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SUMMARY  

Members of the plant-specific GRAS transcription factor family play important functions in 

plant growth and development. In Physcomitrella patens, two members of the GRAS family, 

(PpGRAS7 and PpGRAS12), are validated targets of miRNA171. It appeared that both nuclear 

genes harbor the conserved GRAS domain. Histochemical GUS staining revealed a stronger 

expression of the PpGRAS12 gene in the miR171-resistant PpGRAS12::GUS protein fusion 

reporter lines compared to the miR171-sensitive PpGRAS12::GUS protein fusion reporter lines, 

which indicates a regulatory function of miR171 in the spatiotemporal expression of PpGRAS12. 

Mild phenotypic deviations were observed in both, ∆PpGRAS12 and ∆PpGRAS7 lines, at the 

gametophytic vegetative growth stage and prominent phenotypic aberrations were detected in the 

∆PpGRAS12 lines at the sporophytic generation. Interestingly, highly specific and distinct growth 

arrests were observed in the inducible PpGRAS7-iOE and PpGRAS12-iOE lines. However, only 

PpGRAS12-iOE lines were able to recover after release to non-inducing conditions. While elevated 

levels of PpGRAS12 caused the formation of multiple apical meristems, increased levels of 

PpGRAS7 led to defects and the degradation of chloroplasts. Furthermore, an elevated PpGRAS7 

transcript level led to the plastid degradation and remarkable starch accumulation in P. patens. 

Based on these results key regulatory functions of PpGRAS12 in the control of meristem identity 

and the requirement of PpGRAS7 in the plastid maintenance and homeostasis are proposed. 

PpGRAS12 and PpGRAS7 share the highest protein sequence similarity with REPRESSOR OF 

GA (RGA1) and with RGA-LIKE 1 (RGL1) from Arabidopsis thaliana, respectively. The 

observed phenotype from the AtRGA1-iOE lines showed a partial similarity to PpGRAS12-iOE 

lines, while AtRGL1-iOE lines displayed a partial phenotypic similarity to PpGRAS7-iOE lines. 

For the functional comparison of SCL6-II, SCL6-III, and SCL6-IV as targets of miR171 in A. 

thaliana with PpGRAS7 and PpGRAS12 as targets of miR171 in P. patens, AtSCL6-II-iOE, 

AtSCL6-III-iOE, and AtSCL6-IV-iOE lines were generated in P. patens. The obtained AtSCL6-II-

iOE lines displayed a strong chlorotic phenotype as well as the formation of multiple apical 

meristems. This supports the idea that A. thaliana SCL6-II might be a functional homolog of both 

P. patens GRAS7 and GRAS12 genes. Besides, it might indicate that A. thaliana SCL6-II has gained 

the functions of both PpGRAS7 and PpGRAS12 genes through the evolution of higher plants. 
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ZUSAMMENFASSUNG 

Mitglieder der Familie der pflanzenspezifischen GRAS-Transkriptionsfaktoren haben wichtige 

Funktionen für das Wachstum und die Entwicklung von Pflanzen. In Physcomitrella patens werden 

zwei Mitglieder der GRAS-Familie (PpGRAS7 und PpGRAS12) durch die miRNA171 kontrolliert. 

Beide Gene kodieren konservierte Proteine mit einer GRAS-Domäne, die im Zellkern lokalisiert 

sind. Die histochemische GUS-Färbung ergab eine stärkere Expression des PpGRAS12-Gens in 

miR171-resistenten PpGRAS12::GUS-Linien im Vergleich zu miR171-sensitiven 

PpGRAS12::GUS-Linien. Dieser Befund weist auf die regulatorische Funktion der miR171 bei der 

Expression von PpGRAS12 in Raum und Zeit hin. Erzeugte ∆PpGRAS12 und ∆PpGRAS7 

Deletionsmutanten zeigten leichte phänotypische Änderungen während des vegetativen 

Wachstums. In den Gametophyten von ∆PpGRAS12 konnten nur geringfügige phänotypische 

Veränderungen festgestellt werden. Auffälliger waren hingegen die phänotypischen 

Veränderungen des Sporophyten in den ∆PpGRAS12-Linien. Interessanterweise wurden in den 

induzierbaren PpGRAS7-iOE- und PpGRAS12-iOE-Linien hochspezifische und ausgeprägte 

Wachstumseinbußen beobachtet, wobei sich nur PpGRAS12-iOE-Linien in anschließender 

Kultivierung unter nicht induzierenden Bedingungen erholen konnten. Während erhöhte 

PpGRAS12-Spiegel die Bildung multipler, arretierter apikaler Meristeme verursachten, führten 

erhöhte PpGRAS7-Spiegel zu Defekten in den Chloroplasten auf Grund massiver 

Stärkeeinlagerungen. Basierend auf diesen Ergebnissen, werden PpGRAS12 wichtige 

regulatorische Funktionen bei der Kontrolle der Meristemidentität und PpGRAS7 eine Funktion 

als negativer Regulator des Stärkeabbaus zugeschrieben. PpGRAS12 und PpGRAS7 zeigen in A. 

thaliana ihre höchste Sequenzabdeckung mit REPRESSOR OF GA (AtRGA1) und mit RGA-

LIKE 1 (AtRGL1). Induzierbare AtRGA1-iOE-Linien in P. patens besitzen phänotypische 

Ähnlichkeiten mit PpGRAS12-iOE-Linien, während der Phänotyp von induzierbaren AtRGL1-

iOE-Linien in P. patens Ähnlichkeit zu PpGRAS7-iOE-Linien aufwies. Für den phänotypischen 

Vergleich von AtSCL6-II, AtSCL6-III, und AtSCL6-IV, die Zielgene der miR171 in A. thaliana 

sind, mit PpGRAS7 und PpGRAS12 als Ziele von miR171 in P. patens, wurden induzierbare 

Überexpressionslinien AtSCL6-II-iOE, AtSCL6-III-iOE und AtSCL6-III-iOE in P. patens generiert. 

Auffallend war, dass die AtSCL6-II-iOE-Linien einen starken Chlorosephänotyp sowie die Bildung 

mehrerer apikaler Meristeme aufwiesen. Dies unterstützt die Annahme, dass AtSCL6-II ein 
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funktionelles Homolog von PpGRAS7- und PpGRAS12 ist. Außerdem könnte dies darauf 

hinweisen, dass SCL6-II in A. thaliana während der Evolution der Landpflanzen die Funktionen 

von PpGRAS7 und PpGRAS12 übernommen hat. 
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ABBREVIATIONS 

A. thaliana  Arabidopsis thaliana 

AG   AGAMOUS 

AGL1    AGAMOUS-LIKE 1 

AP2    APETALA 2 

AS2    ASYMMETRIC LEAVES 2 

ATG5   AUTOPHAGY-RELATED PROTEIN 7 

ATG7   AUTOPHAGY-RELATED PROTEIN 7 

BAM   β-AMYLASES 

bp    base pair 

CYCD   CYCLIN-D  

cDNA   complementary DNA  

CLV   CLAVATA 

CV    Chloroplast vesiculation 

CYTb6   Cytochrome b6 f complex 

DAB   3,3´-diaminobenzidine 

DAPI   4′,6-diamidin-2-phenylindol 

DCL1    DICER-LIKE 1 

DELLA Aspartic acid (D), Glutamic acid (E), Leucine (L), Leucine (L), and Alanine 

(A) 

DLT   DWARF AND LOW-TILLERING 

DMSO   Dimethyl sulfoxide 

DNA    Deoxyribonucleic acid 

DPE1   DISPROPORTIONATING ENZYME 1 

Ef1α   Elongation factor 1α  

gDNA   genomic DNA 

GUS   β-Glucuronidase  

GWD   GLUCAN WATER DIKINASE 

h    hours 

HAM    HAIRY MERISTEM 

HCl   Hydrochloric acid 
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HSF3   HEAT SHOCK FACTOR PROTEIN 3 

HSP70   HEAT SHOCK PROTEIN 70 

iOE   inducible overexpression 

ISA3   ISOAMYLASE 3 

jba-1D   jabba-1D mutant 

KAN1   KANADI 1 

KAN2    KANADI 2 

LAS   LATERAL SUPPRESSOR 

LHCA   LIGHT-HARVESTING COMPLEX A 

LHCB   LIGHT-HARVESTING COMPLEX B 

LISCL   SCL from Lilium longiflorum L. 

LOM    LOST MERISTEM 

MEX1   MALTOSE EXCESS 1 

min    minutes  

miRNA  MicroRNA 

mRNA   Messenger RNA 

NBT   Nitrotetrazolium blue chloride 

NCED   9-CIS-EPOXYCAROTENOID DIOXYGENASE 

nptII   neomycin phosphotransferase 

P. patens  Physcomitrella patens 

PAM   Pulse amplitude modulation 

PAT1   PHYTOCHROME A SIGNAL TRANSDUCTION 1 

PCR   Polymerase chain reaction 

PI3K    PHOSPHATIDYLINOSITOL 3-KINASE 

PI3P   PHOSPATIDYLINOSITOL 3-PHOSPHATE 

POR   PROTOCHLOROPHYLLIDE OXIDOREDUCTASE  

PpGRAS12 P. patens GRAS domain transcription factor encoded on chromosome 12 

(Pp1s205_1V6.1) 

PpGRAS7 P. patens GRAS domain transcription factor encoded on chromosome 7 

(Pp1S130_63V6.1) 

PsaA   Photosystem I P700 chlorophyll a apoprotein A1 

PsaB   Photosystem I P700 chlorophyll a apoprotein A2 
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PsaC   Photosystem I iron-sulfur center 

PsaL    Photosystem I reaction center subunit XI 

PsbA   Photosystem II protein D1 

PsbD   Photosystem II protein D2 

PsbM   Photosystem II reaction center protein M 

PsbQ    Oxygen-evolving enhancer protein 3 

PSI   Photosystem I 

PSII   Photosystem II 

PWD   PHOSPHOGLUCAN WATER DIKINASE 

qRT-PCR   Quantitative real-time PCR 

RGA1   REPRESSOR OF GA 1 

RGL1   RGA-LIKE 1 

RNA   Ribonucleic acid 

ROS   Reactive oxygen species 

rRNA    ribosomal RNA 

RT   Room temperature  

RT-PCR  Reverse transcriptase PCR 

SAG   Senescence associated gene 

SCL3    SCARECROW-LIKE 3 

SCL4/7  SCARECROW-LIKE 4/7 

SCL6-II  SCARECROW-LIKE 6-II 

SCL6-III  SCARECROW-LIKE 6-III 

SCL6-IV  SCARECROW-LIKE 6-IV 

SCR   SCARECROW  

SDS   Sodium dodecyl sulfate 

sec   seconds 

SEM   Scanning electron microscopy 

SEX4   STARCH-EXCESS 4 

ß-estradiol  Beta-estradiol  

Ta   Annealing temperature 

TE    Tris/EDTA buffer 

TEM   Transmission electron microscopy 
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TIP2;2   TONOPLAST INTRINSIC PROTEIN 2;2 

TPT   TRIOSE PHOSPHATE TRANSLOCATOR 

TRI   Trizol (guanidinium thiocyanate) 

Tris    Tris (hydroxymethyl) aminomethane 

WT   Wild type 

WUS   WUSCHEL 

Y   Quantum yield of photosystem 

YAB3    YABBY 3 

YFP   Yellow fluorescent protein 

Δ   Knockout 
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1 CHAPTER 1: INTRODUCTION 

 

1.1 The model organism Physcomitrella patens  

Mosses are characterized as the oldest living clade of land plants, which separated by 

approximately 450 million years of evolution from higher plants (Reski & Frank, 2005). From the 

evolutionary perspective, mosses possess a unique position among land plants, halfway between 

green algae and flowering plants, which make them an appropriate model organism for comparative 

studies of land plants evolution. Physcomitrella (= Aphanorhegma) patens (P. patens) is an ancient 

moss (bryophyte), which was adopted as a genetic tool in order to its unique features. In the course 

of the last few decades, P. patens has been utilized as a model to study various components of cell, 

developmental and evolutionary plant biology. The ability to use gene targeting through 

homologous recombination (HR) and the RNA interference methods to study gene function has 

turned P. patens into a useful model organism (Schaefer & Zryd, 1997). The gametophytic 

generation in P. patens is haploid, therefore altering or destroying a gene may directly result in 

altered molecular functions. The filamentous protonemal stage emerges after the germination of 

haploid spores (Fig. 1). The protonema is generally divided into two cell types: chloronema and 

caulonema cells (Fig. 1). Chloronema cells are chloroplast enriched type of cells with perpendicular 

cross-walls and extend by the sequential division of the apical cell and subapical cells branch to 

form new apices. Caulonema cells contain fewer and less-well-developed chloroplasts with oblique 

cross-walls (Strotbek et al., 2013). 

The subapical cells of caulonemal filaments branch to form more filaments and three‐faced 

buds, which develop into leafy stems, called “gametophores” (Cove et al., 2009) (Fig. 1). P. patens 

is monoecious; both male (antherozoids) and female (oogonia) gametes are produced on the same 

gametophore (Fig. 1). Male gametes are produced within antheridia and female gametes within 

archegonia. After fertilization (mostly self-fertilization), the fertilized zygotes develop into diploid 

sporophytes (Fig. 1). Within the sporophyte (2n), spore mother cells give rise to spores (n) 

mitotically. Since mosses have not shown vast changes to the last common ancestor of mosses and 

seed plants, which was living about 450 million years ago, they might be a proper model to study 

plant evolution and diversity (Cove et al., 2009).  
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Fig. 1. Scheme representing the P. patens life cycle. Germination of haploid spores generates protonema cells. Protonema consists 

of choloronema cells (chloroplast‐rich) and caulonema cells (longer, thinner and contain fewer chloroplasts). Meristematic buds 

with three-faced apical cells emerge from side branches to form the leafy stems, called “gametophores”. Gametangia develop on 

the gametophores and after the fertilization, the fertilized zygotes develop into sporophytes. Modified from Lang et al. (2018). 

 

Apart from the high efficiency of homologous recombination, a simple structure and 

development, rapid colony-forming ability, totipotency, genetic diversity, a sequenced, well-

annotated and assembled genome (Rensing et al., 2008; Lang et al., 2018), physical and genetic 

maps, and more than 250,000 expressed sequence tags, have made P. patens a suitable tool for 

genetic studies. 
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1.2 GRAS transcription factors  

The plant-specific GRAS genes encode a family of transcription factors with key roles in plant 

growth and development. The GRAS protein family is named according to the first three GRAS 

proteins identified in Arabidopsis thaliana (A. thaliana), GIBBERELLIC ACID INSENSITIVE 

(GAI), REPRESSOR OF GAI (RGL) and SCARECROW (SCR) (Di Laurenzio et al., 1996; Peng 

et al., 1997; Silverstone et al., 1998). To date, several studies have been dedicated to GRAS family 

characterization, functional analysis, and a remarkable number of GRAS proteins have been 

identified in almost 300 land plant species. In addition to plants, GRAS proteins with a higher 

degree of similarity to Rossmann-fold methyltransferase domains can be detected in several 

bacteria (Zhang et al., 2012).  

The size of GRAS proteins ranges from 400-770 amino acids with a highly conserved C-

terminal region, the GRAS domain (Pysh et al., 1999; Bolle, 2004). Several ordered motifs are 

present in the C-terminal region that is crucial for interactions between GRAS and other proteins. 

Two leucine-rich areas named leucine heptad repeat I (LHRI) and leucine heptad repeat II (LHRII) 

surrounding a conserved VHIID motif and followed by the PFYRE and SAW motifs are defined 

as the main components of GRAS domains (Pysh et al., 1999; Tian et al., 2004; Hirsch & Oldroyd, 

2009). Based on the protein sequence, the GRAS protein family is divided into eleven subfamilies: 

DELLA, HAIRY MERISTEM (HAM), PHYTOCHROME A SIGNAL TRANSDUCTION 1 

(PAT1), LATERAL SUPPRESSOR (LAS) & SCARECROW-LIKE 4/7 (SCL4/7), 

SCARECROW (SCR), SHORT ROOT (SHR), SCARECROW-LIKE 3 (SCL3), LISCL (Ll SCL), 

Clonorchis sinensis (C. sinesis) GRAS34 (CsGRAS34), Oryza sativa 19 (Os19) and DWARF 

AND LOW-TILLERING (DLT) (Zhang et al., 2019) (Fig. 2). Nine out of eleven subfamilies 

including DELLA, HAM, PAT1, LAS & SCL4/7, SCR, SHR, SCL3, LISCL, and DLT were 

reported in A. thaliana, C. sinesis, and Oryza sativa (O. sativa) (Fig. 2), whereas CsGRAS34 was 

only reported in C. sinesis (Fig. 2) and Os19 was reported in both C. sinesis and O. sativa (Fig. 2) 

However, in other studies in A. thaliana and O. sativa, poplar (Populus trichocarpa), bean (Ricinus 

communis), and tomato (Solanum lycopersicum), the number of distinct subfamilies ranged from 8 

to 13 (Hirsch & Oldroyd, 2009; Liu & Widmer, 2014; Huang et al., 2015; Xu et al., 2016). GRAS 

protein subfamilies are known to be involved in various processes of plant growth and development 

such as gibberellin signal transduction (DELLA), radial root patterning and root growth (SCR and 
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SHR), initiation and formation of axillary meristems (LAS), shoot meristem maintenance (HAM), 

phytochrome A signal transduction (PAT1 and SCL21), and gametogenesis (LISCL) (Schumacher 

et al., 1999; Bolle et al., 2000; Helariutta et al., 2000; Wysocka-Diller et al., 2000; Greb et al., 

2003; Morohashi et al., 2003; Engstrom, 2012; Park et al., 2013; Torres-Galea et al., 2013). GRAS 

genes also appeared to be involved in plant disease resistance and abiotic stress response (Mayrose 

et al., 2006). GRAS transcription factors evolved after the split of Charophyceae or 

Coleochaetophyceae (Nishiyama et al., 2018). Cheng et al., (2019) showed that GRAS genes 

originated in the common ancestor of Zygnematophyceae and embryophytes, and were gained by 

horizontal gene transfer from soil bacteria. 

DELLA proteins (GAI, RGA, RGA-LIKE 1 (RGL1), RGL2, and RGL3) were observed to act 

as repressors of gibberellin-responsive plant growth (Park et al., 2013). The term DELLA was 

derived from the amino acid sequence DELLA that is located in the N‐terminal region of the 

members of this subfamily. P. patens DELLA proteins lack the DELLA motif and do not interact 

with GA INSENSITIVE DWARF1s (GID1s) (Yasumura et al., 2007; Wang & Deng, 2014). 

Gibberellic acid (GA) is not detected in P. patens and PpDELLAs are not sensitive to GAs when 

expressed in A. thaliana (Yasumura et al., 2007). Exclusively, a part of the GA biosynthetic 

pathway, from geranylgeranyl diphosphate to ent-kaurenoic acid exists in P. patens (Miyazaki et 

al., 2015). Consequently, the GID1/DELLA-mediated GA signaling emerged subsequent to the 

divergence of vascular plants from the moss lineage (Hirano et al., 2007).  

 Members of SCLs are involved in several biological processes, e.g. SCL6-II (At2g45160), 

SCL6-III (At3g60630), and SCL6-IV (At4g00150) play a regulatory function in shoot branch 

production (Wang et al., 2010) and chlorophyll biosynthesis (Ma et al., 2014). Furthermore, in A. 

thaliana SCL6-II, SCL6-III, and SCL6-IV [also known as HAM (HAIRY MERISTEM) or LOM 

(LOST MERISTEM)] are reported as targets of miRNA171 (Llave et al., 2002) and play an 

important role in the shoot apical meristem maintenance and axillary meristem formation, polar 

organization and chlorophyll synthesis (Schulze et al., 2010; Wang et al., 2010). In A. thaliana, 

LOM1 and LOM2 were shown to stimulate cell differentiation at the periphery of shoot meristems 

and to assist to maintain their polar organization (Schulze et al., 2010). Furthermore, AtHAM1, 

AtHAM2, and AtHAM3 genes not only are essential for shoot apical meristem maintenance, but 
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also play an important role in the maintenance of root indeterminacy (Engstrom et al., 2011). 

  

  

 

Fig. 2. The phylogenetic analysis of GRAS proteins in C. sinensis, A. thaliana, and O. sativa. The phylogenetic tree includes 

eleven GRAS subgroups. Different colors indicate individual subgroups. Nine out of eleven subfamilies including DELLA, 

AtHAM, PAT1, AtALS & SCL4/7, AtSCR, AtSHR, AtSCL3, LISCL, and DLT are present in all three organisms (C. sinensis, A. 

thaliana, and O. sativa), whereas CsGRAS34 is only present in C. sinesis and Os19 is present in both C. sinesis and O. sativa. Main 

biological functions of GRAS proteins, which were demonstrated by previous studies (Schumacher et al., 1999; Bolle et al., 2000; 

Helariutta et al., 2000; Wysocka-Diller et al., 2000; Greb et al., 2003; Morohashi et al., 2003; Engstrom, 2012; Park et al., 2013; 

Torres-Galea et al., 2013), are shown in the phylogenetic tree. The phylogenetic tree is from Zhang et al. (2019). 
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The Petunia HAM genes promote shoot indeterminacy by the undefined non-cell-autonomous 

signaling mechanism (Engstrom et al., 2011). Tomato (Solanum lycopersicum) encodes three 

HAM homologs that are guided for cleavage by miR171 (Hendelman et al., 2016) and their 

silencing led to over-proliferation of cellsin the periphery of the meristems. SlHAM genes not only 

function in the meristem maintenance, but also play minor roles in the morphogenesis of a simple 

leaf in tomato (Hendelman et al., 2016).  

The very old diversification of GRAS proteins may have implications for understanding the 

evolution of GRAS protein function, including possible cellular level functions of HAM proteins 

(Engstrom, 2011). The presence of HAM homologs in the genomes of P. patens and Selaginella 

moellendorffii (S. moellendorffii), conservation of the domain structure and miR170/171-binding 

sequence among distantly related HAM genes suggest that the HAM function in flowering plants 

may be derived from a common ancestor of bryophytes (Engstrom et al., 2011). HAM proteins are 

most closely related to DELLA proteins and both proteins are transcriptional repressors of growth-

promoting proteins whose activity is negatively regulated by gibberellins via the ubiquitin-

mediated degradation pathway (Rensing et al., 2008). Both HAM and DELLA proteins possess 

strongly supported homologs in S. moellendorffii and P. patens, indicating that divergence of the 

HAM and DELLA subfamilies from a common ancestral protein occurred prior to the divergence 

of the moss and vascular plant lineages.  

 

1.3 Function and biogenesis of plant microRNAs 

MicroRNAs are a class of non-coding RNA molecules and play key roles in the regulation of 

gene expression. A MIR gene is transcribed by RNA polymerase II as a long transcript, which is 

called primary miRNA (pri-miRNA) (Fig. 3) (Bartel, 2004; Lee et al., 2004). Subsequently, the 

pri-miRNA is cleaved by a DICER-LIKE 1 (DCL1) enzyme to a stem-loop intermediate known as 

miRNA precursor (pre-miRNA) (Fig. 3) (Zhang et al., 2006). In plants, DCL1 cleaves pre-miRNAs 

into the miRNA:miRNA* duplex in the nucleus instead of the cytoplasm (Fig. 3) (Bartel, 2004). In 

addition to DCL1, HYPONASTIC LEAVES 1 (HYL1), a dsRNA binding protein, and SERRATE 

(SE), a C2H2-type zinc finger, are also essential for the processing of pri-miRNAs and the 

accumulation of mature miRNAs (Han et al., 2004; Yang, L et al., 2006; Zhu, 2008). Then 
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HASTY, the plant ortholog of exportin 5, transfers the duplex into the cytoplasm (Fig. 3) (Zhang 

et al., 2006). The miRNAs are unwound into single-stranded mature miRNAs by helicases in the 

cytoplasm (Fig. 3). Lastly, mature miRNAs are incorporated into the RNA-induced silencing 

complex (RISC) and direct the translational repression or cleavage of their target mRNAs by base-

pairing (Fig. 3) (Bartel, 2004; Dugas & Bartel, 2004). In addition to DCL1, HUA ENHANCER 1 

(HEN1) that contains two dsRNA-binding domains and a nuclear localization signal, is required 

for the miRNA biogenesis and post-transcriptional gene silencing (PTGS) in plants (Park et al., 

2002; Boutet et al., 2003). HEN1 specifically methylates miRNAs and siRNAs (Yang, Z et al., 

2006). Despite the close similarity of miRNA biogenesis and functional mechanism in both animals 

and plants, plant miRNAs display some differences. The stem-loop structures of plant pre-miRNAs 

are larger and more variable compared to animal pre-miRNAs (Yang et al., 2007). Moreover, the 

mature plant miRNAs pair to their target sites with near-perfect complementarity, and unlike 

animal miRNAs they normally identify a single target site in the coding region and induce cleavage 

of the target mRNA (Yang et al., 2007). miRNAs were first discovered in Caenorhabditis elegans 

(C. elegans) (Lee et al., 1993), and so far many miRNAs have been discovered in diverse species 

of living organisms as well as plants. According to the miRBase (2019), 664 and 250 miRNAs 

were reported in A. thaliana and P. patens, respectively (http://www.mirbase.org/). 

The functions of some miRNAs including miR156, which is responsible for floral organ 

identity and flowering time (Schwab et al., 2005), miR160 that is responsible for auxin signaling 

and root development (Wang et al., 2005) and miR164 that controls the boundary in the meristem, 

organ formation, separation, and petal number (Schwab et al., 2005) were recognized and 

confirmed. In addition, miR172 play roles in flower organ identity and flowering time (Schwab et 

al., 2005). Furthermore, miR399 has shown to be responsible for the phosphate-starvation response 

(Fujii et al., 2005) and miR173 and 390 functions in directing ta-siRNA biogenesis (Allen et al., 

2005). 

 

 

 

 

http://www.mirbase.org/
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Fig. 3. MiRNA biogenesis and its function in plants. MIR genes are transcribed by RNA polymerase II enzymes. The primary 

miRNA is processed by the RNaseIII enzyme DCL1 and its associated RNA-binding cofactors, HYL1 (containing two double-

stranded RNA-binding domains) and SE (a C2H2-type zinc finger) to generate a miRNA/miRNA* duplex. The miRNA/miRNA* 

duplex is then methylated and exported to the cytoplasm by HST1, unwound into a single strand mature miRNA by a helicase and 

incorporated into the RNA-induced silencing complex (RISC) to silence mRNA targets important for development, diseases, and 

stress responses. Modified from Zhu (2008). 
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The miR171 is a conserved miRNA family that exists in all major land plant groups, including 

bryophytes (Axtell & Bowman, 2008) and plays a critical role in regulating plant growth and 

development through repressing expression of SCARECROW-LIKE (SCL) transcription factors. 

In A. thaliana, the miR171‐GRAS module has been elucidated as a key player in meristem 

maintenance (Huang et al., 2017). Palatnik et al. (2003) reported the JAW locus in A. thaliana. 

JAW generates miR319 that is able to direct mRNA cleavage of a number of TCP genes 

(TEOSINTE BRANCHED, CYCLOIDEA, and PCF1/2) controlling leaf development. 

Overexpression of the wild type (WT) and microRNA-resistant TCP variants revealed that mRNA 

cleavage was adequate to minimize the TCP function. It was concluded that the existence of TCP 

genes with microRNA target sequences in a broad range of species demonstrates the control of leaf 

morphogenesis via miRNAs and is preserved in foliage with different leaf shapes. Through an 

activation-tagging approach, Aukerman and Sakai (2003) illustrated that overexpression of miRNA 

172 (miR172) in A. thaliana caused early flowering and disorder in the floral organ identity 

specification. APETALA 2 (AP2) and AGAMOUS (AG) are two floral homeotic genes that specify 

the identities of perianth and reproductive organs, respectively, for flower development in A. 

thaliana (Zhao et al., 2007). MiR172 is normally expressed in a temporal manner, consistent with 

its proposed role in flowering time control (Aukerman & Sakai, 2003). The distinct functions of 

AG and miR172 in flower development and their independent role in the negative regulation of 

AP2 were demonstrated by Zhao et al., (2007). It was proposed that AP2, which is the target gene 

of miR172, was downregulated by miR172 via translational mechanisms rather than by RNA 

cleavage. Moreover, gain-of-function and loss-of-function analysis depicted that two of the AP2-

like target genes function as floral repressors, and this strongly supports the idea that flowering 

time is regulated by the miR172 via downregulating AP2-like target genes. Sunkar and Zhu (2004) 

reported the identification of new miRNAs related to abiotic stresses in A. thaliana. It was 

explained how stresses such as cold, NaCl, dehydration, and ABA regulate miRNAs. According to 

their results, miR393 was strongly upregulated by all four (NaCl, dehydration, ABA, and cold) 

treatments. MiR397b and miR402 were slightly upregulated by all the stress treatments, whereas 

miR319c was upregulated only by the cold stress. Among miRNAs, which are regulated by 

stresses, only miR389a was downregulated by all of the stress treatments. MiR160 and miR397 are 

proved to respond to cold stress in rice, wheat, and A. thaliana (Sun et al., 2019).  
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1.4 Chlorosis and chloroplast degradation  

The chloroplast is an organelle, which provides energy by producing sugar throughout 

photosynthesis. Plants generally have established specific strategies to control chloroplast 

homeostasis in plant cells. These adaptive strategies are mainly used in plants to adapt to various 

environmental and developmental cues. The chloroplast degradation during leaf senescence and 

the transition of chloroplasts into other types of plastids during the day-night cycle are amongst the 

adaptive strategies (Zhuang & Jiang, 2019).  

Several mechanisms are involved in chlorophyll and chloroplast degradation. Previous studies 

in A. thaliana showed that autophagy and senescence are two established cellular pathways 

involved in the degradation of chloroplast proteins (Martinez et al., 2008; Liu & Bassham, 2012). 

Leaf senescence, which is defined as an ‘altruistic death’ causes the redistribution of degraded 

nutrients that are produced during the growth phase of the leaf to developing parts of the plant 

(Woo et al., 2013). Senescence is considered as the final stage of leaf development and can be 

regulated by endogenous and environmental signals (Gan & Amasino, 1995; Yoshida, 2003; Chen 

et al., 2017). Leaf senescence is characterized by leaf chlorosis, which is mainly due to the 

chlorophyll degradation and upregulation of senescence-associated genes (SAGs).  

Two HD-ZipI transcription factors were previously reported to be engaged in flower 

senescence in Petunia (Petunia hybrid) and rose (Rosa hybrid) (Reiss, 2003). The independent 

downregulation of both transcription factors has resulted in a delay in flower senescence and a 

decrease in the expression of senescence-related genes, such as SAG12 and SAG29. Martinez et al. 

(2008) showed the involvement of the senescence-associated vacuoles (SAV) in the degradation 

of the soluble photosynthetic proteins of the chloroplast stroma during senescence of leaves in 

tobacco (Nicotiana tabacum L.). According to their experiment in tobacco, detached leaves 

incubated in darkness, ethylene treatment leads to a 2-fold increase in the number of SAVs per cell 

and acceleration of the chloroplast degradation rate, compared to the untreated leaves.  

Previous studies in A. thaliana revealed the involvement of autophagy in nutrient 

remobilization during leaf senescence (Diaz et al., 2008; Masclaux-Daubresse & Chardon, 2011). 

Autophagy (self-eating) is a macromolecule degradation process and generally occurs under stress 

conditions or during developmental transitions. During autophagy, cells recycle cytoplasmic 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/senescence
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/petunia


18 

 

contents in a process, which is conserved among eukaryotes (Baena-Gonzalez et al., 2007; Yang 

& Klionsky, 2009; Mehrpour et al., 2010; Liu & Bassham, 2012). Autophagy is involved in cellular 

development and differentiation, functions in tumor suppression, and plays an irrefutable role in 

the cellular response to stress and resistance to pathogens (Klionsky, 2005; Yang & Klionsky, 

2009). There are three major types of autophagy in eukaryotic cells: macro-autophagy, micro-

autophagy, and chaperone-mediated autophagy (Klionsky, 2005). Similar to macro-autophagy, 

micro-autophagy is also involved in dynamic membrane rearrangements to engulf portions of the 

cytoplasm. Both, macro- and micro-autophagy are able to sequester large structures, such as entire 

organelles. During macro-autophagy, portions of the cytoplasm are sequestered into an 

autophagosome, while micro-autophagy engages the direct engulfment of the cytoplasm at the 

lysosome surface (Yang & Klionsky, 2009). Chaperone-mediated autophagy is known to play a 

role in the translocation of unfolded, soluble proteins across the lysosome membrane (Yang & 

Klionsky, 2009).  

Starvation is the most characteristic trigger of autophagy and lack of essential nutrients might 

induce autophagy. For instance, nitrogen starvation is the most effective stimulus in yeast, but the 

shortage of carbon, auxotrophic amino acids and nucleic acids, and even sulfate might induce 

autophagy (Takeshige et al., 1992). In plants, autophagy can be induced by nitrogen or carbon 

deficits (Moriyasu & Ohsumi, 1996; Yoshimoto et al., 2004). In mammals, a reduction of total 

amino acids intensely induces autophagy in many types of cultured cells, but the effects of 

individual amino acids are different (Mizushima, 2007). Autophagy-related (ATG) proteins are 

considered as the core of the autophagic machinery and function during the induction of autophagy 

and the formation of autophagosomes. ATG proteins are divided into four highly conserved groups 

in eukaryotes including plants (Chung et al., 2009; Shin et al., 2009; Yang & Klionsky, 2010). The 

four groups are namely, ATG1 kinase complex, the phosphatidylinositol 3-kinase complex (PI3K), 

transmembrane autophagy-related protein 9 (ATG9), and proteins involved in ATG8 and ATG12 

conjugation. The ATG1 kinase complex contains ATG1, ATG13, FIP200, and ATG101, which are 

responsible for the induction of autophagy in response to the lack of nutrients (Kim et al., 2012). 

The PI3K complex phosphorylates phosphatidylinositol that is essential for the production of 

phosphatidylinositol-3-phosphate (PI3P) (Marshall & Vierstra, 2018). PI3P is required to recruit 

proteins involved in autophagy. The PI3P complex contains VPS34 kinase, VPS15, ATG6, and 
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ATG14 (Kametaka et al., 1998; Itakura et al., 2008). ATG9 plays a crucial role in the regulating 

of autophagosome development from the ER membrane (Zhuang et al., 2017). P. patens atg5 

mutant showed an impaired process of autophagy indicating that ATG5 is essential for the 

autophagy process in P. patens (Mukae et al., 2015). 

Chloroplast vesiculation (CV) is another eminent pathway involved in chloroplast degradation 

(Wang & Blumwald, 2014). CV plays a vital role in stress-induced chloroplast disruption and 

mediates a different pathway to autophagy and senescence-associated vacuoles for chloroplast 

degradation (Wang & Blumwald, 2014). 

 

1.5 Transient starch degradation  

Starch is one of the primary products of photosynthesis and stores carbohydrates to support 

plant metabolism and growth during the dark. Starch is composed of two glucan polymers, 

amylopectin, and amylose. Amylopectin is a large and highly branched molecule with α-1,4-linked 

glucose linear chains and α-1,6-linked branch points, whereas amylose is smaller, leaner, and 

consists predominately of α-l,4-D-glucose bond. Amylopectin is the major component in leaf starch 

and is responsible for the granular nature of starch. 

In A. thaliana leaves, starch and sucrose are synthesized together as the products of 

photosynthetic carbon assimilation during the day, starch accumulates in chloroplasts, and 

degrades during the subsequent night to provide substrates for sucrose synthesis (Smith et al., 

2005). Transient starch degradation (Fig. 4) is an essential process for plant metabolism. GLUCAN 

WATER DIKINASE (GWD) and PHOSPHOGLUCAN WATER DIKINASE (PWD) are two 

essential enzymes for transient starch breakdown initiation in A. thaliana leaves at night 

(Orzechowski, 2008), which catalyze the phosphorylation of amylopectin (Kotting et al., 2005; 

Mikkelsen et al., 2005; Edner et al., 2007). 

In plants, β-AMYLASE (BAM) proteins are vital for maltose production during hydrolytic 

starch degradation. BAM is an exohydrolase, which acts at the non-reducing ends of α-1,4–

linkedglucan chains to produce β-maltose (Fulton et al., 2008). In A. thaliana four chloroplast 

BAM proteins were identified and the BAM3 protein plays a major role in the leaf starch 
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breakdown (Li et al., 2009). Alteration in regulation of chloroplastic β-AMYLASES (BAMs), 

STARCH-EXCESS 4 (SEX4), MALTOSE EXCESS 1 (MEX1), and genes encoding starch-

metabolizing enzymes such as ISOAMYLASE 3 (ISA3) and DISPROPORTIONATING ENZYME 1 

(DPE1) may result in starch accumulation in leaves (Critchley et al., 2001; Delatte et al., 2006). In 

A. thaliana, any mutations that block either starch synthesis or starch breakdown might result in 

reduced growth (Stettler et al., 2009). The maltose excess 1 mutant (mex1) that lacks the chloroplast 

envelope maltose transporter, accumulates high levels of maltose and starch in chloroplasts and 

develops a distinctive chlorotic phenotype as leaves mature (Stettler et al., 2009). Furthermore, the 

dpe1/mex1 mutants display a significant increase in the degree of the chlorotic phenotype compared 

to the mex1 mutant. The increase of the chlorotic phenotype in dpe1/mex1 mutants can be explained 

by the fact that mutations in DPE1 result in the accumulation of maltotriose in addition to maltose 

and consequently increase chlorosis. DPE1 encodes the D-enzyme, which is present in the 

chloroplast and metabolizes maltotriose. SEX4 is a phosphoglucan phosphatase that 

dephosphorylates the starch granule surface and was previously shown to be required for the starch 

breakdown (Kotting et al., 2009) and disruption of SEX4 leads to more starch accumulation in 

plants. A. thaliana sex4 mutants display more starch content in mature leaves compared to the WT 

(Niittyla et al., 2006). Triose phosphate translocator (TPT) functions in the stromal triose-

phosphates (triose-P) counter exchange. In A. thaliana, tpt mutant synthesized more starch 

compared to the WT. Mutants to compensate for the deficiency in their ability to export triose-

phosphate from the chloroplast have adopted this strategy (Walters et al., 2004).  
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Fig. 4. Starch degradation pathway in A. thaliana leaves at night. Dashed arrows indicate steps in which uncertainty remains. 

GWD: GLUCAN WATER DIKINASE. PWD: PHOSPHOGLUCAN WATER DIKINASE. DPE1: DISPROPORTIONATING 

ENZYME 1. ISA3: ISOAMYLASE 3 (Debranching enzyme). PHS1: GLUCAN PHOSPHORYLASE 1. Modified from Smith et 

al. (2005). 

 

1.6 Meristem regulation  

Apical meristematic cells are a specialized group of cells that principally reside at the tips of 

roots and shoots. Maintenance and programming of the meristematic cells are crucial steps for the 

cell division, shoot, and root branching. Any misregulation of the meristematic cells may result in 

perturbation and disorder in cell division, shoot, and root branching. Both shoot and root meristems 

are generated during embryogenesis, but do not contribute to the construction of the embryo and 

are activated once the seedling germinates (Doerner, 2003). Following the germination, the plant 

experiences several developmental phases and shoot meristems change their identity in the course 

of these phase changes. In contrast, no identity alterations occur in root meristems during 
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development. In A. thaliana the shoot meristem identity alteration appears as leaves during the 

initial vegetative growth, leaves and axillary meristems during the transition to flowering, and 

floral meristems and bracts by the inflorescence meristem during reproductive growth (Doerner, 

2003).  

Shoot apical meristems (SAMs) are responsible for developing the above-ground parts of the 

plant, such as stems, leaves, and flowers, while the under-ground parts of plants including root 

systems are generated by root apical meristems (Barton & Poethig, 1993). The shoot apical 

meristem contains a small bank of densely cytoplasmic, undifferentiated, and dividing cells (Barton 

& Poethig, 1993). Based on several features such as the ability to proliferate, regenerate a new 

meristem if damaged and the aptitude to produce a variety of differentiated cell types, the cells in 

the meristem can be classified as stem cells (Sussex, 1952; Potten & Loeffler, 1990).  

Several transcription factors (TFs) are involved in meristem maintenance in plants. Recessive 

mutations in the WUSCHEL (WUS) gene lead to an interruption in A. thaliana shoot meristem 

maintenance (Laux et al., 1996). The defect is restricted to shoot and floral meristems and can be 

seen at all developmental stages. WUS, a homeodomain TF, plays a critical role in regulating 

meristem differentiation in plants. In A. thaliana, KANADI 1 (KAN1), KANADI 2 (KAN2), 

ASYMMETRIC LEAVES 2 (AS2), and YABBY 3 (YAB3) are known as differentiation promoting 

TFs. WUS regulates KAN1, KAN2, AS2, and YAB3 genes via direct binding to their regulatory 

regions and represses their expression (Yadav et al., 2013). The CLAVATA-WUSCHEL signaling 

pathway was first reported in A. thaliana and regulates stem cell maintenance via an auto-

regulatory negative-feedback loop (Schoof et al., 2000). WUS initially acts as an activator of CLV3, 

which further binds with CLV1/2 and negatively regulates expression of WUS (Fig. 5). 
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Fig. 5. Maintenance of stem cells in shoot apical meristem. Three functional zones of SAM are shown. CZ: central zone. PZ: 

peripheral zone. RZ: rib zone. WUS activates CLV3, which further binds with CLV1/2 and in turn inhibits expression of WUS. 

Modified from Kalve et al. (2014). 

 

The A. thaliana jabba-1D (jba-1D) mutant was reported to show multiple enlarged shoot 

meristems (Williams et al., 2005). Furthermore, jba-1D exhibits radicalized leaves, reduced 

gynoecia, and vascular defects. High WUS expression levels are detected in mutants since the jba-

1D meristem phenotypes require a dramatic increase in WUS expression levels. Furthermore, 

overexpression of miR166g is essential for the development of jba-1D meristem phenotypes. 

Williams et al. (2005) described the indirect involvement of miRNAs in controlling meristem 

formation via regulation of WUS expression. In addition to the WUS-CLV pathway, the ERECTA 

pathway, as a second receptor kinase signaling pathway, represents an independent route that 

controls shoot apical and floral meristem size by regulating WUS expression (Mandel et al., 2014). 

Mutations of the translation initiation factor eIF3h resulted in the formation of enlarged shoot 

apical meristem in A. thaliana (Zhou et al., 2014). In P. patens, WUS-related homeobox 13-like 

(PpWOX13L) genes are homologs of stem cell regulators in flowering plants and are prerequisite 

for the initiation of cell growth during stem cell formation (Sakakibara et al., 2014).  

Eight types of stem cells were reported to be formed in P. patens during its life cycle (Kofuji 

& Hasebe, 2014). The common ancestor of land plants was haplontic and generated stem cells only 
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in the gametophytic generation. Other types of body fragments in moss, such as the protonema and 

rhizoid filaments, leafy-shoot and thalloid gametophores, and gametangia were formed during land 

plant evolution by the divergence of stem cells in the gametophytic generation. Stem cells follow 

different morphological and anatomical patterns among land plants. While stem cells in shoot and 

roots of angiosperms and gymnosperms are multiple cells, in P. patens (protonema, gametophore, 

leaf, rhizoid, and sporophyte), stem cells are a single-cell (Kofuji & Hasebe, 2014). According to 

Kofuji & Hasebe (2014), eight types of stem cells in P. patens are chloronema apical stem cell, 

caulonema apical stem cell, gametophore apical stem cell, leaf apical stem cell, rhizoid apical stem 

cell, antheridium apical stem cell, archegonium apical stem cell as well as a stem cell in the diploid 

generation of the sporophyte apical meristem. In P. patens, chloronema apical stem cell, which is 

responsible for tip growth and production of chloronema cells, has been formed from the first 

division of a spore (Menand et al., 2007). Some chloronema apical stem cells transform into 

caulonema apical stem cells that give rise to caulonema cells. Caulonema cells form side branch 

initial cells, are programmed to become secondary chloronema apical stem cells, secondary 

caulonema apical stem cells, gametophore apical stem cells, and non-dividing cells (Cove & 

Knight, 1993). Leaf apical stem cells are produced from gametophore apical stem cells and the first 

cell division of a zygote forms a sporophyte apical stem cell (Kofuji & Hasebe, 2014). 
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1.7 Aim of the research 

Two members of the GRAS family, PpGRAS12 (Pp1s205_1V6.1) and PpGRAS7 

(Pp1s130_63V6.1) are validated targets of miRNA171 in P. patens (Axtell et al., 2007). 

The central questions to be addressed in this study are: 

• Does miR171 regulate PpGRAS12 expression? 

The miR171 is a conserved miRNA family, exists in all major land plant groups, including 

bryophytes, and frequently plays a role in defining the spatiotemporal expression of their cognate 

target mRNAs. To tackle the question, whether miR171 regulates the spatiotemporal expression of 

PpGRAS12, the PpGRAS12::GUS protein fusion reporter lines were generated and analyzed. 

• What are the functions of PpGRAS7 and PpGRAS12 genes? 

For the functional analyses of both GRAS genes in P. patens and to address the second question, 

single knockout lines, as well as inducible overexpression lines for both PpGRAS7 and PpGRAS12 

genes, were generated. To study their functions, the phenotypic analysis, as well as molecular 

technologies, were utilized in this study. 
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2 CHAPTER 2: MATERIAL AND METHODS 

 

2.1 Chemicals and enzymes  

Chemicals and enzymes were purchased from: AppliChem GmbH (Hessen, Germany), Bio-

Rad (München, Germany), Carl-Roth GmbH (Karlsruhe, Germany), Duchefa Biochemie 

(Haarlem, Netherlands), Genaxxon BioScience GmbH (Biberach, Germany), Invitrogen 

(Karlsruhe, Germany), Fluka (Neu-Ulm, Germany), Merck (Darmstadt, Germany), Megazyme 

(Wicklow, Irland), New England Biolabs (Frankfurt, Germany), Promega (Mannheim, Germany), 

SERVA Electrophoresis GmbH (Heidelberg, Germany), Sigma-Aldrich (Deisenhofen, Germany) 

and Thermo Fisher scientific (München, Germany).  

All buffers and solutions were prepared with deionized water or RNase free water (Invitrogen, 

USA). If required, the solutions were autoclaved (20 minutes (min), 121°C, 2 bar) or filter sterilized 

(0.22 μm; Rotilabo® Spritzenfilter, Carl-Roth GmbH, Germany). 

 

2.2  Buffers and solutions  

DEPC-H2O 

• 0.1% DEPC in H2O 

The solution was stirred overnight at room temperature (RT) and subsequently autoclaved. 

CTAB buffer  

• 2% CTAB 

• 1.4 M NaCl 

• 20 mM EDTA 

• 0.5% PVP 40 

• 100 mM Tris 

pH was adjusted to 8.0 and 0.2% (v/v) ß-mercaptoethanol was added immediately prior to use. 
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gDNA isolation buffer  

• 200 mM Tris-HCl, pH 7.5 

• 250 mM NaCl 

• 25 mM EDTA 

• 0.5% SDS 

3 M sodium acetate (Autoclaved) 

• 3 M sodium acetate 

pH was adjusted to 5.2 with acetic acid. 

6x DNA loading dye 

• 10 mM Tris HCl, pH 7.6 

• 60% (v/v) glycerol 

• 60 mM EDTA 

• 0.03% (w/v) bromophenol blue 

• 0.03% (w/v) xylene cyanol 

50x Tris acetate (TAE) buffer (Autoclaved) 

• 2 M Tris 

• 1 M glacial acetic acid 

• 50 mM EDTA, pH 8.0 

TE buffer (Autoclaved) 

• 10 mM Tris-HCl 

• 1 mM EDTA 

• pH was adjusted to 8.0 with 1 M HCl  

20x SSC (Autoclaved) 

• 3 M NaCl 

• 0.3 M tri-sodium citrate dehydrate 

pH was adjusted to 7.0 with HCl. 
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20% SDS (Filter sterilized)  

• 200 g SDS 

• H2O was added up to 1 L 

500 mM EDTA (Autoclaved) 

• 0.5 M EDTA 

pH was adjusted to 8.0 with NaOH. 

2x RNA-denaturing buffer: 

• 500 µl formamide (deionized) 

• 12 µl formaldehyde (37%) 

• 200 µl 10x MOPS 

• 1 µl ethidium bromide  

The solution was prepared immediately prior to use. 

2x RNA loading dye  

• 10 ml formamide (deionized) 

• 200 µl 0.5 M EDTA 

• 10 mg xylene cyanole 

• 10 mg bromophenol blue 

10x MOPS buffer (Filter sterilized) 

• 200 mM MOPS, pH 7.0 (adjusted with 2 N NaOH) 

• 20 mM sodium acetate 

• 10 mM EDTA  

The solution was kept protected from light. 

10x FA buffer (Filter sterilized) 

• 200 mM MOPS, pH 7.0 (adjusted with 2 N NaOH) 

• 50 mM sodium acetate 

• 10 mM EDTA  
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The solution was kept protected from light. 

FA gel running buffer 

• 1x FA gel buffer 

• 2.5 M formaldehyde 

RNA loading buffer 

• 0.25% bromophenol blue 

• 4 mM EDTA 

• 0.9 M formaldehyde 

• 20% glycerol 

• 30.1% formamide 

• 4x FA gel buffer 

• 1 μl (10 mg/ml) ethidium bromide 

Hybridization buffer for Northern blot 

• 0.5 M sodium phosphate, pH 7.2 

• 1 mM EDTA, pH 8.0  

• 7% SDS 

The components were mixed and heated to 67°C. 1 ml of the salmon sperm DNA 100 μM/ml was 

denatured for 10 min at 100°C and after cooling on ice was added to the pre-warmed buffer. 

Washing solution I (Northern blot) 

• 1x SSC 

• 0.1% SDS 

Washing solution II (Northern blot) 

• 0.5% SSC 

• 0.1% SDS 

pH was adjusted to 5.2 with acetic acid. 
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EDC cross-linking solution 

• 0.16 M EDC prepared in 0.13 M 1-methylimidazole, pH 8.0 

The solution was prepared immediately prior to use. 

1 mg/ml DAB solution  

• 50 mg DAB was dissolved in 50 ml distilled H2O 

pH was adjusted to 3.8 with 0.1 N HCl. The solution was mixed using a magnetic stirrer and 

protected from the light. The solution was prepared immediately prior to use.  

0.2% NBT solution 

• 0.1 g NBT (Sigma-Aldrich, USA) was dissolved in 50 mM sodium phosphate buffer (pH 

7.5)  

The solution was mixed using a magnetic stirrer and protected from the light. The solution was 

prepared immediately prior to use.  

X-Gluc solution (Filter sterilized) 

• 0.005 g X-Gluc (5-Bromo-4-Chloro-3-Indolyl-β-Glucoronid) (AppliChem GmbH, 

Germany)  

• 60 μl DMFO (N,N-Dimethylformamid) 

• 1 ml of 1 M sodium phosphate buffer pH 7.0 (57.7 ml Na2HPO4, 42.3 ml NaH2PO4) 

• H2O was added up to 10 ml 

The solution was stored at 4°C. 

5% Formaldehyde 

• 1 ml 37% formaldehyde dissolved in 6.4 ml water 

5% Acetic acid 

• 0.5 ml acetic acid dissolved in 9.5 ml water 

RNase A 

• 10 mg RNase A/10 ml Tris-HCl, pH 7.5 
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The solution was incubated at 100°C for 10 min and after having cooled down to room 

temperature100 μl aliquots were prepared and stored at -20°C. 

3 M medium (Filter sterilized) 

• 5 mM MgCl2 

• 0.1% (w/v) 2-(N-Morpholino) Ethanesulfonic acid (MES) 

• 0.48 M mannitol pH 5.6, 580 mOs 

PEG solution (Filter sterilized) 

• 40% (w/v) Polyethylenglycol 4000 in 3 M medium 

0.5 M mannitol (Filter sterilized) 

• 0.5 M mannitol 

The pH was adjusted to 5.6 with 1 M HCl. Osmolarity was adjusted to 560 mOsm/l with mannitol. 

10 mM ß-estradiol stock solution (Filter sterilized) 

• 27.38 mg ß-estradiol (Art. Nr.: E2758; Sigma-Aldrich) dissolved in 1 ml DMSO 

• H2O was added up to 10 ml (10 mM) 

 

2.3 Culture media 

LB medium (Autoclaved) 

• 1% (w/v) bacto agar (Carl-Roth GmbH) 

• 0.5% (w/v) yeast extracts (Carl-Roth GmbH) 

• 1% (w/v) NaCl 

Dissolved in H2O, pH was adjusted to 7.0 with 1 N NaOH 

LB medium agar (plates) 

10 g/l bacto agar (Carl-Roth GmbH) was added for the preparation of LB solid medium. 
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LB medium with ampicillin 

Ampicillin was added to LB medium to reach the final concentration of 100 μg/ml (LB-amp).  

Standard growth medium (Autoclaved) 

• 0.025% (w/v) KH2PO4 

• 0.025% (w/v) MgSO4 

• 0.025% (w/v) KCl 

• 0.1% (w/v) Ca(NO3)2 

• 0.0125% (w/v) FeSO4 x 7 H2O 

pH was adjusted to 5.8 with 1 M KOH. 

Standard solid growth medium (Autoclaved) 

10 g/l plant agar (Duchefa Biochemie) was added for the preparation of standard solid growth 

medium. 

Standard solid growth medium with glucose for sporophyte induction 

200 mg glucose dissolved in 1 L of standard liquid growth medium. 

Standard solid growth medium with ß-estradiol  

10 mM ß-estradiol was added to the standard solid/liquid growth medium to reach the final 

concentration of 2 µM. 

Regeneration medium (Filter sterilized)  

• 5% (w/v) glucose 

• 3% (w/v) mannitol 

pH was adjusted to 5.6 (with 1 M HCl), 540 mOsm/ L adjusted with mannitol. 
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2.4 Plant material, cell culture, and transformation 

2.4.1 Plant materials and growth conditions 

All experiments were performed with Physcomitrella patens ssp. patens (Hedwig) ecotype 

‘Gransden 2004’ cultured under standard growth conditions as described by Reski and Abel (1985). 

Liquid cultures were mechanically disrupted using an Ultra-Turrax device to maintain the plants 

in the protonema stage. The gametophore development was induced by transferring protonema 

tissue to the solidified standard growth medium.  

 

2.4.2 Transformation of P. patens protoplasts 

2.4.2.1 Stable transformation  

 Polyethylene glycol (PEG) was used to mediate the transformation of P. patens protoplasts. 

(Schaefer et al., 1991). Transformation of P. patens protoplasts was conducted as previously 

described (Strepp et al., 1998). Under the sterile condition, 50 μg of linearized DNA-construct was 

dissolved in 100 μl of 0.1 M Ca(NO3)2 and subsequently mixed with 250 μl of protoplast 

suspension and 350 μl of PEG solution by gently inverting the tubes to avoid damaging of the 

protoplasts. For the co-transformation, 25 μg of DNA construct and 25 μg of selection vector were 

used. The mixture was incubated for 30 min and tubes were mixed by a gentle inversion every 5 

min. Afterwards the suspension was diluted stepwise by addition of 1 ml, 2 ml, 3 ml, and 4 ml of 

3 M medium with time intervals of approximately 5 min to avoid the osmotic shock of the cells. 

After the centrifugation protoplasts were cautiously mixed with 3 ml of regeneration medium and 

cultivated for 24 hours (h) at 25°C in the dark and then transferred to light (16 h light and 8 h dark) 

for the regeneration. 

 

2.4.2.2 Transient transformation 

 The transient transformation of protoplasts was performed in the same way as stable 

transformation (see 2.4.2.1) but with circular DNA (0.5 µg/ml) and no selection process. After 



34 

 

transformation, the protoplasts were resuspended in regeneration medium and cultivated for 3 days 

at 25°C in the dark.  

 

2.4.3 Phenotypic analysis 

Liquid cultures were mechanically disrupted every 4 days to maintain the plants in the 

protonema stage. Phenotypic analysis regarding the growth behavior of transgenic lines as well as 

P. patens WT was performed by adjusting pure protonema cultures to an equal density of 100 mg/l 

dry weight and 5 µl of the adjusted cultures were spotted onto standard solid medium or solid 

medium supplemented with 2 µM ß-estradiol (2 µM ß-estradiol was used as a general inducer for 

all inducible overexpression (iOE) lines in all experiments; Sigma-Aldrich, USA). For the analysis 

of phenotypic changes at the leafy gametophore stage, the inducer was directly applied onto 

colonies from transgenic lines as well as WT controls. Pictures of plants were taken by Nikon 

stereoscopic microscope (C-DSD230, Minato, Japan).  

 

2.5 Phylogenetic analysis 

Sequence alignment and phylogenetic analyses were conducted in MEGAX (Kumar et al., 

2018). The phylogeny was inferred using the Neighbor-Joining method (Saitou & Nei, 1987) The 

percentage of replicate trees in which the associated taxa clustered together in the bootstrap test 

(100 replicates) are shown next to the branches (Felsenstein, 1985). 

 

2.6 Identification of P. patens homologs 

P. patens homologs were identified using a BLAST search of A. thaliana protein sequences as 

queries against P. patens database V6.1 (http://www.cosmoss.org) (Appendix 4 and 5). The best 

BLAST hits were considered as candidate homologs, which were subsequently confirmed by 

reciprocal BLAST against A. thaliana database (https://www.arabidopsis.org/). 

 

 

http://www.cosmoss.org/
https://www.arabidopsis.org/
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2.7 ROS detection 

Histochemical detection of ROS (O2-, H2O2) using NBT and DAB were carried out as 

previously described by Kumar et al. (2014). I used 50% and 75% ethanol instead of 100% and 

55°C instead of boiling. 

 

2.8 Cloning and bacterial transformation  

2.8.1 Gateway pENTR/D-TOPO cloning 

The pENTR™ Directional TOPO®Cloning Kit (Invitrogen, USA) was used to directionally 

clone a blunt-end PCR product into a vector for entry into the Gateway pENTR/D-TOPO cloning 

vector. Cloning procedures were performed according to the manufacturer’s instructions. 

 

2.8.2 pJET1.2 cloning 

The GeneJET™ PCR Cloning Kit (Thermo Fisher Scientific, USA) was used for the cloning of 

PCR products into the pJET1.2/blunt Cloning Vector. Cloning procedures were performed 

according to the manufacturer’s instructions.  

 

2.8.3 Transformation of chemically competent E. coli cells 

For the transformation of chemically competent E. coli cells (strain DH5α), 1-10 μl ligation 

products were gently mixed with 100 µl competent cells (thawed on ice) and incubated on ice for 

30 min. Afterwards heat shock was performed by incubation of cells at 42°C for 45 seconds (sec) 

and subsequent cooling on ice for 3 min. Subsequently, 250 μl LB medium was added and the tube 

was incubated 1 h at 37°C, 200 rpm (INFORS HT, Switzerland). The mixture was centrifuged at 

9000 rpm for 5 min, the supernatant was discarded and the pellet was suspended with 50-100 μl of 

LB medium and plated onto LB-amp plates. The plates were incubated at 37°C overnight. 
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2.9 Plasmid DNA isolation 

A single colony of transformed E. coli cells was cultured overnight in 3 ml LB medium 

containing the appropriate selective antibiotic at 37°C, 200 rpm (INFORS HT, Switzerland). 

Subsequently, small-scale plasmid DNA preparation from E. coli cells was carried out using the 

NucleoSpin® Plasmid kit (MACHEREY-NAGEL, Germany), following the manufacturer’s 

instructions. The DNA plasmids were eluted in 30-50 μl sterile dH2O, quantified 

spectrophotometrically and stored at -20°C. For Large-scale plasmid DNA isolation, 300 ml LB 

medium containing appropriate selective antibiotics were inoculated by a single E. coli colony and 

incubated at 37°C, 200 rpm (INFORS HT, Switzerland) overnight. Subsequently, the isolation of 

plasmid DNA was carried out using the NucleoBond® Xtra Maxi kit (MACHEREY-NAGEL, 

Germany), according to the manufacturer’s instructions. The purified plasmid DNA was eluted 

with 150-300 μl sterile dH2O, quantified and stored at -20°C. 

 

2.10 Genomic DNA isolation from P. patens 

2.10.1 CTAB method 

The plant material (1 g of moss protonema) was homogenized under liquid nitrogen using 

mortar and pestle. CTAB buffer (8 ml) was added to the moss protonema and incubated at 65°C 

for 1 h. Samples were incubated on ice for 2 min and the homogenates were extracted twice by 

adding chloroform/isoamyl alcohol (24:1, v/v) and phase separation was carried out by 

centrifugation at 2500 xg for 10 min at 4°C. Subsequently, samples were incubated with RNase A 

(final concentration 100 μg/ml) at 37°C for 45 min. DNA precipitation was carried out by adding 

1/10 volume of 3 M sodium acetate, pH 5.2 and 1 volume of isopropanol and incubation overnight 

at -20°C. The DNA was precipitated by centrifugation at 2500 xg, at 4°C for 30 min. Pellets were 

washed with 10 ml washing buffer (76% ethanol, 10 mM ammonium acetate) at RT for 20 min and 

then centrifuged for 5 min at 2500 xg. Pellets were washed with 10 ml 70% ethanol at RT for 5 

min and then centrifuged for 5 min at 2500 xg. After air-drying of the pellets, pellets were 

resuspended in 150 μl TE buffer, pH 8.0. 
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2.10.2 gDNA isolation for PCR-screening  

The gDNA isolated was used for PCR and PCR-based screening. The plant material 

(approximately 4 gametophores or a similar amount of protonema tissues) was transferred into 1.5 

ml Eppendorf® safe-lock tubes with a metal bead (Ø 3 mm). Subsequently, 200 μl DNA extraction 

buffer was added and plant material was disrupted using Tissuelyser II (Qiagen, Germany). 

Samples were incubated for 5 min at RT and subsequently centrifuged for 5 min at 12,000 xg. The 

supernatant was collected in a new tube and DNA precipitation was carried out by adding 150 µl 

of -20°C isopropanol, 5 min incubation at RT and centrifugation at 12,000 xg, at 4°C for 10 min. 

Pellets were washed with 150 µl of -20°C ethanol and centrifuged for 5 min at 12,000 xg. After 

air-drying of the pellets, pellets were resuspended in 30 μl TE buffer supplemented with RNase A 

(5 mg/ml).  

 

2.11  Electrophoretic separation of nucleic acids 

Separation of DNA/RNA fragments was performed by agarose gel electrophoresis in a 1x TAE 

buffer. For the superlative separation, agarose gels ranged from 1 to 2.5% were prepared according 

to the fragment expected size using 0.1x TAE buffer. For the subsequent detection of DNA/RNA, 

the fluorescent dye ethidium bromide was added to a final concentration of 0.4 µg/ml. Samples 

were mixed with a 6x DNA-loading dye prior to loading on the gel. An applicable DNA/RNA 

markers (New England Biolabs, USA) for the size determination and the separated nucleic acid 

fragments were visualized and documented using Dark hood DH-40/40 (Biostep GmbH, 

Germany). 

 

2.12  Extraction and elution of DNA/RNA fragments from agarose gels 

The DNA/RNA fragments of interest were excised from the agarose gel using a scalpel and 

purified using the NucleoSpin® gel clean up kit (MACHEREY-NAGEL-Germany) according to 

the manufacturer’s instructions. 
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2.13 DNA sequencing  

The amount of DNA template after the purification was calculated due to the template length 

from the table below and was sent for sequencing to the Genomics Service Unit (LMU Munich, 

Germany). 

100-200 bp 5-20 ng 

200-500 bp 10-40 ng 

500-1000 bp 20-50 ng 

1000-2000 bp 40-100 ng 

> 2000 bp 50-150 ng 

Plasmids 150-300 ng 

 

2.14 RNA isolation from P. patens 

Plant tissue (100 mg fresh weight) was homogenized under liquid nitrogen and total RNA was 

extracted using TRIzol® Reagent (Invitrogen, USA). The frozen tissue was resuspended in 1 ml 

TRIzol, vortexed and incubated at room temperature for 5 min and subsequently centrifuged at 

12,000 xg, at 4°C for 10 min. The supernatant was transferred to a new tube and 200 ml chloroform 

added followed by vortexing for 15 sec and 5 min incubation at RT. Next, the phase separation was 

carried out by centrifugation at 12,000 xg, at 4°C for 15 min. The upper aqueous phase was 

transferred to a fresh tube and the RNA was precipitated by adding 500 µl isopropanol, incubation 

on ice for 30 min and centrifugation at 12,000 xg, at 4°C for 10 min. The RNA pellet was washed 

with 1 μl of 75% ethanol by vortexing and subsequently centrifuged for at 7500 xg, at 4°C for 5 

min. The supernatant was completely removed and the pellet was dried on air for 3 to 5 min. The 

pellet was air-dried and resuspended in 30 μl of RNAse-free water. 
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2.15 Spectrophotometric nucleic acid quantification 

The optical density assay was performed using NanoDrop 2000 (PeQlab, German), to 

determine the concentration and purity of the samples. 1 µl of RNA or DNA sample was used and 

absorption (A) was measured at 260 and 280 nm. Calculation of nucleic acid concentrations was 

based on the assumption that A260 = 1 corresponds to a DNA concentration of 50 µg/ml or an 

RNA concentration of 40 µg/ml, respectively. The contamination of nucleic acids with proteins 

was examined with the absorbance ratio of A260/A230. 

 

2.16 PCR 

2.16.1 Standard PCR 

 Polymerase chain reaction (PCR) was used for DNA amplification. Mainly, Taq DNA-

Polymerase (Genaxxon BioScience GmbH, Germany) and Q5 (New England Biolabs, USA) were 

used for the amplification and reactions were carried out in 200 μl tubes in a PeQSTAR Thermal 

Cycler (PeQLab, Germany). 

 

The standard PCR reaction was carried out in a volume of 25 μl: 

x μl   DNA (20ng) 

2.5 μl   10x Taq-Buffer s with 15 mM MgCl2 (Genaxxon BioScience GmbH, Germany) 

0.5 μl   10 mM each dNTPs (New England Biolabs, USA) 

1 μl   10 μM forward primer 

1 μl   10 μM reverse primer 

0.25 μl  Taq DNA-Polymerase (5 U/μl) (Genaxxon BioScience GmbH, Germany) 

RNase free dH2O add up to 25 μl 
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The standard PCR Program: 

Step Temperature Duration Cycles 

Initial denaturation 94°C 3 min 1 

Denaturation 94°C 30 s 30 

Annealing Ta 30 s 30 

Elongation 72°C 1 kb/min 30 

Final elongation 72°C 3 min 1 

Storage 8°C Hold ∞ 

 

Annealing temperature [Ta] has calculated according to the following formula: 

Ta = Tm - 5°C; Tm = 4 x (G+C) + 2 x (A+T) 

 

2.16.2 Reverse transcriptase PCR (RT-PCR) 

Plant tissue was homogenized under liquid nitrogen and total RNA was extracted using 

TRIzol® Reagent (see 2.14). To remove genomic DNA contamination, RNA was treated for 30 

min at 37°C with RNase-free DNase I (NEB, USA). The reaction was stopped by the addition of 

2.5 mM EDTA and incubation for 10 min at 65°C. Total RNA (2 µg) was reversed transcribed into 

first-strand cDNA using M-MLV Reverse Transcriptase (200 U, NEB, USA) as previously 

described by Arif et al. (2018). 

 

2.16.3 Quantitative RT-PCR (qRT-PCR) 

The synthesized cDNA (ng of cDNA corresponding to 50 ng total RNA) was used as a template 

for quantitative PCR analysis. qRT-PCR was performed on CFX96 Real-Time System (Bio-Rad, 

USA) using the EvaGreen mix. The relative expression levels of genes were calculated using the 

2−ΔΔCT method (Livak & Schmittgen, 2001) with PpEf1α as an internal control. 
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 EvaGreen mix (2x): 

1.6 µl  Glycerol (50%)       

4 µl  10x Taq- Buffer s with 15 mM MgCl2     

0.5 µl  10 mM dNTPs (New England Biolabs, USA)     

0.4 µl  Fluorescein 100x (1:1000)     

1.5 µl  20x Eva Green (Biotium, USA)        

0.4 µl  Taq Polymerase (Genaxxon BioScience GmbH, Germany)  

11.6 µl  RNase free dH2O  

 

qRT-PCR mixture for one reaction (20 µl): 

5 μl   cDNA (50 ng) 

10 μl   2x EvaGreen mix (2x) 

0.5 μl   10 μM forward primer 

0.5 μl  10 μM reverse primer 

4 μl  RNase free water 

 

2.17 RNA gel blot 

RNA gel blot analysis was performed as described (Khraiwesh et al., 2008). Briefly, 20 μg of 

total RNA were mixed with an equal volume of RNA-denaturing buffer and incubated at 67°C for 

10 min. The electrophoresis carried out in a 1x FA buffer at 100V for 4 h. The RNA was transferred 

overnight onto a Hybond™ Nylon membrane (GE Healthcare, Germany) using a turboblotter with 

20x SSC blotting buffer. RNA was fixed on the membrane via UV cross-linking (Stratagene, USA). 

Prior to hybridization, pre-hybridization was performed using 40 ml of hybridization buffer at 65 

for 4 h. Subsequently, hybridization was carried out overnight at 67°C using a 25 ml fresh 

hybridization buffer containing 32P-dCTP labeled DNA probe. Random labeling of DNA probe 
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was performed using Klenow Fragment (3'→5' exo-) (New England Biolabs, USA). After 

hybridization the membrane was washed two times with 1x SSC, 0.1% SDS and one time with 

0.5x SSC, 0.1% SDS at 67°C for 10 min. Signals were detected using Typhoon Trio Variable Mode 

Imager System (GE Healthcare, Germany). 

 

2.18  Protein isolation and immunoblot analyses 

Protein isolation and immunoblot analyses were performed as previously described (Pulido et 

al., 2013). Specific primary antibodies were diluted to 1:5000 for, PsbD, PsbQ, PsaL, Cyt f, Cytb6, 

and ACTIN and to 1:10,000 for HSP70, LHCA2, LHCB2, and RbcL. All antibodies were 

purchased from Agrisera (Vännäs, Sweden). Incubation with the horseradish peroxidase-

conjugated secondary antibody (diluted 1:10,000) was performed for 1 h at room temperature. 

Detection of immune reactive bands was performed using the ECL Plus reagent (GE Healthcare, 

Germany). Chemiluminescent signals were visualized using a ChemiDoc MP analyzer (Bio-Rad, 

USA). 

 

2.19  Microscopy 

2.19.1  Subcellular localization and confocal microscopy 

The complete PpGRAS7 and PpGRAS12 coding sequence were amplified by PCR from 

genomic DNA with the primers PpGRAS7::C_F, PpGRAS7::C_R primer, PpGRAS12::C_F, and 

PpGRAS12::C_R primer, respectively (Appendix 1). Both PpGRAS7 primers harbor a KpnI 

restriction enzyme site and the PCR product was digested with KpnI and cloned into the KpnI-site 

of a modified pMAV4 plasmid (Martin et al., 2009) where the GFP reporter gene was replaced 

with a citrine coding sequence. The PpGRAS12 forward primer harbors a SalI restriction enzyme 

site, while the reverse primer harbors BglII restriction enzyme site and the PCR product was 

digested with SalI and BglII, and cloned into the SalI-site and BglII-site of pMAV4 plasmid. 

Individually citrine coding sequence was C-terminally fused in-frame to the PpGRAS7 and 

PpGRAS12 coding sequence. Sequence identity of the cloned PpGRAS7::citrine fusion and 

PpGRAS12::citrine were confirmed by sequencing. The resulting PpGRAS7::citrine and 

https://www.cambridgescientific.com/used-lab-equipment/product/GE-Healthcare-Typhoon-Trio-Variable-Mode-Imager-System-14509
https://www.cambridgescientific.com/used-lab-equipment/product/GE-Healthcare-Typhoon-Trio-Variable-Mode-Imager-System-14509
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PpGRAS12::citrine protein fusion constructs were transiently transfected into P. patens 

protoplasts. The transfected P. patens protoplasts were fixed by 1% formaldehyde for 10 min at 

room temperature (RT). Afterwards 125 µM of glycine was added to the samples and incubated 

for 10 min at room temperature. Nuclei were stained by the addition of 2.5 mg/ml of 

4′,6-diamidino-2-phenylindole (DAPI, Sigma-Aldrich, USA) followed by gentle shaking for 30 

min at RT. Fluorescence microscopy was performed using an inverted Leica TCS SP5 confocal 

laser scanning microscope (Carl Zeiss, Germany) equipped with a 60x glycerol-immersion 

objective. The excitation wavelength/emission was as follows for YFP (514 nm/520 to 620 nm), 

DAPI (358 nm/460 to 490 nm) and chlorophyll (633 nm/650 to 720 nm). Images were processed 

and assembled by ImageJ. 

 

2.19.2  Transmission electron microscopy 

Fresh leaves of P. patens WT and mutants were fixed with 2.5% glutaraldehyde in 75 mM 

cacodylate buffer (pH 7.0), supplemented with 2 mM MgCl2. After fixation for one week, the 

samples were washed four times with 0.1 M sodium cacodylate buffer (pH 7.2) (5 min, 15 min, 80 

min, and 100 min) and post-fixed for 140 min with 1% OsO4 in water. After two further washing 

steps in the buffer, the samples were washed three times in double-distilled water (15 min, 30 min, 

and 120 min). Dehydration was carried out in a graded acetone series in which 1% uranyl acetate 

was added for 1 h within the 20% acetone step. After changing 100% acetone three times, the 

samples were infiltrated with Spurr’s resin and polymerized at 63°C for 72 h. These samples were 

either semithin sectioned for light microscopy (control and overview) or ultrathin section for 

electron microscopy. For the latter case, we used a Zeiss EM912 with an integrated OMEGA-filter 

(Zeiss, Germany), operated at 80 kV in the zero-loss mode. Images were recorded using a Tröndle 

2k x 2k slow-scan CCD camera (TRS Tröndle Restlichtverstärkersysteme, Germany). 
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2.19.3  Scanning electron microscopy 

Gametophores from P. patens WT and mutants were fixed with 2.5% glutaraldehyde in 75 mM 

cacodylate buffer containing 2 mM MgCl2. After 4 washing steps with pure buffer, post-fixation 

was carried out with 1% OsO4 for 90 min. Two washing steps with buffer were followed by 

washing three times with double-distilled water. After this, the samples were dehydrated in a 

graded acetone series and critical-point-dried. Finally, the samples were mounted on aluminum 

stubs and sputter-coated with platinum. Scanning electron microscopy was performed on a Hitachi 

S-4100 SEM (Hitachi, Japan) at acceleration voltages between 3 and 5 kV. 

 

2.19.4  Binocular microscopy 

Stereomicroscope (SMZ1500, Nikon, Japan) supported with DIGITAL SIGHT ds-FI2 camera 

(Nikon, Japan) was used for visualizing of mutant and capturing pictures.  

 

2.20 Generation of mutants 

2.20.1  ∆PpGRAS 7  

The gene disruption construct was designed to partially replace the PpGRAS7 5´UTR (303bp) 

and coding sequence (142bp) with the nptII selection marker cassette via homologous 

recombination. The PpGRAS7 knockout construct was generated by Dr. M. Asif Arif (LMU 

biocenter, Germany) using a Gibson Assembly cloning kit (NEB) that allows the joining of DNA 

fragments with overlapping DNA ends. For this, three sets of primers (Appendix 1) harboring 

overlapping ends were used to amplify the 5′ (586 bp) and 3′ (630 bp) flanking regions adjacent to 

the intended targeting site. The nptII coding sequence is controlled by the nos promoter and 

terminator derived from the vector pBSNNNEV (Mueller et al., 2014). All three fragments along 

with the pJET cloning vector were assembled together using the Gibson Assembly kit. Prior to 

transfection, the knockout construct was released from the pJET backbone by EcoRI (NEB USA) 

digestion and the knockout construct was transfected into P. patens protoplasts following standard 

procedures (Frank et al., 2005). Protoplasts were regenerated and selected on G418-containing 

https://www.microscopyu.com/museum/model-smz1500-stereomicroscope
https://www.microscopyu.com/museum/model-smz1500-stereomicroscope
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medium (12.5 mg/l) and putative transgenic lines were analyzed by PCR to identify lines that had 

integrated the PpGRAS7 knockout construct into the endogenous PpGRAS7 locus. The lack of the 

PpGRAS7 transcript was confirmed by RT-PCR in two independent transgenic lines. All the 

oligonucleotides that have been used for PCR and RT-PCR are listed in Appendix 1. 

 

2.20.2  ∆PpGRAS 12  

The gene disruption construct was designed to replace the entire PpGRAS12 (2430 bp) with the 

nptII coding sequence selection marker cassette via homologous recombination. Designing the 

construct, cloning strategy and screening were performed and described by Strotbek (2015). The 

lack of the PpGRAS12 transcript was confirmed by RT-PCR in two independent transgenic lines. 

All the oligonucleotides that have been used for PCR and RT-PCR are listed in Appendix 1. 

 

2.20.3  PpGRAS7-iOE  

The complete PpGRAS7 coding sequence harbors specific neutral mutations within the 

miRNA171 binding site that inhibits miR171-directed cleavage was amplified from the mutated 

version of PpGRAS7 (Appendix 2). The cloning step was performed using the pENTR/D-TOPO 

cloning Kits (Invitrogen, USA). A pair of primers (Appendix 1) was designed to amplify the 

miR171-resistant PpGRAS7 fragment from the plasmid harboring the mutated version of 

PpGRAS7, which was generated by Strotbek (2015) (Appendix 2). The recombinant PpGRAS7 

fragment was amplified and subsequently cloned into the Gateway pENTR/D-TOPO vector 

(Invitrogen, USA). The fragment orientation was checked by sequencing and the pENTR/D-TOPO 

vector was cloned into the PpGX8 destination vector containing a hygromycin resistance cassette 

(Kubo et al., 2013) using the Gateway LR Reaction (Invitrogen, USA). The inducible 

overexpression constructs were linearized using PmeI (NEB, USA) and transfected into P. patens 

protoplasts.  
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2.20.4  PpGRAS12-iOE  

The full PpGRAS12 coding sequence that harbors specific silent mutations within the 

miRNA171 binding site that inhibits miR171-directed cleavage was amplified from the mutated 

version of PpGRAS12 (Appendix 3). The cloning step was performed and described by Strotbek 

(2015). 

 

2.20.5  AtRGA1-iOE and AtRGAL1-iOE  

The complete coding sequences of AtRGA1 and AtRGAL1 were amplified from A. thaliana 

cDNA with gene-specific primers (Appendix 1) and cloned into the Gateway pENTR/D-TOPO 

vector using the pENTR/D-TOPO cloning Kits (Invitrogen, USA). Fragment orientations of both 

entry constructs were checked by sequencing and the pENTR/D-TOPO vector was cloned into the 

PpGX8 destination vector (Kubo et al., 2013) using the Gateway LR Reaction (Invitrogen, USA). 

Both inducible overexpression constructs were linearized using PmeI (NEB, USA) and transfected 

into P. patens protoplasts.  

 

2.20.6  AtSCL6-II-iOE, At SCL6-III-iOE, and AtSCL6-IV-iOE  

The full-length coding sequences of AtSCL6-II, AtSCL6-III, and AtSCL6-IV were amplified 

from previously constructed plasmids harboring the miR171-resistant version of AtSCL6-II, 

AtSCL6-III, and AtSCL6-IV genes (Aoyama & Chua, 1997) using gene-specific primers (Appendix 

1). Subsequently, fragments were cloned into the Gateway pENTR/D-TOPO vector using the 

pENTR/D-TOPO cloning Kits (Invitrogen, USA). Fragment orientations of all three constructs 

were checked by sequencing and the pENTR/D-TOPO vector was cloned into the PpGX8 

destination vector (Kubo et al., 2013) using the Gateway LR Reaction (Invitrogen, USA). 

Afterwards all three inducible overexpression constructs were linearized using PmeI (NEB, USA) 

and transfected into P. patens protoplasts.  
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2.20.7 PpGRAS12::GUS protein fusion  

The PpGRAS12 coding sequence harboring a mutated or native miR171 binding site (Appendix 

3) was fused to the GUS coding sequence and introduced to their cognate genomic locus by means 

of homologous recombination. Three sets of primers were used for the generation of 

PpGRAS12::GUS fusion constructs. The first set of primers was designed to amplify 1482 bp (5´ 

flanking region of the construct) from the coding sequence including miR171 binding site, where 

the SacI restriction site was added to the 5´ end and an EcoRI restriction site was added to the 3´ 

end (Appendix 1). The second set including EcoRI and SalI restriction sites was designed to 

amplify the GUS coding region (Appendix 1). Lastly, the third set of primers was designed to 

amplify 1528 bp from downstream of the PpGRAS12 coding region including the 3´ UTR (3´ 

flanking region of the construct), where the SalI restriction site was added to the 5´ end and the 

KpnI restriction site was added to the 3´ end (Appendix 1). All three fragments were digested with 

EcoRI and SalI, purified, ligated, and subsequently cloned into the pJET cloning vector. 

PpGRAS12::GUS and mPpGRAS12::GUS fusion reporter constructs were released from the pJET 

backbone by SacI and KpnI digestion and transfected into P. patens protoplasts. 

 

2.21 PAM measurement  

P. patens WT and PpGRAS7-iOE lines were grown on standard solid growth medium for 4 

weeks. 2 µM of ß-estradiol was applied for 2, 4, and 8 days to induce the transcription of the 

transgenic genes. Chlorophyll a fluorescence was analyzed using an Imaging PAM chlorophyll 

fluorimeter equipped with the computer-operated PAM control unit IMAG-MAXI (Walz) as 

previously described (Zagari et al., 2017). Measurements of minimal fluorescence (F0) were 

performed after acclimation for 5 min in the dark. To determine the maximum fluorescence (Fm), 

a pulse (0.8 sec) of saturating white light (5000-μmol photon m-1 s-1) was applied. The ratio (Fm-

F0)/Fm was calculated as Fv/Fm, the maximum quantum yield of PSII. Representative false-color 

images corresponding to Fv/Fm levels in the WT and inducible PpGRAS7-iOE lines were selected. 

The effective quantum yield of PSII [ΦII = (Fm’ – Fs)/Fm’] was monitored at increasing light 

intensities and plotted as light-responses curved. 
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2.22 Extraction of pigments 

Chlorophyll isolation was performed in green light as described by Lichtenthaler and Wellburn 

(1983) and Arnon (1949). Pigments were extracted as previously described by Kim et al. (2013) 

and Schlicke et al. (2014) and annotated based on specific m/z values. Six biological replicates 

were used for each time point. The samples were analyzed using a combination of a Dionex 

Ultimate 3000 UHPLC (Thermo Fisher Scientific, USA) and an Impact II QTOF (Bruker Daltonik, 

Billerica, USA). The evaluation was performed by Data Analysis 4.3, Profile Analysis 2.3, and 

MetaboScape 1.0. (all were provided by Bruker Daltonik). All solvents were supplied in LCMS-

grade by Biosolve (Valkenswaard, Netherlands). 

 

2.23 Starch, maltose and sucrose quantification  

Samples from PpGRAS7-iOE lines as well as WT control obtained from a kinetic experiment 

(0, 2, 4, and 8 days) after the application of 2 µM of ß-estradiol were harvested at two different 

intervals, end of the day and end of the night and frozen in liquid nitrogen. Extraction and 

quantification of starch were performed using a starch assay kit (Sigma-Aldrich: SA-20, St. Louis, 

USA). Starch was extracted using the DMSO/HCl method according to the manufacturer’s 

protocol. Maltose and sucrose quantification was performed using maltose, sucrose and D-glucose 

assay kit (Megazyme: K-MASUG, Wicklow, Ireland) described according to the manufacturer’s 

protocol. 

 

2.24 Bioinformatics tools and other software 

2.24.1  Databases  

Cosmoss: P. patens database. http://www.cosmoss.org/ (Rensing et al., 2008). 

Phytozome: The Plant Comparative Genomics portal of the Department of Energy's Joint Genome 

Institute. https://phytozome.jgi.doe.gov/pz/portal.html. 

Physcomitrella eFP Browser: http://bar.utoronto.ca/efp_physcomitrella/cgi-bin/efpWeb.cgi 
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(Ortiz-Ramirez et al., 2016). 

TAIR: The Arabidopsis Information Resource. https://www.arabidopsis.org/ 

miRBase: miRNA sequences and annotation archives. http://microrna.Sanger.ac.uk/  

 

2.24.2  Softwares  

CLC main workbench: DNA, RNA, and protein sequence data analysis (Qiagen, Germany). 

Quantity one 4.6.5: image analysis and quantification (Bio-Rad, USA) 

ExPASy translate tool: translation of nucleotide sequences into amino acid sequences. 

Pfam: protein domains prediction. https://pfam.xfam.org/ 

ExPASy–PROSITE: protein domains prediction. https://prosite.expasy.org/  

Primer-BLAST: primer design for qRT-PCR. https://www.ncbi.nlm.nih.gov/tools/primer-blast/) 

Primer3 (v. 0.4.0): primer design for PCR. http://bioinfo.ut.ee/primer3-0.4.0/ 

Image J: image processing (National Institutes of Health and the Laboratory for Optical and 

Computational Instrumentation of the University of Wisconsin, USA). 

MEGA X: phylogenetic tree generation (Pennsylvania State University, USA). 

 

 

 

 

 

 

 

 

 

https://www.arabidopsis.org/
https://pfam.xfam.org/
file://///AG-FRANK-SERVER/Physco-staff/Staff/Hossein-Beheshti/GRAS%20project/GRAS%20paper/Thesis/New%20folder/ExPASy–PROSITE:%20protein%20domains%20prediction.%20https:/prosite.expasy.org/
file://///AG-FRANK-SERVER/Physco-staff/Staff/Hossein-Beheshti/GRAS%20project/GRAS%20paper/Thesis/New%20folder/ExPASy–PROSITE:%20protein%20domains%20prediction.%20https:/prosite.expasy.org/
http://bioinfo.ut.ee/primer3-0.4.0/
https://en.wikipedia.org/wiki/National_Institutes_of_Health


50 

 

3 CHAPTER 3: RESULTS 

 

3.1 Phenotypical and functional analysis of PpGRAS7 mutants 

3.1.1 PpGRAS7 is not related to the 9 recognized GRAS subfamilies in A. thaliana 

Harboring the GRAS domain categorized PpGRAS7 as a member of the GRAS family (Fig. 6) 

that are known to act as transcription factors in the nucleus (Di Laurenzio et al., 1996; Heo et al., 

2011; Yoshida et al., 2014).  

 

 

Fig. 6. PpGRAS7 contains the GRAS domain. GRAS domain and GRAS domain motifs prediction were carried out using 

EXPASY-PROSITE (https://prosite.expasy.org/).  

 

To analyze the similarity of PpGRAS7 to other GRAS subfamily members, a phylogenetic tree 

including PpGRAS7 and all 32 members of the A. thaliana GRAS subfamily was generated. 

AtSCL26 (AB007647) has been annotated as a pseudogene and was not included in the 

phylogenetic analysis. The phylogenetic analysis indicates that although PpGRAS7 contains the 

GRAS domain, it does not cluster with any of nine previously described GRAS subfamilies in A. 

thaliana (Fig. 7) (Zhang et al., 2019). 

 

file:///L:/Final%20thesis/(https:/prosite.expasy.org/)
file:///L:/Final%20thesis/(https:/prosite.expasy.org/)
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Fig. 7. Phylogenetic analysis of PpGRAS7. The phylogenetic tree includes PpGRAS7 and all 32 GRAS members of A. thaliana. 

Full-length protein was applied for the generation of a phylogenetic tree. Bootstrap values (based on 100 iterations) are shown for 

corresponding nodes. The scale bar is an indicator of the evolutionary distance in substitutions per site.  

DELLA: Aspartic acid (D), Glutamic acid (E), Leucine (L), Leucine (L) and Alanine (A). SCR: SCARECROW. DLT: DWARF 

AND LOW-TILLERING. SCL3: SCARECROW-LIKE 3. SCL4/7: SCARECROW-LIKE4/7. LAS: LATERAL SUPPRESSOR. 

LISCL: SCL from Lilium longiflorum L. SHR: SHORT ROOT. PAT1: PHYTOCHROME A SIGNAL TRANSDUCTION 1. 

HAM: HAIRY MERISTEM. 
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3.1.2 Loss of the nuclear-localized PpGRAS7 protein results in a mild phenotypic 

deviation 

The aptitude of PpGRAS7 to act as a transcription factor was tasted via the subcellular 

localization. Using the transient expression of a C-terminal PpGRAS7::citrine protein fusion in P. 

patens protoplasts, a nuclear localization pattern for PpGRAS7 was observed by laser scanning 

confocal microscopy. The citrine fluorescence signals in the transformed protoplasts overlapped 

with nuclei stained by 4′,6-diamidino-2-phenylindole (DAPI) (Fig. 8a). This finding is compatible 

with the previous allegation of putative transcription factor activity of GRAS family members 

acting in the nucleus (Di Laurenzio et al., 1996; Heo et al., 2011; Yoshida et al., 2014).  

Since functional studies on GRAS proteins in early land plants are lacking, the characterization 

of PpGRAS7 was initiated by the generation of targeted knockout lines via homologous 

recombination in P. patens (ΔPpGRAS7 lines were generated by Dr. M. Asif Arif, LMU biocenter, 

Germany). For this, a neomycin phosphotransferase II (nptII) selection marker cassette was 

inserted into a defined region of the PpGRAS7 genomic sequence (Fig. 8b). The resulting knockout 

construct contained regions of 586 bp (5´) and 630 bp (3´) flanking the nptII cassette. This construct 

was used for the transfection of P. patens protoplasts in order to replace a part of the endogenous 

PpGRAS7 locus via homologous recombination. After the selection of regenerating protoplasts on 

the geneticin-containing medium, a PCR-based screening was performed to identify transgenic 

lines that have integrated the DNA knockout construct within the PpGRAS7 locus. Primers were 

designed to amplify a genomic region from 107 bp upstream and 175 bp downstream of the 

expected integration site of the knockout construct. Lines harboring the knockout construct within 

the PpGRAS7 locus produced a PCR fragment with a size of 1.790 bp, while the wild type (WT) 

produced a shorter fragment of 282 bp due to the lack of the nptII cassette (1.508 bp) (Fig. 8c). The 

precise integration of the knockout construct into the genome was confirmed for two independent 

lines by 5´ (black primers, Fig. 8b) and 3´ (red primers, Fig. 8b) integration PCR (Fig. 8c). 

Furthermore, the lack of PpGRAS7 transcript in these mutants was confirmed by RT-PCR 

indicating that both transgenic lines were null mutants (ΔPpGRAS7) (Fig. 8d). To monitor whether 

the deletion of ΔPpGRAS7 causes any phenotypic deviations phenotypic analysis was performed 

with protonema tissues of WT and the two ΔPpGRAS7 lines, which were spotted with equal 

densities onto standard growth medium. In the primary phase of growth including protonema and 
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budding stage, no distinct differences were observed in ∆PpGRAS7 lines compared to the WT. 

However, both ΔPpGRAS7 lines developed shorter gametophores as compared to the WT (Fig. 8e 

and f).  

  

 

Fig. 8. Functional characterization of the PpGRAS7 gene. (a) Subcellular localization of the PpGRAS7::citrine protein fusion in 

P. patens protoplast. Pictures were taken 3 days after transfection of the PpGRAS7::citrine fusion into P. patens protoplasts. DAPI: 

DAPI signal. Citrine: citrine signal. Chl: chlorophyll auto-fluorescence. Merge: merged images of citrine and chlorophyll auto-

fluorescence. (b) Scheme depicting the targeted knockout approach of the PpGRAS7 coding sequence. The yellow box indicates the 

nptII selection cassette that was used to replace a fragment within the coding sequence, whereas black (black lines indicate introns 

and black boxes show exons) and red boxes specify flanking regions that were used for the gene targeting. White, yellow, black, 

and red arrows show the primer pairs sequentially applied for PCR-based analyses of the generated knockout mutants. (c) Three 

panels showing amplified PCR products using genomic DNA from the indicated lines as a template. Upper panel: screening of lines 

using yellow (KO-screen-F and KO-screen-R) primers; note that the two knockout mutants produce a larger PCR product due to 

the insertion of the knockout construct. Second panel: confirmation of 5´ integration of the knockout constructs using black (KO-

5íntg-F and KO-5íntg-R) primers. Third panel: confirmation of 3´ integration of the construct using red (KO-3íntg-F and KO-3íntg-

R) primers. (d) RT-PCR from cDNA derived from the indicated lines using PpGRAS7-specific primers (KO-RT-F and KO-RT-R); 

note that the two ΔPpGRAS7 mutant lines are null mutants lacking the PpGRAS7 transcript; RT-PCRs performed with primers for 

the constitutively expressed gene PpEf1α served as a control to monitor successful cDNA synthesis. (e) Phenotypic analyses of 

knockout lines. Initially, a single gametophore of plant material from the indicated lines was transferred onto standard growth 

medium and pictures were taken after 45 days of growth under standard growth conditions. scale bars: 1 cm. (f) Comparison of the 

gametophore length in the WT and two independent ∆PpGRAS7 lines. Gametophore length was measured from colonies grown for 

45 days under standard growth conditions; error bars represent standard errors (n = 30). 
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3.1.3 PpGRAS7 overexpression leads to chlorosis 

Since the ∆PpGRAS7 lines did not show considerable phenotypic deviations I aimed to gain 

further insights into the function of PpGRAS7 by overexpressing a miRNA-resistant PpGRAS7 

version, which was previously generated by Strotbek (2015). For the generation of the miRNA-

resistant PpGRAS7 version, the PpGRAS7 cDNA was amplified and six silent mutations introduced 

within the miR171 binding site to inhibit miR171-mediated cleavage without affecting the encoded 

amino acid sequence (Strotbek, 2015) (Appendix 2). The modified PpGRAS7 coding sequence was 

cloned into the Gateway pENTR/D-TOPO vector. The fragment orientation was checked by 

sequencing and the pENTR/D-TOPO vector was cloned into the PpGX8 destination vector (Kubo 

et al., 2013). This construct was used for the transfection of P. patens protoplasts. After the 

selection of regenerating protoplasts on hygromycin-containing medium, a PCR-based screening 

was performed to identify transgenic lines. The PCR-based screen (Fig. 9) led to the identification 

of two independent PpGRAS7 overexpression lines (PpGRAS7-iOE).  

 

 

Fig. 9. Genotyping of the PpGRAS7-iOE lines. (a) Screening of the PpGRAS7-iOE lines using OE-screen-F and OE-screen-R 

primers. Positive lines show amplified PCR products using genomic DNA from the indicated lines as a template. (b) Scheme 

depicting the PCR screen strategy for the PpGRAS7-iOE lines. The OE-screen-F primer binds within the promotor region of PpGX8 

vector; 70 bp upstream of the PpGRAS7 start codon, while the OE-screen-R is located within the PpGRAS7 coding sequence. Prom: 

PpGX8 promotor. 

 

To verify the inducible expression of PpGRAS7, protonema tissues from both independent 

PpGRAS7-iOE lines were treated for 4 h with the inducer (2 µM ß-estradiol was used as a general 

inducer for the PpGRAS7-iOE lines in all experiments). Whereas the untreated PpGRAS7-iOE lines 

had similar PpGRAS7 transcript levels as the WT control, a strong induction of the PpGRAS7 

transgene in both PpGRAS7-iOE lines was detected by RNA gel blot and qRT-PCR analysis (Fig. 

10a and b). Next, the impact of elevated PpGRAS7 transcript levels on the growth and development 

in both PpGRAS7-iOE lines was analyzed. I did not observe any phenotypic differences between 
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WT and both PpGRAS7-iOE lines on standard growth medium. Moreover, the growth of the WT 

plants on the inducer-containing medium was indistinguishable from its growth on standard growth 

medium. Interestingly, I observed a remarkable and distinct growth arrests of both PpGRAS7-iOE 

lines when protonema tissue was transferred to solid medium supplemented with the inducer (Fig. 

10c). Within 2 weeks, I noticed not only a very strong gradual growth arrest in the PpGRAS7-iOE 

lines, but also paling and browning of usually green tissues. The growth arrests appeared to be 

irreversible since protonema tissue that was kept for 2 weeks under inducing conditions and was 

subsequently released onto standard medium without inducer remained pale and failed to recover 

into green protonema tissues (Fig. 10c). I also analyzed the growth behavior of both PpGRAS7-

iOE lines upon growth in the liquid medium. For this, protonema tissues from the WT and both 

PpGRAS7-iOE lines were transferred into the liquid medium supplemented with the inducer and 

growth of the cultures was monitored by the determination of the dry weight every 2 days. Already 

2 days after ß-estradiol induction, I observed a strong decrease in the growth rate of both PpGRAS7-

iOE lines reaching finally a brown color and growth arrest after 8 days of the induction (Fig. 10d). 

WT lines did not show any alterations of the phenotype under inducible conditions. Further, I also 

examined the effect of PpGRAS7 induction at later growth stages with colonies that were grown 

on solid medium and developed leafy gametophores. For this, 2 µM ß-estradiol was directly applied 

onto the colonies of both PpGRAS7-iOE lines and the WT control. To monitor PpGRAS7 induction 

during the experiment, gametophores from both lines were harvested immediately before the 

inducer treatment and 2, 4, and 8 days after the induction. PpGRAS7 expression analysis by qRT-

PCR revealed an approximately 650-fold induction of the transcript after 2 days of induction. 

PpGRAS7 transcript levels were still about 150-fold upregulated compared to the WT control after 

4 and 8 days (Fig. 11). The elevated levels of the PpGRAS7 transcripts in the gametophores have 

led to severe chlorosis, browning of the tissue and finally the loss of chlorophyll and entire 

degradation of chloroplasts (Fig. 10e). Furthermore, the time-course analysis was performed to 

monitor the effect of permanent growth on the inducer-containing medium, which supported the 

initial observation that elevated PpGRAS7 levels cause chloroplast degradation (Fig. 10f). While 

prolonged treatment with the inducer did not have any visible effect in the WT, strong chlorosis 

appeared already 4 days after induction in both PpGRAS7-iOE lines followed by shrinking of the 
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plastids and further loss of chlorophyll. Chloroplasts disappeared completely in the phylloid cells 

after 45 days (Fig. 10f).  

 

 

Fig. 10. Generation and phenotypic analysis of inducible PpGRAS7 overexpression lines. (a) RNA gel blots from the WT and 

two independent PpGRAS7-iOE lines grown for 4 h in the standard liquid medium (non-induced) or liquid medium supplemented 

with the inducer (induced). The blot was hybridized with a PpGRAS7-specific probe and 25S rRNA (from the EtBR stained gel) 

was used to monitor equal loading. (b) The relative expression level of PpGRAS7. WT and PpGRAS7-iOE lines were induced with 

2 µM ß-estradiol and expression levels of PpGRAS7 in the induced lines and induced WT were monitored after 4 h of induction via 

RT-PCR using PpGRAS7-specific primers. WT levels were set to 1. Error bars indicate mean values ± SE (n = 3). (c) Equal amounts 

of protonema tissues from the WT and both PpGRAS7-iOE lines were spotted on standard growth medium supplemented with the 

inducer. Upper panel: protenema tissues after growth for 14 days on inducing medium. Lower panel: 14 days after growth on 

inducing medium protonema tissue was transferred onto standard growth medium without inducer for 2 weeks. Scale bars: 1 mm. 

(d) Equal amounts of PpGRAS7-iOE and WT lines were grown in standard liquid medium without inducer. Protonema tissues were 

induced and the dry weight of samples was measured every 2 days for a period of 12 days. Error bars indicate mean values ± SE (n 

= 3). (e) Upper panel: chlorosis in the PpGRAS7-iOE lines treated for a period of 7 days with the inducer. Lower panel: the non-

induced WT and PpGRAS7-iOE lines. Scale bars: 1 cm. (f) Defects and the degradation of chloroplasts in the phylloid of induced 

PpGRAS7-iOE lines. Phylloid tissues derived from the untreated WT and PpGRAS7-iOE-1 line as well as treated with the inducer. 

Pictures were taken 4, 8, 12, and 45 days after the induction with the inducer. Scale bars: 1 mm. Based on the phenotype similarity 

in both independently generated PpGRAS7-iOE lines, PpGRAS7-iOE-1 line was used as a representative. 

 



57 

 

 

Fig. 11. Expression analysis of PpGRAS7. The relative expression level of PpGRAS7. Lines were induced with 2 µM ß-estradiol 

and the expression levels of PpGRAS7 in the induced lines and induced WT were monitored after 2, 4, and 8 days of induction via 

qRT-PCR using PpGRAS7-specific primers. 0 days indicates non-induced PpGRAS7-iOE lines. WT levels were set to 1. Error bars 

indicate mean values ± SE (n = 3). 

 

3.1.4  PpGRAS7 overexpression induces metabolic misbalances 

Based on the observed chlorotic phenotype upon elevated PpGRAS7 transcript levels in 

PpGRAS-iOE lines, I expected changes in the chloroplast ultrastructure. To obtain insights into 

putative ultrastructural changes of the chloroplast, in cooperation with Dr. Andreas Klingl (LMU 

biocenter, Germany), we performed transmission electron microscopy (TEM) of phylloid tissues 

derived from the WT and PpGRAS7-iOE-1 line that were treated for 8 days with the inducer and 

untreated samples. Strikingly, in response to elevated PpGRAS7 transcript levels, a noticeable 

starch accumulation was observed in the PpGRAS7-iOE-1 line when compared to the WT (Fig. 

12a). The accumulation of starch was confirmed by starch measurement in the PpGRAS7-iOE-1 

line after 2, 4, and 8 days of induction with the inducer. Compared to the WT and non-induced 

PpGRAS7-iOE-1 controls I detected an up to 5.5-fold starch accumulation at 8 days of induction 

in transformants (Fig. 12b). While in the WT and the non-induced PpGRAS7-iOE-1 line starch 

levels decreased during the night period, there were no marked differences in the amount of starch 

at the end of the day and end of the night in the induced PpGRAS7-iOE-1 line at the analyzed time 

points (2, 4, and 8 days). This indicates that induction of PpGRAS7-iOE-1 line leads to an inhibition 

of starch degradation, rather than a stimulation of starch synthesis.  
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Transient starch breakdown is dependent on glucan phosphorylation mediated by the enzymes 

GLUCAN WATER DIKINASE (GWD) and PHOSPHOGLUCAN WATER DIKINASE (PWD), 

while STARCH EXCESS 4 (SEX4), a glucan phosphatase dephosphorylates starch-bound 

phosphate (Streb et al., 2012). The further steps involved in starch degradation involve plastidic β-

AMYLASES (BAMs), ISOAMYLASE 3 (ISA3), and disproportionating enzyme 1, D-enzyme 

(DPE1), while the maltose transporter MALTOSE EXCESS 1 (MEX1) is responsible for the export 

of maltose from the chloroplast into the cytosol (Critchley et al., 2001; Delatte et al., 2006). To 

investigate whether miss-regulation of these steps is involved in the inhibition of starch degradation 

I studied the impact of elevated PpGRAS7 transcript levels on the expression of P. patens homologs 

encoding these proteins in the PpGRAS7-iOE lines. P. patens homologs of GWD, PWD, BAM, 

SEX4, MEX1, DPE1, and ISA genes were identified using a BLAST search of AtGWD, AtPWD, 

AtBAM, AtSEX4, AtMEX1, AtDPE1, and AtISA protein sequences against the P. patens database 

(http://www.cosmoss.org) (Appendix 4). The best BLAST hits were considered as candidate 

homologs, which were subsequently confirmed by reciprocal BLAST against the A. thaliana 

database (https://www.arabidopsis.org/). Based on the protein sequence homology in P. patens I 

found four genes similar to AtBAM3 (named PpBAM3a, PpBAM3b, PpBAM3c and, PpBAM3d) 

and two genes similar to AtGWD, AtPWD, AtSEX4, AtMEX1, and AtDPE1 (named PpGWD1a, 

PpGWD1b, PpPWD1a, PpPWD1b, PpSEX4a, PpSEX4b, PpMEX1a, PpMEX1b, PpDPE1a, and 

PpDPE1b), which were selected for expression analysis (Appendix 4). A 2.5-fold increase in 

PpGWDa transcript levels was observed in both PpGRAS7-iOE lines, whereas PpGWDb, 

PpPWDa, and PpPWDb remained unchanged compared to the WT (Fig. 12c). Analysis of the 

expression of PpBAM3a and PpBAM3d showed 2-fold downregulation compared to the WT (Fig. 

12c). A decreased expression of PpBAM3 may explain the accumulation of starch in the PpGRAS7-

iOE lines, while the upregulation of PpGWDa could indicate a compensatory effort of the plant to 

lower the excess of starch. PpDPE1a and PpDPE1b transcript levels were about two and four-fold 

upregulated compared to the WT, respectively (Fig. 12c). Besides, the expression of PpMEX1a, 

PpISA3, and PpSEX4b was increased in the induced PpGRAS7-iOE lines compared to the WT (Fig. 

12c). 

 

http://www.cosmoss.org/
https://www.arabidopsis.org/
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The triose phosphate translocator (TPT) is responsible for the stromal triose-phosphates (triose-

P) counter exchange. Based on the protein sequence homology I found two triose phosphate 

translocator (TPT) genes in P. patens homologs to A. thaliana TPT gene, namely TPTa and TPTb. 

To monitor the expression of TPT in the PpGRAS7-iOE lines, pure protonema from the PpGRAS7-

iOE-1 line as well as WT was induced with the inducer for 2, 4, and 8 days. No significant 

differences compared to the WT were observed for PpTPTb, while a drastic downregulation was 

detected for the PpTPTa in the PpGRAS7-iOE-1 line especially at the end of the day after 2, 4, and 

8 days (Fig. 12d). Besides, no significant differences compared to the WT were observed for TPTa 

at the end of the night after 2 and 4 days, while the downregulation of the TPTa was noticed at the 

end of the night after 8 days. As the TPT is light-triggered, the downregulation of the TPTa at the 

end of the day in the PpGRAS7-iOE-1 line may explain the starch accumulation in the PpGRAS7-

iOE lines. The analysis of maltose content revealed an increase of maltose in the PpGRAS7-iOE-1 

line after 8 days of induction (Fig. 12e). I also detected elevated levels of sucrose in the PpGRAS7-

iOE-1 line after 8 days of induction (Fig. 12f). Increasing the amount of maltose, sucrose, and 

starch, in response to an elevated level of PpGRAS7 indicates an unbalanced sugar and starch 

metabolism in induced transformants. 
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Fig. 12. Metabolic analysis of the PpGRAS7-iOE lines. (a) TEM analysis of PpGRAS7-iOE-1 (PpGRAS7-iOE line #1). Phylloid 

tissues that were treated for 8 days with the inducer. Arrows point to starch granules. Scale bars correspond to 1 µM and 500 nm 

for the WT and PpGRAS7-iOE-1 line, respectively. Based on the phenotype similarity in both independently generated PpGRAS7-

iOE lines, PpGRAS7-iOE-1 line was used as a representative. (b) Quantification of the starch content in the WT and PpGRAS7-

iOE-1 line as mg per gram fresh weight. PpGRAS7-iOE-1 line and the WT were grown in standard liquid medium for 2 weeks. 

Protonema tissues were induced and the starch content was measured after 2, 4, and 8 days. (+) indicates induced and (–) non-
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induced. Error bars indicate mean values ± SE (n = 3). (c) The relative expression level of genes for starch biosynthetic or catabolic 

enzymes (PpGWD, PpPWD, PpBAM, PpSEX4, PpMEX1, and PpDPE1) in the WT and PpGRAS7-iOE lines after 4 h of induction. 

Relative expression levels were normalized to PpEf1a and transcript levels in the WT were set to 1. Error bars indicate mean values 

± SE (n = 3 ). (d) The relative expression level of the PpTpTa gene in the WT and PpGRAS7-iOE-1 line after 2, 4, and 8 days of 

induction. Relative expression levels were normalized to PpEf1a and transcription levels in the WT were set to 1. (e) Quantification 

of maltose content. The pure protonema from the PpGRAS7-iOE-1 line and WT were induced with 2 µM ß-estradiol and the maltose 

content was measured after 8 days. Error bars indicate mean values ± SE (n = 3). (f) Quantification of sucrose content. The pure 

protonema from PpGRAS7-iOE-1 line and the WT were induced with 2 µM ß-estradiol and the sucrose content was measured after 

8 days. Error bars indicate mean values ± SE (n = 3). 

 

3.1.5 Light triggers cell chlorosis in the PpGRAS7-iOE lines. 

 Based on the observed chlorotic phenotypes in the induced PpGRAS7-iOE lines, I investigated 

the effect of different light regimes on the PpGRAS7-iOE lines phenotype. Protonema tissue from 

the WT and PpGRAS7-iOE-1 line was grown on standard medium with 2 µM ß-estradiol and 

exposed for 2 weeks to continuous light (80 µE) and different day length regimes (16 h light with 

80 µE /8 h dark and 8 h light with 40 µE /16 h dark). Continuous light noticeably increased the 

severity of the phenotype in the PpGRAS7-iOE-1 line (Fig.13a). I further observed a milder 

phenotypic deviation in the plants, which were exposed to the long night period (16 h dark) and 

the reduced light intensity (Fig. 13a). Generally, under stress-induced conditions levels of reactive 

oxygen species (ROS) are elevated and a light-induced accumulation of ROS could account for the 

observed phenotype. To monitor elevated ROS levels, I used the nitrotetrazolium blue chloride 

(NBT) and 3,3´-diaminobenzidine (DAB) in the PpGRAS7-iOE-1 line as well as the WT to detect 

O2
- and H2O2 oxidative species, respectively, after 8 h of induction with the inducer. DAB is 

oxidized by H2O in the presence of peroxidases and forms reddish brown precipitates, while NBT 

reacts with O2
- and produces a dark blue compound. I did not detect any brown staining in the 

PpGRAS7-iOE-1 line indicating an elevated level of PpGRAS7 does not affect the H2O2 level. 

While I did not detect blue staining in the WT and the non-induced PpGRAS7-iOE-1 line, I 

observed dark-blue staining in the tissue of the induced PpGRAS7-iOE-1 line indicting elevated 

O2
- levels (Fig. 13b). 
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Previous studies in A. thaliana showed that autophagy and senescence are two established 

cellular pathways that are involved in the degradation of chloroplast proteins (Martinez et al., 2008; 

Liu & Bassham, 2012). To address whether the activation of these pathways may underlie the 

observed changes in the chloroplast morphology and subsequent chloroplast degradation, I 

analyzed the expression of previously identified senescence-associated marker genes, PpSAG12, 

PpSAG13, PpSAG18, and PpSIN1 (Mukae et al., 2015) in the PpGRAS7-iOE lines after the inducer 

treatment (Mukae et al., 2015). Protonema tissues of the PpGRAS7-iOE lines were induced with 

the inducer for a period of 4 h and the expression of selected senescence-associated marker genes 

were analyzed by qRT-PCR. Transcript levels of PpSAG13, PpSAG18, and PpSIN1 were 

significantly increased in both PpGRAS7-iOE lines (Fig. 13c), whereas transcript levels of 

PpSAG12 remained unaffected. Degradation and partial disruption of the plastid membrane of the 

induced PpGRAS7-iOE-1 line (Fig. 12a) may indicate the involvement of an autophagy-related 

process. Expression analysis of the reported P. patens autophagy marker genes PpATG5 and 

PpATG7 (Mukae et al., 2015) during induction indicated significant upregulation of PpATG5 in 

both PpGRAS7-iOE lines compared to the WT (Fig. 13d). The upregulation of the PpATG5 gene 

might explain the degradation and partial disruption of plastids in the PpGRAS7-iOE lines upon 

the induction. 
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Fig. 13. Light increases the severity of phenotype. (a) Intensity and duration of light enhance the chlorotic phenotype severity. 

Protonema cultures from the WT and PpGRAS7-iOE-1 line were grown in the inducing liquid medium and exposed for 2 weeks to 

continuous light (80 µE) or different day length regimes (16 h light (80 µE) /8 h dark and 8 h light (40 µE) /16 h dark). (b) ROS 

detection by NBT staining in protonema tissue from the WT and PpGRAS7-iOE-1 line after 8 h growth in normal (non-induced) or 

inducing medium (induced). Scale bar: 1 mm. (c) The relative expression level of senescence-related genes in the WT and 

PpGRAS7-iOE lines after 4 h of induction. Relative expressions were normalized to PpEf1a and transcription rates in the WT levels 

were set to 1. Error bars indicate mean values ± SE (n = 3). (d) The relative expression level of autophagy-related genes in the WT 

and PpGRAS7-iOE lines after 4 h of induction with the inducer. Relative expressions were normalized to PpEf1a and transcription 

rates in the WT were set to 1. Error bars indicate mean values ± SE (n = 3).  
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3.1.6 PpGRAS7 overexpression lines display impaired photosynthesis 

The inducer-dependent growth arrest and chlorosis led us to investigate the expression of a 

subset of genes involved in photosynthesis, cell growth, cell division, and stress response 

(Appendix 5). P. patens homologs of genes were identified using a BLAST search of A. thaliana 

proteins that have been associated with these processes as queries (Appendix 5) against the P. 

patens database (http://www.cosmoss.org). The best BLAST hits were considered as candidate 

homologs, which were subsequently confirmed by reciprocal BLAST against the A. thaliana 

database (https://www.arabidopsis.org/). Four-week-old PpGRAS7-iOE lines and WT were grown 

on solid medium with 2 µM ß-estradiol for 24 h and the expression of a set of candidate genes was 

analyzed by qRT-PCR. Sixty genes (Appendix 6: genes with a red plus) were analyzed and nineteen 

genes were found to be differentially regulated as compared to the WT (Fig. 14a). The chlorotic 

phenotype of the induced PpGRAS7-iOE lines might be linked to a stress response since three 

transcripts encoding a heat shock 70 protein (PpHsp70), a heat shock factor 3 (PpHsf3) and a 9-

cis-epoxycarotenoid dioxygenase (PpNCED) were upregulated. A group of genes encoding 

protochlorophyllide oxidoreductase (PpPORAa, PpPORAb), subunits of photosystem I (PSI) 

(PpPsaA, PpPsaB, PpPsaC) and II (PSII) (PpPsbA, PpPsbD, PpPsbM) and the light-harvesting 

chlorophyll a/b binding proteins (PpLHCB2) showed at least two-fold downregulation in response 

to an elevated PpGRAS7 gene expression presumably contributing to the chlorosis and chloroplast 

damage. Furthermore, I found a reduction in the expression of a group of genes involved in cell 

growth and development including CLAVATA1 (PpCLV1), PpTIP2;2, AGAMOUS protein like-1 

(PpAGL1) and CYCLIN-D1 (PpCYCD1). CYCD1 is involved in the control of the cell cycle and 

cell division and its strong downregulation may extensively affect cell growth and growth arrest 

during induction (Fig. 10c, upper panel). 

Based on the chlorotic phenotype and the altered gene expression of photosynthesis-related 

genes, I presumed that photosynthesis could be affected. In cooperation with Dr. Pablo Pulido 

(LMU biocentre, Germany), the accumulation of several proteins, which are involved in 

photosynthesis was analyzed in the ∆PpGRAS7-1 line, PpGRAS7-iOE-1 line, and WT in a kinetic 

experiment (0 (non-induced), 2, 4, and 8 days) after the application of 2 µM of ß-estradiol (Fig. 

14b). Thylakoid membrane proteins and soluble plastid proteins including LHCA, LHCB, PsaL, 

PsbQ, PsbD, Cytb6, and Cytf showed significantly reduced levels in PpGRAS7-iOE-1 line in 

http://www.cosmoss.org/
https://www.arabidopsis.org/
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response to PpGRAS7 overexpression, while expression levels of LHCA, LHCB, PsaL, PsbQ, 

PsbD, Cytb6, and Cytf were indistinguishable from the WT. Furthermore, a decrease of RbcL in 

response to the upregulation of PpGRAS7 was detected in PpGRAS7-iOE-1 line. The detected 

changes in the abundance of proteins that represent crucial components of the main photosynthetic 

complexes prompted us to measure photosynthetic parameters in the PpGRAS7-iOE lines together 

with WT control. Pulse amplitude modulation (PAM) chlorophyll fluorescence parameters of the 

WT and PpGRAS7-iOE lines were analyzed (in cooperation with Dr. Pablo Pulido and Dr. Jörg 

Meurer, LMU biocenter, Germany) in a kinetic experiment (0 (non-induced), 2, 4, and 8 days) in 

the presence of 2 µM of ß-estradiol as well as the non-induced WT and PpGRAS7-iOE-1 line. The 

maximum quantum yield of PSII (Fv/Fm) was comparable in the PpGRAS7-iOE-1 line and WT in 

the absence of the inducer. However, Fv/Fm gradually decreased in the PpGRAS7-iOE-1 line as 

compared to the WT within 8 days of induction (Fig. 14c and d). An even more pronounced kinetic 

reduction was detected for the effective quantum yield of PSII in the PpGRAS7-iOE-l line (Fig. 

14e). In addition, PSI parameters of the PpGRAS7-iOE-1 line revealed that the donor side of PSI 

is limited but not the acceptor side, which indicates that the electron transport towards the PSI is 

rate-limiting due to the deficiency of PSII and/or the intersystemic electron transport chain (Fig. 

14f).  
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Fig. 14. Expression analysis of plastid proteins and photosynthetic measurements in the ΔPpGRAS7 and PpGRAS7-iOE 

lines. (a) Expression of genes in response to PpGRAS7 upregulation. Plants were grown on standard solid growth medium for 4 

weeks, induced for 24 h and RNA from gametophore tissue was used for qRT-PCR. Error bars indicate mean values ± SE (n = 2). 

(b) Plastid proteins were analyzed from samples harvested at the indicated time points (0 (untreated), and 2, 4, and 8 days after 

induction with 2 µM of ß-estradiol). Representative images of immunoblots with the indicated antibodies are shown. Equal amounts 

of total proteins from the WT, PpGRAS7 mutant (∆PpGRAS7), and PpGRAS7-iOE-1 lines were examined. αATC was used as a 

control. (c) Chlorophyll fluorescence images of the PpGRAS7-iOE lines examined at the indicated time points after the application 

of 2 µM of ß-estradiol. The color scale indicates the photosynthetic parameter Fv/Fm signal intensities. (d) Quantification of Fv/Fm 

values from panel c. Error bars indicate mean values ± SE (n = 3). (e) The effective quantum yield of PSII (Y (II)) at the indicated 

time points after the application of 2 µM of ß-estradiol (f). PSI absorbance measurements. Error bars indicate mean values ± SE (n 

= 3). 

 

3.1.7 PpGRAS7 overexpression affects pigment accumulation 

Based on the observed chlorotic phenotype in the PpGRAS7-iOE lines, I assumed an alteration 

in pigments. To quantify chlorosis, pigment analysis was carried out in cooperation with Dr. Martin 

Lehmann (LMU biocenter, Germany). Chlorophyll extraction was carried out 8 days after the 

induction of gametophores from the PpGRAS7-iOE lines and WT with 2 µM ß-estradiol. Total 
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chlorophyll analyses revealed a lower chlorophyll a to chlorophyll b ratio upon PpGRAS7 

overexpression (Fig. 15a). The reduction of photosystem II efficiency is associated with a reduced 

content of chlorophylls, carotenoids and a lower chlorophyll a to chlorophyll b ratio. PpGRAS7-

iOE-1 line as well as WT were grown in the standard liquid medium and 2 µM of ß-estradiol was 

applied for 2, 4, and 8 days. Several pigment compounds showed a differential pattern in the 

induced transgenic lines when compared to the induced WT controls. The compounds can be 

divided into three distinct subclasses: pigments, which are precursors of carotenoid biosynthesis, 

compounds produced upon the chlorophyll degradation, and compounds, which are involved in 

porphyrin and chlorophyll metabolism. A gradual reduction of carotenoid derivative 1 (4-

Ketomyxol), carotenoid derivative 2 (adonixanthin), carotenoid derivative 3 (capsanthin), and 

carotenoid derivative 4 (zeinoxanthin) that reached the maximum 8 days after ß-estradiol-mediated 

transgene induction was observed in the PpGRAS7-iOE-1 line (Fig. 15b). The chlorophyll 

degradation product dioxobilin-type non-fluorescent chlorophyll catabolite-618 (DNCC-618) 

showed an up to the 9-fold increase in the PpGRAS7-iOE-1 line 8 days after induction (Fig. 15c). 

In contrast, the pheophytin a level gradually decreased and was hardly detectable in the PpGRAS7-

iOE-1 line after 8 days of induction (Fig. 15c). Compounds of the chlorophyll biosynthetic pathway 

including protoporphyrin IX, protochlorophyllide a and hydroxychlorophyll a also showed a 

marked reduction in the PpGRAS7-iOE-1 line at all time points that might explain the reduction of 

total chlorophyll (Fig. 15d). 

 

 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/photosystem-ii
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/chlorophyll
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/carotenoids
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Fig. 15. Pigment analysis in response to transgene induction in the PpGRAS7-iOE-1 line. (a) The chlorophyll content was 

analyzed from protonema tissues grown in the standard liquid medium after 8 days of induction. Error bars indicate mean values ± 

SE (n = 3). (b) Pigments and intermediate products of carotenoid biosynthesis. Pigments were extracted from 6 biological replicates 

and analyzed. Carotenoid derivative 1: 4-Ketomyxol. Carotenoid derivative 2: Adonixanthin. Carotenoid derivative 3: Capsanthin. 

Carotenoid derivative 4: Zeinoxanthin. Error bars indicate mean values ± SE (n = 6). (c) Pigments produced during chlorophyll 

degradation. Pigments were extracted from 6 biological replicates and analyzed. Error bars indicate mean values ± SE (n = 6). (d) 

Specific products and intermediates of the porphyrin metabolism. Pigments produced during chlorophyll degradation. Pigments 

were extracted from 6 biological replicates and analyzed. Error bars indicate mean values ± SE (n = 6). Intensity/ISIFW: The 

intensity of detected signals/ intensity of the internal control/fresh weight. Note: Pigments were extracted from protonema tissues 

grown in the standard liquid medium 0, 2, 4, and 8 days after the induction. All-time points were compared with non-induced (time 

0) and the WT. WT levels were set to 1. 
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3.2 Phenotypical and functional analysis of PpGRAS12 mutants 

  

3.2.1 The knockout of nuclear-localized PpGRAS12 causes defects in sporophyte 

production  

The plant-specific GRAS genes are a family of transcription factors with a key role in plant 

growth and development. Harboring the GRAS domain categorized PpGRAS12 as a member of 

the GRAS family (Fig. 16).  

 

 

Fig. 16. GRAS domain structure in PpGRAS12. GRAS domain prediction and GRAS domain motifs prediction using EXPASY-

PROSITE (https://prosite.expasy.org/). 

 

The subcellular localization assay was performed to study the capability of PpGRAS12 to act 

as a transcription factor. Using the transient expression of PpGRAS12::citrine protein fusion in P. 

patens protoplasts, a nuclear localization pattern as well as a cytoplasmic accumulation for 

PpGRAS12, was observed by laser scanning confocal microscopy. The citrine fluorescence signals 

in the transformed protoplasts overlapped with nuclei stained by 4′,6-diamidino-2-phenylindole 

(DAPI) (Fig. 17). This observation (nuclear localization) was in agreement with the proposed 

function of GRAS proteins as transcription factors (Di Laurenzio et al., 1996; Gallagher & Benfey, 

2009; Heo et al., 2011; Yoshida et al., 2014). In addition, there are two possible explanations for 

the cytoplasmic accumulation of the PpGRAS12. First, it might be due to the ectopic expression 

file://///AG-FRANK-SERVER/Physco-staff/Hossein-Beheshti/GRAS%20project/GRAS%20paper/GRAS-Paper-edited/final/(https:/prosite.expasy.org/).
file://///AG-FRANK-SERVER/Physco-staff/Hossein-Beheshti/GRAS%20project/GRAS%20paper/GRAS-Paper-edited/final/(https:/prosite.expasy.org/).
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of the PpGRAS12 and the second possibility is that the localization of PpGRAS12 requires a dimer 

partner and possibly because of a limited amount of the dimer partner PpGRAS12 is detectable in 

the cytoplasm. 

 

Fig. 17. Subcellular localization of the PpGRAS12::citrine protein fusion in P. patens protoplast. Pictures were taken 3 days 

after transfection of the PpGRAS12::citrine fusion into P. patens protoplasts. DAPI: DAPI signal. Citrine: citrine signal. Chl: 

chlorophyll auto-fluorescence. Merge: merged images of citrine and chlorophyll auto-fluorescence. 

 

To analyze the function of PpGRAS12, ∆PpGRAS12 targeted knockout lines were previously 

generated by Strotbek (2015). The ∆PpGRAS12 lines were generated by the targeted disruption via 

the insertion of the nptII cassette at the PpGRAS12 locus (Fig. 18a). Using homologous 

recombination, gene targeting was performed and two independent knockout lines were selected 

by 5´and 3´integration PCR (Strotbek, 2015) and loss of the PpGRAS12 transcript confirmed by 

reverse transcriptase PCR (RT-PCR) (Fig. 18b). In the primary phase of growth including 

protonema and budding stage, no distinct differences were observed in the ∆PpGRAS12 lines 

compared to the WT. Mild phenotypic deviations (formation of shorter gametophores compared to 

the WT) were observed in the ΔPpGRAS12 lines at the gametophytic growth stage (Fig. 18c) and 

confirmed by the statistical comparison of the length of gametophore in the WT and two 

independent ΔPpGRAS12 lines (Fig. 18d). Further phenotypic analysis revealed that the absence 

of the PpGRAS12 gene significantly influences the sporophytic stage and consequently fewer 

sporophytes were produced in the knockout lines compared to the WT (Fig. 18e).  
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Fig. 18. Generation and phenotypic analysis of the ΔPpGRAS12 lines. (a) Scheme depicting the targeted knockout approach of 

the PpGRAS12 coding sequence. (b) RT-PCR from cDNA derived from the indicated lines using PpGRAS12-specific primers; note 

that the two ΔPpGRAS12 mutant lines are null mutants lacking the PpGRAS12 transcript; RT-PCRs performed with primers for the 

constitutively expressed gene PpEf1α served as a control to monitor successful cDNA synthesis. (c) Phenotypic analyses of the 

knockout lines. Initially, a single gametophore from the indicated lines was cultured on standard growth medium and pictures were 

taken after 45 days of growth under standard growth conditions. Scale bars: 1 mm. (d) Comparison of the gametophore length in 

the WT and two independent ∆PpGRAS12 lines. Gametophore length was measured from colonies grown for 45 days under standard 

growth conditions; error bars represent standard errors (n = 30). (e) Comparison of the sporophyte numbers in the WT and two 

independent ∆PpGRAS12 lines; error bars represent standard errors (n = 27). 

 

3.2.2 PpGRAS12 overexpression leads to the formation of multiple apical meristems  

I observed a mild phenotypic deviation in the ΔPpGRAS12 lines at the gametophytic growth 

stage (Fig. 18c and d) and prominent phenotypic aberrations at the sporophytic generation (Fig. 
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18e). To analyze the impact on P. patens growth and development upon PpGRAS12 

overexpression, PpGRAS12 inducible overexpression lines (PpGRAS12-iOE lines) were 

previously generated by Strotbek (2015). 

Phenotypic analysis of the PpGRAS12-iOE lines as well as WT was performed by adjusting 

pure protonema cultures to an equal density of 100 mg/l dry weight and 5 µl of the adjusted cultures 

were spotted onto standard solid growth medium supplemented with 2 µM of ß-estradiol or without 

inducer. I did not observe any phenotypic differences between WT and both PpGRAS12-iOE lines 

on standard growth medium without inducer. Highly specific and distinct growth arrests were 

observed in the PpGRAS12-iOE lines upon the induction (Fig. 19a, upper panel). Interestingly, I 

observed that the PpGRAS12-iOE lines were able to recover after release to non-inducing 

conditions (Fig. 19a, lower panel). For the growth behavior analysis of the PpGRAS12-iOE lines 

in the liquid medium, protonema tissues from the WT and both PpGRAS12-iOE lines were 

transferred into the liquid medium supplemented with 2 µM of ß-estradiol and growth of the 

cultures was monitored by the determination of the dry weight every 2 days. I observed a decrease 

in the growth rate of both PpGRAS12-iOE lines compared to the WT 2 days after the induction 

(Fig. 19b). The decrease in the growth rate of both PpGRAS12-iOE lines was followed a downward 

trend until 8 days of growth in the induced medium and then a slight recovery was observed in both 

PpGRAS12-iOE lines (Fig. 19b). However, the growth rate in both PpGRAS12-iOE lines was less 

than the WT after 12 days of growth in the induced medium. The slight increase after 8 days might 

be related to the gradual degradation of the inducer. Additionally, the influence of PpGRAS12 

induction at later growth stages with colonies that were grown on solid medium and developed 

leafy gametophores was investigated. For this, 2 µM of ß-estradiol was directly applied onto the 

colonies of both PpGRAS12-iOE lines as well as WT. Strikingly, atypical enlargement of the stem-

like structures in the vicinity of the gametophore tip cell was observed in both PpGRAS12-iOE 

lines 7 days after the induction (Fig. 19c). Furthermore, I noticed an abnormal enlarged structure 

at the tip cell of both PpGRAS12-iOE lines (Fig. 19c). Further investigation using scanning electron 

microscopy revealed that the abnormal structure, which was formed in response to an elevated 

level of PpGRAS12 at the tip cell zone, is indeed multiple apical meristems (Fig. 19d).  
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Fig. 19. Phenotypic analysis of the PpGRAS12-iOE lines. (a) Equal amounts of protonema tissues from the WT and both 

PpGRAS12-iOE lines were spotted on standard solid growth medium supplemented with 2 µM ß-estradiol. Upper panel: protonema 

tissue after growth for 14 days on the medium supplemented with 2 µM ß-estradiol. Lower panel: 14 days after growth on inducing 

medium protonema tissue was transferred onto standard growth medium without inducer for 2 weeks. Red arrows: green cells. Scale 

bars: 1 mm. (b) PpGRAS12-iOE lines and WT were grown in the standard liquid medium. The pure protonema from the PpGRAS12-

iOE lines and WT were induced with 2 µM of ß-estradiol and dry weight of samples was measured every 2 days for a period of 12 

days. Error bars indicate mean values ± SE (n = 3). (c) Formation of abnormal structures at the tip cell of both PpGRAS12-iOE 

lines. Scale bar: 1 mm for the WT and 0.5 mm for the mutants. (d) SEM analysis of PpGRAS12-iOE lines. Multiple apical meristem 

formation in the PpGRAS12-iOE lines upon the induction with 2 µM of ß-estradiol. Box a: a leafy gametophore that was formed 

from an individual apical meristem. Box b: multiple apical meristems. 
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Moreover, individual apical cells were able to form a leafy gametophore (Fig. 19d and 20a). If 

a new gametophore, which has previously emerged from an individual apical meristem, once more 

was exposed to the inducer, multiple apical meristems were formed over again from the tip cell 

(Fig. 20b). 

 

 

Fig. 20. Multiple gametophore formation from multiple apical meristems in the induced PpGRAS12-iOE lines. (a) Multiple 

gametophores were formed from multiple apical meristems in the PpGRAS12-iOE lines upon the induction. The red box shows the 

development of multiple gametophores from apical meristems in the PpGRAS12-iOE lines. Red arrows indicate a single 

gametophore. Pictures were taken 75 days after the induction; scale bar: 1 mm. (b) Renewal of induction resulted in the formation 

of multiple apical meristems and consequently the formation of multiple gametophores on the top of previous gametophores. The 

red arrow shows multiple gametophores. Pictures were taken, 12 days after the renewal of induction; scale bar: 1 mm. 
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It was assumed that the continuous induction of PpGRAS12 with the inducer results in the 

maintenance of multiple apical meristems, whereas degradation of the inducer leads to the 

formation of new gametophores from multiple meristems. To monitor PpGRAS12 induction during 

the experiment, PpGRAS12-iOE lines were induced with the inducer and gametophores were 

harvested after 4 hours, 3 weeks, and 8 weeks. PpGRAS12 expression analysis by qRT-PCR 

revealed 150-fold induction of the transcript after 4 h of induction (Fig. 21a). Compatible with my 

hypothesis, I observed a decrease of the PpGRAS12 transcript level to WT level after 3 and 8 weeks 

of induction. This finding supports the idea that the continuous induction of PpGRAS12 leads to 

the formation and maintenance of multiple apical meristems in P. patens. In contrast, the gradual 

degradation of ß-estradiol results in reduced level of PpGRAS12 and consequently the development 

of gametophores from multiple apical meristems. A. thaliana CLV1 was previously reported to play 

an important role in maintaining meristem identity and controlling meristem size (Clark et al., 

1993). PpCLV1 (Whitewoods et al., 2018) expression analysis by qRT-PCR showed 

downregulation of both PpCLV1a and PpCLV1b in response to the upregulation of PpGRAS12 

(Fig. 21b). 

 

 

Fig. 21. Expression analysis of PpGRAS12. (a) The relative expression level of PpGRAS12. Lines were induced with 2 µM ß-

estradiol and expression levels of PpGRAS12 in the induced lines and the induced WT, were monitored after 4 h (hours), 3 w 

(weeks), and 8 w (weeks) of induction via qRT-PCR using the PpGRAS12-specific primers (Appendix 6). Relative expressions 

were normalized to PpEf1a and transcript levels in the WT were set to 1. Error bars indicate mean values ± SE (n = 3). (b) The 

relative expression levels of PpCLV1 genes in the WT and PpGRAS12-iOE lines. Plants were grown on standard solid growth 

medium for 4 weeks, induced for 24 h and RNA from gametophore tissue was used for qRT-PCR. Relative expressions were 

normalized to PpEf1a and transcript rates in the WT were set to 1. Error bars indicate mean values ± SE (n = 2). 
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3.2.3 MiR171 regulates PpGRAS12  

Plant miRNAs frequently play a role in defining the spatiotemporal expression of their cognate 

target mRNAs. To study whether miR171 regulates the spatiotemporal expression of PpGRAS12, 

the PpGRAS12::GUS protein fusion reporter lines were generated. To generate the 

PpGRAS12::GUS protein fusion reporter lines, the PpGRAS12 coding sequence harboring a 

mutated miR171 binding site or the native coding sequence (miR171-sensitive) (Appendix 3) was 

fused to the GUS coding sequence and introduced to their cognate genomic locus by means of 

homologous recombination (Fig. 22a). Constructs were detected via PCR screening (purple 

primers) (Fig. 22b). The precise integration of the PpGRAS12::GUS fusion construct into the 

genome was confirmed for two independent lines by 5´ (black primers, Fig. 22b) and 3´ (red 

primers, Fig. 22b) integration PCR (Fig. 22c). Validation of the mPpGRAS12::GUS (miR171-

resistant) was performed for two positive lines by subsequent digestion of RT-PCR products with 

PauI (GCGCGC) that was introduced within the miR171 binding site of the mPpGRAS12::GUS 

fusion construct as silent mutations (Fig. 22d and Appendix 3). 

The natural expression of the PpGRAS12 gene is low and below the histochemical GUS 

staining detection limit. Histochemical GUS staining was performed for both miR171-resistant and 

miR171-sensitive lines. The correspondent blue color, which shows the activity of the GUS and 

consequently the expression of PpGRAS12 gene, was not observed in PpGRAS12::GUS protein 

fusion reporter lines at protenema and gametophore stages. However, the blue color was only 

detected in the archegonia and egg cells of mPpGRAS12::GUS protein fusion reporter lines (Fig. 

23). Expression of GUS in archegonia and egg cell of the miR171-resistant lines indicates that 

miR171 significantly regulates expression of PpGRAS12 in archegonia and egg cells. 

 

 

 

 



77 

 

 

Fig. 22. Generation of the PpGRAS12::GUS protein fusion reporter lines. (a) Scheme representing the generation of the 

PpGRAS12::GUS and mPpGRAS12::GUS fusion reporter constructs. Two variants of GUS fusion reporter constructs 

(PpGRAS12::GUS fusion reporter constructs with the native miR171 binding site and mPpGRAS12::GUS fusion reporter construct 

with the mutated miR171 binding site) were generated and introduced to their cognate genomic locus by means of homologous 

recombination. The red box indicates the PpGRAS12 coding region. The red box with the black border lines indicates 1482 bp from 

the coding sequence including the miR171 binding site (native/mutated), which was fused to GUS coding sequence (yellow box). 

The PpGRAS12 stop codon was removed and the coding sequence fused to the GUS coding sequence. (b) Purple, red, and black 

arrows show the primer pairs sequentially applied for PCR-based analyses of the PpGRAS12::GUS protein fusion reporter lines. 

(c) Upper panel: confirmation of 5´ integration of the constructs using black (Appendix 1) primers. Lower panel: confirmation of 

3´ integration of the construct using red (Appendix 1) primers. (d) Validation of mPpGRAS12::GUS protein fusion reporter lines 

by digestion of RT-PCR products with PauI (GCGCGC) that was introduced within the miR171 binding site of the 

mPpGRAS12::GUS fusion construct as silent mutations. 
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Fig. 23. Histochemical GUS staining of the PpGRAS12::GUS and mPpGRAS12::GUS protein fusion reporter lines. 

Correspondent blue colors were detected only in the archegonia and egg cells of mPpGRAS12::GUS protein fusion reporter lines. 

Red arrows: egg cells. Scale bars 1 mm. 
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3.3 Overexpression of AtRGA1, AtRGL1, AtSCL6-II, AtSCL6-III, and AtSCl6-

IV in P. patens  

 

3.3.1 AtRGA1 and AtRGL1 share the highest protein sequence similarities with 

PpGRAS12 and PpGRAS7 

GRAS protein subfamilies are known to be involved in various processes of plant growth and 

development. As it was shown in chapter 3 (3.1 and 3.2), PpGRAS7 and PpGRAS12 are members 

of the GRAS family; PpGRAS7 is involved in plastid degradation and starch over-accumulation, 

whereas PpGRAS12 plays roles in meristem maintenance. To investigate PpGRAS7 and 

PpGRAS12 homologs in A. thaliana, protein sequence analysis was performed. For this, the full-

length PpGRAS12 and PpGRAS7 protein sequences were achieved from the P. patens database 

(http://www.cosmoss.org), and a BLAST search against the A. thaliana database 

(https://www.arabidopsis.org/) was carried out. Based on the protein sequence similarities, it was 

observed that AtRGA1 shares the highest protein sequence similarity (37%) with PpGRAS12 and 

AtRGL1 shares the highest protein sequence similarity (37%) with PpGRAS7 (Fig. 24a and b). 

AtRGA1 (At2g01570.1) and AtRGL1 (At1g66350.1) are members of the GRAS family (DELLA 

subfamily) and play a critical role in gibberellic acid signal transduction (Rich et al., 2017). To 

gain insights into the function of AtRGA1 and AtRGL1 in P. patens I aimed to perform inducible 

overexpression of these genes in P. patens. To generate AtRGA1 and AtRGAL1 inducible 

overexpression lines, a ß-estradiol inducible gene expression system was used (Kubo et al., 2013). 

Cloning, transformation, and selection were performed in the same way as described for the 

generation of the PpGRAS7-iOE lines (see 3.1.3). Using PCR-based screening, two independent 

AtRGA1 overexpression (AtRGA1-iOE) and two independent AtRGL1 overexpression (AtRGL1-

iOE) lines were identified (Fig. 25a and b) (Appendix 1). AtRGA1-iOE lines were identified using 

the OE-screen2-F primer (forward primer) (Appendix 1), which binds within the promotor region 

of the PpGX8 vector (70 bp upstream of the AtRGA1 start codon) and the OE-screen2-R primer 

(reverse primer) (Appendix 1) that is located within the coding sequence of AtRGA1. The same 

strategy, but using OE-screen3-F primer (Appendix 1) and OE-screen3-R primer (Appendix 1) was 

applied to identify AtRGL1-iOE lines. 

http://www.cosmoss.org/
https://www.arabidopsis.org/
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Fig. 24. Protein sequence and GRAS domain similarities between PpGRAS and AtDELLA subfamilies. (a) AtRGA1 showed 

the highest protein sequence similarity to PpGRAS12. (b) AtRGL1 showed the highest protein sequence similarity to PpGRAS7. 

GRAS domain and GRAS domain motifs prediction were carried out using EXPASY-PROSITE (https://prosite.expasy.org/). 
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To validate the inducible expression of AtRGA1 and AtRGL1, protonema tissues from two 

independent AtRGA1-iOE lines and two independent AtRGL1-iOE lines were treated for 4 h with 

the inducer and the induction of AtRGA1 and AtRGL1 was detected by RNA gel blots (Fig. 25c and 

d). 

 

 

Fig. 25. Screening and confirmation of the AtRGA1-iOE and AtRGL1-iOE lines. (a) Screening of the AtRGA1-iOE lines using 

PGX8-specific (forward primer (OE-screen2-F), Appendix 1) and AtRGA1-specific (reverse primer (OE-screen2-R), Appendix 1) 

primers. Positive lines show amplified PCR products using genomic DNA from the indicated lines as a template. (b) Screening of 

the AtRGL1-iOE lines using PGX8-specific (forward primer (OE-screen3-F), Appendix 1) and AtRGL1-specific (reverse primer 

(OE-screen3-R), Appendix 1) primers. Positive lines show amplified PCR products using genomic DNA from the indicated lines as 

a template. (c) RNA gel blots from the WT and two independent AtRGA1-iOE lines. WT and two independent AtRGA1-iOE lines 

were grown for 4 h in the standard liquid medium (non-induced) or liquid medium supplemented with the inducer (induced). 

Subsequently, RNAs were harvested and used for the gel blot analysis. AtRGA1-specific probes were used for hybridizations. 25S 

rRNA (from the EtBR stained gel) was used to monitor equal loading. (d) RNA gel blots from the WT and two independent AtRGL1-

iOE lines. WT and two independent AtRGL1-iOE lines were grown for 4 h in the standard liquid medium (non-induced) or liquid 

medium supplemented with the inducer (induced). Subsequently, RNAs were harvested and used for the gel blot analysis. AtRGL1-

specific probes were used for hybridizations. 25S rRNA (from the EtBR stained gel) was used to monitor equal loading.  

 

Next, a phenotypic analysis of the AtRGA1-iOE and AtRGL1-iOE lines was performed. For 

this, pure protonema cultures of the AtRGA1-iOE and AtRGL1-iOE lines as well as WT were 

adjusted to an equal density of 100 mg/l dry weight and 5 µl of the adjusted cultures were spotted 

onto standard solid medium supplemented with 2 µM ß-estradiol or without inducer. No 

phenotypic differences were detected between WT and the mutants (two independent AtRGA1-iOE 

lines and two independent AtRGL1-iOE lines) on standard growth medium without inducer. I 
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observed a strict and distinct growth arrest in the AtRGA1-iOE lines at the protonema growth stage 

upon the induction (Fig. 26a). Besides, a strict and highly specific growth arrest was also observed 

in the AtRGL1-iOE lines at the protonema growth stage upon the induction (Fig. 26b). Additionally, 

I studied the influence of AtRGA1 and AtRGL1 induction at the later growth stage. For this, 2 µM 

of ß-estradiol was directly applied onto the colonies of AtRGA1-iOE and AtRGL1-iOE lines as well 

as WT that were grown on solid medium and developed leafy gametophores. The formation of 

multiple apical meristems and consequently the formation of multiple gametophores from multiple 

apical meristems was observed in the induced AtRGA1-iOE lines (Fig. 26c), which was partially 

comparable to the phenotype of the induced PpGRAS12-iOE lines. The slight phenotypic 

difference between the induced AtRGA1-iOE and PpGRAS12-iOE lines is referred to the size and 

number of formed gametophores from multiple apical meristems. It was noticed that less and 

smaller gametophores were formed from multiple apical meristems in the AtRGA1-iOE lines 

compared to the PpGRAS12-iOE lines upon the induction (Fig. 27). Formation of a reduced number 

of gametophores from multiple apical meristems in the AtRGA1-iOE lines compared to the 

PpGRAS12-iOE lines indicates that an elevated level of AtRGA1 leads to the formation of less 

apical meristems in P. patens. Furthermore, chlorosis and browning of the tissues were observed 

in the AtRGL1-iOE lines upon the induction. The chlorotic phenotype in the AtRGL1-iOE lines was 

remarkably identical to the chlorotic phenotype of the PpGRAS7-iOE lines (Fig. 26d and 10e).  

Based on the similarity of the observed chlorotic phenotype in the AtRGL1-iOE and PpGRAS7-

iOE lines, the molecular analyses of AtRGL1-iOE lines were carried out. As it was shown in Fig. 

12a, an elevated level of PpGRAS7 led to a remarkable starch accumulation in P. patens. To 

investigate whether overexpression of AtRGL1 results in over-accumulation of starch in P. patens, 

we performed transmission electron microscopy of phylloid tissues derived the from WT and 

AtRGL1-iOE-1 line, which were treated for 8 days with the inducer. TEM results revealed no starch 

over-accumulation in the induced AtRGL1-iOE-1 line and the WT as compared the induced 

PpGRAS7-iOE-1 line (Fig. 28a). This finding indicates, unlike PpGRAS7 overexpression, an 

elevated level of AtRGL1 does not lead to the starch over-accumulation in P. patens. 



83 

 

 

Fig. 26. Phenotypic analysis of the AtRGA-iOE and AtRGL1-iOE lines. (a) and (b) Equal amounts of protonema tissues from 

WT, AtRGA1-iOE lines (two independent lines) (a) and AtRGL1-iOE lines (two independent lines) (b) were spotted on standard 

growth medium supplemented with 2 µM ß-estradiol. Pictures were taken 14 days after the induction. Scale bars: 1 mm. (c) Multiple 

gametophore formation in the AtRGL1-iOE lines treated for a period of 4 weeks with 2 µM ß-estradiol. Scale bars: 1 mm. (d) 

Chlorosis in the AtRGL1-iOE lines treated for 4 weeks with 2 µM ß-estradiol. Scale bars: 1 mm.  
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Fig. 27. Phenotypic analysis of the PpGRAS12-iOE (pictures have been taken from Fig. 20a) and AtRGA1-iOE lines. 

Formation of multiple gametophores in the PpGRAS12-iOE-1 and AtRGA1-iOE-1 lines upon the induction. Pink arrows point to 

gametophores. Scale bars: 1 mm.  

 

As I showed in Fig. 14b, the chlorotic phenotype in the PpGRAS7-iOE lines was accompanied 

by a significant reduction of thylakoid membrane proteins including LHCA, LHCB, PsaL, PsbQ, 

PsbD, Cytb6, and Cytf. Based on the chlorotic phenotype in the AtRGL1-iOE lines, which was 

comparable to PpGRAS7-iOE lines, it was presumed that photosynthesis in the AtRGL1-iOE lines 

could also be affected. To investigate the impact of AtRGL1 overexpression in P. patens, the 

abundance of several proteins that are involved in photosynthesis was investigated in the AtRGL1-

iOE-1 line as well as WT in a kinetic experiment (0 (untreated), 2, 4, and 8 days) after the 

application of 2 µM of ß-estradiol (Fig. 28b). A significant reduction in thylakoid membrane 

proteins and soluble plastid proteins including LHCA, LHCB, PsaL, PsbQ, PsbD, Cytb6, and Cytf 

were observed in the AtRGL1-iOE-1 line in response to the upregulation of AtRGL1. This finding 

is compatible with the previous reduction of thylakoid membrane proteins in the PpGRAS7-iOE-1 

line in response to the upregulation of PpGRAS7.  
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Fig. 28. Molecular analysis of AtRGL1 overexpression in P. patens. (a) TEM analysis of the AtRGL1-iOE-1 line. Phylloid tissues 

derived from the WT and AtRGL1-iOE-1 line that were treated for 8 days with the inducer. WT and the AtRGL1-iOE-1 line showed 

similar starch content, whereas the PpGRAS7-iOE-1 line displayed large amounts of starch. Red arrows: starch. Scale bar 

corresponds to 1 µm, 1 µm and 500 nm for the WT, AtRGL1-iOE-1 line, and PpGRAS7-iOE-1 line, respectively. (b) The 

accumulation of chloroplast proteins was analyzed from samples harvested at the indicated time points (0 (untreated), 2, 4, and 8 

days) after the treatment with 2 µM of ß-estradiol. Representative images of immunoblots with the indicated antibodies are shown. 

Equal amounts of total protein extracts from the WT and AtRGL1-iOE-1 line were inspected. αATC was used as a control. 
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3.3.2 Overexpression of the ASCL6-II in P. patens leads to chlorosis and the 

formation of multiple apical meristems 

PpGRAS7 and PpGRAS12 were previously identified as miR171 targets in P. patens (Axtell et 

al., 2007). As I showed in chapter 3 (see 3.2 and 3.1), an elevated level of PpGRAS12 led to the 

formation of multiple apical meristems and overexpression of PpGRAS7 resulted in plastid 

degradation and starch over-accumulation. A. thaliana SCL6-II (At2g45160), SCL6-III 

(At3g60630), and SCL6-IV (At4g00150) are reported as targets of miRNA171 (Llave et al., 2002). 

AtSCL6-II, AtSCL6-III, and AtSCL6-IV play a critical role in the regulation of shoot branch 

production in A. thaliana (Wang et al., 2010). To study the impact of AtSCL6-II, AtSCL6-III, and 

AtSCL6-IV overexpression in P. patens, AtSCL6-II-iOE, AtSCL6-III-iOE, and AtSCL6-IV-iOE 

lines were generated using a ß-estradiol inducible gene expression system (Kubo et al., 2013). For 

this, the full-length coding sequence of the AtSCL6-II, AtSCL6-III, and AtSCL6-IV were amplified 

from previously generated plasmids harboring the miR171-resistant version of AtSCL6-II, AtSCL6-

III, and AtSCL6-IV genes (Aoyama & Chua, 1997). Cloning, transformation, and selection were 

performed in the same way as described for the generation of the PpGRAS7-iOE lines (see 3.1.3). 

Using PCR-based screening, I identified two independent overexpression lines for each AtSCL6-

II, AtSCL6-III, and AtSCL6-IV (Fig. 29a, b, and c). The same strategy as used for the screening of 

the AtRGA1-iOE lines was applied for screening of the AtSCL6-II-iOE, AtSCL6-III-iOE, and 

AtSCL6-IV-iOE lines. For each gene, a forward primer that binds within the promotor region of the 

PpGX8 vector (70 bp upstream of the ATG (start codon) of the gene), and a reverse primer, which 

binds within the coding sequence of the gene were used. OE-screen4-F, OE-screen5-F, and OE-

screen6-F (Appendix 1) were applied as forward screening primers for AtSCL6-II, AtSCL6-III, and 

AtSCL6-IV, while OE-screen4-R, OE-screen5-R, and OE-screen6-R (Appendix 1) were used as 

reverse screening primers for AtSCL6-II, AtSCL6-III, and AtSCL6-IV, respectively. To validate the 

inducible expression of AtSCL6-II, AtSCL6-III, and AtSCL6-IV, protonema tissues from the 

AtSCL6-II-iOE, AtSCL6-III-iOE, and AtSCL6-IV-iOE lines were induced 4 h with 2µM of ß-

estradiol and the induction of AtSCL6-II, AtSCL6-III, and AtSCL6-IV genes were confirmed by 

RNA gel blots (Fig. 29d, e, and f). 
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Phenotypic analysis of the AtSCL6-II-iOE, AtSCL6-III-iOE, and AtSCL6-IV-iOE lines was 

carried out by adjusting pure protonema cultures of the inducible overexpression lines as well as 

WT to an equal density of 100 mg/l dry weight and 5 µl of the adjusted cultures were spotted onto 

solid medium supplemented with 2 µM ß-estradiol or without inducer. A distinct and strict growth 

arrest was observed in both AtSCL6-II-iOE, AtSCL6-III-iOE lines at the protonema stage, whereas 

the growth of protonema tissues in the induced AtSCL6-IV-iOE lines was indistinguishable from 

the WT (Fig. 30a). To investigate the effect of AtSCL6-II, AtSCL6-III, and AtSCL6-IV induction at 

later growth stages, 2 µM of ß-estradiol was directly applied onto the colonies of the inducible 

overexpression lines and WT control that were grown on solid medium and developed leafy 

gametophores. I observed the formation of multiple apical meristems as well as chlorosis in the 

AtSCL6II-iOE lines in response to an elevated level of AtSCL6-II at the gametophytic vegetative 

growth stage in P. patens (Fig. 30b and c). A mild chlorosis was observed in the AtSCL6-III-iOE 

lines at the gametophytic vegetative growth stage, whereas the growth of the AtSCL6-IV-iOE lines 

was indistinguishable from the WT (Fig. 30c). 

 

 

 

 



88 

 

 

Fig. 29. Screening and confirmation of the AtSCL6-II-iOE, AtSCL6-III-iOE, and AtSCL6-IV-iOE lines. (a) Screening of the 

AtSCL6-II-iOE lines using PGX8-specific (forward primer (OE-screen4-F), Appendix 1) and AtSCL6-II-specific (Reverse primer, 

(OE-screen4-R, Appendix 1) primers. Positive lines show amplified PCR products using genomic DNA from the indicated lines as 

a template. (b) Screening of the AtSCL6-III-iOE lines using PGX8-specific (forward primer (OE-screen5-R), Appendix 1) and 

AtSCL6-III-specific (Reverse primer (OE-screen5-R), Appendix 1) primers. Positive lines show amplified PCR products using 

genomic DNA from the indicated lines as a template. (c) Screening of the AtSCL6-IV-iOE lines using PGX8-specific (forward 

primer (OE-screen6-F), Appendix 1) and AtSCL6-IV-specific (Reverse primer (OE-screen6-F), Appendix 1) primers. Positive lines 

show amplified PCR products using genomic DNA from the indicated lines as a template. (d) RNA gel blots from the WT and two 

independent AtSCL6-II-iOE lines. (e) RNA gel blots from the WT and two independent AtSCL6-III-iOE lines. (f) RNA gel blots 

from the WT and two independent AtSCL6-IV-iOE lines. All AtSCL6-II-iOE, AtSCL6-III-iOE, and AtSCL6-IV-iOE lines as well as 

WT were grown for 4 h in the standard liquid medium (non-induced) or liquid medium supplemented with the inducer (induced). 

Subsequently, RNAs were harvested and used for the gel blot analysis. AtSCL6-II, AtSCL6-III, and AtSCL6-IV-specific probes were 

used for hybridization. 25S rRNA (from the EtBR stained gel) was used to monitor equal loading. 
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Fig. 30. Phenotypic analysis of the AtSCL6-II-iOE, AtSCL6-III-iOE, and AtSCL6-IV-iOE lines. (a) Equal amounts of 

protonema tissues from the WT, AtSCL6-II-iOE lines (two independent lines), AtSCL6-III-iOE lines (two independent lines), and 

AtSCL6-III-iOE lines(two independent lines) were spotted on standard growth medium supplemented with 2 µM of ß-estradiol. 

Pictures were taken 2 weeks after the induction. Scale bars: 1 mm. (b) Multiple apical meristem formation in the AtSCL6-II-iOE 

lines. 2 µM of ß-estradiol was directly applied onto colonies from AtSCL6-II-iOE lines as well as WT control. Pictures were taken 

4 weeks after the induction. Scale bars: 1 mm. (c) Chlorosis in the AtSCL6-II -iOE and AtSCL6-III-iOE lines. 2 µM of ß-estradiol 

was directly applied onto colonies from transgenic lines as well as WT control. Pictures were taken 4 weeks after the induction. 
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4 DISCUSSION 

 

4.1 PpGRAS7 is involved in chloroplast degradation and starch over-

accumulation 

GRAS proteins are an important family of plant-specific proteins that regulate plant growth 

and development via transcriptional regulation and signal transduction processes (Hofmann, 2016; 

Li et al., 2016). The conserved GRAS domain consists of several distinct motifs including LHRI, 

VHIID, LHRII, PFYRE and the SAW motif (Pysh et al., 1999). Compatible with a GRAS domain 

structure (Pysh et al., 1999; Tian et al., 2004; Hirsch & Oldroyd, 2009), PpGRAS7 contains the 

same order of the conserved GRAS motifs (Fig. 6). Here I showed that PpGRAS7 displays a 

nuclear localization pattern, which is in agreement with previous reports demonstrating that most 

of the GRAS proteins are localized in the nucleus and act as transcription factors (Di Laurenzio et 

al., 1996; Gallagher & Benfey, 2009; Heo et al., 2011). Based on the subcellular nuclear 

localization of the analyzed PpGRAS7::citrine fusion protein I hypothesize that PpGRAS7 possibly 

acts as a transcription factor in P. patens.  

In the moss P. patens, two GRAS mRNAs were previously identified as miR171 targets (Axtell 

et al., 2007). The phylogenetic analysis shows despite containing the GRAS domain, PpGRAS7 

does not belong to any of the previously described GRAS subfamilies. Interestingly, PpGRAS7 

showed a closer relation to the AtDELLA clade compared with the AtHAM family, and AtRGL1 

shares the highest similarity (37%) with PpGRAS7. However, the functional analysis of the 

PpGRAS7-iOE lines suggests a different molecular function for PpGRAS7 compared with other 

members of the GRAS family. In A. thaliana, the DELLA subfamily is known to contain negative 

regulators of gibberellic acid (GA) responses. Overexpression of AtRGL1 in A. thaliana resulted 

in significantly increased leaf longevity in age-triggered senescence (Chen et al., 2017), while 

PpGRAS7 overexpression resulted in elevated expression of senescence marker genes (PpSAG13, 

PpSAG18, and PpSIN1) and promoting chlorosis in P. patens. Although PpGRAS7 showed a 

partial sequence similarity to AtRGL1, my results suggest a different function for PpGRAS7. 
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In this study, I showed the involvement of PpGRAS7 in plastid degradation and starch over-

accumulation. Furthermore, I observed that PpGRAS7 overexpression led to an increase of maltose 

content in the PpGRAS7-iOE lines. In A. thaliana, the accumulation of maltose leads to imbalances 

in chloroplast homeostasis and causes a chlorotic phenotype (Stettler et al., 2009). The observed 

phenotype and molecular characteristics in the lines overexpressing PpGRAS7 have not been 

observed for DELLA and HAM family members or any other member of the large GRAS family 

such as PAT1, LISCL, SCL3, SCR, SHR, or LAS. In A. thaliana PAT1, SCL5, and SCL21 (PAT1 

subfamily) are known to act as positive regulators in phytochrome A signal transduction (Bolle et 

al., 2000; Torres-Galea et al., 2013), while SCL13 (PAT1 subfamily) is mainly involved in 

phytochrome B signal transduction (Torres-Galea et al., 2006). SCR and SHR play a crucial role 

in root radial patterning in A. thaliana (Cui et al., 2007). SCL3 mediates cell elongation during root 

development (Heo et al., 2011) and LAS subfamilies (MOC1, LS, and LAS) function in axillary 

meristem initiation in A. thaliana (Schumacher et al., 1999; Greb et al., 2003; Li et al., 2003). In 

lily (Lilium longiflorum L.), LISCL was reported to participate in the microsporogenesis of anthers 

(Morohashi et al., 2003). Based on the observed phenotype and the role of PpGRAS7 in plastid 

degradation and starch over-accumulation, I suggest a novel function for this GRAS family 

member. 

A decrease in the concentrations of photosynthetic pigments such as chlorophylls and 

carotenoids is one of the major causes of chlorosis. Chlorophyll fluorescence analysis showed a 

general reduction of PSII efficiency in the induced PpGRAS7-iOE lines (Fig. 14c and d). The 

reduction of PSII efficiency is associated with a reduced content of chlorophylls, carotenoids and 

a lower chlorophyll a/b ratio (Mariotti et al., 2018). Strong chlorosis and degradation of plastids 

were observed in the PpGRAS7-iOE lines upon the induction. These results were accompanied by 

a reduction of the chlorophyll content and reduced accumulation of a group of pigments related to 

carotenoid biosynthesis (Fig. 15a and b). Reduction of the chlorophyll content was accompanied 

by a strong decrease of thylakoid membrane proteins including PpLHCA, PpLHCB, PpPsaL, 

PpPsbQ, PpPsbD, PpCytb6, and PpCytf in response to the PpGRAS7 overexpression. In accordance 

with the observed reduction of the photosynthetic machinery, I showed the downregulation of a 

group of photosynthetic genes encoding proteins of specific photosynthetic complexes in the 

PpGRAS7-iOE lines including PpPsaA, PpPsaB, PpPsaC, PpPsbD, PpPsbM, PpLHCB2, in 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/photosystem-ii
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response to the induction of the PpGRAS7 gene. I also observed the downregulation of PpPORAa, 

and PpPORAb in response to the uplregulation of the PpGRAS7 gene. This suggests that the 

observed deficiencies in photosynthesis are partially caused by the misregulation of nuclear genes 

encoding photosynthesis-associated proteins. Taken together, the observed phenotype, including 

chlorosis and paling of tissues, is most likely caused by a combinatory effect of these molecular 

changes. Based on the observed phenotype and differentially regulated genes in the induced 

PpGRAS7-iOE lines, I hypothesize a group of genes as putative targets of PpGRAS7. 

Downregulation of PpCYCD1 and PpCLV1 in response to PpGRAS7 upregulation can explain the 

remarkable and distinct growth arrest in the PpGRAS7-iOE lines, whereas the downregulation of 

PpPsaA, PpPsaB, PpPsaC, PpPsbA, PpPsbD, PpPsbM, and PpLHCB2 in response to an elevated 

level of PpGRAS might explain the paling phenotype in the PpGRAS7-iOE lines. Besides, the 

downregulation of PpTPT in response to the upregulation of PpGRAS7, possibly induce over-

accumulation of starch in the PpGRAS7-iOE lines. Therefore, I speculate that PpGRAS7, directly 

or indirectly, might act in the repression of PpCYCD1, PpCLV1, PpPsaA, PpPsaB, PpPsaC, 

PpPsbA, PpPsbD, PpPsbM, PpLHCB2, and PpTPT. 

Moreover, upon PpGRAS7 overexpression elevated light intensities and extended light periods 

increased the severity of the phenotype indicating that the phenotypic changes are most likely 

triggered by light conditions. I also cannot exclude that some secondary effects, such as oxidative 

stress, have a crucial impact on the phenotype. The ROS accumulation in the PpGRAS7-iOE lines 

is most likely the result of decreased levels of carotenoids, which fulfill a protective function based 

on quenching of chlorophyll triplet states to prevent the generation of highly reactive singlet 

oxygen species (Ritz et al., 2000; Fraser et al., 2001). The pigments analyses revealed lower levels 

of zeinoxathin, which is a precursor of lutein that is the predominant carotenoid in plant 

photosynthetic tissues and plays a critical role in light-harvesting complex assembly and function 

(Pogson et al., 1996). Light absorption through chlorophylls is accompanied by light absorption 

through carotenoids. LHCB proteins, constituting the antenna system of PSII, bind lutein, 

violaxanthin and neoxanthin at four distinct binding sites (Liu et al., 2004). Based on my results, I 

hypothesize that decreased pigment levels, in particular carotenoids, increase ROS accumulation 

in the PpGRAS7-iOE lines. Any reduced functionality of LHCB interrupts light energy transfer to 

the reaction centers of PSII and reduces the PSII efficiency. Another possibility for elevated ROS 
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levels is the observed decreased LHCB mRNA and protein levels, since A. thaliana lhcb mutants 

are characterized by increased ROS levels (Xu et al., 2012). This is compatible with my finding 

that shows the downregulation of LHCB2 in the PpGRAS7-iOE lines at both, transcript and protein 

levels. Therefore, I hypothesize that the reduced LHCB levels may contribute to the elevated ROS 

levels in the PpGRAS7-iOE lines upon the induction.  

In P. patens, atg5 mutants are deficient in the process of autophagy (Mukae et al., 2015). 

Interestingly, the expression of PpATG5 is upregulated in the PpGRAS7-iOE lines upon the 

induction. I also noticed an increase in the expression of senescence-associated genes, PpSAG13, 

PpSAG18, and PpSEN1 in response to PpGRAS7 overexpression. Autophagy and senescence are 

considered to be responsible for chlorophyll and chloroplast degradation. Thus, it is likely that 

PpGRAS7 functions in the expression of autophagy- and senescence-related nuclear genes. 

Senescence in plants is a process characterized by interruption of photosynthesis, the disintegration 

of organelle structure, degradation of chlorophyll and chloroplast proteins and upregulation of 

senescence-associated genes (BuchananWollaston, 1997). Senescence underlies the expression of 

certain genes including some SAGs (Mukae et al., 2015). At the transcription level, the onset of 

senescence and leaf yellowing is demonstrated by an increase in the expression of senescence-

associated genes (SAGs) encoding enzymes involved in the degradation of chlorophyll (Gan & 

Amasino, 1997). Based on the observed phenotype and upregulation of PpATG5, PpSAG13, 

PpSAG18, and PpSEN1 upon PpGRAS7 overexpression I speculate that autophagy- and 

senescence-related processes are responsible for the plastid degradation in the PpGRAS7-iOE lines.  

PpGRAS7 overexpression also caused a marked downregulation of PpBAM3a and PpBAM3d 

transcripts and concomitantly increased starch content (Fig. 12c) suggesting a potential impact of 

PpGRAS7 in regulating PpBAM3a and PpBAM3d transcription. In plants, BAM proteins are vital 

for maltose production during hydrolytic starch degradation and a lowered PpBAM3 level likely 

contributes to starch accumulation in the PpGRAS7-iOE lines. In contrast, the upregulation of 

PpGWDa could indicate a compensatory effort of the plant to lower the excess of starch. Since 

maltose and fructose levels are increased in the PpGRAS7-iOE lines most likely sugar metabolism 

in general was inhibited. 

Moreover, reduced starch hydrolysis via the β-amylase pathway in the PpGRAS7-iOE lines 

most likely causes a lack of energy supply for the entire plant cell metabolism that can explain the 
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failure of recovery of the PpGRAS7-iOE lines after the transfer to non-inducing conditions. 

Additionally, PpGRAS7 overexpression led to similar starch levels at the end of the day and the 

end of the night, indicating a perturbed starch metabolism and a failure of starch degradation during 

the night. In A. thaliana four chloroplast BAM proteins were identified and the chloroplast BAM3 

protein plays a major role in the leaf starch breakdown (Li et al., 2009). The total β-amylase activity 

is reduced in leaves of A. thaliana bam3 mutants, which induced elevated starch levels (Fulton et 

al., 2008). This is consistent with my results, suggesting that the reduced activities of ß-amylase 

may lead to the accumulation of starch (Walters et al., 2004). During photosynthesis, the TPT of 

the chloroplast inner envelope membrane mediates the counter exchange of stromal triose-P 

derived from CO2 fixation with cytosolic orthophosphate (Pi) and consequently providing the 

cytosol with the precursors for sucrose synthesis. Optimum rates of photosynthesis require the 

regulated exchange of metabolites through TPT. I found a drastic downregulation of TPT at the 

transcript level in response to PpGRAS7 overexpression. In accordance with the PpGRAS7-iOE 

phenotype, the A. thaliana mutant lacking TPT displays increased starch synthesis compared to the 

WT, thereby likely compensating for its deficient export of triose-P out of the chloroplast. The 

decreased export of triose phosphates leads to an accumulation of phosphorylated intermediates in 

the chloroplast, resulting in a reduction of stromal Pi, which in turn has the potential to restrict ATP 

synthesis and consequently CO2 fixation (Edwards & Walker, 1983). Under normal growth 

conditions, the potential inhibition of photosynthesis due to Pi limitation is ameliorated by 

activation of ADP-Glc pyrophosphorylase (AGPase) (Sowokinos, 1981; Sowokinos & Preiss, 

1982), leading to an increase in the rate of starch synthesis and consequently release of Pi. 

Moreover, if sucrose biosynthesis diminishes during the day, the limitation of Pi import redirects 

photosynthetic carbon flow into starch biosynthesis (Schneider et al., 2002). These data suggest a 

metabolic compensation strategy for the reduced levels of TPT by diverting assimilate into starch, 

releasing the Pi required for the photosynthetic light reaction. Using an alternative pathway is an 

escape strategy for plants to cope with new conditions. ISA3, an isoform of isoamylase, was shown 

to be an important starch-degrading enzyme in plants (Ferreira et al., 2017). A. thaliana isa3 

mutants show reduced starch degradation and a strong starch-excess phenotype (Wattebled et al., 

2005). In contrast to the downregulation of PpBAM3, I found an increase in PpDPE1 and PpISA3 

in the PpGRAS7-iOE lines. An upregulation of isoamylase when the ß-amylases is downregulated 
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might indicate that plants engaged all alternative options to unload and consume extra starch. The 

upregulation of PpDPE1 in the PpGRAS7-iOE lines reflects another strategy of the plant to utilize 

starch in order to provide sufficient energy. In summary, my data suggest an important role of the 

nuclear-localized PpGRAS7 protein in chloroplast metabolism by regulation expression of genes 

involved in chloroplast starch and sugar metabolism, photosynthesis, chlorosis, and senescence. 

 

4.2 PpGRAS12 plays an important role in meristem regulation and 

maintenance 

Compatible with GRAS family members (Pysh et al., 1999; Tian et al., 2004; Hirsch & 

Oldroyd, 2009), PpGRAS12 contains the same order of the conserved GRAS motifs (Fig. 16). 

Here, I also showed that PpGRAS12 is nuclear-localized, which is in agreement with the proposed 

function of GRAS proteins as transcription factors (Di Laurenzio et al., 1996; Gallagher & Benfey, 

2009; Heo et al., 2011).  

The presence of the miR170/171 binding site is a characteristic of most members of HAM 

families. A. thaliana orthologs of Petunia HAM were shown to be targets of miR170/171 (Llave et 

al., 2002). The A. thaliana HAM proteins are involved in meristem regulation and the CLV3-WUS 

pathway (Zhou et al., 2018). WUS is a homeodomain transcription factor, which is expressed in 

the rib meristem of the A. thaliana shoot apical meristem. The CLAVATA-WUSCHEL signaling 

pathway regulates stem cell maintenance via an auto-regulatory negative-feedback loop (Schoof et 

al., 2000). HAM and WUS share collective targets in vivo and their physical interaction are vital 

in driving downstream transcriptional programs and promoting shoot stem cell proliferation (Zhou 

et al., 2015). AtGPR23, AtTPT2;2, and AtTPL are reported as collective targets of HAM and WUS 

and they are noticeably affected when WUS and HAM interact (Zhou et al., 2015). WUS is an 

activator of CLV3, which further binds to CLV1/2 and negatively regulates the expression of WUS. 

Tomato (Solanum lycopersicum) encodes three HAM homologs that are guided for cleavage by 

miR171 (Hendelman et al., 2016) and their silencing led to over-proliferation of cells in the 

periphery of the meristems. HAM genes not only function in the meristem maintenance, but also 

play minor roles in the morphogenesis of a simple leaf in tomato (Hendelman et al., 2016). 

PpGRAS12 is one of the validated targets of the miR171 in P. patens (Axtell et al., 2007). The 
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miR171‐GRAS module was elucidated as a key player in meristem maintenance (Huang et al., 

2017). Analysis of the PpGRAS12::GUS protein fusion reporter lines showed a regulatory function 

of miR171 in PpGRAS12 expression. I observed a noticeable expression of the PpGRAS12 gene in 

the archegonia and egg cells of the mPpGRAS12::GUS protein fusion reporter lines compared with 

the PpGRAS12::GUS lines and WT. This suggests that miR171 controls the expression of 

PpGRAS12 in P. patens archegonia and egg cells. Loss of function ∆PpGRAS12 lines displayed a 

fewer number of sporophytes compared to the WT. Egg cells give rise to sporophytes. Based on 

the elevated expression of PpGRAS12 in the egg cells of the mPpGRAS12::GUS protein fusion 

reporter lines and reduced sporophyte production in the ∆PpGRAS12 lines, I suggest that 

PpGRAS12 plays a role in egg cell regulation and sporophyte production.  

An extreme growth arrest was observed in the PpGRAS12-iOE lines at the protonema stage 

upon the induction. Furthermore, I observed the formation of multiple apical meristems at the 

gametophytic vegetative stage in the PpGRAS12-iOE lines upon the induction. The shoot apical 

meristem (SAM) is responsible for the post-embryonic growth and generates plant aerial structures. 

An appropriate continuous growth in plants depends on the SAM ability to maintain the balance 

between self-renewal of stem cells and cell recruitment for lateral organ formation (Lee et al., 

2019). The WUS and CLV signaling pathway are key factors of meristematic activity in the SAM 

(Clark et al., 1993; Laux et al., 1996). In A. thaliana clv1 mutant develops enlarged and 

indeterminate floral meristems (Clark et al., 1995). Furthermore, mutation of the CLV1 gene has 

resulted in an increased number of all floral organ types (Leyser & Furner, 1992). Compatible with 

the previous studies (Clark et al., 1993; Clark et al., 1995), I observed the downregulation of CLV1 

genes along with the formation of multiple and enlarged apical meristems in the PpGRAS12-iOE 

lines. This might indicate that an elevated level of PpGRAS12 represses the expression of CLV1 

genes, which might induce the formation of multiple and enlarged apical meristems in the 

PpGRAS12-iOE lines. This result indicates the involvement of PpGRAS12 in meristem identity 

control. Multiple apical cells have remained while the plant was constantly induced with the 

inducer. When the inducer degraded, new gametophores have developed from multiple apical 

meristems. This shows that a continuous upregulation of the PpGRAS12 is essential for the 

formation and maintenance of multiple apical meristems in P. patens. In summary, my results 
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indicate the involvement and key role of PpGRAS12 in meristem regulation, maintenance and 

identity control. 

 

4.3 AtRGL1 overexpression induces chlorosis in P. patens  

As it was shown in chapter 3 (3.1), PpGRAS7 a member of the GRAS family and the validated 

target of miR171 (Axtell et al., 2007), was localized in the nucleus and elevated levels of PpGRAS7 

resulted in plastid degradation and starch over-accumulation. In chapter 3 (3.2), I showed that 

PpGRAS12, another member of the GRAS family and the validated target of miR171 (Axtell et 

al., 2007), is also localized in the nucleus. Furthermore, I showed that overexpression of 

PpGRAS12 led to the formation of multiple apical meristems. Based on the protein sequence 

similarities, I showed that AtRGA1 shares the highest similarity (37%) with PpGRAS7 and 

AtRGL1 shares the highest similarity (37%) with PpGRAS12. I observed a growth arrest in the 

AtRGA1-iOE lines in the primary phase of growth. Although the detected growth arrest in the 

AtRGA1-iOE lines was not as strict as the growth arrest in the PpGRAS12-iOE lines, cell growth 

was notably affected. Furthermore, overexpression of AtRGA1 resulted in the initiation of multiple 

apical meristems and consequently the formation of multiple gametophores at the gametophytic 

vegetative growth stage in P. patens. I further noticed that multiple gametophores, which were 

formed in response to an elevated level of AtRGA1 shared partial similarities with the observed 

phenotype in the induced PpGRAS12-iOE lines. Based on the observed phenotype in the AtRGA1-

iOE lines, I suggest a partial functional homology between PpGRAS12 and AtRGA1 in P. patens. 

In addition, similar to the induced PpGRAS7-iOE lines, a severe growth arrest was observed in the 

induced AtRGL1-iOE lines at the protonema stage. The overexpression of AtRGL1 appeared to 

impose a strict growth arrest at the protonema growth stage, but unlike PpGRAS7 overexpression 

was not lethal to the plant. Furthermore, chlorosis and paling of tissues were observed in the 

AtRGL1-iOE lines at the gametophytic vegetative growth stage in response to the elevated level of 

the AtRGL1. This phenotype was similar to the chlorosis and paling of tissues in the induced 

PpGRAS7-iOE lines. The immunoblot analyses showed a significant reduction in thylakoid 

membrane proteins including LHCA, LHCB, PSAL, PSBQ, PSBD, CYTb6, and CYTf in the 

AtRGL1-iOE-1 line in response to the upregulation of AtRGL1. This finding was in agreement with 
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the previous reduction of thylakoid membrane proteins in the PpGRAS7-iOE-1 line in response to 

the upregulation of PpGRAS7. Elevated levels of both AtRGL1 and PpGRAS7 led to a growth arrest 

and chlorosis in P. patens. Furthermore, overexpression of the PpGRAS7 led to the starch over-

accumulation in P. patens. The SEM analysis of P. patens phylloid tissues revealed that an elevated 

level of AtRGL1 has no impact on the starch content in P. patens. Despite the difference in starch 

contents, based on the partial phenotype similarities and comparable reduction of thylakoid 

membrane proteins in both PpGRAS7-iOE and AtRGL1-iOE lines upon the induction, I suggest a 

partial functional homology between PpGRAS7 and AtRGL1 in P. patens.  

 

4.4 Overexpression of miRNA171-targeted AtSCL6-II leads to the formation 

of multiple apical meristems and chlorosis in P. patens 

A. thaliana SCL6-II, SCL6-III, and SCL6-IV are validated targets of miRNA171 (Llave et al., 

2002). I observed a growth arrest in the AtSCL6-II-iOE and AtSCL6-III-iOE lines at the protonema 

stage upon the induction, whereas the growth of the AtSCL6-IV-iOE lines was indistinguishable 

from the WT. The growth arrest, which was detected in the induced AtSCL6-II-iOE and AtSCL6-

III-iOE lines displayed similarities with the growth arrests in both PpGRAS7-iOE and PpGRAS12-

iOE lines upon the induction. Only the AtSCL6-II-iOE lines have formed multiple apical meristems 

in response to an elevated level of AtSCL6-II gene. The observed multiple apical meristems in the 

AtSCL6-II-iOE lines at the gametophytic vegetative growth stage in response to an elevated level 

of AtSCL6-II gene in P. patens was comparable to the phenotype in the induced PpGRAS12-iOE 

lines. Furthermore, the AtSCL6-II-iOE lines displayed chlorosis and paling of tissues upon the 

induction in P. patens. A. thaliana SCL6-II is one of three validated targets of miR171 (Llave et 

al., 2002) and previously was shown to be involved in the regulation of shoot branch production 

(Wang et al., 2010) and chlorophyll biosynthesis (Ma et al., 2014). AtSCL6-II inhibits the 

expression of the key gene encoding PROTOCHLOROPHYLLIDE OXIDOREDUCTASE (POR) 

(Ma et al., 2014). Since the formation of multiple apical meristems and chlorosis in the induced 

AtSCL6-II-iOE lines were detected in the PpGRAS12-iOE and PpGRAS7-iOE lines, respectively, 

I speculate that AtSCL6-II might be the functional homolog of both PpGRAS12 and PpGRAS7.  
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6 APPENDIX  

 

Appendix 1. PCR Primers. The specificity of primers was confirmed with the Primer-BLAST. 

Primers were ordered from Sigma-Aldrich (Deisenhofen, Germany). 

Gene ID Accession No Forward primers (5´  3´) Reverse primers (5´  3´) Amplicon 

Size (bp) 

Note 

Ef1α Pp1s7_445V6 AGCGTGGTATCACAATTGAC  GATCGCTCGATCATGTTATC  412 Ef1α (cDNA) 

Ef1α Pp1s7_445V6 AGCGTGGTATCACAATTGAC  GATCGCTCGATCATGTTATC  660 Ef1α (gDNA) 

PpGRAS7 Pp1s130_63V6.1 gggGGTACCATGGCAGACGGGG

ACTTAGC 

gggGGTACCCGCCCGCCAAGCG

CTTGC 
1980 GRAS7::C 

PpGRAS7 Pp1s130_63V6.1 aggagatcttctagaaagatGAATTCTTCG

AGACACTGGTTGTTGCTT 

ttactagatcgggcctcctgtcCGGTTTGG

ATGATCTTGGTACA 

678 KO-c-5´fl 

PpGRAS7 Pp1s130_63V6.1 GGGATTACCCGAACTCATTGTC gctcgagtttttcagcaagatGAATTCTGA

GGTCCCAGGTTTTGATTCT 
613 KO-c-3´fl 

nptII MK204379.1 gacaatgagttcgggtaatcccATCGGATCC

TGTCAAACACTGA 

GACAGGAGGCCCGATCTAGTA

A 

1508 nptII-amp 

PpGRAS7 Pp1s130_63V6.1 TCTGGAAGTATCGG TGTCTGGA AAATTATCGCGCGCGGTGTC 863 KO-5´intg 

PpGRAS7 Pp1s130_63V6.1 GCGGCTGAGTGGCTCCTTCA CCAGTTGCAGAAGTTTGCTGAT 892 KO-3´intg 

PpGRAS7 Pp1s130_63V6.1 TTGAGGGTCATTCAGGCTTTTTA GTGGTTGTACGATCCTACCTTC

G 

727 KO-screen 

PpGRAS7 Pp1s130_63V6.1 GTCGTTGGAGAGTGGGGTAGTC

GTG 

CGGCATCTGTTGAAAGTGGGA

AAGC 
661 KO-RT-PCR 

PpGRAS7 Pp1s130_63V6.1 caccATGGCAGACGGGGACTTAG

CC 

TCACGCCCGCCAAGCGCTTGC 1977 iOE-TOPO1 

PpGRAS7 Pp1s130_63V6.1 GGAGAGGACACGCTGAAGCTAG CACGAGCTGTAATCCAGTTGC

AGAAG 
971 iOE-screen1 

PpGRAS7 Pp1s130_63V6.1 GCAAAGCCACCTTCAGTTCTCT GAGGTCCCAGGTTTTGATTCTG 443 Probe1 

PpGRAS12 Pp1s205_1V6.1 gggGAGCTCGAGCTCTCATTGCC

GAGTACCG 

gggGAATTCGCAGATCCACGAG

GACGCAGCC 

1482 GUS-c-5´fl 

GUS - gggGAATTCATGGTCCGGCCGGT

AGAAACCC 

gggGTCGACTCATTGTTTGCCT

CCCTGCTGC 

1812 GUS-amp 

PpGRAS12 Pp1s205_1V6.1 gggGTCGACTTGATAGTTTAATG

TAGGTGCT 

gggGGTACCCATCAAAGTTTCC

TTGTTGCAT 

1528 GUS-c-3´fl 
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PpGRAS12 Pp1s205_1V6.1 GCTTTCTCAAAGAAATGCTCTCA CGCCCTGATGCTCCATCACT 2009 GRAS12::GU

S-5´intg 

PpGRAS12 Pp1s205_1V6.1 ATGGTCCGGCCGGTAGAAACCC AGAGAGCGTCATTTTATAGCTT

AGCC 

1917 GRAS12::GU

S-3´intg 

PpGRAS12 Pp1s205_1V6.1 TGTCACAGGATCGGGTCCTGCA CACAATAGTCTAGAGAGCGT 2863 GRAS12::GU

S-screen 

PpGRAS12 Pp1s205_1V6.1 gggGTCGACATGGTGATCACTGC

AGGAAGTA 

aaaAGATCTGCAGATCCACGAG

GACGCAG 

2457 GRAS12::C 

AtRGA1 At2g01570.1 caccATGAAGAGAGATCATCACC

AATTCCA 

TCAGTACGCCGCCGTCGAGAG

TT 

1764 iOE-TOPO2 

AtRGA1 At2g01570.1 GGAGAGGACACGCTGAAGCTAG TCAGTACGCCGCCGTCGAGAG

TT 

1808 iOE-screen2 

AtRGA1 At2g01570.1 AGAGTACACGTCATTGATTTCTC

G 

GTCTTGACTATTCGGAACTCCT

TC 

501 Probe2 

AtRGL1 At1g66350.1 caccATGAAGAGAGAGCACAACC

ACC 

TTATTCCACACGATTGATTCGC

C 

1536 iOE-TOPO3 

AtRGL1 At1g66350.1 GGAGAGGACACGCTGAAGCTAG 

 

TTATTCCACACGATTGATTCGC

C 

1580 iOE-screen3 

AtRGL1 At1g66350.1 GATCTTAAACCGGAAATGCTAG

AC  

CAAACAACCTTCATTCTCTTCC

AC  

495 Probe3 

AtSCL6-II At2g45160.1 caccATGCCCTTATCCTTTGAAAG

GTT 

CTAACATTTCCAAGCAGAGAC

AG 

1923 iOE-TOPO4 

AtSCL6-II At2g45160.1 GGAGAGGACACGCTGAAGCTAG AGGGAAAACGGGTTGATGAAG

A 

677 iOE-screen4 

AtSCL6-II At2g45160.1 GGGAGGGGGTGTTTGGTTTATC AGGGAAAACGGGTTGATGAAG

A 

605 Probe4 

AtSCL6-III At3g60630.1 caccATGCCCCTGCCCTTTGAGCA

AT  

TTAACATTTCCAAGCTGAGACA

G 

1872 iOE-TOPO5 

AtSCL6-III At3g60630.1 GGAGAGGACACGCTGAAGCTAG CTGGTCGATGATTACCGCTGAC 782 iOE-screen5 

AtSCL6-III At3g60630.1 ATTTCAAGGGAAGGGGGTTCTG CTGGTCGATGATTACCGCTGAC 718 Probe5 

AtSCL6-IV At4g00150.1 caccATGCCCTTACCCTTTGAAGA

GT 

TCAGGAGGAGCGACATCTCCA

TG 

1677 iOE-TOPO6 

AtSCL6-IV At4g00150.1 GGAGAGGACACGCTGAAGCTAG TGGTTGATCAGAAGACCGGAA

A 

556 iOE-screen6 

AtSCL6-IV At4g00150.1 ATGCCCTTACCCTTTGAAGAGT TGGTTGATCAGAAGACCGGAA

A 

512 Probe6 
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Ef1α (cDNA): amplification of the elongation factor1α from the cDNA. Ef1α (gDNA): amplification of the elongation factor1α 

from the genomic DNA. GRAS7::C: amplification of the full-length PpGRAS7 coding sequence to generate the PpGRAS7::citrine 

construct. KO-c-5´fl: generation of the 5´ flanking part of the knockout construct. Lowercase letters indicate nucleotides, which 

were used to generate overlaps (see 2.20.1). KO-c-3´fl: amplification of the 3´ flanking part of the knockout constructs. Lowercase 

letters indicate nucleotides, which were used to generate overlaps (see 2.20.1). nptII-amp: primers were used to amplify nptII from 

the PBSNNNEV vector. Lowercase letters indicate nucleotides, which were used to generate overlaps (see 2.20.1). KO-5´intg: 

confirmation of the 5´ integration of PpGRAS7-KO lines. KO-3´intg: confirmation of the 3´ integration of PpGRAS7-KO lines. 

KO-screen: screening of knockout lines. KO-RT-PCR: confirmation of the absence of transcript in PpGRAS7-KO lines via RT-

PCR. iOE-TOPO1: amplification of the full-length PpGRAS7 coding sequence to generate the PpGRAS7-iOE construct. Forward 

primer contains cacc (small letters) at the 5′ end of the primer, which is necessary for TOPO directional cloning*. iOE-screen1: 

screening of the PpGRAS7-iOE lines. Probe1: analysis of PpGRAS7-iOE lines via RNA gel blot. GUS-c-5´fl: generation of the 5´ 

flanking part of the PpGRAS12::GUS construct. GUS-amp: primers were used to amplify GUS coding sequence. GUS-c-3´fl: 

generation of the 3´ flanking part of the PpGRAS12::GUS construct. GRAS12::GUS-5´intg: confirmation of the 5´ integration of 

the PpGRAS12::GUS lines. GRAS12::GUS-3´intg: confirmation of the 3´ integration of the PpGRAS12::GUS lines. 

GRAS12::GUS-screen: screening of the PpGRAS12::GUS lines. GRAS12::C: amplification of the full-length PpGRAS7 coding 

sequence to generate the PpGRAS12::citrine construct. iOE-TOPO2: amplification of the full-length AtRGA1 coding sequence to 

generate the AtRGA1-iOE construct. iOE-screen2: screening of the AtRGA1-iOE lines. Probe2: analysis of the AtRGA1-iOE lines 

via RNA gel blot. iOE-TOPO3: amplification of the full-length AtRGA1 coding sequence to generate the AtRGA1-iOE construct. 

iOE-screen3: screening of the AtRGL1-iOE lines. Probe3: analysis of the ARGL1-iOE lines via RNA gel blot. iOE-TOPO4: 

amplification of the full-length AtSCL6-II coding sequence to generate the AtSCL6-II-iOE construct. iOE-screen4: screening of the 

AtSCL6-II-iOE lines. Probe4: analysis of the AtSCL6-II-iOE lines via RNA gel blot. iOE-TOPO5: amplification of the full-length 

AtSCL6-III coding sequence to generate the AtSCL6-III-iOE construct. iOE-screen5: screening of the AtSCL6-III-iOE lines. Probe6: 

analysis of the AtSCL6-III-iOE lines via RNA gel blot. iOE-TOPO6: amplification of the full-length AtSCL6-IV coding sequence 

to generate the AtSCL6-IV-iOE construct. iOE-screen6: screening of the AtSCL6-IV-iOE lines. Probe6: analysis of AtSCL6-IV-iOE 

lines via RNA gel blot. 

GGTACC: KpnI restriction site. GAATTC: EcoRI restriction site. GAGCTC: SacI restriction site. GTCGAC: SalI restriction 

site. AGATCT: BglII restriction site. Lowercase letters indicate 3 nucleotides, which were added to the primers to increase the 

efficiency of restriction enzyme activities. 

Probe numbers: Each individual probe’s number in the legend describes the corresponding number in the table. 

iOE-screen numbers: Each individual iOE-screen’s number in the legend describes the corresponding number in the table. 

iOE-TOPO numbers: Each individual iOE-TOPO’s number in the legend describes the corresponding number in the table. 

*: all iOE-TOPO forward primers contain cacc (lowercase letters) at the 5′ end of the primer, which is essential for TOPO directional 

cloning. 
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Appendix 2. Silent mutations within the PpGRAS7 miR171 binding site. Yellow box: restriction 

site for HpaI. Red nucleotides indicate silent mutations.  

 

 

 

Appendix 3. Silent mutations within the PpGRAS12 miR171 binding site. Yellow box: restriction 

site for pauI. Red nucleotides indicate silent mutations.  
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Appendix 4. P. patens homologs of AtPWD, AtGWD, AtMEX1, AtBAM3, AtISA3, AtSEX4, and 

AtDPE. 

 

A. thaliana  P. patens homologs 

AtPWD: at5g26570 

(Kotting et al., 2005) 

PpPWDa: Pp1s3_320V6.1 

PpPWDb: Pp1s34_54V6.1 

AtGWD: at1g10760 

(Kotting et al., 2005) 

PpGWDa: Pp1s8_70V6.1 

PpGWDb: Pp1s74_185V6.1 

AtMEX1: at5g17520 

(Stettler et al., 2009) 

PpMEX1a: Pp1s14_134V6.1 

PpMEX1b: Pp1s268_86V6.1 

AtBAM3: at4g17090 

(Li et al., 2009) 

PpBAM3a: Pp1s317_42V6.1 

PpBAM3b: Pp1s23_21V6.1 

PpBAM3c: Pp1s233_4V6.1 

PpBAM3d: Pp1s106_57V6.1 

AtISA3: at4g09020 

(Ferreira et al., 2017) 

PpISA3: Pp1s25_63V6.1 

AtSEX4: at3g52180 

(Kotting et al., 2009) 

PpSEX4a: Pp1s144_24V6.1 

PpSEX4b: Pp1s14_180V6.1 

AtDPE1: at5g64860 

(Stettler et al., 2009) 

PpDPE1a: Pp1s44_268V6.1 

PpDPE1b: Pp1s8_30V6.1 

  

 

 

 

 

 

 

https://en.wiktionary.org/wiki/Homologe#German
https://www.arabidopsis.org/servlets/TairObject?type=locus&name=AT3G52180
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Appendix 5. The subset of genes involved in photosynthesis, cell growth, cell division, and stress 

response. 

 

A. thaliana  P. patens homologs Involvement 

AtAGL1: at3g58780 

(O'Maoileidigh et al., 2018) 

*PpAGL1: Pp1s118_209V6.2 Cell division 

AtARF5: at1g19850 

(Liu et al., 2018) 

PpARF5: Pp1s65_227V6.1 Response to auxin-meristem development 

AtARR15: at1g74890 

(Leibfried et al., 2005) 

PpARR15: Pp1s94_88V2.1 Response to cytokinin 

AtATML1: at4g21750 

(Katagiri et al., 2016) 

PpATML1: Pp1s209_10V6.1 Cell growth and differentiation 

AtAtpA: atcg00120 

(Lamkemeyer et al., 2006) 

PpAtpA: NC_005087.1:c63541-6201 Photosynthesis 

At:BRK1: at2g22640 

(Perroud & Quatrano, 2008) 

PpBRK1: Pp1s35_157V6.1 Cell morphogenesis 

AtCYCD1: at1g70210 

(Wang et al., 2004) 

*PpCYCD1: Pp1s359_22V6.1 Cell cycle control 

AtChIL: at5g05270 

(Soubeyrand et al., 2018) 

PpChIL: NC_005087.1: c113204-112317 Photosynthesis 

AtCLV1: at1g75820 

(Nimchuk, 2017) 

*PpCLV1a: Pp1s5_68V6.1 Cell differentiation 

AtCLV1: at1g75820 

(Nimchuk, 2017) 

*PpCLV1b: Pp1s14_447V6.1 Cell differentiation 

AtCOR47: at1g20440 

(Wu et al., 2017) 

PpCOR47: Pp1s421_9V2.1 Stress response 

AtCRN: at5g13290 

(Muller et al., 2008) 

PpCRN: Pp1s145_89V6.1 Meristem maintenance 

AtGH3.5: at4g27260 

(Staswick et al., 2005) 

PpGH3: Pp1s323_82V6.1 Cell differentiation 

https://en.wiktionary.org/wiki/Homologe#German
https://www.arabidopsis.org/servlets/TairObject?type=locus&name=AT3G58780
https://www.arabidopsis.org/servlets/TairObject?id=30761&type=locus
https://www.arabidopsis.org/servlets/TairObject?type=keyword&id=11397
https://www.arabidopsis.org/servlets/TairObject?type=keyword&id=19325
https://www.arabidopsis.org/servlets/TairObject?id=29465&type=locus
https://www.arabidopsis.org/servlets/TairObject?type=keyword&id=11401
https://www.arabidopsis.org/servlets/TairObject?id=500229546&type=locus
https://www.arabidopsis.org/servlets/TairObject?type=locus&name=AT2G22640
https://www.arabidopsis.org/servlets/TairObject?type=keyword&id=13488
https://www.arabidopsis.org/servlets/TairObject?type=locus&name=AT1G70210
https://www.arabidopsis.org/servlets/TairObject?type=keyword&id=45020
https://www.arabidopsis.org/servlets/TairObject?id=131849&type=locus
https://www.arabidopsis.org/servlets/TairObject?type=locus&name=AT1G75820
https://www.arabidopsis.org/servlets/TairObject?type=locus&name=AT1G75820
https://www.arabidopsis.org/servlets/TairObject?id=30577&type=locus
https://www.arabidopsis.org/servlets/TairObject?type=locus&name=AT5G13290
https://www.arabidopsis.org/servlets/TairObject?type=keyword&id=14818
https://www.arabidopsis.org/servlets/TairObject?type=locus&name=AT4G27260
https://www.arabidopsis.org/servlets/TairObject?type=keyword&id=17127
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AtGRP23: at1g10270 

(Busch et al., 2010) 

PpGRP23: Pp1s219_51V6.1 Cell division 

AtHSF3: at5g16820 

(Guan et al., 2013) 

*PpHSF3: Pp1s249_84V6.1 Stress response 

AtHXK1: at4g29130 

(Rottmann et al., 2018) 

PpHXK1: Pp1s150_124V6.1 Cellular glucose homeostasis, 

programmed cell death 

AtIAA27: at4g29080 

(Overvoorde et al., 2005) 

PpIAA27: Pp1s184_21V6.1 Response to auxin 

AtJAZ5: at1g17380 

(Busch et al., 2010) 

PpJAZ5: Pp1s15_170V6.1 Regulation of defense response 

AtLHCb1: at1g29910 

(Sun & Ni, 2011) 

PpLHCb1: AW126861 Photosynthesis 

AtLHCb2: at2g05070 

(Xu et al., 2012) 

*PpLHCb2: AW126861 Photosynthesis 

AtNCED: at1g04010 

(Bouvier-Nave et al., 2010) 

*PpNCED: Pp1s69_201V6.1 Leaf senescence 

AtNdhA: atcg01100 

(Zhang et al., 2015) 

PpNdhA: Pp3c11_850.v3.1 Photosynthesis 

AtPEP: at4g26000 

(Ripoll et al., 2006) 

PpPEP: Pp1s275_2V6.1 Shoot system development 

AtPetA: atcg00540 

(Liu et al., 2012) 

PpPetA: NC_005087.1: c20179-19220 Photosynthesis 

AtPpPHABULOSA: at2g34710 

(Sebastian et al., 2015) 

PpPHABULOSA: Pp1s188_95V6.1 Meristem initiation 

AtPORA: at5g54190 

(Zhang et al., 2017) 

*PpPORAa: Pp1s146_112V6.1 Chlorophyll biosynthesis 

AtPORA: at5g54190e 

(Zhang et al., 2017) 

*PpPORAb: Pp1s108_171V6.1 Chlorophyll biosynthesis 

AtPsaA: atcg00350 

(Wang et al., 2016) 

*PpPsaA: NC_005087.1: 35758-38010 Photosynthesis 

AtPsaB: atcg00340 *PpPsaB: NC_005087.1: 38036-40240 Photosynthesis 

https://www.arabidopsis.org/servlets/TairObject?type=locus&name=AT5G16820
https://www.arabidopsis.org/servlets/TairObject?type=keyword&id=11209
https://www.arabidopsis.org/servlets/TairObject?type=keyword&id=10841
https://www.arabidopsis.org/servlets/TairObject?type=keyword&id=11397
https://www.arabidopsis.org/servlets/TairObject?id=28475&type=locus
https://www.arabidopsis.org/servlets/TairObject?type=keyword&id=17252
https://www.arabidopsis.org/servlets/TairObject?type=keyword&id=18906
https://www.arabidopsis.org/servlets/TairObject?id=500229587&type=locus
https://www.arabidopsis.org/servlets/TairObject?id=34820&type=locus
https://www.arabidopsis.org/servlets/TairObject?type=locus&name=AT5G54190
https://www.arabidopsis.org/servlets/TairObject?type=locus&name=AT5G54190
https://www.arabidopsis.org/servlets/TairObject?id=500229569&type=locus
https://www.arabidopsis.org/servlets/TairObject?id=500229568&type=locus
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(Liu et al., 2012) 

AtPsaC: atcg01060 

(Liu et al., 2012) 

*PpPsaC: NC_005087.1: c100617100372 Photosynthesis 

AtPsbA: atcg00020 

(Wang et al., 2016) 

*PpPsbA: NC_005087.1: c54280-53219 Photosynthesis 

AtPsbD: atcg00270 

(Liu et al., 2012) 

*PpPsbD: PhpapaCp044 Photosynthesis 

AtPsbM: atcg00220 

(Cho et al., 2009) 

*PpPsbM: NC_005087.1: 4306-4410 Photosynthesis 

AtPUB4: at2g23140 

(Kinoshita et al., 2015) 

PpPUB4: Pp1s307_2V6.2 Cell division 

Atrbcs1a: at1g67090 

(Kwon et al., 2010) 

*Pprbcs: Pp1s459_1V6.1 Photosynthesis 

AtSTM: at1g62360 

(Roth et al., 2018) 

PpSTM: Pp1s235_27V6.1 The stem cell population maintenance 

AtTCP9: at2g45680 

(Zhou et al., 2015) 

PpTCP9a: Pp1s446_21V6.1 Cell division 

 

AtTCP9: at245680 

 

(Zhou et al., 2015) 

PpTCP9b: Pp1s356_40V6.1 Cell division 

AtTIC110: at1g06950 

(Flores-Perez et al., 2016) 

PpTIC110: Pp1s509_22V6.2 Chloroplast organization 

AtTIP2;2: at4g17340 

(Zhou et al., 2015) 

*PpTIP2;2a: Pp1s101_226V6.1 Stress response 

AtTIP2;2: at4g17340 

(Zhou et al., 2015) 

*PpTIP2;2b: Pp1s156_153V6.1 Stress response 

AtTOC75: at3g46740 

(Baldwin et al., 2005) 

PpTOC75: Pp1s2_62V6.1 Chloroplast organization 

AtTPL: at1g15750 

(Busch et al., 2010) 

PpTPLa: Pp1s99_260V6.1 Shoot apical meristem specification 

AtTPL: at1g15750 

(Busch et al., 2010) 

PpTPLb: Pp1s316_34V6.1 Shoot apical meristem specification 

https://www.arabidopsis.org/servlets/TairObject?id=500229536&type=locus
https://www.arabidopsis.org/servlets/TairObject?id=500229561&type=locus
https://www.arabidopsis.org/servlets/TairObject?id=500229556&type=locus
https://www.arabidopsis.org/servlets/TairObject?type=locus&name=AT2G23140
https://www.arabidopsis.org/servlets/TairObject?id=30472&type=locus
https://www.arabidopsis.org/servlets/TairObject?type=keyword&id=10911
https://www.arabidopsis.org/servlets/TairObject?type=locus&name=AT1G06950
https://www.arabidopsis.org/servlets/TairObject?type=locus&name=AT3G46740


122 

 

AtWOX13: at4g35550 

(Romera-Branchat et al., 2013) 

PpWOX13: Pp1s224_106V6.1 Cell division 

AtHSC70-1: at4g24280 

(Su & Li, 2008) 

 

PpHSP70a: Pp1s6_146V6.1 Stress response 

AtHSC70-1: at4g24280 

(Su & Li, 2008) 

PpHSP70b: Pp1s153_153V6.1 Stress response 

AtHSC70-1: at4g24280 

(Su & Li, 2008) 

PpHSP70c: Pp1s115_168V6.1 Stress response 

 

The Asterisk (*) shows differentially regulated genes in response to an elevated level of PpGRAS7 (Fig. 14a). No differences in 

expression levels between genes without asterisk and WT were observed in response to an elevated level of PpGRAS7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.arabidopsis.org/servlets/TairObject?type=locus&name=AT4G35550
https://www.arabidopsis.org/servlets/TairObject?type=keyword&id=20664
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Appendix 6. qRT-PCR primers. The specificity of primers was confirmed with the Primer-

BLAST. Primers were ordered from Sigma-Aldrich (Deisenhofen, Germany). 

 

Gene ID Accession No Forward primers Reverse primers Amplicon 

Size (bp) 

PpAGL1+ Pp1s118_209V6.2 GCGCAGGAGCTGTCTGGTGG CCCACCCTTTCGCCGTGTCG 123 

PpAGO1a+ Pp1s28_182V6.1 CGAGCAGATTTGCATCATCTTG

GGC 

GTCACTTCCACTTTGACTCCGCGA 389 

PpAGO1b+ Pp1s7_194V6.1 CCGAGCAGATTTGGATCATCTC

AGACG 

AGCATCGGATAGACCACGTGTCAC

G 

340 

PpAGO1c+ Pp1s173_134V6.1 TTCACCCGATCTGGGCACGC TCCACCTTCACCCCACGGAGG 246 

PpARF5+ Pp1s65_227V6.1 GGCCGAACTCACCTTGGGTGC CACCTGAGGCTCGTGGCCAAT 129 

PpARR15+ Pp1s94_88V2.1 GCCGGGGATGACTGGATATGAC

CT 

TCAGCACCCTCTGCAAGGCAA 135 

PpATG5 Pp1s227_54V6.1 ATGGTTACCTACCGTTGTTG TTCCAAGGTCTTTCAAATTC 169 

PpATG7 Pp1s73_159V6.1 CTGATGGCAGTATAAAATCACA

A 

CGGAAGATTTGAAGGATCATAAA 148 

PpATML1+ Pp1s209_10V6.1 AGGGCGTGTGGGCAGTGGTA CCACGCACGTCACCTTCGCA 141 

PpAtpA+ NC_005087.1:c635

41-6201 

GCGCCTGGTATTATTTCAAGAC

GTT 
ACTCACGTTGACCACGTCCAA 100 

PpBAM3a Pp1s317_42V6.1 CGGATTAGAGGACTTCGCCGT ACTATTGCCCTCGTTCGCTGT 132 

PpBAM3b Pp1s23_21V6.1 GCCACATGGAGGAAGGACGA ACACGCTTACGGATCAGTGGT 132 

PpBAM3c Pp1s233_4V6.1 GCGGCAATGTTCTGACGGAC CTGCGAGCATGATACGCCTG 110 

PpBAM3d Pp1s106_57V6.1 CGTCACATGGAGGAGGGTCG ACCAAGGGTCCAGTGGCTTT 89 

PpBRK1+ Pp1s35_157V6.1 AGACGGGCTCGCCAACATGG CCGGACGTTCAGCGACAGGG 118 

PpCYCD1+ Pp1s359_22V6.1 GCCCTTTGCTCCTCGTCCACTC GTCAACAGGCTCGGGGCAGC 147 

PpChIL+ NC_005087.1:c113

204-112317 

CCGGAGCTGGTTGTGGAGGC AATGGAGCAGCAAACCCACCA 136 

PpCLV1a+ Pp1s5_68V6.1 TGGTTTGTGTATGAGATGGTCG

GA 
TCGGCTGGAGGTGCAAAACGC 127 

PpCLV1b+ Pp1s14_447V6.1 GCTCCTACGGTTACATCGCGCC CCCCGTCGCCAAACTCGCTC 138 

PpCOR47+ Pp1s421_9V2.1 CGCCCTGATGTGCCTTCGAGC AGCCAGTCAGCCGCTCAGGA 118 
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PpCRN+ Pp1s145_89V6.1 GACCCTCAGCAACGCCCCAA TTCTGCGGGAACAGGGTCGG 81 

PpDPE1a Pp1s44_268V6.1 CCATGCACGGTAAGTGGCAG TTCTTGCGAAGCGAGACGAC 133 

PpDPE1b Pp1s8_30V6.1 ATACTGGGCTGTCGATGCGG CGCCAACACGTCAGGGGTTA 154 

PpE3UL+ Pp1s116_97V6.1 AGGAAGGGCAGAAGGAGAACC

A 

TTGACAAAGGTTGAAGCCACAAAC

A 

94 

PpEf1α Pp1s7_445V6 GTACCTCCCAGGCTGACTGC GTGCTCACGGGTCTGTCCAT 95 

PpGH3.5+ Pp1s323_82V6.1 CACCATCACGCCGAACCCCG TGCCACGAGGGATGGGTCGG 90 

PpGRAS12 Pp1s205_1V6.1 TGGTCCTTCCTTCCAGCAGCG ACGAGTCCACGCCAGCCTCA 98 

PpGRAS7 Pp1s130_63V6.1 CGTCCCGCAGCACCAGCTTT GCGGCGACAATGAGTTCGGGT 98 

PpGRP23+ Pp1s219_51V6.1 TGGACGATGCCTGTGGGCTACT TGCTTCGTCCACGTTGCCCC 116 

PpGWDa Pp1s8_70V6.1 GCGGAGGTAGCTAGTGCGAT GCGCCGACCATATCTGGAGT 131 

PpGWDb Pp1s74_185V6.1 CAGGCCGTGCCCTTAGTTTTG AAGACCAGCTCCTGCATAGCC 161 

PpH3FS+ Pp1s249_84V6.1 CGCGAGCCGACAATCAGGTGT AGGCGAGGGTATGTGCATGTCAG 124 

PpHSP70a + Pp1s6_146V6.1 GGGAAGCAGCACTGGCCCTG TCGGTCGAAGGGGAACGTGGT 119 

PpHXK1+ Pp1s150_124V6.1 GGGTGATGGAGCTGGGCGTCT AAGGATGGAAGAGAGAAAGCGCG

TC 

104 

PpIAA27+ Pp1s184_21V6.1 AAGCCGCATGGTCCACGTCA GGGCGCTGCAATCTTCGGTG 126 

PpISA3 Pp1s25_63V6.1 AACAGCTGGAGTCGAAGCGT CGGCTCTCTGGATTCGACCA 151 

PpJAZ5+ Pp1s15_170V6.1 GCGACGAGCACCAACAGCCA AGGACCACTAAAATCCGCACCCA 119 

PpLHCb1+ AW126856 ATGCGCGTCTACTGCCCTGG CGGTCTTGCGCATGGTGACG 104 

PpLHCb2+ AW126861 CCCGGAGGCTCATTCGACCC ACATGGCCAATCGCCCGTTCT 81 

PpMEX1a Pp1s14_134V6.1 CTCCCAGGCACCGTTTTTGG GCGCTACAGGACCCCACATA 145 

PpMEX1b Pp1s268_86V6.1 TGCCTCATGGTTTGGTCGGT TCCAATAGCACTTCGGGTTCCT 121 

PpMIR171a+ - CGTGGTGGACGGGCAGGATT CGGCACTCCTGGTACTTCAGGC 147 

PpMIR171b+ - ACGAACAGCAGGAATCGCCTAA

GT 

TTATTGGGCCCGCTCAATCAGATG

T 

130 

PpNCED+ Pp1s69_201V6.1 TTCTCGTGGGAGAGGGAGCA TGCAAGGCTCTCATTGCGACT 133 

PpNdhA+ Pp3c11_850.V3.1 AGGTGGTCTTCGAGCGGCAG CCATCCCCAAAAGCCATATTTTGC

C 

145 

PpPEP+ Pp1s275_2V6.1 GTCAGGGGCGGGAGAGGTGT TGCCGCTCCCAATCATGCGG 129 
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PpPetA+ NC_005087.1: 

c20179-19220 

ATTGTACCGGCAGGACCAGAAC

TT 

ACCAAAGCCACCCACATTAGGGTT

A 

96 

PpPHABULOSA+ Pp1s188_95V6.1 CTGTACTCTCTGGGTGGCGGC CCGCCCACTCTGACCGATGT 112 

PpPORAa+ Pp1s146_112V6.1 ACAGGGCTCTTCCGCGAGCA TGCGCCAGTCTCCTGCCAGA 113 

PpPORAb+ Pp1s108_171V6.1 TCCCAGGAAGCTAGCGATGCG CAAGTCGGCAACTGGGGCCAA 112 

PpPsaA+ NC_005087.1: 

35758-38010 

TCTTTAGCTTGGGCAGGACACC

A 

TCTTTAGGATCCACCCCGGCATCT 80 

PpPsaB+ NC_005087.1: 

38036-40240 

TGGCTGACTGATATGGCTCATC

ACC 

CCCACGGCCTAAACGACCTCCT 150 

PpPsaC+ NC_005087.1:c100

617100372 

AATGGTACCTTGGGATGGATGC GCAGATTCACATCTTTTGCAGCCT 90 

PpPsbA+ NC_005087.1: 
c54280-53219 

GCTTGCTACATGGGTCGTGAGT

GGG 

AGCAGTAGCAGCCGCAACAGGA 99 

PpPsbD+ PhpapaCp044 TGGGGTCCAGAAGCACAAGGA AGCAAGCTCAAATTGGCGCAACA 123 

PpPsbM+ NC_005087.1: 

4306-4410 

GCATTGTTCATTTTAATCCCCAC

AGCT 

TTAACTACCCTGACTAGCTGTTTGT

A 
72 

PpPUB4+ Pp1s307_2V6.2 ACGAATAGCCACAGGCACCGC CCACCGTGTCGTTGCTCCCG 143 

PpPWDa Pp1s3_320V6.1 GGTGAAACGCTGGCTTCTGG GGCTCCACCCTTGACCATCA 126 

PpPWDb Pp1s34_54V6.1 CCGCTAGAAGGTGGGGCATT CTCGCACTCGACCGGACTAT 146 

Pprbcs+ Pp1s459_1V6.1 GACCTTCTCGTACCTGCCCCC GCACCGACTTACCGTGTCGAA 112 

PpSAG12 Pp1s19_362V6.1 ATCTGTTGAGGGTATCACG AGAATGAAATCGAAGGCGTA 128 

PpSAG13 Pp1s457_13V6.1 CTCTCGACATCCTTGTCAAT ACTCCAAATTGGTTGACATC 102 

PpSAG18 Pp1s74_138V6.1 TTTCGGGTCAGCATACTQATC ATTCGCTCGATGATAAACAC 114 

PpSEN1 Pp1s81_135V6.1 CTTCATTTCGTAAAGAAGTGAC

C 

CTGTAATATATAACCTCGTGGGC 153 

PpSEX4a Pp1s144_24V6.1 TGTCGTAGACGGCGTTTGGA TCCCGCAATGTTCTGGTCGT 129 

PpSEX4b Pp1s14_180V6.1 CCTCTCCAGACCACGCAGAT TCATCCCCAGTTCATGCCTGT 154 

PpSIR2+ Pp1s145_60V6.1 AGCAATCGGACAACTCCAAGGC

CA 

TGCTGCAGCCATGGCCCCTT 136 

PpSTM+ Pp1s235_27V6.1 TGGCACCGACCCTGCACTCG AGTGGCCGCAGATGCCTTCCA 146 

PpTCP9a+ Pp1s446_21V6.1 GGGGGTGAGTGCAGACGAGC TGCTGGAACCCGGCCATCAG 102 

PpTCP9b+ Pp1s356_40V6.1 AGCTGGTGTGGGGTAAGCACGG ACAAGCAGGACTTCAACACGCGG 92 
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PpTIC110+ Pp1s509_22V6.2 CCCAAGCAAAGAGCCTACAGGA

GA 

ACCTCCTCCGGTTCTGTCCCC 147 

PpTIP2;2a+ Pp1s101_226V6.1 TCCCATGTCTGCGGTGCTGA CGGTGAAGCCGATGGCCAAG 128 

PpTIP2;2b+ Pp1s156_153V6.1 CCGTGGTGGCCTGGGATTTC GCCGGGGACATGAATACGCC 106 

PpTOC75+ Pp1s2_62V6.1 AGCCGAGTATGCCAGGGACTG TGCCCCACCCCACGCATGTA 145 

PpTPLa+ Pp1s99_260V6.1 TGCAAGACAGTGGAGATGGGTC GCTACACGGCCTTTCCCTCC 135 

PpTPLb+ Pp1s316_34V6.1 TGCTTGCTGTCACTACCTCGGAT TGCATTTCCGACTGGCGGCT 149 

PpTPTa+ Pp1s450_17V6.1 TCTTTTCCAGGCGTGGTGGT GTTCTCAGGCACACTGTTTCACA 138 

PpWOX13+ Pp1s224_106V6.1 TGCCTCCGATGTGGTGTGCC ACACCCAAGAGAGCAGCGCAA 95 

 

Cytokinin related+ Pp1s536_11V6.1 CGCCGCTAGTGCGACTTGTCT TGTCGCCTCAATTTTGTCGTCGC 144 

 

Cytokinin related+ Pp1s69_95V6.1 ACCGCACCATGAGCACTCCCA CGCCCCATCCCGTAGTCTGC 99 

 

ABA related+ Pp1s234_91V2.1 AGCGACGTGACCGGCCAAAC CACCTTGTCCACCACGCCCG 141 

 

PpHSB70b+ 

 

Pp1s153_153V6.1 CAGCACGCGCAGGAATGCGT CACCGGACTTGGCCCTCAGC 86 

PpHSB70c+ Pp1s115_168V6.1 GCAGGACAGGGGAGTGTCGT TCCCCTCCGAAGAAGGCTCT 101 

 

Genes with a red plus were used for the expression analysis by qRT-PCR (see 3.1.6). Only 19 genes (Fig. 14a) were differentially 

regulated in response to an elevated level of PpGRAS7. Genes, which were not differentially regulated (not present in Fig. 14a) in 

response to an elevated level of PpGRAS7 have not been mentioned in the main text. 

Gene’s abbreviations: 

AGL1  AGAMOUS-LIKE 1 

AGO1  ARGONAUTE PROTEIN 1 

ARF5  AUXIN RESPONSE FACTOR 5 

ARR15  RESPONSE REGULATOR 15 

ATG5  AUTOPHAGY PROTEIN 5 

ATG7  AUTOPHAGY PROTEIN 7 

ATML1  Homeobox-leucine zipper protein, MERISTEM LAYER 1 

AtpA  ATP synthase subunit alpha 

BAM  β-AMYLASE 

CYCD1  CYCLIN-D1 

CLV  CLAVATA 

DPE1 DISPROPORTIONATING ENZYME 1 

Ef1α   ELONGATION FACTOR 1α 

GRAS12 GRAS domain transcription factor gene in P. patens (Pp1s205_1V6.1) 

GRAS7  GRAS domain transcription factor gene in P. patens (Pp1S130_63V6.1) 

GRP23  GLUTAMINE-RICH PROTEIN 23 

HSF3  HEAT SHOCK FACTOR PROTEIN 3 

HSP70   HEAT SHOCK PROTEIN 70 

HXK1  HEXOKINASE 1 

ISA3  ISOAMYLASE 3 

JAZ5  JASMONATE-ZIM-DOMAIN PROTEIN 5 
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LHCA  LIGHT HARVESTING COMPLEX A 

LHCB  LIGHT HARVESTING COMPLEX B 

MEX1  MALTOSE EXCESS PROTEIN 1 

NCED 9-CIS-EPOXYCAROTENOID DIOXYGENASE 

PetA  Photosynthetic electron transfer A 

POR PROTOCHLOROPHYLLIDE OXIDOREDUCTASE  

PsaA Photosystem I P700 chlorophyll a apoprotein A1 

PsaB Photosystem I P700 chlorophyll a apoprotein A2 

PsaC  Photosystem I iron-sulfur center 

PsbA  Photosystem II protein D1 

PsbD  Photosystem II protein D2 

PsbM  Photosystem II reaction center protein M 

PUB4  U-box domain-containing protein 4 

PWD   PHOSPHOGLUCAN WATER DIKINASE   

rbcs ribulose bisphosphate carboxylase small chain 

SAG   SENESCENCE ASSOCIATED GENE 

SEX4  STARCH-EXCESS 4 

SIN1  SENESCENCE 1 

SIR2 NAD-dependent histone deacetylase, SIR2 

STM  SHOOT MERISTEMLESS 

TCP9  TCP DOMAIN PROTEIN 9 

TIC110 TRANSLOCON AT THE INNER ENVELOPE MEMBRANE OF CHLOROPLASTS 110 

TIP2;2  TONOPLAST INTRINSIC PROTEIN 2;2 

TOC75 TRANSLOCON AT THE OUTER ENVELOPE MEMBRANE OF CHLOROPLASTS 75 

TPL  TOPLESS PROTEIN 

TPT  TRIOSE PHOSPHATE/PHOSPHATE TRANSLOCATOR    

WOX  WUSCHEL-RELATED HOMEOBOX 

GH3  Auxin-responsive GH3 

E3UL  E3 UBIQUTIN LIGASE 

CRN  CORYNE 

COR47  COLD-REGULATED 47 

BRK1  BRICK1 

PHABULOSA  A. thaliana HOMEOBOX PROTEIN 14 

IAA27  Auxin-responsive protein IAA27 

PEP   PEPPER 

NdhA   NADH dehydrogenase subunit 1 
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Appendix 7. Lines specifications.  

Lines were used in this study: 

∆PpGRAS12 # 34 = Line 1 (was generated by 

Christoph Strotbek) 

∆PpGRAS12 # 60 = Line 2 (was generated by 

Christoph Strotbek) 

∆PpGRAS7 # 15 = Line 1 (was generated by 

M. Asif Arif) 

∆PpGRAS7 # 19 = Line 2 (was generated by 

M. Asif Arif) 

PpGRAS7-iOE # 17 = Line 1 

PpGRAS7-iOE # 19 = Line 2 

PpGRAS12-iOE # 82 = Line 1 (was generated 

by Christoph Strotbek) 

PpGRAS12-iOE # 98 = Line 2 (was generated 

by Christoph Strotbek) 

PpGRAS12::GUS # 3 = Line 1 

PpGRAS12::GUS # 61 = Line 2 

mPpGRAS12::GUS # 5 = Line 1 

mPpGRAS12::GUS # 40 = Line 2 

AtRGA1-iOE # 8 = Line 1 

AtRGA1-iOE # 15 = Line 2 

AtRGL1-iOE # 10 = Line 1 

AtRGL1-iOE # 12 = Line 2 

AtSCL6-II-iOE # 106 = Line 1 

AtSCL6-II-iOE # 107 = Line 2 

AtSCL6-III-iOE # 11 = Line 1 

AtSCL6-III-iOE # 21= Line 2 

AtSCL6-IV-iOE # 5 = Line 1 

AtSCL6-IV-iOE # 12 = Line 2 
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