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Summary

Summary

The ribosome is a ribonucleoprotein complex, which translates the genetic information stored
in the mRNA in form of codons into a protein. It consists of a large and a small subunit, which
form the bacterial 70S ribosome during initiation of translation. In subsequent elongation the
polypeptide chain is extended until a stop-codon marks the end of the open reading frame
During the following termination the newly synthesised protein is released from the ribosome
by release factor 1 or 2. Afterwards, the ribosome is recycled into subunits and returns to the
pool of free subunits that can engage a new round of translation.

Prolonged stalling of the 70S ribosome at any step of the translation cycle can induce cleavage
of the mRNA directly in the A-site of the ribosome, leaving so-called non-stop complexes.
Accumulation of non-stop complexes depletes ribosomes from the pool of free subunits, which
lastly inhibits translation and leads to cell death. Hence, bacteria have evolved specialized
mechanisms that recognise and resolve non-stop complexes. The major and best characterised
ribosome rescue mechanism is trans-translation, which is found in all known bacterial
genomes. However, some bacteria have additional backup mechanisms that ensure survival
when trans-translation is overwhelmed or defective. Using cryo-electron microscopy we
investigated the mechanisms of ribosome rescue by the backup systems. First, we obtained a
reconstruction of alternative ribosome rescue factor A (ArfA) and release factor 2 on a non-
stop complex. Our structure shows that ArfA monitors the mRNA entry channel on the SSU
with its C-terminus, while the N-terminus mediates recruitment and activation of release
factor 2 in a stop-codon independent manner. This leads to release of the nascent chain from
the tRNA and recycling of the ribosome. Furthermore, we investigated the mechanism of
alternative ribosome rescue factor B (ArfB) regarding the mRNA length. ArfB can perform
hydrolysis itself and the activity decreases with increasing length of the mRNA overhang. Our
results show that ArfB binds to non-stop ribosomes without mRNA overhang and with nine
mRNA nucleotides occupying the mRNA entry channel in the same way and that the mRNA
overhang has moved out of the tunnel. Lastly, we obtained a structure of a recently identified
backup mechanism of Bacillus subtilis, termed Bacillus ribosome rescue factor A (BrfA),
which represents the first backup mechanism in a Gram-positive bacterium. BrfA specifically
cooperates with B. subtilis release factor 2. As evident from our reconstruction, BrfA recruits
release factor 2 in a similar manner compared to ArfA, but differs regarding the activation

mechanism.
VII



Introduction

1 Introduction

The hypothesis of the central dogma of biochemistry was proposed almost sixty years ago and
describes the workflow of genetic information maintenance and expression. The genetic
information is stored in long DNA (deoxyribonucleic acid) polymers in the form of genes and
the process of DNA replication, by a DNA-dependent DNA-polymerase, facilitates the
preservation of the information. Two sequential steps achieve gene expression, namely
transcription and translation. During transcription the gene sequence of the DNA is transcribed
by a DNA-dependent RNA-polymerase into ribonucleic acid (RNA). RNA molecules have
various functions in the cell, for instance they can act as scaffolds or adapters, regulate gene
expression or even carry out enzymatic reactions by themselves (ribozymes). One category of
RNAs is messenger RNA (mRNA), which is translated into an amino acid polymer, called
protein, in the second step of gene expression by a macromolecular machine, the ribosome.
During translation the ribosome reads the universal genetic code of the mRNA, which is
composed of base triplets, and adds the cognate amino acids one after another to the nascent
polypeptide chain. In this process, transfer RNAs (tRNAs) serve as adapters for amino acids
(aa) and enable code deciphering. The end of the coding sequence is defined by a stop codon
and leads to the release of the protein from the ribosome. There are certain cases where no in-
frame stop codon is present and prokaryotic and eukaryotic cells have evolved different
strategies to cope with this situation. Furthermore, translation is a critical process in the cell
and higher eukaryotes have developed defence mechanisms against bacterial infections that
also target the ribosome. Although the function and basic architecture of the ribosome is
conserved in all three domains of life, there are species-specific differences and the ribosome-

targeting defence mechanisms of eukaryotes affect not all bacteria to the same extend.

1.1 Structure of prokaryotic ribosomes

Prokaryotic ribosomes consist of two subunits, the 50S subunit (large subunit, LSU; 60S in
eukaryotes) and the 30S subunit (small subunit, SSU; 40S in eukaryotes). Both ribosomal
subunits associate to build the fully assembled 2.5 megadalton (MDa) 70S ribosome (80S in
eukaryotes; Figure la). Each subunit consists of ribosomal RNA (rRNA) and ribosomal
proteins (rProteins). While the intersubunit interface is predominantly composed of rRNA, the

rProteins reside on the surface of the subunits and have long extensions that reach into the
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E. coli ribosome (70S) Large subunit (LSU, 508) Small subunit (§SU, 308)
54 rProteins 33 rProteins (L1-L36) 21 rProteins (S1-S21)
3 rRNAs 55 rRNA (~121 nt); 23S rRNA (~2904 nt) 16S rRNA (~1542 nt)

Figure 1: Structure of the Prokaryotic Ribosome. (a) 70S complex of the prokaryotic ribosome with mRNA (teal) and
tRNAs (A-tRNA, pink; P-tRNA, green; E-tRNA, cyan), LSU: large ribosomal subunit (23S rRNA, gray70; ribosomal proteins,
gray30), SSU: small ribosomal subunit (16S rRNA, yellow; ribosomal proteins, orange), PTC: peptidyl transferase center, DC:
decoding center. (b) Intersubunit interface view of the 50 S subunit with bound tRNAs. (¢) View from the A-site on the 30S
subunit with mRNA and tRNAs. The figure was prepared using PDBID SJTE (Arenz et al., 2016).

subunits. The LSU consists of 5S rRNA (~120 nucleotides), 23S rRNA (~2,900 nucleotides)
and about 30 rProteins (Figure 1b), whereas the SSU is composed of 16S rRNA (~1,500
nucleotides) and around 20 rProteins (Figure 1¢). The subunits have different tasks during the
translational cycle: the SSU binds the mRNA in an inter-domain cleft between head and body,
and harbours the decoding center (DC), where the message stored in the mRNA is decrypted
with the help of tRNAs. The LSU harbours the peptidyl transferase center (PTC), which is the
catalytic center for the main reactions of protein synthesis, peptide bond formation and peptide
release. The PTC (and also the DC) consists predominantly of rRNA, which lead to the
suggestion that the ribosome is not only a macromolecular machine but also a ribozyme (Ban
et al., 2000; Nissen et al., 2000; Schmeing et al., 2002). In the vicinity of 8-10 Angstroms (A)
to the PTC is only the N-terminus of rProtein L27 (Voorhees et al., 2009). L27 is not essential
in Escherichia coli (E. coli), although deletion of L27 or even truncation of the N-terminus
results in in a severely decreased growth rate and reduction of the PTC function (Wower et al.,
1998; Maguire et al., 2005). This is supported by a structural study, which concludes that .27
is involved in proper positioning of the tRNA and a proton wire mechanism permitting peptide
bond formation (Polikanov et al., 2014). However, a kinetic study showed that deletion of L27
had only little effect on peptide bond formation (Maracci et al., 2015).

The distance between the DC and the PTC is spanned by tRNAs, which possess an anticodon
that specifically recognizes the codon of the mRNA in the DC, and carry the cognate amino
acid (Carter et al., 2000; Schluenzen et al., 2000; VanLoock et al., 2000; Ogle et al., 2001;
Yusupova et al., 2001). The ribosome harbours three tRNA binding sites and after initiation
where the initiator tRNA is placed in the P-site, the tRNAs move sequentially from the acceptor
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site (A-site) to the peptidyl site (P-site) and eventually to the exit site (E-site). Incoming
aminoacyl-tRNA (aa-tRNA) is delivered to the ribosomal A-site, harbouring the DC in the SSU
and the A-site part of the PTC in the LSU. The nascent polypeptide chain is attached to the
peptidyl-tRNA (P-tRNA), which is temporary bound to the P-site. For peptide bond formation
the A- and P-site tRNAs come in close proximity within the PTC. After peptide bond formation
the ribosome engages hybrid states, tRNAs move to the next site during translocation mediated
by EF-G and deacylated tRNA leaves the ribosome via the E-site (Yusupov et al., 2001;
Schuwirth et al., 2005; Selmer et al., 2006). The end of the nascent polypeptide is marked by a
stop-codon, which is not recognized by a tRNA, instead a release factor binds to the A-site and
hydrolyses the polypeptide from the P-tRNA (reviewed by Schmeing and Ramakrishnan
(2009)).

1.2 Translation cycle of prokaryotes

The translation cycle in all three domains of life is divided into four major steps: initiation,
elongation, termination and recycling. Not all translation factors involved in the cycle are
homologous to each among the different domains of life. Translation initiation in eukaryotes
in particular is more complex and involves additional factors compared to bacterial initiation.
Furthermore, eukaryotic/archaeal and prokaryotic peptide chain release factors are
evolutionary unrelated, and with respect to this the recycling mechanism differs as well.

Successful protein synthesis in bacteria is dependent on the exact definition of the open reading
frame (ORF) of the protein, as well as efficient translation, which includes proper charging of
tRNA with amino acids by aminoacyl-tRNA synthetases. The ORF of a bacterial protein is
defined in its mRNA by a start codon (usually AUG) and one of the three stop codons (UAA,
UAG or UGA), with the actual coding sequence embedded in between as nucleotide triplets
(codons). The mRNA is read by the ribosome from the 5’ to the 3’ end and can have regulatory
elements in the 5° and/or 3’ untranslated regions (UTR). One example is the Shine-Dalgarno
(SD) sequence present in many prokaryotic mRNAs four to seven nucleotides upstream of the
start codon in the 5> UTR (Shine and Dalgarno, 1974; Chen et al., 1994). During translation
initiation placement of the start codon into the P-site of the SSU is aided by the SD sequence.
Before association of the LSU the initiator tRNA (tRNAi™) is recruited to the P-site and pairs
with the start codon. The initiator tRNA carries a formylated methionine (fMet), which will be
the first amino acid (aa) of the new polypeptide. The formylation distinguishes the methionine

(Met) from ordinary Met used in subsequent elongation, where the polymerization of the
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polypeptide occurs. During each round of elongation one amino acid is added C-terminally to
the nascent polypeptide chain by the ribosome with a translational rate of ~4-22 aa per second
(Serensen and Pedersen, 1991; Proshkin et al., 2010; Wohlgemuth et al., 2010). Assuming an
average length of about 300 aa for an E. coli protein (Netzer and Hartl, 1997; Allan Drummond
and Wilke, 2009), the production of the protein takes only 14-75 s. Translation termination
occurs when one of the three stop codons enter the ribosomal A-site. The codon is recognized
by a peptide chain release factor (RF), which hydrolyses the nascent polypeptide from the P-

tRNA. Subsequent recycling involves splitting of the subunits, as well as dissociation of mRNA
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Figure 2: Schematic overview of the bacterial translation cycle. In bacterial translation initiation the mRNA binds to the
30S subunit and the start codon is placed in the P-site. Subsequent binding and proper placement of the initiator tRNA to the
P-site involves three initiation factors (IF1-3). The initiator tRNA (tRNAi™¢) carries a formylated methionine (fMet), which
will be the first amino acid (aa) of the new polypeptide. Joining of the LSU leads to the 70S initiation complex (IC) formation
and dissociation of the IFs, allowing the complex to enter the first round of elongation. The first stage of elongation is decoding
of the codon in the A-site by an aminoacyl-tRNA (aa-tRNA), which is delivered to the ribosome by elongation factor (EF)
Tu. EF-Tu leaves upon codon recognition and the tRNA accommodates to the PTC. The following peptide bond formation
adds the second aa C-terminally to the nascent polypeptide chain, resulting in the A-tRNA carrying both aa and a deacylated
tRNA in the P-site. The ribosome can now engage hybrid states, where the SSU rotates relatively to the LSU, which leads to
shifting of the tRNA to the next site on the LSU, but not on the SSU. The translocation factor EF-G binds to the hybrid state
and moves the tRNAs to the next site of the SSU, concurrently the mRNA is shifted by three nucleotides, which corresponds
to one codon. The resulting complex has a deacylated tRNA in the E-site, a tRNA carrying the nascent polypeptide in the P-
site and an unoccupied A-site with the following codon. This complex can now enter a new round of elongation. In this way
one amino acid after another is added to the peptide chain until a stop codon enters the A-site. The stop codon serves as
termination signal and is recognized by class I release factor (RF) 1 or 2, which hydrolyzes the bond between the tRNA and
the completed polypeptide. Dissociation of class I RFs is enhanced by the class II release factor RF3. The ribosomal subunits
are recycled for a new round of translation by splitting, which is carried out by the ribosome recycling factor (RRF) together
with EF-G. Re-association of the subunits is prevented by binding of IF3 to the SSU, which links recycling and initiation. The
figure was adapted from Sohmen et al. (2009).
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and tRNA, which enables the subunits to participate in a new translation cycle. In the next

chapters the individual steps of the bacterial translation cycle will be described further.

1.2.1 Translation Initiation

Translation initiation is the most regulated phase of the translational cycle and is the rate
limiting step (Laursen et al., 2005). During initiation the fMet-tRNA;™® and the correct start
codon within the mRNA have to be positioned in the P-site of the SSU (Seong and
RajBhandary, 1987a; Allen et al., 2005; Julian et al., 2011; Hussain et al., 2016). The selection
of the start site depends on several properties of the mRNA around the start site. One major
influence is the accessibility, which depends on the mRNA secondary structure. Biochemical
experiments and predictions of mRNA secondary structures indicate that the mRNA is less
structured in initiation regions (de Smit and van Duin, 1990; Kudla et al., 2009; Scharff et al.,
2011; Bentele et al., 2013; Goodman et al., 2013; Bhattacharyya et al., 2018; Mustoe et al.,
2018). Furthermore, A/U-rich regions in the 5’-untranslated region (UTR) interact with
rProtein S1 and are recognised as well as recruited to the ribosome in this manner (Boni et al.,
1991; Sengupta et al., 2001; Byrgazov et al., 2015). An additional crucial element in canonical
mRNAs is the Shine-Dalgarno (SD) sequence, which is also located in the 5’-UTR and base
pairs with the 3’-end of the 16S rRNA (anti-SD-sequence (Shine and Dalgarno, 1974)), an
interaction that strongly enhances the initiation rate (de Smit and van Duin, 1994; Hockenberry
et al., 2017; Saito et al., 2020). Despite the universal conservation of the anti-SD sequence in
the 16S rRNA only 54% of E. coli and 78% of Bacillus subtilis mRNAs contain a SD sequence
(Nakagawa et al., 2010; Nakagawa et al., 2017). In Bacteriodetes and Cyanobacteria the
prevalence of the SD-sequence is very low or even zero. Recently it was shown that in the
Bacteroidetes Flavobacterium johnsoniae, which does not have a SD-sequence in the 5’-UTR,
A-rich regions around the start codon are abundant instead (Nakagawa et al., 2017; Baez et al.,
2019). Subsequently, A-rich regions were also found genome-wide to surround the SD-
sequence and the start codon in E. coli (Baez et al., 2019; Saito et al., 2020). With respect to
the recognition of A/U-rich regions by rProtein S1 (Boni et al., 1991; Sengupta et al., 2001;
Byrgazov et al., 2015)., it was suggested that the part of the A-rich region in the E. coli 5’-UTR
interacts with rProtein S1 as well (Baez et al., 2019; Saito et al., 2020).

The formation of the elongation competent 70S initiation complex (70S IC) is achieved through

a 30S pre-initiation complex (30S PIC) and 30S initiation complex (30S IC) (Gualerzi and Pon,
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1990; Laursen et al., 2005; Simonetti et al., 2008). The 30S PIC and 30S IC are composed of
the 30S subunit, fMet-tRNA;™*, mRNA and the initiation factors (IF) 1, 2 and 3. IF1 and IF2
are universally existent, while the phylogenetic distribution of IF3 is restricted to a subset of
bacteria and plastids, such as mitochondria (Serensen et al., 2001; Koc and Spremulli, 2002).
Upon 508 subunit joining, the IFs dissociate and the fMet-tRNA;™¢t accommodates into the
P-site of the LSU thereby establishing the active 70S IC, which is primed for the first round of
elongation (Laursen et al., 2005; Marshall et al., 2009; Milén and Rodnina, 2012).

During formation of the 30S PIC the fMet-tRNA;™¢ is recruited to the SSU. The initiator
tRNA;™ itself has structural determinants in the anticodon stem and the acceptor stem that
distinguishes it from elongator tRNAM® (RajBhandary, 1994). Compared to the elongator
tRNAMe the 1:72 Watson-Crick base pair in the acceptor stem of initiator tRNAi™® is missing
(Dube et al., 1968; Woo et al., 1980). This is the major determinant for the N-formylation of
Met-tRNA;™M to fMet-tRNA™< by methionyl-tRNA transformylase (Lee et al., 1991; Lee et
al., 1992; Schmitt et al., 1998). The formylation of fMet-tRNAi™* is monitored by IF2 upon
recruitment to 30S PIC (Sundari et al., 1976; Wu and RajBhandary, 1997; Allen et al., 2005).
The anticodon stem of tRNA;™ contains three conserved consecutive G:C base pairs, which
renders the anticodon loop less flexible compared to elongator tRNAM®' (Dube et al., 1968;
Woo et al., 1980; Seong and RajBhandary, 1987a). The G:C base pairs are important for
targeting the fMet-tRNA;™¢ to the P-site of the SSU and are recognized indirectly by IF3
(Seong and RajBhandary, 1987b; Dallas and Noller, 2001; Hussain et al., 2016).

The A-site within the 30S pre-initiation complex is occupied by the smallest of the three
initiation factors, namely IF1 (Figure 3a-c) (Carter et al., 2001). IF1 belongs to the
oligonucleotide binding fold protein family (Sette et al., 1997) and interacts with the decoding
bases A1492 and A1493 in helix 44 (h44) and the G530-loop of the 16S rRNA. Furthermore,
IF1 binds to ribosomal protein S12 (Carter et al., 2001). This binding site overlaps with binding
of tRNA to the A-site so that their binding is prevented during the initiation phase (Laursen et
al., 2005). IF1 serves also as an anchor point for I[F2 and IF3, thereby enhancing their activity
(Pon and Gualerzi, 1984; Milon et al., 2012; Hussain et al., 2016).

The recruitment of the fMet-tRNA;™* to the 30S PIC is aided by IF2, which is the largest
initiation factor and a translational guanosine-5°-triphosphatase (trGTPase) (Pon et al., 1985;
Milon et al., 2010). It has six domains in E. coli, which are termed domain I-VI (Mortensen et
al., 1998). The N-terminal domains I-III are less conserved between species and differ in amino
acid composition, as well as in length (Laursen et al., 2005). Their function varies depending

on length, as well as organism and they are dispensable for translation initiation (Caserta et al.,
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2006; Simonetti et al., 2013). In contrast, the C-terminal domains are involved in initiation and
are conserved, with domain IV, the G-domain, displaying the highest conservation (Serensen
etal., 2001). The G-domain characterizes IF2 as trGTPase and is homologous to other GTPases
participating in later stages of translation, like elongation factor Tu (EF-Tu) or release factor 3
(RF3). The GTPases associate with the ribosome in the GTP- bound state and their hydrolase
activity is dependent on the LSU (reviewed by Maracci and Rodnina (2016)). Domain V
anchors IF2 to the SSU and IF1 (Figure 3a, c¢) (Simonetti et al., 2013). Domain VI is further
divided in two subdomains (Laursen et al., 2005), VI-1 and VI-2. Domain VI-2 interacts with
the CCA-end of fMet-tRNA;™¢ and the fMet moiety (Allen et al., 2005; Myasnikov et al.,
2005; Simonetti et al., 2013; Hussain et al., 2016). This protects fMet-tRNAi™et from
spontaneous deacylation and discriminates against non-formylated initiator, as well as
elongator tRNAs during recruitment of fMet-tRNA;™ to the 30S PIC (Sundari et al., 1976;
Petersen et al., 1979; Wu and RajBhandary, 1997; Milon et al., 2012; Caban et al., 2017).
Domain VI-1, parts of domain IV and fMet-tRNA;™* provide the surface for 50S subunit
docking subsequent to fMet-tRNAi™* accommodation to the SSU P-site (Figure 3c)(Hussain
et al., 2016; Sprink et al., 2016; Ge et al., 2018; Kaledhonkar et al., 2019).

IF3 is involved in start codon recognition, specific selection of initiator tRNA, monitoring of
the codon:anticodon interaction and prevents premature LSU association (Gualerzi et al., 1977;
Hartz et al., 1990; La Teana et al., 1995; Sacerdot et al., 1996; Antoun et al., 2006; Milon et
al., 2008). It has two globular domains, which are located N- and C-terminally (NTD and CTD)
and are connected via a mostly helical linker. IF3 is flexible and adopts several conformations,
which are proposed to represent different stages during 30S pre- and initiation complex
maturation (Figure 3a, b) (Hussain et al., 2016). Initially the NTD binds next to the platform
of the SSU, while the CTD interacts with IF1 and is positioned near the P-site to discriminate
against elongation tRNAs and monitor codon:anticodon interaction (Figure 3a, PIC II). Upon
binding of fMet-tRNA;™¢ the NTD detaches from the 30S platform and contacts the elbow
region of the tRNA (Figure 3a, PIC III). Accommodation of fMet-tRNA;™¢ to the P-site forces
the CTD of IF3 to bind further away from the P-site, where it has no longer contact with IF1
or the anti-codon stem loop (ASL) of fMet-tRNA;™<t while the NTD stays attached to the
elbow and moves together with the accommodating tRNA (Figure 3a, 30S IC). In all up to day
reported structures and conformations of IF3 block one or more important connection points

between the SSU and the LSU of the ribosome (Allen et al., 2005; Julian et al., 2011; Hussain
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Figure 3: Overview of Bacterial initiation. (a) Binding of initiation factors to the SSU during PIC to 30S IC transition (IF1,
purple; IF2, blue; IF3, red; mRNA magenta; SSU, yellow). (b) Structural rearrangement of IF3 in different stages of initiation
(PIC 11, yellow, PDBID 5LMP; PIC III, orange, PDBID 6LMT; 30S IC, red, fMet-tRNA green, IF1 purple, PDBID 5SLMV),
the fMet moiety of the tRNA is shown as spheres. (¢) Superimposition of IF2 in the 30S IC (blue, PDBID 5LMV) and the
70S IC (pink, PDBID 3JCJ). (d) Kinetics of 30S IC formation, the mRNA (magenta) can bind at any time in this stage.
(e) Kinetic representation of the progression to the 70S IC, with transition to an elongation complex (EC) by delivery of an
aa-tRNA to the A-site in form of a ternary complex (TC). Figures a-c modified from Hussain et al. (2016), figures d and e
were adapted with modifications from Milon and Rodnina (2012).

et al., 2016). This explains how IF3 prevents premature subunit association, and it is not known
yet if IF3 has to leave before subunit association or if it adopts an unobserved conformation
that does not overlap with the 50S subunit (Milon et al., 2008; Goyal et al., 2015; Hussain et
al., 2016).

IFs bind to the SSU in a preferred sequence, with IF2 and IF3 binding first, followed by IF1,
and finally the recruitment of fMet-tRNA{™ takes place (Figure 3d) (Milon et al., 2012).
While the association of the mRNA can take place at any time point during 30S PIC assembly
and is dependent on the concentration, as well as the accessibility of the ribosomal-binding site
of the given mRNA (Studer and Joseph, 2006; Kudla et al., 2009; Milon et al., 2012). The
transition from the 30S PIC to the 30S IC is marked by a movement of the head closer to the
body, which facilitates stable mRNA binding, codon:anticodon interaction and accommodation

of the fMet-tRNA;™e ASL to the P-site of the SSU (Figure 3e) (Milon et al., 2012; Hussain et
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al., 2016). Initially reversible joining of the LSU is promoted by the surface provided by
fMet-tRNAi™ and IF2 (Hussain et al., 2016; Sprink et al., 2016; Ge et al., 2018; Kaledhonkar
et al., 2019). The association of the subunits leads to GTP hydrolysis to GDP and inorganic
phosphate (Pi) by IF2, as well as dissociation of IF1 and probably IF3, which in turn enables
the formation of intersubunit bridges and stabilization of the 70S IC (Myasnikov et al., 2005;
Milon et al., 2008; Goyal et al., 2015; Hussain et al., 2016; Kaledhonkar et al., 2019). The

Met in the

70S IC displays a semi-rotated intersubunit conformation, with the fMet-tRNA;
peptidyl/initiation (P/I) state (Allen et al., 2005; Sprink et al., 2016; Kaledhonkar et al., 2019).
In this state the ASL is harboured in the P-site of the 30S subunit, while the CCA-end
fMet-tRNA;™ is associated with IF2. The contact between the acceptor end of fMet-tRNA;™¢t
and IF2 is lost upon Pi release from IF2. Concurrently IF2 dissociates from the ribosome,
leading to back-rotation of the 30S subunit into a non-rotated intersubunit conformation and
accommodation of the CCA-end to the P-site of the LSU (Myasnikov et al., 2005; Milon et al.,
2008; Goyal et al., 2015; Kaledhonkar et al., 2019). The charged initiator fMet-tRNA;™Met is

now in the P/P state and the vacant ribosomal A-site is able to bind the first elongator tRNA,

which marks the passage to the elongation cycle (Goyal et al., 2015; Kaledhonkar et al., 2019).

1.2.2 The Elongation Cycle

During elongation the actual polypeptide is synthesized. In contrast to initiation, termination
and recycling the elongation cycle is conserved among all domains of life. Three steps
characterize the elongation cycle: decoding, peptide bond formation and translocation. Starting
with decoding, which requires an elongation-competent ribosome, with a P-site tRNA and an
empty A-site emerging from initiation or a previous elongation cycle. In bacteria, the next
aminoacyl-tRNA (aa-tRNA) is delivered to the ribosome in the so-called ternary complex,
consisting of the aa-tRNA, the trGTPase EF-Tu and GTP. Initially, the codon in the A-site is
sampled and non-cognate ternary complexes are rejected, whereas the cognate aa-tRNA is
accepted, which leads to GTP hydrolysis by EF-Tu and accommodation of the tRNA to the
PTC. In the PTC peptide bond formation takes place, during which fMet or the nascent
polypeptide chain is transferred from the P-site tRNA to the amino acid of the A-site tRNA.
Subsequently to peptide bond formation the ribosome oscillates between the non-rotated and
the rotated state, with tRNAs in classical A/A and P/P states or hybrid A/P and P/E states,

respectively. For the next cycle of elongation to occur, the tRNAs have to move entirely to the
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next site, and additionally the mRNA needs to be shifted by one codon. Both is achieved during
translocation, which is promoted by binding of the trGTPase EF-G to the oscillating PRE-
translocation ribosome. The resulting POST-translocation ribosome is non-rotated with tRNAs
in the classical P/P- and E/E-state and an empty A-site, which renders it elongation competent
and primed for the following decoding event. The elongation cycle proceeds until a stop-codon
enters the A-site and engages the ribosome for termination, followed by recycling.

The most critical steps during elongation are selection of the correct aa-tRNA while decoding
and maintenance of the ORF in the course of translocation. These steps, as well as the main
reaction catalysed by the ribosome, peptide bond formation, will be explained in the following

sections.

Decoding links the information stored in the mRNA to the amino acid sequence of the peptide
by comparison of the mRNA codon with the anticodon of incoming aa-tRNAs. Initially EF-
Tu-GTP-aa-tRNA ternary complexes are recruited to the elongation competent ribosome
independently of the A-site codon by interaction with the rProteins L7/L12 in the T tRNA
conformation (Figure 4a, b, panel 2) (Wieden et al., 2001; Kothe et al., 2004; Diaconu et al.,
2005). EF-Tu consists of three domains: domain I is the G-domain, responsible for binding and
hydrolysing GTP, while domain II and IIl in the GTP form of EF-Tu sandwich the
aminoacylated CCA-end of the tRNA, whereas the ASL is free to interact with the anticodon
(Nissen et al., 1995; Nissen et al., 1999; Loveland et al., 2017). E. coli ribosomes harbour four
copies of L7/L.12 and each of them might be associated with a ternary complex for rapid codon
sampling (Diaconu et al., 2005; Mustafi and Weisshaar, 2018). The codon sampling is
considered as the first of two proofreading steps during decoding (Figure 4c¢) and scans one
codon per 1-2 ms (Thompson and Stone, 1977; Gromadski and Rodnina, 2004; Mustafi and
Weisshaar, 2018). Importantly, only non-cognate ternary complexes are rejected and dissociate
from the ribosome, while cognate ternary complexes are accepted. A small portion of near-
cognate complexes, which mimic Watson-Crick base pairing by tautomerization can escape
the initial selection and proceed like cognate ternary complexes (Figure 4a, b) (Pape et al.,
1999; Gromadski and Rodnina, 2004; Wohlgemuth et al., 2010; Rozov et al., 2015; Rozov et
al., 2016a; Rozov et al., 2016b; Loveland et al., 2017; Fislage et al., 2018; Rozov et al., 2018).
During the codon recognition the SSU is in an open conformation and the tRNA is in the A*/T
state (Figure 4a, b, panel 3), which indicates that the tRNA is bent towards the A-site for
sampling, but has not yet established Watson-Crick base pairing with the mRNA codon, while
the CCA-end is associated with EF-Tu (Loveland et al., 2017; Fislage et al., 2018). Sampling
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Figure 4: Mechanism of initial selection of tRNAs and decoding. (a) Schematic representation of decoding.
Rearrangements and decoding intermediates of a cognate tRNA (b) and non-cognate tRNA (c) according to Loveland et al.
(2017). Panel two depicts initial binding of the ternary complex, the anticodon is unpaired (lower inlet) and EF-Tu is not
accommodated to the GAC (lower inlet). GCP, nonhydrolyzable GDPCP. In panel three the codon:anticodon interaction is
established, but the SSU is in an open conformation and EF-Tu does not interact with the SRL. In panel four the SSU is closed
and EF-Tu is accommodated in the GAC. Figure (a) and (b) were adapted from Rodnina (2018). and (c) from. Ogle et al.
(2003).

by the ribosome is carried out by the decoding bases, namely 16S rRNA bases A1492 and
A1493 of helix 44 (h44) in the SSU body, as well as G530 from the G530-loop in the shoulder
of the SSU and A1913 of H69 of the 23S rRNA (E. coli numbering is used throughout the
thesis) (Ogle et al., 2001; Loveland et al., 2017; Fislage et al., 2018). The decoding bases flip
between their OFF and ON states. In the OFF state A1492 and A1493 reside inside h44, A1913
stacks on A1492 and G530 is in syn-conformation, while in the ON position A1492 and A1493
flip out of h44, G530 is in anti-conformation and A1913 shifts out of h44. The ON
conformation establishes a hydrogen-bond network with the minor groove of the
codon:anticodon helix and the ASL of the tRNA in order to verify Watson-Crick base pairing.
More precisely, A1913 interacts with the ASL, A1493 and G530 monitor the first codon
position, whereas A1492 and G530 verify the second position of the codon (Ogle et al., 2001;
Loveland et al., 2017; Fislage et al., 2018). The third codon position is not monitored strictly
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by the ribosome and allows Wobble base pairing. This allows reading of multiple redundant
codons by one tRNA and is the reason that the genetic code is degenerated (Crick, 1966). Once
the hydrogen bond network is tightly formed the tRNA is accepted. This is accompanied by
closure of the small subunit, as the head and the shoulder move towards each other, which also
brings the shoulder closer to the body (Ogle et al., 2001; Ogle et al., 2002; Loveland et al.,
2017; Fislage et al., 2018). The domain closure embeds the tRNA deeper into the A-site
facilitating the A/T-state (Figure 4a, b, panel 4). EF-Tu, which is associated with the shoulder
throughout decoding, is guided to the GTPase activating center (GAC) on the LSU by the
shoulder movement (Stark et al., 1997; Loveland et al., 2017; Fislage et al., 2018). The GAC
acts like a GTPase activating protein (GAP) for trGTPases and consists of the sarcin-ricin-loop
(SRL, H95) of the 23S rRNA, as well as the rProteins L10 and L7/L.12 (Moazed et al., 1988;
Kothe et al., 2004; Schmeing et al., 2009; Voorhees et al., 2010). Conformational changes in
EF-Tu during domain closure place a histidine (His84 in E. coli EF-Tu) residue in switch II of
the G-domain close to A2662 of the SRL (Voorhees et al., 2010; Loveland et al., 2017; Fislage
et al., 2018). The G-domain and the His are conserved in all trGTPases indicating a similar
GTP hydrolysis mechanism for different trGTPases in all domains of life, (Noller, 1984; Gutell
etal., 1993; Leipe et al., 2002; Spahn et al., 2004; Voorhees et al., 2010; Maracci and Rodnina,
2016). Consistently, the GAC is conserved across all kingdoms. Hydrogen bonding between
the His and A2662 leads to activation of the GTPase activity. The His is involved in
coordinating a water molecule, which is necessary for the nucleophilic attack on the
v-phosphate of GTP (Cool and Parmeggiani, 1991; Daviter et al., 2003; Voorhees et al., 2010;
Loveland et al., 2017; Fislage et al., 2018). The hydrolysis mechanism for EF-Tu based on
biochemical and theoretical reaction simulation propagates via a substrate-assisted mechanism,
in which one oxygen of the y-phosphate group abstracts one hydrogen from the water and the
resulting hydroxide anion performs the nucleophilic attack on the y-phosphate in a concerted
manner (Daviter et al., 2003; Adamczyk and Warshel, 2011; Ram Prasad et al., 2013; Wallin
et al., 2013; Maracci et al., 2014). EF-TuGDP-Pj-aa-tRNA changes its conformation upon Pi
release, which decreases the affinity for the ribosome and the tRNA. Consequently,
EF-Tu:GDP releases the CCA-end of the tRNA, the tRNA detaches from EF-Tu and
accommodates to the PTC (Pape et al., 1998; Pape et al., 1999; Kothe and Rodnina, 2006).
Subsequently, EF-Tu dissociates from the ribosome (Morse et al., 2020). tRNA
accommodation to the A-site of the LSU, places the CCA-end in the PTC for following peptide
bond formation (Pape et al., 1998; Pape et al., 1999; Gromadski and Rodnina, 2004).

As mentioned earlier not all near-cognate tRNAs are rejected during decoding, although
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GTPase activation is 100-fold faster for cognate then near-cognate tRNAs, a minor fraction of
non-cognate tRNAs promotes domain closure and GTP hydrolysis by EF-Tu (Pape et al., 1998;
Pape et al., 1999; Zhang et al., 2015a; Loveland et al., 2017; Fislage et al., 2018). Since the
ribosome only monitors the geometry of the codon:anticodon helix, near-cognate aa-tRNAs
fulfilling this criterion proceed to EF-Tu GTPase activation, but accommodation to the PTC is
slower in kinetic studies, while tRNA dissociation increases (Pape et al., 1998; Pape et al.,
1999; Demeshkina et al., 2013; Rozov et al., 2015; Rozov et al., 2016a; Rozov et al., 2016b).
This observation indicates a second proofreading step, with a yet unknown mechanism (Figure
4c) (Pape et al., 1999; Geggier et al., 2010; Ieong et al., 2016). It has been shown recently that
tRNAs that are unsuccessful in peptide bond formation can bind to EF-Tu*GTP from solution
during the proofreading step, thus the ternary complex can be formed on the ribosome (Morse
et al., 2020). With regard to this, multiple rounds of GTP hydrolysis can take place during
proofreading. Near-cognate tRNAs which also escape the proofreading during accommodation
will be included in the peptide. However, since the fidelity of decoding is 10° or higher an
average E. coli protein of 300 aa is synthesised most likely error-free (Netzer and Hartl, 1997,

Allan Drummond and Wilke, 2009; Wohlgemuth et al., 2010; Manickam et al., 2014).

Peptide Bond Formation is the main reaction catalysed by the ribosome and describes the
polymerisation of amino acids into a polypeptide chain. The reaction takes place in the peptidyl
transferase center (PTC) in the highly conserved domain V of the 23S rRNA. This already
implies that the PTC is mainly composed of rRNA, which characterises the ribosome as a
ribozyme (Ban et al., 2000; Nissen et al., 2000; Hansen et al., 2002). The closest rProtein to
the PTC in bacteria with 8-10 A distance is the N-terminal tail of bL27 (Voorhees et al., 2009;
Polikanov et al., 2014). The 50S subunit is able to catalyse the reaction even without the SSU
or additional translation factors, requiring only tRNAs or tRNA fragments (Monro, 1967;
Maden and Monro, 1968; Schmeing et al., 2002; Wohlgemuth et al., 2006). The ribosome was
suggested to function as an entropic trap that places the CCA-end of the P-tRNA, carrying fMet
or the nascent chain and the incoming aa-tRNA optimally for the reaction to occur. This
accelerates the peptidyl transfer by aminolysis from the P-site tRNA onto the amino acid of the
A-site tRNA 103-10"-fold compared to the reaction in solution (Sievers et al., 2004). The
aminolysis is initiated by a nucleophilic attack of the a-amino group of the aminoacyl-tRNA
in the A-site onto the carbonyl carbon of the ester group connecting the nascent polypeptide
with the P-site tRNA (Nissen et al., 2000). The positioning of the CCA-end in the P-site is
facilitated by Watson-Crick base pairing of the nucleotides C74 and C75 with G2551 and
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Figure S:Induced- fit of the peptidyl transferase center upon binding of substrates for peptide bond formation.
(a) Interaction of substrate analogues with the A-loop of the 23S rRNA and switch (arrows) of the A-site from uninduced to
induced in response to binding of substrate analogues. The position of the carbonyl carbon is indicated. (b) Progression of the
induced-fit by disruption of the G2583-U2506 Wobble base pair (bold) and position of substrate analogues in the P-site.
(c) Comparison of the induced PTC upon binding of tRNAs (tRNAs, blue and 23S rRNA, orange) or substrate analogues
(analogues, green and 23S rRNA, yellow). 23S rRNA base and tRNA backbone movements are indicated by black arrows.
Hydrogen bonds are displayed as black dotted lines. Figure (a) and (b) modified from Schmeing et al. (2005b) and (c) from
Polikanov et al. (2014).

(2552 within the P-loop (H80) of the 23S rRNA, respectively, while A76 forms hydrogen
bonds (H-bonds) with A2450 and stacks on the ribose of A2451. The stabilization of the CCA-
end of the aa-tRNA is mediated by the A-loop (H92) of the 23S rRNA, in particular C74 stacks
on U2555 and C75 forms a Watson-Crick base pair with G2553 (Figure 5a). A76 attaches via
an A-minor motif to G2583, this is propagated to the G2583-U2506 Wobble base pair, which
is disrupted thereupon (Figure 5b). Furthermore, the bases U2584 and U2585 shift upon
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4/ ‘\

[ uninduced [ [ induced

disruption of the Wobble base pair. U2585 shields the peptidyl-tRNA in the P-site from
premature hydrolysis in the absence of an A-site tRNA, while its relocation exposes the ester
bond of the peptidyl-tRNA for the nucleophilic attack by the a-amino group of the A-site
tRNA. Additionally, A2602 moves between the CCA-ends of the A- and P-site tRNA (Figure
5¢) (Nissen et al., 2000; Hansen et al., 2002; Schmeing et al., 2005a; Schmeing et al., 2005b;
Voorhees et al., 2009; Polikanov et al., 2014). Overall, the binding of the aa-tRNA to the A-
site leads to a shift in the PTC from an uninduced to an induced conformation.

The reaction mechanism of peptide bond formation is a matter of ongoing discussion. Initially,
acid-base catalysis was proposed on the structure of CCA-end analogues in complex with the
LSU of the archaeon Haloarcula marismortui (Nissen et al., 2000). In this case, the 23S rRNA
nucleotide A2451, in particular the N3 atom, which is in H-bond distance to the a-amino group
of the aa-tRNA should act as general base. This was challenged by a mutation and deletion
analysis, which indicated that A2451 is dispensable for the reaction (Polacek et al., 2001;
Youngman et al., 2004; Erlacher et al., 2005). Moreover, it was shown that the exchange of the
2’-OH group of A2451 to -H or -OCH3s reduces the rate of peptidyl transfer 10- to 50-fold and

that transpeptidation is pH independent, altogether these findings contradict an acid-base
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catalysis (Erlacher et al., 2005; Bieling et al., 2006; Erlacher et al., 2006; Lang et al., 2008).
Afterwards two proton relay models were suggested (Figure 6), which include water molecules
found in a subsequent crystal structure of the H. marismortui LSU with substrate, as well as
transition state analogues (Schmeing et al., 2005a) and a crystal structure of Thermus
thermophilus 708 ribosomes with tRNAs in the P- and A-site in the preattack and postcatalysis
state (Polikanov et al., 2014). Both models include one water that is involved in the movement
of three protons, which is consistent with kinetic solvent isotope effect studies (Kuhlenkoetter
et al., 2011). Both proton relays involve the 2°-OH group of A76 of the P-tRNA that has been
shown to promote transpeptidation, since its replacement to-H decreased the rate of peptide
bond formation 100-fold (Dorner et al., 2003; Weinger et al., 2004; Zaher et al., 2011).
Additionally, the models include a tetrahedral intermediate of the carbonyl carbon, leading to
a negative charge on the carbonyl oxygen (oxyanion) during the rate limiting transition state.
The formation of the tetrahedral intermediate in both models is in agreement with the absence
of building up a positive charge on the attacking a-amino group as implied by kinetic isotope
effect data and the close to zero Brensted coefficient (Kingery et al., 2008). In contrast, the
models disagree on the rate limiting transition state formed during peptidyl transfer.

The crystal structure of the H. marismortui LSU lead to the suggestion of a concerted eight-
membered proton shuttle (Schmeing et al., 2005a), in which the nucleophilic attack of the a-
amino group onto the carbonyl carbon involves an eight-membered transition state. In the
transition state the proton from the a-amino group is accepted by the 2°-OH group of A76 that
simultaneously donates its proton to the 3’-OH group of the P-tRNA via a water molecule
(Figure 6a).

The higher resolution of the 7. thermophilus 70S structures allowed a more sophisticated view
on the PTC before and after peptide bond formation, as well as a more precise localisation of
water molecules (Polikanov et al., 2014). The PTC was shown to be rather rigid, with water
molecules coordinated by H-bonding with the 23S rRNA and the tRNAs. In particular, one
water molecule (W1) interacts with the phosphate backbone of A-tRNA nucleotide A76, N6 of
A2602 and the 2°-OH group of A24510f the 23S rRNA, as well as the N-terminal amino group
of L27. N1 of A2602 and the 2’-OH group of U2584 contact a second water molecule (W2)
and a third water molecule (W3) is coordinated by the 2’-OH-groups of A76 of the P-tRNA
and C2063. W2 and W3 were already identified in the complex of the H. marismortui LSU
with substrate or transition state analogues and were proposed to stabilise the oxyanion and
participate in the proton shuttle mechanism, respectively (Schmeing et al., 2005a). On the

contrary, W3 was found at different positions in the preattack structure of the 7. thermophilus
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70S and was therefore excluded from participating in the proton wire (Polikanov et al., 2014).
Rather, the abstraction of a proton from the attacking a-amino group in the A-site should be
mediated by a concerted proton wire from W1 via the 2’-OH groups of A2451 and P-tRNA
A76. A partial negative charge of the oxygen of W1, facilitated by the basic character of the
N-terminal a-amino group of bL27 and the negative charge of the phosphate backbone of A-
tRNA nucleotide A76 favours the start of the proton wire (Figure 6b). The resulting tetrahedral
intermediate of the carbonyl carbon, containing the oxyanion is also stabilised by W2 in this
model. In accordance with kinetic isotope effect studies (Hiller et al., 2011), rapid breakdown
of the tetrahedral intermediate occurs in a second step and is promoted by the ribosome. Fast
breakdown prevents premature translation termination by hydrolysis. This breakdown uses the
negative charge of the oxyanion and the partial positive charge of the W1 oxygen to transfer a
proton to W3 by inverting the direction of the proton wire (Polikanov et al., 2014).

The advantage of the proton wire over the proton shuttle is the favourable geometry for proton

transfer, albeit the role of bL27 has been questioned (Maracci et al., 2015). Earlier studies
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Figure 6: Overview of possible reaction mechanism during peptide bond formation. (a) Eight-membered proton shuttle
(Schmeing et al., 2005a). (b) Proton wire (Polikanov et al., 2014). Both mechanisms lead to the formation of the tetrahedral
intermediate due to nucleophilic attack of the a-amino group in the A-site to the carbonyl carbon in the P-site. Breakdown of
the intermediate via different proton transfer routes lead to the transfer of the peptide from the P-tRNA to the a-amino group
of the amino acid attached to the A-tRNA.
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indicated that deletion of 3-6 N-terminal residues of bL27 reduced the peptide bond formation
rate (Maguire et al., 2005). Additionally, bL27 was found to stabilize the P-and A-site tRNA
and was thus suggested to take part in optimal substrate positioning (Voorhees et al., 2009;
Polikanov et al., 2014). In contrast, the study by Maracci et al. (2015) found that deletion of
bL27 had only a marginal effect on peptidyl transfer rate, but the extent of peptide bond
formation was reduced by 20 %. Furthermore, it is not clear if the proton wire is applicable in
eukaryotes and archaea, since bL27 is only conserved in bacteria (Ban et al., 2014). In a
structure of the wheat-germ ribosome it has been shown that a conserved loop of L10e (uL.16)
reaches towards the PTC in eukaryotes instead (Armache et al., 2010), but the contribution of
the loop to peptide bond formation has not been investigated yet and the loop was flexible in
the H. marismortui LSU structures (Ban et al., 2000; Nissen et al., 2000; Hansen et al., 2002;
Schmeing et al., 2005a; Schmeing et al., 2005b). In conclusion, the part of proteins in peptide
bond formation, the conservation of the mechanism between prokaryotes and eukaryotes, as
well as the mechanism itself are still not fully understood and further kinetic, biochemical and

structural analysis is required.

Translocation describes the process of moving the mRNA by one codon, as well as the
movement of peptidyl-tRNA and deacylated tRNA from the A- and P-site to the P- and E-site,
respectively. Additionally, the ribosome is transformed from a dynamic PRE- to the rather
static POST-translocation state, which can participate in a new round of elongation.
It has been shown that after peptide bond formation the ribosome alternates between the
classical and the rotated (or hybrid) state driven by thermal energy with a rate of ~40
oscillations per second (Moazed and Noller, 1989; Blanchard et al., 2004; Agirrezabala et al.,
2008; Cornish et al., 2008; Chen et al., 2011; Chen et al., 2013a; Adio et al., 2015; Sharma et
al., 2016). In the latter, the 30S subunit was found to be rotated approximately 6° counter
clockwise in comparison to the 50S subunit, and the 30S head was swivelled by 6° (Frank and
Agrawal, 2000; Agirrezabala et al., 2008; Julian et al., 2008; Agirrezabala et al., 2012; Chen et
al., 2013b; Tourigny et al., 2013). Also, the tRNAs engaged hybrid states upon rotation: while
the ASLs remain in the A- and P-site on the SSU, the acceptor stems switch to the P- and E-
site in the LSU, resulting in A/P- and P/E-hybrid states. In addition, the L1 stalk of the LSU
was rotated towards the E-site by 30° into its closed position where it contacts the 30S head
and the P/E-tRNA in the elbow region. Translocation by spontaneous rotation is extremely
slow (Gavrilova and Spirin, 1971; Fredrick and Noller, 2003; Shoji et al., 2006). Productive

translocation needs GTP and EF-G, a translational GTPase consisting of five domains (Figure
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7a, b), which shares the conserved G-domain (domain I), harbouring the for GTP-hydrolysis
important His (His92 in EF-G) and domain II with other trGTPases, whereas domains I1I-V
are characteristic for EF-G (Nishizuka and Lipmann, 1966; Avarsson et al., 1994,
Czworkowski et al., 1994; Rodnina et al., 1997; Chen et al., 2013b; Cunha et al., 2013; Pulk
and Cate, 2013; Tourigny et al., 2013; Adio et al., 2015). Productive translocation is also
dependent on ribosomal intersubunit rotations since inhibition of intersubunit flexibility by
reversible crosslinking of the subunits also inhibited translocation, which was restored as soon
as the crosslink was removed (Horan and Noller, 2007). EF-G*GTP accelerates the
translocation rate by four orders of magnitude compared to spontaneous translocation and GTP
hydrolysis increases the rate additionally by 40-fold (Rodnina et al., 1997; Munro et al., 2010).
EF-G can adopt a compact and an elongated conformation (Figure 7a, b). According to single-
molecule FRET studies free-EF-G prefers the compact state, while ribosome-bound EF-G
preferentially engages the elongated conformation (Salsi et al., 2015). However, in a crystal
structure of the PRE-translocation state EF-G was found in the compact state on the ribosome
(Figure 7c) (Lin et al., 2015). The compact state might be the initial binding conformation but
could also be accounted for by the crystallisation method, since EF-G was fused to rProtein L9
of the neighbouring ribosome to engage crystallisation and the compact conformation on the
ribosome was only reproduced using the same method (Zhou et al., 2019a), whereas in all other
crystal and cryo-EM structures of EF-G on the ribosome EF-G was found in the extended
conformation. Overall, the extended conformation resembles the structure of
EF-Tu'GTP-tRNA ternary complex, with domain IV of EF-G mimicking the ASL of the tRNA
(AEvarsson et al., 1994; Czworkowski et al., 1994; Nissen et al., 1995). Domain IV was found
to bind initially in a cleft between the head and the body of the SSU right next to the A-site,

Figure 7: Domain structure and conformational
, reorganisation of EF-G. (a-b) EF-G in the compact
and elongated form, with domainl (G-domain) in
magenta, domain Il in blue, domain Il in green,
domain IV in yellow and domain V in red. (c) compact
EF-G on the non-rotated ribosome (Lin et al., 2015).
Aot The 508 subunit is depicted in grey and the 30S subunit
Compact EF-G % Elongaled EF-G in pale yellow. The tRNAs are in classical A- (blue), P-
c PRE COMPLEX d POST COMPLEX (hot pink) and E- (orange) states. (d) Non-rotated
complex after translocation with EF-G in the elongated
conformation. Domain IV of EF-G (yellow) is located
in the A-site of the 30S subunit. The figure was
modified from Noller et al. (2017).
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contacting the ASL of the A-tRNA (Brilot et al., 2013). Binding of EF-G to the ribosomal GAC
is mediated via the L7/L12 stalk in a similar manner to EF-Tu (Diaconu et al., 2005; Helgstrand
et al., 2007). The binding can occur at any stage during spontaneous rotation and facilitates the
hybrid state, which was found to be the preferential substrate for translocation by EF-G
(Spiegel et al., 2007; Chen et al., 2011; Chen et al., 2013a; Adio et al., 2015; Belardinelli et al.,
2016a). GTP hydrolysis is activated subsequent to association with the ribosome and several
crystal, as well as cryo-EM, structures of the PRE-state support the hypothesis that the
activation mechanism is similar between EF-G and EF-Tu (Bourne et al., 1991; Mohr et al.,
2002; Brilot et al., 2013; Chen et al., 2013b; Pulk and Cate, 2013; Tourigny et al., 2013; Lin et
al., 2015; Belardinelli et al., 2016a). The main questions of translocation are how the ASLs
move from one site to the next, how the mRNA is shifted, how do ribosome motions influence
translocation and what role does EF-G play in the process?

The first all-atom structure of the E. coli ribosome revealed a 13 A constriction between the P-
and E-site in the classical state, which hinders the ~22 A wide anticodon stem of the tRNA to
move from the P- to the E-site (Schuwirth et al., 2005). The constriction is formed by the 16S
nucleotides G1338-U1341 of the head and A790 of the platform. Based on the comparison with
a cryo-EM reconstruction of the yeast 80S ribosome in complex with the eukaryotic EF-G
homologue eEF2 and the translocation inhibitor sardorin (Spahn et al., 2004), in which a swivel
of the head opened the lock, Schuwirth et al. (2005) proposed a similar mechanism for the
prokaryotic ribosome. This was confirmed by a cryo-EM and crystal structures of E. coli and
T. thermophilus 70S ribosomes in complex with EF-G with or without fusidic acid (Ratje et
al., 2010; Ramrath et al., 2013; Zhou et al., 2013, 2014; Macé et al., 2018). The authors
observed an uncoupling of the head and body rotation of the 30S subunit during an intermediate
state (TIP9ST) during translocation of tRNAs. In the TIP?ST the intersubunit rotation was 3-5°,
while the head domain was swivelled by 18-21°, which is a back rotation of the body and a
forward movement of the head compared to the hybrid state. Fluorescence stopped-flow
kinetics, single-molecule polarized total internal reflection fluorescence microscopy and force
measurements using optical-tweezers indicated that the uncoupling is facilitated by a power
stroke of 13-85 piconewton as consequence of GTP hydrolysis by EF-G and EF-G*GDP-P; is
present during the intermediate states of translocation (Yao et al., 2013; Liu et al., 2014b; Chen
et al., 2016; Yin et al., 2019). In the structures EF-G*GDP is present and rearrangements of
EF-G*GDP due to Pi release were blocked by fusidic acid (Ratje et al., 2010; Ramrath et al.,
2013; Zhou et al., 2013). The acceptor stems in the TI??ST were fully translocated to the P- and

E-site, as seen in the hybrid state. Additionally, rotation of the head domain opened the
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constriction and the tRNA ASLs stayed partly attached to their A- and P-site contacts with the
head, whereas they had established contacts with the P- and E-site on the body. Thus, the state
is referred to as chimeric hybrid states with the annotation ap/P and pe/E, respectively.
Additionally, a third chimeric hybrid state of the tRNA departing the A-site was found by
adding neomycin to inhibit the finalisation of translocation (Zhou et al., 2014). In this chimeric
hybrid state the acceptor stem contacted the A- and P-loops of the PTC, while the ASL is in
the ap-state, hence the state is termed ap/ap.

During head swivelling, accompanied by formation of the chimeric hybrid states the P-tRNA
follows the movement of the head into the pe-state on the SSU, while the A-tRNA moves even
further towards the P-site, in consequence the tRNAs are closer than in the classical or hybrid
state (Ramrath et al., 2013; Zhou et al., 2014). This is probably accounted to domain IV of
EF-G, which reaches into the A-site and forms interactions with the ap/P-tRNA ASL, mRNA
and rRNA elements, like h44 and H69 at the decoding center. Furthermore, the tip of EF-G
domain VI harbours two conserved loops, which insert into the minor groove of the codon-
anticodon helix. In accordance, the importance of loop I and II was demonstrated by time-
resolved puromycin reactivity assays, in vitro translation assays, translocation assays and
chemical footprinting with insertion and deletion mutations, as well as single amino acid
mutations, since the mutations decreased the rate of tRNA translocation (Rodnina et al., 1997;
Martemyanov et al., 1998; Savelsbergh et al., 2000; Liu et al., 2014a). The loops were further
suggested to weaken and replace the minor groove interactions of the decoding bases A1492,
A1493 and G530 with the codon:anticodon minihelix, which should flatten the energy barrier

for translocation (Gao et al., 2009; Khade and Joseph, 2011; Liu et al., 2014a; Adio et al.,

a b o Figure 8: Comparison of the 30S subunit in the classical
y state and the intermediate state of translocation.

head 8 e ol (a) overview of the classical state on the 30S subunit (16S
rRNA, cyan; rProteins, blue) with A/A-tRNA in yellow and
P/P-tRNA in red. (b) chimeric hybrid state with tRNAs in
ap/ap (yellow) and pe/E (red) -states. The head of the 30S
subunit is rotated by 21° and the 30S subunit is rotated 2.7°
with respect to the SOS subunit. The overall binding position
of EF-G (orange) is shown. (c) View on the A-, P- and E-
site of the 30S subunit in the classical state. The constriction
body w07 between the head nucleotides G1338-A1339 and nucleotide
A790 of the body is closed. The mRNA is shown in green.

(d) Closeup view onto the ribosomal sites in the
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2015). In addition, loop I was proposed to prevent backward slippage of the ap/P-tRNA-mRNA
complex (Ramrath et al., 2013). Recent crystal structures and kinetic measurements support a
role in reading frame maintenance for EF-G (Peng et al., 2019; Zhou et al., 2019b). The
ribosome might be naturally -1 frameshift-prone during spontaneous translocation or slippery
sequences in the absence of EF-G. While the presence of wild-type (wt) EF-G reduced the
frameshifting, mutations in the tip of loop I or loop II could not prevent slippage. These
findings indicate that domain IV of EF-G prevents the slide of the tRNA into the -1 frame
during translocation from the A- to the P-side by restriction of the tRNA movement and
preserving the codon:anticodon interaction. Furthermore, retention and stabilisation of the
codon:anticodon interaction would lead to translocation of the mRNA along with the tRNA.
For full translocation of the ASLs of the tRNAs from ap/P and pe/E hybrid states to classical
P/P and E/E states (POST-state) to occur, the head and the body need to rotate back in a
clockwise movement into their non-rotated positions. During this phase the interactions
between EF-G and the ap/P-tRNA are likely preserved and domain IV accompanies the tRNA
to the P-site, as the interactions are maintained from the PRE-state (Brilot et al., 2013; Chen et
al., 2013b; Pulk and Cate, 2013; Tourigny et al., 2013) over intermediate states (Ramrath et al.,
2013; Zhou et al., 2014) to the POST-state (Gao et al., 2009). Concurrently, Pi release by EF-G
occurs, which could facilitate a second power stroke that pushes the ap/P-tRNA in place (Liu
et al., 2014b; Belardinelli et al., 2016a; Chen et al., 2016). Alternatively, the back-rotation of
the SSU and accommodation of tRNAs could proceed via a Brownian ratchet mechanism,
which is supported by the finding that translocation can be accomplished although P; release is
impaired (Savelsbergh et al., 2005; Chen et al., 2016). In this case, Domain IV of EF-G would
act as a resilient obstruction, preventing frameshifting and/or backward movement of the
tRNAs along with the head (Gao et al., 2009; Ramrath et al., 2013; Zhou et al., 2014; Rodnina
et al., 2019). In the late stage of back-rotation the E-tRNA can already leave the ribosome
(Belardinelli et al., 2016a; Belardinelli et al., 2016b). Also, structural rearrangement of
EF-G-GDP after Pi release facilitates a significantly lower affinity of EF-G for the ribosome
and as a result EF-G dissociates, which marks the end of the translocation process and leaves
the ribosome in the non-rotated POST-state (Savelsbergh et al., 2005; Belardinelli et al.,
2016a). The POST-state is also characterised by a vacant A-site and depending on the A-site
codon the ribosome can participate in a new round of the elongation cycle or enter into the
translation termination phase.

Further structural data obtained by time-resolved cryo-EM and FRET experiments indicate that

many more states exist along the process of translocation and the combination of kinetic data
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and structural snapshots delivered a general overview of the translocation mechanism (Fischer
et al., 2010; Holtkamp et al., 2014; Adio et al., 2015; Belardinelli et al., 2016a). Nevertheless,
the detailed structural mechanism is not entirely described yet and molecular dynamic
simulations indicate a relatively flat energy landscape in some areas, so that smooth transitions
between different states may exist and completion of the structural data will be challenging

(Whitford et al., 2013; Whitford and Sanbonmatsu, 2013; Holtkamp et al., 2014).

1.2.3 Translation Termination

The nascent polypeptide chain protrudes through the exit tunnel in the 50S subunit during
elongation until a stop codon (UAA, UAG or UGA) encounters the A-site (Brenner et al., 1965;
Brenner et al., 1967; Weigert et al., 1967). The stop codon signals the end of the ORF and the
elongation cycle, as well as the transition to translation termination. Class I release factors
(RFs) recognize the stop codon and hydrolyse the ester bond between the polypeptide chain
and P-site tRNA (Capecchi, 1967; Caskey et al., 1968). As a result, the synthesised protein is
released from the ribosome. The dissociation of class I RFs is accelerated by class II RFs,
which belong to the group of translational GTPases (Bourne et al., 1991; Frolova et al., 1996;
Freistroffer et al., 1997). The termination factors are not conserved between eukaryotes/archaea
and bacteria (Vestergaard et al., 2001; Burroughs and Aravind, 2019). While eukaryotes and
archaea possess one class I RF (e/aRF1) that recognises all three stop codons and is delivered
to the ribosome by the class II RF (e/aRF3) (Konecki et al., 1977; Zhouravleva et al., 1995;
Dontsova et al., 2000; Hauryliuk et al., 2006; Mitkevich et al., 2006), bacteria have two class I
RFs (RF1 and RF2) that read the stop codons in an overlapping manner (RF1: UAA, UAG;
RF2: UAA, UGA) (Scolnick et al., 1968). The bacterial class I RFs bind independently of the
class II RF3 to the ribosome (Goldstein and Caskey, 1970; Freistroffer et al., 1997). In contrast,
a Gly-Gly-GIn (GGQ) -motif, which is necessary for peptide hydrolysis evolved convergently
and is conserved in all class I RFs (Frolova et al., 1999; Seit-Nebi et al., 2001; Mora et al.,
2003).

Bacterial RFs are composed of four domains (Figure 9a): The N-terminal domain 1 builds a
three-helix bundle. Domains 2 and 4 fold into a superdomain, which is responsible for
decoding, while domain 3 has a long helix (a7) and harbours a loop containing a short helix
followed by the GGQ-motif (Vestergaard et al., 2001; Shin et al., 2004; Zoldak et al., 2007).

In a crystal structure of isolated RF2 the decoding elements and the GGQ-motif were found
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Figure 9: Structure and binding of class I release factor 2 and decoding of the UAA stop codon by class I release factors.
(a) Overview of the domain structure and features of RF2 (Korostelev et al., 2008). Domain 1 (d1), dark blue; domain 2 (d2),
yellow; domain 3 (d3), green; domain 4 (d4), purple; SPF-motif (SPF), red; GGQ-motif (GGQ), red; helix a5 (a.5); B-strands 4
and 5 (B4, B5). (b) Binding of RF2 (yellow, PDBID 60UO) to the ribosome (50S subunit, grey; 30S subunit, cyan) in the open
conformation. P-tRNA (forest green) and mRNA (green) are depicted (Fu et al., 2019). (c) Comparison of the closed (RF2closed,
pink, PDBID 60ST) and open (RF2open, yellow, PDBID 60UO) conformation of RF2 on the ribosome (Fu et al., 2019).
P-tRNA and mRNA are shown for reference. (d)-(g) decoding of the UAA stop codon by RF1 (Laurberg et al., 2008) and RF2
(Korostelev et al., 2008). Potential hydrogen bonds are indicated by red and blue dashed lines. Figure (a) and (d)-(g) were
adapted from Korostelev (2011).

only ~20 A apart (Vestergaard et al., 2001), whereas the distance between the decoding center
and the PTC is approximately 73 A (Rawat et al., 2003; Zoldak et al., 2007). This raised the
question on how the GGQ-motif can fulfil hydrolysis in the PTC. Subsequent cryo-EM (11-
14 A) and crystal structures (6-7 A) revealed that the RFs engage an open conformation on the
ribosome, with the tip of domain 3 reaching towards the A-site of the PTC (Figure 9b) (Klaholz
et al., 2003; Rawat et al., 2003; Petry et al., 2005; Rawat et al., 2006). Domain 1 bound near
the head on the SSU and close to the GTPase associated center on the LSU, whereas the
superdomain 2/4 was accommodated in the DC. The structural difference between the closed
and the open conformation lead to the conclusion that RF1/2 undergo a large transition upon
binding to the ribosome and stop codon recognition. While small-angle X-ray scattering
(SAXS) measurements of E. coli RF1 and T. thermophilus RF2 indicated that the RFs can
sample between the closed and the open conformation in solution and did not exclude binding
to the ribosome in the open conformation (Vestergaard et al., 2005; Zoldak et al., 2007),
transition metal ion FRET experiments with E. coli RF1 support this hypothesis (Trappl and
Joseph, 2016). Recently, a time-resolved cryo-EM study (3.3-3.9 A) identified the closed
conformation of E. coli RF1 and RF2 on the ribosome (Figure 9¢) (Fu et al., 2019). Moreover,

the proportion of closed RF decreased over time, while the open, accommodated state increased
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as the stop codon was recognised. The mechanism of stop codon recognition had been
identified previously by crystal structures (3.5 3.0 A) of the RFs on the ribosome (Figure 9d-g)
(Korostelev et al., 2008; Laurberg et al., 2008; Weixlbaumer et al., 2008b; Korostelev et al.,
2010). Both RFs monitor the first base (U1) of all three stop codons with the N-terminus of
helix a5 (Figure 9d, e). The backbone interaction of the base of helix a5 restricts the base
selection to an U in the first position, and further the interaction mimicking A:U Watson-Crick
base pairing. The specificity for the UAG and UGA stop codons was found to be mediated by
a Pro-x-Thr (PxT; x usually Ala or Val)-motif in RF1 and a Ser-Pro-Phe (SPF)-motif in RF2
(Ito et al., 2000; Scarlett et al., 2003), which is harboured in a loop connecting the p-strands 4
and B5 of domain 2 (Figure 9a, d, e) (Vestergaard et al., 2001; Shin et al., 2004; Zoldak et al.,
2007). While the Pro- residues ensure proper conformation of the loop, the Thr190 of the PxT-
and the Ser205 of the SPF-motif are involved in codon selection (Korostelev et al., 2008;
Laurberg et al., 2008; Weixlbaumer et al., 2008b; Korostelev et al., 2010; Fu et al., 2019). The
Thr190 of the PxT-motif discriminates against a G, U or C in the second codon position by a
bifurcated H-bond between O4 of Ul and the N6-amino group of A2 (Figure 9d). In contrast,
Ser205 of the RF2 SPF-motif can rotate to form a H-bond with the N6-amino group of an A2
or the N1-amino group of G2 (Figure 9¢), enabling RF2 to decode both A and G in the second
position. The third codon position is not monitored by the tripeptide-motifs, instead a part of
the decoding loop inserts after the second base due to stacking of a conserved His (RF1:
His197, RF2: His214) on to the second codon base (Figure 9d, e). This interaction was found
to be necessary for proper binding of RF1 to the DC and stimulation of peptide release (Field
et al., 2010). Additionally, the RF1 decoding loop contains GIn185 and Thr198, while the Thr
is conserved in RF2 (Thr215), the Gln is substituted by the hydrophobic Val202 (Figure 91, g)
(Korostelev et al., 2008; Laurberg et al., 2008; Weixlbaumer et al., 2008b; Korostelev et al.,
2010). The Thr can donate a H-bond to N7 of the Hoogsteen edge of an A3 in both RFs (Figure
9f, g), while GIn185 of RF1 can receive or donate an additional H-bond to the N7-amino group
of an A3 or the keto group of a G3 and allows decoding of either nucleotide for RF1 (Figure
91). In contrast, Val202 of RF2 cannot form H-bonds, which restricts RF2 to an A in the third
position (Figure 9g). Thus, the near-cognate UGG codon is excluded due to discrimination
against a G by RF1 in the second codon position and by RF2 in the third position. The RFs also
make additional contacts with the mRNA, since bases following the stop codon determine the
termination efficiency of stop codons and mutations of singe amino acids render RF2 inactive
(Poole et al., 1995; Ito et al., 1998; Poole et al., 1998). Furthermore, the conserved bases in the
decoding center, A1913 of H69, A1492 and A1493 of h44, as well as G530, adopt a defined
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conformation to allow termination to occur (Figure 10a) (Korostelev et al., 2008; Laurberg et
al., 2008; Weixlbaumer et al., 2008b; Korostelev et al., 2010; Fu et al., 2019). A1493 remains
flipped-in into h44 (OFF-position), this provides space for the RF to bind, since the flipped-
out ON-position seen with cognate tRNAs would clash with the RF. A1913 inserts into h44
and stacks on A1493, which stabilises the position of A1493. On the other hand, A1942 and
G530 are in their ON-conformation and form H-bonds with each other. G530 is also involved
in determination of the third base of the stop codon (Figure 9f, g and Figure 10a). The third
stop codon base stacks on G530, the stronger stacking interaction of purines disfavours
pyrimidines in the third position, whereas A1942 together with further elements of the DC and
the RF stabilize the so-called switch loop of the RF (Figure 10a). The switch loop connects the
C-terminal end of helix a7 of domain 3 with domain 4 and undergoes an unstructured to
structured transition upon stop codon recognition that extends and re-orientates helix a7. The
transition is supported by a pocket built up by domain 2 of the RF, rProtein S12 (not depicted
in Figure 10a), A1492 and A1493 of h44, G530 of the G530-loop as well as A1913-U1915 of
H69. Based on the structural data it was proposed that the unstructured to structured transition
facilitates the open conformation of the RF, which would link the decoding of the stop codon
and placement of the GGQ-motif into the PTC for hydrolysis (Korostelev et al., 2008; Laurberg
et al., 2008; Korostelev et al., 2010; Fu et al., 2019). Indeed, shortening of the switch loop of
RF1 by three residues resulted in a three-fold decrease of the peptide release rate and a rate-
limiting step for the reaction, which further supports the role of the switch loop during
termination (Korostelev et al., 2010). Furthermore, the theory is supported by the time-resolved
cryo-EM study by Fu et al. (2019), since the ordered form of the switch loop was observed in
parallel with the open conformation

Upon placement of the GGQ-(RF1-G233G234Q235; RF2-G250G251Q252) motif in the PTC,
the motif is preceded by a short helix (Korostelev et al., 2008; Laurberg et al., 2008;
Weixlbaumer et al., 2008b; Jin et al., 2010; Korostelev et al., 2010; Fu et al., 2019) that is not
present in the structures of the isolated RFs (Vestergaard et al., 2001; Shin et al., 2004; Zoldak
etal., 2007). Simultaneously, the PTC switches from an uninduced to an induced conformation,
exposing the carbonyl ester bond of the peptidyl-tRNA for nucleophilic attack from the oxygen
of a water molecule. Crystal structures of the RFs on the ribosome revealed that the induced
state of the PTC is slightly different from the induced state by an A-tRNA binding (Figure 10b)
(Korostelev et al., 2008; Laurberg et al., 2008; Weixlbaumer et al., 2008b; Jin et al., 2010;
Korostelev et al., 2010; Fu et al., 2019). A2602 is buried in a pocket of the RF and might help
positioning the GGQ-motif, while U2506 and U2585 would clash with the RF and thus adopt

25



Introduction

a different conformation (Figure 10b). The importance of the GGQ-motif for peptide hydrolysis
was first studied by mutational analysis in eRF1, which showed that substitution of either Gly
lead to complete loss of the hydrolysis activity (Frolova et al., 1999). Surprisingly, replacement
of the Gln to a third Gly (GGG) reduced the activity by ~50%, while conservative mutations
to asparagine, aspartic acid or glutamic acid retained only ~20% activity and mutation to
hydrophobic residues (alanine or isoleucine) reduced the activity >90% (Seit-Nebi et al., 2001).
A contradictory finding was obtained for E. coli RF1 and RF2 using time-resolved peptide
release assays. As seen for eRF1 the amount of released peptide was close to zero using a RF2-
GAQ mutant (Zavialov et al., 2002). Based on this and the crystal structures it was proposed
that both Gly are necessary to enable the flexibility needed for the placement of the loop into
the PTC, since it can adopt backbone conformations that are not allowed for other amino acids.
In contrast to eRF1, the RF1 and RF2 GGA-mutants were merely slower than the wild-type
(Zavialov et al., 2002; Korostelev et al., 2008). The observation that the Gln itself seemed to
be replaceable, not to be the sole coordination partner for the water needed for hydrolysis, as
well as the conformation of the main-chain in crystal structures, lead to the proposal that the
backbone amide of the Gln rather than the sidechain is involved in coordination of the water.
This was further supported by substituting the Gln with proline (lacking a primary amine),

which lead to a complete loss of hydrolysis activity even with extended incubation times of

Figure 10: Conformations of the RF2 switch loop, the decoding center, the peptidyl transferase center and the GGQ-
motif. (a) Comparison of the switch loop of RF2 in the closed (RF2ciosed, pink; switch loop, orange; PDBID 60ST) and open
(RF20pen, yellow; switch loop, red; PDBID 60UO) conformation (Fu et al., 2019). Due to the transition of the switch loop
helix a7 (a7) is extended by ~2 turns (red) in the open conformation. The conformation of the decoding bases G530, A1492
and A1493 of the 16S rRNA (cyan), as well as A1913 in helix 69 (H69) of the 23S rRNA (grey) is shown. mRNA, green. (b)
Conformation of the methylated GIn252 (Q252) within the GGQ-motif (red) of RF2 (yellow) in the PTC (23 S rRNARrr2,
grey) (PDBID 6C51 (Zeng and Jin, 2018)). Distances between the PTC nucleotides and methylated N5-imino group or the
carbonyl oxygen are shown as black dashed lines. Furthermore, comparison of the PTC induced states of 23S rRNA
nucleotides A2451, U2506 and U2585 upon binding of RF2 (23 S rRNARr, grey, PDBID 6C51 (Zeng and Jin, 2018)) or A-
tRNA (23 S rRNAA-rNa, teal, PDBID 1VY4 (Polikanov et al., 2014)). P-tRNA, forest green. (c) Overlay of the conformation
of unmethylated GIn252 (grey) from various termination complexes (RF2/UAA, (D, PDBID 4V67 (Korostelev et al., 2008);
RF1/UAG, @, PDBID 4V7P (Korostelev et al., 2010); RF1/UAA, @, PDBID 4V63 (Laurberg et al., 2008); RF2/UGA, @,
PDBID 4V5E (Weixlbaumer et al., 2008b); RF2/UAA, &, PDBID 4V5J (Jin et al., 2010)) with the conformation of
methylated GIn252 (PDBID 6C51 (Zeng and Jin, 2018)). Figure (c) was adapted from Zeng and Jin (2018).
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30 min (Korostelev et al., 2008; Santos et al., 2013). The crystal structure of RF2-GGP on the
ribosome revealed that the effect is not based on a distortion of the backbone by the pyrrolidin
ring of proline that connects the nitrogen of the backbone and the a-carbon carrying the
carboxyl group (Santos et al., 2013). Rather, compared to other amino acids the backbone
(secondary) amide of proline cannot donate a H-bond to the carbonyl-oxygen of the peptidyl-
tRNA due to its exceptional structure. This was proposed to lead to a failure in stabilising a
possible negative charge building up on the carbonyl-oxygen during hydrolysis. Another
finding regarding the GGQ-motif is that the methylation of Gln N5 enhances the peptide release
and it was suggested by computational analysis and crystal structures that methylation
increases the packing of the Gln between the 23S rRNA nucleotides A2451, U2585 and the
ribose of U2506 (Mora et al., 2007; Trobro and Aqvist, 2007; Graille et al., 2012; Pierson et
al., 2016). A recent crystal structure of methylated RF2 in a post-termination complex supports
this suggestion and indicates stabilisation of the Gln by H-bonding with 23S nucleotides U2506
and A2451 via the methylated N5-imino group and the carbonyl oxygen of the Gln sidechain,
respectively (Figure 10b) (Zeng and Jin, 2018). Additionally, the methyl group on N5 of the
Gln sidechain provides increased van der Waals interactions with A2451 and U2506 of the 23S
rRNA. This should further stabilise the GIn in a certain position and facilitate efficient
hydrolysis (Figure 10c¢). Compared to peptide bond formation the mechanism of hydrolysis is
less known. For example, the exact position of the attacking water has not been observed yet
(Jin et al., 2010; Zeng and Jin, 2018). However, the transition state should also procced via a
tetrahedral intermediate with an oxyanion on the carbonyl carbon and involve the 2’-OH group
of A76 of the P-tRNA (Trobro and Aqvist, 2007; Brunelle et al., 2008; Jin et al., 2010). The
latter is supported by a study that replaced the 2’-OH with hydrogen or fluorine, which
significantly reduced the rate of peptide release (Brunelle et al., 2008). In contrast to peptide
bond formation, only one proton on is transferred during hydrolysis based on kinetic solvent
isotope effect measurements and computer simulations (Trobro and Aqvist, 2009;
Kuhlenkoetter et al., 2011). The different proton transfer numbers indicate that the PTC is able
to catalyse at least two different reactions (Rodnina, 2013), which will be subject of further
structural, kinetic, computational and biochemical studies.

After peptide chain release, the dissociation of class I RFs is promoted by the class II RF RF3
(Goldstein and Caskey, 1970; Freistroffer et al., 1997). Thereby, RF1 is more dependent on
RF3 than RF2, which has a higher dissociation rate (Adio et al., 2018). RF3 is a translational
GTPase consisting of three domains, of these the first domain (domain I) is the conserved G-

domain (Gao et al., 2007a; Kihira et al., 2012; Zhou et al., 2012). In contrast to other trGTPases
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Figure 11: Accommodation of class II release
cprpcP | factor RF3 to the GTPase activating center.
(a) Overview of the binding sites of RF1 (yellow)
and RF3 (pale cyan) on the ribosome (grey) with
tRNA in an intermediate state (Pin-tRNA, green).
(b) An intersubunit rotation of 9° facilitates the
approach of RF3 (before rotation, pale cyan; after
rotation teal) to the sarcin-ricin loop (SRL, grey) of
the 23 S rRNA. The G-domain (domain 1, d1) and
2 (d2) move 11 A and domain 3 (d3) 10 A upon
rotation. The figure was adapted from Graf et al.
(2018).
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RF3 has a 4-times higher affinity for GDP then GTP and it has been found that the ribosome
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can act as guanine nucleotide exchange factor upon RF3-GDP binding (Zavialov et al., 2001;
Koutmou et al., 2014; Peske et al., 2014). However, in the cell the excess of GTP over GDP
would lead to RF3 being predominantly associated with GTP (Bennett et al., 2009; Peske et
al., 2014). Binding of RF3-GTP can occur to pre- and post-termination complex (i.e. before
and after peptide release) and even in the absence of a class I RF (Freistroffer et al., 1997,
Koutmou et al., 2014; Peske et al., 2014; Adio et al., 2018). Initial cryo-EM and crystal
structures of E. coli RF3 on E. coli as well as T. thermophilus ribosomes utilised the latter
phenomenon and depicted the conformational changes, which presumably initiate dissociation
of class I RFs (Klaholz et al., 2004; Gao et al., 2007a; Zhou et al., 2012). Recently, the
mechanism of E. coli RF1 release by RF3 was described by an ensemble cryo-EM study of
both factors bound to the ribosome (Graf et al., 2018). Surprisingly, RF3 does not contact RF1
directly (Figure 11a), rather it facilitates an intersubunit rotation up to 10°, accompanied by a
maximal head swivel of 4° that destabilises RF1 and promotes its dissociation. During the
rotation the P-tRNA moves into the P/E-site over several intermediates. Overall, the rotations
induced by RF3 are similar to the movements observed with EF-G during translocation
(Klaholz et al., 2004; Gao et al., 2007a). This hints towards a general mechanism involving
ribosome rotation during the operation of RF3 in termination and EF-G in translocation. As
seen in the previous crystal structures of RF3 on the ribosome (Gao et al., 2007a; Zhou et al.,
2012), domain II and III establish contacts with rProtein S12 and h5 as well as h15 of the 16S
rRNA throughout the rotational process (Graf et al., 2018). In contrast, domain I of RF3 is
initially not placed in the GAC, which prevents the interaction of the key histidine (His92) with
the SRL (Figure 11b). The intersubunit rotation facilitates a 11 A movement of domain I,
placing it closer to the SRL, which leads to accommodation of domain I to the GAC and enables
GTP-hydrolysis (Figure 11b) (Zhou et al., 2012; Graf et al., 2018). This indicates that the active
form of RF3 is GTP bound, which is different compared to EF-Tu and EF-G, which act in the

GTP and GDP-Pi-bound form, whereas Pi release promotes their dissociation. It has been
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discussed that GTP hydrolysis by RF3 is only necessary for dissociation, but the exact role and
kinetics are still elusive (Peske et al., 2014; Adio et al., 2018). Also, further structural studies
regarding the dissociation and nucleotide state will be needed to fully understand the

mechanism of RF3.

1.2.4 Ribosome Recycling

Translation termination leaves the ribosome with an mRNA and a deacylated tRNA in the
P-site (post-termination complex, PostTC). In this state the ribosome cannot enter a new round
of protein synthesis, unless the tRNA and the mRNA have been removed. Already in 1964
James Watson suggested based on studies in the early sixties that ribosomes might split into
subunits for the purpose of encountering a new translation cycle after termination (Watson,
1964). A few years later it was demonstrated by heavy isotope labelling and sucrose density
gradient centrifugation that FE. coli ribosomes do exchange subunits (Mangiarotti and
Schlessinger, 1967; Schlessinger et al., 1967; Kaempfer, 1968; Kaempfer et al., 1968). Further
kinetic experiments with cell extracts indicated that ribosomes split into subunits once during
every translation cycle (Guthrie and Nomura, 1968; Kaempfer, 1968; Kaempfer and Meselson,
1969). It was found subsequently that initiation factor 3 (initially called dissociation factor) is
involved in ribosome dissociation into subunits (Subramanian et al., 1968; Subramanian et al.,
1969; Sabol et al., 1970; Subramanian and Davis, 1970). Additionally, an essential new factor,
the ribosome recycling factor (RRF, initially ribosome releasing factor) was discovered and
found to split ribosomes in concert with EF-G in a GTP dependent manner (Hirashima and
Kaji, 1970, 1972, 1973; Subramanian and Davis, 1973; Ogawa and Kaji, 1975; Kaziro, 1978;
Janosi et al., 1994; Zavialov et al., 2005). Albeit EF-G action should differ from translocation
mode, since most steps in translocation can be performed with a non-hydrolysable GTP-
analogue, whereas subunit dissociation requires GTP, as well as GTP hydrolysis (Rodnina et
al., 1997; Karimi et al., 1999; Hirokawa et al., 2005; Peske et al., 2005; Zavialov et al., 2005).
Moreover, recycling does not involve mRNA movement, i.e. translocation of the tRNA-mRNA
complex (Peske et al., 2005).

The crystal structure of isolated RRF from E. coli and three additional organisms showed an
overall L-shape and a two-domain structure (Selmer et al., 1999; Kim et al., 2000; Toyoda et
al., 2000; Nakano et al., 2003). Domain I forms a three helix bundle, whereas domain II has
B/o/B-topology, both domains are connected by two linkers. Comparison of the crystal

structures with the solution structure of RRF, as well as NMR relaxation experiments showed
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that the linkers are flexible (Yoshida et al., 2001; Yoshida et al., 2003). Further mutational
analysis of the linker region indicated that the flexibility is functionally relevant (Toyoda et al.,
2000). Despite the L-shape of RRF it was initially shown by hydroxyl radical probing that the
binding site in the ribosomal A-site of RRF differs from the binding site of A-tRNA (Lancaster
et al., 2002). This was supported by several cryo-EM and crystal structures of RRF bound to
the ribosome or the 50S subunit (Agrawal et al., 2004; Gao et al., 2005; Wilson et al., 2005;
Dunkle et al., 2011). In the structures, domain II bound on top of rProtein S12 close to the
A-site. Although RRF did not sink into the DC it can contact bridge B2a, which is formed by
16S rRNA h44 and A1913 of 23S rRNA H69. The tip of RRF domain I was found to bind to
the 50S subunit in the intersubunit space at the central protuberance, close to rProtein L5 and
contacting the P-loop of the PTC. This conformation would clash with a P/P-tRNA, and in
accordance binding of RRF facilitates the rotated state of the ribosome with the tRNA in the
P/E-hybrid state (Gao et al., 2005; Sternberg et al., 2009; Dunkle et al., 2011; Fu et al., 2016;
Prabhakar et al., 2017). Kinetic studies indicate that RRF binds first followed by EF-G, proving
in conclusion that the structures of RRF on the 70S ribosome in the absence of EF-G are
physiologically relevant (Borg et al., 2016; Prabhakar et al., 2017). It has been proposed that
the binding of EF-G in this state is similar to binding to the ribosome in the pre-translocation
state (Agrawal et al., 2004; Gao et al., 2005; Wilson et al., 2005; Weixlbaumer et al., 2007).
Unfortunately, the first cryo-EM structure of both factors on the 70S ribosome has been
questioned regarding its physiological relevance. The complex was formed by binding
T. thermophilus RRF and E. coli EF-G to the E. coli ribosome (Yokoyama et al., 2012). In vitro
and in vivo experiments indicate that this heterologous combination does not have recycling
activity (Toyoda et al., 2000; Ito et al., 2002; Raj et al., 2005), rendering the interpretation of
the structural data difficult. A recent crystal structure by Zhou et al. (2019a) obtained both
factors on the ribosome, but EF-G was in the debatable closed state (cf. translocation), which
can be an initial binding state of EF-G, but did not provide further insight in the interaction
between RRF, EF-G and the ribosome. In contrast, a 9 A cryo-EM reconstruction of both
factors in a post-splitting complex (i.e. bound to the 50S subunit) showed that RRF domain II
and its hinge region interact with domain III and IV of EF-G, while EF-G domain I was
associated with the GAC (Gao et al., 2007b). Furthermore, a time-resolved cryo-EM study
using E. coli ribosomes and factors obtained low resolution (7.4-18 A) intermediate steps of
ribosome recycling and arranged the states based on a previous kinetic study (Borg et al., 2016;
Fu et al., 2016). The study confirms the interaction between domain II of RRF and EF-G

domains III and IV. Moreover, upon binding of EF-G the interaction between rProtein S12 and
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RRF domain II was lost, and as a result domain II of RRF was found close to the intersubunit
bridge B2a. This indicates that the concerted action of RRF and EF-G disrupts the intersubunit
bridge, as already suggested based on previous cryo-EM and crystal structures (Agrawal et al.,
2004; Gao et al., 2005; Wilson et al., 2005; Gao et al., 2007b; Weixlbaumer et al., 2007; Dunkle
et al., 2011; Yokoyama et al., 2012). After dissociation of the ribosome into subunits the RRF
and EF-G remained associated with the 50S subunit, whereas the tRNA was found in both, the
50S E-site and 30S P-site. In contrast, the mRNA was still bound to the 30S subunit,
additionally IF3 was associated with the SSU (Fu et al., 2016). The action of IF3, as well as
the dissociation of mRNA and tRNA remains a controversial subject. [F3 was found to promote
dissociation of mRNA and tRNA from the 30S subunit (Karimi et al., 1999; Prabhakar et al.,
2017). By contrast, it was also proposed that the association of mRNA and tRNA with the 30S
is due to the SD-sequences of the short model mRNAs and dissociation of both actually occur
before splitting, with the mRNA leaving first, followed by the tRNA (Chen et al., 2017). In the
latter, the only task of IF3 would be to prohibit (re-)binding of the 50S subunit, which is
generally necessary after subunit dissociation (Hirokawa et al., 2005; Peske et al., 2005;
Prabhakar et al., 2017). Furthermore, IF3 connects ribosome recycling, the end of the

translation cycle to initiation, the start of a new round of protein synthesis.

1.3 Ribosome Rescue in Bacteria

Ribosomes that stall on an mRNA lacking a stop codon (non-stop mRNA) cannot continue
elongation or be terminated, since the mRNA ends in the P-site and there is no codon available
in the A-site of the ribosome. There are various events that lead to the formation of non-stop
ribosomal complexes in bacteria (Figure 1). For example readthrough of the stop codon
(nonsense suppression), miscoding inducing drugs or non-programmed frameshifting can lead
to the lack of an in-frame stop codon and translation of the mRNA until the 3’-end is reached
(Abo et al., 2002; Ueda et al., 2002). Another reason is premature transcription termination,
which leads to incomplete or truncated mRNA. Since translation of an mRNA can be initiated
before transcription is finished the ribosome would end up in a non-stop complex if
transcription terminates prematurely. However, the processivity of RNA polymerase is high
and these events are likely to be rare (Nudler et al., 1996). Furthermore, truncated mRNAs can
be generated by chemical or physical damage, as well as the activity of RNases during mRNA

turnover, which is mostly carried out by 3’-5’ exonucleases (Bandyra and Luisi, 2013).
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Exonucleolytic cleavage of the stop codon of an actively translated mRNA would lead to the
formation of a non-stop complex. Additionally prolonged ribosome stalling on intact mRNAs,
due weak termination sequences or rare codon stretches can induce RNase II dependent mRNA
cleavage in the ribosome A-site, directly leading to non-stop complexes (Hayes and Sauer,
2003; Sunohara et al., 2004b; Li et al., 2006; Li et al., 2007; Garza-Sanchez et al., 2009).
Truncated mRNAs are also part of the bacterial stress response. For example, nutrient
starvation induces endonuclease toxins, like RelE (Christensen et al., 2001; Pedersen et al.,
2003). RelE is part of the RelBE toxin-antitoxin system, RelB (antitoxin) and RelE (toxin) are
associated and inactive under normal conditions. Whereas upon starvation RelB is degraded
and the endonuclease RelE is activated (Christensen et al., 2001). RelE then creates non-stop
complexes by cleaving the mRNA in the A-site of the ribosome (Pedersen et al., 2003;
Neubauer et al., 2009). Generation of non-stop complexes during starvation is likely a general
mechanism to temporarily reduce the energy consumption, since protein production consumes
~50% of energy in growing E. coli cells (Russell and Cook, 1995; Pedersen et al., 2003; Garza-

Sanchez et al., 2008). However, the non-stop complexes need to be resolved when starvation
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Figure 12: Events of translational stalling leading to non-stop complexes and ribosome rescue. Prokaryotic ribosomes
can initiate translation while the mRNA is transcribed by RNA polymerase (RNAP). This event can lead to successful protein
production (a) or to a non-stop complex, due to premature transcription termination (b). Further events producing non-stop
complexes are damage of the mRNA (c), cleavage of the mRNA (d), frameshifting (e) and readthrough of the stop codon.
Stalling on an intact mRNA can lead to mRNA cleavage and a non-stop complex or can be resolved and translation resumes.
mRNAs containing certain proline motifs need the assistance of EF-P to continue translation (Starosta et al., 2014b; Huter et
al., 2017a). Non-stop complexes are primarily subjected to trans-translation, if frans-translation is overwhelmed or absent
alternative ribosome rescue factor (Arf) A or B can relief the non-stop complex instead. The figure was adapted from Keiler
(2015).
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is alleviated. Measurements of non-stop complexes of growing E. coli cells indicate that
~2-4 % of peptidyl tRNAs are not hydrolysed, referring to frequent occurrence of non-stop
complexes under normal conditions (Ito et al., 2011). Bacteria have evolved mechanisms to
rescue the non-stop complexes, otherwise ribosomes stalled on non-stop mRNA are removed
from the pool of ribosomes, as a consequence protein production of the cell diminishes and has
toxic effects for the cell (Keiler et al., 1996; Karzai et al., 1999; Moore and Sauer, 2005;
Chadani et al., 2010; Chadani et al., 2011b; Goralski et al., 2018; Shimokawa-Chiba et al.,
2019). The major pathway, identified in >99% of bacterial genomes is trans-translation, which
is mediated by transfer-messenger RNA (tmRNA, formerly 10S, 10Sa RNA or ss¥4A RNA) and
small protein B (SmpB) (Tu et al., 1995; Keiler et al., 1996; Karzai et al., 1999; Hudson et al.,
2014). The complex of tmRNA and SmpB mimics the structure of tRNA, which allows it to be
charged with alanine, and to bind to the ribosomal A-site (Komine et al., 1994; Ushida et al.,
1994). The messenger-part of tmRNA encodes a short reading frame, followed by a stop codon
(Keiler et al., 1996). The ribosome resumes translation on the messenger-part, terminates on
the stop codon and is recycled eventually (Keiler et al., 1996; Rae et al., 2019). The mRNA
and the nascent peptide originating from the non-stop complex are targeted for degradation by
means of frans-translation, so that all components of the non-stop complex are recycled or
removed during the process (Keiler et al., 1996; Yamamoto et al., 2003). In some pathogenic
bacteria, like Neisseria gonorrhoeae or Mycobacterium tuberculosis, trans-translation is
essential, while others have developed protein-based alternative ribosome rescue factors (Arf)
(Huang et al., 2000; Keiler and Feaga, 2014; Personne and Parish, 2014). ArfA recruits RF2 to
hydrolyse the nascent polypeptide chain from the P-site tRNA, whereas ArfB harbours a GGQ-
motif and can perform hydrolysis itself (Chadani et al., 2010; Chadani et al., 2011b; Handa et
al., 2011; Chadani et al., 2012). The phylogenetic distribution of ArfA is restricted to a subset
of B- and y-proteobacteria, while ArfB has a wider distribution of 34 % in representatively
sequenced bacterial genomes (Schaub et al., 2012; Feaga et al., 2014a). In Francisella
tularensis and B. subtilis trans-translation is not essential, but both have no apparent Arf
homologue and it was speculated that this could hint towards further alternative ribosome
rescue systems (Shin and Price, 2007; Svetlanov et al., 2012; Keiler and Feaga, 2014). This
was supported by recent studies, which identified ArfT in F. tularensis and Bacillus ribosome
rescue factor A (BrfA) in B. subtilis (Goralski et al., 2018; Shimokawa-Chiba et al., 2019).
Like ArfB, ArfT has a broader phylogenetic distribution (Burroughs and Aravind, 2019).
Interestingly, ArfT cooperates with RF1 and RF2 for hydrolysis of the nascent chain (Goralski
et al., 2018). BrfA is likely limited to the Bacillus genus and exclusively recruits RF2, hence
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BrfA has some similarities but also differences to ArfA (Shimokawa-Chiba et al., 2019). Due
to the little knowledge about ArfT it will not be included in the following sections, while the

residual ribosome rescue mechanisms will be elucidated in greater detail.

Trans-translation is the major pathway of ribosome rescue in bacteria and is mediated by the
ribonucleoprotein complex of tmRNA and SmpB. tmRNA was already discovered in 1979 as
one of the stable RNAs in E. coli (Ray and Apirion, 1979), but its function and the cooperation
with SmpB was described later in the 90s (Tu et al., 1995; Keiler et al., 1996; Karzai et al.,
1999). Subsequently, tmRNA was named after its properties, as it contains a tRNA-like and a
mRNA-like domain, connected by several pseudoknots (Figure 13a) (Atkins and Gesteland,
1996; Felden et al., 1996). Usually tmRNA is a single RNA molecule of approximately 360
nucleotides, but in some bacterial species tmRNA is composed of two RNA chains (Williams
and Bartel, 1996; Keiler et al., 2000). However, the secondary structure and the function are
conserved throughout bacteria. In single molecule tmRNAs the tRNA-like domain (TLD)
consists of the 5°- and 3’-ends (Figure 13a), which fold into a secondary structure that
resembles tRNAA® without the ASL (Komine et al., 1994; Ushida et al., 1994; Gutmann et al.,
2003; Ramrath et al., 2012). This allows recognition and charging of the 3’-CCA end of the
TLD with alanine by the canonical alanyl-tRNA synthetase (Komine et al., 1994). Moreover,
the binding affinity of EF-Tu for the TLD and tRNAs is comparable (Rudinger-Thirion et al.,
1999; Barends et al., 2000). tmRNA binds to SmpB with high affinity, which occupies the
space of the missing ASL and is required for trans-translation (Karzai et al., 1999; Gutmann et
al., 2003; Cheng et al., 2010; Weis et al., 2010a; Neubauer et al., 2012). SmpB is a protein of
~160 amino acids with a globular N-terminal domain and a C-terminal tail, which is
unstructured in solution (Dong et al., 2002). The formation of the tmRNA-SmpB complex
stabilises the secondary structure of tmRNA and advances the interaction with alanyl-tRNA
synthetase (Karzai et al., 1999; Wiegert and Schumann, 2001; Keiler and Shapiro, 2003).

The mRNA-like domain (MLD) harbours the ‘tag reading frame’, which encodes a short
degradation tag (‘tag peptide’) that is added C-terminally to the nascent protein and varies in
length (8-35 amino acids) in different species (Figure 13a) (Komine et al., 1994; Tu et al.,
1995; Felden et al., 1996, Williams and Bartel, 1996; Keiler et al., 2000). The first alanine of
the tag peptide (AANDENYALAA in E. coli) is not encoded in the tag reading frame, instead
it is the alanine attached to the TLD (Tu et al., 1995; Keiler et al., 1996). The tag reading frame
differs from an ORF, since it does not include a start codon, however it ends with a stop codon

(UAA) (Figure 13a) (Williams et al., 1999).
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Biochemical and structural data acquired over the last three decades paint a good picture over
the mechanism of frans-translation. The ribonucleoprotein complex of tmRNA-SmpB is
delivered to the A-site of the ribosome in a quaternary complex with EF-Tu-GTP (Figure 13b)
(Rudinger-Thirion et al., 1999; Barends et al., 2000; Valle et al., 2003; Fu et al., 2010; Weis et
al., 2010b; Neubauer et al., 2012). Upon binding, the C-terminal tail of SmpB probes the
mRNA entry channel (Neubauer et al., 2012) and in vitro assays imply that trans-translation is
reduced by mRNAs extending beyond the decoding center (Hayes and Sauer, 2003; Ivanova et
al., 2004; Moore and Sauer, 2005). Additionally, comparison of the path of a full-length mRNA
and SmpB indicate a severe clash between both, which also suggests that the preferred substrate
for trans-translation is a non-stop complex with an empty mRNA entry channel (Neubauer et
al., 2012; Huter et al., 2017b). The C-terminal tail of SmpB attaches to the surrounding 16S
rRNA of the mRNA entry channel via positively charged residues and motifs, and engages an
a-helical conformation on the ribosome. One conserved stretch is the DKR-motif
(Asp137Lys138Argl39 in E. coli). Albeit single mutations in the motif had only a marginal
effect, the substitution of all three residues to alanine eliminated trans-translation activity in
vitro and in vivo (Sundermeier et al., 2005; Miller et al., 2011). Moreover, truncation of the
C-terminal tail lead to a similar effect (Jacob et al., 2005; Sundermeier et al., 2005). In both
cases the association with the ribosome was not abolished, but the tagging activity was strongly
inhibited, indicating that the interactions are required mechanistically and are not redundant.
The globular domain and the upper part of the C-terminal tail of SmpB bind to the decoding
center via positively charged residues, which are in H-bond distance to the 16S rRNA
(Neubauer et al., 2012). Furthermore, conserved aromatic residues of SmpB stack on the
decoding bases G530 and A1493, whereas A1492 remains flipped into h44 (OFF- state) and
stacks with A1913 of H69. Mutations of the decoding bases (G530A, A1492G or A1493G)
were found to reduce the activity of trans-translation only twofold, whereas accommodation
of aa-tRNA to the PTC was reduced ~1000-fold (Miller et al., 2011). Hence, the binding of
tmRNA-SmpB based on the stacking interactions is less dependent on the identity of the base
than on the stabilisation and monitoring of the codon:anticodon interaction by H-bonds during
decoding (Ogle et al., 2001; Ogle et al., 2002; Neubauer et al., 2012). Overall, the conformation
of the TLD and SmpB in the tmRNA-SmpB-EF-Tu-GTP quaternary complex in the A-site is
similar to the A/T-state of aa-tRNA-EF-Tu-GTP during decoding (Figure 13b) (Schmeing et
al.,2009; Neubauer et al., 2012). The pseudoknots of tmRNA were found to be wrapped around
the head of the SSU (Valle et al., 2003; Fu et al., 2010; Neubauer et al., 2012). Thereby,
pseudoknot 2 and helix 5 of tmRNA are bound close to the entrance of the mRNA channel (Fu
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et al., 2010). These interactions remain throughout trans-translation, act as flexible hinge and
anchor tmRNA to the ribosome, whereas the rest of the pseudoknots change their position
during the process (Rae et al., 2019). In contrast to the release of the CCA-end of aa-tRNAs
from EF-Tu during elongation, kinetic studies indicate that the process for tmRNA-SmpB is
independent of GTP hydrolysis (Kurita et al., 2014b; Miller and Buskirk, 2014), although
EF-Tu localises to the GAC in both cases (Schmeing et al., 2009; Neubauer et al., 2012). The
release of the TLD of tmRNA from EF-Tu and the role of GTP hydrolysis in this regard need
to be further evaluated in future experiments.

After accommodation of the TLD to the A-site of the PTC transpeptidation occurs and the
nascent polypeptide chain is transferred from the P-site tRNA to the alanine that is attached to
the TLD of tmRNA-SmpB (Figure 13¢) (Tu et al., 1995; Keiler et al., 1996; Fu et al., 2010;
Weis et al., 2010a; Ramrath et al., 2012). Translocation of tmRNA-SmpB is also assisted by
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Figure 13: Rescue of non-stop complexes by frans-translation. (a) Overview of the E. coli tmRNA secondary structure.
h, helix; pk, pseudoknot. (b) A fragment of tmRNA is bound to the A-site of the ribosome as part of the
tmRNA-SmpB-EF-Tu-GTP quaternary complex. tmRNA-SmpB resembles the A/T-state of tRNAs during decoding and the
C-terminal tail of SmpB occupies the empty mRNA entry cannel in the helical conformation (PDBID 4V8Q). (c) The TLD of
tmRNA has accommodated to the PTC and tmRNA-SmpB mimics the A/A-state of an A-site bound aa-tRNA (PDBID 6Q97).
Helix 5 (HS) and pseudoknot 2 (PK2) bind close to the entrance of the mRNA channel. Peptidyl transfer from the P-site tRNA
to the TLD of tmRNA takes place. (d) Translocation of tmRNA-SmpB to the P-site has occurred (PDBID 6Q98). The C-
terminal tail of SmpB extends into the E-site and the mRNA, as well as E-site tRNA were expelled. The resume codon of
tmRNA is placed in the A-site and the MLD passed through the A-site latch and is bound to the mRNA entry channel. (e)
After decoding of the resume codon by a cognate tRNA and peptidyl transfer, translocation moves tmRNA-SmpB past the
E-site, thereby the MLD is fully loaded to the mRNA channel (PDBID 6Q9A). (f) After translation of the tag reading frame
termination and ribosome recycling occur. The tagged peptide is degraded by proteases. Figure a was adapted from Ramrath
et al. (2012) and b from Neubauer et al. (2012). Figure c-f were modified from Rae et al. (2019).
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EF-G. A cryo-EM study showed that domain IV of EF-G binds next to the globular domain of
SmpB (Ramrath et al., 2012). As in translocation of A- and P-site tRNAs, the tmRNA-SmpB
complex and the tRNA were in ap/P and pe/E chimeric hybrid states, respectively. During
translocation the MLD has to be loaded into the mRNA channel, therefore it has to pass the
A-site (or 30S) latch between h34 of the head and the G530-loop of the body (Ramrath et al.,
2012; Rae et al., 2019). Ramrath et al. (2012) suggested that the latch opens by an ‘unique
extra-large swivel of the 30S head’, which includes an additional incline of the head besides
the swivel observed during canonical translocation. In the POST-translocation ribosome, the
TLD and SmpB were located in the P-site, with the C-terminal helix of SmpB extending
towards the E-site (Figure 13d) (Rae et al., 2019). The first (resume) codon of the MLD was
placed in the A-site. Cryo-EM and mutational studies indicate that the first 5 bases upstream
of the MLD interact with SmpB, which is important for proper placement of the resume codon
(Lee et al., 2001; Konno et al., 2007; Rae et al., 2019). Subsequently a cognate tRNA binds to
the resume codon, leading to peptide bond formation and translocation. Rae and co-workers
found the TLD and SmpB beyond the E-site after the second translocation step (Figure 13e)
and concluded that the complex would clash with the ribosome in the E-site, hence
tmRNA-SmpB would not mimic a tRNA in the E-site (Rae et al., 2019). During the second
translocation the MLD is fully loaded into the mRNA channel by passing through a second
latch (E-site latch) between protein uS7 of the head, as well as uS11 and the 16S rRNA
nucleotide G693 of the body. If an ‘extra-large swivel’ of the head domain during the second
translocation accompanies the loading is not clear yet.

Afterwards translation continues on the MLD, adding the tag peptide to the nascent polypeptide
chain, until the stop codon (usually UAA) at the end of the tag reading frame enters the A-site
(Tu et al., 1995; Keiler et al., 1996). Subsequent termination and ribosome recycling occur
(Figure 13f). The tag peptide added to the polypeptide by trans-translation is recognized by
several proteases, like ClpXP, CIpAP and Lon, which promotes rapid degradation of the
peptide chain (Gottesman et al., 1998; Flynn et al., 2001; Choy et al., 2007). Additionally, the
defective mRNA is targeted for degradation by ribonuclease R (RNase R), which is required
for mRNA decay and is enriched in non-stop complexes (Mehta et al., 2006; Richards et al.,
2006; Ge et al., 2010; Venkataraman et al., 2014a; Venkataraman et al., 2014b). Recruitment
of RNase R is mediated by the 3’-end of the tmRNA tag reading frame. The mechanism of the
recruitment is not known yet, but mutations in the 3’-end region of the MLD prohibit the
targeting of RNase R (Venkataraman et al., 2014b). Furthermore, the mechanism of handing
over the mRNA from the non-stop complex to RNase R still needs to be elucidated. According
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to Rae et al. (2019) the mRNA is already ejected during the first translocation step. RNase R
is a 3’-5’ exonuclease and the 3’-end of the mRNA remains inside the ribosome until its
ejection. The recruitment of RNase R to the pre-translocation non-stop complex would bring
RNase R in close proximity to the target mRNA prior to ejection, which could be one way to
promote degradation (Keiler, 2015).

The degradation of the polypeptide and the mRNA is an advantage of tmRNA over the backup
mechanisms (Hudson et al., 2014). However, resolving the non-stop complexes by backup
mechanisms ensures the survival of the bacterial cell in absence of trans-translation (Feaga et
al., 2014a; Keiler and Feaga, 2014), but leads to different phenotypes, particularly under stress
conditions, depending on the species. For instance, deletion of trans-translation in E. coli leads
to increased sensitivity to antibiotic stress, whereas B. subtilis is rendered temperature sensitive
and Francisella tularensis displayed virulence defects (Abo et al., 2002; Shin and Price, 2007,
Svetlanov et al., 2012; Li et al., 2013).

Alternative ribosome rescue factor A (ArfA, former YhdL) was discovered in a synthetic
lethality screen in E. coli with deletion of the ssr4 gene, which encodes tmRNA (Chadani et
al., 2010). The study showed that ArfA is essential in the absence of tmRNA, i.e. trans-
translation, and vice versa. Furthermore, tmRNA encoding a degradation deficient tag peptide
was able to relieve the synthetic lethal phenotype, supporting that resolving non-stop
complexes is essential for viability, rather than degradation of the defective peptide. ArfA
expression was found to be dependent on trans-translation (Garza-Sanchez et al., 2011; Schaub
et al., 2012). The arf4 gene encodes 72 amino acids, but contains a stem loop structure, which
can cause premature transcription termination or serves as target for specific cleavage by
RNase III, leading to a non-stop mRNA in either case (Figure 14a) (Chadani et al., 2011a;
Garza-Sanchez et al., 2011; Schaub et al., 2012). Even if full-length arf4A mRNA and ArfA
protein is produced occasionally the C-terminal amino acids are highly hydrophobic, rendering
full-length ArfA aggregation prone and instable with a short half-life of 1.6 minutes (Figure
14a) (Chiti, 2006; Chadani et al., 2011a). However, the majority of ArfA translation originates
from truncated mRNA, which ends up in a non-stop complex and is subjected to trans-
translation (Figure 14a) (Chadani et al., 2011a; Garza-Sanchez et al., 2011; Schaub et al.,
2012). Only if trans-translation is defective or overwhelmed the C-terminally truncated ArfA
escapes from the ribosome (Figure 14b). The truncated ArfA (referred to as ArfA afterwards)
usually lacks the last 17-18 amino acids and maintains activity (Chadani et al., 2010; Chadani

et al., 2011a; Garza-Sanchez et al., 2011; Schaub et al., 2012). This indicates that the terminal
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amino acids are mainly important for regulation and not for activity, which is in line with their
poor conservation (Chadani et al., 2011a; Garza-Sanchez et al., 2011; Schaub et al., 2012). The
production of ArfA from truncated mRNA and thus the regulation by frans-translation
indicates that it is indeed a backup mechanism for ¢rans-translation.

In a cell extract-based translation assay ArfA was able to release a truncated peptide produced
by a model non-stop mRNA, while the identified ArfA(A18T), which caused the synthetic
lethal phenotype, had no release activity (Chadani et al., 2010). In follow up studies, it was
shown that ArfA could not release the peptide itself, instead release activity was specifically
dependent on canonical RF2 (Chadani et al., 2012; Shimizu, 2012). Furthermore, ArfA and
also ArfA(A18T) were able to bind to the non-stop complex and to recruit RF2, indicating that
ArfA(A18T) fails to activate RF2 hydrolysis (Shimizu, 2012). Interestingly, the release activity
of ArfA/RF2 was independent of the SPF-motif, which suggests that ArfA does not mimic a
stop codon. In contrast, the GGQ-motif was essential as in canonical termination (Chadani et
al., 2012).

ArfA was found to be associated with isolated 50S subunits, which could demonstrate an initial
binding site even in the absence of the 30S subunit (Chadani et al., 2010; Kurita et al., 2014a).
However, ArfA binding was mapped to the 30S subunit by hydroxyl radical probing using a

non-stop complex as substrate (Kurita et al., 2014a). Moreover, the pattern of the map partly
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Figure 14: Expression of ArfA is regulated via trans-translation. (a) Full-length (F1) ArfA mRNA (grey) harbours a stem
loop structure, which can be targeted by RNase III. The stem loop can also cause premature transcription (TC) termination
during transcription of the arf4 gene. RNase III cleavage and premature TC termination lead to truncated (Tr) ArfA mRNA.
As consequence ArfA protein (red) is tagged by franms-translation (tmRNA-tag, purple) during translation and degraded
subsequently. FI-ArfA mRNA encodes a C-terminal hydrophobic stretch (blue), so that occasional translation of FlI-ArfA
protein leads to aggregation and degradation. (b) If trans-translation is overwhelmed or inactive translation of Tr-ArfA mRNA
leads to translational stalling. Tr-ArfA protein, which is the active form of ArfA, could initially be released by free ArfA, ArfB
or spontaneous hydrolysis, afterwards Tr-ArfA accedes ribosome rescue of non-stop complexes. The figure was adapted from
Huter et al. (2017b).
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changed with respect to RF2 presence. In particular, the pattern of the C-terminus was
unchanged and mapped binding to the mRNA entry channel in an overlapping position to
SmpB, indicating that ArfA monitors the mRNA entry channel. The N-terminal interactions
around the decoding center altered when RF2 was bound and suggested the induction of a
stable productive conformation for both, ArfA and RF2. Five cryo-EM structures provided
detailed insight into the rescue mechanism by ArfA and RF2 recruitment to non-stop
complexes (James et al., 2016; Demo et al., 2017; Huter et al., 2017c; Ma et al., 2017; Zeng et
al., 2017). Despite the distinct approaches to generate the non-stop complexes with ArfA and
RF2 the overall results are similar, which will be further described in this section. Differences
will be outlined and discussed in the discussion section.

In all studies C-terminally truncated ArfA was used, which was shortened by 12 (James et al.,
2016; Demo et al., 2017) or 17 amino acids (Huter et al., 2017c; Ma et al., 2017; Zeng et al.,
2017). Despite the different ArfA length of 55-60 residues the electron density only allowed
modelling of 46-48 amino acids due to flexibility of the very C-terminus. This suggests that
these residues are less important for association with the ribosome and is in agreement with
their poor conservation (Chadani et al., 201 1a; Garza-Sanchez et al., 2011; Schaub et al., 2012).
The position of the C-terminus within the mRNA entry channel is consistent with the data from
the aforementioned hydroxyl radical probing and overlaps with the path of a full-length mRNA
(Figure 15a), which further supports the hypothesis that the C-terminus of ArfA monitors the
mRNA entry channel (Kurita et al., 2014a; James et al., 2016; Demo et al., 2017; Huter et al.,
2017c; Ma et al., 2017; Zeng et al., 2017). In contrast to the defined path of the a-helical tail
of SmpB (Neubauer et al., 2012) the C-terminus of ArfA forms a loop that obstructs the mRNA
entry channel (Figure 15a) (James et al., 2016; Demo et al., 2017; Huter et al., 2017c; Ma et
al., 2017; Zeng et al., 2017). This could explain the difference in the ability to act on non-stop
complexes with extension of the mRNA past the P-site. While trans-translation was shown to
act on complexes with more than nine nucleotides downstream of the P-site, the activity of
ArfA is strongly reduced by more than three nucleotides (Ivanova et al., 2004; Asano et al.,
2005; Shimizu, 2012; Kurita et al., 2014b; Zeng and Jin, 2016). This is in agreement with the
structural data, showing that the ArfA C-terminus allows maximal three nucleotides in the
decoding center (James et al., 2016; Demo et al., 2017; Huter et al., 2017c; Ma et al., 2017,
Zeng et al., 2017). Similar to SmpB, ArfA binds to the mRNA entry channel via H-bonding of
positively charged amino acids with the 16S rRNA in a redundant manner, so that single
mutations do not interfere with binding (Sundermeier et al., 2005; Miller et al., 2011; Kurita et

al., 2014a; Ma et al., 2017; Zeng et al., 2017). By contrast shortening ArfA by 32 C-terminal
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amino acids, leaving only 40 amino acids of ArfA, abolished rescue activity (Chadani et al.,
2011a), indicating that removing positively charged stretches cannot be compensated for and
reduces binding to the mRNA entry channel.

James et al. and Demo et al. were able to observe the recruitment of RF2 in the closed
conformation (Figure 15b and c) using different approaches (James et al., 2016; Demo et al.,
2017). While for Korostelev and co-workers the closed conformation appeared as a subset of
their dataset (Demo et al., 2017), Ramakrishnan and co-workers formed two additional
complexes with ArfA(A18T) and T. thermophilus RF2 (James et al., 2016), respectively.
Comparison of the closed conformation of RF2 upon stop-codon recognition or recruitment by
ArfA based on the alignment of the 16S rRNA showed that RF2 is in the same overall
conformation in either case (James et al., 2016; Demo et al., 2017; Fu et al., 2019). The ArfA
residues glutamine 27 (Q27) till glutamic acid 30 (E30) mediate the recruitment of RF2 by
augmenting a B-strand to B-strand B5 of the B-sheet formed by the superdomain 2/4 of RF2
(Figure 15¢). Additionally, phenylalamne 25 (F25) of ArfA 1mplements further hydrophoblc
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Figure 15: Interactions of ArfA and ArfA(A18T) with RF2 and a non-stop complex. (a) ArfA (red) is bound to the mRNA
entry channel of the 30S subunit (grey) of a non-stop complex with P-site tRNA (green) and truncated mRNA (TR-mRNA,
dark blue) (PDBID 5SMGP (Huter et al., 2017c)). Full-length mRNA (FL-mRNA, blue, PDBID 4V6F (Jenner et al., 2010))
was superimposed. (b) Overview of ArfA(A18T) (light green), RF2 (shades of purple, according to domains) in the closed
conformation and P-site tRNA (green) on the non-stop complex (PDBID SMDW (James et al., 2016)). (c) Closeup onto the
recruitment of RF2 (RF2asfa(a1s1), shades of purple according to domains, domains are numbered) by ArfA(A18T) (light green)
by donation of a B-strand, the N-terminus and the switch loop of RF2 are unstructured (PDBID 5SMDW (James et al., 2016;
Seefeldt et al., 2016)). (d) Overview of ArfA and open RF2 (orange) bound to a non-stop complex (PDBID SMGP (Huter et
al., 2017¢)). P-site tRNA and mRNA are shown, the mRNA channel is indicated as well. (¢) Conformation of the RF2 switch
loop in presence of ArfA (PDBID SMGP (Huter et al., 2017c)). The augmentation of the pB-sheet of RF2 by ArfA was
maintained. The conformation of the 16S rRNA decoding bases A1492 and A1493 with ArfA (16Sara, pale blue) and upon
stop codon recognition (16Sstop, yellow) is shown. (f) The ordered ArfA N-terminus supports an additional extension (purple)
of ~2 turns of RF2 helix a7 (a7) (RF2arta, orange, PDBID SMGP (Huter et al., 2017c)) compared to the extension observed
during stop codon recognition (RF2stop, blue, PDBID 4V5E (Weixlbaumer et al., 2008b)). Figure a and f were modified from
Huter et al. (2017¢), b and ¢ from James et al. (2016) and d and e from Huter et al. (2017b).
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interactions with the B-strands 4 and B5 within the superdomain 2/4 of RF2 (James et al.,
2016; Demo et al., 2017). The latter hydrophobic interactions are not conserved in RF1
providing an explanation for the specific binding of RF2 by ArfA (Shimizu, 2012; James et al.,
2016; Huter et al., 2017c). The upper middle part of ArfA (residue 15-26) contains a short o-
helix (residue 15-24) and establishes initial interactions with the 16S rRNA at the decoding
center. The N-terminus of ArfA (amino acids 1-14) and the switch loop of RF2 are flexible in
these structures (Figure 15¢) (James et al., 2016; Demo et al., 2017).

In contrast the switch loop and the N-terminus of ArfA are ordered when the open conformation
of RF2 is established (Figure 15d and e) (James et al., 2016; Demo et al., 2017; Huter et al.,
2017¢c; Ma et al., 2017; Zeng et al., 2017). As for canonical termination this supports that the
switch loop is important for the closed to open transition (James et al., 2016; Demo et al., 2017,
Fu et al., 2019). Overall, the open conformation in the presence of ArfA resembles the open
conformation during termination, with domain 3 of RF2 reaching towards the PTC and
accommodating the GGQ-motif for hydrolysis (Figure 15d) (James et al., 2016; Demo et al.,
2017; Huter et al., 2017c; Ma et al., 2017; Zeng et al., 2017). One difference is a shift of the
decoding loop due to the B-strand addition to the superdomain 2/4 (Huter et al., 2017c). ArfA
does not interact with the SPF-motif, which is consistent with biochemical data indicating that
mutation of the motif does not influence rescue by ArfA (James et al., 2016; Demo et al., 2017;
Huter et al., 2017c; Zeng et al., 2017). Thus, ArfA does not mimic a stop codon in order to
initiate the open conformation of RF2, rather ArfA provides the platform for the
conformational change itself. In comparison to the closed conformation, ArfA and RF2 pack
more tightly against the decoding center, which adopts a similar conformation as seen with
SmpB, but is different from the conformation during stop codon recognition (Figure 15¢)
(James et al., 2016; Demo et al., 2017; Huter et al., 2017b). The stacking of ArfA E30 onto the
16S rRNA nucleotide G530 is maintained from the closed conformation and G530 is in the
anti- or ON-state, A1493 flips out of h44, while A1492 is flipped into h44 and stacks of A1913
of H69 of the 23S rRNA (James et al., 2016; Demo et al., 2017; Huter et al., 2017c; Ma et al.,
2017; Zeng et al., 2017). The tight packing between the decoding center and ArfA, as well as
RF2, supports the structuring of the N-terminus of ArfA. The N-terminus loops back towards
the decoding center (Figure 15f) where it interacts with rProtein S12. The turn of the ArfA N-
terminus is coordinated by C1914 of H69. In this conformation the loop runs antiparallel to the
a-helix of ArfA and packs against A18 in the helical region. The mutation A18T prevents this
interaction, explaining the inactivity of ArfA(A18T) (compare Figure 15c, e and f) (James et
al., 2016). The structuring of the ArfA N-terminus builds up a hydrophobic pocket of the ArfA
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residues leucine 19 (L19), leucine 24 (L24) and phenylalanine 25 (F25), as well as
phenylalanine 217 (F217) and valine 198 (V198) of RF2 (James et al., 2016; Demo et al., 2017;
Huter et al., 2017¢c; Maetal., 2017; Zeng et al., 2017). Within the pocket resides tryptophan 319
(W319) of the RF2 switch loop, which stacks on A1492 during canonical termination
(Korostelev et al., 2008; Weixlbaumer et al., 2008a; James et al., 2016; Demo et al., 2017,
Huter et al., 2017¢c; Ma et al., 2017; Zeng et al., 2017). As in termination, helix a7 is extended
by an unstructured to structured transition of the switch loop, but ArfA promotes formation of
a longer helical segment (Figure 15f). However, during both events the interactions of W319
and the extension of helix a7 are proposed to induce the open conformation of RF2. Despite
the conservation of W319 in Thermus thermophilus, which does not have an arfA4 gene, other
residues of the switch loop are not conserved and would lead to steric clashes with ArfA (James
etal., 2016). On the other hand, W319 and the switch loop itself are not conserved in RF1, both
excludes interaction with ArfA and provides an additional explanation for the specificity of
ArfA for RF2 (James et al., 2016; Huter et al., 2017c).

Analogous to termination, placement of the GGQ-motif into the PTC leads to induction and
exposition of the ester bond between the P-site tRNA and the peptide for hydrolysis (James et
al., 2016; Demo et al., 2017; Huter et al., 2017c; Ma et al., 2017; Zeng et al., 2017).
Furthermore, methylation of Q252 enhanced peptide release during termination and ribosome
rescue by ArfA/RF2 and the methylation promoted a distinct conformation of Q252 in both
cases (Zeng and Jin, 2016; Zeng and Jin, 2018). In contrast to termination, the dissociation of
RF2 was not accelerated by RF3 during ArfA mediated rescue (Zeng and Jin, 2016). The
reasons for this difference, as well as the dissociation mechanism are still unknown and might
be subject of future studies. Finally, ribosome recycling occurs and the ribosome is returned to

the pool of free subunits and can participate in a new translation cycle.

Alternative ribosome rescue factor B (ArfB, former YaeJ) was identified as a multicopy
suppressor upon deletion of trans-translation and ArfA in E. coli, and was additionally shown
to hydrolyse peptidyl-tRNA on non-stop complexes in vivo and in vitro (Chadani et al., 2011b;
Handa et al., 2011). Deletion of frans-translation and ArfA is synthetically lethal in E. coli
despite a chromosomal arfB gene, hence the physiological role of ArfB is not clear yet. By
contrast, in Caulobacter crescentus ArfB of chromosomal origin ensures survival and is
essential in the absence of frans-translation. Also, most eukaryotes have an ArfB homologue,
which is targeted to mitochondria, whereas ArfA is not found in eukaryotes and trans-

translation is only conserved in mitochondria of some protists (Duarte et al., 2012). Best
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characterised is the homologue of human mitochondria, named immature colon carcinoma
transcript-1 (ICT1), which is essential for cell viability (Handa et al., 2010; Richter et al., 2010;
Feaga et al., 2016). Although ICT1 was identified to be integrated into the LSU of the
mitochondrial ribosome (mitochondrial large subunit protein 58, MRPLS5S, also mL62) it
rescues E. coli and mammalian mitochondrial non-stop complexes in vitro (Richter et al., 2010;
Koc et al., 2013; Akabane et al., 2014; Brown et al., 2014; Greber et al., 2014a; Greber et al.,
2014b; Kogure et al., 2014; Feaga et al., 2016). ArfB and ICT1 are functionally interchangeable
in vivo, since ICT1 can complement the synthetic lethal phenotype of double deletion of ArfB
and frans-translation in Caulobacter crescentus, and plasmid derived ArfB supports viability
of human cells upon ICT1 knock-down (Feaga et al., 2016). However, if ICT1 or another
putative mitochondrial peptidyl-hydrolase releases non-stop complexes in mitochondria is still
a matter of discussion (Richter et al., 2010; Duarte et al., 2012; Akabane et al., 2014;
Chrzanowska-Lightowlers and Lightowlers, 2015; Takeuchi and Nierhaus, 2015; Ayyub et al.,
2020).

ArfB consists of 140 amino acids, and has an N-terminal domain (residue 1-100) and a C-
terminal tail (residue 115-140), connected via a ~12 amino acid long flexible linker (Figure
16a) (Gagnon et al., 2012; Chan et al., accepted). The N-terminal domain is homologous to
domain 3 of bacterial class I RFs, including a GGQ-motif, whereas further class I RF domains,
like the codon recognition superdomain 2/4, are absent (Figure 16a) (Singarapu et al., 2008;
Chadani et al., 2011b; Gagnon et al., 2012; Kogure et al., 2014; Chan et al., accepted). As for
class I RFs mutation of the GGQ (G25G26Q27)-motif abolished peptidyl-tRNA hydrolysis
activity (Korostelev et al., 2008; Chadani et al., 2011b; Handa et al., 2011; Santos et al., 2013).
The C-terminal tail has some similarities to the C-terminal tail of SmpB, as it contains
positively charged amino acids, stays unstructured in solution and engages an a-helical

conformation upon binding to the ribosome (Chadani et al., 2011b; Gagnon et al., 2012; Kogure
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Figure 16: Interaction of ArfB with non-stop ribosomal complexes. (a) Overview of the secondary structure of ArfB
(purple). NTD, N-terminal domain. (b) ArfB bound to the A-site of the non-stop complex. S0S subunit, grey; 30S subunit,
yellow; P-site tRNA, P-tRNA, green; mRNA, cyan. Boxes indicate the enlarged views of the ArfB NTD in the PTC (c) and
the helical C-terminal tail in the mRNA entry channel (d). PDBID 6YSS (Chan et al., accepted).
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et al., 2014; Chan et al., accepted). Sucrose density gradient centrifugation showed that ArfB
is associated with 70S ribosomes, as well as polysomes (Chadani et al., 2011b; Handa et al.,
2011), and that removing 10 C-terminal residues abolished binding to the ribosome (Handa et
al., 2011). Further mutational analysis showed that mutating three positively charged residues
to alanine already severely decreased binding affinity for the ribosome (Kogure et al., 2014).
By contrast, the single mutations in the C-terminal tail or removal of two amino acids from the
linker did not influence binding to the ribosome, although hydrolysis activity was lost as a
consequence.

The crystal and cryo-EM structures of E. coli ArfB on the T. thermophilus and E. coli
ribosome, respectively, showed that the N-terminal domain is accommodated to the PTC, while
the C-terminal tail binds to the mRNA entry channel (Figure 16b, ¢ and d) (Gagnon et al., 2012;
Chan et al., accepted). The position of the tail overlaps with the path of a full-length mRNA,
as well as with C-terminal tail of SmpB and the C-terminus of ArfA, indicating that all systems
monitor the channel (Gagnon et al., 2012; Neubauer et al., 2012; James et al., 2016; Demo et
al., 2017; Huter et al., 2017¢c; Zeng et al., 2017; Chan et al., accepted). As for trans-translation,
the release activity decreased with increasing length of the mRNA, with a significant drop for
mRNAs with more than six-nine nucleotides downstream of the P-site (Ivanova et al., 2004;
Feaga et al., 2016). This indicates that the mRNA and the C-terminal tails compete for binding
to the mRNA channel, which was supported by a recent study (Chan et al., accepted). Why this
is not the case for ArfA, which has a stricter mRNA length dependency (Ivanova et al., 2004;
Asano et al., 2005; Shimizu, 2012; Kurita et al., 2014b; Zeng and Jin, 2016), is not clear yet,
but could be assigned to the different structural properties (James et al., 2016; Demo et al.,
2017; Huter et al., 2017c; Zeng et al., 2017).

The decoding center adopts a certain conformation due to interaction with ArfB (Gagnon et al.,
2012; Chan et al., accepted). 16S rRNA nucleotide G530 is in anti-conformation, but the
positioning differs from the ON-conformation seen with an A-tRNA (Gagnon et al., 2012;
Huter et al., 2017b). Nucleotides A1492 and A1493 of 16S rRNA h44 are flipped into the helix
or stack on A1913 of 23S rRNA H69, respectively. Proline 110 of ArfB stacks onto A1493 and
was proposed to act as a hinge’, restricting the movement of the tail on one side while allowing
movement and accommodation of the N-terminal domain on the other (Gagnon et al., 2012).
However, the proline is not conserved throughout ArfB proteins, and can be mutated to alanine
without loss of activity, instead arginine 105 seems to be an important for the activity of ArfB
(Kogure et al., 2014). Indeed, the sidechain stacks on U1915 of 23S rRNA H69, while C1914,
which usually stacks on U1915 (e.g. during termination (Korostelev et al., 2008; Laurberg et
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al., 2008; Weixlbaumer et al., 2008b; Korostelev et al., 2010), when A-site tRNA (Arenz et al.,
2016), ArfA/RF2 (James et al., 2016; Demo et al., 2017; Huter et al., 2017¢; Ma et al., 2017;
Zeng et al., 2017) or SmpB-tmRNA (Rae et al., 2019) is present, respectively) flips out of H69
(Gagnon et al., 2012; Chan et al., accepted). Eventually, the N-terminal domain is placed in the
A-site of the LSU and accommodates into the PTC, which is induced upon binding of the N-
terminal domain (Gagnon et al., 2012; Chan et al., accepted). The GGQ-motif adopts an
analogous conformation to the GGQ-motif of bacterial class I RFs and mediates hydrolysis of
the ester bond between the peptide and the P-tRNA. The dissociation mechanism of ArfB is
still unknown, as for ArfA the ribosome is finally recycled and the subunits can take part in

translation initiation.

Bacillus ribosome rescue factor A (BrfA, previously YqkK) was identified in a synthetic
lethality screen in B. subtilis deleted in trans-translation (Shimokawa-Chiba et al., 2019). The
brfA gene encodes 72 amino acids, but contains a rho-independent transcription terminator
before the stop codon. Using a reporter construct with a lacZ gene downstream to brfA4 variants
it was shown that transcription termination and subsequent degradation by trans-translation
occurred using the wild-type construct. Additionally, disruption of the terminator by
synonymous mutation, as well as deletion of the terminator region lead to LacZ expression.
Hence, BrfA is likely expressed from a truncated mRNA, regulated by trans-translation in a
similar fashion to ArfA, and the active BrfA protein consists of ~62 amino acids.
Furthermore, BrfA was shown to cooperate with RF2 in the course of rescue of non-stop
complexes in vitro (Shimokawa-Chiba et al., 2019). The release activity was dependent on the
GGQ-motif of RF2, whereas the SPF-motif of the decoding loop was dispensable. This
indicates that BrfA doesn’t mimic a stop codon and hydrolysis activity of RF2 is activated in a
different fashion. BrfA can support peptidyl-tRNA hydrolysis by B. subtilis RF2 on B. subtilis
and E. coli ribosomes, whereas ArfA and E. coli RF2 only act on E. coli non-stop complexes.
Additionally, RF2 is not interchangeable between both systems, indicating that the systems are
adapted to the corresponding species. The low interspecies compatibility is in accordance with
the late origin of the systems and the narrow phylogenetic distribution. Although BrfA and
ArfA share the regulatory mechanism and are specific for RF2 of their respective species, the
different phylogenetic distribution and the distinct amino acid composition hint towards an
unrelated evolution of the systems (Shimokawa-Chiba et al., 2019).

The study also includes the cryo-EM structure of BrfA and B. subtilis RF2 of the E. coli

ribosome, which illustrates further similarities and differences between rescue of non-stop
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complexes by BrfA and ArfA. The structure of BrfA and B. subtilis RF2, as well as the
comparison to ArfA and E. coli RF2 is elucidated in publication 3 (Shimokawa-Chiba et al.,

2019) and the discussion section.

1.4 Proline-rich antimicrobial peptides

Antimicrobial peptides (AMPs) are part of the innate immune system as initial defence against
bacterial infections and are either continuously secreted into body fluids or induced as response
to pathogen-sensing receptors (Zasloff, 2002). Most AMPs act against bacterial infections by
a lytic mechanism, in which the bacterial membrane is permeabilised (Brogden, 2005).
However, the mode of action is not limited to the bacterial membrane and AMPs can also have
intracellular targets. Particularly, the subclass of proline-rich AMPs (PrAMPs) has been shown
to target primarily bacterial translation, additionally the chaperone DnaK was identified as a
secondary target (Casteels and Tempst, 1994; Brogden, 2005; Scocchi et al., 2009; Graf et al.,
2017). Some of them also have a dual mechanism which depends on their concentration (Podda
et al., 2006). At low concentrations the primary the intracellular target is inhibited, while at
high concentrations the cell membrane is permeabilised additionally. PrAMPs are cationic
peptides, which are enriched in the amino acids proline and arginine (Graf et al., 2017). So far
PrAMPs have been found in some insects and crustaceans (arthropods), as well as in a few
mammals (Figure 17) (Casteels et al., 1989; Gennaro et al., 1989; Casteels et al., 1990;
Agerberth et al., 1991; Bulet et al., 1993; Cociancich et al., 1994; Chernysh et al., 1996;
Schnapp et al., 1996; Huttner et al., 1998; Shamova et al., 1999; Schneider and Dorn, 2001,
Stensvég et al., 2008; Knappe et al., 2010; Mardirossian et al., 2018b), but not among humans
or primates (Graf and Wilson, 2019). The synthesis of PrAMPs as inactive precursors is carried
out in phagocyte progenitor cells by the eukaryotic ribosome (Zanetti et al., 1990; Zanetti et
al., 1991; Graf et al., 2017; Graf and Wilson, 2019). The precursor peptides of mammals
normally contain one peptide, while insect precursors can contain multiple copies and several
isoforms of the peptide separated by an inactivating short spacer sequence (Zanetti et al., 1990;
Bulet et al., 1993; Casteels-Josson et al., 1993; Xu et al., 2009; Graf et al., 2017). The precursor
usually contains a pre- and a pro-sequence, which are both N-terminally of the PrAMP (pre-
pro-peptide). The pre-sequence mediates targeting of the precursor to large granules and is
cleaved upon import (Zanetti et al., 1990). The resulting pro-peptide is still inactive and needs
to be activated by proteolytic cleavage of the pro-sequence, and in multicopy peptides the

spacer has to be removed as well (Zanetti et al., 1991; Scocchi et al., 1992; Casteels-Josson et
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al., 1993; Grafet al., 2017). The respective proteases are stored in separate granules (azurophil
granules) (Zanetti et al., 1991). Upon bacterial infection both granules secrete their contents
into the extracellular matrix, or the phagosome, which leads to maturation of the peptide and
elaboration of their antimicrobial activity (Zanetti et al., 1991; Scocchi et al., 1992).

Because of their antimicrobial activity PrAMPs are candidates for the development of new
antimicrobial drugs, which is of high interest considering the increasing number of bacterial
resistances against drugs in use (Polikanov et al., 2018; Roncevic et al., 2019). Advantages of
PrAMPs is their low cytotoxicity in cell culture and in mouse infection models, as well as their
peptide nature, which does not lead to non-degradable metabolites (Knappe et al., 2010; Czihal
etal., 2012; Berthold et al., 2013; Knappe et al., 2015; Knappe et al., 2019). The peptide nature
is also the weakness of PrAMPs, since they are rapidly degraded by serum proteases of the
treated organism and displayed short half-lives of maximal 2.5 h in mouse serum (Knappe et
al., 2010; Knappe et al., 2011; Czihal et al., 2012; Berthold et al., 2013). Hence, efforts were
made for apidaecin-1b from the honey bee (Apis mellifera) and oncocin from the milkweed
bug (Oncopeltus fasciatus) to improve their serum stability by introduction of non-
proteinogenic or D-amino acids and stabilisation of the termini (Knappe et al., 2010; Knappe
et al., 2011; Czihal et al., 2012; Berthold et al., 2013; Bluhm et al., 2016). Most promising
synthetic peptides amongst them were apidaecinl37 (Apil37), which has an N-terminal

gu = N,N,N’ N'-tetramethylguanidino; O = Ornithine; r = D-Arginine; X = unknown [aa] Organism

Apidaecin-1b GNNREVYEPOPREPEHEPRI 18 | Apis mellifera
Api137 gu-ONNRPVYIPRPRPPHPRL-OH 18 | synthetic
Abaecin YVPLPNVPQPGRRPFPTFPGQGPFNPKIKWPQ . . |34 |Apis mellifera
P Drosocin GINEIRIERES DR DI SHRE ROREE RV 19 | Drosophila melanog.
R ean SRWPSPGREESFEIGRPKPIFRPRPC 25 |Hyas araneus
£ pravP XXVPYERMIFERPPIGPRPLPFPGGGRP . . |30 |Carcinus maenas
£ Oncocin V DIK|P P Yzt PRRIYNNR 20 | Oncopeltus fasciatus
< Onct12 VDK PP YIRS R AP Rr IYNr - NH, 19 |synthetic
Onc72 VDK[PP YPEBRIRIPROTIYNO-NH, 19 |synthetic
Metalnikowin-1 VDIKIPDY RIS RPN M 15 |Palomena prasina
Pyrrhocoricin VDEK|GS YPRE@E TP RP I YNRN 20 | Pyrrhocoris apterus
Riptocin VDKIGGYpmSATIHPRPVYRS >19 | Riptortus pedestris
bt_Bactenecin-7 RRIRPRPPRIMNSIRIARPLPFPRPGP. . 60 |Bos taurus
ch_Bactenecin-7 RRLRPRRPRIMEQYRIIRPRPRPRSLP. . 60 | Capra hircus
!oa_BactenecinJ RRLRPRRPRIMERSURIMIRPRPRPRSLP. . 60 | Ovis aries
EPR-39 RRRPR/P P YjiRgs PPFFPPRLPPR. 39 | Sus scrofa
ETur1A RRIRFBPPY SRPRFPPPFPI. . 32 Tursjopsfruncafus
bt_Bactenecin-5 RFRPPIRRPPIRPPFYPPFRPPIRP.. 43 | Bos taurus
ch_Bactenecin-5 RFRPPIRRPPIRPPFNPPFRPPVRP. . 43 | Capra hircus
oa_Bactenecin-5 RFRPPIRRPPIRPPFRPPFRPPVRP. . 43 | Ovis aries

Figure 17: Sequence alignment of natural and synthetic PrAMPs. Alignment of the amino acid sequence of PrAMPs
derived from arthropods (grey) and mammals (blue). Identical residues are highlighted in black, and similar residues in cyan.
O-glycosylation of threonine 11 of drosocin is indicated in blue. Amino acid 11 of oncocin is unknown and indicated by a bold
“X”. The number of amino acids [aa] corresponds to the mature peptide in the source organism, which are stated on the right.
The figure was adapted from Graf and Wilson (2019).
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protection by a tetramethylguanidino moiety followed by an ornithine residue, oncocinl12
(Onc112), and oncocin72 (Onc72), which have a C-terminal amino group, furthermore arginine
residues were exchanged to D-arginine or ornithine, respectively (Figure 17).

Regardless of the natural or synthetic origin of the PrAMPs, to reach their intracellular target
in the bacterium the PrAMPs have to enter the cell. This has been shown to depend primarily
on the bacterial inner membrane proteins SbmA and MdtM (Mattiuzzo et al., 2007; Krizsan et
al., 2015). The cellular role of the SbmA transporter is still elusive, but it was shown to be the
major importer of PrAMPs and deletion of the sbmA gene lead to decreased susceptibility
against PrAMPs (Mattiuzzo et al., 2007; Runti et al., 2013; Paulsen et al., 2016). Additional
deletion of the multidrug efflux pump MdtM further decreased the sensitivity to some PrAMPs
in E. coli (Holdsworth and Law, 2012; Krizsan et al., 2015; Paulsen et al., 2016). Interestingly,
the PrAMPs did enter the cell via MdtM, so that the effect was based on further reduced uptake
(Krizsan et al., 2015).

The phylogenetic distribution of SbmA is not homogeneous, as homologues were found in
various Gram-negative bacteria of distant relationships and not found in Gram-positive species
(Graf et al., 2017). Among Gram-negative bacteria homologues of SbmA can be found in
Gamma-proteobacteria, particularly in Enterobacteriaceae, which includes E. coli and
Klebsiella pneumoniae, and Pseudomonadales, like Acetinobacter baumannii, further it is
distributed in Alpha-, Beta-, and Epsilon-proteobacteria. While Gram-positive and Gram-
negative species without a SbmA homologue, like Pseudomonas aeruginosa, are generally less
susceptible towards PrAMPs, the susceptibility varies between SbmA containing species
(Kolano et al., 2020). For example, E. coli displayed a minimal inhibitory concentration (MIC)
of 4 mgL™! for Apil37, Klebsiella pneumoniae showed a better susceptibility with a MIC of
2 mgL!, while Acetinobacter baumannii had a highly increased MIC of 128 mgL™! (Kolano et
al., 2020). The study also displayed the same trend for the MICs of Onc112, showing that
Acetinobacter baumannii is less susceptible to PrAMPs, despite having a SbmA homologue
and further factors, like off-target binding and/or affinity for the target, which can influence
sensitivity to PrAMPs. However, both synthetic PrAMPs are promising candidates as new
antimicrobial treatments, since they display low cytotoxicity in cell cultures and have been
used successfully in murine infection models with E. coli, and Klebsiella pneumoniae (Czihal
etal., 2012; Berthold et al., 2013; Knappe et al., 2015; Bluhm et al., 2016; Knappe et al., 2019).
Structural and biochemical studies of several PrAMPs showed that they bind to the nascent
polypeptide exit tunnel (NPET) (Figure 18) via interactions of arginine and aromatic residues

and the 23S rRNA. Furthermore, PrAMPs can be divided in two classes (class I and class II)
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Figure 18: PrAMPs bind to the nascent polypeptide exit tunnel. Transverse
meﬁﬂ:’,:'me section showing the binding of class I PrAMP Apil37 (API, red) and class I
A PrAMP Onc112 (ONC, green to the NPET of the ribosome (30S subunit, yellow,
50S subunit, pale blue). A-site tRNA (cyan) , P-site tRNA (blue) and mRNA
(magenta) are displayed for reference. The figure was adapted from Polikanov et
al. (2018).

with respect to their translation inhibition mechanism (reviewed by Graf et al. (2017),

Polikanov et al. (2018) and Graf and Wilson (2019)).

ClassI PrAMPs identified so far are arasin 1, PrAMP, oncocin and its derivates,
metalnikowin-1 (Met), pyrrhocoricin (Pyr), Ripocin, bactenecin-7 (Bac7), TurlA and
bactenecin-5 (Bac5) (Gennaro et al., 1989; Agerberth et al., 1991; Bulet et al., 1993;
Cociancich et al., 1994; Chernysh et al., 1996; Schnapp et al., 1996; Huttner et al., 1998;
Shamova et al., 1999; Schneider and Dorn, 2001; Stensvag et al., 2008; Knappe et al., 2010;
Mardirossian et al., 2018b). Compared to other PrAMPs (average ~25 aa) Bac7 has an
increased length of 60 aa (Gennaro et al., 1989; Graf et al., 2017), which raised interest in
investigating the difference (Benincasa et al., 2004). Subsequently, it was shown that the N-
terminal aa 1-35 (Bac71-35) are sufficient to mediate the antimicrobial activity, without decrease
in the MIC (Benincasa et al., 2004). Further truncation up to 16 residues (Bac71-16) only had
marginal effects on the MIC, while leaving only 15 aa of Bac7 led to a complete loss of
antimicrobial activity, due to impaired uptake (Benincasa et al., 2004; Guida et al., 2015).
Removal of the first four N-terminal aa (Bac7s-5) strongly reduced the MIC and was less
inhibitory in in vitro translation assays (Benincasa et al., 2004). A similar effect was observed
with an oncocin variant lacking two residues from the N-terminus (Gagnon et al., 2016),
showing that the very N-terminal residues are involved in the mechanism of translation
inhibition in classI PrAMPs. So far, the structures of Oncl12, pyrrhocoricin (Pyr),
metalnikowin-1 (Met), Bac71-16 and Turl A on the ribosome have been determined (Figure 19a)
(Roy et al., 2015; Seefeldt et al., 2015; Gagnon et al., 2016; Seefeldt et al., 2016; Mardirossian
et al., 2018b). The class I PrAMPs were shown to bind to the NPET in reverse orientation
compared to a nascent polypeptide chain, i.e. from the middle of the peptide the C-terminus
points towards the exit of the tunnel, while the N-terminus lies in PTC direction (Figure 19a).
The residues of the very C-terminal residues were not resolved in each structure, which is in
line with the C-terminal truncation experiments with Bac7, which led to the discovery of the

Bac71.35 and Bac71-16 fragments (Benincasa et al., 2004; Roy et al., 2015; Seefeldt et al., 2015;
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Gagnon et al., 2016; Seefeldt et al., 2016; Mardirossian et al., 2018b). On the ribosome the
class I PrAMPs engage an elongated coil structure (Figure 19a) (Roy et al., 2015; Seefeldt et
al., 2015; Gagnon et al., 2016; Seefeldt et al., 2016; Mardirossian et al., 2018b). Binding to the
ribosome involves specific stacking and polar interactions with the NPET, which are partly
conserved between class I PrAMPs. Alignment of class I PrAMPs indicates that they have a
conserved ProArgPro (PRP)-motif and superimposition of the structures shows that the motif
of the different class I PrAMPs binds to the ribosome in the same position and establishes the
same interactions (Figure 19a) (reviewed by Graf et al. (2017) and Graf and Wilson (2019)).
In particularly, only the Arg (Arg9 in insects, Argl2 in mammals) residue establishes
interactions by forming a H-bond with the 23S rRNA nucleotide U2584 and stacking on C2610.
Furthermore, stacking of tyrosine 6 in insect class I PrAMPs onto C2452 is conserved via
arginine 12 in mammals. Further interactions with the NPET are generally more specific for
the respective class I PrAMP. In vitro translation assays indicated that class I PrAMPs inhibit
the transition from initiation to elongation (Figure 19b-e) (Roy et al., 2015; Seefeldt et al.,
2015; Gagnon et al., 2016; Seefeldt et al., 2016; Mardirossian et al., 2018b). This was supported
by the structural data, which shows that the N-terminus of class I PrAMPs extends towards the
PTC into the 50S A-site and thus overlaps with binding of the CCA-end of an A-site tRNA
(Figure 19f-g), but does not interfere with binding of a P-site tRNA. With respect to this,
formation of the 70S IC is possible, also the delivery of the aa-tRNA following the initiator

tRNA could be allowed, but accommodation would be blocked and translation could not
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Figure 19: Translation inhibition by class I PrAMPs. (a) Superimposition of insect PrAMPs Met (purple), Onc112 (slate)
and Pyr (cyan), as well as mammalian PrAMPs Bac7:-16 and Turl A (yellow) bound to the NPET (Roy et al., 2015; Seefeldt et
al., 2015; Gagnon et al., 2016; Seefeldt et al., 2016; Mardirossian et al., 2018b). The conserved PRP-motif is indicated and
P-site tRNA (green) is shown for reference. (b-d) Translation in the absence of PrAMPs starting with the 70S IC (b), followed
by delivery of aa-tRNA (salmon) to the A-site by EF-Tu (light blue) (c) and accommodation of the aa-tRNA to the PTC, as
well as dissociation of EF-Tu (d). (e) The presence of class I PrAMPs, like Turl A, allows delivery of aa-tRNA to the A-site,
but permits accommodation to the PTC. (f-g) Superimposition of an aa-tRNA accommodated to the A-site of the PTC with
(f) Pyr (Gagnon et al., 2016) or (g) Turl A (Mardirossian et al., 2018b). The figure was adapted from Graf and Wilson (2019).
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proceed (Roy et al., 2015; Seefeldt et al., 2015; Gagnon et al., 2016; Seefeldt et al., 2016;
Mardirossian et al., 2018b). Aligned on the PRP-motif, the N-terminus of mammalian class I
PrAMPs is 3 residues longer than the N-terminus of insect class I PrAMPs (Figure 19f-g and
Figure 17). This is consistent with the findings that removal of four N-terminal residues of
Bac7 and two residues of Onc112 impair their function (Benincasa et al., 2004; Gagnon et al.,
2016). The overall binding of class I PrAMPs is most likely not compatible with the
simultaneous presence of a nascent polypeptide chain (Roy et al., 2015; Seefeldt et al., 2015;
Gagnon et al., 2016; Seefeldt et al., 2016; Mardirossian et al., 2018b). With regard to this,
binding of class I PrAMPs could occur in any situation with an unoccupied NPET, as after
dissociation of the polypeptide chain during termination or in newly synthesised 50S subunits,
maybe even in late stages of 50S biogenesis. Depending on the concentration of class [ PrAMPs
the whole pool of free 50S subunits could be compromised by binding of class I PrAMPs,
which would be devastating for the bacterium. Despite the low sequence homology to other
class I PrAMPs, Bac5 fragments were shown to also inhibit the transition from initiation to
elongation (Mardirossian et al., 2018a; Mardirossian et al., 2019). Furthermore, competition
assays indicate that Bac5 also binds to the NPET (Mardirossian et al., 2018a). However, it
displayed species specific inhibition, as it inhibits 7. thermophilus ribosomes poorly, while
E. coli ribosomes are inhibited efficiently (Mardirossian et al., 2018a), which might indicate
that Bac5 binding to the NPET differs from other class I PrAMPs and could be a further

interesting lead compound with respect to development of new antimicrobial drugs.

Class II PrAMPs so far identified are apidaecin-1b and its derivate Apil37. The cryo-EM
structures of Apil37 on the E. coli ribosome showed that Apil37 binds to the NPET in an
elongated coil structure as well, but has the same orientation as a nascent polypeptide chain
(Figure 20a) (Florin et al., 2017; Graf et al., 2018). In particular, the N-terminus is directed
towards the tunnel exit, whereby the last four residues were not resolved and the C-terminus
binds to the A-site cleft of the PTC. In contrast to class I PrAMPs Apil37 does not extend
further into the A-site. Apil37 binding to the NPET occurs primarily via stacking interactions
of tyrosine 7 and 23S rRNA nucleotide A751, arginine 12 and nucleotide C2611, as well as
histidine15 and nucleotide G2505 (Figure 20a). In addition, Apil37 establishes H-bonds in the
A-site cleft via arginine 17 (Figure 20b). Interestingly, the side chain and the backbone of
arginine 17 are also in H-bonding distance to GIn235 of the GGQ-motif of RF1 (Figure 20b)
(Florin et al., 2017; Graf et al., 2018). In accordance, in vitro translation assays showed that

Apil37 inhibits the turnover of RFs and mutational analysis indicated that exchange of
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argininel7 to alanine drastically increases the MIC and reduces the affinity for the E. coli
ribosome (Castle et al., 1999; Krizsan et al., 2014; Florin et al., 2017). Further H-bonds can be
formed between the very C-terminus of leucinel8 and the ribose of P-site tRNA nucleotide
A76 (Figure 20c) (Florin et al., 2017; Graf et al., 2018). The importance of leucinel8 is
supported by reduced binding to E. coli ribosomes upon deletion (Krizsan et al., 2014).
Additional deletion of argininel7 further reduced binding to E. coli ribosomes underlining the
mechanistic involvement of both residues.

Similar to class I PrAMPs binding of Apil37 and a nascent polypeptide chain to the NPET
seems unlikely because of severe clashes (Florin et al., 2017; Graf et al., 2018). Furthermore,
the interactions between Apil37 and the P-site tRNA could only be established after peptidyl-
tRNA hydrolysis. Mechanistically Apil37 could enter the NPET from the tunnel exit
subsequent to peptidyl-tRNA hydrolysis and dissociation of the polypeptide chain (Figure 20d-
g) (Florin et al., 2017; Graf et al., 2018; Graf and Wilson, 2019). Api137 would then establish
the interactions with the P-site tRNA and the RF, which hinders the dissociation of the RF. As

Figure 20: Inhibition of translation by class I PrAMPs. (a) Specific interactions of Apil37 (blue) with 23S rRNA
nucleotides of the NPET (grey) (Florin et al., 2017; Graf et al., 2018). (b-c) Potential H-bonds of Apil37 with (b) 23S rRNA
nucleotides and RF1 and (c) P-site tRNA (P-tRNA, green). (d-g) Translation of an ORF terminates when a stop codon
encounters the A-site (d), subsequently a RF (RF1 (yellow) in this case) binds to the A-site and hydrolyses the nascent
polypeptide chain (NC, green) from the P-site tRNA (green) (e). Afterwards Apil37 binds to the NPET (f) and inhibits
dissociation of the RF (g). The Figure was adapted from Graf and Wilson (2019).
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a result the RFs would be depleted from the cell, this would inhibit termination of translation
and leads to stalling with a stop codon in the A-site, which is in line with in vitro translation
assays (Florin et al., 2017). Prolonged stalling could lead to cleavage of the mRNA in the
A-site, which renders the stalled ribosomes to non-stop ribosomal complexes and targets them
for ribosome rescue (Sunohara et al., 2002; Sunohara et al., 2004b). However, trans-translation
and ArfA also depend on RFs (reviewed by Keiler (2015) and Huter et al. (2017b)), which
would be less available when Apil37 is present. Since termination of trans-translation happens
canonically and the open conformation of RF2 by ArfA is very similar to the open
conformation upon stop codon recognition (Williams et al., 1999; James et al., 2016; Demo et
al., 2017; Huter et al., 2017c; Ma et al., 2017; Zeng et al., 2017), it is likely that also these
systems are inhibited by Apil37. With regard to the interaction with the conserved GGQ-motif,
Apil37 could also inhibit the turnover of other peptidyl-tRNA hydrolases, or the ArfB rescue
system. This was supported by a recent study, which showed that also the turnover of ArfB is
inhibited by Apil37 and the established interactions are similar to the ones observed with RF1
(Florin et al., 2017; Graf et al., 2018; Chan et al., accepted).
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2 Objective of these studies: Structural insights into bacterial ribosome

rescue

Ribosomes stall at the 3’-end of mRNAs, if no in-frame stop codon is present. Due to the lack
of a sense or a stop codon in the A-site elongation as well as termination cannot occur, leading
to the accumulation of ribosomes in the form of non-stop complexes, requiring rescue by
specialised factors and mechanisms. The general objective of our studies was to gain insights
into the ribosome rescue mechanism of the different factors by high-resolution reconstructions
of cryo-EM datasets obtained for the factor(s) bound to a non-stop complex.

The classical and well characterised ribosome rescue mechanisms comprise trans-translation,
ArfA and ArfB. While trans-translation resumes translation on an inherent reading frame, that
ends with a stop codon, ArfA specifically recruits RF2 to the non-stop complex and ArfB
harbours its own GGQ-motif for direct peptidyl-tRNA hydrolysis (Keiler and Feaga, 2014;
Starosta et al., 2014a; Himeno et al., 2015; Keiler, 2015). Structures for the 7. thermophilus
trans-translation system (Neubauer et al., 2012; Ramrath et al., 2012) and E. coli ArfB bound
to the 7. thermophilus ribosome (Gagnon et al., 2012) were already available, while structural
data for ArfA was lacking. Therefore, our aim was to reveal the recruitment and activation of
RF2 by ArfA using cryo-EM single particle reconstruction to generate a high-resolution
reconstruction of both factors bound to a non-stop complex (Publication 1). Furthermore, we
compared the obtained results with structures of the ArfA system attained by other groups and
the available structures of the frans-translation and ArfB systems (Publication 2).

Although all three systems monitor the mRNA entry channel and prefer non-stop complexes,
the systems can work on ribosomes harbouring an mRNA that extends past the P-site into the
channel (Ivanova et al., 2004; Asano et al., 2005; Shimizu, 2012; Kurita et al., 2014b; Feaga et
al., 2016; Zeng and Jin, 2016). Thereby, the systems exhibit different specificities for the
mRNA length. While ArfA only allows three nucleotides past the P-site, trans-translation and
ArfB can operate on complexes with an mRNA extending nine nucleotides past the P-site.
However, the rescue mechanism of non-stop complexes is not known. Hence, aim of the study
was to elucidate this further for ArfB. In that regard, we bound ArfB to E. coli non-stop
complexes with nine or zero mRNA nucleotides past the P-site, prevented dissociation of ArfB
using Apil37 and determined high-resolution cryo-EM structures (Publication 3).

Ribosome rescue is essential in bacteria, and while frans-translation is found in all today known
bacterial genomes, ArfA and ArfB are less prevalent and usually serve as backup systems

(Keiler and Feaga, 2014). Deletion of all systems usually leads to synthetic lethality. However,
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some bacteria, like B. subtilis and Francisella tularesis, have no apparent ArfA or ArfB
homologue and frans-translation can be deleted. This indicates the existence of further
ribosome rescue systems. Indeed, an alternative ribosome rescue factor was recently identified
in Francisella tularensis and termed ArfT (Goralski et al., 2018). Aim of our study was to
determine the cryo-EM structure of a new alternative ribosome rescue factor identified in
B. subtilis (Bacillus ribosome rescue factor A, BrfA), which also cooperates with RF2
(Publication 4). Furthermore, we compared the mechanism of ArfA and BrfA regarding
interaction with the ribosome, the recruitment and activation of RF2. Characterisation of the
mentioned ribosome rescue mechanisms is of high interest, because the systems can serve as
target for the development of new antibiotics, which is desirable with respect to the rapidly

increasing number of bacterial strains with resistances against clinically used antibiotics.
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3.1 Publication 1: Structural basis for ArfA-RF2-mediated translation termination on

mRNAs lacking stop codons

Paul Huter*, Claudia Miiller*, Bertrand Beckert, Stefan Arenz, Otto Berninghausen,
Roland Beckmann and Daniel N. Wilson
Nature 541, 546-549 (2017)

Ribosomes that reach the 3’-end of an mRNA cannot proceed with elongation or termination,
since no codon resides in the decoding site. Hence, the ribosomes get stuck and end up in so-
called non-stop complexes. This event has been estimated to occur on ~2-4 % of translating
ribosomes in E. coli, indicating that non-stop complexes are frequent (Ito et al., 2011). Bacteria
have evolved specialised mechanisms to rescue these non-stop complexes and deletion of all
rescue mechanisms lead to synthetic lethality (reviewed by Keiler (2015) and Himeno et al.
(2015)). The rescue mechanisms comprise trans-translation, which is mediated by tmRNA and
SmpB, as well as ArfA (in cooperation with RF2) and ArfB. While structures of tmRNA-SmpB
and ArfB bound to non-stop complexes have been determined, such information was missing
for ArfA. To illuminate the interplay between ArfA, RF2 and the ribosome we generated a
non-stop complex with ArfA and RF2 bound to it. Subsequently, the sample was subjected to
analysis by cryo-EM and a reconstruction of 3.1 A was obtained. The structure shows that ArfA
binds in the decoding center and monitors the mRNA entry channel with the C-terminus.
Thereby the C-terminus occupies the path that is usually taken by a full-length mRNA. The N-
terminus ahead of the decoding center turns by 180°and loops back to the decoding center. The
turn is coordinated by the 23S rRNA nucleotide C1914 and represents the only contact with
the LSU. ArfA serves as platform for binding of RF2 to the non-stop complex. RF2 is recruited
by ArfA via addition of a B-strand to the B-sheet of the RF2 superdomain 2/4. The overall
conformation of RF2 is similar to the open conformation observed during termination.
Interestingly, the open conformation is not induced by interaction of ArfA with the SPF-motif
in the decoding loop of RF2. Instead, ArfA, RF2 itself and rProtein S12 stabilise a unique
conformation of the RF2 switch loop that extends RF2 helix a7 by several turns. This directs
domain 3 of RF3, which harbours the GGQ-motif necessary for peptidyl-tRNA hydrolysis,

towards the PTC. Thus, ArfA recruits and activates RF2 in a codon-independent manner.
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3.2 Publication 2: Structural Basis for Ribosome Rescue in Bacteria

Paul Huter, Claudia Miiller, Stefan Arenz, Bertrand Beckert and Daniel N. Wilson
Trends in Biochemical Sciences 42, 669-680 (2017)

When ribosomes translate to the 3’-end of an mRNA translation cannot continue and the
ribosomes stall as non-stop complexes. These non-stop complexes are rescued by trans-
translation, ArfA or ArfB. Trans-translation is found in all today sequenced bacterial genomes
and serves as the major ribosome rescue mechanism. ArfA and ArfB are backup mechanisms
in some bacteria and fulfil the task if #rans-translation is overwhelmed or defect. Trans-
translation is performed by tmRNA in complex with SmpB. While SmpB mediates binding to
the non-stop complex, tmRNA encodes a short reading frame on which translation is resumed.
The reading frame adds a degradation tag to the nascent polypeptide chain and ends with a stop
codon, hence canonical termination occurs. ArfA specifically recruits RF2 for peptidyl-tRNA
hydrolysis, while ArfB harbours a GGQ-motif and can hydrolyse the nascent chain from the
tRNA itself. Based on our previous cryo-EM structure of ArfA and RF2 bound to a non-stop
complex and ArfA/RF2 structures from other groups, as well as available structures of
tmRNA-SmpB and ArfB we compare the mechanisms of the rescue systems. We highlight that
ArfA, ArfB and SmpB probe the mRNA entry channel with their C-terminus and that the C-
termini overlap with the path of a full-length mRNA. Furthermore, each system induces a

distinct conformation of the decoding center.

3.3 Publication 3: Mechanism of Ribosome Rescue by Alternative Ribosome Rescue

Factor B

Kai-Hsin Chan, Valentin Petrychenko, Claudia Miiller, Cristina Maracci., Wolf
Holtkamp, Daniel N. Wilson, Niels Fischer and Marina V. Rodnina

Nature Communications (accepted)

ArfB is one of the ribosome rescue mechanisms, which resolves ribosomes stalled on the 3°-
end of mRNAs. Although ArfB is more efficient on complexes that have an empty mRNA
entry channel, it has been shown that ArfB can act on complexes with longer mRNAs (Feaga
et al., 2016). The mechanism behind this is still unknown and we approached this subject by a
combination of rapid kinetics and cryo-EM, which provides a deeper insight in multistep
ribosome rescue by ArfB. Our kinetic experiments show that ArfB bids to ribosomes regardless

of the mRNA length and that the difference results from an extended engagement step observed
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with longer mRNAs. During the engagement step the C-terminus of ArfB establishes
interactions within the mRNA entry channel, which enable the peptidyl-tRNA hydrolysis
activity of ArfB. Comparison of our cryo-EM datasets of non-stop complexes with zero and
nine mRNA nucleotides in the mRNA entry channel show that ArfB binds to both complexes
in the same way, since the mRNA overhang shifted out of the channel. This indicates that the
extended engagement step with longer mRNAs originates from a movement of the mRNA,

which permits binding of the ArfB C-terminus.

3.4 Publication 4: Release factor-dependent ribosome rescue by BrfA in the Gram-

positive bacterium Bacillus subtilis

Naomi Shimokawa-Chiba*, Claudia Miiller*, Keigo Fujiwara, Bertrand Beckert,
Koreaki Ito, Daniel N. Wilson and Shinobu Chiba
Nature Communications 10, 5397 (2019)

The rescue of non-stop complexes is essential in bacteria. The main ribosome rescue
mechanism is trans-translation, which is found in all sequenced bacterial genomes (Keiler and
Feaga, 2014). Some Gram-negative bacteria have evolved backup mechanisms for trans-
translation, like ArfA and ArfB. The Gram-positive bacterium Bacillus subtilis has no apparent
homologue of either backup mechanism. However, deletion of frans-translation does not lead
to synthetic lethality, which indicated that an unknown backup system could exist in B. subtilis.
Here we identify and characterise a new ribosome rescue factor in B subtilis, termed BrfA. Our
biochemical experiments show that BrfA, as ArfA, specifically recruits RF2 to the non-stop
complex. BrfA can rescue non-stop complexes from B. subtilis and E. coli if B. subtilis RF2 is
provided. Thus, we used the same non-stop complex as before for ArfA for analysis by cryo-
EM, which lead to a reconstruction of 3.1 A. Our structure shows that BrfA binds to the
decoding center as well and, as other ribosome rescue mechanisms monitors the mRNA entry
channel with its C-terminus. BrfA has an N-terminal helix (al) which interacts with SSU h44
and LSU H71 at the intersubunit space, additionally arginine 25 stacks on U1915 of LSU H69.
Hence, BrfA has more contacts with the LSU compared to ArfA. BrfA also recruits RF2 via
addition of a B-strand to the B-sheet formed by the RF2 superdomain 2/4. However, ArfA and

BrfA facilitate the open conformation of RF2 by a different mechanism.
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4 Discussion and Outlook

The structures of the ribosome rescue systems provided an overview of the mechanistic
background, as well as similarities and differences between the systems. These will be
highlighted in this section and the main focus of the discussion will be on ArfA/RF2, ArfB and
BrfA/RF2.

4.1 Alternative ribosome rescue factor A

As mentioned in the introduction the five cryo-EM structures of the E. coli system ArfA and
RF2 on the homologous ribosome lead to congruent results for the closed and the open
conformation, besides different approaches to generate the complexes (James et al., 2016;
Demo et al., 2017; Huter et al., 2017¢; Ma et al., 2017; Zeng et al., 2017). Four studies
generated the non-stop complex using a short mRNA containing a SD-sequence and a start
codon in optimal spacing, placing the start codon in the P-site whereas the A-site and the
mRNA entrance tunnel were vacant (James et al., 2016; Demo et al., 2017; Ma et al., 2017;
Zeng et al., 2017). The non-stop complex was incubated with deacylated tRNA™® or non-
hydrolysable fMet-NH-tRNA™¢ and C-terminal truncated ArfA, as well as RF2. Zeng et al.
(2017) used methylated RF2, but were not able to draw conclusions regarding the conformation
of the methylated GGQ-motif and collected later on a second dataset (Zeng and Jin, 2018),
which did not differ regarding the overall conformation of ArfA and RF2, and provided the
information described in the introduction. Reconstruction of the cryo-EM datasets lead to one
major population of ArfA, RF2 in the open conformation and P-tRNA bound to the 70S
ribosome (James et al., 2016; Demo et al., 2017; Ma et al., 2017; Zeng et al., 2017). In contrast
to the other complexes James et al. (2016) did not find an E-tRNA, due to usage of non-
hydrolysable fMet-NH-tRNA™¢ which has a low affinity for the E-site because of the attached
amino acid. Whereas non-cognate deacylated tRNA™ bound to the E-site in the other
complexes in consequence of the intrinsic affinity of the E-site for deacylated tRNA
(Rheinberger et al., 1981; Grajevskaja et al., 1982; Yusupov et al., 2001; Schmeing et al., 2003;
Demo et al., 2017; Ma et al., 2017; Zeng et al., 2017). However, the presence or absence of
E-tRNA did not influence ArfA and RF2 binding or the recue mechanism. Demo et al. (2017)
additionally found a second major subpopulation with RF2 in the closed conformation together
with ArfA and P-tRNA on the ribosome using this approach. In their dataset the occupancy of

the closed and open RF2 subpopulations after removal of non-aligning particles was 43% and
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34%.

Huter et al. (2017¢) generated the non-stop complex by in vitro translation of a truncated nipD
version with engineered N-terminal His-tag. The tag was used to purify the non-stop complex,
which was programmed with peptidyl-tRNAP™ in the P-site, while the mRNA entry channel
was empty. This approach created a more natural substrate for ribosome rescue compared to
the other complexes because it is stalled on an E. coli gene and the P-tRNA carries a nascent
chain. The non-stop complexes were incubated with hydrolysis deficient RF2-GAQ and C-
terminally truncated ArfA. Reconstruction and sorting revealed two major subpopulations of
50% and 39% after exclusion of non-aligning particles containing ArfA together with open
RF2-GAQ. The subpopulations only differed in the absence or presence of E-tRNA, also in
this case no difference regarding ArfA-supported rescue was observed between the
subpopulations.

Notably, no non-stop complex with only ArfA bound was obtained by the different strategies,
even not after sorting of the datasets, which indicates the high effectiveness of ArfA in
recruiting RF2 to the ribosome (James et al., 2016; Demo et al., 2017; Huter et al., 2017¢; Ma
et al., 2017; Zeng et al., 2017). With regard to the state of the complex, using RF2-GAQ or
non-hydrolysable fMet-NH-tRNAfM represent pre-hydrolysis complexes, whereas complexes
with deacylated tRNA™® mimic the post-hydrolysis state. Recently, a cryo-EM study reported
rearrangement of the GGQ-motif containing loop/helix combination in RF2 domain 3 into a 8-
hairpin within the PTC after peptide hydrolysis during termination on a stop codon, which was
accompanied by relocation of the CCA-end of the P-tRNA out of the PTC (Svidritskiy et al.,
2019). This was not described for the complexes mimicking post-hydrolysis complexes (Demo
etal.,2017; Maetal., 2017; Zeng et al., 2017). Rather, in all obtained non-stop complexes with
ArfA and open RF2 the GGQ-loop was in the activated loop/helix combination, leading to the
same conclusions despite the different hydrolysis state (James et al., 2016; Demo et al., 2017,
Ma et al., 2017; Zeng et al., 2017). The difference between the post-hydrolysis complexes by
Svidritskiy et al. (2019) and of Demo et al. (2017), Ma et al. (2017) and Zeng et al. (2017)
might be a consequence of different incubation times and/or temperatures. While the former
was incubated for 30 minutes at room temperature, the non-stop complexes were incubated at
37°C and quickly frozen for storage or applied to the cryo-EM grid. The B-hairpin of the GGQ-
loop could be a conformation formed due to the lower temperature or a transient intermediate
upon subunit rotation, because B-hairpin formation was associated with head swivelling and
intersubunit rotation. Movement of the head and body of ~2° each was only observed by Zeng

et al. (2017), but without rearrangement of RF2 and P-tRNA, which could also indicate a
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difference between termination and ribosome recue by ArfA/RF2.

As mentioned earlier James et al. (2016) and Demo et al. (2017) observed the closed
conformation of RF2 on the ribosome in the presence of ArfA by using different approaches.
James et al. (2016) prepared two additional complexes one with ArfA(A18T) and one with
T. thermophilus RF2 (see introduction). Whereas Demo et al. (2017) obtained the closed
conformation as major subpopulation by incubating the non-stop complex with deacylated
tRNAMe C-terminally truncated ArfA and RF2 (see above and introduction). This raises the
question on why the other groups did not observe this and if this accounted for by differences
in data processing or the complex formation conditions. Indeed, two different software
packages or a combination of them was used for processing. The RELION software package
was used by three groups (James et al., 2016; Ma et al., 2017; Zeng et al., 2017), Demo et al.
(2017) used FREALIGN and Huter et al. (2017c) started in RELION, while sorting and
refinement was performed in FREALIGN. During initial classification steps in RELION Ma
et al. (2017) and Zeng et al. (2017) discarded 68% and 65% of their initially picked particles,
respectively. Zeng et al. (2017) state that non-ribosomal particles, as well as 50S and 30S
subunits were removed. However, more detailed information about the steps, classes and
respective particle numbers are necessary to make assumptions if the closed state of RF2 can
be found in the discarded particles. Notably, Zeng et al. (2017) obtained two different
conformations of the ribosome with RELION, with respect to this both software packages are
capable to sort out conformations and cannot account for the additional state found by Demo
et al. (2017). James et al. (2016) only removed non-ribosomal particles by 2D classification in
RELION and 82% of ribosomal particles contained ArfA, as well as RF2 in the open
conformation and was analysed further. Because of the high proportion of used particles it
seems unlikely that a subpopulation with closed RF2 was overlooked. Demo et al. (2017) and
Huter et al. (2017c¢) used all particles for 3D classification without prior removal of non-
ribosomal particles. However, both datasets contained ~60% non-stop complexes with ArfA
and RF2 or RF2-GAQ, respectively. Demo et al. (2017) already observed both RF2
conformations in this initial sorting step, whereas Huter et al. (2017c) observed only the open
conformation, as additional analysis did not reveal the closed conformation in our dataset.
Thus, sorting of both datasets with the same software lead to distinctive results regarding RF2
conformation. This further hints towards a difference in complex preparation accounting for
the major subpopulation of the RF2 closed conformation in the dataset of Demo et al. (2017).
Various factors, like ion concentrations, grid preparation procedure or protein tags could have

contributed. For example, Mg>" ions have an impact on the flexibility of the ribosome, high
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Mg** concentrations lead to more rigidity (Yamamoto et al., 2010). With respect to this the
Mg?* concentration (20mM) used by Demo et al. (2017) was by far the highest and lies in the
less flexible range. This might have caused an extended transition time from the closed to the
open conformation and thus reduced the accommodation of RF2 domain 3. Additionally, Demo
et al. (2017) let the sample cool down to room temperature after incubation at 37°C and stored
the complex at -80°C before grid preparation, whereas all other groups mixed and incubated
the samples right before grid preparation. Especially the freezing and thawing cycle could have
influenced the sample of Demo et al. (2017) and have led to the closed conformation of RF2.
Another aspect is the N-terminal His-tag, which was included in the ArfA protein of Huter et
al. (2017c) and Demo et al. (2017), while the other groups removed the tags in the course of
protein purification. Although both groups confirmed the activity of their protein
biochemically, the N-terminal tag could have facilitated the closed conformation of RF2 in the
case of Demo et al. (2017) but not for Huter et al. (2017c). The difference in the used ArfA
proteins lies in an additional protease cleavage site inserted between the tag and ArfA by Huter
et al. (2017¢), which might have prevented stabilization of the closed conformation. However,
the N-terminus of ArfA, which included the tag was flexible in the subset with the closed RF2
conformation from Demo et al. (2017), hence an influence of the N-terminal His-tag seems
unlikely. Further factors might have favoured formation of the closed conformation of RF2 in
the sample of Demo et al. (2017) and the high occurrence hints towards the experimental
conditions influencing the accommodation of RF2. In the meantime, the closed conformation
of RF2 was identified as physiological intermediate during termination by time-resolved cryo-
EM (Fu et al., 2019). This renders the reason for the influence on the conformation even more

interesting with respect to identification of further transient conformations.

4.2 Alternative ribosome rescue factor B

The recent study about ArfB binding to the E. coli ribosome with regard to the mRNA length
led to a deeper insight into the interaction of ArfB with the ribosome (Chan et al., accepted).
As previously reported (Shimizu, 2012; Feaga et al., 2016), the hydrolysis activity of ArfB
decreases with increasing length of the mRNA, with a significant drop for more than nine
nucleotides (Chan et al., accepted). Interestingly, ArfB was able to bind to the ribosome
regardless of the mRNA length, but showed an extended ‘engagement step’ on long mRNAs,
which lead to delayed activation of the ArfB hydrolysis activity (Chan et al., accepted). Similar
findings were also reported for the quaternary complex of tmRNA-SmpB-EF-Tu GTP, which
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delivers tmRNA-SmpB to the ribosome during trans-translation and the ArfA/RF2 system
(Kurita et al., 2014a; Kurita et al., 2014b), which could indicate that also these systems proceed
via an engagement step after initial binding. Interestingly, SmpB was even able to activate GTP
hydrolysis by EF-Tu in the quaternary complex regardless of the mRNA length and ArfA could
recruit RF2 to a complex with 21 nucleotides past the P-site. Both events are suggested to
depend on interactions with the decoding center (Miller and Buskirk, 2014; James et al., 2016;
Demo et al., 2017; Huter et al., 2017¢c; Ma et al., 2017; Zeng et al., 2017), which is right above
the mRNA entry channel where engagement takes place. Activation of the hydrolysis activity
of EF-Tu during trans-translation is mediated by a stacking interaction of His136 of SmpB
with the decoding base G530 of the 16SrRNA (Miller et al., 2011; Miller and Buskirk, 2014).
This indicates that at least SmpB has already access to the decoding center in the initial binding
phase. While recruitment of RF2 by ArfA is mediated by donation of a B-strand to the
superdomain 2/4 of RF2 and residue E30 with the ArfA B-strand interacts also with G530, RF2
is further recruited via hydrophobic interactions (James et al., 2016; Demo et al., 2017; Huter
et al., 2017¢c; Ma et al., 2017; Zeng et al., 2017) and it is not known which interactions are
already established during initial recruitment.

However, it is not completely clear yet what causes the difference in the mRNA length
dependency between ArfA, which causes the decline of hydrolysis activity when more than
three nucleotides extend past the P-site (Shimizu, 2012; Kurita et al., 2014a; Zeng and Jin,
2016). Similarly, for trans-translation, as well as for ArfB the hydrolysis activity has been
shown to decrease when mRNAs extend nine nucleotides past the P-site (Ivanova et al., 2004;
Shimizu, 2012; Feaga et al., 2016; Chan et al., accepted). While superimposition of ArfA and
full length mRNA is in line with the kinetic data and indicates a clash between ArfA and the
third nucleotide past the P-site (James et al., 2016; Demo et al., 2017; Huter et al., 2017¢; Ma
et al., 2017; Zeng et al., 2017), SmpB and ArfB collide with the fourth and the second
nucleotide following the P-site, respectively (Gagnon et al., 2012; Neubauer et al., 2012).
According to Chan et al. (accepted) the C-terminal tail of ArfB establishes interactions with
the mRNA entry channel during the engagement step and this is slower for long mRNAs
probably because the mRNA has to be displaced for ArfB binding to occur. In accordance, the
cryo-EM structure of ArfB on the E. coli ribosome with an mRNA extending nine nucleotides
past the P-site shows that the mRNA was displaced from the mRNA entry channel and was
flexible after the P-site codon (Chan et al., accepted). Furthermore, the interactions between
ArfB and the ribosome were identical with the ones formed on a complex with an mRNA

extending zero nucleotides past the P-site (Chan et al., accepted). Nevertheless, the hypothesis
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raises the question if the unstructured ArfB C-terminus and the mRNA can coexist in the
mRNA entry channel in the early phase of the engagement step, and further if the mRNA is
actively displaced by formation of the interactions between ArfB and the ribosome and/or by
the associated transition of the ArfB C-terminal tail into an a-helix. The questions can be
expanded to the trams-translation system, because the C-terminal tail of SmpB is also
unstructured in solution and forms an a-helix upon binding to the mRNA entry channel (Dong
et al., 2002; Neubauer et al., 2012; Rae et al., 2019). The transition of the SmpB C-terminal
tail into an a-helix has been shown to be necessary for the activation of tagging during trans-
translation (Miller et al., 2011), but it has not been investigated yet if longer mRNAs prolong
the transition time. The extended engagement step for ArfB with longer mRNAs (Chan et al.,
accepted) could also occur due to an occasional event, in which the mRNA loops out of the
channel, the ArfB C-terminus could then rapidly bind to the mRNA entry channel and establish
the helix. However, this should only be likely until a certain length of the mRNA and besides
the rate of hydrolysis was reduced 100-fold, it was not completely abolished on complexes
with a mRNA extending 99 nucleotides past the P-site (Chan et al., accepted). For such a long
mRNAs looping out of the mRNA entry channel is improbable because of mRNA secondary
structures. Assuming that the transition of the ArfB C-terminus is also necessary for the
activation of peptidyl-tRNA hydrolysis by the ArfB-NTD, the activity on complexes with 99
nucleotides past the P-site could also imply that even the ArfB C-terminal tail in the a-helical
conformation and the mRNA could coexist in the mRNA entry channel. The similarity in the
length dependency for SmpB and ArfB would then arise from the formation of a C-terminal
helix and the defined path of the helix, which could allow co-residing of the helix and the
mRNA in the mRNA entry channel, as well as establishment of interactions needed for the
progress of the respective system. Furthermore, because ArfA does not form an a-helix the
different length dependency for ArfA could be explained by the distinct structure of its C-
terminus. The C-terminus of ArfA remains a loop within the mRNA entry channel, which
rather blocks the channel and with regard to this only three nucleotides can be accommodated
after the P-site.

For BrfA/RF2 the mRNA length dependency and ribosome binding have not been investigated
biochemically yet. However, the binding of BrfA helix al to h44 of the SSU and H71 of the
LSU, as well as BrfA helix a2 to 23S rRNA H69 (Shimokawa-Chiba et al., 2019), could
promote binding independent of the mRNA length and may support an engagement step.
Regarding the mRNA length dependencys, it is very difficult to make assumptions, since BrfA
shares structural features with ArfB and SmpB, as well as ArfA. Comparable to ArfA, the C-
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terminus of BrfA clashes with the third nucleotide past the P-site and has a dipeptide (LysHis)-
motif, which interacts in the same way with the 16S rRNA in both systems (Shimokawa-Chiba
et al., 2019). Additionally, BrfA harbours an a-helix (helix a3) that is shorter than the helices
of ArfB and SmpB and rather blocks the tunnel. In this regard, further kinetic and biochemical
data is needed to further elucidate the initial steps of the BrfA/RF2 system.

Another interesting point shown by Chan et al. (accepted) is that the turnover of ArfB, but not
the peptidyl-tRNA hydrolysis activity, is inhibited by the PrAMP Apil37. This had been
reported previously for bacterial class I RFs (Florin et al., 2017; Graf et al., 2018). In
consequence, the RF was trapped on the ribosome, which was used for analysis by cryo-EM.
Since the turnover of ArfB was also inhibited (Chan et al., accepted), the same strategy used to
stabilise ArfB on the ribosomal complex was employed. The used complex was composed of
an mRNA extending zero or nine nucleotides past the P-site and P-site tRNA. As mentioned
above, analysis of the datasets showed that the conformation of ArfB was identical because, as
mentioned above, the overhang of nine nucleotides was displaced from the mRNA entry
channel. Additionally, binding of Apil37 to the ribosome and the interactions between ArfB
and Apil37 were identical to the ones observed with RF1 in the previous cryo-EM structures
(Florin et al., 2017; Graf et al., 2018; Chan et al., accepted). Regarding this, Apil37 could
inhibit all bacterial peptidyl-tRNA hydrolases containing a GGQ-motif and also RF-dependent
ribosome rescue systems, like ArfA/RF2, BrfA/RF1, ArfT/RF1 and ArfT/RF2. Since the GGQ-
motif is universally conserved and the contacts between Apil37 and the ribosome mostly
involve conserved rRNA bases within the PTC and the peptide exit tunnel, it has the potential
to inhibit translation across the domains of life (Frolova et al., 1999, Seit-Nebi et al., 2001;
Zavialov et al., 2002; Mora et al., 2003; Shaw and Green, 2007; Florin et al., 2017,
The Rnacentral Consortium, 2018; Graf and Wilson, 2019). This would render Apil37 an
interesting tool to investigate translation termination. Moreover, Apil37 is also a prime
candidate as antimicrobial agent against Gram-negative bacteria, which actively take up
PrAMPs mainly via the SbmA transporter (see introduction) that is not found in Gram-positive
bacteria (Mattiuzzo et al., 2007; Graf et al., 2017). Additional inhibition of human cytosolic or
mitochondrial translation would increase cytotoxicity during treatment, which could be
problematic regarding the use of Apil37 as an antimicrobial agent. However, it is difficult to
predict inhibition of different species by PrAMPs. For example, according to competition
assays the bovine PrAMPs Bac5 and Bac7 should have an overlapping binding site
(Mardirossian et al., 2018a). Nevertheless, while Bac7 inhibits translation of E. coli and

T. thermophilus, Bac5 displays species-specific inhibition and did not inhibit 7. thermophilus
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translation very well, whereas E. coli translation was inhibited effectively (Mardirossian et al.,
2018a). Furthermore, a recent study determined the dissociation constant (Kd4) of Apil137 from
isolated 70S ribosomes and its minimal inhibitory concentration (MIC) of four human
pathogens and the dissociation varied between species (Kolano et al., 2020). Compared to
E. coli ribosomes (Kd=379 nM) the Kd of pathogens Klebsiella pneumoniae and Pseudomonas
aeruginosa was even lower, with 155 nM and 257 nM, respectively. In contrast, for ribosomes
of Acinetobacter baumannii and Staphylococcus aureus, which is the only Gram-positive
bacterium in the study, a higher Kd of 2 493 nM and 13 079 nM was determined. Interestingly,
the MIC did not correlate with the K4, as E. coli and Klebsiella pneumoniae had a low MIC of
2 and 4 mgL!, while the MIC of Acinetobacter baumannii, Pseudomonas aeruginosa and
Staphylococcus aureus was increased 31-fold or higher, compared to E. coli. The findings
indicate that Apil37 displays species specific inhibition and that the affinity of Apil37 for
ribosomes varies from species to species and that Apil37 is mainly active against
Enterobacteriaceae, like Escherichia and Klebsiella with respect to the MIC (Kolano et al.,
2020). In conclusion, the activity and effectiveness of Apil37 against different species and
among species from various kingdoms needs to be tested individually. Even if Api137 would
inhibit human translation in the cytosol or mitochondria, it is not clear yet if it can pass the cell
membrane(s) to enter the cytosol and the mitochondrial matrix to reach the ribosomes. In this
regard, a recent study in mice used Apil37 successfully against an E. coli infection model
(Knappe et al., 2019). The potency of Apil37 treatment was greatly improved by continuous
subcutaneous delivery (67% survival), because Apil37 exhibited a short half-life of <30 min
using single injections (33% survival) due to proteolytic degradation. This shows that rather
the stability than cytotoxicity of Apil37 is the major challenge for its usage as an antimicrobial
drug. Although, the stability of Apil37 was already improved compared to the wildtype
apidaecin-1b by exchanging the N-terminal asparagine to an ornithine residue conjugated with
a tetramethylguanidino moiety (Berthold et al., 2013), the stability could be further improved
for more convenient treatment, for instance by additional introduction of D-amino acids
(Kolano et al., 2020). Nonetheless, Apil37 is a very promising compound for the treatment of
infections with Gram-negative bacteria, especially of the Enterobacteriaceae family (Knappe

et al., 2019; Kolano et al., 2020).
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4.3 Bacillus ribosome recue factor A

Our recent cryo-EM structure of B. subtilis BrfA and B. subtilis RF2 on the E. coli non-stop
ribosomal complex shed light into the mechanism of ribosome rescue by the BrfA/RF2 system
(Shimokawa-Chiba et al., 2019). Since BrfA and B. subtilis RF2 are able to promote peptidyl-
tRNA hydrolysis on E. coli non-stop ribosomal complexes the same approach as for cryo-EM
structure determination of the E. coli ArfA/RF2 system, which used the truncated n/lpD ORF
as template for non-stop complex generation (Huter et al., 2017c), was applied. Additionally,
a similar set-up for complex formation was used by incubating the non-stop complex with BrfA
and a hydrolysis deficient RF2 variant, in which the glutamine of the GGQ-motif was mutated
to proline (GGP) (Korostelev et al., 2008; Santos et al., 2013).

The acquired cryo-EM dataset was analysed with RELION 3 and showed only one major
population with stoichiometric binding of BrfA and RF2 in the open conformation to the non-
stop complex. Substoichiometric binding of RF2-GGP to the non-stop complex may indicate
that BrfA is less effective than ArfA in recruiting the RF, at least regarding E. coli ribosomes.
Since substoichiometric occupancy was not found the datasets of the ArfA/RF2 system (James
et al., 2016; Demo et al., 2017; Huter et al., 2017c; Ma et al., 2017; Zeng et al., 2017) or our
BrfA dataset (Shimokawa-Chiba et al., 2019), both factors seem to recruit RF2 with high
affinity. The closed conformation was not found in the BrfA dataset, hence BrfA efficiently
activated the open conformation of RF2. The overall conformation of RF2 is similar in the
structure of the BrfA/RF2 and the ArfA/RF2 system, in both the catalytic domain 3 of RF2 is
directed towards the PTC (James et al., 2016; Demo et al., 2017; Huter et al., 2017¢c; Ma et al.,
2017; Zeng et al., 2017; Shimokawa-Chiba et al., 2019). The GGP-motif variation of RF2 was
previously found to adopt the same conformation in the PTC as the wild type GGQ-motif'in a
crystal structure of 7. thermophilus RF2-GGP decoding a stop-codon on the corresponding
ribosome (Santos et al., 2013). In contrast, in our cryo-EM structure the motif is rather flexible,
which might indicate that the GGP-variation needs the longer timeframe of crystallisation to
establish the conformation. Another possibility is that the adjustment of B. subtilis RF2 to the
B. subtilis ribosome influenced the accommodation of domain 3 to the PTC, which is supported
by the lower activity of BrfA/RF2 on E. coli ribosomes and the lower resolution of domain 3
in comparison to the ArfA/RF2 structures (James et al., 2016; Demo et al., 2017; Huter et al.,
2017¢c; Ma et al., 2017; Zeng et al.,, 2017; Shimokawa-Chiba et al., 2019). However,
comparison of the hydrolysis activity of BrfA/RF2 and ArfA/RF2 on the corresponding non-
stop complex indicates that BrfA/RF2 is generally less active (Shimokawa-Chiba et al., 2019).
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This is supported by the higher flexibility of the switch loop in the BrfA/RF2 structure
compared to the ArfA/RF2 structures (James et al., 2016; Demo et al., 2017; Huter et al., 2017c;
Maetal., 2017; Zeng et al., 2017; Shimokawa-Chiba et al., 2019). ArfA, RF2 and rProtein S12
establish a hydrophobic pocket in which Trp319 (E. coli numbering; Trp318 in B. subtilis) of
the RF2 switch loop is tightly bound (Figure 21a), while BrfA mainly provides stacking of
Trp319 on phenylalanine 31 (Figure 21b). Additional hydrophobic interactions with RF2
phenylalanine 217 (phenylalanine 216 in B. subtilis) and rProtein S12 leucine 46 might be
possible, while phenylalanine 31 could be stabilised by valine 198 (valine 197 in B. subtilis)
also via hydrophobic interaction (Figure 21b). In conclusion, the alternative mechanism of
BrfA to induce the open conformation of RF2 might be less tight and lead to more flexibility
in the switch loop and domain 3, although further influences cannot be ruled out, since the
observation is primarily based on the structure and needs further biochemical support.

As observed for ArfA, recruitment of RF2 by BrfA is mediated via addition of a B-strand to the
B-sheet of the superdomain 2/4, the B-strand of the rescue factor lies between RF2 and the
decoding center (James et al., 2016; Demo et al., 2017; Huter et al., 2017c; Ma et al., 2017,
Zeng et al., 2017; Shimokawa-Chiba et al., 2019). In comparison, ArfA and RF2 sink deeper
into the decoding center as BrfA and RF2, hence the B-strand of BrfA and the superdomain 2/4
of RF2 are shifted approximately by 2 A. ArfA is able to recruit heterologous RF2 from
T. thermophilus, but is not able to stabilise the open conformation because of steric clashes
with non-conserved residues of RF2 helix a7 (James et al., 2016; Huter et al., 2017c¢). Because
of the conserved recruitment mechanism this is also possible for BrfA (Shimokawa-Chiba et
al., 2019) and could provide a structure of pre-accommodated BrfA, as well as more insight

into the activation of RF2. Another possibility would be to use a BrfA variant which can recruit
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Figure 21: Comparison of switch loop stabilisation by ArfA and BrfA, and interaction of ArfB and BrfA with H69.
(a) Hydrophobic pocket formed by leucine 24 (L24) and phenylalanine 25 (F25) of ArfA (red), valine 198 (V198) and
phenylalanine 217 (F217) of E. coli RF2 (EcRF2arta, yellow) and leucine 49 (L49) of rProtein S12 (S12, pink) (PDBID SMGP
(Huter et al., 2017¢)). Tryptophan 319 (W319) of the RF2 switch loop lies in the center of the pocket. (b) Same view as (a)
showing the stabilisation of W319 (W318 in B. subtilis) of B. subtilis RF2 (BsRF2s:fa, orange) by stacking phenylalanine 31
of BrfA (pale blue) (PDBID 6SZS (Shimokawa-Chiba et al., 2019)). Hydrophobic interaction of W319 with F217 (F216 in
B. subtilis) of B. subtilis RF2 and L49 of S12 (pale yellow) might contribute additionally. (c) Stacking of arginine 25 (R25) of
BrfA and arginine 105 (R105) of ArfB (purple, PDBID 6YSS (Chan et al., accepted)) on U1915 of 23S rRNA helix 69
(H69s5:1a, grey). The PDBs were aligned based on the 16S rRNA.
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B. subtilis RF2 but not activate it, similar to the usage of inactive ArfA(A18T) (James et al.,
2016). Such a BrfA-variant has not been described yet. An interesting approach could entail
the disruption of the stacking interaction of the conserved arginine 25 onto U1915 (Figure 21c¢),
which would destabilise the BrfA region of residue 17 till 34, which includes the critical
phenylalanine 31. The same stacking interaction was observed with the conserved residue
arginine 105 within the ArfB linker region (Figure 21c) (Gagnon et al., 2012; Chan et al.,
accepted), which indicates a shared interaction mechanism between BrfA and ArfB with H69.
Furthermore, mutation of ArfB arginine 105 to alanine reduced the activity of ArfB by ~80 %
(Kogure et al., 2014), which raises the question if this would also apply for the mutation of
BrfA arginine 25. Another possibility could be to inhibit binding of helix al to h44 of the 16S
rRNA and H71 of the 23S rRNA by mutating lysines and arginines to alanine. However, this
could lead to loss of binding of BrfA to the ribosome. Rather promising might be a mutation
of serine 24 or serine 27 to a bulky residue, like tryptophan, which could induce a clash with
helix a7 of RF2. Further mutation of proline 29 might be interesting, since it is partly
conserved.

The structures of the ribosome rescue systems indicate that all systems bind to the mRNA entry
channel via positively charged residues in the C-terminal region (Figure 22) (Neubauer et al.,
2012; James et al., 2016; Demo et al., 2017; Huter et al., 2017¢c; Ma et al., 2017; Zeng et al.,
2017; Rae et al., 2019; Chan et al., accepted). These residues are conserved within the
respective protein (Figure 22). Furthermore, it has been shown that mutation of these positively
charged residues in SmpB and ArfB inhibits activation of the following steps. As mentioned in
the introduction triple mutation of the SmpB (Figure 22a) residues D137K138R139 prevents
activation of the tranms-transfer onto the TLD of tmRNA and thus progression of trans-
translation (Sundermeier et al., 2005; Miller et al., 2011). In ArfB (Figure 22b) single mutations
like KI122A, KI29A or R132A already reduced the activity severely. Mutations of the
respective residues in ICT1 had the same dramatic effect, underlining the similarity of the
proteins (Kogure et al., 2014). Interestingly the positively charged residues cluster to one side
of the helix, which is directed towards the body of the 30S subunit (Figure 22b). In ArfA
(Figure 22c¢) a mutational analysis showed that every residue could be substituted to cysteine
and only the mutation of lysine 34 (K34C) led to a ~30% decrease of the hydrolysis activity
(Kurita et al., 2014a). In a follow-up study it was shown that the hydrolysis rate was reduced
for the mutation K34C by ~50%, however, the reduction was even more severe for mutation
of tyrosine 39 (~70% reduction) or arginine 41 (~85% reduction) to cysteine (Ma et al., 2017).

The cysteine mutation of tyrosine 39 or arginine 41 did not influence the activity in the former
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study probably because of the longer incubation time, hence the endpoint of the reaction was
represented and the reduced hydrolysis rate was not detected. Nevertheless, in both studies
other single mutations in ArfA were redundant (Kurita et al., 2014a; Ma et al., 2017). However,

C-terminal truncation of ArfA to 40 remaining residues did not support growth upon deletion

amino acid

Figure 22: Interaction of ribosome rescue factors with the
mRNA entry channel. The mRNA entry channel is monitored
by (a) SmpB (PDBID 6Q97 (Rae et al., 2019)), (b) ArfB
(PDBID 6YSS (Chan et al., accepted)), (c) ArfA (PDBID
SMGP (Huter et al., 2017c)) and (d) BrfA (PDBID 6SZS
(Shimokawa-Chiba et al., 2019) via interactions of positively
charged residues (red) with the surrounding 16S rRNA
(yellow). The conservation of the residues of the C-termini are
represented in the WebLogo (Crooks et al., 2004) below each
panel. The WebLogo of (d) BrfA indicates B. subtilis
numbering. Truncated mRNA (Tr-mRNA, cyan) is shown for
reference. (e) The path of a full-length mRNA (FI-mRNA) is
shown for comparison (PDBID 4V6F (Jenner et al., 2010)).
The figure was adapted from Huter et al. (2017b).
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of trans-translation in E. coli (Chadani et al., 2011a). This rather indicates that removal of
positively charged patches, like Arg41Lys42Gly43Lys44, might reduce the engagement of
ArfA with the mRNA entry channel and/or the activation of RF2, what would in turn diminish
the hydrolysis activity.

Mutational analysis of the BrfA C-terminus is not available yet, but based on our cryo-EM
structure and the alignment of BrfA from different Bacillus species suggestions can be made
(Figure 22d) (Shimokawa-Chiba et al., 2019). The conserved lysine 39 (Lys39), which follows
the B-strand, putatively H-bonds with N4 of nucleotide C518 of the 16S rRNA, which is
sandwiched between G529 and G530. Further H-bonds are possible with the oxygens of the
backbone phosphate of G529, as well as with O6 or N7 of G530. The interactions between
Lys39 and the 16S rRNA are probably involved in proper placement of the B-strand, hence
mutation could influence recruitment of RF2. The following serine 40 (Ser40) is in H-bond
distance to the sidechain of RF2 arginine 211 and alternatively, an H-bond with C1397 of the
16S rRNA is possible when the sidechain is rotated. This hints towards the sidechain having a
different rotational state in dependence of the presence or absence of RF2 and thus could be
involved in recruitment or placement of RF2. Ser40 is not conserved throughout BrfA and a
threonine is more common in this position (Figure 22d) (Shimokawa-Chiba et al., 2019).
However, both amino acids can participate in H-bonding via the hydroxyl group of the
respective sidechain and seem to be interchangeable in this position. A mutation to alanine
would disrupt H-bonding in this position, whereas bulky amino acids, like phenylalanine,
would lead to clashes with C1397 and arginine 211. Both variants could interfere with BrfA
binding and/or recruitment, as well as activation of RF2. Nevertheless, compensating stacking
interactions cannot be excluded for aromatic sidechains. Ser40 is also the first amino acid of
helix a3 of BrfA. Lysine 41 can form H-bonds with the surrounding 16S rRNA in different
sidechain conformations, but not with rProtein S3, since the hydrophobic isoleucine 162
(Ile162) cannot form H-bonds. The following lysine 42 can H-bond with the 16S rRNA or
rProtein S5. Both lysine residues could compensate each other regarding binding and
mechanism of BrfA, hence it is possible that only double mutation of them would show an
effect. Lysine 42 is less conserved than lysine 41, with glutamine and arginine commonly
found in position 42. This indicates that medium and long sidechains with the ability to form
H-bonds are sufficient in this position. In contrast, in position 41 a long sidechain, like lysine
or arginine is preferred to span the hydrophobic Ile162 of rProtein S3 and to form H-bonds.
The following glutamic acid (Glu43) H-bonds with N4 of C1397 of the 16S rRNA and the

backbone amide of Ser40, which indicates that the residue could be important for binding of
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BrfA to the ribosome and establishment of the secondary structure. The hydrophobic residues
isoleucine 44 and leucine 45 are directed towards Ile162 of rProtein S3 and render helix a3
amphipathic in this region. Leucine 45 is more conserved than isoleucine 44, however in either
case the hydrophobicity is conserved, with exceptions for isoleucine44 for example in Bacillus
nakamurai, Bacillus haynesii and Bacillus populi, which have an arginine, glutamic acid or a
lysine in this position, respectively. The reason for this is difficult to dissect based only on our
cryo-EM structure and further structures and biochemical data will be necessary to draw
conclusions on the effect of these residues in other Bacillus species. Probably, the flexibility
of these sidechains allows suitable positioning despite the charge. The following asparagine 46
does not interact with the ribosome in our structure, rather it ends helix a3, although the
backbone amide of lysine 47 participates in the helix. The asparagine is not conserved in
position 46 and BrfA of most other Bacillus species has a glutamine in this position, which
preferably forms helices (Chou and Fasman, 1974; Prevelige and Fasman, 1989). Additionally,
the following amino acids are less conserved between B. subtilis and other Bacillus species
(Figure 22d), like Bacillus altitudinis (Shimokawa-Chiba et al., 2019). In particular, a subgroup
of Bacillus species in the alignment has a conserved motif of five amino acids
(GInHisMetMetLys) between lysine 45 and the lysine-histidine (KH)-motif, which is
conserved throughout BrfA . The five amino acids preferably form helices (Chou and Fasman,
1974; Prevelige and Fasman, 1989), which indicates that helix a3 could be longer in these
species. Also, further variations are possible, since other Bacillus species have the same
distance between lysine 45 and the KH-motif, but the amino acids differ in this region (Figure
22d) (Shimokawa-Chiba et al., 2019). In contrast, B. subtilis has only three amino acids
(Asn46Lys47Arg48) between lysine 45 and the KH (Lys49His50)-motif (Figure 22d). While
Lys47 can form H-bonds with the backbone of the 16S rRNA, Arg48 stabilises the secondary
structure of BrfA via H-bonds with the backbone oxygen of asparagine 52 and the hydroxyl
group of tyrosine 54. The KH-motif binds in a pocket formed by the 16S rRNA nucleotides
G505, A533, U534 and A535, as well as the backbone of C528 and G529. While Lys49 H-
bonds with the backbone of G529, His50 stacks on U534 and is in H-bond distance to the
backbone of G534. These residues and interactions are also conserved in ArfA (James et al.,
2016; Demo et al., 2017; Huter et al., 2017c; Ma et al., 2017; Zeng et al., 2017; Shimokawa-
Chiba et al., 2019). Until now only mutation of Lys49 (Lys44 in ArfA) to cysteine has been
investigated in an in vitro peptidyl-tRNA hydrolysis assay (Kurita et al., 2014a), but no effect
was detected, as aforementioned probably due to the long incubation time and thus

measurement of the endpoint of the reaction. In the follow-up study, which measured the
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hydrolysis rate, the KH-motif was not included (Ma et al., 2017). However, the conservation
implicates a defined role for the motif, which has not been elucidated yet.

Despite the high conservation of lysine 51 in BrfA only weak H-bonds with the surrounding
16S rRNA could be formed (Shimokawa-Chiba et al., 2019), hence its role is difficult to
predict. The following asparagine 52 is partly conserved among BrfA the Bacillus species,
however some have two additional amino acids between lysine 51 and asparagine 52, hence
the interactions with the mRNA entry channel may vary in this region. In our structure of
B. subtilis BrfA asparagine 52 can form an H-bond with O4 of U534, while proline 53 does not
interact with any element and provides the flexibility for tyrosine 54 to stack on
phenylalanine 33 of rProtein S5. Aspartic acid 55 may H-bond with arginine 47 of rProtein S4,
but BrfA is already quite flexible in this region. Further residues were not modelled due to the
high flexibility of the residues 56-62.

In summary, every resolved residue of the BrfA C-terminus (residue 39-55) contributes to
proper binding to the mRNA entry channel and presumably also to activation of RF2. To reveal
if residues display redundancies and fully decipher the discrete role for each residue further
biochemical data, like alanine scanning in combination with time-resolved in vitro peptidyl-
tRNA hydrolysis analysis, is necessary.

Our study also investigated the activity of the BrfA/RF2 and the frans-translation system with
ribosomes stalled by the B. subtilis MifM arrest sequence, which stalls specifically B. subtilis
ribosomes (Sohmen et al., 2015; Shimokawa-Chiba et al., 2019). Arrest sequences usually
serve the regulation of a downstream ORF and mediate stalling during their own translation by
interaction with the NPET (Figure 23a) (reviewed by Ito and Chiba (2013); Arenz et al. (2014);
Wilson et al. (2016)). In particular, arrest sequences interactions with the NPET occur from the
PTC till the constriction formed by the rProteins L4 and L22, which influences the activity of
the PTC probably via an allosteric relay (Figure 23a). As reported for ArfA/RF2, ArfB and
trans-translation with respect to E. coli ribosomes stalled by the E. coli SecM arrest sequence
(Garza-Sanchez et al., 2006; Chadani et al., 2012), the observed activity of BrfA/RF2 and
trans-translation of MifM-stalled ribosomes was not above spontaneous peptidyl-tRNA
hydrolysis (Shimokawa-Chiba et al., 2019). However, during stalling on arrest peptides the
mRNA entry channel is usually occupied and the mRNA would be quite long, since another
OREF follows downstream of the channel, both rendering arrest peptide stalled ribosomes a poor
target for ribosome rescue mechanisms (Ivanova et al., 2004; Shimizu, 2012; Kurita et al.,
2014a; Feaga et al., 2016; Zeng and Jin, 2016; Shimokawa-Chiba et al., 2019; Chan et al.,

accepted). By contrast, the inhibition of trans-translation regarding SecM-stalled ribosomes
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was mainly due to binding of proline-tRNAP™ to the ribosomal A-site, which prevented binding
of tmRNA-SmpB (Garza-Sanchez et al., 2006). In the absence of proline-tRNAP® frans-
translation was less inhibited by SecM stalling. Furthermore, mRNA cleavage in the A-site due
to prolonged stalling was inhibited by the presence of proline-tRNAP™. Nevertheless,
degradation of the mRNA would be possible until the nucleases encounter the entry of the
mRNA entry channel, which protects the mRNA from further cleavage (Sunohara et al., 2004a;
Garza-Sanchez et al.,, 2006). The remaining mRNA would extend approximately 12-15
nucleotides past the P-site and equal a mRNA overhang in which trans-translation can still act
(Ivanova et al., 2004). This explains the activity of trans-translation on SecM-stalled ribosomes
in the absence of proline-tRNAP™. The same principle could also apply to MifM arrest (Figure
23b), because stalling occurs on several sequential codons due to slow peptide bond formation
with a sense codon in the A-site (Chiba and Ito, 2012), which allows binding of the cognate
tRNA. Interestingly, biochemical experiments showed that introduction of a stop codon into
the MifM arrest sequence did not lead to termination (Chiba and Ito, 2012). This was also
observed for a further arrest peptide, called TnaC, which allowed peptide bond formation but
specifically inhibited termination (Gong and Yanofsky, 2002). Superimposition of the
structures of TnaC and MifM stalled ribosomes show a similar conformation for the 23S rRNA

nucleotide A2602 (Figure 23c) (Seidelt et al., 2009; Bischoff et al., 2014; Sohmen et al., 2015),

Figure 23: Ribosome stalling by the
A Marrest peptide MifM. (a) Ribosome
stalling can occur due to (1)

rearrangement of the nucleotides of
Sthe PTC, (2) proline residues in the
nascent polypeptide chain at the PTC
or (3) interactions of the arrest peptide
with the constriction formed by
rProteins L4 and L22. (4) The
constriction interactions are trans-
5 mitted through the ribosome or the
\\ ’ * Jinascent chain and silence the PTC. (b)

A \ The scheme illustrates the interactions
; ! N and PTC silencing by MifM. (c-e)
SiIndicate the conformation of A2602
(c) during termination by RF2 (RF2,
orange; A2602 grey; PDBID SMDV
(James et al., 2016)), or stalling by
MifM (teal, PDBID 3J9W (Sohmen et
al., 2015)), TnaC (deep teal, PDBID
4UY8 (Bischoff et al., 2014), (d)
SecM (cyan, PDBID 3JBU (Zhang et
al., 2015b; Feaga et al., 2016)), VemP
A (green cyan, PDBID SNWY (Su et al.,
82017)), (e) ErmBL (green, PDBID
5JUS8 (Arenz et al., 2016)) or ErmCL
(pale green, PDBID 3J7Z (Arenz et
al., 2014)). P-site tRNA (forest,
PDBID 3J9W) is shown for reference.
Figure a-b were adapted from Wilson
et al. (2016).
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which usually supports binding of the GGQ-motif in domain 3 of RFs to the PTC (Figure 23c)
(Korostelev et al., 2008; Laurberg et al., 2008; Weixlbaumer et al., 2008a; Korostelev et al.,
2010). However, during stalling the conformation of A2602 is restricted and the induced state
of the PTC upon RF binding is inhibited, hence accommodation of the GGQ-motif and
subsequent peptidyl-tRNA hydrolysis are inhibited as well (Seidelt et al., 2009; Bischoff et al.,
2014; Sohmen et al., 2015). This could indicate that after occasional BrfA/RF2 binding and
activation during MifM stalling, the adopted conformation A2602 may further inhibit
BrfA/RF2 action by preventing accommodation of the GGQ-motif to the PTC. Whether
specific inhibition of termination also occurs with E. coli SecM, ErmBL, Staphylococcus
aureus ErmCL or VemP from Vibrio alginolyticus is not known yet, but superimposition of
ribosome bound, open RF2 with the respective structure of the ribosome with SecM, ErmBL,
ErmCL or VemP bound in the NPET also indicates conformations of A2602 that are
incompatible with accommodation of the GGQ-motif (Figure 23d-¢) (Arenz et al., 2014; Zhang
etal., 2015b; Arenz et al., 2016; Su et al., 2017).

4.4 Conclusion and Outlook

The structural and biochemical data obtained over the last decades shed light into ribosome
rescue mechanisms in bacteria. Despite the apparent similarities between ArfA and BrfA
involving regulation of expression by #rans-translation, recruitment of RF2 and the KH-motif,
the very low sequence similarity indicates that the systems evolved independently
(Shimokawa-Chiba et al., 2019). This also holds true for Francisella tularensis ArfT, which is
only ~40 amino acids in total (Goralski et al., 2018; Shimokawa-Chiba et al., 2019). In this
regard further yet unidentified rescue mechanisms involving small proteins that can recruit and
activate RFs could exist in other bacterial species. Identification of those could be rather
difficult because the systems could possibly not be identified by sequence similarities and
needs genetic screening in frans-translation deleted background. The mechanisms discussed so
far also evolved independently from the eukaryotic ribosome-associated quality control (RQC)
(Burroughs and Aravind, 2019), which resolves non-stop complexes and prolonged stalling of
ribosomes (recently reviewed by (Joazeiro, 2019; Yan and Zaher, 2019). In brief, when a
ribosome stalls the following ribosome(s) collides into the arrested (Ieading) ribosome. Stalling
can occur for example on non-stop mRNAs or at inhibitory codon combinations, which adopt
aberrant mRNA conformations in the A-site that are incompatible with decoding and thus lead

to stalling (Tesina et al., 2020). The colliding ribosome is recognised and polyubiquitinylated
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at rProtein uS10 in yeast by Hel2 (ZNF598 in mammals). The action of Hel2 is enhanced
additionally by collision of three ribosomes (Matsuo et al., 2020). Ribosomes upstream of the
collision site are recognized and polyubiquitinylated by Not4 subunit of the Ccr4-Not complex
and Hel2 at rProtein uS7. The mRNA is cleaved by Cue2 between the leading and the colliding
ribosome and upstream of the collision site by further yet unidentified nucleases. In comparison
to the prokaryotic ribosome rescue systems the former leading ribosome is split into subunits
before release of the nascent polypeptide chain in an ubiquitinoylation and ATP-dependent
manner by Dom34, Hbs1 and Rlil (pelota, HBS1L or GTPBP2 and ABCE1 in mammals). This
leads to an SSU (40S) with mRNA and an LSU (60S) carrying the nascent polypeptide chain
associated with the previous P-site tRNA. Subsequently, the mRNA is degraded by Xrnl
(5’->3’ degradation) and the exosome complex (3’->5 degradation). Nucleolytic cleavage of
the mRNA by Xrnl can already take place before splitting (Tesina et al., 2019). Xrnl
degradation of the mRNA is also enhanced on ribosomes upstream the collision site by the
Ccrd-Not complex, which recognises vacant E-sites of stalled ribosomes, as well as the
polyadenylation carried out previously by the Not4 subunit (Buschauer et al., 2020).

The obstructed 60S subunit is sensed by Rqc2 (NEMF in mammals), which triggers the
assembly of the RQC complex, containing the E3-ubiquitin ligase Ltn1 and Rqc1 (Listerin and
TCF25 in mammals). The RQC complex adds C-terminal alanine and threonine residues, a so-
called CAT-tail, to the nascent polypeptide chain, while lysine residues emerging from the
NPET are ubiquitinylated by Ltnl. Interestingly, CAT-tails are added using aa-tRNAs in an
SSU and mRNA independent way, in which the ASL of the tRNA interacts with Rqc2. Finally,
the ubiquitinylated nascent polypeptide is recognised by Cdc48 (VCP in mammals) and the
CCA-end of the tRNA is cleaved by Vmsl (ANKZF1 in mammals), which releases the
polypeptide from the tRNA in alternative way. The polypeptide is then extracted from the 60S
subunit and stays associated with Cdc48, Ltnl and Rqc2 until it is degraded by the proteasome.
Whether the CCA-end of the tRNA is removed before degradation by further proteins or is
hydrolysed spontaneously by cytosolic water is not known yet. Interestingly, the last universal
common ancestor (LUCA) had an Rqc2 homologue as consequence Rqc2 homologues are
found in all domains of life (Burroughs and Aravind, 2019; Lytvynenko et al., 2019). Recently,
prokaryotic RQC was identified and described in B. subtilis (Lytvynenko et al., 2019). Similar
to the eukaryotic RQC pathway, the prokaryotic homologue of Rqc2, termed RqcH, binds to
the obstructed LSU and extends the nascent polypeptide chain with C-terminal alanine tails.
After extraction of the polypeptide chain the alanine tails are recognized and degraded by the

protease ClpXP. Double deletion of frans-translation and the rgcH gene was not synthetically
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lethal under normal growth condition, but growth was strongly inhibited upon heat or antibiotic
stress. The interplay between BrfA and RqcH is not investigated yet, but apparently BrfA was
not able to supress the growth defect upon stress. Vice versa RqcH was not able to overcome
the synthetic lethality upon double deletion of trans-translation and the b7f4 gene (Shimokawa-
Chiba et al., 2019). However, for the synthetic lethality screen the brf4 gene was replaced by
an antibiotic resistance gene, conferring resistance to erythromycin, and the use of the antibiotic
during the screen might have stressed the cells, so that it could be possible that actually deletion
of trans-translation, BrfA and RqcH is necessary to induce synthetic lethality in B. subtilis.
This is supported by the CRISPR interference data, which shows synthetic lethality upon cold
stress, but not at 37 °C, where only a strong growth defect was observed (Shimokawa-Chiba et
al., 2019). However, to further elucidate the interplay between the three mechanisms additional

experiments are needed.

Bacterial ribosome rescue mechanisms are a promising target for development of novel
antibiotics, especially the systems that have no homologue in eukaryotes (i.e. trans-translation,
ArfA, BrfA and ArfT). Since some bacteria possess more than one rescue system and all
systems need to be targeted to reach lethality (Feaga et al., 2014b; Keiler and Feaga, 2014;
Goralski et al., 2018; Lytvynenko et al., 2019; Shimokawa-Chiba et al., 2019), it would be
convenient to target several mechanisms with one antibiotic. An antibiotic binding and
blocking the mRNA entry channel would target trams-translation, ArfA, ArfB, BrfA and
probably ArfT, additionally mRNA binding to the channel during initiation could be inhibited.
In this regard, it has been shown that a synthetic peptide, which is equivalent to the C-terminal
tail of SmpB inhibits binding of tmRNA-SmpB to the A-site of the ribosome, as well as peptidyl
transfer to the TLD of tmRNA (Kurita et al., 2010). Since the peptide seems to bind to the
mRNA entry channel itself its antimicrobial activity could be investigated. Furthermore, trans-
translation is conserved in all today known bacterial genomes (Keiler and Feaga, 2014), thus it
might affect a broad range of bacteria. The same strategy could be applied with synthetic
peptides corresponding to the C-termini of ArfA, ArfB and BrfA. The brought distribution of
ArfB also renders its C-terminal tail an interesting candidate for such investigations (Burroughs
and Aravind, 2019). Furthermore, the KH-motif, which is conserved between ArfA and BrfA
and displays conserved interactions with the mRNA entry channel (James et al., 2016; Demo
et al., 2017; Huter et al., 2017¢c; Ma et al., 2017; Zeng et al., 2017; Shimokawa-Chiba et al.,
2019), could indicate a binding of the C-termini of both systems to ribosomes of different

species.
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Also, specific inhibition of trans-translation for species, in which trans-translation is essential
or in combination with other antimicrobial agents would be possible by the usage of an
antisense DNA oligonucleotide to the gene encoding tmRNA (ss74 gene). This approach was
already applied in vitro using an antisense oligonucleotide to the MLD of tmRNA, which
blocked the activity of trans-translation (Hanes and Pluckthun, 1997). Furthermore, peptide
aptamers were developed against trans-translation and ArfA of Aeromonas veronii and the
expression of an aptamer against one of the systems from a plasmid led to reduced growth (Liu
etal., 2016).

However, the challenge for usage of the approaches discussed above is their peptide or
nucleotide nature, since both are prone to degradation by proteases and nucleases, respectively.
As mentioned for PrAMPs, peptides corresponding to C-termini or aptamers could be stabilised
by non-proteinogenic amino acids, like ornithine, or R-amino acids (Knappe et al., 2011;
Berthold et al., 2013). DNA oligonucleotides are often stabilised by modification of the
deoxyribose-phosphate backbone, for example in peptide nucleic acids the backbone is
replaced by polyamide linkages (Karaki et al., 2019). Another challenge would be the uptake
of the antimicrobial agents by the bacterial cell. Since the SbmA transporter can mediate import
of peptides and peptide nucleic acids (Mattiuzzo et al., 2007; Ghosal et al., 2013), uptake of
synthetic peptides and peptide nucleic acids could be restricted Gram-negative bacteria, which
have a SbmA homologue (as seen for PrAMPs) (Graf et al., 2017; Graf and Wilson, 2019).
Development of novel antimicrobial agents targeting RqcH could be difficult because of the
homology to eukaryotic Rqc2 (Burroughs and Aravind, 2019; Lytvynenko et al., 2019). Non-
conserved interaction sites with the ribosome could be one possibility, however structural and
additional biochemical data will be necessary to identify such sites. Another option would be
inhibition of other steps of bacterial RQC, which also need to be characterized further to make

assumptions for targeting sites.
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Abstract

Alternative ribosome-rescue factor B (ArfB) rescues ribosomes stalled on non-stop mRNAs by
releasing the nascent polypeptide from the peptidyl-tRNA. By rapid kinetics we show that ArfB
selects ribosomes stalled on short truncated mRNAs, rather than on longer mRNAs mimicking
pausing on rare codon clusters. In combination with cryo-EM we dissect the multistep rescue
pathway of ArfB, which first binds to ribosomes very rapidly regardless of the mRNA length. The
selectivity for shorter mRNAs arises from the subsequent slow engagement step, as it requires longer
mMRNA to shift to enable ArfB binding. Engagement results in specific interactions of the ArfB C-
terminal domain with the mRNA entry channel, which activates peptidyl-tRNA hydrolysis by the N-
terminal domain. These data reveal how protein dynamics translate into specificity of substrate

recognition and provide insights into the action of a putative rescue factor in mitochondria.



34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

Introduction

Rescue of ribosomes stalled on non-stop mRNAs is essential for most bacterial species’, and for
mitochondrial translation in humans®>. The lack of a stop codon causes ribosomes to stall at the 3’
end of mRNAs, an event that is estimated to occur on 2-4% of translations in Escherichia coli*. The
rescue systems tmRNA-SmpB, ArfA, and ArfB release the truncated translation product, allowing the
ribosomes to be recycled for subsequent rounds of translation®. Among the rescue systems, only ArfB
is able to induce polypeptide release independent of canonical termination factors®’. ArfB is highly
conserved among bacteria and has conserved homologs in eukaryotes from yeast to humans®. The
eukaryotic homolog of ArfB, ICT1, is essential for cell viability and a candidate for non-stop ribosome
rescue during translation in mitochondria®?. Given the functional interchangeability and striking

structural similarities between ArfB and ICT1%*

, studies of ArfB in bacteria may provide insights into
how its homolog functions on the mitochondrial ribosome.

The cellular role of ArfB and the molecular mechanism of ArfB-mediated rescue are unclear.
Under normal conditions in E. coli, ArfB appears redundant with tmRNA-SmpB and ArfA°. While
tmRNA-SmpB and ArfA preferentially target ribosomes stalled on truncated mRNAs'**®, ArfB has

7,14
. If so,

been suggested to act on ribosomes stalled on mRNAs extending downstream past the P site
one potential function of ArfB could be to rescue ribosomes pausing on rare codon clusters’.
However, another study indicated that ArfB does not rescue ribosomes stalled on longer mRNAs®.
We note that the experimental conditions used in the two conflicting reports are similar in that they
measured peptidyl-tRNA hydrolysis in vitro after long incubation times’, which does not probe the
potential kinetic differences in ArfB activity.

The crystal structure of ArfB on the ribosome showed that ArfB consists of N- and C-terminal
domains connected by a linker™. The globular N-terminal domain contains the conserved GGQ motif
essential for catalysis of peptidyl-tRNA hydrolysis®’. Its C-terminal tail, rich in positive residues, forms

an a-helix in the mRNA entry channel that would be incompatible with mRNA extending significantly

past the P-site codon®. In solution, the linker region and at least parts of the C-terminal domain are

3
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disordered giving rise to various orientations relative to the N-terminal domain®®. Intrinsic disorder
has been increasingly considered an important factor in understanding the dynamics of molecular

recognition'®*®

. However, how the disordered regions of ArfB might contribute to recognition of its
cellular targets is not known.

A comprehensive mutagenesis study identified ArfB residues that are important for ribosome
binding and peptidyl-tRNA hydrolysis'®. Remarkably, most of these essential amino acids are not
located in the catalytic N-terminal domain, but in the C-terminal tail of ArfB. The crystal structure of
ribosome-bound ArfB suggested that the C-terminal domain may function as a sensor for stalled
ribosomes by inserting into the empty mRNA entry channel®, in apparent agreement with the
mutational data. However, a detailed comparison of the structural and mutational data revealed
dramatic discrepancies, as nearly all, except one, of the identified essential C-terminal ArfB residues
were not involved in ribosome interactions in the crystal structure'®*, raising a question as to why
these residues are crucial®®.

In this study, we use a combination of rapid kinetics techniques and cryo-electron microscopy to
dissect the kinetic and structural mechanism of ArfB action on the ribosome. The results provide
insights into the physiologically-relevant targets of ArfB, establish a mechanistic model of ArfB-

mediated ribosome rescue, and reveal the importance of ArfB dynamics in recognition of stalled

ribosome complexes.

Results

ArfB rescues ribosomes stalled on short truncated mRNAs

We first used kinetic experiments in a fully reconstituted in vitro system to study whether the activity
of ArfB depends on the length of the mRNA in the stalled ribosome complexes. We formed ribosome
complexes with mRNAs of different length, let ribosomes translate the first two codons, and then
stalled translation by omitting the aminoacyl-tRNA needed to decode the next codon. The resulting
complexes contained [*H]fMet-[**C]Phe-tRNA" in the P site, no tRNA in the A site and an mRNA of
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different lengths (0-99 nucleotides (nts)) extending past the P site, denoted as P+0 to P+99 (Fig. 1a).
We rapidly mixed these stalled ribosomes with a large excess of purified ArfB and followed the time
courses of peptidyl-tRNA hydrolysis by the quench-flow technique (Fig. 1b). When more than 9 nts of
the mRNA extended past the P-site codon, the rate of hydrolysis reaction decreases sharply, by about
15-fold (P+12) to 100-fold (P+99) (Fig. 1c), indicating that ArfB-mediated rescue is most efficient
when the mRNA is short.

In the post-termination complex, the C-terminal domain of ArfB occupies the mRNA entry
channel®, suggesting that mRNA extending past the P site inhibits ArfB-mediated ribosome rescue.
To test whether a long mRNA overhang affects the selectivity of ArfB binding, we measured the
steady-state parameters of the rescue pathway at conditions of ArfB turnover, i.e., at catalytic
concentrations of ArfB and excess of the ribosomes. We chose the P+9 construct (i.e., with 9 nts
extending past the P site), because this is the mRNA length for which we observe a significant, albeit
reduced, ArfB activity. The Michaelis-Menten dependence of initial velocities yields the kc/Ky values
of 0.04 uM™*s™* and 0.003 uM's™ for P+0 and P+9 complexes, respectively, indicating a 12-fold
catalytic preference for ribosomes stalled on a shorter mRNA (Fig. 1d). The rate of ArfB turnover is
quite low even for the P+0 complex, with k.= 0.01 s, RRF and EF-G, factors involved in post-
termination ribosome recycling'®, decrease ArfB residence time on the ribosome by up to 30%; RF3
had very little effect (Fig. 1e).

A ribosome with a long mRNA presents a sense codon in the A site, which is much more likely to
be read by a ternary complex EF-Tu—GTP—aminoacyl-tRNA, which is abundant in the cell, than recruit
ArfB, which is expressed in only 0.5 copies per E. coli cell, in comparison to over 25,000 copies of
RF1%. To study the effect of ternary complexes, we measured ArfB activity on ribosome complexes
with [*H]fMet-tRNA™®tin the P site in the presence of EF-Tu-GTP—[**C]Phe-tRNA®", which is cognate
for the second codon, using P+3 and P+33 mRNAs (Supplementary Fig. 1a). At high concentration,
ArfB is able to impede dipeptide formation on P+3, but not on P+33 mRNA (Supplementary Fig. 1b),

and, vice versa, ArfB-induced peptide release does not occur on P+33 complexes in the presence of



112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

cognate ternary complex (Supplementary Fig. 1c). ArfB can release fMet from P+33 only when
cognate ternary complexes are completely absent, e.g. in the presence of non-cognate ternary

complex alone (EF-Tu—GTP-Val-tRNA"?) (Supplemental Fig. 1d).

Structural mechanism of ribosome rescue by ArfB

In order to understand how longer mRNAs affect ArfB-mediated rescue, we determined the cryo-EM
structures of ArfB bound to P+0 and P+9 E. coli ribosome complexes (Fig. 2, Supplementary Fig. 2 and
Supplementary Table 1). To stabilize ArfB on the ribosome, we used the antimicrobial peptide

apidaecin-137 (Api137), which is known to trap canonical RFs on the ribosome®**

. Similarly to RFs,
Apil37 stalls ArfB after one round of peptide hydrolysis (Supplementary Fig. 2a). The cryo-EM
particle images were sorted in silico for ArfB occupancy and ribosome conformation yielding cryo-EM
maps for the major states of P+0 and P+9 complexes at 3.7 A and 2.6 A resolution, respectively
(Supplementary Fig. 2c-e). The two structures are virtually identical within the error of resolution and
depict ArfB bound to the ribosome in the post-hydrolysis state with Api137 and deacylated tRNA™ in
the P site (Fig. 2a). ArfB extends from the mRNA entry channel of the 30S subunit to the peptidyl
transferase center on the 50S subunit. The N-terminal domain is bound to the A-site of the 50S
subunit, whereas the C-terminal domain of ArfB folds into an a-helix that occupies the A-site and
MRNA entry channel on the 30S subunit. The absence of mRNA density past the P site codon in the
P+9 state suggests that ArfB has displaced the mRNA 3’ extension from the mRNA entry channel. The
mMRNA is intact under these conditions (Supplementary Fig. 2b), indicating that the A-site overhang
must have become disordered to allow accommodation of ArfB into the mRNA entry channel.

In the PTC, GIn28 in the universally conserved catalytic GGQ motif of ArfB retains a conformation
poised for peptidyl-tRNA hydrolysis, which is stabilized by interaction with Api137 (Supplementary
Fig. 2c). The structural details of stalling by Api137 are very similar for ArfB and the canonical RFs**?

(Supplementary Fig. 2c). In both cases, Api137 mimics a nascent peptide chain in the post-hydrolysis

state. Apil37’s C-terminal hydroxyl group interacts with the ribose hydroxyls at position A76 of the P-
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site tRNA, thereby stabilizing the tRNA in the PTC. The penultimate Arg17 of Api137 traps the GGQ
motif in an active conformation via the guanidinium group that interacts with the side chain carbonyl
group of GIn28.

The higher number of cryo-EM particles acquired for the P+9 complex allowed us to visualize
additional intermediates of ribosome rescue: (i) a 3.1 A map of the pre-hydrolysis complex prior to
ArfB binding, with fMetPhe-tRNA™™ in the P-site, no Api137, and a clear density for the 9-nucleotide
3’ extension of the mRNA occupying the mRNA entry channel; and (ii) a 3.2 A map of a minor fraction

"¢ in the

of ribosomes in a post-hydrolysis state with ArfB and Api137 bound and deacylated tRNA
hybrid P/E state (Supplementary Fig. 2f). Because the post-hydrolysis state is structurally very similar
with P+0 and P+9 mRNAs, in the following we generally refer to the 2.6 A cryo-EM structure of the

P+9 complex as the major P/P post-hydrolysis state.

Essential ArfB-ribosome interactions

The present 2.6 A cryo-EM map shows how ArfB interacts with the ribosome in the post-hydrolysis
complex. The density for ArfB, in particular in the C-terminal domain, is significantly better in the
cryo-EM structure than in the previous crystal structure®®, which allowed us to improve model
accuracy, including register shifts in the N- and C-terminal domains (Supplementary Fig. 3a). In
agreement with mutational data, the cryo-EM-based model shows that the essential residues Arg105,
Argl18, Leul119, Lys122, Lys129, and Arg132 form intricate side chain contacts with the ribosomal
RNA (rRNA), whereas most non-essential side chains that are not involved in any interactions are less
well-resolved (Fig. 3a and Supplementary Fig. 3b). The essential positively charged amino acids
interact via their guanidinium and g-amino groups with negatively charged groups of 16S rRNA (and
23S rRNA for Arg105), whereas the hydrophobic Leu119 stacks with its isobutyl group onto the
guanine of G530. Moreover, the key functional residues, Lys129 and Arg132, also show the most
intricate interactions. For instance, the side chain of Arg132 alone forms 6 non-covalent interactions;

mutating Arg132 even to a Lys completely abolishes catalysis, whereas the binding to the ribosome is
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reduced by 2-fold only™. Notably, the network of ArfB—16S rRNA interactions that we observe in the
major P/P post-hydrolysis state appears to be very stable and persists upon 30S subunit rotation, as
evident from the comparison with the minor P/E post-hydrolysis state (Fig. 3b).

To further understand the nature of the ArfB-ribosome interactions and probe them not only in
the post-hydrolysis state revealed by the cryo-EM, but also in the pre-hydrolysis state, we studied the
effect of monovalent (KCl) and divalent (MgCl,) ions on ArfB binding to P+0 and P+9 complexes (Fig.
3c,d). To capture the factor in the pre-hydrolysis state, we used ArfBgaq(Flu), a hydrolysis-deficient
ArfB mutant (Gly27 to Ala), with a fluorescein attached at position 96 (Supplementary Fig. 4a-c).
Binding to the ribosome is monitored as an increase of the fluorescein anisotropy. The binding is salt-
sensitive, indicating that electrostatic interactions play an important role (Fig. 3d). However, at ionic
strength within the physiological range® the binding of ArfB is not perturbed, as the inhibitory
concentration ICso for the P+0 complex is ~260 mM for KCl and ~40 mM for MgCl,. Thus, ArfB binding
is not mediated by unspecific electrostatic interactions, but rather by strong side chain-specific
interactions such as those we observe in the cryo-EM structure. For the P+9 complex, the tendency is
similar, but the ICs, value for Mg?* is somewhat lower (~30 mM) than for the P+0 complex, indicating
a difference in binding stabilities (Fig. 3d). We also measured the effect of Mg”* on peptidyl-tRNA
hydrolysis (Fig. 3e). At high ArfB concentrations, hydrolysis is not affected by Mg** demonstrating
that Mg?* ions do not affect the chemistry step itself. Taken together, our cryo-EM data and binding
measurements, as well as the published mutagenesis data’®, strongly suggest that the essential C-
terminal residues of ArfB play a major role in specifically stabilizing the catalytically active state of the

ArfB-ribosome complex.

Kinetics of ArfB initial binding followed by engagement
Because ArfB attains very similar conformations on P+0 and on P+9 post-hydrolysis complexes, we
sought to identify a potential mRNA discrimination step prior to hydrolysis. First, we monitored ArfB

binding to the ribosome by fluorescence resonance energy transfer (FRET) using a donor-acceptor
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pair with a fluorescein-labeled tRNA in the P site and a fluorescence quencher-labeled ArfB
(ArfB(540Q)) (Fig. 4a); the respective ribosome complexes are denoted P+0(Flu), P+9(Flu), and
P+30(Flu). The activity of the labeled components is not affected by fluorescence labeling
(Supplementary Fig. 4d). The experiments were carried out at 20°C, because at 37°C the binding was
too fast to measure by the stopped-flow technique.

Binding of ArfB(540Q) to P+0(Flu) (Supplementary Fig. 4e), P+9(Flu) (Fig. 4b) or P+30(Flu) results
in fluorescence quenching due to proximity of the quencher to the fluorophore. To determine the
association and dissociation rate constants, we measured the kinetics of binding at increasing
concentrations of ArfB(540Q) in excess over a constant concentration of labeled ribosome complexes.
Exponential fitting of the resulting time courses yields three distinct apparent rate constants,
indicative of three binding phases (Fig. 4c and Supplementary Fig. 4e,f). With P+0, P+9, or P+30
complexes, the predominant phase contributing up to 80% of the observed FRET change is very rapid;
the two slower phases together contribute about 20% of the FRET change (Fig. 4c, Supplementary Fig.
4e,f and Supplementary Table 2). In a simplest model, if the rapid phase reports on the association of
ArfB to the ribosome, and the slower phases represent subsequent rearrangement steps, the
concentration dependence of the apparent rate constants is expected to be linear for the rapid
phase and hyperbolic for the slower phases. Surprisingly, this turned out not to be the case; rather,
all three apparent rate constants increased linearly with concentration (Fig. 4c and Supplementary
Fig. 4f), indicating that all phases reflect binding, albeit apparently for different ArfB populations. We
then estimated the rate constants of binding (koy) and dissociation (kore) for the predominant rapid
phase, which represent the values for the majority of ArfB molecules (Fig. 4c). The binding is very
rapid with koy of ~500 uM*s™ for P+0 and ~300 uMs™ for P+9 and P+30. The initial binding complex
is labile, with ko of ~110 s, ~140 s, and ~120 s* for P+0, P+9, and P+30, respectively, which shows
that the initial binding is independent of the mRNA length. The high values of the koy and koge
independent of the mRNA length suggest a scanning step where ArfB rapidly binds to and can

dissociate from ribosomes regardless of whether the mRNA entry channel is occupied or not.
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To understand the nature of the rapid association step, we tested the effect of Mg**
concentrations (Supplementary Fig. 4g). We have chosen Mg?* rather than monovalent cations,
because Mg”* disrupts rapid unspecific binding of IF3 to the ribosome?*; binding of ArfB to the
ribosome may be driven by similar interactions. However, ArfB association with the ribosome is not
affected by high ion concentrations (Supplementary Fig. 4h), which suggests that the initial binding is
not driven by electrostatic interactions.

Given that the initial binding is insensitive to the mRNA length, a subsequent step must account
for the observed inhibition of peptidyl-tRNA hydrolysis with the long mRNAs (Fig. 1c). In a simplest
model, the rate of the chemistry step itself may depend on the mRNA length, i.e. due to
misalignment in the transition state. At saturating concentrations of ArfB, the rate of hydrolysis is
~0.15 s on P+0 complexes, and 0.06 s on P+9 complexes (Fig. 4d,e and Supplementary Fig. 4i). If
the measured rate reflected the chemistry step, it is expected to be pH-dependent, as previous
experiments on the kinetics of peptidyl-tRNA hydrolysis by RF1 and RF2 revealed a strong pH

dependence of the reaction®?®

. However, for the ArfB-catalyzed reaction, the hydrolysis rate is
identical at pH 6.8, 7.4 and 8.0 for both P+0 and P+9 complexes (Supplementary Fig. 4j). This strongly
suggests that hydrolysis is rate-limited by a step after initial binding, but preceding the chemistry
step. The rate of this additional step, which we call an engagement step, depends on the mRNA
length (Fig. 4e), whereas the subsequent chemistry step itself must be faster than engagement.

To measure the stability of ArfB binding to stalled ribosomes prior to peptidyl-tRNA hydrolysis
we used ArfBgaq and a FRET pair described above (Fig. 4f and Supplementary Fig. 4b). We formed
complexes of ArfBgaq(540Q) with P+0(Flu), P+9(Flu), or P+30(Flu), and then rapidly mixed them with a
10-fold excess of unlabeled P+0 complexes. Fluorescence increase over time reports on the
dissociation of ArfBsaq(540Q) from the ribosome (Fig. 4f). Exponential fitting of the time courses
(Methods) required a minimum of two dissociation steps, a slow one with a rate constant of 0.04 s

(P+0), 0.07 s (P+9) or 0.1 s™* (P+30) and a faster one of about 0.4 s, i.e. the dissociation rates are

similar for the three complexes (Supplementary Table 3). The difference is in the fraction of the slow
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vs. fast steps, with about 80% of P+0 compared to 50%-40% of P+9 and P+30 complexes dissociating
slowly, as indicated by the proportion of the fluorescence change amplitude for each step. The slowly
dissociating population likely represents the complexes captured by cryo-EM; hence the similar
conformation of P+0 and P+9. The population of complexes that dissociate more rapidly may
represent either a step before the full engagement of ArfB, i.e. when not all interactions of ArfB with
the ribosome are formed, or a heterogeneity within the ribosome complexes, with a larger
proportion of rapidly dissociating complexes when the mRNA is long. As we cannot distinguish
between these two possibilities, we report average dissociation rate constants of 0.06 s, 0.23 s,
and 0.33 s for P+0, P+9, and P+30, respectively, which is a characteristic of the ensemble as a whole.
In summary, our rapid kinetics analysis identifies an engagement step prior to peptidyl-tRNA
hydrolysis that results in a selective stabilization and more rapid rescue reaction for those complexes

that have a short truncated mRNA.

Discussion

Our rapid kinetics analysis shows that ribosomes stalled on short truncated mRNAs are the
physiologically relevant substrate for ArfB-dependent rescue. The residual ArfB activity is
substantially reduced when the mRNA exceeds the P-site codon by more than 6 nts. When the mRNA
is long, ArfB is unable to compete with cognate ternary complexes and can rescue the ribosomes only
if a cognate ternary complex is absent. This is, however, not a realistic scenario in vivo, because in
bacteria the codon frequency correlates with aa-tRNA abundance, i.e. some aa-tRNA are rare but not
missing. Even if aa-tRNA pools are exhausted, e.g. by starvation, the concentrations of rare tRNAs
isoacceptors are less responsive to starvation conditions than those of abundant tRNAs®’. Thus, at
cellular concentrations, ArfB activity is too low to interfere with on-going translation of long mRNAs.
We therefore conclude that a role for ArfB in rescuing ribosomes that pause at a rare codon cluster is

unlikely; rather, ArfB acts on complexes containing an mRNA truncated just past the P site.

11



267 In the context of ribosome rescue in E. coli, the specific role of ArfB remains unclear, as ArfB has
268  the same preference for ribosomes stalled on short mRNAs as tmRNA-SmpB and ArfA™ ™. As

269 suggested earlier, ArfB may be simply not as crucial in E. coli as in other species that lack one or both
270  of the other rescue systems’. Notably, its human homolog ICT1 is the only rescue factor that is found
271 in eukaryotic mitochondria®. The exact function of ICT1 is unclear, because it is also found as an

272 integral protein of the large ribosomal subunit, mL62?%%°. The activity of ICT1 as a peptidyl-tRNA

273 hydrolase is essential for cell viability**, and some studies have proposed that ICT1 catalyzes

274 termination on mitochondrial transcripts with non-canonical stop codons AGA and AGG>**".

275  Assuming that ArfB and ICT1 have a similar preference for mRNA with short overhangs, a role for
276  termination seems unlikely, as the mRNAs in question extend 14 nucleotides past the A site****, a
277 length at which ArfB activity is drastically reduced. On the other hand, mitochondrial mRNAs are
278 polyadenylated, with polyadenylation playing transcript-dependent roles in regulating protein

34,35

279 synthesis™ . The sensitivity to mRNA length could create interesting opportunities for regulation of
280  translation and mRNA stability in mitochondria by ICT1.

281 Our biochemical and structural data reveal the mechanism of ArfB-mediated ribosome-rescue. In
282 combination with the reported solution structures of free ArfB, we propose a structural model

283 explaining the rapid mRNA-independent initial binding and subsequent mRNA-dependent

284  engagement step of ArfB. Structures of free ArfB'® and of its human ortholog ICT1° determined by
285 NMR indicate that in solution the linker and C-terminal domains of the two factors are largely

286  disordered, whereas the structures of their catalytic N-terminal domains are similar to that in the
287 ribosome-bound state and only the catalytic GGQ motif itself is disordered. The structure of the

288 linker determines the relative orientation of the N- and C-terminal domains, indicating that in

289 solution the molecule is highly dynamic due to the linker flexibility. To understand how this

290 heterogeneous ensemble of conformers binds to the ribosome, in particular with an mRNA

291 occupying the entry channel, we docked the structures of the NMR ensemble of free ArfB onto the

292 P+9 complex using the N-terminal domain for orientation (Fig. 5a). The resulting model provides a
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simple explanation for the kinetic data (Fig. 5b). If an ArfB molecule initially docks onto the ribosome
through the contact between the ArfB N-terminal domain and the 50S subunit, the interdomain
linker would be flexible enough to accommodate the C-terminal domain into the intersubunit space.
The positively charged C-terminal tail may form unspecific interactions with the negatively charged
ribosomal RNA backbone at this stage. Most importantly, such initial docking does not require the
mMRNA to move out of the entry channel, explaining why the rapid initial binding of ArfB is
independent of the mRNA length. The theoretical encounter frequency®® for ArfB and the ribosome is
~9 x 10° M*s™?, whereas the koy for the major fraction of ArfB molecules is 5 x 10 uM™ s™%. This
difference may suggest that for a fraction of ArfB molecules (~10%) arriving in an optimal orientation,
the reaction is diffusion controlled, whereas the majority of molecules require several attempts
before docking, which slows down the effective association. The remaining small fraction of ArfB
molecules that bind even slower (Supplementary Fig. 4f) may arise from those ArfB conformations
where the C-terminal domain clashes with the ribosome and is too slow to rearrange. At this step, no
catalytic activation takes place in agreement with the disordered GGQ motif in the NMR structures.
In the subsequent engagement step, docking of the C-terminal tail into the mRNA channel
requires movement of the A-site mRNA extension out of the channel, consistent with the notion that
the engagement is substantially slower for a longer mRNA. However the rate of engagement is also
low with the P+0 mRNA, which may be due to the slow ordering and accommodation of the ArfB C-
terminal domain into the mRNA channel. The favorable enthalpic contribution of forming specific
interactions with the ribosome may be offset by the entropic cost of folding of the C-terminal domain.
In contrast to the initial binding, the engagement step is salt sensitive, suggesting an important role
of electrostatic interactions. The pliability of the flexible linker region would allow the basic C-
terminal domain to fit into the intersubunit space, possibly guided by electrostatic steering by the
acidic phosphate backbone of the ribosome. ArfB C-terminal domain forms a network of hydrogen
bonds and stacking interactions with key residues in the decoding center of the ribosome. Many of

these interactions are electrostatic in nature and very stable at physiological salt concentrations.
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Once ArfB has been fully accommodated into the mRNA channel, catalysis is rapid, in agreement with
the similar structures for the P+0 and P+9 post-hydrolysis states. Previous work has shown that the
N-terminal domain on its own cannot hydrolyze peptidyl-tRNA™. This is consistent with the key role
of the ArfB interdomain linker in activating its hydrolytic activity; how exactly the folding and binding
of the C-terminal domain activates peptidyl-tRNA hydrolysis more than 40 A away remains unknown.

Our kinetic and structural data explain why ArfB is more active when the mRNA extension is
short. The steady-state kinetic data indicate that the specificity of ArfB binding (k../Kwm) is decreased
by >10-fold when the mRNA extension post the P-site codon exceeds 9 nucleotides. The lower
catalytic activity of ArfB is due to the slower engagement step and to a smaller fraction of molecules
that are stabilized in the catalytically active conformation. Overall, ArfB follows the same strategy to
select for the rescue substrates as ArfA—RF23"*!: they activate peptide release only after the mRNA-
sensing domain is accommodated in the mRNA channel on the 30S subunit.

After peptidyl-tRNA hydrolysis and peptide release, the ArfB—ribosome complex adopts a
rotated conformation with tRNA in a hybrid state. The flexible linker domain of ArfB allows both ArfB
domains to retain their interactions with the 50S and 30S subunits. This may explain why turnover of
ArfB is slow compared to other factors interacting with the ribosome: while rotation of the ribosomal
subunits destabilizes RF1 and RF2 binding to the ribosome®, ArfB retains its tight interactions in the
non-rotated and rotated state. The k..; value of 0.01 s is much lower than the single-round
hydrolysis rate of 0.15 s™ for the P+0 complex, suggesting that for short truncated mRNAs the overall
ArfB cycle is limited by ArfB dissociation. The tight interactions that persist after peptide hydrolysis
likely contribute to the slow dissociation rate, which may encompass the rates for unbinding as well
as unfolding of the ArfB C-terminal domain. With the longer mRNA constructs, where the rate of
hydrolysis is low, engagement of ArfB might become the rate-limiting step. The presence of recycling
factors RRF and EF-G may accelerate turnover by precluding ArfB from unproductively binding to
post-termination ribosomes. Whether additional factors are required to disengage the tight binding

of ArfB to the ribosome after peptide release is unclear at present.
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In conclusion, our studies show how protein dynamics contributes to molecular recognition and
discrimination in a large ribonucleoprotein complex. The disordered linker region of ArfB helps the
factor to rapidly dock and scan the state of the mRNA on the ribosome, and to select the right
substrate. The linker also guides the C-terminal domain into its confined binding pocket in the mRNA
entry channel and helps the factor to adjust to different ribosome conformations. Binding of the C-
terminal domain is stabilized by specific electrostatic interactions that define the shape of ArfB in the
complex and ultimately lead to catalytic activation of the GGQ motif in the N-terminal domain. Thus,
flexibility allows ArfB to bind rapidly and non-specifically to its target first, followed by ordering of
the C-terminal domain and formation of tight specific interactions, as has been suggested for

dynamic, intrinsically disordered proteins™®*.
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Methods

Reconstitution of stalled ribosome complexes
All experiments were carried out in HKM; buffer (50 mM HEPES pH 7.4, 30 mM KCI, 7 mM MgCl,)
unless otherwise stated. 70S ribosomes from E. coli MRE60O, IF1, IF2, IF3, EF-Tu, EF-G, RRF, f[’H]Met-
tRNA™®, [**C]Phe-tRNA™, and [*C]Phe-tRNA"(Flu) were prepared using published protocols***.
[*C]Phe-tRNAP"®(Flu) is labeled with fluorescein at thioU8. Truncated mRNAs of varying length were
in vitro transcribed using T7 RNA-polymerase from a T7 promoter on a DNA template derived from
the E. coli lepB gene with the second codon mutated to encode phenylalanine, then purified over a
HiTrap Q HP column.

Stalled ribosome complexes were prepared by translating the first two codons on truncated

mRNAs using published protocols*’*®

. Briefly, 70S ribosomes were mixed with 1.5-fold excess of
initiation factors, 3-fold excess of f[3H]Met-tRNAf'\"et, and 3-fold excess of mMRNA in HAKM; buffer
(HKM; buffer supplemented with 70 mM NH,4CI) containing 1 mM dithiothreitol (DTT) and 1 mM GTP,
and incubated for 45 min at 37°C. Initiation efficiency, determined by nitrocellulose filtration and
scintillation counting using QuantaSmart (Perkin Elmer), was >90% for all mRNAs. Ternary complexes
were formed with 3-fold excess of [MC]Phe-tRNAPhe or [14C]Phe-tRNAphe(FIu) over ribosomes and 1.5
UM EF-G, and a 2-fold excess of EF-Tu incubated with 1 mM GTP, 3 mM phosphoenolpyruvate (PEP),
and 0.5 mg mL™ pyruvate kinase in HAKM, buffer for 15 min at 37° C. To form P+0 complexes,
initiation complexes (IC) were mixed with ternary complex for 2 min at room temperature to
translate the second codon. To form P+n complexes (n =3, 6,9, 12, 15, 24, 30, 99), the ribosomes
were supplied with the same ternary complex so that the ribosome is stalled with the second codon
of the mRNA in the P site. The resulting complexes were purified by ultracentrifugation over a
cushion of 1.1 M sucrose in HAKM,, buffer (HAKM; buffer containing 20 mM MgCl,). The pellets were

resuspended in HKM; buffer and quantified by liquid-liquid scintillation counting, then flash frozen

and stored at -80°C. Dipeptide formation under these conditions was at least 80%.
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ArfB purification

The sequence of the yaeJ gene encoding ArfB was cloned from E. coli K12 strain into a vector carrying
an N terminal 6xHis tag followed by a SUMO tag. Overexpression and cell lysis were carried out using
a published protocol™. Tagged ArfB was isolated from the cell lysate by incubation with Ni-IDA beads
in buffer A (40 mM HEPES pH 7, 300 mM KCl, 7 mM MgCl,, and 10 mM B-mercaptoethanol) for 1 h at
4°C. Following elution with buffer A supplemented with 600 mM imidazole, fractions containing ArfB
were dialyzed into buffer A overnight at 4°C in the presence of Ulp1 protease to cleave the SUMO tag.
Untagged ArfB was further purified via cation-exchange chromatography over a HiTrap HP SP column.
ArfB concentration was determined by comparing SDS-PAGE band intensities to a standard curve
generated by known amounts of IF3 that was run on the same gel. For fluorescence-labeled ArfB,
amino acid residues at positions 96 and 112 were changed to cysteine, and labeled with a thiol-
reactive fluorescein or ATTO540Q, using established protocols*. Free dye was removed using a PD
MidiTrap G-25 column (GE Healthcare). Labeling efficiency, estimated by absorbance measurements

of the dye and SDS-PAGE based estimation of protein concentration, was approximately 60%.

Hydrolysis assays

Single-round peptidyl-tRNA hydrolysis were monitored by rapidly mixing P+0 complexes and ArfB in a
quenched-flow apparatus at 37°C. Released peptides were quantified using a published protocol **:
at each time point, the reaction was stopped by adding a quenching solution of chilled 10%
trichloroacetic acid (TCA) and 50% ethanol. The samples were kept on ice for 30 min, then the
precipitated ribosomes and peptidyl-tRNA were spun down for 15 min at 16,000 x g at 4°C. The
released peptides in the supernatant were quantified by liquid-liquid scintillation counting. Time
courses were evaluated by exponential fitting in GraphPad Prism using one or two exponential terms,
depending on the ArfB concentration used. For high ArfB concentrations, one exponential fitting was
sufficient. At low ArfB compared to the ribosome concentration (Fig. 4d), the first reaction round was

successful only on a fraction of ribosomes and the completion of the reaction required multiple
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rounds of ArfB binding, which results in two-exponential behavior; of the two apparent rate
constants, the faster represents the single-round rate constant.

Multiple turnover peptidyl-tRNA hydrolysis was measured at 37°C by incubating ArfB with at
least 10-fold excess of stalled ribosome complex. At each time point, an aliquot of the mixture was
guenched as described above. Initial velocity of the reaction was calculated as the slope of the linear
fit of the time course, after subtracting background peptide drop-off, as measured in a parallel
reaction without ArfB. Michaelis-Menten constants ke, Km and ke../Ky were calculated from the
hyperbolic fit of initial velocity plotted against substrate concentration. To assess the effect of
translation factors on ArfB turnover, the HKM; buffer was supplemented with 3 mM PEP, 1 mM GTP,
and 1 mg mL™ pyruvate kinase. Initial velocities of the hydrolysis reaction were measured in the

presence of RF3, RRF, and EF-G.

ArfB activity assay in the presence of elongation factors

To observe the interplay between ArfB and ongoing translation, initiation complexes termed P+3 and
P+33 were prepared as described above, albeit without the addition of ternary complex. ArfB (0.3

1M or 2 uM) was mixed with IC (0.5 uM) and ternary complex (0.25 pM EF-Tu, 1 pM [**C]Phe-tRNA™™,
1 mg mL" pyruvate kinase, 3 mM PEP, and 1 mM GTP) and incubated at 37°C for 120 s. Each reaction
was run twice, with one sample quenched with 0.1x sample volume 5M potassium hydroxide (KOH)
then hydrolyzed for 30 min at 37°C, and subsequently used to quantify the amount of dipeptides
formed. The other sample was quenched with 500 uL 10% TCA and 50% ethanol, and processed to
quantify the amount of [*H]fMet released.

Dipeptides were quantified using a published protocol *

. Briefly, the samples quenched with
KOH were neutralized with acetic acid and analyzed by reversed phase HPLC (Chromolith RP8 100-4.6
mm column, Merck), over a 0-65% acetonitrile gradient in 0.1% TFA. Fractions were analyzed by

scintillation counting, with the fractions containing both *H and **C counts identified as dipeptide-

containing fractions.
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Hydrolysis in the presence of non-cognate ternary complex was measured at 37°C. Non-cognate
ternary complex (TC) was formed for 15 min at 37°C with 10 uM EF-Tu, 5 pM Val-tRNAY®, 0.5 mg mL™
pyruvate kinase, 1.5 mM PEP, and 0.5 mM GTP (all concentrations reflect final concentrations in the
experiment). TC was mixed with an equal volume of purified P+3 or P+33 in the presence of 0.1 uM
ArfB and 2 uM ArfB, respectively. To assess the effect of translocation on hydrolysis, 2 UM EF-G was
also added to a set of samples. Aliquots were taken at time points up to 5 minutes, then processed to

quantify the released peptides.

Pre-steady state binding assays
All stopped flow experiments were performed at 20°C, with an excitation wavelength of 465 nm and
a KV500 cutoff filter (Schott), and using an SX-20MV stopped flow machine (Applied Photophysics).
Fluorescence data was collected using Pro-Data SX (Applied Photophysics). For the binding reaction,
equal volumes of ArfB(540Q) labeled at position 96 and P+0(Flu) complex were rapidly mixed to a
final concentration of 0.05 uM, 0.1 uM, 0.2 uM, 0.3 uM, 0.4 uM, and 0.5 uM ArfB, and 0.015 uM
P+0(Flu) complex. Fluorescence quenching was recorded over time. For the pre-hydrolysis
dissociation reaction, 0.2 uM ArfBgaq(540Q) was incubated with 0.03 uM P+0(Flu) for 1 min at room
temperature to form the complex, then rapidly mixed with an equal volume of 2 uM unlabeled P+0
complex. Recovery of fluorescence following dissociation of the quencher-labeled ArfB was recorded
over time. The resulting time courses were fit with exponential equations using GraphPad Prism.
Average dissociation rate constants were calculated by summation of the product of the apparent
rate and the amplitude of each exponent. All fluorescence traces were then normalized by the
highest level of fluorescence as extrapolated by the fit.

While the rates are clearly different for the P+0 and P+9 or P+30 complexes, we note that for
technical reasons the dissociation rate constants were measured at 20°C, whereas the single- and
multiple-turnover hydrolysis rates are measured at physiological temperature. Thus, the measured

dissociation rates provide a lower limit to the values expected in vivo. Also the precise value for the
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chemistry step is not known, as it is rate-limited by the preceding engagement step. These
uncertainties prevent us from calculating the selectivity of ArfB from the elemental rate constants, as

we previously have done for tRNA selection®.

Equilibrium binding assays

All binding experiments were carried out at 20°C. To assess the effect of salt concentration on ArfB
binding, ArfB[Flu]-96C was allowed to bind to P+0 complexes in HK5oM; buffer (HKM; buffer with 50
mM KCI). Then, KCl was titrated into the sample, and the anisotropy value at each KCl concentration
was recorded. A titration of the unbound protein was performed in parallel and the anisotropy
values of about 0.2 subtracted; to account for light scattering, polarized light intensities of P+0
complexes at each KCl concentration were also subtracted. The resulting curve was fit with a
log(inhibitor) dose-response (variable slope) equation. Anisotropy was recorded using the
FluorEssence software (Horiba).

The integrity of the ribosome-bound mRNA following ArfB binding was assayed using ribosome-
nascent chain complexes labeled at the 3’ end of mMRNA with fluorescein (provided by Bee-Zen Peng,
MPlbpc). We expect that if the mRNA were cleaved in the presence of ArfB, the anisotropy of the
free 3 mRNA fragment must be significantly lower than that of the ribosome-bound mRNA. The

Phe

complexes had a model dipeptide (fMetPhe-tRNA™) and 36 nucleotides of mMRNA extending past the
P site. Anisotropy of the attached dye was measured before and after incubation of 0.1 uM ArfB with

0.01 uM ribosomal complex.

Cryo-EM analysis

For cryo-EM of ArfB-bound P+0 complexes, P+0 complexes (purified as described above) were diluted
to 0.24 uM with HKM;+DDM-Buffer [SO mM Hepes pH 7.4, 30 mM KCl, 7 mM MgCl,, 0.1 % w/v
Dodecyl-B-D-maltosid (DDM)]; ArfB was diluted to 3 uM using the same buffer. 2 pL of ribosome

complex were supplemented with 0.4 puL ArfB and 0.33 pL Api137 (0.6 mM in 50 mM Hepes pH 7.2,
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485 100 mM potassium acetate, 25 mM magnesium acetate; synthesized by NovoPro Biosciences Inc.)
486  and filled up to 4 pL with HKM,+DDM-Buffer leading to final concentrations of 0.12 uM of P+0

487  complex, 0.30 uM ArfB (2.5-fold excess) and 50 uM Apil37. 3 ul of the sample were applied to glow
488  discharged Quantifoil R3/3 holey carbon supported copper grids covered with continuous carbon film.
489 Grids were blotted for 2-3 s and vitrified using the Vitrobot Mark IV (ThermoFisher Eindhoven). Data
490  collection was performed in movie mode - 10 frames at a dose of 2.5 electrons per A per frame -
491  with a Falcon Il direct electron detector (ThermoFisher Eindhoven) on a Titan Krios electron

492 microscope (ThermoFisher Eindhoven) at 300 kV, a pixel size of 1.084 A and a defocus range from 1.1
493  to 2.3 um using the semi-automated software EM-TOOLS (TVIPS GmbH).

494 For cryo-EM of ArfB-bound P+9 complexes, traces of sucrose were removed from P+9 complexes
495 (purified as described above) using Zeba Spin Desalting Columns (7K MWCO, ThermoFisher). The

496  complexes (0.4 uM) were then incubated with ArfB (1.5 uM) and Api137 (50 uM) for 10 min at 37°C
497 in buffer B (50 mM HEPES, 30 mM KCl, 7 mM MgCl,, pH 7.4). Cryo-EM grids were prepared by

498  applying 5 ul of the resulting complexes onto EM grids (Quantifoil 3.5/1 um, Jena) covered with pre-
499  floated continuous carbon, manually blotted with filter paper (Whatman #1) and vitrified using a

500 custom-made plunge-freezing device operated at 4 °C and 95% humidity. 4096 x 4096 image movie
501 stacks - 40 frames per image, ~50 + 5 electrons per A” total electron dose, 0.2 to 2.5 pm defocus -
502  were acquired in integration mode on a Falcon 3 direct detector (ThermoFisher Eindhoven) at 300kV
503 acceleration voltage with a Titan Krios G1 microscope (ThermoFisher Eindhoven) equipped with a
504  XFEG electron source (ThermoFisher Eindhoven) and a spherical aberration (Cs)-corrector (CEOS

505 Heidelberg) using the software EPU 2.1 (ThermoFisher Eindhoven) for acquisition and CETCORPLUS
506  4.6.9 (CEOS Heidelberg) for tuning of the Cs-corrector.

507 Data processing of images of P+0 and P+9 complexes was performed using a similar strategy for
508 both data sets as described in the following. Image movie stacks were motion corrected using the
509 software MCOR2®!, CTF parameters were estimated using GCTF* and ribosome particle images were

510 selected using GAUTOMATCH (K. Zhang, MRC-LMB, Cambridge). All subsequent cryo-EM image
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processing was performed using RELION 2.1°% and 3.0°*. The two data sets represented mixtures of
different ribosome populations and were therefore sorted computationally in a hierarchical manner
(Supplementary Fig. 2d). First, ribosome particle images were sorted according to data quality by 2D
classification and 3D classification at 3.252 A per pixel (P+0) and 4.64 A per pixel (P+9; step 1 and 2).
All following steps were performed at the final pixel sizes of 1.07 A (P+0) and 1.16 A (P+9). The P+0
data were subsequently classified according to ArfB occupancy by focused classification with signal
subtraction (step 3) and by global classification according to ribosome conformation (step 4). The
latter step resulted in three populations corresponding to different states of ribosome conformation:
i) the non-ratcheted ground state, ii) an intermediate state of rotation and iii) a fully rotated
ratcheted state. Due to the low particle numbers for the two rotated states, only particles of the
major ground state were further processed. These particles were sorted again for presence of ArfB
resulting in a homogenous particle population of ArfB-bound P+0 ribosome complexes (step 5) that
was refined to a final resolution of about 3.7 A (Supplementary Fig. 2e). For the P+9 data per-particle-
motion correction was performed by RELION’s Bayesian polishing approach in step 6 and the
resulting particles were sorted by 3D classification according to global ribosome conformation (step
7). The resulting two populations — one with ribosome particles in the ground state (non-rotated) and
the other one with particles showing inter-subunit rotation (rotated) — were each further classified
by focused classification with signal subtraction according to tRNA occupancy (for non-ratcheted
population only, step 8) and/or ArfB occupancy (step 9). The three resulting homogenous ribosome
particle populations were refined to high-resolution according to the gold-standard procedure and
overall resolutions were determined using high-resolution noise substitution (Supplementary Fig. 2e).
For visualization and atomic model refinement all final maps were amplitude sharpened globally
using PHENIX 1.16°. The two best-resolved cryo-EM maps — the P+9 post-hydrolysis state at 2.6 A
and the P+9 stalled complex at 3.1 A — were resampled to a finer pixel size of 0.6525 A for improved
visualization and interpretation. We first created an atomic model for the highest-resolved 2.6 A

cryo-EM map. An initial model was built by rigid body fitting in ChimeraX 0.91°° based on the
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following structures: PDB SAFI®’ for the E. coli 70S ribosome, PDB 4RB7°% for tRNA™"™, PDB 502R*! for
Api137 and PDB 4V95" for ArfB. Parts of ArfB had to be re-built manually in WinCoot>® 0.8.9.2 to fit
our high-resolution density due to register shifts with respect to the reported model from the 3.2 A
crystal structure of E. coli ArfB bound to the Thermus thermophilus ribosome (PDB 4V95); register
shifts — by one amino acid - occurred in the N-terminal domain (lle2 to His7, Thr33 to Ser46) and all
residues of the C-terminal domain starting from Arg112. Metal coordination and secondary structure
restraints were prepared using initial models with phenix.ready_set. Additional structural restraints
were generated from hydrogen bond search in ChimeraX. Real space refinement was performed
using phenix.real_space_refine with global minimization, simulated annealing, atomic displacement
parameters and local grid search for 300 iterations limit and 5 macrocycles. Atomic model
refinement of the remaining states (P+0 post-hydrolysis state, P+9 stalled complex and P+9 hybrid
state) was based on the model of the P+9 post-hydrolysis state and performed in an analogous way.
As an additional validation step we also refined the scrambled atomic models against one of the half
maps and calculated FSCs of the resulting model against the second half map. To remove possible
model bias, atomic models from the full-map refinement were scrambled by applying random shifts
of 0.25 A to all atomic positions beforehand. Modeling statistics are described in Table 1, FSC curves

are depicted in Supplementary Fig. 2e.

DATA AVAILABILITY

Cryo-EM maps/associated coordinates of atomic models have been deposited in the Electron
Microscopy Data Bank/Protein Data Bank with the following accession codes: PDB 6YSR
[https://doi.org/10.2210/pdb6YSR/pdb] and EMD-10905
[https://www.ebi.ac.uk/pdbe/entry/emdb/EMD-10905] (P+9 stalled complex), PDB 6YSS
[https://doi.org/10.2210/pdb6YSS/pdb] and EMD-10906
[https://www.ebi.ac.uk/pdbe/entry/emdb/EMD-10906] (P+9 post-hydrolysis), EMD-10907PDB 6YST
[https://doi.org/10.2210/pdb6YST/pdb] and EMD-10907
[https://www.ebi.ac.uk/pdbe/entry/emdb/EMD-10907] (P+9 tRNA hybrid state), PDB 6YSU
[https://doi.org/10.2210/pdb6YSU/pdb] and EMD-10908
[https://www.ebi.ac.uk/pdbe/entry/emdb/EMD-10908] (P+0 post-hydrolysis). Cryo-EM micrographs
and particle images have been deposited in the EMPIAR database
(https://www.ebi.ac.uk/pdbe/emdb/empiar/) with accession code EMPIAR-10443. The data
supporting the findings of this study are available within the paper and its supplementary
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Figure legends

Fig. 1 | ArfB preferentially rescues ribosomes stalled on short mRNA. a, Experimental assay for
ArfB-mediated ribosome rescue. Ribosome complexes with mRNAs of different length are rapidly
mixed with ArfB and the fraction of peptides released from tRNA by ArfB-dependent hydrolysis is
qguantified. PTC, peptidyl transferase center; DC, decoding center; NTD, N-terminal domain; CTD, C-
terminal domain. Free ArfB is shown as ensemble of dynamic molecules', the ribosome-bound ArfB
is shown as in the X-ray structure®. b, Time courses of single-round peptidyl-tRNA hydrolysis at
excess ArfB (1 uM) over ribosome complexes (0.15 uM). The mRNA length is indicated in number of
nucleotides (nt) extending beyond the P site, from none (P+0) to 99 nt (P+99). Data represented as
mean values of two biological replicates.. Solid lines are exponential fits. ¢, Rate of hydrolysis at
increasing mRNA length. Error bars indicate the SEM of the exponential fits (b). d, Peptidyl-tRNA
hydrolysis on P+0 and P+9 complexes at limiting ArfB concentrations. Initial velocity of the hydrolysis
reaction is measured after mixing ArfB (0.02 uM) with increasing concentrations of P+0 or P+9
complexes. Solid lines are results of hyperbolic fitting. Error bars represent the SEM of three
biological replicates. e, Effect of ribosome recycling factors on the duration of an ArfB catalytic cycle
on P+0 complexes (0.2 uM) mixed with catalytic amounts of ArfB (0.02 uM) and excess of RF3 (0.5
UM), RRF (0.5 uM) and EF-G (0.5 uM). All experiments were carried out at 37°C.

Fig. 2 | Structural intermediates of ribosome rescue by ArfB as visualized by cryo-EM. For cryo-EM
analysis, ArfB was stalled on the ribosome using the antibiotic Api137. a, Major states of ArfB-bound
P+0 and P+9 complexes exhibit a striking structural similarity. Close-ups: Superposition of P+0 (lighter
colors) and P+9 (darker colors) structures in the PTC (top) and the DC region (bottom). b, Stalled P+9
complex with dipeptidyl-tRNA prior to ArfB binding. c, Post-hydrolysis P+9 complex with P/E hybrid
tRNA. Note the lack of density for mRNA in the mRNA entry channel in the ArfB-bound P+9 states
indicating a highly flexible 3’ extension of mRNA versus the well-defined 3’ extension in the vacant

P+9 complex.

Fig. 3 | Specific interactions with the ribosome stabilize ArfB in the active state. a, ArfB residues
known to be essential for ribosome rescue'® form a network of interactions with the ribosome as
seen in the P+9 cryo-EM structure. Panels 1, 2, 3 depict distinct regions in ArfB indicated in the
schematic (left). b, Subunit rotation changes the position, but not the interactions of ArfB on the

ribosome in the P+9 hybrid state cryo-EM structure. ¢, Experimental assay to measure the affinity of
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ArfB binding to stalled ribosomes using the anisotropy change of fluorescein-labeled ArfBgaq
(ArfBgaq(Flu)). d, Role of electrostatic interactions in ArfB binding to the ribosome. P+0 or P+9
complexes (0.15 uM) with ArfB(Flu) (0.05 uM) at different KCI (left) or MgCl, (right) concentrations.
ICsp is ~260 mM for KCl and ~40 mM for MgCl, (P+0) or ~30 mM for MgCl, (P+9). The range of
physiological ion concentrations is highlighted in gray (180 - 200 mM for K* and 2 - 3 mM for Mg*"; ref.
2%). Error bars indicate the SEM of three biological replicates, and the solid line are dose-response fits.
e, Effect of Mg®* concentration on ArfB activity. P+0 and P+9 (0.1 pM) were incubated with ArfB

(1 uM) for 5 min at 20°C. Error bars indicate the SEM of three biological replicates.

Fig. 4 | A dynamic model of ArfB recruitment. a, Experimental assay to monitor binding of ArfB to
the ribosome in real time. P+n ribosome complexes containing fluorescein-labeled fMetPhe-tRNA™
(P+n(Flu)) are mixed with quencher-labeled ArfB (ArfB(540Q)) and fluorescein quenching is
monitored in real time in a stopped-flow apparatus. b, Time courses of ArfB binding with fixed
concentration of P+9(Flu) (0.015 uM) and increasing concentrations of ArfB(540Q) (0.05-0.5 uM)
(20°C). Lines indicate three-exponential fits. c, Kinetics of initial binding of ArfB(540Q) to P+0(Flu),
P+9(Flu), and P+30(Flu) complexes. Plotted is the concentration dependence of the apparent rate
constant (k,pp1) for the predominant association phase in panel b. Data represents the mean values of
two biological replicates with up to six technical replicates each. The association (kon) and
dissociation (kors) rate constants are determined by linear fitting of the concentration dependence.
Errors of koy and kogr values are SEM of the fit. d, Kinetics of peptidyl-tRNA hydrolysis. Time courses
of hydrolysis with P+0 ribosome complex (0.15 uM) and ArfB (0.2-2 uM) (37°C). Data represented as
mean values of two biological replicates. e, Comparison of peptidyl-tRNA hydrolysis rates on P+0 and
P+9 complexes. Values are obtained by exponential fitting of the rapid phase of the hydrolysis time
courses (d and Supplementary Fig. 4f). Error bars represent the SEM of the fit. f, Dissociation of ArfB
from P+0, P+9, and P+30 complexes. The release of ArfBgaq(540Q) (0.1 uM) from the pre-hydrolysis
complexes P+0(Flu), P+9(Flu), and P+30(Flu) (0.015 uM) was initiated by rapid mixing with unlabeled
P+0 complexes (1 uM) (20°C).

Fig. 5 | Mechanism of ribosome rescue by ArfB based on rapid kinetics and cryo-EM data. a, Model
for initial binding of ArfB, based on the NMR ensemble of free ArfB'® and cryo-EM structures of the
P+9 ribosome-ArfB complex. 1, 2, 3 illustrate the key steps of the mechanism. b, Mechanism of ArfB
action. 1, When the ribosome stalls on a truncated mRNA, ArfB can rapidly bind regardless of the
mMRNA length. Subsequent conformational rearrangement allow the factor to probe the mRNA entry

channel; if there is mRNA extending past the P site, the mRNA must first move out of the mRNA entry
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channel 2, a process that occurs more slowly with longer mRNAs. The binding and folding of the ArfB
C-terminal domain results in the engagement of ArfB on the 30S subunit 3, which allows the rapid
hydrolysis reaction to occur via the GGQ motif in the PTC, followed by peptide release, ribosome

rotation and movement of the tRNA into the hybrid state, and ArfB dissociation.
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Supplementary Figure 1 | Cognate ternary complexes (TC), but not non-cognate TC, compete with
ArfB for binding to the ribosome. a, Experimental assay to measure competition between ternary
complexes and ArfB on ribosome complexes with P+3 or P+33 mRNAs and [*H]fMet-tRNA in the P site
(IC). TC activity is monitored by dipeptide formation (f[2H]Met-[**C]Phe), ArfB activity by f[*H]Met
release from f[3H]Met-tRNA™et b, ¢, Dipeptide formation (b) and ArfB-induced fMet release (c) on P+3
and P+33 initiation complex (IC, 0.5 pM) mixed with cognate EF-Tu—GTP—[**C]Phe-tRNA"" (0.25 uM),
and ArfB (0.3 or 2 uM). Data are presented as mean values from two biological replicates (white
circles). d, ArfB-induced fMet-tRNA hydrolysis on P+3 and P+33 IC (0.5 uM) in the presence of ArfB
(0.1 uM and 2 pM, respectively), non-cognate EF-Tu—GTP-Val-tRNA"? (5 uM) and EF-G (2 uM).
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Supplementary Figure 2 | Cryo-EM analysis of Apil37-stalled ribosome—ArfB complexes. a, Apil37
traps ArfB on stalled ribosomes after one round of hydrolysis. Left: Single-round peptidyl-tRNA
hydrolysis of P+0 complexes (0.1 uM) by ArfB (1 uM) in the presence or absence of Apil37 (1 uM).
Right: Multiple-turnover peptidyl-tRNA hydrolysis on P+0 complexes (0.2 uM) by ArfB (0.02 uM) in the
presence or absence of Apil37 (1 uM). Error bars represent the SEM of three biological replicates. b,
mRNA remains intact after incubation with ArfB. Fluorescence anisotropy of fluorescein attached at
the 3’ end of ribosome-bound P+36 mRNA is shown before and after addition of ArfB (0.1 uM) to P+36
ribosome complex (0.01 uM). Error bars represent the SEM of three biological replicates (white

circles). ¢, Apil37 stalls ArfB and canonical release factors on the ribosome by a similar structural



mechanism. Left: Cryo-EM density of the PTC in the major P+9 post-hydrolysis state, rendered at 3.50.
Right: Corresponding interaction network of Api37 and the ribosome with ArfB vs. the network
reported for RF1%. d, Sorting of P+0 complexes (left) and P+9 complexes (right) and the mask used for
3D classification for ArfB occupancy (lower right, transparent blue). See Methods for further details.

e, Fourier-shell-correlation (FSC) curves of P+0 complexes (left) and P+9 complexes.
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Supplementary Figure 3 | Quality of the ArfB models. a, Improved atomic model of the ribosome-
ArfB complex from the present high-resolution 2.6 A cryo-EM map. Left: Present cryo-EM density and
model of ArfB in the P+9 post-hydrolysis complex, density rendered at 3.5¢0. Middle: X-ray based
density (2mFo-DF.) and corresponding model of ArfB in the 3.2 A crystal structure of a post-hydrolysis
complex?, density rendered at 1. Right: Superposition of the cryo-EM and X-ray based models reveals
register shift between the models. Box: Close-ups of register shifts between the models for backbone
regions as indicated by labels 1, 2 in the superposition; Ca atoms are rendered as spheres with residue
numbers. The register shift in the CTD starting at Argl12 affects all subsequent residues and their
interactions with the ribosome. b, Cryo-EM densities for functionally important ArfB residues. Note
the well-defined density for ArfB residues forming important interactions vs. the undefined densities
(arrow-heads) for non-essential residues (underlined), which are not involved in tight interactions, in
accordance with the functional data®. Panels 1, 2, 3 depict distinct regions in ArfB indicated in the

schematic (left).
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Supplementary Figure 4 | Detailed characterization of ArfB initial binding and engagement steps. a,
ArfBgaq is catalytically inactive at 20°C. ArfB, ArfBgaq (1 M) or buffer were mixed with P+0 complex
(0.1 uM) and time courses of peptidyl-tRNA hydrolysis were measured. b, Time courses of initial
binding are similar for ArfBsaqand the catalytically active wild-type ArfB (compare to e). ArfBsaq(540Q)
(0.05-0.5 uM) was rapidly mixed with P+0(Flu) complexes (0.015 puM). ¢, Linear concentration
dependence of the apparent rate constants for the binding of ArfBgaq to P+0. Data are represented as
mean values of two independent experiments with six technical replicates each. d, Labeled
components used in binding experiments have the same activity in the peptidyl-tRNA hydrolysis

reaction as unlabeled wild-type ArfB. Time courses of peptidyl-tRNA hydrolysis with the wt ArfB or



ArfB(540Q) labeled at position 96 (1 uM) on P+0 (0.15 uM), and of wt ArfB on P+0(Flu) complexes
(37°C). Solid lines represent single-exponential fits. e, Time courses of ArfB binding to P+0. P+0(Flu)
(0.015 uM) was rapidly mixed with ArfB(540Q) (0.05-0.5 uM). Solid lines indicate exponential fits with
three exponential terms. f, Linear concentration dependence of the apparent rate constants for the
intermediate and slow phases of ArfB binding to P+0, P+9, and P+30 complexes. g, Rapid initial binding
of ArfB to the ribosome at increasing Mg?* concentrations. ArfB(540Q) (0.2 pM) was rapidly mixed
with P+0(Flu), P+9(Flu), or P+30(Flu) (0.015 pM) at 7 mM, 20 mM, or 30 mM MgCl,. h, Effect of Mg?*
on the apparent rate constant of the rapid association phase. Data represented as mean values of two
independent experiments with six technical replicates each. i, Kinetics of peptidyl-tRNA hydrolysis on
P+9 complexes. Time courses of hydrolysis with P+9 ribosome complex (0.15 uM) and ArfB (0.3-2 uM)
(37°C). Data are represented as mean values of two independent experiments. j, ArfB-mediated
peptidyl-tRNA hydrolysis is pH-independent. Time courses were measured at pH = 7.4, 6.8, or 8.4 with
P+0 (left panel) and P+9 (right panel) complexes. ArfB (1 uM) was rapidly mixed with stalled ribosomes
(0.15 uM) at 37°C.



Supplementary Table 1. Cryo-EM structure determination.

Ribosomal
complex

Ribosomal state

P+0
70S-tRNA-ArfB+Api137
P+0 post-hydrolysis

P+9
70S-tRNA-ArfB-Api137
P+9 post-hydrolysis

P+9 70S<Phe-fMet-tRNA

P+9 stalled complex

P+9
70S-tRNA-ArfB-Api137
P+9 tRNA hybrid state

Database entries

EMDB ID 10908 10906 10905 10907
PDB ID 6YSU 6YSS 6YSR 6YST
Data collection

Microscope Titan Krios Titan Krios Titan Krios Titan Krios
Camera Falcon Il Falcon Il Falcon Ill Falcon Il
Magpnification 59.000 59.000 59.000 59.000
Voltage (kV) 300 300 300 300
(Ee'?/‘gg?” dose 25 50 50 50
8;“8"”5 range 1.2-2.3 0.2-25 0225 0225
Pixel size (A) 1.072 1.16 1.16 1.16
Cryo-EM reconstruction

Final resolution 3.7 2.6 3.1 3.2
Final particles (no.) 60.692 282.252 25.347 23.340
S;r'r’]‘;q%fr’;p c c1 c1 c1
FSC-threshold 0.143 0.143 0.143 0.143
Resolution (A) 3.7 2.6 3.1 3.2

Resolution metric

gold standard FSC

gold standard FSC

gold standard FSC

gold standard FSC

Atomic model refinement

Final resolution (A)

Cumulative RSCC
(%) >0.8/>0.6/>0.4

Initial models used

Molprobity score

Clashscore

3.7
84.80%/96.49%/98.79%

5afi (708)
4v95 (ArfB)
502R (Api137)
4RB7 (P-tRNA)
2.41
20.23

No. Atoms/No. Residues/RSCC

Total

Protein

Nucleic

ArfB

B-factors

Protein

Nucleotide
Ligands, lons
R.m.s. deviations
Bond lengths (A)
Bond angles (°)
Ramachandran plot
Favored (%)
Allowed (%)

Disallowed (%)

146404/10675/0.85
46328/6030/0.84
99717/4645/0.87
1078/140/0.75

77.38
81.47
54.69

0.007
0.758

87.72
12.10
0.19

26
87.47%195.28%/97.23%

5afi (708)
4v95 (ArfB)
502R (Api137)
4RB7 (P-tRNA)
2.05
10.58

147051/10751/0.86
46921/6105/0.86
99739/4646/0.87
1078/140/0.88

36.20
36.82
23.40

0.007
0.685

91.50
8.08
0.42

3.1

80.50%/94.66%/97.31%
5afi (70S)
4RB7 (P-RNA)

2.15
12.11

145963/10607/0.83
45722/5954/0.82
99903/4653/0.85

63.65
64.24
43.02

0.006
0.737

89.74
9.88
0.38

3.2
67.52%/93.74%1/97.93%

5afi (708)
4v95 (ArfB)
502R (Api137)
4RB7 (P-tRNA)
2.45
20.46

146850/10748/0.81
46921/6105/0.78
99672/4643/0.83
1078/140/0.84

96.08
93.91
60.77

0.007
0.847

86.10
13.49
0.42

*For model refinement, maps at <3.1A resolution were resampled to 512x512x512 pixels, corresponding to a pixel size of 0.6525A



Supplementary Table 2. Summary of rate constants.

P+0 P+9 P+30
Hydrolysis rate, s* 0.15+0.01 0.06+0.01 0.004 + 0.001
Fast kon, uM*s? 470+ 70 280 + 30 320 +40
Fast korr, s* 110+ 20 140+ 10 120+ 10
Medium kon, pM™*s? 94 +4 84 +20 80+13
Medium kore, s 7.0+1.2 0.8+6 25+3.2
Slow kon, pM*s™ 0.7+0.1 0.06+0.01 1.8+0.5
Slow korr, s 0.4+0.1 0.3+0.1 n.s.
Kaiss avg, S 0.06 +0.01 0.23+0.01 0.33+0.01
Km, pM 0.25+0.09 n.d.
Keat, s 0.010 +0.001 n.d.

The hydrolysis rate is obtained by exponential fitting of single-round hydrolysis time courses (Fig.
4d,e). The kon and korr values were calculated from the slope and Y-axis intercept, respectively, of the
linear concentration dependence of the apparent rate constant of the rapid initial binding phase (Fig.
4c). kaiss_avg IS @ Weighted average dissociation rate constant of the ArfB-ribosome complex estimated
from the time courses of Fig. 4f. Ky is the substrate concentration at which the reaction velocity
reaches half-maximum and is calculated by hyperbolic fitting of the Michaelis-Menten titration (Fig.
5A). keat is calculated by dividing the maximum reaction velocity with the ArfB concentration in the
reaction.



Supplementary Table 3. Apparent rate constants of ArfB dissociation.

Kapp', s Aq Kapp2, s A,
P+0 0.41+0.01 0.21+0.02 0.04£0.01 0.79+£0.02
P+9 0.41+0.01 0.47 £0.01 0.07£0.01 0.53+0.01
P+30 0.47 +£0.01 0.61+0.01 0.10+0.01 0.39+0.01

Apparent rate constants were obtained from the exponential fit of representative dissociation
experiments with at least 6 technical replicates averaged. Values are averages with SEM of the fit.
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Release factor-dependent ribosome rescue by BrfA
in the Gram-positive bacterium Bacillus subtilis

Naomi Shimokawa-Chiba'3, Claudia Miiller?3, Keigo Fujiwara® ', Bertrand Beckert?, Koreaki Ito® ?,

Daniel N. Wilson® 2* & Shinobu Chiba® ™

Rescue of the ribosomes from dead-end translation complexes, such as those on truncated
(non-stop) mMRNA, is essential for the cell. Whereas bacteria use trans-translation for ribo-
some rescue, some Gram-negative species possess alternative and release factor (RF)-
dependent rescue factors, which enable an RF to catalyze stop-codon-independent poly-
peptide release. We now discover that the Gram-positive Bacillus subtilis has an evolutionarily
distinct ribosome rescue factor named BrfA. Genetic analysis shows that B. subtilis requires
the function of either trans-translation or BrfA for growth, even in the absence of proteotoxic
stresses. Biochemical and cryo-electron microscopy (cryo-EM) characterization demon-
strates that BrfA binds to non-stop stalled ribosomes, recruits homologous RF2, but not RF1,
and induces its transition into an open active conformation. Although BrfA is distinct from
E. coli ArfA, they use convergent strategies in terms of mode of action and expression
regulation, indicating that many bacteria may have evolved as yet unidentified ribosome
rescue systems.
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aithful translation requires accurate initiation, elongation,

and termination. In translation termination, the stop codon

situated in the A-site of the ribosome recruits a release factor
(RF), which then hydrolyzes the peptidyl-tRNA ester bond to
release the polypeptide product from the ribosome. In bacteria,
RF1 recognizes UAA and UAG while RF2 recognizes UAA and
UGA through their PxT and SPF codon recognition motifs,
respectively!. These RFs contain the hydrolysis active site motif,
GGQ, for catalysis. Polypeptide release is then followed by dis-
sociation of the ribosome from mRNA into the small and large
subunits by a process mediated by ribosome recycling factor and
elongation factor G2.

However, the termination/recycling event can be perturbed
when mRNA has aberrant features, one of which is the absence of
an in-frame stop codon. The mRNA lacking a stop codon, called
a non-stop mRNA, causes stalling of the ribosome at the 3" end
because recruitment of RFs to the ribosome requires the inter-
action of a stop codon recognition motif of the RF with a cognate
stop codon. Since the role of termination is not only to define the
end of the protein but also to recycle the ribosome for the next
round of translation initiation, a failure in termination lowers the
cellular capacity of protein synthesis, unless dealt with by the
cellular quality control mechanisms. Indeed, a loss of function in
the quality control machinery leads to an accumulation of dead-
end translation products, which was estimated to represent
~2-4% of the translation products in Escherichia coli?, and results
in lethality®°.

Living organisms have evolved mechanisms that resolve non-
productive translation complexes produced by ribosome stalling
on non-stop mRNAs. Such quality control is also called ribosome
rescue. In eukaryotic cells, like yeast, the Dom34/Hbs1 complex,
together with Rlil, mediates ribosome rescue on truncated
mRNAs*%7, In bacteria, two distinct mechanisms operate in the
resolution of non-stop nascent chain-ribosome complexes, trans-
translation and stop-codon-independent peptide release from the
ribosome®>89. The latter mechanism can further be classified
into two classes, RF-dependent and RF-independent. The crucial
player in trans-translation is the transfer-messenger RNA
(tmRNA), which is encoded by ssrA. tmRNA cooperates with
SmpB, which mediates ribosomal accommodation of tmRNA at
the ribosomal A-site!®!1, The tmRNA is composed of tRNA- and
mRNA-like domains. The former can be charged with alanine,
which then accepts the non-stop peptide and is elongated further
according to the mRNA-like coding function of tmRNA until the
built-in stop codon is reached. The result is the formation of the
non-stop polypeptide bearing an extra ssrA-encoded sequence (15
amino acids in B. subtilis) and dissociation of the ribosome from
the non-stop mRNA. The SsrA tag sequence promotes proteolytic
elimination of the non-stop polypeptide via targeting to cellular
proteases. Trans-translation is essential for the growth of some
bacteria>!2, The essentiality lies in the liberation of the ribosome
from the non-stop mRNA, but not in proteolytic degradation of
the translation products!®!4, Bacterial species that can survive
without trans-translation often possess one or more alternative
ribosome rescue factor(s), such as ArfA, ArfB, or ArfT, which are
involved in stop-codon-independent cleavage of the non-stop
peptidyl-tRNA°.

ArfA was identified in E. coli by a genetic screening for a
mutation showing synthetic lethality with the loss of ssrA1>. ArfA
is an RF-dependent ribosome rescue factor, which recruits RF2,
but not RF1, to the non-stop stalled ribosome complexes to
induce hydrolysis of the dead-end peptidyl-tRNA!®. Interestingly,
ArfA itself is produced from a non-stop mRNA, such that it is
strongly down-regulated by trans-translation in wild-type cells
and only induced significantly upon dysfunction of trans-trans-
lation. Thus, it has been suggested that tmRNA-SmpB is the

primary rescue factor, and the ArfA-RF2 system serves as a back-
up system!7-18, ArfB (Yae]), identified as a multicopy suppressor
of the ssrA/arfA double mutant!®20, contains its own GGQ cat-
alytic motif, enabling it to act as an RF-independent ribosome
rescue factor?!. Although the physiological role of ArfB in E. coli
is unknown, its homologs are widely distributed among both
Gram-positive and -negative bacteria>2%22 as well as eukaryotic
mitochondria?3. ArfT in Francisella tularensis, a member of y-
proteobacteria that lacks both ArfA and ArfB homologs?4, is
essential in the absence of tmRNA. Like ArfA, ArfT is an RF-
dependent ribosome rescue factor, although ArfT can function
with either RF1 or RF2. Phylogenetic distribution of ArfA is
limited to a subset of - and y-proteobacteria whereas that of
ArfT is limited to a subset of y-proteobacteria. To date, RF-
dependent ribosome rescue factors have only been reported in
Gram-negative bacteria.

Bacillus subtilis, a Gram-positive bacterium, can also survive
without ssrA2%, but no alternative factor for ribosome rescue has
been reported in this organism, raising the question of whether
the ribosome rescue function is non-essential or alternative fac-
tors have escaped identification in B. subtilis. In this study, we
have addressed this question and identified BrfA (Bacillus ribo-
some rescue factor A; formerly YqkK) as a ribosome rescue factor.
BrfA has no obvious sequence similarity to other Arf proteins.
We show that BrfA is an RF2-dependent ribosome rescue factor,
which induces hydrolysis of peptidyl-tRNA in non-stop transla-
tion complexes. BrfA is produced naturally from a non-stop
mRNA and is thus negatively regulated by trans-translation,
revealing a conceptually similar regulatory crosstalk as docu-
mented for E. coli ArfA. Lastly, using single-particle cryo-electron
microscopy (cryo-EM), we reveal how BrfA recognizes the pre-
sence of truncated mRNAs and recruits and stabilizes an open
conformation of RF2 to rescue the stalled ribosomes. BrfA uses a
mechanism that is similar but distinct from ArfA. Collectively,
our findings lead us to suggest that Gram-positive and -negative
bacteria have independently acquired their own unique RF-
dependent ribosome rescue systems equipped with a convergent
scheme of regulation.

Results

BrfA and trans-translation exhibit synthetic lethality. The
dispensability of trans-translation in B. subtilis raises the possi-
bility that it contains an alternative ribosome rescue factor. With
the reasoning that the loss of such a factor would make the
bacterial growth dependent on trans-translation proficiency, we
searched for the chromosomal gene knockouts that cause syn-
thetic lethality with the deficiency of trans-translation. We used a
strain with chromosomal deletion of smpB, which encodes the
trans-translation co-factor but having a plasmid carrying the
wild-type smpB as well as lacZ genes (Fig. 1a). This rescue plas-
mid was a derivative of pLOSS*?¢ driven by a temperature sen-
sitive (Ts) replicon, such that it is lost frequently at high
temperature. We prepared chromosomal DNA from a mixture of
the BKE library strains, a collection of mutants individually dis-
rupted for the 3968 non-essential B. subtilis genes by replace-
ments with the erythromycin resistance marker (ery)?’, and used
it to transform (by homologous recombination) the strain for the
screening described above. Transformant mixtures were then
incubated at 50 °C to destabilize the rescue plasmid and plated on
selective agar containing X-Gal (see Methods). Whereas clones
that did not depend on SmpB had segregated out the plasmid and
formed white colonies, those requiring SmpB survived only when
they had retained the plasmid and formed blue colonies due to
the plasmid-encoded B-galactosidase (Fig. la). Among ~74,000
transformants, we picked up 42 blue colonies and determined the
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Fig. 1 Simultaneous loss of BrfA and trans-translation leads to synthetic growth defects. a A schematic representation of the synthetic lethal screening to
identify genes whose absence causes synthetic lethal phenotype with the deficiency of trans-translation. b Xylose-inducible CRISPRi was targeted to ssrA
(lines 1-3, 7-9) or smpB (lines 4-6, 10-12) in the B. subtilis strains indicated at the left by the genotypes of the brfA gene (AbrfA/brfA™ signifies the
presence of brfA™ in an ectopic locus). Cultures prepared in the absence of xylose were serially diluted (from 10~2 to 10~5) and spotted onto LB agar plates
with or without 1% xylose, as indicated at the top, for incubation at 30 °C (upper) or 37 °C (lower) for 17 h.

chromosomal locations of the ery inserts by DNA sequencing,
followed by elimination of false-positive clones by retransfor-
mation experiments. These procedures left clones with an ery
disruption of ygkK (renamed brfA, see below), which makes
SmpB indispensable for survival.

We validated the growth requirement features of B. subtilis for
BrfA and the trans-translation system by an independent
approach. We used CRISPR interference (CRISPRi)?® to
conditionally silence either ssrA or smpB (Fig. 1b). To do this,

the catalytically inactive and xylose-inducible variant of Cas9
(dCas9) was integrated into the chromosomal lacA locus of the
wild type (WT) and the AbrfA strains. In addition, the
constitutively expressed small guide RNA (sgRNA) that targets
either ssrA or smpB was integrated into the amyE locus of the
same strains. The bacterial strains grew normally when dCas9 was
uninduced in the absence of xylose (Fig. 1b, left panels). Growth
of the brfAT (WT) cells was not affected by 1% xylose, which
induced dCas9 to silence ssrA or smpB (lanes 1, 4, 7, and 10, right

NATURE COMMUNICATIONS | (2019)10:5397 | https://doi.org/10.1038/541467-019-13408-7 | www.nature.com/naturecommunications 3


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

panels). By contrast, growth of the AbrfA strain was severely
impaired in the presence of xylose, which led to CRISPRi-
mediated repression of ssrA or smpB (lanes 2, 5, 8, and 11, right
panels). Expression of brfA from an ectopic locus restored the
growth defect associated with the trans-translation deficiency,
substantiating that BrfA is the responsible factor for the synthetic
growth phenotype (lanes 3, 6, 9, and 12). These results indicate
that BrfA is required for optimal growth in the absence of
sufficient activity of trans-translation in B. subtilis.

BrfA expression is regulated by trans-translation. The brfA
gene contains 71 sense codons followed by a stop codon. We note
that it contains a typical rho-independent transcription termi-
nator sequence within the coding region, raising an intriguing
possibility that BrfA is translated naturally from a non-stop
mRNA lacking the 3’ region including the stop codon (Fig. 2a). If
this is the case, the translation product should initially consist of
approximately 62 amino acids in the form of peptidyl-tRNA.
However, translation of such mRNAs is likely dealt with by the
trans-translation mechanism of ribosome rescue, which would
add the SsrA tag sequence of 15 amino acids to the BrfA non-stop
product. It follows then that the BrfA product would be rapidly
degraded by cellular proteases, such that the protein level should
be strongly down-regulated in trans-translation proficient cells.

To test this possibility, we examined the impact of trans-
translation on the accumulation of a series of BrfA-derived
proteins. We constructed a translational gene fusion consisting of
the coding sequences for green fluorescence protein (GFP), BrfA
(full length), and FLAG that are connected in-frame in this order
from the N-terminus to the C-terminus. We also constructed
transcriptional fusions, in which independently translatable lacZ
follows gfp-brfA-flag to verify the occurrence of transcription
termination in brfA (Fig. 2b). We expressed GFP-BrfA-FLAG in
the wild type and the AsmpB cells and detected the products with
anti-GFP and anti-FLAG immunoblotting. Strikingly, the wild-
type cells did not produce any anti-GFP detectable protein from
the gfp-brfA(WT)-flag construct (Fig. 2c, lane 1, upper panel). By
contrast, the AsmpB cells produced a product that formed an
intense band near the 37kDa marker (Fig. 2¢, lane 2, upper
panel). This species of protein did not react with anti-FLAG (lane
2, lower panel), indicating that it lacked the C-terminal region.
These results are consistent with the notion that the mRNA ends
within brfA due to internal termination. The translation products
are SsrA-tagged and degraded rapidly in the wild-type strain,
while they accumulate in the trans-translation-deficient
AsmpB cells.

To examine the above scenario further, we disrupted the
transcription terminator either by internal deletion or by
synonymous substitutions (Fig. 2a, b). In the former, we deleted
the codons 63-71 of brfA in the context of GFP-BrfA-FLAG to
eliminate the 3" T stretch of the transcriptional terminator (GFP-
BrfA62-FLAG). In the latter, we introduced synonymous muta-
tions to disrupt the secondary structure required for transcription
termination (GFP-BrfA(no_term)-FLAG) (Fig. 2a, b). Both of
these terminator-less mutant forms of GFP-BrfA-FLAG accumu-
lated equally in the wild type and AsmpB strains and are reactive
with both anti-GFP and anti-FLAG (Fig. 2c, lanes 3-6).

We then confirmed the occurrence of internal transcription
termination by examining the expression of lacZ attached at a 3’
region of the transcription unit. If the terminator within brfA
indeed functions, the downstream lacZ would not be expressed. As
expected, cells harboring the construct with the wild-type brfA
sequence exhibited very low levels of (-galactosidase activity
(Fig. 2d, columns 1 and 2), as compared with those having
the terminator mutations, which exhibited high levels of

B-galactosidase activity (Fig. 2d, columns 3-6). These data
establish that the internal transcriptional termination indeed
occurs for brfA, indicating that it is a major element that triggers
the BrfA down-regulation by the SsrA tag-dependent degradation.

These results show that B. subtilis is equipped with at least two
layers of ribosome rescue mechanisms, trans-translation and
BrfA-dependent peptidyl-tRNA hydrolysis (see below). The
trans-translation-dependent down-regulation indicates that BrfA
is the secondary ribosome rescue factor that is only produced
upon dysfunction of trans-translation, the primary ribosome
rescue mechanism. Thus, the internal transcription terminator in
BrfA provides the means for this bacterium to accomplish the
compensatory and vectorial regulation for the maintenance of
ribosome rescue capability. In this context, BrfA bears a striking
similarity to the E. coli alternative rescue factor, ArfA, which is
also synthesized from a non-stop mRNA!7:18,

BrfA recruits RF2 to hydrolyze non-stop peptidyl-tRNAs. We
characterized BrfA biochemically by examining whether it could
induce polypeptide release, as expected for an alternative ribo-
some rescue factor. To do this, we purified BrfA in the form of
BrfA62-Hiss, which lacks the C-terminal 9 amino acid residues
encoded by the brfA gene but not by the brfA mRNA (see above);
a hexahistidine (Hisg) tag was attached to the C-terminus to aid
purification. We considered that the absence of the C-terminal 9
amino acids was physiological. Also, the absence of the 3’ coding
region of brfA should disrupt the internal transcription termi-
nator signal and enable the attachment of the Hiss tag. Since BrfA
lacks a GGQ motif critical for peptidyl-tRNA hydrolysis, we
hypothesized that BrfA requires an RF to hydrolyze peptidyl-
tRNA. Therefore, we also purified B. subtilis RF1 and RF2. For
in vitro translation with defined translation components, we used
the Bs hybrid PURE system?’, a modified version of the PURE
coupled transcription-translation system3?, in which the original
E. coli ribosomes were replaced with B. subtilis ribosomes. We
omitted RFs in the Bs hybrid PURE system unless otherwise
stated.

We used DNA fragments encoding GFP but without an in-
frame stop codon (GFP-ns) to direct in vitro transcription and
translation with Bs hybrid PURE system and separated the
translation products by neutral pH SDS-PAGE, which preserved
the peptidyl-tRNA ester bond3!. The major product, migrating
between the 42 and the 55 kDa markers, represents the peptidyl-
tRNA (GFP-tRNA; Fig. 3a, lane 1), as treatment of the sample
with RNase A before electrophoresis down-shifted this band to
the position near the 28 kDa marker, indicative of tRNA removal
(GFP; lane 2). Thus, the non-stop template indeed produced a
translation-arrested state of ribosome-nascent chain complex,
which was unaffected when the reaction mixture included B.
subtilis RF1 or RF2 (lanes 3-6), as expected from the absence of a
stop codon in the template. We then addressed the effects of
BrfA. Neither BrfA by itself nor its combination with B. subtilis
RF1 affected the production of GFP-tRNA (lanes 7-10). By
contrast, the addition of both BrfA and B. subtilis RF2 to the Bs
hybrid PURE system resulted in the production of the hydrolyzed
GFP band with a concomitant decrease in the level of GFP-tRNA
(lanes 11 and 12). Thus, BrfA and RF2 cooperatively catalyze
peptide release from the non-stop stalled ribosome.

Distinct requirements of RF2 for rescue and termination.
Given that BrfA and RF2 cooperatively induce hydrolysis of non-
stop peptidyl-tRNA, the role of RF2 would be to execute the
catalysis. Consistent with this expectation, a catalytically inactive
RF2 variant, RF2(GAQ), whose GGQ active site had been
mutated to GAQ, no longer stimulated hydrolysis of GFP-tRNA
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Fig. 2 The cellular abundance of BrfA is negatively regulated by trans-translation. a A schematic representation of the brfA open reading frame, showing the
intrinsic transcriptional terminator sequence within the coding region (indicated by “terminator” at the top and the wild type (WT) enlarged view below).
Shown also are the corresponding sequences of the gfp-brfA(2-62)-flag and gfp-brfA(no_term)-flag constructs (see b), in which nucleotide substitutions and
the FLAG tag are indicated by reverse and underline, respectively. b Schematic representations of the gfp-brfA-flag constructs with wild-type terminator
sequence (gfp-brfA(2-71)-flag) and its derivatives with defective terminator signals. These gfp-brfA derivatives were placed under the constitutive mifM
promoter. The lacZ gene is also placed downstream of the gfp-brfA derivatives. “SD” and asterisks indicate Shine-Dalgarno sequence and synonymous
mutations, respectively. € Cellular accumulation of the products of the wild-type construct (lanes 1, 2) as well as the brfA(2-62) (lanes 3, 4) and the brfA
(no_term) (lanes 5, 6) constructs. They were expressed in the smpB+ (odd numbers) or the AsmpB (even numbers) strains and analyzed by anti-GFP
(upper) or anti-FLAG (lower) immunoblotting. d p-Galactosidase activities (mean + s.d., n = 3) of the cells horbaring lacZ at the downstream of wild type
(columns 1, 2), the brfA(2-62) (columns 3, 4), or the brfA(no_term) (columns 5, 6) derivatives of the gfp-brfA in the presence (odd numbers) or absence
(even numbers) of smpB. “s.d." indicates standard deviation. Source data are provided as a Source Data file.
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Fig. 3 In vitro activity of BrfA to hydrolyze non-stop peptidyl-tRNA. a BrfA in combination with RF2 cleaves the GFP-tRNA non-stop translation product. In
vitro translation using Bs hybrid PURE system was directed by the gfp-ns template. The reaction mixtures contained purified BrfA62-Hisg (lanes 7-12),
purified B. subtilis RF1 (lanes 3, 4, 9, and 10), and RF2 (lanes 5, 6, 11, and 12), as indicated. Translation was allowed to proceed at 37 °C for 20 min, and the
products were divided into two parts, one of which was treated with RNase A, as indicated. Samples were then analyzed by SDS-PAGE under neutral pH
conditions, followed by anti-GFP immunoblotting. b BrfA-dependent peptidyl-tRNA hydrolysis activity of RF2 requires its GGQ active site but not SPF stop
codon recognition motif. In vitro translation using Bs hybrid PURE system was directed by the gfp-ns template in the presence of combinations of BrfA, wild-
type RF2 (lanes 3, 4, 9, and 10), RF2(GAQ) (lanes 5 and 6), and RF(SPT) (lanes 11 and 12), as indicated. The translation products were analyzed by anti-
GFP immunoblotting as described above. ¢ Interspecies compatibility of the RF-dependent rescue factor functions. In vitro translation of gfp-ns was carried
out using Bs hybrid PURE system (lanes 1-8) or Ec PURE system (lanes 9-16) in the presence of combinations of purified BrfA (lanes 1-4, 9-12), E. coli ArfA
(lanes 5-8, 13-16), RFs (RF1 plus RF2) purified from B. subtilis (lanes 1, 2, 5, 6, 9, 10, 13, and 14), and RFs purified from E. coli (lanes 3, 4, 7, 8, 11,12, 15, and
16). The translation products were analyzed by anti-GFP immunoblotting as described above. Source data are provided as a Source Data file.

even in the presence of BrfA (Fig. 3b, lanes 5 and 6). RF2 pos-
sesses the conserved SPF motif as an essential element for the stop
codon recognition in termination32. We addressed whether this
motif is required for the ribosome rescue function of RF2 by
mutating it to SPT, which abolishes the termination activity>2. In
the in vitro peptidyl-tRNA hydrolysis assay, the RF2(SPT) was as
active as the wild-type RF2 in the BrfA-dependent cleavage of
GFP-tRNA (Fig. 3b, lanes 9-12), in comparison with the parallel
control reaction without RF2 (lanes 7 and 8). These results
demonstrate that the stop codon recognition motif of RF2 is
dispensable for the ribosome rescue function.

6

Ribosome stalling can also be induced by specific amino acid
sequences of nascent polypeptides for regulatory purposes. Such
regulatory nascent polypeptides include E. coli SecM, B. subtilis
MifM, and Vibrio alginolyticus VemP33-34, Ribosome stalling in
these cases needs to be adequately regulated, such that it is subject
to conditional and specific mechanisms of cancellation3>-3,
Unregulated rescue could be counterproductive in these cases.
Our in vivo and in vitro analyses show that the B. subtilis MifM
stalling is refractory to both the trans-translation and the BrfA
mechanisms of ribosome rescue (Supplementary Fig. 1). Thus, we
conclude that BrfA is an RF-dependent ribosome rescue factor in
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B. subtilis that rescues stalling on non-stop mRNAs, but not
regulatory stalling peptides, leading us to suggest the renaming of
YqkK to BrfA (Bacillus ribosome rescue factor A). To our
knowledge, RE-dependent ribosome rescue factors have not been
reported previously in Gram-positive bacteria.

Low interspecies compatibility of ribosome rescue systems.
BrfA homologs are conserved among a subset of Bacillaceae
family members, mainly among those belonging to the Bacillus
genus. Although we do not rule out the possibility that BrfA and
ArfA share the same evolutionary origin, their distinct phyloge-
netic distributions and the unique sequence features (Supple-
mentary Fig. 2) seem to favor the notion that BrfA and ArfA have
evolved independently of each other and independently from
ArfT and ArfB. The narrow phylogenetic distributions of the RF-
dependent rescue factors also implies that they emerged relatively
late in evolution. Translation components are largely conserved
across the species, but they have undergone some micro diver-
sifications. If the alternative rescue factors evolved more recently
than the translation factors, their interactions with the translation
components, such as the ribosome and an RF, might be species-
specific. Indeed, Francisella tularensis ArfT can work with
F. tularensis RF1 or RF2, but not E. coli RFs?4. Also, E. coli ArfA
fails to recruit Thermus thermophilus RF2 (refs. 37-38). We tested
the compatibility of B. subtilis BrfA and E. coli ArfA with het-
erologous RFs in vitro. While BrfA efficiently hydrolyzed GFP-
tRNA in the Bs PURE system supplemented with RF1 and RF2 of
B. subtilis (Fig. 3¢, lanes 1 and 2), it did not work with the E. coli
RFs (lanes 3 and 4). Interestingly, BrfA was functional when the
substrate was translated by the E. coli ribosome, provided that the
B. subtilis RFs were available (lanes 9-10). These results suggest
that BrfA interaction with RF2 is species-specific, but its inter-
action with the ribosome is rather promiscuous.

By contrast, we could show that E. coli ArfA requires both the
RF2 as well as the ribosomes to be derived from E. coli.
Specifically, ArfA did not work if combined with the E. coli RF2
when the substrate was translated by the B. subtilis ribosomes
(Fig. 3¢, lanes 7 and 8), nor did it work with B. subtilis RF2 (lanes
5 and 6), even if the substrate was translated by E. coli ribosomes
(lanes 13 and 14). The E. coli ArfA-mediated hydrolysis of GFP-
tRNA was only observed when the ribosomes and RFs were both
derived from E. coli (lanes 15 and 16). Thus, E. coli ArfA is
incompatible with the B. subtilis ribosomes and RF2, analogously
to what was previously observed between E. coli ArfA and
T. thermophilus RF2 (refs. 37-38). The high specificity of molecular
interactions involving the RF-dependent rescue factors is in
contrast to the broader interactions in the tmRNA- and ArfB-
based rescue pathways (see Discussion).

Cryo-EM structure of a BrfA-RF2-non-stop-ribosome complex.
Since B. subtilis BrfA and RF2 can rescue E. coli ribosomes stalled
on truncated non-stop mRNAs (Fig. 3c, Supplementary Fig. 3),
we formed BrfA-RF2-non-stop 70S ribosome (ns70S) complexes
by incubating B. subtilis BrfA and RF2 with E. coli ns70S com-
plexes used previously for ArfA3°. By substituting the wild-type B.
subtilis RF2 with a catalytically inactive GGP mutant?0:41,
peptidyl-tRNA hydrolysis and therefore recycling of the ns70S
complex was prevented (Supplementary Fig. 3). Cryo-EM ana-
lysis of the BrfA62His-RF2-GGP-ns70S complex (herein referred
as BrfA-RF2-ns70S) and extensive in silico sorting of this dataset
yielded a major subpopulation of ribosomal particles (>80%) that
contained stoichiometric occupancy of BrfA, RF2 and P-site
tRNA (Supplementary Fig. 4). Refinement of this subpopulation
led to a final cryo-EM reconstruction of the BrfA-RF2-ns70S
(Fig. 4a), with an average resolution of 3.06 A (Supplementary

Fig. 4, Supplementary Table 1). The cryo-EM density for BrfA
was well-resolved with local resolution ranging between 3.0-3.6 A
(Fig. 4b), enabling residues 2-55 of BrfA to be modeled de novo
(Fig. 4c, d). BrfA contains an N-terminal a-helix al (residues
4-17) followed by a short a-helical turn (a2, residues 21-25) and
B-strand (B1, residues 35-38) as well as a short C-terminal a-helix
(a3, 40-47) followed by a positively charged region (residues
48-55) (Fig. 4d).

Interaction of BrfA with the non-stop 70S ribosome. The
binding site of BrfA is located predominantly on the 30S subunit in
the vicinity of the decoding center, where it spans from the top of
helix 44 (h44) of the 16S rRNA past the ribosomal protein uS12
and reaches into the mRNA channel formed by the head and body
of the 30S (Fig. 4a). The overall binding site of BrfA on the ribo-
some (Fig. 4a) is similar, but distinct, to that observed previously
for E. coli ArfA37-3942-44 The N-terminal helix al of BrfA resides
within the intersubunit space, where highly conserved charged
residues (Supplementary Fig. 2) establish interactions with the
major groove of h44 and the minor groove of H71 of the 23S rRNA
(Fig. 4e). In addition, Arg25 within helix a2 of BrfA, which is
conserved in all BrfA sequences (Supplementary Fig. 2), stacks
upon U1915 and flips C1914 out of H69, where it stacks upon
His133 of RF2 (Fig. 4f). This contrasts with the canonical con-
formation of C1914 within H69 that is observed during translation
termination (Fig. 4g) as well as ArfA-mediated ribosome rescue.
Indeed, these N-terminal a-helices have no counterpart in ArfA,
instead the N-terminus of ArfA is unstructured and folds back to
interact with uS12 (refs. 37-3942-44) (Supplementary Fig. 5a—c).

The C-terminal region of BrfA extends from the decoding
center into the mRNA channel and would be incompatible with
the presence of a full-length mRNA (Fig. 4h), but compatible with
a truncated non-stop mRNA (Fig. 4i). BrfA exhibits a modest
overlap with the second (+2) and third (+3) nucleotide of the A-
site codon, but extensive steric clashes would be expected for the
subsequent positions (+4 onwards) (Fig. 4i), similar to that
observed previously for ArfA37-3%42-44 (Supplementary Fig. 5d-i).
Thus, BrfA may also recycle ribosomes stalled on non-stop
mRNAs with 1-3 nucleotides extending into the A-site, as shown
experimentally for ArfA%>~47. The positively charged C-terminus
of BrfA can form multiple hydrogen bond interactions with 16S
rRNA nucleotides that comprise the mRNA channel (Fig. 4j).
While the interaction network is generally distinct from that
observed for ArfA, we note that the mode of contact between the
side chains of Lys49 and His50 of BrfA with U534 of the 16S
rRNA appears to be shared by ArfA37-3942-44 (Supplementary
Fig. 5j-1).

BrfA stabilizes an open conformation of RF2 on the ribosome.
The structure of the BrfA-RF2-ns70S reveals that BrfA recruits
RF2 by establishing an extensive interaction surface, specifically
encompassing the central portion (residues 30-40) of BrfA and
domain 2 (d2) of RF2 (Fig. 5a). Similar to ArfA37-3942-44
(Supplementary Fig. 6A-C), BrfA also donates the small p-strand
(B1) to augment the P-sheet of the superdomain d2/d4 of RF2
(Fig. 5a). The overall position of RF2 in BrfA-RF2-ns70S is
similar, but slightly shifted, compared to that observed during
canonical translation termination®48 (Fig. 5b, Supplementary
Fig. 6d-f). The shift is larger and more global than reported
previously for ArfA37-3942-44 (Supplementary Fig. 6a-c), which
may arise in part due to the differences between B. subtilis and
E. coli RF2s. The shift affects the loop between the B4 and
B5 strands of d2 bearing the SPF (B. subtilis 202-Ser-Pro-Phe-
204) motif, which is involved in the specificity of recognition of
the first and second positions of UGA/UAA stop codons32:40:48
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Fig. 4 Cryo-EM structure of BrfA-RF2-ns70S complex. a Different views of the cryo-EM map of the BrfA-RF2-ns70S complex with isolated densities
highlighting the 30S (yellow: hd, head; bd, body) and 50S (gray: CP, central protuberance) subunits, P-site tRNA (green), RF2 (orange), and BrfA (blue).
b, c Isolated electron density for BrfA (b) colored according to local resolution and (€) shown as mesh (gray) with fitted molecular model for BrfA. d Model
for BrfA with features highlighted corresponding to the schematic of BrfA protein, including a-helical and -strand regions. e The N-terminus of BrfA (blue)
interacts both h44 of the 16S rRNA (yellow) and H69 and H71 of the 23S rRNA (gray). f The conserved R25 of BrfA (blue) stacks upon U1915 and causes
C1914 to flip out and stack upon H133 of RF2. g Same view as f but showing the RF2, (lime) and the conformation of H69 for a canonical termination
complex (PDB ID 4V5E48). h Transverse section of the 30S subunit (yellow) to reveal the mRNA channel showing a superimposition of full-length mRNA
(FL-mRNA, cyan) with truncated non-stop mRNA (TR-mRNA, teal), P-site tRNA (green), and surface representations of BrfA (blue). i Superimposition of
FL-mRNA (cyan) with TR-mRNA (teal), P-site tRNA (green), and transparent surface representation of BrfA (blue). The first (+1), second (+2), and third
(43) nucleotides of the A-site codon of the FL-mRNA are indicated. j Interaction of the C-terminus of BrfA (blue) with the 16S rRNA showing potential
hydrogen bonds with yellow dashed lines.

(Fig. 5¢). Importantly, the structure illustrates that BrfA, like
ArfA, does not interact with the SPF motif and therefore does not
directly mimic the presence of a stop codon (Fig. 5c, Supple-
mentary Fig. 6g-i), which is consistent with our observation that
mutations in the SPF motif that impair RF2 termination activity
do not affect BrfA-RF2-mediated ribosome rescue (Fig. 3b).

During canonical termination, recognition of the stop codon
by RF2 (and RF1) is proposed to stabilize a distinct conformation
of the switch loop that directs domain 3 into the PTC14%. The
switch loop conformation is stabilized by stacking interactions
between Trp318 (B. subtilis numbering) of RF2 and A1492 (h44)
as well as between A1493 (h44) and A1913 in H69 (refs. 40:48)
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Fig. 5 BrfA recruits and stabilizes the open conformation of RF2 on the ribosome. a, b Overview of the interaction of BrfA (blue) with (a) RF2 (RF2ga,
orange) from the BrfA-RF2-ns70S and with (b) RF2 (RF24,p, lime, PDB ID 4V5E) from a canonical termination complex#8. RF2 domains 1-4 (d1-d4) and
relative positions of the decoding center (DC) and peptidyltransferase center (PTC) are indicated. ¢ Comparison of the relative positions of the SPF motif of
RF24t0p (lime) and RF2g5a (orange) with BrfA (blue), P-site tRNA (green), and truncated non-stop mRNA (TR-mRNA, cyan) shown for reference. d
Interaction between Trp307 (W307, equivalent to B. subtilis Trp318 (W318)) of the switch region of Thermus thermophilus RF 2o, (lime) and A1492 of the
16S rRNA (green) during decoding of the UGA stop codon of the mRNA (cyan). W318 in the switch loop of B. subtilis RF2 (RF2g,a, orange) observed upon
BrfA binding is superimposed and arrowed. e Same view as in d, but showing the conformation of the switch loop of RF2g,¢a (orange) and A1492/A1493
(yellow) when BrfA (blue) is present. f Superimposition of the conformation of a-helix a7 of RF2 from the crystal structure of the closed form of RF2
(RF2¢joseq; dark blue, PDB ID 1GQE) with RF24, (lime) and RF2g¢a (orange), with BrfA (blue) shown for reference.

(Fig. 5d). In the BrfA-RF2-ns70S, the presence of BrfA precludes
a direct interaction between Trp318 and A1492 (Fig. 5e). Rather,
BrfA appears to stabilize a similar conformation of A1492
through stacking interactions with His34 and Arg36 (Fig. 5e),
whereas a completely distinct conformation of A1492 (and
A1493) is adopted in the presence of ArfA (Supplementary
Fig. 7a-c). Additional stacking interactions are also observed
between Phe31 of BrfA and Trp318 within the switch region of
RF2 (Fig. 5e), which we suggest facilitates the transition from the
closed to the open form of RF2 (Fig. 5, Supplementary Fig. 7d-i)
and thereby enables placement of the GGQ motif within domain
3 (d3) of RF2 at the PTC of the ribosome.

Discussion

We have shown that Gram-positive bacteria, such as Bacillus,
possess an RF-dependent ribosome rescue pathway, which had
previously been known to occur only in Gram-negative bacteria
(Fig. 6a). In this pathway in B. subtilis, BrfA plays a critical role in
the hydrolytic release of the incomplete polypeptide from the
non-stop stalled ribosomes. It does so by recruiting RF2 in a stop-
codon-independent manner to the otherwise dead-end transla-
tion complex, as shown by our biochemical experiments using
purified components. Our cryo-EM structure also reveals that
BrfA recognizes the empty mRNA channel of a non-stop ribo-
some complex to recruit and stabilize the active (open)

conformation of RF2 on the ribosome (Fig. 6b), in a similar but
distinct manner to ArfA37-3%42-44 (Fig. 6c).

In vivo, the brfA deletion mutation exhibits a synthetic lethal
phenotype when combined with CRISPRi-mediated knock-down
or deletion of either SsrA or SmpB. Thus, BrfA is essential for
growth in the absence of trans-translation activity. These findings
answer the long-standing question of why the trans-translation
system is not essential in B. subtilis, which lacks ArfA, ArfB and
ArfT. Instead, BrfA is the alternative ribosome rescue factor in
this organism and some other Bacillus species. The growth
requirement of B. subtilis for BrfA and trans-translation is
observed under normal growth conditions without the imposition
of proteotoxic stresses. Thus, clearing of constitutively produced
aberrant states of translation might be critical for cell survival,
and BrfA and trans-translation components are the major players
in this basic quality control. In this regard, the recently reported
RqcH pathway, which adds a protein-degrading polyalanine
sequence to the arrested polypeptide on the split 50S subunit of
the ribosome®?, appears to play a minor role in ribosome rescue
under normal growth conditions, since RqcH is dispensable for
trans-translation deficient strains to grow in the absence of stress.
By contrast, RqcH appears to be required under more harsh
conditions, such as high temperature and the presence of
translation-disturbing drugs®C.

During BrfA-mediated ribosome rescue, peptidyl-tRNA
hydrolysis depends on an intact GGQ motif of RF2, indicating
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Fig. 6 RF-dependent ribosome rescue factors in bacteria. a Independent
evolution of the RF-dependent ribosome rescue factors. ArfA and BrfA are
unrelated in their amino acid sequences despite the same partner (RF2)
specificity. ArfT forms a still distinct group and cooperates with either of
RF1 or RF2. They show narrow distributions among bacterial species. b, ¢ A
schematic model highlighting the similarities and differences between (b)
BrfA- and (¢) ArfA-mediated ribosome rescue mechanism.

that RF2 plays the catalytic role. The role of BrfA is rather to
recruit RF2 to the ns70S complex to initiate the events of stop
codon-independent translation termination and thereby allow the
subsequent ribosome recycling process. We used the Bs PURE
system containing only a minimal set of essential translation
components from E. coli together with B. subtilis ribosomes to
recapitulate the rescue reaction in vitro, making it unlikely that
other unknown cellular factors, especially those from B. subtilis,
are required for the process. Moreover, we could show structu-
rally that BrfA alone is sufficient to recruit and induce an active
(open) conformation of BsRF2 on the non-stop ribosome com-
plex. Taken together, we propose that BrfA is an RF-dependent
ribosome rescue factor in Gram-positive bacteria, such as Bacillus
(Fig. 6a).

In the process of canonical translation termination, stop codon
recognition by the SPF motif of RF2 is a prerequisite for the
process in which RF2 is accommodated into the A-site of the
ribosome and adopting a catalytically active (open) conformation
where the GGQ motif is directed into the PTC40:48:51,52 How-
ever, our structural data show that BrfA does not directly mimic
the stop codon in the A-site (Fig. 5c), consistent with our
observations that the stop codon recognition motif SPF is not
required for ribosome rescue (Fig. 3b; see ref. 1° for the similar
situation in E. coli ArfA). Instead, the role of BrfA is to induce an
open conformation of RF2, despite the absence of a stop codon.

BrfA appears to facilitate ribosome rescue using a different
mechanism than reported previously for ArfA37-3942-44  For
example, during stop codon decoding, the switch loop Trp stacks
directly upon A1492 of the 16S rRNA (Fig. 5d, Supplementary
Fig. 7a), whereas during BrfA-mediated recycling, a series of
stacking interactions appear to indirectly relay this information—
specifically, Phe31 of BrfA stacks upon the switch loop Trp318 of
RF2, while His34 (and Arg36) of BrfA stacks upon A1492
(Fig. 5e, Supplementary 7b). By contrast, during ArfA-mediated
rescue, the equivalent Trp residue inserts into a hydrophobic
pocket created by ArfA and A1492 adopts a completely unrelated
conformation (Supplementary Fig, 7c)37-3%42-44,

Perhaps the most dramatic difference between BrfA and ArfA
is found in the N-terminal region, where BrfA contains two short
a-helices that establish multiple interactions with H69 and H71 of
the 23S rRNA, whereas the N-terminus of ArfA is unstructured
and does not establish any interactions with the 50S subunit
(Supplementary Fig. 5a-c). Despite this lack of sequence and
structural homology, there are some common features between
the two rescue systems: Firstly, both ArfA and BrfA (as well as
SmpB and ArfB) appear to utilize positively charged C-terminal
extensions to interact with the negatively charged 16S rRNA
comprising the mRNA channel. Although the details of the
interactions are unrelated, we identified a Lys-His (K49-H50 in B.
subtilis) motif that is conserved between BrfA and ArfA, which is
used to establish contacts to the backbone of nucleotide U534 of
the 16S rRNA (Supplementary Fig. 5j-1). Secondly, both ArfA
and BrfA contain short B-strands that augment the B-sheet in
domain 2/4 of RF2, which we presume is important to recruit RF2
to the ribosome (Supplementary Fig. 5a—c).

Here we show that BrfA works with RF2, but not RF1, remi-
niscent of the partner selectivity described previously for ArfAl.
Analysis of the contacts between BrfA and RF2 within the BrfA-
RF2-ns70S complex, and comparison with the sequence align-
ments between B. subtilis RF2 and RF1, indicated that there are
two main regions in the RFs that are likely to be responsible for
the selectivity of BrfA (Supplementary Fig. 8). These encompass
residues within the B-sheet of domain 2/4 of RF2 that are in
proximity of Phe31 of BrfA. For example, in RF2 residues 197 and
216 are generally Val and Phe, respectively, whereas in RF1 the
equivalent residues are replaced with the smaller Ala and Thr
residues, respectively (Supplementary Fig. 8a). More dramatic,
however, is the lack of sequence conservation between the switch
loops of B. subtilis RF1 and RF2. In fact, the switch loop of RF1 is
one residue longer than in RF2 (Supplementary Fig. 8b, d). We
also note that the RF-dependent rescue factors show low inter-
species compatibility (Fig. 3c). The incompatibility of BrfA to
work with E. coli RF2 is not surprising given the relatively low
sequence conservation observed within the switch region (Sup-
plementary Fig. 8d). Moreover, sequence differences are also
observed with a-helix 7 between B. subtilis and E. coli RF2 that
could contribute to the interactions with BrfA (Supplementary
Fig. 8c). Collectively, these differences suggest that even if BrfA
could recruit B. subtilis RF1 or E. coli RF2 to the ns70S, the
sequence differences in the switch loop are unlikely to stabilize
the open conformation of RF2 on the ribosome. The lack of
interspecies compatibility of BrfA (and ArfA) contrasts with
other, more ubiquitous ribosome rescue factors. For example, B.
subtilis tmRNA is functional in E. coli, albeit with lower effi-
ciency?”, and the human mitochondrial ArfB homolog, ICTT1, is
functional in C. crescentus and vice versa23. This low interspecies
compatibility of the RF-dependent rescue factors reinforces the
notion that these rescue systems emerged late in evolution.

It is crucial for the ribosome rescue factors not to intervene
during normal translation, nor when translation is arrested by
nascent polypeptides for regulatory purposes3. Our cryo-EM
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structure of the BrfA-RF2-ns70 reveals that BrfA uses its C-
terminal region to monitor the vacancy of the ribosomal mRNA
channel, a hallmark of the ribosomes stalled on the 3’ end of
mRNA, and thereby discern non-stop translation complexes from
those of ongoing translation2. Consistently, we have shown that
neither BrfA, nor trans-translation, can resolve the MifM-
programmed elongation arrest complexes (Supplementary
Fig. 1). In this case, the mRNA channel should remain occupied
by the mifM mRNA. Also, the cryo-EM structures of the MifM-
stalled ribosomes reveal altered conformations of 23S rRNA
residues near the peptidyltransferase center (PTC) such that they
block accommodation of aminoacyl-tRNAs or mimics thereof
into the A-site®3 explaining why MifM stalling is refractory to the
BrfA-RF2 and the SmpB-tmRNA actions, too.

We have shown that brfA is transcribed as a non-stop mRNA
because of the terminator sequence within the coding region.
Thus, brfA itself is subject to a futile type of translation, produ-
cing a non-stop polypeptide that is extended by the SsrA tag
sequence and rapidly eliminated by proteolysis. BrfA accumulates
only when trans-translation is impaired, and in the form of
peptidyl-tRNA. However, once some free BrfA product is gen-
erated by spontaneous hydrolysis of the BrfA peptidyl-tRNA, or
by the presence of residual BrfA in the cell, it actively liberates in
trans the BrfA peptide in a self-perpetuating manner. We have
shown clearly using biochemical assays that a liberated form of
the non-stop BrfA peptide (residues 1-62) is active in mediating
the RF2-dependent peptidyl-tRNA hydrolysis.

Because BrfA is not effectively produced in trans-translation
proficient cells, but induced strikingly upon dysfunction of trans-
translation, it is likely to represent a secondary, back-up rescue
system that compensates for defects in trans-translation. This
scenario reinforces the notion that the proteolytic function
characteristically associated with the SmpB-tmRNA system is not
essential for growth, as reported previously!>!4, Indeed, the GFP-
ns non-stop product accumulates in the ssrA-deleted cell (Sup-
plementary Fig. la), indicating that the products of the BrfA
system are not necessarily toxic. Thus, the growth-essential roles
of trans-translation and BrfA are in their ribosome recycling
functions, rather than in the tagging-proteolysis that the BrfA
system lacks. Cell viability would require a sufficient pool of the
uncompromised ribosomes, which maintains the translation
capacity of the cell. Whereas the two pathways share the essential
function required for growth-supporting ribosome rescue, the
proteolytic functions of the trans-translation and that of the
RqcH tail-adding system could become more important under
more severe stress conditions>C.

The regulatory scheme of BrfA expression is strikingly similar
to that elucidated for ArfA regulation in E. coli'’»18; the arfA
mRNA is also subject to RNase III-dependent cleavage and/or
transcription termination such that ArfA only accumulates when
trans-translation is defective. Assuming that BrfA and ArfA are
evolutionarily unrelated, it is noteworthy that they employ a
similar scheme of regulation. Convergent acquisition of such
regulatory mechanisms may be more common for factors that
have evolved recently and which have functions related to the
firmly established and relatively rigid constituent of the cell, such
as the ribosome and translation factors.

In summary, our study reveals that bacteria, both Gram-
negative and Gram-positive, have RF-dependent mechanisms of
ribosome rescue that allow for the stop-codon-independent lib-
eration of the polypeptide from the ribosome on the non-stop
mRNA (Fig. 6a). However, the crucial adapter proteins, ArfA,
ArfT, and BrfA, are unrelated in amino acid sequence (Supple-
mentary Fig. 2). The modes of their interactions with the catalytic
RF partner(s) are also divergent, indicative of the tailored nature
of their evolution in different species. It remains possible that

many more factors in this category exist in different organisms.
As the present study suggests that sequence similarity alone
cannot be used to identify additional factors that exist in the
domains of life, we need better strategies to address this question.
Further studies on the generality and diversity of independently
evolved rescue factors and their manner of interaction with the
ribosome and translation factor would provide invaluable insights
into regulatory mechanisms of translation processes in the cell.

Methods

Bacterial strains and plasmids. B. subtilis and E. coli strains, plasmids, DNA
oligonucleotides used in this study are listed in Supplementary Tables 2, 3, 4 and 5,
respectively. The B. subtilis strains were derivatives of PY79 (wild-type; ref. °4) and
constructed by transformation that involves homologous recombination with
plasmids listed in Supplementary Table 6. These plasmids carried an engineered B.
subtilis gene to be integrated, which was flanked by sequences from the integration
target loci, and were constructed by standard cloning methods including PCR,
PrimeSTAR mutagenesis (Takara), and Gibson assembly®. The plasmid pCH747
was constructed by cloning a SphI-Spel fragment of pCH735 into pyqjG21. Plas-
mids pCH735 and pyqjG21 were constructed as described?. Successful integration
of a gene into the chromosome was accomplished by double crossing-over at the
target loci. The resulting recombinant clones were checked for their antibiotic-
resistance markers, including the absence of those originally present on the plasmid
backbone, and inactivation of the amyE, lacA, or thrC target locus. The marker-less
deletion mutants of smpB, yesZ, and lacA were constructed by excising the drug
resistance gene cassette by the Cre-loxP system as described previously?” with some
modification as follows. The B. subtilis strains were transformed with pMK2, a
pLOSS*-based Ts plasmid harboring cre. The resulting strain was grown at 37 °C
overnight in LB agar medium supplemented with 1 mM IPTG (isopropyl p-p-1-
thiogalactopyranoside) and 100 pg/mL spectinomycin to excise the drug marker
flanked by loxP?’. The strain was then grown at 37 °C overnight to drop off pMK2
on LB agar medium without spectinomycin. The absence of the drug resistance
confirmed the absence of plasmid pMK2. The B. subtilis strain KFB792 was con-
structed by transformation of PY79 with a DNA fragment prepared by Gibson
assembly with three PCR fragments, one of which was amplified from pCH1142
using a pair of primers SP89/SP90, and the other two of which were amplified from
PY79 genomic DNA using pairs of primers SP91/SP92 and SP93/SP94,
respectively.

Growth conditions and general procedures. For western blotting in Fig. 2c, B.
subtilis cells were cultured at 37 °C in LB medium with or without 0.5% xylose until
ODyg reached ~0.5. Bacterial culture (1 mL) was treated with 5% trichloroacetic
acid (TCA), and precipitates formed were washed with 0.75 mL of 1 M Tris-HCl
(pH 8.0) and resuspended in 50 pL of buffer L (33 mM Tris-HCl, 1 mM EDTA, pH
8.0) containing 1 mg/mL lysozyme, followed by incubation at 37 °C for 10 min.
Proteins were then solubilized with an equal volume of 2x SDS-loading buffer
containing 5 mM dithiothreitol (DTT) with incubation at 65 °C for 5 min and
subjected to SDS-PAGE and immunoblotting. One hundred microliters portions of
the bacterial cultures were used for assay of B-galactosidase activity, presented in
Fig. 2d as follows and also as described previously>!. The cultures were transferred
to individual wells of another 96-well plate for a Thermo Scientific Multiskan Go
microplate spectrophotometer and ODggo was recorded. Cells were then lysed by
adding 50 uL of Y-PER reagent (Thermo Scientific) and incubating for 20 min at
room temperature. Thirty microliters of o-nitrophenyl--p-galactopyranoside
(ONPQG) in Z-buffer (60 mM Na,HPO,, 40 mM NaH,PO,, 10 mM KCI, 1 mM
MgSO,, 38 mM B-mercaptoethanol) was added to each well. The reaction solution
was mixed thoroughly and then OD 4, and ODss, were measured every 5 min over
60 min at 28 °C. Arbitrary units [AU] of p-galactosidase activity were calculated by
the formula [(1000 X V50—1.3 X V550)/ODggol, where V5 and Vss, are the first-
order rate constants, OD4;o/min and ODsso/min, respectively.

Synthetic lethal screening using the BKE strain library. To isolate B. subtilis

mutants whose viability depends on trans-translation, we used the BKE library (a
collection of single-gene knockout mutants covering the 3968 non-essential genes,
which had been disrupted by replacement with the erythromycin resistance mar-
ker) as the source of gene knockouts. We pooled the BKE strains and prepared a
genomic DNA mixture using Wizard genome DNA purification kit (Promega). We
used this DNA preparation to transform an smpB-deleted strain of B. subtilis that
harbored a rescue plasmid carrying smpBT and lacZt (pNAB1286), which was

constructed from pLOSS* with a temperature sensitive (Ts) replication system.

Transformant mixture was then incubated at 50 °C overnight to segregate out the
Ts plasmid from bacteria that did not need the rescue plasmid, followed by further
growth at 37 °C overnight and plating on LB agar containing 40 pg/mL X-Gal (5-
bromo-4-chloro-3-indolyl B-p-galactopyranoside), 1 mM IPTG, 12.5 ug/mL linco-
mycin, and 1 pg/mL erythromycin. We picked up blue (lacZ+) colonies to obtain
transformants that retained the smpB*-lacZ* rescue plasmid even after the high-
temperature incubation and prepared chromosomal DNA from them. Genes that
had been disrupted by the erythromycin resistance marker were determined by
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PCR amplification and DNA sequencing of the mutant-specific barcode sequence,
using appropriate primers?’.

CRISPR interference. The CRISPRi was performed as described previously®® with
some modification. A gene encoding dCas9 under the xylose-inducible promoter
was integrated into the lacA site on the chromosome of a brfA-deleted B. subtilis
strain, into which an ssrA-targeted or an smpB-targeted sgRNA gene under a
constitutive promoter was further integrated at the amyE site. The guide sequences
for CRISPRi were designed on the basis of information provided by the previous
study?® as well as CHOPCHOP, a web tool for the CRISPR/Cas9 experiments®/->8,
The target gene knock-down was induced by addition of 1% xylose.

Protein purification. Hexahistidine-tagged proteins (B. subtilis BrfA62-Hiss, RF1-
Hise, RF2-Hisg, E. coli Hiss-ArfA60, and their derivatives) were expressed in E. coli
strain BL21(DE3) from the pET28b-based plasmid. E. coli cells were grown in LB-
kanamycin (25 pg/mL) medium. At a mid-log phase, IPTG (final concentration,
1 mM) was added, and cells were grown for an additional 3 h to express and
accumulate the target protein. Cells were then harvested, washed with ice-cold
50 mM HEPES-NaOH (pH 7.6) buffer, and stored at —80 °C. They were suspended
in binding buffer (50 mM HEPES-KOH pH 7.6, 5 mM imidazole, 300 mM NaCl,
1 mg/mL Pefabloc) and disrupted by passing through a microfluidizer LV1
(Microfluidics) at 16,000 psi three times. After removal of debris by centrifugation
(4°C, 15,000 r.p.m. for 15 min), Ni-NTA agarose was added to the sample, which
was then incubated at 4 °C for 1h. The Ni-NTA agarose was loaded on a spin
column and washed seven times with wash buffer (50 mM HEPES-KOH pH.7.6,
20 mM imidazole, 0.1% Triton-X). Protein was eluted with the elution buffer

(20 mM HEPES-KOH pH.7.6, 300 mM NaCl, 300 mM imidazole). Purified RFs
were dialyzed against dialysis buffer A (50 mM HEPES-KOH pH.7.6, 100 mM
potassium acetate, 1 mM DTT, 30% glycerol). Purified BrfA62-Hiss and Hise-ArfA
(2-60) were dialyzed against dialysis buffer B (50 mM HEPES-KOH pH.7.6,

100 mM potassium acetate, I mM DTT, 300 mM NacCl, 30% glycerol).

For the structural analysis, the wild-type B. subtilis RF2 and variant RF2-GGP
protein were expressed from pET11a vectors incorporating a C-terminal
hexahistidine tag (Hise) for purification and detection purposes. The inactive RF2-
GGP mutant was generated by site-directed mutagenesis. The wild-type RF2 and
RF2-GGP proteins were over-expressed in E. coli BL21 (DE3) at 37 °C for 1.5h
after induction with 1 mM IPTG. Cells were collected and the pellet was
resuspended in lysis buffer (50 mM NaH,PO,,, 300 mM NaCl, 5 mM imidazole, pH
7.5). Lysis was performed using a microfluidizer (Microfluidics M-110L) by passing
cells three times (at 18,000 psi). The cell debris was removed upon centrifugation
and the proteins were purified from the supernatant by His-tag affinity
chromatography using Ni-NTA agarose beads (Clontech). The bound proteins
were washed with lysis buffer containing 10 mM imidazole and then eluted with
lysis buffer containing 250 mM imidazole. The proteins RF2, RF2-GGP, and
BrfA62-Hiss were purified by size-exclusion chromatography using HiLoad 16/600
Superdex 75 (GE Life Sciences) in gel filtration buffer (50 mM HEPES, pH 7.4,
50 mM KCl, 100 mM NaCl, 2% glycerol, 5 mM B-mercaptoethanol). The proteins
were concentrated using Amicon Ultracel-30 Centrifugal Filter Units (Merck
Millipore) for wild-type RF2 and RF2-GGP and Ultracel-3 for BrfA62-Hiss
hereafter referred to as BrfA.

In vitro translation using PURE system. The E. coli-based coupled
transcription-translation system with purified components (PUREfrex 1.0; Gene-
Frontier) was used for in vitro translation as described previously2*-3! with some
modifications. To maximize transcription, we added 2.5 U/uL of T7 RNA poly-
merase (Takara) further to the reaction mixture. Whereas the original reaction
mixture, referred to as Ec PURE system, contained the E. coli ribosome, we also
used the Bs hybrid PURE system containing the B. subtilis ribosomes at a final
concentration of 1 uM. Unless otherwise noted, we omitted RF1, RF2, and RF3
from the reaction. However, we included purified RF or its derivatives derived
either from B. subtilis or E. coli at a final concentration of 1 pM as indicated in each
experiment. E. coli RFs were purchased from GeneFrontier. Purified BrfA or ArfA
was added to the final concentration of 1 uM when indicated. The reaction was
primed with an appropriate DNA fragment prepared by PCR (Supplementary
Table 7) and allowed to continue at 37 °C for 20 min. Samples were then mixed
with the same volume of 2x SDS-PAGE loading buffer. When indicated, they were
further treated with 0.2 mg/mL RNase A (Promega) at 37 °C for 15 min before
electrophoresis. Samples for SDS-PAGE were heated at 65 °C for 5 min, separated
by 10% wide range gel (Nacalai Tesque)3! and transferred on to a PVDF mem-
brane. Translation products were detected by immunoblotting using anti-GFP (A-
6455; Thermo) or anti-DYKDDDDK (anti-FLAG tag; Wako) as described pre-
viously>!. Images were obtained and analyzed using an Amersham Imager 600 (GE
Healthcare) luminoimager. Uncropped immunoblotting data are shown in the
Source Data file.

Generation of BrfA-RF2-ns70S complex. Generation of the BrfA-RF2-ns70S
complex was similar to that previously described for the ArfA-RF2-70S complex®.
Briefly, the truncated nlpD template containing an N-terminal Hiss and HA-tag
was first amplified from pET21b-rlnlpD using T7-promotor and

nucleotides 133-159 of nlpD as reverse primer. Following PCR purification via spin
column (Qiagen), in vitro translation (PURExpress, NEB 6800) was started by
adding the truncated nlpD PCR product at 37 °C for 20 min, shaking at 1000 r.p.m.
The ribosomes were first isolated from the in vitro reaction mix by centrifugation
through a sucrose cushion (50 mM HEPES-KOH pH 7.2, 250 mM potassium
acetate, 25 mM magnesium acetate, 750 mM sucrose, 0.1% DDM) for 180 min at
72,000 x g using a TLA120.2 rotor (Beckman Coulter). The pellet was resuspended
in buffer B250 (50 mM HEPES-KOH pH 7.2, 250 mM potassium acetate, 25 mM
magnesium acetate, 0.1% DDM) and the ns70S complex was isolated using Talon
cobalt-chelate affinity resin (Clontech). ns70S complex bound to the Talon matrix
by the N-terminal His, tag of NlpD was washed with buffer B500 (50 mM HEPES-
KOH pH 7.2, 500 mM potassium acetate, 25 mM magnesium acetate, 0.1% DDM)
and eluted using buffer B250i (50 mM HEPES-KOH pH 7.2, 250 mM potassium
acetate, 25 mM magnesium acetate, 250 mM imidazole, 0.1% DDM). The eluted
ns70S complex was loaded onto a linear sucrose gradient (10-40% (w/v) sucrose in
B250 buffer) for 18 h at 43,000 x g in a SW28 rotor (Beckman Coulter). The
isolated 70S peak was pelleted by centrifugation for 3 h at 139,000 x g using a
Ti70.1 rotor (Beckman Coulter). The pellet was resuspended in ns70S complex
buffer (50 mM HEPES pH 7.2, 250 mM potassium acetate, 10 mM magnesium
acetate, 0.05% DDM). The purified non-stop ribosome complex was then incu-
bated together with a 10x excess of BrfA and RF2-GGP mutant for 5 min at 37 °C
before being applied to cryo-EM grids.

Cryo-EM and single-particle reconstruction. Three microliters (4.5 ODgonm per
mL) of BrfA-RF2-ns70S complex was applied to 2 nm pre-coated Quantifoil R3/3
holey carbon supported grids and vitrified using the Vitrobot Mark IV (FEI,
Holland). Data collection was performed using EM-TOOLS (TVIPS GmbH) on a
Titan Krios transmission electron microscope equipped with a Falcon III direct
electron detector (FEIL, Holland) at 300 keV at a pixel size of 1.065 A and a defocus
range of 0.4-2.2 um. Forty frames (dose per frame of 2¢~ A~2) were aligned using
Motion Correction software®. Power spectra and defocus values were determined
using the GCTF software?. Micrographs showing thon rings beyond 3.2 A were
manually inspected for good areas and automatic particle picking was performed
using the Gautomatch software (http://www.mrclmb.cam.ac.uk/kzhang/). Single
particles were then imported and processed in Relion 3 (ref. 61y In total, 514,119
particles were first subjected to 2D classification (60 classes for 100 rounds) and
389,381 particles showing ribosome-like features were then selected for 3D
refinement using an E. coli 70S ribosome as a reference structure (Supplementary
Fig. 4a). 3D classification was then performed, resulting in 317,095 particles con-
taining P-site tRNA and RF2 (Supplementary Fig. 4b) that were further selected for
focus sorting on the RF2 (Supplementary Fig. 4c). Focus sorting yielded a major
population of 154,405 particles containing stoichiometric amounts of BrfA, P-site
tRNA, RF2, which after CTF-refinement and a final round of 3D refinement
produced a final cryo-EM reconstruction with an average resolution of 3.06 A
according to FSCg 145 criterion (Supplementary Fig. 4d). The final cryo-EM maps
were sharpened by dividing the maps by the modulation transfer function of the
detector and applying an automatically determined negative B factor in Relion 3
(ref. ©1). The final cryo-EM map was also filtered according to local resolution
using SPHIRE®?.

Molecular modeling of the BrfA-RF2-ns70S complex. The molecular model for
the ribosomal proteins and rRNA core was based on the molecular model from the
recent cryo-EM reconstructions of the E. coli 70S ribosome (PDB ID 6H4N®3 and
5MGP3°). The models were rigid body fitted into the cryo-EM density map using
UCSF Chimera followed by refinement in Coot®*. Proteins L1, L10, L11 protein,
and the L7/L12 stalk were not included in the final model due to the poor quality of
density in the final cryo-EM map. For B. subtilis RF2, a homology model was
generated using HHPred® based on an E. coli RF2 template (PDB ID 5SMGP%9).
Domains 1 and 3 of RF2 were less well-resolved due to high flexibility (Supple-
mentary Fig. 4e) and therefore only the backbone was modeled. Residues 2-55 of
BrfA were built de novo using an HHPred model® as an initial starting point to
determine the placement of the central helical regions. The complete atomic model
of the BrfA-RF2-ms70S complex was manually adjusted using Coot®* and refined
with phenix real_space_refine for cryo-EM®* using restraints obtained by phenix
secondary_structure_restraints®%. The model refinement and statistics of the
refined model were obtained using MolProbity® (Supplementary Table 1).

Figure preparation. Figures showing electron densities and atomic models were
generated using either UCSF Chimera, UCSF ChimeraX®’ or PyMol (Version 1.8
Schrédinger). The comparison of BrfA with full-length mRNA (PDB ID 4V5E*S),
ArfA (PDB ID 5MGP3%, 5MDV?, 5U9F#), RF2q5eq (PDB ID 1GQE), and RF2op
(PDB ID 4V5E*8) was obtained by alignment of the 16S rRNAs from the respective
structures using PyMol (Version 1.8 Schrodinger).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.
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Data availability

The cryo-EM map of the BrfA-RF2-ns70S complex is available through the EMDB code
EMD-10353 and the associated molecular model is deposited in the Protein Data Bank
with the entry code 6SZS (https://doi.org/10.2210/pdb6SZS/pdb). The data that support
the findings of this study are available from the corresponding authors on request. The
source data underlying Figs 2c, d and 3a-c and Supplementary Figs 1a, 1b and 3 are
provided as a Source Data file.

Received: 2 August 2019; Accepted: 7 November 2019;
Published online: 27 November 2019

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Youngman, E. M., McDonald, M. E. & Green, R. Peptide release on the
ribosome: mechanism and implications for translational control. Annu. Rev.
Microbiol. 62, 353-373 (2008).

Petry, S., Weixlbaumer, A. & Ramakrishnan, V. The termination of
translation. Curr. Opin. Struct. Biol. 18, 70-77 (2008).

Ito, K. et al. Nascentome analysis uncovers futile protein synthesis in
Escherichia coli. PLoS ONE 6, €28413 (2011).

Buskirk, A. R. & Green, R. Ribosome pausing, arrest and rescue in bacteria and
eukaryotes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372, https://doi.org/
10.1098/rstb.2016.0183 (2017).

Keiler, K. C. & Feaga, H. A. Resolving nonstop translation complexes is a
matter of life or death. J. Bacteriol. 196, 2123-2130 (2014).

Inada, T. The ribosome as a platform for mRNA and nascent polypeptide
quality control. Trends Biochem. Sci. 42, 5-15 (2017).

Joazeiro, C. A. P. Ribosomal stalling during translation: providing substrates
for ribosome-associated protein quality control. Annu. Rev. Cell Dev. Biol. 33,
343-368 (2017).

Himeno, H., Nameki, N., Kurita, D., Muto, A. & Abo, T. Ribosome rescue
systems in bacteria. Biochimie 114, 102-112 (2015).

Giudice, E. & Gillet, R. The task force that rescues stalled ribosomes in
bacteria. Trends Biochem. Sci. 38, 403-411 (2013).

Keiler, K. C., Waller, P. R. & Sauer, R. T. Role of a peptide tagging system in
degradation of proteins synthesized from damaged messenger RNA. Science
271, 990-993 (1996).

Karzai, A. W., Susskind, M. M. & Sauer, R. T. SmpB, a unique RNA-binding
protein essential for the peptide-tagging activity of SsrA (tmRNA). EMBO J.
18, 3793-3799 (1999).

Brunel, R. & Charpentier, X. Trans-translation is essential in the human
pathogen Legionella pneumophila. Sci. Rep. 6, 37935 (2016).

Thibonnier, M., Thiberge, J. M. & De Reuse, H. Trans-translation in
Helicobacter pylori: essentiality of ribosome rescue and requirement of protein
tagging for stress resistance and competence. PLoS ONE 3, €3810 (2008).
Huang, C., Wolfgang, M. C., Withey, J., Koomey, M. & Friedman, D. L.
Charged tmRNA but not tmRNA-mediated proteolysis is essential for
Neisseria gonorrhoeae viability. EMBO J. 19, 1098-1107 (2000).

Chadani, Y. et al. Ribosome rescue by Escherichia coli ArfA (YhdL) in the
absence of trans-translation system. Mol. Microbiol. 78, 796-808 (2010).
Chadani, Y., Ito, K., Kutsukake, K. & Abo, T. ArfA recruits release factor 2 to
rescue stalled ribosomes by peptidyl-tRNA hydrolysis in Escherichia coli. Mol.
Microbiol. 86, 37-50 (2012).

Chadani, Y. et al. trans-translation-mediated tight regulation of the expression
of the alternative ribosome-rescue factor ArfA in Escherichia coli. Genes
Genet. Syst. 86, 151-163 (2011).

Schaub, R. E,, Poole, S. J., Garza-Sanchez, F., Benbow, S. & Hayes, C. S.
Proteobacterial ArfA peptides are synthesized from non-stop messenger
RNAs. J. Biol. Chem. 287, 29765-29775 (2012).

Chadani, Y., Ono, K., Kutsukake, K. & Abo, T. Escherichia coli YaeJ protein
mediates a novel ribosome-rescue pathway distinct from SsrA- and ArfA-
mediated pathways. Mol. Microbiol. 80, 772-785 (2011).

Handa, Y., Inaho, N. & Nameki, N. Yae]J is a novel ribosome-associated
protein in Escherichia coli that can hydrolyze peptidyl-tRNA on stalled
ribosomes. Nucleic Acids Res. 39, 1739-1748 (2011).

Gagnon, M. G,, Seetharaman, S. V., Bulkley, D. & Steitz, T. A. Structural basis
for the rescue of stalled ribosomes: structure of YaeJ bound to the ribosome.
Science 335, 1370-1372 (2012).

Feaga, H. A,, Viollier, P. H. & Keiler, K. C. Release of nonstop ribosomes is
essential. MBio 5, 01916 (2014).

Feaga, H. A., Quickel, M. D., Hankey-Giblin, P. A. & Keiler, K. C. Human cells
require non-stop ribosome rescue activity in mitochondria. PLoS Genet. 12,
1005964 (2016).

Goralski, T. D. P., Kirimanjeswara, G. S. & Keiler, K. C. A new mechanism for
ribosome rescue can recruit RF1 or RF2 to nonstop ribosomes. MBio 9,
https://doi.org/10.1128/mBio.02436-18 (2018).

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

Muto, A. et al. Requirement of transfer-messenger RNA for the growth of
Bacillus subtilis under stresses. Genes Cells 5, 627-635 (2000).

Claessen, D. et al. Control of the cell elongation-division cycle by shuttling
of PBP1 protein in Bacillus subtilis. Mol. Microbiol. 68, 1029-1046 (2008).
Koo, B. M. et al. Construction and analysis of two genome-scale deletion
libraries for Bacillus subtilis. Cell Syst. 4, 291-305 €297 (2017).

Qi, L. S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-
specific control of gene expression. Cell 152, 1173-1183 (2013).

Chiba, S. et al. Recruitment of a species-specific translational arrest module to
monitor different cellular processes. Proc. Natl. Acad. Sci. USA 108,
6073-6078 (2011).

Shimizu, Y. et al. Cell-free translation reconstituted with purified components.
Nat. Biotechnol. 19, 751-755 (2001).

Fujiwara, K., Ito, K. & Chiba, S. MifM-instructed translation arrest involves
nascent chain interactions with the exterior as well as the interior of the
ribosome. Sci. Rep. 8, 10311 (2018).

Ito, K., Uno, M. & Nakamura, Y. A tripeptide ‘anticodon’ deciphers stop
codons in messenger RNA. Nature 403, 680-684 (2000).

Ito, K. & Chiba, S. Arrest peptides: cis-acting modulators of translation. Annu.
Rev. Biochem. 82, 171-202 (2013).

Ito, K., Mori, H. & Chiba, S. Monitoring substrate enables real-time regulation
of a protein localization pathway. FEMS Microbiol. Lett. 365, https://doi.org/
10.1093/femsle/fny109 (2018).

Chiba, S., Lamsa, A. & Pogliano, K. A ribosome-nascent chain sensor of
membrane protein biogenesis in Bacillus subtilis. EMBO J. 28, 3461-3475
(2009).

Chiba, S. & Ito, K. MifM monitors total YidC activities of Bacillus subtilis,
including that of YidC2, the target of regulation. J. Bacteriol. 197, 99-107
(2015).

James, N. R., Brown, A., Gordiyenko, Y. & Ramakrishnan, V. Translational
termination without a stop codon. Science 354, 1437-1440 (2016).

Zeng, F. et al. Structural basis of co-translational quality control by ArfA and
RF2 bound to ribosome. Nature 541, 554-557 (2017).

Huter, P. et al. Structural basis for ArfA-RF2-mediated translation termination
on mRNAs lacking stop codons. Nature 541, 546-549 (2017).

Korostelev, A. et al. Crystal structure of a translation termination complex
formed with release factor RF2. Proc. Natl. Acad. Sci. USA 105, 19684-19689
(2008).

Santos, N., Zhu, J., Donohue, J. P., Korostelev, A. A. & Noller, H. F. Crystal
structure of the 70S ribosome bound with the Q253P mutant form of release
factor RF2. Structure 21, 1258-1263 (2013).

Huter, P., Muller, C., Arenz, S., Beckert, B. & Wilson, D. N. Structural basis for
ribosome rescue in bacteria. Trends Biochem. Sci. 42, 669-680 (2017).

Ma, C. et al. Mechanistic insights into the alternative translation termination
by ArfA and RF2. Nature 541, 550-553 (2017).

Demo, G. et al. Mechanism of ribosome rescue by ArfA and RF2. Elife 6,
€23687 (2017).

Shimizu, Y. ArfA recruits RF2 into stalled ribosomes. J. Mol. Biol. 423,
624-631 (2012).

Kurita, D., Chadani, Y., Muto, A., Abo, T. & Himeno, H. ArfA recognizes the
lack of mRNA in the mRNA channel after RF2 binding for ribosome rescue.
Nucleic Acids Res. 42, 13339-13352 (2014).

Zeng, F. & Jin, H. Peptide release promoted by methylated RF2 and ArfA in
nonstop translation is achieved by an induced-fit mechanism. RNA 22, 49-60
(2016).

Weixlbaumer, A. et al. Insights into translational termination from the
structure of RF2 bound to the ribosome. Science 322, 953-956 (2008).
Zhou, J., Korostelev, A., Lancaster, L. & Noller, H. F. Crystal structures of 70S
ribosomes bound to release factors RF1, RF2 and RF3. Curr. Opin. Struct. Biol.
22, 733-742 (2012).

Lytvynenko, L. et al. Alanine tails signal proteolysis in bacterial ribosome-
associated quality control. Cell 178, 76-90 €22 (2019).

Laurberg, M. et al. Structural basis for translation termination on the 70S
ribosome. Nature 454, 852-857 (2008).

Korostelev, A., Zhu, J., Asahara, H. & Noller, H. F. Recognition of the amber
UAG stop codon by release factor RF1. EMBO J. 29, 2577-2585 (2010).
Sohmen, D. et al. Structure of the Bacillus subtilis 70S ribosome reveals the
basis for species-specific stalling. Nat. Commun. 6, 6941 (2015).

Youngman, P., Perkins, J. B. & Losick, R. A novel method for the rapid
cloning in Escherichia coli of Bacillus subtilis chromosomal DNA adjacent to
Tn917 insertions. Mol. Gen. Genet. 195, 424-433 (1984).

Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several
hundred kilobases. Nat. Methods 6, 343-345 (2009).

Peters, J. M. et al. A comprehensive, CRISPR-based functional analysis of
essential genes in bacteria. Cell 165, 1493-1506 (2016).

Montague, T. G., Cruz, J. M., Gagnon, J. A., Church, G. M. & Valen, E.
CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing.
Nucleic Acids Res. 42, W401-W407 (2014).

| (2019)10:5397 | https://doi.org/10.1038/s41467-019-13408-7 | www.nature.com/naturecommunications 13


https://doi.org/10.2210/pdb6SZS/pdb
https://doi.org/10.1098/rstb.2016.0183
https://doi.org/10.1098/rstb.2016.0183
https://doi.org/10.1128/mBio.02436-18
https://doi.org/10.1093/femsle/fny109
https://doi.org/10.1093/femsle/fny109
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

58. Labun, K., Montague, T. G., Gagnon, J. A., Thyme, S. B. & Valen, E.
CHOPCHOP v2: a web tool for the next generation of CRISPR genome
engineering. Nucleic Acids Res. 44, W272-W276 (2016).

59. Li, X. et al. Electron counting and beam-induced motion correction enable
near-atomic-resolution single-particle cryo-EM. Nat. Methods 10, 584-590
(2013).

60. Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol.
193, 1-12 (2016).

61. Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure
determination in RELION-3. Elife 7, e42166 (2018).

62. Moriya, T. et al. High-resolution single particle analysis from electron cryo-
microscopy images using SPHIRE. J. Vis. Exp., https://doi.org/10.3791/55448
(2017).

63. Beckert, B. et al. Structure of a hibernating 100S ribosome reveals an inactive
conformation of the ribosomal protein S1. Nat. Microbiol 3, 1115-1121
(2018).

64. Adams, P. D. PHENIX: a comprehensive Python-based system
formacromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66,
213-221 (2010).

65. Soding, J., Biegert, A. & Lupas, A. N. The HHpred interactive server for
protein homology detection and structure prediction. Nucleic Acids Res. 33,
W244-W248 (2005).

66. Chen, V. B. et al. MolProbity: all-atom structure validation for
macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66,
12-21 (2010).

67. Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in
visualization and analysis. Protein Sci. 27, 14-25 (2018).

Acknowledgements

We thank Dr. Hyouta Himeno of Hirosaki University for the B. subtilis ssrA mutant strain;
Dr. Jiff Novac¢ek (CEITEC, Brno, Czech Republic) for help with high-resolution cryo-EM
data collection; Dr. Allen Buskirk for discussion; and Yuko Sumino, Saori Amano, Sakika
Otani, Toru Irie, S. Rieder, and C. Ungewickell for expert technical support. We are also
thankful to the National BioResource Project for providing the BKE strain library. This
work was supported by grants from MEXT and JSPS Grant-in-Aid for Scientific Research
(Grant No. 25291006 and 16H04788 to S.C., 26116008 to S.C. and K.I,, 19K16044 to K.F.)
and the Deutsche Forschungsgemeinschaft (SPP1879-W13285/5-2 to D.N.W.).

Author contributions

N.S.-C., K.F,, and S.C. performed biochemical experiments and C.M., B.B., and D.N.W.
performed structural experiments. N.S.-C., K.F., K.I, S.C, CM,, B.B,, and D.N.W.
designed experiments, analyzed data, and were involved in writing the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-
019-13408-7.

Correspondence and requests for materials should be addressed to D.N.W. or S.C.

Peer review information Nature Communications thanks the anonymous reviewers for
their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
5

Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2019

14 | (2019)10:5397 | https://doi.org/10.1038/s41467-019-13408-7 | www.nature.com/naturecommunications


https://doi.org/10.3791/55448
https://doi.org/10.1038/s41467-019-13408-7
https://doi.org/10.1038/s41467-019-13408-7
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

Supplementary Information

Release factor-dependent ribosome rescue by BrfA in the
Gram-positive bacterium Bacillus subtilis

Shimokawa-Chiba et al.



Supplementary Tables

Supplementary Table 1. Data collection, refinement and validation statistics

BrfA-RF2-ns70S

Data collection
Particles

Microscope

Detector

Pixel size (A)
Defocus range (um)
Voltage (keV)
Electron dose (e'/ A?)

Model composition
Protein residues
RNA nucleotides
Hydrogens

Refinement

Resolution (A)

Map sharpening B factor (A?)
CC map/model

Validation: proteins

Poor rotamers (%)
Ramachandran outliers (%)
Bad backbone bonds (%)
Bad backbone angels (%)

Validation: RNA

Correct sugar puckers (%)

Good backbone conformations (%)
Bad bonds (%)

Bad angels (%)

Scores
MolProbity
Clash score, all atoms

154,405
Titan Krios
Falcon II1
1.065
0.4-2.2

300

6100
4646

-73.0479
0.85

0.54

0.01
0.05

79.88
0.00
0.02

2.0

3.06

0.22

99.31

1.74 (88" percentile)
4.98 (93" percentile)




Supplementary Table 2. E. coli strains

Name Description Reference
BL21(DE3) F, ompT, hsdS.(r. m.), gal(Acl 857, ind1, Sam7, nin5, lacUV5-T7genel), dcm(DE3) Promega
NAE970 BL21(DE3)/pNAR913 (Bs_prfA-his) This study
NAE972 BL21(DE3)/pNAR915 (Bs_prfB-his) This study
NAE973 BL21(DE3)/pNAR916 (brfA62-his.) This study
NAE982 BL21(DE3)/pNAR917 (his-arfA(2-60)) This study
NAE1003 BL21(DE3)/pCH2307 (Bs_prfB(GAQ)-his.) This study
NAE1017  BL21(DE3)/pNAR939 (Bs_pfrB(SPT)-his) This study

Supplementary Table 3. B. subtilis strains and construction

Construction

Name Description Reference Host DNA

PY79 wT ref. '

BKE23540  AbrfA::erm ref. 2

BKE33600 AsmpB:.:erm ref. 2

D1 AssrA::cat ref. ®

TSB2 AssrA::cat::tet This study SCB2582 pCm::Tc

NAB1196  thrC::P,,4 GFPQerm This study PY79 pNAR778

NABI1198  thrC::P,, GFP-nsQerm This study PY79 pNAR780

NAB1200  AssrA::cat, thrC::P,, GFPQerm This study SCB2582 pNAR778

NAB1202  AssrA::cat, thrC::P,, GFP-nsQerm This study SCB2582 pNAR780

NABI1280  AsmpB::erm This study PY79 BKE33600

NAB1281  AyesZ::loxP, AlacA::loxP, AsmpB.::erm This study KFB793 NAB1233

NAB1282  AsmpB::loxP This study NAB1280 pMK2

NABI1283  AyesZ::loxP, AlacA::loxP, AsmpB::loxP This study NABI1281 pMK2

NAB1286  AyesZ::loxP, AlacA::loxP, AsmpB::loxP / pNARS813 This study NABI1283 pNARS13

NAB1298  AbrfA::erm This study PY79 BKE23540

NAB1346  AbrfA::kan This study PY79 pNAR903

NABI1509  amyE::P,p rbsmi-GFP-brfA-FLAGQlacZQcat This study PY79 pNAR1036

NABI510  amyE::P,psrbsm1-GFP-brfA62-FLAGQlacZQcat This study PY79 pNAR1037

NABIS11  amyE::P,psrbsm1-GFP-brfA(no_term)-FLAGQlacZQcat This study PY79 pNAR1038
AsmpB::erm, amyE::P,,; .

NABIsl4 " rf]_ GEP-brfAFLAG iacZ loat VEEmM - This study  NAB1280  pNAR1036
AsmpB::erm,,amyE.::P,,; .

NABIsIS " rf]_ GEP-brf Ayaz- FL"% OlaczOcat This study NABI1280 pNAR1037
AsmpB::erm,,amyE.::P,, .

NABIS16 rbsmp I-GFP-bka);noit:;frAn/[)-FLA GQlacZQcat This study  NABI280  pNARI038

SCBS851 amykE::Ppg rbsmi1-GFP-mifM35-flag-yidC2 -lacZ8cat ref. 4

SCB2582  AssrA::cat This study PY79 D1

SCB4122  amyE: P, rbsml GFP-brfA62-FLAGQcat This study PY79 pCH2240

SCB4126 AsmpB::erm, amyE::P,p rbsml GFP-brfA62-FLAGScat This study NABI1280 pCH2240

SCB4141 amyE::P,ps rbsm1-GFP-brfA-FLAGQcat This study PY79 pCH2239

SCB4142  amyE:: P, rbsm1-GFP-brfA(no_term)-FLAGQcat This study PY79 pCH2241

SCB4144  AsmpB::erm, amyE::P,n rbsm1-GFP-brfA-FLAGQcat This study NAB1280 pCH2239




AsmpB::erm, amyE::Pping

B414 Thi AB12 H2241
S¢ > rbsm1-GFP-brfA(no_term)-FLAGQcat isstudy N 80 pC
SCB4153 lacA::Py4 dCas9Qerm, amyE: P, ., sSgRNA-smpBQcat This study KFB946 pCH2264
SCB4191 lacA:: Py, dCas98erm, AbrfA::kanR This study KFB946 NAB1346
amyE::P,,, sgRNA-smpBQcat, lacA::Py,, dCas9Qerm, .

SCB4194 AbrfA - kanR This study SCB4191 pCH2264
amyE::P,,, SgRNA-ssrAQcat, lacA: P,y dCas9Qerm, .

SCB4199 AbrfA - kanR This study SCB4191 pCH2302

SCB4205 lacA::Pyu4 dCas9Qerm, amyE: P, .o sSgRNA-ssrAQcat This study KFB946 pCH2302
amyE: P, SgRNA-smpBQcat, lacA: Py, dCas9Qerm, .

B421 s . Th B4194 H22
SCBAZLS  pprfd:ckanR, thrC::PbrfA brfAQspe isstudy  SCB4194  pCH2293

amyE::P,., SgRNA-ssrAScat, lacA::P,,; dCas98erm, .

B421 s 4 Th B41 H22
SCBA2NT - kanR, thrC--PhrfA brfA Qspe isstudy  SCB4199 - pCH2293
SCB4218 amyE::Pping rbsm1-GFP-mifM35-flag-yidC2 ’-lacZS2cat, This study ~ SCB851 TSB2

ssrA::cat::tet
. DNA

KFB792 AlacA: :loxP-kanR This study PY79

fragment
KFB793 AyesZ::loxP, AlacA::loxP This study KYBI112 KFB792,

pMK2
KFB9%46 lacA::Pyyy dCas9Qerm This study PY79 pIMP1
KFB948 AyesZ::loxP, lacA::Pxyl-dCas9Qerm This study KYB112  pJMPI

B . pKY13,
KYBI112 AyesZ::loxP This study PY79 PMK?2
Supplementary Table 4. Plasmids

Name Description Source
pCm::Tc Cm::Tc ref. °
pDG1664 thrC::erm integration vector ref. ®
pET28b vector Novagen
pLOSS* Ts vector ref.
pyqjG21 amyE:: Pypy mifM-yidC2-gfp ref. *
pIMP1 lacA::Pxyl dCas9Qerm ref.

PNAR756 P4 yidC2 This study
pPNAR758 P14 yidC2-non_stop This study
pPNAR778 thrC::Pyyy GFPQerm This study
pPNAR780 thrC::Pyyy GFP-nsQerm This study
pPNARS09 Pypac sSmpB This study
pPNARS13 Pgpac smpB-FLAG This study
pPNARS869 brfA-hisg This study
pNARS879 amyk:: Py rbsm1-GFP-brfAQcat This study
pNAR901 upstream region of brfA4 This study
pNAR903 AbrfA::kan This study
pNAR913 Bs prfA-hisg This study
pNARI15 Bs prfB-hisg This study



pPNAR916
pPNAR917
pNAR939
pNAR1036
pNAR1037
pNAR1038
pCH735
pCH747
pCH805
pCHI13
pCH1141
pCHI1142
pCHI1517
pCH2238
pCH2239
pCH2240
pCH2241
pCH2264
pCH2293
pCH2302
pCH2307
pKIG855
pMK2
pKY13

pNR1

brfA62-hisg

hisg-arfA(2-60)

Bs pfrB(SPT)

amyE::
amyE::
amyE::
amyE::
amyE:
amyE::

amyE::

Pipps ¥bsm1-GFP-brfA-FLAGQlacZQcat
P iy rbsm1-GFP-brfA62-FLAGQlacZQcat
Poipps ¥bsm1-GFP-brfA(no_term)-FLAGQlacZQcat

P iy mifM-lacZQcat

Py mifM-gfp Qcat

Puipy GFP-mifM35-yidC2"-lacZQcat

Poipps vbsm 1-GFP-mifM35-yidC2'-lacZQcat

thrC:: Py, Qerm

kanQspc

amyE::

PyqzJ rbsm1-GFP-mifM35-95-lacZS2cat

hisg-Bs_prfB

amyE::
amyE::
amyE::

amyE::

Puipg rbsm1 GFP-brfA-FLAGQcat
Puipg rbsm1 GFP-brf462-FLAGSQcat
Pips vbsm1 GFP-brfA(no_term)-FLAGQcat

Pyeq SgRNA-smpBQcat

thrC:: Py, brfAQspc

amyE::

Pyeq SgRNA-ssrAQcat

Bs_prfB(GAQ)-hiss

amyE::

Pyeq SgRNA-1fpQcat

Pspac cre

amyE::

AyesZ::loxP-kan-loxP

P4 rbsm1 mifM-GFPQcat

This study
This study
This study
This study
This study
This study
ref. *
This study
ref. *
ref. *
ref. ’
ref. '
ref. '
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study

This study

Supplementary Table 5. Primers

Name

Sequence

SP1 TATTTTTAAGGGGGAAATCACATAAAAAGGAGGAGAACAAAA
SP2 GAAGCTTATCGAATTCACTAGTTCAGCCATGATAAACAAGACTG
SP3 AGTCTTGTTTATCATGGCTGAACTAGTGAATTCGATAAGCTTC

SP4 TTTTGTTCTCCTCCTTTTTATGTGATTTCCCCCTTAAAAATA

SP5 GTGAAAAATAAAAGCAACCCCGTGCAAAAAG

SP6 GGGGTTGCTTTTATTTTTCACCGACTCAGTAAGAGC

SP7 GAACAAAATTGTTAAAAACATATGGATCCAAGCTTACTAGTAGT

SP8 GAAGCTTATCGAATTCACTAGTTCACGGCCGTTTGTATAGTTCATC



SP9 GATGAACTATACAAACGGCCGTGAACTAGTGAATTCGATAAGCTTC
SP10 ACTACTAGTAAGCTTGGATCCATATGTTTTTAACAATTTTGTTC

SP11 CTTTTTGCACGGGGTTGCTTTTATTCGGCCGTTTGTATAGTTCATC
SP12 GATGAACTATACAAACGGCCGAATAAAAGCAACCCCGTGCAAAAAG
SP13 AGGCCGCGGATGCATAGGCCTTTAGAGAGAGGAGGTTCTGGC

SP14 TGGGGATCCGCATGCACTAGTTTAGAAGCCTTTTTGACTGTC

SP15 GACAGTCAAAAAGGCTTCTAAACTAGTGCATGCGGATCCCCA

SP16 GCCAGAACCTCCTCTCTCTAAAGGCCTATGCATCCGCGGCCT

SP17 CTACAAAGACGATGACGACAAGTAAACTAGTGCATGCGGATCCC
SP18 GTCGTCATCGTCTTTGTAGTCGAAGCCTTTTTGACTGTCTCT

SP19 CTTTAAGAAGGAGATATACCATGGCAAAAAGCCAAGCGAAAAAG
SP20 CTCAGTGGTGGTGGTGGTGGTGGGCGGCTTTTTGGGGCACAAAAAAATC
SP21 GATTTTTTTGTGCCCCAAAAAGCCGCCCACCACCACCACCACCACTGAG
SP22 CTTTTTCGCTTGGCTTTTTGCCATGGTATATCTCCTTCTTAAAG

SP23 CCGCGGGGTGCAACAGGATCCGCAAAAAGCCAAGCGAAAAAG

SP24 CTGGTCTGATCGGATCTCTAGGCGGCTTTTTGGGGCACAAAAAAATC
SP25 GATTTTTTTGTGCCCCAAAAAGCCGCCTAGAGATCCGATCAGACCAG
SP26 CTTTTTCGCTTGGCTTTTTGCGGATCCTGTTGCACCCCGCGG

SP27 GATTATACCGAGGTATGAAAACCTTGGTCTGATAATGGGATTTAC
SP28 TCTGTAAAGGTCCAATTCTCGGTGATCACTCCCTTTTTTATTTTC

SP29 CGAGAATTGGACCTTTACAGA

SP30 TTTTCATACCTCGGTATAATC

SP31 TTACTGGATGAATTGTTTTAGCATTCATCTCTATTGTTTCTT

SP32 TTAGACATCTAAATCTAGGTAGTTTTATACATAGAAACAGCA

SP33 TACCTAGATTTAGATGTCTAAAAAGC

SP34 CTAAAACAATTCATCCAGTAA

SP35 TAACTTTAAGAAGGAGATATACCAATGTTAGACCGTTTAAAATCAA
SP36 TTATTAGTGGTGGTGGTGGTGGTGACCTTCCGACTGCTGAAGCTTG
SP37 CACCACCACCACCACCACTAATAATGAGATCCGGCTGCTAACAAAG
SP38 TGGTATATCTCCTTCTTAAAGTTA

SP39 TAACTTTAAGAAGGAGATATACCAATGGAATTATCAGAAATTAGAGC
SP40 TTATTAGTGGTGGTGGTGGTGGTGTGAAAGCTTAGAACGCAGGTAG
SP41 CATACAGCAGTTGATGATAAGCACCACCACCACCACCACTGAG

SP42 CATGAATGGTCTTCGGTTTCCG

SP43 CGGAAACCGAAGACCATTCATG

SP44 CTCAGTGGTGGTGGTGGTGGTGCTTATCATCAACTGCTGTATG



SP45
SP46
SP47
SP48
SP49
SP50
SP51
SP52
SP53
SP54
SP55
SP56
SP57
SP58
SP59
SP60
SP61
SP62
SP63
SP64
SP65
SP66
SP67
SP68
SP69
SP70
SP71
SP72
SP73
SP74
SP75
SP76
SP77
SP78
SP79
SP80

GGCCTGGTGCCGCGCGGCAGCAGTCGATATCAGCATACTAAA
GGCTTTGTTAGCAGCCGGATCTTAGTGATTTACTTTCTTGCCACT
GATCCGGCTGCTAACAAAGCC

GCTGCCGCGCGGCACCAGGCC
GTGCGGATCTCACCAACAGATTCATCAGGCCGCCGC
GCGGCGGCCTGATGAATCTGTTGGTGAGATCCGCACAAG
GGCCTGGTGCCGCGCGGCAGCGAATTATCAGAAATTAGAGCAG
AGGTCAAGAGACCCCCTAAAGTCCGC
AGGGGGTCTCTTGACCTCGAATCAAAGGA
GGCTTTGTTAGCAGCCGGATCTTATGAAAGCTTAGAACGCAG
TATAAAGACGACGACGACAAATAGAGATCCGATCAGACCAGT
GTCGTCGTCGTCTTTATAGTCGGCGGCTTTTTGGGGCACAAAAAAATC
GTCGTCGTCGTCTTTATAGTCCTTATCATCAACTGCTGTATG
ACCATACAGCAGTAGACGACAAAGACTTCTTCGTGCCCCAAAAAG

TCGTCTACTGCTGTATGGTCGTACGGGTTCTTATGCTTCCGTTTAT

GCTCGTGTTGTACAATAAATGTAGGAATCCTTAAGGTTTACGGTTTTAGAGCTAGAAATAGC
AAGTTAAAATAAGGC

ACATTTATTGTACAACACGAGCC
TTCGATAAGCTTCTAGGATCCCATGCAGCTCTTACAGCAGTG
GGCCAAAAAACTGCTGCCTTCCTAGGCGGCTTTTTGGGGCAC
GAAGGCAGCAGTTTTTTGGCCTTC

GGATCCTAGAAGCTTATCGAA

GCTCGTGTTGTACAATAAATGTGTGTTTACGAGATCGCCTCTGTTTTAGAGCTAGAAATAGC
AAGTTAAAATAAGGC

GGCGCGGGCGCACAGCACGTCAATACGACG
GCCCGCGCCGCTTGCACGGTA
GATCCTAGAAGCTTATCGAATTCC
GCAGTCTAGACTCGAGTAAGG
CCTTACTCGAGTCTAGACTGCTCGAATTCTCATGTTTGACAG
GGAATTCGATAAGCTTCTAGGATCCGATCA
TTAACTAATAAGGAGGACAAACATGTCCAATTTACTGACCGT
CCGGTTATTATTACTAATCGCCATCTTCCA
CGATTAGTAATAATAACCGGGCAGGCCATG
TTGTCCTCCTTATTAGTTAATCAATTCAAGCTTAATTGTTAT
AAGCTTGGCGTAATCATGGTC
GAGCTCGAATTCCTGCAGCTG
GGTACCCGGGGATCCACTAGT
GCATGCCTCGAGGGGCCGCCC



SP81

CAGCTGCAGGAATTCGAGCTCATCTCACCCGCCACTGCTTTT

SP82  ACTAGTGGATCCCCGGGTACCCACATTTTCACCTTTCTTTGA

SP83  GGGCGGCCCCTCGAGGCATGCTTCTTTGTATCGAATCAGCTT

SP84  GACCATGATTACGCCAAGCTTTTTTCCGGTCCGTTTTGACAG

SP85  GTGAATTCGATAAGCTTCTAGAAGCTAGGAGGAGGATGTGATGACAATGTTTGT

SP86  CACACAAATTAAAAACTGGTCT

SP87  AGACCAGTTTTTAATTTGTGTG

SP88  TAGAAGCTTATCGAATTCAC

SP89  GGTACCCGGGGATCCACTAGT

SP90  GCATGCCTCGAGGGGCCGCCC

SP91  CAGCTGCAGGAATTCGAGCTCTAAATTGACAATGCAGTCCAG

SP92  ACTAGTGGATCCCCGGGTACCATTCTCCTCCTTGTTCTCTTA

SP93  GGGCGGCCCCTCGAGGCATGCGCTGATGCTCCGCTCGATATG

SP94  GACCATGATTACGCCAAGCTTATTTCCATGCCCATCGCCATC

SP95  TAACTTTAAGAAGGAGGGAGATATACCAATGACAATGTTTGTGGGATC

SP96  TTTGTATAGTTCATCCATGCC

SP97  TTATTATAAAAGAAGAGAACC

spog  GAAATTAATACGACTCACTATAGGGAGACCACAACGGTTTCCCTCTAGAAATAATTTTGTTT
AACTTTAAGAAGGAG

SP99  TAACTTTAAGAAGGAGGATTTTAGAATGACCATGATTACGGATTCA

SP100  AAAACTGGTCTGATCGGATCTTTATTTTTGACACCAGACCAACTG

SP10I  AGATCCGATCAGACCAGTTTT

SP102  AAATCCTCCTTCTTAAAGTTACTATTTGTCGTCGTCGTCTTT

?EIED CGGCGGTCTAATCAACATAC

Supplementary Table 6.
Plasmid Combinations of primers and template DNAs for plasmid construction

pNAR756 SP1,2 /PY79 DNA SP3, 4 /pCH1141

PNAR758 | SP5, 6 /pPNART756

pNAR778 SP7, 8 /pNR1 SP9, 10 /pPNAR756

pNAR780 SP7, 11 /pNR1 SP10, 12 /pPNAR758

pNARS09 | SP13,14  /PY79 DNA SP15,16  /pLOSS*

pNARS13 SP17, 18 /pPNARS09

pNARS869 SP19, 20 /PY79 DNA SP21, 22 /pET28b

pNARS79 | SP23,24  /PY79 DNA SP25,26  /pCH913

PNARO901 SP27, 28 /PY79 DNA SP29, 30 /pCH1142




pNARI03
pNAR913
pNARI15
pNAR916
pNAR917
pNAR939
pNAR1036
pNAR1037
pNAR1038
pCH2238
pCH2239
pCH2240
pCH2241
pCH2264
pCH2293
pCH2302
pCH2307
pKIG855
pMK2
pKY13

pNRI1

SP31,
SP35,
SP39,
SP41,
SP45,

SP49,

SP99,
100
SP99,
100
SP99,
100

SP51,
SP55,
SP55,
SP58,
SP60,
SP62,
SP61,
SP67,
SP69,
SP73,
SP77,

SP85,

32

36

40

42

46

50

52

56

57

59

61

63

66

68

70

74

78

86

/PY79 DNA
/PY79 DNA
/pCH2238
/PNARSG9
/IM109 DNA
/PNARO1S

/pCHI517
/pCHI517

/pCHI517

/PY79 DNA
/pNARS79
/pNARS79
/pCH2239
/pKIG855
/PY79 DNA
/pKIG855
/pNARI15
/synthetic DNA
/P1 phage DNA
/pCH1142

/pCH747

SP33, 34
SP37, 38
SP37, 38
SP43, 44

SP42, 47

SP101,
102
SP101,
102
SP101,
102

SP53, 54

SP64, 65

SP71,72
SP75, 76
SP79, 80

SP87, 88

/PNAROO]
/pET28b
/pET28b
/PNARSG9

/pET28b

/pCH2239
/pCH2240

pCH2241

/PY79
DNA

/pDG1731

/pDG1662
/pLOSS*
/pCH1142

/pCH1130

SP43, 48

SP47, 48

SP81, 82

/pET28b

/pET28b

/PY79 DNA

SP86, 87

/PY79 DNA

Supplementary Table 7. PCR templates and primers for preparation of in

vitro translation templates

Ist PCR 2nd PCR
Gene name
Primers template Primers template
GFP-ns SP95 SP96 pCHS805 SP98 | SP96 1st PCR product
GFP-mifM SP95 SP97 pCHS805 SP98 | SP97 1st PCR product




Supplementary Figures
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i FT—— 25 ] - L GFP-MifM-tRNA
SSIA + A + A + A - = — GFP-MifM
28— NN——— — GFP
2/ §\
& & 7
& é? 123456 78

Supplementary Fig. 1 | Nascent-chain mediated ribosome stalling is refractory to the
ribosome rescue systems in B. subtilis. a, MifM is refractory to trans-translation. Cellular
accumulation of GFP-MifM was examined in the wild type and ssrA-deficient mutant strains.
GFP (lanes 1, 2), GFP-ns (lanes 3, 4) and GFP-MifM (lanes 5, 6) were expressed in the wild
type (odd number) and AssrA (even number) strains of B. subtilis, separated by SDS-PAGE and
detected with anti-GFP immunoblotting. b, Inability of BrfA to induce RF2 hydrolysis of the
elongation-arrested MifM-tRNA. In vitro translation using Bs hybrid PURE system with RF2
was directed by the gfp-ns (lanes 1-4) or gfp-mifM (lanes 5-8) template in the presence (lanes 3,
4,7, 8) or the absence (lanes 1, 2, 5, 6) of purified BrfA62-His,. The translation products were
analyzed by anti-GFP immunoblotting as described above.
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Supplementary Fig. 2 | Multiple sequence alignments of BrfA, ArfA, and ArfT homologs.
a-c, Multiple sequence alignments of (a) BrfA, (b) ArfA and (c¢) ArfT generated with Clustal
W and Boxshade with residues shaded that are identical (black) or similar (grey). Below each
alignment, the consensus sequence with capital letters indicating 100% conservation and
lower-case letters indicating less conservation). The known secondary structure is shown for
B. subtilis BrfA (2D-BrfA) in (a) and E. coli ArfA (2D-ArfA) in (b), as well as interaction
regions between (a) BrfA and (b) ArfA with the ribosome (16S rRNA, yellow, 23S rRNA, grey
and uS12, violet) and RF2 (orange).
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Supplementary Fig. 3 | Recycling of non-stop ribosomes by BrfA and RF2.

In vitro translation assays using the E. coli PURE systemARF123 kit (lacking all RFs) were
performed with truncated non-stop nlpD DNA template, in the presence of BrfA, wildtype
B. subtilis RF2 (BsRF2) and the RF2-GGP mutant (BsRF2-GGP) alone (lanes 3-5), or BsRF2
(20 pmol) with increasing concentrations (12-100 pmol) of BrfA (lanes 6-8), or BrfA
(100 pmol) in the presence of 100 pmol BsRF2-GGP (lane 9). As a positive control, reactions
were performed with E. coli ArfA and RF2 (EcRF2), as described previously (lane 2) =. A
negative control was also performed where reactions lacked all RFs and rescue factors (lane 1).
Western blotting of NuPAGE gels using an antibody against the HA-tag present in the
N-terminus of the NlpD peptide detected the presence of the non-stop NlpD-peptidyl-tRNA
(33 kDa) and released NlpD peptide (9 kDa). The asterisk (*) indicates a mysterious band that
cross-reacts with the HA-antibody, but is also present in the negative control and was therefore
not examined further. As expected, the negative control (lane 1), as well as reactions performed
in the presence of BrfA, BsRF2 or BsSRF2GGP alone (lanes 3-5), show a strong band for the
NlpD-peptidyl-tRNA and no evidence for the released NIpD peptide. By contrast, the positive
control with ArfA and EcRF2 (lane 2), as well as the reactions with BsRF2 and increasing
concentrations of BrfA (lanes 7 and 8) shows no NlpD-peptidyl-tRNA and only the presence of
released NIpD peptide. As expected, substitution of wildtype BsRF2 with the inactive
BsRF2-GGP mutant led to a loss the band for the released NIpD peptide and the presence of
NlpD-peptidyl-tRNA was restored (lane 9). Source data are provided as a Source Data file.
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Supplementary Fig. 4 | In silico sorting of the BrfA-RF2-ns70S complex.

a, After particle picking and extensive 2D classification, the complete dataset of
389,381 particles was initially aligned against a P-site tRNA containing E. coli 70S
ribosome. b, Following 3D classification for 200 rounds in Relion, five classes were
generated. The majority (317,095 particles; 81.43%) of particles were found in class 1
and contained the BrfA-RF2-ns70S complex. The second major (41,102 particles;
10.55%) class 2 contained a fully programmed ribosome, but without the presence of
RF2. In addition, three minor classes 4-6 (class 3; 1,508 particles; 0.38 %, class 4;
28,095 particles; 7.21%; class 5; 1,581 particles; 0.4%) containing damaged and/or
poorly aligning particles were observed. ¢, The 317,095 particles from the class 1 were
further sorted using a focus sorting mask around RF2, resulting in four additional
classes, of which class 3 (154,405 particles, 46.86%) contained stoichiometric
occupancy of P-site tRNA, RF2 and BrfA. Class 3 was then refined to yield a (d) final
reconstruction of the BrfA-RF2-ns70S complex with an average resolution of 3.15 A
(0.143 FSC). e-f, Isolated electron density for BrfA and RF2 e, shown as grey mesh
with fitted model and (f) colored according to local resolution
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Supplementary Fig. 5 | Interactions of BrfA and ArfA on the ribosome. a, Interaction of the
N-terminus of BrfA (blue) with RF2 (orange), uS12 (violet), helix 44 (h44) of the 16S rRNA
(yellow) and helix 69 (H69) and H71 of the 23S rRNA (grey). b, Same view as (a), but for the
ArfA-RF2-70S complex, with ArfA (red), RF2 (yellow) and 16S rRNA (pink) =. ¢, Overlay of
(a) and (b). d-e, Transverse section of the 30S subunit (yellow) to reveal the mRNA channel
showing a superimposition of full-length mRNA (FL-mRNA, cyan) with truncated non-stop
mRNA (TR-mRNA, teal), P-site tRNA (green) and surface representations of (d) BrfA (blue)
and (e) ArfA (red) = f, Overlay of (d) and (e) with cartoon representations of BrfA (blue) and
ArfA (red). g-h, Superimposition of full-length mRNA (FL-mRNA, cyan) with truncated
non-stop mRNA (TR-mRNA, teal), P-site tRNA (green) and transparent surface representations
of (g) BrfA (blue) and (h) ArfA (red) . The first (+1), second (+2) and third (+3) nucleotides of
the A-site codon of the FL-mRNA are indicated. i, Overlay of (g) and (h) with cartoon
representations of BrfA (blue) and ArfA (red). j-k, Interaction of the C-terminus of (j) BrfA
(blue) and (k) ArfA (red) = with the 16S rRNA with potential hydrogen bonds indicated with
yellow dashed lines. 1, Overlay of (j) and (k).
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Supplementary Fig. 6 | Interaction of BrfA and ArfA with RF2 on the ribosome.

a-b, Interaction between (a) BrfA (blue) and RF2,,, (orange) in the BrfA-RF2-ns70S complex
compared with (b) ArfA (red) and RF2,., (yellow) in the ArfA-RF2-ribosome complex =. The
approximate positions of the decoding center (DC) and peptidyltransferase center (PTC) on the
ribosome are indicated. ¢, Superimposition of (a) and (b). d-e, The binding position of (d)
RF2,. (orange) and BrfA (blue) in the BrfA-RF2-ns70S complex, compared with (e) RF2,,
(lime) in a canonical termination complex . The approximate positions of the decoding center
(DC) and peptidyltransferase center (PTC) on the ribosome are indicated. f, Superimposition of
(d) and (e). g-h, Superimposition of the SPF motif of RF2,, (lime) and UGA codon of the
mRNA (cyan) (PDB ID 4V5E, ®) with (g) the SPF motif of RF2,,, (orange) and BrfA (blue),
and (h) with the SPF motif of RF2,,, (yellow) and ArfA (red) =. i, Overlay of (g) and (h) with
BrfA (blue) and ArfA (red) as cartoon representations.
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Supplementary Fig. 7 | BrfA induces an open conformation of RF2 on the ribosome.

a, Interaction between Trp307 (W307, which is equivalent to B. subtilis Trp318 (W318)) of the
switch region of Thermus thermophilus RF2,, (lime) and A1492 of the 16S rRNA (green)
during decoding of the UGA stop codon of the mRNA (cyan; PDB ID 4V5E"). W318 in the
switch loop of RF2 (RF2,.,, orange) observed upon BrfA binding is superimposed and arrowed.
b, Same view as in (a), showing the conformation of the switch loop of RF2,, (orange) and
A1492/A1493 (pale yellow) when BrfA (blue) is present. ¢, Same view as in (a) and (b),
showing the conformation of A1492/A1493 in comparison to (a) and the switch loop in the
presence of ArfA (red, PDB ID SMVGP®). (d) Open conformation observed for RF2,,, (orange)
when in complex with BrfA on the ribosome, compared with (e) the closed conformation of
RF2,.. (dark blue, PDB ID 1GQE*) when not bound to the ribosome. f, Superimposition of (d)
and (e). g, Superimposition of the conformation of helix a7 of RF2 from the crystal structure of
the closed form of RF2,., with RF2,, (lime) and RF2,, (orange), with BrfA (blue) shown for
reference. h-i, Same view as in (g) showing the conformation of helix a7 of RF2,
superimposed with (h) RF2,,,, and ArfA (red) and (i) including RF2,,, (orange) and BrfA (blue).
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Supplementary Fig. 8 | Basis for the species-specificity of BrfA

a-b, Potential species-specific interactions between BrfA (blue) and B. subtilis RF2 (orange)
compared with a homology model for B. subtilis RF1 (green) aligned to the BrfA-RF2-ns70S. a,
The BrfA interface with 4 and 5 strands of B. subtilis RF2 (orange) consists of hydrophobic
residues Val197 and Phe216, which are substituted by Ala and Thr, respectively in B. subtilis
RF1. b, The BrfA interface with the switch loop and helix a7 of B.subtilis RF2 (orange)
consists of multiple residues that are distinct B. subtilis RF2 and RF1, for example, G311, K314
and W318 (seen in (a)) of RF2 that are substituted with Lys, Val and Arg, respectively, in
B. subtilis RF1. ¢, Potential sequence differences between B. subtilis RF2 (orange) and E. coli
RF2 (green) that could come within close proximity of BrfA and could explain the
species-specific activity of BrfA. d, Sequence alignments of RF1 and RF2 for the corresponding
regions shown in (a)-(c).
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Structural basis for ArfA-RF2-mediated translation
termination on mRNAs lacking stop codons

Paul Huter'*, Claudia Miiller'#, Bertrand Beckert"?, Stefan Arenz!, Otto Berninghausen', Roland Beckmann' &

Daniel N. Wilson?

In bacteria, ribosomes stalled on truncated mRNAs that lack a
stop codon are rescued by the transfer-messenger RNA (tmRNA),
alternative rescue factor A (ArfA) or ArfB systems'. Although
tmRNA-ribosome and ArfB-ribosome structures have been
determined®”’, how ArfA recognizes the presence of truncated
mRNAs and recruits the canonical termination release factor RF2
to rescue the stalled ribosomes is unclear. Here we present a cryo-
electron microscopy reconstruction of the Escherichia coli 70S
ribosome stalled on a truncated mRNA in the presence of ArfA
and RF2. The structure shows that the C terminus of ArfA binds
within the mRNA entry channel on the small ribosomal subunit,
and explains how ArfA distinguishes between ribosomes that bear
truncated or full-length mRNAs. The N terminus of ArfA establishes
several interactions with the decoding domain of RF2, and this
finding illustrates how ArfA recruits RF2 to the stalled ribosome.
Furthermore, ArfA is shown to stabilize a unique conformation
of the switch loop of RF2, which mimics the canonical translation
termination state by directing the catalytically important GGQ
motif within domain 3 of RF2 towards the peptidyl-transferase
centre of the ribosome. Thus, our structure reveals not only how
ArfA recruits RF2 to the ribosome but also how it promotes an
active conformation of RF2 to enable translation termination in
the absence of a stop codon.

Premature transcription termination or truncation of a full-length
mRNA can lead to mRNAs lacking a stop codon. Ribosomes translating
these truncated mRNAs become trapped at the 3’ end of the mRNA
because translation elongation or termination cannot occur. In bacteria,
these stalled ribosomes are recognized and recycled by the tmRNA
rescue system (reviewed in ref. 1). A subset of bacteria, such as E. coli,
can survive without the tmRNA system owing to the presence ArfA®.
The synthetic lethality arising from inactivation of both the tmRNA
and ArfA rescue systems can be alleviated by overexpression of ArfB°.
Collectively, these studies illustrate the physiological importance that
the rescue of stalled ribosomes has for cell viability. Structural studies
have revealed how ribosomes stalled on truncated mRNA are recog-
nized and recycled by the tmRNA-SmpB complex®’ or ArfB>. In the
case of ArfB, the empty mRNA channel of the ribosome is probed
by the C-terminal helix, positioning the N-terminal catalytic GGQ-
containing domain at the peptidyl-transferase centre (PTC) to trigger
peptidyl-tRNA hydrolysis®. Similarly, in the tmRNA-SmpB complex,
the C-terminal helix of SmpB recognizes the empty mRNA channel
and positions the tRNA-like domain of tmRNA at the PTC to enable
peptidyltransfer®. Translation then continues on the mRNA-like
domain of tmRNA, which encodes a short peptide targeting the
incompletely translated nascent polypeptide chain for degradation®.
Biochemical studies have demonstrated that ArfA represents a back-up
system for tmRNA'®!!. The arfA mRNA contains a stem-loop that
acts as a transcription terminator as well as a substrate for RNase I1I

cleavage!®!2. In the presence of tmRNA, the short ArfA product pro-
duced from the truncated arfA mRNA is tagged by tmRNA and tar-
geted for degradation. However, in the absence of tmRNA, the short
ArfA product is not degraded and assumes the role of recycling ribo-
somes stalled on truncated mRNAs'®!'!. The full-length E. coli ArfA
protein is 72 amino acids long and contains a C-terminal hydrophobic
region that leads to aggregation of the protein in vivo'®. Shorter
forms of ArfA that result from truncated arfA mRNAs and lack the
terminal 17-18 amino acids retain full recycling activity'®!!. ArfA
alone is insufficient to recycle ribosomes stalled on truncated mRNAs
and requires the assistance of the canonical termination release factor
RF2 to hydrolyse the peptidyl-tRNA on the ribosome!*'* (Fig. 1a~c).
A mechanistic understanding of how ArfA recognizes ribosomes
stalled on truncated mRNAs, recruits RF2 and stabilizes the active
conformation of RF2 has so far been hampered by the lack of an
ArfA-RF2-ribosome structure.

To generate a suitable complex for structural analysis, in vitro trans-
lation reactions were performed with a truncated mRNA in the pres-
ence and absence of ArfAA17 (lacking residues 56-72) and/or RF2.
As reported previously'>!4, the presence of both ArfA and RF2 was
required for efficient recycling of the peptidyl-tRNA (Extended Data
Fig. 1). By contrast, replacing wild-type RF2 with the catalytically
inactive RF2-GAQ mutant (in which the tripeptide Gly-Gly-Gln is
converted to Gly-Ala-Gln) prevented peptidyl-tRNA hydrolysis and
recycling (Extended Data Fig. 1), as described previously'®. Cryo-
electron microscopy (cryo-EM) analysis of the ArfAA17-RF2-GAQ-
stalled ribosomal complex (hereafter referred to as ArfA-RF2-SRC)
and in silico sorting of this dataset yielded a major subpopulation
of ribosomal particles that contained stoichiometric occupancy of
P-tRNA, ArfA and RF2 (Extended Data Fig. 2). Subsequent refine-
ment resulted in a final reconstruction of ArfA-RF2-SRC (Fig. 1d)
with an average resolution of 3.1 A (Extended Data Fig. 3 and
Extended Data Table 1). The electron density for most of ArfA was
well-resolved with local resolution mostly within the range of 3.0 to
3.5 A (Fig. 1e), enabling a molecular model to be built de novo for resi-
dues 2-46 of ArfA (Fig. 1f, g). The lack of density for the C-terminal
9 amino acids of ArfA prevented these residues from being included
in the final model.

The ArfA-binding site is located on the 30S subunit within the decoding
A-site, where it is sandwiched between helices 18 (h18), h34 and h44 of
the 16S rRNA and ribosomal protein S12 (Fig. 2a). ArfA establishes two
contact sites with the 3-hairpin of S12, namely, from the N terminus
in which potential hydrogen bonds are possible between Thr38 of S12
and the backbone of Arg3 of ArfA, and between two highly conserved
arginines (Arg26 and Arg28) of ArfA and Lys43 and Ser46 of S12
(Fig. 2b and Extended Data Fig. 3f). The large interaction surface that
ArfA establishes with the 30S subunit may explain how ArfA can interact
with the ribosome in the absence of RF2 (ref. 15). The C terminus of

1Gene Center, Department of Biochemistry and Center for integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universitat Miinchen, Feodor-Lynen-Strasse 25, 81377 Munich,
Germany. ?Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Pl. 6, 20146 Hamburg, Germany.

*These authors contributed equally to this work.
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Figure 1 | Cryo-EM structure of ArfA-RF2-SRC. a-c, Schematic
representation of ArfA-RF2-mediated rescue of ribosomes stalled on
truncated mRNA (TR-mRNA). d, Transverse section of the cryo-EM
map of ArfA-RF2-SRC, highlighting the 30S (yellow) and 508 (grey)
subunits, P-tRNA (green), TR-mRNA (blue), RF2 (orange) and ArfA

N o o &~ oW

ArfA extends from the decoding A-site into the mRNA entry channel,
where it occupies the space that would be normally house the 3’ end
of a full-length mRNA (Fig. 2¢). The lack of density for the C-terminal
residues of ArfA suggests that they are less important for binding,
which is consistent with their poor conservation across ArfA from
different species®!2. By contrast, two positively charged motifs, KKGK
(residues 33-36) and RKGK (residues 41-44), are highly conserved
and provide multiple interaction opportunities with the surrounding
negatively charged rRNA forming the mRNA channel (Fig. 2d).
We note that mutation of any single residue in ArfA, including within
the K(R)KGK motifs, to cysteine is reported to have little effect on the
recycling activity of ArfA'®, suggesting a redundancy in the impor-
tance of the interactions of ArfA with the ribosome. Biochemical
studies have demonstrated that the efficiency of ArfA-RF2-mediated
ribosome recycling decreases with increasing length of the 3’ end of the
mRNA extending into the A-site!*!°. Specifically, recycling occurred,

(red). e, Electron density for ArfA, coloured according to local resolution.
f, Electron density (mesh) with molecular model for ArfA (red). g, Model
for ArfA with features highlighted corresponding to the schematic of the
ArfA protein, including helical region (green), 3-strand (blue) and KKGK
(orange) and RKGK (yellow) motifs.

albeit with reduced efficiency, when the mRNA was extended by up
to 3-4 A-site nucleotides, whereas almost no recycling was observed
on artificially stalled ribosomes with mRNAs extended by six or more
A-site nucleotides'*1°. Consistently, superimposition of a full-length
mRNA and the ArfA binding position suggests that only three nucleo-
tides can be accommodated in the A-site without notable clashes with
ArfA (Fig. 2e).

The location of the C terminus of ArfA within the mRNA channel
of the 30S subunit observed in the Arf-RF2-SRC structure is also com-
patible with hydroxyl-radical probing experiments performed in the
absence of RF2 (ref. 15; Extended Data Fig. 4), suggesting that ArfA
initially uses a similar conformation to monitor the vacant mRNA
channel. By contrast, 16S rRNA cleavages indicate that the N terminus
of ArfA is flexible and only adopts a defined conformation contacting
h18 upon binding of RF2 (ref. 15), as observed in the Arf-RF2-SRC
structure (Extended Data Fig. 4). The ArfA-RF2-SRC structure also

Figure 2 | Interaction of ArfA with the small subunit. a, Overview of
ArfA (red) and 30S (16S rRNA, grey) interaction partners; h18 (tan),

h34 (olive), h44 (dark grey), S12 (blue) and P-tRNA (green). b, Contacts
between ArfA (red) and S12 (blue). ¢, Superimposition of ArfA (red) and
truncated mRNA (TR-mRNA, blue), with full-length mRNA (FL-mRNA;

./;
o d

cyan, PDB code 4V6F)% within the mRNA entry channel (grey).

d, Interaction of the KKGK (orange) and RKGK (yellow) motifs of ArfA
with surrounding rRNA (grey ribbons). e, As in ¢, but highlighting the
relative position of ArfA (red) with the A-site codon of the FL-mRNA
(cyan).
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TR-mRNA

Figure 3 | Interaction of ArfA with RF2 on the ribosome. a, Overview

of the interaction surface of ArfA (red) with RF2 (orange). d, domain.

b, ¢, ArfA (red) donates a 3-strand to augment the 3-sheet of RF2 (orange).
In ¢, potential hydrogen bonds are shown with dashed yellow lines.

d, Superimposition of the relative positions of the RF2 on the ribosome
when decoding a stop codon (RF2p; blue, PDB code 4V5E)'® or interacting

provides insight into how ArfA recruits RF2 despite the absence of a
stop codon in the mRNA. ArfA has a large interaction interface with
RF2, encompassing the central portion (residues 15-31) of ArfA that
contacts the distal end of a-helix a7 of domain 3 as well as the 34-35
strands of domain 2 of RF2 (Fig. 3a, b and Extended Data Fig. 3g). The
nature of the backbone interactions between ArfA and RF2 suggest
that residues 27-30 of ArfA donate a small 3-strand to the 3-sheet of
domain 2/4 (Fig. 3b, ¢). The overall position of RF2 in ArfA-RF2-SRC
is similar to that observed during canonical translation termination!”3
(Fig. 3d), although a slight shift in the position of the decoding domain
2/4 is observed. The shift affects the loop between the 34-35 strands of
domain 2 bearing the SPF (E. coli 205-Ser-Pro-Phe-207) motif, which
is involved in the specificity of recognition of the first and second posi-
tions of the UGA/UAA stop codons!”®1 (Fig. 3e, f). Importantly, the
structure illustrates that ArfA does not interact with the SPF motif and
therefore does not directly mimic the presence of a stop codon (Fig. 3f).

with ArfA (RF2aa, orange), with P-tRNA (green) shown for reference.

e, Interaction of the SPF motif of RF2,, with the UAA stop codon of the
full-length mRNA (cyan) in the A-site'®. f, Superimposition of RF20p
from e with ArfA (red) and RF2 (RF2 ., orange) from the ArfA-RF2-SRC
structure.

This observation is consistent with a previous report that demonstrates
that mutations in the SPF motif impairing RF2 termination activity do
not affect ArfA-RF2-mediated recycling activity'®. Furthermore, RF1
mutants bearing the SPF instead of PAT motif, conferring termination
activity at UGA, are inactive in the ArfA-mediated recycling system!?.
An analysis of the ArfA-RF2 interaction network, together with E. coli
RF1/RF2 sequence alignments (Extended Data Fig. 5) and models for
E. coli RF1-ArfA on the ribosome (Extended Data Fig. 6), identified
several regions in domain 2 of RF2 (Q133, V198 and G210-F221) and
within the switch loop (K307-S321) that could potentially explain the
specificity of ArfA for RF2.

During canonical termination, recognition of the stop codon by
RF1 and RF2 is proposed to stabilize a rearranged conformation of
the switch loop, which directs domain 3 into the PTC?*?!, The switch
loop conformation is stabilized by specific interactions with A1492
and A1493, which, in the case of RF2, involves stacking interactions

RF2,,1,

C=_ AT
o

Figure 4 | ArfA stabilizes a unique conformation of the RF2 switch
loop. a, Interaction between W319 (W307 in Thermus thermophilus

RF2) of the switch region of RF2,, and A1492 of the 16S rRNA (yellow)
during decoding of the UAA stop codon of the mRNA (cyan; PDB code
4V5E)!8. The switch loop conformation of RF2 (RF2,¢s, orange) observed
upon ArfA binding is superimposed and arrowed. b, Same view as in

a, showing the distinct conformation of the switch loop of E. coli RF2
(orange) and A1492/A1493 (pale blue) when ArfA (red) is present. ¢, ArfA
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(red) induces conformational changes within the switch loop (yellow) of
RF2 (orange), leading to an extension (purple) of a-helix a7 of the RF2
domain 3 by 2-3 helical turns. d, e, Superimposition of ¢ with the switch
loop and a-helix a7 conformation in the crystal structure of the closed
form of RF2 (RF2jesed; cyan, PDB code 1GQE)?* (d) and during canonical
termination'® (e). f, Superimposition of domain 3 of RF2,, (blue)'® and
RF24,fa (orange), with P-tRNA (green) shown for reference.
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of W319 (E. coli numbering) of RF2 with A1492 of the 16S rRNA!"!8
(Fig. 4a). In the ArfA-RF2-SRC structure, the conformation of A1492
and A1493 are distinct from those observed during canonical transla-
tion termination, and the presence of ArfA precludes the interaction
between the switch loop and A1492 (Fig. 4a, b). Instead, ArfA itself
appears to stabilize a distinct conformation of the switch loop in RF2
that extends the a-helix a7 of domain 3 of RF2 by three helical turns
when compared to the crystal structure of the free (closed) form of RF2
(ref. 22) (Fig. 4c, d, Supplementary Video 1). The extension of helix a7
is analogous to that observed during canonical translation termination
with RF2 (refs 17, 18) (Fig. 4e, Supplementary Video 2). As observed
for canonical termination'”'%, the open conformation of RF2 on the
ribosome in the presence of ArfA also directs the GGQ motif of domain
3 into the PTC (Fig. 4f), although the density for the GAQ motif is
poorly resolved, possibly owing to the inactivity of the mutation. The
A18T mutation that led to the discovery of ArfA does not interfere with
ribosome binding® or RF2 recruitment, but prevents peptidyl-tRNA
hydrolysis'. This can be rationalized on the basis of the ArfA-RF2-SRC
structure since the A18T mutation is not located at the ArfA-ribosome
or ArfA-RF2 interfaces, but would rather perturb the conformation of
the N terminus of ArfA and thereby interfere indirectly with the correct
placement of domain 3 of RF2 at the PTC (Extended Data Fig. 7).

In conclusion, our findings indicate that ArfA not only provides an
interface to recruit RF2 to the ribosome in the absence of a stop codon,
but also, by interacting with the switch loop of RF2, induces confor-
mational changes that lead to the accurate placement of domain 3 at
the PTC. Structurally, the bacterial recycling systems are similar in
that they use tmRNA-SmpB®’, ArfB® or ArfA (Extended Data Fig. 8)
to monitor the mRNA channel and release the nascent polypeptide
before ribosome splitting. This contrasts with the eukaryotic recycling
of ribosomes stalled on truncated mRNAs, in which ribosome splitting
by Dom34-Hbs1 and ABCEI1 occurs before nascent polypeptide chain
release??%,

Online Content Methods, along with any additional Extended Data display items and
Source Data, are available in the online version of the paper; references unique to
these sections appear only in the online paper.
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METHODS

No statistical methods were used to predetermine sample size. The experiments
were not randomized and investigators were not blinded to allocation during
experiments and outcome assessment.

Protein expression and purification. Escherichia coli RF2 was expressed from a
pET11a vector incorporting a C-terminal hexa-histidine tag (His) for purification
and detection purposes. An inactive RF2-GAQ mutant was generated by site-
directed mutagenesis. E. coli ArfA without 17 C-terminal amino acids (ArfAA17)
was cloned into pBAD vector with a N-terminal Hiss and 3C protease cleavage
site. The wild-type RF2, RF2-GAQ and ArfAA17 proteins were over-expressed
in E. coli BL21 (DE3) at 37°C for 1.5h after induction with 1 mM IPTG or 0.2%
arabinose as required. Cells were collected and the pellet was re-suspended in lysis
buffer (50 mM NaH,PO42H,0, 300 mM NaCl, 5mM imidazole, pH 7.5). Lysis was
performed using a microfluidizer (Microfluidics M-110L) by passing cells three
times at 18,000 p.s.i. The cell debris was removed upon centrifugation and the pro-
teins were purified from the supernatant by His-tag affinity chromatography using
Ni-NTA agarose beads (Clontech). The bound proteins were washed with lysis
buffer containing 10 mM imidazole and then eluted with lysis buffer containing
250 mM imidazole. The proteins were purified by size-exclusion chromatography
using HiLoad 16/600 Superdex 75 (GE Life Sciences) in gel filtration buffer (50 mM
HEPES, pH 7.4, 50 mM KCl, 100 mM NaCl, 2% glycerol, 5mM (3-mercaptoethanol).
The proteins were concentrated using Amicon Ultra-4 Centrifugal Filter Units
(Merck Millipore), Ultracel-3 for ArfAA17 and Ultracel-30 for wild-type RF2 and
RF2-GAQ.

Template preparation for in vitro translation. Truncated nlpD template
containing an N-terminal Hiss and a HA tag was amplified from pET21b-g,nlpD*
using primers binding to pET21b upstream of the T7-promotor (GATCGAGA
TCTCGATCCCGCG) and to nucleotides 133-159 of nlpD (AATCAACA
TACCAGAATTAGTATTTGC). PCR products were purified via spin columns
(Qiagen).

ArfA peptidyl-tRNA recycling assays. The recycling activity of the purified
ArfAA17 and RF2 (wild-type and GAQ mutant) was monitored by independent
triplicate experiments using PURExpress ARF123 In Vitro Protein Synthesis Kit
(NEB E6850S) (Extended Data Fig. 1). Reactions of 6 il were performed according
to the manual protocol by mixing 250 ng of truncated nlpD PCR template, 5 1M of
anti-ssrA oligo, 2pM of ArfAA17 and/or wild-type RF2 or RF2-GAQ. The reac-
tions were incubated at 37 °C for 15 min with shaking at 1,000 r.p.m. The translation
reactions were stopped by adding 6l of tricine sample buffer (200 mM Tris-HCI
pH 6.8, 40% glycerol, 2% SDS, 0.04% Coomasssie Blue G-250) and then applied
to 16.5% tricine-SDS-PAGE gels. The products were detected by western blotting
using anti-haemagglutinin-peroxidase (Roche 11667475001) at 1:1,000 in 2.5%
milk/TBS (2.5% (w/v) skim milk powder, 20 mM Tris, pH 7.5, 150 mM NaCl).
Generation of ArfA-RF2-SRC. In vitro translation was carried out using
PURExpress In Vitro Protein Synthesis Kit (NEB 6800). The translation reaction
(750l in total) was prepared according to the protocol of the PURExpress In Vitro
Protein Synthesis Kit supplemented with 5M anti-ssrA oligo. Translation was
started by adding the truncated nlpD PCR product at 37 °C for 20 min, shaking
at 1,000 r.p.m. The ribosomes were first isolated from the in vitro reaction mix by
centrifugation through a sucrose cushion (50 mM HEPES KOH pH 7.2, 250 mM
potassium acetate, 25 mM magnesium acetate, 750 mM sucrose, 0.1% DDM) for
180 min at 72,000g using a TLA120.2 rotor (Beckman Coulter). The pellet was
resuspended in buffer B250 (50 mM HEPES KOH pH 7.2, 250 mM potassium
acetate, 25 mM magnesium acetate, 0.1% DDM) and the stalled ribosomal com-
plexes (SRC) were isolated using Talon cobalt-chelate affinity resin (Clontech).
SRCs bound to the Talon matrix by the N-terminal Hisg tag of NIpD were washed
with buffer B500 (50 mM HEPES KOH pH 7.2, 500 mM potassium acetate, 25 mM
magnesium acetate,, 0.1% DDM) and eluted using buffer B250i (50 mM HEPES
KOH pH 7.2, 250 mM potassium acetate, 25 mM magnesium acetate, 250 mM
imidazole, 0.1% DDM). The eluted SRC was loaded onto a linear sucrose gradient
(10-40% (w/v) sucrose in B250 buffer) for 18 h at 43,000g in a SW28 rotor
(Beckman Coulter). The isolated 70S peak was pelleted by centrifugation for 3h
at 139,000g using a Ti70.1 rotor (Beckman Coulter). The pellet was re-suspended
in SRC buffer (50 mM HEPES pH 7.2, 250 mM potassium acetate, 10 mM magne-
sium acetate, 0.05% DDM). The purified SRC was then incubated together with
a2.5x excess of ArfAA17 and RF2-GAQ mutant for 5min at 37 °C before being
applied to EM grids.

Cryo-electron microscopy and single particle reconstruction. Five microlitres
(4.5 OD) of E. coli ArfA-RF2-SRC at ODs¢0 nm Was applied to 2 nm pre-coated
Quantifoil R3/3 holey carbon supported grids and vitrified using the Vitrobot
Mark IV (FEL Holland). Data collection was performed using EM-TOOLS (TVIPS
GmbH) on a Titan Krios transmission electron microscope equipped with a Falcon
1T direct electron detector (FEI, Holland) at 302kV at a pixel size of 1.084 A and a

defocus range of 0.7-2.2 um. Ten frames (dose per frame of 2.5e~ A~2) were aligned
using Motion Correction Software?’. Power-spectra, defocus values and astigma-
tism were determined with CTFIND4 software®. Micrographs showing Thon
rings beyond 3.5 A were manually inspected for good areas and power-spectra
quality. Automatic particle picking was performed using SIGNATURE? and single
particles were processed using RELION 1.4 (ref. 30). 227,608 particles were first
subjected to 3D refinement using E. coli 70S ribosome as reference structure’!
and movie particle extraction was performed as described before® (Extended Data
Fig. 2). The 227,608 polished particles were finally subjected to 3D classification
and refinement using FREALIGN resulting in a final reconstruction of 3.11 A
(0.143 FSC) average resolution containing 69,089 particles (Extended Data Figs 2
and 3). Local resolution was finally calculated using ResMap™2.

Molecular modelling and refinement of the ArfA-RF2-SRC. The molecular
model for the ribosomal proteins and rRNA of the 70S ribosome of the ArfA-RF2-
SRC was based on the molecular model from the recent cryo-EM reconstruction
of the E. coli 70S ribosome (PDB code 5AFI)*. The molecular model was initially
fitted as a rigid body into the cryo-EM density map of the corresponding stalled
complex using UCSF Chimera®*. Owing to flexibility and poor density, the L1, L10,
L11 protein and the L7/L12 stalk were not included in the final model. For E. coli
RF2, a homology model was generated using HHPred*® based on a template from
T. thermophilus RF2 (PDB code 4V5E)!8. Owing to flexibility and poor density,
the GAQ motif, domain I, and the linker between domains 3 and 4 of RF2 were
based on PDB code 2WH1. Residues 2-46 of ArfAA17 were built de novo using
an HHPred model as an initial starting point in terms of placement of the central
helical region. The complete atomic model of the ArfA-RF2-SRC was manually
adjusted using Coot> and refined using phenix.real_space_refine”, with restraints
obtained by phenix.secondary_structure_restraints*’. The model and refinement
statistics are presented in Extended Data Table 1. To reduce the clash score the
model was refined using REFMAC?®. The statistics of the refined model were
calculated using Molprobity®® and the validation of the model was performed as
previously described*’.

Figure preparation. Figures showing electron densities and atomic models were
generated using either UCSF Chimera®* or PyMol Molecular Graphic Systems
(version 1.8 Schrodinger).

Data availability. The cryo-electron microscopy map for the ArfA-RF2-SRC has
been deposited in the Electron Microscopy Data Bank (EMDB) with the accession
code EMD-3508. The respective coordinates for electron-microscopy-based model
of the ArfA-RF2-SRC are deposited in the Protein Data Bank (PDB) under the
accession code 5SMGP. All other data are available from the corresponding author
upon reasonable request.
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+ - - + + | ArfA
- + - + - |RF2
- - + - + | RF2-GAQ
—— s | ~€—nlpD_ns*P-tRNA

“ ~€—nlpD_ns

Extended Data Figure 1 | Recycling of ribosomes stalled on truncated
mRNA by ArfA and RF2. In vitro translation assay of the truncated

nlpD template was performed in the presence of ArfA, RF2 or RF2-GAQ,
revealing a peptidyl-tRNA band (nlpD_ns*P-tRNA), whereas the peptidyl-
tRNA was absent and free nlpD peptide (nlpD_ns) was observed when the
reaction was performed with ArfA and RF2. Replacing wild-type RF2 with
the inactive RF2-GAQ mutant led to the reappearance of the peptidyl-
tRNA band and loss of the free nlpD peptide.
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Alignment, refinement,
movie processing
(Relion)

Reference
70S ribosome

227,608 particles

‘3D Classification (100 rounds Frealign)

Class 1: Class 3: Class 4:
29,837 18,271 15,435
13.1% 8.0% 6.8%

3D Classification (50 rounds Frealign)

Class 1:| P-tRNA

Class 2:
69,089 | RF2 54,305
49.8% | ArfA 39.2%

Extended Data Figure 2 | Classification of the ArfA-RF2-SRC. The
complete dataset of 227,608 particles was initially aligned against a vacant
E. coli 70S ribosome, refined with RELION using 3D auto-refine and the
movie particles were extracted. The polished particles were then subjected
to a 3D refinement and 3D classification using FREALIGN. The class

2 (138,582 particles) resulting from the 100 rounds of 3D classification

E-tRNA Class 3:
P-tRNA 15,187
RF2 11.0%

ArfA

Final reconstruction
69,089 particles
3.1A

with 3 x binned images using a ribosomal mask was then further refined
and classified with 2x binned images. The remaining 69,089 particles
containing ArfA-RF2-SRC were then 3D-refined, resulting in a final
reconstruction of 3.1 A (0.143 Fourier shell correlation (FSC)) average
resolution.
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of the final refined cryo-EM map of the ArfA-RF2-SRC with separated
densities for small (yellow) and large (grey) ribosomal subunit, as well as
ArfA (red), RF2 (orange) and P-tRNA (green). b, Same view as in a but
coloured according to local resolution. ¢, Transverse section of b showing
local resolution in the core of the ribosomal subunits. d, FSC curve of the
refined final map, indicating that the average resolution of the ArfA-RF2-SRC
is 3.1 A (at 0.143). e, Fit of models to maps. FSC curves calculated between

the refined model and the final map (blue), with the self- and cross-
validated correlations in orange and black, respectively. Information
beyond 3.2 A was not used during refinement and preserved for validation.
f, g, Selected examples illustrating the quality of fit of the molecular
models to the unsegmented cryo-EM map (grey mesh) for the ArfA (red)
interaction with S12 (blue), related to Fig. 2b (f), and with RF2 (orange),
related to Fig. 3¢ (g).
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ribosome. a-d, Hydroxyl-radical probing data'® of ArfA in complex with
RF2 on the ribosome reveal that tethers linked to the N-terminal region
of ArfA, for example, residues S2 and R3 (magenta), cleave the 16S rRNA
within the vicinity of helices h18, whereas tethers linked to the C-terminal
region of ArfA, such as residues 33-34/38-39 and 46 (teal), cleave the

16S rRNA within the vicinity of helices h34 (ref. 15). These findings are

in excellent agreement with the position of ArfA (red) within the ArfA-
RF2-SRC structure reported here. In the overview panels a and ¢, P-tRNA
(green) is shown for reference.
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Extended Data Figure 5 | Sequence alignment of E. coli RF1 and RF2 The pink boxes indicate regions of RF2 that form an interface with ArfA,
with secondary structure assignments. Sequence alignment of E. coli RF1 ~ with residues in bold predicted to prevent interaction of RF1 with ArfA.
and RF2 generated using ClustalX with secondary structure (helices and Asterisk (*) or colon (:) and full stop (.) indicate a single, fully conserved
strands) and domain (I-IV) assignments based on the crystal structures residue or residues with strong (>0.5 in the Gonnet PAM 250 matrix) and
of E. coli RF2 (ref. 22), except for the switch loop (yellow) and extension weakly (>0.5) similar properties, respectively.

to helix a7 (purple), which was based on the ArfA-RF2-SRC structure.
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Extended Data Figure 6 | Potential specificity determinants for ArfA-
mediated ribosome recycling. a, b, ArfA (red) and E. coli RF2 (orange)
compared to homology model of E. coli RF1 (blue) aligned to RF2 in the
ArfA-RF2-SRC. a, The ArfA interface with 34 and 35 strands of E. coli RF2
(orange) consists of hydrophobic residues V198, F217 and F221, which

are mutated to Gly, Ala and Ala, respectively, in RF1 (blue). b, The ArfA
interface with a-helix a7 of RF2 (orange). Replacing negatively charged
residues such as E311 and D312 in RF2 with Arg in RF1 is also likely

to disrupt the interaction with ArfA. ¢, d, Sequence alignments for the
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regions of RF1 and RF2 corresponding to a and b, respectively. The pink
boxes indicate regions of RF2 that form an interface with ArfA, including
residues in bold predicted to prevent interaction of RF1 with ArfA and

therefore could provide the basis for RF2-specificity of ArfA action.

Organisms in bold contain ArfA, whereas others have no detectable ArfA
homologue. Asterisk (*), colon (:) or full stop (.) indicate a single, fully
conserved residue or residues with strong (>0.5 in the Gonnet PAM 250
matrix) and weakly (>0.5) similar properties, respectively.



LETTER

ArfA ArfA

16S rRNA 16S rRNA

Extended Data Figure 7 | Location of the ArfA-A18T mutation relative to RF2. a, Overview of ArfA (red) and RF2 (gold) on the ribosome (308, grey;
508, slate). b, ¢, Zoom of boxed region in a showing the environment of A18 (teal) of ArfA in close proximity to I11 and K8 in the N terminus of ArfA
(red) (b), and A18T (teal) of ArfA in sterically clashing with I11 and K8 in the N terminus of ArfA (red) (c).
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Extended Data Figure 8 | Comparison of ArfA with other ribosome rescue systems. a—c, Relative orientation on the ribosome with truncated mRNAs
and ArfA (red) and RF2 (orange) (a), ArfB (purple, PDB code 4V95)° (b) or tmRNA (brown) and SmpB (yellow) (PDB code 4V8Q)° (¢). In all cases, the
mRNA and P-tRNA are coloured cyan and green, respectively.
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Extended Data Table 1 | Data collection and refinement statistics

LETTER

ArfA-RF2-SRC
Data collection
Particles 69,089
Pixel size (A) 1.084
Defocus range (um) 0.7-2.2
Voltage (kV) 302
Electron dose (¢/A%) 24
Model composition
Protein residues 6,480
RNA nucleotides 4,642
Refinement
Resolution (A) 3.11
Map sharpening B factor (A% -60.34
FSCaveinge 0.85
Validation proteins
Poor rotamers (%) 4.67
Ramachandran outliers (%) 2.45
Ramachandran favored (%) 88.09
Bad backbone bonds (%) 0.02
Bad backbone angles (%) 0.02
Validation RNA
Correct sugar puckers (%) 98.91
Good backbone conformations (%) 1872
Bad bonds (%) 0.00
Bad angles (%) 0.14
Scores
MolProbity 2.20 (99™ percentile)

Clash score, all atoms

3.04 (100" percentile)

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



Special Issue: Ribosomes and Translation

Structural Basis for Ribosome
Rescue In Bacteria
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Ribosomes that translate mRNAs lacking stop codons become stalled at the 3
end of the mRNA. Recycling of these stalled ribosomes is essential for cell
viability. In bacteria three ribosome rescue systems have been identified so far,
with the most ubiquitous and best characterized being the trans-translation
system mediated by transfer-messenger RNA (tmRNA) and small protein B
(SmpB). The two additional rescue systems present in some bacteria employ
alternative rescue factor (Arf) A and release factor (RF) 2 or ArfB. Recent
structures have revealed how ArfA mediates ribosome rescue by recruiting
the canonical termination factor RF2 to ribosomes stalled on truncated mRNAs.
This now provides us with the opportunity to compare and contrast the avail-
able structures of all three bacterial ribosome rescue systems.

Bacterial Ribosome Rescue Systems

Ribosome rescue systems are necessary to recycle ribosomes that have become stalled at the
3’ end of MRNAs, so-called non-stop ribosome complexes [1,2]. Translation on these non-stop
mRNAs is blocked due to the absence of a sense or stop codon (see Glossary) in the ribosomal
A site, which is crucial for elongation or termination to continue. These truncated or non-stop
mRNAs can arise in the cell due to premature transcription termination or mRNA damage; for
example, by the action of RNases. Additionally, non-programmed frameshifting events or
nonsense suppression (readthrough of a stop codon) can also lead to accumulation of non-
stop complexes. Ribosome rescue systems that deal with non-stop complexes are present in
all species of life. In archaea and eukaryotes, non-stop complexes are rescued by the
combined action of Dom34 and Hbs1, which are homologs of eukaryotic RF (eRF) 1 and
eRF3 [2]. Bacteria have evolved completely unrelated pathways to deal with rescue of non-stop
complexes (reviewed in [2-7]). These include the trans-translation system mediated by the
tmRNA and SmpB as well as two more recently identified Arf systems involving ArfA and ArfB
(formerly known in Escherichia coli as YhdL and Yaed, respectively). The occurrence of non-
stop complexes appears to be a frequent event in bacteria. Experiments in E. coli indicate that
0.4% of all transcripts undergo trans-translation [8] and that 2-4% of peptidyl-tRNAs remain
non-hydrolyzed when ribosome rescue pathways are inactivated [9]. This explains why the
presence of at least one of the bacterial ribosome rescue pathways is essential for cell viability
[10]. While structural studies have provided much insight into the mechanism of tmRNA-
SmpB- and ArfB-mediated rescue of non-stop ribosome complexes, structural insight into
ArfA-mediated ribosome rescue has been lacking. Recently, five cryoelectron microscopy
(cryo-EM) structures of ArfA-RF2-non-stop ribosome complexes were reported [11-15],
providing the opportunity to not only compare the similarities and differences of the structures
with one another, but also to contrast the findings with the structures of the other bacterial
ribosome rescue systems.
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Bacterial ribosome rescue systems are
ubiquitous in bacteria and essential for
cell viability. Homologs of some rescue
factors are also found in eukaryotic
mitochondria and plant chloroplasts.

Bacterial ribosome rescue factors
such as small protein B (SmpB), alter-
native rescue factor (Arf) A, and ArfB
recognize ribosomes stalled on trun-
cated mRNAs by using their positively
charged C-terminal tails to probe
whether the mRNA channel is vacant.

ArfA induces conformational changes
within the ‘switch’ loop of release fac-
tor 2 (RF2) that promotes transition
from a closed to an open conforma-
tion, placing the catalytically important
glycine—glycine-glutamine (GGQ) motif
of RF2 at the peptidyltransferase cen-
ter of the ribosome.

The distinct pathways used to rescue
bacterial and eukaryotic cytoplasmic
non-stop ribosome complexes sug-
gest that bacterial ribosome rescue
may be a potential target for the devel-
opment of new antimicrobial agents.
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Trans-translation Mediated by tmRNA and SmpB

Genes encoding tmRNA (ssrA) and SmpB have been found in most if not all sequenced
bacterial genomes, including the smallest genomes of Mycoplasma species as well as endo-
symbionts such as Carsonella rudii [16]. Moreover, tmRNA is essential in many bacteria,
including many pathogenic bacteria such as Neisseria gonorrhoeae, Mycobacterium tubercu-
losis, and Legionella pneumophila [6,17]. ArfB, and particularly ArfA, have more limited
phylogenetic distributions, with ArfB being present in 34% of representatively sequenced
bacterial genomes and ArfA limited to a subset of B- and y-proteobacteria [18,19]. In many
bacteria trans-translation is not essential, presumably due to the presence of redundant
alternative rescue pathways. Nevertheless, the loss of trans-translation usually leads to reduc-
tion in fitness, particularly under various stress conditions, such as high or low temperature,
ethanol or acid treatment, or nutrient deprivation, or in the presence of antibiotics [6,17]. Such
stress conditions can lead to an increase in truncated mMRNAs and stalled ribosomes, explain-
ing the higher levels and importance of trans-translation under these circumstances. These
findings also highlight that, although the presence of alternative rescue pathways is sufficient to
maintain cell viability, they appear to be insufficient to optimally cope with the cellular demands
for ribosome rescue in the absence of trans-translation.

In most bacteria, tmRNA comprises a single RNA molecule containing a tRNA-like domain
(TLD), which resembles the acceptor stem of an alanyl-tRNA, and a messenger-like domain
(MLD) encoding a short, 8-35-aa peptide [20]. The TLD and MLD are linked together by a series
of pseudoknots (see inset in Figure 1) [20]. The TLD of tmRNAs can be charged with alanine by
the canonical alanine tRNA synthetase (AlaRS), a reaction that is enhanced by the presence of
SmpB, which interacts with AlaRS and stabilizes the tmRNA structure [20]. The alanine-
charged TLD of the tmRNA is recognized by elongation factor (EF)-Tu, which delivers tmRNA
to the A site of a non-stop ribosome (Figure 1A,B) [20]. The structure of the TLD of a tmRNA in
complex with SmpB and EF-Tu-GDP stabilized on a 70S ribosome using the antibiotic
kirromycin [21] (Figure 1C) reveals that the TLD of tmRNA interacts with EF-Tu on the
ribosome, analogous to the acceptor arm of an aminoacyl-tRNA (aa-tRNA) being delivered
to the ribosome by EF-Tu [22]. During canonical translation the complementarity between the
codon in the A site and the anticodon stem-loop (ASL) of the aa-tRNA dictates which aa-tRNA
is delivered by EF-Tu [23,24]. On non-stop ribosomes there is no codon in the A site, explaining
why the TLD of tmRNA does not require an ASL. Instead, the globular domain of SmpB mimics
the ASL of a tRNA and occupies the decoding site of the ribosome [21] (Figure 1B,C), as
predicted based on previous X-ray [25,26] and cryo-EM [27,28] studies. The C-terminal tail of
SmpB, which is unstructured in solution, adopts an a-helical conformation on the ribosome that
probes the MRNA channel (Figure 1B,C) [21], explaining how the tmRNA-SmpB complex can
distinguish actively translating ribosomes with mRNA in the channel from ribosomes stalled on
truncated mRNAs with a vacant channel [29]. Accommodation of the TLD at the A site of the
peptidyltransferase center (PTC) of the large ribosomal subunit allows peptide bond
formation between the truncated nascent polypeptide chain and the alanine of the TLD of
the tmRNA (Figure 1D). Binding of EF-G translocates the TLD of the tmRNA from the A site to
the P site, which together with SmpB places the first (resume) codon of the MLD into the A site
ready to be decoded by the next aa-tRNA (Figure 1E,F) [30]. A cryo-EM structure of the
translocated state reveals that the TLD and SmpB occupy a hybrid A/P site of the ribosome
and the linking pseudoknots wrap around the swiveled head of the small subunit to facilitate
positioning of the MLD for decoding (Figure 1E) [31]. Translation then continues on the MLD of
the tmRNA incorporating a degradation tag into the C terminus of the truncated polypeptide,
which targets it for proteolysis by Clp and other proteases (Figure 1G). Importantly, the MLD of
the tmRNA contains a stop codon, such as UAA, which allows canonical translation termination
via recruitment of RF1 or RF2 (Figure 1G). The glycine-glycine-glutamine (GGQ) motif of
RF1 or RF2 then catalyzes the hydrolysis of the tagged polypeptide chain, allowing the
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Glossary

Aminoacyl-tRNA (aa-tRNA): tRNA
charged at the 3’ end with an amino
acid.

Anticodon: the region of the tRNA
that is complementary to the codon
of the mRNA.

Anti conformation: nucleotide
conformation where the ring of the
nucleobase is nearly perpendicular to
the furanose ring but projecting away
from the furanose; contrasts with the
syn conformation where the
nucleobase ring is rotated around
the glycosidic bond.

A site: the tRNA-binding site on the
ribosome where aa-tRNAs are
delivered by EF-Tu during translation.
Codon: a sequence of three RNA (or
DNA) nucleotides that corresponds
to a specific amino acid (or stop
signal) during protein synthesis.
Deacylated tRNA: tRNA that is not
charged with an amino acid.

E site: the tRNA-binding site on the
ribosome where uncharged or
deacylated tRNAs exit from the
ribosome during translation.
Glycine-glycine-glutamine (GGQ)
motif: conserved motif found in
protein factors that catalyze PTH on
the ribosome.

Hybrid A/P site: when the tRNA is
in the A site on the small subunit and
in the P site on the large subunit.
Hydroxyl radical probing: chemical
probing method that relies on the
cleavage of RNA (or DNA) molecules
by hydroxyl radicals, which can be
generated from site-specific tethers
located on neighboring proteins or
factors.

Kirromycin: an antibiotic that binds
and traps EF-Tu on the ribosome.
Peptidyltransferase center (PTC):
the highly conserved region in the
large subunit of the ribosome where
peptide bond formation occurs.
Peptidyl-tRNA: a tRNA bearing the
growing nascent polypeptide chain.
Peptidyl-tRNA hydrolysis (PTH):
the activity of hydrolyzing and
thereby breaking the ester linkage
between the polypeptide chain and
the tRNA to which it is attached.
Proline-alanine-threonine (PAT)
motif: motif in Escherichia coli RF1
that is involved in recognition of the
stop codon of the mRNA.
Pseudoknot: a nucleic acid
secondary structure containing at
least two stem-loop structures in
which half of one stem is intercalated
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ribosome to be subsequently recycled for the next round of translation. It has been demon-  between the two halves of another
strated that it is the recycling of the stalled ribosomes, rather than tagging of the truncated ~ Stem.
. \ . . . . . P site: the tRNA-binding site for the
polypeptide chains for degradation, that makes trans-translation essential for bacterial survival ) )
o ) ) ) ; o ) . ) peptidyl-tRNA on the ribosome.
[20,32]. This is consistent with the observation that inactivation of trans-translation in bactetia  RNase: a type of nuclease that

such as E. coli is not lethal, due to the presence of back-up systems such as ArfA [33]. catalyzes the degradation of RNA;
for example, RNase Il is an

. endonuclease that cleaves dsRNA.
Interplay between the Trans-translation, ArfA, and ArfB Rescue Systems Serine-proline-phenylalanine

While the deletion of either the ssrA or the arfA gene in E. coli does not significantly affect  (SPF) motif: motif in £ coli RF2 that
viability, deletion of both genes (AssrAAarfA) is synthetic lethal [33], illustrating the importance of s involved in recognition of the stop
having at least one ribosome rescue for bacterial survival [5,10]. Biochemical studies have 2090 of the mANA.

. Translocation: the process of
demonstrated that ArfA represents a back-up system for trans-translation [34,35]. The arfA 1, ing the A and P site tRNAs as
mRNA contains a stem-loop structure that acts as a transcription terminator and/or a substrate  well as the associated mRNA
for RNase Ill cleavage [18,34,35] (Figure 2A). In the presence of tmRNA, the short ArfA protein  through the ribosome into the P and
produced from the truncated arfA mRNA is tagged by tmRNA and targeted for degradation £ Sites: respectively. This reaction is

. . . . catalyzed by EF-G in bacteria.
(Figure 2A). However, in the absence of tmRNA the short ArfA protein product is not degraded
and assumes the role of recycling ribosomes stalled on truncated mRNAs [34,35] (Figure 2B).
The full-length E. coli ArfA protein is 72 aa in length and contains a C-terminal hydrophobic
region that leads to aggregation of the protein in vivo [34] (Figure 2A). By contrast, shorter forms
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Figure 1. Rescue of Non-stop Ribosomal Complexes by Trans-translation. (A) Ribosomes stall on truncated mRNAs (cyan) with vacant A sites. (B) The tRNA-
like domain (TLD) (yellow) of transfer-messenger RNA (tmRNA) (brown) is recognized by elongation factor (EF)-Tu (pale green) and delivered together with small protein
B (SmpB) (blue) to the ribosomal A site. The globular domain of SmpB occupies the decoding site, while the C-terminal tail of SmpB probes the vacant mMRNA channel of
the small (30S) subunit. (C) Overview of the structure of the TLD of tmRNA (yellow), with SmpB and EF-Tu bound to the ribosome (PDB ID: 4V8Q) [70]. (D)
Accommodation of the TLD at the A site of the large (50S) subunit allows peptide bond formation between the TLD and the nascent polypeptide chain, resulting in
transfer from P-tRNA (green) to the TLD. (E) Cryoelectron microscopy (cryo-EM) structure of a translocated state of tmRNA-SmpB with bound EF-G (light blue; PDB ID:
4V6T) [31]. (F) After translocation of TLD by EF-G, the first codon of the mRNA-like domain (MLD) (yellow) is positioned at the A site. (G) Canonical translation termination
mediated by release factor (RF) 1 or RF2 (orange) on encountering the UAA stop codon of the MLD at the A site. The translated degradation tag (yellow) is recognized by
Clp proteases, leading to degradation of the incompletely translated nascent chain (green). Inset shows the secondary structure of tmRNA, with the TLD and MLD
highlighted in yellow.
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Figure 2. Alternative Rescue Factor A (ArfA) Is a Back-Up System for Trans-translation. (A) Full-length (Fl) AfA mRNA (gray) forms a stem-loop structure that
acts as a transcription terminator and/or is recognized and cleaved by RNase lll, generating a truncated (Tr) mRNA. Ribosomes stall on the truncated mRNAs, inducing
trans-translation, leading to tmRNA tagging (purple) and degradation of the ArfA protein (red). In the case that full-length ArfA protein is translated, the C-terminal region
contains a hydrophobic stretch (cyan) that leads to aggregation and degradation of the full-length ArfA. (B) If trans-translation is impaired (or overwhelmed), the short

ArfA protein is not tagged or degraded and the active ArfA assumes the role of rescuing non-stop ribosome complexes.

of ArfA resulting from truncated arfA mRNA lack the terminal 17-18 aa but retain full rescue
activity [34,35].

Curiously, ssrA is essential in Neisseria gonorrhoeae, despite the presence of an arfA gene [32],
although N. gonorrhoeae ArfA is active when expressed in E. coli [18]. By contrast, tmRNA is
not essential in Bacillus subtilis [36] despite the apparent absence of both the ArfA and ArfB
systems, raising the question of additional alternative rescue systems existing in some bacteria
[10]. The synthetic lethality of E. coli due to the AssrAAarfA double deletion occurs despite the
presence of arfB, but overexpression of ArfB can rescue the lethality of the AssrAAarfA strain
[37]. This finding indicates that endogenous levels of ArfB are insufficient to cope with the level
of ribosome rescue needed when tmRBNA and ArfA are both absent [7]. It also raises the
question of whether there are specific growth or stress conditions where ArfB is more important
or whether ArfB is simply less important in E. coli than in other species due to the additional
presence of ArfA.

Ribosome Rescue by ArfB

The globular N-terminal domain (NTD) of ArfB is evolutionarily related to domain 3 of RF1 and
RF2 [38,39], which contain a conserved GGQ motif that is critical for peptidyl-tRNA hydro-
lysis (PTH) activity [40]. In contrast to RF1 and RF2, ArfB lacks the domain 2/4 responsible for
stop codon recognition and instead has an extended C-terminal tail (Figure 3A-C). In agree-
ment with the finding that overexpression of ArfB can rescue E. coli lacking tmRNA and ArfA
rescue systems [37], ArfB can efficiently catalyze PTH on ribosomes stalled at the 3’ ends of
non-stop MRNAs in vivo [19,37,41,42] (Figure 3A,B). The crystal structure of ArfB on the
ribosome reveals that the NTD interacts with the large subunit such that the GGQ motif is
positioned at the PTC (Figure 3C) [43], consistent with the reports that mutations of the GGQ
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Figure 3. Rescue of Non-stop Ribosomal Complexes by Alternative Rescue Factor (Arf) B and ArfA. (A) Ribosomes stall on truncated mRNAs (cyan)
resulting in vacant A sites. (B) These non-stop ribosomes are recognized by the C-terminal tail of ArfB (purple), which probes the vacant mRNA channel. The N-terminal
domain of ArfB containing the glycine—glycine—glutamine (GGQ) motif (yellow) catalyzes the hydrolysis of polypeptide from the P-tRNA (green). (C) Overview of the
structure of ArfB (purple) bound to the ribosome (PDB ID: 4V95) [43]. (D) Non-stop ribosomes are also recognized by the C-terminal tail of ArfA (red), which also probes
the vacant mRNA channel. (E) ArfA recruits release factor 2 (RF2) (orange) to the non-stop ribosome to catalyze peptidyl-tRNA (green) hydrolysis. (F) Overview of the
structure of ArfA (red) and RF2 (orange) bound to a non-stop ribosome (PDB ID: 5MGP) [12].

motif of ArfB impair the rescue activity of ArfB both in vitro [19,37] and in vivo [37]. The C-
terminal tail of ArfB, which was disordered in previous unbound ArfB structures [38,39,44],
adopts a a-helical conformation that reaches into the mRNA channel of the small subunit
(Figure 3B,C) [43]. This suggests that, like SmpB, ArfB also utilizes the C-terminal tail to
distinguish actively translating ribosomes from those stalled on truncated mRNAs. Truncation
of ten residues or more from the C terminus of ArfB leads to a severe reduction in ribosome
binding and PTH activity as well as the ability to rescue the AssrAAarfA strain [19,37,39]. The
NTD and C-terminal helix are connected by a flexible linker of ~12 aa that adopts an extended
conformation on the ribosome (Figure 3B,C). Deletion of one or two residues within the linker of
ArfB led to progressive loss of PTH activity although the ribosome interaction remained
unaffected [39], suggesting that the linker is important for positioning of the NTD at the
PTC of the ribosome.

While ArfB rescue is most efficient on non-stop ribosomes, it maintains some rescue activity on
longer mRNAs that extend into the A site [19,42]. The ArfB rescue activity decreases with
increasing length of the 3’ end, such that little activity is observed when the 3’ end extends >14
nucleotides from the P site [42]. This suggests that the C-terminal tail of ArfB can efficiently
compete and may even displace short mRNA 3’ ends from the channel and that longer mRNAs
encompassing the entire mRBNA channel are resilient to displacement by ArfB, explaining why
ArfB does not interfere with canonical translation elongation.
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ArfB homologs are present in most, if not all, eukaryotes, where they are targeted to mito-
chondria [45]. In addition, some plants also encode ArfB homologs with chloroplast-targeting
signals. By contrast, there is no evidence for ArfA genes in eukaryotes and tmRNA/SmpB
genes are found only in some protist mitochondria [46]. The best-characterized organellar ArfB
homolog is the human mitochondrial immature colon carcinoma transcript-1 (ICT1) (reviewed in
[47]). Like other ArfB homologs, ICT1 displays excellent rescue activity on non-stop ribosomal
complexes from either E. coli [39,42,48] or mammalian mitochondria [49]. The rescue activity is
dependent on an intact GGQ motif and the presence of a C-terminal tail [39,48,49]. Loss or
knockdown of ICT1 leads to a loss of cell viability [38,48], which can be rescued by the
expression of a bacterial ArfB homolog [42]. Likewise, ICT1 supported the viability of a bacterial
AssrAAarfA strain, suggesting that ICT1 and ArfB are functionally interchangeable [42]. How-
ever, unlike bacterial ArfB, ICT1 was shown to be an integral component of the mitochondrial
large subunit [48], where it is located at the base of the central protuberance [50]. Subsequent
in vitro experiments demonstrated that the integrated ICT1 does not appear to display any
rescue activity on non-stop complexes, but rather exogenous ICT1 is required [49]. So far,
ribosome-free ICT1 has not been detected in mitochondria [48], raising the question of whether
ICT1 is released from the mitoribosome to rescue stalled ribosomes or whether ICT1 expres-
sion is upregulated under specific stress conditions.

Ribosome Rescue by ArfA and RF2

ArfA was originally identified in a screen for factors that are essential for viability of £. coli when
the ssrA gene is disabled [33]. The loss-of-function mutation identified had an Ala-to-Thr
substitution at position 18 (A18T) in ArfA [33]. ArfA, as well as the ArfA-A18T mutant, were both
shown to co-localize with ribosomes in vivo, but only the wild-type ArfA could rescue non-stop
ribosomes [33]. Interestingly, recombinant ArfA was effective at rescuing non-stop ribosomes
in vitro when an E. coli-extract-based system was used [33] but displayed no rescue activity
with purified non-stop ribosome complexes [37]. This indicated that ArfA requires an additional
cellular factor present in the E. coli extract to mediate ribosome rescue [37]. Subsequent in vitro
studies using a reconstituted cell-free translation system revealed that RF2, but not RF1,
cooperates with ArfA to hydrolyze the peptidyl-tRNA and rescue non-stop ribosomes [41,51]
(Figure 3D,E). ArfA does not interact with RF2 in solution [51,52] but rather interacts with non-
stop ribosomes [52] (Figure 3D) before recruiting RF2 to the complex (Figure 3E). Initial binding
assays observed interaction of ArfA with the large ribosomal subunit [33], whereas subsequent
hydroxyl radical probing experiments indicated a binding site located on the 30S subunit in
the vicinity of the mRNA channel [52]. The five cryo-EM structures of ArfA-RF2-non-stop
ribosome complexes [11-15] (Figure 3F) revealed that ArfA interacts almost exclusively with the
small subunit. Overall, the structures are in excellent agreement with each other and enable
most of the available biochemical data to be rationalized. The structures provide much-needed
structural insight into the mechanisms of action of ArfA and RF2 in rescuing non-stop ribosome
complexes, which are discussed in detail in the following sections.

Monitoring the mRNA Channel of the Non-stop Ribosome

Full-length E. coli ArfA is 72 aa in length but is aggregation prone; therefore, C-terminally
truncated ArfA variants were used for the structural analysis that lacked either 12 [11,15] or 17
residues [12—14]. In each case, however, the flexibility of the C terminus permitted only 46-48 of
the 55-60 aa of ArfA to be modeled. The absence of electron density for the very-C terminus of
ArfA suggests that these residues are less important for binding, which is consistent with their
poor conservation across ArfA from different species [18,33]. In all five cryo-EM structures [11-
15], the C-terminal part of ArfA extends from the decoding A site into the mRNA entry channel
(Figure 4A), analogous to the C-terminal tails of SmpB [21] (Figure 4B) and ArfB [43] (Figure 4C)
as well as the 3’ end of a full-length mRNA [53] (Figure 4D). The location of the C terminus of
ArfA within the mRNA channel is also compatible with hydroxyl radical probing experiments
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Figure 4. Monitoring of the mMRNA Channel by Ribosome Rescue Factors. The mRNA channel of the ribosome is probed by the C-terminal tail of (A) alternative
rescue factor (Arf) A (PDB ID: 5SMGP) [12], (B) small protein B (SmpB) (PDB ID: 4V8Q) [70], or (C) ArfB (PDB ID: 4V95) [43]. The interaction is mediated via positively
charged amino acids (red), the conservation of which is presented as a WeblLogo [71] below the respective panels. (D) For comparison, the path of a full-length (Fl)
mRNA is indicated (PDB ID: 4V6F) [53].

performed in the absence of RF2 [52], suggesting that ArfA initially uses a similar conformation
to monitor the vacant mRNA channel.

Like SmpB and ArfB, the C terminus of ArfA also contains several highly conserved positively

charged arginine and lysine residues that establish interactions with the negatively charged 16S
rRNA comprising the walls of the mRNA channel [11-15] (Figure 4A-C). There appears to be
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some redundancy in the interaction of these conserved residues of ArfA, since individual point
mutations had little to no effect on the recycling activity of ArfA [13,52], although some reduction
was reported for K84C and R41C mutations in a recent study [14]. The C-terminal tail of SmpB
is also rich in positively charged residues and includes several highly conserved stretches, such
as 131KGKK;34 and 137DKR;3g (Figure 4B). Although single mutations within the 13,DKR439
motif had little effect, a triple alanine substitution abolished SmpB’s ability to support tmRNA
activity in vivo [54,55]. Similar loss of activity was observed when the C-terminal helix of SmpB
was truncated [56]. Single mutations within the C-terminal tail of E. coli ArfB, such as K122A,
K129A, and R132A, as well as the equivalent residues in ICT1, dramatically decreased the
rescue activity of the respective factors [39] (Figure 4C). Similar to ArfB [19,37,39], C-terminal
truncations in human ICT1 that remove these residues also abolished rescue activity [39,49].

Biochemical studies have demonstrated that the efficiency of ArfA-RF2-mediated ribosome
rescue decreases with increasing length of the 3’ end of the mRNA that extends into the A site
[41,57]. Specifically, rescue was observed, although with reduced efficiency, when mRNA
extended by up to three or four A-site nucleotides was used [41,57]. Alimost no rescue occurred
on artificially stalled ribosomes with mRNAs extended by six or more A-site nucleotides [41,57].
This is consistent with the overlap in the binding position of ArfA [11-15] (Figure 4A) and a full-
length mRNA (Figure 4D), which indicates that three nucleotides (but not more) can be
accommodated in the A site without significant clashes with ArfA. By contrast, the tmRNA-
SmpB trans-translation system is less sensitive to mMRNA length, with the most dramatic
reductions in trans-translation activity being observed when mRNAs with 12 or more A-site
nucleotides were used [29,58,59]. mRNA length dependence for the rescue activity of ArfB has
also been reported and appears to be intermediate to the ArfA and trans-translation systems
[41]. It remains to be determined whether the length dependencies of the different rescue
systems correlate with the ability of C-terminal extensions of the respective rescue factors to
displace the 3’ portion of the mRBNA from the mRNA channel, or whether the factors utilize
different binding modes when the mRNA channel is occupied.

Recruitment of RF2 to the Ribosome by ArfA

The recent cryo-EM structures also provide insight into how ArfA recruits RF2 to the ribosome
despite the absence of a stop codon in the mRNA [11-15]. ArfA establishes a large interaction
interface with RF2 encompassing the central portion (residues 15-31) of ArfA and the distal end
of a helix a7 of domain 3 as well as the B4—p5 strands of domain 2 of RF2 (Figure 5A). Residues
27-30 of ArfA form a small B strand that complements the B sheet of RF2 domain 2/4
(Figure 5B). The overall position of RF2 in the ArfA-RF2—-non-stop complex is similar to that
observed during canonical translation termination [60,61], although the decoding domain 2/4 is
slightly shifted. The shift affects the loop between the B4—B5 strand of domain 2 of RF2 bearing
the serine-proline-phenylalanine (SPF) motif (E. coli Ser205-Pro206-Phe207), which is
involved in the specificity of recognition of the first and second positions of the UGA and UAA
stop codons [60-62] (Figure 5C,D). Importantly, the structures illustrate that ArfA does not
interact with the SPF motif and therefore does not directly mimic the presence of a stop codon
(Figure 5D). Consistently, mutations in the SPF motif that impair RF2 termination activity do not
affect ArfA—-RF2-mediated rescue activity [51] whereas RF1 mutants bearing the SPF motif
instead of the proline-alanine-threonine (PAT) motif (which confers termination activity at
UGA) remain inactive in the ArfA-mediated rescue system [51].

Distinct Conformations of the Decoding Site during Ribosome Rescue

During canonical termination G530 of the 16S rRNA adopts an anti conformation that stacks
on the A3 nucleotide of a stop codon [40]. The same flipped anti conformation of G530 is also
stabilized during ribosome rescue via interaction with E30 of ArfA [11-15] or by stacking
interactions with Y126 of SmpB [21] and Arg118 of ArfB [43]. G530, together with A1492 and
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Figure 5. Recruitment of Release Factor 2 (RF2) to Non-stop Ribosomes by Alternative Rescue Factor A (ArfA). (A) Interaction surface between ArfA (red)
and RF2 (orange). (B) ArfA donates a 8 strand to the 8 sheet of domain 2/4 of RF2 (orange). (C) Interaction of the serine—proline-phenylalanine (SPF) motif of RF2 with the
A-site UGA stop codon of an mRNA (MRNAg;,,, cyan; PDB ID: 4V5E) [60]. (D) Same view as (C) but superimposed with the ArfA-RF2-non-stop ribosome complex
containing ArfA (red), RF2 (orange), and the truncated (Tr) mRNA (cyan; PDB ID: 5SMGP) [12]. (E,F) Superimposition of decoding center showing 16S rRNA nucleotides
G530, A1492, and A1493 as well as the 23S rRNA nucleotide A1913 from ribosomes bound with (E) A-tRNA (grey; PDB ID: 4V6F) [53], RF2g;0p, With a UGA codon
(marine blue; PDB ID: 4V5E) [60], ArfB (purple; PDB ID: 4V95) [43], (F) P-tRNA (green; PDB ID: 4V9B) [64], ArfA (red; PDB ID: SMGP) [12], or small protein B (SmpB) (blue;
PDB ID: 4Vv8Q) [70].

A1493, is critical for monitoring the interaction between the codon of the mRNA and the
anticodon of the A-site tRNA [23,63]. While both A1492 and A14983 are flipped out of helix 44
(h44) during decoding of sense codons [23,63], only A1492 is flipped during termination by RFs
while A1493 stacks on A1913 in HB9 of the 23S rRNA (Figure 5E) [40]. In the presence of ArfB,
A1492 is only partially flipped out and A1493 is stacked with A1913 (Figure 5E) and Pro110 of
ArfB [43]. The opposite occurs with ArfA or SmpB; namely, A1493 is flipped out of h44 whereas
A1492 stacks on A1913 [11-15,21] (Figure 5F). This is similar to the conformation observed
when tRNA is bound at the P site but the A site is vacant [64] (Figure 5F). Thus, the flexibility of
the decoding site is manipulated in various ways to accommodate binding of the rescue factors
on the ribosome. While mutations with the decoding center of the ribosome (G530A, A1492G,
or A1493G) have a dramatic effect (1000-fold reduction) on aa-tRNA accommodation at the
PTC, only a twofold reduction was observed on peptidyl-transfer to Ala-tmRNA [55]. It remains
to be determined to what extent such mutants influence factor binding and accommodation at
the PTC during ArfA- and ArfB-mediated ribosome rescue.

ArfA Induces the Active Open Conformation of RF2 on the Ribosome

During canonical termination, recognition of the stop codon by RF1 and RF2 stabilizes a
rearranged conformation of the switch loop that directs domain 3 into the PTC [40,65]. The
switch loop conformation is stabilized via specific interactions with A1492 and A1493 that, in
the case of RF2, involve stacking interactions of W319 of RF2 with A1492 [60,61] (Figure 6A). In
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Figure 6. Alternative Rescue Factor A (ArfA) Induces a Closed-to-Open Transition in Release Factor 2 (RF2). (A) Interaction between Trp319 (W307 in
Thermus thermophilus RF2) of the switch region of RF2g;o,, (sky blue) and A1492 of the 16S rRNA (yellow) during decoding of the UGA stop codon (cyan; PDB ID: 4V5E)
[60]. The switch loop conformation of RF2 (RF2a+a, Orange) observed on ArfA binding is superimposed and arrowed. (B) Same view as (A) showing the distinct
conformation of the switch loop of Escherichia coli RF2 (orange) and A1492/A1493 (pale blue) when ArfA (red) is present. (C) The open conformation of RF2 (orange) in
the non-stop complex with ArfA (PDB ID: SMGP) [12] compared with the closed RF2 conformations observed when using (D) RF2 (pink) in the presence of ArfA A18T
(PDB ID: 5SMDW) [11], (E) T. thermophilus RF2 (blue; PDB ID: 5MDY) [11], or (F) the free RF2 structure (orange; PDB ID: 1GQE) [66], which was aligned with the ribosome-
bound RF2 (gray) on the basis of domain 2/4 (d2/4). In (C-F) the P-tRNA (green) is shown for reference.

the cryo-EM structures, ArfA precludes the interaction between the switch loop and A1492
[11-15] (Figure 6B). Instead, ArfA itself appears to stabilize a distinct conformation of the switch
loop in RF2 that extends the « helix a7 of domain 3 of RF2 by two to three helical turns,
analogous to that observed during canonical translation termination with RF2 [60,61]. As
observed for canonical termination [60,61], the open conformation of RF2 on the ribosome
in the presence of ArfA also directs the GGQ motif of domain 3 into the PTC (Figure 6C). The
A18T mutation that led to the discovery of ArfA does not interfere with ribosome binding [33] or
with RF2 recruitment, but prevents PTH [41]. Consistently, the cryo-EM structure of the ArfA—
A18T non-stop complex reveals that RF2 is recruited to the ribosome but adopts a closed
rather than an open conformation [11] (Figure 6D). The A18T mutation appears to destabilize
the interaction of the N terminus of ArfA and the switch loop of RF2, preventing the transition
from the closed to the open conformation [11]. A closed conformation of RF2 was also
observed when Thermus thermophilus RF2 replaced E. coli RF2 [11] (Figure 6E), suggesting
an incompatibility between T. thermophilus RF2 and E. coli ArfA (note: T. thermophilus does not
have an ArfA homolog). The ribosome-bound closed conformations resemble the closed
conformation observed previously in the structures of the unbound form of RF2 [66,67]
(Figure 6F). The closed conformation may reflect a bona fide intermediate during ribosome
rescue, since this state represented a major population in the cryo-EM analysis of Demo et al.
[15], where wild-type RF2 was employed. The open conformation and positioning of domain 3
of RF2 at the PTC observed in the different cryo-EM structures are very similar despite two of
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the structures reflecting pre-hydrolysis states (obtained using either a GAQ mutant or a non-
hydrolyzable P-tRNA) [11,12] and the other three representing post-hydrolysis states (assem-
bled with deacylated tRNA in the P site) [13-15].

Concluding Remarks

The availability of structures of ArfA and RF2 on the non-stop ribosome has provided much
needed mechanistic insight into this bacterial ribosome rescue system and enabled
comparisons with the tmRNA/SmpB and ArfB systems to be made. The structures have
also provided initial insights into specificity determinants in ArfA and RF2 that allow ArfA to
cooperate with RF2 but not RF1; however, this needs to be validated biochemically
(see Outstanding Questions). Similarly, the species specificity of ArfA-RF2 action has so
far not been addressed systematically. The apparent absence of Arfs in some species where
trans-translation is not essential raises the possibility of other novel, unidentified Arf systems.
Will novel ArfA or ArfA-like systems emerge in bacteria where RF1, rather than RF2, is
recruited to the stalled ribosomes? Perhaps bacteria exist where entirely different GGQ-
containing factors (ArfB-like?) or even non-GGQ factors are recruited to non-stop ribosomes
to mediate PTH. The wider distribution of ArfB/ICT1 compared with ArfA suggests that it may
play a more important role in other bacteria and organelles than it does in E. coli. Distinguish-
ing the division of labor of alternative rescue systems in different bacteria will provide much
needed insight into their importance under different environmental and stress conditions. The
importance of ribosome rescue in bacteria, coupled with the distinct pathways used by
eukaryotic ribosomes, suggests that ribosome rescue may be a possible target for the
development of novel antimicrobial agents. Small molecules have already been discovered
that specifically target trans-translation [68,69]. Can similar approaches be used to identify
lead compounds that selectively target the Arf systems?
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