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 I 

Abstract 
Different theories of emotions have been introduced since the 19th century. Even though 

a large number of apparent differences between these theories exist, there is a broad consensus 

today that emotions consist of multiple components such as cognition, physiology, motivation, 

and subjectively perceived feeling. Appraisal theories of emotions, such as the Component 

Process Model (CPM) by Klaus Scherer, emphasize that the cognitive evaluation of a stimulus 

or event is the driving component of the emotion process. It is believed to cause changes in all 

other components and hence to differentiate emotion states. To test the CPM and gain more 

insights into the multi-componential emotion process, the present thesis examines two emotion 

sub-processes – the link between the cognitive and the feeling component (study 1) and the link 

between the cognitive and the physiological component (study 2) – by using different predictive 

modeling approaches.  

In study 1, four theoretically informed models were implemented. The models use a 

weighted distance metric based on an emotion prototype approach to predict the perceived 

emotion of participants from self-reported cognitive appraisals. Moreover, they incorporate 

different weighting functions with weighting parameters that were either derived from theory 

or estimated from empirical data. The results substantiate the examined link based on the 

predictive performance of the models. In line with the CPM, the preferred model weighted the 

appraisal evaluations differently in the distance metric. However, the data-derived weighting 

parameters of this model deviate from theoretically proposed ones. 

Study 2 analyzed the link between cognition and physiology by predicting self-reported 

appraisal dimensions from a large set of physiological features (calculated from different 

physiological responses to emotional videos) using different linear and non-linear machine 

learning algorithms. Based on the predictive performance of the models, the study is able to 

confirm that most cognitive evaluations were interlinked with different physiological 

responses. The comparison of the different algorithms and the application of methods for 

interpretable machine learning showed that the relation between these two components is best 

represented by a non-linear model and that the studied link seems to vary among physiological 

signals and cognitive dimensions.  

Both studies substantiate the assumption that the cognitive appraisal process is 

interlinked with physiology and subjective feelings, accentuating the relevance of cognition in 

emotion as assumed in appraisal theory. They also demonstrate how computational emotion 

modeling can be applied in basic research on emotions. 
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1 General Introduction 

1.1  Introduction 

The human language enables us to refer to objects and concepts even when we are 

lacking a concise definition for them, as Putnam's (1975) semantic theory about the meaning of 

words describes. This allows us to talk about emotions even though most of us have a rather 

implicit understanding of what an emotion is without a concrete formalization of the 

phenomenon. While we do not depend on a profound understanding of emotions in our 

everyday social interactions, a deeper insight into affective processes and their mechanisms is 

highly relevant to many fields of research. Whether it is to find out how emotions influence 

learning or decision making (e.g., Dirkx, 2008), how emotions can be regulated in the context 

of mental disorders (e.g., Amstadter, 2008) or which role they play in human-computer 

interaction (e.g., Beale & Peter, 2008), all of these questions seek to understand the emotion 

process and its regularities on different levels. Varying emotion theories have been introduced 

since the 19th century. Though these theories deviate from each other, there is a broad consensus 

today that emotions are multidimensional in the sense that they do not only concern how we 

think or feel, how we act, or how our body changes physiologically, but that emotions are a 

complex integration of different components. Disagreement exists about the specific number 

and identity of the components as well as the order in which they are addressed (for an 

overview, see chapter 1.2. or Moors, 2009). When trying to empirically study and understand 

this multi-componential emotion process holistically, one reasonable approach is to analyze the 

interrelations between each of the components separately and integrate the findings into a global 

emotion model afterward. Following this rationale, the present thesis investigates two emotion 

sub-processes, the link between cognition and the subjective feeling of a person (study 1) as 

well as the relation between cognition and physiology (study 2), by using different predictive 

modeling approaches. Cognition as the central initiating component of emotions has been 

proposed by a group of emotion theories that are collectively referred to as appraisal theories 

(e.g., Arnold, 1960; Frijda, 1986; Lazarus, 1991; Ortony, Clore, & Collins, 1988; Scherer, 1984; 

Smith & Ellsworth, 1985). They assume that a stimulus is evaluated on multiple emotion-

relevant dimensions and that the resulting appraisal patterns affect all other engaged 

components like motor-functions, the autonomous nervous system, motivation, as well as the 

perceived feeling. This cognitive-focused view of the emotion process builds the theoretical 

framework of the present thesis. The two studies are aiming to contribute to the understanding 
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of the multi-componential emotion process by examining whether the assumed links can be 

substantiated (and consequently the assumptions made by appraisal theories) and by evaluating 

how the relationship between the components might look like on an algorithmic level. On the 

methodological side, the thesis demonstrates how different forms of predictive modeling – 

computational emotion models based on theoretical assumptions and exploratory machine 

learning models – can be utilized in basic emotion research.  

In the following chapters, a more thorough discussion of the theoretical discourse about 

emotions and their multidimensionality is presented, paying particular attention to the emotion 

processes proposed by the appraisal theory. In this context, the two analyzed sub-processes will 

be reviewed as well as the different modeling approaches. Subsequently, the two studies are 

presented and their results are discussed and combined.  

1.2 Emotions as Multi-Componential Processes  

Despite the limited tangibility of emotions, first attempts to describe them have been 

made as early as the 4th century bc by Aristotle. He understood pathe (sing. pathos), as he 

referred to emotions, as the internal responses of a living being to its environment similarly to 

perception (Schmitter, 2016). Darwin, who engaged in the research of emotions during the 19th 

century, still considered emotions as passive reflex-like processes (Oatley, Keltner, & Jenkins, 

2014). Within the same period, James (1884) developed one of the first profound theories about 

emotions and their emergence.1 He viewed them to be embodied processes in the sense that an 

emotion is the subjective perception of bodily changes that arises in response to the 

environment. Therefore, he believed that when individuals meet a bear in the woods, they feel 

fear because they perceive that they tremble and their heart races. The emotion process as 

described by this theory hence compromises two distinct components – a physiological 

component and a feeling component that entails what is consciously perceived about the 

emotion process.  

W. James' (1884) physiological theory of emotions faced a lot of criticism. Cannon 

(1927), for example, noted that a separation of organs from the autonomous nervous system 

does not alter emotional behavior and also that visceral changes are not specific to any emotions 

(e.g., heart acceleration occurs in states of both anger and rage). The latter problem of 

specificity was addressed by Schachter (1964; see also Schachter & Singer, 1962) due to the 

                                                
1 A similar theory was simultaneously developed by Lange (1887). Hence, the theory is often referred to as the 

James-Lange theory. 
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introduction of an additional cognitive component. He proposed that after the physiological 

reaction to a stimulus in the form of physical arousal, a cognitive interpretation of the bodily 

changes in the context of previous experience occurs that then determines which emotion is 

felt. In regards to the bear scenario, Schachter's (1964) theory implicates that the encounter with 

the dangerous animal first leads to physical arousal and a subsequent cognitive interpretation. 

Within this cognitive processing step, the physical arousal might be attributed to the bear. 

Because the latter represents a potential threat, the perceived arousal might then be labeled with 

the emotion term fear. However, the same physiological arousal could also lead to a totally 

different emotion when accompanied by a different cognitive attribution (e.g., physical arousal 

induced by a surprise party might lead to a feeling of joy instead). Thus, Schachter (1964) for 

the first time introduced cognition as a central element within the emotion elicitation process. 

His three-componential model holds explanatory power to some degree as it is able to invalidate 

Cannon‘s (1927) second criticism by explaining why a specific physiological response can be 

accompanied by different feelings. Schachter and Singer (1962) also found empirical evidence 

for their assumption in a study in which the artificial induction of arousal by injections of 

adrenalin was interpreted differently depending on the emotions displayed by a bystander. Both 

emotion theories, W. James' (1884) and Schachter's (1964), fail to explain though why a 

physiological response is triggered in the first place – they do not compromise a specific 

mechanism that determines which kind of stimulus leads to arousal and which stimulus does 

not (Moors, 2009).  

With the introduction of appraisal theories (e.g., Arnold, 1960; Frijda, 1986; Lazarus, 

1991; Ortony et al., 1988; Scherer, 1984; Smith & Ellsworth, 1985) the cognitive component 

was moved to the beginning of the emotion process. This reorganization of the components 

closed the gap between stimulus and physiology, enabling not only an explanation of why 

certain stimuli lead to a response but also for the observation that inter-individual and intra-

individual differences exist in this context. Appraisal theorists suggest that the stimulus itself 

is cognitively appraised and that this evaluation affects all subsequent components. 

Consequently, a stimulus like the bear in the woods might result in physical arousal and the 

subjective feeling of fear because the bear is appraised as being highly relevant and as an 

endangerment to the current goals of the individual. When encountering a bear in the zoo 

though, the same stimulus could lead to a totally different affective response for the same 

individual as the cognitive evaluation of relevance and goal endangerment could differ in this 

context.  
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The primary cognitive component in appraisal theories does not only trigger 

physiological changes and changes in perceived feeling, but it also affects a motivational 

component handling action tendencies and action readiness as well as an expression component 

for expressive and instrumental behavior (Moors, Ellsworth, Scherer, & Frijda, 2013). The 

emotion elicitation process is hence understood as an integration of five different components. 

Critics of the cognitive approach to emotions remark that cognition cannot be a necessary 

condition to emotions (Zajonc, 1980) as empirical studies have demonstrated that affective 

responses can be elicited even when stimuli are presented subliminally (Kunst-Wilson & 

Zajonc, 1980). However, appraisal theorists do not necessarily equate cognition with conscious 

cognition anymore as the appraisals are believed to be processed in an automated and hence 

subconscious fashion to some extent (e.g., Scherer, 2001).  

As each stimulus is assumed to be evaluated on a number of different appraisal criteria 

in appraisal theory (see chapter 1.3 for a thorough discussion of this topic), the potentially 

endless number of resulting appraisal patterns also leads to a very large space of different 

emotion states (e.g., Scherer, 2001). In contrast, affect program theories (e.g., Ekman, 1992; 

Panksepp, 2005) believe in very few specific emotion categories, also called basic emotions. 

These emotion categories are connected to distinct neuronal circuits that control specific 

physiological and behavioral schemes as well as the subjective emotional experience. This 

theoretical approach differs from the other models as it shifts the focus to the neurobiological 

basis of the emotion process. Transferred from computational science, Marr (2010) suggests 

three levels on which an information processing procedure has to be described to fully 

understand it. While the input and the output of the process of interest are described on the 

functional level, the algorithmic level is concerned with the mechanisms that translate the input 

into the output. Lastly, the process can be described on its implementation level by specifying 

how the mechanisms as well as the input and the output are realized on a physical level. The 

previously discussed emotion theories mainly focus on the algorithmic level of the emotion 

process by trying to formalize and describe how a stimulus (i.e., the input of the emotion 

elicitation process) results in an affective response like a feeling of joy or physical arousal (i.e., 

the outputs of the emotion process), whereas affect program theories are rather concerned with 

the implementation level (Moors, 2009). The latter are, however, not fully incompatible with 

the idea of appraisal theories. Ekman (1992), for example, also believes that appraisals are a 

trigger of affect programs. The difference rather lies in the subsequent changes in the other 

components that occur either flexible and continuously with each appraisal evaluation (as in 

appraisal theory) or in form of fixed schemes controlled by distinct neuronal circuits (as in 
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affect program theories). Transferred to W. James' (1884) example of the bear encounter, the 

bear (through appraisal or another mechanism) hence triggers the affect program of fear that 

can be biologically based or learned through previous experience and that is processed within 

a distinctive neuronal circuit. The triggered affect program of fear then leads to prototypical 

changes in the other components such as an increase in heart rate, the subjective perception of 

fear, and behavioral changes that prepare flight.  

In strong contrast to affect program theorists who assume that basic emotions have a 

specific neurobiological embedding, Russell (2003) believes that basic emotion categories are 

mere folk concepts that have no use in the scientific description of emotions. His emotion model 

introduces a new component called core affect. Core affect is defined as a neurophysiological 

state that integrates the two dimensions pleasantness and arousal. Similar to appraisal theories, 

an endless number of emotional states can be embedded in this two-dimensional space of core 

affect. Even though core affect is not directed at any specific stimuli in the environment, a 

specification of the core affect can take place by a cognitive interpretation. Hence, a cognitive 

appraisal component is also included in Russell's (2003) model, but it is no longer a 

precondition for emotions. Rather than identifying a single component as the central element 

of emotion differentiation, he views emotions to be a collection of potentially independent 

components that can be labeled with a prototypical emotion term when consciously observed 

by the individual. This means that when a component pattern occurs that matches a prototypical 

emotion episode built on previous experience, the pattern is determined to be an instance of this 

category. Therefore, fixed patterns for different emotions do not exist, but the emotion 

categories are constructed by the individual. A similar constructivist theory of emotions has 

been proposed by Barrett (2006). When surprised by a bear in the woods, these theories would 

assume that the core affect of the individual encountering the animal would shift – probably to 

a state of higher arousal. If the states of all components together (such as core affect, 

physiology, cognition, and behavior) are recognized as being similar to an emotion episode 

prototypical for the constructed emotion of fear, the episode is labeled accordingly as being 

fear.  

The comparison of different emotion theories demonstrates quite clearly that to this day 

no uniform model for emotions exists. Even though there is a high agreement that the emotion 

process compromises a set of different components, theories differ when it comes to the exact 

number and identity of the relevant components, the order of the components within the 

emotion elicitation process, and the way changes occur in the included components (flexible or 

controlled by fixed emotion schemes). Another central question that has become prevalent in 



Cognition and Emotion in Appraisal Theory 

 

6 

the discourse during the cognitivist revolution of psychology in the 1960s is which role 

cognition plays in the emotion process (Scarantino & de Sousa, 2018). Most of the discussed 

theories (except for W. James', 1884) acknowledge that a cognitive component is somehow 

involved in the emotion process, but whether cognition is a necessary condition for emotions 

and hence the primary element of the emotion process is debated. Nonetheless, the agreements 

as well as dissimilarities between the different emotion theories can guide emotion research – 

an area of research that has previously been described as a “very confused and confusing field 

of study” (p. 2) by Ortony et al. (1988). For faster scientific progress, Moors (2009) has called 

for a shift of focus from superficial theoretical disagreements to those that are more 

fundamental. Following this recommendation, the present work aims to analyze the crucial 

question of the role of cognition within the multi-componential emotional process. 

1.3  Cognition and Emotion in Appraisal Theory  

When approaching the question which role cognition plays in emotion, a working 

hypothesis or rather a model to be tested is needed. In terms of model validation, which is 

usually understood as the process of determining how well a model represents the real world 

(Sornette et al., 2007), concrete and strong model assumptions are needed. Appraisal theories 

of emotions do not only hold comprehensive explanatory power, as demonstrated in the last 

chapter, but many of them also make very specific claims about parts of the emotion elicitation 

process. Naturally, this does not mean that less formalized or vague theories cannot be true but 

falsifying their assumptions becomes harder. One of the most prominent appraisal theories, the 

Component Process Model (CPM), was developed by Scherer (1984, 2001, 2009). His model 

compromises a very precise description of the suspected appraisal process as well as 

assumptions about interactions of cognition with other components. Based on its strong 

formalization and the resulting validation characteristics, the CPM was chosen as the theoretical 

basis for the present thesis.  

As other appraisal theorists, Scherer (2001, 2009) comprehends emotions as an 

integration of five sub-components: A cognitive component that regulates the appraisal process; 

a physiological component connected to efferent changes in the autonomous nervous system 

such as respiratory or cardiovascular changes; an expression component controlling motor 

expressions such as gestures, mimic, and voice; a motivational component that can initiate 

action tendencies; as well as a feeling component that compromises the subjective perception 

and potentially the verbal labeling of an emotion. Specifically, he defines an emotion to be an 

episode in which synchronized and interrelated changes occur in all (or most) of these assumed 
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subsystems that are triggered by the evaluation of an external stimulus as being highly relevant 

to major goals and concerns of the individual. During this crucial evaluation process, that is 

controlled by the cognitive component, the stimulus is appraised on several different 

dimensions that Scherer (2001) calls stimulus evaluation checks (hereafter, these checks will 

be referred to as appraisal dimensions). His proposed 16 appraisal dimensions are further 

subdivided into four classes of information that determine how relevant an event is for the 

individual (relevance detection), which consequences an event has and how these will affect 

the individual (implication assessment), how well the individual can cope with potential 

consequences (coping potential determination), and how important the event is in regards to the 

individual self-concept and social norms (normative significance). The outcomes of these 

dimensions are believed to be highly subjective and to be depending exclusively on the 

individuals’ personal perception of the stimulus. In contrast to some other appraisal theories 

(e.g., Lazarus, 1991) that assume the outcome of appraisals to be partly categorical, Scherer 

(2001) postulates that appraisals are evaluated on a continuous scale with a potentially infinite 

value range. He further claims that the appraisal process is iterative and that the 16 dimensions 

are appraised in a specific order. See Table 1 for a short description of all appraisal dimensions 

in their assumed order of occurrence. The proposed sequentiality of appraisals, which is unique 

to Scherer's (2001) appraisal theory, is thought to ensure the economy of the cognitive appraisal 

process. He assumes that all appraisals incorporated in relevance detection, such as suddenness, 

pleasantness, and goal/need importance, are rather low-level and hence fast mechanisms that 

fall back on attention, memory, as well as motivational processes. Appraisals appearing later 

on in the process are thought to be more complex cognitive evaluations that are consequently 

costlier and require functions like reasoning and the evaluation of self-image. The first 

appraisals determining the relevance of a stimulus to the individual, therefore, act as a filter that 

decides whether further expensive processing of the stimulus is needed. Only when a certain 

threshold is surpassed with these appraisals, additional processing through other appraisals is 

initiated.  

Like other appraisal theorists, Scherer (2001) also assumes that appraisals can be 

processed in an unconscious and automatic fashion. He differs between three processing levels 

on which each appraisal can be evaluated. There is a sensory-motor level at which the appraisal 

mechanisms are mainly genetic and based on functions like pattern matching. There is a 

schematic processing level where the appraisal evaluation falls back on learned schemes. While 

both of the previous levels are believed to function automatically, stimuli appraised on the third 

level, the conceptual level, are processed via highly cortical and propositional-symbolic  
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Table 1 

Description of the 16 Appraisal Dimensions as Proposed by the CPM in the Assumed Order of 

their Occurrence (Scherer, 2001) 

Appraisal Objective Appraisal Dimension Appraisal Description 

Relevance detection 

Suddenness Abruptness of a stimulus  

Familiarity Degree of familiarity of a stimulus 

Predictability Predictability of the occurrence of a stimulus  

Intrinsic pleasantness 
Pleasantness of a stimulus independent of the 

momentary state of the individual 

Goal/need importance 
Relevance of a stimulus for the momentary 

hierarchy of goals and needs 

Implication assessment 

Cause: Agent Causal attribution of an event to an agent 

Cause: Motive 
Inferences about motives or intentions of an 

agent 

Outcome probability 
Likelihood with which certain consequences are 

expected 

Discrepancy from 

expectation 

Degree to which a stimulus is consistent with the 

individual’s expectations 

Conduciveness 
Conduciveness of a stimulus to help reach 

current goals 

Urgency 
Urgency of adaptive actions in response to a 

stimulus 

Coping potential 

determination 

Control  
Extent to which a stimulus can be controlled by 

animate agents 

Power  
Power of the individual to exert control or to 

recruit other individuals to help 

Adjustment 
Ability to adjust and cope with the consequences 

of a stimulus 

Normative Significance 

Internal standards 

Extent to which a stimulus exceeds internal 

standards such as self-image or personal moral 

code 

External standards 

Compatibility of a stimulus with norms of a 

salient reference group in terms of desirability 

and obligatory conduct 
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mechanisms (i.e., logic-based reasoning in the broadest sense) that require consciousness. Each 

of the 16 appraisal dimensions can hence be processed on all three levels which are believed to 

continuously interact and thereby induce top-down and bottom-up effects (Scherer, 2009). 

Scherer (2001) outlines the interaction of all five emotion subsystems in his 

componential patterning theory. According to the latter, all emotion components are highly 

interrelated and multidirectional. As shown in Figure 1, the cognitive appraisal is the initiator 

of changes in all other subsystems though. This means that the outcome of every single 

appraisal leads to variations in all other components and modifies changes induced by previous 

appraisal evaluations. Scherer (2001) illustrates this process with the following example: The 

detection of a novel stimulus will produce an orientation response such as a heart rate and skin 

conduction increase in the physiological component, postural changes in the expression 

component, changes in goal priority assignment in the motivational subsystem, and an increase 

in alertness and attention in the feeling component. Only milliseconds after these adaptions, the 

intrinsic pleasantness appraisal determines the evaluated stimulus to be unpleasant. Following 

this appraisal outcome, a stronger heart rate increase in the physiological component occurs as 

a defense response, a tendency of avoidance is initiated in the motivational subsystem, motor 

behavior to turn the individual’s body away from the unpleasant stimulus is prepared, and a 

negative feeling is perceived. Similarly, all subsequent appraisal dimensions will continuously 

alter the other four subcomponents (i.e., physiology, motivation, motor expressions, and 

subjective feeling). Consequently, an emotion such as fear, that is defined by a specific pattern 

of component states, can only occur when preceded by a distinct appraisal pattern. As changes 

in the non-cognitive components are thought to feed back into cognitive elements that are 

accessed during the appraisal procedure (i.e., attention, memory, reasoning, and self-image), 

reciprocal relationships between the cognitive component and the non-cognitive components 

are assumed (see Figure 1). The appraisal procedure is, however, the initiating component of 

an emotional episode and the primary cause of changes in other components. 

As Scherer (2001) regards emotions to be a stream of continuous changes in different 

subcomponents, he rejects the idea of a limited number of distinct emotions connected to fixed 

affect programs as assumed by Ekman (1992) or Panksepp (2005). Instead, a potentially huge 

number of different emotion states results from the combination of the 16 appraisal dimensions. 

Scherer (2001) acknowledges, however, that some appraisal patterns might form more 

frequently than others. He refers to these more common and prototypical emotion patterns, 

which are those for which specific verbal labels exist, as modal emotions (i.e., enjoyment/  
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Figure 1. Components of the CPM and their interactions. Adapted from Scherer (2009). 

happiness, elation/joy, displeasure/disgust, contempt/scorn, despair, sadness/dejection, anxiety/ 

worry, fear, irritation/cold anger, rage/hot anger, boredom/indifference, shame, guilt, pride).  

Hence, the appraisal process is the main element of the multi-componential emotion 

process that differentiates between different emotions and initiates all changes in other 

components. From this appraisal hypothesis, it can be derived that the changes in other 

components such as the subjective feeling or physiological responses should be predictable 

from the appraisal patterns or, conversely, that the appraisal patterns should be predictable from 

respective changes in other components.2 The present thesis uses these assumptions to 

investigate the appraisal hypothesis by modeling the link between appraisal and the subjective 

feeling as well as appraisal and physiology using two different predictive modeling approaches.  

1.4 Modeling the Multi-Componential Emotion Process 

In the following, the two relations of interest will be discussed – the appraisal-feeling 

link analyzed in study 1 (link A) of this thesis as well as the appraisal-physiology link analyzed 

in study 2 (link B). Figure 2 shows the previously discussed CPM model where the two 

                                                
2 Note that the CPM (as well as other appraisal theories) imply a causality (appraisals patterns initially cause 

changes in other components) that cannot be validated with the design used in the current thesis. As the design of 

both presented studies is non-directional, both findings (appraisals predict changes in other components vs. 

changes in other components predict appraisals) can be used to substantiate cognitive theories of emotions. 
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Figure 2. The CPM with the links between components that are studied in study 1 (link A) and 

study 2 (link B).  

examined interrelations are identified. Based on the number of theoretical assumptions and the 

degree of formalization of the two links, two different predictive modeling approaches will be 

introduced – theoretically informed modeling used in study 1 (modeling approach A) as well 

as uninformed modeling with machine learning algorithms applied in study 2 (modeling 

approach B).  

1.4.1 Link A: The Appraisal-Feeling Link 

A logical implication of the component patterning theory is that modal emotions (i.e., 

the prototypical emotion states that can be verbally labeled by a person) should be predictable 

from appraisal patterns. In 1981, Scherer for the first time introduced prototypical appraisal 

patterns that he assumed to be connected to different modal emotions. These theoretical 

prototypes have since been elaborated and refined based on his and his colleague’s research 

(Scherer, 1984, 2001; Scherer & Meuleman, 2013). In Table 2, Scherer's (2001) prototypes 

(i.e., appraisal values that are thought to lead to the outcome of the respective modal emotion) 

are exemplarily presented for the emotions fear and happiness. The prototypes indicate, for 

example, that an experienced emotion labeled with the word fear follows an event that is 

appraised to be unfamiliar (familiarity = low) and unpleasant (intrinsic pleasantness = low), 

and that is moreover obstructive to one’s current goals (conduciveness = obstruct). An emotion 
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labeled with the term happiness, on the other hand, has been appraised as very pleasant 

(intrinsic pleasantness = high) and in line with current goals and needs (conduciveness = 

consonant). The proposed prototypical appraisal outcomes also include open parameters. The 

happiness prototype, for example, has an open value for the dimension familiarity. As Scherer 

(2001) explains, this means that the modal emotion is compatible with all potential outcomes 

of this specific appraisal. Hence, the respective appraisal is not relevant for the modal emotion 

as it cannot be used to differentiate the emotion category from others. In relation to the example 

of the happiness prototype, this means that happiness can arise from an event that is appraised 

as very familiar or very unfamiliar to the individual. 

Besides the emotion prototypes, Scherer (2001) also makes assumptions about the 

algorithmic level of the appraisal-to-feeling process. He indicates that the proposed appraisal 

dimensions are not equally important in the prediction of the emotion prototypes, but that some  

Table 2 

Prototypical Appraisal Outcomes for the Modal Emotions Fear and 

Happiness as Proposed by Scherer (2001) 

Appraisal Dimension Fear Happiness 

Suddenness High Low 

Familiarity Low Open 

Predictability Low Medium 

Intrinsic pleasantness Low High 

Goal/need importance High Medium 

Cause: Agent Oth/nat Open 

Cause: Motive Open Intent  

Outcome probability High Very High 

Discrepancy from expectation Dissonant Consonant 

Conduciveness Obstruct High 

Urgency Very High Very Low 

Control  Open Open 

Power  Very Low Open 

Adjustment Low High 

Internal standards Open Open 

External standards Open Open 

Note: oth = other, nat = natural, intent = intentional. 
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dimensions contribute more strongly to the emotion differentiation process. During the 

appraisal-to-feeling calculation, the appraisal dimensions are thought to be integrated through 

a predetermined weighting function. As with the emotion prototypes, Scherer and Meuleman 

(2013) also introduced theoretically derived appraisal weights that reflect the assumed 

importance of each appraisal in the emotion differentiation process. Another implication about 

the algorithmic level is the assumed sequentiality and temporal order of the appraisals in which 

more expensive appraisals are processed after fast and less costly appraisals. 

1.4.2 Modeling Approach A: Theoretically Informed Modeling 

The CPM (Scherer, 2001, 2009) provides elaborated assumptions about the appraisal-

feeling link. When strong hypotheses (i.e., model assumptions) are given, a theoretically 

informed model can be applied. The general idea of such a modeling approach is to formalize 

and implement a verbal theory into a computational model that operates on the respective 

inputs, generates the respective outputs, and uses the theoretically assumed algorithms to 

transform the input into the output. Following this logic in study 1, the assumptions about the 

appraisal-feeling link made by the theory were implemented in four computational models that 

produce emotion categories (i.e., emotion labels) in response to appraisal patterns in the way 

that is assumed by the theory. Based on an empirical data set in which appraisal patterns as well 

as verbal emotion labels were assessed via self-report in response to an emotional episode 

experienced in the past, the implemented theoretical models were used to predict emotion terms 

from the empirically assessed appraisal patterns. These predictions were subsequently 

compared to the emotion labels given by the participants (i.e., a ground truth), assessing the 

predictive accuracy of the models. The predictive performance can then be used as a measure 

for the validity of the theoretical assumptions realized in the models. If the model assumptions 

are true, the models should be able to predict the empirically assessed emotion labels correctly 

to some degree.3 If the theory underlying the model is incorrect or imprecise, the predictive 

power should be low. Using a theoretically informed modeling approach to analyze the 

appraisal-feeling link, therefore, allows validating the concrete theoretical assumptions made 

by the CPM. 

                                                
3 As both the models’ input (i.e., the appraisal patterns) as well as their ground truth (i.e., the emotion labels) were 

assessed by questionnaire, measurement error is most likely present in both variables which consequently afflicts 

the models’ accuracy. Therefore, even if the implemented model assumptions are correct, a perfect performance 

can never be reached.  
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Theoretical modeling frequently goes beyond the validation of theoretical assumptions 

by extending and refining what is implied by a theory. The latter is due to the fact that most 

verbal theories lack the needed formalization for a mathematical implementation, irrespective 

of their specificity (Marsella, Gratch, & Petta, 2010). Hence, the theoretical modeling process 

can reveal hidden assumptions and complexities as well as gaps in the theoretical framework 

(Marsella et al., 2010). With respect to the appraisal-feeling link, input and output of the 

analyzed process are clearly defined but how the appraisal patterns are exactly transformed into 

the emotion label outcomes is not – except for the weighting and the order of the different 

appraisal dimensions. Consequently, this information gap in the algorithmic level of the theory 

has to be closed. Following the hypothesis that each modal emotion is connected to a distinct 

prototypical appraisal pattern, the appraisal-feeling relation in study 1 was realized as a decision 

rule based on a weighted distance metric between a new appraisal pattern and prototypical 

appraisal patterns associated with different modal emotions. Based on the calculated distances 

to all prototypical emotions, the models predict the label of the emotion prototype with the 

smallest distance (i.e., the highest similarity) to the input appraisal pattern. Hence, each 

appraisal pattern can be pictured as a point in a 16-dimensional space in which its proximity to 

other patterns can be determined. Visualizing this concept, Figure 3 shows a two-dimensional 

scaling of the 13 emotion prototypes used in study 1 as well as an empirically assessed appraisal 

pattern (INP) from the used data set. The preferred computational model in study 1 predicted 

the emotion label fear for this appraisal pattern as it showed the lowest distance, and hence the 

highest similarity, to the fear emotion prototype. The implementation of the appraisal-feeling 

link based on distance measures to emotion prototypes has been done before by Scherer (1993) 

and Scherer and Meuleman (2013). 

Another advantage of theoretical models is that their internal structure can be varied and 

different model implementations realizing different model assumptions can hence be contrasted 

with respect to their predictive accuracy and validity. Therefore, we varied the weighting 

algorithms within the described weighted distance decision rule to test different weighting 

functions against each other. Four models were implemented to examine whether no differential 

weighting of the appraisal dimensions (as it has been realized in an expert system by Scherer, 

1993), the theoretical weighting parameters for the 16 appraisal dimensions proposed by 

Scherer and Meuleman (2013), 16 weighting parameters generated from the empirical data set 

using a genetic optimization method, or a more complex weighting algorithm with 208 

parameters also generated with an optimization approach yielded the best out-of-sample 

performance. As we also generated the emotion prototypes from the empirical data set (and 
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contrasted them with the theoretical prototypes from Scherer, 2001), the modeling approach of 

study 1 can be described as a hybrid of theoretically informed and exploratory data-driven 

methods. 

Lastly, it has to be noted that the models in study 1 are mere structural models of the 

appraisal-feeling link proposed by the CPM (Scherer, 2001, 2009) that do not regard the 

assumed temporal characteristics of the appraisal process (i.e., the temporal order of the 

appraisal dimensions). The distance calculation from empirical appraisal patterns to emotion 

prototypes does not hold any temporal constraints. In the context of a simple accuracy 

assessment of the models, the temporal dimension of the appraisal procedure has no relevance. 

However, an app is provided in chapter 3 that visualizes the temporal changes of prototype 

similarity for any potential appraisal pattern if the assumed temporal order is taken into account. 

 

 
Figure 3. Two-dimensional scaling of the 13 emotion prototypes used in study 1 (SAD = 

sadness, FEA = fear, CON = contempt, DES = despair, RAG = rage, SHA = shame, DIS = 

disgust, GUI = guilt, IRR = irritation; ANX = anxiety, ELA = elation, ENJ = enjoyment, PRI = 

pride) as well as an empirically assessed appraisal input pattern (INP) that was identified as fear 

by the preferred model in study 1. Note that this is a force embedded layout in which not all 

distances are displayed spatially correct. 
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1.4.3 Link B: The Appraisal-Physiology Link 

In contrast to the appraisal-feeling link, the theoretical basis concerning the relation 

between the appraisal component and the physiological component is rather sparse. Again, the 

input of the appraisal-to-physiology process (i.e., the appraisal dimensions) is clearly defined. 

Concerning the output of the process, it is possible to imagine a very large set of physiological 

variables that are potentially affected by the appraisal outcomes during an emotional episode 

such as cardiovascular, respiratory, electrodermal, muscular or intestinal responses. For ten 

appraisal dimensions, Scherer (2009) proposes theoretically derived responses in the 

physiological component connected to these appraisals (in Table 3, an excerpt from these 

predictions for the appraisal dimensions pleasantness and conduciveness is presented). As these 

predictions are derived from theoretical considerations (no detailed information on how they 

were developed is given), they have to be viewed as very uncertain and rather speculative. For 

the other six appraisal dimensions, no information is provided on how the appraisal-physiology 

link might look like. Empirical research on the effect of appraisals on certain physiological 

signals has been conducted partially. Most of the studies in this field have some serious 

shortcomings though, including very small sample sizes, the application of rather restricted and 

outdated statistical methods, or experimental designs in which only specific appraisals were 

able to be examined (see study 2 in chapter 4 for a more thorough discussion of the empirical 

research conducted in this field).  

The theoretical predictions by Scherer (2009) are also very limited as they only refer to 

two possible appraisal manifestations – a high and a low evaluation of the respective appraisal 

(pleasant vs. unpleasant and conducive vs. obstructive for the appraisals presented in Table 3). 

As the appraisal dimensions are assumed to be continuous though, there is no information about 

the effect of different outcomes or continuous changes of the appraisals on the physiology of 

an individual. Generally, no assumptions about the algorithmic level of the appraisal-to-

physiology process are given that describe how an appraisal pattern is translated to changes in 

the physiological component. The only assumption is that changes in appraisals should result 

in continuous changes in the physiological component (in contrast to affect program theories 

which assume that hard-wired physiological patterns occur when an emotion is triggered; see 

Ekman, 1992; Panksepp, 2005). How these changes take place, whether certain appraisals are 

more important for the induction of physiological responses or by what type of function the 

appraisal outcome is translated to the physiological component (e.g., linear, polynomial or 

exponential) is not defined.  
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Table 3 

Extract from Scherer’s (2009) Proposed Effects of High and Low Intrinsic Pleasantness and 

Low and High Conduciveness Evaluations on the Physiological Component 

Appraisal Dimension Appraisal Evaluation Proposed Physiological Outcome 

Intrinsic pleasantness Pleasant Sensitization, inhalation, heart rate 

deceleration, salvation, pupillary dilatation, 

lids up, open mouth and nostrils, lips part und 

corners pulled upwards, gaze directed … 

 Unpleasant Defense response, heart rate acceleration, 

increase in skin conductance level, decrease 

in salvation, pupillary constriction, slight 

muscle tonus increase, brow lowering, lid 

tightening, nose wrinkling, upper lip raising, 

lip corner depression, chin raise, lip press, 

nostril compression, tongue thrust, gaze 

aversion …  

Conduciveness Conducive Trophotropic shift, decrease in respiration 

rate, slight heart rate decrease, bronchial 

constriction, increase in gastrointestinal 

motility, relaxation of sphincters, decrease in 

general muscle tonus, relaxation of facial 

muscle tone … 

 Obstructive Ergotropic shift, preparation for action, 

corticosteroid and catecholamine, particularly 

adrenaline secretion, deeper and faster 

respiration, increase in heart rate and heart 

stroke volume, vasoconstriction in skin, 

gastrointestinal tract and sexual organs … 

 

1.4.4 Modeling Approach B: Machine Learning 

As discussed in the previous chapter, the theoretical framework for the appraisal-

physiology link is less profound than the assumptions made for the appraisal-feeling path. A 

theoretical modeling approach as used in study 1 is therefore not applicable. In contexts like 

these, more exploratory analyses can be used to generate new information for theory 

development. Therefore, an exploratory machine learning approach was applied for the analysis 

of the appraisal-physiology path in study 2. Instead of theoretically determining the relation of 
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interest (as in study 1), the used machine learning algorithms are able to acquire the relationship 

between input and output autonomously. As we do not have strong assumptions on how the 

appraisals relate to physiological variables, this approach allows generating the algorithmic 

level of the appraisal-to-physiology process from empirical data. Depending on the machine 

learning algorithm employed, complex interactions of a large number of predictors and non-

linearities can be reflected. Due to their complexity, machine learning algorithms often have 

high predictive power. On the downside, the high model complexity often leads to reduced 

comprehensibility and interpretability which is why many of these models are also identified 

as black-box models. Nevertheless, different methods have been introduced over the years 

summarized under the term interpretable machine learning that allow approximating aspects 

of the learned model structure (for an overview, see Molnar, 2019).  

In study 2, different physiological channels (electromyography, skin conductance, and 

heart rate variability) were assessed in response to emotional video sequences. As in study 1, 

the appraisal dimensions were assessed retrospectively (but immediately after the evaluated 

event) via self-report. 134 features characterizing the different physiological signals were 

calculated. Subsequently, different machine learning models (a lasso regression model, a 

random forest, as well as a support vector machine) were trained to learn the relations between 

the physiological features (input) and the assessed appraisal dimensions (output). By examining 

whether the appraisals can be predicted from the physiological features, the appraisal-

physiology link can be verified. If the appraisals are connected to the considered physiological 

signals, a sufficiently complex model should be able to predict the appraisals to some degree.4 

By using different types of methods for interpretable machine learning and by comparing the 

performance of different machine learning models (i.e., linear and non-linear algorithms), it can 

be further examined how the algorithmic link between appraisal and physiology might look 

like.  

Even though the CPM implies that the appraisals initiate the changes in the 

physiological component, study 2 models this relation reversed by using the physiological 

signals to predict the appraisal dimensions. Due to the non-directional experimental design in 

study 2, the causality of the appraisal-physiology link cannot be tested. Hence, the relation was 

modeled conversely, as this approach has several advantages. Because one single feature cannot 

                                                
4 As in study 1, the presence of measurement error in the self-reported appraisals as well as in the physiological 

features has to be considered. This means that a perfect predictive performance is very unlikely even when the link 

between an appraisal and the features exists and a very high model complexity is given.  
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exhaustively describe a physiological channel (e.g., an electromyographic signal can be 

described by different amplitude and frequency measures that potentially assess different 

aspects of the time signal), each physiological signal has to be described by a broad set of 

different features. Therefore, when using the appraisals to predict changes in physiology, 

different models would have to be trained for each of the 134 features. This procedure would 

strongly increase the number of analyzed models which would consequently complicate the 

interpretation of the results and proliferate the computational costs. Moreover, the modeled 

relationship between appraisals and physiology would have to be interpreted individually for 

each of the 134 models. The reversed modeling though, using the physiological features to 

predict the appraisal dimensions, allowed the construction of several blocked importance 

measures that quantify the relevance of all features belonging to a physiological channel (e.g., 

all skin conductance features) in the prediction. Hence, the aggregated effect of the 

physiological channels can be investigated which is much more informative from a practical 

standpoint.  

In the following, the three machine learning algorithms used in study 2 are presented. 

1.4.4.1 Lasso Regression  

The lasso (least absolute shrinkage and selection operator) regression, as outlined by G. 

James, Witten, Hastie, and Tibshirani (2013), is a regularized linear model that performs a 

variable selection by shrinking the regression coefficients of predictors that explain little 

variance to zero. The variable selection (i.e., shrinkage of coefficients) reduces variance and 

prevents from overfitting the model to the data. Consequently, the out-of-sample performance 

of the model can be improved – most notably in models with a large number of variables. To 

achieve the latter, the estimation function of the linear model is extended by a penalty term that 

is determined by the tuning parameter 𝜆 (i.e., penalty weight) and the number and absolute 

height of the 𝛽-coefficients in the model. This estimation function, where n is the number of 

samples and p the number of variables, is minimized to find the 𝛽-coefficients of the lasso 

model: 

 

∑ (𝑦& − 𝛽( − ∑ 𝛽)𝑥&)
+
),- )/0

&,- + 	𝜆 ∑ 3𝛽)3
+
),-     (1) 

 

To determine the best value for the tuning parameter 𝜆, a grid of 𝜆 values is chosen and 

the cross-validation error for each of the assigned values of 𝜆 is calculated. Subsequently, the 

value is selected for which the cross-validation error is smallest (G. James et al., 2013).  
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1.4.4.2 Random Forest 

As described by G. James et al. (2013), the random forest is a tree-based machine 

learning algorithm that is able to represent complex interactions and non-linearities.  It uses 

recursive binary splitting to grow large decision-trees on ntree training samples. The training 

samples are built by bootstrapping which means that nobs observations are randomly drawn from 

the original data set with replacement (where nobs is the number of observations in the original 

data set). During the tree-building process, each time a split is made a random sample of m 

predictors is chosen from the whole set of p predictors. The size m of the considered subset is 

usually defined to be 𝑚 =	6𝑝.		From the random subset only one variable is picked, namely, 

the one that splits the predictor space in a way that leads to the greatest possible reduction of 

residual sum of squares (RSS) in the resulting regions (i.e., terminal nodes or leaves). In this 

manner, the predictor space is further divided into different regions until a minimum number 

of observations in each region is reached. For a new test observation, each tree predicts the 

mean across all training observations that are assigned to the same region. The predictions of 

all ntree trees are subsequently averaged. Note that the procedure differs when classification 

instead of regression trees are applied. In this case, the predictors and splits are chosen based 

on the mean misclassification error (MMCE). Instead of averaging the observations, the most 

frequent class in each region is predicted. Lastly, a majority vote over all ntree trees is returned.  

1.4.4.3 Support Vector Machine 

Like the random forest, the support vector machine is a machine learning algorithm that 

can be applied to classification and regression problems. As it is only applied as a regression 

model in the present thesis, only this application context will be addressed. As described by 

Smola and Schölkopf (2004), the 𝛽-coefficients of a linear function are minimized in support 

vector regressions (or more specifically, the Euclidean norm of the 𝛽-coefficients is 

minimized). In this estimation process, a margin of tolerance is established and only deviations 

larger than 𝜀 (i.e., margin tolerance parameter) are considered in the estimation function. In 

addition, a penalty term is added to the estimation function that is determined by a constant 𝜆 

> 0 and the slack variables 𝜉&  and 𝜉&∗which indicate the residuals of the observations yi from the 

tolerance margin (where 𝜉&	 is a positive deviation from the margin and 𝜉&∗ is a negative). The 

constant 𝜆 hence defines the trade-off between the flatness of the linear function and the 

strength of deviation from the tolerance margin:  
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By using different types of kernel functions (e.g., polynomial or radial basis functions) 

the dimensionality of the feature space can be increased so that non-linear relations can be 

modeled with the support vector machine as well (Smola & Schölkopf, 2004).  
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2 Study 1: Emotion Prediction with Weighted Appraisal Models 

This paper is reprinted from Israel, L. S. F., & Schönbrodt, F. D. (2019). Emotion 

Prediction with Weighted Appraisal Models – Validating a Psychological Theory of Affect. 

IEEE Transactions on Affective Computing. https://doi.org/10.1109/TAFFC.2019.2940937 and 

was funded by a grant of the German Research Foundation to Felix Schönbrodt (DFG SCHO 

1334/4-1). The data set used in the present study was provided by Scherer and Meuleman 

(2013). 

2.1 Abstract 

Appraisal theories are a prominent approach for the explanation and prediction of 

emotions. According to these theories, the subjective perception of an emotion results from a 

series of specific event evaluations. To validate and extend one of the most known 

representatives of appraisal theory, the Component Process Model by Klaus Scherer, we 

implemented four computational appraisal models that predict emotion labels based on 

prototype similarity calculations. Different weighting algorithms, mapping the models’ input 

to a distinct emotion label, were integrated into the models. We evaluated the plausibility of the 

models’ structure by assessing their predictive power and comparing their performance to a 

baseline model and a highly predictive machine learning algorithm. Model parameters were 

estimated from empirical data and validated out-of-sample. All models were notably better than 

the baseline model and able to explain part of the variance in the emotion labels. The preferred 

model, yielding a relatively high performance and stable parameter estimations, was able to 

predict a correct emotion label with an accuracy of 40.2% and a correct emotion family with an 

accuracy of 76.9%. The weighting algorithm of this favored model corresponds to the weighting 

complexity implied by the Component Process Model but uses differing weighting parameters. 

2.2 Introduction 

Since the 1990s, a variety of computational emotion models have been implemented, 

creating an interdisciplinary field between psychology and computer science. This development 

has not only been driven by its numerous new applications in artificial intelligence, robotics, 

and human-computer interaction but also by its contribution to basic emotion research 

(Marsella, Gratch, & Petta, 2010). Computational affect modeling provides a framework to test 

psychological emotion theories and elaborate their structure. Furthermore, mathematical 

implementations of cognitive models can help to consolidate and extend verbal theories that 
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often lack formality and explicitness. In the present paper, we therefore used a computational 

emotion model to extend and validate one of the most prominent approaches for the explanation 

of affect – appraisal theories of emotion (for an overview see Moors, Ellsworth, Scherer, & 

Frijda, 2013), specifically, the Component Process Model (CPM) by Scherer (1984, 2001, 

2009). 

As emotions are subject to many interdisciplinary fields of research, many differing 

conceptualizations of emotions can be found. Most theorists though recognize that emotions 

are multi-componential, integrating different elements such as somatic and motor functions, 

motivation, cognition, and often feeling, the component describing the subjective emotional 

experience of a person (Moors, 2009). How these components interact and which role they play 

in the causation of emotions is heavily debated. An early exploration of the emergence of affect 

by James (1884) defines emotion as the perception of bodily changes that arises as a response 

to the environment. This strict exclusion of the cognitive component in the emotion causation 

process has since been challenged. Schachter and Singer (1962), for example, expanded James' 

(1884) theory by proposing a two-step procedure in which a stimulus generates an unspecific 

physical state of arousal, but a second cognitive elaboration is needed to interpret the arousal 

state and label it correctly. Appraisal theories of emotion go even further by apprehending the 

cognitive evaluation of a stimulus as the trigger of emotions, influencing all of the other 

components (e.g., Roseman, 2001; Scherer, 2001; Smith & Lazarus, 1990; Smith & Ellsworth, 

1985). Appraisal is generally understood as the process of assessing the relevance of a stimulus 

for one’s own welfare regarding personal needs, values, attachments, beliefs, and goals; though, 

the presumed number and content of appraisal dimensions vary between theorists (Moors et al., 

2013). An emotion or emotion family can then be described as a function of a distinct appraisal 

pattern – several of these appraisal profiles for specific emotions have been proposed in the 

literature (Frijda, 1986; Roseman, 1984; Scherer, 2001; Smith & Ellsworth, 1985). 

Consequently, an emotion is not supposed to be elicited by the stimulus itself (contrary to the 

theory of James, 1884) but by its meaning for the individual (Moors, 2010). This holds 

significant explanatory power, as it can account for the fact that the same stimulus can evoke 

completely different emotional reactions between individuals or even within the same person 

on different occasions. 

Despite the popularity of this cognitive approach to emotions and the strong 

commonalities between appraisal theories, there is some disagreement concerning the content 

of the appraisals and how they are mapped onto emotion categories (Moors et al., 2013). Several 

empirical studies have been conducted to test the theoretical predictions made by appraisal 
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theories (for a review, see Scherer, 2009), but as they were only able to systematically vary few 

appraisal dimensions at once, other methods need to be applied to further investigate these 

models as a whole. Here, computational emotion models, specifying which emotional reaction 

an individual will experience once a specific appraisal pattern is present, can help determine 

the plausibility of appraisal dimensions and the suspected mapping algorithms. In the past, 

several models were successfully implemented that map appraisal profiles either onto distinct 

emotions labels (e.g., AR by Elliott, 1992) or dimensional representations of affect (e.g., 

WASABI by Becker-Asano, 2008). Some of those adapted the appraisal profiles proposed by 

Scherer (2001; e.g., PEACTIDM by Marinier, Laird, & Lewis, 2009), while others built on the 

work of Ortony, Clore, and Collins (1988; e.g., AR by Elliott, 1992). Most of these models 

serve to create intelligent agents that act autonomously in simulated environments. To validate 

the underlying theory though, the model’s behavior has to be contrasted with empirical data. 

The computational appraisal model, formalizing the junction between emotion and cognition, 

should be able to predict the emotional experience of an individual correctly; otherwise, the 

model may be insufficient or inappropriate to describe the emotion formation process. Such an 

approach was first put into practice with the Geneva Expert System on Emotions (GENESE) by 

Scherer (1993b). In this framework, participants were asked to recall an emotional episode from 

their past and answer a questionnaire intended to measure 11 different appraisal dimensions. 

The expert system then calculates the similarity to theoretically derived appraisal patterns that 

represent different prototypical emotions by Euclidean distance and makes guesses about the 

emotional state recalled by the participant. Subsequently, the predictions are validated by the 

participant as correctly or incorrectly describing the perceived emotion. In this experimental 

setup, the system was able to predict an appropriate emotion term in 77.9% of the cases. But 

the post hoc verification of the prediction might have had demand characteristics and hence 

could have urged participants to accept an emotion label when they themselves had no clear 

judgment about their state. Consequently, a new system, the Geneva Emotion Analyst (GEA; 

Scherer & Meuleman, 2013), was introduced. GEA asks users to label the reported emotion 

episode before the system’s diagnosis is made so that an exact match or mismatch can be 

determined. In 51% of the cases, the first guess of the GEA system matched one of the emotion 

labels given by the participant. GEA also operates by calculating the distances between users’ 

appraisal ratings and appraisal prototypes but further incorporates a weighting algorithm that 

takes into account that some appraisal dimensions might be more important for emotion 

formation than others.  
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The described GEA and GENESE system proceed in a classical deductive manner, 

making predictions about the participant’s emotional state based strictly on theoretical 

assumptions. Through deductive reasoning, we imply that if our premises (i.e., our model 

assumptions) are true then our inferences (i.e., our predictions) must be necessarily true as well 

(Douven, 2017). In this manner, the assumed structure of the model can be validated by its 

predictive accuracy. In the present paper, we want to extend this modeling idea with a more 

inductive approach. In inductive reasoning, premises are based on statistical data such as 

observed frequencies of a specific feature in a sample. Therefore, every inference that is drawn 

goes beyond what is logically included in the premise (Douven, 2017). This entails some 

uncertainty as not all inferences necessarily need to be valid, but it allows us to generate new 

premises (i.e., model assumptions) that can be validated subsequently. As for the present study, 

we implemented four affect-derivation models based on the CPM. Similar to predecessor 

systems, all four models are able to predict an emotion term by calculating similarities between 

an appraisal profile and several emotion prototypes but apply different kinds of weighting 

algorithms in the appraisal-feeling mapping process. In contrast to earlier models, we also used 

empirical data to inductively elaborate the models by estimating the appraisal profiles of the 

emotion prototypes as well as the different appraisal weights instead of using only theoretically 

derived parameters. We then validated and compared the models by evaluating their predictive 

out-of-sample performance. By integrating theory-based as well as data-driven information in 

computational emotion models and by systematically varying their internal structure 

(weighting), we hope to engage in the theory formation process and further the understanding 

of the appraisal-emotion mapping process. 

2.3 The Component Process Model (CPM) 

Scherer's (2001) theory, the theoretical basis of our models, considers emotions as an 

“episode of interrelated, synchronized changes in the state of all or most of the five subsystems 

in response to the evaluation of an external or internal stimulus event as relevant to major 

concerns of the organism” (p. 93). Each stimulus event is evaluated by a number of criteria, the 

so-called stimulus evaluation checks (SECs). Scherer proposes 16 of such appraisal dimensions 

organized in four major classes that determine (1) the relevance of an event to the organism, 

(2) the implications of an event for personal goals and well-being, (3) the ability to cope and 

adjust to potential or real consequences of the event, and (4) the importance of an event 

regarding self-concept or social norms (for a detailed description of the 16 appraisal 

dimensions, see Scherer, 2001). How each dimension is appraised is highly dependent on 
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individual and situational aspects such as motivation, cultural imprint or social pressure. From 

the interaction of all 16 appraisal dimensions a virtually infinite emotion space arises. Scherer 

(2001), therefore, rejects the assumption of a limited number of discrete emotion categories 

made by many other emotion theorists (e.g., Ekman, 1992). Nonetheless, he recognizes that 

certain appraisal combinations occur more frequently and universally than others. Scherer 

(2001) calls these states, that are usually labeled with a short verbal expression, modal emotions. 

For the 13 modal emotions pleasure, joy, pride, irritation, rage, contempt, disgust, guilt, shame, 

anxiety, fear, sadness, and despair, he proposes theoretically derived appraisal patterns 

representing the prototypical level of each appraisal dimension for each modal emotion. These 

prototypes, adapted over the years (Scherer, 1984, 2001; Scherer & Meuleman, 2013), also 

include open parameters, indicating that a specific dimension might be irrelevant or that many 

different values are compatible with the respective modal emotion (Sander, Grandjean, & 

Scherer, 2005). Overall, the theoretical prototypes show moderate correlations to appraisal 

means found in empirical data (Scherer & Meuleman, 2013). During the appraisal process, the 

evaluated dimensions are integrated by a weighting function that considers each of the 16 

appraisal dimensions to be differently important in the affect-centered rating of a situation 

(Sander et al., 2005). For this weighting algorithm, theoretically derived parameters have been 

proposed as well (Scherer & Meuleman, 2013). 

2.4 Extending the CPM 

The described appraisal structure was adapted in our four models. The models predict 

an emotion label from the set of 13 modal emotions by calculating the distance between an 

empirical appraisal profile, containing ratings for the 16 appraisal dimensions, and 13 emotion 

prototypes within a 16-dimensional appraisal space. They then return the emotion label of the 

prototype that shows the highest resemblance to the empirical vector. In each of the models 

though, we implemented a different weighting of the appraisal dimensions. As in the GENESE 

system, the first emotion model (M1) did not use a weighting – all appraisal dimensions were 

considered to be equally important in the emotion class determination. The second model (M2) 

and the third model (M3) included 16 parameters (one for each appraisal dimension) similar to 

the GEA system. This weighting algorithm implies that across all emotions some appraisal 

dimensions could be generally more important in the identification of an emotion than others 

(e.g., the valence of a stimulus could be more important than its familiarity). In the fourth model 

(M4), we implemented a separate weighting parameter for each of the 16 appraisal dimensions 

within each of the 13 emotion prototypes, resulting in 208 parameters. This more complex 
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weighting allows each appraisal dimension to be differently relevant for each of the modal 

emotions. This means, for example, that for most emotions such as joy, anger or sadness it 

could be irrelevant who caused a situation, as all of these emotions can be triggered by one’s 

own actions as well as by actions of others. But for emotions such as guilt or shame, that are 

more often elicited by one’s own actions, the appraisal might be highly relevant. Support for 

this view also comes from empirical research. For different emotion classes, Smith and 

Ellsworth (1985) identified differing subsets of appraisals, that were predictive for the specific 

emotion, implying that appraisals might be unequally important within different emotion 

classes. This assumption, although not explicitly expressed in the CPM, does not contradict 

Scherer's (2001) model, as the open parameters he included in the theoretical prototypes can be 

understood in the same way: If an emotion prototype is compatible with several different levels 

of an appraisal dimension (as implied by an open parameter in Scherer’s [2001] prototypes), 

then this dimension is not relevant for the specific emotion, as it cannot be used to differentiate 

this emotion from others. This should be reflected in a low weight of the appraisal dimension 

within the emotion prototype. If this assumption is correct, the more complex weighting 

algorithm should result in a better performance compared to the 16-dimensional or equal 

weighting scheme.  

While M2 used the theoretically derived weighting parameters (Scherer & Meuleman, 

2013), parameters in M3 and M4 were estimated from empirical data. By comparing the 

predictive power of these four differently weighted models, we hope to evaluate if the weighting 

proposed by the CPM as well as the proposed weighting parameters are appropriate or whether 

a different kind of mapping algorithm yields a better predictive performance. Also, to evaluate 

the predictive performance of our models, we compared them to a naive baseline model that 

randomly guesses classes weighted by their frequency in the data set (weighted guess classifier; 

WGC) as well as to a random forest (RF) machine learning model that should be able to yield 

a very high prediction performance by considering all potential interactions, presenting an 

upper level of performance that can be reached with the used data set. 

As the theoretical prototype profiles show only moderate correlations to the ones found 

in empirical studies, it seems plausible that the 208 parameters cannot be fully deduced from 

theoretical assumptions about the appraisal process. Therefore, we decided to derive the 

prototypes directly from an empirical data set that was collected with the GEA system by 

Scherer and Meuleman (2013). Prototype theory, first introduced by Rosch in 1983, defines the 

prototype of a category as a reference point for classification based on representativeness. As 

we describe each emotion category on 16 continuous dimensions (i.e., each dimension can be 
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described by a distribution function), we can assess the most representative instance for each 

modal emotion by finding the mean of each appraisal dimension in a representative sample. 

This data-driven approach on a large data set should hence lead to a better prototype assessment 

and consequently to a better performance than an exclusively theoretical approach. The 

estimation of the appraisal weights (16 parameters for M3 and 16*13=208 parameters for M4) 

required a more complex estimation algorithm. We used a genetic optimization method to 

determine the weighting parameters that would maximize the models’ predictive performance.  

To summarize, we combine different modeling approaches to validate the CPM and 

expand its theoretical assumptions: (1) By contrasting our models’ predictions with an 

empirical ground truth, we can assess their predictive power and consequently the plausibility 

of the underlying theory. If emotions arise from the cognitive evaluations of the 16 dimensions 

proposed by the CPM, our computational models should be able to predict the correct emotion 

labels to some degree. With the performance level attained, we can further investigate whether 

the appraisal dimensions proposed by the CPM are sufficient to predict the subjective feeling 

(emotion label) of participants correctly. (2) The systematic variation of the weightings between 

the different models enables us to inspect whether the weighting algorithm implied by the CPM 

is valid or whether different weighting parameters (generated from empirical data), a more 

complex or even no weighting at all yields a better performance. 

2.5 Method 

Our electronic appendix, including all corresponding R scripts and further supporting 

information, is provided via our Open Science Framework (OSF) repository at 

https://osf.io/te4z3/. 

2.5.1 Dataset  

For the estimation of the model parameters as well as for the out-of-sample validation 

of the resulting models, a data set by Scherer and Meuleman (2013) was used. The data was 

collected via the freely accessible GEA system on the website of the Swiss Center for Affective 

Sciences5 over the duration of eight years. The questionnaire implemented in the GEA system 

is publicly available as the Geneva Appraisal Questionnaire (GAQ; Geneva Emotion Research 

Group, 2002) and was specifically developed to assess the results of an appraisal process during 

                                                
5 https://www.unige.ch/cisa/research/materials-and-online-research/online-research/ 
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an emotional episode through memory and verbal report. In the online questionnaire, 

participants were asked to recall an emotional episode from their past. After describing the 

recalled situation, subjects were asked to name the perceived emotion by choosing one or two 

matching terms from a list of 13 emotions consisting of pleasure, joy, pride, irritation, rage, 

contempt, disgust, guilt, shame, anxiety, fear, sadness, and despair. Participants could also 

indicate that none of the emotion terms described how they felt. Subsequently, a set of 25 

questions was presented that was constructed to assess the appraisal dimensions proposed by 

Scherer (2001). Each item, measuring the presence of a specific appraisal during the emotional 

episode, was rated on a 5-point scale reaching from not at all to extremely or could be labeled 

as not applicable to the situation. Further information about contextual factors was collected as 

well, which is not relevant for the present study. 

The dataset included 6809 reported emotional episodes. 218 of these observations had 

to be dismissed because participants did not report any specific emotion label and were, 

therefore, lacking a ground truth. The final sample (n = 6591) consisted of 4419 female and 

2171 male raters (sex and age of one participant were missing). The majority of participants, 

about 59% (n = 3900), were between 20 and 40 years. About 23% (n = 1483) were in the age 

group between 12 and 20 years and around 18% (n = 1207) were older than 40 years. As the 

questionnaire could be completed in three different languages, the dataset included 625 

German, 3015 English, and 2951 French-speaking participants. 72% of the participants (n = 

4720) selected two emotion labels to describe the reported episode, while only 28% (n = 1871) 

identified the reported emotion using one single label.  

2.5.2 Data Preprocessing 

For the further use in our emotion models, we aggregated the 25 appraisal items to the 

16 appraisal dimensions proposed by the CPM (Scherer, 2001) by calculating mean values for 

the dimensions measured with more than one item. Additionally, we normalized the data to a 

range from 0 to 1. All not applicable answers were set to missing (about 12% of the dataset). 

As imputations of the missing cases would contradict the theoretical assumption that some 

appraisal dimensions might be completely irrelevant for certain emotions (Sander et al., 2005), 

missing values were kept in the dataset. Instead, we handled missing data in our emotion models 

by pairwise deletion. For all episodes with more than one emotion label, we randomized the 

order of the emotion terms, as it was not clear how the order was achieved within the GEA 

system. For the episodes labeled with only one emotion term, the second emotion label was set 

to Undetermined. 
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For the out-of-sample validation of the emotion models, the dataset was split into two 

subsets by stratified sampling (using the stratified function from the splitstackshape package 

by Mahto, 2018). Using the first emotion labels as strata, a training set holding 50% of the data 

(n = 3296) and a test set holding the other half (n = 3295) were created. As the emotion 

categories in the training set (as well as is the whole data set) were rather unbalanced, with 

some emotions (such as contempt or disgust) being underrepresented, we used an oversampling 

algorithm to create an additional balanced training set to use in the optimization of the model 

parameters. This is a crucial step, as unbalanced datasets in supervised classification tasks can 

lead to the overpowering of prevalent classes and ignorance of rare ones (Lunardon, Menardi, 

& Torelli, 2014). The oversampling as well as all further analyses and implementations were 

conducted in R (Version 3.4.2; R Core Team, 2018). Using the first emotion label as class label 

again, we randomly sampled instances from the data set with the upSample function from the 

caret package (Kuhn, 2008) so that all emotion categories would have the same frequency as 

the largest class in the data set. The resulting oversampled training set consisted of 8034 

instances, 618 for each emotion category.  

2.5.3 Model Implementations 

To make predictions about an emotional state, the models (M1, M2, M3, and M4) take 

an input vector containing the numerical ratings of the 16 appraisal dimensions for that specific 

state. By calculating the sum of squared differences, the distance between this input vector and 

13 emotion prototypes, which represent the mean level of an appraisal dimension within a 

specific emotion category in the original (unbalanced) training set, is determined. Appraisal 

dimensions that are missing in the input vector are not considered in the distance calculation. 

This means that dimensions marked as irrelevant or not applicable by the participant are 

excluded. While M1 does not include a weighting, M2 and M3 weighted each of the 16 

appraisal dimensions separately. They thus give different importance to the dimensions during 

the distance calculation. In M4, each of the appraisal dimensions within each emotion category 

is weighted differently. Each weight therefore represents the appraisal dimensions relative 

importance within a specific emotion category. Consequently, each of the 13 resulting distance 

scores in M4 is obtained with a different weighting algorithm, leading to different maximum 

distances. To compare the scores, each value is normalized to a range between 0 and 1. To 

obtain a consistent metric for all four models, score normalization was also implemented in the 

other two models. The normalized distances are subsequently reversed to similarity scores (si). 



Method 

 

34 

Hence, larger values indicate a higher similarity to a prototype. The similarity metrics of the 

four models are calculated by the following formulas:  
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where, 

si is the similarity to the ith emotion prototype, 

pij is the prototype value of the jth appraisal dimension of the ith emotion prototype, 

ej is the empirical value of the jth appraisal dimension, 

wj is the appraisal weight given to the jth appraisal dimension, 

wij is the appraisal weight given to the jth appraisal dimension of the ith emotion prototype, 

Q is the set holding the indices of missing values in the empirical vector. 

Based on the resulting similarities (si), the models make a prediction, returning the 

emotion with the highest resemblance to the input vector (i.e., the smallest normalized distance 

between input and prototype). By comparing the models’ predictions with the actual emotion 

labels, the classification performance can be obtained to evaluate their predictive power. 

2.5.4 Estimation of Model Parameters 

2.5.4.1 Emotion Prototypes 

The emotion prototypes (pij) used in all four models were calculated from the empirical 

data contained in the (unbalanced) training set. For each emotion prototype, consisting of 16 

prototypical appraisal values, episodes labeled with the according emotion term were 

aggregated. Episodes labeled with two emotion terms were included in the prototype 

calculations of both emotion categories. For each of the 13 emotions, the mean level of each of 

the 16 appraisal dimensions was calculated across all episodes labeled with the respective 

emotion category – resulting in a 13 x 16 prototype appraisal matrix. Each prototype within this 

matrix was calculated by the following formula on the unbalanced training set:  
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where, 

pij is the prototype value of the jth appraisal dimension of the ith emotion prototype, 

rijk is the kth rating of the jth appraisal dimension that was labeled with the ith emotion class, 

ni is the number of episodes labeled with the ith emotion class. 

The number of observations included in the prototype calculation ranged from n = 81 

(Contempt) to n = 992 (Sadness), where cases with two labels counted for both prototypes. To 

assess the resemblance between the newly calculated prototypes and the theory, we calculated 

Pearson correlations between the 13 empirical assessed prototypes and the theoretical 

prototypes proposed by Scherer (2001). The latter are reported as categorical variables and were 

translated to continuous values for this purpose. Also, a mean correlation across all prototypes 

was calculated by Fisher’s Z-transforming the correlation coefficients, computing the mean and 

transforming the value back to a correlation coefficient. 

2.5.4.2 Theoretical Appraisal Importance 

The weighting parameters (wj) for model M2 were derived from the theoretical weights 

used by Scherer and Meuleman (2013). The authors actually present a numerical weighting 

parameter for each of the items used in the GAQ.  As the items were aggregated to build the 16 

dimensions proposed by the CPM, we also averaged the weighting parameters to obtain one 

weight for each of the 16 appraisal dimensions. 

2.5.4.3 Optimization of Appraisal Importance 

A genetic algorithm was used to find the 16 or 208 appraisal weights that would 

minimize the predictive error of M3 and M4. Two objective functions (i.e., the functions to be 

minimized during the optimization processes) were defined that determine the mean 

misclassification error (MMCE) of the respective model across all observations of the balanced 

training set with the previously calculated prototypes pij and the 16 appraisal weights wj or the 

208 appraisal weights wij as free parameters. The optimizations were conducted using the 

Differential Evolution (DE) algorithm introduced by Storn and Price (1997). DE is a global 

optimization algorithm suited for high-dimensional, non-linear problems that do not require an 

either continuous or differentiable function. Like other genetic algorithms, DE uses biology-

inspired processes such as mutation, crossover, and selection on a population to iteratively 
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minimize or maximize the objective-function over successive generations (Ardia, Mullen, 

Peterson, & Ulrich, 2016). The parallel search within a whole population of parameter 

configurations helps to avoid local minima which makes DE superior to many direct search 

methods (Storn & Price, 1997). To conduct the optimization, the DEoptim package (Ardia et 

al., 2016) was used. The bounds of each parameter were set to 0.000001 (lower bound) and 10 

(upper bound). To speed up the optimization process and to prevent misconvergence, the default 

settings of DEoptim were adapted. The step tolerance (steptol) was set to 200 and the relative 

convergence tolerance (reltol) to 0.001, which means that the optimization converges if there 

is no parameter configuration that decreases the MMCE by at least 0.001 after 200 populations. 

Additionally, the crossover rate (CR), influencing the number of mutated values in the 

parameter configuration of a new population (Ardia et al., 2016), was set to 0.9. Storn and Price 

(1997) recommend using a higher CR of 0.9 or 1 to speed up convergence. Finally, the 

differential weighting factor (F) that is used to create new parameter configurations in the 

mutation process was set to 0.7, as Ardia et al. (2016) suggest to lower or higher F a little 

(default setting is 0.8) to prevent misconvergence. By default, the population size NP is set to 

10*p (where p is the number of parameters), which means that DEoptim optimizes 160 potential 

solutions for M3 and 2080 solutions for M4 in parallel.  

We repeated the optimization process several times (10 times for M3 and 5 times for 

M4) with different random seeds, reporting the parameter configuration with the best out-of-

sample performance (highest mean precision across all 13 emotion classes; see next paragraph 

for a description of the performance measures) as well as the mean variance of the parameter 

solutions as a robustness measure. Additionally, we wanted to contrast the optimized 

parameters of M3 to the theoretical weights by Scherer and Meuleman (2013) that we used in 

model M2. To this end, we report the Pearson correlation between the theoretical weights and 

the best parameter configuration of M3.  

2.5.4.4 Model Validation 

The four models with the theoretically and empirically generated parameters (pij, wj and 

wij) were validated on the hold-out test set. For each of the models’ predictions, we determined 

whether the predicted emotion class matched the given emotion label or, if two labels were 

present, the predicted emotion class matched either of the two labels. As the overall accuracy 

(or MMCE) can be a misleading performance indicator for unbalanced data sets (as more 

weight is put on frequent classes than on rare classes), and because we also wanted to analyze 

the performance for each emotion class separately, we additionally reported class-wise 
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precision scores (number of true positive examples over all positive labeled examples) to assess 

the models’ performance (Bekkar, Djemaa, & Alitouche, 2013).6  

To contrast the models’ classification performance with a naive baseline model, we also 

reported the performance of the WGC that randomly predicts classes dependent on their relative 

frequency in the data set. As another benchmark, we conducted a RF classification using the 16 

appraisal dimensions as features.7 We chose the ranger learner from the ranger package (Wright 

& Ziegler, 2017) with hyperparameters set to default. The model computation was conducted 

within the mlr framework by Bischl et al. (2016). As the model is not able to handle missing 

data, we recoded the 16 appraisal dimensions to factors and included missing values as an 

additional level. Thereby, we were able to train the RF on the whole oversampled training set 

and validate it on the entire hold-out test set. Supervised black-box models are able to learn 

data inherent structures by labeled instances. Their high predictive power comes at the cost of 

their interpretability. The model can be seen as a conservative upper limit of performance that 

can be reached with the present input variables, as the variance that is not explained by the 

model is rather due to incomplete input information or measurement error than insufficient 

model complexity.  

Previous analyses by Scherer and Meuleman (2013) had shown that the 13 emotion 

classes cluster into four emotion families: The happiness family with pleasure, joy, and pride; 

the anger family including irritation, rage, contempt, and disgust; the distress family including 

anxiety, fear, sadness, and despair; as well as the shame and guilt family. Because of this finding 

and the close resemblance of the emotion terms, which might make it difficult for participants 

to differentiate between the labels, we also assessed the classification performance for the four 

emotion families.  

Next to classical performance measures, we also wanted to test how well each model 

was calibrated. Decalibration in discrete classification tasks is present when a model predicts 

classes in proportions that do not match the original class distribution (Bella, Hernandez-Orallo, 

& Ramirez-Quintana, 2009). We therefore calculated two-way intraclass correlations (ICC) 

                                                
6 Because the present task is a multi-label as well as a multi-class classification problem and due to further 

characteristics of the data, no further performance measures were applicable. 
7 We compared different machine learning algorithms, finding that the tree based approach worked best with this 

type of data (which is in line with the findings of Meuleman & Scherer, 2013). The results of this benchmark 

experiment can be found in the electronic appendix. 
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between the real class proportions in the data and the class proportions in the predictions of the 

models.  

2.6 Results 

2.6.1 Prototypes 

The prototypes (pij) for the 13 modal emotions calculated from the unbalanced training 

set can be found in the electronic appendix. The appraisal values of the newly attained 

prototypes showed a mean correlation of r = .47 to the appraisal values of the prototypes 

proposed by Scherer (2001; see Table 1).  

Table 1 

Pearson Correlations of the App-

raisal Dimensions of the Prototypes 

Calculated from the Data Set and 

the Theoretical Prototypes from 

Scherer (2001)  

Emotion Prototype r 
Pleasure .44 
Joy .56 
Disgust .48 
Sadness .57 
Despair .64  
Anxiety .57 
Fear .73  
Irritation .34 
Rage .60  
Shame .06 
Guilt .07 
Pride .42 
Contempt .31 

 

2.6.2 Emotion Classification 

The WGC baseline model showed an overall accuracy of 17.9% in the classification of 

the 13 emotions on the test set. The class-wise precision (see Table 2 for all precision scores) 

of this naive model ranged from 2.0% (contempt) to 30.5% (sadness).  
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The first model without any weighting (M1) yielded an overall accuracy of 37.1% on 

the test set that was considerably higher than the overall accuracy of the WGC. The class-wise 

precision varied widely with scores ranging from 3.7% (contempt) to 82.7% (joy). For all 13 

emotion categories, the classification performance of M1 was notably higher than the 

performance of the baseline model. 

The second model (M2), using the theoretical weights by Scherer and Meuleman (2013), 

showed an overall accuracy of 27.1%. Again, the precision scores differed strongly between 

classes, ranging from 4.2% (contempt) to 61.8% (sadness). All class-wise precision scores were 

higher than the precision scores yielded by the WGC baseline model. Nevertheless, M2 was 

outperformed by the unweighted M1, which reached higher scores in all classes except for 

despair, irritation, and contempt as well as a higher overall accuracy. 

The DE optimization for the 16 parameters of M3 was repeated using 10 random seeds. 

The parameter configurations over the 10 replications showed a mean variance of 1.09 (range 

= 0.12–4.36)8 with some parameters, such as the weight for the pleasantness appraisal, being 

estimated more robustly than others. The best solution (yielding the highest out-of-sample mean 

precision) converged after 534 iterations (populations) with an in-sample accuracy of 42.2%. 

The out-of-sample accuracy on the validation test set reached 40.2% and was higher than the 

overall accuracy of the baseline model, M1, and M2. The class-wise precision scores, ranging 

from 4.3% (contempt) to 81.6% (joy), exceeded all precision scores of the baseline model. In 

10 of the 13 emotion classes, M3 reached a higher precision than the unweighted M1. For the 

emotions pleasure, joy, and rage though, M1 yielded slightly better values. M3 also 

outperformed M2 in 11 of the 13 emotion classes, yielding higher scores for all emotions except 

for rage and irritation.  

The DE optimization for the 208 parameters of M4 was repeated five times using 

different random seeds. The parameter configurations showed a variance of 5.03 (range = 0.11–

18.24) across optimization repetitions. This is substantially higher than the variation of 

parameters in M3, which points towards a strong instability in the optimization. Again, some 

of the 208 parameters were estimated robustly over the iterations, while some showed a very 

high variance. The parameter solution with the best out-of-sample performance converged after 

1635 iterations at an in-sample accuracy of 45.3%. On the validation test set, the model showed 

an out-of-sample accuracy of 43.2% that outperformed the WGC, M1, M2, as well as M3. But 

the class-wise precision scores show that M4 actually yielded worse precisions than the simpler 

                                                
8 With parameters constrained between 0.000001 and 10, the maximum variance possible was 25. 
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M3 in all classes except for two (despair and guilt). Furthermore, it outperformed the 

unweighted M1 in only five cases (despair, anxiety, shame, guilt, and contempt) and the 

theoretical weighted M3 in only 7 of the 14 classes (pleasure, joy, despair anxiety, fear, shame, 

and guilt). Still, the precision scores of M4 were higher than the ones of the baseline model for 

all emotion classes.  

With an out-of-sample accuracy of 52.3%, the RF showed an overall better performance 

than all other models. The class-wise precision scores ranged from 14.8% for contempt to 

78.0% for joy. The RF outperformed M1 and M3 for 9 of the 13 classes. Only for the classes 

joy, sadness, rage, and pride, M1 and M3 showed a better performance. M2 was outperformed 

in all cases except for sadness and rage. Again, all precision values were notably higher than 

the scores of the baseline model.  

Table 2 

Percentage Precision Scores of the 13 Emotion Classes for M1 with no 

Weighting, M2 with the 16 Theoretical Weights, M3 with the 16 Optimized 

Weights, M4 with 208 Optimized Weights, Weighted Guess Classifier (WGC), 

and Random Forest (RF) Classifier 

Emotion Na M1 M2 M3 M4 WGCb RF 

Pleasure 363 44.7 21.4 43.7 37.3 11.0 51.4 

Joy 719 82.7 49.6 81.6 75.2 21.8 78.0 

Disgust 163 12.9 11.5 15.0 7.3 5.0 20.0 

Sadness 1006 64.1 61.8 69.2 55.1 30.5 55.8 

Despair 431 25.9 28.5 28.2 33.3 13.1 31.5 

Anxiety 667 32.5 28.1 43.5 34.3 20.2 50.4 

Fear 579 37.0 34.7 38.8 36.1 17.6 42.4 

Irritation 320 26.5 27.9 26.7 22.1 9.7 32.5 

Rage 633 43.9 42.3 42.4 37.4 19.2 41.9 

Shame 189 9.1 6.7 20.0 9.3 5.7 33.3 

Guilt 226 15.3 7.1 15.5 15.7 6.9 32.7 

Pride 300 36.9 32.9 38.6 25.5 9.1 35.7 

Contempt 67 3.7 4.2 4.3 3.8 2.0 14.8 

Note: N = Sample size of the emotion classes in the validation test set. a Note that the class 

sample sizes do not add up to the total sample size of the test set, as many observations have 

two class labels. b The precision scores of the WGC model are equivalent to those of a 

random model without weighting of class frequencies. 

.  
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Pearson’s correlations between class frequency in the test set and the precision scores 

revealed significant positive relations between class size and predictive performance for all four 

models (M1: r(11) = .83, p < .001; M2: r(11) = .92, p < .001; M3: r(11) = .87, p < .001; M4: 

r(11) = .86, p < .001) as well as for the RF (r(11) = .78, p = .002). 

2.6.3 Emotion Family Classification 

In the classification of the four emotion families, the naive WGC showed an overall 

accuracy of 43.6% on the test set. The class-wise precision scores ranged from 11.9% for the 

shame/guilt family to 62.1% for the disgust family (see Table 3 for precision scores of all 

models). 

M1 with no weighting algorithm showed an overall higher accuracy of 73.9% on the 

test set. All precision scores, ranging from 24.5% (shame/guilt) to 90.1% (happiness), were 

considerably higher than the scores of the naive baseline model. 

Model M2 with the theoretically derived weighting parameters yielded an overall lower 

accuracy of 62.4%. The precision scores of the emotion families were higher than the ones of 

the baseline model but worse than the precisions of M1 for all classes. 

M3 with the 16 optimized appraisal weights reached a higher out-of-sample accuracy 

(76.9%) than M1 and showed higher precision scores for all emotion families except for anger. 

The precision scores ranged from 27.7% for shame/guilt to 92.0% for happiness. 

With an overall out-of-sample accuracy of 71.9%, the complex weighted model M4 

with the 208 optimized parameters performed again better than the baseline model but showed 

Table 3 

Percentage Precision Scores of the Four Emotion Families for M1 with no 

Weighting, M2 with the 16 Theoretical Weights, M3 with 16 Weights, M4 with 

208 Weights, Weighted Guess Classifier (WGC), and the Random Forest (RF) 

Emotion family Na M1 M2 M3 M4 WGCb RF 

Happiness 953 90.1 64.7 92.0 92.0 28.9 94.3 

Anger 981 54.0 49.7 53.6 49.8 29.8 60.5 

Disgust 2048 86.2 83.5 86.3 84.6 62.2 85.0 

Shame/Guilt 393 24.5 18.8 27.7 21.6 11.9 37.5 

Note: N = Sample size of the emotion classes in the validation test set. a Note that the class 
sample sizes do not add up to the total sample size of the test set, as many observations have 
two class labels. b The precision scores of the WGC model are equivalent to those of a random 
model without weighting of class frequencies.  
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a lower accuracy than M1 and M3. The class-wise precision scores ranging from 21.6% 

(shame/guilt) to 92.0% (happiness) were again lower than the precision scores of the simpler 

M3 for all classes except for happiness for which both models performed equally well. In the 

three other classes, M4 reached also lower precision scores than the unweighted M1. 

Finally, the RF classifier again showed an overall higher out-of-sample accuracy than 

the other models (80.8%). With precision scores ranging from 37.5% (shame/guilt) to 94.3% 

(happiness), the RF also yielded higher precisions for the happiness, anger, and the shame/guilt 

family, but was surpassed by M1 and M3 for the disgust family. 

2.6.4 Model Calibration 

With an ICC of .317 (p = .134, CI [-.259, .727]), the class probability distribution of M1 

showed a poor consistency with the actual class probabilities in the data. M2 had a worse ICC 

of -.129 (p = .67, CI [-.619, .433]. With an ICC of .411 (p = .072, CI [-.156, .774]), M3 yielded 

a slightly higher calibration than M1. M4 reached a moderate ICC of .705 (p = .002, CI [.277, 

.900]). The RF classifier showed an even higher ICC of .808 (p < .001, CI [.484, .937]). 

Naturally, the model with the highest ICC was the WGC, reproducing the class probability 

distribution of the data set perfectly with an ICC of .997 (p < .001, CI [.989, .999]).  

2.6.5 Appraisal Weights 

Table 4 shows the parameter configuration (wj) of M3 that yielded the best out-of-

sample performance. The 16 optimized weighting parameters ranged from 2.53 (outcome 

probability) to 9.71 (intrinsic pleasantness). The Pearson correlation between the optimized 

weights and the theoretical weights reported by Scherer and Meuleman (2013) was modest 

(r(14) = .30, p = .26). The theoretical weights (wj) as well as the 208 parameters (wij) for M3 

can be found in the electronic appendix. As many of the parameters of M3 showed a rather high 

variance (which indicates that the optimization results are lacking robustness), we caution 

against interpreting these parameters. 

2.7 Discussion 

In the present study, we used a predictive modeling approach to validate and extend the 

CPM model, an appraisal emotion theory, by assessing the emotion prediction accuracy of four 

computational emotion models. The models used ratings of 16 appraisal dimensions assessed 

in an online questionnaire to predict an emotion term by calculating the similarities between 

the ratings and 13 emotion prototypes. Different weighting algorithms were implemented in the 
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Table 4 

16 Appraisal Weights of the Differential 

Evolution Optimization of M3 with the Best 

Out-Of-Sample Performance 

Appraisal dimension Weights wj 

Intrinsic pleasantness 9.71 

Urgency 7.94 

Goal/need relevance 7.68 

Internal standards 6.89 

Power 6.12 

External standards 5.89 

Adjustment 5.82 

Suddenness 5.45 

Familiarity 5.42 

Predictability 5.17 

Conduciveness 4.47 

Control 4.01 

Cause: Agent 3.52 

Discrepancy from expectation 3.05 

Cause: Motive 3.01 

Outcome probability 2.53 

 

four models to assess their plausibility by comparing their performances. To generate new 

information, parameters within these models, including the emotion prototypes and the 

weighting parameters (for M3 and M4), were generated from empirical data and contrasted with 

theoretical assumptions from the literature.  

All four theoretical models performed notably better than the baseline model (WGC), 

that randomly predicted emotion classes weighted by their frequency in the data set. This shows 

that the appraisal dimensions, evaluating 16 different emotion-relevant aspects of a situation, 

are able to explain a part of the variance in the subjective feeling experienced by subjects. By 

integrating all 16 dimensions equally strong during the classification task, M1 was able to 

predict one of the given emotion labels correctly in 37.1% of the cases. The precisions scores 

of M1 varied strongly between emotions with classes included more frequently in the data set 

being predicted with higher precisions. This observation, that was apparent for all models, is 

only partly due to the lower baseline probability in smaller classes. It is plausible that the 

prototypes (pij) calculated from these small classes are less reliable, as there might be 
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insufficient information to build a prototype, and because of the mean’s sensitivity to outliers 

and skewness. Consequently, the classification performance in classes with poor prototypes 

drops. When looking at the family classification performance of M1, it can be seen that even 

though the exact emotion label was found in only a third of the cases, the model actually 

predicted the correct emotion family in 73.9% with precision rates up to 90.1% (happiness 

family). As presumed, this high increase in performance might be due to the fact that the 

emotion labels often were very similar to each other (e.g., pleasure vs. joy or fear vs. anxiety). 

The lack of clarity in the terminology might lead to a differing understanding of the emotion 

labels between participants or to randomness in the selection of emotion terms. As a 

consequence, prototypes calculated from a subset with many “wrongfully” labeled ratings lack 

the ability to differentiate between emotion classes. Also, many appraisal ratings might not be 

true instances of the modal emotion they are identified as, because participants are forced into 

a few distinct emotion classes. Especially when two labels are given, the appraisal patterns 

rather reflect a blend of two modal emotions or even a separate emotion state. The 

characteristics of the broader emotion families might therefore be more stable and better 

differentiating. As an additional performance evaluation, we looked at the models’ calibration 

to the class probability distribution in the data, where M1 yielded a poor performance as it was 

not able to reproduce the true class frequencies.  

With an overall accuracy of 27.1% for the emotion classes and 62.4% for the emotion 

families, model M2 with the 16 theoretical derived weighting parameters yielded the worst 

performance of all four CPM models, also showing the worst model calibration. This indicates 

that the appraisal importance assumed by Scherer and Meuleman (2013) seems to be not a very 

good estimation of the true appraisal importance – at least in the context of the present data and 

with the current computation of the similarity index. Even the equally weighted (or unweighted) 

model M1 showed a better overall accuracy as well as higher precision scores for most classes. 

Furthermore, the implementation of the 16 empirically derived weighting parameters in M3 led 

to an overall increase in model performance. M3 reached a substantially higher out-of-sample 

accuracy of 40.2% than M1 and M2 with higher precision rates for most of the emotion classes. 

The same pattern was found for the emotion family classification where M3 again reached a 

higher overall accuracy and higher precision rates. The difference in performance between M2 

and M3 is also in line with the finding that the optimized parameters of M3 did not show a 

substantial correlation with the theoretically derived parameters of M2; consequently, the 

parameters differed strongly. Even though smaller classes were oversampled in the balanced 

training set, precision differences between smaller and larger classes remained. Again, this 
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suggests that performance differences between classes could be due to insufficient information 

in the prototype calculation. The ICC between the model’s class distribution and the true class 

distribution showed a slightly better model calibration than M1. The weighting parameter 

configuration, assessed across repeated DE optimizations, showed a low mean variance which 

indicates good stability of the optimization results and suggests that the found parameters reflect 

the global minimum of the objective function. Within M3, the appraisal dimension pleasantness 

received by far the highest weight (w = 9.71) for the emotion classification. Intrinsic 

pleasantness, the basal evaluation of whether a stimulus is likely to result in pleasure or pain 

(Sander et al., 2005), is also included in other appraisal theories (e.g., Frijda, 1986; Smith & 

Ellsworth, 1985). The very importance of pleasantness in the emergence of emotions is also 

reflected in other emotion models such as Russell's (2003) theory of core affect. He describes 

affect as an integral blend of two dimensions, arousal (activation vs. deactivation) and valence 

(pleasure vs. displeasure) of a stimulus. It is plausible that the valence of a stimulus is a strong 

predictor as it clearly separates the emotions space into positive and negative emotions. This 

can be seen in the prototype values for pleasantness (see electronic appendix), as all positive 

emotions (happiness, joy, and pride) showed very high pleasantness, while all negatives 

emotions showed a very low pleasantness prototype. The second highest appraisal weight was 

placed on the dimension urgency (w = 7.94). Sander et al. (2005) describe urgency as the 

appraisal that determines if an event endangers high priority goals or needs and if the organism 

has to react quickly or flee. Hence, a high rating of urgency should lead to an immediate 

increase in action readiness and response of the automatic nervous system. Scherer (2000) links 

urgency to the dimension of activation or arousal, which has been identified as the second of 

two relevant dimensions by Russell (2003). Both dimensions together are able to perfectly 

separate negative and positive emotions with joy, happiness, and pride having very high 

prototype values for pleasantness as well as low prototype values for urgency, while the other 

negative emotions have very low values in the pleasantness dimensions and higher values in 

urgency. But it is obvious that the two dimensions are not sufficient to differentiate between all 

the thirteen emotions categories. Another argument against the two-dimensional approach to 

emotions is the fact that none of the remaining 14 appraisals were shrunken down to a weight 

of 0. In fact, further dimensions such as goal/need relevance (w = 7.68) as well as internal 

standards (w = 6.89) yielded considerably high weights, while outcome probability obtained 

the lowest value with w = 2.53. This indicates that all 16 appraisal dimensions contributed to 

the emotion determination to some degree, which supports the belief that two dimensions are 

not sufficient to represent and describe emotional states properly (Fontaine, Scherer, Roesch, 
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& Ellsworth, 2007). The attained weighting can also be compared to other instantiations of 

appraisal models. Lazarus' (1991) cognitive-motivational-relational theory, for example, 

includes only six dimensions, four of which are also present in the CPM (goal/need relevance, 

conduciveness, cause, and power). The weighting parameters show though, that the additional 

parameters not included in Lazarus’ simpler model such as urgency (w = 7.94) or internal 

standards (w = 6.89) also seem to contribute strongly to the prediction of emotions. Especially 

the absence of the pleasantness appraisal in his model seems striking, as this appraisal yielded 

the highest weight (w = 9.71) in our model and is included in many other appraisal theories 

(e.g., Frijda, 1986; Smith & Ellsworth, 1985). Besides the four dimensions included in the 

CPM, Lazarus’ model additionally contains the dimensions goal content and future expectation. 

The former appraisal, which is also included in the appraisal theory of Roseman (1984), defines 

the current type of goal being at stake, while the latter evaluates whether one thinks an event 

will work out favorably in the future. Both dimensions could potentially explain additional 

variance in the emotion classification. Another appraisal theory, the OCC model (Ortony et al., 

1988), reduces the evaluation process to only three main appraisal domains: The evaluation of 

events in terms of their desirability, the rating of actions as praise or blameworthy as well as 

the appraising of objects as either appealing or unappealing. These three dimensions are 

presented by the appraisals conduciveness, compatibility of internal and external standards, as 

well as pleasantness in the CPM. Again, our results indicate that these three dimensions are not 

sufficient enough to differentiate between all 13 emotion classes used in the present study. It 

has to be remarked though, that the differences in the number and identity of dimensions 

between appraisal theories are mainly due to the number of emotions a model aims to explain. 

When trying to predict only four emotion classes such as joy, anger, fear, and disgust, one 

obviously does not need as many predictors as a model trying to explain a broader range of 

emotions (Moors, 2009; Scherer, 1999). Furthermore, theorists differ in their view on 

parsimonious modeling, where some try to include only sufficient or typical appraisals, while 

others focus on completeness (Moors, 2009; Scherer, 1999). When comparing the present 

results to other appraisal theories, it is also important to remark that most theories do not make 

particular assumptions on how the appraisals are aggregated during the emotion emergence 

process (i.e., they do not make any comments on the importance of different appraisals). The 

comparison between M1 and M3 though clearly shows that an equal weighting of appraisals 

restrains the model performance. 

Model M4 used a more complex weighting algorithm than M3 with a separate weighting 

not only for each appraisal dimension but also for each appraisal dimension within each of the 
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13 modal emotions. The application of the 208 weights resulted in a slightly higher out-of-

sample accuracy of 43.2%. However, the precision analysis showed that M4 actually yielded 

lower precision rates than M3 for most emotion classes and even some lower precisions rates 

than M1. This apparent paradox – the model with the higher accuracy actually showing a poorer 

class-wise predictive performance – can be explained by the classification behavior of M4 as 

well as the calculation of the precision scores. M4 very frequently predicts the classes that are 

prevalent in the data set such as sadness, joy, fear, and rage. This better calibration to the class 

probability distribution in the data also shows in the higher ICC score of the model. In the more 

frequently predicted classes, M4 classifies more cases correctly than the two other models 

(leading to a higher overall accuracy) but also produces way more false positives. As the 

precision score is the proportion of correctly classified instances in all as positive labeled 

observations, the precision scores of M4 are lower for these emotion categories even though 

more instances were classified correctly. The same pattern was present for the emotion families, 

where M4 showed a poorer performance in three out of four classes. The 208 parameters 

obtained by the optimization showed a notably higher variation than the parameters of M3 with 

some parameters yielding almost diametrical values over the five optimization repetitions. This 

indicates that the optimizations, which all stopped at a similar in-sample accuracy, found 

different equivalent parameter configurations. Hence, no global optimum was found and the 

parameters should not be interpreted. 

By contrasting the four models M1, M2, M3, and M4, we wanted to test the plausibility 

of their underlying weighting algorithms. With a higher overall accuracy, higher precision rates 

for most classes, and a better calibration, M3 can be preferred over the unweighted M1 model 

and M2 with the theoretically derived parameters. Even though the increase in performance 

between M1 and M3 is not massive, the differential weighting of the 16 appraisal dimensions 

as it has been proposed in the literature (Sander et al., 2005; Scherer & Meuleman, 2013) leads 

to a considerable improvement. The big gap in performance between M2 and M3 suggest 

though that the 16 theoretical weighting parameters do not seem to be a good representation of 

appraisal importance within the used data set. A more ambiguous picture emerges when M3 is 

compared to the more complex weighted model M4. Even though M4 yields a higher overall 

accuracy, the precision rates drop due to its strong calibration to the few large classes in the 

sample. Despite the better calibration of M4 (higher ICC), a good estimation of the class 

distribution cannot be a stand-alone criterion for model performance as the WGC, the naive 

baseline model, satisfied this aspect perfectly. A clear detriment of M4 is that the weighting 

parameters in the model are not interpretable due to the missing stability of the optimization 



Discussion 

 

48 

results. Under the principle of parsimony, which recommends choosing the simpler and 

interpretable model, we would therefore favor M3, the model that is implied by the CPM. Also, 

from a perspective of cognitive economy, the complex weighting of M4 might be too costly for 

a highly automated process like emotion formation. This preference contradicts Ellsworth and 

Smith (1988) that reported differing appraisal importances between emotion classes.  

We additionally included the RF model to see what an uninformed black-box model 

could derive from the data. As expected, the model showed an overall good performance, 

yielding higher accuracies and higher precision scores for many emotion classes and emotion 

families. The RF also showed a good calibration to the class frequencies in the data. 

Nonetheless, there was still variation in the emotion labels that could not be explained by the 

model as 47.7% of the emotion classes and 19.2% of the emotion families were classified 

incorrectly. This shows that even with a more elaborate structure, there is an upper boundary 

of model performance that probably cannot be exceeded with the present data. With regard to 

our computational emotion models, this means that there is limited scope for further model 

improvement. Instead, it seems likely that the appraisal ratings in the present data set are not 

sufficient to explain all variance in the subjective feeling of the participants. There could be 

further appraisal dimensions necessary to clearly distinguish between all 13 emotion classes, 

but it is also plausible that the models’ performances are impaired by measurement error in 

appraisal ratings or emotion labels. Particularly the usage of self-report for the measurement of 

appraisals has been criticized (e.g., Davidson, 1992), as it relies on information that is 

consciously accessible and can be verbalized easily. Therefore, the method might not be 

suitable to assess automatic and subconscious processes. The CPM actually implies that the 16 

appraisal dimensions rely on different cognitive functions some of which are more basal and 

automatic like memory- and attention-driven processes whereas others also engage higher 

cognitive functions like reasoning and evaluation of self-image (Sander et al., 2005). It can be 

questioned whether appraisal dimensions driven by more basal cognitive functions are actually 

consciously accessible and consequently, whether these constructs can actually be measured 

adequately using subjective self-reports. Many theorists recognize this limitation of self-

assessed appraisals (Frijda, 1993; Lazarus, 1991; Scherer, 1993a). Scherer (1993a) himself 

states that it is unlikely that all appraisal processes are consciously accessible and easy to 

verbalize – specifically those processed subcortically. He believes that some subliminal 

processes can be reconstructed from memory, but that many self-reported ratings are more 

likely constructed by using established schemata of emotions and prototypes for certain event 

types. If participants use these rather heuristic methods for the evaluation of some dimensions, 
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ratings have to be affected by measurement error to some degree. This measurement problem, 

relying on introspection for the assessment of cognitive and psychological processes, many of 

which being at least partly subconscious or not accessible due to a lack of self-awareness, is 

common to many fields of psychology. In the past, studies have tried to detect physiological 

markers of different appraisal dimensions (for an overview, see Scherer, 2009), which could 

help to develop a more objective operationalization of the appraisal process. Unfortunately, 

these studies were only able to manipulate a few appraisal dimensions at a time (but never the 

complete set of appraisals) and even though there is some knowledge about physiological 

feedback related to specific appraisals, it is very difficult to assess an underlying appraisal 

dimension in an experimental setting (Scherer & Meuleman, 2013). Scherer (1993a) expresses 

his hope that the technological progression of neuroscientific methods will someday enable us 

to map different contents of processing (not only cognitive processes) in the brain. But until 

this or other methodological developments enable a more objective measurement of the 

appraisals, studies on this topic will continue to rely on self-reported ratings. In further research, 

the subjective measurements of appraisals might be improved though by using more direct and 

less retrospective evaluations of an event. Asking participants to rate an event immediately after 

they experienced it, could make the appraisal evaluation more accessible. The main problem of 

relying on introspection will remain nonetheless. This important limitation of the present study, 

the reliability of the appraisal measurements, has to be kept in mind when interpreting the 

results. Not only has this limitation an influence on the upper performance that can be reached 

with the present models, but it will also affect the estimated model parameters. We therefore 

cautioned against generalizing the found parameters and further urge to validate the weights on 

different types of data sets – not only changing the appraised contexts but also by using more 

reliable measurement techniques when they are made available.  

In summary, the computational modeling approach used in the present study lends some 

support to psychological appraisal theories of emotions and the CPM. Using the 16 appraisal 

dimensions proposed by the latter, we were able to predict emotions given by subjective self-

report much more frequently than simply by chance. The comparison of the four weighting 

algorithms also suggests that the 16 appraisal dimensions contribute differently strong to the 

emotion classification process. Even though this is also in line with the model assumptions, the 

weighting parameters of the preferred model, which were attained by optimization, deviate 

from the theoretical weights. As the new parameters have been derived inductively from the 

data and due to the limitations of the present data set, further research has to be conducted to 

validate these findings in different contexts. As the ratings of appraisals by self-report are very 
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likely afflicted by a high measurement error, future research needs to focus on the development 

of more objective assessments of the appraisal process. Also, due to its many advantages, the 

application of computational emotion modeling as a way of validating and extending 

hypotheses generated based on empirical research or theory should be integrated more strongly 

in the theory development process. 
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3 The APPraisal App 

3.1 The App 

 
Figure 1. Screenshot of the APPraisal app interface. 

Figure 1 shows a screenshot of the APPraisal app interface. The app can be accessed at 

https://laura-israel.shinyapps.io/appraisal/. APPraisal was built using the shiny package by 

Chang, Cheng, Allaire, Xie, and McPherson (2019) which provides a developing framework 

for web applications in R (R Core Team, 2018). 
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3.2 Concept and Description 

The idea of this app is to provide a tool for the application of the preferred model M3 

(i.e., the model with the 16 optimized appraisal weights) of study 1. The app enables to predict 

emotions from entered appraisal ratings and flexibly visualizes the model’s outcome and its 

predictions. For this purpose, the app features an interface where the 16 appraisal dimensions 

used in study 1 can be rated. For each dimension, an exemplary item from the GAQ (Geneva 

Emotion Research Group, 2002) is presented to the user (when the mouse hovers over the 

respective appraisal slider). As feedback to the rated appraisals, two emotion terms are 

predicted by the model (i.e., the two emotion categories whose prototypes show the highest 

similarity/smallest distance to the input appraisal pattern).  

Besides the two predicted emotion labels, the app also provides two visualizations. The 

first graphic shows the similarity of the entered appraisal pattern to all 13 emotion prototypes, 

thereby illustrating the logic of the prototype approach of study 1 (i.e., the prototype that is 

most similar to the input pattern is predicted by the model). See study 1 for detailed information 

on the prototype calculation. The second graphic demonstrates how the similarity to the 13 

prototypes progresses and changes when the appraisals are processed sequentially in the order 

that is assumed by Scherer (2001, 2009). As discussed in chapter 1.4.2, the distance metric 

implemented in the model M3 does not hold any temporal constraints but calculates the distance 

for all appraisal dimensions simultaneously. The model is therefore not a process model but a 

structural model of the appraisal process. In the second graphic of the app though, the process 

is visualized by plotting the prototype similarity of the appraisal input pattern for each of the 

16 appraisal dimensions successively. At each appraisal step, only the present appraisal and all 

previous dimensions are included in the distance calculation (e.g., at step one, the similarity 

between the input and the prototypes is calculated only for the suddenness dimension, while 

the similarity determination in step two is based on the dimensions suddenness and familiarity. 

For that purpose, the similarity formula of M3 (see chapter 2.5.3) was extended by the appraisal 

step index n: 

 

𝑠&0 = 1 −
∑ (NCA+BCDECF)GS
C∉I

∑ NC
GS

C∉I
     (1) 

where, 

sin is the similarity to the ith emotion prototype at the nth appraisal step, 

pij is the prototype value of the jth appraisal dimension of the ith emotion prototype, 

ej is the empirical value of the jth appraisal dimension, 
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wj is the appraisal weight given to the jth appraisal dimension, 

wij is the appraisal weight given to the jth appraisal dimension of the ith emotion prototype, 

Q is the set holding the indices of missing values in the empirical vector. 

Besides the option to rate the appraisal dimensions and test the model themselves, the 

app also provides two additional functions. First, the user can select one of ten empirical 

appraisal patterns. These appraisal patterns are randomly sampled observations from the data 

set of Scherer and Meuleman (2013) used in study 1. When an empirical observation is selected, 

the appraisal interface is updated with the respective appraisal ratings and the model predicts 

two emotion labels. In addition, the user can also see the true emotion labels given by the 

participant, which allows contrasting the emotion label with the predictions of the model. The 

second function allows to select from 13 emotion prototypes. If an emotion prototype is 

selected, the appraisal interface is again updated with the prototypical appraisal pattern 

(calculated from the empirical data in study 1) for the respective emotion category. This feature 

can hence be used to examine the similarity between the prototypes, as the app then visualizes 

the resemblance between the selected prototype and all other prototypes.  

3.3 Discussion  

Apart from the mere visualization of the model’s predictions, the app also provides 

further insights into the structure of model M3. In Figure 2, a screenshot from the APPraisal 

app is presented with Observation 7 selected from the empirical appraisal patterns. The 

respective appraisal pattern was labeled as enjoyment/happiness and elation/joy by the 

participant (see Emotion Label field). The first graphic of Figure 2 shows that this appraisal 

pattern has a high similarity to all three positive emotion prototypes (i.e., elation/joy, 

enjoyment/happiness as well as pride) and a substantially lower similarity to the remaining 

negative emotion classes (i.e., despair, fear, guilt, shame, displeasure/disgust, contempt/scorn, 

sadness/dejection, anxiety/worry, irritation/cold anger, rage/hot anger, boredom/indifference). 

A reversed pattern can be found in Figure 3, which shows a screenshot with Observation 1 

selected as the empirical appraisal pattern. This pattern was labeled with the emotion terms 

anxiety/worry and fear and again, the first graphic indicates a very high similarity to all emotion 

prototypes with a negative valence, but a substantially lower similarity to the three positive 

emotion classes. Hence, the model seems to be very good in differentiating between positive 

and negative emotion classes (i.e., in the differentiation of valence) but less powerful in 

distinguishing emotion categories within these two groups. This observation is in line with the 
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findings of study 1 that the emotion families were much more predictable than the individual 

emotion classes, with the happiness family that includes all three positive emotions yielding the 

highest precision (92.0%). As in Figure 2, all three positive emotions are very similar to the 

input, the resulting similarity pattern used in the prediction is not clear-cut. Consequently, the 

first predicted emotion label pride does not match the emotion label given by the participant, 

but the second label enjoyment/happiness does. As only the first prediction of the model was 

used in study 1, this outcome would have been labeled as inaccurate in the evaluation of the 

emotion classification. This clearly demonstrates how the model’s performance is affected.  

The lack of differentiability between emotion classes has to be explained by the 

similarity of their prototypes. It can be assumed that all prototypes of emotions with a negative 

valence (or all emotions with a positive valence) must be very similar to each other. This 

presumption can be confirmed by the examination of the prototype function in the app. When 

selecting an arbitrary prototype from the Emotion Prototype section, a very high similarity to 

all prototypes of the same valence is shown. This can be observed for all 13 available emotion 

prototypes. The temporal progression of the prototype similarity suggests something similar. 

The second graph in Figures 2 and 3 demonstrates that the temporal progressions of the 

similarity metric also resemble each other for both negative and positive emotions which 

indicates that the respective prototypes are in close proximity. The observation of prototype 

similarity lends support for the assumptions discussed in study 1, that the lack of clarity in the 

emotion labels available to the participants might have led to an increase of measurement error 

in the labels which subsequently would have influenced the differentiability of the prototypes. 

It is also plausible that the inclusion of observations that were labeled with two different 

emotion labels in the prototype calculation contributed to the assimilation of the prototypes – 

especially of those that frequently occur together (as emotions of the same emotional valence 

do).  
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4 Study 2: Predicting Affective Appraisal from Physiology 

A slightly altered version of this paper is published as Israel, L. S. F., & Schönbrodt, F. 

D. (2020). Predicting Affective Appraisals from Facial Expressions and Physiology using 

Machine Learning. Behavior Research Methods. https://doi.org/10.3758/s13428-020-01435-y. 

It was funded by a grant of the German Research Foundation to Felix Schönbrodt (DFG SCHO 

1334/4-1).  

4.1  Abstract 

The present study explored the interrelations between a broad set of appraisal ratings 

and five physiological signals, including facial electromyography, electrodermal activity, and 

heart rate variability, that were assessed in 157 participants watching 10 emotionally charged 

videos. 134 features were extracted from the physiological data and a benchmark comparing 

different kinds of machine learning algorithms was conducted to test how well the appraisal 

dimensions can be predicted from these features. For 13 out of 21 appraisals, a robust positive 

R2 was attained, indicating that the dimensions are actually related to the considered 

physiological channels. The highest R2 (.407) was reached for the appraisal dimension intrinsic 

pleasantness. Moreover, the comparison of linear and non-linear algorithms and the inspection 

of the links between the appraisals to single physiological features using Accumulated Local 

Effects (ALE) plots indicates that the relationship between physiology and appraisals is non-

linear. By constructing different importance measures for the assessed physiological channels, 

we could show that for the 13 predictable appraisals the five channels explained different 

amounts of variance and that only a few blocks incrementally explained variance beyond the 

other physiological channels.  

4.2 Introduction  

The cognitivist revolution during the 1960s, an intellectual movement replacing 

behaviorism that had dominated psychology in the first half of the 20th century, also lead to new 

progressions in affective science (Scarantino & de Sousa, 2018). Lead by Arnold (1960) and 

Lazarus (1966), the emotion formation process, neglected in earlier behavioristic approaches to 

emotions, came to the focus of research and formed the basis for the new tradition of appraisal 

theories. These conceive emotions as an evaluative process in which the meaning of a stimulus 

to the individual is determined – the relevance of a stimulus for one’s well-being is appraised 

in respect to personal values, needs, attachments, and goals (Moors, Ellsworth, Scherer, & 
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Frijda, 2013). In contrast to other conceptualizations of the emotion process (e.g., Schachter & 

Singer, 1962), appraisal theorists place this cognitive component at the beginning of an 

emotional episode, resulting in bodily, motor, and motivational changes and potentially in the 

subjective perception of a feeling (Moors, 2009). An emotion is hence understood as a multi-

componential process, integrating the cognitive appraisal with its subsequent constituents. To 

understand the complex emergence of emotions, a lot of research has been conducted to learn 

how these components interact with each other. The main focus has been to understand how 

specific appraisal patterns map onto the subjective perception of emotions. Prototypical 

appraisal patterns for different emotion classes have been derived from theoretical assumptions 

(e.g., Frijda, 1986; Roseman, 1984; Scherer, 2001; Smith & Ellsworth, 1985) as well as from 

empirical data (e.g., Israel & Schönbrodt, 2019; Meuleman & Scherer, 2013). Another 

important objective is to specify the link between appraisal and physiology, showing how 

different appraisal outcomes lead to changes in the motor system or the autonomic nervous 

system (ANS). 

Furthering our knowledge on the connection between cognition and the body in 

affective states is not only fundamental to understand emotions as a whole but could also help 

to develop better tools to measure the cognitive appraisal process. To the present day, the 

majority of research on this topic has to rely on the use of questionnaires (e.g., Meuleman & 

Scherer, 2013; Scherer, 1993b, 1997; Scherer & Meuleman, 2013). Using this type of 

assessment, only constant appraisal ratings can be obtained that cannot depict potential changes 

in appraisal during an emotional situation. Further, the appraisal process is always evaluated in 

retrospect, often with a large temporal distance to the event of interest (e.g., Geneva Emotion 

Research Group, 2002), which potentially affects the reliability of the ratings. This 

demonstrates the need for the development of more indirect continuous measurement tools in 

the future, which can be realized by studying how physiology relates to self-reported appraisals.  

4.3 The Link between Appraisal and Physiology 

The Component Process Model (CPM) by Scherer (1984, 2001, 2009), one of the best-

known realizations of the appraisal theory, assumes 16 different appraisal dimensions. For ten 

of these dimensions, Scherer (2009) makes elaborate predictions on how they relate to response 

patterns in the physiological component. He predicts, for example, that in the evaluation of the 

intrinsic pleasantness of a stimulus, a higher pleasantness leads to physiological changes such 

as heart rate deceleration, pupillary dilatation, and parted lips with pulled up corners, while an 

unpleasant stimulus should result in an opposite reaction with a heart rate acceleration, pupillary 
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constriction, and lip corner depression. As these theoretical predictions are rather speculative, 

different studies have tried to investigate these theoretical links in experimental settings. Van 

Reekum et al. (2004) induced pleasant and unpleasant as well as goal conducive and goal 

constructive events in a computer game while measuring several physiological reactions. A 

higher skin conductance response for pleasant compared to unpleasant events was found, and 

obstructive events led to higher skin conductance, a stronger increase in heart rate variability, 

and higher puls transit times compared to conducive events. Aue and Scherer (2008) varied the 

same two appraisal dimensions in a performance task in which pleasant and unpleasant pictures 

were presented. During the task, pictures would increase or decrease in size, where an increase 

of a pleasant stimulus was considered as goal conducive and a decrease of the same picture as 

goal obstructive (the converse logic was applied to unpleasant pictures). The authors reported 

an increase in heart rate and higher activity of the zygomaticus major muscle for pleasant as 

well as higher corrugator muscle activity for unpleasant pictures. Higher zygomaticus response, 

higher heart rate, and higher skin conductance was found for the conducive conditions and 

higher corrugator activity for the obstructive ones. Similar studies that induced appraisal 

outcomes in an experimental setting have been conducted by Aue, Flykt, and Scherer (2007), 

Delplanque et al. (2009), Gentsch, Grandjean, and Scherer (2013), Kreibig, Gendolla, and 

Scherer (2012) as well as Lanctôt and Hess (2007).  

Even though studies like these provide important insights into the relationship between 

appraisal and physiology, only very few appraisals could be tested at a time. As the majority of 

these studies also used very small sample sizes, the reliability of their results can be questioned. 

Moreover, there was little control whether the experimental conditions actually induced the 

respective appraisals, as a specific stimulus might not be pleasant, relevant or goal conducive 

to all participants depending on their personal context. Another important downside of the 

experimental induction of appraisals is that not all dimensions can be analyzed, as some 

appraisals like compatibility with self-image and internal norms (an appraisal that has been 

proposed within Scherer's [2009] CPM) can hardly be induced in an experimental setting. 

Altogether, there are rather incomplete theoretical assumptions as well as a lack of 

empirical evidence on the relations between appraisal and physiology. For many appraisal 

dimensions, we have no predictions at all about their relation to physiology (neither from theory 

nor from empirical studies). In fields of research where a strong theoretical background is 

missing, exploratory methods can be very useful to generate new knowledge and fill in the gaps. 
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4.4 Exploring the Physiology-Appraisal Link 

The goal of the present study is to take a more holistic approach to investigate the 

interrelations between a whole set of appraisals and measured physiological reactions by 

applying exploratory and data-driven methods based on machine learning on a larger sample. 

Machine learning modeling with features extracted from physiological data has gained 

popularity not only in the field of medical diagnostics (Magoulas & Prentza, 2001) but has also 

been applied in emotion recognition (for an overview, see Jerritta, Murugappan, Nagarajan, & 

Wan, 2011).  Studies focusing on the latter induce emotional states using auditory, visual, or 

audio-visual material during which different physiological signals are assessed and let 

participants name their perceived emotional state afterward. Subsequently, different features 

characterizing the signals are extracted from the data and used to predict the emotional output 

using different machine learning algorithms. The evaluation of these models can then tell how 

well emotion categories can be predicted from this kind of data and validate the assumed link 

between the perceived feeling and bodily responses during an emotional situation. Furthermore, 

it can be assessed which features are most important in predicting an emotion category.  

To establish the link between physiological responses and appraisal, the same approach 

can be applied. For this purpose, we presented emotionally charged video material to 

participants while measuring their heart rate variability (HRV), electrodermal activity (EDA) 

and surface electromyography (EMG) on three facial sites – the zygomaticus major site, the 

corrugator supercilii site, and the frontalis muscle site. All five channels have been identified 

as affect related and have been used in the prediction of emotions before (e.g., Haag, Goronzy, 

Schaich, & Williams, 2004; Kim & Andre, 2008; Rigas, Katsis, Ganiatsas, & Fotiadis, 2007). 

The three measured EMG sites are physiologically connected to the motions of smiling 

(zygomaticus major), frowning (corrugator supercilii), the raise of eyebrows, indicating 

expressions of surprise (frontalis; Murata, Saito, Schug, Ogawa, & Kameda, 2016), as well as 

many other facial expressions. They are known to enable the identification of the valence of a 

stimulus as well as the detection of mental stress (Egger, Ley, & Hanke, 2019). The CPM marks 

several facial responses as outcomes of specific appraisals (for a detailed description, see Table 

1 in Scherer & Ellgring, 2007), and the discussed empirical studies substantiate this interrelation 

(Aue et al., 2007; Aue & Scherer, 2008; van Reekum et al., 2004). EDA, the measure of skin 

conductivity, is also known to be related to affective reactions, especially eccrine glands 

measured on the palms that decrease during relaxation and increase during phases of exertion 

(Egger et al., 2019). A link between EDA and different appraisals such as conduciveness, goal 

relevance, novelty, and pleasantness of stimuli has been reported in several empirical studies 
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as well (Aue & Scherer, 2008; Scherer, 2009; van Reekum et al., 2004). As changes in heartbeat 

are modulated by the sympathetic and parasympathetic system (Rainville, Bechara, Naqvi, & 

Damasio, 2006), HRV, which measures changes in beat-to-beat intervals, has been used 

effectively for the detection of emotional arousal (Egger et al., 2019). Several theoretical 

relations between electrocardiographic features and appraisals have been predicted by the CPM, 

also implying a connection between the cognitive evaluation of a stimulus and heart rate 

(Scherer, 2009). Consequently, all physiological measures collected in the present study are 

closely interlinked with affect and are presumably predictive for different appraisal outcomes.  

After the measurement of the physiological responses to each video, we assessed 15 

different appraisal dimensions that have been proposed by the CPM: suddenness (How sudden 

does an event occur?), familiarity (How familiar is the event?), predictability (How predictable 

was the occurrence of an event?), intrinsic pleasantness (How pleasant was an event?), 

goal/need importance (How relevant is an event for the achievement of current goals?), cause 

agent (Who or what caused an event?), cause motive (Was an event caused intentionally?), 

outcome probability (Can potential consequences of an event be determined?), discrepancy 

from expectation (Did an event contradict previously built expectations?), conduciveness (Does 

an event help to attain personal goals?), urgency (Is it urgent to react to an event?), control (Can 

the outcomes of an event be controlled?), adjustment (Is it possible to adjust to the outcomes of 

an event?), compatibility with external and internal standards (Is an event compatible with 

social norms and laws or self-image?). See Scherer (2001) for a more thorough description of 

the appraisals. For the assessment of these appraisal dimensions a modified version of the 

Geneva Appraisal Questionnaire (GAQ; Geneva Emotion Research Group, 2002) was used. 

We extracted 134 features from the five assessed physiological channels and predicted each 

appraisal dimension using a tree-based, a linear and a kernel-based machine learning model, 

reporting the overall cross-validated model performances for each dimension. If a link between 

the measured physiological signals and an appraisal dimension exists, an adequate model 

should be able to predict the appraisal outcome to some degree. We also constructed two 

different importance measures depicting the significance of each of the five physiological 

channels in the appraisal predictions and exemplarily analyzed the type of relationship between 

the appraisal dimensions and selected features.  

With this data-driven approach, we are, in contrast to earlier studies, able to investigate 

a whole set of appraisals at once and also do not rely on uncertain appraisal inductions. We are 

able to analyze the appraisal-physiology link for several dimensions that have not been tested 

empirically yet – many of which cannot be tested in a classical experimental design. In addition, 
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we consider not only non-linear relations in our data but can also account for complex 

interactions. Moreover, as all performances and importance measures are obtained validated on 

out-of-sample data, our results and the derived conclusions can be considered as more robust 

against overfitting and therefore as more generalizable. With the exploratory analysis of the 

appraisal-physiology link, we hope to generate new knowledge in a rather fragmented section 

of emotion research.  

4.5 Method 

Reproducible scripts, open data, and open materials (including codebooks and video 

stimuli) are provided via our Open Science Framework (OSF) repository at 

https://osf.io/cbhfq/. 

4.5.1 Participants 

172 participants were recruited for the present study that either received a payment or a 

participation certificate. The sample size was based on available funding. As each participant 

viewed and rated 10 videos, 1720 observations resulted from this data collection. Due to 

technical problems such as signal interruption and corrupted files, that lead to the missing of 

one or more of the physiological signals (EMG, EDA or HRV data), several observations and 

participants had to be excluded. The final sample consisted of 157 participants (female = 95) 

and 1556 observations. The majority of subjects were psychology students at the Ludwig 

Maximilian University of Munich with an average age of 25.47 (range = 19-62).  

4.5.2 Stimulus Material  

To produce different appraisal outcomes and physiological reactions, emotional video 

sequences were used to induce various emotional states. Videos marked with a Creative 

Common CC-BY license, that allows modification and redistribution of the content, were 

gathered during an extensive online web search on the video-sharing service YouTube 

(YouTube, n.d.). Videos were selected by their potential emotional effect on the viewer, 

covering the four basic emotions fear, sadness, disgust, and joy. To control for culture and 

language effects, only German or language-free videos were included. Video sequences were 

cut to not exceed a maximum length of 30 s. In an online study, a selection of 20 videos was 

pretested. The videos were presented in a randomized order to 28 participants (female = 17). 

They were asked to label the videos with emotion terms, rate the intensity of their emotional 

experience during the observation, and answer a questionnaire constructed to assess the 16 
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appraisal dimensions implied by the CPM (see chapter 4.5.4 for a detailed description of the 

questionnaire). In total, 211 video ratings were collected in the pretest with between 7-15 

ratings per video. To predict the appraisal dimensions from the physiological data, the ratings 

of each appraisal should show a sufficient amount of variance. In addition, the video content 

should be intensive enough to elicit a measurable physiological reaction. Based on these two 

criteria, a set of 8 videos was selected, showing both high variance in the appraisal ratings and 

high affective intensity. Even though all positive videos were rated as less intense and showed 

lower appraisal variance, two positive videos were also included to balance out the valence of 

the data set. Overall, 10 emotional videos with a mean length of 24.8 s (range = 10.5–30.5) 

were included. All videos are provided via our electronic appendix on our OSF repository.  

4.5.3 Apparatus 

For the measurement of the EMG and EDA signals, pre-gelled disposable electrodes 

with a .8 cm Ag/AgCl detection surface were used. For common-mode rejection, all sites were 

measured using a bipolar recording scheme. EMG electrode placement for corrugator, frontalis, 

zygomaticus and ground electrode was conducted following the guidelines by Fridlund and 

Cacioppo (1986). Electrodes for the bipolar skin conductance measurement were placed on the 

thenar and hypothenar eminences of the non-dominant hand of the participants (Fowles et al., 

1981). A fixture on the non-dominant hand was conducted to prevent any interference with the 

electrodermal measurement during the tasks. The skin was prepared by cleaning the 

measurement sites with alcohol wipes (70% Isopropanol) and applying an abrasive electrode 

gel to lower the skin impedance.  

For data collection, a Biopac BioNomadix MP160 data acquisition system with two 

wireless 2-channel EMG transmitters and one wireless PPG and EDA transmitter was used 

(Kremer, Mullins, Macy, Findlay, & Peterlin, 2019). Channel calibration and data acquisition 

were conducted using the corresponding software Acqknowledge (Version 5.0.2; Kremer et al., 

2019). In accordance with the Nyquist Theorem, which indicates that a sinusoid signal should 

be sampled at least at twice its frequency for correct reconstruction, signals were sampled at a 

frequency of 1000 Hz (De Luca, 2003). For the HRV measurement, a Polar H10 heart rate 

sensor as well as a Polar V800 heart rate monitor was used, which have been proven to be 

consistent with measures derived from an electrocardiogram system (Giles, Draper, & Neil, 

2016). The experimental program to present the videos and assess the subsequent rating of the 

appraisal dimensions was implemented using the E-Prime 2.0 software (Schneider, Eschman, 

& Zuccolotto, 2012). To synchronize the physiological data collected with AqcKnowledge and 
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the videos presented in E-Prime, the Observer XT (Version 14.1.1121; Zimmerman, Bolhuis, 

Willemsen, Meyer, & Noldus, 2009), a software for behavioral coding and event logging, was 

used to control and integrate both data streams. The preliminary questionnaire sent to the 

participants was provided via the survey framework FormR (Arslan, Tata, & Walther, 2018). 

4.5.4 Procedure 

Each participant received a randomized code consisting of four numerals to use as 

identification throughout the two-part study. First, participants completed an online 

questionnaire from home. In this preliminary survey, subjects were informed about the study 

and gave their consent to participate and to publish of their fully anonymized data. 

Subsequently, all relevant demographic information and further variables not included in the 

present study (e.g., personality, motives, emotional sensitivity9) were collected. For the second 

part of the study, each participant was invited to a laboratory. After receiving a brief 

introduction, the subject was asked to put on the Polar strap with the heart rate sensor. The 

investigator then prepared the subject’s skin, applied the electrodes as described, and affixed 

the two EMG transmitters to the head and the EDA transmitter to the wrist of the non-dominant 

hand of the participant.  

Before starting the testing, a calibration of the EMG and EDA transmitters was 

conducted, during which the transmitter leads were connected to the electrodes. Participants 

were instructed to do different facial movements to test if contractions would result in peaks in 

the respective signals. During this test phase, the investigator avoided using any emotion-

related terms like smiling or frowning to bias the subject as little as possible. If a reliable signal 

was detected, the participant was seated in front of a computer screen and the heart rate 

measurement and the experimental program was started. To prevent subjects from feeling 

observed, the investigator monitored the physiological signal from a separated area during the 

following testing, intervening only if noise occurred or when electrodes needed to be reattached. 

Subjects were advised to place their non-dominant hand with the EDA transmitter on the table 

and move this hand as little as possible, answering and navigating through the study using their 

dominant hand on a keyboard in front of them. The participants followed a standardized 

instruction provided to them on screen, starting with a baseline measurement of two minutes, 

in which participants were instructed to close their eyes and relax. Afterward, the ten videos 

were presented in randomized order, each followed by a questionnaire for the assessment of the 

                                                
9 For the full set of assessed variables, see the codebook of our preliminary questionnaire at our OSF repository. 
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appraisal dimensions. In addition, subjects were asked to label the emotion they felt during the 

video and answered items relating to their immersion during the viewing of the video – these 

ratings had no relevance to the present study. 

The presented appraisal questionnaire was based on the German version of the GAQ   

(Geneva Emotion Research Group, 2002). The GAQ was developed to assess through recall 

and verbal report as much information as possible about the appraisal process during an 

emotional episode. The original questionnaire, consisting of 26 items, asks to recall an arbitrary 

moment in the past when an intense emotion was experienced and rate the respective experience 

on the 16 appraisal dimensions of the CPM (e.g., At the time of experiencing the emotion, did 

you think that the event happened very suddenly and abruptly?). For the purpose of the present 

study, one item for each of the appraisal dimensions was selected from the questionnaire and 

slightly altered to fit the video rating context (e.g., Did you think that the events in the video 

happened very suddenly and abruptly?). Only the dimension Cause Agent, that identifies who 

the agent of an evaluated event is, was assessed using three different items, identifying whether 

the protagonist of a video, a person different from the protagonist, or natural forces caused the 

events. Furthermore, we constructed an additional item for each of the four dimensions 

goal/need importance, conduciveness, urgency, and adjustment, that asked the participant to 

rate the respective dimension from the perspective of the protagonist of the video (e.g., Can 

you live with, and adjust to, the consequences of the displayed events? Do you think that the 

protagonist can live with, and adjust to, the consequences of the events?). As the participant’s 

goals and actions were probably not strongly affected by the passive viewing of the mostly 

fictional video content, we suspected that for these dimensions, the assumed effect on the 

protagonist (e.g., the potential outcome of the event to the character) might be more relevant to 

the emotional evaluation of the video then the evaluation of the effect on oneself – especially 

if the viewer feels strongly involved. The dimension power, that evaluates the degree in which 

the rater can influence a situation himself, was excluded from the questionnaire as participants 

could obviously not influence the outcome of the videos – therefore, this appraisal was not 

meaningful. All items were rated on a 5-point scale ranging from not at all, moderately to 

extremely. In addition, participants were able to indicate that a question did not apply to the 

content of the video.  

All items of the appraisal questionnaire (the original German ones as well as their 

English translation) and the respective appraisal dimensions can be found in the codebook of 

our data set in our electronic appendix.  
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4.5.5 Data Preprocessing 

The preprocessing and all further analyses were conducted in R (Version 3.4.2; R Core 

Team, 2018). For each participant, the physiological signals (EMG, EDA, HRV) during the 

viewing of each video were extracted using the E-Prime timestamps, indicating the onset and 

offset of each video during the experiment. All data points assessed during other phases of the 

experiment were discarded except for the baseline measurement. To determine the noise 

contamination in the EMG data, frequency spectra were calculated using the spec function from 

the seewave package (Sueur, Aubin, & Simonis, 2008). The signals showed high noise 

contamination due to movement artifacts in the frequency range below 40 Hz as well as 

electromagnetic noise at 50 Hz. Therefore, a Butterworth high-pass filter with a cut-off 

frequency of 40 Hz was applied using the highpass function from the biosignalEMG package 

(Guerrero & Macias-Diaz, 2018). To filter out electromagnetic noise, a notch filter with a width 

of .5 Hz was applied at the respective frequency using the bwfilter function from the seewave 

package (Sueur et al., 2008). In line with the recommendations of Fridlund and Cacioppo 

(1986), we also applied a low-pass filter at 250 Hz using the lowpass function from the 

biosignalEMG package (Guerrero & Macias-Diaz, 2018). In addition, a baseline correction 

using the mean level of activation during the baseline measurement was applied to the EMG 

channels using the dcbiasremoval function from the biosignalEMG package (Guerrero & 

Macias-Diaz, 2018). As some residues of movement artifacts remained in the data and because 

these artifacts might influence features based on the amplitude of the signal, we added two more 

robust amplitude features containing a 20% trimming of the signal (see next section) to the 

feature set. To remove the tonic level from the EDA signal, a high pass filter at .5 Hz was 

applied to the data, as has been recommended by Braithwaite, Watson, Jones, and Rowe (2013), 

using again the bwfilter from the seewave package (Sueur et al., 2008).  

4.5.6 Physiological Features 

For the description of the different physiological signals, several sets of features were 

implemented. For the characterization of the EMG signals time and frequency domain, 32 

different features were calculated (see Table 1 for an overview of all features). The specific 

computation of these features is based on the formulas provided by Phinyomark, Limsakul, and 

Phukpattaranont (2009) and Phinyomark, Phukpattaranont, and Limsakul (2012). Where 

necessary, features were normalized to make them independent from the length of the time 

series. While most of these features are used for the characterization of time series data in  
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Table 1 

Features Extracted from EMG, EDA and HRV Channels 

Features EMG EDA HRV 

Mean absolute value  X X  

20% trimmed mean value  X X  

Mean absolute value attenuated with a moving-window-20%-trimmed-mean filter X X  

Simple square integral  X X  

Variance  X X  

Absolute value of the 3rd – 5th spectral movement  X X  

1st – 4th order autoregressive coefficients X X  

Root mean square  X X  

Log detector  X X  

Percentage waveform length  X X  

Average amplitude change  X X  

Difference absolute standard deviation value  X X  

Percentage zero-crossings X X  

Percentage zero-crossings (.005 mv threshold) X   

Percentage slope sign changes X X  

Myopuls percentage  X X  

Percentage Wilson amplitude  X   

Median frequency of the amplitude spectrum   X X  

Mean frequency of the amplitude spectrum  X X  

Median frequency of the frequency spectrum X X  

Mean frequency of the frequency spectrum X X  

Peak frequency  X X  

Mean power  X X  

Total power  X X  

1st – 3rd Spectral Movement  X X  

Standard deviation of RR intervals   X 

Root mean square of RR intervals   X 

Percentage of successive RR intervals differing more than 50 ms   X 

Ratio of the power of the low and high-frequency bands   X 

Triangular interpolation of the discrete distribution of the RR intervals   X 

Ratio of the standard deviation along the identity line and the standard deviation 

of the perpendicular axis of the Poincaré plot 
  X 

Total number of RR intervals divided by the number of intervals in the modal bin   X 

Total number of relative RR intervals divided by the number of intervals in the 

modal bin 
  X 
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general, some of them are more specifically applied to EMG data. As only the percentage 

Wilson amplitude and the zero-crossing percentage (with the .005 mV threshold) yielded zero 

variance on the EDA data though, all other features were deemed as appropriate to describe the 

skin conductance signal as well. For the analysis of the HRV data, we implemented a different 

set of features based on the recommendations of Vollmer (2015). Overall, 134 features were 

calculated – 32 for each of the EMG channels, 31 for the EDA data, and 8 for the heart rate 

variability data. See the R scripts provided in our electronic appendix for a formal description 

of the feature set. 

4.5.7 Machine Learning Modeling 

4.5.7.1 Benchmark 

Most appraisal dimensions were assessed by a single item in our questionnaire. For the 

dimensions assessed with more than one item, we calculated inter-item correlations. As all 

correlations were low (all r < .4), we refrained from aggregating the items and included each 

of them as a separate appraisal dimension (for a similar approach, see Scherer and Meuleman, 

2013). All negative poled items were reversed. For each of the 21 appraisal dimensions, we 

constructed a regression task using the 134 physiological features as predictors. In each task, 

we excluded all observations with a missing rating (does not apply answer) in the respective 

appraisal dimension. Hence, the different tasks compromised data sets of different sizes that 

ranged from n = 1556 for pleasantness to n = 948 for internal standards (M = 1337.6). For each 

of the 21 tasks, a benchmark experiment was conducted that compared a baseline model, a 

featureless learner (FL) that predicted the mean, to a random forest model (RF), a lasso 

regression model (LASSO), and a support vector machine (SVM) using the mlr package (Bischl 

et al., 2016). For all models, the default hyperparameter settings were used. To evaluate the 

models’ performances, we conducted a 20 x 5 cross-validation and report the aggregated R2. 

As our data set contained several observations per subject, we blocked the samples by subject 

within each fold to take into account the nested structure of the data. As the preprocessing of 

the physiological data might not be sufficient to fully eliminate artifacts in our data and because 

the linear model and the SVM used in the benchmark might be affected by outliers caused by 

such artifacts, we added an additional preprocessing step for these two models (LASSO and 

SVM). First, an outlier analysis was conducted on the 134 features, eliminating all values that 

were more than three standard deviations away from the mean of the feature. These missing 

values were subsequently imputed within each fold by using random numbers drawn from the 
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remaining empirical distribution of the feature. The RF model that reached the highest 

performance for all appraisal dimensions was selected for all further analyses. To determine for 

which appraisal dimensions the RF was able to robustly reach a positive R2 and hence was able 

to explain variance in the appraisals, we looked at the variation of R2 scores within the 100 

cross-validation folds. To consider an appraisal as robustly predictable, we determined that at 

least 85% of the attained R2 values should be positive (i.e., the 15% quantile should lie above 

0). 

4.5.7.2 Blocked Feature Importance 

In a second step, we analyzed how strong the physiological channels contributed to the 

prediction of the appraisal dimensions that attained a positive R2 in the previous analysis. We, 

therefore, constructed two blocked permutation importance measures also based on the R2 that 

can quantify the impact of each of the five physiological signals (zygomaticus, corrugator, 

frontalis, EDA, and HRV) summarizing all features of the respective channel.  

The first channel-based importance measure, 𝑅W/,	aims to quantify how well a 

physiological channel can predict an appraisal dimension in general. To this end, we selected 

only the features calculated from the physiological channel of interest (e.g., all corrugator 

features) and trained the RF model on 60% of the data using only the selected feature subset. 

Subsequently, the R2 was assessed on the remaining 40% test sample. The performance was 

calculated 100 times using different random splits and averaged subsequently (in order to avoid 

too small and unstable hold-out test sets, we chose a 40% test set, instead of the previously 

applied 20% test set):  

 

𝑅W/ =
∑ XY,B

GUZZ
BTU
-((

       (1) 

where,  

B is the block that contains all variables of the physiological channel of interest,  

𝑅W,&/  is the out-of-sample R2 of the model trained with only the variables of B in the ith 

repetition. 

𝑅W/  shows how much variance can be explained by the variable block in the absence of 

any other information and hence can be considered as a kind of “main effect” of the 

physiological channel, representing the overall variance that can be explained by the predictors 

of the channels and all interactions within the feature block.  
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The second channel-based importance measure, ∆𝑅W/ , aims to quantify the variance that 

can be uniquely explained by the channel beyond all other channels. For the computation, we 

again randomly split the data set in a training set holding 60% of the data and a test set holding 

the remaining 40%. First, the RF is trained with all the available features and the out-of-sample 

R2 is assessed. In a second step, the out-of-sample performance of the model trained with all 

features that do not belong to the physiological channel of interest (e.g., all frontalis, 

zygomaticus, EDA, and HRV features but not the corrugator features) is assessed. To quantify 

the importance of the variable block of interest, the difference between the two R2 is calculated. 

For a more robust assessment, the calculation is again repeated over 100 iterations and 

aggregated subsequently, as shown in the following formula:  

 

∆𝑅W/ =
∑ (XB

GUZZ
BTU DX¬Y,B

G )
-((

      (2) 

where,  

B is the block that contains all variables of the physiological channel of interest,  

𝑅&/ is the out-of-sample R2 of the model trained with all features in the ith repetition,  

𝑅¬W,&/  is the out-of-sample R2 of the model trained without the variables of block B in the ith 

repetition.  

As the second model is trained and validated with all features except for the variable 

block of interest, 𝑅¬W,&/  represents the variance that can be explained by all other variables as 

well as all their interactions. The difference in R2 between the complete model and the partial 

model consequently represents the variance that can be explained by the block of interest (as 

well as its interactions with other blocks) beyond all other variables. ∆𝑅W/ , hence, represents the 

incremental variance that is uniquely explained by the physiological channel, while 𝑅W/  also 

compromises the shared variance that can also be explained by other blocks. A similar 

importance calculation has been recommended by Yarkoni and Westfall (2017). For the 

calculation of both importance measures, observations were again blocked for subjects. In 

addition, we again applied a robustness measure by only reporting the importance of 

dimensions for which the attained 𝑅W/  or ∆𝑅W/  were positive in at least 85% of the iterations.  

4.5.7.3 Accumulated Local Effects Plots 

As the R² feature importance only gives information about the relevance of the feature 

blocks but not about the direction and type of the relations between the appraisals and the 
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physiological channel, we also report Accumulated Local Effects (ALE) plots that visualize for 

given values of the feature the effect on the prediction of the outcome variable (i.e., appraisal 

dimension; Molnar, 2019). As this additional step was conducted to gain more insight into the 

machine learning models, we focussed on features that are easy to interpret from a mathematical 

as well as from a physiological perspective. The most straight forward interpretation can be 

attained by looking at features describing the amplitude height (i.e., mean absolute value, 

simple squared integral, root mean squared signal, absolute value of the 3rd – 5th spectral 

movement, and log detector), as these are clearly associated to muscle contraction for EMG 

(Day, 2002) and sympathetic activity or arousal for EDA (Benedek & Kaernbach, 2010). We 

also considered all time-domain HRV features as all of them describe the amount of variability 

in subsequent heartbeat intervals, excluding the high and low-frequency band ratio as well as 

the non-linear measure based on the Poincaré plot. We calculated the feature importance for 

each amplitude related as well as the HRV features and selected the one with the highest robust 

importance (yielding a positive importance in at least 85 of 100 iterations) for each of the 

appraisals that yielded a sufficient overall performance. To this end, a feature-based importance 

measure similar to the 𝑅W/  was used, calculating the R2 for a RF model with only the feature of 

interest as a predictor. To prevent overfitting in these single-feature models, we restricted the 

tree depth of the RF to three. We report the ALE plots of the best feature within each appraisal 

dimension using the iml package (Molnar, Bischl, & Casalicchio, 2018). The plots were again 

calculated from the RF model with only the respective feature as a predictor and the tree depth 

restricted to three. To prevent extrapolation in regions of sparse data of the feature, we only 

plotted data within the 5% and 95% quantile of the feature.  

4.6 Results 

Descriptive statistics (mean and standard deviation) of the 21 assessed appraisal dimensions 

and the ten videos as well as the sample sizes of the appraisal subsets used the different appraisal 

prediction models can be found in the electronic appendix. Figure 1 shows the predictive 

performance of the three machine learning models (RF, LASSO, SVM) and the baseline model 

(FL) for the 21 assessed appraisal dimensions sorted by the maximum averaged R2. The 

featureless baseline model, predicting the mean of the respective appraisal, naturally reached 

an R2 of around 0 for all dimensions. The tree-based RF model yielded the best performance 

for all 21 appraisal dimensions, while the SVM performed consistently worse than the RF 

across all appraisal dimensions and also worse than the LASSO except for the internal 

standards and adjustment (protagonist) appraisals. Consequently, the RF was considered as the  
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Figure 1. R2 of the featureless learner (FL), the random forest (RF), the lasso regression 

(LASSO), and the support vector machine (SVM) for the 21 appraisal dimensions averaged 

over the 20 x 5 cross-validation folds. Appraisal dimensions are sorted by their overall 

performance. 

 

Figure 2. R2 of the random forest (RF) for the 21 appraisal dimensions with error bars indicating 

the 15% and the 85% quantile of the reached R2 within the 20 x 5 cross-validation folds. 

Appraisal dimensions are sorted by their overall performance. 
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superior model in this context and was used for all further analyses. The RFs performance 

varied strongly between the appraisal dimensions, ranging from -.016 to .407 with pleasantness 

(R2 = .407) and internal standards (R2 = .289) yielding the highest performance and 

predictability, outcome probability, control, goal/need importance (self), and urgency (self) the 

worst performance with a negative R2. To rule out that the differences in the reached 

performance were simply due to the different sample sizes between the appraisal dimensions, 

we calculated a Pearson correlation between the maximal reached R2 and the sample sizes used 

for each model – no significant relation was detected (r(19) = -.077, p = .739). 

The inspection of the performance variation within the folds of the RF model (Figure 2) 

showed that in addition to the five dimensions yielding an overall negative R2, discrepancy from 

expectation (R2 = .033, 15% quantile= - .002), cause agent (nature ; R2 = .021, 15% quantile = 

-.006) and adjustment (self ; R2 = .019, 15% quantile = -.032) also yielded a negative 

performance in at least 15% of the folds. Consequently, we considered these dimensions as not 

robustly predictable and excluded them from the further analysis as well.  

Figure 3 shows the blocked importance measures of the different physiological channels 

for the appraisal dimensions for which a sufficient overall R2 was attained. For the first 

importance measure, 𝑅W/ , the zygomaticus and corrugator channels overall seemed to contribute 

similarly to the prediction (Mzyg = .110, Mcorr = .108). Frontalis, EDA, and HRV performed 

worse, with HRV having the smallest overall importance (Mfront = .084, MEDA = .085, MHRV = 

.044). In 7 out of 13 appraisal dimensions, the zygomaticus channel showed the highest 

importance value, only yielding no importance for cause agent (other person). The corrugator 

channel yielded the highest importance for the other six appraisals but did not explain any 

variance for the familiarity appraisal. The frontalis channel did not attain a robust positive 𝑅W/  

for the conduciveness (self), the cause agent (other person), and the familiarity appraisal, while 

the EDA channel yielded no robust importance for goal/need importance (protagonist) and 

familiarity. The HRV channel robustly explained variance for only 7 of the 13 dimensions, 

contributing nothing to the prediction of cause agent (protagonist), adjustment (protagonist), 

conduciveness (self), cause agent (other person), goal/need importance (protagonist), and 

familiarity. Naturally, with the decrease in overall R2, the reached 𝑅W/  decreased as well.  

In the second importance analysis, the ∆𝑅W/	that represents the uniquely explained 

variance of the variable block and its interactions, the zygomaticus channel reached the highest 

importance across appraisals compared to the other physiological channels (Mzyg = .012, Mcorr 

= .004, Mfront = .001, MEDA = .002, MHRV = .003). The zygomaticus uniquely explained variance 

for the appraisals pleasantness, internal standards, conduciveness (protagonist), external 
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standards, conduciveness (self), and familiarity, while the corrugator channel explained 

incremental variance for the internal standards, urgency (protagonist), cause agent (other 

person), and goal/need importance (protagonist) appraisal. The frontalis channel only reached 

a robust positive importance for the internal standards dimension and the EDA channel for 

cause motive and cause agent (other person). Even though the HRV block seemed to have a 

rather low overall contribution (𝑅W/) compared to the other physiological channels, it actually 

explained variance beyond the other blocks for four appraisals including pleasantness, external 

standards, urgency (protagonist), and suddenness. 

For 5 of the 13 dimensions (i.e., cause motive, urgency [protagonist], suddenness, cause 

agent [other person], and familiarity), no feature with a robust positive importance could be 

detected. Hence, these dimensions were excluded from the ALE plots. For the remaining eight 

appraisal dimensions, seven zygomaticus amplitude features and one corrugator amplitude 

feature were selected (see Figure 4). All features showed a positive feature importance and 

hence were able to explain variance in the respective appraisal (M = .044, range = .017-.084). 

Internal standards, conduciveness (protagonist; self), external standards, cause agent (pro- 

 

 
Figure 4. ALE plots for the seven appraisal dimensions for which a feature with a robust 

positive importance was detected. MAV: Mean absolute amplitude. MAV TRIM: 20 % 

trimmed mean absolute amplitude. TMAV: Mean absolute value attenuated with a moving-

window-20%-trimmed-mean filter. LOG: e to the power of the mean logarithm of the absolute 

signal. 
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tagonist), and adjustment (protagonist) all showed a tendency towards a positive relationship 

with the zygomaticus amplitude (i.e., higher ratings of the respective appraisal were related 

with a higher zygomaticus amplitude). The appraisal goal/need importance (protagonist), on 

the other hand, showed a negative relation with the feature indicating zygomaticus amplitude 

height. Lastly, the pleasantness appraisal showed a negative relation with the corrugator 

amplitude. For all ALE plots, the type of link can be described as mostly non-linear.  

4.7 Discussion 

The present study aimed at exploring how different physiological channels relate to the 

appraisal dimensions of the CPM (Scherer, 2009) by validating whether the dimension can be 

predicted using features extracted from the respective physiological signals. The appraisals 

were assessed by questionnaire after presenting subjects different emotional video sequences 

during which the activation of different facial muscles, EDA, and HRV were collected. We 

compared three different machine learning models – a linear, a tree-based, and a kernel-based 

algorithm – to a baseline model, evaluating which type of model was most appropriate to 

represent the internal structure of the data. Moreover, we analyzed the relevance of each 

physiological channel by constructing two different blocked importance measures. Finally, we 

took a further step towards making the machine learning models interpretable by looking at 

ALE plots that depict the relation between an appraisal and a single physiological feature.  

The benchmark comparing the predictive performance of the RF, the LASSO, and the 

SVM model showed that for 13 out of 21 appraisal dimensions a robust R2 was attained. Hence, 

it can be concluded that the dimensions discrepancy from expectation, cause agent (nature), 

adjustment (self), predictability, urgency (self), outcome probability, control, and goal/need 

importance (self) were physiologically related to neither the activity of the zygomaticus, the 

corrugator, and the frontalis, nor to EDA or HRV. The theoretical predictions made by the CPM 

(Scherer, 2009) are to some degree incongruent to these results, as it was theoretically assumed 

that the control appraisal would be related to the activity of different facial muscles such as 

zygomaticus and corrugator and the predictability appraisal to all five assessed channels. We 

were not able to empirically substantiate these relations in the setting of the present study, where 

emotions were induced by watching videos. Further, it was noticeable, that the adjustment, 

urgency, and goal/need importance dimensions were predictable, reaching a substantially 

higher R2 than the baseline model when appraised from the perspective of video protagonist. 

This suggests that the appraisals might be related to the assessed physiological channels, but 

that in the passive viewing of a video sequence the appraisal attribution to the protagonist could 
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be more decisive. This would mean that for the affective evaluation of a passively experienced 

event it is more important whether one feels that the protagonist of the event can adjust to the 

consequences, has to react urgently, or is influenced strongly by the events, rather than the 

appraisal of those dimensions from one’s own perspective. The fact that we were able to predict 

from the physiological features whether an event was caused by the protagonist or by a different 

person in the video plot (cause agent [protagonist] and cause agent [other person] appraisals) 

but not if the event was caused by natural forces or chance (cause agent [nature] appraisal), 

could mean that the three items (intended to measure a single appraisal or construct) actually 

constitute separate appraisal dimensions – an assumption that is also supported by the 

insufficient correlations of the items. Alternatively, the appraisal outcome, indicating that an 

event was caused by nature rather than by a person, might affect different physiological 

components that were not considered in the present study.  

For the 13 dimensions for which a robust positive R2 was attained, the RF performed 

consistently better than the LASSO and the SVM. This comparison clearly shows that the 

relations between the physiological features and the appraisal dimensions cannot be sufficiently 

represented by a linear model, but are probably highly non-linear. This assumption is also 

supported by the single-feature ALE plots, which also showed non-linear links between 

appraisal and physiology. Evidence for the non-linear relationship between physiological 

features and the valence and arousal evaluation of an event has been demonstrated by Russo, 

Vempala, and Sandstrom (2013). The authors showed that both dimensions can be predicted 

with a cross-validated R² of 62.4% (valence) or 82.8% (arousal) from physiological features 

extracted from EDA, HRV, facial EMG, and the respiration rate of a person when using non-

linear neuronal networks. The predictability decreases though when a simpler linear model was 

applied (valence: R2 = 53.3%; arousal: R2 = 59.3%). Hence, a linear model does not seem to 

provide sufficient complexity to fully display the link between appraisal and physiology. The 

usage of linear models for better interpretability and the linear phrasing of relations derived 

from theory or empirical studies (e.g., Scherer, 2009), therefore, probably constitutes a 

simplification or could even be misleading. Even though the used SVM model is also able to 

represent non-linear relations, it performed substantially worse than the RF. This finding could 

be explained by the SVM’s sensitivity to outliers (Wen, Hao, & Yang, 2010). Although we 

conducted a rather strict outlier exclusion beforehand, artifacts might not have been fully 

eliminated. Another explanation might also be that we used default choices for the kernel 

function, that was set to a radial basis function, and other hyperparameters. Nonetheless, the 
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high performance of the RF model demonstrates the superiority of a non-linear approach in this 

context.  

The out-of-sample R2 of those dimensions that were robustly predictable varied strongly, 

ranging from R2 = .054 for familiarity to R2 = .407 for pleasantness. Especially for the 

dimensions in the lower end of this range, the assessed five physiological measures are probably 

not sufficient to fully explain their variance. It is likely that those appraisals affect further 

aspects of physiology that are consequently needed to fully predict them. The reliability of our 

items is unknown, but our single item measures clearly limit the maximally attainable R2. 

Moreover, based on the already mentioned debate on how well automatically processed 

appraisals can actually be assessed via self-report (Davidson, 1992; Scherer, 1993a, 2005), the 

measurement by questionnaire might more generally be a cause for increased measurement 

error in the appraisal data. We nonetheless tried to assess the appraisal process in a less 

retrospect way compared to the original GAQ (Geneva Emotion Research Group, 2002) by 

asking participants to rate the appraisal dimensions immediately after the emotional video was 

viewed in a controlled laboratory setting, hoping to minimize potential measurement error and 

retrospective biases as far as possible. Due to artifacts and noise, that cannot be fully prevented, 

measurement error was of course also present in our physiological features to some extent. 

Considering these assumptions, the achieved performances seem reasonable. 

The first blocked importance measure, the 𝑅W/ , that was implemented to assess how 

much variance the variables of each channel and their interactions can explain within the 13 

appraisals with a sufficient overall R2, showed that the zygomaticus and corrugator channels 

contributed similarly to the appraisal prediction and overall seemed to be most important. On 

average, the frontalis and EDA channels explained less variance as the zygomaticus and 

corrugator, while the HRV seemed to be the least relevant channel. For the channels that yielded 

a robust positive importance, it can be assumed that a relation between the respective appraisal 

and the physiological channel exists. Some of these links have already been made by theory or 

empirical work – others are somewhat contradictory to previous findings. Scherer's (2009) 

theoretical assumptions for pleasantness, suddenness, familiarity, conduciveness, and 

goal/need importance entail all physiological channels, predicting modifications in facial 

expressions, skin conductance, as well as cardiovascular changes. These predictions are only 

partially in line with our findings. All five channels yielded a robust positive importance for the 

pleasantness, the conduciveness (protagonist), and the suddenness appraisal, hence, all 

channels were connected to these three appraisals. For goal need/importance (protagonist) 

though, variance was robustly explained by only the three EMG channels. A relation between 
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the appraisal and EDA or HRV was consequently not confirmed within the present context. In 

addition, familiarity seemed to be related to only the zygomaticus channel in our study. 

Previous empirical research on the physiological changes connected to the pleasantness 

appraisal also demonstrated relations to zygomaticus (Aue & Scherer, 2008; Lanctôt & Hess, 

2007), corrugator (Delplanque et al., 2009; Lanctôt & Hess, 2007) and frontalis activity (Aue 

& Scherer, 2008; Delplanque et al., 2009) as well as to changes in EDA (van Reekum et al., 

2004) and HRV (Delplanque et al., 2009). Van Reekum et al. (2004), on the other hand, were 

not able to find any effect of pleasantness on either frontalis activity or on HRV. The authors 

cast doubt whether pleasantness is at all relevant in affect-related physiology or whether the 

dimension influences the ANS. Our results though demonstrate that the evaluation of the 

intrinsic pleasantness of an event is related to changes in facial EMG as well as to HRV and 

hence has an impact on the ANS. A more plausible explanation, that is also recognized by the 

authors, is that the experimental induction of an appraisal by using games or other stimuli is not 

always effective. Another problem could be the authors’ use of a linear MANOVA model to 

analyze these relations, as we clearly demonstrated that the link between pleasantness and 

physiological features is represented substantially better by a non-linear model. For the 

conduciveness appraisal, the impact on corrugator activity (Aue et al., 2007; Aue & Scherer, 

2008; Gentsch et al., 2013; Lanctôt & Hess, 2007), zygomaticus activity (Aue et al., 2007; Aue 

& Scherer, 2008; Lanctôt & Hess, 2007), EDA (Aue & Scherer, 2008; van Reekum et al., 2004), 

and HRV (van Reekum et al., 2004) has also been demonstrated in several empirical studies. 

Van Reekum et al. (2004) who also studied the impact of conduciveness on the frontalis muscle 

were again not able to determine a significant effect. Even though this finding could also be 

explained by the already mentioned potential weaknesses of their design and statistical analysis 

as well as by their very small sample size (n = 33), it is worth mentioning that the frontalis 

block in our study did also not explain any variance for the conduciveness (self) dimension that 

was evaluated from the participants’ own perspective but a relatively high importance when 

evaluated from the perspective of the video protagonist – the same was true for the HRV block. 

Lastly, the found link between the goal/need importance (protagonist) appraisal to zygomaticus 

and corrugator activity was also confirmed in an empirical study by Aue et al. (2007). Kreibig, 

Gendolla, and Scherer (2012) reported a medium effect of EDA on goal/need importance which 

we could not replicate in our study though. For the remaining seven appraisal dimensions, no 

studies have been conducted to our knowledge. Even though the CPM by Scherer (2009) 

additionally makes predictions for the external and internal standards dimensions, the 

physiological channels analyzed in the present study are not considered as potential outputs. 
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Therefore, we were able to demonstrate for the first time that the dimensions internal and 

external standards, cause motive, and urgency (protagonist) are also related to changes in facial 

EMG, EDA, and HRV and that cause agent (protagonist) and adjustment (protagonist) are 

related to facial EMG and HRV. Lastly, we could demonstrate that the cause agent (other 

person) appraisal is linked to corrugator activity as well as to HRV.  

With the ∆𝑅W/  blocked importance measure, we additionally analyzed how much 

incremental variance a block can explain beyond the other considered blocks. This analysis 

adds to the question of whether a dimension has a unique contribution to the prediction of an 

appraisal dimension rather than whether the dimension is related to it at all. Therefore, the 

results are less relevant for the basic research on the physiology of appraisals but can be used 

when the most economic modeling of an appraisal physiology link is the goal. The importance 

measure shows that for each dimension between one to five channels do not explain incremental 

variance, which means that the respective channel can be compensated by the other four 

channels in the model and that excluding the channel from the complete model would not lead 

to a loss in performance. For cause agent (protagonist) and adjustment (protagonist), for 

example, the variance explained by each of the five physiological blocks could also be 

explained by the other four channels in the model. Moreover, for only 17 of the 65 measures (5 

channels x 13 appraisals), a robust positive channel importance was attained, which means that 

in only 17 cases a channel was able to explain variance beyond the other predictors in the 

appraisal model. This shows that the channels must be correlated to some degree. For 8 of the 

13 dimensions, either the zygomaticus or the corrugator block could be removed if all other 

dimensions are considered, as in these dimensions either of the two physiological channels 

yielded no robust positive importance. The zygomaticus channel seems to hold a higher share 

of incremental variance overall, even though both channels, zygomaticus and corrugator, were 

able to explain a comparable amount of variance in the appraisals in the first importance 

analysis. Moreover, the frontalis dimension, which also achieved an overall substantial 𝑅W/  

(Mfront = .084), could actually be removed for all appraisals except for internal standards 

without a loss in performance if the other four blocks were included in the model. Similarly, 

the EDA block could be excluded for all considered dimensions except for two. Interestingly, 

although the HRV block explained less variance (𝑅W/) compared to the other physiological 

signals (MHRV = .044), it actually uniquely explained variance for four dimensions and should 

therefore not be excluded when modeling the respective appraisals. For the EMG measures, a 

correlation between two blocks, which leads to shared variance and hence to their 

interchangeability, could also be caused by crosstalk between facial muscles and not necessarily 
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has to implicate a true relation – especially for the frontalis and corrugator muscles that are in 

close proximity to each other, this has to be considered.  

In our last analysis, we specifically looked at the type and direction of the relation 

between each appraisal and the most important amplitude or HRV feature of the respective 

dimension. The complexity of machine learning models that can account for high-order 

interactions and non-linearity is one of the main benefits of these models but also constitutes 

an obvious downside – their interpretability. ALE plots are one approach to increase 

interpretability by visualizing the influence of a single feature on the prediction of a model. For 

eight appraisal dimensions, an interpretable feature with a robust positive importance measure 

was detected. With the resulting eight ALE plots, we were again able to replicate some findings 

of previous empirical research. Like Aue and Scherer (2008), we found a negative link between 

corrugator and pleasantness – a result that is also in line with the theoretical assumptions by 

Scherer (2009). We further found a positive relation between both conduciveness dimensions 

(protagonist and self) and the zygomaticus activity, which has also been reported by previous 

studies (Aue et al., 2007; Aue & Scherer, 2008). The finding that goal/need importance 

(protagonist) is negatively related to the activity of the zygomaticus is partially congruent to 

the findings of Aue et al. (2007) that reported a lower zygomaticus activity related to stimuli of 

cultural threat used to induce goal relevance. The authors also reported an increasing 

zygomaticus activity to stimuli depicting biological threat, though, which contradicts our 

results. As the used sample in this study was rather small (n = 42) and as only linear relations 

were considered, our results might be more reliable. However, it is also possible that the induced 

goal importance scenarios in the study actually constitute two different appraisal dimensions, 

producing different results. The remaining ALE plots suggest that zygomaticus activity overall 

increased if events were rated as more compatible with internal and external standards, when 

the protagonist was thought to be able to adjust well to the consequences of shown events 

(adjustment [protagonist]), and when the protagonist of the video was identified as the cause 

of events (cause agent [protagonist]). The ALE plots showed mostly non-linear relationships, 

which indicates again that the use of linear models and the subsequent linear interpretation of 

the resulting relations might be misleading. 

4.8 Limitations 

The present study holds several limitations. Even though our video selection tried to 

cover a broad range of emotions and potentially initiated appraisals, the specific selection might 

not have induced the full range in all appraisal dimensions. Moreover, as we measured each 
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appraisal dimension with a single item, we have to assume rather low reliability of our 

measurements which probably affected the reached R2 in our study. As many appraisal 

dimensions are thought to be processed at least partially in an automated fashion, appraisal 

critics and appraisal theorists alike question whether the appraisal process can be accessed 

exhaustively via self-report alone (Davidson, 1992; Scherer, 1993a, 2005). Hence, the general 

reliance on self-reported data for the assessment of the appraisals probably contributes to 

measurement error in our data as well. It is an obvious paradox that when trying to find a way 

to assess the appraisal process (or any other contents of cognition) in a more objective indirect 

way (e.g., based on measures like EMG or by neuroscientific approaches) research will not get 

around asking participants about their inner states. Even when inducing appraisals in an 

experimental context, we should somehow verify how an event is actually evaluated. This 

validity problem is unfortunately not fully solvable with currently available measurement tools 

and the reliability they provide. Measurement error in the physiological channels due to 

artifacts, noise, and crosstalk is also not fully avoidable, even with a thorough preprocessing. 

Consequently, the model performance in our study could also be limited by afflicted 

physiological features. Potential crosstalk between EMG regions might have also affected the 

results of our second importance measure by decreasing the incrementally explained variance 

of some physiological channels. Moreover, because we were only able to assess the appraisal 

ratings once by self-report (not continuously), we had to aggregate the continuously assessed 

physiological measurements on video-level as well. Both measures hence rather depict a 

summary of appraisal and physiology during the video – the respective information loss most 

likely also affected the reached performance levels. Lastly, as the video selection in our pretest 

was also based on emotional intensity (eight of the ten videos were rated as intense), the results 

might be restricted to more intense emotion episodes. 

4.9 Conclusion 

In summary, we were able to investigate the connection of several physiological 

measures to a broad set of appraisal dimensions by using a data-driven machine learning 

approach. The results of the present study are based on a substantially higher sample size than 

most of the discussed research on this topic and all findings were additionally validated on hold-

out data as well as checked for robustness. We were able to replicate some findings of previous 

research. Also, we were able to investigate the appraisal-physiology link for six dimensions 

(internal standards, external standards, cause motive, urgency, cause agent and adjustment) 

that have not been empirically (or theoretically) analyzed yet – probably due to the fact that 
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these dimensions are difficult to test using the appraisal induction designs typically applied in 

this field of research. Moreover, our results indicate that the links between physiology and 

affect related appraisal are non-linear and that future studies should refrain from using simple 

linear models as the results might be misleading. With these new insights, we hope to extend 

the knowledge base on the appraisal-physiology relation and facilitate further research on this 

topic.  

By analyzing additional physiological channels and their links to appraisals, future 

research should be able to increase the predictability of appraisal dimensions even more. 

Overall, the fact that cognitive categories such as the perceived compatibility of an event with 

laws and social norms (external standards dimensions) can be predicted (at least to some 

degree) by physiological measures is impressive. The results lend support for cognitive theories 

of emotions like the CPM (Scherer, 2009), that assume that emotions are not simply the 

subjective perception of a bodily response to a stimulus but that the cognitive evaluation of our 

environment is the central element in a multi-componential emotion process.  
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5 General Discussion 

The present thesis examined two paths of the Component Process Model (CPM), an 

appraisal emotion theory developed by Scherer (1984, 2001, 2009). Both presented studies 

focused on the role of the cognitive component within the proposed multi-componential 

emotion process. Study 1 analyzed the connection between cognitive appraisals and the 

subjective feeling of an individual (link A) by using theoretically informed computational 

models combined with parameter estimations from empirical data, while study 2 investigated 

the link between appraisal and physiological responses (link B) using different machine 

learning algorithms.  

5.1 Link A: The Appraisal-Feeling Link 

5.1.1 Results 

The results of study 1 demonstrate that the link between the evaluation of emotion-

relevant appraisal dimensions and the perceived feeling during a retrospectively evaluated 

emotional episode exists. All four implemented models (M1-M4), that predicted emotion 

classes using a decision rule based on a prototype similarity metric, as well as the examined 

random forest (RF) machine learning algorithm predicted the perceived feeling of participants 

from the assessed appraisal patterns better than the naive baseline model. Regardless of their 

algorithmic implementation, all models were able to explain variance in the labeled subjective 

feeling based on the self-reported appraisal patterns. This finding aligns with previously 

conducted studies, like the ones by Scherer (1993) and Scherer and Meuleman (2013), that were 

also able to predict emotion labels from appraisal ratings assessed via questionnaire. The 

predictive performance of the theoretically informed models varied though depending on their 

implemented weighting mechanism. The preferred model M3 (evaluated based on the overall 

predictive accuracy, the emotion class- and family-wise precision scores, the model calibration 

and the parsimony of the model) weighted the 16 assessed appraisal dimensions differently 

strong in the similarity metric and used weighting parameters that were attained by an 

optimization procedure from empirical data. The superior performance of M3 affirms the idea 

formulated by Scherer (2001) that the appraisal dimensions are differently important in the 

appraisal-to-feeling process. Moreover, it indicates that an equal weighting of the appraisals (as 

implemented in M1), a much more complex weighting (as implemented in M4) or a weighting 

with the theoretically derived weighting parameters proposed by Scherer and Meuleman (2013; 
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as implemented in M2) might not display the algorithmic level of this process comparably well. 

The comparison of the preferred model M3 with a RF machine learning algorithm showed 

though, that the latter performed better for the majority of the emotion classes and emotion 

families. The machine learning model was chosen as one upper boundary to demonstrate which 

predictive performance can be reached if the model complexity is increased. The results show 

that the complex structure of the RF can explain more variance in the emotion labels than the 

optimized prototype approach of M3.  

5.1.2 Differentiability of the Emotion Prototypes 

The presented APPraisal app visualizes M3’s predictions and the respective prototype 

similarities for different appraisal patterns. The app shows that the empirical prototypes 

(attained from the empirical data set in study 1) are very similar for emotion classes of the same 

valence (i.e., positive or negative emotions). The similarity of the prototypes and the resulting 

lack of differentiability between these classes might be one reason for the weaker performance 

of the theoretically informed model M3 in comparison to the RF. Several aspects were 

discussed that might have affected the prototype calculation such as the lack of clarity in the 

used emotion labels, the predefined set of emotion terms participants had to choose from as 

well as the way the prototypes were calculated from the empirical data. While the first two 

problems indicate a more general measurement problem that would have also affected the 

performance of the machine learning model (and will be discussed more detailed in chapter 

5.3), a problem with the calculation of the prototypes would only be relevant for the theoretical 

models. For the calculation of the prototypes, the appraisal patterns for each observation labeled 

with the respective emotion were averaged. As most of the observations (72%) were labeled 

with two emotion terms though, the majority of observations were included in the calculation 

of two different emotion prototypes, which potentially led to a blending and converging of 

prototypes – especially for those emotions that often occur simultaneously (it is plausible that 

emotions of the same valence occur more frequently together such as sadness and anger or 

happiness and pride). An approach to prevent this kind of merging and improve the prototypes' 

differentiability in future studies would be to include only instances that were labeled with a 

single and therefore explicit label in the prototype calculation. In the present work, we have 

specifically refrained from doing so as the observations with a single label were rather rare 

(28%) in the used data set, which would have resulted in too few observations for the prototype 

calculation of many of the emotions – the number of single label observations for the 13 

emotion classes ranged from 5 to 281 with an average of M = 70.38. 
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5.1.3 Comparison of the Prototype Approach and the Random Forest Algorithm 

A further comparison of the M3 model and the RF algorithm is rather difficult as the 

two models differ very strongly in their mathematical implementation. One major difference 

can be highlighted though. In Figure 1A, the concept of the emotion classification in M3 is 

visualized for an example with three hypothetical prototypes and two hypothetical appraisal 

dimensions. The two-dimensional predictor space is divided into three areas so that the 

boundaries lie exactly between the three prototypes. Each new observation is then classified 

with the label of the prototype in the closest proximity (i.e., the prototype area in which the 

observation falls into). When the value in one or both appraisal dimensions increases or 

decreases so that the observation moves away from the prototype, the distance to the respective 

prototype increases monotonously. When the observation is consequently moved out of the 

prototype area, it is classified as a different emotion. In the classification with the RF, as it has 

been described in chapter 1.4.4.2, another scenario is possible. As shown in Figure 1B, the 

predictor space is divided using the appraisal dimensions so that the greatest possible reduction 

of the mean misclassification error (MMCE) is achieved. This procedure is repeated until the 

stopping criterion is reached and the most frequent class in the resulting areas is predicted. As 

a consequence, the predictor space can be split many times, potentially leading to different areas 

associated with the same emotion label. This can happen for a single tree as illustrated in Figure 

1B (were two areas have formed that are associated with emotion E1), but also when the 

majority votes over a whole set of trees are considered. A new observation is again classified 

by the area it falls into (e.g., as emotion E1), but when the value in one or both appraisal 

dimensions increases or decreases so that the observation is moved into another area of the 

predictor space, the same emotion might be classified again (i.e., again as emotion E1). 

Transferred to the idea of emotion prototypes, this would mean that different prototypes for the 

same emotion could exist. It would be conceivable, for example, that the emotion pride is 

prototypically connected to events that are caused solely by oneself (hence, indicating a high 

value in the cause agent dimension), such as the achievement of a university degree, but also 

to events which one did not cause (i.e., indicating a low value in the cause agent dimension), 

such as the professional career of a partner or the achievement of one’s child. Hence, two 

different prototypical values of cause agent would be connected to the same emotion (i.e., two 

different prototypical appraisal patterns for pride would exist). As the RF is able to represent 

such multiple separated classification areas and showed a higher performance for most emotion 

classes in study 1, this representation of the predictor space might be more accurate. The 

potential existence of multiple prototypes for each emotion could be another reason why the 
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Figure 1. Two examples that demonstrate how the predictor space can be divided when using 

A) the prototype similarity approach applied in study 1 and B) a single tree from the random 

forest (RF) algorithm, where Appraisal 1 and 2 are two hypothetical appraisal dimensions, P1-

P3 are three hypothetical prototypes and E1-E3 are three hypothetical emotion classes.  

calculated prototypes in study 1 (that were averaged over all instances with the same emotion 

label) did not differentiate very well. To test this hypothesis, future research could examine if 

the predictive performance can be improved by finding different clusters within observations 

labeled with the same emotion (e.g., all pride observations) and subsequently generate multiple 

prototypes from the attained clusters. However, different emotion clusters could also be an 

indicator of measurement error, as participants might label their emotional states “incorrect” 

due to a lack of self-awareness or terminological confusion.10   

Despite the possible disparities between the two models it must also be stressed that the 

difference in performance between M3 and the RF model is not very large – with the M3 model 

even reaching a slightly better performance for four emotion classes and one emotion family. 

As discussed in study 1, it is however striking that even with the very complex machine learning 

model an accuracy of over 52.3% for emotion classes and 80.8% for emotion families could 

not be exceeded, indicating that a much better performance can probably not be reached due to 

measurement error in the self-reported appraisal dimensions and emotion labels. It is possible, 

                                                
10 As the relationship between a verbal emotion label and a specific emotional state is learned rather implicitly, 

there are no explicitly correct labels for certain component patterns. Therefore, the term incorrect indicates that 

the label is usually connected to a different affective state and hence appraisal pattern. 
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however, that the performance of the RF could still be increased slightly by tuning its 

hyperparameters, as the optimal values for such parameters depend on the used data set (Probst, 

Wright, & Boulesteix, 2019) and we only used default settings.  

5.1.4 Appraisal Dimensions and their Relevance 

The weights of model M3 were attained using a genetic optimization algorithm. They 

indicate that all 16 appraisal dimensions contributed (to varying degrees) to the prediction of 

the emotion labels. This finding, as thoroughly discussed in study 1, challenges other appraisal 

theories that assume a substantially smaller set of appraisals (e.g., Lazarus, 1991; Ortony, Clore, 

& Collins, 1988; Roseman, 1984). Instead, it would be conceivable that the expansion of the 

appraisal set could further increase the performance of the model. Rather than fixating on one 

single appraisal theory, future research should combine the appraisals proposed by different 

theorists to determine a potential bigger set of relevant dimensions from empirical data. 

Moreover, while we aggregated the items in study 1 to 16 appraisal dimensions as indicated by 

the GAQ (Geneva Emotion Research Group, 2002), we refrained from doing so in study 2 using 

each item as a separate appraisal dimension because of the low absolute inter-item correlations 

(all r < .4 ). In study 1 though, as the goal was to reproduce the theory as closely as possible to 

test its plausibility, the 16 appraisal dimensions were maintained, even though the inter-item 

correlations of the aggregated dimensions were often low as well (M = .36, range = .01–.89). 

This indicates that at least some of the items rather represent dimensions of their own and that 

the aggregation of these uncorrelated items might have contributed to measurement error.  

With a correlation of r = .30, the new optimized weights of M3 deviate demonstrably 

from the weights proposed by Scherer and Meuleman (2013) implemented in model M2. Even 

though model M3 performed substantially better than the M2, we remarked that the relative 

height of the attained appraisal weights should be interpreted with caution as the latter are 

highly dependent on the used data set, the mathematical realization of the distance metric and 

the used emotion prototypes. Based on the previously discussed potential downsides of the 

prototype calculation, it has to be emphasized even more, that the weighting parameters should 

be validated in different contexts. A good starting point would be to construct a suitable 

importance measure to quantify the relevance of the appraisal features in the RF model – 

examining how relevant the different appraisal dimensions are when predicting emotion labels 

using a different model with diverging characteristics. 
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5.1.5 Comparison of the Weighting Algorithm of Model M3 and Model M4  

Model M3 was previously referred to as the preferred model of study 1 but was not 

identified as the superior or best model, as the comparison of M3 and M4 led to a rather 

ambiguous picture. Even though M4 yielded a higher overall accuracy and a better calibration 

to the class frequencies, the class-wise precision scores were lower than for M3 for most 

emotion classes and families. Based on the criterion of parsimony and interpretability, we hence 

preferred model M3 as the less complex model with robustly estimated (and therefore 

interpretable) weighting parameters. From the different performance indicators considered in 

study 1, it can be concluded that M4 clearly has different prediction characteristics than M3 but 

cannot be identified as the worse model explicitly. Hence, the preference for M3 should not 

prevent future research to further look into the idea of differently weighted appraisal dimensions 

within different emotions. Besides some empirical evidence pointing in this direction 

(Ellsworth & Smith, 1988), Fernando, Kashima, and Laham (2017) introduced the idea of 

variable appraisal set models. The theory assumes that each emotion is elicited by a different 

set of appraisal dimensions. Though these sets may overlap to some degree, not all appraisals 

should be relevant to all emotions.  The implementation of M4 is equivalent to this idea, as each 

appraisal weight for each emotion could have been shrunken – potentially even leading to the 

full elimination of an appraisal. While Scherer's (2001) theory does not include an explicit 

description of this concept, the open parameters in his emotion prototypes have the same 

meaning. 

5.1.6 Theoretical Prototypes 

Since it would have gone beyond the scope of study 1, the predictive performance of 

the models with the theoretical prototypes proposed by Scherer (2001) was not evaluated. For 

a systematic comparison with the models M1-M4, all four models would have to be 

implemented with the empirical as well as the theoretical prototypes. For a quick (and 

computationally less costly) examination, however, the performance of model M2 with the 

theoretical prototypes instead of the empirical prototypes can be considered. With an overall 

accuracy of 27.3% for emotion classes and 60.6% for emotion families as well as precision 

scores ranging from 5.9% to 61.6%, the model yielded a very similar performance to M2 in 

study 1 (class accuracy = 27.1%, family accuracy = 62.4%, precision range = 4.2% – 61.8%). 

This is interesting because the reported mean correlation of r = .47 between the theoretical and 

empirical prototypes indicates that the prototypes deviate to some degree. The two-dimensional 

scaling of both prototypes, the theoretical (white nodes) and empirical ones (grey nodes), in 
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Figure 2 demonstrates that for most emotion categories the two prototypes are similar (i.e., in 

close proximity to each other), but that the theoretical prototypes rather represent extreme 

values within the appraisal space compared to the empirically assessed prototypes. Hence, the 

theoretical prototypes seem to be more consistent with the concept of stereotypes applied in 

social science (Judd & Park, 1993) than with the prototype definition of Rosch (1983): Judd 

and Park (1993) define a stereotype as a set of beliefs about the attributes (here, appraisal 

values) of a certain group (here, emotions) that do not necessarily have to be accurate but seek 

to display whether the attribute is more or less prevalent compared to another group. Hence, 

the main goal of stereotypes is rather to accentuate (sometimes exaggerate) differences between 

groups, than to describe the groups representatively.  

 

 
Figure 2. Two-dimensional scaling of the 13 theoretical prototypes proposed by Scherer (2001; 

grey) as well the emotion prototypes used in study 1 (white; SAD = sadness, FEA = fear, CON 

= contempt, DES = despair, RAG = rage, SHA = shame, DIS = disgust, GUI = guilt, IRR = 

irritation, ANX = anxiety, ELA = elation, ENJ = enjoyment, PRI = pride). Note that this is a 

force embedded layout in which not all distances are displayed spatially correct. 
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However, the observation that the theoretical prototypes represent more extreme values 

might also stem from the way we translated the categorical prototype levels given by Scherer 

(2001) to numerical ones (ranging from 0 to 1). We converted the category very high to 1 and 

the category very low to 0 – these were the most extreme values possible. As it very unlikely 

that the most extreme values are the prototypical ones in a large population, these values 

(though they did not occur very frequently in the prototypical appraisal patterns) are probably 

not very plausible. As the model gives no information on how the categories translate to 

numerical values though, a different solution was not feasible and possibly not intended by 

Scherer (2001). 

5.2 Link B: The Appraisal-Physiology Link 

5.2.1 Results 

To analyze the second path of interest – the appraisal-physiology path – an empirical 

study was conducted in which participants watched emotional videos while different 

physiological measures were assessed (study 2). Subsequently, subjects rated different 

appraisal dimensions based on an adapted form of the GAQ (Geneva Emotion Research Group, 

2002). As no detailed theoretical assumptions about the connection between appraisals and the 

assessed physiological channels (i.e., corrugator activity, zygomaticus activity, frontalis 

activity, EDA and HRV) exist, we calculated 134 features from the five physiological channels 

and predicted each of the appraisal dimensions by using different machine learning models. 

The highest predictive performance was again reached by the RF model indicating that a non-

linear link most appropriately represents the appraisal-physiology relation. This assumption 

was also supported by the Accumulated Local Effect (ALE) plots which showed non-linear 

effects of single features on the appraisal outcomes. The two newly constructed importance 

measures, 𝑅W/  and ∆𝑅W/ , showed that the five physiological channels were differently important 

in the prediction of different appraisal dimensions and only very few blocks actually explained 

incremental variance. The findings were partly in line with previous empirical findings and 

theoretical assumptions and added new information for six appraisals whose connection to 

physiology has not been investigated yet (i.e., internal standards, external standards, cause 

motive, urgency [protagonist], cause agent [protagonist], adjustment [protagonist]).  
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5.2.2 Comparison of the Linear and Non-Linear Machine Learning Models 

The results of the study demonstrate that the link between appraisal and physiology was 

best represented by the RF model that is able to display complex interactions and non-linearity. 

The lasso regression (LASSO) and the support vector machine (SVM), on the other hand, 

performed substantially worse. Therefore, it was concluded that the appraisal-physiology link 

is most likely non-linear. Noteworthy though was that the SVM was used with a radial basis 

kernel function and hence was also able to learn non-linear relations but reached a low 

performance nonetheless. We first argued that this might be due to its proneness to outliers 

(Wen, Hao, & Yang, 2010) and the possibility that the outlier analysis was not able to 

effectively identify all outliers (though it was very conservative). This problem could be 

addressed in future studies by applying more advanced methods for outlier detection or methods 

that reduce the effect of outliers. Yang, Huang, Chan, King, and Lyu (2004) propose a two-step 

procedure to attenuate the effect of outliers in SVM regression used with a non-linear radial 

basis function. As we described in chapter 1.4.4.3, the constant 𝜆 and the slack variables 𝜉&  and 

𝜉&∗, which indicate the positive and negative deviation from the tolerance margin, define the 

penalty term of the SVM estimation function. Consequently, outliers will lead to large values 

of 𝜉&  and 𝜉&∗ which increases the model error. The authors therefore advise training a SVM 

model with the margin tolerance parameter 𝜀& (for the non-linear SVM the margin width 𝜀 can 

vary). Afterward, they instruct to identify all data points whose 𝜉&  or 𝜉&∗ are larger than a certain 

threshold 𝜏 ∙ 𝜀& as outliers (i.e., all data points that deviate more than 𝜏 times from the tolerance 

margin) and subsequently increase the tolerance parameter 𝜀& when 𝜉&  or 𝜉&∗ is determined as an 

outlier. By locally increasing the margin width 𝜀& and training the model again, the effect of the 

respective outliers is attenuated by reducing the respective slack variables 𝜉&  or 𝜉&∗ (i.e., by 

reducing the deviation from the tolerance margin).  

An elaborated method for removing outliers from multidimensional electromyography 

features based on a k-nearest neighbor algorithm and an Euclidean distance metric was 

introduced by Marateb, Rojas-Martínez, Mansourian, Merletti, & Mañanas Villanueva (2012). 

The algorithm determines for each observation the degree to which the data point deviates from 

its neighbors (i.e., the distance to the closest data points in the feature space) and consequently 

its degree of outlierness. Subsequently, the distribution of the resulting outlierness values is 

calculated and the best cutoff point to separate the bulk of data from the outliers is estimated. 

This method is an additional option to remove artifacts from physiological data (e.g., due to 

power line interference) and could be a useful addition to noise removal by filtering.  
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We have argued before that the default setting of the SVM kernel function (which is 

used to introduce non-linearity to the SVM; see Fröhlich & Zell, 2005), might also have affected 

the results. Fröhlich and Zell (2005) recommend tuning the parameters of the kernel function 

to achieve good results. All previously addressed approaches could be used to increase the 

performance of the SVM in future studies, or vice versa provide an explanation for the reduced 

predictive power of the model compared to the RF algorithm. 

5.2.3 Predictability of Appraisals 

For the RF model, we found a robust relation (i.e., a robust positive R2) between the 

physiological channels and 13 of the 21 considered appraisals. For six of these dimensions, the 

study was the first to demonstrate that such a connection exists. Eight appraisal dimensions 

were not robustly predictable. Hence, it was concluded that these dimensions might be 

connected to physiological changes that were not assessed in the study. The finding could 

moreover indicate that the outcomes of different appraisal dimensions affect different sets of 

physiological channels. Similar to the variable appraisal set theory by Fernando et al. (2017), 

which assumes that different subsets of appraisals are important for the determination of 

different feelings or modal emotions, it is also possible that different subsets of appraisals 

determine the outcome of different physiological responses. This assumption is substantiated 

by the results of the first importance measure 𝑅W/  that determines the variance that can be 

explained by each physiological channel for each appraisal dimension in the absence of other 

physiological blocks. It is apparent that not all considered channels explained variance for all 

appraisals. HRV, for example, seemed to be an important predictor for the pleasantness 

appraisal but did not explain any variance for the dimensions familiarity, conduciveness or 

goal/need importance. Presumably, a different set of physiological variables has to be 

considered for a further investigation of those dimensions that were not predictable. Kreibig 

(2010) analyzed a large set of different cardiovascular, respiratory and electrodermal 

parameters and their connection to different emotions in a review of 134 publications. Besides 

HRV and EDA, he found that several more cardiovascular measures such as heart rate, forehead 

temperature, arterial pressure, and stroke volume as well as respiratory measures such as the 

respiration rate and hyperventilation were affected by different emotional states. Future studies 

should therefore also consider these physiological markers in the investigation of the appraisal-

physiology link, expanding the findings that are provided by the present thesis.  
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5.2.4 Self and Protagonist Perspective 

For the assessment of four appraisal dimensions (goal/need importance, adjustment, 

conduciveness, and urgency), we constructed two items asking the participants to rate the 

dimensions from the perspective of the perceived protagonist of the video sequence as well as 

from their own perspective. We assumed that the perception of the protagonist’s point of view 

could be more important in the affective evaluation of a video. Based on the low inter-item 

correlations we treated these items as separate appraisal dimensions. It could be observed that 

three of the respective dimensions – urgency, adjustment and goal/need importance – were only 

predictable when appraised from the protagonist’s perspective. Similarly, the conduciveness 

dimension reached a substantially higher R2 when evaluated from the point of view of the 

protagonist. This finding together with the low inter-item correlations indicates that the new 

protagonist items actually constitute separate dimensions and that these had a stronger link to 

the physiological measures in the study. Generally, the appraisal dimensions proposed by 

Scherer (2001, 2009) do not really reflect that emotions can also be felt due to empathizing with 

another person (or a fictive character in a book or movie). The cause agent dimension only asks 

whether another person, oneself or natural forces caused an event, but it does not assess whether 

one passively or actively participated in a situation and whether the appraisal process refers to 

one’s inner states or to the states one attributes to another person. When individuals feel happy 

at the end of a romantic movie in which the two protagonists fell in love, it is plausible that the 

happiness does not result from the fact that they can adjust very well to the consequences of the 

event (i.e., the happy ending) but from the belief that the protagonists can (a high adjustability 

is assumed by Scherer’s happiness prototype displayed in Table 2 of chapter 1.4.1). This 

becomes clearer when considering the scenario of a scary movie in which the protagonist is 

threatened, killed or hurt and individuals experience the emotion fear. Scherer assumes that low 

adjustability is prototypical for this emotion (see Table 2 of chapter 1.4.1). But again, as 

individuals are most likely able to adapt to the outcome of the movie (probably as much as they 

can adapt to the consequences of a romantic movie), it seems obvious that the protagonist 

cannot adjust very well. Hence, in the case of passive observation and strong identification or 

empathizing, the appraisal evaluation actually concerns the believes that individuals have about 

the object of identification. While some appraisal dimensions should not be affected by the 

passivity or presence in the situation, such as pleasantness that is defined as the intrinsic 

pleasantness of an event independent of the state of an individual (i.e., independent of individual 

wishes, preferences, goals, etc.), some dimensions should be affected. For these appraisals, an 

additional set of dimensions has to exist that reflects the states that are ascribed to others. The 
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prototypical appraisal outcomes for these dimensions might be similar to their egocentric 

counterparts but could also deviate to some degree.  

5.2.5 Feature Set 

For the five physiological channels, a broad set of 134 features was constructed to 

characterize the signals extensively. The features were based on the descriptions of 

Phinyomark, Limsakul, and Phukpattaranont (2009) and Phinyomark, Phukpattaranont, and 

Limsakul (2012) for the electromyography (EMG) signals and on Vollmer (2015) for the heart 

rate reliability (HRV) data. Only a few of the proposed features were not considered, mostly 

because they were only applicable for a moving-window analysis approach where features are 

extracted from consecutive time bins of the signal. As discussed in the study, we also applied 

the constructed EMG features for the analysis of the electrodermal activity (EDA) signal, as 

most of the features were suitable for time series data in general, omitting only two features 

that yielded no variance on the EDA data. However, a couple of more specific features for EDA 

data exist that were not implemented. Shukla, Barreda-Angeles, Oliver, Nandi, and Puig (2019), 

for example, used a broad set of predictors that also contained features quantifying the rise 

times of the EDA amplitudes, in addition to frequency and amplitude features similar to the 

ones used in this work. The inclusion of further features more specific to the characteristics of 

the EDA signal could potentially increase the predictive power of the models and also have an 

effect on the EDA importance.  

5.2.6 Handling of Correlated Features 

A major difficulty with the feature set was the large number of correlated features. Even 

though many of the features were correlated based on their mathematical similarity, each 

feature could potentially describe a slightly different aspect of the respective signal and hence 

explain incremental variance. Moreover, due to crosstalk between EMG regions or even due to 

the same noise sources in the laboratory environment, features of different physiological 

channels could also be correlated to some degree. Correlated features do not have to be 

problematic for machine learning models per se, but the calculation of feature importance 

measures can be strongly affected (Nicodemus & Malley, 2009). When adding a correlated 

feature to a model, the importance of the associated features may decrease as the importance is 

then potentially split between both features (Molnar, 2019). The first attempt to handle this 

problem was a reduction of the dimensionality of the feature space for each physiological 

channel by building factor scores using exploratory factor analysis (EFA). Alternatively, we 
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tried to reduce the number of features by performing a feature selection based on pairwise 

correlations. As the factors proposed by the EFA were not interpretable and as both approaches 

(feature aggregation and selection) lead to a substantial loss in performance, the feature 

reduction was not realized. Instead, two blocked importance measures were constructed that 

were able to handle the correlative relations between the features in different ways. A feature 

permutation importance measure for the RF algorithm that is able to handle correlated features 

has previously been introduced by Strobl, Boulesteix, Kneib, Augustin, and Zeileis (2008). This 

importance measure is however computational costly and was therefore too time-consuming 

for the application with 13 models with 134 features each. The importance of each individual 

feature was moreover not very informative, as we were actually interested in the relevance of 

each of the five channels – therefore two blocked importance measures were implemented. The 

𝑅W/  measure quantifies the variance that can be explained by each physiological block 

(containing all features of the respective channel). As the features belonging to other 

physiological blocks are not included in the RF model from which the importance is attained, 

correlative relations between the features of the considered block and the features of other 

physiological blocks do not affect the results. Moreover, as the importance is not evaluated for 

each feature separately but for the physiological block as a whole, the potential importance 

splitting between correlated features within the block does not affect the results as only the 

explained variance across all features is regarded. While the 𝑅W/  measure circumvents the 

problem of correlations to features of other blocks by excluding them from the model, the 

second importance measure ∆𝑅W/  quantifies the relation between the blocks by indicating how 

much variance can be explained by the respective feature block beyond all other features. If a 

block does not reach a robust importance and hence explains no incremental variance, the 

features of the block have to be strongly correlated to features of at least one of the other blocks 

(given that the block is able to explain variance in the respective appraisal dimension to begin 

with). The ∆𝑅W/  measure can however not depict with which blocks variance is shared – for this 

information a pairwise inspection of the blocks has to be conducted. We constructed the 

measure to determine if a physiological signal is needed in the prediction of the respective 

appraisal when finding the most economical model is the goal. But again, the measure cannot 

determine which set of blocks is sufficient to predict the appraisal without a loss in performance, 

but can only indicate that a block might be redundant if all other blocks are included. While the 

𝑅W/  measure demonstrated that the different physiological channels contributed differently to 

the appraisal prediction and that a link between appraisal and physiology did not exist for all 

considered appraisal dimensions and all blocks in the study, the ∆𝑅W/  measure additionally 
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showed that only a few channels uniquely explained variance confirming the correlative 

relations between the physiological channels.  

5.2.7 Effect of Modeling Direction 

The description of the physiological channels with numerous features is also the reason 

why the appraisal-physiology link was modeled in the reversed direction. In contrast to the 

causality that is implied by the CPM (Scherer, 2001, 2009), we predicted the appraisal 

dimensions from physiology instead of predicting changes in the physiological channels from 

the appraisal outcomes. To implement the theoretical implied modeling direction, a single 

physiological outcome variable would be needed. As one single feature cannot sufficiently 

describe the complex amplitude and frequency characteristics of the time-series signals and as 

the previously described feature-aggregation (EFA) and feature-selection (correlation-based) 

approaches did not provide a satisfactory solution, this way of modeling the appraisal-

physiology link seemed to be not feasible. Moreover, the study design does not allow us to test 

the causality between appraisal and physiology. Even though the applied methodological 

approach is sufficient for examining whether a specific appraisal (such as pleasantness) relates 

to a certain physiological channel (such as zygomaticus activity), one aspect of the appraisal-

physiology relation was not covered. The model cannot take into account that physiological 

changes might be caused by an interaction of several appraisals such as pleasantness and 

suddenness. Only when the modeling direction is reversed (predicting changes in a 

physiological channel using all appraisal dimensions as features), the effect of the appraisal 

interactions on physiological changes can be considered. Even though this aspect is definitely 

an interesting one when investigating the appraisal-physiology path, the interpretability of such 

interactions would remain difficult when using machine learning models. While it would be 

possible to construct importance measures to indicate how much variance is explained by an 

appraisal alone11 or by all its interactions with other appraisals12, the type and directions of the 

                                                
11 See the importance measure that was used in the feature selection for the ALE plots in chapter 4.5.7.3. This 

feature importance measure quantifies the variance that can be explained by a single feature without considering 

other variables. 
12 This type of importance measure could be created by taking the difference between a classical permutation 

feature importance as proposed by Molnar (2019) and the single feature importance used in chapter 4.5.7.3. As 

the classical permutation importance quantifies the variance that can be explained by a single feature and its 

interactions with all other features in a model, and the single feature importance shows the variance explained 
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specific interaction effects as well their magnitude could not be derived (information that would 

be attainable from linear regression for example). Consequently, modeling the appraisal-

physiology link in the theoretically proposed direction would probably not have added much 

value beyond the presented results but could be implemented in future research with more 

interpretable models. 

5.3 The Problem of Measurement Error 

The biggest limitation of both studies is the measurement of the relevant variables such 

as appraisals and emotion labels using questionnaires. Every model, as well as the conclusions 

deduced from it, can only be as good as the measurement it is based on. The reliability of 

psychological variables assessed by self-report is a problem in many fields of psychology in 

which more objective and direct measures cannot be applied. Gnambs (2015), for example, 

demonstrated that nearly half of the variance in observed scores of personality questionnaires 

arises from measurement error. Measurement error in this context could, for example, result 

from inter-individual differences in item interpretation (Gnambs, 2015). In the case of cognitive 

appraisal, which is thought to be processed at least partially in an automated fashion (Scherer, 

2001), the accessibility of the appraisal ratings could be an additional problem. The assessed 

appraisals have to be understood as an approximation of the appraisal process, given the 

assumed limited awareness of the process (a more detailed discussion on this topic and criticism 

on the assessment of appraisals by self-report is presented in study 1 in chapter 2.7). Therefore, 

substantial measurement error in the appraisal ratings of both studies has to be assumed.  

The data used in study 1 were collected with the GEA tool (Scherer & Meuleman, 2013), 

a freely accessible web tool, over a period of several years. Though the authors excluded a small 

percentage of participants from the sample due to missing answers and response bias13, it is not 

clear if this quality assessment was sufficient. Moreover, participants rated an emotional 

episode from their past so that the retrospective evaluation might have decreased the 

accessibility of the appraisal ratings even more. We therefore decreased the temporal distance 

to the evaluated event in study 2 to counteract this problem. To reduce the length of the testing 

                                                
without these interactions, the difference would reflect the variance proportion explained by the interactions only. 

Note that this importance measure would require uncorrelated features though. 
13 Observations were considered as biased when two or less unique answers were given by the participant or when 

over 70% of the items were answered with the not applicable category. 
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to an acceptable duration and hence ensure a sufficient sample size, we used a shortened version 

of the GAQ to measure the appraisal dimensions, assessing most dimensions with a single-item. 

We also slightly altered the items of the original questionnaire to match the video rating context. 

Though several cognitive interviews were conducted in the development process of the adapted 

version, a full analysis of the test quality was not carried out. It must be assumed that these 

factors all influenced the reliability of the measured appraisal dimensions negatively. Similarly, 

measurement error has to be present in the emotion labels as well (that were used in study 1). 

Besides the fact that the emotion terms might have been understood differently (most likely 

reinforced by the semantic similarity of the emotion terms), participants were also forced to 

rate their feelings by choosing from a limited list of emotions. Even though they were also able 

to choose more than one label, this restriction to distinct categories might have also contributed 

to error in the emotion labels (assuming that a huge space of different emotion states exists and 

the emotion labels only represent the 13 modal emotions proposed by Scherer, 2001). Even 

though some improvements can be implemented in future research (e.g., not relying on single 

item measures), the described problems cannot be fully avoided. In the case of emotion labels, 

a clear ground truth is needed for the application of predictive models. In the case of appraisals, 

more objective measurement methods to assess the appraisal procedure are not available yet.  

The physiological measures applied in study 2 can be deemed as more objective as they 

do not depend on self-awareness. At least for facial EMG though, effects of social desirability 

could have been present, leading participants to mask their facial expressions to some degree. 

Measurement error was however mainly introduced due to sources of noise and artifacts that 

were not canceled out in the laboratory environment. Various measures have been taken to limit 

the influence of these confounding variables as much as possible, such as positioning the 

experimenter out of sight of participants to decrease social desirability effects as well as using 

a bipolar recording scheme for EMG and EDA, applying an appropriate data preprocessing and 

constructing more robust features to reduce the influence of artifacts and noise.  

When interpreting the results, it has to be taken into account how the measurement error 

might have influenced the findings. First of all, the presence of error potentially limited the 

reached performance of the predictive models of both studies. In study 2, it might have also 

concealed relationships between physiological variables and appraisals to some degree. 

However, the found relations (i.e., connections between appraisal dimensions and emotion 

labels as well as between physiological variables and appraisals) were all attained using cross-

validation on large samples and in study 2 with an additional robustness criterion. The reported 

relations can hence confidently be considered as valid and robust.  
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5.4 Integrating the Results into a Multi-Componential Emotion Model  

 Scherer and Moors (2019) describe emotions “as an interface between an organism and 

its environment, constantly mediating between changing events and social contexts on the one 

hand and the individual’s responses and experiences on the other” (p. 721). With the present 

thesis, two of the mediating sub-processes of this complex mechanism were investigated with 

the goal to increase the understanding of how the different components engaged in an emotional 

episode interact. In the following, the central paths of the multi-componential CPM model 

(presented in Figure 1 of chapter 1.3) will be addressed and integrated with the findings of the 

two studies.  

5.4.1 Event to Appraisal 

 The initial path of the CPM is the one that interlinks the environment (i.e., a stimulus 

or an event) and the cognitive component (i.e., the appraisal process). As the appraisals are 

derived from cognitive elements such as memory, attention, and self-image, this initial path is 

highly individual. Due to the introduction of the cognitive component, the model is able to 

explain why the same stimulus might result in different emotional responses in individuals and 

within the same individual on different occasions. Unless researchers are able to access and 

measure all cognitive elements embedded in the appraisal process, the path is difficult to 

investigate. By using questionnaires such as the GAQ (Geneva Emotion Research Group, 

2002), developed to approximate the appraisal process by asking participants to consciously 

rate the appraisal dimensions, it is possible to examine subsequent paths that connect the 

cognitive evaluation to other components such as physiology and feeling. It has been pointed 

out before that in the analysis of these paths we cannot investigate their causality and validate 

that the appraisal procedure is the initiating component within the examined processes as 

appraisal outcomes were not systematically induced during the data collection.14  

Though the present thesis did not explicitly investigate the appraisal process itself, some 

conclusions about the dimensionality of the cognitive component can be drawn. Concerning 

the appraisal set proposed by Scherer (2001, 2009), we found all dimensions to be relevant 

                                                
14  As we have discussed in study 2, the systematic induction of appraisals poses several problems such as the lack 

of certainty about whether an experimental condition or stimulus actually lead to the presumed appraisal outcome 

and the fact that some appraisals simply cannot be induced experimentally. Moreover, as it is theoretically assumed 

that the appraisal process is highly individual, it is more generally questionable if stimuli can be constructed that 

universally lead to a specific appraisal rating.  
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predictors of the subjective feeling experienced by participants and most of the appraisals to be 

connected to emotion-related physiological responses. Both presented studies concluded 

though that the appraisal dimensions assumed by the CPM (and also appraisal sets with similar 

dimensions proposed by other appraisal representatives) are probably insufficient to fully 

explain variation in the multiple emotion components. Study 2 demonstrated that in the passive 

viewing of an event, additional appraisal dimensions might be relevant that refer to the states 

and appraisal evaluations that individuals attribute to others. Within current theories though, 

the cognitive appraisal process had only been described as an egocentric and self-evaluative 

procedure. Moreover, we found that some of the items of the GAQ (Geneva Emotion Research 

Group, 2002) that were constructed to measure the same appraisal most likely constitute 

separate appraisal dimensions that each explain incremental variance. The reached performance 

in study 1 also suggested that additional appraisals could improve the differentiability of 

emotion categories.  

5.4.2 Appraisal to Physiology and Expression 

As the expression component entails facial, vocal and gestural expressions (Scherer & 

Moors, 2019) that are also physiologically entangled, we combined the relation of appraisal and 

the expression component and appraisal and the physiological component to one single path in 

study 2 (see Figure 2 in chapter 1.4). We investigated physiological changes in HRV, EDA, 

and EMG, which can also be an indicator for overt mimics (Van Boxtel, 2010), and analyzed 

the connection between these physiological responses and different appraisals. Besides rather 

vague theoretical predictions on the relation between appraisal outcomes and physiology by 

Scherer (2009) and some empirical studies (e.g., Aue & Scherer, 2008; Kreibig, Gendolla, & 

Scherer, 2012; Lanctôt & Hess, 2007; van Reekum et al., 2004) whose weaknesses have been 

discussed in study 2, no information was present on the appraisal-to-physiology link except for 

the assumption that changes would occur continuously.  

The comparison of different machine learning algorithms as well as the inspection of 

single feature ALE plots indicated that the relation between measured physiological channels 

and the appraisals is best represented by a non-linear model. Increasing ratings of pleasantness, 

for example, were connected to a non-linear decrease in corrugator activity, and a rise in 

conduciveness was linked to a non-linear increase in zygomaticus activity. Moreover, not all 

investigated appraisals showed a connection to all five physiological channels – some 

appraisals were not predictable at all, showing no relation to any of the channels, while others 

were related to only a subset of the investigated physiological responses. Hence, it can be 
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assumed that different aspects of physiology are linked to different appraisals. Given the 

assumed causality (i.e., appraisal initiates changes in the physiological component), this would 

mean that an event that is appraised as being very sudden affects the EDA of a participant, leads 

to changes in HRV, and an adaption of the individual’s mimic. A very familiar event on the 

other hand also affects the activity of facial muscles but does not lead to changes in EDA or 

HRV (but maybe to changes in other physiological constituents such as body temperature or 

heart rate that were not investigated in study 2). The potential effect of interactions of different 

appraisals on physiology could not be investigated due to the used modeling direction. In 

Scherer's (2001) description of the appraisal process (see chapter 1.3), he indicates that each 

appraisal outcome leads to variations in all other components and modifies changes in these 

components that have been induced by previous appraisals. Though this description rather 

seems to indicate that the appraisals affect the other components independently from each other, 

his appraisal prototypes for different modal emotions (presented in Table 2 of chapter 1.4.1) do 

imply that interactions of appraisals affect the feeling component. Hence, it is plausible that 

interactions between appraisals could also explain variance in the physiological responses and 

should therefore also be considered in future investigations of the appraisal-physiology link. 

For such an analysis though, statistical models with better interpretability should be applied. 

Although the results substantiate the link between cognition and physiology as assumed 

by appraisal theory, it is important to discuss the results’ compatibility with other emotion 

theories as well. As the introduction of different theoretical approaches in chapter 1.2 

suggested, a comparison of different models is challenging because they often focus on 

differing processing levels or diverging temporal stages of the emotion process, frequently 

leaving important aspects open or unspecified that are more clearly addressed in another theory. 

An attempt to draw these comparisons is made nevertheless.  

The found relationship between cognitive appraisals and physiological responses is 

obviously incompatible with the outdated view that emotions have no cognitive component and 

are mere physiological constructs as described by James (1884). Schachter and Singer (1962; 

also Schachter, 1964) assume that emotions result from an interaction of physiology and 

cognition. They specifically state that the same physiological arousal can lead to a great 

diversity of different emotions depending on the cognitive evaluation it is accompanied by. 

This indicates that the physiological response and the cognitive evaluation must be independent 
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of each other to some degree.15 The results of study 2 indicate though that cognition and 

physiology are interlinked with each other such that changes in one component are clearly 

accompanied by changes in the other. Moreover, the measured physiological reactions in 

response to the emotion videos were complex and multidimensional and hence not compatible 

with the idea of the unidimensional arousal that Schachter and Singer (1962) believe to be the 

physiological basis of every emotion (a critique that has been voiced early on by Plutchik & 

Ax, 1967).   

Constructivist emotion theories see the ambiguous physiological arousal proposed by 

Schachter and Singer (1962) as “a historical predecessor of modern-day conception of `core 

affect´” (MacCormack & Lindquist, 2017, p.2). Such theories view the two physiological 

dimensions arousal and pleasantness as the primitive affect component that can be specified 

due to a cognitive processing step (Barrett, 2006; MacCormack & Lindquist, 2017; Russell, 

2003). In contrast to Schachter and Singer (1962) though, Russell (2003) and Barrett (2006) 

presume that cognitive processes can also be the initial cause of a shift in core affect and hence 

in physiology (though core affect can also be initiated by other non-cognitive processes). 

Besides the assumption that cognition can be involved though, the mechanism is not further 

discussed. The found relation between cognitive appraisal and physiology is therefore 

potentially also compatible with this conceptualization of the emotion process.  

Affect program theories such as the ones by Ekman (1992) and Panksepp (2005) 

propose a limited number of basic emotions and specific physiological patterns that function 

on distinct neuronal circuits occurring once an appropriate trigger is present. Even though these 

theories also recognize that appraisal can be a trigger for affect programs (e.g., Ekman, 1999), 

the assumption of a very limited number of prototypical physiological schemes does not seem 

to fit the results of study 2, where we showed that changes in individual appraisals are 

associated with varying changes in the physiological signals. This rather indicates that shifts in 

the appraisal dimensions are accompanied by a flexible adaption of the physiological 

subcomponents and consequently a very large variety of different physiological states. 

However, Scherer (2009) stresses that affect program theorists more recently moved to assign 

                                                
15 It has to be noted, though, that the authors do not elaborate the mechanism that leads to the emergence of the 

physiological arousal – a major shortcoming of the theory (as was discussed in chapter 1.2). As it is not proclaimed 

how the physiological arousal emerges, it cannot be precluded completely that a correlation between the cognitive 

and the physiological changes of some degree could exist. 
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higher flexibility to affect programs and also recognize more complex emotion categories 

besides the proposed basic ones.  

The previous comparison shows that the direct link between cognitive elements and 

physiology is implicit in many emotion theories. It would be helpful if this connection was 

therefore more explicitly emphasized in other emotion models to reflect the results of this and 

other studies on the relation of cognition and physiology in emotion, but also to mitigate 

superficial differences between the emotion theories. 

5.4.3 Appraisal to Feeling 

The appraisal-feeling link, indicating which appraisal outcomes lead to which 

subjectively perceived feeling (and consequently to which verbal emotion label), was examined 

with different theoretically informed emotion models in study 1. The study demonstrated that 

verbal emotion labels can be predicted from self-rated appraisal dimensions to some degree, 

substantiating the appraisal-feeling link and verifying that the appraisals proposed by Scherer 

(2001, 2009) are indeed relevant predictors for the subjective feeling of an individual. 

Concerning the algorithmic level of this link, the study validated the idea that the appraisal 

dimensions are differently important in emotion prediction. Whether the appraisal weights are 

the same for all emotions (as in the preferred model M3) or whether they vary between them 

(as in M4) should be further investigated. The latter, though not the preferred model solution in 

the study, would be in line with the idea of the variable appraisal set theory (Fernando et al., 

2017). We have argued in study 1 that the complex weighting algorithm might be too costly for 

a fast functioning process like emotion elicitation. This presumption though takes as the basis 

that each appraisal is evaluated and weighted and subsequently integrated. It could also be 

possible that only a subset of appraisals is processed to begin with, which would potentially 

even decrease the cognitive costs of the process. The prototype approach realized in the 

preferred model M3 seems to be an appropriate realization of the appraisal-to-feeling link, 

yielding an only slightly worse performance than the machine learning model. The comparison 

to the RF indicates though that an implementation of multiple prototype clusters for each 

emotion could be superior – an idea that has not been discussed in appraisal theory yet. 

In regards to other emotion theories, study 1 again clearly demonstrated that cognition 

is a central element of emotion elicitation and hence irreconcilable with a non-cognitive 

emotion model as the one by James (1884). Schachter and Singer (1962) assume that emotions 

arise from the interaction of cognition and physiological arousal and that cognition alone is 

insufficient for the elicitation of an emotion. Nonetheless, we were able to predict emotion 
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labels from cognitive evaluations alone. As we have mentioned in study 1 though, the urgency 

appraisal dimension has previously been linked to physiological arousal (Scherer, 2000) and 

we also found that urgency was an important predictor of the participants’ feelings (indicated 

by a high appraisal weight). This could be seen as partially compatible with the assumptions of 

Schachter and Singer (1962), that arousal is a predictor of emotions, given the assumption that 

a strong correlation between the urgency appraisal and physiological arousal actually exists.16 

However, it could also be compatible with the indirect path between appraisal and feeling that 

is mediated by the physiological component in the CPM model (see Figure 1 in chapter 1.3). 

The hypothetical strong relationship between the cognitive urgency dimensions and 

physiological arousal would simultaneously contradict the implicit assumption of the 

independence of cognition and physiology in Schachter and Singer’s (1962) model.  

Moors (2009) sees a big difference between the appraisal and constructivist theories 

(such as the one by Barrett, 2006) in the way they conceptualize the formation of the link 

between appraisals and emotion categories – while constructivists view this link to be learned 

and hence more individual, appraisal theorists believe that the algorithmic level of this link is 

fixed and hence the same for all individuals. With the prototypes and weighting parameters 

calculated from empirical data, we were able to reach a good predictive performance over a 

sample of 6591 participants, which indicates that the algorithmic level of the link has to be 

similar between individuals. If the link between appraisals and perceived feeling would be 

completely individual with a great variance between participants, a very low predictive power 

would be expected with a generic model. It would be interesting though to analyze how strong 

the model parameters would deviate between participants when attained from large within-

subject samples, and if the predictive performance would increase by applying personalized 

prediction models. Even though Scherer (2009) points out several differences between appraisal 

and constructivist theories, mainly criticizing the idea of core affect being two-dimensional, the 

idea of prototypical component patterns in constructivist theories seems to be similar to the 

implementation of prototypical appraisal patterns in the present study (as well as to the 

approaches of Scherer, 1993; Scherer & Meuleman, 2013). The theories rather seem to differ 

concerning the origin of the prototypes as being biologically defined or constructed individually 

based on previous experience and culture. In regards to the criticisms of core affect, the used 

                                                
16 In study 2, we found that the HRV block explained variance in the urgency appraisal. As HRV is interpreted as 

an indicator of physiological arousal (Egger, Ley, & Hanke, 2019), it can be assumed that a connection between 

urgency and arousal exists to some degree.   
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data set in study 1 contained two appraisal dimensions that describe valence and arousal 

(pleasantness and urgency). Though both dimensions turned out to be important predictors of 

the perceived feeling of participants (i.e., attained high weighting parameters), the two 

dimensions alone were apparently not sufficient to differentiate between emotions, which 

underpins Scherer’s (2009) critique (see also Fontaine, Scherer, Roesch, & Ellsworth, 2007).  

Lastly, the observation that 72% of the participants in the data set of study 1 used two 

emotion labels to describe their perceived feeling indicates that participants experienced rather 

complex emotions. This observation questions the idea of a limited number of basic emotions 

as proposed by affect program theorists (e.g., Ekman, 1992; Panksepp, 2005). As remarked 

before though, affect program theorists moved to acknowledge more complex emotions as well 

(Scherer, 2009). 

5.5 Conclusion 

The present thesis aimed at investigating the role of cognition in the emotion elicitation 

process. The studies were based on the idea that the multi-componential emotion process has 

to be broken down to its different processing levels by analyzing the links between all engaged 

components to attain a holistic understanding of emotions. By using a theoretical modeling 

approach, we were able to model the link between cognitive appraisals and the verbally labeled 

feeling of participants. It was demonstrated that emotions can be predicted from cognitive 

appraisal dimensions substantiating the important role of cognition in emotion differentiation. 

By applying machine learning models to analyze the relations between appraisals and different 

physiological responses we were again able to provide evidence for the existence of the 

respective link. In regards to the algorithmic level of the two paths, assumptions made by 

appraisal theory were elaborated and extended by comparing different model implementations, 

deductively generating new model parameters from empirical data and applying methods for 

the interpretation of black-box models. 

Scherer (1999) commented about the research on appraisal theories that “[t]heory 

development in this area may benefit from efforts to use computer modeling of appraisal theory, 

helping to test the consistency of predictions, simulate alternative outcomes, and evaluate 

alternative versions of theories” (p. 655). The two predictive modeling approaches presented in 

this thesis possess all of these valuable features and demonstrate how computational emotion 

models can advance emotion research. 
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6 Appendix – German Summary  

Trotz einer Vielzahl unterschiedlicher theoretischer Ansätze zur Erklärung von 

Emotionen, herrscht unter Emotionspsychologen weitgehende Einigkeit darüber, dass sich 

Emotionen aus multiplen Komponenten wie Kognition, Physiologie, Motivation und dem 

subjektiv erlebten Gefühl von Personen zusammensetzten. Unterschiede zwischen den 

Theorien existieren vor allem bezüglich der zeitlichen Reihenfolge, in der die einzelnen 

Komponenten auftreten und der Art und Weise, wie diese interagieren (für einen Überblick 

siehe Moors, 2009). Um den multidimensionalen Emotionsprozess zu untersuchen, betrachtet 

die vorliegende Dissertation zwei Subprozesse, die das Zusammenspiel der kognitiven 

Komponente mit der physiologischen Komponente (Studie 2) sowie mit der subjektiven 

Gefühlskomponente (Studie 1) beschreiben. Als theoretische Grundlage dienen der Arbeit 

sogenannte Appraisal-Theorien (z.B., Arnold, 1960; Frijda, 1986; Lazarus, 1991; Ortony, 

Clore, & Collins, 1988; Scherer, 1984; Smith & Ellsworth, 1985), insbesondere das Component 

Process Model (CPM) von Scherer (1984, 2001, 2009). Diese gehen davon aus, dass die 

kognitive Evaluation eines Reizes auf mehreren emotionsrelevanten Bewertungsdimensionen 

das zentrale Element eines jeden Emotionsprozesses ist und Veränderungen in allen anderen 

Komponenten durch diese kognitive Evaluation initiiert werden. Die zwei vorgestellten Studien 

haben das Ziel, die jeweiligen Zusammenhänge zwischen den Emotionskomponenten 

aufzuzeigen und somit die zentrale Rolle der kognitiven Komponente zu validieren. Darüber 

hinaus sollen die algorithmischen Eigenschaften der beiden Prozesse analysiert werden. Die 

Studien greifen dabei auf unterschiedliche prädiktive Modellierungsansätze zurück – 

theoretisch-informierte Modellierung und uninformierte Machine-Learning-Modelle 

(sogenannte Black-Box-Modelle). 

6.1 Studie 1: Der Appraisal-Gefühl-Pfad 

6.1.1 Theorie 

Scherers (2001) CPM geht von 16 unterschiedlichen Appraisal-Dimensionen aus, durch 

die die Relevanz (relevance detection) und möglichen Auswirkungen eines Ereignisses 

(implication assessment), das Potential mögliche Folgen zu bewältigen (coping potential) 

sowie die normative Signifikanz (normative significance) eines Ereignisses bewertet werden. 

Er geht weiter davon aus, dass jede der 16 Dimensionen auf einer kontinuierlichen Skala 

bewertet wird, wodurch eine große Anzahl an unterschiedlichen Bewertungsmustern entstehen 
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kann und folglich eine große Anzahl unterschiedlicher Emotionszustände. Scherer (2001) 

nimmt jedoch an, dass manche dieser Appraisal-Kombinationen öfter auftreten als andere. Er 

bezeichnet diese häufigeren Emotionszustände, die außerdem mit Emotionsbegriffen benannt 

werden können, als Modalemotionen (modal emotions). Aus der Annahme, dass der kognitive 

Appraisal-Prozess Veränderungen in allen anderen Komponenten initiiert und so zwischen 

verschiedenen Emotionen differenziert, leitet Scherer (2001) ab, dass subjektiv-erlebte Gefühle 

(bzw. die Emotionsbegriffe mit denen Personen diese beschreiben) aus Appraisal-

Bewertungsmustern vorhersagbar sein sollten. Dabei geht er außerdem davon aus, dass die 

einzelnen Appraisal-Dimensionen unterschiedlich wichtig für die Differenzierung von erlebten 

Emotionen sind.  

6.1.2 Methode 

Aufgrund der relativ detaillierten Annahmen die das CPM bezüglich des Appraisal-

Gefühl-Pfads trifft, wurde eine theoretisch-informierte Modellierung für die Untersuchung 

dieses Zusammenhangs gewählt. Dabei wurden Scherers (2001) theoretische Hypothesen in ein 

mathematisches Modell übersetzt und anhand ihrer Prädiktionskraft evaluiert. Sollte die 

Theorie den Prozess korrekt abbilden, so sollte das computationale Modell in der Lage sein, 

auf Basis von empirisch erfassten Appraisal-Bewertungen, das dazugehörige erlebte Gefühl 

von ProbandInnen korrekt vorherzusagen.  

Die Verrechnung der Appraisal-Bewertungen zur Bestimmung des erlebten Gefühls 

wurde als eine Distanzmetrik zur verschiedenen, ebenfalls empirisch erfassten 

Emotionsprototypen umgesetzt. Dabei wird die Ähnlichkeit des empirisch erfassten Appraisal-

Musters zu einem prototypischen Appraisal-Muster bestimmt, dass die durchschnittlichen 

Appraisalbewertungen über Beobachtungen, die mit dem gleichen Emotionsbegriff 

beschrieben wurden, abbildet. Es wird die Emotion vorhergesagt, deren Emotionsprotyp am 

ähnlichsten zum jeweiligen Input-Muster ist. Über vier unterschiedliche Modelle dieser Art 

wurde außerdem die Gewichtung der Appraisal-Dimensionen innerhalb der Distanzberechnung 

variiert. Dabei wurden unterschiedlich komplexe Gewichtungsfunktionen sowie aus der 

Theorie abgeleitete und empirisch geschätzte Gewichtungsparameter verglichen. Für die 

Evaluierung der out-of-sample Modelperformanz sowie die Schätzung der Modellparameter 

(Prototypen und Gewichtungsparameter) wurde ein Datensatz (n = 6591; weiblich = 4491) von 

Scherer and Meuleman (2013) verwendet. In der zugehörigen Studie wurden ProbandInnen 

gebeten sich an eine emotionale Episode aus ihrer Vergangenheit zu erinnern, das jeweils 

erlebte Gefühl mit Emotionsbegriffen zu beschreiben sowie die 16 Appraisal-Dimensionen des 
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CPMs mit einem hierfür entwickelten Fragebogen zu bewerten (Geneva Emotion Research 

Group, 2002).  

6.1.3 Ergebnisse und Diskussion 

Die Studie zeigt, dass die Verknüpfung zwischen den emotions-relevanten Appraisal-

Dimensionen und dem subjektiven Gefühl von ProbandInnen tatsächlich existiert (konsistent 

zu den Befunden von Scherer, 1993; Scherer & Meuleman, 2013). Unabhängig von ihrem 

Gewichtungsalgorithmus waren alle vier Modelle in der Lage das erlebte Gefühl (d.h. die 

Emotionsbegriffe) besser vorherzusagen als ein naives Baseline-Modell. Die Höhe der 

erreichten Performanz variierte jedoch zwischen den Modellen. Basierend auf der out-of-

sample Vorhersagekraft (insgesamt sowie für die einzelnen Emotionsklassen und -familien), 

der Fähigkeit die Verteilung der Emotionsklassen im Datensatz korrekt wiederzugeben sowie 

der Sparsamkeit des Models, wurde Modell M3 als das bevorzugte klassifiziert. Dieses Modell 

gewichtet die 16 Appraisal-Dimensionen unterschiedlich stark so wie es von Scherer (2001) 

theoretisch angenommen wurde und verwendet Gewichtungsparameter, die mithilfe eines 

genetischen Algorithmus (Differential Evolution; Storn & Price, 1997) aus den empirischen 

Daten geschätzt wurden. Eine Gleichgewichtung der Appraisal-Dimensionen (Model M1), die 

Verwendung von aus der Theorie abgeleiteten Gewichtungsparametern (Model M2) sowie ein 

komplexerer Gewichtungsalgorithmus (Model M4) schienen die Prädiktionsleistung dagegen 

einzuschränken.  

Der Vergleich zu einem baumbasierten Machine-Learning-Algorithmus (Random 

Forest; siehe James, Witten, Hastie, & Tibshirani, 2013) zeigte darüber hinaus, dass die 

Vorhersagekraft mit einer höheren Modellkomplexität noch etwas gesteigert werden kann. Die 

leicht höhere Performanz des Random Forests wurde auf dessen Fähigkeit zurückgeführt, 

mehrere Klassifizierungsräume für die einzelnen Emotionen zu erlernen. Im Rückschluss auf 

den theoretisch-informierten Prototypenansatz wurde deshalb angenommen, dass die 

Implementierung mehrerer Prototypen (d.h., mehrerer prototypischer Appraisal-Muster) pro 

Emotion die Performanz der theoretischen Modelle potentiell verbessern könnte.  

Auch mit dem Machine-Learning-Modell konnte jedoch keine perfekte Vorhersage der 

Emotionsklassen erreicht werden, was unter anderem auf einen hohen Messfehler in den 

erhobenen Variablen hindeutet. Als eine weitere potentielle Limitation der Studie wurde 

außerdem die Art der Prototypen-Berechnung angeführt. Die aus dem empirischen Datensatz 

berechneten Prototypen stellen die mittlere Ausprägung aller Appraisal-Muster dar, die mit der 

jeweiligen Emotion beschrieben wurden. Da die ProbandInnen jedoch sehr häufig zwei 
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Emotionsbegriffe zur Beschreibung ihrer Gefühle wählten (in 72% aller Beobachtungen) und 

solche ambigen Beobachtungen jeweils in die Berechnung zweier unterschiedlicher 

Emotionsprototypen eingingen, kann dies die Differenzierbarkeit der Prototypen beeinflusst 

haben.  

6.2 Studie 2: Der Appraisal-Physiologie-Pfad 

6.2.1 Theorie 

Im Gegensatz zum Appraisal-Gefühl-Pfad macht das CPM nur wenige konkrete 

Annahmen zum Zusammenhang von Appraisal und Physiologie. Für zehn der Appraisal-

Dimensionen im CPM formuliert Scherer (2009) Vermutungen über deren Effekt auf die 

physiologische Komponente (z.B. als angenehm bewerte Reize gehen mit einem Anstieg in der 

Herzfrequenz einher, während unangenehme Reize zu einer niedrigeren Herzfrequenz führen). 

Da diese Annahmen recht unkonkret sind und außerdem auf rein theoretischen Überlegungen 

basieren, sind diese als eher spekulativ einzuordnen. Darüber hinaus gibt es auch einige 

empirische Studien, die den Zusammenhang zwischen einzelnen Appraisal-Dimensionen und 

verschiedenen physiologischen Reaktionen untersucht haben (z.B., Aue, Flykt, & Scherer, 

2007; Aue & Scherer, 2008; Delplanque et al., 2009; Gentsch, Grandjean, & Scherer, 2013; 

Kreibig, Gendolla, & Scherer, 2012; Lanctôt & Hess, 2007; van Reekum et al., 2004). Obwohl 

die Studien einen ersten Einblick in den Appraisal-Physiologie-Pfad bieten, weisen sie jedoch 

einige Schwachstellen auf (z.B., kleine Stichproben, Fokus auf einige wenige Appraisal-

Dimensionen, experimentelle Induktion von Appraisal-Bewertungen ohne ausreichende 

Kontrolle über tatsächliche Effekte der Experimentalbedingungen). 

6.2.2 Methode 

Aufgrund der weniger verlässlichen theoretischen sowie empirischen Annahmen über 

den Appraisal-Physiologie-Pfad, wurde in Studie 2 eine uninformierte Machine-Learning-

Modellierung herangezogen. Statt den mathematischen Zusammenhang wie in Studie 1 vorher 

zu definieren, sind Machine-Learning-Modelle in der Lage die Beziehung zwischen Input (hier 

Appraisal-Dimensionen) und Output (hier physiologische Reaktionen) selbstständig 

abzubilden. In der Studie wurden ProbandInnen verschiedene emotionale Videosequenzen 

vorgespielt, während fünf verschiedenen physiologische Signale erhoben wurden – 

Elektromyographie an drei Gesichtsmuskeln (zygomaticus major, frontalis, corrugator 

supercilii), Hautleitfähigkeit und Herzratenvariabilität. Im Anschluss bewerteten die 
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ProbandInnen wiederrum Appraisal-Dimensionen mithilfe eines Fragebogens, der auf dem 

Geneva Appraisal Questionnaire (GAQ; Geneva Emotion Research Group, 2002) basiert. 

Insgesamt gingen 1556 Beobachtungen von 157 Versuchspersonen (weiblich = 95) in die 

nachfolgende Modellierung ein.  

Zur Beschreibung der physiologischen Kanäle wurden insgesamt 134 Features 

berechnet, die die Amplituden- und Frequenzeigenschaften der jeweiligen Signale 

charakterisierten. Verschiedene (lineare und non-lineare) Machine-Learning-Algorithmen 

wurden trainiert, um mithilfe der berechneten physiologischen Features die erhobenen 

Appraisal-Dimensionen vorherzusagen. Zur weiteren Interpretation der Modelle, wurden 

verschiedene Methoden zur Erhöhung der Interpretierbarkeit von Machine-Learning-Modellen 

angewendet (Molnar, 2019). 

6.2.3 Ergebnisse und Diskussion 

Die beste Vorhersage der Appraisal-Dimensionen durch die physiologischen 

Prädiktoren wurde erneut mit einem baumbasierten Machine-Learning-Algorithmus erzielt. 

Der Random Forest erreichte ein R2, das für die einzelnen Appraisal-Dimensionen zwischen -

.016 (urgency-Dimension) und .407 (pleasantness-Dimension) schwankte. Da dieses Modell 

auch in der Lage ist non-lineare Zusammenhänge abzubilden und eine deutlich bessere 

Performanz als das lineare Lasso-Modell (siehe James et al., 2013) aufwies, wurde gefolgert, 

dass der Zusammenhang zwischen den Appraisal-Dimensionen und den physiologischen 

Kanälen nicht linear ist. Diese Annahme wurde außerdem durch die deskriptive Analyse der 

Accumulated-Local-Effects-Plots (ALE) unterstützt, die für mögliche Werte eines einzelnen 

Features den Effekt auf die abhängige Variable (hier die jeweilige Appraisal-Dimension) 

visualisieren (Molnar, 2019) und die ebenfalls non-lineare Relationen abbildeten. Nicht alle der 

untersuchten Appraisal-Dimensionen konnten jedoch mit den physiologischen Features robust 

vorhergesagt werden. Deshalb wurde angenommen, dass diese Appraisal-Dimensionen 

möglicherweise mit anderen physiologischen Kanälen zusammenhängen, die in der Studie 

nicht berücksichtig wurden. Durch die Konstruktion zweier verschiedener Importance-Maße 

für die fünf physiologischen Signale, konnte gezeigt werde, dass auch für die Dimensionen, die 

vorhergesagt werden konnten nicht alle Blöcke gleich viel Varianz aufklärten. Außerdem 

wurde gezeigt, dass nur wenige physiologische Kanäle inkrementelle Varianz in den Appraisal-

Dimensionen aufklärten, was wahrscheinlich auf korrelative Zusammenhänge zwischen den 

Features zurückzuführen ist.  
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Neben den Items des GAQ (Geneva Emotion Research Group, 2002), der auch zur 

Erfassung der Appraisal-Dimensionen für Studie 1 verwendet wurde, wurden für Studie 2 

weitere Items konstruiert, die nach der Evaluation der Appraisal-Dimensionen aus Perspektive 

des Video-Protagonisten fragten. Dabei wurde für diese Dimensionen ein höheres R2 erreicht 

als für die egozentrisch evaluierten Dimensionen. Dies weist darauf hin, dass in passiven 

Beobachtungssituationen, in denen sich in einen Protagonisten eingefühlt wird, ein weiteres Set 

an Appraisal-Dimensionen relevant ist.  

6.3 Konklusion 

Die präsentierten Studien sind in der Lage, den Zusammenhang der kognitiven 

Evaluation eines Stimulus zum erlebten Gefühl sowie zu physiologischen Reaktionen während 

einer emotionalen Episode nachzuweisen. Damit bestätigen die Ergebnisse die zentrale Rolle 

der kognitiven Komponente, wie sie von Scherer (1984, 2001, 2009) angenommen wird. 

Mithilfe der angewendeten prädiktiven Modellierungsansätze konnten Evidenz für bestehende 

Annahmen seiner Theorie gesammelt sowie neues Wissen aus empirischen Daten generiert 

werden.  
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