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Summary

This thesis introduces two extensions to statistical approaches improving modeling and estimation

in the field of network data analysis. The first contributing publication focuses on cross-sectional

networks based on Markov graphs, whereas the second takes the evolution of networks with dynamical

structure into account. Analyzing network data is challenging in terms of modeling and computation

due to large and dependent data sets. The dissertation starts with an overview of network data in

general and gives an introduction to the well-known model framework of exponential random graphs

models with its dependence assumptions, estimation routines, challenges, and solution approaches.

At the end of the introduction, main ideas of dynamic network models, the profile likelihood approach

for multivariate counting processes for network data, and the analogy of the Cox proportional hazards

and Poisson model with semiparametric estimation are presented.

The first part of this work proposes an extension for sampling Markov graphs as a subclass of expo-

nential random graph models in parallel to accelerate computation time in simulation-based routines.

The estimation of network models, especially of large networks, is demanding and requires Markov

chain Monte Carlo simulations. This publication recommends to exploit the conditional independence

structure in networks to make use of parallel draws. This idea is applied to a large ego network of

Facebook friendships, where an additional log transformation of network statistics accounts for de-

generacy problems. This extension is implemented in the open source R package pergm, available on

GitHub and a short introduction to the main functionalities is elaborated on in the thesis.

The second part of this work focuses on dynamic networks. In comparison to cross-sectional networks

from the first part, the development and application of longitudinal network data concentrates on

modeling changes of relations. Therefore, a profile likelihood approach to model time-stamped event

data is combined with a semiparametric approach including covariates built from network history.

This flexible semiparametric approach is applicable to large networks because standard software can

be used for estimation due to the analogy of the Cox proportional hazards and Poisson model with

artificial data structure. This extended method is applied to patent collaboration data of patents

submitted jointly by inventors with German residency between 2000 and 2013. Based on penalized

smoothing techniques, we include time dependent network statistics and exogenous covariates to

capture internal and external effects.





Zusammenfassung

In dieser Arbeit werden zwei Erweiterungen zu statistischen Ansätzen zur Verbesserung der Model-

lierung und Schätzung im Bereich der Analyse von Netzwerkdaten vorgestellt. Der erste Teil der

Arbeit konzentriert sich auf statische Netzwerke, welche auf Markov Graphen basieren, während

der zweite Teil dynamische Strukturen von Netzwerken berücksichtigt. Auf Grund der Größe

der Datensätze und ihrer abhängigen Struktur ist die Modellierung und die damit verbundenen

computationalen Aspekte eine Herausforderung. Die Dissertation beginnt mit einem generellen

Überblick über Netzwerkdaten und gibt eine Einführung in die bekannte Modellklasse der Exponen-

tial Random Graph Modelle mit ihren Abhängigkeitsannahmen, Schätzroutinen, Herausforderungen

und Lösungsansätzen. Abschließend werden Ideen zu dynamischen Netzwerkmodellen, der Profile-

Likelihood-Ansatz für multivariate Zählprozesse für Netzwerkdaten und die Analogie zwischen dem

Cox-Proportional-Hazards- und Poisson-Modell mit semiparametrischer Schätzung vorgestellt.

Im ersten Teil dieser Arbeit wird eine Erweiterung für das Simulieren von Markov Graphen als

Unterklasse der Exponential Random Graph Modelle vorgeschlagen, indem die simulationsbasierten

Routinen parallelisiert werden und somit die Rechenzeit verkürzt wird. Die Schätzung von Netzwerk-

modellen, insbesondere von großen Netzwerken, ist anspruchsvoll und benötigt Markov-Chain-Monte-

Carlo Simulationen. In dieser Arbeit wird empfohlen, die konditionale Unabhängigkeitsstruktur in

Netzwerken zur Nutzung paralleler Ziehungen zu verwenden. Diese Idee wird auf ein großes Ego-

Netzwerk von Facebook-Freundschaften angewendet und zusätzlich eine Transformation der Netz-

werkstatistiken durchgeführt, um das Modell und ihre Schätzung zu stabilisieren. Diese Erweiterung

ist mittels der Open-Source Statistiksoftware R im Paket pergm implementiert, auf GitHub verfügbar

und wird hier mit den wichtigsten Funktionalitäten kurz eingeführt.

Im zweiten Teil der Arbeit wird auf dynamische, im Vergleich zu statische Netzwerke aus dem ersten

Teil, eingegangen. Die Entwicklung und Anwendung von dynamischen Netzwerkmodellen konzentriert

sich auf die Modellierung von Beziehungsänderungen. Um Ereignisdaten, welche einen Zeitstempel

haben, modellieren zu können, wird daher ein Profile-Likelihood-Ansatz mit glatt modellierten Ko-

variablen kombiniert. Diese Kovariablen werden aus der Historie des Netzwerkes gebildet. Dieser flex-

ible, semiparametrische Ansatz kann für die Schätzung von großen Netzwerken angewandt werden, da

aufgrund der Analogie zwischen dem Cox-Proportional-Hazards- und Poisson-Modell mit künstlicher

Datenstruktur Standard-Software verwendet werden kann. Diese erweiterte Methode wird auf einen

Datensatz angewendet, welcher die Zusammenarbeit von Patenterfindern mit deutschem Wohnsitz

zwischen den Jahren 2000 und 2013 beinhaltet. In die Modellierung werden zeit-variierende Netz-

werkstatistiken und exogene Kovariablen, welche interne und externe Effekte auffangen sollen, mit

Hilfe von penalisierten Glättungstechniken aufgenommen.
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Chapter 1

Introduction

1.1 Overview

“The oft-repeated statement that “we live in a connected world” perhaps best captures,

in its simplicity, why networks have come to hold such interest in recent years.”

– Eric D. Kolaczyk (Kolaczyk, 2009)

The field of ‘social network analysis’ is spread into many disciplines and roots go back to the beginning

of the 20th century, where the term ‘social network’ is defined as a set of social actors with social

interactions. In the literature the term ‘network’ can have various meanings not least because it is

used in a variety of fields such as, e.g., computer science, social science, biology, or political science

(Freeman, 2004). Often, the term ‘network’ describes a system of inter-connected things, but at

the same time also a graph representing it (Kolaczyk, 2009). Every day we are exposed to social

networks like our friendship network, working relations, or our family relationships. Not surprisingly,

this interdisciplinary research area has been gaining importance over the last decades as the quote of

Kolaczyk emphasizes.

The focus of statistical analysis of network data – hence the focus of this thesis – is solving the

challenges of complex dependence structures of relational data in (often) high-dimensional settings.

The classical statistical analysis deals with data derived from independent observations, therefore most

methods are based on this assumption. The definition of networks, however, violates this assumption,

as the actors are by nature dependent due to social interactions. This crucial point makes network

data analysis challenging, but also very interesting. For a comprehensive introduction to statistical

analysis of network data, we refer the reader to Kolaczyk (2009).

The following sections give an overview and introduction to the work presented in this thesis and

summarize the most important approaches of the contributing articles. Section 1.2 introduces the

notation of static and dynamic network data, followed by an overview of data examples (Section 1.3).

Section 1.4 constitutes the most important concepts of exponential random graph models with their
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dependence assumptions, estimation methods, degeneracy problems as well as further challenges and

their solution approaches. In Section 1.5 dynamic network models are discussed and some details

about the profile likelihood approach for multivariate counting processes based on the Cox model

(Cox, 1972) for network data are given. A brief introduction to semiparametric estimation including

covariates more flexible completes this extended approach. For estimating the model the analogy of

the Cox proportional hazards and Poisson model with flexible predictor is exploited. Finally, Section

1.6 describes the main functionalities of the contributing R package pergm (Bauer, 2016).

1.2 Preface

The following notation and terms will be used in this thesis. We focus on modeling network data

consisting of N nodes (also called actors or vertices) and edges (also called ties or relationships).

Edges are random variables and potential links between a fixed set of nodes. The mathematical

graph representation is used to represent a binary network. Let Y ∈ {0, 1}N×N denote the adjacency

matrix of a network with N nodes and

Yij =

{
1, if an edge exists between i and j

0, otherwise,

with i, j ∈ {1, . . . , N}. Note that in most approaches and applications self-loops are excluded, i.e.,

Yii = 0 ∀ i, thus no ties from a node to itself are allowed. In general networks are subdivided in

directed and nondirected (also called undirected) graphs, the latter results in symmetric adjacency

matrices where Yij = Yji. Figure 1.1 visualizes an undirected toy network of four nodes and all

possible tie connections (left panel). The right panel shows the corresponding adjacency matrix, where

Y12 = Y21 etc., which means that this is an undirected network. Classical examples of undirected

1 2

3 4

1 2 3 4

1

2

3

4

Figure 1.1: Nondirected network with four nodes and possible edges (left panel), and the corresponding adja-
cency matrix (right panel).

networks are friendships or collaborations where people form relationships, however, objects can also

be represented by nodes. Email or traffic flows of computer networks usually result in directed graphs.
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Note that the random variable Y is capitalized, while the observed or realized network is denoted by

the corresponding lower case latter (y). There are also extensions where valued ties are considered,

however, in this work we focus on binary ties as is defined above. Table A.1 in the Appendix gives a

short overview of the notation used here.

So far, the notation considers static networks that do not evolve over time. In the second contributing

article of this thesis, we propose an approach for a smooth dynamic network model. Therefore, we

extend the notation to time dependent networks. To be specific, let Yij(t) be an entry of a matrix

valued Poisson process Y (t) ∈ RN×N with cumulated number of events of actor i and j at time t with

N actors and i, j = 1, . . . , N . We only observe the process at discrete time points t(1), t(2), . . . , t(m)

and define Yij,d = Yij(t(d)) for the evolving process.

1.3 Data examples

This thesis deals with two different data sets: (1) a snapshot of Facebook friendships and (2) patent

collaborations evolving over the timespan of 14 years. This section briefly summarizes the most

important attributes of these data examples.

(1) Ego network of Facebook friendships
(Leskovec and Mcauley, 2012)
Number of nodes: 1 034
Number of existing edges: 26 749
Network density: 0.05

(a) (b)

Figure 1.2: Facebook network using the force-directed layout algorithm by Fruchterman and Reingold (1991)
(a) and the ‘Distributed recursive (Graph) Layout’ (b).
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In the first article we apply our estimation approach to a subset of Facebook data collected from a

survey by Leskovec and Mcauley (2012). We use a subset of one out of ten ego networks available

from the Standford Large Dataset Collection (see Leskovec and Krevl, 2014). An ego network consists

of a focal node (“ego”) and all directly connected nodes including their ties to each other. In the

following we exclude the ego node. The remaining network is shown in Figure 1.2 using two different

layout algorithms, one is based on the force-directed algorithm by Fruchterman and Reingold (1991),

and the other uses the ‘Distributed recursive Layout’ (DrL) (see Martin et al., 2008), which focuses

on large graphs.

In the second article the model approach is applied to a large dynamic network of patent collaborations

of inventors with at least one inventor residing in Germany. The patents were submitted to the

European Patent Office (EPO) and the German Patent and Trademark Office (Deutsches Patent-

und Markenamt, DPMA). The data contain the submission date on a daily basis, an index list of

involved inventors, and the technological area in which the patent is submitted. Moreover, we have

information about the geographic coordinates of the inventors at the time of submission.

(2) Patent collaboration network of inventors
European Patent Office and German Patent & Trademark Office
Number of inventors: (a) 3 616 and (b) 2 993
Number of patents: (a) 1 707 and (b) 2 078
Network density: (a) 0.0003 and (b) 0.0005

(a) IT-methods (b) food chemistry

Figure 1.3: Visualization of two inventor networks aggregated over time for two technological areas. Vertex
size represents nodal degree.
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We focus on four technological areas and include only inventors with at least one joint patent over

the time period from 2000 till the end of 2013. Let the inventors be the nodes and the joint patents

the edges of our network graph.

Figure 1.3 shows two of these four networks, which are aggregated over time. Note that these networks

contain loops, which belong to single invented patents of inventors with at least one joint patent.

Moreover, these illustrations contain multiple edges because the same inventor pair is able to submit

several joint patents at different times. Furthermore, we see a few clusters referring to patents with a

higher number of inventors or inventors with a lot of joint patents. The densities of the two networks

per time point vary between 0 and 0.0005.

1.4 Exponential random graph models

1.4.1 Introduction and basic concepts

The reason for finding a statistical model for network data and not just using descriptive techniques

like calculating the density or centrality measurements is easy to understand. A statistical model is

able to control for both, a repeating pattern in the process of forming and dissolving ties and for

unstructured variability. We consider the observed network to be a realization of a set of networks

with similar patterns. Our aim is to extract the most important features of the process that generated

the observed network. Inference allows us to assess uncertainty, estimate the amount of contribution

of multiple mechanisms, and combine network structure with attributes.

The class of Exponential Random Graph Models (ERGMs) is a promising model class for capturing

structural tendencies of social networks. These statistical models are able to include complicated

dependence structures due to a variety of network statistics. We can think of network statistics as

summary measures or equivalent to covariables in regression models. Some of the most important

structures in undirected social networks are homophily and transitivity. Homophily expresses the

tendency that actors with similar properties are more likely to form a relationship. The well known

statement “friends of my friends are my friends” denotes a greater propensity to make friends between

two unconnected actors if there are already common friends and leads to transitivity. Frank (1991) as

well as Wasserman and Pattison (1996) propose a model of the form suggested by Frank and Strauss

(1986), which includes arbitrary statistics for directed and undirected graphs. This leads to the

definition of exponential random graph models, where we assume Y to be random with a probability

function

Pθ(Y = y) =
exp (θ′s(y))

κ(θ)
y ∈ Y, (1.1)

with θ = (θ1, . . . , θp) being the parameter vector of interest and s(·) = (s1(·), . . . , sp(·)) the corre-

sponding vector of network statistics. We denote the adjacency matrix of a graph with y and introduce

the normalizing constant κ(θ), which is necessary for a probability distribution. This constant

κ(θ) =
∑

y∈Y
exp(θ′s(y)) (1.2)
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is a sum over all possible networks and therefore unfeasible to calculate for large networks. If we con-

sider for example undirected graphs on N nodes, the sample space consists of 2(N2 ) elements. There-

fore, estimation requires simulation based methods using numerically demanding routines (Markov

chain Monte Carlo) (for more details see Section 1.4.3). In principle, we can include any network

configuration in s(·), whereby classical structural network statistics for undirected graphs are counts

of edges, 2-stars, or triangles that are visualized in Figure 1.4. An overview of the definitions of these

statistics can be found in Table A.2. The 2-star statistic can be written as the sum of the upper

Figure 1.4: Examples of network statistics: edge, 2-star (or 2-path), and triangle.

triangle matrix of the squared adjacency

s2(y) =

N∑

i=1

∑

j>i

N∑

k=1

yikykj .

The {i, j}-th element of the squared adjacency matrix y2 corresponds to the number of links that node

i and node j have in common, in other words, the number of common friends. Another interpretation

would be that the edge and 2-star statistic is the mean and variance of the degree distribution:

s1(y) =
1

2

∑

j≥1

j · dj(y) and s2(y) =
∑

j≥2

(
j

2

)
dj(y),

where dj is the number of nodes of degree j. Therefore, the edge parameter models the average

number of edges per node and the 2-star parameter captures the variation in the number of edges of

each node. The triangle statistic is defined as

s3(y) =

N∑

i=1

∑

j>i

∑

k>j

yikykjyji =
1

6
· tr(y3),

where y3 corresponds to the number of paths of length three and tr(·) denotes the trace of a matrix.

The triangle effect captures network clustering, like the phenomenon of “a friend of a friend is a

friend”.

In recent years extensions of these simple summary statistics have become popular. New specifications

like geometrically weighted degree (GWD), alternating k-star, and alternating k-triangle statistics

were developed by Snijders et al. (2006) and are introduced in more detail in Section 1.4.4.
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It is also possible to include actor attributes expressing for example the already mentioned homophily

effect. We can allow s(y) to incorporate information of exogenous covariates on nodes and edges that

are independent of the actual state of the edges. Moreover, network statistics are able to combine

exogenous and structural covariates. For instance, if we consider a friendship network one could

consider adding the number of common friends of the same age range, which is a combination of the

graph itself and the nodal covariate age.

Most estimation routines of ERGMs are based on simulations using Markov Chain Monte Carlo

(MCMC) methods. Therefore, a short note on the conditional form of the ERGM in (1.1) being

expressed through

logit Pθ

(
Yij = 1

∣∣∣ Yhk = yhk, ∀ (h, k) 6= (i, j)
)

= θ′∆ijs(y) (1.3)

is helpful. This conditional distribution, given the rest of the network for each dyad (pair of tie

variables of two nodes), allows interpretation based on a single edge between i and j. ∆ijs(y) is

defined as the change in the network statistic vector, which indicates the difference in network counts

(e.g. edges, 2-stars, triangles), where a tie is present at (i, j) or not, given the rest of the network.

These so-called change statistics are defined by

∆ijs(y) = s(y\yij , yij = yji = 1)− s(y\yij , yij = yji = 0),

that is, we toggle the edge yij between nodes i and j from present to absent. We denote the rest

of the graph, except for the tie yij as y\yij . The change statistics of the network configurations in

Figure 1.4 are easy to indicate and interpret. For example, we consider a model with these three

network statistics, hence the change in the 2-star denoted by
∑

k 6=i,j yik +
∑

k 6=i,j yjk, expresses the

sum of friends of i and j, given the rest of the network. The corresponding parameter indicates the

linear effect of one additional friend of i or j on the log-odds assuming all other covariates remain

the same. A similar interpretation follows from the triangle change specified through
∑

k 6=i,j yikyjk,
which indicates the number of friends that i and j have in common. The parameter of the triangle

statistic expresses the effect of an additional joint friend, given the rest stays the same.

A second important part, beside the choice of network statistics, is the assumed dependence structure.

These two steps go hand in hand as the dependence assumptions imply a particular model class, which

corresponds to certain parameter configurations. This is explained in the next Section 1.4.2 in more

detail. For a brief introduction and more details to ERGMs we refer to Lusher et al. (2013), Robins

et al. (2007b) and Snijders et al. (2006).

1.4.2 Dependence assumptions

A fundamental concept in ERGMs is the assumption of dependence between observations. Different

forms of dependence have been proposed over the last decades. In the following, we give a short

overview of the most important concepts. The simplest form of dependence leads to the Bernoulli

graphs of Erdős and Rényi (1959). Later, Holland and Leinhardt (1981) introduced the p1 model
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class, which is based on the dyadic independence assumption for directed graphs. These simple but

restrictive assumptions have been extended, leading to the exponential random graph model, which

has also been called p∗ model class by Frank and Strauss (1986). These authors introduced Markov

dependence, which was further developed by Pattison and Robins (2002) to realization-dependent

models, which assume that two tie variables are even conditionally dependent without sharing a

node but with a third tie variable being present. In the class of Markov models one can distinguish

between nondirected Markov random graphs, Markov models with new specifications of alternating

star parameters, and directed Markov graphs. Our work is based on the first subgroup, whereby we

describe the nondirected Markov random graph model in more detail below. For more details see

Lusher et al. (2013).

Bernoulli assumption

In a Bernoulli graph all tie variables are assumed to be independent. The (log-) probability of a

Bernoulli graph is proportional to the density, which is the weighted sum of the number of edges.

The logit of the conditional probability of a tie in a Bernoulli model is given by the edge parameter.

To model the adjacency matrix Y of a network, only the edge parameter, the corresponding statistic

for the number of edges, and the normalizing constant are needed.

Dyad-independent assumption (for directed graphs)

A graph fulfils the dyad-independent assumption if the so-called dyads are independent of each other,

which allows the tie from i to j to be independent of the tie from j to i. This assumption allows for

tendencies toward reciprocation.

Markov dependence assumption

Two tie variables are assumed to be dependent, given the rest of the graph, if they share a node. The

(log-) probability of a Markov random graph can be calculated – except of a constant – from different

network statistics like edges, stars, and triangles.

Nondirected Markov random graph model

Nondirected Markov random graph models are based on the Markov dependence assumption, where

two tie variables are assumed to be dependent, given the rest of the graph, if they share a node.

With this assumption, a full Markov model only depends on the following statistics: the number of

edges, the number of k-stars, and the number of triangles. These configurations are nested because

higher-order statistics contain lower-order statistics. For example a triangle consists of three 2-stars

and three edges. This characteristic allows statistical inference about the necessity of higher-order

given lower-order configurations.

For this work, an important nested subset of the full Markov model is the triad model of Frank and

Strauss (1986). This model includes the number of edges, 2-stars, and triangles, which captures both,

the mean and variance of the degree distribution, and transitivity and clustering.

A limitation of these nondirected Markov random graph models is that these statistics alone do not

fit well to social network data, for which social circuit models were developed. The problem with



1.4 Exponential random graph models 9

models based on the Markov dependence assumption is that complex social structures in real data

cannot be captured with these simple statistics.

1.4.3 Estimation of exponential random graph models

“Far better an approximate answer to the ‘right’ question, which is often vague, than an

‘exact’ answer to the wrong question, which can always be made precise.”

– John W. Tukey (Tukey, 1962)

For some years after Frank and Strauss (1986) published their seminal paper on exponential random

graph models, the estimation of social networks was restricted to pseudo-likelihood estimation ignoring

the dependence structure. Later, Geyer and Thompson (1992) suggested a stochastic algorithm to

approximate the maximum likelihood estimate in equation (1.1). Since then a variety of estimation

routines were developed. Snijders (2002), for instance, proposed a stochastic approximation algorithm

based on an approach of Robbins and Monro (1951), or Bayesian inference based on prior distributions

for the unknown parameters were introduced. In the following we focus on the most important

concepts and refer the reader to additional literature (e.g. Lusher et al., 2013; Snijders, 2002; Strauss

and Ikeda, 1990; Van Duijn et al., 2009) for approaches that are not detailed here.

This section ends with an introduction to network simulation because most of the estimation ap-

proaches require simulation procedures. After fitting a model, goodness-of-fit statistics or the ex-

amination of graph features are based on making draws from the distribution of graphs. Therefore,

one contributing article of this thesis focuses on parallel sampling in Markov graphs to accelerate

computation.

Pseudo-likelihood estimation

The first paper of exponential random graph models of Frank and Strauss (1986) already pointed out

the difficulties of the parameter estimation in ERGMs (1.1). Strauss and Ikeda (1990) came up with

an idea based on a method of Besag (1974) for spatial models that ignores the assumed dependence

structure. This pseudo-likelihood approach approximates the maximum likelihood estimation and

is computationally equivalent to a logistic regression. For undirected networks, the upper triangle

entries of the adjacency matrix correspond to the binary response and the change statistics of equation

(1.3) to the predictor vector. The pseudo-log-likelihood for undirected graphs is defined as

l(θ) =
N∑

i=1

∑

j>i

ln
(
Pθ

(
Yij = yij

∣∣∣ Yhk = yhk, ∀ (h, k) 6= (i, j)
))

, (1.4)

where for each potential edge in the adjacency matrix the probability, conditioned on the rest of

the graph, is summed up. Finding the maximum for equation (1.4) is straightforward, though this

pseudo-likelihood estimator (MPLE) is often less efficient and biased (see Van Duijn et al., 2009).

Alternatives have been suggested to correct or to avoid this bias in general.
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Maximum likelihood estimation: Geyer-Thompson approach

Geyer and Thompson (1992) suggested an algorithm based on the maximum likelihood principle

saying that the maximum likelihood estimator (MLE) for a given model and observed data is the

value that makes obtaining the observed data most likely. The method uses Markov chain Monte

Carlo approximations of the likelihood function (1.1) and was first applied to ERGMs by Handcock

(2003a) and extended to curved ERGMs by Hunter and Handcock (2006). This algorithm relies

on simulations in order to maximize the ratio of two likelihoods instead of directly evaluating the

log-likelihood

l(θ) = θ′s(y)− log (κ(θ)) , (1.5)

with its intractable normalizing constant. Let θ̃ be an arbitrarily fixed parameter, we can rewrite

expression (1.5) as

l(θ)− l(θ̃) = (θ − θ̃)′s(y)− log

(
κ(θ)

κ(θ̃)

)
, (1.6)

where the ratio of normalizing constants can be approximated by the sample mean. To be more

specific, we can reformulate the ratio

κ(θ)

κ(θ̃)
=
∑

y∈Y
exp

[(
θ − θ̃

)′
s(y)

] exp
(
θ̃′s(y)

)

κ(θ̃)
= Eθ̃

(
exp

[(
θ − θ̃

)′
s(Y )

])
, (1.7)

with the definition of expectation and formula (1.2). Hence, we approximate the expectation in (1.7)

through the sample mean

κ(θ)

κ(θ̃)
≈ 1

M

M∑

m=1

exp

[(
θ − θ̃

)′
s
(
Y (m)

)]
(1.8)

by exploiting the law of large numbers and replacing the ratio of constants in equation (1.6). To do

this, we draw a random sample Y (1), . . . ,Y (M) from the distribution defined by θ̃, which we obtain

by Markov chain Monte Carlo simulations described at the end of this section.

A crucial point in the algorithm is that the parameter θ̃ has to be close to the true maximum

likelihood estimator, in other words, s(y) lies in the relative interior of the convex hull on the sample

of statistics s
(
Y (1)

)
, . . . s

(
Y (M)

)
(Hummel et al., 2012). A good first choice to start with is the

MPLE, but typically the algorithm has to be restarted several times (see e.g. the implementation in

Handcock et al., 2017). Hummel et al. (2012) developed the “stepping” algorithm to systematically

move closer to the true estimator by defining pseudo-observations, which guarantee to stay in the

convex hull of the sample. Combining this and a log-normal approximation maximum likelihood

estimation procedures can be carried out, which leads to an improved estimation (see Hummel et al.,

2012).
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Stochastic approximation: Robbins-Monro algorithm

An alternative approach using maximum likelihood estimation for finding unknown parameters has

been proposed by Snijders (2002). This version of the Robbins and Monro (1951) algorithm works

without large samples of graphs or good starting parameters. The main aim of this stochastic ap-

proximation algorithm is to solve the moment equation. Finding the MLE or solving the moment

equation

Eθ (s(Y )) = s(y) (1.9)

is equivalent because equation (1.9) is satisfied if and only if θ̂ is the maximum likelihood estimator

of θ. This iterative procedure updates the parameter vector θ(m) in each iteration m through

θ(m+1) = θ(m) − arD−1
0

(
s
(
y(m)

)
− s (y)

)
, (1.10)

a Newton-Raphson-type equation, where D0 denotes a scaling matrix from an initial phase. In each

update step, one sampled graph s
(
y(m)

)
from the ERGM with parameter θ(m) based on MCMC

methods is generated. The factor ar guarantees a decreasing weight of the changes with increasing

number of iterations m. For more details or extensions see, e.g., Snijders (2002), Lusher et al. (2013)

and Okabayashi et al. (2012).

Simulation methods

A very important part in the inference of exponential random graph models in (1.1) is to sample graphs

from a target distribution based on Markov chain Monte Carlo methods. Most of these models are

intractable because of their normalizing constant. Nevertheless, evaluating the conditional probability

of an edge, assuming the rest remains the same, is straightforward because the constant cancels out.

Therefore, making draws from an ERGM is often possible and not computational expensive. The basic

idea of a Monte Carlo procedure is to generate a sequence of L graphs Y (0),Y (1), . . . ,Y (l), . . . ,Y (L)

by successively updating a tie variable until the Lth network, with large enough L, results in a draw

from the target distribution of our ERGM. There are two famous algorithms that are mostly used

to simulate networks: a Metropolis-Hastings sampling algorithm (Metropolis et al., 1953; Hastings,

1970) or a Gibbs sampler (Geman and Geman, 1987), which is a special case of the first and simulates

the edges based on the logit model resulting from (1.1). Note that in most cases Metropolis-Hastings

algorithms converge more efficiently because the changes in the adjacency matrix are more frequent.

In the following we focus on the Metropolis-Hastings algorithm because the first contributing article

of this thesis is based on this method.

We start the Metropolis-Hastings sampler (see also Lusher et al., 2013; Hunter et al., 2008b) with

an empty or the observed network Y (0) and sequentially update edges creating L networks. In each

iteration l for l = 1, . . . , L, we randomly choose one dyad y
(l−1)
ij for updating. The proposed network
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Y ∗ is equal to the current graph Y (l−1) but one node pair is toggled from y
(l−1)
ij to 1 − y(l−1)

ij . We

add or remove this tie with a certain acceptance probability

min

{
1,

Pθ(Y
∗)

Pθ(Y (l−1))

}
, (1.11)

with Pθ(Y ) being the target distribution. This so-called “Hastings ratio” denotes the ratio of how

much more likely the new proposed graph is compared to the old one. If the new proposal has a higher

probability, we accept the toggle, if it has a lower probability, we accept the change with a certain

probability depending on the difference. If the change is accepted, we set Y (l) = Y ∗, otherwise, we

set Y (l) = Y (l−1). After that we start again by choosing an edge to toggle till our graph is a draw

from the target distribution.

Note that no normalizing constant is needed because the Hastings ratio (1.11) can be expressed as

log

{
Pθ(Y

∗)
Pθ(Y (l−1))

}
= log

{
P(Yij = 1− y(l−1)

ij |Y \Yij = y
(l−1)
ij )

}
= θ′∆ijs(y), (1.12)

where only the differences in the statistics that result in changing y
(l−1)
ij to 1− y(l−1)

ij are needed. We

have already encountered this closed form in the section on conditional distributions of ERGMs (1.3),

where we called ∆ijs(y) the change statistic for adding an absent tie. Here in equation (1.12), we

define the change statistics as the differences in the statistics that result in toggling a tie from zero

to one or from one to zero.

The fundamental principle behind Markov chain Monte Carlo simulations is that once the sampler

settles into the target distribution – after a certain number of iterations (“burn-in”) – the next

graphs also derive from the ERGM. Therefore, the simulation chain just has to be started once. After

a reasonable number of burn-in iterations the first network is simulated and after further iterations

the Markov chain has ‘forgotten’ the last state and produces additional networks from this given

distribution. These so-called “thinning” steps guarantee independent draws. If the burn-in is large

enough, the algorithm is independent of the starting network.

Since inference or goodness-of-fit algorithms require us to simulate a large number of networks by

generating a sequence of L graphs each, it is important to use an efficient algorithm. A good choice

for speeding up the sampling algorithm is the “TNT” (tie-no tie) sampler proposed by Morris et al.

(2008). The TNT sampler modifies the Metropolis-Hastings MCMC routine by not selecting the

dyads to toggle randomly but with certain probabilities depending on the actual state of yij . In

practice, most networks are sparse and therefore, for random samplers the probability to select an

empty dyad and propose a change, which is rejected, is very high. In such cases the Markov chain

often stays longer in the same state. To avoid this, the TNT sampler chooses present and absent

edges with a probability of 0.5 each, which leads to a faster convergence of the Markov chain.

Further modifications of the simulation procedures to improve convergence of the Markov chains,

computation time, and properties of the simulated networks exist in the literature. An idea of

Snijders (2002) is to update multiple edges e.g. in form of triples or other natural groups of entries
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in the adjacency matrix at once. The decision process follows the same scheme as described above

but for multiple edges simultaneously. If a change is accepted, all dyads in the set are updated.

The groupwise probabilities are defined analogously but for the set of all possible outcomes for the

elements.

Snijders (2002) proposed as well to include “big updates” in the switching process to avoid convergence

problems. The idea is to update a bigger set of edges like rows or columns based on the concept of

the cluster-flipping algorithms for the Ising model (see Newman and Barkema, 1999). To extend this,

the set of edges consists of the complete network graph and results in its inversion. Nevertheless,

such an inversion step only occurs with a certain but small probability instead of a ‘normal’ step.

Referring to the quote of Tukey (1962) at the beginning, it is sometimes better to meet the challenges

of using a maximum likelihood approach by approximating it and getting an answer to the ‘right’

question, than using the simple pseudo-likelihood estimation and getting an ‘exact’ answer to the

wrong question.

1.4.4 Degeneracy problems

The estimation routines of exponential random graph models mentioned above that are used to solve

the problem of the intractable normalization constant, all rely on simulation approaches based on

Markov chain Monte Carlo methods. Thus, e.g. Snijders (2002), Snijders et al. (2006), Handcock

(2003a) or Handcock (2003b) address the problem of model degeneracy, which is related to these

procedures. The stationary distribution is termed degenerated if the probability distribution is con-

centrated on a small subset of sample space. Handcock (2003a) defines the term near-degeneracy

as a distribution assigning disproportionate probability mass to a small outcome space, where the

parameters lie on the boundary of the convex hull. Especially network models with simple statistics

like 2-stars, k-stars, and triangles typically suffer from (near) degeneracy problems because of the

so-called avalanche effect of the change statistics, where positive parameters result in a large increase

of the change statistics and always get larger (see Snijders et al., 2006). Schweinberger (2011) explores

different settings of ERGMs and discovers that these models favour graphs with a transition from

low-density to high-density graphs, making inference unstable and leading to convergence problems

of the algorithms.

Snijders et al. (2006), Robins et al. (2007a) or Wang et al. (2013) propose ideas avoiding this avalanche

effect by using configurations like the alternating k-stars or k-triangles leading to the social circuit

models. Accordingly, Snijders et al. (2006) define alternating k-stars as

u
(s)
λ (y) = S2 −

S3

λ
+
S4

λ2
− . . .+ (−1)N−3SN−1

λN−3
=

N−1∑

k=2

(−1)k
Sk
λk−2

,

where Sk(y) =
∑N

i=1

(yi+
k

)
for k ≥ 2 is the number of k-stars and yi+ is the degree of node i. The

alternating sign of the weights balances adjacent k-star counts and decreases problems of degeneracy.

Modeling transitivity by using triangle counts and triangles of higher order often results in degenerated
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models. Therefore, Snijders et al. (2006) defined – similar to the alternating k-stars – the alternating

k-triangles as

u
(t)
λ (y) = 3T1 −

T2

λ
+
T3

λ2
− . . .+ (−1)N−3TN−2

λN−3
, where

Tk =
N∑

i=1

N∑

j>i

yij

(∑
h6=i,j yihyhj

k

)

is the number of k-triangles for k ≥ 2 and

T1 =
1

3

N∑

i=1

N∑

j>i

yij
∑

h6=i,j
yihyhj

is the number of 1-triangles. Note that
∑

h6=i,j yihyhj is the change statistic of the triangle counts.

These ideas are aimed at reducing the weight of the linear effect of the statistics. The same motivation

is used in Thiemichen and Kauermann (2017) by proposing a non-parametric ERGM or in the first

contributing publication (Bauer et al., 2019) by using a logarithmic transformation of the change

statistics that stabilizes the estimation but keeps the interpretability of the parameters.

1.4.5 Challenges and solutions in speeding up computation time

A crucial aspect for estimating large networks is having a reasonable computation time. Several

proposals to speed up the time consuming simulation methods have been made by e.g. Morris et al.

(2008), who suggested the “TNT” sampler or Snijders (2002), who described a version to update

multiple edges simultaneously. These modifications are explained in more detail at the end of Section

1.4.3. The TNT sampler aims to converge more quickly to the target distribution, but is only useful

for quite sparse or dense networks, which can be seen in the traceplots in the first contributing

publication.

An obvious idea to reduce computation time is to adopt parallel computing, however, parallelization

of networks is not straightforward due to the dependent data structure of networks. Handcock et al.

(2017) have implemented an option of parallelization in the estimation routines of the R package ergm,

which is able to exploit multiple CPUs, CPU cores or computing clusters. However, this option starts

multiple Markov chains simultaneously, leading to an increasing memory and a lower improvement

of computation time. Further details and comparisons are evaluated in the first contributing article

in Chapter 2, where a different approach of simulating networks in parallel is discussed.

One key rule for parallel computing is that communication between workers (also called threads) costs

a lot of time. Therefore, the aim is always to keep the communication to a minimum and to maximize

the size of work in each divided step (see Schmidberger et al., 2009). This key rule led us to our first

idea, which we call the “block-parallel” algorithm. This algorithm is also based on the Markovian

independence assumption to draw independent node pairs in a network, which is described in more

detail in Chapter 2. Summing up, we need to construct a way to draw independent node pairs, thus

node pairs, which do not share a node. The first way of making use of the Markovian structure in
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the simulation step is the one mentioned in the first contributing publication of this thesis where

nodes are shuffled randomly, paired and sent to different computing cores as independent tasks. The

second possibility is constructing independent node pairs from a symmetric Latin square with a unique

diagonal (see e.g. Andersen and Hilton, 1980). Figure 1.5 shows such a Latin square decomposition

for a four node example. The adjacency matrix for undirected graphs is symmetric, which means

1 2 3 4
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Figure 1.5: Visualization of a symmetric Latin square with a unique diagonal for a four node example.

it is sufficient to only consider the upper triangle. The numbers in the upper triangle correspond

to the simulation steps in the parallel Metropolis-Hastings sampler. In the first simulation step, the

node pairs (1, 2) and (3, 4) can be simulated simultaneously. In the second step, we simulate the

pairs (1, 3) and (2, 4) in parallel, and in the third step (1, 4) and (2, 3). This procedure is scalable to

larger networks with an increasing number of computing nodes. Assuming N/2 computing cores, we

can complete a Metropolis-Hastings loop in N − 1 steps. Therefore, the computing time for network

simulation increases just linearly with the number of nodes in the network (N), if sufficient computing

cores are available. Obviously, when the number of nodes in a network is large, we may not have

access to N/2 computing cores. It is also likely that the communication task between the cores is

getting too demanding and devours the computational gains.

One solution for this kind of problem is a blockwise decomposition of the adjacency matrix by extend-

ing the conditional independence ideas from above. In this case, not only single edges are simulated

on the cores, but blocks of independent pairs of edges are simulated. This speeds up the computa-

tion through the faster pre-processing as well as through saving time because of less communication

between the cores. We therefore select submatrices of the adjacency matrix. This approach is also

advisable if the number of nodes in the network is large and only a fixed number of cores is available.

Figure 1.6 visualizes the idea of grouping a network with N = 8 nodes into independent blocks of node

pairs. The block number indicates the step number. Blocks with the same number can be simulated

simultaneously. In this example, two computing cores complete one Metropolis-Hastings loop in five

rounds as the diagonal elements of the Latin square have to be considered at least halfway. In the

first simulation step, we consider the edges Y13, Y14, Y23, and Y24 sequentially on one core and at the

same time the edges Y57, Y58, Y67, and Y68 on the other core, in other words, in parallel. These are
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Figure 1.6: Visualization of a blockwise decomposition of an eight node example with the help of a symmetric
Latin square.

the submatrices with entry one in the blockwise Latin square in Figure 1.6. The other steps follow

the same scheme.

A comparison of the performance between the single entry choice of edges (called “parallel”) and

blockwise decomposition is shown in Figure 1.7, where three networks are simulated on eight cores

for different numbers of nodes. Obviously, a reduction of computing time is achieved for the block-
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Figure 1.7: Performance of block-parallel and parallel algorithm for different network dimensions. The y-axis
shows time in seconds to simulate three networks on eight cores.

parallel algorithm especially for large networks with N = 2200 nodes. The main reasons for this

are the reduction of communication costs and the load balancing as well as the optimization of data

locality issues.
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1.4.6 Further restraints and open questions

The field of statistical network analysis is still not completely explored and a lot of research can be

done to improve estimation algorithms, or handle different kinds of networks like ones with valued

edges (e.g. Krivitsky, 2012; Desmarais and Cranmer, 2012a), missing data (e.g. Handcock and Gile,

2010; Koskinen et al., 2010), and nodal heterogeneity (e.g. Krivitsky et al., 2009; Thiemichen et al.,

2016).

Even though estimation methods that try to find the (approximate) maximum likelihood estimator

exist, one has to keep in mind that the Markov chains only run a finite time whereas the optimal result

would be obtained after an infinite number of steps. Moreover, existing goodness-of-fit routines rely

on simulating graphs from the fitted model and compare their statistics graphically to the observed

analogues (cf. Hunter et al., 2008a). However, it remains unclear if the simulated networks come

from the ‘true’ distribution or only resemble the network statistics. A surprising fact was found by

Handcock (2003a), who fits an ERGM and then compares a large number of simulated networks to the

observed one. The simulated networks differ a lot due to the extremely high number of possibilities.

The maximum likelihood estimator of a parameter is the value that makes observing a given network

most likely, though in most cases the probability in comparison to all possible networks is not high

enough.

1.5 Dynamic network models

The second contributing article of this thesis suggests a smooth dynamic network model for patent

collaboration data. This model focuses on a profile likelihood approach to model time-stamped event

data based on a multivariate counting process. First, an overview of existing dynamic models for

network data is given, which is followed by a short introduction of counting processes and the profile

likelihood approach based on the Cox model (Cox, 1972). We further explore similarities of the

Cox proportional hazards and (additive) Poisson model. We extend this analogy to additive Poisson

models because we propose in our article a semiparametric approach including covariates more flexible

by penalized smoothing techniques.

1.5.1 Outline

Originally, the analysis for dynamic network data focused on collapsed panel data (e.g. Hanneke

et al., 2010) or small networks with only a few observation times and a few hundreds of nodes

(Snijders, 2001, 2005). On the one hand, most of the time data collection depends on discrete and

manually gathered information, on the other hand, methods for large and time-stamped data are

lacking. In general, models for dynamic network data can be divided into three, overlapping and not

encompassing, strands: actor-oriented, tie-oriented, and models based on event history (see Figure

1.8 for an overview). The most known models of these strands are the Stochastic Actor-Oriented

Model (SAOM) of Snijders (2001), tie-oriented models like the extensions of the Exponential Random

Graph Model (ERGM) to longitudinal (LERGM; Koskinen and Snijders, 2013) or temporal (TERGM;
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Hanneke et al., 2010) network models, and the Relational Event Model (REM) of Butts (2008). The

main differences are different model assumptions that decide about the interpretation of the estimates

and the conclusions, which can be drawn. In comparison to SAOMs, which are actor-oriented, ERGMs

are global models and focus on the importance of tie structures. Furthermore, the treatment of time

differs for these models whereby SAOM and LERGM follow a continuous-time and TERGM follows

a discrete-time process. A crucial difference between tie-oriented models and event history models is

that the former models a stationary distribution whereas the latter models the changes between two

time points and focuses on the search of driving forces for the network evolution and not on predicting

future ties.

actor-oriented tie-orientedevent history models

TERGM

LERGM

SAOM

SAOM Extension

REM

DyNAM

Brandes (2009)

Perry & Wolfe (2013)
Greenan (2015)

Vu et al. (2011)

STERGM

(Krivitsky & Handcock, 2014)

(Hanneke, 2010)

(Koskinen et. al. 2013)

(Stadtfeld, 2017)

(Snijders & Pickup, 2017)

undirected

continuous-time

(Snijders, 1996)

continuous-time

continuous-time
directed

Markov process

coordination

multivariate point process

multicast events

weighted

nonstationary
event history

separation of incidence duration

(Butts, 2008)

Figure 1.8: Overview of existing dynamic models (not encompassing).

In the following, we introduce the basic concepts of the most important models in dynamic network

analysis starting with the first approaches in this field.

Snijders (1996) proposed a model class for longitudinal network data known as stochastic actor-based

model (see also Snijders, 2001, 2005; Snijders et al., 2010). SAOMs focus on network dynamics

influenced by the change of relations, which are driven by an actor. This actor-oriented perspective

has the consequence that tie changes are modeled as results from actions by actors, more precisely,

that actors control their outgoing ties. Hence, SAOMs are actor-driven. These decisions are nested



1.5 Dynamic network models 19

in a Markov process, i.e., for any point of time the present network is not affected by past events, but

provides insight into its further development. The models are based on continuous-time Markov chain

models although the networks are observed at discrete times with a finite number of observation waves.

The network evolution or dissolution process is divided into two parts. The first part determines the

waiting time until a change in the network is made by one actor and is modeled by optimizing a ‘rate

function’, which contains information about the general affinity of changing ties of each actor. The

second part is called ‘objective function’ and represents the utility of certain possible tie changes for an

arbitrary actor. This function determines the preferred network over the set of all possible ones and is

based on a multinomial logit model. Both sub-processes depend on exogenous covariates, endogenous

network effects, or effects derived from network positions. The estimation is done using the method

of moments approach with stochastic approximation by Robbins and Monro (1951). Snijders and

Pickup (2017) extent the latter model for nondirected ties by using a two-step process of opportunity

and choice. The two-sided choice resulting from undirected relations is decomposed into a timing or

opportunity process with one- or two-sided initiatives and a choice process. The latter process uses

one of three opportunities: agreement about a tie between two actors, one actor decides alone about

a tie, or the decision is based on a combined objective function. Depending on different assumptions

regarding various applications, one of these six combinations is selected as modeling approach.

An early attempt extending the exponential random graph model to dynamic network data settings

has been proposed by Robins and Pattison (2001) and was further explored by Hanneke et al. (2010).

The idea of Robins and Pattison (2001) is to use a Markov random graph approach for temporal

evolution of social networks by generalizing the process to changes of discrete time points. Hanneke

et al. (2010) called this extension Temporal Exponential Random Graph Model (TERGM) and added

algorithmic and inferential developments like hypothesis tests, more flexible parametrization, and

explorations of statistical properties. A major point of these discrete temporal models is the Markov

dependence assumption over time. At each time t a network Y t is assumed to be independent of

Y 1, . . . ,Y t−2 given Y t−1. More generally, a TERGM that incorporates dependencies of K previously

observed networks is denoted by

Pθ(Y
t|Y t−K , . . . ,Y t−1,θ) =

exp{θ′s(Y t,Y t−1, . . . ,Y t−K)}
κ(θ,Y t−K , . . . ,Y t−1)

, (1.13)

where the choice of K ∈ {0, 1, . . . , T − 1} needs to be in line with the temporal dependence of

network Y t. Estimation of TERGMs can be carried out by maximum likelihood methods using

MCMC sampling techniques to approximate the intractable normalizing constant. These estimation

approaches resemble the ones used in ERGMs, but have small differences. Like in the time-invariant

ERGM, the procedures used are challenging and computationally expensive. Therefore, Desmarais

and Cranmer (2012b) suggested a pseudo-likelihood approach with bootstrap confidence intervals

to correct the biased uncertainty measurement, which was described by Leifeld et al. (2018) for

TERGMs. For detailed information we refer the reader to Hanneke et al. (2010), Leifeld et al. (2018)

and Desmarais and Cranmer (2012b).
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Krivitsky and Handcock (2014) suggested combining the discrete-time temporal exponential random

graph model for network dynamics of Hanneke et al. (2010) with the nonlinear parametrization known

as curved ERGMs of Hunter and Handcock (2006). These exponential-family random graph models

focus on a separable modeling approach of incidence and duration of ties, calling this model class

Separable Temporal ERGM (STERGM). This separate parametrization within a time-step allows for

individual interpretation and therefore more flexibility. Within this method, a further distinction

between tie formation and dissolution can be explored. In many applications this separation is useful.

STERGM can be seen as a subclass of TERGM defined in (1.13) with K = 1.

A natural procedure for modeling event data, including time stamps, is using survival models like

the Cox proportional hazards model (Cox, 1972). Generally, events are independent and influenced

by exogenous effects. However, when modeling network data, the focus is primarily on potential

endogenous factors, which influence network creation and dissolution.

An approach for modeling social behavior dynamically as events or actions is known as the Relational

Event Model (REM) suggested by Butts (2008). This framework allows for likelihood-based infer-

ence from event data to detect social dependence patterns, estimate its strength, evaluate competing

settings within this patterns, and allow for non-stationary behavior. The relational event model com-

bines network structures with event history models for nondirected and directed ties by exploiting

a tie-based approach where potential relations are chosen independently conditioned on the past ac-

tions. This framework can include exogenous covariates influencing the future and sufficient statistics

capturing the impact of event history. These models aim to combine a theoretical based approach

with working inference and estimation for analyzing the process underlying social behavior. The cru-

cial point in the REM is the relational event, or action happening at time t ∈ R when an actor (the

“sender”) is pointing towards one “receiver”. It is assumed that the events follow an inhomogeneous

Poisson-type process conditioned on the past history and possibly other exogenous covariates.

Brandes et al. (2009) developed a framework for modeling dyadic event data of interactions between

actors and apply it to political event networks. Similar model specifications can be found in the

relational event model of Butts (2008) but with extension to weighted events. Parameter estimation

is based on maximum likelihood techniques and assumes an independence between rate and weight

parameters. Network statistics to capture reciprocity, structural balance, or activity and popularity

effects can be incorporated to detect influences of the network’s past on future events.

Most models in dynamic network analysis focus on directed relations where the actor controls the

outgoing ties. In political or social science, however, the question arises how individuals or states in

general jointly admit to forming network connections. An example for what Stadtfeld et al. (2017a)

call ‘coordination’ networks, are patent collaborations that arise by inventors, who mutually agree to

work together and submit joint patents. Stadtfeld et al. (2017a) introduced the Dynamic Network

Actor Model (DyNAM) for modeling relational event data of coordination networks. These models

consider dependency between observations, are constructed for undirected ties including a two-sided

process of building ties, and allow for time-stamped data. Moreover, it is possible to take different

mechanisms like tie formation and dissolution, unequal time gaps, and various types of ties into

account. DyNAMs aim to investigate dynamic coordination networks with different facets of ties
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(weighted, windowed, and signed) and consider internal network structures adjusting for homophily,

clustering, or preferential attachment effects. An important question in network science arises when

it comes to the decision process of actors formulating their favorable circumstances and preferences

given the opportunities. This two-sided process is an agreement of both actors being involved and

maybe a more complex dependence structure due to network and temporal dependence (see above

two-step process of Snijders and Pickup, 2017). Consider for example that, the data contains the

following information:

time inventors sign

month 1 1 ←→ 2 create

month 2 1 ←→ 3 create

month 6 2 ←→ 3 create

The decision process can be influenced by the temporal effect of the first two observations and by

the network structure that inventor 1 is involved in both patents of month 1 and 2. Another network

dependence assumption might play a role in the third observation because inventor 2 and 3 close

a triangle with this patent. Dynamic network actor models are designed for such time-stamped

coordination data combining parts of Snijders (1996, 2001) stochastic actor-oriented model and the

relational event model of Butts (2008). Stadtfeld et al. (2017a) merge an actor-oriented approach

where both actors i and j select each other from a set of actors with undirected relations. ‘Still’ actor-

oriented, actor i proposes a new tie to j at any time point, and j has to choose i as favored partner.

Inspired by Snijders et al. (2010) micro-model in SAOMs for determining the change, DyNAMs are

also developed in a continuous-time framework, modeling mutual choices with multinomial probability

models. A linear objective function evaluates changes in the process matrix. In order to model the

waiting time between tie proposals and realized changes, further steps are included in the model

framework. For optimizing the model parameter in the estimation routine, DyNAMs use a maximum

likelihood approach. For more details and discussion about the proposed framework see Stadtfeld

et al. (2017a,b), Butts (2017), and Snijders (2017).

Vu et al. (2011a) suggested an event history approach focusing on large networks with nodal statistics,

which extends earlier work from Butts (2008). This ‘egocentric network model’ of Vu et al. (2011a)

uses an efficient optimization algorithm derived from the partial likelihood to estimate nodal pro-

cesses based on statistics from network history. Later, Vu et al. (2011b) generalize and extend their

approach for dynamic egocentric models (Vu et al., 2011a) to a general continuous-time regression

model for longitudinal networks with time-varying network statistics embedded in an Aalen model

(Aalen et al., 2008). Furthermore, they unite techniques for a relational framework including a mul-

tivariate counting process for edge formation. The focus of their approach is on large networks and

efficient inference thereof. In the general framework, Vu et al. (2011b) formulate Yij(t) as a counting

process, which represents the number of ties from node i to j at time t. In the paper they restrict

their model to non-recurrent events and do not take any tie dissolution process into account. The
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model considered is based on a multivariate interdependent counting process Y (t) decomposed by

the Doob-Meyer theorem (Aalen et al., 2008),

Y (t) =

∫ t

0
λ(s) +M(t), (1.14)

with λ(t) denoting the intensity process or hazard rate and M(t) being the martingale noise. The

basis for this theory relies on the fact that counting processes are non-decreasing in time and can

therefore be regarded as submartingales. The intensity process is modeled in two different ways, a

multiplicative Cox or additive Aalen approach, which both take the past of the networks as network

statistics into account. λ(t) incorporates linear combinations or time-varying effects of these network

statistics. Estimation of the Cox-type model is carried out by exploiting the simplification of just

maximizing the so-called partial likelihood instead of the full one. By doing so, the baseline hazard is

considered as nuisance parameter. Combining this with the caching method of Vu et al. (2011a) results

in an efficient computation for large networks. The estimation of the Aalen model is based on linear

regression methods with the possibility to include kernel smoothing techniques for interpretability of

time-varying coefficients.

A different approach modeling time-stamped network data for social events is described by De Nooy

(2011). Based on a discrete-time event history model, De Nooy (2011) focuses on modeling tie forma-

tion, change, or dissolution by combining a multilevel design and time-varying covariates. Network

dependencies and endogenous effects are taken into account by applying a multilevel logistic regres-

sion analysis approach based on a General Linear (Mixed) Model (GLMM). Therefore, extensions to

a non-dichotomous target variable like a competing risk model in survival analysis is possible.

Perry and Wolfe (2013) describe an extension of a multivariate point process approach emphasizing

properties of the maximum partial likelihood inference and considering multicast interactions. The

authors propose a stratified Cox multiplicative intensity model for directed networks with covariates

built from network history. For simplifications, most research excludes simultaneous interactions or

uses approximated solutions like the Breslow-Peto correction (Breslow, 1972; Peto, 1972) or the Efron

(1977) approximation. Both approaches use a product over the risk terms of the tied events and give

a fair approximation of the likelihood function but can in some cases suffer from biased estimations

(Scheike and Sun, 2007). Breslow and Peto’s suggestion is easy to compute but the approximation

of Efron (1977) is closer to the proper likelihood because weighted risks are used. Perry and Wolfe

(2013) evaluate the approximation error between the model that includes multiple receivers explicitly

and the one that approximates the partial likelihood. They suggest a bias correction procedure based

on parametric bootstrap calculation for that error.

Greenan (2015) transfers the stochastic actor oriented model of Snijders (2001) to dynamic social

networks with the evolution of diffusion of innovations by combining the SAOM with a proportional

hazards model. The network and diffusion process are combined and considered as dependent on each

other, while the adoption times of the latter process follow a Cox regression model (Cox, 1972) with



1.5 Dynamic network models 23

a hazard function depending on covariates. The network dynamics are modeled via rate function like

it is known from the SAOM.

1.5.2 Cox’s regression model and multivariate counting processes for network

data

The most famous model class for fitting time-to-event data is known as the Cox proportional hazards

model for survival data. Cox (1972) denotes the hazard or intensity rate (for non-recurrent events)

λ(t) = lim
∆t→0

P (t ≤ T < t+ ∆t|T ≥ t)
∆t

(1.15)

for the survival time T , describing the risk of having an event at time t, given that no event has

occurred until t. The idea is to model the effects of covariates on the hazard rate, rather than the

hazard rate itself. For example, does the fact of having joint patents increase or decrease the hazard

of submitting new patents? Cox (1972) represents the hazard rate as

λ(t;x) = λ0(t) exp{βTx(t)}, t ≥ 0, (1.16)

with covariate vector x(t), which may be time dependent or not and unknown coefficient vector β.

The baseline hazard λ0(t) determines the underlying process but is unknown. Due to the individual

covariates, the baseline hazard becomes subject-specific. The basic Cox model assumes that all m

event times t(1), . . . , t(m) are distinct, and that the event for subject d occurred at time t(d). In order

to make inference, β and later λ, have to be estimated by maximizing

L(β) =
m∏

d=1

[
exp

(
βTxd(t(d))

)
∑

d′∈Od
exp

(
βTxd′(t(d))

)
]δd

(1.17)

with respect to β, where t(1), . . . , t(m) are the distinct survival times, Od is the risk set (in our

application called ‘option set’) at time t(d) and δd is the event indicator. Later Cox (1975) shows that

his suggested likelihood in (1.17) can be derived as the partial likelihood function and that β̂ is its

estimator. For estimating the cumulative hazard Λ(t) =
∫ t

0 λ(s)ds, Breslow (1972, 1974) proposes the

following estimator

Λ̂(t) =
∑

t(d)≤t

δd
∑

d′∈Od
exp

(
β̂Txd′(t(d))

) , (1.18)

based on linear interpolation between survival times. The baseline hazard λ0(t) is commonly treated

as nuisance parameter and considered to be a non-negative function with non-zero values over the

event time intervals.

Andersen and Gill (1982) and Johansen (1983) extend the model of Cox (1972) captured in equation

(1.16) by allowing recurrent events. Johansen (1983) derives a joint likelihood L(β,Λ) from an

extended Cox model and demonstrates that the partial likelihood of equation (1.17) derived from the
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full censored-data likelihood resembles a profile likelihood. To be more specific, L(β) = maxΛ L(β,Λ)

where L(β,Λ) is the joint likelihood for the unknown parameters β and Λ. Note that the maximum

of L(β̂,Λ) is the estimator (1.18) proposed by Breslow (1972).

In the same contribution to the discussion of the paper of Cox (1972), Breslow (1972) and Peto (1972)

independently suggested an approximation for handling events that take place at the same time. The

Peto-Breslow approximation for ties yields the likelihood

L(β) =

m∏

d=1

exp
(
βT
∑

d′C∈Cd
xd′C (t(d))

)

[∑
d′∈Od

exp
(
βTxd′(t(d))

)]|Cd| =

m∏

d=1

∏
d′C∈Cd

exp
(
βTxd′C (t(d))

)

[∑
d′∈Od

exp
(
βTxd′(t(d))

)]|Cd| , (1.19)

where
∑

d′C∈Cd
xd′C (t(d)) denotes the sum of the covariates over the set Cd, where |Cd| is the number

of subjects who have an event at time t(d). This approximation is similar to the original likelihood

of Cox (1972) shown in equation (1.17) and results in only small modifications to the score function

and fisher matrix. This approach is straightforward to calculate because it uses a product over the

risk terms of the tied events.

The Cox model with the hazard rate (1.16) can be formulated as a multivariate counting process

considered by Aalen (1978). This formulation allows transferring properties of the estimator and of

the distribution theory (cf. Andersen and Gill, 1982), which is advantageous. Furthermore, Andersen

and Gill (1982) sketch a generalized version of this counting process formulation for recurrent events,

complex censoring structures, and time dependent covariates. We adapt this representation for undi-

rected network data (see Vu et al., 2011a,b). Assume that networks evolve over time by creating

edges between two nodes at time t. For a set of N actors (nodes) a counting process Yij(t) denotes

the number of edges between actor i and j up to time t. The counting process is defined for a pair

(i, j) of actors (i, j = 1, . . . , N), resulting in a multivariate counting process

Y (t) = (Yij(t), i, j ∈ {1, . . . , N}, i 6= j) (1.20)

for all pairs of actors where no assumptions about the independence of individual processes are made.

We are primarily interested in modeling the intensity process λ(t) by decomposing the multivariate

counting process Y (t) using the Doob-Meyer theorem (see Aalen et al., 2008):

Y (t) =

∫ t

0
λ(s) +M(t), (1.21)

where M(t) is a local continuous-time martingale. The intensity process λ(t) describes the tendency

to experience events. Andersen and Gill (1982) propose modeling this process in Cox tradition (see

equation (1.16)) but with an additional indicator variable that is adjusted for recurrent events.

In our contributing article in Chapter 3 we discretize the evolving process Yij(t(d)) = Yij,d with

t(1), . . . , t(m) where d ∈ {1, . . . ,m} and model the intensity process as λd exp (ηij,d), where λd is
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the baseline hazard of the process and ηij,d the covariate process modeled by penalized smoothing

techniques. For simplicity we have assumed that the baseline hazard as well as the covariate process

are piecewise constant between the observed time points for t ∈ (t(d−1), t(d)]. The predictor ηij,d =

m(1)(x(1),ij,d) + . . . + m(P )(x(P ),ij,d) contains smooth functions m(·) based on penalized B-splines

for P covariates derived from network statistics or external effects. To be more specific, the smooth

functions are replaced by

m(x) =
∑

k

Bk(x)u, (1.22)

where Bk(·) is a K dimensional B-spline basis (see De Boor, 1978; Wood, 2017). That means the

predictor can be written as ηd = Bdu with Bd = (B(1),d, B(2),d, . . .) and uT = (uT(1), u
T
(2), . . .). B(1),d is

the basis matrix for the first covariate built from the the rows of the spline basis for each observation.

In order to make inference, the corresponding coefficient vector u, which contains the weights for the

basis functions Bd, has to be estimated. The contributing article in Chapter 3 gives more details.

Based on a piecewise constant baseline hazard λ0(t) = λd and covariate process ηij(t) = ηij,d for

t ∈ (t(d−1), t(d)], we derive the log-likelihood

l(λ1, . . . , λm,u) =
m∑

d=1


 ∑

(i,j)∈Cd

[log λd + ηij,d]− λd ·


 ∑

(i′,j′)∈Od

exp
(
ηi′j′,d

)



, (1.23)

where Cd is the index set of events at time t(d) and Od is the option or risk set. Due to ties, the index

set Cd consists of |Cd| elements, which is mostly greater than one. In order to find the estimators,

we optimize the score function

s(λ1, . . . , λm,u) =
∂l(λ1, . . . , λm,u)

∂λ1, . . . , ∂λm
=

m∑

d=1


 ∑

(i,j)∈Cd

[
1

λd

]
−


 ∑

(i′,j′)∈Od

exp
(
ηi′j′,d

)



 (1.24)

by setting s(λ1, . . . , λm,u) = 0 and
∑

(i,j)∈Cd

[
1
λd

]
= |Cd|

λd
, which yields

λ̂d =
|Cd|∑

(i′,j′)∈Od
exp

(
ηi′j′,d

) . (1.25)

Following the ideas of a profile likelihood approach, we insert (1.25) into (1.23) and obtain the profile

log-likelihood

l(u) ∝
m∑

d=1


 ∑

(i,j)∈Cd

ηij,d − |Cd| · log


 ∑

(i′,j′)∈Od

exp(ηi′j′,d)




 , (1.26)
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when the constant terms are deleted (for details see equation (A.33) in the Appendix). This profile

likelihood (without the constant terms) is equal to the partial likelihood (1.19) with the Peto-Breslow

approximation for ties. Thus, inference results in the same estimators.

1.5.3 Analogy of Cox proportional hazards model and Poisson model

In the following we adopt the wording and notation that is used in the data example of the second

contributing article where the submission of a patent from inventor i and j is defined as an event.

If this event happens at time d, the event indicator yij,d is equal to one. As our event is defined

over a set of pairs of inventors, the notation uses two subscripts (i, j) instead of the well-known term

‘subject i’.

Following Whitehead (1980) and Friedman (1982), under certain conditions the likelihood of the

Cox proportional hazards model (1.16) is proportional to the one of a Poisson regression model and

therefore, can be estimated as such. Taking advantage of this analogy, inference is simplified as

standard software, e.g. mgcv (Wood, 2017) in R (R Core Team, 2017), can be used. Moreover,

extending the model with spatial, random, or nonlinearly time-varying effects is straightforward by

resorting to implemented algorithms and methods (see Bender et al., 2018). In our contributing article

we apply penalized smoothing techniques based on basis functions to a likelihood type approach. The

software package mgcv offers a great variety of smoothing approaches and estimation methods that

could be adopted.

As already mentioned, in our contributing article we model the covariate process using smoothing

techniques and in the application we have to handle tied observations. We show below that the partial

likelihood with Breslow-Peto correction for ties with a nonlinear predictor, which was introduced in

the section above, is equivalent to an additive Poisson regression model.

To see the similarity between these two approaches, we assume at each event time t(d) an artificial

response variable yij,d that indicates for each inventor pair (i, j) whether a patent is submitted at

time t(d) (yij,d = 1) or not (yij,d = 0). This artificial data is produced for the whole option set and

over the complete observed time period due to the presence of recurrent events, where the option set

remains the same until the end. The generalized Poisson regression model is obtained by

yij,d
iid∼ Po(µij,d) with µij,d = E(yij,d|ηij,d) = exp(log(λd) + ηij,d + oij,d), (1.27)

where each artificial response variable yij,d is linked to its corresponding predictor ηij,d including the

covariates. In our application, all offsets oij,d are equal to zero since the event times t(d)− t(d−1) only

differ by one for each d ∈ {1, . . . ,m}. Hence, oij,d = log(t(d) − t(d−1)) = log(1) = 0 and equation

(1.27) simplifies to

µij,d = exp(αd + ηij,d), (1.28)

where log(λd) is replaced by αd. The intercept term αd for the dth time interval (td−1, td] can be

included in the Poisson model as a factor variable or, as in our application, as a smooth com-

ponent of the time. Since the artificial data yij,d is Poisson distributed with density f(yij,d) =
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(µij,d)
yij,d/yij,d! exp(−µij,d) and yij,d ∈ {0, 1}, the factorial can be ignored. Thus, the contribution to

the likelihood for t(d) with index set Cd containing inventor pairs with events at this time point is

Ld =
∏

{(i,j)|yij,d=1}
(µij,d)

yij,d · exp(−µij,d) ·
∏

{(i′,j′)|yi′j′,d=0}
(µi′j′,d)

yi′j′,d · exp(−µi′j′,d)

=
∏

(i,j)∈Cd

µij,d · exp


−

∑

(i′,j′)∈Od

µi′j′,d


 (1.29)

(for details see equation (A.34) in the Appendix).

In order to get the profile likelihood, we insert (1.28) into (1.29), which yields

Ld =
∏

(i,j)∈Cd

exp (αd + ηij,d) · exp


−

∑

(i′,j′)∈Od

exp
(
αd + ηi′j′,d

)



=
exp

(∑
(i,j)∈Cd

(αd + ηij,d)
)

exp
(∑

(i′,j′)∈Od
exp

(
αd + ηi′j′,d

)) . (1.30)

This expression is maximized with respect to αd. This maximum α̂ = log

(
|Cd|∑

(i′,j′)∈Od
exp(ηi′j′,d)

)
, is

inserted in (1.30) to obtain the profile likelihood

L(u) =

m∏

d=1

exp [|Cd| · log (|Cd|)] · exp
[∑

(i,j)∈Cd
ηij,d

]

exp (|Cd|) ·
(∑

(i′,j′)∈Od
exp

(
ηi′j′,d

))|Cd| (1.31)

with its log-likelihood

l(u) =
m∑

d=1


|Cd| · log (|Cd|) +

∑

(i,j)∈Cd

ηij,d − |Cd| − |Cd| · log


 ∑

(i′,j′)∈Od

exp
(
ηi′j′,d

)





∝
m∑

d=1


 ∑

(i,j)∈Cd

ηij,d − |Cd| · log


 ∑

(i′,j′)∈Od

exp
(
ηi′j′,d

)



 (1.32)

(detailed steps can be found in equation (A.35) in the Appendix).

This log-likelihood is proportional to the partial likelihood with Breslow-Peto correction derived in

equation (1.26) (cf. Wood, 2017; Whitehead, 1980; Friedman, 1982). Exploiting this analogy makes

it possible to estimate such data using flexible (additive) Poisson regression models. One drawback is

that the artificial data exceedingly increase the size of the data set. This implies that the memory and

computation time increases for the estimation. Nevertheless, our application includes time dependent

covariates and recurrent events for which this artificial data representation is useful.
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1.6 Software example

In this section we illustrate the usage of the R package pergm (Bauer, 2016) which implements the

simulation algorithm in parallel of the first contributing article. The algorithm is implemented in

C++ and the parallelization works in C++ via OpenMP (Open Multi-Processing). As a first step,

the package has to be installed and loaded. Use ?simulate networks to see the help page.

1 library(devtools)

2 install_github("VerenaMaier/pergm")

3 library(pergm)

4 ?simulate_networks

The function simulate networks simulates networks following nondirected Markov random graph

models. To make use of the suggested algorithm based on parallel computing, a Markovian condi-

tional independent structure is needed. Therefore, network statistics like edges, 2-stars, or triangles

are allowed to be included. The function needs as input arguments a starting adjacency matrix

(adjacency) or the number of nodes (dim), a vector of the estimated coefficients of the network

statistics (theta), and the number of networks that need to be simulated (n sim). If the starting

adjacency is missing, an empty matrix with dimension dim is generated. Additional arguments like

the number of updates in the Markov chain (n update), the burn-in updates (burnin), or the number

of used computing cores (n cores) can be specified. The argument return nw indicates if complete

simulated networks should be returned or just the network statistics. The default is to return just the

network statistics of each simulation draw because returning complete adjacency matrices is inefficient

for memory handling. The default return value is a matrix containing the number of edges, 2-stars,

and triangles of each simulated network.

1 simulate_networks(adjacency = adj , dim = N, theta = c(0, 0, 0), n_sim = 1,

2 n_update = 1e+06, burnin = 1000, n_cores = 4, return_nw = FALSE ,

3 log_change = TRUE)

The argument log change = TRUE transforms the change statistics to a monotone and concave shape

by using the logarithm. Note that with this transformation the network statistics 2-stars and triangles

fulfill the Markov independence only asymptotically. The aim of using the logarithm is to reduce

degeneracy problems and to avoid the avalanche effect following Snijders et al. (2006).

The following R chunk gives a short example of the usage of this parallel simulation function. There-

fore, one needs to specify the dimension of the network to be simulated and a vector containing the

estimated coefficients.
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1 set.seed (123)

2 # number of nodes

3 N <- 100

4 # the given parameter vector of edges , 2-stars and triangles

5 theta <- c(-0.1 , -0.01 , 0.03)

6 # simulate one network on four computing cores

7 simulate_networks(dim = N, theta = theta ,

8 log_change = TRUE , n_sim = 1, n_cores = 4)

9

10 [,1] [,2] [,3]

11 [1,] 2435 5559 .362 2556 .917

The function call from above simulates one network with hundred actors on four computing cores in

parallel and returns the corresponding transformed network statistics. Note that a reasonable time

saving arises only for large networks with more than 1000 nodes.

Supplementary material is available at https://github.com/VerenaMaier/pergm.

https://github.com/VerenaMaier/pergm
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Erdős, P. and Rényi, A. (1959). On random graphs. Publicationes Mathematicae Debrecen,

6(290):290–297.

Frank, O. (1991). Statistical analysis of change in networks. Statistica Neerlandica, 45(3):283–293.

Frank, O. and Strauss, D. (1986). Markov graphs. Journal of the American Statistical Association,

81(395):832–842.

Freeman, L. C. (2004). The development of social network analysis. A Study in the Sociology of

Science, 1.

Friedman, M. (1982). Piecewise exponential models for survival data with covariates. The Annals of

Statistics, 10(1):101–113.

Fruchterman, T. M. and Reingold, E. M. (1991). Graph drawing by force-directed placement. Soft-

ware: Practice and Experience, 21(11):1129–1164.

Geman, S. and Geman, D. (1987). Stochastic relaxation, Gibbs distributions, and the bayesian

restoration of images. In Readings in Computer Vision, pages 564–584. Elsevier.

Geyer, C. J. and Thompson, E. A. (1992). Constrained Monte Carlo maximum likelihood for depen-

dent data. Journal of the Royal Statistical Society. Series B (Methodological), 54(3):657–699.



REFERENCES 33

Greenan, C. C. (2015). Diffusion of innovations in dynamic networks. Journal of the Royal Statistical

Society: Series A (Statistics in Society), 178(1):147–166.

Handcock, M. S. (2003a). Assessing degeneracy in statistical models of social networks. Technical

report, Center for Statistics and Social Sciences, University of Washington. http://www.csss.

washington.edu/Papers/wp39.pdf. Accessed 11 Jan 2015.

Handcock, M. S. (2003b). Statistical models for social networks: Inference and degeneracy. In

Dynamic social network modeling and analysis: Workshop summary and papers, pages 229–252.

National Academies Press, Washingtion, DC.

Handcock, M. S. and Gile, K. J. (2010). Modeling social networks from sampled data. The Annals

of Applied Statistics, 4(1):5–25.

Handcock, M. S., Hunter, D. R., Butts, C. T., Goodreau, S. M., Krivitsky, P. N., and Morris, M.

(2017). ergm: fit, simulate and diagnose exponential-family models for networks. The Statnet

Project (http://www.statnet.org). R package version 3.6.1. Accessed 11 Feb 2018.

Hanneke, S., Fu, W., Xing, E. P., et al. (2010). Discrete temporal models of social networks. Electronic

Journal of Statistics, 4:585–605.

Hastings, W. (1970). Monte Carlo sampling methods using Markov chains and their applications.

Biometrika, 57(1):97–109.

Holland, P. W. and Leinhardt, S. (1981). An exponential family of probability distributions for

directed graphs. Journal of the American Statistical Association, 76(373):33–50.

Hummel, R. M., Hunter, D. R., and Handcock, M. S. (2012). Improving simulation-based algorithms

for fitting ERGMs. Journal of Computational and Graphical Statistics, 21(4):920–939.

Hunter, D. R., Goodreau, S. M., and Handcock, M. S. (2008a). Goodness of fit of social network

models. Journal of the American Statistical Association, 103(481):248–258.

Hunter, D. R. and Handcock, M. S. (2006). Inference in curved exponential family models for networks.

Journal of Computational and Graphical Statistics, 15(3):565–583.

Hunter, D. R., Handcock, M. S., Butts, C. T., Goodreau, S. M., and Morris, M. (2008b). ergm: A

package to fit, simulate and diagnose exponential-family models for networks. Journal of Statistical

Software, 24(3):1–29.

Johansen, S. (1983). An extension of Cox’s regression model. International Statistical Review/Revue

Internationale de Statistique, pages 165–174.

Kolaczyk, E. D. (2009). Statistical Analysis of Network Models. Springer, New York.

Koskinen, J. and Snijders, T. A. (2013). Longitudinal models. In Lusher et al. (2013), pages 130–140.

http://www.csss.washington.edu/Papers/wp39.pdf
http://www.csss.washington.edu/Papers/wp39.pdf
http://www.statnet.org


34 REFERENCES

Koskinen, J. H., Robins, G. L., and Pattison, P. E. (2010). Analysing exponential random graph

(p-star) models with missing data using bayesian data augmentation. Statistical Methodology,

7(3):366–384.

Krivitsky, P. N. (2012). Exponential-family random graph models for valued networks. Electronic

Journal of Statistics, 6:1100–1128.

Krivitsky, P. N. and Handcock, M. S. (2014). A separable model for dynamic networks. Journal of

the Royal Statistical Society: Series B (Statistical Methodology), 76(1):29–46.

Krivitsky, P. N., Handcock, M. S., Raftery, A. E., and Hoff, P. D. (2009). Representing degree dis-

tributions, clustering, and homophily in social networks with latent cluster random effects models.

Social Networks, 31(3):204–213.

Leifeld, P., Cranmer, S. J., and Desmarais, B. A. (2018). Temporal exponential random graph models

with btergm: Estimation and bootstrap confidence intervals. Journal of Statistical Software, 83(6).

Leskovec, J. and Krevl, A. (2014). SNAP datasets: Stanford large network dataset collection. http:

//snap.stanford.edu/data/. Accessed 22 Jan 2016.

Leskovec, J. and Mcauley, J. J. (2012). Learning to discover social circles in ego networks. In Pereira,

F., Burges, C. J. C., Bottou, L., and Weinberger, K. Q., editors, Advances in Neural Information

Processing Systems 25, pages 539–547. Curran Associates, Inc.

Lusher, D., Koskinen, J., and Robins, G. (2013). Exponential Random Graph Models for Social

Networks. Cambridge University Press, Cambridge.

Martin, S. B., Brown, W. M., Klavans, R., and Boyack, K. W. (2008). Drl: Distributed recursive

(graph) layout. SAND Reports 2936, pages 1–10.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953). Equation

of state calculations by fast computing machines. The Journal of Chemical Physics, 21(6):1087–

1092.

Morris, M., Handcock, M. S., and Hunter, D. R. (2008). Specification of exponential-family random

graph models: Terms and computational aspects. Journal of Statistical Software, 24(4):1548–7660.

Newman, M. and Barkema, G. (1999). Monte Carlo Methods in Statistical Physics. Oxford University

Press: New York, USA.

Okabayashi, S., Geyer, C. J., et al. (2012). Long range search for maximum likelihood in exponential

families. Electronic Journal of Statistics, 6:123–147.

Pattison, P. and Robins, G. (2002). Neighborhood–based models for social networks. Sociological

Methodology, 32(1):301–337.

http://snap.stanford.edu/data/
http://snap.stanford.edu/data/


REFERENCES 35

Perry, P. O. and Wolfe, P. J. (2013). Point process modelling for directed interaction networks.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 75(5):821–849.

Peto, R. (1972). Contribution to the discussion of the paper by D.R. Cox. Journal of the Royal

Statistical Society, Series B (Methodological), 34:205–207.

R Core Team (2017). R: A Language and Environment for Statistical Computing. R Foundation for

Statistical Computing, Vienna, Austria.

Robbins, H. and Monro, S. (1951). A stochastic approximation method. The Annals of Mathematical

Statistics, 22(3):400–407.

Robins, G. and Pattison, P. (2001). Random graph models for temporal processes in social networks.

The Journal of Mathematical Sociology, 25(1):5–41.

Robins, G., Snijders, T., Wang, P., Handcock, M., and Pattison, P. (2007a). Recent developments in

exponential random graph (p*) models for social networks. Social networks, 29(2):192–215.

Robins, G. L., Pattison, P., Kalish, Y., and Lusher, D. (2007b). An introduction to exponential

random graph (p∗) models for social networks. Social Networks, 29(2):173–191.

Scheike, T. H. and Sun, Y. (2007). Maximum likelihood estimation for tied survival data under Cox

regression model via EM-algorithm. Lifetime Data Analysis, 13:399–420.

Schmidberger, M., Morgan, M., Eddelbuettel, D., Yu, H., Tierney, L., and Mansmann, U. (2009).

State-of-the-art in parallel computing with R. Journal of Statistical Software, 47(1).

Schweinberger, M. (2011). Instability, sensitivity, and degeneracy of discrete exponential families.

Journal of the American Statistical Association, 106(496):1361–1370.

Snijders, T. A. (1996). Stochastic actor-oriented models for network change. Journal of Mathematical

Sociology, 21(1-2):149–172.

Snijders, T. A., Van de Bunt, G. G., and Steglich, C. E. (2010). Introduction to stochastic actor-based

models for network dynamics. Social Networks, 32(1):44–60.

Snijders, T. A. B. (2001). The statistical evaluation of social network dynamics. Sociological Method-

ology, 31(1):361–395.

Snijders, T. A. B. (2002). Markov chain Monte Carlo estimation of exponential random graph models.

Journal of Social Structure, 3(2):1–40.

Snijders, T. A. B. (2005). Models for longitudinal network data. In Models and Methods in Social

Network Analysis, pages 215–247. Cambridge University Press, Cambridge.

Snijders, T. A. B. (2017). Comment: Modeling of coordination, rate functions, and missing ordering

information. Sociological Methodology, 47(1):41–47.



36 REFERENCES

Snijders, T. A. B., Pattison, P. E., Robins, G. L., and Handcock, M. S. (2006). New specifications

for exponential random graph models. Sociological Methodology, 36(1):99–153.

Snijders, T. A. B. and Pickup, M. (2017). Stochastic actor-oriented models for network dynamics. In

The Oxford Handbook of Political Networks, pages 221–247. Oxford University Press, Oxford.

Stadtfeld, C., Hollway, J., and Block, P. (2017a). Dynamic network actor models: Investigating

coordination ties through time. Sociological Methodology, 47(1):1–40.

Stadtfeld, C., Hollway, J., and Block, P. (2017b). Rejoinder DyNAMs and the grounds for actor-

oriented network event models. Sociological Methodology, 47(1):56–67.

Strauss, D. and Ikeda, M. (1990). Pseudolikelihood estimation for social networks. Journal of the

American Statistical Association, 85(409):204–212.

Thiemichen, S., Friel, N., Caimo, A., and Kauermann, G. (2016). Bayesian exponential random graph

models with nodal random effects. Social Networks, 46:11–28.

Thiemichen, S. and Kauermann, G. (2017). Stable exponential random graph models with non-

parametric components for large dense networks. Social Networks, 49:67–80.

Tukey, J. W. (1962). The future of data analysis. The Annals of Mathematical Statistics, 33(1):1–67.

Van Duijn, M. A. J., Gile, K. J., and Handcock, M. S. (2009). A framework for the comparison

of maximum pseudo likelihood and maximum likelihood estimation of exponential random graph

models. Social Networks, 1(31):52–62.

Vu, D. Q., Asuncion, A. U., Hunter, D., and Smyth, P. (2011a). Dynamic egocentric models for cita-

tion networks. In Proceedings of the 28th International Conference on Machine Learning (ICML-

11), pages 857–864.

Vu, D. Q., Hunter, D., Smyth, P., and Asuncion, A. U. (2011b). Continuous-time regression models

for longitudinal networks. In Advances in Neural Information Processing Systems, pages 2492–2500.

Wang, P., Pattison, P., and Robins, G. (2013). Exponential random graph model specifications for

bipartite networks - a dependence hierarchy. Social Networks, 35:211–222.

Wasserman, S. and Pattison, P. (1996). Logit models and logistic regressions for social networks: I.

An introduction to markov graphs and p*. Psychometrika, 61(3):401–425.

Whitehead, J. (1980). Fitting Cox’s regression model to survival data using GLIM. Journal of the

Royal Statistical Society. Series C (Applied Statistics), 29(3):268–275.

Wood, S. N. (2017). Generalized Additive Models: An Introduction with R. Chapman & Hall/Crc

Texts in Statistical Science, Boca Raton, 2 rev ed. edition.



Appendix



38 Appendix

Network statistics – Notation

Symbol Definition Interpretation/Note

Y adjacency matrix representation of the network as a graph

yij realized edges between i and j yij = 1 if an edge exists between i and j, yij = 0
otherwise

Y = Y T symmetric adjacency matrix undirected network

y\yij graph y except edge between i and j

N dimension of Y number of nodes/actors

θ parameter of interest corresponding parameter of network statistics

s(y) network statistic e.g. number of edges, 2-stars, triangles

∆ijs(y) change statistic difference in network counts when toggling
edge yij from existent to non-existent

dj dj =
∑N

i=1 yij degree of node j, number of edges/friends of j

y2 =




d1

N∑
k=1

y1kyk2 . . . . . .

d2

N∑
k=1

y2kyk3 . . .

...
...




ith and jth element of y2 is the number of links
node i has in common with j (friends in com-
mon)

y3 diagonal elements of y3 correspond to number
of (not unique) triangles

Table A.1: Overview of selected notation. Note that the random variable Y is capitalized, while the observed
or realized network is denoted by the corresponding lower case latter.
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Network statistic
s(y)

Change statistic
∆ijs(y)

edge

N∑

i=1

∑

j>i

yij =

1

2

N∑

i=1

N∑

j=1

yij =

1

2

∑

j≥1

j · dj(y)

1

2-star

N∑

i=1

∑

j>i

N∑

k=1

yikykj =

1

2

N∑

i=1

∑

j>i

yij


∑

k 6=i,j
yik +

∑

k 6=i,j
yjk


 =

∑

j≥2

(
j

2

)
dj(y)

∑

k 6=i,j
yik +

∑

k 6=i,j
yjk

triangle

N∑

i=1

N∑

j>i

N∑

k>j

yikykjyji =

1

3

N∑

i=1

N∑

j>i

yij




N∑

k 6=i,j
yikykj


 =

1

6
· tr(y3)

∑

k 6=i,j
yikyjk

k-star sk(y) =

N∑

i=1




N∑
l=1

yil

k




( ∑
k 6=i,j

yik

k − 1

)
+

( ∑
k 6=i,j

yjk

k − 1

)

Table A.2: Overview and illustration of the network statistic “edge”, “2-star”, “triangle”, and “k-star” with
corresponding formula for the network statistic and the change statistic. tr(·) denotes the trace of a matrix.
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Dynamic network models – Supplements

Following the ideas of a profile likelihood approach, we insert (1.25) into (1.23) and obtain the profile

log-likelihood

l(u) =

m∑

d=1


 ∑

(i,j)∈Cd

[
log

(
|Cd|∑

(i′,j′)∈Od
exp

(
ηi′j′,d

)
)

+ ηij,d

]

−
(

|Cd|∑
(i′,j′)∈Od

exp
(
ηi′j′,d

)
)
·


 ∑

(i′,j′)∈Od

exp
(
ηi′j′,d

)





=

m∑

d=1


 ∑

(i,j)∈Cd


log (|Cd|)− log


 ∑

(i′,j′)∈Od

exp
(
ηi′j′,d

)

+ ηij,d


− |Cd|




=
m∑

d=1


|Cd| · log (|Cd|)− |Cd| · log


 ∑

(i′,j′)∈Od

exp
(
ηi′j′,d

)

+

∑

(i,j)∈Cd

ηij,d − |Cd|




∝
m∑

d=1


 ∑

(i,j)∈Cd

ηij,d − |Cd| · log


 ∑

(i′,j′)∈Od

exp(ηi′j′,d)




 , (A.33)

when the constant terms are deleted.

The contribution to the likelihood for time point t(d) for a Poisson model with tied events can be

formulated as following:

Ld =
∏

{(i,j)|yij,d=1}
(µij,d)

yij,d · exp(−µij,d) ·
∏

{(i′,j′)|yi′j′,d=0}
(µi′j′,d)

yi′j′,d · exp(−µi′j′,d)

=
∏

{(i,j)|yij,d=1}
µij,d · exp(−µij,d) ·

∏

{(i′,j′)|yi′j′,d=0}
exp(−µi′j′,d)

=
∏

(i,j)∈Cd

µij,d
∏

(i′,j′)∈Od

exp(−µi′j′,d)

=
∏

(i,j)∈Cd

µij,d · exp


−

∑

(i′,j′)∈Od

µi′j′,d


 . (A.34)

In the following, detailed steps of deriving the profile likelihood by inserting the corresponding max-

imum

α̂ = log

(
|Cd|∑

(i′,j′)∈Od
exp

(
ηi′j′,d

)
)
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in the likelihood of the generalized Poisson regression model with artificial data (1.30) is given:

L(u) =

m∏

d=1

exp

[∑
(i,j)∈Cd

(
log

(
|Cd|∑

(i′,j′)∈Od
exp(ηi′j′,d)

)
+ ηij,d

)]

exp

[∑
(i′,j′)∈Od

exp

(
log

(
|Cd|∑

(i′′,j′′)∈Od
exp(ηi′′j′′,d)

)
+ ηi′j′,d

)]

=

m∏

d=1

exp
[∑

(i,j)∈Cd

(
log (|Cd|)− log

(∑
(i′,j′)∈Od

exp
(
ηi′j′,d

))
+ ηij,d

)]

exp

[
|Cd|∑

(i′′,j′′)∈Od
exp(ηi′′j′′,d)

·∑(i′,j′)∈Od
exp

(
ηi′j′,d

)]

=

m∏

d=1

exp [|Cd| · log (|Cd|)] · exp
[
−|Cd| · log

(∑
(i′,j′)∈Od

exp
(
ηi′j′,d

))]
· exp

[∑
(i,j)∈Cd

ηij,d

]

exp (|Cd|)

=
m∏

d=1

exp [|Cd| · log (|Cd|)] · exp
[∑

(i,j)∈Cd
ηij,d

]

exp (|Cd|) ·
(∑

(i′,j′)∈Od
exp

(
ηi′j′,d

))|Cd| (A.35)
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ERRATA

During the review process for the paper A smooth dynamic network model for patent collaboration

data a discrepancy in the implementation and the notation in the paper of the covariate vector was

found. We improved the notation to

x(3),ij,d =
∑

k 6=i
k 6=j

1{Yik,d−1>0} +
∑

k 6=j
k 6=i

1{Yjk,d−1>0}

and

x(4),ij,d =
∑

k 6=i
k 6=j

1{Yik,d−1>0} · 1{Yjk,d−1>0}.

An updated version can be found on arXiv e-prints, arXiv:1909.00736v2.



Chapter 2

A note on parallel sampling in Markov

graphs

Chapter 2 introduces a framework for parallel sampling in Markov graphs, which provides faster

computation. Networks with statistics inducing a conditional independence structure allow indepen-

dent draws of edges and therefore, parallel computing can be exploited. The simulation study and

application can be reproduced using the R package pergm available on GitHub.

Contributing article:

Bauer, V., Fürlinger, K., and Kauermann, G. (2019). A note on parallel sampling in Markov graphs.

Computational Statistics, 34(3):1087–1107

Copyright:

Springer-Verlag GmbH Germany, part of Springer Nature, 2019

Author contributions:

Verena Bauer and Göran Kauermann developed the general framework for parallel sampling in

Markov graphs. The basic idea for using Markovian conditional independence structure to simulate

networks in parallel and to proof the approximation for log statistics came from Göran Kauermann.

Verena Bauer wrote the algorithmic implementation, performed the simulation studies and the

example. Karl Fürlinger assisted with some technical questions and performing ideas. All authors

contributed and proofread the manuscript.

Supplementary material available at:

https://github.com/VerenaMaier/pergm

https://github.com/VerenaMaier/pergm




Chapter 3

A smooth dynamic network model for

patent collaboration data

Chapter 3 introduces a framework for modeling dynamic network data based on a profile likelihood

approach estimated as an additive Poisson model. The model uses time-stamped data of patent

collaborations and includes semiparametric covariates built from network history.

Contributing article:

Bauer, V., Harhoff, D., and Kauermann, G. (2019). A smooth dynamic network model for patent

collaboration data. arXiv e-prints, arXiv:1909.00736

Author contributions:

Verena Bauer and Göran Kauermann were involved in developing the methodology for estimating a

dynamic network for patent collaboration data. Both authors performed the statistical modeling,

inference and application to the data. Verena Bauer wrote the implementation for the estimation.

Most of the manuscript was written by Verena Bauer and Göran Kauermann. Dietmar Harhoff

provided the patent data set and helpful input. All authors were involved in proof-reading.



A smooth dynamic network model for patent
collaboration data

Verena Bauer1, Dietmar Harhoff2, and Göran Kauermann1

1Department of Statistics, Ludwig-Maximilians-Universität München,
Germany.

2Max Planck Institute for Innovation and Competition, Germany.

September 4, 2019

Abstract

The development and application of models, which take the evolution of
networks with a dynamical structure into account are receiving increasing
attention. Our research focuses on a profile likelihood approach to model
time-stamped event data for a large-scale network applied on patent col-
laborations. As event we consider the submission of a joint patent and we
investigate the driving forces for collaboration between inventors. We pro-
pose a flexible semiparametric model, which allows to include covariates built
from the network (i.e. collaboration) history.

Keywords: profile likelihood, network data, event data, patent data, pe-
nalized spline smoothing, social network analysis

1 Introduction

The analysis of network data has seen increasing interest in the recent years.
Many network data thereby contain a dynamic structure, be it the devel-
opment of network ties over time or observations of the network at different
time points. Such data structures have led to numerous extensions of classical
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network models. A first paper in this direction is from Robins and Pattison
(2001) who propose temporal dependence in an Exponential Random Graph
Model (ERGM). The idea was generalized in Hanneke et al. (2010) towards
temporal Exponential Random Graph Models (tERGM). The principle idea
behind the models is to include the network history as covariates in the
model. This in turn forms a Markov Chain of networks. The model class has
been extended and generalized in various ways. Leifeld et al. (2018) focus on
the implementation and added bootstrap methods for evaluating uncertainty.
Krivitsky and Handcock (2014) decomposed the network dynamics into the
formation of new edges and the dissolution of existing edges leading to the
separable temporal Exponential Random Graph Model (stERGM).

A different strand of dynamic network models arise if time is considered
as continuous. Holland and Leinhardt (1977) develop a dynamic model for
social networks based on a continuous-time Markov process. Snijders (2005)
and Snijders et al. (2010) extended this towards so-called stochastic actor-
oriented models. This model is based on the assumption that the evolution
of the network occurs as the consequence of small changes induced by the
actors. It is further assumed that the observed network derives from a Markov
process evolving in continuous time, though the network is observed only at
discrete time points. Greenan (2015) extends this approach by combining
it with hazard function estimation and Cox regression models for duration
time models (Cox, 1972). Our approach is in line with Greenan (2015) but
we extend the model class further by including non-linear time dynamics.

Our paper focuses on a profile likelihood approach modeling time-stamped
event data for a large-scale network. The data describe the collaboration of
inventors based on joint patents. The successful submission of a new patent
is thereby considered as the event of interest and the number of joint patents
of two inventors provides network based count data. The analysis of event
data, in special cases also referred to as survival analysis, is a well developed
field in statistics. In this paper we extend this field towards dynamic network
data (see also Brandes et al., 2009; Block et al., 2018).

The idea of using a partial likelihood approach for network data is not
new. Perry and Wolfe (2013) estimate a Cox multiplicative intensity model
for a directed e-mail network. The model can incorporate covariates that
depend on the history of the process modeling homophily, network effects
and multiplicity. Vu et al. (2011) propose a continuous-time regression model
for time-stamped network data. Estimation routines use an efficient partial
likelihood approach focusing on large networks. The authors include time-
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variant and time-independent network statistics based on the history. This
approach is applied in Vu et al. (2011) to a dynamic egocentric model for
citation networks based on a multivariate counting process. The models
are based on the Relational Event Model (REM) from Butts (2008) who
introduced a flexible likelihood-based framework for social actions (also called
relational event). This approach includes the event history in modeling the
behavior and its complex dependence structure. While Butts (2008) focuses
on modeling the rate of relational events, Brandes et al. (2009) extend this
framework to weighted events where the influence of the quality of actions is
in the center of interest.

In the cited papers above, all covariate effects are included linearly in the
model. We propose a semiparametric approach for modeling the covariates
in a more flexible way. We follow the idea of penalized spline smoothing as
proposed in Ruppert et al. (2003) (see also Eilers and Marx, 1996; Ruppert
et al., 2009). The basic idea is to replace linear functions by spline based
functions and to achieve smoothness, a penalty is imposed on the spline
coefficient. Penalized spline smoothing can be considered as the state-of-
the-art smoothing technique where we refer to Wood (2017) for a general
discussion in the framework of (generalized) regression models.

The paper is organized as follows. First, in Section 2 we introduce the
patent data set of the application with some basic ideas and descriptive
statistics. Then, in Section 3, we outline the general framework of the struc-
ture of the underlying patent data set, give a short introduction into the
notation and motivate the construction of the covariates from the network
history. Then we take a closer look on inference and how the model based on
a profile likelihood approach can be estimated with linear covariates and its
extensions to penalized spline smoothing. We give a brief outlook on compu-
tational issues, before we apply in Section 4 these techniques to the example
data set. Finally, we summarize the most important issues.

2 Patent data

We will first introduce the patent data in detail before describing the model
in the next section. We consider all patent applications submitted to the
European Patent Office (EPO) and the German Patent and Trademark Of-
fice (Deutsches Patent- und Markenamt, DPMA), which listed at least one
inventor with an address on German territory between 2000 and 2013. This
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selection should yield a comprehensive database of all inventions filed in
patent applications by German inventors. It is possible that some inventors
may have submitted applications directly to patent offices of other countries,
but in practice such cases are extremely rare, since the invention would not
enjoy patent protection in the inventors home country. The data were ex-
tracted from the PATSTAT database of the European Patent Office (version
October 2018). The data consist of patented inventions from different tech-
nological areas. For each patent we have information about the submission
day and for most inventors geographic coordinates of their registered home
address at the time of submission is given. We assume that the inventor lo-
cation stays the same until new information due to new patent submissions
is given.

We focus on four technological areas – basic communication processes
(105), IT-methods (107), analysis of biological material (111) and food chem-
istry (118) – with different numbers of inventors, patents and therefore net-
work densities. Some exploratory information is provided in Table 1. The

basic IT- analysis food
area communica- methods of biological chemistry

tion processes (107) material (118)
(105) (111)

number of . . .

inventors 4089 3616 4923 2993

patents 3664 1707 2731 2078

single owner-
ship patents

1104 194 342 427

inventor pairs 5825 12713 9604 5412

patents per in-
ventor

mean 2.02 1.37 1.72 1.86
max 52 16 83 36

inventors per
patent

mean 2.25 2.9 3.11 2.68
max 14 93 13 17

Table 1: Summary statistics of different technological areas for the time period of 14 years.
The statistics are summarized and averaged over time.

table summarizes the selected inventor networks for the whole time period
and Figure 8 in the Appendix explicitly visualizes two of them. The ba-
sic communication processes technological area has the highest number of
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patents, but quite less inventor pairs applying for a patent during the ob-
served time period of 14 years. In this area the number of single ownership
patents is three till six times higher than for the other fields. On average
over all technological areas the inventors applied for 1.7 patents, whereas one
person in area 111 (analysis of biological material) is involved in 83 patents.
The number of involved inventors per patent varies between one and 93, with
an overall average of 2.7 inventors.

As time stamp we choose the earliest filing date, which is aggregated on
a monthly basis. To adjust for incomplete data, we select only patents from
the full years 2000 till the end of 2013, resulting in 168 months. We are
interested in inventors that jointly apply for patents. Therefore, we only
include inventors with at least one joint patent. Note, that there are of
course single ownership patents in the data sets if the inventor has other
joint patents.

Beside the number of inventors (about three to five thousand), also the
number of patents in total and patents with single ownerships vary in the
four technologies. Noticeable is that the number of observed inventor pairs
applying for a patent during the observed time period of 14 years is quite
small in comparison to the possible number of pairs (N(N − 1)/2). In other
words the density of the networks is small. Furthermore, in all areas the
mean number of patents per inventor is quite low. Therefore and due to
content-related reasons, we restrict the actor sets to sets of active inventors
in a period of three years. To do so, we split the data sets from above into
four periods of three years starting from the beginning of 2002. We will
analyse each time interval separately. The first two years of data from 2000
to the end of 2001 are used as “burn-in” for the covariates. We include only
active inventors in the option set. An active inventor is defined as a person
with at least one patent within the observed time period of three years (e.g.
inventor 4 or 7 in Figure 1), or at least one patent within and one beyond the
time period (e.g. inventor 6 or 8 in Figure 1), or at least one patent before
and one after the time period (e.g. inventor 5 in Figure 1). We want to
point out, that the covariates are based on a five years retrospective interval,
meaning that the inventors’ history beyond the five years is ignored in the
calculation of the covariates.

In the application we focus on a model with four network specific co-
variates: the overall sum of patents of each inventor pair within the consid-
ered inventors’ history (“patents ij ”), the number of joint patents per pair
(“joint patent”), the number of inventors that hold a joint patent with inven-
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Figure 1: Outline of data management. The time period from 2000 till the end of 2013 is
divided in four periods (2002− 2004, 2005− 2007, 2008− 2010 and 2011− 2013) of three
years each. The data is aggregated on a monthly grid. The years 2000 and 2001 are used
as a burn-in time for the covariates. If e.g. the observed time period from the beginning
2005 till the end of 2007 is selected, only active inventors, like inventor 4− 8 are included
in the option set. Inventors with a patent structure visualized with ’x’ in this figure, are
excluded.

tor i or j (“2-star”) and the number of inventors that jointly hold a patent
with i and j (“triangle”). These numbers differ for the technological areas
and time periods. Table 2 gives an overview for the covariate ranges due
to the variation between the different time periods. Furthermore, we see
that the number of inventors varies between 753 and 1466 depending on the
technological area and selected time period. The realized number of edges in
the considered networks at the end of the observation period ranges between
1188 and 6306. Figure 2 visualizes two networks of the food chemistry area
(118) for two selected time periods.
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basic commu- IT- analysis of food
area nication methods biological ma- chemistry

processes (105) (107) terial (111) (118)

no. of inventors 1018 - 1396 790 - 959 1095 - 1466 753 - 949

no. of edges 1285 - 2065 1234 - 6306 2247 - 2853 1188 - 1711

density 0.002 - 0.003 0.003 - 0.016 0.003 - 0.004 0.004 - 0.004

“patents ij”
mean 2.35 - 3.16 1.4 - 1.91 2.17 - 2.62 2.11 - 2.64
max 49 - 58 16 - 26 111 - 118 27 - 45

“joint patent”
mean 0 0 - 0.01 0 0
max 6 - 13 3 - 7 20 - 30 7 - 13

“2-star”
mean 3.69 - 5.13 3.28 - 23.29 5.63 - 6.46 4.98 - 5.99
max 62 - 113 39 - 410 111 - 156 67 - 133

“triangle”
mean 0.01 - 0.01 0.01 - 0.9 0.01 - 0.04 0.02 - 0.02
max 53 - 210 23 - 283 496 - 855 58 - 162

Table 2: Summary statistics for different technological areas and time periods. There
are shown the ranges for the different time periods per area of number of nodes, edges
and covariates. The covariates are the number of patents of i and j (“patents ij”), the
number of joint patents of i and j (“joint patent”), the number of inventors that hold a
joint patent with i or j (“2-star”) and the number of inventors that jointly hold a patent
with i and j (“triangle”).

3 Poisson process network model for count

data

3.1 Model description

We motivate the model by directly referring to our data example. Let Zr be
a patent indexed with a running number r = 1, ..., R. Each patent can be
defined through the following attributes:

• tr = time point at which patent r was successfully submitted

• Ir = index list of inventors on patent r

• Br = technological area in which patent r is submitted

• zr = additional covariates like geocoordinates of registered addresses of
all inventors
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(a) Time period 2: years 2005 - 2007 (b) Time period 4: years 2011 - 2013

Figure 2: Visualization of two time periods of the inventor network for food chemistry
(118). Vertex size represent nodal degree. Colouring is transparent to better examine the
clusters. The layout uses maximal connected components and applies the layout separately.

For a set of actors (inventors) A = {1, ..., N} we define with Y (t) ∈ RN×N

the matrix valued Poisson process counting the number of (joint) patents.
To be specific, let

Yij(t) = cumulated number of joint patents of inventor i and j

up to five years at time t

= #{r : (i, j) ∈ Ir, tr ≤ t, r = 1, ..., R}

for i, j = 1, ..., N , where Yii(t) defines the number of patents of inventor
i including single ownership patents. We are primarily interested in the
number of joint patents of a retrospective history of five years and observe
the process at the time points where one or more joint patents have been
successfully submitted. We define with Yij,d = Yij(t(d)) the evolving process,
where t(1), t(2), . . . , t(m) is the discretized version of time at which patents
have been submitted. We model the intensity of the above process as

λ0(t) exp (xij(t)β) (1)

where λ0(t) is the baseline hazard of the process and xij(t) is the covariate
process, which will be defined in the following section. We assume for sim-
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plicity that both, the baseline hazard as well as the covariate process are
piecewise constant between the observed time points, that is

λ0(t) = λd for t ∈ (t(d−1), t(d)]

xij(t) = xij,d for t ∈ (t(d−1), t(d)].

This leads to the log-likelihood function

l(λ1, . . . , λm, β) =

m∑

d=1


 ∑

(i,j)∈Cd

(log λd + xij,dβ)− λd ·


 ∑

(i′,j′)∈Od

exp (xi′j′,dβ)




 (2)

where Cd is the index set of events at time point t(d),

Cd = {(i, j) : j > i;Yij,d > Yij,d−1}

and Od is the “option” set, that is the set of inventor pairs that could submit
a joint patent. This option set can be regarded as the set of inventors who are
able to work together. In our application this restriction occurs from being in
the same technological area and being an active inventor like defined above
in the description of the data. Maximizing the above likelihood with respect
to λ1, . . . , λm yields

λ̂d =
|Cd|∑

(i′,j′)∈Od
exp (xi′j′,dβ)

and inserting this in (2) provides the profile log-likelihood

l(β) =
m∑

d=1


 ∑

(i,j)∈Cd

xij,dβ − |Cd| log


 ∑

(i′,j′)∈Od

exp(xi′j′,dβ)




 , (3)

omitting all constant terms. In principle and based on the Poisson process
we observe at each time point a single patent submission only, resulting in
maybe more edges at t if more than two inventors are involved in a patent
submission. In practice, however, the time points are discretized so that
at each discrete valued time point t(d) we may observe more than just one
submitted patent. Note that this may be caused by one (or more) patent
submitted at the same discrete time point but with more than two inventors
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as patent holders or by more than one patent submitted at time point t(d)
by different inventor pairs.

Let Yd = (Yij,d) be the process network matrix. The profile log-likelihood
(3) is also obtained if we assume that the probability for a single change
Yij,d = yij,d−1 + 1 is proportional to

P (Yd = Yd−1 + 1ij) ∝ exp(xij,dβ)

where 1ij refers to an increment of 1 in entry Yij,d and xij,d is a vector of
covariates calculated from the previous process matrix Yd−1. If |Cd| = 1, i.e.
only a single patent was submitted by i and j at time point t(d), we obtain

P (Yd|Yd−1) =
exp(xij,dβ)∑

(i′,j′)∈Od
exp(xi′j′,dβ)

, (4)

where Od being an inventor tuple from the “option” set. If |Cd| > 1 we
approximate (4) with

P (Yd|Yd−1) =

∏
(i,j)∈Cd

exp(xij,dβ)
[∑

(i′,j′)∈Od
exp(xi′j′,dβ)

]|Cd| . (5)

We can now easily derive the log-likelihood from equation (3) and obtain the
score function

s(β) =
m∑

d=1


 ∑

(i,j)∈Cd

xTij,d − |Cd|
∑

(i′,j′)∈Od
xTi′j′,d exp(xi′j′,dβ)

∑
(i′,j′)∈Od

exp(xi′j′,dβ)


 .

Defining

πi′j′,d =
exp(xi′j′,dβ)∑

(k′,l′)∈Od
exp(xk′l′,dβ)

allows to write the second order derivative

J(β) = −
m∑

d=1

|Cd|


 ∑

(i′,j′)∈Od

xTi′j′,dxi′j′,dπi′j′,d −


 ∑

(i′,j′)∈Od

xTi′j′,dπi′j′,d




T 
 ∑

(i′,j′)∈Od

xTi′j′,dπi′j′,d




 . (6)

In the survival model context formula (5) is also known as Breslow approxi-
mation (see Breslow, 1974).
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3.2 Covariates

The covariate vector xij,d is built from the network history and exogenous
covariates. We describe the network related covariates first. First, we take
the total number of patents of inventor i and j at time point t(d−1). That is

x(1),ij,d = Yii,d−1 + Yjj,d−1.

In the application we refer to it as “patents ij ”. Moreover, the number of
previous “joint patents” of inventor i and j is included as covariate, which is
calculated through

x(2),ij,d = Yij,d−1.

Furthermore, a so-called 2-star statistic (“2-star”) is included, which ex-
presses the number of inventors that hold a joint patent with inventor i or j.
This is obtained through

x(3),ij,d =
∑

k 6=i
k 6=j

Yik,d−1 +
∑

k 6=j
k 6=i

Yjk,d−1.

A common choice in network analysis are also “triangle” statistics. This
counts the number of inventors that jointly hold a patent with i and j:

x(4),ij,d =
∑

k 6=i
k 6=j

Yik,d−1 · Yjk,d−1.

We restrict our analysis to these four structural covariates, which are visual-
ized in Figure 3.

As exogenous quantity in our application we include the inventor-pair-
specific distance in kilometers, that is

x(5),ij,d = ||si,d − si,d||

where si,d are the geocoordinates of the address of inventor i and sj,d accord-
ingly and || · || denotes the Euclidean distance. We assume that the inventors
do not move until new location information on the basis of submitting a new
patent becomes available. Due to only few data points, distances over 1000
kilometers are set to 1000 kilometers.
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Toy network graph at time t(d−1)
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Figure 3: Visualization of covariates from network history of a toy network graph: Number
of patents of inventor i and j with x(1),ij,d = 6 + 8 (black edges), including self-loops
(single ownership patents) and multiple patents (first panel). Number of joint patents of
inventor i and j with x(2),ij,d = 2 (black edges), counting the number of edges of i and
j (second panel). Number of inventors that hold a joint patent with inventor i or j with
x(3),ij,d = 3 + 6 (black nodes), counting the joint inventors k and m twice and counting
k twice because of two previous joint patents between k and j (third panel). Number of
inventors that jointly hold a patent with i and j with x(4),ij,d = 1 · 2 + 1 · 1 (black nodes),
counting k twice because of a multi-patent (fourth panel).

3.3 Semiparametric Estimation

We now extend the model towards penalized smoothing techniques to obtain
more flexibility. We therefore replace the linear predictor ηij,d = xij,dβ in (3)
through the additive nonparametric setting

ηij,d = m(1)(x(1),ij,d) +m(2)(x(2),ij,d) + . . . .

and λ0(t) = exp(m0(t)) being a smooth term of the time. Here m(·) are
smooth but otherwise unspecified functions, which extend the linear effects.
To achieve identifiability of the model we postulate m(p)(0) = 0 for p =
1, 2, . . . , P. To estimate the unknown functions we employ B-splines and re-
place m(x) by

m(x) =
∑

k

Bk(x)u,

where Bk(·) is a K dimensional B-spline basis (see de Boor, 1978; Wood,
2017).

For simplicity of notation we now replace the index pair (i, j) by a single

index l running from 1 to n = N ·(N−1)
2

. Consequently, we can rewrite

ηl,d = m(1)(x(1),l,d) +m(2)(x(2),l,d) + . . .
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With this in matrix notation we get

ηd = B(1),du(1) +B(2),du(2) + . . .

= Bdu

whereB(1),d is the basis matrix for the first covariate built from rowsB(1)(x(1),l,d)
for l = 1, . . . , N(N − 1)/2 and analogous definitions for B(2),d etc. Setting
Bd = (B(1),d, B(2),d, . . .) and uT = (uT(1), u

T
(2), . . .) provides the final notation.

In the estimation we need to take the constraint m(p)(0) = 0 for the
covariates built from network history into account. This constraint means
that there is no effect to estimate if the independent variables are zero. We
make use of this point constraint, which is an alternative to the sum-to-zero
identifiability constraints for smooth terms, which is used for the exogenous
covariate.

With this notation we can reformulate the profile likelihood in (3) as
following:

m∑

d=1

[
(Bdu)T · 1Cd

− |Cd| · log
[
exp(Bdu)T · 1[n×1]

]]
, (7)

where 1Cd
is a vector defined as

1Cd
=

{
1, if l = (i, j) ∈ Cd

0, otherwise,

1[n×1] is a vector of ones of length n and Bd is a matrix of n× P ·K.
Following Eilers and Marx (1996) we use a large number of knots but reg-

ularize the estimation by introducing a roughness penalty (see also Ruppert
et al., 2003, 2009). This leads to the penalized smooth log-likelihood

lpen(u) = l(u)− 1

2
· uTK(λ)u, (8)

where K(λ) is a second-order penalty matrix. The smoothing parameter
vector λ penalizes large differences in adjacent basis coefficients. Details are
provided in the Appendix C.

3.4 Computational issues

In principle, computation is straight forward, because we can derive the
corresponding likelihood function and its derivatives. Nevertheless, we have
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a huge option set of inventors pairs for each time point. A data set with N
inventors results in N(N − 1)/2 times T time points and therefore in about
18 million data points for e.g. N = 1000 inventors and T = 38 months.

For estimating the parameters, we need to maximize the profile log-
likelihood of equation (3) for the linear framework and the penalized smooth
log-likelihood (8) for semiparametric estimation. To do so, we can make use
of the flexible toolbox available in the package mgcv (see Wood, 2011, for
further information) in the software R (R Core Team, 2017). This becomes
possible since a Cox proportional hazards model can be estimated as a lin-
ear or additive Poisson model in case of smooth predictors (see Whitehead,
1980). To do so, an ordinary time-to-event data representation is necessary
(see Tutz et al., 2016). At each event time t(d) an artificial response variable
yij,d for every inventor pair from the option set is included with yij,d = 1
if a patent was submitted at time t(d) or yij,d = 0 if not. The generalized
Poisson model can than be fitted to that artificial data with the time variable
as intercept and including offsets oij,d. Friedman et al. (1982) showed that
with this data structure the log-likelihood resembles the log-likelihood of the
Poisson regression model, which we utilize here.

With this simple data transformation we can take advantage of the whole
machinery of mgcv with the methods and algorithms for model extensions
like including spatial, random, or nonlinearly time-varying effects (see Bender
et al., 2018). Furthermore, a variety of automated smoothing approaches in-
cluding constraints can be used. The estimation of the smoothing parameters
are solved by using the Un-Biased Risk Estimator (UBRE) criterion.

4 Data analysis

4.1 Linear estimation

We first estimate a model with linear effects for the four technology areas for
the different time periods. All models include the above mentioned structural
covariates “patents ij ”, “joint patent”, “2-star”, and “triangle”, and the ex-
ogenous covariate “distance [100 km]”. The quite small standard errors can
be explained with the huge data set. Figure 4 compares the estimates for
the four considered time periods. The different technology areas show more
or less the same behaviour. The biggest effect can be seen for the variable
joint patent. The more joint patents two inventors have, the more likely they
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Figure 4: Estimates for different covariates, technological areas and time periods. For each
of the four areas and four covariates we have four estimates for the time periods with the
corresponding errorbars (standard error × 2).

collaborate in the future. The estimates for 2-star and triangle are quite
small. A negative or quite small effect results for the number of patents of
inventor i and j. This means that a lot of own patents (with other inventors
or even single inventor patents) reduce the potential of new joint patents.
The distance in 100 kilometers has a negative effect on the patents meaning
that inventors with regional proximity are collaborating more likely.

4.2 Semiparametric estimation

This subsection visualizes the estimated smooth effects for our model with
linear effects replaced by spline based fits for “patents ij ”, “joint patent”,
“2-star”, “triangle”, and “distance”. In Figure 5 the model is estimated
exemplary for the technological area food chemistry (118) and the second
time period. We see that the sum of patents of inventor i and j has a negative
effect, whereas the number of joint patents has a positive and stronger effect.
This means that if the inventors have already submitted several own patents
(with other inventors or even single inventor patents) their affinity of being
involved in new patents decrease. On the other hand, if the inventor pair has
already joint patents in the past, they are more likely to work together in
future. Both effects are bounded. The effects of the structural statistics like
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Figure 5: Estimated smooth effects for food chemistry (118) area and second time period.

the number of inventors that hold a joint patent with inventor i or j or the
number of inventors that jointly hold a patent with i and j do not show a
significant tendency. Moreover, the geodesic distance of two inventors plays
an important rule. There is a larger positive effect for small distances, which
decreases with increasing distance. For distances larger than 250 kilometres
the effect is almost zero or negative. This means that if there is a certain
distance between the inventors, it does not matter how many kilometers
exactly.
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Figure 6 visualizes the positive effects of “joint patent” for the four time
periods. Each time period lasts 36 months. The tendency of the effects is the
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Figure 6: Estimated smooth effects for “joint patent” of food chemistry (118) area and
different time periods.

same for all periods, while there is a steep increase at the beginning, which
then becomes bounded. In period three and four the effect decreases and
increases, respectively, at the end of the observation period. This should not
be interpreted too strictly as the frequency of more than 10 joint patents is
quite low. We can see similar behaviours for the other areas (see Appendix).

4.3 Model validation

To evaluate the model performance, we select the third time period of food
chemistry area (118). This data set is divided into a training set, which
contains the first two years and a test data based on the last year of that
time period. We estimate our model on the training set and predict the
probability of present ties in the test data. The predicted probabilities are
most of the time almost zero and have a mean of 0.0000069. The maximal
value is 0.05. This result is not surprising as the network is very sparse, only
a proportion of 0.0001 patents are present. This is visualized in Figure 7 in
the left panel, where the predicted values are plotted separately by the true
observed ties. The (red) dashed added line shows the optimal cut point for
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the classification into present and absent ties for the test year and is based
on sensitivity and specificity. The right panel shows the precision recall
curve for the test set. Recall, or also called true positive rate (sensitivity),
is defined as the fraction of present patents that are correctly predicted by
the model. Precision measures the fraction of predicted present patents that
actually occur. This measurement is useful in model validation, like in this
case, where the number of existent ties are quite small in comparison to
all possible ties (see Maalouf and Trafalis, 2011). The visualized precision
recall curve in Figure 7 has a maximal value around 0.13 and drops down to
zero quite fast. This indicates that an optimal cut point for the predicted
probabilities needs to be quite low.

Figure 7: Predicted versus true present and absent ties (patent or no patent) where the
(red) dashed line shows the optimal cut point for the classification (left panel). Precision
and recall curve (right panel).

5 Conclusion

In this paper we propose a flexible approach to model large-scale dynamic
network data with structural and exogenous covariates. Our approach is
based on a profile likelihood method exploiting well-established estimation
routines. We applied this idea to a large data set of patents submitted jointly
by inventors from Germany between 2000 and 2013. We showed advantages
of including covariates in a semiparametric and therefore flexible way. The
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results show the driving forces in collaboration of inventors and demonstrate
their behaviour over time. The models could be fitted with standard software
and therefore invite to be used in other data constellations as well.
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Appendix A: Further Descriptive Analysis

(a) IT-methods (107) (b) food chemistry (118)

Figure 8: Visualization of two inventor networks aggregated over time. Vertex size rep-
resent nodal degree. Colouring is transparent to better examine the clusters. The layout
uses maximal connected components and applies the layout separately. Noticeable are
the loops, which belongs to single ownership patents. Furthermore, we see a few clusters
referring to patents with a higher number of inventors. Especially for the area 107 we see
the patent, which was submitted with 94 inventors. A lot of nodes look like single isolates,
but consist at least of two inventors by construction.
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basic IT- analysis food
area communica- methods of biological chemistry

tion processes (107) material (118)
(105) (111)

“patents ij”
min 0 0 0 2
mean 4.00 2.73 3.41 3.72
max 100 30 161 70

“joint patent”
min 0 0 0 0
mean 0 0 0 0
max 13 7 40 15

“2-star”

min 0 0 0 0
mean 7.31 14.82 9.47 8.96
max 168 410 260 205

“triangle”
min 0 0 0 0
mean 0.01 0.12 0.01 0.02
max 234 283 1375 283

Table 3: Summary statistics of covariates for different areas for the time period of 14
years. The covariates are the number of patents of i and j (“patents ij”), the number of
joint patents of i and j (“joint patent”), the number of inventors that hold a joint patent
with i or j (“2-star”), and the number of inventors that jointly hold a patent with i and
j (“triangle”).
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Appendix B: Further Results
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Figure 9: Estimated smooth effects for IT-methods (107) area and fourth time period.
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Appendix C: Technical Details

The second-order difference penalty matrix can be defined as

K =




K(1) 0 0 0
0 K(2) 0 0
0 0 . . . 0
...

...
...

...
0 0 0 K(P )




and K(p) =




1 −2 1
−2 5 −4 1
1 −4 6 −4 1

. . . . . . . . . . . . . . .

1 −4 6 −4 1
1 −4 5 −2

1 −2 1




with dimension [P ·K×P ·K] and [K×K], respectively. P is the number of
covariates. The second-order penalty matrix K can be derived from K(p) =
DT

2D2 where D2 = D1D2−1 is a recursively obtained difference matrix with

D1 =




−1 1
−1 1

. . . . . .

−1 1




with dimension [(K − 1) ×K]. The corresponding derivatives to apply the
Newton-Raphson algorithm are straight forward:

spen(u) = s(u)− (K(λ))u

Jpen(u) = J(u)−K(λ)
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