow. The IgG beads were collected and incubated with lysis buffer supplemented

with TEV protease to release the sample from the beads. The eluate was incubated with Anti-Flag M2 Affinity gel (Sigma Aldrich)

for additional 90 min at 4�C to enrich for the Flag tagged protein. The remaining steps were performed in buffer containing 50 mM

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Phenix suite (phenix.real_space_refine,

molprobity)

Afonine et al., 2012; Chen et al., 2010;

Wang et al., 2014

https://www.phenix-online.org/

PSIPRED UCL Department Of Computer Science http://bioinf.cs.ucl.ac.uk/psipred/

HHpred / Modeler Meier and Söding, 2015 https://toolkit.tuebingen.mpg.de/#/

tools/hhpred

Phyre2 Kelley et al., 2015 http://www.sbg.bio.ic.ac.uk/�phyre2

CCP4 (LIBG, ProSMART, Refmac5,

Buccaneer, AIMLESS, XDS, Phaser,

COOT, SHELXC/D/E)

Amunts et al., 2014; Brown et al., 2015;

Cowtan, 2006; Emsley et al., 2010; Evans

and Murshudov, 2013; Kabsch, 2014;

McCoy et al., 2007; Murshudov et al.,

2011; Winn et al., 2002; Sheldrick, 2008

http://www.ccp4.ac.uk/

ClustalOMEGA EMBL-EBI https://www.ebi.ac.uk/Tools/msa/clustalo

RNAcomposer Institute of Computing Science, Poznan

University of Technology

http://rnacomposer.ibch.poznan.pl/

Chimera UCSF Resource for Biocomputing,

Visualization, and Bioinformatics

http://www.cgl.ucsf.edu/chimera/

Pymol PyMOL Molecular Graphics System,

Schrödinger, LLC

https://pymol.org/2/

HKL2MAP Pape and Schneider, 2004 http://webapps.embl-hamburg.de/hkl2map/

Other

Carbon coated holey grids (2nm)

R 3/3 Copper

Quantifoil N/A
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Tris pH 7.5, 100 mM NaCl, 5 mMMgCl2 and 1 mM DTT. The Flag agarose beads were extensively washed and samples were eluted

with ca. 60 ml buffer supplemented with Flag peptide.

Protein production, crystallization and structure determination

ScNsa1

For expression of Saccharomyces cerevisiae (Sc) Nsa1-(His)6, E. coli BL21(DE3) cells, grown in lysogeny broth (LB) medium, were

used. Protein expression was induced with 1.8% (w/v) lactose, and cells were harvested after overnight growth at 30�C and stored

at �80�C. Cells pellets were resuspended in 10 mL buffer A (20mM HEPES (pH 8.0), 250mM NaCl, 20mM KCl, 20mM MgCl2 and

40mM imidazole) per gram of cells and lysed with a M-110L Microfluidizer (Microfluidics). Lysate was cleared at 20,000 r.p.m and

Nsa1 was enriched by Ni-NTA chromatography. Nsa1 was eluted from Ni-NTA by buffer B (20mM HEPES (pH 8.0), 250mM NaCl,

20mM KCl, 20mM MgCl2, 500mM imidazole) and further purified by size-exclusion chromatography (HiLoad 26/60 Superdex 200)

equilibrated in buffer C (20mM HEPES (pH 8), 200mM NaCl, 20mM KCl and 20mM MgCl2). Protein was concentrated to approxi-

mately 30 mg/ml and crystallization screens were performed at 291K by the sitting-drop vapor-diffusion method upon mixing equal

volumes (0.5 ml) of protein solution and crystallization buffer with a reservoir volume of 100 ml. Nsa1 crystallized in a wide range of

polyethyleneglycol (PEG)-containing conditions (e.g., 0.1 M MES pH 6.5, 25% w/v PEG-1000). Prior data collection, crystals were

flash-frozen in liquid nitrogen after cryo-protection by transfer into cryo-solution containing mother liquor and 20% (v/v) glycerol.

Diffraction data were measured under cryogenic conditions (100 K; Oxford Cryosystems Cryostream) at the European Synchrotron

Radiation Facility (ESRF; Grenoble). Data were processed with XDS (Kabsch, 2014). The Nsa1 structure was determined by molec-

ular replacement using PHASER and PDB: 5SUM as search model. The structure was manually corrected with Coot (Emsley et al.,

2010) and refinedwith REFMAC5 (Murshudov et al., 2011) and PHENIX (Afonine et al., 2012). Data collection and refinement statistics

are summarized in Table S3.

CtRrp1

Rrp1 from Chaetomium thermophilum (Ct) was expressed in Rosetta 2 (DE3) T1R cells transformed with the pET15b-CtRrp1-(His)6
plasmid (Baßler et al., 2017). Briefly, cells were grown until an OD600 of 0.8 was reached and then transferred to 18�C. Protein expres-

sion was induced by the addition of 0.5 mM IPTG and cells were further grown overnight. Harvested cells were lysed in buffer L

(30 mM HEPES pH7.5, 30 mM imidazole, 500 mM NaCl) using a Microfludizer (Microfluidics). Cell debris and insoluble proteins

were removed by centrifugation for 35 minutes at 350003 g and 4�C. The cleared lysate was filtered with 0.45 mm filter and applied

to 2 mL NiNTA column. After washing with 30 column volumes with buffer L the protein was eluted using buffer H (buffer L plus

400 mM Imidazol). Further purification was done using a Superdex 75 26/60 column equilibrated with buffer S (20 mM HEPES pH

7.5, 400 mM NaCl, 5 mM MgCl2, 2 mM DTT). CtRrp1 containing fractions were pooled, concentrated to 20-40 mg/ml and used

for crystallization trials.CtRrp1 crystallized in two conditions, giving rod-shaped crystals in PEG-3350 based condition (200mMPro-

line, 100 mM HEPES pH 7.5, 10% PEG3350) and thick hexagonal shaped crystals in a phosphate-containing condition

(0.8M K-H2PO4, 0.8M Na-H2PO4). For data-collection crystals from both conditions were harvested into reservoir solution supple-

mented with 20% glycerol or ethylene-glycol and flash cooled in liquid nitrogen. Data were collected at ESRF beamline ID 29

(de Sanctis et al., 2012). For phasing, a crystal from the phosphate condition was soaked in reservoir solution supplemented with

1 mM K2PtCl4 for 1 hour and cryo-protected as described above. Data were collected at ESRF beamline ID29. Data were processed

with XDS (Kabsch, 2014) and AIMLESS (Evans and Murshudov, 2013) from the CCP4 package (Winn et al., 2002). The structure was

solved with SHELXC/D/E (Sheldrick, 2008) navigated with HKL2MAP (Pape and Schneider, 2004). The initial map was readily

interpretable and Buccaneer (Cowtan, 2006) could place the majority of the residues automatically. Remaining residues were built

with Coot (Emsley et al., 2010) and the structure was refined with REFMAC5 (Murshudov et al., 2011) and PHENIX (Afonine et al.,

2012). The C2-dataset was solved by molecular replacement as implemented in PHASER (McCoy et al., 2007)], using the previously

determined structure as search model. The final structures contain 2 molecules per ASU in both space-groups, arranged in different

way to each other. Data collection and refinement statistics are summarized in Table S4.

CRAC analysis

The CRAC experiments for Brx1 and Rpf1 were done as described in Granneman et al. (2009) and Thoms et al. (2015) with a modi-

fication in case of Rpf1. Brx1 was tagged at the C terminus with (HIS)6-TEV-protA (HTpA). Rpf1 was tagged at the N terminus on a

plasmid (YCplac111- pA-TEV-(HIS)6-RPF1). Untagged W303 was used as a background control. The yeast cultures were grown to

OD 0.6-0.7 and UV-irradiated (in vivo) using a Megatron chamber (1.6 J/cm2). Brx1 and Rpf1 were purified as described in Granne-

man et al. (2009) including high salt (1MNaCl) wash after IgG purification. For Brx1, the sample was transferred to nitrocellulosemem-

brane and RNA was extracted from the membrane as described in Granneman et al. (2009). In case of Rpf1, RNA was extracted

directly from the imidazole eluate. For both proteins, the cDNAs obtained were sequenced using the Illumina MiSeq sequencing plat-

form. Analysis of the sequencing results was done as described in Thoms et al. (2015). The 50 and 30 linkers, RT and PCR oligos are

listed in Table S6 (Thoms et al., 2015). The experiments were performed twice for both proteins and the results were reproducible.

Cryo-electron microscopy

Carbon coated holey grids (2nm, Quantifoil) were glow discharged at 2.2x10�1 mbar for 30 s. For each grid, 3.5ml of sample were

applied to the grids at a concentration of 1.8 A260ml-1 for the Nsa1-TAP Flag-Ytm1 sample, 1.5 A260ml-1 for the TAP-Flag-Ytm1
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E80A sample and 1.3 A260ml-1 for the Rix1-TAP Rpf2-Flag sample. Subsequent vitrification was performed by plunge freezing in

liquid ethane using a Vitrobot mark IV (FEI Company, Netherlands) with a blotting time of 3 s at 4�C.

Cryo-EM data were collected semi-automatically using the acquisition software EM-TOOLS (TVIPS, Germany) on a Titan Krios

transmission electron microscope (FEI Company) at a defocus range between 0.9 and 3.5 mm. All data for the Nsa1-TAP Flag-Ytm1

sample and the Rix1-TAP Rpf2-Flag sample were recorded on a Falcon II detector under low dose conditions with a nominal pixel

size of 1.084 A/pixel on the object scale. For the Nsa1-TAP Flag-Ytm1 sample, a total of four datasets comprising 2547, 689, 1196

and 1046 micrographs were collected. All micrographs experienced a total exposure of �27 e�/A2 fractionated into 6 frames for the

first dataset and 10 for all subsequent datasets. For the Rix1-Tap Rpf2-Flag sample 4447 micrographs dose fractionated into

10 frames were collected. Micrographs of the TAP-Flag-Ytm1 E80A sample were recorded using a Falcon II upgraded with a Falcon

III detector chip also operating with a pixel size of 1.084 Å/pixel on the object scale. For this dataset 5812micrographs were collected

with an accumulated dose of 27e�/Å fractionated into 10 frames.

Image processing

Dose-fractionation movies were initially aligned and summed up using MotionCorr2.1 (Li et al., 2013). Determination of the contrast

transfer function parameters was performed via GCTF (Zhang, 2016). For further processing, the original movies were re-aligned

with Motioncor2 with anisotropic motion correction (Zheng et al., 2017) using 5x5 patches. Gautomatch (http://www.mrc-lmb.

cam.ac.uk/kzhang) was used to pick particles. All further image processing (classifications, refinements, and particle polishing)

was performed using Relion-2.0 (Kimanius et al., 2016).

Nsa1-TAP Flag-Ytm1 dataset

First, all picked particles were subjected to two-dimensional reference free classification into 150 classes. Based on the resulting

class averages, 90 classes with a total of 306732 particles were selected for further processing. An initial round of 3D classification

was performed using the Arx1 particle (EMDB: 2528) as a reference allowing rotational and translational alignment. Classes with

similar map features were combined, subjected to 3D refinement and second rounds of 3D-classifications. After the final classifica-

tion step, similar maps classes were joined and 3D-refinements using a wide soft edge mask and solvent flattened FSC calculation

were performed. Particles of the highest resolved state C (3.7 Å) were then subjected tomovie refinement of individual particle stacks

using a running average window of 3 frames and a standard deviation of 1 pixel as a prior for the translations (Bai et al., 2013). Particle

polishing (Scheres, 2014) was performed using default parameters, followed by a final round of 3D refinement. All final reconstruc-

tions were subjected to post processing using a wide soft edge mask. In this fashion, four distinct states were recovered from the

dataset, State A at a resolution of 4.2 Å, State B at 4.1 Å, State C at 3.6 Å and State D at 4.3 Å. All resolutions are supplied according

to the FSC0.143 criterion following the Relion gold-standard refinement (Figure S2).

Rix1-TAP Rpf2-Flag dataset

Reference free two dimensional classification into 150 classes yielded in 60 classes with 320144 good (ribosomal) particles. These

were subjected to 3D refinement and classified into 10 classes. Based on visual inspection of the map features, classes were com-

bined and further refined. Movie processing and particle polishing was performed as described above. Another round of 3D classi-

fication followed by a final 3D refinement and post-processing yields in State E with a nominal resolution of 3.7 Å. The remaining 7

classes of the initial 3D classification were all joined and refined, resulting in state F with an average resolution of 3.3 Å after post

processing with a wide soft edge mask (Figure S2).

TAP-Flag-YtmE80A dataset

All particles were subjected to reference free 2D classification into 200 classes, yielding 78 classes with 297516 good ribosomal par-

ticles. After an initial round of 3D refinement, 3D classification of the particles into 8 classes was performed. The 5 classes represent-

ing the state E of the Rix1-TAP Rpf2-Flag sample were joined. Movie processing and particle polishing was performed as described

above. A further round of 3D classification was performed followed by a final round of 3D refinement yielding a 3.3 Å reconstruction of

state E after post processing with a wide soft edge mask (Figure S2).

Model building and refinements

Based on the proteins identified in the purification (Figure S1), a model was built for the Ytm1 E80A state Emap. Therefore, themodel

of the Nog2 particle (PDB: 3jct) was first fitted as a rigid body into the State E density usingUCSFChimera (Pettersen et al., 2004). This

served as a starting model for fitting the ribosomal RNA, the RPs as well as the biogenesis factors Cic1, Mrt4, Nog1, Nop7, Nop15,

Nsa2, Nug1, Rlp24, Rlp7 and Tif6. Chains of factors not represented by density in this map were deleted, the rRNA stretches that

were not represented by the density were pruned. The results were then manually inspected and adjusted in COOT (Emsley et al.,

2010). Nucleotides 2404-2818 were independently fitted with COOT based on the crystal structure of the yeast 80S ribosome

(PDB: 4V7R). For target proteins with existing homologies, secondary structure predictions were calculated by PSIPRED and homol-

ogy models were created via HHpred/Modeler (Meier and Söding, 2015) and Phyre2 (Kelley et al., 2015). The homology models then

served as a starting model for de-novo building in COOT. Assignments of the proteins were confirmed by side chain density and sec-

ondary structure patterns. Assignments of the structurally similar Brix proteins were verified using CRAC analysis (Figure S6).

All models were combined and subsequently refined using phenix.real_space_refine (Wang et al., 2014). Refmac5 reciprocal

space refinement using restraints generated via LIBG and ProSMART was then performed as previously shown (Amunts et al.,

2014; Brown et al., 2015).
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The model for Nsa1-TAP Flag-Ytm1 state C was created as previously described, the final model of state E was used as a starting

model. The crystal structure of Nsa1 (this study) (Figure S6B) was used as a starting model and modified in COOT. An S. cerevisiae

homology model of Rrp1 was created using MODELER with the C. thermophilum crystal structure (also this study) (Figure S6C) and

the respective sequence alignment fromClustalOMEGA as input. For modeling the RNA of ES7a, an RNA tertiary structure prediction

by RNAComposer (http://rnacomposer.ibch.poznan.pl/) was used as an initial reference. Refinement of the model was performed as

described for Ytm1 E80A state E, with the exception that the chains of the less well resolved ‘‘foot’’ region (ITS2 RNA, Cic1/Nsa3,

Erb1, Has1, Nop7, Nop15 and Rlp7) were not subjected to refinement in Refmac5 but docked as a rigid body using chimera.

Architectural models of states A, B and D were created on the basis of the refined state C and Emodels. First a general model was

created by clipping segments not represented by the respective density map using chimera, the chains of the resulting model were

then rigid body fitted using phenix.real_space_refine and finally sidechains were removed using phenix.pdbtools (Pettersen et al.,

2004; Wang et al., 2014).

Values of the final refinements and model validation for both models are provided in Table S5.

Molecular interpretation of State F was based on the Arx1/Nog2 particle model (PDB: 3JCT) (Wu et al., 2016). Figures were created

using UCSF chimera and PyMOL Molecular Graphics System (Version 1.7.4, Schrödinger, LLC).

QUANTIFICATION AND STATISTICAL ANALYSES

See Methods Details for details on image processing and model building and refinements.

DATA AND SOFTWARE AVAILABILITY

All maps are deposited at EMDB as noted in the Key Resources Table. Atomicmodels and architectural models are deposited at PDB

as noted in the Key Resources Table.

Accession codes

Cryo-EM density map State A-F: EMDB: EMD-3888; EMDB: EMD-3889; EMDB: EMD-3893; EMDB: EMD-3890; EMDB: EMD-3891;

EMDB: EMD-3892

Atomic model (PDB) Rrp1 (Spacegroup C2, P6322): PDB: 6EMF, PDB: 6EMG

Atomic model (PDB) Nsa1: PDB: 6EN7

Atomic model (PDB) State C, E: PDB: 6EM1, PDB: 6ELZ

Architectural model (PDB) state A, B, D: PDB: 6EM3, PDB: 6EM4, PDB: 6EM5

Cell 171, 1599–1610.e1–e5, December 14, 2017 e5



Supplemental Figures

A B

C D

Figure S1. Affinity Purification of Nucleolar Pre-60S Particles for Cryo-EM Analysis, Related to Figure 1

(A and B) Split affinity purifications of pre-60S intermediates (upper panels) purified through Nsa1-TAP Flag-Ytm1 (A) and Rix1-TAP Rpf2-Flag (B). Final eluates

were used for cryo-EM and analyzed by SDS-PAGE and Coomassie staining. Major protein bands were identified by mass-spectrometry and are labeled on the

right side of the gels. The bait proteins are shown in bold and indicated by asterisks. The Rix1-TAP Rpf2-Flag purification purifies nucleolar (state E) and

nucleoplasmic (state F) pre-60S particles (B). Nucleoplasmic assembly factors are indicated in green and the Rix1 subcomplex members (Rix1, Ipi3, Ipi1) in blue.

Growth analysis (lower panels) of the Nsa1-TAP Flag-Ytm1 (A) and the Rix1-TAP Rpf2-Flag (B) strains in comparison to the untagged wild-type strain (DS1-2b).

Cells were spotted in 10-fold serial dilution on YPD medium and cell growth at the indicated temperatures was monitored after 2 days.

(C) Affinity purifications of the indicated plasmid-encoded Ytm1 variants fused to an N-terminal TAP-Flag tag and expressed from the endogenous promoter. The

plasmids were transformed into awild-type strain (W303). Final eluates of the purifications were analyzed by SDS-PAGE andCoomassie staining and co-purifying

proteins are indicated on the right side of the gel and bands corresponding to the Ytm1 bait proteins are marked with an asterisk. Proteins decreased in the Ytm1

DUBL/E80A purifications compared to the Ytm1 wild-type particle are shown in red and factors increased on the mutant particles are indicated in green.

(D) Affinity purification of the Ytm1 E80A particle used for cryo-EM analyzed by SDS-PAGE. Proteins bands were identified bymass-spectrometry and are labeled

on the right side of the Coomassie stained gel.



(legend on next page)



Figure S2. Comparison of States C and E to the Mature 60S and Cryo-EM Processing Schemes, Related to Figure 1

(A) Pre-60S States C andD and themature 60S (EMDB: 6478) (Passos and Lyumkis, 2015) showing the intersubunit side (left) and the solvent exposed side (right).

(B–D) Cryo-EMprocessing schemes for theNsa1-TAP Flag-Ytm1 (B), Rix1-TAPRpf2-Flag (C), and the TAP-Flag-Ytm1 E80A (D) sample. Percentages indicate the

fraction of total particles after 2D classification in a class or set of classes. Brackets indicate the joining of several highly similar classes.



Figure S3. Resolution Estimation and Model Validation, Related to Figure 1

(A) Exemplary micrographs of the three different biochemical samples.

(B–D) Two views rotated by 180� of volumes of state C and E filtered and colored according to local resolution as provided by Relion-2.0 (Kimanius et al., 2016).

Gold standard FSC-curves and FSC curves calculated between the cryo-EM maps and the models for the State C particle (C), and for the State E particle (D).



Figure S4. RP Composition of the Six Identified States, Related to Figure 1

RPs clustered and colored according to time of stable association with the core particle. RPs are marked with a triangle, square or circle according to depletion

phenotypes leading to maturation arrests at early, middle, and late assembly stages, respectively (Gamalinda et al., 2014).



Figure S5. Gallery of All Modeled AFs, Related to Figures 1, 2, 3, and 4

AF models overlaid with the corresponding segmented map volumes. All AFs are taken from state E, except for Rrp1, Rpf1, Nsa1, and Mak16, which are taken

from state C. Map densities are filtered to 3.3 Å and 3.6 Å for State E and C respectively.



(legend on next page)



Figure S6. CRAC Crosslinks and Crystal Structures, Related to Figure 2

(A) CRAC analysis hits of yeast Brx1 (blue, top plot) and untagged wild-type strain (red, top plot) as well as Rpf1 (black, bottom plot) and untagged wild-type strain

(green, bottom plot). A schematic representation of the 35S pre-rRNA is drawn below the x axis. The number of hits per 1000 total mapped reads is plotted against

the nucleotide position on the rDNA.

(B) Comparison of the cryo-EM model (top) of Nsa1 with its crystal structure (bottom).

(C) Comparison of the cryo-EM model (top) of Rrp1 with the crystal structure of Chaetomium thermophilum Rrp1 (bottom).
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Suppressor mutations in Rpf2–Rrs1 or Rpl5 bypass
the Cgr1 function for pre-ribosomal 5S
RNP-rotation
Matthias Thoms 1, Valentin Mitterer1, Lukas Kater2, Laurent Falquet3, Roland Beckmann 2,

Dieter Kressler 3 & Ed Hurt 1

During eukaryotic 60S biogenesis, the 5S RNP requires a large rotational movement to

achieve its mature position. Cryo-EM of the Rix1-Rea1 pre-60S particle has revealed the post-

rotation stage, in which a gently undulating α-helix corresponding to Cgr1 becomes wedged

between Rsa4 and the relocated 5S RNP, but the purpose of this insertion was unknown.

Here, we show that cgr1 deletion in yeast causes a slow-growth phenotype and reversion of

the pre-60S particle to the pre-rotation stage. However, spontaneous extragenic suppressors

could be isolated, which restore growth and pre-60S biogenesis in the absence of Cgr1.

Whole-genome sequencing reveals that the suppressor mutations map in the Rpf2–Rrs1

module and Rpl5, which together stabilize the unrotated stage of the 5S RNP. Thus, mutations

in factors stabilizing the pre-rotation stage facilitate 5S RNP relocation upon deletion of Cgr1,

but Cgr1 itself could stabilize the post-rotation stage.
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E
ukaryotic ribosome synthesis is a complex and highly spa-
tially and temporally coordinated process that requires the
consecutive action of more than 200 trans-acting assembly

factors to meet the enormous cellular demand for accurately
assembled mature ribosomal subunits1–5. The biogenesis pathway
starts in the nucleolus with RNA-polymerase-I-catalysed tran-
scription of ribosomal DNA into a large 35S precursor rRNA,
which, upon concomitant and hierarchical joining of ribosome
assembly factors and ribosomal proteins, is embedded into the
huge 90S particle6–10. Endonucleolytic cleavage of the 35S pre-
RNA subsequently generates the pre-40S and pre-60S particles,
which from that point on undergo individual maturation and
quality-control steps to finally join again in the cytoplasm
forming translation-competent ribosomes.

The large 60S ribosomal subunit is composed of three rRNA
species (25S/28S, 5.8S and 5S rRNA) and 46 (in yeast) or 47 (in
human) ribosomal proteins11,12. Once separated from the pre-40S
particles, the first individual precursors of the 60S subunit are
formed within the nucleolus. Upon binding of ribosomal pro-
teins, the nucleolar pre-60S maturation pathway is initiated by the
appearance of the 27SA2 pre-rRNA that is further processed to
the 27SB pre-rRNA. Concomitantly, the intertwined rRNA
domains are shaped into the developing 60S core in a consecutive
order in which first the solvent-exposed side, followed by the
polypeptide exit tunnel (PET) and finally the inter-subunit side
are formed13–16. At the stage of nucleolar maturation inter-
mediates, the 5S ribonucleoprotein particle (5S RNP), consisting
of the 5S rRNA and ribosomal proteins Rpl5 (also known as
uL11) and Rpl11 (also known as uL18), is already recruited, and
the characteristic pre-60S ‘foot’ structure surrounding the internal
transcribed spacer 2 (ITS2) RNA fragment has already
formed14,17–20. Crucial pre-60S remodelling events, such as the
removal of the Erb1–Ytm1 complex by the AAA–ATPase Rea1,
facilitate the transition of the particle to the nucleoplasm14,21–23.
A hallmark structure on early nucleoplasmic maturation inter-
mediates, isolated via Arx1 or Nog2 (also known as Nug2), is the
twisted 5S RNP, which adopts a conformation rotated ~180°
compared to mature 60S subunits18–20. The recruitment of the
Rix1 subcomplex, which allows stable docking of Rea1, and
the removal of assembly factors Rpf2 and Rrs1 occur during the
rotation of the 5S RNP into a near-mature conformation20,24.
Subsequently, Rea1 performs its second restructuring role by
triggering the release of Rsa425. Prior to nuclear export, con-
formational proofreading of the particle takes places that links the
removal of Rsa4 with activation and release of the GTPase Nog2,
which in turn allows the recruitment of the export adaptor
Nmd326. After nuclear export, the AAA–ATPase Drg1 initiates
the cytoplasmic maturation cascade by releasing the placeholder
protein Rlp24, thus permitting the recruitment of Rpl24 (also
known as eL24)27,28. Subsequent cytoplasmic pre-60S maturation
steps include the Rei1–Jjj1–Ssa1-dependent dissociation of the
export factor Arx129,30, assembly of the P-stalk and incorporation
of Rpp0 (also known as uL10)31,32, removal of Nmd3 by the
GTPase Lsg1 coupled to the incorporation of Rpl10 (also known
as uL16)33–35, and release of the anti-association factor Tif6
promoted by Efl1 and Sdo130,36, which finally activates the 60S
subunit to enter the pool of functionally translating ribosomes.

Whereas the 35S pre-rRNA is the common precursor of three
of the four rRNA species (18S, 5.8S, 25S/28S), the 5S rRNA
precursor is transcribed separately by RNA polymerase III. The
5S rRNA subsequently associates with the ribosomal proteins
Rpl5 and Rpl11 to form the 5S RNP that is incorporated as a
prefabricated complex adopting an immature conformation on
the pre-60S particle17,19. Nuclear import of Rpl5 and Rpl11 is
coordinated by the adaptor protein Syo1, which, in a second
function, chaperones the 5S RNP until its pre-ribosomal assembly

by shielding exposed RNA-binding sites on Rpl1137,38. In addi-
tion, the heterodimer Rpf2–Rrs1 is thought to guide 5S RNP
incorporation by providing a docking platform that anchors the
5S RNP in a network of interactions around the central protu-
berance (CP) involving the 25S rRNA and assembly factor
Rsa439–41. Therefore, the Rpf2–Rrs1 complex has to dissociate
from the pre-60S particle, a reaction that appears to be necessary
for 5S RNP relocation. However, to date, the mechanistic details
of the events that trigger 5S RNP rotation have remained
unexplored.

Here, we show that the small and conserved protein Cgr1,
which was implicated in 60S biogenesis20,42,43, plays a role in the
relocation of the 5S RNP during 60S biogenesis. We found that
yeast cells with a chromosomal cgr1 deletion (cgr1Δ)—resulting in
a slow-growth phenotype—exhibit a 5S RNP maturation defect
on pre-60S particles. However, specific suppressor mutations
could be isolated that map in genes encoding Rpf2, its binding
partner Rrs1, and the ribosomal protein Rpl5. Owing to the
nature of these suppressor mutations, which bypass Cgr1’s
function in this process, we were able to gain insight into the
mechanism of 5S RNP rotation, revealing how untying of the
twisted 5S RNP from its surrounding assembly factor network
can drive 5S RNP rotation.

Results
Cgr1 marks pre-60S particles during 5S RNP rotation. Cryo-
EM analysis of the Rix1–Rea1 pre-60S particle showed that the 5S
RNP had already rotated ~180° to its near-mature position24,
whereas in the ‘upstream’ pre-60S particles, such as the early Arx1
particle or Nog2 particle, the 5S RNP was still in the unrotated
topology19,20. Among the many other structural peculiarities, the
Rix1–Rea1 particle exhibited a 114 Å long, slightly undulating, α-
helix inserted between the β-propeller domain of Rsa4 and the
rotated 5S RNP, thereby clamping H38 of the 25S rRNA (A-site
finger) at a new position (Fig. 1a)24. We suspected that this α-
helix corresponds to the small, 120-amino-acid-long protein Cgr1
(Fig. 1b), which has been suggested to perform a role in pre-60S
biogenesis42–44. Consistent with this interpretation, Gao and
colleagues identified this long α-helix as Cgr1 in the early
(unrotated 5S RNP) and late (rotated 5S RNP) states of their
Nog2 pre-60S particles that resemble the early Arx1 and Rix1-
Rea1 particles, respectively20.

To find out with which pre-60S particles Cgr1 interacts, we first
affinity purified both N- and C-terminally tagged Cgr1 from
whole yeast cell lysates via TAP–Flag or Flag–TEV–ProtA
(FTpA), respectively. Consistent with a predominantly nucleo-
lar/nuclear localization of GFP–Cgr1 (Fig. 1c), the two different
Cgr1 purifications were co-enriched for ribosome assembly
factors that are typically present on intermediate pre-60S particles
(i.e. Nog2, Rix1 and Arx1), and, accordingly, Cgr1 was not found
on early nuclear (Ssf1 and Nsa1) or later cytoplasmic (Lsg1)
particles (Fig. 1d, e, Supplementary Fig. 1a, b).

Cgr1 depletion stalls the pre-60S prior to 5S RNP rotation. To
study the in vivo role of CGR1 during 60S maturation, a cgr1Δ
null strain was generated. Earlier data indicated that CGR1 is
either essential or non-essential for cell growth, depending on the
strain background42,43. In our laboratory yeast strain, W30345,
CGR1 is a non-essential gene, but displays an extreme slow-
growth phenotype at all tested temperatures (23, 30 and 37 °C)
(Fig. 2a). To analyse such a near-essential phenotype in a con-
trolled way, we generated an auxin-inducible degron (AID)46

allele of CGR1, which efficiently targeted Cgr1 for proteasomal
degradation within 30–45 min of auxin addition (Supplementary
Fig. 2a). This CGR1–HA–AID strain did not display an obvious
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growth defect when incubated in the absence of auxin (Supple-
mentary Fig. 2b), but exhibited a very mild half-mer phenotype,
which could be due to the HA–AID-tag at the C-terminus
(Fig. 2b). However, the polysome profile of the cells after auxin-
dependent Cgr1–HA–AID depletion showed a drastic increase of
the half-mer phenotype, consistent with previous findings42 and
indicative of a severe 60S biogenesis defect (Fig. 2b). Moreover,
robust nuclear accumulation of the 60S reporter Rpl25–GFP was
observed upon Cgr1 depletion, suggesting that the 60S matura-
tion defect occurs prior to nuclear export (Fig. 2c).

Next, we wished to find out where exactly Cgr1 participates in
the nuclear pre-60S maturation pathway. Since Cgr1 is closely
intertwined with the interaction network around the CP,

adopting considerably different conformations depending on
the rotation state of the 5S RNP20, we hypothesized that the
protein could function at a maturation step during 5S RNP
relocation. To assess whether 5S RNP maturation might be
affected in absence of Cgr1, we compared the assembly factor
profile of Arx1-derived pre-60S particles, isolated from non-
depleted (−auxin) versus Cgr1-depleted (+auxin) cells (Fig. 2d).
Since Arx1 is associated with a broad range of pre-60S
intermediates, from nuclear to cytoplasmic particles18,19,47, it
can serve as a bait to define the stage of pre-60S arrest by
biochemical means. To allow monitoring of the 5S RNP
maturation stage of the isolated particles, we used a strain
expressing a chromosomal Rpf2–3xHA fusion, which is
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between the β-propeller domain of Rsa4 and the rotated 5S RNP on the Rix1–Rea1 pre-ribosomal particle (PDB: 5jcs,24). The 5S rRNA (blue) and H38 of the
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functional based on growth (Supplementary Fig. 1c), as it was
suggested that the presence of the assembly factor Rpf2 in
complex with its binding partner Rrs1 hinders 5S RNP
rotation17,20,39–41. Indeed, western blot analyses revealed that
Rpf2–3xHA became significantly enriched on Arx1 particles
isolated from Cgr1-depleted cells in comparison to non-depleted

cells (Fig. 2d), indicating Cgr1 might facilitate 5S RNP relocation.
Consistent with this finding, Cgr1 depletion caused a significant
reduction of late-acting pre-60S factors (e.g. Yvh1, Rei1, Nmd3),
whereas earlier assembly factors (e.g. Rsa4, Nog2, Nsa2, Mrt4,
Rlp24) became more enriched (Fig. 2d). In contrast, the foot
factors Nop7 and Nsa3 (also known as Cic1) were reduced on
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Cgr1-depleted particles, indicating that ITS2 processing and
removal of the foot structure could proceed uncoupled of 5S RNP
rotation.

Genetic interactions between cgr1 and pre-60S factors. Next, we
performed genetic analyses to further elucidate the in vivo
function of Cgr1. For this purpose, we generated ‘milder’ cgr1
mutant alleles compared to the cgr1 null by truncating either the
N-terminus (cgr1ΔN51) or mutating a cluster of positively
charged residues at the C-terminus (R108A, R109A, R110A,
cgr1RRR > AAA). The latter motif contacts a part of the 5S rRNA
in the pre-rotation state20. Both of these cgr1mutants grew well at
30 °C compared to the cgr1-null, but exhibited a temperature-
sensitive phenotype at 37 °C (Supplementary Fig. 3a, b). Com-
bining cgr1ΔN51 or cgr1RRR > AAA with mutant alleles of other
pre-60S assembly factors revealed a synthetic lethal phenotype at
30 °C in the case of rix1-1, nsa2-1 and nug1-1, but not with nop7-
1 (Fig. 2e). The Rix1 subcomplex is implicated in the initiation of
5S RNP rotation24, and an α-helix in the Nug1 N-terminal
domain is in direct contact with and the Nsa2 N-domain in close
proximity to Cgr119,20, whereas Nop7 is located far away at the
‘foot’ of the pre-60S particle20. Thus, the observed genetic rela-
tionships correlate well with the biochemical and cryo-EM data,
reinforcing Cgr1’s role in 5S RNP relocation.

Specific suppressor mutations bypass the function of Cgr1.
During the course of growing the cgr1Δ strain on plates, we
consistently noticed a few fast-growing colonies in the high-cell-
density streak-out, which among other possibilities could be
spontaneous suppressors that bypass the requirement for CGR1
(Fig. 3a). To further elaborate on this possibility, we performed
clarifying genetic tests with these putative suppressors. First, we
backcrossed a few of these suppressor strains to a haploid cgr1Δ
strain of opposite mating type, which harboured wild-type CGR1
on a URA3-containing plasmid. After sporulation and tetrad
dissection, the four germinated cgr1Δ spores containing URA3-
CGR1 plasmid showed a 2+:2− segregation regarding slow versus
fast growth on 5-fluoroorotic acid (5-FOA) plates (Fig. 3b).
Apparently, the fast-growth-suppressor phenotype points to a
single mutated gene locus responsible for the extragenic
suppression.

This finding prompted us to perform whole-genome DNA
sequencing of two selected suppressor strains that upon back-
crossing showed a 2:2 segregation (see above). Strikingly, in both
strains a single missense mutation (G227A and C84F) in the open
reading frame of the RPF2 gene was found. The G227A mutation

mapped to the conserved sigma-70-like motif found in all
members of the Brix protein family48, whereas the C84F mutation
is found in a conserved region known to be involved in the
interaction with Rrs140. Thus, the identified mutations, together
with the observed accumulation of Rpf2 on pre-ribosomes after
Cgr1 depletion, establish a direct link between Cgr1 and 5 S RNP
maturation.

To find out whether suppressor mutations in genes other than
RPF2 exist, we systematically analysed the remaining cgr1Δ
suppressors in a different way. For this purpose, we expressed the
wild-type allele of RPF2 and other factors suspected to
functionally interact with Cgr1 on the pre-60S particles (i.e.
RRS1, RPL5 and RPL11; all placed under GAL1-10 control) in all
41 cgr1Δ suppressor strains (39 remained uncharacterized) and
tested for reversion of the fast-growing phenotype. Strikingly,
overexpression of RPF2 changed 30 suppressors, RRS1 six
suppressors and RPL5 five suppressors into a slow-growth
phenotype, suggesting that all of our isolated suppressor strains
were hit in only three genes (Fig. 3c). Cloning and DNA
sequencing of these suppressor genes revealed single point
mutations in RPF2 (25 unique exchanges), RRS1 (four unique
exchanges) and RPL5 (four unique exchanges) (Table 1).

To confirm that the cloned suppressor alleles behave like
anticipated, double-shuffle strains were generated, in which cgr1Δ
was finally combined with the given cloned suppressor allele. This
genetic analysis revealed that all identified suppressor alleles
complemented the severe growth defect of cgr1Δ mutant cells,
although wild-type growth levels were not reached (Fig. 3d–f,
Supplementary Fig. 4).

cgr1Δ suppressor mutations within the pre-60S structure. We
sought to localize the suppressor mutations within the cryo-EM
structure of pre-60S particles, where the 5S RNP is still unrotated
and in direct contact with the Rpf2–Rrs1 heterodimer19,20 (Fig. 4,
Supplementary Figs. 5–7 and Table 1). For Rpf2, where a total of
25 different suppressor mutations were isolated, three mutations
(A10E, R14I, K18T) map in an N-terminal α-helix interacting
with H83 and H87 of 25S rRNA, whereas the remaining ones are
distributed throughout the Brix-fold, which broadly participates
in the interaction with both the 5S RNP and Rrs1 (Fig. 4, Sup-
plementary Fig. 5). Several of these mutations showed substitu-
tions of surface-exposed basic residues that change the
electrostatic surface potential. Notably, surface-exposed basic
amino acid clusters within Rpf2 were recently analysed in vitro,
demonstrating that highly conserved R236, the R62–K63 cluster
and the KKR loop (residues 94–96) are important for 5S rRNA
binding39. Strikingly, the Rpf2 R62L/S, K63T and R236G/I

Fig. 2 Cgr1 plays a crucial role in ribosome biogenesis of pre-60S particles. a Chromosomal CGR1 deletion in wild-type yeast strain W303 yields viable cells

with an extreme slow-growth phenotype. The cgr1Δ shuffle strains transformed with empty plasmid or plasmid carrying wild-type CGR1 were shuffled on

SDC+ FOA plates, before representative colonies were spotted in 10-fold serial dilutions on YPD plates. They were grown at the indicated temperatures

for 2 days. b Cgr1 depletion impairs 60 S subunit synthesis. Polysome-profiles of CGR1–HA–AID (i.e. Cgr1-depletion strain) were recorded for untreated or

auxin-treated (for 120min) cells. Arrows denote ribosomal half-mers, indicating a specific 60S biogenesis defect. c pre-60S export is inhibited in cells

depleted of Cgr1. Subcellular localization of the 60S reporter Rpl25–GFP, the 40S reporter Rps3–GFP and the nucleolar marker RFP–Nop1 was analysed in

untreated or auxin-treated (for 120min) CGR1-HA-AID cells. Arrows indicate nuclear accumulation of Rpl25–GFP. Scale bar is 5 µm. d Depletion of

Cgr1 shifts Arx1 pre-60S particles to the early pool typical for the unrotated 5S RNP. Arx1–FTpA particles were affinity purified from untreated or auxin-

treated (for 120min) CGR1–HA–AID cells expressing a chromosomally integrated RPF2–3xHA variant. Lysates serving as input for the purifications and final

eluates were analysed by SDS-PAGE and Coomassie staining. Indicated bands were identified by mass spectrometry (left panel, asterisk indicates Rpf2-

3xHA) and western blotting based on specific antibodies (right panel). Rpf2 carries a 3xHA tag, whereas only one HA epitope is fused to Cgr1, explaining

the different signal intensities of the HA western blots. e Synthetic lethal relationship between cgr1 mutant alleles and distinct pre-60S assembly factors.

Double-shuffle strains of cgr1Δ in combination with nsa2Δ, rix1Δ, nug1Δ and nop7Δ, respectively, were co-transformed with indicated plasmid-based wild

type and mutant constructs. Transformants were spotted in 10-fold serial dilutions and growth on SDC-Leu-Trp (SDC) and SDC+ FOA plates at 30 °C was

monitored after 2 and 6 days, respectively. The cgr1RRR > AAA and cgr1ΔN51 mutants are shown in Fig. 1b and Supplementary Fig. 3. Published mutant

alleles nsa2-1, rix1-1, nug1-1 and nop7-1 are listed in Supplementary Table 3
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mutations were all among our cgr1Δ suppressors. Although no
mutations in the highly conserved KKR motif were found, the
suppressor mutation Rpf2 S93F is within this KKR loop as well,
which may be destabilized by the S93F change (Fig. 4, Supple-
mentary Fig. 5), and hence could be the cause of a reduced
interaction with the 5S rRNA. Consistent with this data, specific

point mutations in the 5S rRNA tip, mediating the interaction
with the Rpf2 KKR loop, strongly impaired the interaction
between Rpf2–Rrs1 and the 5S rRNA41. Other suppressor
mutations in Rpf2, such as D48Y, D112Y or H180N, are found
within the Brix-domain fold and eventually destabilize the Rpf2–
Rrs1 interaction (Fig. 4, Supplementary Fig. 5).

In the case of Rrs1, all identified mutations are clustered in a
highly conserved, proline-rich unstructured region (residues
92–108), which protrudes from the Rpf2 interaction-domain
and continues into the carboxy-terminal sequence that contacts
the 25S rRNA at multiple sites (Fig. 4, Supplementary Fig. 6),
thereby also stabilizing the unrotated 5S RNP20,40. In vitro, both
the proline-rich region and the C-terminal end of Rrs1 are not
required for complex formation with Rpf239, but, in the cryo-EM
structure, the proline-rich region is in contact with the Brix1-fold
domain of Rpf2 (Fig. 4, Supplementary Fig. 6). Therefore, it is
conceivable that our identified suppressor mutations in the
proline-rich Rrs1 loop might change the position of the Rrs1 C-
terminus, and thereby destabilize the unrotated 5S RNP.

Interestingly, three of our discovered suppressor mutations
map to the ribosomal protein Rpl5 (E126K, E128K, I190F),
specifically in two of the three eukaryote-specific loop regions
required for 60S biogenesis, which if deleted cause trapping of
Rpf2–Rrs1 on pre-60S particles49. In particular, the I190F
mutation is located in eukaryotic-specific loop 3 (residues 185–
198) that bridges Rpl5 with the Rsa4 β-propeller and the twisted
5S rRNA, whereas the mutations E126K and E128K map to the
neighbouring eukaryote-specific loop 2 (residues 122–138), which
is not resolved in the cryo-EM structure, but most likely connects
the β-propeller of Rsa4 and Rpf2 (Fig. 4, Supplementary Fig. 7).
In contrast, the fourth suppressor mutation within Rpl5 (V73F)
maps to a conserved short loop motif sandwiched between the 5S
rRNA and Rpf2 (Fig. 4, Supplementary Fig. 7).

Thus, considering all these different suppressor mutations in
the structural context of the pre-60S particle, they likely
destabilize the intricate interaction network between Rpf2–Rrs1,
Rsa4 and the unrotated 5S RNP, which consequentially could
allow driving the equilibrium towards the rotated state of the 5S
RNP, thus compensating for the absence of Cgr1.

Suppressor mutants promote 5S RNP rotation in cgr1Δ strains.
Based on the structural interpretation of the various cgr1Δ sup-
pressors, we examined the impact of a few of these mutations on
pre-60S maturation. First, we determined the localization of the
60S export reporter Rpl25–GFP in the mutants rpf2V203F,
rrs1E102D and rpl5I190F, which all confer a strong suppression

Table 1 Comparison of the isolated cgr1Δ suppressor

mutations

Protein Point mutation Interaction/role

Rpf2 (30 isolated
suppressor strains)

A10E (2 strains) 25S rRNA (CP H87)
R14I (2 strains) 25S rRNA (CP H87)
K18T 25S rRNA (CP H87)
D48Y Folding
K53R Folding
K54E 5S rRNA
R62L 5S rRNA/25S rRNA
R62S 5S rRNA/25S rRNA
K63T 5S rRNA/25S rRNA
N64K 5S rRNA/25S rRNA
K81N 25S rRNA
K81T (2 strains) 25S rRNA
C84F Folding
C84W Folding
S93F 5S rRNA (KKR loop)
R104L Rrs1, folding
D112Y (3 strains) Folding
M117V 5S rRNA (KKR loop),

folding
G177R Rpl5/Rrs1, folding
H180N Folding
V203F Rrs1, folding
G227A Rrs1 (sigma70-like motif),

folding
G227V Rrs1 (sigma70-like motif),

folding
R236G 5S rRNA
R236I 5S rRNA

Rrs1 (6 isolated
suppressor strains)

L92H Rpf2
E102D Rpf2
K103N (3 strains) Rpf2
P106Q Rpf2

Rpl5 (5 isolated
suppressor strains)

V73F (2 strains) 5S rRNA/Rpf2
E126K Rsa4/Rpf2 (ES loop 2)
E128K Rsa4/Rpf2 (ES loop 2)
I190F Rsa4/5S rRNA (ES loop 3)

CP = central protuberance; ES = eukaryote-specific

Fig. 3 Suppressor mutations in RPF2, RRS1 and RPL5 bypass the requirement for CGR1. a Dot spot growth analyses of the cgr1Δ strain, harbouring plasmid-

borne CGR1 (left panel) or empty plasmid (middle and right panels), incubated on YPD plates at 30 °C for 3 days. The dot spot on the right, but not the

middle, exhibits faster-growing colonies, which are suppressors of cgr1Δ. b cgr1Δ (cgr1::natNT2) suppressor strain was crossed with a cgr1Δ (cgr1::

HIS3MX6) strain containing CGR1 on a URA3 plasmid (pRS316-CGR1). After sporulation and tetrad dissection (upper panel shows a representative tetrad),

the four haploid spores were tested for growth in the absence of pRS316-CGR1 on SDC+ FOA plates, for the presence of pRS316-CGR1 on SDC-Ura, and for

the presence of the CGR1 gene disruption markers on SDC-His and YPD+ clonNat. Cells were spotted in 10-fold serial dilutions and incubated at 30 °C for

2 days (lower panel). c–f Suppressor mutations are located in genes encoding RPF2, RRS1 and RPL5. c Wild type and different cgr1Δ suppressor strains

(suppressor #1, #3 and #19) were transformed with plasmids expressing RPF2, RRS1, RPL5 or RPL11 under the control of the galactose-inducible GAL1-10

promoter. Representative transformants were spotted in 10-fold serial dilutions on SDC plates containing glucose (GAL repression) and galactose (GAL

induction) and growth was assessed after incubation at 30 °C for 2 and 3 days, respectively. d, e Double-shuffle strains of cgr1Δ (+ pURA3-CGR1)

combined with rpf2Δ (+ pURA3-RPF2), rrs1Δ (+ pURA3-RRS1) and rpl5Δ (+ pURA3-RPL5), respectively, were transformed with plasmids harbouring the

suppressor allele or the respective wild-type gene combined with plasmids harbouring wild-type CGR1 or empty plasmid. Transformants were spotted in

10-fold serial dilutions on SDC+ FOA plates (d) and after plasmid shuffling on YPD plates (e). Growth was analysed after incubation for 2 days at the

indicated temperatures. f Multiple sequence alignment of Rpf2, Rrs1 and Rpl5 orthologues from Saccharomyces cerevisiae (S.c.), Chaetomium thermophilum

(C.t.), Neurospora crassa (N.c.), Kluyveromyces lactis (K.l.), Yarrowia lipolytica (Y.l.), Caenorhabditis elegans (C.e.), Mus musculus (M.m.), Homo sapiens (H.s.),

Pyrococcus horikoshii (P.h.) and Halobacterium hubeiense (H.h.). The respective suppressor alleles analysed in d and e are indicated
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phenotype on cgr1Δ. In contrast to wild-type RPF2, RRS1 and
RPL5 cells, which display nuclear accumulation of Rpl25–GFP
after auxin-dependent Cgr1–HA–AID depletion, efficient nuclear
export of Rpl25–GFP was re-established in the respective sup-
pressor strains, which is clear-cut evidence for resuming pre-60S
biogenesis (Fig. 5a). Moreover, we analysed the assembly factor
composition of Arx1-affinity purified pre-60S particles derived
from the rpf2V203F, rrs1E102D and rpl5I190F suppressor
mutants, before and after Cgr1 depletion (Fig. 5b). In all cases, the
pattern of factor enrichment on and removal from the Arx1
particles was consistent with our previous interpretation that
nuclear export of pre-60S subunits was re-established in cgr1Δ
cells by specific mutations in Rpf2, Rrs1 and Rpl5 (Fig. 5b).
Notably, the assembly factor Rpf2, which became enriched on
Arx1 pre-60S particles upon Cgr1 depletion (see also above), co-
purified similar to the wild-type condition in the suppressor
mutants (Fig. 5b). This finding further strengthens the hypothesis
that the bypassing function of the suppressors could be specifi-
cally connected to a step in the course of 5S RNP relocation.

To directly assess whether 5S RNP rotation is inhibited in pre-
60S particles when Cgr1 is depleted, but restored in the
suppressor mutants, we performed cryo-EM analysis (Fig. 6,
Supplementary Fig. 8 and Supplementary Table 1). This method
showed that in the Cgr1 non-depleted strain (Arx1–FTpA Cgr1–

HA–AID, no auxin), which served as control, the 5S RNP was
rotated in ~40% of the Arx1 particles, whereas ~60% of particles
exhibited the non-rotated stage (Fig. 6a). This ratio is typical for
the distribution of rotated (mature) versus non-rotated (imma-
ture) 5 S RNP in Arx1 or Nog2 pre-60S particles19,20. Strikingly,
the 5S RNP remained to 100% non-rotated in the cgr1-depletion
mutant (Fig. 6b; Arx1–FTpA Cgr1–HA–AID,+ auxin). However,
5S RNP relocation was significantly restored in the rrs1E102D
suppressor strain, showing 23% of the Arx1 pre-60S particles in
the post-rotation stage (Fig. 6c; Arx1–FTpA Cgr1–HA–AID
rrs1E102D,+ auxin). Thus, structural analysis also supports the
view that the suppressor mutations facilitate 5S RNP rotation in
the absence of Cgr1, which explains well why the suppressor
strains can re-export pre-60S particles and regain better cell
growth. However, suppressor mutants did not reach optimal
growth (see also Fig. 3e), which may correlate with the degree of
the 5S RNP relocation. Notably, the cryo-EM analysis further
revealed that the foot structure, carrying the ITS2 fragment of the
7S pre-rRNA and associated assembly factors, was absent from
the Cgr1-depleted Arx1 particles (Fig. 6b). This finding is in line
with the biochemical data demonstrating a strong decrease of foot
factors Nop7 and Nsa3 on these particles (see Figs. 2d and 5b),
which suggests that maturation of the foot can proceed
independent of 5S RNP maturation.
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Fig. 4 cgr1Δ suppressor mutations in RPF2, RRS1 and RPL5 destabilize the unrotated 5S RNP on the pre-60S particle. a Overview of biogenesis factors Rpf2

(orange), Rrs1 (green), Rsa4 (purple), Cgr1 (red) and the ribosomal protein Rpl5 (dark blue) on the Nog2 particle (PDB: 3jct,20) in the front and top view.

Ribosomal proteins are shown in light blue and 5S rRNA as a dark grey surface model filtered at 6 Å resolution. b Positions of cgr1Δ null suppressor

mutations (red) displayed with surface models of the 5S rRNA (dark grey) and helices H83 to H87 (nucleotides 2650–2754) of the 25S rRNA (light grey).

The KKR-loop of Rpf2 is highlighted in cyan. ESL2 and ESL3 mark the eukaryotic-specific loops 2 and 3 of Rpl5, NTH marks the N-terminal helix of Rpf2
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Discussion
In this study, we unveiled a function of the small conserved α-
helical protein Cgr1 (Supplementary Fig. 9) in 5S RNP rotation
during 60S biogenesis, which occurs in the nucleus prior to
nuclear export. Previous findings have shown that Cgr1 decorates
nuclear pre-60S particles, which are in the process of 5S RNP
rotation20,24. Due to its topological positioning, Cgr1 can ideally
influence progression through this maturation step, by either
affecting the transition stage to overcome the rotational block or
by stabilizing the rotated stage. Consistent with this interpreta-
tion, pre-60S particles are shifted back to the pre-rotational stage

in cgr1∆ cells, thus identifying the arrest of 60S maturation as a
possible cause of the severe slow-growth phenotype of the cgr1-
null mutant. However, this defect can be overcome by second-site
revertants (i.e. extragenic suppressor mutations), which allow
resumption of cell growth. Strikingly, all the isolated suppressor
mutations map in only three factors—Rpf2, Rrs1 and Rpl5—
which normally under wild-type conditions keep the 5S RNP on
pre-60S particles in the pre-rotation stage. Thus, the identified
suppressor mutations hint to the mechanism by which cells can
re-locate the 5S RNP during 60S biogenesis in the absence of
Cgr1. Accordingly, depletion of Cgr1 results in inhibition of 5S
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Fig. 5 Suppressor mutations in Rpf2, Rrs1 and Rpl5 rescue the 60S biogenesis defect in Cgr1-depleted cells. a Nuclear pre-60S export is restored in

suppressor mutants after Cgr1 depletion. Subcellular location of Rpl25–GFP and RFP–Nop1 (nucleolar marker) was examined in CGR1–HA–AID cells

expressing either wild-type RPF2, RRS1 and RPL5 or the respective mutant alleles rpf2V203F, rrs1E102D and rpl5I190F, after incubation with auxin for 120

min. Scale bar is 5 µm. b Biochemical maturation of Arx1 pre-60S particles is restored in cgr1Δ suppressor mutants. Arx1–FTpA particles were affinity

purified from CGR1–HA–AID cells expressing either wild-type RPF2, RRS1 or RPL5, or the indicated suppressor mutants before and after treatment with auxin

for 120min. Final eluates were analysed by SDS-PAGE and Coomassie staining (indicated bands were identified by mass spectrometry; upper panels) or by

western blotting using the antibodies shown on the left (lower panels). The area of the Coomassie-stained SDS-polyacrylamide gel to which Rpf2 migrates

is enlarged on the right to better reveal how the intensity of co-enriched Rpf2 changes, depending on Cgr1 depletion in the various suppressor mutants
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RNP rotation, but suppressor mutations mapping in factors sta-
bilizing the pre-rotational stage of the 5S RNP allow to partly
overcome this defect.

As previously observed in the cryo-EM structure of the Rix1–
Rea1 particle, the gently undulating C-terminal α-helix of Cgr1 is
wedged between the rotated 5S RNP, the relocated A-site finger
H38 and the β-propeller domain of Rsa4, thereby stabilizing the
rotated 5S in a position that hinders back rotation24. In the ‘early’
state 1 of Nog2 pre-60S particles (resembling the ‘early’ pool of
Arx1 pre-60S particles), in which the 5S RNP is non-rotated, the
binding sites for Cgr1 are very different compared to those of
the rotated stage19,20. Specifically, Cgr1 is located on the solvent
side in the pre-rotation stage, contacting H38 as well as one tip of
the unrotated 5S RNP, whereas after 5S RNP rotation, the Cgr1 α-
helix adopts a more straightened conformation and is clamped
between Rsa4 and the 5S RNP, thereby holding the relocated H38
in a bent position on the inter-subunit side. This rearranged
topology suggests that Cgr1 accompanies or even facilitates H38
relocation from the solvent to the inter-subunit side. In addition,
by snapping in after relocation, Cgr1 could stabilize the rotated 5S
RNP position. It is tempting to speculate that upon initiation of
the 5S RNP rotational movement, potentially induced by the
recruitment of the Rix1 subcomplex24, the contact between the 5S
RNP and Cgr1’s C-terminal α-helix gets temporarily dis-
connected, which could allow H38 to slide under the detached
Cgr1 C-terminus. During the subsequent 5S RNP rotation, the
straightened and co-rotating Cgr1 α-helix could continuously
exert pressure on H38, which helps to bring it into the new

position at the inter-subunit interface. Interestingly, in bacteria, a
key role for H38 in the maturation of the CP was postulated50.
Depletion of the circularly permuted GTPase YlqF allowed the
isolation of late ribosome assembly intermediates with an
immature CP, which was highly disordered with no obvious
structured intermediate, in contrast to the stable arrangement of
the 5S RNP in the ‘early’ Arx1 particle. Nevertheless, it was shown
that in these particles, H38 also adopts different orientations, and
it was suggested that re-orientation of the A-site finger is a pre-
requisite for stable CP formation.

In summary, this study provided mechanistic insight into the
5S RNP rotation during large subunit biogenesis and its coupling
to pre-60S nuclear export. This could be achieved by combining
classical yeast genetic methods with modern whole-genome high-
throughput sequencing, which appears to be an effective
approach to further unravel the complicated process of eukaryotic
ribosome assembly.

Methods
Yeast strains and plasmids. The Saccharomyces cerevisiae strains used in this
study were derived from W30345 and are listed in Supplementary Table 2. Strains
were constructed by using established gene disruption, genomic tagging51,52,
mating and tetrad dissection methods. Shuffle strains were constructed by
knocking out an essential gene in a diploid yeast strain, transformation with a
URA3 plasmid containing the respective wild-type gene and sporulation to gen-
erate haploids harbouring the gene knockout and the complementing URA3
plasmid. Subsequently, double-shuffle strains containing knockouts of cgr1 and an
essential gene (as indicated in the respective figures) complemented by two URA3
plasmids harbouring the corresponding wild-type genes were generated by crossing
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of two in the first step generated shuffle strains with opposing mating types and
subsequent sporulation and identification of haploids containing both knockouts
and both URA3 plasmids (i.e. spores containing both selection markers used for the
two knockouts, fast-growing on plates lacking uracil, and non-viable on 5-FOA
containing plates).

The plasmids used in this study are listed in Supplementary Table 3 and were
constructed according to standard DNA cloning techniques and verified by
sequencing.

Identification of suppressors by high-throughput sequencing. The two sup-
pressor mutants and the CGR1 shuffle strain (parental control strain) were grown
in YPD medium to an OD600 value of around 1, and cells corresponding to 20
OD600 units were harvested by centrifugation. Genomic DNA was extracted
essentially as described in Current Protocols in Molecular Biology53. After washing
in dH2O, cells were transferred to a 2.2 ml safe-seal Eppendorf tube, centrifuged
again and resuspended in 200 µl breaking buffer [100 mM NaCl, 10 mM Tris-HCl
(pH 8), 1 mM EDTA (pH 8), 2% Triton X-100, 1% SDS]. After addition of 0.3 g
glass beads and 200 µl phenol–chloroform–isoamyl alcohol (49.5:49.5:1; Sigma),
cells were broken by vigorous vortexing for 3 min. Then, 200 µl of TE buffer
[10 mM Tris-HCl (pH 7.5), 1 mM EDTA (pH 8)] was added and the tubes were
briefly vortexed. Tubes were centrifuged for 5 min at 13,500 rpm in an Eppendorf
centrifuge and the aqueous upper phase was transferred to a 1.5 ml Eppendorf tube.
Then, 1 ml of absolute ethanol was added and the contents of the tubes were mixed
by inversion. Following centrifugation for 3 min at 13,500 rpm, the supernatant
was removed and the pellet was resuspended in 400 µl of TE buffer. To digest the
RNA, 30 µl of a 1 mg/ml DNase-free RNase A solution (Sigma) was added and the
tubes were incubated for 5 min at 37 °C. Genomic DNA was then precipitated upon
addition of 10 µl of 5 M ammonium acetate and 1 ml of absolute ethanol. After
mixing by inversion, the tubes were centrifuged for 3 min at 13,500 rpm and the
supernatant was discarded. Finally, the air-dried pellet was resuspended in 100 µl of
TE buffer. To estimate the integrity of the isolated genomic DNA, 2.5 µl of the
preparation was migrated on a 1% agarose gel. The concentration of the genomic
DNA was determined with a Qubit 2.0 fluorimeter (Invitrogen).

Libraries were generated from 1 µg of genomic DNA and high-throughput
sequencing was performed on a HiSeq 3000 instrument (Illumina). Library
preparation and Illumina sequencing were carried out by the Next Generation
Sequencing (NGS) Platform of the University of Bern. The raw reads (paired-end
reads of 150 bp) were processed according to the following procedure: after
performing a quality check with FastQC v0.11.2 (https://www.bioinformatics.
babraham.ac.uk/projects/fastqc/), all the reads were filtered for quality (minimum
of 20), truncated to 100 bp with Sickle v1.2954 and then mapped with BWA-MEM
v0.7.1055 to the S. cerevisiae reference genome R64-1-1.79 (strain S288C) obtained
from Ensembl56. The SAM files were sorted and converted to BAM files with
SAMtools v1.257. Single-nucleotide variants (SNVs), as well as small insertions and
deletions (Indels), were identified with SAMtools and BCFtools v1.2757. Variant
annotation was added with SnpEff v4.358. Then, variants were filtered with
SnpSift59 to retain homozygous variants that are not found in the parental control
strain and that are not ‘synonymous’ or ‘intergenic’, leading to an annotated and
curated Variant Call Format (VCF) file. Results were viewed with the Integrative
Genomics Viewer (IGV) software60. Deletion of the CGR1 gene was verified
visually using IGV. Our sequence analysis revealed 13 variants for the three
genomes and unambiguously identified one single-nucleotide change within the
RPF2 gene in each suppressor strain.

Yeast affinity purification. Two-step affinity purifications were performed with
either N-terminally TAP–Flag- or C-terminally Flag–TEV–proteinA (FTpA)-tag-
ged bait proteins. The respective yeast strains were grown in 2 l of YPD medium at
30 °C, harvested in the logarithmic growth phase, flash frozen in liquid nitrogen
and stored at −80 °C. Where indicated in the figures, cultures were incubated in
the presence of 0.5 mM auxin (3-indoleacetic acid, Sigma–Aldrich) for 120 min
prior to harvesting the cells. Cell pellets were resuspended in ‘lysis buffer’ [50 mM
Tris-HCl (pH 7.5), 100 mM NaCl, 5 mM MgCl2, 0.05% NP-40, 1 mM DTT, sup-
plemented with 1 mM PMSF, 1 × SIGMAFAST protease inhibitor (Sigma–
Aldrich)], and cells were ruptured by shaking in a bead beater (Fritsch) in the
presence of glass beads. Lysates were cleared by two subsequent centrifugation
steps at 4 °C for 10 and 30 min at 5000 and 14,000 rpm, respectively. Supernatants
were incubated with immunoglobulin G (IgG) Sepharose 6 Fast Flow beads (GE
Healthcare) on a rotating wheel at 4 °C for 90 min. Beads were transferred into
Mobicol columns (Mobitec) and, after washing with 10 ml of lysis buffer, cleavage
with tobacco etch virus (TEV) protease was performed at 16 °C for 120 min. In a
second purification step, TEV eluates were incubated with Flag agarose beads
(ANTI-FlagM2 Affinity Gel, Sigma–Aldrich) for 60 min at 4 °C. After washing
with 5 ml of lysis buffer, bound proteins were eluted with lysis buffer containing
300 µg/ml Flag peptide at 4 °C for 45 min. Buffer lacking NP-40 was used for the
last purification step in samples used for cryo-EM. Flag eluates were analysed by
SDS-PAGE on 4–12% polyacrylamide gels (NuPAGE, Invitrogen) with colloidal
Coomassie staining (Roti-blue, Roth) or by western blotting with antibodies, as
indicated in the respective figures. Uncropped gel and western blot images are
shown in Supplementary Fig. 10.

Cryo electron microscopy. Cryo electron microscopy was performed for three
different purifications: (1) rrs1Δ [YCplac111–RRS1] Arx1–FTpA Cgr1–HA–AID;
-auxin. (2) cgr1Δ depleted: rrs1Δ [YCplac111–RRS1] Arx1–FTpA Cgr1–HA–AID;
+ auxin (2 h). (3) cgr1Δ depleted in the presence of the rrs1E102D suppressor:
rrs1Δ [YCplac111–rrs1E102D] Arx1–FTpA Cgr1–HA–AID+ auxin (2 h).

For each purification, Quantifoil holy carbon grids (R3/3, +2 nm carbon) were
glow discharged at 2.2*10^-1 torr for 20 s. Then for each grid, 3.5 µl of sample
concentrated to 1.8 OD260/ml was applied and plunge frozen in liquid ethane using
a vitrobot mark IV (FEI), operating at 5 °C and 90% humidity, blotting for 2 s after
a 45 s incubation. For each sample 400 micrograph were recorded on a Tecnai
Spirit (FEI) operating at 120 kV, equipped with a TEMCam F216 (TVIPS,
Germany). Semi-automated micrograph acquisition was performed using the EM-
Tools software suite (TVIPS, Germany).

Image processing. GCTF61 was used to estimate the contrast transfer function
parameters. Micrographs with a defocus in the range of 0.8–3.2 μm were used for
further processing. Template free particle picking was performed with Gautomatch
(http://www.mrc-lmb.cam.ac.uk/kzhang). All further image processing (classifica-
tions, refinements, and post processing) was performed using Relion-2.162, ana-
logously for all data sets as described in the following. First, the particle sets were
cleaned using reference free 2D classification to eliminate falsely picked particles.
Then, a consensus refinement was performed using EMD-319924 as a reference. To
address structural heterogeneity, multiple subsequent steps of alignment free 3D
classification was performed. After every classification step, similar classes were
joined and all remaining classes were refined and subsorted to check for additional
heterogeneity (see Supplementary Fig. 8). For the cgr1Δ depleted sample, all clas-
sification attempts failed to separate the particles into subsets with structurally
distinguishable features, resulting in one final class.

Western blotting. Western blot analysis was performed using the following
antibodies: anti-Nog1 antibody (1:5000), anti-Nog2 antibody (1:20,000), anti-Arx1
antibody (1:2000), anti-Rei1 antibody (1:10,000), anti-Nsa2 antibody (1:10,000),
anti-Rlp24 antibody (1:2000), provided by Micheline Fromont-Racine, anti-Nug1
antibody (1:10,000), anti-Yvh1 antibody (1:4000), provided by Vikram Panse, anti-
Nmd3 antibody (1:10,000), anti-Rpl10 antibody (1:10,000), provided by Arlen
Johnson, anti-Rpl3 antibody (1:5000), provided by Jonathan Warner, anti-Rpl5
antibody (1:10.000), provided by John Woolford, anti-Nop7 antibody (1:50,000),
provided by Bruce Stillman, anti-Rsa4 antibody (1:10,000), provided by Miguel
Remacha, anti-Mrt4 antibody (1:1000), provided by Juan Pedro Ballesta, anti-Arc1
antibody (1:5000), raised in our lab, anti-HA antibody (1:10,000, Covance Research
Products, MMS-101R), horseradish-peroxidase-conjugated anti-Flag antibody
(1:15,000, Sigma–Aldrich, A8592), secondary horseradish-peroxidase-conjugated
goat anti-rabbit antibody (1:2000, Bio-Rad-170-6515), secondary horseradish-
peroxidase-conjugated goat anti-mouse antibody (1:2000, Bio-Rad-170-6516).

Polysome profile analyses. Cells expressing chromosomal C-terminal fusions of
Cgr1 tagged with HA–AID (CGR1–HA–AID) were grown in YPD medium to early
logarithmic growth phase. Prior to harvesting, cultures were incubated with
0.5 mM auxin for 120 min to induce proteasomal degradation of Cgr1–HA–AID or
left untreated. Subsequently, 100 μg/ml cycloheximide was added and after incu-
bation for 10 min on ice, cells were pelleted and washed once with lysis buffer [50
mM Tris-HCl (pH 7.5), 100 mM KCl, 12 mM MgCl2, 100 μg/ml cycloheximide].
After resuspension in lysis buffer and cell lysis with glass beads, 6 A260 units of the
cell extracts were loaded onto 10–50% sucrose gradients [dissolved in 50 mM Tris-
HCl (pH 7.5), 100 mM KCl, 12 mM MgCl2] and centrifuged with a SW40 rotor
(Beckman Coulter) at 39,000 rpm for 2 h 45 min at 4 °C. Gradients were analysed
on a Foxy Jr. fraction collector (Teledyne ISCO) with continuous monitoring at
254 nm.

Fluorescence microscopy. Living yeast cells expressing GFP- or RFP-tagged
proteins were grown to the logarithmic growth phase and imaged by fluorescence
microscopy using a Zeiss Imager Z1 microscope. As indicated, auxin was added to
a final concentration of 0.5 mM and cells were subsequently incubated for 120 min
prior to imaging.

Data availability
All relevant data supporting the findings of this study can be found in the results or the
supplementary information section and are available from the corresponding authors
upon request. All experiments were performed at least twice with similar outcome. Cryo-
EM densities of maps 1-7 of the Arx1 particles have been deposited in the Electron
Microscopy Data Bank and can be retrieved using the following accession codes,
respectively: EMDB-0218, EMDB-0219, EMDB-0220, EMDB-0221, EMDB-0222,
EMDB-0223, EMDB-0224.
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Partially inserted nascent chain unzips the lateral

gate of the Sec translocon
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Alexej Kedrov1,4,***

Abstract

The Sec translocon provides the lipid bilayer entry for ribosome-

bound nascent chains and thus facilitates membrane protein

biogenesis. Despite the appreciated role of the native environment

in the translocon:ribosome assembly, structural information on the

complex in the lipid membrane is scarce. Here, we present a cryo-

electron microscopy-based structure of bacterial translocon SecYEG

in lipid nanodiscs and elucidate an early intermediate state upon

insertion of the FtsQ anchor domain. Insertion of the short nascent

chain causes initial displacements within the lateral gate of the

translocon, where a-helices 2b, 7, and 8 tilt within the membrane

core to “unzip” the gate at the cytoplasmic side. Molecular dynamics

simulations demonstrate that the conformational change is reversed

in the absence of the ribosome, and suggest that the accessory

a-helices of SecE subunit modulate the lateral gate conformation.

Site-specific cross-linking validates that the FtsQ nascent chain

passes the lateral gate upon insertion. The structure and the

biochemical data suggest that the partially inserted nascent chain

remains highly flexible until it acquires the transmembrane topology.
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Introduction

Membrane proteins constitute a large part of the cellular proteome

and determine the vital functionality and identity of biological

membranes. These proteins are co-translationally targeted as ribosome:

nascent chain complexes (RNCs) to the endoplasmic reticulum in

eukaryotes and the cytoplasmic membrane in bacteria and archaea,

where they are inserted by the dedicated and universally conserved

Sec translocon (Fig 1A and B) [1]. The translocon, an integral

membrane protein itself, builds a protein-conducting channel in the

lipid bilayer and allows either transmembrane passage of nascent

polypeptide chains or their partitioning into the lipid environment

as transmembrane a-helices (TMHs). The nascent chain hydropho-

bicity forms a basis for the triage [2]. The central subunit of the

translocon, SecY in bacteria or Sec61a in eukaryotes, consists of 10

TMHs arranged as a pseudo-symmetric “clam-shell” with a protein-

conducting pore between the N- and C-terminal parts (Fig 1) [3,4].

A bilayer-facing crevice between SecY TMHs 2b and 7 is assumed to

serve as a route, or a “lateral gate”, for nascent TMHs to reach the

hydrophobic membrane core. SecY is stabilized at the periphery

by the essential subunit SecE/Sec61c that contains two a-helices,

one in interfacial and one in transmembrane topologies. SecE of

some Gram-negative bacteria, including Escherichia coli, contains

also an accessory pair of N-terminal TMHs, the role and localization

of which have remained largely unclear [5]. A non-essential and

non-conserved SecG/Secb subunit near the N-terminal half of SecY

is built of either one or two TMHs and plays a stimulatory role in

protein translocation [6].

The assembly of the translocon:ribosome complex at the cyto-

plasmic membrane interface is a key step in membrane protein

biogenesis, as it allows the hydrophobic nascent chain to egress into

the lipid bilayer via the translocon, while not being exposed to the

polar aqueous environment [1,7]. The architecture of the complex

has been extensively studied by structural methods, first of all cryo-

electron microscopy (cryo-EM) [8–11]. Binding of a ribosome results

in minor rearrangements within the translocon and brings it to a

pre-open or “primed” state [11]. The following insertion of a suffi-

ciently hydrophobic helical domain, such as a signal sequence or

signal anchor domain, shifts the complete N-terminal domain of

SecY/Sec61a by 22° and also tilts TMH 7, so the lateral gate of the

translocon acquires an open state (Fig 1B) [12,13]. The folded signal
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sequence in a transbilayer topology may occupy the lateral gate

where it replaces TMH 2b. Upon the further elongation of the

nascent polypeptide chain, the newly inserted a-helix leaves the

lateral gate and egresses into the lipid bilayer, and the translocon

undergoes a reverse transition from a widely opened [14] to a

compact, pre-closed state [15].

Although the dynamics of the lateral gate have been commonly

acknowledged [16,17], the mechanism of the nascent chain inser-

tion remains unclear. First, existing structures reflect rather late

insertion stages, where the signal sequence has been fully inserted

in the transmembrane topology, while early intermediates have

been barely addressed [4,18]. Second, a vast majority of available

ribosome:translocon structures represent detergent-solubilized

complexes; however, the non-physiological environment and exten-

sive downstream purification schemes may significantly affect the

conformation and the interaction properties of membrane proteins,

including the translocon [19–21]. The variations in detergent-based

solubilization protocols may explain contradictory results on the

translocon dynamics, where either a local displacement of helices

within the lateral gate or an extensive movement of the complete

N-terminal half was observed upon the nascent chain insertion, and

also the conformation of the central “plug” domain has been

disputed [12,13,22]. Furthermore, a compact “primed” state has

been described for detergent-solubilized translocons in the absence

of hydrophobic nascent chains [11], while a recent cryo-electron

tomography analysis has revealed a predominantly open conforma-

tion of the ribosome-bound Sec61 within native ER membranes and

so suggested a crucial effect of the molecular environment on

protein dynamics [23].

Up to date, the only structure of the translocon:ribosome

complex at the lipid interface was obtained by cryo-EM when using

nanodisc-reconstituted SecYEG (SecYEG-ND) bound to a transla-

tion-stalled RNC [14]. Although demonstrating an advance

compared to detergent-solubilized systems, the structure offers only

limited resolution and also illustrates a rather late stage of the TMH

insertion, with the translocon lateral gate widely open and the

inserted anchor domain de-localized within the membrane. Here,

we set out to determine the structure of the SecYEG:RNC complex

that would describe an early stage of a transmembrane domain

insertion into the lipid bilayer. Using cryo-EM and single-particle

A

C D

B

Figure 1. Structure and dynamics of SecYEG translocon.

A Structure of quiescent SecYEG of Thermus thermophilus in the lipid cubic phase (PDB ID: 5AWW). TMHs 2b, 3, 7, and 8 of the lateral gate, as well as the proximate loop

6/7 involved in ribosome binding are indicated. The non-essential SecG subunit is omitted for clarity.

B Model of the SecY lateral gate opening upon inserting a nascent chain (red) in the lipid bilayer. The color-coding of SecYE TMHs is as in panel (A). In the presence of

the completely inserted and folded nascent chain, TMHs 2b and 3 of the N-terminal domain of SecY are displaced (arrows) thus opening a broad passage for the

nascent TMH toward the lipid moiety.

C SDS–PAGE of SecYEG-ND sample after size-exclusion chromatography. Asterisks indicate translocon-enriched fractions used for forming the RNC FtsQ:SecYEG-ND

complex. Lipid-loaded “empty” nanodiscs elute at larger volumes and so can be separated.

D Schematic drawing of a SecYEG-ND particle. Lateral dimensions of the nanodisc should be appropriate to accommodate a single SecYEG with surroundings lipids,

thus mimicking the naturally occurring environment.
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analysis, we resolved for the first time all three subunits of SecYEG

in nanodiscs and described a novel conformation, where SecY

TMHs 2b and 7 were apart at the cytoplasmic side to form a

V-shaped lateral gate that is pre-opened for the nascent chain inser-

tion, while accessory SecE TMHs 1 and 2 interacted with the gate at

the periplasmic side. The RNC-induced dynamics within the translo-

con was validated by atomistic molecular dynamics simulations,

which also described the interactions of SecYEG with anionic lipids.

Cryo-EM data and site-specific chemical cross-linking further

suggested that the FtsQ anchor domain is inserted via the lateral

gate, where it forms close contacts with SecY TMH 7, but remains

highly flexible before leaving the translocon.

Results and Discussion

Functional reconstitution of E. coli SecYEG in nanodiscs has been

previously performed by several groups for biochemical, biophysi-

cal, and structural studies and allowed probing of the translocon

interactions with the motor protein SecA, targeting factors, and ribo-

somes [14,20,24,25]. The diameter of formed nanodiscs is essen-

tially determined by the length of the major scaffold protein (MSP)

that girdles the lipid bilayer [26,27]. Translocon molecules have

been initially embedded into nanodiscs as small as 9 nm in diameter

[16,20,24]. However, a follow-up functional analysis demonstrated

that larger nanodisc dimensions are beneficial for facilitating the

translocation activity, likely due to the increased amount of co-

reconstituted lipids [25,28]. Thus, we used an extended scaffold

protein MSP1E3D1 and POPG/POPC lipids to reconstitute SecYEG

into nanodiscs with a diameter of approximately 12 nm. A large

excess of MSPs and lipids ensured that translocons were reconsti-

tuted predominantly as monomers [25], as those have been shown

to be the principle functional form both in bacteria and in eukary-

otes [9,29,30]. Due to solvent-exposed loops of SecYEG, which

contributed to the hydrodynamic radius, SecYEG-ND could be sepa-

rated from “empty” nanodiscs containing only lipids by means of

size-exclusion chromatography (Fig 1C). Within formed nanodiscs,

SecYEG would occupy ~30% of the surface area (Fig 1D) [25,26,28],

thus providing sufficient space for the conformational dynamics,

and for insertion of nascent TMHs upon interactions with RNCs.

We have previously demonstrated that SecYEG:ribosome assem-

bly is strongly enhanced by hydrophobic nascent chains, such as a

TMH of FtsQ, a model protein for studying the SecYEG-mediated

insertion pathway [20]. The hydrophobic polypeptide exposed from

a ribosome exit tunnel is sufficient to mediate SecYEG:ribosome

binding in native and model membranes, even in the absence of

targeting factors [20,31], but unlikely to undergo the complete inser-

tion due to its short ribosome-bound linker. Thus, to investigate an

early stage of the TMH insertion, we prepared translation-stalled

ribosomes, which exposed the first 48 amino acids of FtsQ, including

the TMH within the nascent chain (Fig EV1), and incubated those

with a 10-fold excess of SecYEG-ND to achieve complex formation.

After vitrification, samples were subjected to cryo-EM imaging and

single-particle analysis. RNCs could be readily seen in raw micro-

graphs, and a discoidal density of SecYEG-ND bound to RNCs was

observed in projection groups of two-dimensional (2D) classification

and in 3D reconstructions (Fig 2A–C). After sorting and refinement

steps (Fig EV2), the ribosome structure was resolved at 3.3 Å, and

independent refinement of the SecYEG-ND:RNC complex elements

led to 3.2 and 3.1 Å resolution for the small (30S) and large (50S)

ribosomal subunits, respectively (Appendix Fig S1), and was limited

to 6 Å for the lipid-embedded SecYEG due to its small size and

apparent dynamics relative to the 50S ribosomal subunit (Movie

EV1). The local resolution within the SecYEG-ND particle ranged

from 3.5 Å at the ribosome contact sites to 6–7 Å within the trans-

membrane core and above 10 Å for the surrounding MSP1E3D1 and

lipid head groups, which could be visualized at lower threshold

levels (Fig 2D and E).

In agreement with the initial prediction, the nanodisc dimensions

were sufficiently large to accommodate a single copy of SecYEG. As

SecYEG was positioned in the center of the nanodisc and contacts

with edges of the lipid bilayer or MSP were not observed, it is likely

that the translocon conformation was not affected by the confined

environment. As electron densities of the centrally positioned translo-

con and the MSP were well-separated (Fig 2E), it facilitated the

assignment of rod-shaped densities to TMHs of SecYEG and building

the molecular model based on the structure of the quiescent translo-

con [4]. Both TMHs and extramembrane domains of SecY, SecE, and

SecG subunits could be unambiguously fitted into the cryo-EM

density (Figs 2E and 3A). The translocon:ribosome complex was

established via the well-known canonical interactions [9,11,14]: Two

structured cytoplasmic loops between TMHs 6/7 and 8/9 of SecY

extended toward the ribosomal tunnel to interact with rRNA helices

H6, H24, and H50, and the uL23 protein. Additionally, the ribosomal

protein uL24 approached the C-terminal end of the SecY TMH 10, and

the ribosomal protein uL23 formed two contacts within the essential

amphipathic helix of SecE. Differently to earlier findings [14], we did

not observe the contact between the rRNA helix H59 and the lipid

head groups, although the H59 helix was displaced toward the bilayer

(Fig 3B). It seems plausible that those contacts are established at a

later stage of membrane protein insertion, when one or more nascent

TMHs egress the lipid bilayer and the H59 helix “screens” the charge

of connecting loops, and so participates in the topology determination

[15,32]. When evaluating other known structures of bacterial and

eukaryotic translocons in complex with ribosomes (Appendix Fig

S2), we noted a close agreement between our model and the

detergent-solubilized E. coli SecYEG bound to a translation-stalled

ribosome [18]. Interestingly, although the SecYEG structures in both

environments were highly similar, the relative orientation of the

ribosome and SecYEG differed substantially: While being bound

to the RNC via its C-terminal domain, the detergent-solubilized

translocon rotated as a rigid body away from the rRNA helix H59, so

the displacement was most pronounced for its N-terminal half

(Fig EV3). It is tempting to speculate that the altered SecYEG:ribo-

some binding geometry, as well as the enhanced affinity of the

complex in detergent [20], arose from the lack of electrostatic interac-

tions between the rRNA and the polar moiety of lipid head groups.

In spite of the loose binding of SecYEG to the RNC and its higher

flexibility, the complete architecture of essential SecY and SecE subu-

nits was resolved, and a single-helix density proximate to the SecY

N-terminal domain was assigned to TMH 2 of the SecG subunit,

while TMH 1 could not be reliably detected (Figs 2E and 3A). No

SecG subunit could be resolved in the earlier structure of SecYEG-ND

[14], and the crystal structure of the quiescent SecYEG revealed that

SecG TMH 1 faces away from the translocon core, so its periplasmic

tip is separated by ~10 Å from the nearest TMH 4 of SecY, with a
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lipid molecule filling the void [4]. Thus, weak protein:protein inter-

subunit interactions in the lipid environment likely favor spatial

dynamics of SecG, up to a complete topology inversion [33], and the

dynamics might be modulated by the ribosome binding. Remark-

ably, within the SecYEG-ND complex we could clearly observe acces-

sory TMHs 1 and 2 of SecE, which were either absent or only poorly

resolved in previous translocon structures [14,15,18]. Earlier models

placed the SecE TMHs either distanced from the translocon by 20 Å,

or near SecY TMH 9, i.e., at the back of the translocon [14,15]

(Appendix Fig S2). However, our structure revealed a very different

organization of the complex, as SecE TMHs formed a helical hairpin

in close proximity to SecY C-terminal domain, and the hairpin was

tilted within the lipid bilayer by ~30° (Fig 3A). Such a tilted orienta-

tion of the SecE TMHs could also be recognized in densely packed

2D crystals of SecYEG [34,35], but has not been reported for either

free-standing or ribosome-bound translocons. Surprisingly, the

periplasmic loop of the SecE helical hairpin reached TMH 8 and a

short helix connecting TMHs 7 and 8 of SecY, and so appeared in

direct contact with the lateral gate of the translocon, thus suggesting

a potential role of SecE in the translocon gating mechanism but also

explaining interactions of SecE with nascent TMHs soon after their

membrane partitioning [36].

We further examined whether the early interactions with the

RNC were sufficient to trigger a conformational change within

SecYEG, as it would be required for the nascent chain insertion into

the lipid bilayer. SecY TMH 2a, known as a plug domain [37,38],

resided in the central position, thus keeping the SecY pore sealed

upon RNC binding [12,31], and only minor shifts could be seen for

most TMHs in comparison with the quiescent state or detergent-

solubilized SecYEG:RNC complex [4,18] (Fig 3C and Appendix Fig

S2). Interestingly though, substantial rearrangements were observed

within the lateral gate of the translocon, when compared both to the

quiescent and to RNC-bound detergent-solubilized states (Fig 3D):

TMH 2b was displaced toward the central pore of the translocon,

and SecY TMH 7 underwent a tilting of ~ 5°, so its cytoplasmic and

the periplasmic ends approached TMH 8 and TMH 3, respectively

[3,4]. This tilting of TMH 7 was coupled to a displacement of TMH

8, as they are connected via a short rigid helix at the periplasmic

side (Fig 3D). The resulting conformation of the ribosome-bound

translocon manifested a V-shaped crevice at the cytoplasmic side of

the lateral gate that differed from the rather closed conformation of

the detergent-solubilized SecYEG [18], but also from “primed” and

fully opened post-insertion states of the eukaryotic homolog

[10,11,13]. Thus, the observed conformation likely reflected a novel

early stage in the gate opening. Such dynamics are in agreement

with a previous fluorescence-based study on SecYEG-ND:RNC [16],

but, to our knowledge, represent the first direct visualization of the

pre-opened translocon in the lipid environment.

B

A C D

E

Figure 2. Cryo-EM of the RNC FtsQ:SecYEG-ND complex.

A Representative cryo-EM micrograph of RNC FtsQ:SecYEG-ND. Exemplary individual ribosomes are encircled.

B Examples of two-dimensional classes of imaged particles. RNC:nanodisc assemblies can be seen at different view angles.

C Three-dimensional reconstruction of RNC FtsQ:SecYEG-ND complex. Primary structural elements of the ribosome and SecYEG-ND are indicated.

D Local resolution map of SecYEG-ND sub-particle. The cytoplasmic side of the translocon demonstrates higher resolution due to stabilization by the bound ribosome,

while high resolution at the periplasmic side is hindered by the SecYEG-ND dynamics within the complex. The associated ribosome is not shown for clarity.

E A planar slice through the SecYEG-ND core at different signal levels (blue/green/red) with indicated positions of SecYEG TMHs (SecY indicated in orange, SecE in

purple, and SecG in green). A single helical turn could be fitted in a density in the area where SecG TMH 1 was expected (green asterisk).

4 of 13 EMBO reports 20: e48191 | 2019 ª 2019 The Authors

EMBO reports Lukas Kater et al



To investigate whether the observed translocon conformation

was a result of RNC FtsQ binding, we employed microsecond-long

molecular dynamics (MD) simulations of SecYEG in explicit solvent

and an explicit membrane, which allows to study the behavior of

lipid-embedded SecYEG in full atomic detail [39]. From the projec-

tion of MD conformations of SecY onto the plane spanned by the

first two principal components (PC; both PCs together describe

~50% of the total variance of motions during the simulations), a

configurational free energy landscape was computed (equation 1).

In this landscape, the SecY conformation from the SecYEG-ND:RNC

complex lies in an area of slightly elevated free energy

(DGconf.,i � 2 kcal/mol, Appendix Fig S3A), suggesting that this

conformation was stabilized by the bound RNC and/or the nascent

chain. The mechanism of structural adaptation of the translocon

was then probed in a reverse direction, as the MD simulations

started from the RNC-bound SecYEG conformation, but without

RNC FtsQ. That way, the adaptation toward a non-disturbed quies-

cent state could be followed, as has previously been shown for

membrane protein complexes [40,41]. The cytoplasmic loop 6/7 of

SecY was highly mobile (mean root-mean-square fluctuations

(RMSF) > 5 Å; Fig 4A), likely due to the absent ribosome that other-

wise recruits the loop as a docking site. The TMHs were substan-

tially less dynamic (RMSF < 3 Å), except for the lateral gate and the

cytoplasmic part of TMH 2b. Structural differences upon reaching

the free energy minimum were the most substantial for loop 6/7

and were followed by the lateral gate (Fig 4B). We measured inter-

nal distances within the lateral gate (TMHs 2, 7, and 8), between

TMH 7 and the adjacent TMH 3, as well as the angle g between

TMH 7 and TMH 8 (Fig EV4, panels A and C). The cryo-EM struc-

ture implied that binding of RNC FtsQ to SecY induced tilting of

TMH 7, such that its periplasmic end approached TMH 3, while

TMH 2b shifted toward the pore. This effect was completely

A B

C D

Figure 3. Structural dynamics of the translocon and ribosome upon the nascent chain insertion.

A Isolated cryo-EM density of SecYEG with the fitted molecular model of the translocon in front and the cytoplasmic views. SecY is displayed in rainbow pattern, SecE

in purple, and SecG in green. Dashed box: a contact site between tilted SecE TMHs 1/2 and SecY TMH 8.

B Cryo-EM density corresponding to the ribosomal RNA helix 59 (“H59”) is displaced toward the nanodisc. No contact with the lipid bilayer could be detected. Blue

ribbon: structure of the translocon-free 50S ribosomal subunit (PDB ID: 4UY8).

C Central cross-section through the SecYEG model. The “plug” TMH 2a occupies the central position, thus keeping the translocon sealed. The nanodisc perimeter is

indicated as a dashed circle.

D The lateral gate of nanodisc-embedded translocon undergoes rearrangements relatively to a quiescent conformation (left, PDB ID 5AWW) and an RNC-bound

detergent-solubilized state (right, PDB ID 5GAE).
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A B C

D

G

E F

Figure 4. Analysis of molecular dynamics simulations of SecYEG in the lipid bilayer.

A–F (A, D): Average all-atom atomic fluctuations (RMSF; root-mean-square fluctuations) for SecY (A) and SecE (D). The mean RMSFs are projected onto the 3D structures

of SecY/SecE and colored according to the color scales starting from blue (low mobility) to red (highly mobile). (B, E): Overlay of the SecY (B) or SecE (E)

representative structure (red) onto the corresponding starting structure (dark cyan). Parts that show a pronounced structural change are explicitly shown as

cartoon representation, and the movements are highlighted by arrows. (C, F): Visualization of displacements along the 1st (golden arrows) principal component

computed for the joint, five 1 ls long MD simulations for SecY (C) and SecE (F). The amplitudes of the motions were scaled, and a cutoff for small displacements

was applied for best graphical representation.

G Distribution of lipids during MD simulations. Grids represent the 3D density of phosphatidylcholine (PC; blue) and phosphatidylglycerol (PG; red) groups from the

lipid bilayer. The densities were normalized to the number of considered conformations, which are identical in both cases.
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reversed in the absence of the RNC, as both the distance between

TMHs 3 and 7 and the angle g increased (Fig EV4, panels B and D).

Compared to the initial conformation, the distances between TMHs

2b and 7, and between TMHs 2 and 8, decreased over the course of

the simulations, while the distance between TMHs 7 and 8

increased, which led to a closing of the observed V-shaped crevice

(Fig EV4, panel B). Interestingly, the PC analysis also suggested that

the movements of TMHs 7 and 8 were connected to the dynamics of

the cytoplasmic loop 6/7 (Fig 4C, Appendix Fig S3B), such that the

ribosome binding likely also influences the structural dynamics

within the lateral gate, in agreement with an earlier structure of the

ribosome-bound Sec61 translocon [11] and the recent biochemical

data [42]. In the absence of a ribosome, binding of a short signal

peptide causes an outward displacement of TMH 2b but not TMH 7

[4], so the enhanced structural dynamics at the cytoplasmic side of

the lateral gate likely allows a range of pre-opened translocon

conformations.

Differently to SecY, the SecE conformation from the SecYEG-ND:RNC

complex corresponded to a low free energy region (DGconf.,i �

0.16 kcal/mol; Appendix Fig S8A), indicating that it was similar to

predominant SecE conformations in MD simulations. Accordingly,

structural differences upon reaching the free energy minimum were

small, as all residues in SecE, except the termini, show a RMSF

< 3 Å (Fig 4D). Notably though, a small upward motion of TMHs

1 and 2 (Fig 4E and F, and Appendix Fig S4B) caused a loss of

initial contacts between SecE TMH 1 and the SecY periplasmic

helix (Appendix Fig S5, panel A), while new ionic interactions

were formed on the periplasmic side between R44 on SecE TMH 2

and D393 on SecY TMH 9 (Appendix Fig S5, panel B). This change

in the interaction pattern supports the hypothesis that the RNC-

induced structural re-arrangement in SecE can be transferred

toward the periplasmic part of TMHs 7, 8, and 9 in SecY and

further modulates the lateral gate dynamics.

The MD simulations also revealed that the lateral gate area was

enriched with zwitterionic lipids (POPC) (Fig 4G). Assuming that

the phosphatidylcholine lipids used in the simulations adequately

resemble the distribution of naturally occurring phos-

phatidylethanolamine lipids, this uneven distribution suggests that

anionic lipids (POPG) are not an essential factor in the lateral gate

dynamics, while the overall neutral charge in the lipid head group

region may be beneficial for the insertion of hydrophobic nascent

chains. The simulations furthermore indicated that anionic POPG

lipids were also unevenly distributed within the nanodisc and pref-

erentially clustered proximate to TMHs 3 and 4 of SecY (Fig 4G).

Remarkably, the same regions of SecYEG have been recently

described to recruit negatively charged cardiolipin lipids via interac-

tions with lysine residues at the cytoplasmic interface of SecY, such

as those in positions 115 (TMH 3) and 181 (TMH 4) [43]. Our data

suggest that the SecYEG:lipid interaction is purely charge-deter-

mined, and the functionality of the translocon can be ensured either

by cardiolipin or by phosphatidylglycerol lipids, while cardiolipin is

not essential for the translocon functioning in vivo and in vitro [29].

As RNC FtsQ contained a hydrophobic anchor domain, we

focused on locating that domain within the SecYEG-ND:RNC

complex. The nascent chain could be traced along the whole riboso-

mal tunnel, and it was followed by a free-standing density aligned

with the tunnel exit and the central cavity of SecY (Figs 5A and

EV5, panel A), suggesting that the nascent chain was loaded into

the translocon. The pronounced density of TMH 2b and 7

displayed the V-shaped conformation of the partially opened

lateral gate, with an additional connecting density possibly indicat-

ing the presence of a flexible or partially folded FtsQ TMH in prox-

imity of the gate in the bilayer (Fig 5B). Finally, a short rod-like

density within the nanodisc interior pointed toward the lateral gate

(Fig EV5, panel A), thus suggesting that the short FtsQ TMH

emerged into the bilayer via the lateral gate and acquired a stable

helical conformation. As the resolution of the map alone was

insufficient for unambiguous attribution of the flexible FtsQ TMH,

we performed site-specific chemical cross-linking of the nascent

chain and the translocon lateral gate. For this purpose, RNC vari-

ants which contained single cysteines at positions 40–43 within

the FtsQ anchor domain, thus covering one helical turn, were

examined. Complementary, cysteines were introduced within TMH

2b (residues 83 and 87) and TMH 7 (residues 282 and 283) of the

SecY lateral gate (Fig 5B), and the cross-linking was catalyzed by

copper phenanthroline. In the presence of SecYC282EG-ND or

SecYC283EG-ND, a cross-linking product of ~80 kDa was detected

for RNC FtsQC40 in Western blots when using antibodies against

the hemagglutinin-tagged nascent chain (Fig 5C). As the molecular

weight matched closely that of the putative tRNA-FtsQ:SecY

adduct, we further investigated the involvement of SecY in the

cross-linking products. We have found that the solvent-exposed

cysteine within the periplasmic loop 3/4 of SecY (residue 148;

Fig EV5, panel B) could be efficiently conjugated to CF488A-malei-

mide [29], but the fluorophore could not access cysteines within

the lateral gate (Fig EV5, panel C). Thus, double-cysteine translo-

con SecYC148/C283EG could be fluorescently labeled and used for

cross-linking experiments, and presence of SecY in cross-linking

adducts could be determined by in-gel fluorescence. If no ribo-

somes were added, only weak cross-linking products of SecY were

observed at ~85 kDa that likely represented occasional translocon

dimers co-reconstituted into a single nanodisc (Fig 5D). If either

non-translating ribosomes or cysteine-free RNC FtsQ were added,

three cross-linking bands at molecular weights between 40 and

60 kDa were observed. Those bands diminished if the sample was

treated with N-ethylmaleimide prior adding the SDS-containing

sample buffer (Figs 5E and EV5, panel E), so they were assigned

to cross-linking of SDS-denatured SecY with ribosomal proteins.

However, in the presence of RNC FtsQC40, a specific cross-linking

product of 80 kDa was formed that agreed with the observation

from Western blotting experiments (Fig 5D). Thus, we concluded

that the FtsQ nascent chain indeed resided within the lateral gate

and could reach the core of the translocon, but did not partition

the bilayer via the cytoplasmic crevice. Interestingly, we also

observed cross-linking products between SecYC283EG-ND and the

nascent chains that contained cysteines in proximate positions 41

and 42, but not the upstream position 35 (Fig 5E), thus suggesting

that the N-terminal part of FtsQ TMH has been released into the

lipid bilayer. The SecYEG:FtsQ cross-linking was equally efficient

in the presence and absence of phosphatidylethanolamine (POPE),

a major component of the bacterial membrane (Fig 5D). PE lipids

are known to stimulate the SecA-mediated post-translational

translocation through SecYEG [44], but seemingly have little effect

on the SecYEG-ND:RNC assembly, and the translocon:ribosome

complex was also visualized by cryo-EM, although at substantially

lower resolution (Appendix Fig S6).
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Figure 5. FtsQ nascent chain occupies the lateral gate of the translocon.

A, B Cryo-EM visualizes tRNA-bound nascent chain (red, NC) within the ribosomal tunnel (A) and a density between separated TMHs 2b and 7 of the lateral gate (B,

shown in mesh). The proximate cysteine positions within SecY used for cross-linking are indicated and highlighted in red.

C Western blot against the hemagglutinin tag within the nascent chain FtsQC40 reveals a cross-linking product of ~80 kDa in presence of nanodisc-reconstituted

SecYC282EG and SecYC283EG, presumably assigned to FtsQxSecY adduct. The double band for FtsQC40 likely indicates the incomplete cleavage of the hexa-histidine

tag by 3C protease.

D In-gel fluorescence imaging of SecYCF488A reveals a cross-linking product of ~80 kDa assigned to the FtsQC40xSecYC283 adduct (“SecYxFtsQ”). Bands for covalently

cross-linked SecY dimer (“SecYxSecY”), and adducts of SecY and ribosomal proteins (“SecYxRiboP”) are indicated. The nascent chain-specific adduct “SecYxFtsQ” does

not depend on the presence of PE lipids.

E FtsQ:SecY cross-linking is position specific. FtsQ TMH C-terminal residues 40-42 could be cross-linked to the lateral gate (SecY residue 283), while no adduct could

be detected at the upstream position 35.

F A refined scheme of the nascent chain insertion via the translocon. In the early intermediate state, the ribosome binding to the loop 6/7 and the emerging nascent

chain cause displacements of SecY TMHs 2b and 7 at the cytoplasmic interface and “unzip” the lateral gate. The rigid-body tilt of TMH 7 leads to a close contact

between TMHs 3 and 7 at the periplasmic side, so the V-shaped crevice is formed. The flexible nascent chain reaches the core of the lateral gate and gradually

egresses the lipid moiety, where the helical fold is stabilized by hydrophobic interactions. Upon further nascent chain elongation and movements of SecY TMHs 2b,

3, 7, and 8, the widely open “inserting” state of the translocon is formed, with the complete nascent TMH at the lateral gate prior the release into the membrane.
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Membrane protein biogenesis occurs in a highly complex and

anisotropic environment of a lipid bilayer, and lipid:protein interac-

tions are known to mediate the structure and functionality of

inserted proteins [45–47]. Here, we have revealed the most

complete structure of the lipid-embedded SecYEG translocon in

complex with RNC at the early stage of the nascent chain insertion.

The accessory TMHs of SecE were found to interact with the lateral

gate, so they potentially mediate the gate dynamics, but may also be

involved in nascent chain release or interactions with the YidC

insertase [48,49] and the membrane-anchored chaperones PpiD and

YfgM [50,51]. Supported by the MD simulations, the structure

evidenced that the opening of the translocon lateral gate was

induced at the cytoplasmic interface upon the RNC binding. TMH 2b

underwent a displacement of up to ~5 Å toward the central pore,

and TMH 7 tilted toward TMH 8 at the cytoplasmic side that

resulted in a V-shaped crevice open for the nascent chain loading

(Fig 5F). When compared to other visualized translocon:ribosome

complexes, the observed translocon conformation could be readily

placed between the “primed” and “inserting” states reported for the

eukaryotic Sec61 complex [11,13]. Differently to the complex in its

“inserting” state, the translated and exposed part of the FtsQ

nascent chain was not sufficiently long to form a TMH in an Nin-Cout

topology. The cross-linking results and the weak densities observed

in the cryo-EM map imply that at this early insertion stage the short

nascent chain remains flexible within the lateral gate of the translo-

con. One can envision that the elongation of the nascent chain

would cause a further displacement of SecY TMHs 2b and 7 and

results in the open “inserting” state of the lateral gate, so complete

folding and insertion of the TMH can be achieved in a downstream

event [13]. As a bimodal profile has been observed when studying

the translocon-mediated insertion of TMHs in Nout-Cin topology, and

two distinct insertion steps have been detected in vivo [52,53], the

presented intermediate state of the translocon that allows for partial

membrane partitioning and folding of a nascent TMH may poten-

tially explain the experimental data.

Materials and Methods

Materials

All chemicals used were purchased from Merck/Sigma-Aldrich and

Carl Roth in p.a. grade quality. Detergents were purchased from

Anatrace and lipids from Otto Nordwald GmbH/Avanti Polar Lipids,

Inc. Fluorophores were purchased from Thermo Fisher Scientific,

Lumiprobe GmbH, and Atto-Tec GmbH.

SecYEG purification and labeling and reconstitution

Escherichia coli SecYEG translocons containing an N-terminal deca-

histidine tag followed by a flexible linker and the 3C protease cleav-

age site were overexpressed in E. coli strain ER2566 (New England

Biolabs) and isolated as previously described [25] with minor modi-

fications. Briefly, after the lysis (Microfluidizer M-110P, Microflu-

idics Corp.) bacterial membranes were pelleted upon centrifugation

for 1 h at 125.000 g (rotor Ti45, Beckman Coulter) and resuspended

in 50 mM HEPES pH 7.4, 150 mM KCl. Membranes were solubilized

with 1% DDM in presence of 500 mM KCl, 50 mM HEPES pH 7.4,

200 lM TCEP, and protease inhibitors (cOmplete Protease inhibitor

cocktail, Roche). Histidine-tagged translocons were isolated on

Ni2+-NTA-sepharose resin (Macherey-Nagel GmbH) following stan-

dard procedures. Optionally, labeling with 200 lM fluorophore-

maleimide conjugates was carried out for 2 h prior eluting the

protein from the Ni2+-NTA resin, and the labeling efficiency was

determined spectrophotometrically [29]. After the elution in pres-

ence of 300 mM imidazole, the buffer was exchanged for 50 mM

HEPES pH 7.4, 150 mM KCl, 0.1% DDM, and 5% glycerol using PD

SpinTrap or MiniTrap G-25 columns (GE Healthcare Life Sciences).

The homogeneity of the purified translocons was controlled by size-

exclusion chromatography using Superdex 200 10/300 column

connected to the AKTA Purifier (GE Healthcare Life Sciences) and

the protein concentrations were determined spectrophotometrically.

Samples were aliquoted, flash-frozen in liquid nitrogen, and stored

at �80°C.

Reconstitution of SecYEG into nanodiscs using MSP1E3D1 scaffold

protein and either 30 mol % POPG, 70 mol % POPC or 30 mol %

POPG, 30 mol % POPE, and 40 mol % POPC was carried out at the

SecYEG:MSP:lipid molar ratio 1:10:500, as previously described [25].

SecYEG-loaded and empty nanodiscs could be separated via size-

exclusion chromatography using Superdex 200 10/300 GL column.

RNC preparation

To form SecYEG-ND:ribosome complexes, in vivo translation-stalled

RNCs bearing FtsQ nascent chains were prepared, as previously

described [15,54]. The nascent chain consisted of an N-terminal

histidine tag (eight residues) linked to a 3C protease cleavage site

(17 residues), FtsQ residues 4–51, hemagglutinin tag (11 residues),

and the TnaC stalling motif (23 residues) (Fig EV1). For site-specific

cross-linking experiments, single cysteines were introduced within

the FtsQ TMH via mutations L35C, V40C, S41C, G42C, and W43C

via Quick-change PCR and the mutations were confirmed by

sequencing (Eurofins Genomics). The stalled nascent chain was

detected via Western blot using monoclonal antibodies against the

hemagglutinin tag (SC-7392) and polyclonal HRP-conjugated anti-

bodies (SC-2005, both Santa Cruz Biotechnology).

Cryo-EM experiments

For cryo-EM experiments, the SecYEG-ND-enriched fractions from

size-exclusion chromatography were concentrated to ~1 lM by

using Amicon Ultra 0.5-ml tubes (MWCO 30 kDa, Merck/Millipore),

and 100 nM RNC FtsQ was added and incubated at least 15 min at

room temperature. Prior to sample vitrification, fluorinated octyl-

maltoside was added to the reaction to the concentration 0.2% to

promote random orientation of particles on cryo-EM grids [54,55].

Vitrification was achieved using a Vitrobot mark IV (FEI). For each

grid, 3.5 ll of sample was applied onto a glow discharged (20 s,

0.22 Torr) Quantifoil holey carbon grid coated with 2 nm carbon (R

3/3). After 45-s incubation, surplus sample was blotted away (2 s)

and the grid was plunged into liquid ethane. From these grids, two

separate datasets with a total of 13,098 micrograph movies with

each 16 frames and an exposure of 2.5 e�/Å²/frame were collected

on a Titan Krios 300 keV cryo-electron microscope (FEI) using a

Falcon II direct electron detector and the EM-Tools software (TVIPS

GmbH). Magnification was set to result in a pixel size of 1,084 Å.
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Cryo-EM data analysis

Anisotropic motion correction of the micrographs was performed

using MotionCor2 [56], initially using the first ten frames only.

The contrast transfer function (CTF) parameters were estimated

using Gctf v1.06 [57], and particles were picked using Gautomatch

v0.53 (www.mrc-lmb.cam.ac.uk/kzhang/Gautomatch/). All subse-

quent data analysis was carried out in Relion 2.1 [58]. At first,

both datasets were processed individually but identically. Two

rounds of unsupervised 2D classification of all particles were

performed to eliminate false positives of the particle picking step

(Fig EV2). In the following step, a 3D refinement was performed

to align all particles to a E. coli 70S ribosome reference without

the translocon. All following 3D classifications were performed

with fixed alignment parameters. An initial round of 3D classifi-

cation with five classes was used to select for 70S particles bear-

ing the SecYEG translocon. The resulting particles of both data

sets were joined for further processing with Relion 3.0 [59]. After

a further 3D refinement of the joined set, beam tilt and per parti-

cle CTF refinement was performed. Using the resulting improved

CTF parameters, all particles were re-extracted with 2× binning.

Multi-body refinement was used to refine the ribosomal small

subunit (SSU) and ribosomal large subunit including the SecYEG-

ND (LSU:SecYEG-ND) as two independent rigid bodies. Following

this step, the relion_flex_analyse tool was used to subtract the

signal of the SSU from the particle images and re-center these on

the LSU:SecYEG-ND moiety. This process of multi-body refine-

ment and extraction of sub-particles was then repeated for the

LSU and SecYEG-ND to finally obtain a stack of particle images

containing only SecYEG-ND signal. These final sub-particles were

used for a further round of 3D classification. Refinement of the

final subset of SecYEG-ND sub-particles resulted in an average

resolution of 6.0 Å. To obtain high-resolution reconstructions of

the ribosomal density, the particles of the final class were re-

extracted from the motion-corrected micrographs and subjected to

un-binned refinement. Again using multi-body refinement, the

SSU and LSU:SecYEG-ND moieties were refined as independent

rigid bodies to obtain optimal reconstructions of the ribosome,

yielding resolutions of 3.3 and 3.1 Å for SSU and LSU:SecYEG:

ND, respectively.

Model building

As a starting model, we used both a crystal structure of quiescent

Thermus thermophilus SecYEG solved in the lipid cubic phase (PDB

ID: 5AWW) [4], as well as the cryo-EM structure of Escherichia coli

SecYEG together with the 70S ribosome (PDB ID: 5GAE) [18]. Rigid-

body docking was performed with UCSF Chimera [60], and the posi-

tions of individual helices were adjusted using coot [61]. To obtain

reasonable geometry, real space model refinement was performed

using the phenix suite [62]. To complement the intermediary resolu-

tion of the SecYEG map, the aforementioned models 5AWW and

5GAE were used to provide external reference restraints for refine-

ment. In a final step, side chains were pruned to alanine length.

Mutual orientation of SecE TMHs 1 and 2 was derived from a co-

evolution pattern of residues within TMHs (http://gremlin.bakerlab.

org/ecoli.php?uni=P0AG96). Strong correlations (probability score

threshold 0.8) were found for residue pairs: A24:I50, L25:A54, L25:

V58, V28:L51, and A29:V48, which formed a defined interaction

interface.

Molecular dynamics simulations

In order to investigate the structural dynamics of the SecYEG

complex in the absence of the ribosome and the nascent peptide,

MD simulations of the SecYEG complex in an explicit membrane

and explicit solvent were carried out, which used the cryo-EM-based

structure as a starting conformation. ACE and NME groups were

connected to the N-terminal and C-terminal residues, respectively,

to avoid artificially charged termini. The SecYEG complex was

prepared for pH 7 using EpiK [63] distributed with Schroedingers

Maestro� suite of programs [64], which led to deprotonated residues

E176 and E389 in SecY, and a protonated K81 in SecE. Furthermore,

H99 in SecY was assigned to the HIE state, while the remaining

histidine residues are in the HID state. We used the in-house soft-

ware packmol_memgen, now also distributed with the Amber 18

suite of programs [65], to embed the SecYEG complex into a POPC:

POPG (ratio 2:1) bilayer that mimics the nanodisc composition, to

add 0.15 M of KCl, and to solvate the bilayer system with TIP3P

water [66]. All relevant system files for subsequent MD simulations

were generated using the LeaP program of the Amber 17 suite of

programs [67]. The Amber ff14SB force field [68] was used to para-

metrize the protein, adaptations by Joung and Cheatham [69] were

applied to treat K+ and Cl�, and the lipid 17 force field distributed

with Amber 17 to treat the lipid bilayer.

For subsequent MD simulations, we used the simulation protocol

as described by us previously [70,71]. In order to set up five inde-

pendent MD production simulations, the target temperature during

thermalization varied from 299.8 to 300.2 K in 0.1 K intervals, so

that we obtained five different configurations for subsequent MD

production runs. These production simulations were performed at

300.0 K for 1.0 ls. Coordinates were saved in a trajectory file every

200 ps. The particle mesh Ewald method was applied to treat long-

range electrostatic interactions. Structural relaxation, thermaliza-

tion, and production runs of MD simulations were conducted with

pmemd.cuda [72] of Amber 17 [67].

We used the cpptraj program [73] to analyze the trajectories with

respect to distances, root-mean-square fluctuations (RMSF), a

measure for atomic mobility, angles, and lipid distributions. If not

reported differently, all results are expressed as mean value � stan-

dard error of mean over n = 5 independent simulations. Addition-

ally, we performed a principal component analysis to extract the

essential motions displayed by the systems, after superimposing

each snapshot onto the ten transmembrane helices in SecY of the

overall average coordinates in order to remove global rotational and

translational motions. Mapping SecY and SecE along the trajectories

onto a plane spanned by the 1st and 2nd principal components

yielded a 2D histogram, from which we estimated the relative con-

figurational free energy DGconf.,i of the state of the protein in bin i

using equation (1)

DGconf :;i ¼ �RT ln
Ni

Nmax
(1)

where R is the universal gas constant, T = 300 K, Ni the population

of bin i, and Nmax the population of the most populated bin [74].
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The representative conformations of SecY and SecE were extracted

from the MD trajectories and analyzed toward their structural

features relative to the initial 3D structure.

In vitro cross-linking

To probe potential SecYEG:FtsQ contacts, 100 nM RNC FtsQ vari-

ants bearing single cysteines (mutations V40C, S41C, G42C, and

W43C) in the FtsQ TMH were incubated with ~1 lM SecYEG-ND,

which contained single cysteines within the translocon lateral gate

(M83C, S87C, I282C, and I283C). After 15-min incubation at the

ambient temperature, cupper phenanthroline was added to the

concentration of 1 mM, and the cross-linking reaction was

conducted for 30 min at the ambient temperature. Cross-linking

products containing the nascent chain were detected via Western

blotting [75]. Western blots were developed using ECL Western

blotting substrate (Pierce) and imaged using LAS-4000 Mini imager

(GE Life Sciences). To detect SecYEG-based cross-linking products,

the cysteines within the lateral gate were combined with a cysteine

at the translocon periplasmic interface (mutation L148C), which

was labeled with CF488A-maleimide (Sigma/Merck), as previously

described [29]. For the cross-linking experiments, 100 nM

SecYCF488AEG-ND variants was mixed with 200 nM non-translating

ribosomes or RNCs, and the cross-linking with copper phenanthro-

line was conducted as described above. Where indicated, samples

were treated with N-ethylmaleimide prior loading on SDS–PAGE. In-

gel fluorescence was recorded using Typhoon FLA 7000 imaging

system (GE Life Sciences).

Data availability

The datasets produced in this study are available in the following

databases:

• cryo-EM map: Electron Microscopy Data Bank (EMDB, www.eb

i.ac.uk/pdbe/emdb), accession code 4743.

• SecYEG molecular model: Protein Data Bank (PDB, www.rcsb.

org), accession code 6R7L.

Expanded View for this article is available online.
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Structure of the Bcs1 AAA-ATPase suggests an

airlock-like translocation mechanism for folded proteins

Lukas Kater1, Nikola Wagener2, Otto Berninghausen1,
Thomas Becker1, Walter Neupert3 and Roland Beckmann1,4

Abstract

Some proteins require completion of folding be-
fore translocation across a membrane into an-
other cellular compartment. Yet the permeabil-
ity barrier of the membrane should not be com-
promised and mechanisms have remained mostly
enigmatic. Here, we present the structure of
Bcs1, an AAA-ATPase of the inner mitochon-
drial membrane. Bcs1 facilitates the transloca-
tion of the Rieske protein, Rip1, which requires
folding and incorporation of a Fe2-S2 cluster
before translocation and subsequent integration
into the bc1 complex. Surprisingly, Bcs1 assem-
bles into exclusively heptameric homo-oligomers,
with each protomer consisting 31 of an amphi-
pathic transmembrane helix, a middle domain
and an ATPase domain. Together, they form
two aqueous vestibules, the first accessible from
the mitochondrial matrix and the second posi-
tioned in the inner membrane, both separated by
the seal forming middle domain. Based on this
unique architecture, we propose an airlock-like
translocation mechanism for folded Rip1.

Introduction

Proteins are translocated across membranes mostly in
an unfolded state. In this mode, canonical protein-
conducting channels such as the Sec61 complex of the
endoplasmic reticulum (ER) and the TOM and TIM23
complexes (mitochondria) can handle a plethora of dif-
ferent soluble and membrane proteins as mostly uniform
extended peptide chains. In case of the Sec61 complex,
these chains are guided through a relatively small and
easy to seal pore, which also allows for lateral release
of sufficiently hydrophobic peptide chains into the lipid
phase1. In contrast, when protein maturation is manda-
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tory before translocation, a limited number of such pro-
teins can be transported in a fully folded state, for ex-
ample across the bacterial plasma membrane or into the
peroxisomal compartment of eukaryotes. Several special-
ized bacterial secretion systems have evolved, often asso-
ciated with self-defense or virulence2. However, the main
machinery for translocation of folded proteins is pro-
vided by the Tat (twin arginine translocator) system in
bacteria3, employing a so far enigmatic transport mech-
anism. Curiously, during evolution chloroplasts have
kept, but most mitochondria have lost their Tat system
despite the presence of a universally conserved folded
substrate for translocation, the Rieske protein (Rip1 in
yeast).

Rip1 is a key component of the ubiquinol-cytochrome
c reductase, the bc1 complex (or complex III). It consists
of a C-terminal globular iron-sulfur cluster domain (FeS-
domain) exposed to the inter-membrane space (IMS) and
a single, rather mildly hydrophobic transmembrane helix
spanning the inner mitochondrial membrane (IM)4. Af-
ter import of Rip1 as a precursor from the cytoplasm into
the mitochondria by the TOM-TIM23 complex, the 2Fe-
2S cluster is added to the apoprotein in the mitochon-
drial matrix5,6, followed by selective back-translocation
across and insertion into the IM in a folded state7. No-
tably, in bacteria and chloroplasts the Rieske Fe-S pro-
tein is transported to the periplasmic space and to the
intrathylakoid space, respectively, by the canonical Tat
system8,9. In contrast, in most mitochondria the AAA-
ATPase Bcs1 has replaced the Tat system as an export
machinery for the folded Rieske protein7,10,11.

BCS1 (ubiquinol-cytochrome c reductase (bc1) syn-
thesis) genes are present in most eukaryotic organisms
and represent an outlying clade of the large family of
AAA proteins (ATPases associated with diverse cellular
activities)12. These ATPases mainly function in unfold-
ing and disaggregation of proteins, but also in protein
extraction from membranes, both processes often cou-
pled to processing and degradation13,14. AAA proteins
usually assemble into hexameric ring-like complexes with
each subunit comprising one or two highly conserved
ATP-binding domains. Together they form a central
pore-like channel lined by protruding loops (the pore
loops), which function in ATP hydrolysis dependent sub-
strate transport through this central pore15. AAA pro-
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teins in mitochondria are involved in crucial processes
like organelle fusion, protein quality control, mitochon-
drial protein translation and degradation16. The hex-
americ Msp1 for example is anchored via its N-terminal
transmembrane helix (TMH) to the outer mitochondrial
membrane (OM) and facilitates extraction of wrongly
targeted tail anchored proteins from the OM into the
cytoplasm17−19. Moreover, similar to the FtsH machin-
ery in bacteria, the AAA protein Yme1 is anchored to
the mitochondrial IM but facing the IMS, and recent
structures have revealed how its ATPases form a closed
spiral staircase on an unfolded substrate, thereby di-
recting substrate transport toward a protease ring for
degradation20. Importantly, most recent structural stud-
ies indicate a general hand-over-hand mechanism for
these hexameric AAA proteins: coexisting nucleotide
states in the hexamer trigger distinct staircase-like po-
sitioning of substrate engaging pore loops in the cen-
tral channel. The ATPase domains perform a sequen-
tial, around-the-ring ATP hydrolysis cycle that results in
stepwise substrate translocation21−24. Similar to Msp1
and Yme1 the Bcs1 AAA protein is also anchored to the
IM via a single N-terminal transmembrane domain, how-
ever, the large C-terminal (ATPase) domain faces the
mitochondrial matrix10,25. Moreover, in contrast to clas-
sical AAA proteins characteristic pore loop sequences
are not conserved in Bcs126. This raises the question
of what mechanism Bcs1 employs for the translocation
of the folded Rieske protein, and how an AAA protein
can display Tat-like activity without substantially com-
promising the critical permeability barrier of the inner
mitochondrial membrane.

We determined three cryo-EM structures of Bcs1, an
ADP-bound state and two distinct apo states. Contrary
to most other hexameric AAA proteins, Bcs1 exclusively
forms a homo-heptameric ring. This heptameric assem-
bly of Bcs1 results in the formation of two large aque-
ous vestibules, one on the matrix side (matrix vestibule)
and a smaller second one in the inner membrane (IM
vestibule). The AAA domains and amphipathic trans-
membrane helices (TMHs) delineate the matrix and IM
vestibules (respectively), with the middle domain form-
ing a seal-like structure in-between. The architecture
of Bcs1 together with the conformational differences be-
tween apo and ADP states indicate an airlock like mech-
anism for Rip1 translocation.

Results

Cryo-EM reveals a heptameric assembly
of Bcs1.

We used affinity purification to prepare Bcs1 com-
plex from a crude mitochondrial fraction of a S. cere-
visiae strain expressing His-tagged Bcs1 essentially as
described before (Extended Data Fig. 1)7. The puri-
fied Bcs1 oligomers were incubated with ATP and sub-
sequently subjected to single particle cryo-electron mi-

croscopy (cryo-EM). After classification and 3D recon-
struction we unexpectedly observed heptameric but no
hexameric Bcs1 oligomers. At an overall resolution of 4
Å for C1 symmetry and 3.4 Å after applying C7 sym-
metry (Fig. 1a, b; Extended Data Fig. 2–4; Table
1; Supplementary Movie 1) a near complete molecular
model for Bcs1 was built for the residues N49 to L449.
It comprises the N-terminal transmembrane helix (TMH,
aa53-83), the seal forming middle domain (aa84-202) and
the typical small and large AAA domains (LD, aa203-
387; SD, aa388-449) (Fig. 1c). The N-terminal TMHs
measure about 50 Å in length and pass the membrane
in an angle of about 35◦. They contact each other in
the leaflet of the membrane facing the intermembrane
space (IMS), but at the opposite leaflet at the base of
the middle domain two neighboring helices are separated
by a 25 Å gap. As a result, the TMHs of Bcs1 form
a highly unusual basket-like arrangement in the mem-
brane. The middle domain consists of a β-sheet with
four antiparallel strands stabilized by a peripheral α-
helix and a C-terminal α-helix connecting it with the LD.
In addition, a loop of the middle domain, we termed seal
loop, protrudes towards the central axis of the heptamer
and a long α-hairpin (connector hairpin, CH) establishes
an additional connection with the neighboring LD (Fig.
1c). The Bcs1 LD and SD together form the typical
nucleotide-binding pocket. In contrast to other AAA
proteins, however, Bcs1 has two additional β-strands (β-
a1 and β-a2), which augment the canonical β-sheet of the
AAA LD (Fig. 1c). Notably, these additional β-strands
connect the ATPase domain with the middle domain,
and an arginine (R223) in the loop between the strand
β-a2 and the helix α0 of the AAA LD protrudes towards
the nucleotide-binding pocket where it possibly monitors
nucleotide presence. The AAA domain of Bcs1 also fea-
tures two loops corresponding to the pore loops in classi-
cal AAA proteins (Extended Data Fig. 5). These loops
(henceforth also referred to as pore loops) are flexible and
thus not well resolved. However, while the longer pore
loop 2 features a phenylalanine (F336), the shorter pore
loop 1 lacks aromatic residues, a key component of the
characteristic pore loop motif. Moreover, in contrast to
what is observed classical hexameric AAA protein struc-
tures, these loops do not protrude into the central pore,
but rather point away from the ring plane (Extended
Data Fig. 5).

ADP uniformly occupies the binding pocket of the
AAA domain (Fig. 1c). Apparently, incubation with
ATP during the preparation resulted in binding and hy-
drolysis of all seven ATPs, yielding a uniform symmet-
ric conformation. This is likely to represent an ADP-
bound post-hydrolysis ground state of the protomers,
since preparation and visualization of Bcs1 without any
added ATP resulted in the observation of two distinct
apo states (see below). We cannot conclude if the apo
state represents the physiological state in the mitochon-
drial matrix or whether bound nucleotides were lost dur-
ing purification.
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Table 1: Cryo-EM data collection, refinement and validation statistics

#1 ADP #2 Apo1 #3 Apo2
EMD-10192 EMD-10193 EMD-10194
PDB 6SH3 PDB 6SH4 PDB 6SH5

Data collection and
processing
Magnification 130 130 130
Voltage (kV) 300 300 300
Electron exposure (e−/Å2) 65 58 58
Defocus range (µm) 0.8 – 2.8 0.8 – 2.8 0.8 – 2.8
Pixel size (Å) 1.059 1.059 1.059
Symmetry imposed C7 C7 C7
Initial particle images (no.) 1,101,692 1,389,762 1,389,762
Final particle images (no.) 271,736 36,141 38,934
Map resolution (Å) 3.4 4.4 4.6
FSC threshold 0.143 0.143 0.143
Map resolution range (Å) 3.2 – 5.5 4.3 – 7.3 4.4 – 8.5
Refinement
Initial model used De novo PDB 6SH3 PDB 6SH3
Model resolution (Å) 3.4 4.5 6.5
FSC threshold 0.5 0.5 0.5
Model resolution range (Å) 3.4 – 5.5 4.4 – 7.3 4.6 – 8.5
Map sharpening B factor (Å2) -173 -225 -235
Model composition
Nonhydrogen atoms 21,042 12,957 11,774
Protein residues 2,632 2,632 2,387
Ligands 7 0 0
B factors (Å2)
Protein 79.35 357 419
Ligand 47.72 - -
R.m.s. deviations
Bond lengths (Å) 0.005 0.004 0.004
Bond angles (◦) 0.831 1.068 0.915
Validation
MolProbity score 1.56 0.79 0.77
Clashscore 3.45 2.61 1.06
Poor rotamers (%) 0.62 0 0
Ramachandran plot
Favored (%) 93.5 91.6 91.8
Allowed (%) 6.5 7.31 8.2
Disallowed (%) 0 1.09 0

Bcs1 forms two separate aqueous
vestibules.

The heptameric AAA domains of Bcs1 together with the
middle domains form a large vestibule (matrix vestibule)
with lateral window-like openings of a 10-15 Å diameter
(Fig. 2a, b). It has a depth of about 45 Å and an opening
to the matrix with a diameter of about 40 Å. Towards
the membrane it is sealed by the middle domains. A sec-
ond vestibule is located within the IM, referred to as the
IM vestibule. It is confined by the basket shaped TMHs
and the middle domains (Fig. 2a, b). Notably, both
of these vestibules are sufficiently large to accommodate
the folded FeS domain of Rip1 (Fig 2c). The middle
domains separate the matrix and the IM vestibule but

leave a small pore in the center of about 10 Å diameter
(seal pore). In all reconstructions (C1 and C7 symmet-
ric), this pore was occluded by an extra density on the
membrane side, which lacked structural detail. While
partially connecting with the pore loop region in un-
symmetrized maps, it is not part of the Bcs1 protein
(Fig. 2 a, d). Lipids or a mixture of lipids and deter-
gent are possible candidates explaining this amorphous
density, which could not be further resolved by classi-
fication and refinement preventing identification. The
interaction between the CH and the AAA LD is estab-
lished by stacking interactions between H123 and R313
and hydrogen bonds between N125 and N287 (Fig. 2e,
f). In contrast, the seal pore of the middle domain is
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Figure 1: Bcs1 structure and domain organization in the ADP state. Top and side views on the
cryo-EM structure (a) and the molecular model (b) of the Bcs1 heptamer. Single Bcs1 protomers are shown
in different colours. For orientation, in lower panels, a schematic of the inner mitochondrial membrane is
shown. IMS = inter-membrane space; IM inner membrane. (c) Model of a Bcs1-ADP protomer highlighting
individual domains, their structural features and their location within the heptamer. TMH = transmembrane
helix; AAA LD and AAA SD: large and small AAA domains.

formed by the seal loops mainly employing hydrophobic
interactions by M160, I161 and I163. This results in a
highly hydrophobic character of the seal pore towards
the matrix side, which is contrasted by the highly hy-
drophilic character of a collar formed by lysines (K159
of each protomer) on the membrane facing side (Fig.
2g). The IM vestibule formed by the middle domains
and the N-terminal TMHs creates an unusual aqueous
environment spanning almost the entire membrane. On
the matrix side it is as wide as the matrix vestibule, but
it tapers towards the IMS side where the TMHs contact
each other and form an iris-like short hydrophobic bun-
dle. In the matrix leaflet of the bilayer, the helices create
a gap of up to 25 Å between each other, thereby allow-
ing direct access from the interior of the IM vestibule to
the lipid environment of the membrane (Fig. 2a, 3a).
The amphipathic character of the TMHs supports the
notion that an aqueous environment is formed in the
membrane (Fig. 3): on the outside, they are uniformly
hydrophobic, but hydrophilic amino acids are exposed
to the inside. Only the N-terminal region of the helices
on the IMS side is more uniformly hydrophobic, which
may allow them to dynamically dissociate and emerge

in the lipids of the IMS leaflet. It may also facilitate a
situation in which only the wider part of the basket sup-
ports an aqueous milieu, and the narrower part, which
is exposed to the IMS leaflet of the inner membrane and
is more uniformly hydrophobic, could coordinate lipids
inside the basket.

Two Bcs1 apo states illustrate opening of
the seal pore.

Classification and 3D reconstruction of Bcs1 prepared
without addition of nucleotides yielded two distinct
states termed Apo1 and Apo2 (Fig. 4). The overall
resolution for both states was 6.3 and 6.8 Å for C1 and
4.4 and 4.6 Å when applying C7 symmetry (Extended
Data Fig. 2, 3). Using these preparation conditions,
all nucleotide-binding pockets were empty. The two apo
states were also exclusively heptameric, but displayed
significantly different conformations when compared to
the ADP state and to each other (Fig. 4). Compared
to the ADP state, both apo states presented a smaller
opening of the matrix vestibule (27 Å vs. 40 Å diam-
eter) as a result of an inward rolling movement of the
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Figure 2: Bcs1 vestibules and protomer interactions. (a) Cut side view showing four protomers of
Bcs1 embedded in the micelle (grey outer shell) and unaccounted density near the seal loop. Segmented maps
for the micelle and the unaccounted density were lowpass filtered to 7.5 Å. (b) view of Bcs1 as in (a) but
showing a cone shaped and a cylindrical volume representing the IM and matrix vestibules. (c) View as in
(b) with Bcs1 in grey and an additional ribbon representation of the globular domain of Rip1 (PDB: 1KB9)
fitted into the two vestibules. (d) Top views of the isolated middle domains (map and model) highlighting
the pore. (e) View highlighting inter-domain connections with zooms (f) and (g) showing the CH interacting
with the neighbouring large AAA domain (f) and two neighbouring seal loops (g).

ATPase domains (Fig. 5). Moreover, a significant dif-
ference was apparent between the Apo1 and the Apo2
state regarding the middle domain, which resulted in an
opening of the seal pore otherwise separating the ma-
trix vestibule from the IM vestibule (Fig. 4c, cut view).
In more detail, the ATPase domains in the heptameric
ring undergo an inward rotation of about 20◦ when mea-
sured relative to their interface at the nucleotide-binding
pocket (Fig. 5a). In general, in all AAA proteins, a
reorganization of their AAA domains is caused by con-
formational changes of dynamic trans-acting elements at
their interfaces. Here, most important are the Arg-finger
(the loop between α4 and β5 second region of homol-
ogy; SRH) and the intersubunit sensing (ISS) motif (lo-
cated at the end of α3 and the following loop towards
β4 and characterized by a conserved aspartate, D350)27.
We find that the Arg-fingers of Bcs1, R376 and R379
present in the respective loop, moved about 7 Å towards
the nucleotide-binding pocket of the neighboring subunit
when comparing the ADP- to the Apo states (Fig. 5b).
We also identified an ISS-like region (ILR) with an aspar-

tate in an identical position as observed in the classical
clades of AAA proteins. In the ADP- and Apo2 state,
the ILR loop is rather elongated, but in the Apo1 state,
it bulges out towards the nucleotide-binding pocket (Fig.
5b). When comparing the two apo states, the main con-
formational changes occur on the middle domain and its
CH. In the ADP and Apo1 states, the relative confor-
mation of the middle domains is very similar and the
states mainly differ by the rolling movement of the AAA
domains narrowing the matrix vestibule (Fig. 5c). In
contrast, the Apo2 state displayed a more dramatic dif-
ference (Fig. 5d): we observe a tilt of the middle domain
away from the membrane plane, thus, separating the seal
loops and creating a widened pore opening between the
vestibules (Fig. 4 c, 5d). Whereas in the ADP and Apo1
state, the seven seal loops are tightly packed together
to form the closed seal, these loops are separated in the
Apo2 state, which results in increased flexibility and dis-
order as indicated by reduced local resolution (Extended
Data Fig. 2). As a consequence, the widened pore ap-
pears to provide sufficient space for Rip1 to translocate
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from the matrix to the IM vestibule in the Apo2 state.
A further structural difference distinguishing the Apo2
from both other structures is the conformation of the CH
(Fig. 5d). While the CH points inwards to the matrix
vestibule of Bcs1 in the ADP and Apo1 state, the Apo2
state displays a flipped out conformation, i.e. the CH
points away from the matrix vestibule. This outward
movement may be a direct result of the inward rolling of
the AAA domains. Therefore, the tilt of the middle do-
main may be triggered by this relocation of the CH. Thus
opening of the seal could be a direct result of the Bcs1
ATPase activity. Notably, a N125D mutation at the tip
of the CH (Fig. 2f) results in complete loss of respiratory
growth capability28 supporting the functional relevance
of the CH dynamics in Bcs1 activity.

Discussion

In this work, we present the structure of Bcs1, a molec-
ular machine that is able to translocate the fully folded
Rip1 protein from the mitochondrial matrix to the IMS.
We found that in contrast to most AAA proteins Bcs1
assembles into heptamers and not hexamers. This allows
formation of two sizable cavities that are large enough
to accommodate the folded Rieske protein without ex-
tensive conformational remodeling: the matrix vestibule
and the inner membrane vestibule. These two vestibules
are separated by the seal forming middle domain of Bcs1,
and conformational differences between the Apo2 state
and Apo1 or ADP state indicate that outward rolling of
the middle domains can result in an opening of the seal,
allowing passage between the two vestibules. Based on
these structures, we propose an airlock-like mechanism
for translocation of the folded Rieske protein (Fig. 6).

Similar to an airlock, which enables passage between two
different atmospheric conditions without mixing them
via two alternately used doors, we envision that Bcs1
follows a conceptually similar mechanism: it allows the
Rieske protein to translocate from the matrix into the
IMS / IM while essentially maintaining the vital perme-
ability barrier of the IM.

As a prerequisite, Rip1 needs to be targeted from the
mitochondrial matrix to Bcs1, a poorly understood pro-
cess, which involves the chaperone Mzm1 that protects
matrix located Rip1 prior to Bcs1 mediated topogen-
esis from aggregation29. Once targeting has occurred,
we suggest that Rieske translocation happens in three
steps: i) Rip1 loading into the Bcs1 matrix vestibule,
ii) gating of the seal and transition of Rip1 into the IM
vestibule through the widened pore similar to that ob-
served in the Apo2 state and iii) release of the Rieske
protein to the IMS accompanied by lateral release of its
TMH (Fig. 6). The detailed mechanism of release from
the IM vestibule remains unclear but is likely to involve
rearrangement of the Bcs1 TMHs to allow release of the
globular Rip1-FeS domain and lateral partitioning of the
Rip1 TMH into the IM. Here, the mild hydrophobicity
of the Rip1 TMH and a nucleotide dependent interac-
tion between Bcs1 and specific assembly intermediates
of the bc1-complex point towards a pathway, in which
Rip1 is directly handed over to and incorporated into
the bc1-precomplex11,26.

The question remains, how Bcs1 couples ATP-
hydrolysis with substrate transport. All AAA pro-
teins are mechanochemical machines that are driven
by their ATPase cycle, during which binding and hy-
drolysis of ATP is coupled to conformational changes.
Thereby, classical hexameric AAA proteins such as
Yme1 or Cdc48 utilize ATP hydrolysis to induce a
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pulling force on a substrate peptide chain, and recent
high-resolution cryo-EM structures revealed that indi-
vidual protomers usually have different states in the ac-
tive assembly (ATP-bound, ADP-bound or apo). Here
ATP binding enables substrate binding via conserved
pore loops, which are arranged in a staircase-like man-
ner, whereas ATP-hydrolysis triggers substrate release.
Conformational changes within the protomer and rela-
tive to the assembly enable a so-called hand-over-hand
mechanism, that gives rise to a unidirectional force on
the substrate20−22,24,30,31. In case of Bcs1, we, unfortu-
nately, could not obtain a structure with a bound sub-
strate and either ATP or a non-hydrolysable ATP anal-
ogon present. Yet, our structures still reveal possible
conformational rearrangements that may happen during
the ATPase cycle. The Bcs1 pore loops do not point
towards the central axis of the heptameric assembly but
rather away from the plane of the AAA ring, distinguish-
ing these loops from what is observed in classical hexam-
eric AAA proteins engaging a substrate. Nevertheless,
one or both of these loops could transiently bind to Rip1

and thus, ATP hydrolysis could generate a translocation
force in a mechanism similar to what is known from other
hexameric AAA proteins. Notably, in classical AAA
proteins such as Cdc48, Yme1 or AFG3L220,22,32, the
substrate first engages with pore loop 1 and then pore
loop 2. In contrast, the unique architecture and orienta-
tion of the heptameric Bcs1 AAA ring would require the
substrate to first engage pore loop 2 and then possibly
pore loop 1 for translocation (Extended Data Fig. 5).
Thus, the translocation direction is indeed reversed with
respect to the AAA ring compared to canonical AAA
proteins. These findings may indicate distinct mecha-
nistic adaptations of Bcs1 to its much larger and folded
translocation substrate.

The linked conformational dynamics of the middle do-
main and the ATPase domain in particular in state Apo2
show that the seal pore can substantially widen. Thus,
one possibility is that ATP-hydrolysis can trigger the
conformational change in the middle domain that leads
to opening of the seal. Yet, considering the observed
structures it is not clear whether this transition occurs
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Rip1 AAA domain Middle domain TMH

Loading1 Gating2 Release3

Figure 6: Model for translocation of folded
Rip1 protein by Bcs1. We propose a mecha-
nism, by which the Rip1 passes through both Bcs1
vestibules in an airlock-like mechanism. The model
involves three steps: i) loading of Rip1 into the ma-
trix vestibule of Bcs1, ii) Opening of the seal pore
to allow gating of Rip1 for its translocation into the
IM vestibule, and iii) Closure of the seal pore and
release of the Rip1 globular domain into the IMS as
well as lateral integration of the N-terminal TMH
into the IM. The likely flexible N-terminus of Rip1
is only partially displayed.

subsequently in each individual protomer or whether all
protomers act in a concerted way. Subsequent transi-
tions would more closely reflect the mechanism described
for classical AAA proteins performing hand-over-hand
translocation with a split-washer like conformation. Al-

ternatively, a concerted action resulting in a synchronous
opening of all seal loops may be important to facili-
tate an opening of the seal pore wide enough for the
Rieske protein to traverse from the matrix vestibule to
IM vestibule. To elucidate these questions, future stud-
ies, for example using a slowly hydrolyzing walker B mu-
tant of Bcs1 with and without cargo may bring novel in-
sight into the Bcs1-ATPase cycle and its coupling to sub-
strate translocation. Of particular interest will be to un-
derstand the role and functional dynamics of the unique
TMHs arrangement of Bcs1 that forms the basket-like
IM vestibule and may function similar to the enigmatic
TAT system in membrane translocation of folded pro-
teins.
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Methods

Ni-NTA affinity purification of native
BCS1 complex.

A mitochondrial crude fraction was isolated from a S.
cerevisiae strain (W303) expressing N-terminally His-
tagged Bcs1 from the YEp51 plasmid in the bcs1∆ back-
ground. 5 mg of this mitochondrial fraction were resus-
pended in 50 mM Na phosphate pH 8.0, 100 mM NaCl,
10 mM imidazole, 5% glycerol, 1:100 diluted protease in-
hibitor without EDTA (Calbiochem). Afterwards digi-
tonin was added to a final concentration of 3% (w/v) and
incubated for 10 min on ice. Undissolved membranes
were pelleted at 15000xg for 10 min at 4◦C. The clear

lysate was diluted 1:1 with 50 mM Na phosphate pH 8.0,
100 mM NaCl, 10 mM imidazole, 5% glycerol and incu-
bated with NiNTA agarose beads for 1 h at 4◦C. After
washing, Bcs1 was eluted from the beads by addition of
50 mM Na phosphate pH 8.0, 100 mM NaCl, 400 mM
imidazole, 5% glycerol, 0.1% digitonin. The buffer of the
eluate was exchanged via a NAP-5 column (GE health-
care, fisher Scientific) to 50 mM Na phosphate pH 8.0,
100 mM NaCl, 0.1% digitonin. Using an Amicon Ultra
concentrator (MW CO 100K) oligomeric BCS1 complex
was concentrated to 0.5 mg/ml. In case of ADP-bound
Bcs1 ATP was added to 1 mM final concentration to the
purified Bcs1 complex and incubated on ice for 1h prior
to cryo-EM sample preparation.

Grid making and data acquisition

Samples were applied on Quantifoil carbon coated R
1.2/1.3 (for Bcs1 Apo) or R2/2 (for Bcs1 ADP) UltrAu-
Foil grids. The grids were first plasma cleaned (2.2*10−1

torr, 20s), then 3.5µl of sample ( 0.5 mg/ml) were spot-
ted onto the grids, incubated for 45 s, blotted (2.5 s; blot
force 0, 95% humidity, 5◦C) and then flash frozen in liq-
uid ethane using a Vitrobot Mark IV (FEI / Thermo
Fisher).

Data for both samples were collected on a Titan Krios
G3 (FEI / ThermoFisher) using a K2 (Gatan) detec-
tor and GIF energy filter. Using EPU (FEI / Ther-
moFisher), 2919 (for Bcs1 Apo) and 7092 (for Bcs1
ADP) dose fractionated movies with 48 frames, an ex-
posure of 1.2 e−/frame and 1.35 e−/frame, respectively,
and a magnification resulting in an image pixel size of
1.059 Å/px were collected.

Image Processing

First, anisotropic motion correction (4x4 patches, group-
ing of 3 frames) and dose weighting was achieved uti-
lizing MotionCor234. Then CTF parameters were es-
timated using CTFFIND435. The dose weighted micro-
graph sums were visually inspected and bad micrographs
showing aggregates, contamination or bad ice were dis-
carded.

After pre-processing, single particle analysis was per-
formed as outlined in Extended Data Fig. 3. In brief, for
the Bcs1 Apo dataset 1829 micrographs were imported
into CRRYOSPARC v236 to generate an initial refer-
ence model. 2D projections generated from the cryo-
EM structure of the Vps4 hexamer (EMD-8588)37 via
the relion project command served as templates to
pick 481,514 particles in CRYOSPARC v2. After extrac-
tion, particles were subjected to 2D classification with
100 classes. Good 2D classes were selected and the re-
sulting 36,489 particles were used as input for ab ini-
tio reconstruction of three classes, of which one clearly
showed the heptameric ring of AAA domains and a mi-
celle. Further processing was conducted in RELION-
3 (version 3.0.4)38,39. Selected particles were subjected
to 3D auto-refinement using C1 symmetry using the ab
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initio map as reference. The resulting map was then
used as a reference for auto-picking, yielding 1,389,762
particles. They were extracted and down-sampled to
2.12 Å/pixel and subsequently classified into 100 2D
classes. 2D classes were selected based on visual inspec-
tion and the provided alignment statistics, giving a set of
223,580 particles. Using 3D classification with particle
alignment, these particles were grouped into four classes,
with the largest class (44%) giving good resolution. Un-
binned particles of this class were re-extracted and sub-
jected to 3D auto-refinement with applied C7 symme-
try yielding a map with 4.4 Å resolution. Further 3D
sub-classification of this class with C1 symmetry yielded
two distinct states, Apo1 and Apo2, which by applying
C7 symmetry could be refined to 4.4 Å and 4.6 Å, re-
spectively. Additional classification, CTF-refinement or
Bayesian polishing could not further improve the resolu-
tion.

The Bcs1 ADP dataset was processed as described in
Extended Data Fig. 4 using RELION-3 (version 3.0.4).
To start, 2000 micrographs were used for initial particle
picking using the RELION AutoPick Laplacian of Gaus-
sian (LoG) method39 yielding 1,101,692 particles. These
particles were extracted, down-sampled to 4.14 Å/pixel
and subjected to 2D classification (100 classes). The re-
sulting 730,699 good particles were re-extracted (2.12
Å/pixel) and refined against a 45 Å low-pass filtered
map obtained from the Bcs1 Apo dataset (see above;
Bcs1 Apo). The resulting map was used as a 3D ref-
erence for particle picking of the complete set of 7092
micrographs, yielding 3,479,264 particles. These were
extracted, down-sampled to 4.14 Å/pixel and subjected
to 2D classification (100 classes), yielding 1.549.306 good
particles. Using the reference generated from the ini-
tial subset of 2000 micrographs, a 3D classification with
five classes and global particle alignment was performed.
Apart from four classes showing low resolution, miss-
picked particles and in one case very strong orientation
bias, one class showed clear features similar to the Bcs1
Apo states. The particles were re-extracted unbinned,
refined with C7 symmetry and the resulting 3.5 Å map
was used to perform refinement of the CTF parameters
(beam tilt and per particle CTF parameters), increas-
ing the resolution to 3.4 Å and 4.0 Å for C7 and C1
symmetry refinements, respectively.

Model building and refinement

First, a model was built for the C7 symmetrized Bcs1-
ADP map at 3.4 Å. A homology model for the Bcs1 AAA
domains was generated using HHPred40 and Modeller41.
Based on this model adjustments to the AAA domain
and de novo building of the middle and TMH domain
was conducted using COOT42. The model was refined
using MDFF and PHENIX real space refinement as pro-
vided by the NAMDINATOR server43. To obtain mod-
els for the Apo states, the ADP model was fit into the
maps of states Apo1 and Apo2 using COOT and re-

fined in a further round of real space refinement using
PHENIX44. PHENIX PDB tools was then used to trim
the sidechains. Models and maps were visualized and
figures were made using UCSF ChimeraX45.

Data Availability Statement

The cryo-EM density maps and corresponding atomic
models reported in this paper have been deposited in
the EM Data Bank and Protein Data Bank with the ac-
cession codes EMD-10192, EMD-10193 and EMD-10194
as well as PDB 6SH3, 6SH4 and 6SH5 for the Bcs1-ADP,
Bcs1-Apo1 and Bcs1-Apo2 states.
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Extended Data

Figure 7: SDS-PAGE gel of purified Bcs1.
The concentrated Bcs1-His eluate (see Materials
and Methods) was loaded on a 4-10% gradient
gelcand bands were analyzed by mass spectrome-
try. This mild and fast one-step affinity purifica-
tion yields Bcs1 assemblies active in nucleotide and
substrate binding7; remaining background proteins
represent abundant mitochondrial proteins that un-
specifically interact with Ni-NTA resin.
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Figure 8: Cryo-EM data processing of the Bcs1 complex with and without ADP. (a) Representative
original micrograph and 2D class averages for the ADP (left) and the Apo (right) datasets. (b) “Gold
standard” Fourier-Shell correlation (FSC) curves when applying C1 and C7 symmetry during refinement. The
final resolutions were 3.4 Å (C7) and 4.0 Å (C1). (c) Final C1 and C7 symmetrized maps filtered and colored
according to local resolution as calculated with RELION-3.

Figure 9: 3D classification scheme for the Bcs1 apo data set. The classification regiment is described
in detail in the Methods section. In brief, after import and CTF-estimation, particles were first picked using
the structure of the Vps4 AAA-ATPase hexamer as a template (EMD-8588)37. Particles were 2D classified and
an ab initio model was obtained using cryoSPARC v.2. From the refined map, a better reference for RELION
autopickingwas obtained and resulting particles were again 2D classified. Good classes were subjected to 3D
classification yielding one stable feature-containing class that could be sub-classified further. Two stable classes
were then 3D refined using either C1 or C7 symmetry yielding the final Bcs1 Apo1 and Bcs1 Apo2 maps. K:
number of classes.
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Figure 10: 3D classification scheme for the Bcs1 ADP dataset. The classification regiment is described
in detail in the Methods section. In brief, autopicking in RELION-3 (Laplacian of Gaussian (LoG) method)38

was performed using the previously obtained structure of Bcs1 Apo1 as a reference. 2D classification and 3D
refinement were performed and auto-picking repeated using the refined map to optimize the quality and yield
of good Bcs1 complex particles. After a second round of 2D classification and refinement, 3D classification
yielded in one class that could be refined including per particle CTF correction and beam tilt correction in
RELION-3 using C1 and C7 symmetry to a final resolution of and 3.4 Å and 4.0 Å, respectively. K: number
of classes.

Figure 11: Comparison of two membrane bound mitochondrial AAA proteins Yme1 and Bcs1.
Shown are two protomers of both Yme1 (a) (PDB: 6AZ0) 20 and Bcs1 either in the ADP state (b) or the
Apo1 state (c). The pore loops and preceding beta strands are shown in orange (PL1, β2) and blue (PL2,
β3). The six AAA domains of Yme1 form a spiral staircase configuration. Displayed here are the ADP-bound
(purple) and Apo (cyan) protomers, which constitute the bottom and top end of this spiral. The two pore
loops of every AAA domain protrude towards the central axis of this complex, where they can interact with
the peptide backbone of the substrate (red) via the conserved tyrosine residues. In this configuration, the
beta strands β2 and β3, which precede the two pore loops point towards the central axis. Conversely, in Bcs1,
these loops and the corresponding preceding beta strands do not point towards the opening of the ring of AAA
domains, but rather point away from the ring plane in both displayed conformations. In the ADP state these
loops are oriented approximately parallel to the central axis, in the apo states they are slightly tilted towards
the central axis.
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SUMMARY

Ribosome assembly is driven by numerous assembly factors, including the Rix1 complex and the AAA
ATPase Rea1. These two assembly factors catalyze 60S maturation at two distinct states, triggering poorly
understood large-scale structural transitions that we analyzed by cryo-electron microscopy. Two nuclear
pre-60S intermediates were discovered that represent previously unknown states after Rea1-mediated
removal of the Ytm1-Erb1 complex and reveal how the L1 stalk develops from a pre-mature nucleolar to a
mature-like nucleoplasmic state. A later pre-60S intermediate shows how the central protuberance arises,
assisted by the nearby Rix1-Rea1machinery, whichwas solved in its pre-ribosomal context tomolecular res-
olution. This revealed a Rix12-Ipi32 tetramer anchored to the pre-60S via Ipi1, strategically positioned to
monitor this decisive remodeling. These results are consistent with a general underlying principle that tempo-
rarily stabilized immature RNA domains are successively remodeled by assembly factors, thereby ensuring
failsafe assembly progression.

INTRODUCTION

To generate functional ribosomes, eukaryotic cells produce and

assemble four ribosomal RNA (rRNA) species (18S, 5.8S, 25S,

and 5S rRNA in yeast) and about 80 ribosomal proteins into

two ribonucleoprotein particles (RNPs), the 60S large ribosomal

subunits (LSUs) and the 40S small ribosomal subunits (SSUs).

These processes occur in a highly orchestrated and regulated

assembly line, which is coordinated by more than 200 assembly

factors, also known as biogenesis factors (Baßler and Hurt,

2019; Klinge and Woolford, 2019; Woolford and Baserga,

2013). Cryo-electron microscopy (cryo-EM) studies have re-

vealed the structural details underpinning a three-phase hierar-

chical model of LSU assembly first proposed after a biochemical

analysis by Gamalinda et al. (2014). These phases are (1) forma-

tion of the solvent-exposed outer shell and peptide exit tunnel in

the nucleolus (Kater et al., 2017; Sanghai et al., 2018; Zhou et al.,

2019a), (2) construction of the central protuberance (CP) and

initial formation of the inter-subunit surface (ISS) in the nucleo-

plasm (Barrio-Garcia et al., 2016; Wu et al., 2016), and (3) matu-

ration of the ISS and the peptidyl transferase center (PTC), which

is the active site of the ribosome, in the cytoplasm (Kargas et al.,

2019; Ma et al., 2017; Malyutin et al., 2017; Zhou et al., 2019b).

Toward the end of the first phase, after construction of the sol-

vent-exposed back and formation of the peptide exit tunnel, late

nucleolar particles (states D and E) (Kater et al., 2017) stabilize

the L1 stalk rRNA (helices 75–78 of the 25S rRNA) in a pre-mature

conformation with an array of assembly factors (Ebp2, Nip7,

Noc3, and Nop2) (Kater et al., 2017). In this conformation, the

stalk blocks the site that would be occupied by the mature CP.

Thus, to construct theCP during phase 2, extensive restructuring

at the site of the yet-to-form ISS is required, allowing the assem-

bly and stable incorporation of helices 80–88 of the 25S rRNA

and the 5S RNP into the pre-60S particle (Figure 1A) (Kater

et al., 2017). During this restructuring, several assembly factors

(among these, Brx1, Ebp2, Erb1-Ytm1, Noc3, Nip7, Nop2,

Nop16, and Spb1) must be released from the maturing LSU (Ka-

ter et al., 2017). Furthermore, the L1 stalk must be repositioned

by a rotation at its base to adopt a mature position (Kater

et al., 2017). Initial formation of the CP and ISS ultimately results

in the well-known nucleoplasmic pre-60S Arx1/Nog2 particle

(Bradatsch et al., 2012; Leidig et al., 2014; Wu et al., 2016).

Bothmajor structural transitions of the nuclear assembly phase,

restructuring of the L1 stalk and rotation of the CP, depend on the

activity of the ATPase Rea1. First, the Erb1-Ytm1 heterodimer of

the early nucleolar pre-60S particle is released by Rea1 (Bassler

et al., 2010; Thoms et al., 2016; Wegrecki et al., 2015). Many pre-

viously mentioned assembly factors, which are located at the site

of the yet-to-form ISS, interact with the longN-terminal tail of Erb1

(Kater et al., 2017). Furthermore, inhibition of the Rea1-mediated
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A B

C D

Figure 1. Nop53-Purified Particles Reveal Two Novel Early States En Route to Forming the CP

(A) Secondary structure plot of 25S domain V with the rRNA of the L1 stalk and CP highlighted. Inset: secondary structure diagram of the entire mature rRNA

(Petrov et al., 2014).

(B) SDS-PAGE analysis of pre-60S particles purified using TAP-FLAG-Nop53.

(C and D) Front and top views of the cryo-EM maps of NE1 (C) and NE2 (D) states with assembly factors, relevant rRNA segments, and ribosomal proteins

highlighted.
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release of Ytm1 stalls pre-ribosomes at a nucleolar stage with all

these factors bound (Kater et al., 2017). Altogether, these findings

let us propose that this series of dismantling steps is triggered by

the Rea1-mediated release of the Erb1-Ytm1 module (Bassler

et al., 2010; Kater et al., 2017). Release of Erb1 finally allows bind-

ing of the exosome-interacting factor Nop53, because they share

a common binding site on the internal transcribed spacer 2 (ITS2)-

containing foot structure (Kater et al., 2017; Sanghai et al., 2018;

Wu et al., 2016). The methyltransferase Spb1 also interacts with

the meandering tail of Erb1, and its removal is required to form

the pre-mature ISS of the Arx1/Nog2 particle, because its binding

site overlaps with that of Nog2 (Kater et al., 2017; Leidig et al.,

2014; Wu et al., 2016). Spb1 is found on both nucleolar Erb1

and later Nop53-containing particles (Kater et al., 2017; Thoms

et al., 2015), indicating the presence of distinct 60S assembly in-

termediates between release of Erb1 and assembly of the CP.

Second, the 5S RNP initially binds the pre-60S particle in the

nucleolus but remains flexible and unresolved in nucleolar pre-

60S intermediates (Kater et al., 2017; Kressler et al., 2008; San-

ghai et al., 2018; Zhang et al., 2007; Zhou et al., 2019a). Later,

when the 5S RNP and CP are stably incorporated within the

Arx1/Nog2 pre-60S particle, a rigid but pre-mature conformation

is adopted, with the 5S rRNA rotated by 180� with respect to its

mature orientation (Leidig et al., 2014; Wu et al., 2016). To drive

the CP closer to maturity, a further major remodeling step is

required that is induced by the second binding of Rea1, an

ATPase associated with diverse cellular activity (AAA), together

with the Rix1-Ipi1-Ipi3 complex (Barrio-Garcia et al., 2016).

Similar to the release of Ytm1, upon ATP hydrolysis, Rsa4 is ex-

tracted by Rea1 from the pre-60S, from which the Rix1 complex,

Rea1, and Sda1 then dissociate (Ulbrich et al., 2009).

After these two major nuclear remodeling steps, release of the

guanosine triphosphatase (GTPase) Nog2/Nug2 allows binding

of the nuclear export factor Nmd3 (Matsuo et al., 2014; Trotta

et al., 2003). After transport into the cytoplasm, the pre-60S par-

ticle undergoes final maturation, which includes formation of the

mature PTC and dissociation of the remaining assembly factors

(Kargas et al., 2019; Lo et al., 2010; Zhou et al., 2019b).

Although the final stages of 60S maturation can be visualized

as several highly resolved assembly intermediates (Kargas et al.,

2019; Zhou et al., 2019b), the preceding steps that initiate the

formation of the CP and ISS are poorly understood. To better un-

derstand these earlier steps of nucleolar and nuclear 60S matu-

ration, we sought to biochemically and structurally characterize

additional pre-60S intermediates that allow us to trace the for-

mation and maturation of the CP. We also disclose the first

high-resolution structure of the Rix1-Rea1 machinery docked

to the late nucleoplasmic pre-60S particle, which affords a

more accurate description of the remodeling processes driving

CP formation.

RESULTS

Two-Step Rearrangement of the L1 Stalk during the Pre-
60S Nucleolar-Nucleoplasmic Transition
To study the formation of the CP and its adjacent L1 stalk (see

Figure 1A for an overview of the rRNA elements), we used the

tandem afinity purification tag and FLAG tagged (TAP-FLAG-

tagged) exosome recruiting factor Nop53 for affinity purification

from yeast (Figure 1B) (Thoms et al., 2015). By performing single-

particle cryo-EM of the obtained pre-60S particles, we identified

several Nop53-associated intermediates, of which two termed

Nop53 early 1 (NE1) and Nop53 early 2 (NE2) were novel and

could be resolved at 3.9 and 3.8 Å resolution, respectively (Fig-

ures 1C, 1D, and S1–S3; Table 1). Both intermediates (NE1

and NE2, classes C4C1 and C4C2 in Figure S2) possess the

typical ITS2-harboring foot structure in which the nucleolar

Erb1 has been replaced by Nop53, suggesting that the Rea1-

mediated release of Ytm1-Erb1 had already occurred. Notably,

Erb1 release and replacement by Nop53 in the foot structure co-

incides with a conformational change of the Rlp7 N terminus,

which is a prerequisite for accommodation of the L1 stalk and

expansion segment (ES) 31 (Kater et al., 2017). In contrast to

the preceding nucleolar pre-60S states D and E, neither of the

two novel intermediates shows density for the assembly factors

Brx1, Ebp2, Has1, Noc3, Nop16, Spb4, or an unknown a-sole-

noid (Kater et al., 2017; Sanghai et al., 2018). However, NE1 par-

ticles retain the Spb1 methyltransferase (Kressler et al., 1999;

Lapeyre and Purushothaman, 2004), which detaches during

the transition from state NE1 to state NE2, upon which it is re-

placed in part by Bud20. In addition to this change, the L1 stalk

rRNA, which was already rigidly positioned in state D/E particles,

albeit in a pre-mature conformation (Kater et al., 2017), became

flexible and mostly delocalized in NE1 particles, only visible at

low resolution (Figure S3E). However, in NE2 particles, enabled

by the dissociation of Sbp1, the L1 stalk rRNA for the first time

adopts its typical mature-like conformation (Figures 1C and

1D). The peptide exit tunnel of both NE1 and NE2 particles re-

mained empty, as it does in state E (Kater et al., 2017), Arx1-

Alb1, eL39, and the C terminus of Nog1 were not yet recruited

to the tunnel.

We sought to more closely investigate the composition of

state NE1 by purifying this specific particle via subsequent affin-

ity purifications targeting first Nop53 and then Spb1 (split-affinity

purification). To do so, we generated two Spb1 constructs with

FLAG tags inserted into the extended, unstructured section of

the C terminus of Spb1 (after amino acids 437 and 516) and per-

formed split-affinity purifications of the ProtA-(His)6-Nop53 and

Spb1-FLAG-tagged particles (Figure S3C). We chose to use an

internal FLAG tag, because both the N terminus and the C termi-

nus of Spb1 are buried in state E particles (Kater et al., 2017).

Mass spectrometry analysis of these particles showed that the

methyl-transferase Nop2 and its binding partner Nip7 remained

bound to these particles or a subpopulation thereof, presumably

still bound to the flexible L1 stalk rRNA. Cryo-EM analysis of

these particles shows almost exclusively the particles corre-

sponding to the previously described state NE1 derived from

TAP-FLAG-Nop53 purification (Figures S2B, S3E, and S3F).

Nog2 and Rsa4, assembly factors associated with the pre-

mature CP and the ISS in Arx1/Nog2 particles, were not yet

associated with these particles and likely require the stable

incorporation of the CP and 5S RNP.

Thus, given the absence of the Ytm1-Erb1 complex in these

two particles and the still missing CP and Arx1-Alb1, hallmarks

of Arx1/Nog2 particles, we can place the pre-60S states NE1

and NE2 between the known nucleolar state E and the
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nucleoplasmic Arx1/Nog2 particles. Hence, we suggest the

following pre-60S assembly steps (Figure 2). First, assembly fac-

tors that stabilize the pre-mature L1 stalk are released from state

E, rendering the L1 rRNA flexible and unresolved in NE1. At the

same time, the Spb1 C-terminal domain prevents accommoda-

tion of the L1 stalk in its mature-like conformation. Next, Spb1

dissociates, enabling the L1 stalk and ES31 to adopt mature-

like conformations; concomitant with this remodeling, stable

incorporation of ribosomal proteins uL2 and eL43 and posi-

tioning of rRNA helix 66 (domain IV) occur, fixing the L1 stalk at

its base and priming ISS maturation. After L1 stalk formation in

NE2 particles, CP formation can begin because helix 88 (see

also Figure 1D) and the L1 stalk rRNA provide two anchoring

points for the compaction and accommodation of the CP

rRNA, along with fixation of the 5S RNP. As a result, the promi-

nent CP structure becomes visible for the first time in the Arx1/

Nog2 particle (Figure 2). Apart from the formation of the pre-

mature CP, the transition from the NE2 particle to the Arx1/

Nog2 particle coincides with maturation of the peptide exit tun-

nel through binding of ribosomal protein eL39, together with

the Nog1 C domain and Arx1-Alb1. The ISS can further mature

by compaction and assembly of rRNA domain IV (i.e., ES27

and rRNA helices 67–70), accompanied by the binding of assem-

bly factors Cgr1, Nog2, and Rsa4 (Figure 2).

In conclusion, the transition from the pre-60S nucleolar state E

to the Arx1/Nog2 particles could be visualized as the two novel

intermediates NE1 and NE2 that represent stages after Erb1-

Ytm1 removal. This process is coupled to the release of

Table 1. Model and Map Statistics

Data Collection and Processing

Dataset Nop53 Rix1-Rea1

Model NE1 NE2 60S core Rix12-Ipi32 Rea1

Magnification 75,0003 75,0003 130,0003 130,0003 130,0003

Voltage (kV) 300 300 300 300 300

Electron exposure (e�/Å2) 28 28 75 75 75

Defocus range (mm) �1.0 to �3.0 �1.0 to �3.0 �0.8 to �2.5 �0.8 to �2.5 �0.8 to �2.5

Pixel size (Å) 1.084 1.084 1.059 1.059 1.059

Symmetry imposed C1 C1 C1 C1 C1

No. initial particle images 499,748 499,748 273,799 273,799 273,799

No. final particle images 29,163 30,364 114,398 114,398 55,397

Map resolution (Å) 3.9 3.8 3.0 3.3 4.2

FSC threshold 0.143 0.143 0.143 0.143 0.143

Refinement

Initial model(s) used (PDB ID) 3JCT, 6N8J, 6ELZ 3JCT, 6N8J 3JCT, 4V88, 4WJV, 6N8J de novo 6EES

Map sharpening B factor (Å2) �60 �70 �36 �67 �85

Model Composition

Nonhydrogen atoms 118,882 120,663 147,190 15,372 18,362

Protein residues 7,493 7,352 9,666 1,930 3,700

Nucleotide residues 2,757 2,899 3,310 0 0

B Factors (Å2)

Protein 96 85 57 74 128

Nucleotide 104 98 58 N/A N/A

Ligand N/A 109 58 N/A N/A

RMSD

Bond lengths (Å) 0.019 0.013 0.004 0.010 0.005

Bond angles (�) 1.666 1.314 0.997 1.352 1.264

Validation

MolProbity score 1.58 1.47 1.71 1.19 1.34

Clashscore 6.5 6.8 4.8 4.0 1.1

Rotamer outliers (%) 0.65 0.11 0.16 0.34 0.00

Ramachandran Plot

Favored (%) 96.6 97.5 92.8 98.5 91.1

Allowed (%) 3.4 2.4 6.8 1.5 8.9

Disfavored (%) 0 0 0.4 0 0.1

RMSD, root-mean-square deviation; FSC, Fourier shell correlation.
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assembly factors that are predominantly associated with the

Erb1-meandering tail and stepwise maturation of helices 75–79

of the 25S rRNA, including ES31.

Molecular Architecture of the Rix1-Rea1 Machinery on
Nucleoplasmic Pre-60S Particles
To obtain insight into the next transition, that is, the Rix1-Rea1-

dependent CP formation and 5S rotation, we analyzed particles

obtained by split-tag-affinity purification based on Rix1-TAP as

first bait and FLAG-Rea1 as second bait (Figures 3A and S3D).

Performing successive affinity purifications allowed us to target

the small subset of all pre-60S particles that are simultaneously

associated with both the Rix1 complex and Rea1. These pre-60S

particles could be separated into two distinct cryo-EM classes,

with average resolutions of 6.8 and 3.0 Å, respectively (Figures

3B, 3C, and S4; Table 1). The first class (class C8 in Figure S4;

1% of all particles) exhibits an early pre-60S state before the

release of Ytm1, which apparently lacks rigidly bound Rix1-

Rea1 (Figure S4). This class corresponds to particles of state

E, which have also been obtained by split-affinity purification us-

ing Rix1-TAP and Rpf2-FLAG (Kater et al., 2017). A second class

represents a later pre-60S state (class C2 in Figure S4; 41.8% of

all particles) carrying Rix1-Rea1, together with Rsa4 and Arx1,

and resembles the previous Rix1-Rea1 particle, which was

solved only at lower resolution (Barrio-Garcia et al., 2016; Wu

et al., 2016). We noticed that the Rix1-Rea1 particles are compo-

sitionally heterogeneous, because approximately half of the par-

ticles contain the ITS2-harboring foot structure, whereas the

other half had already undergone foot removal (Figure S4). Using

multibody refinement (Nakane et al., 2018), we overcame the

conformational variability imposed by the flexible Rix1-Rea1ma-

chinery, yielding a final resolution of 3.0 Å for the 60S core, 3.4 Å

for the Rix1 subcomplex, and 4.2 Å each for the Rea1 tail and

AAA ring (Figure S1 and S4A). Altogether, this allowed us to

generate molecular models for the entire Rix1-Rea1 particle,

including de novomodels for Alb1, Ipi1, Ipi3, Rix1, and Sda1 (Fig-

ures 3B and 3C).

The initially limited resolution of Rea1 on the particle indicated

flexibility caused by movement of the AAA domains relative to

each other and the tail relative to the Rea1 ring (Figures S1J

and S4). To overcome this problem, we performed multibody

refinement on Rea1 segmented into two bodies: the Rea1 tail

and the Rea1 ring including the MIDAS and Rsa4-UBL domains

(Figure S4). Principal-component analysis (PCA) of the rigid-

body motions (Nakane et al., 2018) indicated a prominent up-

and-down movement of the Rea1 tail with respect to the Rea1

ring and 60S subunit (Figure S5A). However, neither the PCA of

the rigid-body motions nor further 3D classification or 2D class

averages revealed a particle state in which the Rea1 tail contacts

the Rsa4-UBL, as previously suggested by negative-stain elec-

tron microscopy (EM) (Ulbrich et al., 2009). All Rea1-associated

pre-60S particles featured the Rea1-MIDAS bound to the Rsa4-

UBL and docked onto the Rea1 AAA ring (Figures 3B, 4, and

S5B). This is consistent with previous structural studies of iso-

lated Rea1 derived from either Saccharomyces cerevisiae or

Schizosaccharomyces pombe (Chen et al., 2018; Sosnowski

et al., 2018). The mode of interaction between Rea1-MIDAS

and Rsa4-UBL is similar to that between integrin a subunits

bound to extracellular ligands but is augmented by an additional

b-hairpin of the MIDAS domain (Figure 4B) (Ahmed et al., 2019).

The two other Rea1-specific elements of the MIDAS domain are

an N-terminal a helix (a1) and the adjacent loop (N loop), the den-

sity of which can be traced into the central pore of the AAA ring in

our map (Figure 4B). Although the cryo-EM Rea1-MIDAS/Rsa4-

UBL structure is similar to the corresponding Chaetomium ther-

mophilum crystal structure, the a1 and a9 helices adopt confor-

mations that are more similar to the structure of the unbound

MIDAS domain (MIDAS-Apo) (Figure S5C).

Additional interactions between the Rea1 MIDAS domain and

the lower part of the Rea1 AAA ring could be observed in our

cryo-EM structure (Figures 4C–4F and S5D), such as (1) AAA2

and AAA3 small domain loops interacting with MIDAS a5 and

the loop between MIDAS a8 and b8 (Figures 4C and 4E); (2)

AAA3 and AAA5 large domain loops, which correspond to the

pore loops in classical AAA proteins, contacting MIDAS b5 and

a9 and the MIDAS a1 helix (Figures 4D and 4F; for functional

importance, see also Chen et al., 2018); and (3) the AAA5 helix

2 insertion element reaching the end of the N loop protruding

from the Rea1 central pore (Figure 4F). These observations indi-

cate that the AAA pore loops might play a role in the mechanism

of Rsa4 release (and that of Ytm1). Altogether, these findings are

reminiscent of other AAA ATPases (e.g., Cdc48 and Yme1) that

thread substrates through their central pore via their pore loops

(Puchades et al., 2017; Twomey et al., 2019).

The spherical density identified as the Rix1-Ipi1-Ipi3 com-

plex on the previously reported low-resolution Rix1-Rea1 par-

ticle (Barrio-Garcia et al., 2016) can be described in atomic

detail based on our new cryo-EM structure. Accordingly, the

Rix1-Rea1 particle harbors two copies of Rix1 and Ipi3 that

form a tetrameric complex with an apparent C2 symmetry,

but surprisingly, only a small loop segment from the Ipi1 C ter-

minus (residues 245–268) is incorporated into this assembly

(Figure 5A). The two Rix1 monomers each form a-solenoids,

which are capped toward the C terminus, by one of the two

Ipi3 b propellers. Consistent with cross-linking mass spec-

trometry studies (Barrio-Garcia et al., 2016), an additional

interaction between Ipi3 and Rix1 is formed via the C-terminal

a helix (residues 472–489) of Ipi3, sandwiched between the

two copies of Rix1. Ipi1, the fifth member of the hetero-pen-

tameric Rix1 complex, only contributes to the globular part

Figure 2. NE1 and NE2 Represent Two Distinct States in the Transition from Late Nucleolar to Early Cytoplasmic Particles

Left: combinedmodel andmap representations highlighting the transition of pre-60S particles from the nucleolar state E particle (PDB: 6ELZ, EMDB: 3891) (Kater

et al., 2017) via states NE1 and NE2 to the early nucleoplasmic Arx1/Nog2 particle (PDB: 3JCT, EMDB: 6615) (Wu et al., 2016). The cores of the particles are

shown as gray volumes; moieties relevant to thematuration of the CP are shown as colored ribbon representations of the respectivemodels. Center: isolated view

of the L1 stalk rRNA and associated factors; views correspond to left column. Right: segments of pre-25S rRNA domain V, with conformations that are either

mature-like (green) or stably folded, but not mature-like (pink) or flexible and/or unfolded, and hence not resolved in the maps (gray). Unknown proteins in state E

were fit as polyalanine helices, and a homology model of Spb4 was fit as suggested by Sanghai et al. (2018).
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of this complex, with a C-terminal loop wedged into the

crevice formed between one of the Ipi3 b-propeller domains

and Rix1 proteins (Figures 5A and 5B). The a-solenoid do-

mains of Ipi1 and Sda1 are placed on top of helices 69 and

81 and between the L1 stalk and the rotated CP. Altogether,

this forms the binding platform of the Rix12-Ipi32 hetero-

tetramer (Figures 3C and 5B–5G). Thus, in contrast to what

was previously thought (Barrio-Garcia et al., 2016), Ipi3 and

Rix1 contribute the bulk of the spherical Rix1 complex den-

sity, whereas Ipi1 appears to anchor the Rix1 complex onto

the ISS of the pre-60S particle.

Based on the newly determined architecture of the Rix1-

Ipi1-Ipi3 pentamer, we performed complementary biochem-

ical studies. Split-tag-affinity purification of overexpressed

Rix1-TEV-ProtA and Ipi3-FLAG (in the absence of Ipi1) yielded

a stable Rix1-Ipi3 complex that could be well separated by

size-exclusion chromatography (Figures 6A and 6B) and ex-

hibited the typical globular form in negative-stain EM (Fig-

ure 6C). This structure greatly resembles the tetrameric

Rix12-Ipi32 assembly on the pre-60S particle solved by cryo-

EM. Thus, Rix1 and Ipi3 can self-assemble in the absence

of Ipi1 to form a hetero-tetramer. To elucidate the in vivo

role of Ipi1 for recruiting the Rix12-Ipi32 tetramer to pre-60S

particles, we depleted Ipi1 via an auxin-induced degron (Fig-

ure S6A) (Nishimura et al., 2009). As anticipated, neither Ipi3

nor Rix1 co-purified pre-60S particles after Ipi1 depletion (Fig-

ure 6D) or a specific deletion of the flexible Ipi1 loop harboring

the Rix12-Ipi32 interaction segment (Figures 6E, 6F, and S6B).

Because Rix1 and Ipi3 are still imported into the nucleus in

the absence of Ipi1 (Figure S6C), the Ipi1 C-terminal loop

provides a principal site for binding the Rix12-Ipi32 tetramer

to the pre-60S particle, which is fully consistent with our

cryo-EM data.

Finally, recruitment and positioning of the Rix1-Rea1 ma-

chinery on the Arx1/Nog2 particle is a prerequisite for the

180� rotation of the CP and 5S RNP toward their mature

conformations (Barrio-Garcia et al., 2016; Wu et al., 2016).

At this state of maturation, Rpf2 and Rrs1, which are associ-

ated at the nonrotated 5S RNP, leave the pre-60S particle,

allowing the Ipi1 N terminus to replace the Rpf2 C terminus

that interacted with Nog2 (Figures 5D–5G). Furthermore, rota-

tion of the CP allows Sda1 to be accommodated in its

observed conformation. Stabilized by Sda1, only helices 80

and 81 of the CP remain in a pre-mature configuration.

After Rea1-mediated release of Rsa4 and subsequent dissoci-

ation of the Rix1-Rea1 remodeling machinery, together

with Sda1, the ribosomal proteins eL29 and eL42 stabilize

rRNA ES12 and helices 80 and 81 in their mature conforma-

tions. These changes coincide with a minor shift of the entire

CP, resulting in a mature conformation, as previously

observed in the late nuclear or early cytoplasmic particle

(Zhou et al., 2019b) (Figure S7). These steps thus pave the

way toward the third and last major maturation phase (see

Introduction): the formation of the PTC at the matured ISS.

A B C

Figure 3. High-Resolution Structure of the Rix1-Rea1 Remodeling Machinery on the Nucleoplasmic Arx1/Nog2 Particles

(A) SDS-PAGE analysis of pre-60S particles split-tag-affinity purified using Rix1-TAP and FLAG-Rea1.

(B) Front view of the composite structure of the nucleoplasmic Rix1-Rea1 particle with assembly factors highlighted. The map is a composite of the individual

multibody refined rigid bodies (60S core, Rea1 ring, Rea1 tail, and Rix1 complex).

(C) Top views of (B) showing all assembly factors (top) and with Rea1 and the Rix1-Ipi3 subcomplex omitted (bottom).

The ITS2-containing foot structure present in �50% of the particles was masked out for clarity in these depictions.
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DISCUSSION

This study has unveiled two previously unknown intermediates

of the pre-60S assembly pathway, giving insight into the large-

scale remodeling of the nascent LSU upon transiting from a late

nucleolar state to an early nucleoplasmic state. Moreover, we

provide a molecular-resolution intermediate of a subsequent

pre-60S particle that reveals for the first time the architecture

of the unusual Rix1 subcomplex, with implications for Rix1-

Rea1-driven pre-60S remodeling. Based on these data, we pro-

pose a sequence of maturation events for these transitions (Fig-

ure 7). The late nucleolar pre-60S particle that is state E, which

awaits the ATPase Rea1 to bind to the Ytm1-UBL domain, rep-

resents the starting point of this series. However, the expected

intermediate with Rea1 bound has yet to be captured by cryo-

EM, and this remains a challenge for future studies because of

its apparently highly dynamic mode of interaction. Regardless,

the Rea1-mediated release of Ytm1-Erb1 triggers a cascade of

restructuring events, including the release of a series of 60S as-

sembly factors that were previously associated with the

meandering N terminus of Erb1. This dissociation event culmi-

nates in the delocalization of the L1 stalk and binding of the

exosome recruitment factor Nop53 in state NE1. Subsequent

release of Spb1 allows accommodation of the L1 stalk and its

fixation in a mature-like conformation (state NE2); it and helix

88 (domain V) provide two nucleation seeds in which compac-

tion and assembly of the residual domain V rRNA (helices 80–

87, the rRNA of the CP) (Figure 1A) and 5S RNP are initiated.

Subsequently, recruitment of Cgr1, Nog2, and Rsa4 and incor-

poration of ISS rRNA lead to the well-known Arx1/Nog2 particle

(Bradatsch et al., 2012; Leidig et al., 2014; Wu et al., 2016). This

is primed for the Rix1-Rea1 recruitment that is suggested to

trigger 5S RNP rotation with release of Rpf2 and Rrs1 (Barrio-

Garcia et al., 2016; Wu et al., 2016). In a final step, Rea1

ATPase activity causes the dissociation of Rsa4 and the Rix1-

Rea1 remodeling machinery (Barrio-Garcia et al., 2016; Baßler

et al., 2014). Stable incorporation of uL2 and eL43 and matura-

tion of rRNA helices 81 and 82 eventually conclude this

cascade, leading to the appearance of the typical CP structure

as known from mature 60S subunits.

Figure 4. Rea1-MIDAS Is Bound to Rsa4-UBL and Shows Multiple Interactions with the Rea1 AAA Ring

(A) Domain organization of Rea1 and the corresponding model in equivalent colors shown in side and front views. In the front view, the MIDAS domain of Rea1 is

indicated by a dashed magenta line and the central pore of Rea1 is indicated as a dashed black circle. The gray arrow and gray dashed line indicate the viewing

direction and crop of (B).

(B) Overview of the Rea1-MIDAS domain bound to Rsa4-UBL. The bottom half of the Rea1 ring is shown as viewed from the N domain toward the center of the

ring. The density of theMIDAS andUBL domains is depicted as amesh. The Rea1-MIDAS-specific elements connector hairpin (CH) and helix a1 are highlighted in

purple and turquoise, respectively. The central pore is indicated as a dashed black ellipse.

(C–F) Different viewing angles highlighting interactions between the Rea1-MIDAS and the AAA2–AAA5 domains (C–F, respectively) of the Rea1 ring shown as

models and maps (mesh). The ring interaction sites are highlighted in red, and the corresponding MIDAS interaction sites are shown in blue. AAA-SD, AAA small

domain.

See also Figure S5.
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A

B

C D E F

G

Figure 5. Ipi1 Anchors the Rix1-Ipi3 Hetero-tetramer to the ISS of the Maturing Pre-60S Particle

(A) Architecture of the globular domain of the Rix1-Ipi3-Ipi1 subcomplex depicted as ribbons shown in two views. The black lines centered at the top and bottom

of the right view indicate the axis of the apparent C2 symmetry.

(B) Two views showing the interaction of the Rix1 subcomplex with the pre-60S particle. Left: viewed from the L1 side, including the Rix1-Ipi3 tetramer. Right:

viewed from the top without showing the Rix1-Ipi3 tetramer. The volume insets indicate the respective views of the two depictions.

(C) Close up of the Ipi1 C-terminal loop binding to the Rix1-Ipi3 tetramer.

(D and E) b sheet augmentations formed between Nog2 and Rpf2 (D) and between Nog2 and Ipi1 (E).

(F and G) Close-up views of the areas outlined in (D) (shown in F) and (E) (shown in G).
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The formation and maturation of the CP occurs via two large-

scale remodeling steps involving the L1 stalk and the CP/5SRNP

region, both of which are initially in pre-mature but distinct and

stable conformations. To mature further, these entities undergo

extensive restructuring, involving the successive action of the

dynein-related AAA motor protein, Rea1, in conjunction with

the Rix1 complex. These steps require the energy released by

ATP hydrolysis, driven by the ATPase Rea1, and thus are irre-

versible. Both successive remodeling steps are distinct in multi-

ple ways. First, the different locations of the Rea1 substrates

Ytm1 and Rsa4 on the pre-60S particles imply dramatically

different docking sites for this AAA ATPase. Second, the Rea1-

mediated Ytm1-dissociation step appears to be fast in vivo

and difficult to catch in structural terms but could be recapitu-

lated biochemically by in vitro reconstitution (Bassler et al.,

2010). Conversely, pre-60S particles involved in the second

Rea1 step, in which Rea1 is stably bound to Rsa4, can be readily

purified and studied by structural means. Thus, it is possible that

during the second step, the Rix1-Rea1 remodeling machinery

has an additional role in triggering the correct timing of ITS2 pro-

cessing, which requires complicated machinery (Fromm et al.,

2017) and therefore might be more easily trapped. Complete

processing of the ITS2 harboring foot before CP/5S RNP rotation

was observed so far only in mutants that cannot undergo this

rotation (Thoms et al., 2018), but in all other cases, CP/5S RNP

rotation strictly precedes ITS2 processing and disassembly of

the foot. In this context, the human ortholog of Las1, which per-

forms C2 cleavage in the ITS2, is part of the human Rix1 complex

(called the PELP1 complex) (Castle et al., 2012, 2013; Fromm

et al., 2017). Conversely, processing of the foot structure in yeast

is not strictly coupled to the maturation of the CP, and foot-con-

taining pre-60S particles under mutant conditions are known to

be exported into the cytoplasm, where they enter translation

(Biedka et al., 2018; Rodrı́guez-Galán et al., 2015; Sarkar et al.,

2017) (see also above and Figure S2).

The structural and biochemical data presented here imply an

important role for Ipi1 in tethering the Rix12-Ipi32 tetramer to the

pre-60S particle. As shown by themultibody refinement, this teth-

ering allows the tetramer to be flexibly bound to the pre-60S,

whereas Ipi1 is part of the rigid pre-60S core. As shown by the

biochemical analysis, binding via Ipi1 is necessary, but

not sufficient, for specific targeting of the Rix1-Ipi3 subcomplex

to the pre-60S. It is likely that further interactions are required,

probably provided by the L1 stalk and/or Sda1. The presence of

A B C

D E F

Figure 6. Biochemical Analysis of the Rix1-

Ipi1-Ipi3 Complex

(A–C) Split-tag-affinity purification of Rix1-TEV-

pA/Ipi3-FLAG overexpressed in S. cerevisiae. (A)

Size-exclusion chromatography analysis (absor-

bance versus elution volume) of the Rix1-Ipi3

complex. The fractions marked in gray in (A) were

analyzed by SDS-PAGE and Coomassie staining

(B). The fraction labeled with an asterisk in (A) was

used for negative-stain EM analysis (C). Repre-

sentative class averages of the Rix1-Ipi3 complex

are shown. Scale bar, 10 nm.

(D) Affinity purifications of Ipi3 and Rix1 from an

IPI1-HA-Aid strain (lanes 1–4). Each combination

was purified under expression (� auxin, lanes 1

and 3) or depletion (+ auxin, lanes 2 and 4) con-

ditions of Ipi1-HA-Aid. Final eluates were analyzed

by SDS-PAGE and Coomassie staining. The band

around 18 kDa (lane 4) is a C-terminal Rix1

degradation product.

(E) Affinity purification of Ipi3-FTpA from an IPI1-

HA-Aid degron strain. The IPI3-FTpA IPI1-HA-Aid

strain was transformed with an empty plasmid

(lanes 1 and 2), a plasmid containing IPI1-GFPwild

type (lane 3), or the ipi1 D(227–285)-GFP mutant

(lane 4). The purifications were performed under

expression (� auxin, lane 1) or depletion (+ auxin,

lanes 2–4) conditions of Ipi1-HA-Aid. The final el-

uates were analyzed by SDS-PAGE and Coo-

massie staining. Ipi3 failed to co-purify pre-60S

subunits under Ipi1-depletion conditions (lane 2)

and if Ipi1 D(227–285) is expressed (lane 4).

(F) Plasmids harboring either the IPI1 wild type or

the ipi1 D(227–285) mutant fused to a C-terminal

FTpA tag were transformed in an IPI1-HA-Aid de-

gron strain. The endogenous HA-Aid-tagged Ipi1

was degraded by the addition of auxin. Ipi1-FTpA

and Ipi1D(227–285)-FTpA were affinity purified and

analyzed by SDS-PAGE and Coomassie staining.

See also Figure S6.
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Sda1 is characteristic for this assembly intermediate, and together

with the L1 stalk, it forms part of the binding platform of the Rix1-

Ipi3 tetramer. This might explain why structures of particles puri-

fied via Nop53 show no stably bound Rix1 complex, although its

presence is clearly shown biochemically (Figures 1B and S2).

Structures of the same Nop53 particles, which have been recon-

stituted with the nuclear exosome in vitro, display density for the

Rix1 complex, which is apparently rigidly bound under these ste-

rically more constrained conditions (Schuller et al., 2018). Thus,

we speculate that initially the Rix1 complex is bound flexibly to

the pre-60S particles, resulting in state F (Kater et al., 2017) or a

subpopulation of the Nop53 pre-60S intermediates that contain

the Rix1 subcomplex but do not show a clear density for it.

Upon construction of the complete binding platform, Ipi1 can

reach deeply into the pre-60S ISS region, which stabilizes the

overall binding of the Rix1 complex. The interaction between the

Rix1 C terminus and the helix 2 insertion element of the Rea1

AAA2 domain could then facilitate targeting of Rea1 to the correct

site on the maturing pre-60S (Barrio-Garcia et al., 2016).

Even though structures of Rea1, its MIDAS domain, and its

interaction with the Rsa4-UBL and Ytm1-UBL domains have

been reported previously (Ahmed et al., 2019; Chen et al.,

2018; Sosnowski et al., 2018), the exact mechanism of how

Rea1 contributes to the release of its substrate proteins remains

unclear. A previous model based on negative-stain EM studies

suggested that the MIDAS domain is located at the tip of the

Rea1 tail, which—stimulated by the AAA ring—acts like an

arm, first grabbing the substrate protein and then exerting force

on it by reverting to its extended conformation (Ulbrich et al.,

2009). However, it has become clear only recently that the

MIDAS domain is not an intrinsic part of the structurally visible

Rea1 tail (Ahmed et al., 2019; Chen et al., 2018; Sosnowski

et al., 2018). Our cryo-EM data do not indicate substantial rear-

rangements of the Rea1 tail, as indicated by negative staining

(Ulbrich et al., 2009). Thus, the functional relevance of the tail,

including a possible role in release of the Rea1 target proteins

Rsa4 and Ytm1, remains unclear. Conversely, the interaction of

the MIDAS domain with the ring, especially the loops of the

AAA large domains (Figure 4), suggests the possibility of direct

force transmission from the AAA domains onto the substrate

protein via the MIDAS domain. In classical AAA proteins such

as Cdc48, these so-called pore loops act as the main drivers

Figure 7. Assembly Sequence of the L1 Stalk and CP

Two Rea1-mediated dissociation events frame the major remodeling events leading from a late nucleolar particle (state E, PDB: 6ELZ, EMDB: 3891; Kater et al.,

2017) via the Arx1/Nog2 particle (PDB: 3JCT, EMDB: 6615; Wu et al., 2016) to a particle with a mature CP ready for export (PDB: 6N8J, EMDB: 0369). *5S RNP,

Rrs1, and Rpf2 bind to nucleolar particles such as state E or earlier but are not stably incorporated into the core particle (Kater et al., 2017; Kressler et al., 2008).

See also Figure S7.
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for the translation of a peptide through the central pore (Twomey

et al., 2019). Similar to classical unfolding AAA proteins, such as

Cdc48, Rea1 displays two connected linear polypeptide chains

in its central pore, representing its own N loop connecting the

MIDAS domain to the unstructured D/E-rich linker and tail via

the a1 helix. One possibility is that Rea1 functions similarly to ca-

nonical AAA proteins and possibly moves the N loop and/or the

substrate-bound MIDAS through its pore. Alternatively, the ATP-

hydrolysis-driven conformational change of the AAA ring may be

directly transmitted to the MIDAS domain via the previously dis-

cussed MIDAS ring interactions. Whereas these scenarios might

explain how Rea1 generates force to remove its substrates, the

function of the conservedmassive Rea1 tail domain has yet to be

discovered. To this end, it would be helpful to solve structures of

the full Rea1 catalyzed ATPase hydrolysis cycle in the context of

the pre-60S particle.

The results of this study provide molecular insight into two

major rearrangement steps that take place in 60S biogenesis,

which result in the formation of the L1 stalk, the CP, and large

parts of the ISS, all essential regions for the later functioning

of the subunit in translation. The observed rearrangements

are characterized by transitions from distinct and stable, yet

pre-mature, rRNA conformations, to a more matured archi-

tecture and by the requirement of the ATP-dependent Rix1-

Rea1 remodeling machinery, which renders these steps

irreversible.
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Adams, P.D., Afonine, P.V., Bunkóczi, G., Chen, V.B., Davis, I.W., Echols, N.,

Headd, J.J., Hung, L.W., Kapral, G.J., Grosse-Kunstleve, R.W., et al. (2010).

PHENIX: a comprehensive Python-based system for macromolecular struc-

ture solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221.

Ahmed, Y.L., Thoms, M., Mitterer, V., Sinning, I., and Hurt, E. (2019). Crystal

structures of Rea1-MIDAS bound to its ribosome assembly factor ligands

resembling integrin-ligand-type complexes. Nat. Commun. 10, 3050.

Barrio-Garcia, C., Thoms, M., Flemming, D., Kater, L., Berninghausen, O.,

Baßler, J., Beckmann, R., and Hurt, E. (2016). Architecture of the Rix1-Rea1

checkpoint machinery during pre-60S-ribosome remodeling. Nat. Struct.

Mol. Biol. 23, 37–44.

Bassler, J., Kallas, M., Pertschy, B., Ulbrich, C., Thoms,M., andHurt, E. (2010).

The AAA-ATPase Rea1 drives removal of biogenesis factors during multiple

stages of 60S ribosome assembly. Mol. Cell 38, 712–721.

Baßler, J., and Hurt, E. (2019). Eukaryotic Ribosome Assembly. Annu. Rev.

Biochem. 88, 281–306.

Baßler, J., Paternoga, H., Holdermann, I., Thoms, M., Granneman, S., Barrio-

Garcia, C., Nyarko, A., Lee, W., Stier, G., Clark, S.A., et al. (2014). A network of

assembly factors is involved in remodeling rRNA elements during preribosome

maturation. J. Cell Biol. 207, 481–498.

Ben-Shem, A., Garreau de Loubresse, N., Melnikov, S., Jenner, L., Yusupova,

G., and Yusupov, M. (2011). The structure of the eukaryotic ribosome at 3.0 Å
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This paper N/A
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This paper N/A
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C-term. GFP tag
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electron-microscopy/products/software-em-
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gCTF v1.06 Zhang, 2016 https://www2.mrc-lmb.cam.ac.uk/research/

locally-developed-software/zhang-software/

Gautomatch v0.53 Jack Kai Zhang, Division of
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https://www2.mrc-lmb.cam.ac.uk/research/

locally-developed-software/zhang-software/

Relion 3.0.7 Nakane et al., 2018;

Zivanov et al., 2018

https://github.com/3dem/relion

Coot v0.89 Pettersen et al., 2004 https://www.ccpem.ac.uk/download.php

UCSF Chimera Pettersen et al., 2004 https://www.cgl.ucsf.edu/chimera/

UCSF ChimeraX Goddard et al., 2018 https://www.cgl.ucsf.edu/chimerax/
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Other
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carbon suport
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products/grids/quantifoil.aspx
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Roland

Beckmann (beckmann@genzentrum.lmu.de).

Materials Availability
All unique/stable reagents generated in this study are available from the Lead Contact without restriction.

Data and Code Availability
The accession codes of the atomicmodels reported in this paper are: State NE1: PDB: 6YLX, State NE2: PDB: 6YLY, composite Rix1-

Rea1 pre-60S structure: PDB: 6YLH, Rix1-Rea1 pre60S - 60S core (rigid body 1): PDB: 6YLG, Rix1-Rea1 pre60S – Rea1 and Rsa4-

UBL (rigid body 2): PDB: 6YLF, Rix1-Rea1 pre60S – Rix1-subcomplex (rigid body3): PDB: 6YLE. The accession codes of the cryo-EM

densities are: State NE1: EMDB: 10841, State NE2: EMDB: 10842, composite Rix1-Rea1 pre-60S structure: EMDB: 10839, Rix1-

Rea1 pre60S - 60S core (rigid body 1): EMDB: 10838, Rix1-Rea1 pre60S – Rea1 and Rsa4-UBL (rigid body 2): EMDB: 10837,

Rix1-Rea1 pre60S – Rix1-subcomplex (rigid body3): EMDB: 10836.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Yeast strains
The genotypes of used Saccharomyces cerevisiae strains are listed in the Key Resources Table.

Bacterial Strains
DNA recombinant work was done in Escherichia coli DH5a.

METHOD DETAILS

Plasmid and strains
The plasmids used in this study were generated using standard recombinant DNA protocols. The methods used for genomic tagging

and gene disruption in S. cerevisiae were described previously (Janke et al., 2004; Longtine et al., 1998). All the strains used in this

study are derived from the W303 background.

Affinity purification of pre-60S particles from S. cerevisiae

The TAP-Flag-NOP53 and RIX1-TAP Flag-REA1 strains, expressing the endogenously tagged proteins under control of their native

promoters, were grown in YPDmedium at 30�C and harvested at an OD600 value of approximately 2.0. Cell pellets were flash-frozen

in liquid nitrogen and stored at �80�C. Cell pellets were resuspended in lysis buffer [50 mM Tris-HCl (pH 7.5), 100 mM NaCl, 5 mM

MgCl2, 0.05% NP-40, 1 mM DTT, supplemented with 1 mM PMSF, 1 3 SIGMAFAST protease inhibitor (Sigma–Aldrich)], and cells

were ruptured by shaking in a bead-beater (Fritsch) in the presence of glass beads. Lysates were cleared with two subsequent centri-

fugation steps at 4�C for 10 and 30 min, at 5,000 and 15,000 rpm, respectively. Supernatants were incubated with IgG Sepharose 6

Fast Flow beads (GE Healthcare) on a rotating wheel at 4�C for 90 min. Beads were transferred into Mobicol columns (Mobitec) and,

after extensive washing with lysis buffer, cleavage with tobacco etch virus (TEV) protease was performed at 16�C for 100 min. In a

second purification step, the TEV eluates were incubated with Flag–agarose beads (ANTI-FlagM2 Affinity Gel, Sigma–Aldrich) for

80 min at 4�C. After washing with 5 mL of lysis buffer, bound particles were eluted with Flag elution buffer [50 mM Tris-HCl (pH

7.5), 100 mM NaCl, 5 mM MgCl2, 0.01% dodecyloctaglycol (Sigma–Aldrich), 1 mM DTT, 300 mg/ml Flag peptide (Sigma–Aldrich)]

at 4�C for 60 min. Flag eluates were analyzed by SDS-PAGE on 4%–12% polyacrylamide gels (NuPAGE, Invitrogen) with colloidal

Coomassie staining (Roti-blue, Roth). The ProtA-(His)6-Nop53 Spb1-Flag and TAP-Flag-Nop53 purifications described in Figures

S3B and S3C were purified as described above in buffer containing [50 mM Tris-HCl (pH 7.5), 100 mM NaCl, 5 mM MgCl2, 0.1%

NP-40, 5% glycerol and 1 mM DTT]. For the ProtA-(His)6-Nop53 Spb1 aa437-Flag purification shown in Figure S3C the buffer

was changed to [50 mM Tris-HCl (pH 7.5), 100 mM NaCl, 5 mM MgCl2, 0.05% dodecyloctaglycol (Sigma–Aldrich) and 1 mM DTT]

for the Flag-agarose beads wash and Flag peptide elution step. For the elution 250 mg/ml Flag peptide (Sigma-Aldrich) was added.

The IPI3-FTpA IPI1-HA-Aid and IPI1-HA-Aid strains transformed with the respective plasmid-based constructs were grown over-

night at 30�C in SDC�Leu medium. Cells were transferred to YPD medium for 6 h and depletion of Ipi1-HA-Aid was induced by the

addition of indole-3-acetic acid (final concentration 500 mM) 2 h before cell harvesting. The affinity purifications were performed as

described above in buffer containing 50 mM Tris-HCl (pH 7.5), 100 mM NaCl, 1.5 mM MgCl2, 0.1% NP-40, 5 % glycerol, and

1 mM DTT.
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For expression and purification of the Rix12–Ipi32 tetramer, 2m plasmids harboring RIX1-TEV-ProtA and IPI3-FLAG were trans-

formed under control of the inducible GAL1-10 promoter into a W303 wild-type strain. The cells were grown overnight at 30�C in

SRC�Leu�Trp medium and shifted to YPG medium for a further 6 h. The purification was performed as previously described for

the Rix1–Ipi1–Ipi3 complex (Barrio-Garcia et al., 2016).

Negative-stain electron microscopy and image processing
For negative-stain EM, 5 mL of affinity-purified Rix1–Ipi3 subcomplex was applied to a freshly glow-discharged carbon-coated grid

for 1 min, washed three times with water, stained with 2% (w/v) uranyl acetate, and dried. Micrographs were recorded with a Tecnai

F20 electron microscope (FEI) operating at 200 kV with an Eagle bottom-mounted 4k, HS CCD camera (Tecnai) at a nominal magni-

fication of 62,0003 (calibrated pixel size, 1.7 Å/pixel. Particles were selected manually with the interactive program BOXER (Ludtke

et al., 1999), and image processing was carried out with the IMAGIC-4D package (van Heel et al., 1996). Particles were band-pass

filtered and mass centered. Two-dimensional alignment, classification and iterative refinement of class averages were performed as

described previously (Liu and Wang, 2011).

Grid preparation and cryogenic electron microscopy
To perform single-particle experiments, EM grids of vitrified pre-60S particles were prepared. Accordingly, Quantifoil grids (holey

carbon R3/3 with a 3 nm carbon support) were glow-discharge treated at 2.2 3 10�1 Torr for 20 s. Vitrification was achieved using

a Vitrobot Mark IV (FEI), 3.5 mL of sample was applied, and after 45 s of incubation at 4�C and 90% humidity, excess sample was

blotted and the grids were plunged into liquid ethane. For the Rix1–Rea1 particle, 9,747 micrographs were collected using EPU

(Thermo Fisher Scientific) on a Titan Krios G3 electron microscope (Thermo Fisher Scientific) operating at 300kV and equipped

with a GIF and a K2 summit detector (Thermo Fisher Scientific). Micrographs were recorded in super-resolution mode as dose-frac-

tionated movies of 40 frames at approximately 1.83 e� per frame per physical pixel. A defocus spread of 0.5–3 mm and a magnifica-

tion resulting in a physical pixel size of 0.5295 Å were used. For the Nop53 particle, 4,913 micrographs were collected using EPU

(Thermo Fisher Scientific) on a Titan Krios G1 electron microscope operating at 300kV and equipped with a Falcon II detector up-

graded with a Falcon III chip. Micrographs were recorded as dose-fractionated movies of 10 frames at approximately 2.5 e� per

frame per pixel. A defocus spread of 1–3.5 mm and a magnification resulting in a physical pixel size of 1.084 Å were used.

For the Nop53-Spb1 dataset, 390 micrographs were recorded on a TVIPS TemCam F216 on a Tecnai Spirit operating at 120 kV

using EM-Tools software. A defocus spread of 1–3 mm and a magnification resulting in a physical pixel size of 2.55 Å were used.

Image processing
Anisotropic motion was corrected using MotionCor2 (Zheng et al., 2017) with 53 5 patches. In this step, the super-resolution Rix1–

Rea1 data was binned by a factor of 2. Gctf (Zhang, 2016) was used to determine the CTF parameters of the micrographs. Micro-

graphs were curated by visual inspection. Gautomatch (https://www2.mrc-lmb.cam.ac.uk/research/locally-developed-software/

zhang-software/) was used for particle picking. All further processing was performed using the Relion 3.0 software collection (Nakane

et al., 2018; Zivanov et al., 2018).

Nop53 dataset
Data processing was performed as described in Figure S2. In brief, after 747,594 particles were picked, 2D classification was per-

formed in two equal-sized batches with 100 classes each. After manual inspection of the classes, 499,748 particles were retained for

further analysis. These particles were binned by a factor of 3 and refined against EMDB-3892 (Kater et al., 2017). Subsequent align-

ment-free 3D classification using four classes yielded two classes resembling an Arx1-like particle (classes 1 and 2) (Bradatsch et al.,

2012). Class 3 was a low-resolution particle with a mature-like rotated 5S RNP containing the foot and ITS2 moiety. This class was

further sorted into three subclasses. Apparently, although not showing a prominent growth phenotype (Figure S3), hinting at aberrant

60S biogenesis, the purification here using TAP-Flag-tagged Nop53 also afforded a set of particles displaying an ITS2 processing

defect, likely introduced by the N-terminal tag on Nop53. The particles of these three classes show a mature-like CP and represent

cytoplasmic intermediates as they lack Nog1 and partially lack Arx1 (Figure S2). As previously shown, maturation of the CP and ISS is

decoupled in such particles, allowing these to be exported to the cytoplasm and interact withmature 40S subunits to engage in trans-

lation (Sarkar et al., 2017). Thus, these particles were not further considered. Class 4was first refinedwith unbinned particles and then

CTF parameters (per particle defocus and per micrograph astigmatism) were refined. Using the improved CTF parameters, a further

round of refinement was performed. This class showed heterogeneity around the L1 region andwith respect to the presence of Spb1.

Thus, a further 3D classification step using a mask around these regions was performed. The particles were separated into three

classes, one of which converged to < 1% of the particles giving two effective classes: the Nop53-early 1 state with Spb1 bound

but with the L1 stalk, ES31 and ribosomal proteins uL2, eL43 not stably incorporated, and the Nop53-early 2 state with thesemoieties

present but lacking Spb1. The particles of these two classes were each subjected to a final refinement, post-processing, and local

resolution estimation.
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Nop53-Spb1 dataset
Data processing was performed as described in Figure S2B. In brief, after picking 68,105 particles using the RELION LoG AutoPick-

ing feature, 2D classification was performed yielding 57,211 ribosomal particles. These were initially refined against EMDB-3892 (Ka-

ter et al., 2017) and then separated into 4 classes using Relion Class3D without alignment. Four classes (98.2% of the particles after

2D classification) correspond to the Nop53 NE1 state (Figures S3E and S3F) whereas the remaining particles (1.8% of particles after

2D classification) correspond to an Arx1/Nog2 particle. The four classes corresponding to the Nop53 NE1 state were combined and

subjected to a final round of Refine3D resulting in 14 Å resolution. These particles could not be further subsorted.

Rix1–Rea1 dataset
Data processing was performed as described in Figure S4. In brief, after 303,723 particles were picked, 2D classification yielded

273,799 good particles. These were binned by a factor of 3 and refined against EMDB-3199 (Barrio-Garcia et al., 2016). Subsequent

alignment-free 3D classification using eight classes yielded multiple low-resolution and junk classes (classes 1, 3, 5, 6, and 7), and a

class for which Ipi1 and Sda1 were bound to the 60S core but the L1 was in an outward conformation, Rea1 was not bound and the

Rix1–Ipi3 complex was only loosely and very flexibly associated. A further small class displayed a low-resolution equivalent of the

state-E nucleolar particle (Barrio-Garcia et al., 2016), corresponding to a particle prior to the Rea1-mediated release of Ytm1–

Erb1. Class 2 contained a particle similar to EMDB-3199, with the Rix1 complex and Rea1 stably bound to a 60S particle having

the ITS2-harboring foot structure. These particles were further subclassified using a mask around the foot structure, revealing a

48% occupancy of the foot. As foot processing seems to be independent of the rest of the particle, the presence or absence of

the foot structure in the individual particle images was subsequently ignored for further processing. The entire set of particles

from class 2 was then subjected to unbinned 3D refinement, refinement of CTF parameters (per particle defocus and per micrograph

astigmatism) followed by a further round of 3D refinement. To address the independent motion of the Rix1–Ipi3 complex and Rea1

density with respect to the 60S core structure, a round of multibody refinement was performed on these three bodies, resulting in 3.0,

3.3 and 6.6 Å resolution for the 60S core, the Rix1–Ipi3 complex and Rea1, respectively. To further improve the Rea1 density, the

relion_flex_analyse tool was used to subtract the individual bodies of Rix1–Ipi3 and the core-60S, recenter and crop the particles

to only fit Rea1. Masked classification using three classes revealed one class with distinct secondary structure features. This class

was then refined, yielding an overall resolution of 4.6 Å. Using a further round of multibody refinement, the ring and tail sections of

Rea1 were independently refined to yield final resolutions of 4.2 Å each. All final volumes were post-processed and local resolution

maps were calculated.

Model building and refinement
Models were fit and built using UCSF Chimera (Pettersen et al., 2004) and Coot molecular modeling software (Emsley et al., 2010).

The initial models for the Nop53-derived states NE1 and NE2 were created by combining previously published structures using rigid

body fitting. To that end, Cic1, the ITS2 rRNA, Nop7, Nop15, Nop53, and Rlp7 of the foot structure were taken from the Nog2 particle

(PDB: 3JCT; Wu et al., 2016) for both NE1 and NE2. To generate the core of these 60S particles, the ‘‘late nuclear’’ pre-60S particle

(PDB: 6N8J; Zhou et al., 2019b) was rigid-body fit into the remaining density, and chains and segments not supported by the EM

density were removed. Finally, Spb1 was derived from the late nucleolar state E (PDB: PDB 6ELZ; Kater et al., 2017). The model

for the Rix1–Rea1 particle was derived in a similar way. An initial model was derived from PDB 3JCT for the core 60S particle

excluding the CP but including the assembly factors Mrt4, Rlp24, Nog2, Nsa2, Nug1, and Tif6. The CP including the 5S RNP is based

on PDB 4V88 (Ben-Shem et al., 2011); PDB 4WJV (Baßler et al., 2014) was used for Rsa4 and parts of Nsa2; PDB structures 6OR5,

6HYP, 6HYD and 6QTA (Ahmed et al., 2019; Chen et al., 2018; Sosnowski et al., 2018) were used for Rea1. The components of the

Rix1 complex (Rix1, Ipi1, and Ipi3) and Sda1weremodeled de novo based on secondary structure predictions by PSIPRED (McGuffin

et al., 2000). Coot was used to validate the fit and, if necessary, further adjust themodels and for the de novo building of Rix1, Ipi3, and

Sda1 (Emsley et al., 2010). Both the Rea1–Rsa4-UBL body, as well as the Rix1-body, consisting of the Rix12-Ipi32-tetramer and the

loop segment of Ipi1, were initially refined using the Namdinator web server (Kidmose et al., 2019). The resulting models were then

subjected to the real-space refinement tool of the PHENIX suite, using the respective segments of the initial reference models (as

mentioned above) to provide external reference restraints (Adams et al., 2010).

Visual analysis and depiction of structures and maps
Visual analysis and depiction of structures for figures was performed using UCSF Chimera and UCSF ChimeraX (Goddard et al.,

2018; Pettersen et al., 2004).
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Figure S1. Electron Microscopy of the Nop53 and Rix1–Rea1 Datasets and Local 
Resolution of the Reconstructions, Related to STAR-Methods

(A and B) Representative electron micrographs of TAP-Flag-Nop53 particles (A) and

Rix-TAP–Flag-Rea1 (B; data sets 1 and 2, respectively).

(C and D) Representative 2D class averages of datasets 1 and 2, respectively.

(E) Fourier shell correlation (FSC) curves of the two states NE1 and NE2 of data set

1.

(F) FSC curves of the individually refined rigid bodies of the late Rix1–Rea1 particle

(body  1:  60S  core,  bodies  2A  and  2B:  Rea1  ring  and  tail,  body  3:  Rix1–Ipi3

subcomplex).

FSC curves shown in (E) and (F) are derived from 3D refinements of independent

half-sets of particles.

(G–K) Local-resolution-filtered maps of the aforementioned states and rigid bodies

thereof.  Maps are  colored according  to  local  resolution,  see corresponding color

scales.
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Figure S2. Data Processing, Sorting Scheme and Model Validation of the TAP-

Flag-Nop53 and ProtA-(His)6-Nop53 Spb1-aa437-Flag Data Sets, Related to 

STAR-Methods

(A and B) Work flow of  data processing showing the volumes at  relevant  steps.

Class sizes are given as percentage relative to the respective classification step and

relative to all good particles after 2D classifications (in parentheses). Masks used for

focusing specific sorting steps are indicated as semi-transparent magenta volumes.

Resolutions  at  FSC=0.143  are  shown  after  final  3D  refinement  using  fully

independent particle half-sets.

(C) Model to map FSC curves for the 60S core particle, the Rix12–Ipi32 tetramer and

the Rea1 Rsa4-UBL bodies.
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Figure S3. Growth Analysis and Affinity Purifications of Yeast Strains Used for 
Cryo-EM, Related to STAR-Methods

(A) Growth analysis of yeast strains used for cryo-EM sample preparation in 

comparison to wild-type W303 yeast. Cells were spotted in 10-fold serial dilution on 

YPD plates and cell growth was monitored at the indicated temperatures and times. 

(B) Split affinity purifications from ProtA-(His)6-Nop53 spb1Δ shuffle strains 

complemented with plasmid based Spb1 constructs with either an internal Flag tag 

(lane 2, 3 and 6, 7) or an untagged wild-type control (lane 4, 8) were compared with 

the affinity purification of the TAP-Flag-Nop53 strain (lane 1, 5). The TEV eluates 

(lane 1-4) and final Flag eluates (lane 5-8) were analyzed by SDS-PAGE and 

Coomassie staining. Proteins identified by mass spectrometry are labeled on the 

right site of the gel and the Nop53 baits are marked with an asterisk. Factors which 

were reduced in the Nop53-Spb1 split-affinity purifications (lane 6, 7) are indicated in

red.

(C) Coomassie stained SDS-PAGE of the ProtA-(His)6-Nop53 Spb1 aa437-Flag split 

affinity purification used for Cryo-EM analysis (F). The TEV eluate and final Flag 

eluate are shown and copurifing proteins were labeled on the right side of the gel.

(D) Coomassie stained SDS-PAGE of a Rix1-TAP Flag-Rea1 split affinity 

purification. The TEV eluate and final Flag eluate are shown and copurifing proteins 

were labeled on the right side of the gel.

(E and F) Comparison of state NE1 map of the TAP-Flag-Nop53 purification and the 

Nop53 Spb1 split purification map (C). To achieve comparable filtering and to 

visualize the highly flexible and thus low-resolution L1 stalk in (E), the 

powerspectrum of the state NE1 map was adjusted to match that of the Nop53-Spb1

split purification map using relion_imag_handler with the --adjust_power option. 
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Figure S4. Data Processing, Sorting Scheme and Model Validation of the Rix1-
TAP Flag-Rea1 Data Set, Related to STAR-Methods

(A) Work flow of data processing showing the volumes at relevant steps. Class sizes

are given as percentage relative to the respective classification step and relative to

all good particles after 2D classifications (in parentheses). Masks used for focusing

specific sorting steps and to define individual rigid bodies of multibody refinement

steps are indicated as semi-transparent colored volumes. Resolutions at FSC=0.143

are provided after final 3D refinement using fully independent particle half-sets.

(B) Model to map FSC curves for the 60S core particle, the Rix12–Ipi32 tetramer and

the Rea1 Rsa4-UBL bodies.
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Figure S5. Flexibility Analysis of Rea1 Ring and Rea1 Tail and Architecture of 
the Rea1-MIDAS Domain, Related to Figure 4

(A) Side and front views of the three principal components explaining the largest

amount of variance in the relative motion of the Rea1 ring relative to the Rea1 tail as

provided by relion_flex_analyse. Percentages indicate the variance exhibited by the

individual components.

(B) Comparison of principal component 2 (see panel A) and the standalone MIDAS-

bound  Rea1  structures  from  Saccharomyces  cerevisiae (left)  and

Schizosaccharomyces pombe (right) (Chen et al., 2018; Sosnowski et al., 2018).

(C) Comparison of the Rea1-MIDAS–Rsa4-UBL complex from this study with the

Chaetomium thermophilum MIDAS-Apo  and  MIDAS–Rsa4-UBL  crystal  structures

(top:  6QT8,  apo;  bottom:  6QTA,  Rsa4-UBL  bound)(Ahmed  et  al.,  2019).  The

published structures are shown in gray, overlaid with the structures from this study

colored as in Figure 4B.

(D) Secondary structure diagram of the Rea1-MIDAS domain.
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Figure S6. Growth Analysis and Subcellular Localization of Ipi3 and Rix1 of the

Ipi1-HA-Aid-Depleted Strain, Related to Figure 6

(A) Growth of the IPI1-HA-Aid degron strain on YPD plates and YPD plates 

supplemented with auxin (final concentration 500 µM). Cells were spotted in 10-fold 

serial dilutions and growth at 30°C was monitored after 2 days. 

(B) The ipi1Δ shuffle strain was transformed with an empty vector control or plasmids

containing either the IPI1 wild type or the ipi1 Δ(aa227–285) mutant under control of 

the endogenous promoter. Cells were spotted on SDC−Leu and SDC+FOA plates in 

10-fold serial dilutions and cell growth at 30°C was monitored after 2 and 4 days 

respectively.

(C) Subcellular localization of GFP-tagged Ipi3 and Rix1, in the IPI1-HA-Aid degron 

strain, analyzed by fluorescence microscopy. The subcellular location was analyzed 

under expression (− auxin) or depletion (+ auxin, 500 µM final concentration for 90 

min) conditions of IPI1-HA-Aid, and Nomarski (DIC) and GFP channel images are 

shown.
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Figure S7. The Transition from the Arx1/Nog2 Particle to a Particle Competent 
for Nuclear Export, Related to Figure 7

Left: A combined model and map depicting the transition of pre-60S particles from

the  Arx1/Nog2  particle  (PDB:  3JCT,  EMDB:  6615)(Wu et  al.,  2016) via  the  late

nucleoplasmic  Rix1–Rea1  particle  to  the  export-competent  late  nuclear/early

cytoplasmic particle (PDB: 6N8J, EMDB: 0369)  (Zhou et al., 2019b). The cores of

the particles are displayed as gray volumes, and moieties relevant to the individual

transitions  of  the  CP  are  highlighted  as  colored  ribbon  representations  of  the

respective  models.  Right:  Segments  of  the  pre-25S  rRNA  domain  V,  having

conformations that are either mature-like (green), stably folded but not mature-like

(pink), or close to mature but slightly displaced (dashed green and pink).
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