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Zusammenfassung

In dieser Dissertation wird die Bildung von Singularitäten in fokussierenden quantenmech-
anischen Vielteilchensystemen untersucht. Insbesondere wird das Verhalten der Grundzus-
tandsenergie und der zugehörigen Grundzustände solcher Systeme analysiert, wenn diese sich
dabei befinden, zu kollabieren.

Artikel A und B sind der Untersuchung von Neutronensternen gewidmet, welche klassis-
che Beispiele für fokussierende, fermionische Vielteilchensysteme sind. Bekanntlich kollabieren
Neutronensterne, wenn ihre Masse die sogenannte kritische Chandrasekhar-Masse übersteigt.
Mathematisch besteht der Kollaps des Sterns darin, dass die Grundzustandsenergie gleich mi-
nus Unendlich ist. Hier wird der Vorgang des Kollapses im Rahmen zweier Näherungsmodelle
genauer untersucht, nämlich der Chandrasekhar-Theorie und der Hartree–Fock–Bogoliubov-
Theorie. Wir analysieren das asymptotische Verhalten der Energie im massenkritischen Limes
und zeigen, dass ein universelles Singularitätenprofil auftritt, welches eine Lösung der Lane–
Emden-Gleichung ist.

Artikel C und D behandeln Bosonensterne. Obwohl die Existenz solcher Sterne derzeit
nicht durch astronomische Beobachtungen belegt ist, stellen sie für die Kosmologie und die
mathematische Physik ein interessantes Studienmodell dar. Ähnlich wie Neutronensterne kol-
labieren Bosonensterne bei genügend großer Masse. Wir untersuchen das Kollaps-Phänomen
im Rahmen zweier Modelle, nämlich der Hartree-Theorie und der vollständigen Vielteilchen-
theorie. Bei letzterer ist es nötig, ein externes Potential einzuführen, um die Existenz eines
Grundzustandes zu garantieren. Im massenkritischen Limes zeigen wir, dass Kondensation
der Grundzustände auf die Menge der optimierenden Funktionen einer nicht-lokalen Interpo-
lationsungleichung auftritt.

Artikel E befasst sich mit Kondensatgemischen aus Bosegasen im Rahmen der vollständi-
gen quantenmechanischen Vielteilchentheorie. Wir betrachten die Grundzustandsenergie
eines nicht-relativistischen, bosonischen fokussierenden Vielteilchensystems, welches aus zwei
verschiedenen Teilchenspezies besteht, die sich jeweils in einem lokalisierenden Potential
befinden. Die Wechselwirkung der Teilchen innerhalb derselben Spezies ist dabei attraktiv,
wohingegen die Wechselwirkung zwischen den verschiedenen Spezies attraktiv oder repulsiv
sein kann. Im Grenzwert, der den Kollaps beschreibt, zeigen wir, dass die Grundzustände
Bose–Einstein-Kondensation aufweisen und, bis auf Reskalierung, zu dem Optimierer der
Gagliardo–Nirenberg-Interpolationsungleichung konvergieren.
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Abstract

This thesis is focused on the blow-up analysis for focusing many-body quantum systems.
The central object of study is the behavior of the ground state energies and ground states in
the collapse regime.

Papers A and B are concerned with neutron stars which are classic examples of focusing
fermionic many-body systems. It is a fundamental fact that neutron stars collapse as soon
as their masses exceed the so-called Chandrasekhar limit mass. Mathematically, the collapse
corresponds to the unboundedness from below of the ground state energy. Here we study
the details of the collapse in two approximate models: the Chandrasekhar theory and the
Hartree–Fock–Bogoliubov theory. We investigate the asymptotic behavior of the energy in
the mass critical limit and prove that the ground states develop a universal blow-up profile
which solves the Lane–Emden equation.

Papers C and D treat boson stars. Until now, there is no observational evidence that
such stars exist. Nevertheless, they are interesting objects in astronomy and mathematics.
Similarly to neutron stars, boson stars collapse when their masses are too big. We will study
the collapse phenomenon in two models: the Hartree theory and the full many-body theory.
For the latter, we have to include an external potential to guarantee the existence of ground
states. In the mass critical limit, we show that the ground states condensate on the optimizers
of a non-local interpolation inequality.

Paper E deals with the mixture condensate of Bose gases in the full many-body quantum
theory. We consider the ground state energy of a confined, non-relativistic bosonic many-body
system consisting of two species in the focusing regime and assume attractive intra-species and
either attractive or repulsive inter-species interactions between the particles. In the collapse
regime, we show that the ground states exhibit the Bose–Einstein condensation and, up to
rescaling, converge to the optimizer of the Gagliardo–Nirenberg interpolation inequality.
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CHAPTER 1

Introduction

In this chapter, we introduce the mathematical models for relativistic gravitational
fermion and boson stars and for non-relativistic mixture of Bose gases. In the end of this
introduction we shall give a short summary of the papers included in this thesis.

1.1. Relativistic Gravitational Fermions and Bosons

In this section, let us consider N relativistic quantum particles of mass m > 0, which are
either all fermions or all bosons in R3. The N -particle gravitating system is described by the
Hamiltonian

HN =
N∑
i=1

√
−∆xi +m2 − κ

∑
1≤i<j≤N

|xi − xj |−1, (1.1.1)

where κ = gm2 > 0 and g is the Newton’s gravitational constant. The Hamiltonian HN

in (1.1.1) consists of the pseudo-relativistic kinetic operator
√
−∆ +m2 and an attractive

Newtonian interaction potential. Here, we use units such that Planck’s constant ~ and the
speed of light c satisfy ~ = c = 1.

An N -fermion wave function describing the system (1.1.1) is a normalized function in

the Hilbert space HN :=
∧N L2(R3,Cq) which is anti-symmetric with respect to exchange

of particles. Here
∧

stands for the anti-symmetric tensor product, L2(R3) is the space of
square-integrable one-particle wave functions on physical space R3 and Cq is the space of
states of the spin degrees of freedom q ≥ 1. For simplicity, we will assume that particles are
spinless (q = 1) because the spin number does not play any important role in our analysis.
On the other hand, an N -boson wave function is a normalized function in the Hilbert space
HN :=

⊗N
sym L

2(R3) which is symmetric with respect to exchange of particles. Here
⊗

sym

stands for the symmetric tensor product.
The ground state energy per particle of the N particles is the bottom of the spectrum of

HN
N , defined by

EQ
N :=

1

N
inf specHN =

1

N
inf

{
〈ΨN , HNΨN 〉 : ΨN ∈ HN ,

∫
R3N

|ΨN (x)|2dx = 1

}
. (1.1.2)

Since (1.1.1) is an attractive many-body quantum system, it may collapse, in the sense that

EQ
N = −∞. In fact, after a mean-field approximation, kinetic and gravitational energies

behave the same under scaling, so that there is a critical number of particles above which
the system is unstable. The maximum number of particles of a stable star is the famous
Chandrasekhar limit mass. It is named after the physicist Chandrasekhar who computed
this number in 1930 and earned the 1983 Nobel Prize in Physics for it. We remark that the
number of particles needed for collapse does not depend on the mass-factor m > 0 in the
kinetic energy. This follows from a standard scaling argument together with the operator

1



2 1. INTRODUCTION

inequality √
−∆ ≤

√
−∆ +m2 ≤

√
−∆ +m2. (1.1.3)

In this thesis, we are interested in the behavior of the ground state energy per particles

EQ
N and its ground states in the collapse regime. Although the many-body problem is linear,

it is very complicated to analyze because there are too many variables. Therefore, it is useful
to introduce approximate one-body models which are non-linear but easier to deal with.

1.1.1. Chandrasekhar Theory of Neutron Stars. The Chandrasekhar theory is
the relativistic analogue of the famous Thomas–Fermi theory of non-relativistic electrons
in atomic physics. It involves two semi-classical approximations. First, for the kinetic energy,〈

Ψ,
N∑
i=1

√
−∆xi +m2Ψ

〉
≈
∫
R3

jm(ρΨ(x))dx.

Here the one-particle density ρΨ associated to the anti-symmetric N -particle wave function
Ψ is given by

ρΨ(x) := N

∫
R3(N−1)

|Ψ(x, x2, . . . , xN )|2dx2 . . . dxN .

The function jm(ρ) is obtained by integrating
√
−∆ +m2 over the subset of phase-space in

which
√
−∆ ≤ (6π2ρ)

1
3 =: η. It is given by

jm(ρ) :=
1

16π2

[
η(2η2 +m2)

√
η2 +m2 −m4 ln

(
η +

√
η2 +m2

m

)]
. (1.1.4)

The second approximation we need in the Chandrasekhar theory is the approximation between
particles self-interaction〈

Ψ,
∑

1≤i<j≤N
|xi − xj |−1Ψ

〉
≈
∫∫

R3×R3

ρΨ(x)ρΨ(y)

|x− y|
dxdy.

This is commonly used in the study of quantum Coulomb systems of charged particles [34].
Putting together the above approximations, we obtain the Chandrasekhar functional

ECh
κ (ρ) =

∫
R3

jm(ρ(x))dx− κ

2

∫∫
R3×R3

ρ(x)ρ(y)

|x− y|
dxdy. (1.1.5)

The Chandrasekhar energy is defined by

ECh
κ (N) := inf

{
ECh
κ (ρ) : 0 ≤ ρ ∈ L1 ∩ L

4
3 (R3),

∫
R3

ρ(x)dx = N

}
. (1.1.6)

By rescaling ρ̃(x) = ρ(N
1
3x) we have

ECh
κ (ρ) = NECh

τ (ρ̃) and ECh
κ (N) = NECh

τ (1),

where
τ = κN

2
3 .

We note that, by (1.1.3),

ECh
τ (1)|m=0 ≤ ECh

τ (1) ≤ ECh
τ (1)|m=0 +m.

In case m = 0, since the kinetic and potential energies behave the same under scaling, there
exists a critical value τc such that ECh

τ (1)|m=0 = −∞ as soon as τ > τc. Therefore, the
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Chandrasekhar limit mass for neutron stars is
(
τc
κ

) 3
2 . In fact, τc is the optimal constant in

the Hardy–Littlewood–Sobolev inequality

τc
2

∫∫
R3×R3

ρ(x)ρ(y)

|x− y|
dxdy ≤ Kcl‖ρ‖

4
3

L
4
3
‖ρ‖

2
3

L1 , ∀0 ≤ ρ ∈ L1 ∩ L
4
3 (R3), (1.1.7)

where Kcl = 3
4(6π2)

1
3 .

By standard methods in the calculus of variations, one can prove that there is a (unique,
up to translations) minimizer for ECh

τ (1) as long as τ < τc. In this subcritical regime, Lieb–
Yau [36] proved that the Chandrasekhar theory is a correct description of the full many-body

theory in the limit κ→ 0 and N →∞ with τ = κN
2
3 fixed.

In Paper A, we consider the Chandrasekhar variational problem. We analyze in detail the
blow-up behavior of the Chandrasekhar energy ECh

τ (1) and its minimizer when τ ↗ τc. This
is the first step to understand the stellar collapse.

1.1.2. Hartree–Fock–Bogoliubov (HFB) Theory of Neutron Stars. While the
Chandrasekhar theory involves only the density functionals, the Hartree–Fock–Bogoliubov
(HFB) theory involves the one-body density matrices associated to the quasi-free states in
Fock space. See Bach–Lieb–Solovej [3] for the general rigorous discussion on the HFB theory.
The HFB functional of neutron stars associated to (1.1.1) is given by

EHFB
τ (γ, α) = Tr

(√
−∆ +m2γ

)
− κ

2

∫∫
R3×R3

ργ(x)ργ(y)− |γ(x, y)|2 + |α(x, y)|2

|x− y|
dxdy.

(1.1.8)

Here we use the subscript τ = κN
2
3 , which will play an important role in our analysis.

The terms in the integral are the so-called direct term, exchange term and pairing term,
respectively. The density matrix γ is a non-negative self-adjoint operator on L2(R3,C) and
ργ(x) = γ(x, x). The pairing density matrix α is a Hilbert–Schmidt operator on L2(R3,C),
i.e., Trα∗α <∞, and its kernel is a (2× 2)-matrix which is assumed to be anti-symmetric in
the sense αT = −α. The HFB minimization problem associated to (1.1.8) reads

EHFB
τ (N) = inf

{
EHFB
τ (γ, α) : (γ, α) ∈ KHFB,Tr γ = N

}
, (1.1.9)

where the set of HFB states is given by

KHFB =

{
(γ, α) = (γ∗,−αT ) ∈ XHFB :

(
0 0
0 0

)
≤
(

γ α
α∗ 1− γ

)
≤
(

1 0
0 1

)}
(1.1.10)

with the Sobolev-type space XHFB being defined as

XHFB :=
{

(γ, α) ∈ S1 ×S2 : ‖(1−∆)
1
4γ(1−∆)

1
4 ‖S1 + ‖(1−∆)

1
4α‖S2 <∞

}
.

Here Sp, with 1 ≤ p <∞, denotes the Schatten class of operators acting on L2(R3,C).
Without the pairing term, (1.1.8) becomes the Hartree–Fock (HF) functional. It is the

expectation value of HN in (1.1.1) in a determinantal wave function Ψ = ψ1 ∧ . . .∧ψN made
of an orthonormal family {ψi}Ni=1 in L2(R3,C). Such a wave function is also called Slater
determinant and can be rewritten as

Ψ(z1, . . . , zN ) := (N !)−
1
2 det{ψi(zj)}Ni,j=1. (1.1.11)
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The density matrix γΨ associated to Ψ in (1.1.11) is a finite rank orthogonal projection, i.e.,1

γΨ(x, y) := N

∫
R3(N−1)

Ψ(x, x2, . . . , xN )Ψ(y, x2, . . . , xN )dx2 . . . dxN =
∑

1≤i≤N
ψi(x)ψi(y).

It is straightforward from the above that the HF energy is an upper bound to the ground
state energy. On the other hand, it can be seen from Bessel’s inequality that 0 ≤ γΨ ≤ 1.
This is the condition to take the Pauli exclusion principle into account. In practice, one could
ignore this feature and apply (1.1.8) to any mixed state γ satisfying 0 ≤ γ ≤ 1. In fact, it
was confirmed by Lenzmann–Lewin [24] that if a non-trivial pairing term α 6≡ 0 is taken into
account, then a HFB minimizer (if it exists) has infinite rank. Furthermore, the appearance
of an attractive pairing term will decrease the HF energy and one hopes that the HFB theory
approximates the full many-body Schrödinger theory better than the Chandrasekhar theory.

The existence of HFB minimizers has been proved by Lenzmann–Lewin [24]. It is obtained
for 0 < N < NHFB(κ), 0 < κ < 4/π and m > 0. The finite number NHFB(κ) is asymptotically

equivalent, as κ→ 0, to the Chandrasekhar limit mass
(
τc
κ

) 3
2 .

In Paper B, we analyzed the behavior of the HFB energy and its minimizers when N →∞
simultaneously τ := τN ↗ τc. We remark that the following operator inequality for (γ, α) ∈
KHFB can be derived from (1.1.10) (see [3])

γ2 + αα∗ ≤ γ. (1.1.12)

In the mean field limit of large N with κN
2
3 kept fixed, the exchange and pairing terms are of

smaller order compared with the direct term, due to their coupling with the small parameter

κ = O(N−
2
3 ). In fact, by (1.1.12) and the Hardy–Kato inequality |x− y|−1 ≤ π

2

√
−∆x (see,

e.g., [35, Lemma 8.2]), we have∫∫
R3×R3

|γ(x, y)|2

|x− y|
dxdy ≤ π

2
Tr(
√
−∆γ2) ≤ π

2
Tr(
√
−∆γ) (1.1.13)

and ∫∫
R3×R3

|α(x, y)|2

|x− y|
dxdy ≤ π

2
Tr(
√
−∆αα∗) ≤ π

2
Tr(
√
−∆γ). (1.1.14)

Therefore, they do not show up in the leading order of the blow-up profile.

1.1.3. Hartree Theory of Boson Stars. For bosons, the Hartree theory is the simplest
semi-classical theory which can be obtained by assuming that all particles are independent
and identically distributed. This leads to the celebrated non-linear model introduced by
Hartree [17]. Mathematically, it corresponds to the choice of the wave function

ΨN (x1, . . . , xN ) =

N∏
i=1

u(xi), (1.1.15)

for some normalized u ∈ H
1
2 (R3). Computing the ground state energy gives 〈ΨN , HNΨN 〉 =

NEH
ω (u) where ω = κN and2

EH
ω (u) := ‖(−∆ +m2)

1
4u‖2L2 −

ω

2

∫∫
R3×R3

|u(x)|2|u(y)|2

|x− y|
dxdy. (1.1.16)

1For fermions, the one-particle density matrix is not normalized to have trace equal to one.
2In fact, the coupling constant in (1.1.16) is ω

2

(
1− 1

N

)
but we discarded 1

N
because we are interested in

the limit N →∞.
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The Hartree energy is defined by

EH
ω (1) := inf

{
EH
ω (u) : u ∈ H

1
2 (R3),

∫
R3

|u(x)|2dx = 1

}
. (1.1.17)

We note that, by (1.1.3),

EH
ω (1)|m=0 ≤ EH

ω (1) ≤ EH
ω (1)|m=0 +m.

In case m = 0, since the kinetic and potential energies behave the same under scaling, there
exists a critical value ωc such that EH

ω (1)|m=0 = −∞ as soon as ω > ωc. Therefore, the
Chandrasekhar limit mass for boson stars is ωc

κ . In fact, ωc is the optimal constant in the
Gagliardo–Nirenberg-type inequality

ωc
2

∫∫
R3×R3

|u(x)|2|u(y)|2

|x− y|
dxdy ≤ ‖(−∆)

1
4u‖2L2‖u‖2L2 , ∀u ∈ H

1
2 (R3). (1.1.18)

The value ωc is not known explicitly but we have that 4/π < ωc < 2.7 where the lower bound
follows from the Hardy–Kato inequality |x− y|−1 ≤ π

2

√
−∆x.

By standard methods in the calculus of variations, one can prove that there exists a
ground state for EH

ω (1) in (1.1.17) as long as ω < ωc. In this subcritical regime, Lieb–Yau
[36] proved that the Hartree theory is a correct to the leading order of the full many-body

theory in the limit κ → 0 and N → ∞ with ω = κN fixed. Obviously, if u ∈ H
1
2 (R3) in

(1.1.15) minimizes (1.1.16), then the Hartree energy EH
a (1) is an upper bound to the ground

state energy per particle EQ
N . The lower bound is the most difficult part of the proof in [36].

This result was later obtained again by Lewin–Nam–Rougerie [29] with a different method
that exploits the quantum de Finetti theorem.

In Paper C, where we consider the Hartree variational problem (1.1.17) with or without
external potentials, we analyze in detail the blow-up behavior of the Hartree energy EH

ω (1)
and its ground states when ω ↗ ωc. This is the first step to understand the gravitational
collapse of boson stars.

1.1.4. Many-Body Boson Stars with External Potentials. Our goal is to study
the gravitational collapse of boson stars from the view point of quantum mechanics. In that
case, Bose–Einstein condensates are formulated by the k-particle reduced density matrices
associated to the ground state ΨN . It is defined by taking the partial trace of the orthogonal
projection γΨN := |ΨN 〉〈ΨN | over the last N − k particles3

γ
(k)
ΨN

:= Trk+1→N γΨN . (1.1.19)

Equivalently, γ
(k)
ΨN

is defined as a non-negative trace class operator on L2
sym(R3k) with kernel

γ
(k)
ΨN

(x1, . . . , xk; y1, . . . , yk) =

∫
R3(N−k)

ΨN (x1, . . . , xk;Z)ΨN (y1, . . . , yk;Z)dZ.

We remark that (1.1.1) has no ground states, due to its translation invariance. A way out
of this difficulty is to include an external potential, as we do here. A similar technique was

3For bosons, we use the convention that the k-particle reduce density matrices are normalized to have
trace equal to one, for all k ∈ N.
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used by Lieb–Yau [36] for neutron stars. We consider the following modified Hamiltonian4

HN =
N∑
i=1

(√
−∆xi +m2 + V (xi)

)
− ω

N − 1

∑
1≤i<j≤N

|xi − xj |−1, (1.1.20)

where V : R3 → R is an external potential. For the sake of simplicity, we consider the case
where V is trapping. Then the existence of many-body ground states is easily obtained,
whenever 0 < ω < ωc, by a standard compactness argument.

In Paper D, we study the asymptotic behaviors of the ground state energy per particle

EQ
N of the system (1.1.20) and its ground states in the limit ωN = κN ↗ ωc at the same time

as the mean-field limit N → ∞ is taken. Our main tool is the quantum de Finetti theorem
and its quantitative version developed recently by Lewin–Nam–Rougerie [29, 30].

1.2. Mixture Condensates of Bose Gases

In this section, let us consider N = N1 + N2 non-relativistic quantum bosons in R2

consisting of two different families of N1 and N2 identical particles. We consider the N -
particle bosonic system described by the Hamiltonian

HN = HN1,N2 =

N1∑
i=1

(
−∆xi + V1(xi)

)
− 1

N1 − 1

∑
1≤i<j≤N1

w
(1)
N (xi − xj)

+

N2∑
r=1

(
−∆yr + V2(yr)

)
− 1

N2 − 1

∑
1≤r<s≤N2

w
(2)
N (yr − ys)

− 1

N

N1∑
i=1

N2∑
r=1

w
(12)
N (xi − yr), (1.2.1)

on the Hilbert space

HN = HN1 ⊗HN2 := L2
sym(R2N1 ,dx1, . . . ,dxN1)⊗ L2

sym(R2N1 , dy1, . . . ,dyN2).

Here HN consists of two Hilbert spaces HNσ = L2
sym(R2Nσ) of square-integrable functions in

(R2)Nσ which are symmetric under permutations of the Nσ variables, for σ ∈ {1, 2}. The
exchange symmetry is not present among variables of different type.

The Hamiltonian (1.2.1) consists of two attractive one-component systems among each
species and interactions between the two species. The potentials V1 and V2 are trapping for
each species and can be chosen to be different. The inter-species interactions can be either
attractive or repulsive. The choice of coupling constants proportional to 1

Nσ−1 and 1
N ensures

that the kinetic and the potential energy are comparable in the limit N →∞. Furthermore,
all of the interactions terms are chosen of the form

w
(σ)
N (x) = N2βw(σ)(Nβx) ∈ L1(R2), σ ∈ {1, 2, 12}, (1.2.2)

for a fixed parameter 0 ≤ β ≤ 1, and fixed functions w(σ) satisfying

w(σ)(x) = w(σ)(−x) and (1 + |x|)w(σ), ŵ(σ) ∈ L1(R2). (1.2.3)

4κ = ω
N

in (1.1.1) but we choose here κ = ω
N−1

to ensure that the kinetic and interaction energy are

comparable. This change has of course no effect in the limit N →∞ with κN kept fixed.
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Here β = 1
2 is the dividing line between two different physical pictures. The case 0 < β < 1

2
corresponds to a high density regime where the particles meet frequently but interact weakly
since the typical interaction length is larger than the average distance between the particles.
The case 1

2 < β < 1 is more subtle and corresponds to a low density regime where the particles
meet rarely but interact strongly. Finally, we assume that there exist 0 < c1, c2 < 1 such that

c1 = lim
N→∞

N1

N
and c2 = lim

N→∞

N2

N
. (1.2.4)

This realistic requirement guarantees that the two populations are comparable. It is not
restrictive to assume that the ratios N1

N and N2
N are fixed and equal to c1 and c2, respectively,

and so shall we henceforth.
As usual, the ground state energy per particle of HN is denoted by EQ

N = N−1 inf specHN .

We may have EQ
N = −∞ because (1.2.1) consists two attractive many-body quantum systems.

Since these systems are confined, a (normalized) mixture ground state exists under certain
assumptions on the potentials. It is an N -boson wave function in HN with two distinct sets
of variables. The most natural example of state which models a two-component condensate
is a state ΨN ∈ HN of the form

ΨN (x1, . . . , xN1 ; y1, . . . , yN2) =

N1∏
i=1

u1(xi)⊗
N2∏
r=1

u2(yr) (1.2.5)

for some normalized functions u1, u2 ∈ H1(R2). Computing the ground state energy gives
〈ΨN , HNΨN 〉 = NEH

N (u1, u2) where

EH
N (u1, u2) = c1

∫
R2

[
|∇u1(x)|2 + V1(x)|u1(x)|2 − 1

2
|u1(x)|2(w

(1)
N ? |u1|2)(x)

]
dx

+ c2

∫
R2

[
|∇u2(x)|2 + V2(x)|u2(x)|2 − 1

2
|u2(x)|2(w

(2)
N ? |u2|2)(x)

]
dx

− c1c2

∫
R2

|u1(x)|2(w
(12)
N ? |u2|2)(x)dx, (1.2.6)

with c1 and c2 given by (1.2.4). In the above, the symbol ? stands for the convolution. The
N -dependent Hartree energy is defined by

EH
N := inf

{
EH
N (u1, u2) : u1, u2 ∈ H1(R2),

∫
R2

|u1(x)|2dx = 1 =

∫
R2

|u2(x)|2dx

}
.

Obviously, if the couple (u1, u2) ∈ H1(R2) × H1(R2) in (1.2.5) minimizes (1.2.6), then the

Hartree energy EH
N is an upper bound to the ground state energy per particle EQ

N .
When β > 0 and N → ∞, the scaled interactions potentials (1.2.2) converge to a delta

function at the origin in the sense of measures, i.e.,

w
(σ)
N ⇀

(∫
R2

w(σ)(x)dx

)
δ0 =: aσδ0, σ ∈ {1, 2, 12}. (1.2.7)

Here a1, a2 and a12 measure the strengths of the intra-species and inter-species interactions.
The non-linear Schrödinger (NLS) functional which is obtained from (1.2.6) is

ENLS(u1, u2) = c1

∫
R2

[
|∇u1(x)|2 + V1(x)|u1(x)|2 − a1

2
|u1(x)|4

]
dx
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+ c2

∫
R2

[
|∇u2(x)|2 + V2(x)|u2(x)|2 − a2

2
|u2(x)|4

]
dx

− c1c2a12

∫
R2

|u1(x)|2|u2(x)|2dx. (1.2.8)

The NLS energy is defined by

ENLS := inf

{
ENLS(u1, u2) : u1, u2 ∈ H1(R2),

∫
R2

|u1(x)|2dx = 1 =

∫
R2

|u2(x)|2dx

}
. (1.2.9)

For the defocusing case, i.e., a1, a2, a12 < 0 in (1.2.7), the derivation of the Hartree and
NLS theories from the many-body theory has been achieved by Michelangeli–Nam–Olgiati
[38]. However, for the focusing case, things are different because the system is unstable. In
that case, the NLS theory is the main tool to understand the collapse of the many-body

system (1.2.1). The asymptotic behaviors of the ground state energy per particle EQ
N and its

ground states are always of our main interests. The mixture condensates are formulated by
the double (k, `)-reduced density matrices associated to the ground state ΨN . It is defined by
taking the partial trace of γΨN := |ΨN 〉〈ΨN | over the last N1 − k and N2 − ` particles

γ
(k,`)
ΨN

:= Trk+1→N1 ⊗Tr`+1→N2 γΨN , ∀k, ` ∈ N. (1.2.10)

Equivalently, γ
(k,`)
ΨN

is defined as a non-negative trace class operator on Hk+` = Hk ⊗H` with
kernel

γ
(k,`)
ΨN

(X,Y ;X ′, Y ′) =

∫
R2(N1−k)

∫
R2(N2−`)

ΨN (X,Z;Y, T )ΨN (X ′, Z;Y ′, T )dZdT

where X,X ′ ∈ (R2)k and Y, Y ′ ∈ (R2)`.
Recently, the collapse of the one-component focusing many-body system has been studied

[13, 31]. See also [28, 29, 30, 32] and references therein for results of the mean field
approximation and the validity of the NLS theory. In the two-component setting, the mixture
condensates of Bose gases in the NLS theory have been studied by Guo–Zeng–Zhou5 [15, 16].
Most of the results in [15, 16] (also in [13, 31]) are related to the critical strength for the
stability of both one- and two-component NLS functionals. Such a critical number, denoted
by a∗, is the optimal constant of the Gagliardo–Nirenberg inequality

a∗
2
‖u‖4L4 ≤ ‖∇u‖2L2‖u‖2L2 , ∀u ∈ H1(R2). (1.2.11)

Equivalently, a∗ = ‖Q‖2L2 where Q is the unique (up to translation) symmetric radial positive

solution of the following equation in R2

−∆Q+Q−Q3 = 0. (1.2.12)

In Paper E, we study the collapse of the two-component system (1.2.1). We consider the
case where a1 > 0, a2 > 0 and either a12 > 0 or a12 < 0. We establish quantitative bounds on

the difference between the ground state energy per particle EQ
N and the N -dependent Hartree

energy EH
N . Then by passing to the limit N → ∞ in the latter and using (1.2.3), we obtain

the NLS energy ENLS. Furthermore, we analyze in detail the blow-up behavior of EQ
N and its

ground states in the collapse regimes. We show that, up to rescaling, the ground states fully
condensate on the unique solution of (1.2.12).

5In [15, 16], the authors consider only the effective NLS theory and c1, c2 can be chosen such that
c1 = 1 = c2 for simplicity. In this thesis, those constants are taken into account to fit our general picture.



CHAPTER 2

Overview of Results

2.1. Overview of Papers A and B. Blow-Up of Neutron Stars

In this section, we summarize the results in the papers A and B. In these papers, we study
the gravitational collapse of neutron stars which are described by the Hamiltonian (1.1.1) on

the anti-symmetric space
∧N L2(R3;C)1. The neutron mass m > 0 is assumed to be strictly

positive and κ = gm2 with g the gravitational constant. The collapse of neutron stars refers
to the fundamental fact that the ground state energy per particle of HN , which is defined by

EQ
N := N−1 inf specHN , is not bounded from below if τ := κN

2
3 > τc. Here the critical value

τc is given by (1.1.7).
For the reasons explained in Chapter 1, we will focus on effective models in order to study

the stellar collapse.

2.1.1. Blow-Up of Neutron Stars in the Chandrasekhar Theory. As a starting
point, we first study the gravitational collapse of neutron stars in the Chandrasekhar theory
since this is the simplest approximate theory from the full many-body Schrödinger theory.
We will consider the following variational problem

ECh
τ (1) := inf

{
ECh
τ (ρ) : 0 ≤ ρ ∈ L1 ∩ L

4
3 (R3),

∫
R3

ρ(x)dx = 1

}
, (2.1.1)

where the Chandrasekhar energy functional is given by

ECh
τ (ρ) :=

∫
R3

jm(ρ(x))dx− τ

2

∫∫
R3×R3

ρ(x)ρ(y)

|x− y|
dxdy. (2.1.2)

Here jm(ρ) which was introduced in (1.1.4) is the relativistic kinetic energy at the density ρ.
It is well-known that there exists a (unique) minimizer for (2.1.1) whenever 0 < τ < τc (see

[36]). We focus on the analysis of the blow-up behavior of the Chandrasekhar energy ECh
τ (1)

and its minimizer when τ ↗ τc. This is based on a detailed analysis of the associate Euler–
Lagrange equation. We will show that the Chandrasekhar minimizer develops a universal
blow-up profile given explicitly by the optimizer of (1.1.7). Let us briefly recall some results
regarding the properties of (1.1.7). From [34, Appendix A] we have that (1.1.7) has a unique

optimizer, up to dilation and translation. Such an optimizer, called Q ∈ L1 ∩ L
4
3 (R3), has

compact support and can be chosen uniquely to be non-negative symmetric decreasing, by
rearrangement inequality (see [33, Chapter 3]). The dilation can be fixed by setting

σf

∫
R3

Q(x)
4
3 dx =

∫
R3

Q(x)dx =
1

2

∫∫
R3×R3

Q(x)Q(y)

|x− y|
dxdy = 1, (2.1.3)

1More generally, we consider
∧N L2(R3;Cq) where q ≥ 1 denotes the internal spin degree of freedom.

9
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where σf := Kclτ
−1
c ≈ 1.092, numerically. Moreover, Q solves the Lane–Emden equation [21]

4

3
σfQ(x)

1
3 − (| · |−1 ? Q)(x) +

2

3

{
= 0 if Q(x) > 0,

≥ 0 if Q(x) = 0.
(2.1.4)

An equivalent way to write (2.1.4) is, with [f(x)]+ := max{f(x), 0},
4

3
σfQ(x)

1
3 =

[
(| · |−1 ? Q)(x)− 2

3

]
+

.

Furthermore, it can be seen from (2.1.4) that Q has compact support.
Now we are able to describe our first result.

Theorem 1 ([44]). Fix m > 0. For each 0 < τ < τc, let ρτ be a minimizer for ECh
τ (1)

in (2.1.1). Then for every sequence {τn} with τn ↗ τc as n → ∞, there exist a sequence
{xn} ⊂ R3 and a subsequence of {τn} (still denoted by {τn}) such that

lim
n→∞

(τc − τn)
3
2 ρτn((τc − τn)

1
2x+ xn) = Λ3Q (Λx) (2.1.5)

strongly in L1 ∩ L
4
3 (R3). Here Q is the (unique) non-negative symmetric function satisfying

(2.1.3)–(2.1.4) and

Λ =
3

4
m

(
1

Kcl

∫
R3

Q(x)
2
3 dx

) 1
2

. (2.1.6)

Let us discuss briefly the strategy of the proof of Theorem 1. Heuristically, assume that
the minimizer ρτ for (2.1.1) collapses at a length ` → 0, namely `3ρτ (`x) ≈ Q(x). By using

the formal approximation of the function jm(ρτ ) ≈ Kclρ
4
3
τ + 9

16m
2Kclρ

2
3
τ , which follows from

that of the operator √
−∆ +m2 ≈

√
−∆ +

m2

2
√
−∆

, (2.1.7)

we obtain

ECh
τ (1) = ECh

τ (ρτ ) ≈ 1

`
(τc − τ) + `

9

16
m2Kcl

∫
R3

Q(x)
2
3 . (2.1.8)

Then the result in Theorem 1 essentially follows by optimizing over ` > 0 on the right hand
side of (2.1.8). As a by-product, we also obtain the asymptotic behavior of the Chandrasekhar
energy. It is given by

lim
τ↗τc

ECh
τ (1)

(τc − τ)
1
2

=
3

2
m

(
1

Kcl

∫
R3

Q(x)
2
3 dx

) 1
2

. (2.1.9)

Roughly speaking, for each 0 < τn < τc, the corresponding minimizer ρτn =: ρn for ECh
τn (1)

solves the Euler–Lagrange equation√
ηn(x)2 +m2 =

[
τn(| · |−1 ? ρn)(x) + µn

]
+

(2.1.10)

where ηn = (6π2ρn)
1
3 and the Lagrange multiplier µn ∈ R can be calculated as follows

µn =

∫
R3

√
ηn(x)2 +m2ρn(x)dx− τn

∫∫
R3×R3

ρn(x)ρn(y)

|x− y|
dxdy. (2.1.11)

Next, delicate estimates on kinetic and potential energies show that (τc − τn)
1
2µn stay away

from 0 as τn ↗ τc. This implies the compactness of the rescaling of Chandrasekhar minimizer.
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In the literature, the Chandrasekhar theory without external potential is the most physical
relevant. Nevertheless, there are also motivations from physics and mathematics (as in [2, 1,
9, 37]) to include an external potential V : R3 → R. In Paper A, we considered

V (x) = −
M∑
i=1

zi
|x− xi|si

, (2.1.12)

where 0 < zi, 0 < si <
3
4 , xi ∈ R3 and xi 6= xj , for 1 ≤ i 6= j ≤ M . Based on the

concentration-compactness method [37], one can prove the existence of minimizers below
criticality τc and absence thereof above and exactly at the critical coupling. The behavior of
the Chandrasekhar minimizers depends on that of V near its minima. In [44], we prove that
they concentrate at the most singular points of V (x) in (2.1.12).

2.1.2. Blow-Up of Neutron Stars in the Hartree–Fock–Bogoliubov Theory.
The Hartree–Fock–Bogoliubov (HFB) theory is believed to be much more precise than the
Chandrasekhar theory. To see this, let us assume for the moment that the exchange and
pairing terms are trivial. Let ρCh be the unique (up to translation) minimizer for ECh

κ (N) in
(1.1.6). By the non-negativity of the direct term, we have

−
∫∫

R3×R3

ργ(x)ργ(y)

|x− y|
dxdy ≤

∫∫
R3×R3

ρCh(x)ρCh(y)

|x− y|
dxdy − 2

∫∫
R3×R3

ρCh(x)ργ(y)

|x− y|
dxdy

for the density functional ργ of any trace-class self-adjoint operator γ. This implies that

EHFB
τ (N) ≤ inf

{
Tr
[(√

−∆ +m2 − κ(| · |−1 ? ρCh)
)
γ
]

: 0 ≤ γ = γ∗ ≤ 1,Tr γ = N
}

+
κ

2

∫∫
R3×R3

ρCh(x)ρCh(y)

|x− y|
dxdy. (2.1.13)

Now, if we consider the trial state γ := 1(
√
−∆ ≤ ηCh) with ηCh = (6π2ρCh)

1
3 , then the

right hand side of (2.1.13) is ECh
κ (N) = NECh

τ (1), where τ = κN
2
3 . Furthermore, we have

that NEQ
N ≤ EHFB

τ (N), by the variational principle. Therefore, the HFB theory interpolates
between the Schrödinger many-body and the Chandrasekhar theories.

Having the knowledge of the stellar collapse in the Chandrasekhar theory, we now study
it in the HFB theory (1.1.8). In this case, the limit N →∞ is taken into account besides the
original limit τ := τN ↗ τc.

We have the following result.

Theorem 2 ([45]). Fix m > 0. Assume that 0 < τN = τc −N−β with 0 < β < 1
9 . Then

we have
1

N
EHFB
τN

(N) = (τc − τN )
1
2 (2Λ + o(1)N→∞), (2.1.14)

where Λ is given by (2.1.6).
Furthermore, assume that (γN , αN ) is a minimizer for EHFB

τN
(N) and ργN (x) = γN (x, x).

Then there exist a sequence {xN} ⊂ R3 and a subsequence of {ργN } (still denoted by {ργN })
such that

lim
N→∞

(τc − τN )
3
2 ργN ((τc − τN )

1
2N

1
3x+ xN ) = Λ3Q(Λx) (2.1.15)

strongly in Lr(R3) for 1 ≤ r < 4
3 and weakly in L

4
3 (R3). Here Q is the (unique) non-negative

symmetric function satisfying (2.1.3)–(2.1.4).
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Remark 3. • We only obtain the L
4
3 (R3)-weak convergence in (2.1.15). To get the

strong convergence, our proof needs the Lieb–Thirring-type inequality with optimal
constant. This is a long-standing open question. See [6, 35] for thorough discussions.
• The pairing term in (1.1.8) does not show up in the leading order of the blow-up

profile since its contribution is too small.

Let us discuss briefly the strategy of the proof of Theorem 2. The asymptotic behavior of
the HFB energy follows from that of the Chandrasekhar energy. See Lenzmann–Lewin [24] for
the energy estimate in the subcritical regime. In fact, it essentially follows from the analysis
of Lieb–Yau in [36] where they compared the ground state energy and the Chandrasekhar

energy. They proved that the error term in the energy estimate is of order N−
1
9 . Therefore,

it is necessary to assume that τN = τc −N−β with 0 < β < 1
9 in order to obtain (2.1.14).

On the other hand, we note that a HFB minimizer (γN , αN ) exists, whenever N is less
than the Chandrasekhar limit mass, and there is an Euler–Lagrange equation associated to
this minimizer. Unlike the Chandrasekhar equation (2.1.10), such a HFB equation is more
complicated and therefore more difficult to analyze. What we do instead is to apply the
concentration-compactness principle [37]. In such a method, the relative compactness of the
minimizing sequence is usually consequence of the strict binding inequality. In the HFB case,
the HFB energy formally reduces to the Chandrasekhar energy in the limit N → ∞ and
τN ↗ τc. This means we would need a binding inequality like

ECh
τc (1)|m=0 < ECh

τc (ν)|m=0 + ECh
τc (1− ν)|m=0, ∀0 < ν < 1.

However, the above is not true since ECh
τ (ν)|m=0 = 0 for any 0 ≤ ν ≤ 1 and 0 ≤ τ ≤ τc.

Such a binding inequality holds only if m > 0 and τ < τc, which yields the existence of the
Chandrasekhar minimizer for ECh

τ (1). Another difficulty arising in the dichotomy argument is
the lack of the sharp Lieb–Thirring-type inequality. For our purpose, we only need that such
an inequality holds in the weak sense. More precisely, for any sequence of density matrices

{γN} such that 0 ≤ γN ≤ 1 and the density ργN (N
1
3x) = γN (N

1
3x,N

1
3x) converges to ρ

weakly in L
4
3 (R3), we have

lim inf
N→∞

1

N
Tr(
√
−∆γN ) ≥ Kcl

∫
R3

ρ(x)
4
3 dx. (2.1.16)

See also [11] for the non-relativistic analogue version.
Heuristically, suppose that (γN , αN ) is a minimizer for EHFB

τN
and set the collapse length

`N := (τc − τN )
1
2 → 0 as N → ∞. In this limit, the exchange and pairing terms give no

contribution to the leading order, by (1.1.13) and (1.1.14). Let γ̃N (x, y) = `3NγN (`Nx, `Ny)
be the scaling of the HFB minimizing sequence. Then delicate estimates between the HFB

and the Chandrasekhar energies together with (2.1.9) show that γ̃N (N
1
3x,N

1
3 y) does not

vanish for sufficient large N . Next, we assume that such a sequence is not relatively compact.
After splitting the energy we obtain

`N
N
EHFB
τN

=
1

N
EHFB
τN

(γ̃N ) ≥ 1

N
EHFB
τN

(γ̃
(•)
N ) +

1

N
EHFB
τN

(γ̃
(◦)
N ) + o(1)N→∞, (2.1.17)

where γ̃
(•)
N is the localized state of γ̃N in a bounded domain and γ̃

(◦)
N is the state at infinity. It

is obvious that EHFB
τN

≤ NECh
τN

(1), by variational principle, and ECh
τN

(1) behaves like `N → 0
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as N →∞, by (2.1.9). On the other hand, (2.1.16) allows us to conclude that

lim inf
N→∞

1

N
EHFB
τN

(γ̃
(•)
N ) ≥ ECh

τc (ν)|m=0 = 0

for some 0 < ν < 1 and that ECh
τc (ν)|m=0 admits a minimizer. However, this will never

happen, due to the positivity of the direct term.

On the other hand, when Tr γ̃
(◦)
N is close to Tr γ̃N , the non-sharp Lieb–Thirring-type

inequality (see [6, 35]) is not enough to control the energy of mass at infinity. In the following,
we present another argument differently from [45] that allows us to obtain the conclusion

quickly. By the same reason as above, the sequence {γ̃(◦)
N } cannot vanish. Furthermore, if it

is relatively compact then we obtain again from (2.1.16) that

lim inf
N→∞

1

N
EHFB
τN

(γ̃
(◦)
N ) ≥ ECh

τc (1− ν)|m=0 = 0.

Otherwise, we may split the energy one more time the second term on the right hand side of
(2.1.17). In fact, we can repeat this process as many times as we please. By doing this, we
decrease the mass at infinity. When this is small enough, we can therefore apply (1.1.7) and
the non-sharp Lieb–Thirring-type inequality to conclude that the energy of mass at infinity
is non-negative and we are done.

2.2. Overview of Papers C and D. Blow-Up of Boson Stars

In this section, we summarize the results in the papers C and D. In these papers, we
study the gravitational collapse of boson stars, which are a class of models from relativistic
many-body quantum mechanics inspired by stellar collapse (see Section 2.1). Although rather
unphysical, this model has very interesting mathematical features and has been extensively
studied in the literature [36, 7, 10, 22, 25, 40, 29].

Mathematically, boson stars are also described by the same Hamiltonian in (1.1.1), which

now acts on the symmetric space
⊗N

sym L
2(R3). Note that all the force carrier particles

now are bosons since we neglect the Pauli exclusion principle. Furthermore, the boson mass
m > 0 is again assumed to be strictly positive. The collapse of boson stars refers to the

fundamental fact that the ground state energy per particle of HN , which is defined by EQ
N :=

N−1 inf specHN , is not bounded from below if ω := κN > ωc. Here the critical value ωc is
given by (1.1.18).

2.2.1. Blow-Up of Boson Stars in the Hartree Theory. As a starting point, we first
study the gravitational collapse of boson stars in the Hartree theory since this is the simplest
approximate theory from the full many-body Schrödinger theory (1.1.20). We consider the
following variational problem

EH
ω (1) := inf

{
EH
ω (u) : u ∈ H

1
2 (R3),

∫
R2

|u(x)|2dx = 1

}
, (2.2.1)

where the general Hartree energy functional is given by

EH
ω (u) = ‖(−∆ +m2)

1
4u‖2L2 +

∫
R3

V (x)|u(x)|2dx− ω

2

∫∫
R3×R3

|u(x)|2|u(y)|2

|x− y|
dxdy. (2.2.2)

The case V = 0 is allowed and is the most physically relevant. But it is also mathematically
interesting to include a general external potential. Here, we consider two cases that either V
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is trapping, i.e.,

0 ≤ V ∈ L∞loc(R3) and lim
|x|→∞

V (x)→∞ (2.2.3)

or V is periodic, i.e.,

0 ≤ V ∈ C(R3) and V (x+ z) = V (x) for all z ∈ Z3.

Under the above assumptions, we first prove the existence of ground states for (2.2.1)
below criticality ωc and absence thereof above and exactly at the critical coupling. In the
trapping case, the existence result follows from standard methods in the calculus of variations.
On the other hand, the proof in the periodic case is an application of the concentration-
compactness method [37]. Note that we can restrict the minimization problem (2.2.1) to

non-negative functions since EH
ω (u) ≥ EH

ω (|u|), for any u ∈ H
1
2 (R3). This follows from the

fact that ‖(−∆ + m2)
1
4u‖L2 ≥ ‖(−∆ + m2)

1
4 |u|‖L2 (see [33, Theorem 7.13]). In particular,

a ground state for EH
ω (1) (if it exists) can be chosen to be non-negative. Furthermore, if V

is radial increasing, then one can actually restrict the minimization problem EH
ω (1) to radial

decreasing functions, by rearrangement inequalities (see [33, Chapter 3 and Lemma 7.17]).
Having the existence of Hartree ground states, we next give an explicit blow-up profile for

the Hartree energy and its ground states. Here we only describe our results in the case of a
trapping potential. We refer the reader to [43] for the other interesting cases such as periodic
and ring-shaped potentials (which have infinitely many minimizers). Let us consider the case
where V is trapping and has finitely many minimizers, i.e., V ≥ 0 and V −1(0) = {xi}ni=1 ⊂ R3.
Furthermore, assume that there exist constants pi > 0 and νi > 0 such that

lim
x→xi

V (x)

|x− xi|pi
= νi, ∀i = 1, . . . , n. (2.2.4)

Moreover, we denote by Z the set of positions of the flattest global minima of V (x), given by

Z := {xi : pi = p, νi = ν}, where p = max{pi : 1 ≤ i ≤ n} and ν = min{νi : pi = p}.
One easily sees that V in (2.2.4) satisfies (2.2.3). Hence, the existence of ground states for

(2.2.1) is obtained whenever ω < ωc. Next, we analyze the blow-up behavior of the Hartree
ground states when ω ↗ ωc. We will see that this depends crucially on the local behavior
of V close to its minimizers only in the case 0 < p ≤ 1. The analysis will be based on a
detailed analysis of the Euler–Lagrange equation associated to them. We will show that the
Hartree ground states develop a universal blow-up profile given explicitly by the optimizers of
(1.1.18). Let us briefly recall some results regarding the properties of (1.1.18). From [36] we

have that (1.1.18) has an optimizer, called Q ∈ H
1
2 (R3). It can be chosen to be non-negative

symmetric decreasing, by rearrangement inequality, and satisfies

‖(−∆)
1
4Q‖2L2 = ‖Q‖2L2 =

ωc
2

∫∫
R3×R3

|Q(x)|2|Q(y)|2

|x− y|
dxdy = 1. (2.2.5)

Moreover, Q solves the massless boson star equation
√
−∆Q+Q− ωc(| · |−1 ? |Q|2)Q = 0. (2.2.6)

The uniqueness (up to translation and dilation) of the optimizers of (1.1.18), as well as
the uniqueness (up to translation) of the positive solutions of (2.2.6), are still major open
problems. Let us define the following

GN = {positive symmetric decreasing functions satisfying (2.2.5)–(2.2.6)} . (2.2.7)
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We have the following result.

Theorem 4 ([43]). Let V satisfy (2.2.3) and the assumption (2.2.4). For each 0 < ω <
ωc, let uω be a non-negative ground state for EH

ω (1) in (2.2.1). Then for every sequence {ωn}
with ωn ↗ ωc as n → ∞, there exist a Q ∈ GN in (2.2.7) and a subsequence of {ωn} (still
denoted by {ωn}) such that

• If p ≤ 1, then there exists an x0 ∈ Z such that

lim
n→∞

(ωc − ωn)
3

2(p+1)uωn

(
(ωc − ωn)

1
p+1x+ x0

)
= Λ

3
2Q (Λx) (2.2.8)

strongly in H
1
2 (R3), where

Λ =


inf

W∈GN

(
ωcpν

∫
R3

|x|p|W (x)|2dx
) 1
p+1

if 0 < p < 1,

inf
W∈GN

(m2ωc
2
‖(−∆)−

1
4W‖2L2 + ωcν

∫
R3

|x||W (x)|2dx
) 1

2
if p = 1.

(2.2.9)

• If p > 1, then there exists a sequence {xn} ⊂ R3 such that

lim
n→∞

(ωc − ωn)
3
4uωn

(
(ωc − ωn)

1
2x+ xn

)
= Λ

3
2Q (Λx) (2.2.10)

strongly in H
1
2 (R3), where

Λ = m

√
ωc
2

inf
W∈GN

‖(−∆)−
1
4W‖L2 . (2.2.11)

Remark 5. • The infima in (2.2.9) and (2.2.11) are attained at Q in (2.2.8) and
(2.2.10), respectively.
• It can be seen from (2.2.9) and (2.2.11) that V has contribution to the leading order

of EH
ω (1) only in the case 0 < p ≤ 1. In the reverse case p > 1 as well as in the case

V ≡ 0, therefore, we lose information about the sequence {xn} in (2.2.10). However,
if a non-trivial strictly radial increasing V is included then we can choose xn = 0.

A similar minimization problem of (2.2.1) was considered independently in [14, 50]. The
authors in [14] studied a problem with non-local non-linear terms, while the authors in [50]
considered a case of a trapping potential as in (2.2.4) with 0 < p < 1.

The collapse scales in (2.2.8) and (2.2.10) are set by the subleading contribution of the
kinetic energy in a large momentum expansion. More precisely, assume that the ground state
uω collapse at a length `→ 0 around x0, namely

`
3
2uω(`x+ x0) ≈ Q(x),

where Q ∈ GN in (2.2.7). By using the formal approximation (2.1.7) and the assumption
that V (x) ≈ ν|x− x0|p around x0 we obtain

EH
ω (1) = EH

ω (uω) ≈ 1

`

(
1− ω

ωc

)
+ `

m2

2
‖(−∆)−

1
4Q‖2L2 + `pν

∫
R3

|x|p|Q(x)|2dx. (2.2.12)

Then the result in Theorem 4 essentially follows by optimizing over ` > 0 on the right hand
side of (2.2.12). As a by-product, we also obtain the asymptotic behavior of the Hartree
energy

lim
ω↗ωc

EH
ω (1)

(ωc − ω)
q
q+1

=
q + 1

q
· Λ

ωc
where q = min{p, 1}. (2.2.13)
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Note that if V ≡ 0, then we also obtain (2.2.13) with q = 1 and Λ is given by (2.2.11).
Roughly speaking, for each 0 < ωn < ωc, the corresponding ground state uωn =: un for

EH
ωn(1) solves the Euler–Lagrange equation√

−∆ +m2un(x) + V (x)un(x)− ωn(| · |−1 ? |un|2)(x)un(x) = µnun(x),

where the Lagrange multiplier µn ∈ R can be calculated as follows

µn = EH
ωn(1)− ωn

2

∫∫
R3×R3

|un(x)|2|un(y)|2

|x− y|
dxdy. (2.2.14)

Next, delicate estimates on kinetic and potential energies show that (ωc−ωn)
1
q+1µn stay away

from 0 as ωn ↗ ωc. This implies the compactness of the rescaling of the Hartree ground state.
We summarize this in the following lemma which is also used in the proofs for periodic and
ring-shaped potentials.

Lemma 6 ([43]). For any sequence {zn} ⊂ R3 and εn > 0 such that εn → 0 as n→∞, let

vn(x) := ε
3
2
nun(εnx+ zn) be L2-normalized of un. Assume that vn is bounded in H

1
2 (R3) and

εnµn → −λ < 0 as n → ∞. Then there exists a non-negative v ∈ H
1
2 (R3) such that vn → v

strongly in H
1
2 (R3). Moreover if v > 0 then, up to translation, we have

v(x) = λ
3
2Q(λx),

where Q ∈ GN in (2.2.7).

2.2.2. Blow-Up of Boson Stars in the Many-Body Theory. To study the collapse
of the full many-body system (1.1.1) of boson stars, the limit N → ∞ is taken into account
besides the original limit ω := ωN ↗ ωc. The asymptotic behavior of the ground state energy
per particle can be derived from that of the Hartree energy, which was given by (2.2.13) with
q = 1. We have

EQ
N = (ωc − ωN )

1
2

(
2

Λ

ωc
+ o(1)N→∞

)
, (2.2.15)

where Λ is given by (2.2.11). It is obvious that the Hartree energy is an upper bound for
the ground state energy per particle. On the other hand, the lower bound was analyzed in
great mathematical detail by Lieb–Yau [36]. They proved that the error term in the energy

estimate is of order N−
1
3 . Therefore, it is necessary to assume that ωN = ωc − N−β with

0 < β < 1
3 in order to obtain (2.2.15).

However, it is difficult to study the blow-up behavior of the many-body ground states.
In fact, a ground state does not exist since (1.1.1) is translation invariant. In the following,
we consider the modified Hamiltonian (1.1.20) which included an external potential V . For
precise analysis and for simplicity, we assume that V is trapping and has only one minimum2,
i.e.,

V (x) = ν|x|p (2.2.16)

for fixed parameters p > 0 and ν > 0. Since V is trapping, the existence of many-body
ground states is easily obtained, whenever 0 < ω < ωc, by a standard compactness argument.
Having the existence of many-body ground states, we next give an explicit blow-up profile
for the many-body system in the collapse regime N → ∞ simultaneously ωN = κN ↗ ωc.
The asymptotic behavior of the ground state energy per particle essentially follows from the

2ν = 1 in [46] but we include here ν > 0, as in [43], in order to fit in the overall picture of this thesis.



2.2. OVERVIEW OF PAPERS C AND D 17

analysis of Lieb–Yau [36]. Our main interest is the behavior of the many-body ground states.
It is formulated using the k-particle reduced density matrices associated to them which was
introduced in (1.1.19).

We have the following result.

Theorem 7 ([46]). Assume that m > 0 and V is given by (2.2.16). Let ωN = ωc −N−β
with 0 < β < 1

3 . Then we have

EQ
N = (ωc − ωN )

q
q+1

(q + 1

q
· Λ

ωc
+ o(1)N→∞

)
where q = min{p, 1} and Λ is given in Theorem 4.

In addition, assume that 0 < p ≤ 1 and 0 < β < p
17p+15 . Let ΨN be a ground state for

HN in (1.1.20). Then there exists a Borel probability measure dµ supported on GN defined

in (2.2.7) such that, along a subsequence of the rescaled states ΦN = `
− 3N

2
N ΨN (`−1

N ·), where

`N = Λ(ωc − ωN )
− 1
q+1 , we have

lim
N→∞

Tr
∣∣∣γ(k)

ΦN
−
∫
|u⊗k〉〈u⊗k|dµ(u)

∣∣∣ = 0, ∀k ∈ N. (2.2.17)

Remark 8. • If GN = {Q0}, as conjectured in [36], then for p > 0 and 0 < β < 1
3

we have

lim
N→∞

Tr
∣∣γ(k)

ΦN
− |Q⊗k0 〉〈Q

⊗k
0 |
∣∣ = 0, ∀k ∈ N,

without the constraints p ≤ 1 and β < p
17p+15 . Moreover, the convergence holds for

the whole sequence as N →∞.
• Although the convergence of the Hartree ground states in Theorem 4 is obtained

for any p > 0, we are not able to prove the Bose–Einstein condensation (2.2.17)

for p > 1. In this case, V has no impact to the leading order of EQ
N . A loss of

some compactness of the many-body ground states arises similarly to the translation-
invariant case when V ≡ 0.

Let us discuss briefly the strategy of the proof of Theorem 7. The asymptotic behavior
of the many-body ground state energy follows from that of the Hartree energy which was
pointed out in Theorem 4. Note that the energy estimate in [36] still holds when an external
potential is included. On the other hand, it is more complicated to obtain the convergence
of the ground states. The lack of uniqueness of the limiting profile does not allow us to use a
Feynman–Hellman-type argument, which was used by Lieb–Yau [36] in the study of neutron
stars. In the proof of (2.2.17), the crucial ingredient is the quantum de Finetti theorem and its
quantitative (finite dimensional) version [49, 19, 29, 30]. Those theorems allow us to fix the
structure of limits of reduced density matrices. The asymptotic behavior of the ground state
energy per particle ensures the strong compactness of the density matrices of the rescaled
state ΦN of the ground state ΨN and we have

lim
N→∞

Tr
∣∣∣γ(k)

ΦN
−
∫
SL2(R3)

|u⊗k〉〈u⊗k|dµ(u)
∣∣∣ = 0, ∀k ∈ N.

Here dµ is a Borel probability measure supported on the unit sphere SL2(R3) which is given
by the quantum de Finetti theorem. The main difficulty is to prove that dµ is supported on
the set GN , defined in (2.2.7), of positive solutions of the equation (2.2.6).
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The idea is to estimate the ground state energy per particle by the Hartree functional in
terms of the quantum de Finetti measure and second moment of the one-body Hamiltonian.
Together with the asymptotic behavior of the ground state energy per particle, this allows us
to reduce the problem of convergence of the reduced density matrix to that of the Hartree
approximate ground states, in the sense of energy. The energy upper bound is trivial by
taking a factorized ansatz. To obtain a lower bound, we localize the two-body Hamiltonian

H2 = hx + hy −
ω

|x− y|
, where h =

√
−∆ +m2 + V ≥ m > 0

using the spectral projector P = 1(h ≤ L) associated to the one-body operator h. Here L ≥ 0
is an energy cut-off which will be optimized. Since h has compact resolvent, the dimension
of the low-lying subspace (or equivalently, the number of eigenvalues of h below the energy
cut-off L) is finite and we have

NL := dim(PL2(R3)) ≤ CL3+ 3
p .

This is the relativistic version of the Cwikel–Lieb–Rosenblum bound and is a particular case
of Lieb–Thirring-type inequality [35, Chapter 4]. After applying the quantitative de Finetti
theorem, the error in the energy estimate is given by NL and the second moment which will
be controlled by delicate new inequalities and a priori estimates. We want this error term to
be of order EH

ωN
(1), which is achieved by optimizing over L and taking the restriction 0 < β <

p
17p+15 . Consequently, this shows that the final de Finetti measure must be concentrated on

the Gagliardo–Nirenberg-type optimizers, which gives the convergence of density matrices.

2.3. Overview of Paper E. Blow-Up of 2D Focusing Mixture Bose Gases

In this section, we summarize the results in the paper E. We study the collapse of the
many-body system (1.2.1) which is used to model two-component Bose–Einstein condensates
with attractive intra-species interactions and either attractive or repulsive inter-species inter-
actions. Let us rewrite HN in (1.2.1) as follows

HN = HN1 +HN2 − VN1,N2 (2.3.1)

where HNσ , with σ ∈ {1, 2}, denotes the single-component Hamiltonian

HNσ =

Nσ∑
i=1

(
−∆xi + Vσ(xi)

)
− 1

Nσ − 1

∑
1≤i<j≤Nσ

w
(σ)
N (xi − xj) (2.3.2)

and VN1,N2 denotes the inter-species interaction between two species

VN1,N2 =
1

N

N1∑
i=1

N2∑
r=1

w
(12)
N (xi − yr). (2.3.3)

The natural Hilbert space associated to (2.3.2) is HNσ := L2
sym(R2Nσ) and the Hilbert space

associated to (2.3.1) is HN = HN1 ⊗ HN2 . The symmetry by exchanging particles from the
two species is not allowed. This is the main difficulty in the mixture condensates to compare
with the single condensates.

We are intersted in the large-N behavior of the ground state energy per particle of HN

in (2.3.1), given by EQ
N := N−1 inf specHN , and the corresponding (mixture) ground states

in the collapse regimes. As a starting point, we first consider the collapse phenomenon in
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the effective non-linear Schrödinger (NLS) theory, given by (1.2.9). Let us rewrite the NLS
functional associated to (2.3.1) as follows

ENLS(u1, u2) = c1ENLS
1 (u1) + c2ENLS

2 (u2)− c1c2a12

∫
R2

|u1(x)|2|u2(x)|2dx, (2.3.4)

where c1 = N1
N and c2 = N2

N are fixed. Here ENLS
1 and ENLS

2 are one-component NLS functionals
associated to (2.3.2), given by

ENLS
σ (uσ) =

∫
R2

[
|∇uσ(x)|2 + Vσ(x)|uσ(x)|2 − aσ

2
|uσ(x)|4

]
dx, (2.3.5)

for σ ∈ {1, 2}. The one-component NLS energy is defined analogously to (1.2.9), i.e.,

ENLS
σ := inf

{
ENLS
σ (uσ) : uσ ∈ H1(R2),

∫
R2

|uσ(x)|2dx = 1

}
. (2.3.6)

We recall that the parameters a1 > 0 and a2 > 0 in (2.3.5) correspond to the scattering
length of attractive intra-species interactions for each one-component system. Moreover, the
parameter a12 in (2.3.4) corresponds to the scattering length of inter-species interactions
between two components of the system. It can be either attractive or repulsive.

Note that we can restrict the minimization problem (2.3.4) to non-negative functions
since ENLS(u1, u2) ≥ ENLS(|u1|, |u2|), for any u1, u2 ∈ H1(R3). The same situation applies
for (2.3.6). This follows from the fact that ‖∇u‖L2 ≥ ‖∇|u|‖L2 , for any u ∈ H1(R3) (see
[33, Theorem 7.8]). In particular, a ground state for ENLS (if it exists) can be chosen to be
non-negative. The existence and non-existence of two-component NLS ground states and its
blow-up profile have been proved by Guo–Zeng–Zhou [15, 16]. See also Guo–Seiringer [13]
for (2.3.6). Their results were established for potentials having finitely many minima. Let
us assume here, for precise analysis and for simplicity, that the external potentials V1 and V2

have only one minima and are chosen of the typical forms

Vσ(x) = |x− zσ|pσ , σ ∈ {1, 2}, (2.3.7)

where zσ ∈ R2 and pσ > 0. Those are generalizations of the harmonic trapping potentials
commonly used in laboratory experiments.

In the one-component setting, Guo–Seiringer [13] showed that if Vσ ≥ 0 is a trapping
potential, i.e., lim

|x|→∞
Vσ(x) =∞, then ENLS

σ in (2.3.6) has a ground state uaσ , for 0 < aσ < a∗.

Moreover, they also proved that if Vσ is of the form (2.3.7) then, up to a subsequence of uaσ ,
we have3

lim
aσ↗a∗

Λ−1
σ (a∗ − aσ)

1
pσ+2uaσ(Λ−1

σ (a∗ − aσ)
1

pσ+2x+ zσ) = (a∗)
− 1

2Q(x) =: Q0(x) (2.3.8)

strongly in Lq(R2) for all 2 ≤ q <∞. Here zσ are minimum points of Vσ,

Λσ =

(
pσ
2

∫
R2

|x|pσ |Q(x)|2dx

) 1
pσ+2

, (2.3.9)

3In fact, Guo–Seiringer [13] considered the more general situation where Vσ has finitely many minima
similarly to (2.2.4).
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and Q is the unique solution of (1.2.12). In fact, the convergence (2.3.8) holds in H1(R2). In
addition, we also have the asymptotic behavior of the one-component NLS energy

lim
aσ↗a∗

ENLS
σ

(a∗ − aσ)
pσ
pσ+2

=
pσ + 2

pσ
· Λ2

σ

a∗
.

Recently, Lewin–Nam–Rougerie [31] extended the above results to the rotating Bose gases
and obtained the blow-up profile of NLS approximate ground states. In addition, together with
a Feynman–Hellmann-type argument, they also studied the collapse of the one-component
many-body system (2.3.2) in the collapse regime Nσ → ∞ simultaneously aσ := aNσ ↗ a∗.
More precisely, the asymptotic behavior of the ground state energy per particle, which is

defined by EQ
Nσ

= N−1 inf specHNσ , follows from that of the one-component NLS energy

ENLS
σ . It is given by

EQ
Nσ

= ENLS
σ + o(ENLS

σ )Nσ→∞ = (a∗ − aNσ)
pσ
pσ+2

(
pσ + 2

pσ
· Λ2

σ

a∗
+ o(1)Nσ→∞

)
.

In fact, the following conditions arise from the energy estimate,

0 < β <
1

2
and aNσ = a∗ −N−γσσ with 0 < γσ < min

{
pσ + 2

pσ + 3
β,
pσ + 2

pσ
(1− 2β)

}
.

Furthermore, the many-body ground states for (2.3.2) exhibit condensation on the unique
(normalized) solution Q0 of (1.2.12). It is formulated by the k-particle reduced density
matrices which was introduced in (1.2.10) and is given by

lim
Nσ→∞

Tr
∣∣∣γ(k)

ΦNσ
−
∣∣Q⊗k0 〉〈Q

⊗k
0

∣∣∣∣∣ = 0, ∀k ∈ N. (2.3.10)

Here ΦNσ = `−NσNσ
ΨNσ(`−1

Nσ
·), with `Nσ = Λσ(a∗ − aNσ)

− 1
pσ+2 , is the rescaling of a many-body

ground state ΨNσ for (2.3.2).
In the two-component setting, the situation is more complicated because of the presence of

the inter-species interactions. So far, in the literature, the mixture condensates of Bose gases
have been carried out only in the level of the NLS theory [15, 16]. In the repulsive case, i.e.,
a12 < 0, it is obvious that ENLS ≥ ENLS

1 +ENLS
2 . Moreover, we have that the ground states uσ

for ENLS
σ in (2.3.6) decays exponentially at the collapse length `σ := (a∗−aσ)

1
pσ+1 → 0 as aσ ↗

a∗ (see, e.g., [16, Proposition A]) and their behaviors depend crucially on the minima zσ of Vσ.
If z1 6= z2, then we do not see the contribution of the cross term −a12

∫
R2 |u1(x)|2|u2(x)|2dx

in the collapse regime (a1, a2)↗ (a∗, a∗). Hence, we have formally that ENLS ≈ ENLS
1 +ENLS

2

and the existence of ground states for ENLS is obtained under the conditions that a12 < 0 is
fixed and 0 < a1, a2 < a∗. Furthermore, the collapse phenomenon of the system (2.3.1), in the
limit regime (a1, a2) := (a1,N , a2,N ) ↗ (a∗, a∗) as N → ∞, is somehow similar to the one of
(2.3.2). The latter case was analyzed in great mathematical detail by Lewin–Nam–Rougerie
[31].

In our two-component setting, we have the following result.

Theorem 9 ([47]). Assume that z1 6= z2 in (2.3.7), 0 < β < 1
2 , a12 < 0 is fixed and

aσ := aσ,N = a∗ −N−γσ , for σ ∈ {1, 2}, with

γ1

γ2
=
p1 + 2

p2 + 2
and 0 < γσ < min

{
pσ + 2

pσ + 3
β,
pσ + 2

pσ
(1− 2β)

}
.
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Let ΨN be a (mixture) ground state for HN in (2.3.1). Let

ΦN (x1, . . . , xN1 ; y1, . . . , yN2) =

ΨN

(
x1

`1,N
+ z1, . . . ,

xN1

`1,N
+ z1;

y1

`2,N
+ z2, . . . ,

yN2

`2,N
+ z2

)
`N1
1,N`

N2
2,N

where `σ,N = Λσ(a∗ − aσ,N )
− 1
pσ+2 with Λσ are given by (2.3.9). Then, up to extraction of a

subsequence, we have

lim
N→∞

Tr
∣∣∣γ(k,`)

ΦN
−
∣∣Q⊗k0 ⊗Q

⊗`
0

〉〈
Q⊗k0 ⊗Q

⊗`
0

∣∣∣∣∣ = 0, ∀k, ` ∈ N, (2.3.11)

where Q0 is the unique (normalized) solution of (1.2.12). In addition, we have

EQ
N =

2∑
σ=1

cσE
NLS
σ + o(ENLS

σ ) =

2∑
σ=1

cσ(a∗ − aσ,N )
pσ
pσ+2

(
pσ + 2

pσ
· Λ2

σ

a∗
+ o(1)N→∞

)
.

Remark 10. The condition γ1
γ2

= p1+2
p2+2 is a technical assumption which yields that `1,N

and `2,N have the same asymptotic behavior when N → ∞. This will only be used to prove
the convergence of ground states in (2.3.11), but not the asymptotic behavior of the ground
state energy per particle.

The case of a totally attractive system presents a more interesting problem. The behavior
of the NLS energy and its ground states depend crucially on the scattering length of attractive
inter-species interactions. By standard methods in the calculus of variations, the existence
of ground states for ENLS is obtained under the conditions 0 < a1, a2 < a∗ and 0 < a12 <√
c−1

1 c−1
2 (a∗ − a1)(a∗ − a2). Furthermore, ENLS = −∞ if either a1 > a∗ or a2 > a∗ or

a12 > 2−1c−1
1 c−1

2 (a∗ − c1a1 − c2a2). The case√
c−1

1 c−1
2 (a∗ − a1)(a∗ − a2) ≤ a12 ≤ 2−1c−1

1 c−1
2 (a∗ − c1a1 − c2a2) (2.3.12)

is left open. In this case, the existence and non-existence of the NLS ground states depend
crucially on V1, V2 and all the parameters in (2.3.12) (see, e.g., [15, Theorems 1.2 and 1.3]).
Of course there is no more discussion about this issue when c1(a∗ − a1) = c2(a∗ − a2). In
that case, it was proven that a NLS ground state exists at the threshold point (a1, a2, a12) =
(a∗−c2a12, a∗−c1a12, a12) if potentials have different minimum point (see, e.g., [15, Theorem
1.3 and Example 1.1]). Therefore, in order to study the behavior of the NLS ground states,
we assume that V1 and V2 in (2.3.7) have a common minimum z1 = z2. Those points can be
assumed to be at the origin without loss of generality.

We will consider two collapse regimes: either we fix 0 < a12 < a∗min{c−1
1 , c−1

2 } and we
take (a1, a2) ↗ (a∗ − c2a12, a∗ − c1a12), or we fix 0 < a1, a2 < a∗ and we take a12 ↗ α∗ for
some critical constant α∗ depending on a1, a2 and a∗. In the first case, the blow-up profile
of ENLS and its ground states was analyzed in detail by Guo–Zeng–Zhou [15]. They showed
that, up to extraction of a subsequence, the NLS ground state (ua1 , ua2) converges to the
unique (normalized) solution Q0 of (1.2.12), i.e.,

lim
(a1,a2)↗(a∗−c2a12,a∗−c1a12)

Λ−1(a∗ − a)
1

p0+2uaσ(Λ−1(a∗ − a)
1

p0+2x) = Q0(x) (2.3.13)
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strongly in H1(R2), for σ ∈ {1, 2}, where a = c1a1 + c2a2 + 2c1c2a12, p0 = min{p1, p2} and

Λ =

(
p0ν

2

∫
R2

|x|p0 |Q(x)|2dx

) 1
p0+2

with ν = lim
x→0

c1V1(x) + c2V2(x)

|x|p0
. (2.3.14)

In addition, we also have the asymptotic behavior of the NLS energy

lim
(a1,a2)↗(a∗−c2a12,a∗−c1a12)

ENLS

(a∗ − a)
p0
p0+2

=
p0 + 2

p0
· Λ2

a∗
.

The following is the many-body version of the above results.

Theorem 11 ([47]). Assume that z1 = 0 = z2 and p0 = min{p1, p2} in (2.3.7), 0 < β < 1
2 ,

0 < a12 < a∗min{c−1
1 , c−1

2 } is fixed and (a1, a2) := (a1,N , a2,N )↗ (a∗− c2a12, a∗− c1a12) such
that aN := c1a1,N + c2a2,N + 2c1c2a12 = a∗ −N−γ with

0 < γ < min

{
p0 + 2

p0 + 3
β,
p0 + 2

p0
(1− 2β)

}
.

Let ΨN be a (mixture) ground state for HN in (2.3.1). Let ΦN = `−NN ΨN (`−1
N ·) where `N =

Λ(a∗ − aN )
− 1
p0+2 with Λ given by (2.3.14). Then, up to extraction of a subsequence, we have

lim
N→∞

Tr
∣∣∣γ(k,`)

ΦN
−
∣∣Q⊗k0 ⊗Q

⊗`
0

〉〈
Q⊗k0 ⊗Q

⊗`
0

∣∣∣∣∣ = 0, ∀k, ` ∈ N, (2.3.15)

where Q0 is the unique (normalized) solution of (1.2.12). In addition, we have

EQ
N = ENLS + o(ENLS)N→∞ = (a∗ − aN )

p0
p0+2

(
p0 + 2

p0
· Λ2

a∗
+ o(1)N→∞

)
.

Remark 12. The condition 0 < γ < p0+2
p0

(1 − 2β) implies that we consider mean-field

interactions. This corresponds to a high density regime where the particles meet frequently but
interact weakly since the typical interaction length is larger than the average distance between
the particles. On the other hand, the condition γ < p0+2

p0+3β ensures that the Hartree and NLS

energies are close in the limit N →∞.

There exists another setting for which it is reasonable to study the blow-up behavior of
ground states in the case of attractive inter-species interactions: fix 0 < a1, a2 < a∗ and take
a12 := αN ↗ α∗ as N → ∞, for some critical value 0 < α∗ < 2−1c−1

1 c−1
2 (a∗ − c1a1 − c2a2).

Since there is a gap in the existence theory for NLS ground states, we will consider only
the case c1(a∗ − a1) = c2(a∗ − a2). In this special case, we note that there will be no more
discussion on (2.3.12). Furthermore, Theorem 11 covers the case c1(a∗ − a1) = c2(a∗ − a2).
We have the following.

Theorem 13 ([47]). Assume that z1 = 0 = z2 and p0 = min{p1, p2} in (2.3.7), 0 < β < 1
2 ,

0 < a1, a2 < a∗ are fixed such that c1(a∗ − a1) = c1c2α∗ = c2(a∗ − a2) and 0 < a12 := αN =
α∗ −N−γ with

0 < γ < min

{
p0 + 2

p0 + 3
β,
p0 + 2

p0
(1− 2β)

}
.

Let ΨN be a (mixture) ground state for HN in (2.3.1). Let ΦN = `−NN ΨN (`−1
N ·) where `N =

Θ(α∗ − αN )
− 1
p0+2 and

Θ =

(
p0ν

4c1c2

∫
R2

|x|p0 |Q(x)|2dx

) 1
p0+2

with ν = lim
x→0

c1V1(x) + c2V2(x)

|x|p0
. (2.3.16)
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Then, up to extraction of a subsequence, we have

lim
N→∞

Tr
∣∣∣γ(k,`)

ΦN
−
∣∣Q⊗k0 ⊗Q

⊗`
0

〉〈
Q⊗k0 ⊗Q

⊗`
0

∣∣∣∣∣ = 0, ∀k, ` ∈ N, (2.3.17)

where Q0 is the unique (normalized) solution of (1.2.12). In addition, we have

EQ
N = ENLS + o(ENLS)N→∞ = (α∗ − αN )

p0
p0+2

(
2c1c2

p0 + 2

p0
· Θ2

a∗
+ o(1)N→∞

)
.

Remark 14. To avoid the assumption c1(a∗−a1) = c2(a∗−a2), one might consider a more
evolved NLS model, where the constraint condition in (1.2.9) is replaced by ‖u1‖2L2+‖u2‖2L2 = 1
(see, e.g., [12]). However, it is not clear to us the many-body theory behind this.

Let us discuss briefly the strategy of the proofs of Theorems 9, 11 and 13. As first step,
we study the collapse of the ground state energy per particle by giving explicitly error terms
compared to the NLS energy. This will be done via the Hartree energy. In fact, by adapting
Lewin’s arguments [28, Section 3] for the one-component system we obtain that

EH ≥ EQ
N ≥ E

H − CN2β−1. (2.3.18)

Here we focus on the lower bound since the upper bound is trivial, by the variational principle.
The proof contains two ingredients. One is to apply the Hoffmann-Ostenhof inequality [18]
to bound the full kinetic energy from below by that of the square roots of (1, 0)- and (0, 1)-
particle density. This is done separately for each species. The other ingredient is to get lower
bounds on the interactions. This follows by a variant of Onsager’s lemma [48] and a trick due
to Lévy-Leblond [26] and works for arbitrary (regular) interaction. The price to pay in this

complicated process is N2β−1. This comes from the assumption in (1.2.3) that ŵ(σ) ∈ L1(R2),
for σ ∈ {1, 2, 12}. In the next step, we compare the Hartree and NLS energies. We first note
that the intra-species interactions can be estimated by the Cauchy–Schwarz inequality as
follows∫∫

R2×R2

|uσ(x)|2w(σ)
N (x− y)|uσ(y)|2dxdy ≤

∫∫
R2×R2

w
(σ)
N (x− y)

|uσ(x)|4 + |uσ(y)|4

2
dxdy

=

∫
R2

|uσ(x)|4dx (2.3.19)

The reverse inequality, however, is more subtle and we will need the technical assumption
(1.2.3) that (1 + |x|)w(σ) ∈ L1(R2), for σ ∈ {1, 2, 12}. This will also be used to estimate the
inter-species interaction since it cannot be done by (2.3.19). The final estimate gives an error
term depending on N and β, i.e.,

ENLS − CN−β ≥ EQ
N ≥ E

NLS − CN−β − CN2β−1. (2.3.20)

Thus, it is natural to require 0 < β < 1
2 in order to obtain the convergence of the ground

state energy per particle to the NLS energy. Furthermore, the asymptotic behavior of the
ground state energy per particle follows from that of the latter which was given in [15, 16].

Having the blow-up profile of the ground state energy par particle, we are able to give an
explicit blow-up profile for its many-body ground states. This will be done via a Feynman–
Hellmann-type argument (see, e.g., [36]). Such an argument was recently used by Lewin–
Nam–Rougerie [31] to study the collapse of the many-body system arising in a one-component
BEC with an attractive interaction (2.3.2). We emphasize that this argument relies on the
energy estimate (2.3.20) and the uniqueness of the limiting profile, i.e., the positive solution
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of (1.2.12). In the one-component setting, this allows us to reduce the problem of convergence
of the single-reduced density matrix to that of the NLS approximate ground states (in the
sense of energy) whose physical properties are now easier to obtain. In the two-component
setting, such an argument can be reused when the inter-species interactions are repulsive since
we can ignore them in the energy estimate. On the other hand, the situation for the totally
attractive system is more complicated and we will need to study the blow-up behavior in the
following variational problem

EmH
N := inf

{
EmH
N (u1, u2) : u1, u2 ∈ H1(R2),

∫
R2

|u1(x)|2dx = 1 =

∫
R2

|u2(x)|2dx

}
. (2.3.21)

Here the (modified) Hartree functional is given by

EmH
N (u1, u2) = c1ENLS

1 (u1) + c2ENLS
2 (u2)− c1c2a12

∫
R2

|u1(x)|2(w
(12)
N ? |u2|2)(x)dx,

which interpolates between Hartree (1.2.6) and NLS (1.2.9).
Considering the perturbed Hamiltonian in the group of Nσ particles and using a Feynman–

Hellmann-type argument twice, we obtain the convergence of the marginals γ
(1,0)
ΨN

and γ
(0,1)
ΨN

of
the ground state ΨN to a rank-one projector. It turns out that this implies the convergence

of the generic γ
(k,`)
ΨN

, for all k, ` ∈ N. This was discussed in great mathematical detail by

Michelangeli–Olgiati [39, Section 3]. More precisely, we estimate the ground state energy per
particle of a perturbed Hamiltonian from below by the Hartree energy. However, the proof
of (2.3.18) uses the Hoffmann-Ostenhof inequality, which is not available here, to bound the
one-body energy from below. Fortunately, the Onsager’s lemma is general and we can still use
it to estimate the ground state energy per particle from below by the ground state energy of a
Hartree-type functional defined on trace-class self-adjoint operators on L2(R2) (note that the
(1, 0)- and (0, 1)-reduced density matrices of a mixture many-body ground state are). Using
(2.3.19) and the attractiveness of intra-species interactions, the latter is bounded from below
by the (modified) Hartree energy (2.3.21). Finally, the convergence of the many-body ground
states follows from that of the (modified) Hartree approximate ground states.



CHAPTER 3

Conclusions and Perspectives

In this chapter, we describe some problems for future research, which are related to the
subject presented in the present thesis.

3.1. The Uniqueness of Hartree and HFB Minimizers

In [45] we showed that the HFB minimizers converge strongly to the (unique) Lane–
Emden solution. The uniqueness of HFB minimizers is therefore expected. This might be
a very difficult problem even if we consider the reduce HF minimizers. This is mainly due
to the non-locality of the pseudo-differential operator

√
−∆ +m2 and the convolution-type

non-linearity as well. The first question could be to address the case where the exchange and
pairing terms are trivial and the minimizer is a pure state |u〉〈u|. This corresponds to the
problem of the uniqueness for the boson star equation√

−∆ +m2u− (| · |−1 ? |u|2)u = µu

with m ≥ 0 and some constants µ < 0 that depends on u. However, this is still a major open
problem. For small values of ‖u‖L2 , this was proved by Lenzmann [23]. See also [8] for the
uniqueness of non-linear ground states for fractional Laplacian.

3.2. Stability of 2D Focusing Mixture Bose Gases

In [47] we showed that the quantum energy per particles of a two-component system
converges to the NLS energy for any 0 < β < 1

2 , i.e.,

lim
N→∞

EQ
N = ENLS. (3.2.1)

The proof of (3.2.1) was done via the Hartree energy EH
N . While the convergence lim

N→∞
EH
N =

ENLS follows from standard analysis, it is complicated to estimate EQ
N by EH

N . In fact, we
obtained the latter for a more general model where we made only the positivity preserving of
kinetic energies. What makes this possible is the Hoffmann-Ostenhof inequality applying to
the kinetic energy in each species. Furthermore, the intra-species and inter-species interactions
can be either attractive or repulsive.

The next step is to find the maximum value βmax > 0 such that (3.2.1) holds for any
0 < β ≤ βmax. In the one-component setting, the convergences of energy and of (approximate)
ground states were first proved by Lewin [28] for 0 < β < 1

2 and were later extended to the
range 0 < β < 1 by Nam–Rougerie [42] (see also Lewin–Nam–Rougerie [32] for an earlier
result). The major ingredient in [32, 42] is a quantitative version of the quantum de Finetti
theorem and a localization method in the Fock space by Lewin [27]. In the two-component
setting, an analogous version of the first ingredient was given by Michelangeli–Nam–Olgiati

25
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[38]. However, it is not clear how to use the second ingredient, due to the presence of the
inter-species interactions.

3.3. Blow-Up of Mixture Bose Gases with Repulsive Intra-Species Interaction(s)

An interesting open problem in the mixture BEC is to study the collapse of the two-
component many-body system in the cases if either a1 < 0 or a2 < 0 or a1, a2 < 0 and
a12 > 0. Note that there might be blow-up in those cases since there is at least an attractive
interaction. By (3.2.1), we obtain the behavior of the quantum energy per particle as soon
as we know that of the NLS energy. Unfortunately, the arguments in [47] do not allow us to
obtain the behavior of the many-body ground states since we need the attractive intra-species
interactions in the energy estimate in order to use a Feynman–Hellman-type argument.

When there is at least one repulsive intra-species interaction, one possible approach to
obtain the convergence of many-body ground states is to use the quantitative version of
quantum de Finetti theorem and a localization method. When these will be understood, one
can adapt the arguments in [46] which were given for the blow-up of boson stars.

3.4. Focusing (Mixture) Quantum Dynamics

From the time-dependent viewpoint, it would be nice if one can prove the validity of the
effective dynamics for focusing mixtures condensates which is governed by a system of two
coupled non-linear Schrödinger equations

i∂ut = (−∆ + V1(x)− a1|ut|2 − c2a12|vt|2)ut,

i∂vt = (−∆ + V2(x)− a2|vt|2 − c1a12|ut|2)vt,
(3.4.1)

with initial condition u|t=0 = u0 and v|t=0 = v0. In the subcritical regime, one want to prove
that if the initial state ΨN,0 is asymptotically factorized, in the sense that,

lim
N→∞

Tr
∣∣∣γ(1,1)

ΨN,0
−
∣∣u0 ⊗ v0

〉〈
u0 ⊗ v0

∣∣∣∣∣ = 0,

then for every time t > 0, the evolved state ΨN,t = e−itHNΨN,0 with HN given by (1.2.1)
condensates on the solution of the system of time-dependent NLS equations (3.4.1), i.e.,

lim
N→∞

Tr
∣∣∣γ(k,`)

ΨN,t
−
∣∣u⊗kt ⊗ v⊗`t 〉〈u⊗kt ⊗ v⊗`t ∣∣∣∣∣ = 0, ∀k, ` ∈ N.

In the one-component setting, the derivation of the time-dependent 2D focusing NLS in
a harmonic trap from many-body quantum dynamics has been achieved by Chen–Holmer [5]
(see also Jeblick–Pickl [20]). The results in [5] are obtained for any 0 < β < 3

4 as soon
as the stability of the second kind, i.e., HN ≥ −CN , is verified for that range of β, which
was confirmed by Lewin–Nam–Rougerie [32]. Recently, such a result was obtained again by
Nam–Napiórkowski [41] with a different method that emploits the Bogoliubov approximation
[4]. Their results hold for the range 0 < β < 1 and without using the stability condition.

Another very interesting open problem is to study the dynamical collapse for the focusing
mixture system. In the supercritical regime, one expects that if the solution of the system of
NLS equations (3.4.1) blows up at finite time T , in the sense that ‖ut‖2H1 + ‖vt‖2H1 → ∞ as
t↗ T , then also the solution of the evolved Schrödinger equation collapses, in the sense that

Tr
(
−∆γ

(1,0)
ΨN,t

)
+ Tr

(
−∆γ

(0,1)
ΨN,t

)
→∞ as t→ T− simultaneously N →∞. The first question

should be to address the one-component case. In that case, the dynamical collapse of boson
stars (with a regularized Newton potential) has been studied by Michelangeli–Schlein [40].
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