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Zusammenfassung

Diese Dissertation ist den Quantenaspekten von Gravitationen höherer Spins (GRAHSs)

und den ihnen zugrundeliegenden algebraischen Strukturen gewidmet. Theorien höherer

Spins enthalten unendlichdimensionale Symmetrien, die mächtig genug sein sollten, um

keine relevanten Gegenterme zuzulassen. Aus diesem Grund wird seit langem erwartet,

dass GRAHSs endlich, oder zumindest renormierbar sind. Sobald gezeigt ist, dass diese

Eigenschaft tatsächlich realisiert wird, macht sie Theorien höherer Spins zu interessan-

ten Quantengravitationsmodellen. Wenn das keine-Gegenterme-Argument funktioniert,

reduziert sich das Problem, eine quantenkonsistente Theorie höherer Spins zu konstruieren,

bemerkenswerterweise auf das Problem, ein konsistentes klassisches Modell von GRAHS

zu finden.

Eine der interessantesten Klassen von GRAHSs ist die chirale GRAHS, die sowohl in der

Minkowski- als auch in der AdS-Raumzeit existiert. Sie ist momentan die einzige The-

orie mit propagierenden Feldern höherer Spins und einer recht einfachen Wirkung. Die

Theorie ist auf perturbativer Ebene lokal. Die Wirkung der chiralen GRAHS ist in der

Lichtkegel-Eichung bekannt und vermeidet alle Theoreme, welche die Existenz einer The-

orie höherer Spins im flachen Raum verbieten. Wir studieren die Struktur der Quan-

tenkorrekturen in der chiralen GRAHS im Minkowskiraum im Detail. Wir zeigen, dass,

aufgrund einer nichttrivialen Kürzung unter den Feynmandiagrammen dank einer spezi-

fischen Form der Wechselwirkungen (dem Kopplungs-Verschwörungs-Mechanismus), alle

Baumniveau-Amplituden verschwinden; wir analysieren im Detail zwei-, drei- und vier-

Punkt Einschleifenamplituden und zeigen, dass diese UV-konvergent sind. Mit Hilfe

von Unitaritätsschnitten berechnen wir die komplette n-Punkt Einschleifenamplitude und

zeigen, dass sie aus drei Faktoren besteht: (i) der Einschleifenamplitude in QCD oder
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SDYM mit allen Helizitäten plus; (ii) einem bestimmten kinematischen Verzierungsfaktor

für höhere Spins; (iii) einem rein numerischen Faktor der Gesamtanzahl der Freiheitsgrade.

Im Kontext von AdS/KFT wird vermutet, dass GRAHSs dual zu recht einfachen konformen

Feldtheorien (KFTs) sind: zu freien und kritischen Vektormodellen (Typ-A), freien Fermio-

nen und Gross–Neveu-Modellen (Typ-B) und, allgemeiner, zu Chern–Simons-Materie-

Theorien. Wir studieren im Detail die Vakuum-Einschleifenkorrekturen in verschiedenen

Theorien höherer Spins in der anti-de Sitter (AdS) Raumzeit. Für die Typ-A-Theorie in

AdSd+1 beweisen wir die Vermutung, dass die freie Energie für alle ganzzahligen Spins

verschwindet und der freien Energie einer Kugel eines freien Skalarfeldes für alle geraden

Spins gleicht. Wir erweitern dieses Resultat auf alle nicht-ganzzahligen Dimensionen und

reproduzieren insbesondere die freie-Energie-Korrektur zur 4 − ε Wilson–Fisher KFT als

einen Einschleifeneffekt in der Typ-A-Theorie auf AdS5−ε. Wir berechnen ebenfalls die

Beiträge fermionischer Felder höherer Spins, die für supersymmetrische GRAHS relevant

sind. Es wird gezeigt, dass diese exakt mit der Vorhersage der KFT übereinstimmen. Der

Beitrag bestimmter Felder gemischter Symmetrie, die in Typ-B GRAHS vorkommen, wird

ebenfalls berechnet. Der letztere Beitrag führt (in geraden Raumzeitdimensionen) auf eine

Frage, die zu beantworten bleibt.

Freie KFTs haben unendlichdimensionale globale Symmetrien, die in Algebras höherer

Spins manifestiert sind. Die holographisch dualen GRAHSs sollten im Prinzip kom-

plett durch diese Symmetrie bestimmt sein. Deshalb ist die einzige Information, die wir

benötigen, um eine Theorie höherer Spins in AdS zu konstruieren, eine Algebra höherer

Spins, die aus ihrer dualen freien KFT extrahiert werden kann. In dieser Dissertation

rekonstruieren wir die Typ-A GRAHS in AdS5 auf der Ebene der formal konsistenten

klassischen Bewegungsgleichungen (formale GRAHS).



Summary

This dissertation is dedicated to the quantum aspects of higher spin gravities (HSGRAs)

and to their underlining algebraic structures. Higher-spin theories are governed by infinite-

dimensional symmetries called higher-spin symmetries. Higher-spin symmetry should be

powerful enough to leave no room for any relevant counterterms. Therefore, higher spin

gravities have long been expected to be finite or at least renormalizable. This feature,

once shown to be realized, makes higher-spin theories interesting toy models of Quantum

Gravity. Remarkably, if the no-counterterm argument works, the problem of constructing

a quantum consistent higher-spin theory downgrades to a problem of finding a consistent

classical model of higher-spin gravity.

One of the most interesting classes of HSGRAs is chiral HSGRA, which exists both in

Minkowski and AdS spacetime. It is the only theory at present with propagating massless

higher spin fields and a rather simple action. The theory is perturbatively local. The

action of the chiral theory is known in the light-cone gauge and and avoids all No-Go

theorems that forbid the existence of higher-spin theories in flat space. We study in detail

the structure of quantum corrections in the Minkowski Chiral HSGRA. We show that all

tree-level amplitudes vanish, which is due to a nontrivial cancellation among all Feynman

diagrams thanks to the specific form of the interactions (coupling conspiracy mechanism);

we analyze in detail two-, three- and four-point one-loop amplitudes and show that they are

UV-convergent. Using unitarity cuts we compute the complete one-loop n-point amplitude

and show that it consists of three factors: (i) all-plus helicity one-loop amplitude in QCD

or SDYM; (ii) a certain kinematical higher spin dressing factor; (iii) a purely numerical

factor of the total number of degrees of freedom.
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In the context of AdS/CFT, HSGRAs are conjectured to be dual to rather simple conformal

field theories (CFT): free and critical vector models (Type-A), free fermion and Gross-

Neveu models (Type-B) and, more generally, to Chern-Simons Matter theories. We study

in detail vacuum one-loop corrections in various higher-spin theories in anti-de Sitter (AdS)

spacetime. For the Type-A theory in AdSd+1 we prove the conjecture that the free energy

vanishes for all integer spins and is equal to the sphere free energy of one free scalar field for

all even spins. We extend this result to non-integer dimension and, in particular, reproduce

the free energy correction to the 4− ε Wilson-Fisher CFT as a one-loop effect in the Type-

A theory on AdS5−ε. We also compute the contribution of fermionic higher spin fields

that are relevant for supersymmetric HSGRA. These are shown to match precisely with

the prediction of the CFT. The contribution of certain mixed-symmetry fields that appear

in Type-B HSGRA is also computed. The latter leads to a puzzle (in even spacetime

dimension) that remains to be resolved.

Free CFTs have infinite-dimensional global symmetries manifested in higher spin algebras.

The holographic dual HSGRAs should, in principle, be completely determined by this

higher spin symmetry. Therefore, to construct a higher-spin theory in AdS, the only initial

data we need is a higher spin algebra extracted from its free CFT dual. In this thesis,

we reconstructed the Type-A HSGRA in AdS5 at the level of formally consistent classical

equations of motion (Formal HSGRA).
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Chapter 1

Introduction

1.1 Motivations

Unquestionably, Quantum Field Theory (QFT) and General Relativity (GR) form the

backbones of our theoretical frameworks to understand the universe. The triumph of

QFT is that it successfully describes the dynamics of elementary particles with spin-s ≤ 1

within a small zoo of particles maybe known as the Standard Model [8, 9, 10], which has

been verified to a remarkable level of precision through experiments down to subatomic

distances of ∼ 10−19 m (or energy scale ∼ 104 GeV). The Standard Model consists of matter

fields and gauge bosons, which are the mediators of three out of four known fundamental

interactions (electromagnetic, weak, and strong interactions) between visible matter. On

the other hand, we have Einstein’s gravity that describes the remaining force, gravity,

which governs large scale physics where the corresponding mediator is graviton — a spin-2

gauge boson. The most recent detection of gravitational waves by the LIGO collaboration

[11] and the image of Black Hole by the Event Horizon Telescopes [12] showed that GR

still endures as one of the most successful theories of all times, after one hundred-years

from the original formulation [13].

Despite these successes, the two pivotal realms of QFT and GR still resist unification into

an ultimate framework known as Quantum Gravity (QG) that should describe Nature all
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at once. Roughly speaking, the scale where features of Quantum Gravity becomes relevant

is the Planck scale lp ∼ 10−35 m (or 1019 GeV), where gravity should become strongly cou-

pled. Therefore, GR should lose its predictive power the moment we approach the Planck

scale. The very first evidence of the objection for unification was that the perturbative

approach in QFT led to non-renormalizable UV divergences of GR starting from two-loops

[14, 15]. Several notable attempts to soften this UV behaviors are superstring/M-theory,

supergravity (SUGRA), higher spin gravity (HSGRA), etc. In these examples, the field

content and symmetries are extended by considering supersymmetry, extra dimensions and

higher spin states. Opposite to the general expectation that supersymmetry should be the

main factor to make a gravitational theory UV-finite [16, 17, 18, 19], it turns out that it is

higher spin fields that are indispensable ingredients for UV divergence cancellations [20, 21].

Therefore, if we want to formulate a UV-finite QG perturbatively, it seems unavoidable to

introduce higher-spin fields.

Seeking unification of the laws of physics has shown throughout the history of modern

physics to be a fruitful approach to gain a deeper level of understanding of why things are

the way they are. The intuition is that a more elegant formulation for pre-existing theories

can bring new insights to the pathway toward a theory of everything. The prime examples

are the theory of electromagnetism [22] and the unification of space and time into an entity

spacetime in special relativity [23]. A more recent achievement was the electro-weak theory

[24, 9], a low-energy effective theory of the Standard Model, that unified electromagnetism

and the weak force with the gauge group of SU(2)×U(1) at the energy of order 250 GeV.

Under spontaneous symmetry breaking of the group SU(2) × U(1), it gives rise to the

masses of the W -bosons and the Z-boson in the Standard Model. If we take unification as

the guiding principle for the search of the final theory, one would naively expect that, by

going to higher and higher energy, we will reach the ultimate consistent quantum theory.

This theory has to contain the Standard Model and Einstein’s theory as its low-energy

effective field theories. At the moment, it is still impossible to experimentally access the

energy where we can observe gravitational quantum effects, but it may be possible in not so

distant future with the help of CMB measurements and with the dawn of the gravitational

wave physics. Therefore the formulation of Quantum Gravity is driven mainly by finding

examples utilizing unification, UV-completeness and symmetry as guiding principles.
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String theory is a strong contender on the race towards the final theory since it contains

an infinite tower of massive higher spin-fields and is UV-finite (at least up to two loops).

Heuristically speaking, the finiteness of string theory is because there is no point-like

interactions. In particular, the string length ls is a natural UV cutoff that manifest in the

theory and is related to the universal Regge slope α′ as l2s = α′. The α′ is the only free

parameter in string theory, which makes it aesthetically pleasing compared to the Standard

Model, where there are many free parameters that have to be fixed by experiments. There

are two typical limits of α′ that are usually considered: (i) the point-particle limit where

α′ → 0 in which string theory reduces to SUGRA [25, 26]; (ii) the tensionless-limit proposed

by Gross where α′ →∞ [27]. The former case, i.e. the point-particle limit, corresponds to

the low energy limit of string theory and has been intensively studied in various contexts,

see e.g. [28, 29, 30]. On the other hand, the tensionless-limit should correspond to trans-

Planckian energy limit of string theory. In this limit, all the massive higher spin fields

become effectively massless and therefore the theory should acquire an infinite-dimensional

gauge symmetry. This symmetry of a symmetry that is associated with massless higher

spin fields is precisely the starting point of higher spin gravity theories even though they

have little to do with string theories at present. The first systematic attempts to construct

higher spin theories were undertaken by Fronsdal [31]; Brink, Bengtsson, Bengtsson [32, 33];

Fradkin and Vasiliev [34, 35].

In this thesis, we will study various aspects of higher spin gravity (HSGRA). HSGRA

are expected to be one of the simplest models of Quantum Gravity where the graviton

becomes a part of the higher spin multiplet of massless higher spin gauge fields. The

infinite dimensional symmetries should render higher spin gravities UV-finite. Therefore,

the study of HSGRAs should shed more light on the Quantum Gravity Problem and can

even lead to new insights into string theory. Indeed, HSGRA in AdS5× S5, is conjectured

to describe the tensionless limit of type IIB string theory [36, 37]. Besides its relation to

string theory, HSGRA by itself is interesting because of the AdS/CFT Correspondence. In

this context, HSGRAs should be dual to many interesting CFTs [38, 39, 40] that describe

real physics, with the most notable examples of Wilson-Fisher O(N) Vector Model (Ising)

and Chern-Simons Matter theories [40]. The latter class of theories have been recently

conjectured to exhibit several remarkable dualities [41, 42, 43]. HSGRA indicates that, for
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example, the three-dimensional bosonization duality, at least in the large-N limit, should

be a consequence of higher spin symmetries.

1.2 Overview

In this thesis, we exclusively focus on the quantum aspect of HSGRA and its elegant alge-

braic structure. In particular, we will study HSGRA in the context of the AdS/CFT duality

[44, 45, 46]. AdS/CFT is a remarkable relation between d-dimensional non-gravitational

conformal field theory (CFT) as an image on the boundary of a quantum gravity theory

that lives in d+ 1-dimensional asymptotically anti-de Sitter spacetime (AdS):

AdSd+1 QG = CFTd (1.1)

In principle, given two independent definitions of a CFT and its hypothetical AdS dual,

the AdS/CFT correspondence can be proven by matching the CFT’s correlation functions

with the holographic S-matrix in AdS to all orders in coupling constant(s), i.e.

〈O(x1)...O(xn)〉CFT = Holographic S-matrix , (1.2)

where O(xi) are operators at the points xi on the boundary of AdS. The duality (1.1)

has shown its versatility by allowing us to study quantum gravity via its dual CFT and

vice versa. In the original proposal by Maldacena [44], Type-IIB Superstring theory on

AdS5 × S5 is conjectured to be dual to N = 4 superconformal Yang-Mill (SYM) theory

on the boundary of AdS5. Even though an outstanding progress in computing correlators

of strongly coupled SYM has been achieved, see e.g. [47, 48, 49], we still know very little

about how to compute correlation functions of (super-)string theories on AdS background.

For this reason, the original form of the AdS/CFT correspondence remains a conjecture

since there is no complete proof after two decades of efforts.

The above conjecture, however, can be relaxed if we take some particular limits of the

dimensionless ’t Hooft coupling λ = g2
YMN where N is the number of degrees of freedom

on the CFT side which are supposed to be quantized. The relation between λ and the
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string length ls is given by

λ ∼
(R2

l2s

) d
2
, (1.3)

where R is the AdS radius. This relation reveals the strong-weak nature of AdS/CFT

duality where there are two particularly interesting limits:

1. The strongly coupled limit of CFTs, which is also known as the particle limit in AdS,

is the limit l2s
R2 → 0.

2. The tensionless limit (high energy limit) of string theories [36, 37] in which l2s
R2 →∞.

In the latter limit, i.e., the tensionless limit, the dual CFT is essentially free [50, 36,

51, 52] because the ’t Hooft coupling λ → 0. Free CFTs have higher-spin symmetry

due to the emergence of an infinite tower of conserved currents. As we will show later,

higher-spin symmetry is a global symmetry on the CFT side, and it defines a so-called

higher-spin algebra hs, which is a crucial ingredient of the construction of the dual bulk

theory. Moreover, the study of the bulk theory should be more feasible due to the infinite-

dimensional higher-spin symmetry. Up to date, the tensionless limit of superstring theory

is understood only in AdS3 [53], and there is no known description in higher dimensions.

Moreover, the tensionless limit by itself does not have to lead to any weakly-coupled field

theory description. Therefore, the emergence of higher spin gravity on AdSd+1 for d ≥ 3

remains a mystery. On account of AdS/CFT correspondence, we can start from the easier

side, i.e., the CFT side, where the field theories are much better understood instead of

directly dealing with the bulk theory.

In any free CFT, we can construct conserved higher spin rank-s tensors, Js ≡ Ja1...as ,

s = 1, 2, ...,∞, also called higher spin currents. These conserved higher spin tensors are

bilinear in matter fields (scalar, fermion or massless spin-one field) that can take values in

various representation of a gauge group. Let us, for example, consider free scalars in the

fundamental representation, i.e. vector models. The AdS/CFT correspondence then tells

us that the same higher spin symmetry should govern the dual gravitational theories in

bulk. The bulk theory should contain higher spin fields Φs ≡ Φm1...ms
(with s = 0 being
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the scalar field that is dual to J0 = φ̄φ), 1 which are massless. Based on these observations,

Klebanov and Polyakov conjectured that the gravitation AdS-dual of vector models should

be given by some HSGRA [38]:

AdSd+1 unbroken HSGRA = CFTd Free Vector Model. (1.4)

This equation indicates that unbroken HSGRAs are expected to be dual to free CFTs

[36, 37, 38, 54]. The fact that matter fields of vector models lie inside the fundamental

representation rather than the adjoint [38] simplifies the spectrum of single-trace operators

and reduces the field content of the dual bulk theory as compared to string theory.2 In the

case where the matter field transforms in the fundamental representation, upon changing

boundary conditions of the bulk scalar field with s = 0, the HS theory is no longer dual to

free but to the critical vector model (weakly coupled CFT in the large-N). Astonishingly,

by studying HSGRA, we can, at the same time, understand weakly coupled CFT’s that

describe physics of critical phenomena.

When matter fields are in the adjoint representation, i.e. matrix valued fields, the spectrum

of single-trace operators is much bigger. In particular, Sundborg conjectured that HSGRA

theory in AdS5 × S5 should be dual to free N = 4 SYM [36].

The higher-spin theories in AdS are not quite conventional field theories: (i) they usually

contain infinitely-many fields; (ii) higher spin fields require higher derivative interactions,

as a result, the number of derivatives is unbounded; (iii) their relation to the poorly

understood tensionless limit of string theory. This makes generic HSGRAs hard to study

and construct. In particular, the most canonical way of constructing theories, the Noether

procedure is not applicable [55]. There are, however, three well-defined theories with local

enough interactions that luckily avoid and evade the numerous no-go theorems that have

been proven over the years:

1. Three-dimensional higher spin theory [56, 57, 58, 59] (a generalization of the Chern-

1The underlined indices live in AdS with one extra dimension compared to ai.
2The spectrum of String theory has a finite number of massless states and an infinite set of massive

states. In particular there are infinite states with the same spin. On the contrary, the spectrum of the
simplest HSGRA can contain all integer spins, each in one copy.
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Simons formulation of 3d gravity);

2. Four-dimensional Conformal higher spin gravity [60, 51, 61], which is an extension of

conformal gravity. There is, in some sense, a combination of the previous two cases

— conformal HSGRA in three dimensions [62, 63, 64];

3. Four dimensional Chiral HSGRA [65, 66, 67, 68, 69, 70].

Nevertheless, a general expectation is that the∞-dimensional higher-spin symmetry should

be substantial to fix any meaningful physical observable. An essential set of such observ-

ables are encoded in the (holographic) S-matrix, which should be equivalent to CFT cor-

relators. At least for the case of unbroken higher spin symmetries, the symmetry itself

can unambiguously fix all correlation functions [71, 72, 73, 74] and imply that they are

those of the same free CFT that generated the higher spin algebra. In fact, the free CFT’s

correlation functions are the simplest higher spin invariants [75, 76, 77, 78]. Therefore, to a

large extent, one can avoid non-locality problems if one sticks to the higher spin invariant

observables rather than to the problems of its formulation as a local field theory (see e.g.

[79, 80, 81] for a discussion).

The study of higher-spin theories with interactions has a long history because there are

first of all many No-Go theorems [82, 83, 84] that forbid higher-spin interaction in flat

space and AdS [85, 86, 55, 87]. While these theorems restrict the S-matrix of Minkowski

HSGRA to be trivial, they have little to say about local effects. Intriguingly, using the

light-front approach [32, 33], one can show that local cubic interaction for any triplet of

spins does exist [88]. Moreover, the solution that respects Poincare (conformal) symmetries

is called chiral HSGRA, which exists both in flat and AdS spacetime [65, 66, 67, 69, 70].

Just a few years after Fronsdal started the entire higher spin programme and after the

first light-front results were obtained, Fradkin and Vasiliev showed that cubic vertices for

higher spin fields could be written covariantly on (A)dS backgrounds [34, 35], including

the gravitational interactions. Later, Vasiliev himself constructed the higher-spin system
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(or Vasiliev’s equations) that has the form:

dω = ω ? ω + V3(ω, ω, C) + V4(ω, ω, C,C) + ... (1.5a)

dC = ω ? C − C ? π(ω) + V3(ω,C,C) + V4(ω,C,C,C) + ... (1.5b)

The system has several important features. It is background-independent. The fields

here are the one-form connection of the higher spin algebra ω and C is a zero-form taking

values in the same algebra. The bilinear terms are fixed entirely by the higher spin algebra.

The higher order terms, interaction vertices, were fixed by requiring the equations to be

formally consistent, i.e. they are consistent with dd ≡ 0, where d is the exterior derivative.

The price to pay is that there is an infinite set of auxiliary fields which are economically

packed inside ω and C. To date, there is no known action that can be used to derive the

above system,3 but there is a somewhat non-standard action [89]. This is in contrast with

the examples of HSGRAs above, where not only do the theories exist, but they also have

rather simple actions.

There is however a big difference between being formally consistent and being actually

consistent in the sense of giving concrete and well-defined predictions for higher spin in-

teractions [90]. The problem is that C encodes an unbounded number of derivatives of the

physical fields. Therefore, expressions that are nonlinear in C can easily form infinite sums

over all derivatives that are problematic and disagree with the known interactions of higher

spin fields.4 As a result, it is not known how to systematically extract correct interactions

out of (1.5). Nevertheless, (1.5) captures certain algebraic structures of interactions that

are hardly accessible via perturbative methods like the Noether procedure.

Let us summarize some of the proposals and methods to study higher-spin theories. These

include:

• Noether procedure: a canonical perturbative method to introduce interactions with

3In a metric-like formalism, a part of the higher-spin action is known [85] from holography.
4The problem has little to do with HSGRA. Any field theory’s equations, e.g. pure gravity, can be

written in a form similar to (1.5) and will lead to some zero-form C that encodes an unbounded number
of derivatives of the physical fields. Therefore, the vertices have to be constrained more than just by the
formal consistency.
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the requirement that the full action S has to be gauge invariant, namely

0 = δS = δ0S2 + δ0S3 + δ1S2 + ... . (1.6)

Here, S2 is the free action and δ0 is a linearized gauge transformation. In addition,

we also have S3,4,... — higher order interactions, and δ1,2,... — the field-dependent

deformation of the gauge transformations. Due to the conceptual difficulty of under-

standing locality in higher-spin theories, a complete example of HSGRA constructed

via the Noether procedure is not known. It seems that higher spin theories can not

be conventional field theories due to non-local interactions [55].

• Light-cone approach: the main idea is to construct the charges of the Poincare (or any

other spacetime symmetry) algebra directly in terms of physical degrees of freedom.

Whenever a covariant formulation is available, one can simply impose the light-

cone gauge. Then, all unphysical degrees of freedom are gone and the stress-tensor

generates all the required charges. The power of the light-cone approach is that it

helps to study the problem of interactions in full generality without having to use

one or another covariant realization of a given set of physical degrees of freedom

(there can be many such realizations that are not equivalent as far as the problem

of interactions is concerned). More about the light-cone approach can be found in

Chapter 4.

• Reconstruction: an approach that reconstructs the bulk theory through information

obtained from a given conjectural CFT dual. For type-A HSGRA, the cubic action

and some part of the quartic action were reconstructed in [91, 85]. In this approach,

AdS/CFT is automatically being proved (or better say, trivialized) at classical level

since the reconstructed interactions give exactly the correlation functions we started

with. The main issues here are whether the reconstructed action is local enough for

it to be taken seriously (for free CFT’s it is not and the non-localities are yet to be

tamed) and what happens at the quantum level.

• Collective dipole pushes the idea of reconstruction till the end. It was so far ap-

plied only for AdS4/CFT3. The fields on the CFT side are bi-local fields Ψ(x, y) =∑
i φ

i(x)φi(y). Here φi(x) are spacetime scalars that are O(N)-vectors, i = 1, ..., N .
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The idea is to take the free/critical vector model path integral and change the inte-

gration variables from φi to Ψ(x, y). The latter can be interpreted as higher spin

fields in AdS4. Due to the change of variables, there is a non-trivial Jacobian

log J = N
2

Tr log Ψ in the partition function. It is conjectured that the action in

terms of the bi-local fields Ψ is equivalent to the action of a higher spin theory in

AdS4 [92]. It reproduces all correlation functions by construction.

• IKKT matrix model for the fuzzy sphere: an idea that treats space-time as a dynam-

ical physical system with intrinsic quantum structure by studying the IKKT matrix

model [93]. There is a specific solution whose internal structure leads to a consistent

and ghost-free higher-spin gauge theory.

• Formal HSGRA: this is essentially an approach suggested by Vasiliev’s equations

(1.5), i.e. to try to understand the deformation of higher-spin symmetries caused by

(1.5)-like equations. It turns out that the interaction vertices can be derived from

a strong homotopy algebra that can be constructed in a simple way for any given

higher spin algebra [80, 81]. We will apply this in Chapter 5 to HSGRA in AdS5.

1.3 Summary of this thesis

We aim to unfold some of the key features of higher spin theories in this thesis. In partic-

ular, we will focus on UV-finiteness and algebraic structures of HSGRA both in flat and

AdS spacetime.

1.3.1 Main results

As is already mentioned, higher-spin theories share some features with string theory like an

infinite tower of fields with ever increasing spin. In some cases the interactions in HSGRA

are also known to be non-local. Generically, the spectrum of non-minimal higher spin

model involves massless fields with spin-s = 0, 1, 2, ...,∞, and there exists a truncation

to minimal model which has only infinitely many even spins. It is important to note
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that the minimal model is so far the only consistent truncation from the non-minimal one.

Any attempt to consider a finite subset of higher spin fields (or drop some spins from the

even ones) will lead to an inconsistency. Higher spin fields are gauge fields and they have

linearized gauge symmetries of the form δΦm1...ms
= ∇(m1

ξm2...ms)
. Here ξm1...ms−1

are the

corresponding gauge parameters. Then, for any massless gauge field, there will be a dual

higher spin conserved tensors, Js, on the CFT side and vice versa, i.e.

∂bJba2...as = 0 ⇐⇒ δΦm1...ms
= ∇(m1

ξm2...ms)
. (1.7)

We will assume the HS/vector model duality conjecture only at the level of the basic

dictionary (1.7), and audaciously try to construct the bulk theory from the CFT side.

This construction can be referred as a reconstruction approach. Together with (1.7), if

we further assume that AdS/CFT holds at the classical level, the cubic action and part

of the quartic action can be completely determined [85]. For free CFTs, the computation

of correlation functions is straightforward by utilizing Wick’s contraction. We can then

use the knowledge gained from these correlators to infer the form of interactions of the

bulk theory since they should be equivalent to Witten-diagrams in AdS. Schematically, the

action for a spin-s field reads

S =
∑
s

∫
1

2
Φs

(
�−M2

s + ...
)
Φs +

∫
V3(s1, s2, s3)[Φ] +

∫
V4(s1, s2, s3, s4)[Φ] + ... . (1.8)

In principle, to show that HSGRA is UV-finite, we should compute loop-diagrams in AdS

to see whether there is any divergence. However, since we do not know the full action,

it is not yet possible to compute the full one-loop self-energy or the beta function that

should provide access to the quantitative quantum properties of HSGRA. Moreover, direct

loop calculation in AdS is very challenging, see, e.g. [94, 95, 96]. Fortunately, knowledge

of kinetic terms is sufficient to calculate the one-loop determinant of HSGRAs in AdS

that, in turn, can tell us a little bit about UV behavior of HSGRAs. This idea was first

suggested and applied in [97], where it was shown the one-loop determinant in Type-A

HSGRA can be regularized and computed. Moreover, the computation gives the results

that are consistent with AdS/CFT under certain assumptions.

The essential ingredient for HSGRA UV-finiteness is precisely the infinite-dimensional
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higher spin symmetries that alleviate UV-divergence. For the case of chiral HSGRA in

flat space, we show that the theory is consistent at both classical and quantum levels.

Moreover, it is not in contradiction with the No-Go theorems since the full S-matrix is

1, thanks to higher spin symmetries [3, 4]. The theory is constructed in light-cone gauge

[88, 67] and has a complete action of the following schematic form

S = −
∑
λ

∫
Φ†λp

2Φλ +

∫
V3(λ1, λ2, λ3)[Φ] . (1.9)

Chiral HSGRA in flat space is the first known example of a quantum HSGRA. We expect

that the cousin of chiral HSGRA in AdS [69, 70] should also exhibit the same features even

though the loop computation in AdS can be a challenge.

Beside the ability of rendering HSGRA UV-finite, higher spin symmetry is also useful to

formally construct HSGRA via formally consistent equations of motion [80, 81]. Indeed,

using higher spin algebra (HSA) as the only input from the free CFT, we show that the

equations of motion (1.5) of bulk theory can be constructed by deforming the (HSA) with

an explicit example of higher spin theory in AdS5. Generically, the HSA is nothing but the

quotient of the universal enveloping algebra of so(d, 2) (the conformal algebra for AdSd+1

by the two-sided Joseph ideal I. For the case of AdS5 the seed that generates the universal

enveloping algebra is su(2, 2) ∼ so(4, 2). Following the procedure in [80, 81], we can obtain

the equations of motion of the bosonic HSGRA by deforming the following commutation

relation

[PAB, PCD] = (1 + νκ)
(
LADCBC − LBDCAB − LACCBD + LBCCAD

)
(1.10)

by a formal deformation parameter ν, while keeping all other relations of the conformal

algebra intact to preserve local Lorentz algebra and its action on tensors. In fact, beside be-

ing a seed that drives the whole deformation, the above deformed [P, P ]-commutator leads

to the vacuum Einstein’s equations. Supersymmetric extension should also be possible

using the same procedure even though the algebra may look a bit more sophisticated.

The main results in this thesis are:
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1. In [1, 2], we computed the vacuum one-loop effect in the dual HSGRAs in integer di-

mensions and fractional dimensions which opened up possibilities to study AdS/CFT

in non-integer dimension. The results for type-A HSGRA and fermionic higher fields

match precisely with the AdS/CFT’s predictions. We discovered that the results of

type-B HSGRA in even dimensions lead to a puzzle that calls for a better under-

standing of the duality.

2. In [3, 4], we explicitly showed how the cancellation of UV-divergences happens for

the case of chiral HSGRA in flat space. The same pattern for UV-cancellation in

chiral HSGRA should extend to any classes of higher spin theories.

3. In [6], we constructed formally consistent equations of motion of bosonic HSGRA

in AdS5. The supersymmetric version of this theory, with the gauge symmetry

psu(2, 2|4), should describe the tensionless limit of type-IIB superstring theory in

AdS5 × S5.

1.3.2 Outline

We outline the thesis in the following:

In chapter 2, we review some standard knowledge for HSGRA in metric-like, light-front and

frame-like formalisms. Moreover, we also provide some fundamental concepts of AdS/CFT

that are relevant in this thesis.

In chapter 3, we prove the conjecture by Giombi, Klebanov et al. [97, 98, 99] that the free

energy of both free and critical Vector Models can be reproduced as a one-loop effect in

the dual HSGRAs. In particular, we perform many one-loop tests for various HSGRAs

on different backgrounds. Moreover, following an earlier idea by Klebanov and Polyakov,

that HSGRAs/Vector Models duality [38] may also be extended to fractional dimensions,

we recover the free energy of the 4− ε Wilson-Fisher CFT [100] from the dual HSGRA in

AdS5−ε, [2].

In chapter 4, which is based on the original work [3], we show how UV divergences of
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HSGRAs get canceled due to interactions fine-tuned by higher spin symmetries. This effect

of cancellation of UV-divergences is the most important feature of HSGRAs, which makes

them models of Quantum Gravity. We observe this phenomenon in the chiral HSGRA, a

class of HSGRAs [67] that has an action in the light-cone gauge and exists in flat and AdS

backgrounds [69, 70].

We dedicate chapter 5 to the discussion of the algebraic structure of HSGRAs. Using

the A∞-algebra, which can be constructed from a higher spin algebra [80], we obtain

formally consistent equations of HSGRA on AdS5 [6]. Although HSGRAs are self-contained

models of Quantum Gravity, they may emerge in the tensionless limit of string theories.

Therefore, supersymmetric extension of our result with the gauge symmetry psu(2, 2|4)

should describe the massless sector of tensionless type-IIB strings on AdS5 × S5 [36, 37].

In chapter 6, we summarize the main results of this thesis and discuss HSGRA’s current

state of the art.

We collect various technical details in the Appendices.



Chapter 2

Review of Higher Spin Theories

The study of higher-spin fields has a long history (see [101, 102] for a summary). The most

relevant starting point for us is the work of Fronsdal [31]. In this chapter, we review free

HSGRA in the metric-like, light-front and frame-like formalisms. We also discuss some

basic concepts of AdS/CFT paying attention to the case of HSGRA/Vector Model duality.

The metric will come with the convention of mostly plus components.

2.1 Metric-like Formalism for HSGRA

Since the birth of QFT, there have been many No-Go results, see e.g. [82, 83, 84, 102], that

constrain interactions between massless higher-spin fields. In other words, these theorems

may rule out all QFTs with interactions whenever there are gauge fields with spin-s > 2.

However, the equation and action for free higher spin fields are known thanks to Fronsdal

and Fang [31, 103]. The presentation in this section follows [104, 105, 106]. For simplicity,

we will discuss higher spin fields with integer spins.
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2.1.1 Flat Space

We adopt the following convention: a totally symmetric rank-s tensor T(µ1...µs) will be

denoted as Tµ(s) for short. When indices are on the same level and denoted by the same

letter, it means symmetrization is already applied, e.g. ∂µTµ ≡ ∂(µ1Tµ2). Then, the higher

spin equation for a free spin-s field (this is also known as Fronsdal’s equation) reads [31]

�Φµ(s) − ∂µ∂νΦνµ(s−1) + ∂µ∂µΦ ν
µ(s−2)ν = 0. (2.1)

The above equation is invariant under the following gauge transformation

δΦµ(s) = ∂µξµ(s−1), ξ ν
µ(s−2)ν = 0. (2.2)

It is not hard to see that the equation (2.1) is a generalization of the free equation of motion

for massless fields of spin-s = 0, 1, 2. The trace constraint on the gauge parameter is crucial

for gauge invariance of the field Φµ(s). We also need a somewhat unusual constraint that

Φµ(s) should be double-traceless, i.e.

Φ νσ
µ(s−4)νσ ≡ 0. (2.3)

Note that the trace constraint of ξµ(s−1) in (2.2) does not exist for the case of lower spin. In

order to see that the solutions to the equation (2.1) is unique and carry a spin-s representa-

tion of the Poincare group, we can impose transverse-traceless (TT) gauge: ∂νΦνµ(s−1) = 0,

Φ ν
µ(s−2)ν = 0, then the gauge-fixed equations and constraints read

�Φµ(s) = 0, �ξµ(s−1) = 0, (2.4a)

∂νΦνµ(s−1) = 0, ∂νξνµ(s−2) = 0, (2.4b)

Φ ν
µ(s−2)ν = 0, ξ ν

µ(s−3)ν = 0, (2.4c)

δΦµ(s) = ∂µξµ(s−1). (2.4d)

In Fourier space, the gauge-fixed equation �Φµ(s) = 0 implies p2 = pµp
µ = 0, i.e. mass-

lessness. To make the discussion transparent, we can go to light-cone coordinates with

the metric η+− = η−+ = 1, ηij = δij. We can take pµ = aδµ+ with a being some con-
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stant, where µ = +,−, i and i = 1, ..., d − 2. Then, the constraint ∂νΦνµ(s−1) = 0 tells us

that Φ+µ(s−1) = 0, i.e. all components of Φµ(s) that carry at least one +-direction vanish.

Next, the gauge symmetry δΦµ(s) = ∂µξµ(s−1) implements Φ−...−i...i = 0. Therefore, the

non-vanishing components for a totally symmetric spin-s field are Φi(s)(p). One can check

that Φi(s) is so(d − 2) traceless (Φi(s−2)jkδjk = 0) and therefore describes a spin-s particle

according to Wigner’s classification (see e.g. [107, 105, 108] for detailed discussion). The

gauge-fixed action has a simple form

Sgf. =
1

2

∫
Md

Φµ(s)�Φµ(s) . (2.5)

2.1.2 Anti-de Sitter Space

Similarly, with flat space, we can analyze a free massless spin-s gauge field on AdSd back-

ground with the metric gµµ — the maximally symmetric solutions of Einstein equations

with cosmological constant Λ < 0. To do so, we replace partial derivatives, ∂, with covari-

ant derivatives, ∇. The commutator in our convention reads

[∇µ,∇ν ]Vρ = Λ(gµρVν − gνρVµ) . (2.6)

The double-traceless condition becomes

Φµ(s−4)ννρρg
ννgρρ = 0 . (2.7)

The gauge transformation is now

δΦµ(s) = ∇µξµ(s−1), ξµ(s−3)ννg
νν = 0. (2.8)

The Fronsdal equation gets lifted to

�Φµ(s) −∇µ∇νΦνµ(s−1) +
1

2
∇µ∇µΦ ν

µ(s−2)ν −M2
sΦµ(s) + 2ΛgµµΦ ν

µ(s−2)ν = 0, (2.9)

where M2
s = −Λ

[
(s− 2)(d+ s− 3)− s

]
. (2.10)
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The factor 1
2

appears in the third term because of non-commutativity of covariant deriva-

tives (2.6). One needs s(s− 1) terms to symmetrize over µ(s) in AdS, while in flat space

it only needs s(s − 1)/2 terms. The mass-like terms, the last two terms in (2.9), appear

due to gauge invariance requirement. Next, we impose TT gauge where fields are traceless

and are ∇-transverse (∇ · Φ = 0) as in flat space. In this gauge, the equations of motion

reduce to

(�−M2
s )Φµ(s) = 0, (�−m2

s−1)ξµ(s−1) = 0, (2.11a)

∇νΦνµ(s−1) = 0, ∇νξνµ(s−2) = 0, (2.11b)

Φ ν
µ(s−2)ν = 0, ξ ν

µ(s−3)ν = 0, (2.11c)

δΦµ(s) = ∇µξµ(s−1). (2.11d)

The gauge-fixed action in AdS reads

Sgf. =
1

2

∫
AdSd

Φµ(s)(�−M2
s )Φµ(s) . (2.12)

2.2 Light-front Formalism for HSGRA

It is sometimes more convenient to describe massless fields in the light-cone gauge [32, 33,

88]. The reason are that

• We can work directly with physical degrees of freedom and this is the most general

approach to local dynamics. Therefore, unitarity is manifest;

• One avoids ambiguities that arise in manifestly covariant formulations, e.g. the same

degrees of freedom can be embedded into different tensor fields;

• Doing computation in light-cone gauge is rather simple compared to some other

approaches.

For practical purposes, we will only review free massless higher spin fields in four dimen-

sional Minkowski and AdS.
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2.2.1 Flat Space

In four dimensions, the metric in light-cone gauge reads

ds2 = 2dx+dx− + 2dzdz̄ , (2.13)

where

x± =
x4 ± x0

√
2

, z =
x1 ± ix2

√
2

. (2.14)

We can make a Fourier transformation

Φµ(s)(p) =
1

(2π)3/2

∫
d4xe−ix·pΦµ(s)(x) . (2.15)

Upon imposing the light-cone gauge Φ+µ(s−1) = 0, the components that describe physical

d.o.f of Φµ(s) are Φi(s), where Φi(s−2)jkδjk = 0. These are irreducible rank-s tensors that

transform under the little group SO(2) ∼ U(1). The number of independent components

of a traceless symmetric rank-s tensor in two dimensions is two. Therefore, effectively, we

can present any massless spin-s field by two scalar fields. In particular

Φi(s)(p) = ((Φλ
p)†,Φλ

p), Φλ(p) ≡ Φλ
p, (Φλ

p)† = Φ−λ−p , (2.16)

where p = (p+, p−, pi) is the four momentum. Then, the free action for a massless field

simply reads

S = −1

2

∫
d4p (Φλ

p)†p2 Φλ
p . (2.17)

2.2.2 Anti-de Sitter Space

It is also possible to describe massless higher spin fields in AdS using light-cone gauge [69].

The metric of the Poincare patch reads

ds2 =
1

z2

[
2dx+dx− + dx2

1 + dz2
]
. (2.18)
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Once again, we can work directly in momentum space:

Φ(p|z) =
1

(2π)3/2

∫
dx−dx1dx+ e−ix·pΦ(x+, x−, x1|z) . (2.19)

The two scalar fields that describe a massless spin-s gauge field obey the conjugation rules

as

Φλ
p,z ≡ Φλ(p|z), (Φλ

p,z)
† = Φ−λ−p,z . (2.20)

Finally, the free action for a massless higher spin field in AdS4 takes the form

S = −1

2

∫
z≥0

dz d3p(Φλ
p,z)
†(p2 − ∂2

z )Φ
λ
p,z . (2.21)

The simple form of the free action is due to masslessness and light-cone gauge in AdS4.

In particular, this is because massless HS fields are conformally invariant in four dimen-

sions. Those include the Maxwell field strength Fµν , Weyl tensor Wµν,ρσ and higher-spin

generalization thereof. Note that AdS4 looks like a half Minkowski space in the light-cone

gauge.

2.3 Frame-like Formalism for HSGRA

Despite its clarity, the metric-like formalism can sometimes be cumbersome in doing cal-

culation. On the other hand, while light-front formalism is handy, it does not have a

manifestly covariant form. There is a way to avoid all of this by adopting the frame-like

formalism. That is, we will introduce auxiliary variables in terms of vielbeins and spin-

connections that carry flat indices. The idea is to treat General Relativity (GR) as a gauge

theory in the new locally flat frame — the tangent space. From here, a generalization to

fields of all spins is amenable. Another reason that the introduction of the vielbeins and

spin-connections is essential is to couple matter fields, e.g., fermions, nicely to gravity.

Since spinors are irreducible representation of so(d− 1, 1), to couple spinors to gravity, we

need some objects with flat indices. For more details, interested readers are referred to

[105, 109, 110] and references therein.
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In practice, vielbeins are non-degenerate matrices that transfer indices from one basis to

another that we prefer more. If we prefer to work with a flat metric, i.e., ηab, then its

connection to the original metric gµν reads

gµν = ηabe
a
µe
b
ν . (2.22)

For this reason, a, b are sometimes referred as flat (tangent space) indices and µ, ν are

referred as the world (target space) indices. The metric is preserved under the following

local Lorentz transformation

δea = εabe
b with εab = −εba . (2.23)

In general, the vielbein can have d2 components while the metric has only d(d + 1)/2.

The remaining d(d − 1)/2 components are accounted for by the freedom of local Lorentz

rotations, which act as gauge symmetries. The corresponding gauge field $ab
µ is the spin-

connection, and is anti-symmetric in a and b. The spin-connection has the following gauge

transformations

δ$ab = dεab −$a
cε
cb −$b

cε
ac ≡ ∇εab . (2.24)

Tangent space tensor fields are defined as

Ta1...as = eµ1
a1
...eµsasTµ1...µs . (2.25)

The vielbein postulate ∇µe
a
ν = ∂µe

a
ν − Γρµνe

a
ρ −$a

µbe
b
ν = 0 leads to eaν∇µVa = ∇µVν . Here,

Γ, is the Christoffel symbol that is symmetric in µ, ν. The anti-symmetrization of the

vielbein postulate in µ, ν gives

T a[µν] = ∂[µe
a
ν] −$a

[µbe
b
ν] = 0 . (2.26)

From here, it is more convenient to work with differential forms by hiding all the world

indices. We introduce degree-one differential forms, ea = dxµeaµ and $ab = dxµ$ab
µ . In
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terms of these two new variables, one can write down the Cartan structure equations:

T a = dea −$a
b ∧ eb = 0 , (2.27a)

Rab = d$ab −$a
c ∧$cb , (2.27b)

where the two-form T a = 1
2
T aµνdx

µ ∧ dxν = 0 is called the torsion two-form, which follows

directly from (2.26). Moreover, we have Rab = 1
2
Rab
µνdx

µ ∧ dxν which is the Riemann

two-form that has connection to the usual Riemann tensor as

Rµνρσ = Rab
µνeρaeσb . (2.28)

Since ea and $ab are gauge fields, they should account for local symmetries. The total

dimension of the one-form ω when we try to combine ea and $ab together is d2+d(d−1)/2 =

d(d + 1)/2. Hence, we may try to find a Lie algebra with this dimension. The algebra

should contain Lorentz generators Lab, which go hand in hand with $ab. In addition,

we should have some generator that comes with ea, call it Pa. Both ea and Pa must

transform as vectors under Lorentz rotations. This fixes commutation relations of Pa with

Lab. Therefore, the Lie algebra must have the following form

[Lab, Lcd] = Ladηbc − Lbdηac − Lacηbd + Lbcηad , (2.29a)

[Lab, Pc] = Paηbc − Pbηac , (2.29b)

[Pa, Pb] = −ΛLab , (2.29c)

where Λ is cosmological constant. For Λ > 0, we have so(d, 1) which is de Sitter algebra

while Λ < 0 accounts for the anti-de Sitter algebra so(d − 1, 2). Finally, when Λ = 0, we

return to iso(d− 1, 1) which is Poincare algebra. We can now interpret the generators Pa

as local translations.

By defining, Lab = Tab and Pa =
√
|Λ|Ta5, we can write the above Lie algebra as

[TAB, TCD] = TADηBC − TBDηAC − TACηBD + TBCηAD , (2.30)

where A = {a, 5} with 5 being an additional direction, and TAB = −TBA. Let us pack
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ea and $ab into a single one-form Ω = eaPa + 1
2
$abLab which has the following curvature

(field strength)

dΩ− Ω ∧ Ω = T aPa +
1

2

(
Rab − Λea ∧ eb

)
Lab . (2.31)

If we further demand that Ω is a flat connection, i.e. dΩ− Ω ∧ Ω = 0, we get

T a = 0, and Rab = Λea ∧ eb . (2.32)

The second equation corresponds to a maximally symmetric background

Rµνρσ = Λ
(
gµρgνσ − gµσgνρ

)
. (2.33)

The one-form flat connection Ω has the following gauge transformations

δΩ = dε− [Ω, ε] , ε = εaPa +
1

2
εabLab , (2.34a)

where εa and εab are the gauge parameters for Pa and Lab respectively. One can check that

these equations indeed reduce to the diffeomorphism δgµν = ∇(µεν) in the metric-like for-

malism. Now, we are ready to see how to get higher spin fields using the frame-like approach

where the field equations are of first order as shown above. Let us denote the background

vielbein and spin-connection as ēa and $̄ab. Then, the fluctuation of the vielbein, denoted

ea, and spin-connection, denoted $ab, have the following gauge transformation

δea = ∇εa + ēbξ
a,b , δ$ab = ∇ξa,b + ēcξ

a,b , (2.35)

where ξa,b = −ξb,a. To linear order in the fluctuation of the vielbein, we have 1

ea,b = eµa ēµb ∼ ⊗ = ⊕
(

⊕ •
)
. (2.36)

We see that ea,b contains both symmetric and anti-symmetric components. They transform

1See [105] for a nice introduction to Young diagrams and their application in higher spin theories.
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as

δe(a,b) = ∇(aεb) , δe[a,b] = ∇[aεb] − ξa,b . (2.37)

Therefore, if we want to get rid of the anti-symmetric component, we can make an ap-

propriate choice for ξa,b. The remaining symmetric component transforms like a spin-2

Fronsdal field, hence we identify it with Φab.

To get higher-spin field in the frame-like approach, we introduce a generalized vielbein that

is traceless [111, 112, 113]

ea(s−1) = ea(s−1)
µ dxµ, e b

a(s−3)b = 0 . (2.38)

This generalized vielbein transforms as

δea(s−1) = ∇εa(s−1) + ēbξa(s−1),b , ε b
a(s−3)b = 0, ξ b

a(s−3)b,c = 0 . (2.39)

Repeat the same treatment above, we see that the fully symmetric part of the generalized

vielbein is nothing but the Fronsdal field

Φa(s) = eµa(s−1)ē
µ
a δΦa(s) = ∇aεa(s−1) . (2.40)

Once again, we can gauge away other components of ea(s−1),b by appropriate choice of

ξa(s−1),b. Therefore, a gauge field $a(s−1),b as a generalized spin-connection should be

introduced to host ξa(s−1),b

$a(s−1),b = $a(s−1),b
µ dxµ , $

a(s−3)b,c
b = 0 , $a(s−1),a = 0 . (2.41)

It turns out that $a(s−1),b also has its own gauge redundancy [114] and requires a new

spin-connection $a(s−1),bb, and so on. As a consequence, in the frame-like formalism we
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need generalized vielbein and a tower of generalized spin-connections

ea(s−1) : s− 1 (2.42)

$a(s−1),b(t) : t
s− 1 , t = 1, 2, ..., s− 1 . (2.43)

Eventually, we have the following set of generalized curvatures

Ra(s−1) = ∇ea(s−1) + ēb ∧$a(s−1),b ,

Ra(s−1),b(t) = ∇$a(s−1),b(t) + ēc ∧$a(s−1),b(t)c + f(Λ, ē, $), t = 1, 2, ..., s− 2

Ra(s−1),b(s−1) = ∇$a(s−1),b(s−1) ,

(2.44)

where f(Λ, ē, $) are certain terms that depend on the cosmological constant Λ, the back-

ground vielbein ē and the generalized spin-connection $a(s−1),b(t) [114, 115]. They start as

Λēbωa(s−1),b(t−1) + ..., where ... denotes a number of terms that impose the Young symmetry

and tracelessness constraints. In Minkowski limit Λ → 0 we have f = 0. The Ra(s−1),b(t)

are invariant under

δ$a(s−1),b(t) = ∇ξa(s−1),b(t) + ēc ∧ ξa(s−1),b(t)c + Λēb ∧ ξa(s−1),b(t−1) + ... . (2.45)

We can further impose for the system above that

Ra(s−1) = 0 ,

Ra(s−1),b(t) = 0 , for t = 1, 2, ..., s− 2 ,

Ra(s−1),b(s−1) = ēc ∧ ēdWa(s−1)c,b(s−1)d .

(2.46)

These equations are torsion-like constraints that can be used to solve for the generalized

spin-connections. In the last equation, instead of zero on the r.h.s we have the 0-form

Wa(s),b(s) which is the HS generalization of the Weyl tensor built out of order-s curl of the

Fronsdal field

Wa(s),b(s) ∼ ∇b1 ...∇bsΦa1...as − traces (anti-symmetrized in b and a) . (2.47)

Given a set of connections relevant for the description of free higher spin fields, a natural
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question to ask is whether there is an algebra whose connection contains all these frame-like

fields. It turns out that we can pack everything into a master one-form

ω =
(
$ABTAB +

∑
s>2

$A(s−1),B(s−1)TA(s−1),B(s−1)

)
, (2.48)

where

$AB = (ea, $ab), $A(s−1),B(s−1) = {ea(s−1), $a(s−1),b(t), t = 1, ..., s− 1} (2.49)

TAB = (Pa, Lab), TA(s−1),B(s−1) =
s− 1
s− 1 = f(Pa, Lab) . (2.50)

Note that TA(s−1),B(s−1) are the generators of HS algebra that can be written in terms of

polynomials in Pa and Lab (see discussion below). Then, the generalized curvature 2-form

can be written as

R = dω − ω ∧ ω . (2.51)

with the following natural gauge transformations for ω

δω = dξ − [ω, ξ] , (2.52)

where

ξ =
∑
s

ξA(s−1),B(s−1)TA(s−1),B(s−1) . (2.53)

Here, ξA(s−1),B(s−1) are gauge parameters associated to $A(s−1),B(s−1) gauge fields.

Going back to Fronsdal: Note that to return to the Fronsdal equation from (2.46), we

do not need all the auxiliary fields $a(s−1),b(t) with t ≥ 2. For a Minkowski background,

the equations of motion for free higher-spin fields are given by

Ra(s−1) = 0 , ēaµēνbR
a(s−1),b
µν = 0 . (2.54)
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In flat space, ∇ = ∂ and ēµa = δµa and the curvatures can be written as

Ra(s−1),b(t)
µν ēµcēνd = ∂c$a(s−1),b(t)

ν ēdν +$a(s−1),b(t)c
ν ēdν − (c↔ d) , (t ≤ s− 2) . (2.55)

From (2.55), we get

t = 0 : ∂cea(s−1)
µ ēdµ +$a(s−1),c

µ ēdµ − (c↔ d) = 0 , (2.56a)

t = 1 : ∂c$a(s−1),b
µ ēdµ +$a(s−1),bc

µ ēdµ − (c↔ d) = 0 . (2.56b)

If we symmetrize (2.56) with respect to a ↔ c, then contract the resulting equation of

(2.56b) with ηbd, we get

t = 0 : $a(s−1),b
µ ēaµ = ∂aea(s−1)

µ ēbµ − ∂bea(s−1)
µ ēaµ , (2.57a)

t = 1 : ∂b$
a(s−1),b
µ ēaµ − ∂a$a(s−1),b

µ ēµb = 0 . (2.57b)

The Fronsdal equations of motion for free higher-spin fields can be obtained by plugging

(2.57a) into (2.57b) and making the identification that Φa(s) = e
a(s−1)
µ ēaµ. We simply get

�Φa(s) − ∂a∂bΦba(s−1) + ∂a∂aΦ
a(s−2)b

b = 0 . (2.58)

It is clear that to get Fronsdal equations we just need auxiliary fields with depth-t =

0, 1 only. Therefore, one may wonder why we need other extra fields. It turns out that

those extra fields should be present for the consistency of HSGRA’s system in the frame-

like formulation. Moreover, those extra auxiliary fields are the gauge fields associated to

elements of higher-spin algebra that will be explained below.

2.4 AdS/CFT and Higher Spin/Vector model duality

The AdS/CFT correspondence is one of the most celebrated discoveries of string theory

[44, 46, 45]. In the original proposal, N = 4 super Yang-Mill theory in four dimensions

is conjectured to be dual to Type-IIB super string theory in AdS5 × S5. At present, the

conjecture is extended to more general cases. The idea is the following. In the most general
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context, AdS/CFT correspondence implies an (almost) one-to-one relation between confor-

mal field theories, CFT’s, in d-dimensions, and theories of quantum gravity in AdS space

of one dimension higher. In principle, any CFT’s correlation functions can be rewritten

as Witten diagrams for a theory in AdS. However, the resulting gravitational theory may

be very non-local. Therefore, the adverb ’almost’ above stands for the fact that CFT’s

that are dual to perturbatively local weakly-coupled theories of quantum gravity have to

have very special properties (for example, the large-N SYM theory has these properties at

strong coupling, but not at weak or intermediate coupling). In fact, CFT’s that are dual

to higher spin gravities do not share many of the required properties. Nevertheless, they

are simple and well-defined CFT’s, which gives us a hope of better understanding higher

spin gravities.

2.4.1 Formulation of AdS/CFT

To visualize better, take {Ψi(xi)} to be the set of sources Ψi of the bulk fields Φi(xi, zi)

(the corresponding set of Φi is {Φi}) when zi → 0, and Oi to be some operators cooked up

by the matter fields Υ that constitute the CFTs. The partion function on the CFT reads

(we use Euclidean signature)

ZCFT[{Ψi}] =

∫
DΥ exp

[
− SCFT[Υ] +

∫
ddx

∑
i

Ψi(xi)Oi(xi)
]
. (2.59)

The duality is established whenever

ZAdS[{Ψi}] = ZCFT[{Ψi}] , (2.60)

where

ZAdS[{Ψi}] =

∫
Φi→Ψi

DΦi exp
[
− 1

G
SAdS[{Φi}]

]
. (2.61)
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In terms of CFT correlation functions and perturbative holographical scattering amplitude,

the following relation should hold

〈O1(x1)...On(xn)〉 = (−)n
δ

δΨ1(x1)
...

δ

δΨn(xn)
SAdS[{Ψi}]

∣∣∣
Ψi=0

. (2.62)

2.4.2 HSGRA/Vector Model Duality

The AdS/CFT opens up a possibility to study HSGRAs via their dual free CFTs [36, 37,

38, 116]. Recall that the coupling constant on the CFT side is the number of degrees of

freedom N ∼ (R/lp)
d−1. When N is large, we can make the following expansion

− lnZCFT = FCFT = NF 0
CFT + F 1

CFT +
1

N
F 2

CFT + ... . (2.63)

On the other hand, the weak coupling expansion in the dimensionless coupling g = G
Rd−1

gives us

− lnZAdS = FAdS =
1

g
F 0

AdS + F 1
AdS + gF 2

AdS + .... . (2.64)

At least at large N , we should have N−1 ∼ g. Hence, to prove Higher Spin/Vector Model

duality perturbatively, we must show at each order in the coupling constants (or better

non-perturbatively) that F i
CFT = F i

AdS.

Higher-spin gauge fields are dual to conserved tensors of rank greater than two, i.e higher-

spin conserved tensors 2, J,

∂mJma(s−1) = 0⇐⇒ δΦa(s) = ∇aξa(s−1) . (2.65)

The above equation is essential in HSGRA/Vector Model duality. Since, bulk theory and

CFT are governed by the same symmetry group SO(d, 2), fields and operators must live in

the same representation of SO(d, 2). The presence of (at least one) higher-spin conserved

tensors in a CFTd, with d ≥ 3, makes this CFT a free one (possibly in disguise in the sense

2We use a, b, c, ... = 0, ..., d− 1 to denote CFTd Lorentz indices and a, b, c, ... = 0, ..., d for AdSd+1 bulk
Lorentz indices.
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that the correlation functions of single-trace operators have to be those of a free CFT, but

we do not claim the existence of the fundamental free fields). In particular, the moment

a conserved tensor with rank higher than two appears in a CFT, it follows that a tower

of infinitely many higher-spin conserved tensors must emerge to make the CFT consistent

[71, 72, 73, 117, 74].

Higher-spin Symmetry from Free CFT

From conserved higher-spin rank-s tensors, we can construct higher-spin conserved currents

Jsm and the corresponding charges Qs by contracting Ja(s) with conformal Killing tensors

ta(s−1):3

Jsm(t) = Jma(s−1)t
a(s−1) , Qs(t) =

∫
dd−1xJs0 . (2.66)

These higher-spin Noether charges generate higher-spin symmetries which defines higher-

spin algebras, hs [118, 119]. Note that higher-spin algebras contain the so(d, 2) conformal

algebra as a subalgebra.

Being realized by the charges Qs above, the action of Qs on various operators in the

corresponding CFT should be constrained by the Ward identities [41]. Assuming that we

have Ja(2) and some other conserved higher-spin tensors with s > 2, we have at least two

charges Q2 and Qs. By the CFT axioms, the algebra that Q2 and Qs form should contain

some non-vanishing structure constants, i.e.

[Q2, Qs] = Qs + ... , [Qs, Qs] = Q2 + ... . (2.67)

The Ward/Jacobi identities then imply that there should be some other non-vanishing

structure constants as well in the above ellipses. As a result one can prove that in order

to satisfy the Ward identities we need Qs of all spins. In other words, the result in

[41, 72, 73, 117, 74] implies that the presence of at least one Ja(s) with s > 2 leads to the

presence of infinitely many of them. That is to say, CFT with exact higher-spin symmetry

is essentially a free theory.

3Conformal Killing tensors ta(s−1) obey: ∂ata(s−2) − traces = 0 .
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To understand algebra hs, let us take the simplest example of a free CFT constituted by

a scalar field where �φ = 0. The conserved higher-spin tensors take the form

Js = Ja(s) = φ∂a1 ...∂asφ+ ... , ∂mJma(s−1) = 0 (on-shell) . (2.68)

According to Eastwood [119], each element of the higher-spin algebra is in one-to-one corre-

spondence with conformal Killing tensors ta1...as−1 . Consider the following linear differential

operators

D(t, s) = ta1...as−1∂a1 ...∂as−1 + lower orders . (2.69)

We can show that �Dφ = D′�φ = 0. Therefore, D(t, s) is a symmetry of �φ = 0 since

it maps solution to solution. Moreover, we can prove that D1(t1, s1)...Dn(tn, sn) is also a

symmetry of �φ = 0 (keeping the order of Di). As a consequence, it is easy to see that hs

is associative.

We can also define hs as a quotient of universal enveloping algebra U(so(d, 2)) by a two-

sided Joseph ideal I. Recall that the generators TAB of so(d, 2) are anti-symmetric in A,B,

which corresponds to the adjoint representation and can be depicted by Young diagram .

From here, we can construct each elements of the universal enveloping algebra U(so(d, 2))

as polynomials in T ’s

U(so(d, 2)) = • ⊕ ⊕
(
⊗

)
S
⊕
(
⊗ ⊗

)
S
⊕ ...

= • ⊕ ⊕

(
• ⊕ ⊕ ⊕

)
⊕

(
⊕ ⊕ ...

)
⊕ ... ,

(2.70)

where ()S denotes the symmetrized tensor product of the adjoint representation of so(d, 2).

The first bullet • indicates the first singlet of U(so(d, 2)) which is the unit of U(so(d, 2)),

while the second is the quadratic Casimir operator

C2 = −1

2
TABT

AB . (2.71)
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Consider the following two-sided Joseph ideal 4

I = U(so(d, 2))

([
C2 − λ

]
⊕ ⊕

)
U(so(d, 2)) , λ = −1

4
(d2 − 4) , (2.72)

Then, one can show that

hs = U(so(d, 2))/I = • ⊕
⊕
s≥1

s
s . (2.73)

Since U(so(d, 2)) is also associative, hs is associative. Note that the generators with s ≥ 1

in hs are nothing but the TA(s−1),B(s−1) in (2.50). The spectrum of HS theories is then

determined by hs. For more details see e.g. [120, 121, 122, 123, 124, 125, 126].

Higher-spin Symmetry as Gauge Symmetry in AdS

The higher-spin symmetry is a global symmetry of the dual CFT and therefore it needs

to be a gauge symmetry of the corresponding higher spin gravity. A natural object that

can take this task is the one-form ω, which takes valued in the higher-spin algebra. The

simplest equation we can write down for the one-form is

dω = ω ? ω , (2.74)

where ? is the product in hs. Since TAB = (P a, Lab), we can write any elements of hs as

polynomials in terms of P a and Lab. Therefore, it is easy to notice that the equation (2.74)

is sets the previously defined curvature (2.51) to zero and describes an empty space with

free higher-spin fields. The problem is now to add interactions to (2.74), which, as will be

shown later, requires 0-form C. We will discuss this matter in chapter 5.

4To get non-trivial quotient, one should be careful in choosing the elements from U(so(d, 2)) to generate
the ideal. Some choice can make the ideal coincides with the full U(so(d, 2)), which results in a trivial
quotient.
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A Brief Summary of Chapter 2

We reviewed free higher spin fields in metric-like, light-front and frame-like formalisms.

We summarize the three approaches by the following diagram.

We also briefly studied the AdS/CFT correspondence paying attention to HSGRA/Vector

Model duality.

Interactions and Quantum Aspect of HSGRAs

Constructing a consistent HS theory with interactions is one of the main problems of the

HS program. The second problem that we want to address is that whether HSGRA can be

a toy model for Quantum Gravity. The criteria we are paying attention to are: (i) there

should be a graviton inside the spectrum of the theory; (ii) the theory should be UV-finite.

. In flat space: The interaction vertices were found by studying the consistency of the

deformed Poincare algebra in the light-front approach [32, 33, 88]. Using the light-front

approach, a special class of HSGRA was found under the name chiral HSGRA [67]. In this

theory we can show that all quantum corrections vanish [3, 4]. Another class of theories

that have flat space as a background are conformal theories in 3d and 4d.

. In AdS: The list of HSGRAs with interactions is quite short: Chern-Simmons-type

theories in 3d; conformal higher spin theories in 3d and 4d; chiral theory can also be
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extended to AdS4. Another approach is to construct formally consistent classical equations

of motion, a program that was pioneered by Vasiliev [120, 127]. In the latter case there

is an important conceptual problem of how to extract meaningful interaction vertices [90].

Fortunately, when HSGRA/Vector model duality conjecture was formulated, it opened

up the possibility to understand the rather complicated bulk theory by studying free (or

critical) Vector Models [38]. A number of non-trivial checks to test the validity of the

HSGRA/Vector model duality conjecture has been performed at tree-level [128, 129, 77],

and at one-loop see e.g. [97, 98, 99, 130, 131, 132, 133, 1, 2, 134, 135, 136, 137]. The

general take is that since the (holographic) S-matrix is fixed by higher-spin symmetry on

the CFT side [71, 41, 72, 80], HSGRAs should be UV-finite.



Chapter 3

HSGRA at One-Loop in AdS

The main message of this thesis to a large extent is that higher spin theories should be

UV finite theories due to the large amount of symmetries and the simplicity of their dual

partners, vector models, on the boundary of AdS. This chapter is dedicated to the tests

of several types of higher spin theories at one-loop in AdS using the spectral zeta function

approach pioneered by Dowker and Hawking [138, 139]. For self-contained overview pur-

poses, we briefly review some technicalities in the first few sections while the details are

covered in Appendices A and B.

3.1 Motivation

Computing loop diagrams in AdS to compare with results from CFT is the next step

to confirm the validity of AdS/CFT conjecture. Some progress has been made in this

direction, see for examples [94, 140, 48, 49, 137].1 These results opened a direct access to

the quantum properties of the bulk theories and also a link to the anomalous dimensions

of some CFTs [47].

At present, we do not have the full action for type-A,B and SUSY HSGRAs etc., which

1See also, [141] for a direct bulk computation for φ4 theory.
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somewhat limits our access to quantum properties of HSGRAs in AdS.2 Fortunately, with

the knowledge of kinetic terms of various classes of HSGRA’s that are discussed in the

following section, it is sufficient to perform many nontrivial consistency checks to confirm

HSGRA/Vector Model duality at the quantum level. Many one-loop tests have already

been performed in a series of papers [97, 98, 99, 130, 144, 145, 146, 131, 147, 132, 148, 133],

see also [149, 150] for the 3d case. The main lessons are as follows. Each of the fields in the

spectrum of HS theories contributes a certain amount to one of the computable quantities:

sphere free energy, Casimir Energy, a- and c-anomaly coefficients. The sum over all spins

is formally divergent and requires a regularization. Refined in this way the sum over spins

becomes finite and matches the corresponding quantity on the CFT side, which in many

cases leads to nontrivial tests rather than 0 = 0 equalities.

Vacuum one-loop corrections in higher-spin (HS) theories in AdS require one simple in-

gredient as an input data: a CFT with infinitely many conserved higher-rank tensors

conventionally called higher-spin currents Js. These type of CFTs are free or behave like

free theories in the strict N → ∞ limit. The algebra of HS currents determines the field

content of the dual HS theory and allows one to perform many one-loop tests. The sim-

plest free CFTs provide the basic examples of HSGRA/Vector Models dualities: the free

scalar field is dual to Type-A HS theory with spectrum made of totally-symmetric HS fields

and the free fermion is dual to Type-B whose spectrum contains specific mixed-symmetry

fields that include totally-symmetric HS fields too. There are also SUSY extensions of

HS, see for example [151, 152, 153, 54, 154]. This implies that the HSGRA/Vector Model

duality should be, in principle, extendable to all unbroken higher-spin theories and their

supersymmetric extensions.

Then, our contributions are the following:

1. We derive the spectral zeta-function for arbitrary mixed-symmetry bosonic and

fermionic fields.

2. We compute one-loop determinants for Type-A and Type-B theories.

2Some part of the action for type-A HS is now understood via holographic reconstruction [91, 142, 85]
and in 3d the current interaction between the matter sector and Chern-Simons sector was added in [143].
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3. We study the contributions of fermionic HS fields in diverse dimensions, which is

crucial for the consistency of SUSY HS theories.

4. In AdS5 we study Type-D,E,... HS theories that are supposed to be dual to higher-

spin doubletons with spin greater than one and find that they do not pass the one-loop

test.

5. Partially-massless fields are also briefly discussed.

6. A simple expression for the a-anomaly of an arbitrary-spin free field is found.

7. We also discovered that the Type-B theories in all even dimensions lead to puzzling

results that require better understanding of the duality, the bulk result, however, still

can be represented as a change of the F -energy.

8. We prove analytically and also extend to all dimensions including fractional ones the

results for Type-A theory in section 3.6 which supports the conjecture of Klebanov

and Polyakov [38] that HSGRA/Vector Model duality may be extensible to fractional

dimensions.

3.2 Classes of Higher-Spin Theories

In this section, we will classify some classes of HSGRAs via their CFT duals. First of all, we

select a number of distinct free fields Υi (and their conjugates Ῡi) that take values in some

representation of some group Gi. Then, we impose the singlet constraint by projecting onto

the invariants of some subgroup H ∈ Gi. The spectrum of the AdS-dual theory is then

generated by all single-trace quasi-primary operators that are H-singlets. Schematically,

the single-trace operators, which are dual to single-particle states in AdS, have the form

Js = Tr
[
Ῡi∂sΥi

]
+ ... ≡

∑
i

Tr
[
Ῡi∂(a1 ...∂as)Υ

i
]

+ ... , (3.1)
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when Υi sit in the fundamental representation, and the form

Tr
[
Υ∂s1Υ∂s2Υ...∂snΥ

]
. (3.2)

in the adjoint representation. The latter (3.2) corresponds to an exponentially growing

number of states in AdS. It is interesting to note that the dual bulk theories of free CFT’s

with matter in adjoint representations look like the dual theories of CFT’s with fundamen-

tal matter coupled to certain matter multiplets [36, 155, 132, 148].

Below, we classify some of the free CFTs that have HS duals of type-A, B, SUSY HSGRA’s

and certain others, which are considered in this thesis. To proceed, it is suggestive to use the

language and pictures of Young diagrams which refer to so(d) representations to describe

HS currents/fields. We denote the Young diagrams as Y(s1, ..., sn) where si are the length

of each rows and s1 ≥ s2 ≥ ... ≥ sn.

Y(s1, s2, ..., sn) =

sn
...
s3

s2

s1

(3.3)

Type-A. A free scalar field �φ = 0 as a representation of the conformal algebra is

usually called Rac. With one complex scalar one can construct conserved higher-spin

currents, which are totally-symmetric tensors:

Js = φ̄∂sφ+ ... , ∆s = d+ s− 2 , (3.4)

J0 = φ̄φ , ∆0 = d− 2 . (3.5)

Here, we add the ’spin-zero current’ J0 = φ̄φ. These currents can be described by

s . If the scalar is real then the currents of odd ranks vanish. According to

Flato-Fronsdal theorem, [156, 157, 123, 158]:

Rac⊗ Rac =
∑
s

Js . (3.6)
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We can, further, make φ take values in some fundamental representation V of some Lie

group G, so that φ belong to the space S = Rac ⊗ V . It is clear that the spectrum of

Js will correspond to the G-invariant part of the tensor product S ⊗ S. For example, if

φi is an SO(N)-vector and N is large, then the relevant invariant tensor is δij, which is

symmetric. By swapping two scalar fields, we observe that all HS currents with odd spins

are projected out and the SO(N)-invariant single-trace operators belong to (Rac⊗Rac)S,

i.e. have even spins,

(Rac⊗ Rac)S =
∑
k

J2k . (3.7)

Type-A HSGRA contains bosonic totally-symmetric HS fields that are duals of Js, known

as Fronsdal fields [31], and an additional scalar field Φ0 that is dual to φ̄φ. At the free

level Fronsdal fields s = 0, 1, 2, 3, ... obey

(−� +M2
s )Φa(s) = 0, M2

s = (d+ s− 2)(s− 2)− s , (3.8)

where we imposed the transverse traceless (TT) gauge as in Section 2. HSGRA that has

totally-symmetric HS fields, s = 0, 1, 2, ... is called the non-minimal Type-A, which is the

U(N)-singlet projection, and the one with even spins only, s = 0, 2, 4, ... is the minimal

Type-A, which is the O(N)-singlet projection. One can also define the usp(N)-singlet

theory whose spectrum is made of three copies of odd spins and one copy of even spins

[97].

Type-B. In this case, one can take a free fermion /∂ψ = 0 called Di. The spectrum

of single-trace operators is more complicated [156, 123, 158, 159, 160]. They have the

symmetry of all hook Young diagrams Y(s, 1p):3

Js,p = Ja(s),m[p] = ψ̄γ...γ∂s−1ψ + ... . (3.9)

3Notation 1p means p rows of length one.



40 3. HSGRA at One-Loop in AdS

The conserved currents Ja(s),m[p],
4 which obey Young condition, have now mixed-symmetry

and vanishing traces. In particular, Ja(s),m[p] are symmetric in a1...as and anti-symmetric

in m1...mp. In summary,

Ja1...as,m1...mp = ψ̄γasm1...mp∂a1...as−1ψ + ... , (3.10)

conservation: ∂nJa(s−2)mn,m[p] = 0 ,

Young: Ja(s),am[p−1] = 0 ,

tracelessness: Jba(s−2)b,m[k] = 0 .

s

p

Conserved currents correspond to s ≥ 2,∀p and we also have the usual usual conserved

current ψ̄γaψ when s = 1, p = 0. Note that the totally-symmetric HS currents, i.e. when

p = 0, are still there. In addition, there are anti-symmetric tensors that are anomalous,

i.e. not obeying any conservation law, of the form:

Jm[p] = ψ̄γm1 ...γmpψ , p = 0, 2, 3, 4, ... , (3.11)

which are degenerate cases of the same expression (3.10). The spectrum of single-trace

operators can equivalently be read off from Di⊗Di [156, 123, 158] as

Di⊗Di =
∑
s,p

Js,p , with p ≤ d− 2

2
. (3.12)

The corresponding spectrum of the Type-B theory is made of bosonic mixed-symmetry

gauge fields with spin Y(s, 1p), s > 1,∀p or s = 1, p = 0:5

(
−� +M2

s,1p

)
Φa(s),m[p] = 0 , M2

s,1p = (d+ s− 2)(s− 2)− s− p . (3.13)

We call such fields hooks due to the shape of Young diagrams Y(s, 1p). The general formula

for the mass-like term was found in [161, 162]. Note that type-A HSGRA is not a sub-

theory of type-B’s due to the differences in the cubic couplings [142, 155]. Even stronger,

4Note that the conservation is not simply ∂ · J = 0 due to the Young symmetry. One has to project
onto the right irreducible component, otherwise there are no solutions or unitarity is lost. The projection
is done by anti-symmetrizing over all m indices in the second line.

5The ellipses hide all ∇ξ-terms with different permutations due to the requirement of Young symmetry.
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the Type-A HS algebra is not a subalgebra of the Type-B algebra. However, in d = 3, there

is an exception where there are no mixed-symmetry fields (p has to be 0 in this case) and

the HS algebras generated by free boson and free fermion are the same. In other words, the

currents have the same form Y(s, 0, 0, ...), but JA0 = φ2 has weight ∆ = 1 while JB0 = ψ̄ψ

has ∆ = 2, which corresponds to the same mass-like term M2 = −2 in AdS.

SUSY HS. We consider super-symmetric HSGRAs that are dual to CFT’s made of free

scalars and fermions. Together with pure bosonic currents, there are also super-currents:6

J
s=m+

1
2

= φ∂mψ + ... ⇐⇒ Ja(m);α = φ∂a1 ...∂amψα + ... . (3.14)

The super-currents can be expressed via Di⊗ Rac [156, 123, 158]:

Di⊗ Rac =
∑
m=0

J
s=m+

1
2
. (3.15)

The super-currents are dual to totally-symmetric fermionic HS fields in AdS [103, 163]:

( /∇+m)Φa(s);α = 0 , m2 = −
(
s+ d−4

2

)2
. (3.16)

The square of the HS Dirac operators read

(− /∇+m)(+ /∇+m) =
(
−� +M2

s

)
, M2

s = m2 + s+
d(d+ 1)

4
, (3.17)

where the mass-like terms were found in [164] for fermionic fields of any symmetry type. We

can, therefore, present the simplest SUSY HSGRA through the following super-matrices

(
Type-A = Rac⊗ Rac Rac×Di

Di× Rac Type-B = Di⊗Di

)
=
∑ Φa(s) Ψa(s−1

2
);α

Ψa(s−1
2

);α Φa(s),m[p]

 (3.18)

Again, one can take a number of φ’s and ψ’s and impose the singlet constraint with respect

to some global symmetry group G.

6As primaries the currents must be traceless in a(s) and γ-traceless in a(s);α, the former being a
consequence of the latter.
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More general HS theories. Given some dimensions d there is a list L of free conformal

fields that can be in CFTd. Generically, L can contain free scalar and free fermion and

other fields which depend on the dimension d:

L = {Di,Rac, ...} . (3.19)

The list L does not exclude free conformal fields7 φS with any spin S obeying �kφS+ ... = 0

equations of motion, where k = 1, 2, ... . These theories, however, are usually non-unitary.

In even dimension, i.e. d = 2n, beside the singletons (φ and ψ), we can also have doubletons

Sj with spin-j [166, 167, 168, 124, 54], where j = 0, 1
2

are the usual Rac and Di. The j = 1

case corresponds to d
2
-forms, e.g. the Maxwell field-strength Fab in d = 4.

For any given Ls, we can construct CFTs that have higher-spin conserved tensors. For

example, consider L1 = Rac, L2 = Di that take values in the Nn and Nm dimensional

representations of u(N) × u(n) and u(N) × u(m), respectively. By imposing F = u(N)-

singlet, the spectrum has HS fields of Rac⊗Rac with values in u(n), fields of Di⊗Di with

values in u(m) and 2nm fermionic HS fields (see [169] for d = 3).

For the case of Type-C HSGRA as the dual of the spin-j = 1 doubleton S1 in AdS5/CFT4

and AdS7/CFT6, one finds that the spectrum of Type-C HSGRA contains complicated

mixed-symmetry fields [145]. Moreover, we can cook up some extended multiplets of type

nbRac + nfDi + nvS1 for more interesting cases. One of the most notable example is

AdS7/CFT6 with (2, 0) tensor supermultiplet that contains Rac, Di and an S1 rank-3 ten-

sor.

For more details on how to define a general HSGRA via CFT’s content, we refer the

interested readers to [1] and references therein.

7For a comprehensive list of conformally-invariant equations we refer to [165].
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3.3 Higher-Spin Theories at One-Loop

3.3.1 Overview of The One-Loop Tests

The idea of the one-loop tests of HS AdS/CFT was explained in [97, 98]. The AdS partition

function

ZAdS =

∫ ∏
i

DΦi e
−S[Φi] , (3.20)

as a function of the bulk coupling G should lead to the following expansion of the free

energy FAdS:

− lnZAdS = FAdS =
1

G
F 0

AdS + F 1
AdS +GF 2

AdS + ... , (3.21)

where the first term is the classical action evaluated at an extremum. F 1 stands for one-

loop corrections, etc. On the dual CFT side there should be a similar expansion for the

CFT free energy FCFT:

− lnZCFT = FCFT = NF 0
CFT + F 1

CFT +
1

N
F 2

CFT + ... , (3.22)

where the large-N counting suggests that G−1 ∼ N . The number of dof. N is expected

to be quantized [71], which is not yet seen in the bulk. In a free CFT’s, all but the first

term are zero, which should match F 0
AdS. To compute F 0

AdS is, however, still an impossible

task since the classical action is not known. Nevertheless, with the knowledge from the

kinetic term of the action, we can check whether F 1
AdS vanishes identically or produces a

contribution proportional to F 0
CFT, which can be compensated by modifying the simplest

relation G−1 = N to G−1 = a(N + integer) [97, 98]. This basic idea allows to perform

several non-trivial tests thanks to the fact F 1 can be computed on different backgrounds.

The simplest ones include Sd, R×Sd−1 and S1×Sd−1 that are the boundaries of Euclidean

AdSd+1 = Hd+1, global AdSd+1 and thermal AdSd+1, respectively.8 In addition, due to the

appearance of log-divergences on both sides of AdS/CFT more numbers should agree.

8Note that on more complicated backgrounds one encounters the problem of light states [170, 171].
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CFT Side. The free energy computed on Sd of radius R is a well-defined number in odd

d provided the power divergences are regularized away and is ad logR when d = 2n, where

a is the Weyl anomaly coefficient, see e.g. [172] for conformal scalar.

The free energy on S1
β × Sd−1 with the radius of the circle playing the role of inverse

temperature β should have the form

F = ad logRΛ + βEc + Fβ , (3.23)

where ad is the anomaly and it vanishes for odd d and also for φ and ψ on R × Sd−1 and

S1 × Sd−1. The last term Fβ goes to zero when β → ∞, i.e. for R × Sd−1, and can be

easily computed in a free CFT:

Fβ = tr log[1∓ e−Hβ]∓1 = ∓
∑
m

(±)m

m
Z0(mβ) . (3.24)

Here, H is the Hamiltonian of the free CFT and Z0(β) is one-particle partition function

Z0 = tr e−βH =
∑
n

dne
−βωn , (3.25)

where dn and ωn are degeneracies and eigen values of H. The second term in (3.23), which

is proportional to β, is the Casimir Energy. It is given by a formally divergent sum

Ec = (−)F
1

2

∑
n

dnωn = (−)F
1

2
ζ0(−1) , ζ0(z) =

∑
n

dn
ωzn

, (3.26)

which is usually regularized via ζ-function. For free fields it vanishes for odd d. The Mellin

transform maps Z0 into ζ0. See Appendix A.2 for many explicit values.

It is crucial to impose the singlet constraint on the CFT side. In a free CFT, e.g. free

scalar, Fβ is constructed from the character Z0 of Rac. After the singlet constraint is

imposed, one finds, see e.g. [99], that Fβ is built from the character Z of the singlet sector

instead of the Rac-character Z0, i.e. from the character of Rac ⊗ Rac if the CFT is just

Rac. Also, the Casimir Energy is Esing
c = NNfβEc, where NfN is the total number of free

fields with the factor of N removed by the singlet constraint.
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Quadratic action. Using the Transverse-Traceless (TT) gauge discussed in Chapter 2,

we have the following free actions for that are building blocks of the simplest bosonic and

SUSY HSGRA’s that are cooked up from Rac’s and Di’s

S0 =
1

G

∫
[NASA +NBSB +NFSF ] , (3.27)

SA =
1

2

∑
s

∫
Φa(s)

(
−� +M2

s

)
Φa(s) , (3.28)

SB =
1

2

∑
s,p

∫
Φa(s),m[p]

(
−� +M2

s,1p

)
Φa(s),m[p] , (3.29)

SF =
∑
s

∫
Ψ̄
a(s−1

2
)

(
/∇+ms

)
Ψa(s−1

2
) , (3.30)

where the multiplicities NA, NB, NF depend on the multiplet chosen.

AdS Side. The one-loop free energy for a number of (massless) fields in AdSd+1 is given

by determinant of the bulk kinetic terms

(−)FF 1
AdS =

1

2

∑
s

tr log | −� +M2
Φ| −

1

2

∑
s

tr log | −� +M2
ξ | , (3.31)

where the sum is over all fields Φs. The second term in (3.31) corresponds to the ghost

contribution if Φs is a gauge field and needs to be subtracted.9 There is an additional

minus (−)F , if fields are fermions. It can be computed by the standard zeta-function

regularization [138, 139] of one-loop determinants and leads to

(−)FF 1
AdS = −1

2
ζ ′(0)− ζ(0) logRΛUV , (3.32)

where R is the AdS radius, ΛUV is a UV cutoff.

In Euclidean AdSd+1, which is also known as Lobachevsky space Hd+1, the ζ-function is

proportional to the regularized volume of AdSd+1 space, which is a well-defined number for

AdSd=2n+2 and contains logR for AdSd=2n+1. In AdSd=2n+2, we have conformal anomaly

whose appearance is present by log RΛUV . The one-loop free energy on the thermal AdSd+1

9See [173] for an earlier discussion of quantization of higher-spin fields in AdS4.
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with boundary S1
β × Sd−1 is expected to be

F = β[ad+1 logRΛUV + Ec] + Fβ , (3.33)

where Fβ vanishes in the high temperature β → 0 limit. In odd dimension, i.e d = 2n+ 1,

the ad+1-anomaly is zero, while in even dimension it should be the same as in Euclidean

AdS [99]. Therefore, it can be computed from the free energy in Euclidean AdSd+1 with

boundary Sd, i.e. Hd+1. In the latter case only the total anomaly coefficient can vanish,

as was shown in [97, 98]. Therefore, once ad+1 = 0, the rest of the one-loop contribution

should be feasible.

The N0 part of the free energy, Fβ, counts the spectrum of states and should be auto-

matically the same on both sides of the duality. Indeed, the spectrum of HS theories is

determined by higher-spin algebra hs, which are given by free CFTs. The spectrum of

single-trace operators is the same as the spectrum of HS fields and is given by the tensor

product of appropriate (multiplets of) singletons/doubletons. Therefore, the Fβ part can

be ignored on both sides for a moment: it can be attributed to generalized Flato-Fronsdal

theorems, see e.g. [99] for some checks. While the representation theory guarantees that

the spectra should match, a direct path-integral proof is needed.

As will be shown, the Casimir Energy Ec does not vanish for the case of minimal theories

and Type-C theory [145], which requires to modify G−1 ∼ N . Moreover, the computation

we perform below depends heavily on the dimension d.

AdS2n+2/CFT2n+1 cases. The CFT partition function on a sphere is a number, while

F 1
AdS in H2n+2 contains logRΛUV -divergences for individual fields. Therefore, in other to

cancel the log-divergence, we need to pick the right multiplet, otherwise the finite part of F

is ill-defined. Then the finite part, −1
2
ζ ′(0), should be compared to F 1

CFT, which is zero in

free CFT’s. If F 1
AdS is found to be non-zero, then one can try to adjust the relation between

N and bulk coupling G as to make the two sides agree, assuming that F 0
AdS = F 0

CFT and

F 1
AdS = mF 0

CFT where m ∈ Z. This requirement is due to the quantization of the bulk

coupling. It was found [97] that this is the case for the minimal models with even spins

and F 1
AdS is equal to F 0

CFT for a free scalar field [174].
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Another test is for Casimir Energy Ec. It vanishes on the CFT side, while every field

contributes a finite amount on the AdS-side. Therefore, only appropriately regularized

sum over spins can vanish.

AdS2n+1/CFT2n cases. The regularized volume of AdS-space contains logR, while

the sphere free energy FCFT = ad logR is given by the a-coefficient of the Weyl anomaly

(logRΛUV -term vanishes for every field individually). Again, F 1
AdS either vanishes or should

be equal to an integer multiple of the a-anomaly of the dual free CFT, F 0
CFT, and can be

compensated by modifying G−1 ∼ N . The same computation then gives the anomaly for

the conformal HS fields — Fradkin-Tseytlin fields, −2aHS = aCHS, [175, 176, 177, 98].

Since the Casimir Energy does not have to vanish on the CFT side, we expect AdS results

to be some interesting numbers. F 1
AdS corresponds to the order-N0 corrections in CFT,

which are absent for free CFT’s.

For mutual consistency, if a modification of G−1 = N is needed, it must be the same for

all the tests in a given theory.

3.4 One-Loop Tests

In this section we perform the one-loop tests reviewed in Section 3.3. Our new results

include: computations in even dimensions, spectral zeta-function for fermionic and mixed-

symmetry HS fields. Less conventional cases of partially-massless fields and higher-spin

doubletons are discussed in Appendix A.3.

The spectrum of SUSY HSGRA is made of bosonic and fermionic HS fields. The simplest

case is when the dual free CFT made of n scalars and m fermions, so S = nRac⊕mDi. By

imposing different singlet constraints the spectrum of bosonic HS fields can be truncated to

minimal theories. The spin of fermionic HS fields, if there are any, runs over all half-integer

values s = 1
2
, 3

2
, 5

2
, ... . In the minimal theories the order N0 one-loop corrections usually do

not vanish. It is important for the consistency of SUSY HS theories that the modifications

of G−1 ∼ N is necessary for consistency of Type-A and Type-B are the same, which was
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observed for a, c, Ec in AdS5,7 [146, 130] and for Ec in all AdS2n+1 [99].

3.4.1 Casimir Energy Test

The Casimir Energy tests are the simplest since the computation of Ec is not difficult and

we refer to Appendix A.2 for technicalities. Each field contributes some finite amount to

the Casimir Energy. It is important to use the same regularization that has been already

applied for Type-A and Type-B models.

We will discuss HS fermions only, since the pure Type-A and Type-B contributions are

discussed below. Vanishing of the Casimir energy can be seen after summation over spins

with the exponential regulator exp[−ε(s+(d−3)/2)]. For example, in AdS6 the summation

of Ec over all totally-symmetric HS fermionic fields reads

−
∑
m=0

(m+1)(m+2)(1344m6+12096m5+39760m4+57120m3+31388m2+420m−2449)
967680

e−ε(m+(d−2)/2)
∣∣∣
fin.

= 0 ,

(3.34)

where |fin. means to take the finite ε-part of the sum evaluated with the exponential regu-

lator. From the character perspective, consider Di⊗ Rac in any dimension, we have

χ(Di)χ(Rac) = cosh

(
β

2

)
sinh2−2d

(
β

2

)
2[ d2 ]−2d+3 , (3.35)

which is manifestly even in β and therefore the Casimir Energy vanishes. For the same

reason Ec vanishes for non-minimal Type-A,B models and is equal to that of Rac and Di

for minimal cases was also applied in [99]. The Casimir Energy for the fermionic subsector

is bounded to always vanish, which is what we observed. The tests for more complicated

mixed-symmetry fields and partially-massless fields are discussed in Appendix A.3.

We have the following observation that makes the computation for individual fields easier.

First, the character of a conformal scalar weight ∆ has the form q∆(1− q)−d. It is easy to

see that the number of physical d.o.f factorizes out in the character for any ∆. Second, the
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Casimir Energy/its first derivative can be shown to vanish for ∆ = d/2 for d even/odd:

Ec(∆ = d
2
) = 0 , d = 2k , (3.36)

∂

∂∆
Ec(∆ = d

2
) = 0 , d = 2k + 1 . (3.37)

Moreover, the second derivative of Ec with respect to the conformal weight has a very

simple form:

∂2

∂∆2
Ec(∆) =

(−)dΓ(∆)

2Γ(d)Γ(∆− d+ 1)
. (3.38)

3.4.2 Laplace Equation and Zeta Function

The eigenvalue problem of the Laplace operator is closely related to construction of zeta-

functions. We first discuss how to compute the eigenvalues and degeneracies for the Laplace

operator on a sphere and then proceed to zeta-function on Hd+1 (Euclidean AdS), which

can be obtained from that on a sphere, see [178].

Laplace Eigenvalue Problem

We are interested in the spectrum of the Laplacian on SN = SO(N + 1)/SO(N):

(−� +M2)ΦS
n = λSnΦS

n , (3.39)

where M2 is the mass-like term and ΦS is a transverse, traceless field with Lorentz spin S,

where S can be any representation which we label by a Young diagram, S = Y(s1, ..., sk).

As is well-known, the eigenvalues λn are given by the difference of two Casimir operators

with a trivial shift by M2:

−λn = C
so(N+1)
2 (Sn)− Cso(N)

2 (S) +M2 , (3.40)

dn = dimSn , (3.41)
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Here the Young diagrams Sn of representations that contribute are obtained from S by

adding a row of extra length n as the first row:10

S =
sn
...
s2

s1

Sn =

sn
...
s2

s1

s1 + n

(3.42)

The degeneracy dn is just the dimension of Sn. For example, for the scalar Laplacian with

M2 = 0 we have

λn = n(N + n− 1) , dn = dimso(N+1) Y(n) , (3.43)

where dn is the number of components of the totally-symmetric rank-n tensor of so(N+1).

Analogously, for totally-symmetric rank-s tensor fields we find

λn = M2 + E(E −N + 1)− s , E = N + s+ n− 1 , (3.44)

dn = dimso(N+1) Y(s+ n, s) . (3.45)

Spectral Zeta-function

Having eigenvalues λn and degeneracy dn, we can compute the spectral ζ-function on Sd+1:

ζ(z) = volSd+1 ×
∑
n

dn
(λn)z

. (3.46)

Extension to hyperbolic space Hd+1 requires some work, see e.g. [179, 180, 181, 182, 178,

183, 184, 185, 149, 186]. The cases of H2n+1 and H2n are very different. Here ζ(z) is the

spectral ζ-function, which is the Mellin transform of the traced heat kernel at coincident

points:

ζ(z) =
1

Γ[z]

∫ ∞
0

dt tz−1K(x, x; t) . (3.47)

10In general, there are many more representations that contain S upon reduction to so(N). The restric-
tion to transverse and traceless fields reduces this freedom to one number, which is n. The TT-fields result
from imposing gauges on the off-shell fields.
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In homogeneous spaces the heat kernel at coincident points K(x, x; t) does not depend on

coordinates and the volume of the space factorizes out. The volume factor is a source of

additional divergences and needs to be regularized properly [187].

The eigenvalues can be computed in a rather simple way for any irreducible representation

of weight ∆. The rule established on many examples, see e.g. [181, 182] is to replace s1 +n,

which is the length of the first row, by iλ− d
2

where λ is non-negative and real:

−λn = Cd+2(iλ− d
2
, s1, s2, ...)− Cd+1(s1, s2, ...) +M2 =

1

4
(d− 2∆)2 + λ2 +m2 , (3.48)

M2 = m2 + ∆(∆− d)− s1 − s2 − ... , (3.49)

where we took the standard normalization of the mass-like term, see e.g. [161]: for ∆

corresponding to gauge fields, both unitary [161] and non-unitary [161, 188], we have

m2 = 0.

The heat kernel contains only a contribution of the principal series in the odd dimensional

case H2k+1. In the even dimensional case H2k a discrete series can contribute [182] too,

depending on the type of representation. In what follows we will ignore the contribution

of discrete series, but it would be interesting to understand if they play any role in HS

AdS/CFT in d > 2.

Zeta-function naturally has several different factors and the general expression is usually

written in the following form:

ζ =
vol(Hd+1)

vol(Sd)
vdg(s)

∫ ∞
0

dλ
µ(λ)[

1
4
(d− 2∆)2 + λ2

]z , (3.50)

where µ(λ) is the spectral density that is normalized to its flat-space value:

µ(λ)|λ→∞ = wdλ
d , wd =

π

[2d−1Γ(d+1
2

)]2
. (3.51)

g(s) is the number of components of the irreducible transverse traceless tensor that corre-
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sponds to the spin of the field. The volume factors are self-evident. Lastly

vd =
2d−1

π
, ud = vdwd =

(vol(Sd))2

(2π)d+1
. (3.52)

We discuss separately the cases of odd and even dimensions below.

Odd dimensions. In the case of odd dimensions, H2k+1, d = 2k, the ζ-function is

obtained by a simple replacement s1 + n→ iλ− d
2
:

µ(λ) =
1

vol(S2k+1)
dimso(d+1,1)

[
iλ− d

2
,S
]
, (3.53)

where the boldface µ(λ) contains all the factors from (3.50) except for the ratio of volumes.

We then extract g(s), vd and wd factors. For example, for any even d we find for type-A

with totally-symmetric spin-s bosonic fields, SUSY HS with spin s = m+ 1
2

fermionic fields

and type-B for bosonic hook fields Y(s, 1p):

Type-A : µA(λ) = wd

((
d− 2

2
+ s

)2

+ λ2

) d−4
2∏
j=0

(
j2 + λ2

)
, (3.54)

Fermions : µferm(λ) = wd

((
d− 1

2
+m

)2

+ λ2

) d−4
2∏
j=0

((
j +

1

2

)2

+ λ2

)
, (3.55)

Type-B : µB(λ) = wd

((
d−2

2
+ s
)2

+ λ2
)

(
λ2 +

(
d
2
− p− 1

)2
) d−2

2∏
j=0

(
j2 + λ2

)
, (3.56)

where the spin factors are:

gA(s) =
(d+ 2s− 2)Γ(d+ s− 2)

Γ(d− 1)Γ(s+ 1)
= dimso(d) Y(s) , (3.57)

gferm(m) =
Γ(d+m− 1)2[ d2 ]

Γ(d− 1)Γ(m+ 1)
= dimso(d) Y1

2
(m) , (3.58)

gB(s, p) =
(d+ 2s− 2)Γ(d+ s− 1)

(p+ s)Γ(p+ 1)Γ(s)(d− p+ s− 2)Γ(d− p− 1)
= dimso(d) Y(s, 1p) . (3.59)
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The s = 1 case of hooks corresponds to (p+ 1)-forms studied in [182]; spin-s bosons were

investigated in [178]. The most general case in AdS5 and AdS7 was studied in [130, 146].

Even dimensions. In the case of even dimensions, H2k+2, d = 2k + 1, there are two

complications: there can be additional discrete modes and the Plancherel measure is not a

polynomial. If we ignore the discrete modes, the spectral density is a product of a formally

continued dimension dn and a hyperbolic function

µ(λ) =
i

vol(S2k+2)
dimso(d+1,1)

[
iλ− d

2
, S
]
h(λ) , (3.60)

h(λ) =

tanhπλ , bosons ,

cothπλ , fermions .
(3.61)

For example, for any even d we find for totally-symmetric spin-s bosonic fields, spin s =

m+ 1
2

fermionic fields and for bosonic fields with the shape of Y(s, 1p)-hook:

Type-A : µA(λ) = wdλ tanh(πλ)

((
d− 2

2
+ s

)2

+ λ2

) d−4
2∏

j=1/2

(
j2 + λ2

)
, (3.62)

SUSY : µSUSY (λ) = wdλ coth(πλ)

((
d− 1

2
+m

)2

+ λ2

) d−4
2∏

j=1/2

((
j +

1

2

)2

+ λ2

)
, (3.63)

Type-B : µB(λ) = wdλ tanh(πλ)

((
d−2

2 + s
)2

+ λ2
)

(
λ2 +

(
d
2 − p− 1

)2)
d−2

2∏
j=1/2

(
j2 + λ2

)
, (3.64)

where the spin factors are the same. Degenerate hooks with s = 1 again correspond to

(p+ 1)-forms studied in [182]. For symmetric bosonic fields we refer to [178].
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Mixed-Symmetry Fields. As one more example of interest let us take a mixed-

symmetry field of shape Y(s1, s2):

µM(λ) = wd

((
d− 2

2
+ s1

)2

+ λ2

)((
d− 4

2
+ s2

)2

+ λ2

)
× fE/O , (3.65)

gM(s1, s2) = dimso(d) Y(s1, s2) , (3.66)

fO =

d−6
2∏
j=0

(
j2 + λ2

)
, odd dimensions , (3.67)

fE =

d−6
2∏

j=1/2

(
j2 + λ2

)
λ tanh(πλ) , even dimensions . (3.68)

The expression for the most general mixed-symmetry field with spin defined by so(d) Young

diagram Y(s1, s2, ..., sk) with k rows follows the same pattern:

µM(λ) = wd

i=k∏
i=1

((
d− 2i

2
+ s1

)2

+ λ2

)
× fE/O , (3.69)

gM(s1, s2, ..., sk) = dimso(d) Y(s1, s2, ..., sk) , (3.70)

fO =

d−2k−2
2∏
j=0

(
j2 + λ2

)
, odd dimensions , (3.71)

fE =

d−2k−2
2∏

j=1/2

(
j2 + λ2

)
λ tanh(πλ) , even dimensions . (3.72)

For fermionic mixed-symmetry fields one has to correct fE/O factors only:

fO =

d−2k−2
2∏
j=0

(
(j + 1

2
)2 + λ2

)
, odd dimensions , (3.73)

fE =

d−2k−2
2∏

j=1/2

(
(j + 1

2
)2 + λ2

)
λ coth(πλ) , even dimensions . (3.74)
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Let us collect the relevant formulae with all factors now added to µ(λ), which we call µ̃(λ).

The complete spectral zeta-function is

ζ(z) =

∫ ∞
0

dλ
µ̃(λ)[

λ2 +
(
∆− d

2

)2
]z . (3.75)

It is worth stressing that these are the zeta-functions for transverse, traceless tensors.

Then, the ghosts that associated for each massless fields always come with weight ∆ + 1

and spin s− 1 as compared to (∆, s) of the fields themselves and their contributions need

to be substracted. Schematically, the full zeta function of HS, ζHS, is the result of the

following infinity sum

ζHS(z) = ζ∆,0 +
∑

s=1,2,...

[
ζ∆s,s − ζ∆s+1,s−1

]
(3.76)

Below, we collect some simplest formulae for µ̃(λ) in different dimensions and for different

types of HS.

Four Dimensions. In four-dimensions there are no mixed-symmetry fields and bosons

and fermions are described by almost the same formulae [181]

bosons/fermions : µ̃(λ) =
λ(2s+ 1)

(
λ2 +

(
s+ 1

2

)2
)

6
×

tanhπλ , bosons ,

cothπλ , fermions .
(3.77)

Five Dimensions. The explicit formulae in five dimensions, i.e. AdS5, are, see also

[130]:

bosons : µ̃(λ) = logR
λ2(s+ 1)2 (λ2 + (s+ 1)2)

12π
,

fermions : µ̃(λ) = logR

(
λ2 + 1

4

)
(2s+ 1)(2s+ 3) (λ2 + (s+ 1)2)

24π
,

height-one hooks : µ̃(λ) = logR
(λ2 + 1) s(s+ 2) (λ2 + (s+ 1)2)

6π
,

two-row : µ̃(λ) = logR
(λ2 + (s1 + 1)2) (s1 − s2 + 1)(s1 + s2 + 1) (λ2 + s2

2)

6π
.
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Six Dimensions. For application to HS theory based on F (4) we are also interested in

six-dimensional anti-de Sitter space:

bosons : µ̃(λ) = −
λ
(
λ2 + 1

4

)
(s+ 1)(s+ 2)(2s+ 3) tanh(πλ)

(
λ2 +

(
s+ 3

2

)2)
720

,

fermions : µ̃(λ) = −
λ
(
λ2 + 1

) (
s+ 1

2

) (
s+ 3

2

) (
s+ 5

2

)
coth(πλ)

(
λ2 +

(
s+ 3

2

)2)
180

,

hooks : µ̃(λ) = −
λ
(
λ2 + 9

4

)
s(s+ 3)(2s+ 3) tanh(πλ)

(
λ2 +

(
s+ 3

2

)2)
240

,

two-row : µ̃(λ) = −
λ(2s1 + 3)(2s2 + 1) tanh(πλ)(s1 − s2 + 1)(s1 + s2 + 2)

(
λ2 +

(
s1 + 3

2

)2)(
λ2 +

(
s2 + 1

2

)2)
720

.

Note that for fermions we use spin s, rather than integer m = s − 1
2
. The only hooks in

Type-B theory are of shape Y(s, 1). Also, the bosonic cases are all mutually consistent and

follow from the two-row one. We stress that fermions cannot be obtained as s → s + 1/2

from bosons in this case, contrary to d = 3.

3.4.3 Zeta Function Tests: Odd Dimensions

Odd dimensions are easier since evaluation of ζ(0) and ζ ′(0) is of no technical difficulty.

In particular, ζ(0) = 0 for each field individually. The new results are on mixed-symmetry

fields that belong to Type-B theories and fermionic HS fields, where all the tests are

successfully passed. Also, we found a general formula for the a-anomaly. The zeta-function

for the whole multiplet of some HS theory is denoted as ζHS.

Fermionic HS Fields

Firstly, ζs(0) = 0 for any s and therefore the bulk result is well-defined. It is proportional

to logR due to the regularized volume of AdS2k+1. On the boundary it should be equal

to the Weyl anomaly coefficient, a logR, but this has been already accounted for by the

contribution of bosonic HS fields. Therefore, we should check that ζ ′HS(0) = 0. To give few
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examples, in AdS5, see also [130], we find that

ζ ′s(0)

logR
=

(2s+ 1)2(2s(s+ 1)(28s(s+ 1)− 31)− 7)

1440
, s >

1

2
,

ζ ′s(0)

logR
= − 11

180
, s =

1

2
.

Using the same exponential cut-off exp[−ε(s+ d−3
2

)] we find the total a-coefficient to vanish

ζ ′HS(0) =
∑

s=
3
2
,
5
2
,...

ζ ′s(0) + ζ ′1
2

(0) = 0 . (3.78)

In AdS7 we have a more complicated formulae, but fortunately with the same result that

ζ ′HS(0) = 0, see also [146]:

ζ ′s(0)

logR
=

(2s+ 1)(2s+ 3)2(2s+ 5)(2s(s+ 3)(16s(s+ 3)(11s(s+ 3)− 1)− 981)− 695)

9676800
, s >

1

2
,

ζ ′s(0)

logR
= − 13

280
, s =

1

2
.

In general dimension the computation can be simplified by introducing Pd(λ) = Pd(−λ):

Pd(λ) =
∑
k

αkλ
k =

d−4
2∏
j=0

((
j +

1

2

)2

+ λ2

)
. (3.79)

Then, with the help of the simple integration formula

a(z) =

∫ ∞
0

dλ
λk

(b2 + λ2)z
=

Γ
(
k+1

2

)
bk−2z+1Γ

(
−k

2
+ z − 1

2

)
2Γ(z)

, (3.80)

where b = ∆ − d/2, one finds that ζ(0) = 0 and ζ ′(0) can be obtained from (only even k

matters)

∂za(z)
∣∣∣
z=0

=
−ik(∆− d

2
)k+1

4(k + 1)
. (3.81)

Then, it can be effortlessly checked up to any given dimension that the total ζ ′HS(0) vanishes

identically. In fact, it also vanishes when restricted to ’even half-integer’ spins s = 1
2

+ 2n.
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Symmetric HS Fields

The case of Type-A was studied in [98, 97, 146, 145, 130]. Let us quote the results. As

always in odd dimensions ζs(0) = 0, while ζ ′s(0) can be computed the same way as we did

for fermions. The final output is11

ζ ′HS,non-min.(0) = 0 , (3.82)

ζ ′HS,min.(0) = −2aφ logR , (3.83)

where adφ is the Weyl-anomaly coefficient of the free scalar field in CFTd, for which one

finds, see e.g. [172],

a4
φ =

1

90
, a6

φ = − 1

756
, a8

φ =
23

113400
, a10

φ = − 263

7484400
. (3.84)

Mixed-Symmetry HS Fields

We will discuss various versions of the Type-B theory that contains mixed-symmetry fields

with Young diagrams of hook shape (3.10). The contribution of certain mixed-symmetry

fields has been already studied in lower-dimensional cases of AdS5,7 in [130, 146, 145].

With the help of the general formula for the zeta-function we can extend these results for

the Type-B theory to any dimension. Here we should find that F 1
AdS is either zero or is a

multiple of the free fermion Weyl anomaly adψ, see e.g. [189]:

a4
ψ =

11

180
, a6

ψ = − 191

7560
, a8

ψ =
2497

226800
, a10

ψ = − 14797

2993760
. (3.85)

First of all, the spectrum of the non-minimal theory is given by the tensor product of Dirac

free fermion Di that decomposes into a direct sum Wi ⊕ W̄i of two Weyl fermions. With

the help of Appendix A.1 one finds for AdS2k+1:

Di⊗Di =
⊕
n

Y
(
n, 1k−1

)
+
⊕
⊕
n

Y
(
n, 1k−1

)
− ⊕ 2

⊕
n=1,i=1

Y
(
n, 1k−i−1

)
⊕ 2• , (3.86)

11We note that non-min. stands for non minimal which corresponds for all spins while min. stands for
minimal that corresponds to even spins only.
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where we indicate the spin of the fields only as the conformal weight/AdS energy is obvi-

ous.

For example, in seven dimensions the contribution of the scalar field and the total contri-

butions of hooks of height p = 0, 1, 2 are:12

ζ ′0(0) =
8

945
, ζ ′p(0) =

{
1

756
,− 8

945
,− 1

378

}
, (3.87)

while in nine dimensions the contribution of the scalar field and the total contributions of

hooks of height p = 0, 1, 2, 3 are:

ζ ′0(0) =
9

1400
, ζ ′p(0) =

{
13

14175
,− 353

56700
,− 13

14175
,− 23

56700

}
, (3.88)

the total sum being zero, as is expected.

As for the minimal theories, there are several surprises. First of all, one can take just

U(N)-singlet sector of Wi. With the help of Appendix A.1 the spectrum reads

so(d = 4k) :


(Wi⊗Wi) =

⊕
n

Y
(
n, 12k−1

)
+
⊕
⊕
n,i

Y
(
n, 12k−4i−1

)
⊕

⊕
n,i

Y
(
n, 12k−4i−3

)
⊕ •

(3.89)

so(d = 4k + 2) :


(Wi⊗Wi) =

⊕
n

Y
(
n, 12k

)
+
⊕
⊕
n,i

Y
(
n, 12k−4i

)
⊕

⊕
n,i

Y
(
n, 12k−4i−2

) (3.90)

We see that for d = 4k, i.e. AdS4k+1, the spectrum does not contain symmetric higher-spin

fields at all. In particular, there is no graviton. Nevertheless, the total ζ ′HS(0) can be found

to vanish. For example, consider AdS9, for which the results on the row-by-row basis were

quoted in (3.88). The spectrum of U(N) Weyl fermion Wi is

Wi⊗Wi = • ⊕
⊕
n

Y (n, 1)⊕ Y (n, 1, 1, 1)+ , (3.91)

12The zeta-function for hooks with p+ 1 > d/2 is the same as for the dual fields with p+ 1 < d/2.
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and we see that 9/1400− (353/56700)− (23/113400) = 0. The same is of course true for

the Wi⊗W̄i sub-sector: 13/14175− (13/14175) = 0. The latter sector contains symmetric

HS fields, including the graviton:

Wi⊗ W̄i =
⊕
n

Y (n)⊕ Y (n, 1, 1) . (3.92)

For d = 4k + 2, i.e. AdS4k+3, the U(N) Weyl fermion does include totally-symmetric HS

fields, so the theory looks healthy. The spectrum of the two parts is

Wi⊗Wi =
⊕
n

Y (n)⊕ Y (n, 1, 1)+ , (3.93)

Wi⊗ W̄i = • ⊕
⊕
n

Y (n, 1) . (3.94)

Again, the two sub-sectors result in ζ ′HS(0) = 0 independently: 1/756 − (1/756) = 0 and

8/945− (8/945) = 0.

As for the minimal Type-B theory there are several options. Firstly, one can take the anti-

symmetric part of Di ⊗ Di, which would be the minimal Type-B. Secondly, one can take

the anti-symmetric part of only Wi ⊗Wi, which would be the minimalistic option. The

spectrum of the minimalistic Type-B theory is even more peculiar. We refer to Appendix

A.1 for more detail, while giving two examples here-below. In AdS7 we find, see also [146],

(Wi⊗Wi)O(N) =
⊕
n

Y (2n+ 1)⊕ Y (2n, 1, 1)+ . (3.95)

The total ζ ′HS(0) is −(1/378) + 211/7560 = 191/7560, which is in accordance with the

a-anomaly of one Weyl fermion on S6, see also Appendix A.2. In AdS9 the spectrum of

the minimalistic Type-B is

(Wi⊗Wi)O(N) =
⊕
n

Y (2n+ 1, 1)⊕ Y (2n, 1, 1, 1)+ , (3.96)

and the contribution to ζ ′HS(0) is 23/5400− (3463/226800) = 2497/226800, which is again

in accordance with the a-anomaly of the free fermion. The contribution of the symmetric
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part of the tensor product

(Wi⊗Wi)S = • ⊕
⊕
n

Y (2n, 1)⊕ Y (2n+ 1, 1, 1, 1)+ , (3.97)

which would be relevant for the usp(N)-singlet theory comes with the opposite sign,

−2497/226800. The latter is obvious, of course, without any computation since the total

anomaly was found to vanish.

The same pattern can be observed in other dimensions. According to the quite general

law [190, 187, 176], the a-anomaly of conformal HS fields on the boundary can be com-

puted from the AdS side due to the fact that aCHS = −2aHS, which is related to more

general results on the ratio of determinants [191]. Therefore, vanishing of total aHS for

the mixed-symmetry fields of Type-B implies the one-loop consistency of the conformal

higher-spin theory with spectrum of conformal HS fields given by the sources to the single-

trace operators built out of free fermion. As in the case of Type-A conformal HS theory

[175, 60], the action is given by the log Λ-part of the generating function of correlators of

mixed-symmetry currents Js,p, (3.10):

SCHS[Ψs,p] = log Λ-part of log

∫
Dψ̄Dψ e

∫
ψ̄/∂ψ+

∑
s,p Js,pΨs,p , (3.98)

where Ψs,p are the sources for Js,p.

Simplifying a-anomaly

We now understand that ζ ′(0), which is related to the boundary a-anomaly, is a quite

complicated expression. However, we can express a through ζ ′ by considering the formula

[177, 98, 146, 130]

a′(∆) =
1

logR

1

2∆− d
∂

∂∆
ζ ′∆(0) , (3.99)
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for any ∆ and any irreducible representation S defined by some Young diagram Y (s1, ..., sn)

with n rows. Then we find that

a′(∆) = (−)n+1dimY (s1, ..., sn)
Γ[∆− n]

∏n
i=1(∆ + si − i)(d+ si −∆− i)

Γ[∆− d+ n+ 1]Γ[d+ 1]
. (3.100)

a does not have a nice factorized form, but it is always proportional to ∆ − d/2, i.e.

it vanishes at ∆ = d/2, which is a boundary condition for the integral that allows to

reconstruct a from a′:

a(∆) =
1

logR
ζ ′∆(0) =

∫ ∆

d/2

dx (2x− d)a′(x) . (3.101)

3.4.4 Zeta Function Tests: Even Dimensions

For the case of AdS2n+2, it is much harder to compute the zeta function because of the

complexity of spectral density. It is no longer a simple polynomial, but contains the

functions tanh or coth. Moreover, ζ(0) is generally non-zero for each field (which is due to

the conformal anomaly). Below we present the main results with the technicalities devoted

to Appendix A.4. The most interesting case is that of mixed-symmetry fields from the

Type-B theory.

Fermionic HS Fields

Let us start with few examples. Computation of ζ(0) is not too difficult thanks to a handful

of papers [181, 192, 97]. For example, in AdS4 and AdS6 the sum over all fermions is zero

∑
m=0

−1200m4 − 2400m3 − 1560m2 − 360m− 47

2880
= 0 ,

−
∑
m=0

(m+ 1)(m+ 2) (2016m6 + 18144m5 + 60704m4 + 92064m3 + 56462m2 + 42m− 9061)

483840
= 0 .

As different from odd dimensional AdS, the sum over all ’even half-integer’ spins does not

vanish.
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The computation of ζ ′(0) is an art, see Appendices for details, but it can be shown on

a dimension by dimension basis that for AdS4,6,8,... one finds ζ ′fermions(0) = 0. Therefore,

adding fermionic HS fields is consistent to a given order, which is a necessary condition for

the existence of SUSY HS theories.

Symmetric HS Fields

The case of symmetric HS fields was already studied in [97, 98]. The summary is that

ζHS(0) = 0 both for minimal and non-minimal Type-A theories while ζ ′(0) does not vanish

for the minimal Type-A and is equal to the sphere free energy of one free scalar:

ζHS,non−min(0) = 0 , ζHS,min.(0) = 0 , (3.102)

−1
2
ζ ′HS,non−min(0) = 0 , −1

2
ζ ′HS,min.(0) = F φ

d . (3.103)

As before, the minimal Type-A requires G−1 = N − 1.

Mixed-Symmetry HS Fields

This is the most interesting case. The Type-B theory in AdS4 does not differ much from

the Type-A — the spectrum consists of totally-symmetric HS fields. This is not the case in

d > 3 where the spectrum of Type-B contains mixed-symmetry fields with Young diagrams

of hook shape (3.10) in accordance with the singlet spectrum of free fermion Di. Much less

is known about these theories13 except that they should exist in any dimension since Di

and Rac do.

Zeta. First of all, it is important to check that ζ(0) = 0 and thus the bulk contribution is

well-defined. It is convenient to present a contribution of the ψ̄ψ operator and of the hooks

for each height p separately. Here p can run over 0, ..., d − 2 with p = 0 corresponding to

totally-symmetric HS fields. However, one can (and should) take into account only half of

13Some cubic interaction vertices for mixed-symmetry fields in AdS were constructed in [193, 194, 195].
A part of the Type-B cubic action that contains 0− 0− s vertices was found in [155, 196, 81].
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the hooks since the rest can be dualized back to p + 1 ≤ d/2 and the zeta function is the

same. The latter is in accordance with the generalized Flato-Fronsdal theorem, which we

now write for AdS2k+2:

Di⊗Di = • ⊕
⊕
n,i

Y
(
n, 1k−i−1

)
, (3.104)

where there is one scalar and half of the hooks. For example, in AdS6 we find

ζψ̄ψ(0) = − 37

7560
, ζp(0) =

{
− 1

1512
,

1

180

}
,

∑
ζp(0) =

37

7560
. (3.105)

Here one can see the contribution of the type-A fields with s ≥ 1, which is −1/1512. In

Type-A this is canceled by the ∆ = 3 scalar. Now, the contribution of ψ̄ψ is different, but

there is the p = 1 sector and ζHS(0) = 0. In AdS8 we find

ζψ̄ψ(0) = − 119

32400
, ζp(0) =

{
− 127

226800
,

1

280
,

1

1512

}
,

∑
ζp(0) =

119

32400
. (3.106)

It can be checked for higher dimensions that the total ζHS(0) = 0. Now let us have a look

at the minimal theories. The O(N)-singlet version of the Flato-Fronsdal theorem tells that

(Di⊗Di)O(N) = •⊕
⊕
n,i

Y
(
2n, 1k−4i−1

)
⊕ Y

(
2n, 1k−4i−4

)
(3.107)

⊕
n,i

Y
(
2n+ 1, 1k−4i−2

)
⊕ Y

(
2n+ 1, 1k−4i−3

)
, (3.108)

where the scalar is present whenever (k−1) mod 4 = 0 or (k−2) mod 4 = 0. Analogously

to odd dimensions, simply taking anti-symmetric part of Di ⊗ Di can result in somewhat

strange spectra, which may not contain graviton. Nevertheless, such spectra yield vanishing

contribution to ζHS(0). For example, in AdS6 we find

(Di⊗Di)O(N) = •⊕
⊕
n,i

Y (2n, 1)⊕
⊕
n,i

Y (2n+ 1) , (3.109)

and the contribution of all odd spin fields is zero, while hooks of even spins give exactly
37

7560
to cancel that of the scalar. Similar pattern is true in higher dimensions and both
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minimal and non-minimal Type-B have ζHS(0) = 0.

Zeta Prime. The most challenging problem of computing one-loop effect is to find ζ ′HS(0).

Below we give the summary of our results in several dimensions, with technicalities devoted

to the Appendices. While doing the calculation, we noticed that certain integrals cannot be

evaluated analytically but they cancel each other at the end, also all complicated factors

disappear from the final result. For the non-minimal theories the total contribution to

−1
2
ζ ′HS(0) is:14

AdS4 : − 1

2
ζ ′HS(0) = −ζ(3)

8π2
, (3.110)

AdS6 : − 1

2
ζ ′HS(0) = − ζ(3)

96π2
− ζ(5)

32π4
, (3.111)

AdS8 : − 1

2
ζ ′HS(0) = − ζ(3)

720π2
− ζ(5)

192π4
− ζ(7)

128π6
, (3.112)

AdS10 : − 1

2
ζ ′HS(0) = − ζ(3)

4480π2
− 7ζ(5)

7680π4
− ζ(7)

512π6
− ζ(9)

512π8
, (3.113)

AdS12 : − 1

2
ζ ′HS(0) = − ζ(3)

25200π2
− 41ζ(5)

241920π4
− 13ζ(7)

30720π6
− ζ(9)

1536π8
− ζ(11)

2048π10
. (3.114)

The case of AdS4 was studied in [97]. The discrepancy with the sphere free energy of

free fermion, F d
ψ, is systematic, see Appendix A.2 for some explicit values. However, these

numbers are not random. They can be reproduced as a difference in the free energy via

RG-flow induced by a double-trace operator O2
∆. If the operator O∆ is bosonic the general

formula for δF̃ φ
∆ = F̃IR − F̃UV can be found in [174]:15

δF̃ φ
∆ =

1

Γ(d+ 1)

∫ ∆−d/2

0

u sin(πu)Γ

(
d

2
+ u

)
Γ

(
d

2
− u
)
du . (3.115)

The values of the free scalar F -energy can also be computed as F -difference:

F̃ φ
d = −δF̃ φ

∆=
d−2

2

= δF φ

∆=
d+2

2

. (3.116)

14We list here only those results that fit one line. See also a closely related paper [133].
15Here we pass to generalized sphere free energy F̃ that is defined as − sin(πd2 )F , see e.g. [100].



66 3. HSGRA at One-Loop in AdS

The numbers that resulted from the tedious computations in AdS2n+2 arrange themselves

into the following sequence:

−1

2
ζ ′HS(0) = δF̃ φ

∆=
d−1

2

= −δF̃ φ

∆=
d+1

2

. (3.117)

However, the dual of Type-B is supposed to be a fermionic theory, for which a generalization

of [174] to fermionic O∆ in any d gives [100]:

δF̃ψ
∆ =

2

Γ(d+ 1)

∫ ∆−d/2

0

cos(πu)Γ

(
d+ 1

2
+ u

)
Γ

(
d+ 1

2
− u
)
du . (3.118)

Again the free fermion F -energy can be computed as F -difference:

F̃ψ
d = δF̃ψ

∆= d+1
2

= −δF̃ψ

∆= d−1
2

. (3.119)

We observe that for ∆ = d−2
2

it will give −1
2
ζ ′HS(0) up to a factor of ±1/4:

−1

2
ζ ′HS(0) = −1

4
δF̃ψ

∆= d−2
2

=
1

4
δF̃ψ

∆= d+2
2

. (3.120)

For the minimal theories the computations are even more involved, but the unwanted

constants do cancel and we find16 for the total contribution to −1
2
ζ ′HS(0):

AdS4 : − 1

2
ζ ′HS(0) =

log(2)

8
− 5ζ(3)

16π2
,

AdS6 : − 1

2
ζ ′HS(0) =

45ζ(5)

128π4
− 3ζ(3)

64π2
− 3 log(2)

64
,

AdS8 : − 1

2
ζ ′HS(0) =

649ζ(3)

23040π2
− 23ζ(5)

1536π4
− 449ζ(7)

1024π6
+

5 log(2)

256
,

AdS10 : − 1

2
ζ ′HS(0) =

315ζ(7)

4096π6
+

3825ζ(9)

8192π8
− 617ζ(3)

43008π2
− 85ζ(5)

4096π4
− 35 log(2)

4096
,

AdS12 : − 1

2
ζ ′HS(0) =

29ζ(7)

49152π6
+

13579ζ(9)

49152π8
+

31745ζ(11)

32768π10
− 68843ζ(3)

5160960π2
− 31033ζ(5)

1105920π4
− 63 log(2)

8192
.

Again, these numbers do not look random. Curiously enough the AdS6 result equals 6F φ.

16A word of warning is that the spectrum of the minimal Type-B is defined in (3.109). Other projections,
e.g. the usp-constraint or various Majorana-Weyl projections, would result in a slightly different spectra,
all of which yield similar numbers, i.e. the unwanted constants go away.
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3.5 Toward HSGRAs/Vector Models Duality in Frac-

tional Dimensions

Inspired by the results in integer dimension, we extend the computation above to frac-

tional dimension for some classes of HS theories. As it was mentioned already in [38], see

also [100], the fact that the Wilson-Fisher critical point exists in 4 − ε expansion should

allow one to make sense both of the dual higher-spin theory and of the duality itself

in AdS5−ε/CFT4−ε. While there are some results in CFTs in fractional dimensions, see

e.g. [100], the bulk side’s computation is difficult whenever we try to move away from

integer dimensions. In [2], we computed one-loop determinant of Type-A HSGRA in frac-

tional dimensions in Lobachevsky space Hd+1 and compared it with the sphere free energy

F = − logZSd of free and critical large-N O(N) vector models. The results on both sides

of the AdS/CFT duality do match in all dimensions, which gives an analytic proof of the

results obtained for a number of fixed integer dimensions in [97, 98] and extends them to

fractional dimension. Upon changing the boundary conditions we reproduce the difference

between the sphere free energy under a double trace deformation (φ2)2 that drives the free

model at UV to the critical model in IR.

To understand how it works, first of all, let us start from the better understood side, i.e.

the CFT side. Here, there are different techniques available that allow one to make sense of

at least some of the interacting CFTs in fractional dimensions. For example, the large-N

expansion, see e.g. [197, 198, 199, 200], and the ε-expansion [201]. Another technique

that is useful is conformal bootstrap which can set up some computations in fractional

dimensions [202]. One of the predictions that came from the conformal bootstrap technique

is to show that the 2d Ising model smoothly turns into the 3d Ising model and ends up on

the free theory in 4d. Using ε-expansion, we can access the free theory in d = 4 starting

from d = 4 − ε and take the limit ε → 0. The whole range 2 < d < 4 is covered by the

1/N -expansion whenever N is large. There are recent studies [203, 204] pointing out that

the critical vector model can be extended to a wider range of dimension 4 ≤ d ≤ 6.

As noted, the observable on the CFT that we will try to match with the bulk calculation is
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F = − logZSd . This observable should decrease along RG flow and be stationary at fixed

points which are described by conformal field theories. The d = 2 case is solved by the

c-theorem [205], while the 4d case by the a-theorem [206, 207]. Both the central charge c

and the a anomaly can be extracted from the sphere free energy: F = a logR, where R is

the radius of the sphere and c = −3a in 2d. In d = 3 there is no conformal anomaly but it

was first conjectured [208, 209, 174] and then proved [210, 211] that F works in 3d as well.

More generally, F̃ = (−)(d−1)/2 logZSd is expected [174] to work in odd d, in particular

in d = 1 it gives the g-theorem [212]. Following these results, the definition of F̃ is then

generalized to F̃ = sin(πd
2

) logZSd that works in all dimensions [100]. This observable can

interpolate smoothly between all dimensions but even ones. At even dimensions, there are

poles that are resolved in such a way that the a-anomaly is captured, F̃ = (−1)d/2πa/2. F̃

was computed in [190, 187, 213, 174, 189] for the cases of free CFT’s and interaction ones

that induced by a double-trace deformation. For the free scalar field it is

F̃ φ =
1

Γ(d+ 1)

∫ 1

0

du u sin(πu)Γ

(
d

2
+ u

)
Γ

(
d

2
− u
)
, (3.121)

while for the change δF̃ induced by a double trace deformation due to an operator O∆ of

dimension ∆ it is given by

δF̃∆ =
1

Γ(d+ 1)

∫ ∆−d/2

0

du u sin(πu)Γ

(
d

2
+ u

)
Γ

(
d

2
− u
)
. (3.122)

and we are interested in the case ∆ = d− 2 that corresponds to O = φ2.

3.6 The One-loop Tests in Fractional Dimensions

In this section, we will restrict ourselves to (non)-minimal type-A HSGRA. Whether the

dual CFT is free or interacting depends on the boundary conditions imposed on the scalar

field, s = 0, of the higher-spin multiplet: ∆ = d − 2 for the free dual and ∆ = 2 for the
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(large-N) interacting one. Therefore, altogether we have four different cases:17

ζHS,n.-m.(z) = ζ∆,0 +
∑

s=1,2,...

[ζd+s−2,s − ζd+s−1,s−1] ,

ζHS,min.(z) = ζ∆,0 +
∑

s=2,4,...

[ζd+s−2,s − ζd+s−1,s−1] ,
(3.123)

where ∆ can be either d−2 or 2. It was shown in a number of integer dimensions [97, 98, 99]

that:

1. While each term in the sum may depend on the cutoff Λ, the full one-loop vacuum

energy does not depend on the cutoff Λ, i.e. ζHS(0) = 0 for the (non)-minimal Type-A

models.

2. The finite part vanishes for the non-minimal Type-A, ζ ′HS,n.-m.(0) = 0, and equals the

sphere free energy F or the a-anomaly of the free scalar field, i.e. a = −1
2
ζ ′HS,min.(0)

for d even and F = − logZSd = −1
2
ζ ′HS,min.(0) for d odd.

The one-loop effect we have calculated shows that there should be an integer shift in the

relation between the bulk coupling constant G and the number of fields N on the CFT

side, G−1 ∼ N − 1 (provided that F 0
AdS does match F 0

CFT).

As discussed above, the one-loop vacuum energy in the bulk precisely match with the a-

anomaly coefficient of the free scalar CFT in even dimensions and the sphere free energy

F in odd dimensions. Upon changing the boundary conditions for the scalar field it was

also shown that the difference −1
2
δζ ′HS(0) matches the sphere free energy of the large-N

interacting vector model in d = 3 [97] and d = 5 [98].

In [2], we showed that 1
2

sin(πd
2

)ζ ′HS(0) for the minimal Type-A theory does reproduce the

generalized sphere free energy (3.121) for all d. When we changed the weight of the scalar

field to ∆ = 2, the one-loop result matches the change in the sphere free energy (3.122) due

to the double-trace deformation induced by operator (φ2)2 on the CFT side [174, 97, 98].

Let us briefly discuss the main steps that led to our result. First of all, thanks to Camporesi

and Higuchi [178], there is a representation of the spectral density that enters ζ∆,s(z) such

17The second term in the brackets is to subtract the ghosts.
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that it can be extended to non-integer dimensions. Next, we anchor the runaway branch

cut 1/
[
λ2+(∆− d

2
)
]z

by applying the Laplace transform to the spectral density [132, 148].18

Effectively, this transformation also disentangles the integral over the spectral parameter

and summation over spins. Then, we convert the integral into a sum over the residues. In

order to handle the sum we change the regularization prescription, see also [132], but it can

be checked that this does not affect the result. Finally, we arrive at the expression, which

we refer to as intermediate form, whose regularized form gives (3.121). The intermediate

form can also be obtained directly on the CFT side from the determinant on the sphere.

The interacting large-N vector model requires taking into account the difference between

the contributions of the scalar fields for ∆ = d− 2 and ∆ = 2.

We present the computation for the one-loop tests in fractional dimension as follows. In

section 3.7, we explain how to extend the computation of one-loop determinant for type-

A theory to non-integer dimensions and apply the main technical tools that allow us

to handle fractional dimensions: Laplace transform, contour integration and a modified

regularization. In section 3.7.1 we discuss the volume of the anti-de Sitter space that

enters as an overall, but important, factor. The last steps on the AdS side — summation

over spins and extraction of ζHS(0) and ζ ′HS(0) are done in sections 3.8 and 3.9, where we

arrive at certain intermediate forms of the result that can be matched with the CFT side.

The intermediate form is directly related to the free and critical vector models in Sections

3.10 and 3.11, which completes the proof.

3.7 Higher-Spin Partition Function in Fractional Di-

mensions

Coming to fractional dimensions we prefer to isolate all the factors, including the volume

of the hyperbolic space, and denote the leftover as µ̃(λ)

ζ(z) = N g(s)

∫ ∞
0

dλ
µ̃(λ)[

λ2 +
(
∆− d

2

)2
]z , N =

vdwdvol(Hd+1)

vol(Sd)
. (3.124)

18For increasing values of ∆, the branch point will move away from the origin.
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where

volSd =
2π(d+1)/2

Γ
(
d+1

2

) , volHd+1 =


2(−π)d/2

Γ
(
d+2

2

) logR, d = 2k ,

πd/2Γ
(
− d

2

)
, d = 2k + 1 .

(3.125)

It is important to stress that the N in this section is the normalized constant not the

number of supersymmetries. Also, the appearance of logR signals conformal anomaly.

There is a representation of the spectral density that works in all dimensions [178]:

µ̃(λ) =

((
d− 2

2
+ s

)2

+ λ2

)∣∣∣∣∣Γ
(
d−2

2
+ iλ

)
Γ(iλ)

∣∣∣∣∣
2

. (3.126)

This is our starting point. Note that we do not have to make an assumption that d is

an integer in the above expression. In general, the spectral density is not a polynomial in

all dimensions, including fractional ones, except for the case of even d. Therefore, we will

treat the zeta-function carefully whenever d approach an even number. The computation

we perform below is valid for all d except even (which is of measure zero on the real line).

The result for even d is then obtained as a continuation from non-integer d.

Let us begin with the expression for the zeta-function that is obtained by collecting all the

factors and expanding the gamma functions:

ζν,s(z) = N g(s)

π

∫ ∞
0

dλ
λ sinh(πλ)

(
λ2 +

(
d
2

+ s− 1
)2
)

Γ
(
d
2

+ iλ− 1
)

Γ
(
d
2
− iλ− 1

)
(λ2 + ν2)z

,

(3.127)

where ν = ∆− d
2
. The integrand is an even function of λ and therefore we can extend the

range of integration to (−∞,∞) at the price of 1
2
. It is convenient to perform the Laplace

transform, see also [132, 214],19

1

(λ2 + ν2)z
=

√
π

Γ(z)

∫ ∞
0

dβ e−βν
(
β

2λ

)z− 1
2

Jz− 1
2
(λβ) . (3.128)

19One can represent the spectral zeta-function as a differential operator acting on some seed function
that has enough parameters to produce g(s)µ(λ). Character is an example of such a function [132, 214],
which is also indispensable for taking tensor products. The characters are however difficult to define in
non-integer dimension.
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Figure 3.1: The contour for the part contains 1Hα lies in upper half plane where the poles
are those of Γ

(
d
2

+ iλ− 1
)
. As the λ integral approaches (−∞,∞), the range of l also

extends to infinity.

The main advantage is that the exponential e−βν times g(s) can be summed over all spins

in the spectrum directly. In other words, the sum over spins and the λ integral are now

decoupled. This is one of the crucial steps that allows us to calculate the full zeta function

ζHS, (3.123), in arbitrary dimension. Notice that in applying the Laplace transform we

moved the branch point from ±iν in (3.127) to 0, which makes the computation feasible.

Next, we split the Bessel function into

Jα(x) =
1Hα(x) + 2Hα(x)

2
, (3.129)

where 1Hα(x) and 2Hα(x) are Hankel functions of the first kind and second kind.

Similarly to Green functions we close the contour for the part of 1Hα upward and the

contour for the part of 2Hα downward. Let us show how to compute the contour integral

of the part with 1Hα in (3.129) first. In order to evaluate the contribution coming from

1Hα, we choose the contour as on Fig. 3.1. One needs to make sure that the upper arc

of the contour does not cross any pole that comes from the Γ
(
d
2

+ iλ− 1
)
. The residue
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theorem implies that

∮
C

f(λ) = 2πi
∞∑
l=0

Resλ→i( d2 +l−1)

(
λ− i

(
d

2
+ l − 1

))
f(λ) , (3.130)

where we prefer to omit g(s)/π for a moment:

f(λ) = N
λ sinh(πλ)

(
λ2 +

(
d
2

+ s− 1
)2
)

Γ
(
d
2

+ iλ− 1
)

Γ
(
d
2
− iλ− 1

)
βz−

1
2 1Hz− 1

2
(βλ)

2(2λ)z−
1
2

(3.131)

We recall that the residues of Γ-function are

Res(Γ,−l) =
(−1)l

Γ(l + 1)
. (3.132)

We, therefore, could change the integral over λ to an infinite sum over l. Before proceeding

further, let us make sure that the upper arc and the contour around the branch point do

not contribute to the whole contour integral. We make the change of variable λ = Reiθ:∫
Ω

dλf(λ) = lim
R→∞

∫ π

0

dθf(Reiθ) and

∫
γ

dλf(λ) = lim
R→0

∫ 0

π

dθf(Reiθ) . (3.133)

Introducing z as a regulator [178, 97, 98, 99] is useful in various ways. Let us consider

the γ contour first, if we set z large enough then there is no contribution from the small

contour

lim
λ→0

λ sinh(πλ)Γ

(
d

2
+ iλ− 1

)
Γ

(
d

2
− iλ− 1

)
βz−

1
2 1Hz− 1

2
(βλ)

2(2λ)z−
1
2

= 0 +O(λ2) (3.134)

Therefore, (3.131) vanishes and the integral over the contour near the branch point in

(3.133) also vanishes. Next, consider the large arc Ω, assuming that the contour goes in

between the poles of the gamma function. The integrand (3.131) will also vanish as we

make z large enough in the limit where the radius R goes to infinity.20 Therefore, there is

20For a more detailed discussion see [178]
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no contribution coming from γ and Ω arcs and (3.130) is equal to

1

2

∫ ∞
−∞

dλf(λ) = −πN
2

∞∑
l=0

βz− 1
2 1Hz− 1

2

(
i
(
d
2

+ l − 1
)
β
)

(
2i
(
d
2

+ l − 1
))z− 1

2

(d
2

+ l − 1

)

×

((
d

2
+ s− 1

)2

−
(
d

2
+ l − 1

)2
)

sin

(
π

(
d

2
+ l − 1

))
Γ(d+ l − 2)

Γ(l + 1)
(−1)l .

(3.135)

We notice that sin
(
π
(
d
2

+ l − 1
))

= −(−1)l sin
(
πd
2

)
and hence

ζ(z) =
N g(s)

√
π

2Γ(z)

∫ ∞
0

dβ

∞∑
l=0

e−βν

βz− 1
2 1Hz− 1

2

(
i
(
d
2

+ l − 1
)
β
)

(
2i
(
d
2

+ l − 1
))z− 1

2


×
(
d

2
+ l − 1

)((
d

2
+ s− 1

)2

−
(
d

2
+ l − 1

)2
)

sin

(
πd

2

)
Γ(d+ l − 2)

Γ(l + 1)
.

(3.136)

It is difficult to say anything about the sum in general, but eventually we are interested only

in few terms around z = 0. In [132], it was argued that one can change the regularization

prescription so that the z → 0 behaviour is not modified. Indeed, it is clear that to the

leading order in z-expansion one can use

lim
z→0

βz−
1
2 1Hz− 1

2
(βλ)

2 (2λ)z−
1
2

=
eiβλ√
πβ

+O(z) . (3.137)

This way we obtain the following contribution coming from the 1Hα function with the

contour in the upper half-plane, Fig. 3.1:

ζ̂1Hα(z) =
N g(s)

√
π

Γ(z)

∫ ∞
0

dβ
∞∑
l=0

e−βν
e−β(

d
2

+l−1)
√
πβ

×
(
d

2
+ l − 1

)((
d

2
+ s− 1

)2

−
(
d

2
+ l − 1

)2
)

sin

(
πd

2

)
Γ(d+ l − 2)

Γ(l + 1)
.

(3.138)

The presence of 1/Γ(z) ∼ z factor in (3.128) implies that in order to get the right ζ(0)

we can take only the constant term of (3.137) into account. However, there should be a
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discrepancy between ζ ′(0) computed rigorously and the one after we drop the term O(z)

in (3.137). The difference, which we call the deficit, originates from the term of order O(z)

in (3.137). As was noted in [132] the deficit vanishes for representations that have even

characters (even as a function of β, where q = e−β counts the energy via insertion of qE).

The deficit is discussed in Appendix B.2, where it is shown that it does not contribute to

the full ζ ′HS(0).

Next, we repeat the same steps for the contribution coming from 2Hα in (3.129) where

we close the contour downwards. In this case, one has to use −2πi when applying residue

theorem21 for the poles of Γ
(
d
2
− iλ− 1

)
. We obtain the same structure as in (3.138) since

lim
λ→−i( d

2
+l−1)

lim
z→0

βz−1/2
2Hz− 1

2
(βλ)

2 (2λ))z−
1
2

=
e−β(

d
2

+l−1)
√
πβ

+O(z) . (3.139)

Therefore, in order to compute the full one-loop free energy of the Type-A theory, we can

write the zeta-function in a modified form as

ζ̃(z) =
N g(s)

Γ(2z)

∫ ∞
0

dβ
∞∑
l=0

e−βνβ2z−1e−β(
d
2

+l−1)
(
d

2
+ l − 1

)

×

((
d

2
+ s− 1

)2

−
(
d

2
+ l − 1

)2
)

sin

(
πd

2

)
Γ(d+ l − 2)

Γ(l + 1)
.

(3.140)

Note that all but the factor N is usable in fractional dimensions. Below, we will regularize

N in such a way that it allows us to work in fractional dimensions.

3.7.1 Volume of Hyperbolic Space

In integer dimensions, we can use the volume form of the sphere Sd and Hyperbolic space

Hd+1 as in (3.125). This result arises [187] from the expansion of the formal volume

πD/2Γ
(
−D

2

)
in D = d− ε:

volHd+1 =
Ld+1

ε
+ Vd+1 +O(ε) , (3.141)

21The contour is the reflection image of Fig. 3.1 around the real axis.
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where ε-pole signals the logR divergence in d = 2k and Vd+1 is the finite part that makes the

leading contribution for d = 2k + 1. As it was already noted in [187], regularization of the

volume IR divergences is not independent of regularization of the UV divergences that arise

in one-loop determinants. Below, we propose an extension for the overall normalization

factor which comes from the regularized volume to non-integer dimension. Note that one

can write the general volume for Lobachevsky space as

volHd+1 = − π
d+2

2

Γ
(
d+2

2

)
sin
(
πd
2

) , (3.142)

which gives the right pole as in (3.141) and reduces to Vd+1 for d odd. The sin
(
πd
2

)
factor

inside the modified zeta function (3.140) will cancel with the one in (3.142) and gives us

no poles for even dimensions. Together with the factor N in (3.124), one arrives at the

overall normalization factor in general dimensions

Ñ = N sin

(
πd

2

)
= − 1

Γ(d+ 1)
. (3.143)

This overall normalization factor is strikingly simple since we do not need to treat the cases

of odd and even dimensions separately. Moreover, (3.143) can also be used in fractional

dimension.

3.8 Non-minimal Type-A in Fractional Dimensions

Using the regularized volume, we can now write the full modified zeta-function for the

Type-A as

ζ̃(z)ν,s =− g(s)

Γ(2z)Γ(d+ 1)

∫ ∞
0

dβ

∞∑
l=0

e−βνβ2z−1e−β(
d
2

+l−1)
(
d

2
+ l − 1

)

×

((
d

2
+ s− 1

)2

−
(
d

2
+ l − 1

)2
)

Γ(d+ l − 2)

Γ(l + 1)

(3.144)
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We first show that the modified zeta-function leads to ζHS(0) = ζ ′HS(0) for the non-minimal

Type-A theory. The total ζ-function for the non-minimal Type-A is

ζ̃n.-m.(z) = ζ̃ d
2
−2,0(z) +

∞∑
s=1

(
ζ̃ d

2
+s−2,s(z)− ζ̃ d

2
+s−1,s−1(z)

)
, (3.145)

where the labels of the zeta functions correspond to ζν,s as in (3.127). Using (3.144) and

the spin factor in (3.57)

gA(s) =
(d+ 2s− 2)Γ(d+ s− 2)

Γ(d− 1)Γ(s+ 1)

we can perform the sum over all spins in (3.145) and get

ζ̃n.-m.(z) =
∞∑
l=0

∫ ∞
0

dββ2z−1

Γ(d+ 1)Γ(2z)

e
−βd

2 (−2 + d+ 2l) cosh
(
β
2

)2
e−

β
2

(−2+d+2l)Γ(−2 + d+ l)

(1− e−β)dΓ(l + 1)

× (d2 + 2(−2 + l)l + d(−1 + 2l)− 2l(−2 + d+ l) cosh(β))

= 0 .

(3.146)

It is the sum over l that makes the expression in (3.146) vanish. Next, we need to compute

ζ̃ ′n.-m.(0) using the modified zeta-function. Remember that

lim
z→0

β2z−1

Γ(2z)
∼ 2z

β
+O(z2) . (3.147)

In other words, the part of (3.146) without 1/Γ(2z) is ζ̃ ′(0). For the non-minimal Type-A

we see that ζ̃ ′(0) vanishes. As a result we have proved that

ζ̃n.-m.(0) = ζ̃ ′n.-m.(0) = 0 . (3.148)

This extends the results of [97, 98] to all odd dimensions as well as to fractional ones.
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3.9 Minimal Type-A in Fractional Dimensions

The case of the minimal Type-A model is more interesting as we will not always find a

0 = 0-type of equality as in the non-minimal case. The ζ-function for the minimal Type-A

is

ζmin.(z) = ζ d
2
−2,0(z) +

∞∑
s=2,4,...

(
ζ d

2
+s−2,s(z)− ζ d

2
+s−1,s−1(z)

)
. (3.149)

The final result after the summation is done has a very simple form:

ζ̃min.(z) = − 1

2Γ(2z)

∫ ∞
0

dβ
β2z−1e−β(2−d)(1 + e2β)2

(e2β − 1)d
. (3.150)

To obtain (3.150), it is suggestive to sum over the spin-s in (3.144) first. To do this we

need to absorb all monomials in s into gamma functions. For example,

sΓ(d+ s− 2) = Γ(d+ s− 1)− (d− 2)Γ(d+ s− 2) (3.151)

After some algebra what we obtain are several terms of the form

ξ(ν, p(s)) = e−βν
Γ(p(s))

Γ(s+ 1)
. (3.152)

Here p(s) is of the form s + const with different constants. The sums are of the usual

stastistical form. Following (3.149) one should sum (3.152) according to

ξ

(
d

2
− 2, p(0)

)
+

∞∑
s=2,4,...

ξ

(
d

2
+ s− 2, p(s)

)
− ξ

(
d

2
+ s− 1, p(s− 1)

)
, (3.153)
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where ξ
(
d
2

+ s− 1, p(s− 1)
)

correspond to the ghosts. We, then, arrive at the sum over l:

ζ̃min.(z) =
∞∑
l=0

∫ ∞
0

dβ
e−β(

d
2

+l−1)(−d+ 2l − 2)Γ(d+ l − 2)

Γ(d+ 1)Γ(l + 1)

eβ(1− d
2

)(−1 + coth β) sinh β
2

(1− e−2β)d

× β2z−1

Γ(2z)

[
− 2(1 + e−β)d

(
cosh

β

2

)3 (
(−1 + d)d+ 2(−2 + d)l + 2l2 − 2l(−2 + d+ l) cosh β

)
+ cosh β((−1 + d)d+ 2(−2 + d)l + 2l2 + 2l(−2 + l + 1) cosh β) sinh

β

2

(
1− e−β

)d ]

= − 1

2Γ(2z)

∫ ∞
0

dβ
β2z−1e−β(2−d)(1 + e2β)2

(e2β − 1)d
= (3.150) .

Formula (3.150) is strikingly simple. Vanishing of ζ̃min.(0) is due to the fact that limz→0 1/Γ(2z) =

0 +O(z). For ζ̃ ′min.(0), using (3.147), we arrive at

ζ̃ ′min.(0) = −
∫ ∞

0

dβ
e−β(2−d)(1 + e2β)2

β(e2β − 1)d
. (3.154)

The formula above is the intermediate form.22 After a suitable regularization it will give

the correct answer for the sphere free energy as we recall in the next Section. It is worth

mentioning that some of the intermediate, usually divergent, expressions on the AdS side

can be directly matched with their CFT cousins, see e.g. [99] for the Casimir Energy

example. These facts accentuate the importance of careful adjustment of the regularization

prescriptions on both sides of the duality.

3.10 Matching Free Vector Model

Having arrived at the intermediate form (3.154), we would like to show that exactly the

same intermediate form emerges on the CFT side. It contains all the important information

and can be directly used to derive the sphere free energy.

Let us review the main steps in [174, 215, 100] as to get the (generalized) sphere free energy

F̃ . The starting point is the expression for F for a free scalar field, which results from the

22We refer to it as intermediate as the integral is divergent and requires regularization.
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sum over the eigen values of the Laplace operator on the sphere Sd [187, 190]:

F φ
min. =

1

2

∞∑
l=0

dl log
Γ(d

2
+ l − 1)

Γ(d
2

+ l + 1)
=

1

2

∞∑
l=0

dl

∫ ∞
0

dβ

β

(
−2e−β + e−β(l+

d
2) + e−β(

d
2

+l−1)
)
,

(3.155)

where

dl =
(d+ 2l − 1)Γ(d+ l − 1)

Γ(d)Γ(l + 1)
(3.156)

is the degeneracy of eigen values. There is a clearly divergent part proportional to the

total number of ’degrees of freedom’,
∑
dl. This sum can be shown to vanish in a number

of ways. For example, inserting cut-off e−εl we get

∞∑
l=0

dle
−εl ∼ ε−d . (3.157)

In order to regularize this divergence one can make d negative [187] and then continue d

to the positive domain. In practice, this is equivalent to saying that the total number of

degrees of freedom is zero:
∞∑
l=0

dl = 0 . (3.158)

Therefore, we successfully drop the first term in (3.155). In order to pass from log Γ to the

intermediate form one needs to apply the integral representation of log Γ(x):

log
Γ(µ+ ν + 1)

Γ(µ+ 1)
=

∫ ∞
0

dβ

β

(
νe−β − e−βµ − e−β(µ+ν)

eβ − 1

)
. (3.159)

As a result, (3.155) simplifies to

F φ
min =

1

2

∫ ∞
0

dβ

β
e−

β(2+d)
2

(1 + eβ)2

(1− e−β)d
. (3.160)

By making a change of variable, β → 2β, we get exactly the intermediate form (3.154)

obtained in AdS up to a factor of (−2). By definition, the AdS one-loop free energy is

related to the sphere free energy as

F φ
min = −1

2
ζ̃ ′min.(0) , (3.161)
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which explains the factor (−2) difference. We also note that (3.155) leads to

F φ
min. =

1

2

∞∑
l=0

dl log
Γ(d

2
+ l − 1)

Γ(d
2

+ l + 1)
=

1

sin
(
πd
2

)
Γ(d+ 1)

∫ 1

0

duu sin(πu)Γ

(
d

2
+ u

)
Γ

(
d

2
− u
)
.

(3.162)

In Appendix B.1 we show that the same result can be obtained directly from the inter-

mediate form, i.e. the AdS result suffices to reproduce (3.162) and there is no ’informa-

tion loss’ in going to the intermediate form. Then, the generalized sphere free energy

F̃ φ = − sin(πd
2

)Fφ is [215, 100]:

F̃ φ
min. =

1

Γ(d+ 1)

∫ 1

0

du sin(πu)Γ

(
d

2
− u
)

Γ

(
d

2
+ u

)
. (3.163)

Finally, we have shown that the (generalized) sphere free energy of the free scalar field

results from the one-loop determinant in the minimal Type-A higher-spin theory:

− sin

(
πd

2

)
F φ

min. = F̃ φ
min. =

1

2
sin

(
πd

2

)
ζ̃ ′min.(0) , (3.164)

which completes the proof. Despite the fact that our proof requires d not to be an even

integer, the final result smoothly extrapolates to d = 2k, where there are poles that

correspond to the a-anomaly. This extends the proof to even dimensions as well.

3.11 Matching Critical Vector Model

Let us consider the case of the duality between the critical O(N) vector model and the

(non)-minimal Type-A theory where the scalar field is quantized with ∆ = 2 (ν̃φ = 2− d
2
)

boundary condition. It is clear the we just need to add to ζ ′n.-m.(0) or ζ ′min.(0) the difference

that is due to the change of boundary conditions for the scalar field. In this case, we

see that ν̃φ = −νφ. As we consider the modified zeta function (3.144), the exponential

exp(−βν) will change sign. Also, it is clear, see Appendix B.2.2, that the deficit that can

be missing from ζ ′(0) due to the modified zeta-function, is absent thanks to ν̃φ = −νφ.
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Repeating the procedure above, we obtain

δζ̃ ′φ(0) = ζ̃ ′d
2
−2,0

(0)− ζ̃ ′
2− d

2
,0

(0) =

∫ ∞
0

(1 + eβ)
(
e2β − eβ(d−2)

)
β(eβ − 1)d+1

. (3.165)

This is the intermediate form that after using the same regularization as on the CFT side

will give the difference between the values of the generalized sphere free energy for the free

and interacting O(N) vector models:

δF̃ = F̃IR − F̃UV =
1

Γ(d+ 1)

∫ d/2−2

0

u sin(πu)Γ

(
d

2
− u
)

Γ

(
d

2
+ u

)
du . (3.166)

Therefore, we come to the conclusion that

δF = −1

2
δζ̃ ′φ(0) (3.167)

Indeed, we can get (3.167) from the CFT side through an intermediate formula which is

minus one half of (3.165). To be more explicit,

δF =
1

2

∞∑
l=0

dl log
Γ(l + 2)

Γ(l + d− 2)
=

1

2

∑
dl

∫ ∞
0

dβ

β

(
(4− d)e−β − e−β(l+d−3) − e−β(l+1)

eβ − 1

)
= −1

2

∫ ∞
0

(1 + eβ)
(
e2β − eβ(d−2)

)
β(eβ − 1)d+1

.

(3.168)

The same procedure as in Appendix B.1 allows one to relate the intermediate form to

(3.166).

3.12 Discussion and Conclusions

In this chapter, we presented the following results:

• Derivation of the spectral zeta-functions for various HSGRAs where fields are totally

symmetric or mixed-symmetric.
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• We added to the list of known one-loop results some new tests for fermions and

specific mixed-symmetry fields that arise in Type-B theories. Fermionic HS fields

passed both the Casimir Energy and the zeta-function tests quite easily since they

are not expected to generate any one-loop corrections at all. However, it is still a non-

trivial check since there is a summation over all spins which caused the cancellation

at one-loop for fermionic HS fields. Type-B, which should be dual to a free fermion

CFT, contains hook fields and has passed the zeta-function tests for the case of

AdS2n+1/CFT2n. One finds the a-anomaly of free fermion in AdS2n+1. The duality

between Type-B/free fermion, however, failed naively for AdS2n+2/CFT2n+1, which

was first observed for AdS4 in [97]. Nonetheless, we showed that the bulk one-loop

results can be computed as a change in F -energy, (3.117) and (3.120).

• After obtaining the zeta-function for a generic mixed-symmetry field, we find a very

simple formula for the derivative ∂∆a(∆), which allows us to solve for a(∆) by a

simple integration. A similar feature was observed for the second derivative of the

Casimir Energy ∂2
∆Ec.

• We also tested dualities involving partially-massless fields and doubletons in the

Appendices A.3.2 and A.3.1. Partially-massless fields, which belong to the spectrum

of the AdS duals of the non-unitary higher-order singletons �kφ = 0, pass the tests

[216]. On the other hand, higher-spin doubletons with j > 1, which are unitary as

representations of conformal algebra but pathological from the CFT point of view in

not having a local stress tensor, do not pass the Casimir Energy test in AdS5/CFT4.

• Inspired by the results in integer dimensions, we extended the test to the fractional

case for (non)-minimal Type-A HS. Our results showed that the one-loop determi-

nants in AdS perfectly match the generalized free energy F̃ of a scalar on a sphere

Sd. Upon changing boundary condition such that the scalar field is quantized with

∆ = 2 boundary conditions, we show also that the duality between critical O(N)

vector model and (non)-minimal type-A theory holds for vacuum energy at one-loop.

Let us further comment on our results:



84 3. HSGRA at One-Loop in AdS

♦ The puzzle of type-B/free fermion calls for better understanding of the duality.23 Con-

sistently with the 3d bosonization conjecture that relates the large N scalar and fermion

vector models coupled to Chern-Simons theory, the free spectrum of single-trace operators

built out of free fermion is identical to that of the critical boson at N =∞ [116]. Therefore,

unless a miracle happens the two theories — Type-A with ∆ = 2 scalar field and Type-B

— cannot pass the one-loop test simultaneously.

♦ The proof of the (generalized) sphere free energy F̃ of a free scalar field as a one-loop

effect in the minimal Type-A higher-spin theory indicates that AdS/CFT duality may work

in fractional dimensions at least for some of the models and some of the observables that

are well-defined in non-integer dimensions. It would be interesting to extend the results to

other models listed in Section 3.2. For example, it should be possible to show directly in

AdSd+1 that the generalized sphere free energy of higher-spin duals of �kφ = 0 free CFT’s

should follow

F̃ =
1

Γ(d+ 1)

∫ ∆− d
2

0

u sin(πu)Γ

(
d

2
− u
)

Γ

(
d

2
+ u

)
du , ∆ =

1

2
(d− 2k) , k = 1, 2, ... ,

(3.169)

which is in accordance with the values for integer d computed in [217, 218].

For more details, we refer the readers to [1, 2] and references therein.

23It has been already noted in [97] that there is a discrepancy in AdS4/CFT3 Type-B duality



Chapter 4

Quantum Chiral Higher Spin Gravity

Chiral HSGRA is a special class of HSGRAs in the sense that it is the smallest higher-

spin extension of gravity. The theory possesses a simple local action written in light-cone

gauge in both flat and anti-de Sitter spaces [67, 69, 70], which makes it a benchmark for

constructing a consistent theory of HSGRA. Numerous No-Go theorems in flat space are

avoided by what we call coupling conspiracy which is described in [3]: local interactions

conspire as to cancel each other in physical amplitudes. In this chapter, we will study quan-

tum corrections in chiral HSGRA based on the original works [3, 4, 5]. Due to higher-spin

symmetry, we can show that the theory does not have UV-divergences in n-point ampli-

tudes at one loop even though the interactions are naively non-renormalizable. The same

mechanism of coupling conspiracy applies to chiral HSGRA in AdS, which will improve

its UV-properties. We also study Yang-Mills gaugings with U(N), SO(N) and USp(N)

groups. For SO(N), see [66], or the USp(N) cases the representations that fields take

values in depend on whether the spin is even or odd, which is again similar to string theory

[219]. Our findings indicate that higher spin fields are essential for quantization of grav-

ity and replacing massive fields with massless ones allows us to find toy models that are

much smaller and simpler than string theory, which should be helpful for understanding

the quantum gravity problem.
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4.1 Motivation

HSGRAs are toy models of quantum gravity in the sense that the spin-2 graviton is a part

of the spectrum that comprises massless fields of all spins and they are expected to be

UV-finite due to the infinite-dimensional symmetry. This situation is very much like string

theory — a strong contender for a consistent theory of quantum gravity. String theory

contains an infinite number of massive higher spin fields, which are crucial for making the

theory UV-finite. Apart from having a spectrum that consists of infinitely many higher

spin fields, HSGRAs also has other stringy features which make them closer to string theory

rather than to conventional field theories. For example, we can have matrix-valued fields

in chiral HSGRA [66], which is reminiscent of the Chan-Paton approach [219].

Up until now, we still do not completely understand the tensionless limit of string theory,

i.e. when α′ → ∞, even in the simplest case of the bosonic string theory, (see, however,

[53] for the tensionless limit of strings on AdS3). One possible approach is as follows. We

can first naively send α′ → ∞ in the free equations [220],1 thus obtaining a consistent

gauge invariant formulation of massless fields. Then, we may try to promote the original

linear gauge symmetries and field equations to nonlinear ones [226, 227, 228] that result in

nontrivial cubic interaction vertices [229, 88, 230, 231, 232]. Although there is no problem at

the level of cubic interactions, the quartic vertices do possess nonlocal terms which lead to

failure of various consistency checks of four-point scattering amplitudes [233, 234, 225, 235].

There is not yet any consistent HSGRA that has been obtained this way.

The model we will discuss in this chapter is chiral HSGRA — the most minimal extension

of gravity with massless higher spin fields, which is constructed based on the pioneering

works by Metsaev [65, 66]. At the moment, chiral HSGRA [67] is the only model with

propagating massless higher spin fields where direct computations of quantum corrections

are possible. In [3, 4], we perform the calculations for chiral HSGRA in flat space where

Weinberg and Coleman-Mandula theorems dictate the S-matrix to be trivial. We show

that even though the theory can avoid No-Go theorems, it does not defy the spirit of those

theorems. The results in flat space hint to the expectation that other HSGRAs in AdS are

1See also [221] for a recent work in this direction and [222, 223, 224, 225] for other works on the high
energy limit of string theory.
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UV-finite. Recall our assumption on HSGRA/Vector Model duality

δΦa(s) = ∇aξa(s−1) ⇐⇒ ∂bJba(s−1) = 0 ,

which means massless higher spin fields in AdS are the duals of conserved higher spin

tensors. The charges associated with the latter then form higher-spin symmetry which

is an extension of the conformal symmetry. The AdS/CFT analog [71, 72, 73, 74] of the

Coleman-Mandula theorem states that a CFT in d > 2 with a higher spin current is a free

one. An immediate implication of this statement is that the holographic S-matrix (there

are unique higher spin invariant holographic correlation functions [75, 76, 77, 78]) is also

fixed by higher-spin symmetry as in flat space.

Unlike the case of flat space where S = 1, the holographic S-matrix of the AdS4 chiral

theory is shown to be nontrivial [70] and is related to Chern-Simons Matter Theories,

which should be confronted with its triviality in flat space. The reason is, when space-

time is curved, higher derivative nature of the interactions becomes important and there

is no perfect cancellation coming from coupling conspiracy [70] anymore. To understand

quantum consistency of AdS chiral theory, it is suggestive to first probe UV-behaviour of

chiral HSGRA in flat space. If we find any UV divergence in the Minkowski space, the

AdS version should suffer from the same problem. Our preliminary anticipation is that

chiral HSGRA in AdS does not have UV-divergences.

One of the crucial ideas behind chiral HSGRA was to stick to the light-cone or light-front

approach, which was applied to the higher spin problem in [32, 33] for the first time. The

consistency of interactions is guaranteed by the closure of the Poincare algebra,

[Ja−, J b−] = 0 , [Ja−, P−] = 0 ,

much like in the light-cone quantization of string theory [236]. Moreover, the light-front

approach goes well with understanding gauge symmetry as just redundancy of description.

An evidence for existence of higher spin theories was obtained already in 1983 [32]: ’Our

conclusion is that the higher-spin theories are likely to exist, at least as classical field

theories, although they may not have a manifestly covariant form’. Due to Weinberg’s and
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Coleman-Mandula theorems the S-matrix approach is not applicable in flat space and we

stick to the light-cone approach.

The outline of chapter 4 is as follows. In section 2 we briefly review the analysis of deformed

Poincare algebra in light-cone gauge that eventually led to the discovery of chiral HSGRA.

In section 3 we give the Feynman rules, which are used in the subsequent sections to

compute scattering amplitudes. In section 4 we recursively compute tree-level amplitudes

by utilizing the Berends-Giele off-shell current method and show that the final amplitudes

vanish on-shell. This is consistent with the Weinberg theorem. In section 5 we compute

the vacuum diagrams. We shown that the vacuum loop diagrams vanish identically either

due to the coupling conspiracy or due to the fact that the total number of effective degrees

of freedom vanishes. In section 6 we compute the loop diagrams with external legs and

demonstrate that they do not have UV-divergences and are also proportional to the total

number of effective degrees of freedom, hence, can be made to vanish. Moreover, the one-

loop S-matrix elements can be shown to coincide with all-plus helicity one-loop amplitudes

in pure QCD and SDYM, modulo a certain higher spin dressing, which is an unusual

relation between the non-gravitational theories and a higher spin gravity. We conclude

with section 7 that contains a summary of our results and discussion of possible future

developments. We collect technicalities in Appendix C, where we study in detail the

Chan-Paton gauging of the theory. In particular, we show that the closure of the Poincare

algebra in the light-cone gauge allows for three types of gauge groups: U(N), SO(N) and

USp(N).

4.2 Chiral Higher Spin Theories

In this section, we briefly review a recent class of HSGRA known as chiral HSGRA [67]

which was shown to be UV-finite up to four-point amplitude at one-loop. The theory has

an action and is defined in light-cone gauge in four dimensional Minkowski and AdS spaces

[69, 70].2

As other theorems, the Weinberg and Coleman-Mandula theorems also have their own

2We briefly discuss chiral HSGRA in AdS in Appendix C.
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caveats. While the theorems restrict the impact of interactions at asymptotic region, they

can not completely dictate local effects or off-shell correlators. It was shown in the past

that consistent local cubic interactions of massless HS fields can exist [32, 33]. Later, a

simple solution that ensures the closure of the Poincare algebra at the quartic order was

found under the name chiral HSGRA3.

4.2.1 Flat space

Basics

The Poincare algebra is

[Lab, Lcd] = Ladηbc − Lbdηac − Lacηbd + Lbcηad (4.1a)

[Lab, P c] = P aηbc − P bηac , (4.1b)

[P a, P b] = 0 . (4.1c)

where the indices a split further into a = +,−, z, z̄ in the light-cone gauge.4 We will work

with the light-front approach by choosing a light-like quantization surface. The canonical

choice is x+ = 0 which makes x+ behave as time and H = P− as the Hamiltonian.

The dynamical generators are generators that will receive correction when we consider

interactions. There are three dynamical generators out of ten generators of iso(3, 1), they

are

P− = H = H2 +Hint and Jz− = Jz−2 + Jz−int , J z̄− = J z̄−2 + J z̄−int , (4.2)

where the subscript ’int’ stands for interaction. For the closure of the Poincare algebra

(4.1), the equations that we need to solve are

[H, Jz−] = 0 , [H, J z̄−] = 0 . (4.3)

3As the name indicates, there are more fields with positive helicities than fields with negative helicities
that enter the vertices.

4Recall that the metric is ds2 = 2dx+dx− + 2dzdz̄ .
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The remaining seven generators are known as kinematical generators which are important

in constraining the vertices. Since we work in four dimensional flat space, all massless

spinning fields have precisely two degrees of freedom. This suggests us to consider them

as two scalar fields except for the case of spin-zero field — it is just one scalar field. We

can work directly in Fourier space where

Φµ(p, x+) =
1

(2π)3/2

∫
e−i(x

−p++p·x)Φµ(x, x+)d3x . (4.4)

The equal time Diract bracket reads:

[Φµ(p, x+),Φλ(q, x+)] = δµ+λ,0 δ
3(p+ q)

2p+
. (4.5)

Here, µ, λ are helicity labels. Denote the p+ component of the four momentum p =

(p+, p−, p, p̄) as β from now, one finds the kinematical generators in Fourier space as 5

P+ = β , P = p , P̄ = p̄ (4.6a)

Jz+ = −β ∂
∂p̄

, J z̄+ = −β ∂
∂p

, J−+ = − ∂

∂β
β , (4.6b)

Jzz̄ = p∂p − p̄∂p̄ − λ . (4.6c)

The dynamical generators at the free level are:

H2 = −pp̄
β
, (4.7)

Jz−2 =
∂

∂p̄

pp̄

β
+ p

∂

∂β
+ λ

p

β
, (4.8)

J z̄−2 =
∂

∂p

pp̄

β
+ p̄

∂

∂β
− λ p̄

β
. (4.9)

The Poincare algebra is realized by charges of the form

Qξ =

∫
d3p βΦ−µ−pOξ(p, ∂p)Φµ

p , and δξΦ
µ(p) = [Φ(p), Qξ] , (4.10)

5We set x+ = 0 from now on.
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where Oξ is the generator of the Poincare algebra associated with a Killing vector ξ . Due

to the measure, which is β, the conjugate operators are defined as

O† = − 1

β
OT (−p)β . (4.11)

Here transpose of O is defined via integration by parts.

Cubic Vertices in Flat Space

As mentioned, the problem of a consistent HSGRA in flat space is to find Hint and Ja−int

(a is refered to either z or z̄) that satisfy the Poincare algebra. The dynamical constraint

(4.3) translates into

[H, J ] = 0 ⇔ [H2, Jn] + [H3, Jn−1] + ...+ [Hn−1, J3] + [Hn, J2] = 0 , (4.12)

where we write

H = H2 +Hint = H2 +
∑
n

Hn, J = J2 + Jint = J2 +
∑
n

Jn . (4.13)

By making an appropriate ansatz:

Hn =
∑
n

∫
d3nq δ

(∑
qi

)
hq1,...,qnλ1,...,λn

Φλ1
q1
...Φλn

qn , (4.14)

Jz−n =
∑
n

∫
d3nq δ

(∑
qi

)[
jq1,...,qnλ1...λn

− 1

n
hq1,...,qnλ1...λn

(∑
j

∂

∂q̄j

)]
Φλ1
q1
...Φλn

qn , (4.15)

J z̄−n =
∑
n

∫
d3nq δ

(∑
qi

)[
j̄q1,...,qnλ1...λn

− 1

n
hq1,...,qnλ1...λn

(∑
j

∂

∂qj

)]
Φλ1
q1
...Φλn

qn , (4.16)

with the restriction to [H, Ja−] = 0 to the cubic order, i.e. we want to solve first

[H3, J2] = [J3, H2] . (4.17)
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The solution has the following form thanks to Metsaev [65, 66]:

h3 = C+λ1,+λ2,+λ3

PΛ3

βλ1
1 βλ2

2 βλ3
3

+ C̄−λ1,−λ2,−λ3

P−Λ3

β−λ1
1 β−λ2

2 β−λ3
3

, (4.18)

j3 = +
2

3
C+λ1,+λ2,+λ3

PΛ3−1

βλ1
1 βλ2

2 βλ3
3

χλ1,λ2,λ3 , (4.19)

j̄3 = −2

3
C−λ1,−λ2,−λ3

PΛ3−1

β−λ1
1 β−λ2

2 β−λ3
3

χλ1,λ2,λ3 , (4.20)

where

Λ3 = λ1 + λ2 + λ3, χ = β1(λ2 − λ3) + β2(λ3 − λ1) + β3(λ1 − λ2) (4.21)

P =
1

3

[
(β1 − β2)p3 + (β2 − β3)p1 + (β3 − β1)p2

]
, and P = P(β, p→ p̄) . (4.22)

Denote Pij = piβj − pjβi, one can further show that

P12 = P23 = P31 = P , (same for P) (4.23)

due to momentum conservation.

The form of the cubic vertex h3 is remarkably simple and can be mapped to the usual

result of amplitudes with generic helicities by the following identification

i] =
21/4

√
βi

(
q̄i
−βi

)
⇔ [ij] =

√
2

βiβj
Pij . (4.24)

Therefore, the Hamiltonian density h3 can be cast into

h3 ∼ Cλ1,λ2,λ3 [12]λ1+λ2−λ3 [23]λ2+λ3−λ1 [31]λ3+λ1−λ2 + c.c. . (4.25)

Complete Solution of HSGRA in Flat Space

Consider the quartic level of [H, Ja−] = 0 we have

[H2, J
a−
4 ] = [Ja−2 , H4] + [H3, J

a−
3 ] . (4.26)
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For definiteness, we consider the component of this equation with a = z. We note that

the terms [H2, J
a−
4 ] and [Ja−2 , H4], if non-vanishing, should be at least linear in p. Recall

that H3 contains holomorphic, denoted as H3(P), and anti-holomorphic parts, denoted

as H3(P). We see clearly that [H3(P), Jz−3 ] is p-independent and has to vanish by itself.6

Therefore, we have

[H3, J3] = 0 ⇒ [H3(P), J3] = 0, [H3(P), J̄3] = 0 . (4.27)

Schematically, these brackets will involve the coupling constant C, C̄ at the quadratic

orders, i.e. CC, C̄C̄ and CC̄. The complete solution is found by setting one of the

coupling constant to zero, hence the name chiral HSGRA. Here, we will set C̄ = 0, and the

cubic vertex becomes V3 ≡ H3 = H3(P). Finally, we can prove that the coupling constant

takes the following form [65, 66, 67]

Cλ1,λ2,λ3 =
(lp)

λ1+λ2+λ3−1

Γ[λ1 + λ2 + λ3]
≡ (lp)

Λ3−1

Γ[Λ3]
. (4.28)

Here, for dimensional reason, we naturally put in by hand the Planck length lp. We can

see clearly that if the sum of helicities entering the vertex is less or equal to zero, the

interaction will vanish, while all positive sums are allowed. Therefore, the theory violates

parity. From here, one can easily write down the full Hamiltonian as

H =

∫
Φ−λ−p

pp̄

β
Φλ
p +

∫
δ3
( 3∑
i=1

pi

)
h3(P) Φλ1

p1
Φλ2
p2

Φλ3
p3
. (4.29)

Now, if we assume that fields take values in some matrix algebra, to be specified below,

then the action reads

S = −
∑
λ

∫
d4pp2Tr

[
(Φλ

p)†Φλ
p

]
+
∑
λ1,2,3

(lp)
Λ3−1

Γ[Λ3]

∫
d4p1,2,3 δ

4
( 3∑
i=1

pi
) PΛ3∏3

i=1 β
λi
i

Tr[
3∏
i=1

Φλi
pi

] .

(4.30)

Here, as suggested, a massless gauge field with spin-s is expressed by a pair of scalar fields

that can carry color d.o.f, which we call Chan-Paton factors — a terminology borrowed

6One can repeat the same analysis for a = z̄ and see that [H3(P), J z̄−3 ] is p̄-independent.
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from string theory:

Φλ
p ≡ (Φλ

p)aT
a ≡ (Φλ

p)AB where Φ±sp ≡ Φ±s(p) . (4.31)

There are only three options for the gauge groups:

1. U(N) gauging where fields are (anti)-Hermitian matrices.

2. SO(N) gauging where fields are symmetric (anti-symmetric) matrices whenever they

have even (odd) spins.

3. USp(N) gauging which is the opposite of SO(N) gauging case.

4.3 Feynman rules

Using the result in Appendices C.2 and C.2, one can easily write down the Feynman rules

for colored chiral HSGRAs. The propagator is found to be

= =
δλi+λj ,0δ4(pi + pj)

p2
i

Ξgauge (4.32)

where Ξgauge is the part comes from the double line notation. For U(N) gauging, which is

the easiest case, we find that

ΞU(N) = (−)λiδCBδ
A
D. (4.33)

And, for O(N)/USp(N) gauging, one finds

ΞO(N) =
δACδBD + (−)λiδBCδAD

2
(4.34)

ΞUSp(N) =
CACCBD + (−)λi+1CBCCAD

2
(4.35)

Note that the δACδBD and CACCBD terms corresponds to a Möbius twist. This makes the

computation for SO(N)/USp(N)-valued fields a bit more subtle compare to the U(N)

case. Lastly, the vertex for all cases can be presented in the ’t Hooft double lines notation
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as

= = δ4(p1 + p2 + p3)Tr[Φλ1
p1

Φλ2
p2

Φλ3
p3

]
Pλ1+λ2+λ3

βλ1
1 βλ2

2 βλ3
3

(4.36)

where the Tr is the trace over implicit U(N), O(N)/USp(N) indices, respectively. One

should, in principles, be able to compute scattering amplitudes using all the ingredients

listed here. In what follows we will compute amplitudes for the U(N)-case.

4.4 Tree Amplitudes

In this section we compute all tree level amplitudes in chiral HSGRA. We explicitly compute

4-, 5- and, just for fun, 6-point amplitudes with one off-shell leg. These amplitudes turn

out to have a very simple form which leads us towards a guess for the complete n-point

result. Then, we proceed by induction to find the n-point amplitude. Schematically, it

can be obtained by taking one cubic vertex and attaching to two of the legs to (n − k)-

and k-point amplitudes for all possible k, this is known as Berend-Giele off-shell current

approach [237]. This trick allows us to avoid explicit summation over all possible Feynman

graph’s topologies. It is crucial here to know lower order amplitudes with one off-shell leg.

The result of such recursion gives us an n + 1-point amplitude with one off-shell leg. As

a matter of fact we find that all amplitudes are proportional to p2 of the off-shell leg and

therefore vanish on-shell. We find that the S-matrix is trivial, namely S = 1, which follows

from the Weinberg soft theorem.
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4.4.1 Four Point

Three-point amplitudes for massless fields are identically zero dues to kinematical reasons

[238]. Therefore, the simplest amplitude that may not be zero is four point. We demon-

strate our work with U(N) colored theory7 and take advantage of the usual trick in gauge

theories: to reduce everything to color-ordered amplitudes. An n-point amplitude can be

represented as

An(p1, λ1; ...;pn, λn) =
∑
Sn/Zn

Tr[Tσ(1)...Tσ(n)]Ân(pσ1
, λσ1 ; ...;pσn , λσn) (4.37)

which is a sum over (n − 1)! permutations and σ1, ..., σn denote various permutations

of 1, ..., n. The elementary blocks, sub-amplitudes Ân, should be computed using color-

ordered Feynman rules. In the case of four-point the sub-amplitude consists of s- and

t-channel:

+ = +

The sum of these diagrams gives [67, 3],

A4(1234) =
δ(
∑

i pi)

Γ(Λ4 − 1)
∏4

i=1 β
λi
i

[P12P34(P12 + P34)Λ4−2

(p1 + p2)2
+

P23P41(P23 + P41)Λ4−2

(p2 + p3)2

]
(4.38)

where Λ4 = λ1 + ... + λ4. In what follows we drop the overall momentum conserving

δ-function.

It is important to note that the summation over helicities of the exchanged states is bounded

both from above and from below due to the specific form of the magical coupling constants

(4.28). If we set up an 4-pt amplitude with chiral and anti-chiral vertices, the summation

is no longer bounded.

Next we use various kinematic identities from (C.5) to (C.9) for P that are collected in

7It should be similar if one works with the case of O(N) and USp(N) colors. Although, as mentioned,
there should be some complication due to the Möbius twists of internal propagators.
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Appendix C.1. It is easy to see that the total amplitude vanishes when all momenta are

on-shell. Let us assume that the fourth momenta is off-shell, p2
4 6= 0. Then,

A4(1234) =
δ(
∑

i pi)α
Λ4−2
4

Γ(Λ4 − 1)
∏4

i=1 β
λi−1
i

β2 p
2
4

2β4P12P23

(4.39)

where α4 = P12 + P34 = P23 + P41 is cyclic invariant.

4.4.2 Five Point

In the case of five-point amplitude we have five diagrams, which are cyclic permutations

of the comb-like diagram:

(4.40)

After double summation over helicities, the first diagram gives

Â5(12345) =
1

(Λ5 − 3)!
∏5

i=1 β
λi
i

P12(P13 + P23)P45(P45 + P13 + P12 + P23)Λ5−3

s12 s45

(4.41)

where Λ5 = λ1 + ... + λ5 and sij = (pi + pj)
2. Again, it is relatively easy to see that the

full amplitude vanishes on-shell. We, however, would like to know a bit more so that we

keep the fifth leg off-shell. Using the kinematic identities from Appendix C.1 we can write

Â5(12345) + Â5(45123) = C5
P45β1β2β3

2s45P12P23

[β2(β4 + β5)p2
5

2β5

− β2P45P45

β4β5

]
(4.42)

Â5(23451) + Â5(51234) = C5
P51β2β3β4

2s51P23P34

[β3(β5 + β1)p2
5

2β5

− β3P51P51

β5β1

]
(4.43)

where

C5 =
αΛ5−3

5

(Λ5 − 3)!
∏5

i=1 β
λi
i

, (4.44)
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and α5 = P12 + P13 + P23 + P45 is cyclic invariant. We can simplify the above expressions

further with the help of the identities

−β2P45P45

β4β5

=
1

2
β2s45 −

β2(β4 + β5)

2β5

p2
5, −β3P51P51

β5β1

=
1

2
β3s51 −

β3(β1 + β5)

2β5

p2
5 (4.45)

where leg-5 is off-shell. Next, we collect the remnants (the parts that are not proportional

to p2
5) and combine with the remaining comb diagram to get

1

4

(P45β1β
2
2β3

P12P23

+
P51β2β

2
3β4

P23P34

+
(P35 + P45)β1β2β3β4

P12P34

)
= −β1β

2
2β

2
3β4β5 p

2
5

8β5P12P23P34

(4.46)

The final expression of the five-point amplitude with one off-shell leg is remarkably simple:

A5(12345) =
∑
Z5

Â5(12345) = − αΛ−3
5

(Λ5 − 3)!
∏5

i=1 β
λi−1
i

β2β3 p
2
5

8β5P12P23P34

(4.47)

It is quite crucial that the factor raised to power Λ5 − 3 is the same for all amplitudes

(even though it is not immediately obvious) and therefore we have to deal only with rather

simple prefactors.

4.4.3 Six Point

Just for fun we can compute the six-point function directly. Here we have four topologies

plus permutations. We will denote the topologies by the Roman numbers: I, II, III, IV .

Figure 4.1: All possible topologies to compute 6-point amplitude. Note that the number
in front of each topologies account for how many diagrams are there.
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The four topologies give:

ÂI(123456) =
P12(P13 + P23)(P14 + P24 + P34)P56

Γ(Λ6 − 3)
∏6

i=1 β
λi
i s12s123s56

αΛ6−4
6

ÂII(123456) =
P12P34(P61 + P62 + P51 + P52)P56

Γ(Λ6 − 3)
∏6

i=1 β
λi
i s12s34s56

αΛ6−4
6

ÂIII(123456) =
P12(P13 + P23)(P61 + P62 + P63)P45

Γ(Λ6 − 3)
∏6

i=1 β
λi
i s12s123s45

αΛ6−4
6

ÂIV (456123) =
P23(P13 + P12)(P45 + P46)P56

Γ(Λ6 − 3)
∏6

i=1 β
λi
i s23s456s56

αΛ6−4
6

Let us omit αΛ6−4
6 /Γ(Λ6 − 3)

∏6
i=1 β

λi
i for a moment and focus on the prefactors.8 A short

computation shows that

AI(123456) + AIV (456123) =
β1β

2
2β3P56(P14 + P24 + P34)

4s56P12P23

=
β1β

2
2β3P56(P45 + P46)

4s56P12P23

and similarly for other permutations. Together with the contribution from diagrams of the

second topology

ÂII(123456) =
β1β2β3β4(P61 + P62 + P51 + P52)P56

4P12P34s56

=
β1...β4(P13 + P14 + P23 + P24)P56

4P12P34s56

ÂII(234561) =
β2β3β4β5(P12 + P13 + P62 + P63)P61

4P23P45s61

=
β2...β5(P24 + P25 + P34 + P35)P61

4P23P45s61

Grouping terms proportional to P56/s56, one gets

β1...β4
P56

4s56

[β2(P45 + P46)

β4P12P23

+
β3(P51 + P61)

β1P23P34

+
P61 + P51 + P62 + P52

P12P34

]
=β1...β4

P56

4s56

β2β3

P12P23P34

[
− (β5 + β6)p2

6

2β6

+
P56P56

β5β6

]
= −β1β

2
2β

2
3β4P56

8P12P23P34

8Of course, Λ6 = λ1 + ...+ λ6 and α6 is cyclic invariant.
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Similarly, for terms proportional to P61/s61, we get

β2...β5
P61

4s61

[β3(P51 + P56)

β5P23P34

+
β4(P62 + P12)

β2P34P45

+
P12 + P13 + P62 + P63

P23P45

]
=β2...β5

P61

4s61

β3β4

P23P34P45

[
− (β6 + β1)p2

6

2β6

+
P61P61

β6β1

]
= −β2β

2
3β

2
4β5P61

8P23P34P45

The remaining terms combine into

− β1...β5

8P12P45

[β4(P61 + P62)

P34

+
β2(P46 + P56)

P23

]
=

β1...β5

8P12P45

β2β4

P23P34

[β6β3p
2
6

2β6

+
β3P61P12

β1β2

+
β3P56P45

β4β5

]
Summing all of the above partial resutls together and we get an concise expression for

6-point amplitude:

A(123456) =
αΛ6−4

6

16Γ(Λ6 − 3)
∏6

i=1 β
λi−1
i

β2β3β4 p
2
6

β6P12P23P34P45

(4.48)

4.4.4 Recursive Construction for All Point

Given the results above, it is relatively easy to guess the answer for the n-point amplitude

with one off-shell leg:

An(1...n) =
(−)n α

Λn−(n−2)
n β2...βn−2 p

2
n

2n−2Γ(Λn − (n− 3))
∏n

i=1 β
λi−1
i βnP12...Pn−2,n−1

, αn =
n−2∑
i<j

Pij + Pn−1,n.

(4.49)

where Λn = λ1 + ...+λn. It is easy to see that this is indeed the right answer. The n-point

amplitude can be obtained by gluing a cubic vertex to two sub-amplitudes of (n−k)-point

and k-point. It is important to know all these lower order amplitudes with one off-shell leg

as to be able to attach them to the cubic vertex via propagator. The process is illustrated
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below

(4.50)

There are two position of the off-shell legs where we need to treat them specially in (4.111).

Note that we choose our color-ordering as (12...n+1) with clock wise order. The first

diagram we want to consider is

Â(1...n+ 1)1 = Cn+1
β3...βn−1Pn+1,1P12

β1

(4.51)

where the subscript at the end of Â(1...n + 1)1 indicates the position of the off-shell leg

that we use to glue to the cubic vertex V . And, the pre-factor is

Cn+1 =
α

Λn+1−(n−1)
n+1

2n−2Γ(Λn+1 − (n− 2))
∏n+1

i=1 β
λi−1
i

1

βn+1P12...Pn−1,n

. (4.52)

It can be proven that the α
Λn+1−(n−1)
n+1 factor is indeed the same for every sub-diagrams [].

From leg-2 to leg-(n− 1), the subamplitudes after summing over helicities are

Â(12|3...n+ 1)2,3 = Cn+1β2β3...βn−1Pn+1|12P23,

Â(123|4...n+ 1)3,4 = Cn+1β2β3β4...βn−1Pn+1|123P34,

· · ·

Â(12...i|i+ 1...n+ 1)i,i+1 = Cn+1β2...βiβi+1...βn−1Pn+1|1...iPi,i+1.
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Here, the break | between two position i, i + 1 (also the subscript i, i + 1) in Â(1...i|i +

1...n)i,i+1 indicates that leg-i, i+ 1 are the off-shell legs that will be glued to cubic vertex.

The underlined notation means that we omit βiβi+1 in the above sub-amplitudes. The final

piece is the sub-amplitude where we glue leg-n to the cubic vertex V

Â(1...n+ 1)n = Cn+1
β2...βn−2Pn+1,nPn,n−1

βn
. (4.53)

Omitting Cn+1 for a moment, we have

β3...βn−1

Pn+1|1P12

β1

+
∑
i

β2...βiβi+1...βn−1Pn+1|1...iPi,i+1 +
β2...βn−2Pn+1,nPn,n−1

βn
. (4.54)

Here, Pn+1|1...i = Pn+1,1 + Pn+1,2 + ... + Pn+1,i and Pi,j = Pij. Notice that by momentum

conservation

Pn+1|1...iPi,i+1 = Pn+1|n...i+1Pi+1,i (4.55)

The proof is completed with the help of the kinematic identity:

β2β4...βn−1

∑
i

Pn+1|iPi3
βi

= −
β2...βn−1p

2
n+1

2βn+1

(4.56)

Consequently, we have proved that

An+1(1...n+ 1) = Nn+1

β2...βn−1p
2
n+1

βn+1P12...Pn−1,n

, Nn+1 =
(−)n+1α

Λn+1−(n−1)
n+1

2n−1Γ(Λn+1 − (n− 2))
(4.57)

The final conclusion here is that all n-point amplitudes with one off-shell leg have a re-

markably simple form and vanish on-shell. Hence, at classical level, the chiral HSGRA

is consistent with the No-Go theorems that imply S = 1 once at least one massless

higher spin particle is in the game. From the explicit calculations above it is clear that

it is important to have all spins in the spectrum without any upper/lower bounds and

gaps. Moreover, the coupling constants must have a very particular dependence on spins,

Cλ1,λ2,λ3 ∼ 1/Γ(λ1 + λ2 + λ3). This situation was referred to as coupling conspiracy [3].

The fact that the tree-level amplitudes vanish on-shell indicates that there should not be

any nontrivial cuts of the loop diagrams and, hence, the loop corrections are expected to
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have a better UV-behaviour.

4.5 Vacuum Bubbles

Vacuum corrections stay a bit aside and could be ignored in the first approximation. Luck-

ily, it is easy to show that all of them vanish in accordance with the naive expectation that

vacuum partition function for higher-spin gravities should be one, Z = 1, which indicates

that the total regularized number of degrees of freedom is zero. This is in accordance with

similar findings both in flat and AdS spaces [186, 176, 97, 99, 144, 130, 131, 1, 132, 2].

4.5.1 Determinants

The simplest vacuum corrections probe the spectrum of a theory via determinants of the

kinetic operators. First, let us consider the free higher spin theory in four-dimensional flat

space [131]. The action is the sum over all spins of the kinetic terms of massless fields:

S =
∑
s

∫
d4xΦa(s)�Φa(s) , δΦa(s) = ∂aξa(s−1) , (4.58)

where we have choose to work in the TT-gauge. The partition function reads

: Z1-loop =
1

det
1/2
0 | − ∂2|

∏
s>0

det
1/2
s−1,⊥ | − ∂2|

det
1/2
s,⊥ | − ∂2|

=
1

(z0)
1
2

∏
s>0

(zs−1)
1
2

(zs)
1
2

(4.59)

where we went back to covariant description of free massless fields, which is available

[176, 131]. The numerator, the product of det
1/2
s−1,⊥, in the formula corresponds to ghosts

while the denominator, the product of det
1/2
s,⊥, corresponds to massless fields with spin-

s ≥ 1. The determinant of a free scalar field, det
1/2
0 stays aside since it is not a gauge

field.

At first sight, ghosts determinants seem to cancel against the rest and leave Z1-loop = 1.

However, this is the same problem as determining value of the sum 1− 1 + 1− ... . Indeed,
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for theories with infinitely many fields a prescription of how to sum over the spectrum has

to be given by hand and this is one of the instances where higher spin gravity reveals its

stringy nature. However unlike string theory, where summation goes over relevant Riemann

surfaces, we do not have any geometric understanding of how the sum over spins needs to

be done.

We come up with a plausible idea as follows. The prescription of [131] that gives Z = 1

instructs us to count degrees of freedom as

ν0 =
∑
λ

1 = 1 + 2
∑
λ>0

λ = 1 + 2ζ(0) = 0 (4.60)

where 1 is the d.o.f for the scalar field and 2 is the total d.o.f for each massless field.

Although this regularization seems to be ad hoc, the success of the zeta-function regular-

ization in the study of determinants of higher spin theories on AdS background in chapter

3 provides a strong support for (4.60).

Let us recall what we have learnt in Chapter 3. The kinetic operators of massless spinning

fields on AdS have the form (−� + M2
s ) and the kinetic operators of the corresponding

ghosts are (−�+m2
s−1). The presence of spin-dependent mass-like terms does not give us

naive cancellation as discussed above. However, in AdS, the determinants can be computed

via spectral zeta-function [192, 179, 180, 181, 178, 183] and the spin sums can be taken with

the help of zeta-function. The final result is consistent with the AdS/CFT expectations.

Therefore, the zeta-function regularization seems to be well-tested, which justifies (4.60).

4.5.2 Higher Vacuum Loops

The two-loop diagram vanishes due to the chirality of interactions: assuming some he-

licities on the left vertex we have the opposite of those entering the vertex on the right.

However, 1/Γ[Λ] and 1/Γ[−Λ] factors coming from the product of two vertices cannot both
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be nonzero. Hence,

= 0

The same arguments as above show that the three-loop diagrams also vanish: there is no

such helicity assignment that makes all 1/Γ[...]-factors nonzero.

= 0 = 0

It is easy to see that this is true to all loops. Indeed, the total helicity must be zero since

there are no external legs and the propagator connects helicities of opposite sign. For a

vacuum diagram not to vanish, the coupling constant should not be zero at each vertex.

However, this is impossible due to the fact that the total helicity has to be zero. Therefore,

we have to have a finite sum of positive numbers that equals zero, which shows that all

vacuum diagrams vanish identically.

4.6 Loops with Legs

We shall discuss the behaviour of legged loop diagrams by examining the tadpole, self-

energy, vertex correction and 4-pt amplitude at one loop. Then, we give a general argument

for multi-loop amplitudes. An important thing to remember is that vanishing of tree-level

amplitudes should eliminate all log-divergences that would lead to cuts otherwise.

4.6.1 Tadpole

Light-cone approach is not suitable for the computation of one-point functions, like tadpole.

Nevertheless, tadpoles for the external lines with non-zero helicity must vanish by Lorentz

invariance. Indeed, at the vertex we have PΛ

ii factor which should be zero by definition. A
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tadpole for the scalar field also vanishes due to the absence of the relevant vertex in the

action. Lastly, if the external helicity is zero and the internal one is some µ, then at the

vertex we still have Γ(0 + µ− µ)−1 = 0. Therefore,

= 0

4.6.2 Self-energy

Although we are studying U(N)-version of chiral HSGRA for concreteness, all general

conclusions below are also true for the other cases (SO(N) and USp(N) gauging). For

a given N we can first have a look at the planar diagrams, which are simpler. For the

self-energy diagram, there are contributions from planar and non-planar diagrams:

+

Here, k1,k0, q are dual momenta and the external momentum is related to k as p1 =

k1 − k0. The loop momentum is p = q − k0. The discussion about dual momenta can be

found in [239, 240, 241, 242] (we also discuss this matter in Appendix C.3 for completeness).

We start our analysis by considering the simplest self-energy diagram. In order to avoid

confusing and cumbersome notation, we introduce sources h B
A that can be contracted with

fields. As a result each amplitude acquires factors Tr(hh...) which keeps track of the color

indices. We adopt the world-sheet friendly regularization [240, 241, 242] which is used in
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a number of theories in light-cone gauge. The one loop self-energy reads

Γself =NTr(h1h2)
∑
ω

(lp)
Λ2−2

βλ1
1 βλ2

2 Γ(Λ2 − 1)

∫
d4q

(2π)4

P2

q−k0,p1
δΛ2,2

(q − k0)2(q − k1)2

− Tr(h1)Tr(h2)
∑
ω

(2lp)
Λ2−2

βλ1
1 βλ2

2 Γ(Λ2 − 1)

∫
d4q

(2π)4

PΛ2

q−k0,p1

(q − k0)2(q − k1)2
,

(4.61)

where d4q = dq−dβd2q⊥ and Λ2 = λ1 + λ2. A very important observation is that the very

last sum over helicities factors out for all loop diagrams, i.e. after we sum over all but

one helicities running in the loop the resulting expression does not depend on the very last

helicity to be summed over. Therefore, each loop diagram has an overall factor ν0 =
∑

ω 1

as in the case of bubble diagrams. Let us evaluate leading contribution, namely the first

term,

Γleading
self = NTr(h1h2)

∑
ω

(lp)
Λ2−2

βλ1
1 βλ2

2 Γ(Λ2 − 1)

∫
d4q

(2π)4

P2

q−k0,p1
δΛ2,2

(q − k0)2(q − k1)2
(4.62)

as an example. Here, we observe that the integrand is non-vanishing only when Λ2 = 2.

To regulate this integral, one can introduce a cut-off exp[−ξq2
⊥], where q⊥ ≡ (q, q̄) is the

transverse part of q. Then, using Schwinger parametrization and integrating out q− gives

us δ
(
β(T1 + T2)− T1βk0 − T2βk1

)
. Next, we replace 9

β =
T1βk0 + T2βk1

T1 + T2

, (4.63)

and the expression (4.62) reads (omitting the prefactor)

Γleading
self ∼

∫
P2

q−k0,p1
exp

[
− (T + ξ)

(
qa − T1k

a
0 + T2k

a
1

T + ξ

)2

− T1T2p
2
1

T
− ξ(T1k

a
0 + T2k

a
1)2

T (T + ξ)

]
.

(4.64)

where we integrate over q and over Ti that are the Schwinger’s parameters and T = T1 +T2.

It is now safe to send p2
1 on-shell and ξ = 0 in the last two terms in the exponential in

9Note that whenever we write βki , it means we consider the k+
i component of the dual 4-momentum

ki.
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(4.64). Hence, we are left with a Gaussian integral expression

Γleading
self ∼

∫
d2qa

16π2

[
(q̄ − k̄0)β1 − p̄1

(T1βk0 + T2βk1

T1 + T2

− βk0

)]2

e
−(T+ξ)

(
qa−T1k

a
0+T2k

a
1

T+ξ

)2

. (4.65)

We can handle (4.65) with the note that∫
d2q⊥e

−Aq2
⊥ =

π

A
,

∫
d2q⊥ (q̄)n e−Aq

2
⊥ = 0 (forn ≥ 1) (4.66)

then, after some manipulation we get

Γleading
self =

∑
ω

(lp)
Λ2−2NTr(h1h2)δΛ2,2

βλ1−1
1 βλ2−1

2 Γ[Λ2 − 1]

∫ 1

0

dx

∫ ∞
0

dT

16π2

ξ2[xk̄0 + (1− x)k̄1]2

(T + ξ)3

ξ→0−−→ ν0
(lp)

Λ2−2NTr(h1h2)δΛ2,2

32π2βλ1−1
1 βλ2−1

2 Γ[Λ2 − 1]

∫ 1

0

dx[xk̄0 + (1− x)k̄1]2

= ν0 δΛ2,2
(lp)

Λ2−2NTr(h1h2) (k̄2
0 + k̄0k̄1 + k̄2

1)

96π2βλ1−1
1 βλ2−1

2 Γ[Λ2 − 1]

(4.67)

where we made a change of variables x = T1/T . Here, the x-integral in (4.67) is perfectly

finite and Γleading
self is reminiscent of Π++ amplitude in [243, 241, 242]. The important feature

of the computation above is that there is a factorization of ν0 which guarantee the result

above vanish without the need of introducing a counter term. We note that the Lorentz

invariance forbids helicity flips for an isolated spinning particle. Therefore, if we were to

find a non-vanishing contribution to Γlead
self we would have to introduce local counterterms

to cancel it.

Let us also show the result of the sub-leading term for self-energy by repeating the treat-

ment above. The sub-leading contribution before taking the T -integral is

Γsub
self = ν0

(2lp)
Λ2(−)λ1Tr(h1)Tr(h2)

16π2Γ[Λ2 − 1]

∫ 1

0

dx

∫ ∞
0

dT
ξΛ2 [xk̄0 + (1− x)k̄1]Λ2

(T + ξ)Λ2+1
(4.68)

This result can be obtained using the holomorphic integral (4.66). We now have a conver-



4.6 Loops with Legs 109

gent integral and the result is

Γsub
self = ν0

(−)λ1(2lp)
Λ2 Tr(h1)Tr(h2)(Λ2 − 1)

16π2Γ[Λ2 + 1]

∫ 1

0

dx[xk̄0 + (1− x)k̄1]Λ2

= ν0
(−)λ1(2lp)

Λ2 Tr(h1)Tr(h2)(Λ2 − 1)

16π2Γ[Λ2 + 2]
× k̄Λ2+1

0 − k̄Λ2+1
1

k̄0 − k̄1

, (Λ2 ≥ 0)

(4.69)

It is easy to see that the dangerous non-local contribution with Λ2 = −1 is zero since

Λ2 > 1. The kinematic part of Γsub
self is finite and, hence, Γsub

self vanishes again due to the

factorization of ν0, which takes place regardless of the value of Λ2. This implies that

self-energy correction of chiral HSGRA does not break Lorentz invariance.

Finally let us mention that, we can use the original momentum pi and the loop momentum

p together with the cut-off exp[−ξp2
⊥] to work with non-planar diagrams. In the case of

self-energy it reads

Γsub
self = ν0

(2lp)
Λ2

βλ1
1 βλ2

2 Γ[Λ2 − 1]

∫
d4p

(2π)4

PΛ2

p1

p2(p+ p1)2

= ν0
(2lp)

Λ2(−)λ1Tr(h1)Tr(h2)

16π2Γ[Λ2 − 1]

∫ 1

0

dx

∫ ∞
0

dT
ξΛ2 [xp̄1]Λ2

(T + ξ)Λ2+1

= ν0
(2lp)

Λ2(−)λ1Tr(h1)Tr(h2)(Λ2 − 1)

16π2Γ[Λ2 + 1]

∫ 1

0

dx[xp̄1]Λ2

= ν0
(2lp)

Λ2(−)λ1Tr(h1)Tr(h2)(Λ2 − 1)

16π2Γ[Λ2 + 2]
p̄Λ2

1 , (Λ2 ≥ 0)

(4.70)

Therefore, the non-planar diagram for self-energy is also UV-finite.

4.6.3 Vertex correction

The next simple quantum correction we consider is the vertex correction

+ + +
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The dual momenta in this case are q,ki with i = 0, 1, 2. The loop momenta can be

chosen to be p = q−k0 and the relation between the external momenta and dual regional

momenta are pi = ki − ki−1 with k3 ≡ k0. In other words, with clockwise order, pi is the

difference between the outgoing dual momenta and the ingoing dual momenta as depicted

in the above figures. We keep leg-3 off-shell, i.e. p2
3 6= 0, and find the leading contribution

to be

Γlead
ver = ν0

Ωlead
3 (lpP12)Λ3−3∏3
i=1 β

λi
i Γ[Λ3 − 2]

∫
d4q

(2π)4

Pq−k0,p1(Pq−k1,p2 + P12)Pq−k2,p3

(q − k0)2(q − k1)2(q − k2)2 (4.71)

The sub-leading terms come with a twist at one of the three vertices, they read

Γsub
ver =−NverTr(h1)Tr(h2h3)

∫
d4q

(2π)4

Pq−k0,p1(Pq−k1,p2 + P12)Pq−k2,p3(P12 − 2Pq−k0,p1)Λ3−3

(q − k0)2(q − k1)2(q − k2)2

−NverTr(h2)Tr(h3h1)

∫
d4q

(2π)4

Pq−k0,p1(Pq−k1,p2 + P12)Pq−k2,p3(−2Pq−k1,p2 − P12)Λ3−3

(q − k0)2(q − k1)2(q − k2)2

−NverTr(h3)Tr(h1h2)

∫
d4q

(2π)4

Pq−k0,p1(Pq−k1,p2 + P12)Pq−k2,p3(P12 − 2Pq−k2,p3)Λ3−3

(q − k0)2(q − k1)2(q − k2)2

(4.72)

whereNver = ν0
(lp)Λ3−3∏3

i=1 β
λi
i Γ[Λ3−2]

. Next, we show how to evaluate the integral from the leading

contribution. Proceeding with the same procedure in section 4.6.2 and appendix C.3, we

arrive at

Γlead
ver = ν0

Ωlead
3 (lpP12)Λ3−3

16π2
∏3
i=1 β

λi
i Γ[Λ3 − 2]

∫ ∏3
i=1 dTi

T (T + ξ)
e−

T1T3p
2
3

T

3∏
i=1

[
Ti+2K
T

− ξ
βi(
∑3

i=1 Tik̄i−1)

T (T + ξ)

]
(4.73)

where Ωlead
3 = NTr(h1h2h3). It is important to note that the integral in (4.71) is finite

without the need of introducing the cut-off exp[−ξq2
⊥]. In (4.73), we identify T4 = T1 and

T5 = T2, also

K ≡ (k̄1 − k̄0)β2 − (k̄2 − k̄1)β1 = P12 (4.74)
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Now, it is safe to take ξ → 0, we obtain

Γlead
ver = ν0

Ωlead
3 (lp)

Λ3−3PΛ3

12

16π2Γ(Λ3 − 2)

∫
dT1dT2dT3∏3

i=1 β
λi
i

T1T2T3

T 5
e−

T1T3p
2
3

T

= ν0
Ωlead

3 (lp)
Λ3−3PΛ3

12

16π2Γ(Λ3 − 2)
∏3

i=1 β
λi
i

∫
x+y<1

dxdy

∫ ∞
0

dT xy(1− x− y)e−Tx(1−x−y)p2
3

= ν0
Ωlead

3 (lp)
Λ3−3PΛ3

12

96π2
∏3

i=1 β
λi
i Γ(Λ3 − 2)p2

3

(4.75)

To obtain the above result, instead of using dual momentum, one can also start with the

original momentums since the quantum corrections at one loop with 3 legs attached (and

beyond) are perfectly finite. In terms of these variables, the vertex correction reads

Γlead
ver =

∑
ω

Ωlead
3 (lp)

Λ3−3PΛ3−3

12∏3
i=1 β

λi
i Γ(Λ3 − 2)

∫
d4p

(2π)4

Pp1(Pp2 + P12)Pp3
p2(p+ p1)2(p+ p1 + p2)2

(4.76)

Omitting the prefactor for a moment and proceed as before, we find the integral in (4.76)

as

π

T (T + ξ)

3∏
i=1

[
Ti+2P12

T
− ξ

βi
[
(T2 + T3)p̄1 + T3p̄2

]
T (T + ξ)

]
ξ→0−−→ πT1T2T3P

3

12

T 5
(4.77)

which is the same with (4.75). One can immediately recognize that the final result is

reminiscent of the Γ+++ amplitude for QCD [243, 241, 242] in the large N limit. It

contains the part of self-dual Yang Mill dressed with chiral HiSGRA’s factor.10 The overall

factor ν0 makes the vertex correction vanish.

Although we did not compute the integral for sub-leading terms of the vertex correction,

they should be finite. To be more explicit, higher power of q̄ entering the Gaussian integral

of type (4.66) will give zero and improve the behaviour of the cut-off ξ. The only place

where things can diverge is at the T -integral. The T -integral have the form∫ ∞
0

dT
ξa

(T + ξ)b
. (4.78)

10It would be interesting if one can find a direct relation between chiral HiSGRA and SDYM if there is
any.
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It will pick up poles of the form 1/ξb−a−1 whenever b ≥ a + 2. However, due to power

counting and the magic of the holomorphic integral (4.66), we should have convergent

integrals. The ν0 factor again will guarantee all of the sub-leading terms to vanish due to

our choice of zeta regularization.

4.6.4 Box and triangle-like diagrams

Next, we consider the one loop correction where we have four external legs in the large N

limit. This is the limit where the contribution from non-planar diagrams can be neglected

since it is incomparable to the planar’s contribution. Let us take a look at the box, triangle-

like diagrams. We show that they are also UV finite. Consider triangle-like diagrams and

take order (1234) for example:

= Γ∆(1234) =
ν0 (lp)

Λ4−4αΛ4−4
4

Γ(Λ4 − 3)
∏4
i=1 β

λi
i

P12

s12

∫
d4p

(2π)4

(Pp1 + Pp2)(Pp3 + P13 + P23)Pp4
p2(p+ p1 + p2)2(p+ p1 + p2 + p3)2

=
ν0 (lp)

Λ4−4αΛ4−4
4

Γ(Λ4 − 3)
∏4
i=1 β

λi
i

P12P
3
34

96π2s2
34

= − ν0 (lp)
Λ4−4αΛ4−4

4

Γ(Λ4 − 3)
∏4
i=1 β

λi
i

P2
34P41P23

96π2s12s23

(4.79)

Similarly,

Γ∆(2341) =
ν0 (lp)

Λ4−4αΛ4−4
4

Γ(Λ4 − 3)
∏4

i=1 β
λi
i

P23P
3

41

96π2s2
23

= − ν0 (lp)
Λ4−4αΛ4−4

4

Γ(Λ4 − 3)
∏4

i=1 β
λi
i

P2

41P12P34

96π2s12s23

(4.80)

Γ∆(3412) =
ν0 (lp)

Λ4−4αΛ4−4
4

Γ(Λ4 − 3)
∏4

i=1 β
λi
i

P34P
3

12

96π2s2
34

= − ν0 (lp)
Λ4−4αΛ4−4

4

Γ(Λ4 − 3)
∏4

i=1 β
λi
i

P2

12P23P41

96π2s12s23

(4.81)

Γ∆(4123) =
ν0 (lp)

Λ4−4αΛ4−4
4

Γ(Λ4 − 3)
∏4

i=1 β
λi
i

P41P
3

23

96π2s2
41

= − ν0 (lp)
Λ4−4αΛ4−4

4

Γ(Λ4 − 3)
∏4

i=1 β
λi
i

P2

23P34P12

96π2s12s23

(4.82)

As discussing in [241, 242], one can reduce the box integral, which is in general complicated
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to integrate, into the triangle-like integral. The box contribution reads

Γ� =
∑
ω

ν0 (lp)
Λ4−4αΛ4−4

4∏4
i=1 β

λi
i Γ(Λ4 − 3)

∫
d4p

(2π)4

Pp1(Pp2 + P12)(Pp3 + P34)Pp4
p2(p+ p1)2(p+ p1 + p2)2(p− p4)2 (4.83)

Notice that p is off-shell and we can use the following identity:

PpiPpi = −βiβ
2

(p+ pi)
2 +

βi(βi + β)p2

2
(4.84)

to arrive at

Pp1
(p+ p1)2

= − ββ1

2Pp1
+
β1(β1 + β)p2

2Pp1(p+ p1)2
,

Pp4
(p− p4)2

=
ββ4

2Pp4
− β4(β − β4)p2

2Pp4(p− p4)2
(4.85)

Effectively, we can reduce the box integral into triangle-like integral by canceling out

one propagator in the denominator using (4.84). Next, we can multiply Γ� by two for

manipulation reason, then

2Γ� =
ν0 (lp)

Λ4−4αΛ4−4
4∏4

i=1 β
λi
i Γ(Λ4 − 3)

∫
d4p

(2π)4

[
(Pp2 + P12)(Pp3 + P34)

p2(p+ p1 + p2)2

(
ββ4Pp1

2Pp4(p+ p1)2
− ββ1Pp4

2Pp1(p− p4)2

)

+
(Pp2 + P12)(Pp3 + P34)

(p+ p1)2(p+ p1 + p2)2(p− p4)2

(
β1(β + β1)Pp4

2Pp1
− β4(β − β4)Pp1

2Pp4

)]
(4.86)

Using Bianchi-like identity β(iPjk) = 0, we find

ββ4

2Pp4
=

P41

s41

+
β2

4Pp1
2Pp4P41

, − ββ1

2Pp1
=

P41

s41

+
β2

1Pp4
2Pp1P41

(4.87)

Then, after some straight forward algebra, the box integral becomes 11

2Γ� = ν0N�
P41

s41

∫
d4p

(2π)4

(Pp2 + P12)(Pp3 + P34)

p2(p+ p1 + p2)2

[
Pp1

(p+ p1)2
+

Pp4
(p− p4)2

− (Pp4 + Pp1 − P41)p2

(p+ p1)2(p− p4)2

]
+ Γ�

(4.88)

11Using identities listed in Appendix C.1, we can show that

sijPpiPpj = Pji
[
Ppi(p− pj)2 + Ppj(p+ pi)

2 − (Ppi + Ppj − Pji)p2
]
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where N� =
(lp)Λ4−4α

Λ4−4
4∏4

i=1 β
λi
i Γ(Λ4−3)

. Hence,

Γ� = ν0N�
P41

s41

∫
d4p

(2π)4

(Pp2 + P12)(Pp3 + P34)

p2(p+ p1 + p2)2

[
Pp1

(p+ p1)2
+

Pp4
(p− p4)2

− (Pp4 + Pp1 − P41)p2

(p+ p1)2(p− p4)2

]

= ν0N�

[
P41

[
P2

12(P23 + P34) + (P12 + P23)P2
34

]
96π2s12s23

+
P41P

3
23

96π2s2
41

]
(4.89)

The last term in (4.89) cancels with the triangle Γ∆(4123). In the end, we obtain

= Γ4 = Γ� +
[
Γ∆(1234) + cycl.

]
= ν0

N�

96π2

P12P34P41(P12 + P34 − P41)

s12s23

= ν0
N�

96π2

P12P23P34P41

s12s23

(4.90)

which is similar to a well-know result for Γ++++
4 QCD amplitude [241] (see also [239]).

4.6.5 The bubbles

As discussed in [241], the sum over bubbles, triangle like and box diagrams should add up

to zero in the case of all-plus 4pt one-loop (pure gluon) amplitude. We would like to see

whether chiral HSGRA has a similar property. The last diagrams we need to compute are

bubble insertions into the internal propagator, which come in two channels, s and t, for

U(N) factors:

Here, we divided the space of dual momenta ki into four regions. The external momenta pi
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can be read off by using two adjacent regional dual momenta. For example, p1 = k1 − k0

and p2 = k2 − k1 etc. Whenever we have a close loop, we can ’put’ the dual momentum

q inside it and the loop momentum can be obtained as the difference between q and the

nearest dual regional momentum. In the above figure, p = q − k0. Now, it is a matter of

computation to show the ’internal’ self-energy diagram with the four external legs labeled

in clockwise order to be

Γin
©(1234) = −

∑
ω

(lp)
Λ4−4αΛ4−4

4∏4
i=1 β

λi
i Γ(Λ4 − 3)

P12P34(β1 + β2)(β3 + β4)(k̄2
0 + k̄0k̄2 + k̄2

2)

96π2s2
12

=
∑
ω

(lp)
Λ4−4αΛ4−4

4∏4
i=1 β

λi
i Γ(Λ4 − 3)

P41P23(β1 + β2)(β3 + β4)(k̄2
0 + k̄0k̄2 + k̄2

2)

96π2s12s23

.

(4.91)

Similarly,

Γin
©(2341) = −

∑
ω

(lp)
Λ4−4αΛ4−4

4∏4
i=1 β

λi
i Γ(Λ4 − 3)

P23P41(β2 + β3)(β4 + β1)(k̄2
1 + k̄1k̄3 + k̄2

3)

96π2s2
23

=
∑
ω

(lp)
Λ4−4αΛ4−4

4∏4
i=1 β

λi
i Γ(Λ4 − 3)

P12P34(β2 + β3)(β4 + β1)(k̄2
1 + k̄1k̄3 + k̄2

3)

96π2s12s23

.

(4.92)

Next, we move to the graphs where we have vacuum bubbles on the external legs. In this

case, we have in total eight diagrams. Take the following diagram as an example

Here, the loop momentum is p = q − k0 and external momenta remain to be the same as

pi = ki − ki−1. Then the bubble on leg-i denoted as Γi© reads (remember that we have
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two different channels for each due to color ordering)

Γ1
© = −

∑
ω

(lp)
Λ4−4αΛ4−4

4∏4
i=1 β

λi
i Γ(Λ4 − 3)

P23P34β
2
1(k̄2

0 + k̄0k̄1 + k̄2
1)

96π2s12s23

, (4.93)

Γ2
© = −

∑
ω

(lp)
Λ4−4αΛ4−4

4∏4
i=1 β

λi
i Γ(Λ4 − 3)

P34P41β
2
2(k̄2

1 + k̄1k̄2 + k̄2
2)

96π2s12s23

, (4.94)

Γ3
© = −

∑
ω

(lp)
Λ4−4αΛ4−4

4∏4
i=1 β

λi
i Γ(Λ4 − 3)

P41P12β
2
3(k̄2

2 + k̄2k̄3 + k̄2
3)

96π2s12s23

, (4.95)

Γ4
© = −

∑
ω

(lp)
Λ4−4αΛ4−4

4∏4
i=1 β

λi
i Γ(Λ4 − 3)

P12P23β
2
4(k̄2

3 + k̄3k̄0 + k̄2
0)

96π2s12s23

. (4.96)

Equivalently, we can write them as

Γ1
© = −ν0N�

P23P34(β1β3P41P12 + β1(β1 + β4)P12P34 + β1(β1 + β2)P23P41)(k̄2
0 + k̄0k̄1 + k̄2

1)

96π2s12s23
,

(4.97)

Γ2
© = −ν0N�

(β2β3P41P12 + β2(β1 + β2)P23P41)(k̄2
1 + k̄1k̄2 + k̄2

2)

96π2s12s23
, (4.98)

Γ3
© = −ν0N�

P41P12β
2
3(k̄2

2 + k̄2k̄3 + k̄2
3)

96π2s12s23
, (4.99)

Γ4
© = −ν0N�

(β3β4P41P12 + β4(β1 + β4)P12P34)(k̄2
3 + k̄3k̄0 + k̄2

0)

96π2s12s23
. (4.100)

Collecting numerator coefficients and remember that pi = ki − ki−1. All together they

provide

Γbubbles =
4∑
i=1

Γi© + 2Γin
© = −ν0

(lp)
Λ4−4αΛ4−4

4

96π2Γ(Λ4 − 3)
∏λi

i=1 β
λi
i

P12P23P34P41

s12s23

(4.101)

Hence,

Γ4 = + 2× + 8× = 0 (4.102)

Therefore, the 4-point function at one loop does not have any UV-divergences since it can

be reduced to UV-convergent integrals we have already analyzed. The complete 4-point

amplitude vanishes due to the same ν0 factor.
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4.6.6 Sunrise Diagrams and Multiloop Amplitudes

For multiloop amplitudes in the large N limit, one can start with the sunrise diagrams that

have some of the legs off-shell and glue them together. The kinematic part of the sunrise

diagrams can be simply written as (we omit βλii at the moment for simplicity)

∑
{ωi}

Pλ1+ω1−ωn
p1,p,−p−p1

Γ(λ1 + ω1 − ωn)

Pλ2−ω1+ω2

p2,p+p1,−p−p1−p2

Γ(λ2 − ω1 + ω2)
· · ·

Pλn−ωn−1+ωn
pn,p−pn,−p

Γ(λn − ωn−1 + ωn)
=
∑
ωn

αΛn−n
n Kn

Γ(Λn − (n− 1))
(4.103)

where i = 1, ...n and

αn =
n−2∑
i<j=2

Pij + Pn−1,n , Kn(P) =
n∏
j=1

(
Ppj +

∑
i<j

Pij
)
. (4.104)

Putting the propagator and coupling constant together, one get the general form of one

loop correction with n-external legs, some of which can be off-shell

Γn = ν0
(lp)

Λn−nαΛn−n
n

Γ(Λn − (n− 1))
∏n

i=1 β
λi
i

∫
d4p

(2π)4

Kn(P)

p2(p+ p1)2...(p− pn)2
. (4.105)

The sum over helicities is crucial to make the contribution vanish even though we do not

evaluate the integral explicitly. The integral itself has to be UV-convergent due to vanishing

of the three-level amplitudes. Consequently, all multiloop amplitudes vanish confirming

that S = 1.
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4.6.7 One-loop Finiteness of Chiral HSGRA

In this subsection, we show that chiral HSGRA is one-loop finite. The result is that the

complete n-point one-loop S-matrix element consists of three factors: the all-plus helicity

one-loop amplitude in QCD (or self-dual Yang-Mills), which can be anticipated from [68];12

a certain higher spin dressing — an overall kinematical factor that accounts for the helicities

on the external legs; a purely numerical factor of the total number of degrees of freedom:

ΓChiral HSG, 1-loop = Γ++...+
QCD, 1-loop ×

[
kinematical

higher spin dressing

]
× ν0 . (3)

The evaluation of one-loop integrals with 2, 3, 4-legs reveals the nuts and bolts of how higher

spin fields eliminate UV-divergences: the specific structure of higher derivative interactions

helps to factor enough momenta out of the integrand to make the integral UV-convergent,

which is somewhat reminiscent of N = 4 Yang-Mills Theory [244, 245] where one power of

the momentum suffice. The final one-loop scattering amplitude vanishes, due to the total

number of effective degrees of freedom ν0 = 0 [131], which is consistent with the Weinberg

and Coleman-Mandula theorems. We note that the tree-level holographic S-matrix of

Chiral Theory in AdS4 does not vanish and is related [70] to the correlation functions

in Chern-Simons Matter Theories, which supports the dualities they were conjectured to

exhibit [40, 41, 246, 247, 43, 42].

Let us now take a sum of integrands of all one-loop Feynman diagrams with n external

on-shell momenta pi, p
2
i = 0. We denote this sum F . The loop momentum is `. F is

a rational function of momenta pi, `. Note, that the vertices do not contain the minus-

component of the momenta. Therefore, p−i , `− appear only in the denominators, as a part

of the propagator, p2 = 2p+p−+ 2pp̄. Now, F , as a function of `−, vanishes at infinity and

has only simple poles. The poles correspond to some momenta along the loop going on-

shell in various diagrams that contribute to F . Since the loop momenta is to be integrated

over, there is a an ambiguity in the momenta assigned to the lines going around any loop.

Indeed, we can simply add any amount q to all momenta of the loop. We would like to

choose the momenta around the loop in such a way that the residues of F at the poles in

12As a side remark, the computation in the paper, after erasing the higher spin modes, can give a simple
way to compute one-loop amplitudes in self-dual Yang-Mills.
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`− give the complete (n+ 2)-point tree-level amplitude:

F =
∑

`2→0−−−−→
residue

∑
= Atree(p1, ..., `, ...,−`, ...,pn) .

The relation between the original momenta `,pi and the dual momenta q,ki reads

` = q − k0, pi = ki − ki−1, kn ≡ k0 . (4.106)

Note that for an n-point amplitude there are n independent ki instead of n−1 independent

pi (due to momentum conservation). Therefore, there should be a translation symmetry

in the dual space to compensate for this redundancy in ki. The physical amplitude must

be translation invariant in ki. If this is so, then it is possible to solve for all ki in terms

of external momenta pi. At this point we move to the dual space. Each term in F has a

loop and now each segment of the loop has q − ki flowing through it for a certain i. The

dual space automatically leads to the correct routing of the momenta. Now, we consider

F to be a function of q, ki and are interested in the poles with respect to q−. The residue

at each pole gives the sum over all tree level diagrams with the same momenta on the

external lines. The latter is crucial for getting the complete tree-level amplitude as the

residue (rather than just a random sum of tree-level diagrams with different momenta on

some of the external lines).

It turns out that the interactions fine-tuned by the higher spin symmetry make all tree-level

amplitudes vanish [3, 4]. Therefore, we have a meromorphic function F , whose residues

vanish. Therefore, F ≡ 0. Note that F is just the total one-loop integrand. However, we

do not need all terms of F to get the S-matrix element. The self-energy corrections and

the tadpoles should be excluded. To this end, we represent F as follows

F = F 1−loop
S + F 1−loop

bubbles + F 1−loop
tadpoles = 0 , (4.107)

where F 1−loop
S is the complete integrand for the one-loop S-matrix element (that in-

cludes triangles, boxes and up to n-gon diagrams) and F 1−loop
bubbles, F

1−loop
tadpoles are self-evident.
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The tadpoles and the cuts of tadpoles vanish by themselves. Indeed, the tadpole has

V (0, µ; `, λ;−`,−λ) ≡ 0 as a vertex. It is important that the cubic self-interaction of the

scalar field is absent, i.e. V (p1, 0;p2, 0;−p1 − p2, 0) ≡ 0.

There is a nontrivial, but finite, contribution from the self-energy insertions into various

external and internal lines, see below. As a result we have

F 1−loop
S + F 1−loop

bubbles = 0 , F 1−loop
tadpoles = 0 . (4.108)

Therefore, in order to get the full one-loop S-matrix element we need to sum over all

bubble’s insertions. The summation will be done with the help of the tree-level amplitudes

that are available [3, 4] and we briefly summarize the results.

To proceed, let us recall the recursion result for n-point treel-level amplitude

An(1...n) =
(−)n α

Λn−(n−2)
n β3...βn−1 p

2
1

2n−2Γ(Λn − (n− 3))
∏n
i=1 β

λi−1
i β1P23...Pn−1,n

, αn =
n−2∑
i<j

Pij + Pn−1,n , (4.109)

where Λn = λ1 + ... + λn, and also the self-energy correction in the planar limit of the

U(N)-gauged Chiral Theory or for the N = 1 theory [3, 4]

= ν0N
(lp)

Λ2−2

βλ1
1 βλ2

2 Γ[Λ2 − 1]

∫
d4q

(2π)4

P2

q−k0,p1
δΛ2,2

(q − k0)2(q − k1)2

= ν0N(k̄2
0 + k̄0k̄1 + k̄2

1)
δΛ2,2(lp)

Λ2−2

96π2βλ1−1
1 βλ2−1

2 Γ[Λ2 − 1]
,

(4.110)

where ν0 =
∑

λ 1. It is important to note that the result is non-vanishing only when

Λ2 = λ1 + λ2 = 2. Below, we set Planck’s length lp = 1 for simplicity. We note that ν0

counts the number of degrees of freedom in the theory and has nothing to do with the UV-

convergence. Moreover, the amplitude is not translation invariant in the dual space, i.e.

it is anomalous. Therefore, it has to removed by a counterterm, which will be important

later.

Inserting bubbles into tree-level diagrams. As for the tree-level amplitudes, the
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direct summation over all tree-level diagrams with the bubble inserted is hardly feasible.

Instead, in order to compute F 1−loop
bubbles we apply another recursive relation, which can be

depicted as

[n/2]∑
i=1

=

[
+ + + ...

]
.

(4.111)

Here, the blue blobs are the tree-level sub-amplitudes that are being glued to the bubble

(the white blob). First, the white blob sits on the leftmost external line. In the second

term it is one vertex away from the external lines on the left. In the third term it has

passed three external lines on the left and so on. The final . . . also implies the sum over

the cyclic permutations. Inserting the self-energy integral (4.110) will give a contribution

of

(k+
j − k+

i )2(k̄2
i + k̄ik̄j + k̄2

j ) , k+
j − k+

i =

j∑
m=i+1

βm , (4.112)

where ki,j are the regional dual momenta that are adjacent to the inserted bubble. Note

that once we insert the bubble into an internal line, the two propagators get cancelled

against the p2-factors of the two tree-level diagrams (4.109) being glued. We also note

that the bubble is slightly off-diagonal in the helicity space since it has δλ1+λ2,2 instead of

δλ1+λ2,0 for the propagators.

One-loop amplitude. What remains is to massage the sum over the bubble’s insertions

and to put the minus sign in front. Let us write (4.111) in terms of P, k̄ and β components

by using (4.109) and (4.112). The diagrams in (4.111) correspond to gluing the bubble to

the two sub-amplitudes with the total number of external legs equal n and then taking the

cyclic permutations. We arrive at

(2.10) = Nn

[
[n/2]∑
i=1

(k̄2
0 + k̄0k̄i + k̄2

i )(
∑i

k=1 βk)
2

β1βiβi+1βn
Pi,i+1Pn1 + cyclic permutations

]
(4.113)
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where

Nn = ν0
(−1)nαΛn−n

n

2n+33π2Γ[Λn − (n− 1)]
∏n

i=1 β
λi−2
i P12P23...Pn1

. (4.114)

As we have already stressed, all physical quantities must be translation invariant in the

dual space. Therefore, (4.113) should not change if we replace ki by ki +a for any a. One

way to see it is to solve for all ki except for k0 via ki = k0 +
∑i

j=1 pj. In order to see that

the resulting expression f(k̄0) does not depend on k̄0 we can take its derivative f ′(k̄0) to

get

Nnk̄0

[
[n/2]∑
i=1

(
∑i

k=1 βk)
2

β1βiβi+1βn
Pi,i+1Pn1 + cyclic permutations

]
. (4.115)

This is nothing but (4.113) with all (k̄2
i + k̄ik̄j + k̄2

j ) factors erased, times k̄0. It is easy

to show that this expression is indeed zero with the help of the momentum conservation,

see various identities in [4]. Once (4.113) is shown to be translation invariant, it can

be expressed in terms of external momenta pi only. This is quite remarkable since the

self-energy diagram itself, (4.110), is not translation invariant, it is anomalous.

Due to many kinematical identities involving βi and Pij, there is no unique way to write

the final result, but the following form is very suggestive

AHSG
1-loop =

[ ∑
1≤i1<i2<i3<i4≤n

β̌n−4
i1,i2,i3,i4

Pi1i2Pi2i3Pi3i4Pi4i1
2
n
2
−2P12P23...Pn1

]
×DHSG × ν0 , (4.116)

where

β̌n−4
i1,i2,i3,i4

=

∏n
j=1 βj

βi1βi2βi3βi4
, DHSG =

(−)nαΛn−n
n

2
n
2

+53π2Γ[Λn − (n− 1)]
∏n

i=1 β
λi−1
i

. (4.117)

Clearly, the one-loop amplitude in Chiral Higher Spin Gravity consists of (i) a factor that

has a lower spin origin as it does not have enough P to account for λi; (ii) kinematical

higher spin dressing factor DHSG that accounts for helicities λi on the external lines, which

the first factor cannot accomplish; (iii) the total number of physical degrees of freedom ν0.

The first factor is telling. Applying the light-cone vs. spinor-helicity dictionary (4.24),
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we discover the all-plus helicity one-loop amplitude in QCD or in self-dual Yang-Mills

[248, 249, 250]:

ASDYM, 1-loop = A++...+
QCD,1-loop =

∑
1≤i1<i2<i3<i4≤n

〈i1i2〉[i2i3]〈i3i4〉[i4i1]

〈12〉〈23〉...〈n1〉
. (4.118)

In other words, the one-loop amplitude in Chiral Higher Spin Gravity is found to be

AHSG
1-loop = A++...+

QCD,1-loop ×D
HSG × ν0 . (4.119)

Therefore, we get precisely the structure (3) that is sketched in the introduction. Moreover,

when we set λi = 1, (4.119) reduces to just the SDYM/QCD amplitude times an overall

numerical factor, i.e. the higher spin dressing disappears. To conclude, both the Weinberg,

Coleman-Mandula theorems and the one-loop determinants instruct us to set ν0 = 0 and

get S = 1. This can safely be done since the one-loop amplitude is shown to be UV-finite.

4.7 Conclusions and Discussion

Chiral Theory reveals a remarkable cancellation mechanism for UV-divergences and should

be an example of a consistent quantum HSGRA. This is the only higher spin model with

propagating massless higher spin fields where quantum corrections can be computed.

We showed in this chapter that the tree-level amplitudes vanish on-shell, which is a result

of highly nontrivial cancellations after the summation over Feynman diagrams. This is the

requirement of the Weinberg low energy theorem. Another interesting property of chiral

theory is that the spin sums are bounded from both above and below assuming the external

helicities are fixed. In generic higher spin theories we would expect an infinite sum over

all spins already for tree level diagrams.13 This does not happen for chiral HSGRA and

infinite spin sums show up only at the loop level as an overall factor as shown in the body

of this chapter.

The loop diagrams turn out to consist of two factors: the UV-convergent integral and a

13This corresponds to gluing chiral and anti-chiral vertices together.
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purely numerical factor ν0 =
∑

λ 1. The UV-convergence is a very important property that

again relies on the presence of higher spin fields. This effect is reminiscent of N = 4 Yang-

Mills theory [244, 245], in which the supersymmetry forces one momentum to eventually

factor out and makes the integrals convergent. Higher spin symmetry amplifies this effect.

Chiral HSGRA has infinitely many non-renormalizable interactions, which include the two-

derivative graviton self-coupling. Higher spin symmetry forces enough momenta to factor

out in every loop integral and makes all loop integrals free of UV-divergences. Overall

factor ν0 is to be expected in any theory with infinitely many fields and some value needs

to be assigned to the sum. Based on zeta-function regularization, it is natural to set ν0 = 0.

Such an assignment is consistent both with the Weinberg soft theorem and with a large

bulk of results on one-loop determinants in HSGRA/Vector Models duality context.

The result S = 1 agrees with our expectation for any HSGRA in flat space. It is, however,

no longer true once the cosmological constant is switched on. The holographic S-matrix

turns out to be nontrivial [70]. Therefore, we consider chiral HSGRA in flat space as a useful

toy model to check the cancellation of UV-divergences thanks to higher spin symmetry. It

is exactly the effect that HSGRAs have long been expected to have.

We also extend chiral HSGRA in such a way that it incorporates Yang-Mills gaugings, see

Appendix C. Even though we do not see any immediate relation to string theory, it is quite

surprising that higher spin fields can be made matrix-valued fields via the method that is

very similar to the Chan-Paton approach. Higher spin symmetry seems to be restrictive

enough to make theories with a graviton in the spectrum to be quantum consistent. It

was recently shown that one can extend chiral HSGRA to supersymmetric chiral HSGRAs

[251]. However, the mechanism that cancels UV-divergences should be the same with the

pure bosonic case we investigated in this chapter.

Chiral HSGRA is the only class of HSGRAs at present with propagating massless higher

spin fields and an action. Nevertheless, there is a handful of other higher spin models

with an action that are of great interest. There are topological theories, which are free of

UV-divergences, in three dimension: purely massless [56, 57, 58, 59] and conformal [62, 64].

Another class is 4d conformal higher spin gravity [60, 51, 252], which is an extension of

conformal gravity. There also has been some progress in two dimensions [253]. There
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are encouraging results on quantum checks for conformal higher spin gravity [254, 255]

that indicate that the conformal higher spin symmetry also makes the S-matrix trivial

in flat space. The 2d-models of [253] involve propagating matter fields with interactions

mediated via topological higher spin fields, thereby providing interesting toy models for

quantum checks. Lastly, it would be very important to directly verify that AdS4 chiral

HSGRA is free of UV-divergences.
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Chapter 5

Formal HSGRA in AdS5

In this chapter, we construct a formal bosonic HSGRA in AdS5 in terms of formally

consistent classical equations of motion. Finding the equations of motion was shown to

be equivalent to a certain deformation of a given higher-spin algebra [81, 80]. There

are two different realization of the deformed higher-spin algebra: (i) through the universal

enveloping algebra of su(2, 2); (ii) through oscillator variables. Both of the new realizations

admit supersymmetric extensions and the N = 8 extension should describe the massless

sector of tensionless Type-IIB strings on AdS5 × S5.

5.1 Motivation

In the previous chapters we have seen how higher-spin symmetry can render HSGRA

renormalizable and even finite in both AdS and flat spaces. We also understood that

the (holographic) S-matrix is fixed by this rich symmetry [71, 72], which eventually led

us to the conjecture that HSGRA is UV-finite. Therefore, if we believe the symmetry

arguments, i.e. that the higher spin symmetry alone forbids all relevant counterterms,

our task of finding a quantum consistent theory downgrades to a task of constructing a

purely classical HSGRA. The AdS/CFT correspondence is a crucial reference point for the

construction of the bulk theory since the holographic S-matrix should precisely match the



128 5. Formal HSGRA in AdS5

free/weakly coupled CFT’s correlation functions.

However, free (or weakly coupled) CFT’s do not have a large gap in the dimensions of

single-trace operators and hence the existence of the gravitational dual requires justification

[256]. Due to severe nonlocalities required by the higher spin symmetry [85, 55, 87], we

can understand that HSGRAs are not conventional field theories. Yet, the existence of

CFT dual descriptions should in principle allow one to reconstruct the bulk theory from

the CFT correlation functions [257, 258], i.e. to write down certain interaction vertices in

AdS that, via Witten diagrams, compute exactly the correlation functions of the required

CFT. There are at least two issues here: (i) reconstruction does not give a definition of

the bulk theory that would be independent of its CFT dual, thereby trivializing AdS/CFT

duality;1 (ii) still, the interactions that are required to get the free (weakly-coupled) CFT’s

correlation functions are too non-local to treat them as local field theories and there are

ambiguities that do not even allow one to compute tree-level amplitudes without further

prescriptions [85, 55, 87]. The latter calls for a better understanding of the bulk locality

in HSGRA.

It is worth stressing that conformal HSGRA and chiral HSGRA avoid the aforementioned

problems. Nevertheless, it is important to understand how to stretch the axioms of local

field theory as to be able to define holographic HSGRA’s, e.g. those that are dual to free

and critical vector models.

In this chapter, we will construct the bulk theory by studying the deformation of higher-spin

algebra — an extension of conformal algebra so(d, 2) in generic dimensions and su(2, 2)

in AdS5/CFT4. Our starting point is any free CFT. As a known fact, free CFTs come

with higher-spin algebra hs — the symmetry algebra of the free equations of motion [119].

Higher-spin algebra is associative and is the quotient of U(so(d, 2)) (or its supersymmetric

extension) by the two sided Joseph ideal I.

Being identified with a global symmetry on the CFT side, hs carries complete information

1An important question is what are the bulk questions that cannot be immediately answered from the
reconstruction vantage point. One such question is about quantum corrections in the bulk. Given that the
reconstruction gives a classical action that computes the required CFT correlation functions at tree-level
in the bulk, it is still a challenge to prove that the quantum corrections come out right. See, for example,
[137] for the analysis of the one-loop corrections in holographic HSGRA.
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about the spectrum of single-trace operators and their correlators.2 It has to be gauged

in the gravitational dual producing thus inevitable non-localities. If we sacrifice locality,

then there is a formal way to make the problem of finding vertices for HSGRA well-defined

mathematically. It involves writing down formally consistent classical equations of motion

which take the form

dΦ = V2(Φ,Φ) + V3(Φ,Φ,Φ) + ... , d2 = 0 , (5.1)

where Φ is some field.3 The construction of Vn are heavily based on strong homotopy

algebras a.k.a. A∞/L∞-algebras (see e.g. [261, 262]) and the quantization deformation

[263].

The formal HSGRA approach was initiated by Vasiliev, who constructed the first exam-

ple of such a system [120]. At present there are several examples of formally consistent

equations of motion [264, 121, 265, 266, 267, 196, 81] that deal with different higher spin

algebras or provide a different realization of the same system. The general problem of how

to construct a formal HSGRA, i.e. the vertices, starting from any higher spin algebra was

solved in [80, 81], where it was shown that constructing Vn is equivalent to deforming a

certain extension of hs as an associative algebra.4

In this chapter, we will construct a formal HSGRA in five dimensions, which has been an

open problem since the late 1990s. The relevant hs had been known [272]. Free fields that

comprise the spectrum of HSGRA’s in AdS5, including the mixed-symmetry ones, were

studied in [273, 274, 275]. Certain cubic vertices for the N = 0, 1, 2 cases were constructed

in [276, 277, 278]. The free equations of type (5.1) were analyzed in [279]. However, when

it comes to classical equations the previously known methods do not work. Our solution

heavily relies on the work [81].

In a few words, [81] allows to construct all the vertices once we are able to deform an

extension of a higher-spin algebra hs. There are two different ways to deform it. The first

one is to deform relations coming from the Joseph Ideal together with the commutator

2The correlation functions are just the simplest hs invariants [75, 76, 77, 78].
3The equations above look similar to those of String Field Theory, see e.g. [259, 260].
4See also [268, 269, 270] for various closely related mathematical aspects, in particular, [271] for a

relation to the Kontsevich–Shoikhet–Tsygan formality theorem.
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of the translation generators. This leads to an interesting way to deform (quotients of)

universal enveloping algebras. The second one is to utilize the quasi-conformal realizations

[280, 151, 281] that were previously underrated in the higher spin context. The main feature

is that they resolve all of the Joseph relations and give the minimal oscillator realization

of the free field and of the corresponding higher spin algebra. We found a way to deform

the quasi-conformal realization so that the deformed Joseph’s relations are satisfied.

The study of five-dimensional HSGRA is also well motivated by the relation to string

theory. In particular, N = 8 HSGRA is believed to describe a massless subsector of

tensionless type-IIB superstring theory on AdS5 × S5, see e.g. [37, 282] for the important

development towards this theory. One can start with a purely bosonic model in AdS5 and,

then, try to construct its supersymmetric extension.

If we take AdS/CFT as the guiding compass then the free limit ofN = 4 SYM is anticipated

to be dual to the tensionless limit of the Type-IIB string theory on AdS5 × S5 [36, 50].

The tensionless limit corresponds to very long strings ls � R (R is AdS radius), see e.g.

[283, 284] for discussion.5

The outline of chapter 5 is as follows. In Section 2, we review the algebraic construction

of HSGRA via a deformation of the extended higher spin algebra. In particular, we show

how to construct Vn. In section 3, we discuss the input that is needed in AdS5 case

paying attention to the quasi-conformal realization. In section 4, we deform the algebra by

either deforming the extension of hs in terms of Joseph relations or the quasi-conformal

realization, which eventually leads to the equations of motion. In section 5, we briefly

review the non-locality problem in HSGRA and discuss how this construction may bypass

it. We summarize the results in section 6 and discuss possible future developments.

5There is a worldsheet description of the tensionless strings on AdS3 [53], which comes as a surprise
since the limit is somewhat singular and not well-understood in higher dimensions, e.g. for AdS5 that we
are discussing.
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5.2 Algebraic Construction of HSGRA via Higher

Spin Algebra

In chapter 4, we have completely determined the interaction vertices for chiral HSGRA in

four dimensional Minkowski and AdS spacetime. In this section, we would like to return

to the question posed in chapter 2 on how to determine vertices for holographic HSGRAs

in AdSd+1, i.e. for those theories that have a free CFT dual. To begin with, let us recall

that the equation that describes higher-spin background in AdS is dω = ω ? ω, where ? is

the product in the higher spin algebra hs. The appearance of the 0-form Wa(s),b(s) — the

generalized Weyl tensors which are built out of s-derivatives of the Fronsdal fields, suggests

that we can introduce a master 0-form field, call it C, to capture every Wa(s),b(s).6 Then,

the free equations of motion for higher-spin fields are7

dω = ω ? ω , (5.2a)

dC = ω ? C − C ? π(ω) . (5.2b)

As noted in Chapter 2, all elements of hs can be written in terms of P a, Lab, the generators

of so(d, 1) ⊂ so(d, 2). Moreover, π is an automorphism that flips the sign of translation

generator P a and preserves the sign of the Lorentz generator Lab, i.e. πf(P a, Lab) =

f(−P a, Lab) . In components,

ω(Pa, Lab) = A 1 + eaPa +$abLab + · · · , (5.3)

C(Pa, Lab) = Φ 1 + F abLab +Wab,cdLabLcd + · · · . (5.4)

It is easy to see that ω carries gauge degree of freedom in terms of the spin-1 gauge potential

A, the vielbein ea, spin connection $ab and their higher spin generalizations. On the other

hand, the 0-form C describes physical d.o.f. in terms of the scalar field Φ, the Maxwell

field-strength F ab, the Weyl tensor Wab,cd and other higher spin generalizations thereof.

The system (5.2) describes free fields, and this is the starting point for deformation. A

6It is easy to notice that for s = 2, we have a 0-form field Wab,cd, which have the same properties of
the usual Weyl-tensor in GR.

7See [285] for the very first equations of this form in the context of the 4d HSGRA.
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useful observation is that the automorphism π can be completely absorbed if we consider

an extended associative algebra AΓ = hsoΓ, that is a smash product algebra of hs and its

finite group of automorphism Γ that contains π [80]. For the bosonic HSGRA, e.g. type-A,

Γ = Z2 = {1, κ} with κ2 = 1. The generator κ ∈ Z2 acts on Pa and Lab as

κPaκ = −Pa , κLabκ = Lab . (5.5)

Then, any elements of AΓ can be written as a = a1 · 1 + a2 · κ for a1, a2 ∈ hs and the

?-product in AΓ reads

a ? b = (a1b1 + a2π(b2)) · 1 + (a2π(b1) + a1b2) · κ , (5.6)

where κaiκ = π(ai), ai ∈ hs. By making the substitution ω = ω · 1 and C = C · κ we can

always go back to the fields taking values in the higher spin algebra. At this point it is

useful to work with the extended algebra so as to eliminate π out of the formal equations

of motion for HSGRA.

After eliminating π, it is easy to see based on form-degree counting that the most general

non-linear equations read:

dω = ω ? ω + V3(ω, ω, C) + V4(ω, ω, C,C) +O(C3) , (5.7a)

dC = ω ? C − C ? ω + V3(ω,C,C) +O(C3) . (5.7b)

Here, C is an expansion parameter and the interaction vertices Vn should satisfy the Frobe-

nius integrability condition, i.e. they should be compatible with d2 = 0. The relevant

framework for us to construct Vn turns out to be strong homotopy algebras which are also

known as A∞/L∞-algebras [262, 286].

5.2.1 Vertices from A∞-algebra

The derivation of Vn is based on the assumption that AΓ can be deformed into a one-

parameter family of associative algebras Aν with a formal deformation parameter ν. We
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assume the product in Aν to be

a ∗ b = a ? b+
∑
n

φn(a, b)νn ≡ µ(a, b) , a, b ∈ Aν=0 . (5.8)

where φn(•, •) are some bilinear maps that satisfy consistency conditions coming from

associativity, i.e. a ∗ (b ∗ c) = (a ∗ b) ∗ c . Note that the ? in (5.8) is the product in Aν=0.

At first order in ν, we get

a ? φ1(b, c)− φ1(a ? b, c) + φ1(a, b ? c)− φ1(a, b) ? c = 0 . (5.9)

This equation is a Hochschild two-cocycle that induces a deformation of AΓ. One can then

construct Vn from bi-linear maps φ via A∞-algebras.8 In what follows we will see how this

is done.

A∞-algebra interlude. Consider a graded vector space V and a space X = Hom(TV, V )

of all multilinear maps on V . Here, TV is the tensor algebra on V . Then, an A∞-algebra on

V is realized by a master degree-one map x ∈ X that obeys the Maurer-Cartan equation:

Jx, xK = 0 , x = x1 + x2 + ... , xn ∈ Hom(T nV, V ) . (5.10)

The above double-bracket is the Gerstenhabar bracket defined as 9

Jxm, xnK = xm ◦ xn − (−1)|xm||xn|xn ◦ xm , (5.11)

which is graded skew-symmetric and obeys the graded Jacobi identity:

Jxm, xnK = −(−1)|xm||xn|Jxn, xmK , (5.12)

JJxm, xnK, xlK = Jxm, Jxn, xlKK− (−1)|xm||xn|Jxn, Jxm, xlKK . (5.13)

8We dedicate Appendix D to all the related technicalities in this chapter.
9We follow the convention in [262, 80].
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The non-associative ◦ product is the Gerstenhaber product:

(xm ◦ xn)(a1, ..., am+n−1)

=
n−1∑
i=0

(−)|xn|
∑i
j=1 |aj |xm(a1, ..., ai, xn(ai+1, ..., ai+m), ..., am+n−1) ,

(5.14)

where ai ∈ V . Here |xm| and |ai| denotes the grading of the map xm and the vector ai.

Pictorially, we can treat ai as leaves (they have green color in the figure below, and xi as

i-tree without any internal branches. By grafting xi and xj together, we are effectively

making the root of xj become one of the branches of xi and the total number of leaves

we have is i + j − 1. The sum over all possible insertions of xn into xm is taken. As an

example, let us consider x4 ◦ x3

◦ =
∑

(5.15)

It is, then, natural to generalize the Gerstenhaber product to a braces operation [287, 288]

that has the form

xn{y1, ..., yk}(a1, ...) =
∑
±xn(a1, ..., ai, y1(ai+1, ...), ..., yi(...), ...) , (5.16)

where the total sign factor is a product of the sign factors for each yi ∈ Hom(T iV, V ),

which schematically are |yk|
∑

j |aj| (the sum is performed for all ai’s that are to the left

of yk). Pictorially, this brace operation is the grafting of more i-trees together to make a

bigger tree with more leaves on top.

The first few relations coming from A∞-algebras are, e.g.

x1(x1(a)) = 0 , (5.17)

x1(x2(a1, a2)) + x2(x1(a1), a2) + (−1)|a1|x2(a1, x1(a2)) = 0 . (5.18)

The first equation simply tells us that x1 is nilpotent, i.e. x1 is a differential. The second
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equation implies x1 satisfies graded Leibniz rule for a bi-linear product x2. At the next

level, we have

x2(x2(a1, a2), a3) + (−1)|a1|x2(a1, x2(a2, a3)) + x1(x3(a1, a2, a3)) + x3(x1(a1), a2, a3)

+ (−1)|a1|x3(a1, x1(a2), a3) + (−1)|a1|+|a2|x3(a1, a2, x1(a3)) = 0 ,
(5.19)

meaning x2 is associative up to a coboundary that includes x3. In what follows, we will consider

minimal A∞-algebras, i.e. the A∞-algebras without x1. The reason is that we will match xn

with Vn — the vertices of the HSGRA, and the lowest order vertex of the HSGRA is of second

order, e.g. V2(ω, ω) = ω ? ω. Then, the first non-trivial equation is just (5.19) without x1

Jx2, x2K = 0 ⇔ x2(x2(a, b), c) + (−)|a|x2(a, x2(b, c)) = 0 . (5.20)

From here, we can perturbatively construct higher order maps xn via the following system

Jx, xK = 0 ⇔ δxn +
∑

i+j=n+2

xi ◦ xj = 0 , i, j ≥ 3 , (5.21)

where δ = Jx2,−K is a differential of degree one in X that is nilpotent. Indeed,

δ2f = Jx, Jx, fKK =
1

2
JJx, xK, fK = 0, ∀f ∈ X . (5.22)

It is then easy to construct xn order by order by solving (5.21) recursively.

Back to the construction of Vn. Recall that AΓ = hs o Z2 is an associative algebra

(understood as A∞ algebra it concentrates in degree −1). Due to the restrictions imposed by the

grading, there cannot be any interesting A∞-structure on it. We can, however, deform AΓ as an

associative algebra. We define the A∞-structure perturbatively and the first step is to extend AΓ

by its adjoint bimodule M , note that M has degree 0. Then, the A∞-structure contains only x2

at its lowest order, where Jx2, x2K = 0.10 Based on (5.7), we can make the following assumption:

x2(a, b) = a ? b, x2(a, u) = a ? u, x2(u, a) = −u ? a, x2(u, v) = 0 , (5.23)

10Here, x2 is defined for various pairs A−1 ⊗A−1 (the ?-product), A−1 ⊗A0 (the left action of AΓ on
M), A0 ⊗A−1 (the right action of AΓ on M)
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where a, b ∈ A−1 and u, v ∈ A0. Now we try to deform this trivial A∞-structure where the

first-order deformations can be described in terms of the Hochschild cohomology of AΓ. From

(5.21), the first-order deformation should be x3(•, •, •) with arguments from A−1 and A0. We

have

δx3 = 0 ⇐⇒ Jx2, x3K = 0 . (5.24)

If AΓ admits a deformation to one-parameter family Aν , then the second Hochschild cohomology

group is nonzero, i.e. H2(AΓ,AΓ) 6= 0. Any element φ ∈ H2(AΓ,AΓ) can be represented by a

cocycle φ. Given these initial data, δx3 = 0 yields [80]:11

x3(a, b, u) = f3(a, b) ? u, x3(a, u, v) = f3(a, u) ? v, x3(u, a, v) = −f3(u, a) ? v . (5.25)

Then, as a consequence of the associativity of the ∗-product in Aν , see (5.8), we can identify

f3(a, b) = φ1(a, b) where a, b ∈ AΓ. We obtain, for instance

x3(a, b, u) = φ1(a, b) ? u . (5.26)

The associativity of the ∗-product also give us relations between φn. The next order, which is

δx4 + x3 ◦ x3 = 0, is solved by

x4(a, b, u, v) = φ2(a, b) ? u ? v + φ1(φ1(a, b), u) ? v . (5.27)

The last step of the construction is to replace

xn → Vn, a, b→ ω, u, v → C . (5.28)

The above approach, however, possesses difficulty when we try to get higher-order interaction

vertices. There is another way to get all Vn at once.

Generating function of Vn So far, we only use ν to obtain relation between φn, the cocycle

in H2(AΓ,AΓ), to determine Vn order by order. Let us now consider an auxiliary family Aν(t)

11We place the expansion parameter C on the right as a convention.
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of A∞ algebras [80, 81] where the master degree-one map becomes

x = x2 + tx3 + t2x4 + ... , x = x(t, ν), (5.29)

and

x(0, ν)(a, b) = x2 ≡ a ∗ b = a ? b+
∑
n

φn(a, b)νn , a, b ∈ AΓ . (5.30)

These data can be used to solve the evolution

∂txn = xi{∂νxj , ∂} (where i+ j = n+ 1) , Jx, ∂K = 0 , Jx,xK = 0 . (5.31)

Here, ∂ is a degree minus one map that maps M = AΓ (that has degree 0) to AΓ and annihilates

AΓ. We assume that the flow in t start from the surface Jx,xK = 0. Choosing the initial condition

at t = 0 and ν = 0 as (5.23), we can solve for examples

x3(ω, ω,C) = x2{∂νx2, ∂} ⇒ x3 = φ1(a, b) ? u , (5.32)

2x4(a, b, u, v) = x3{∂νx2, ∂}+ x2{∂νx3, ∂} ⇒ x4 = φ2(a, b) ? u ? v + φ1(φ1(a, b), u) ? v .

(5.33)

At the last step, we set ν = 0 and use the replacement rule (5.28). We get for instance

V3(ω, ω, C) = φ1(ω, ω) ? C , (5.34)

V4(ω, ω, C,C) = φ2(ω, ω) ? C ? C + φ1(φ1(ω, ω), C) ? C , (5.35)

Vn(ω, ω, C, ..., C) = xn(ω, ω, C, ..., C)
∣∣∣
ν=0

. (5.36)

We note that the vertices Vn of HSGRA cannot be removed by field redefinitions. Thus,

we see that the vertices are completely determined by the associative ∗-product (5.8). For

more details, we refer the interested readers to [80, 81].
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5.2.2 Formal Equations of Motion for HSGRA

The system that describes HSGRAs in AdSd+1 is almost identical with (5.7) up to a twist

π:

dω = ω ? ω + V3(ω, ω, C) + V4(ω, ω, C,C) +O(C3) , (5.37a)

dC = ω ? C − C ? π(ω) + V3(ω,C,C) +O(C3) , (5.37b)

where for example

V3(ω, ω, C) = φ1(ω, ω) ? π(C) . (5.38)

Here, φ1 takes values in the twisted adjoint representation and is a nontrivial solution of

a ? φ1(b, c)− φ1(a ? b, c) + φ1(a, b ? c)− φ1(a, b) ? π(c) = 0 . (5.39)

If we remove π from the above equation, we get the usual Hochschild two-cocycle that

induces a deformation of the associative structure. With the twist π in (5.39), φ is not

a deformation of hs. In fact, higher spin algebras are usually rigid and do not have

deformations. Note, however, that φ induces a deformation of the extended algebra AΓ

since the twisted representation is a part of it by construction. Therefore, while hs is

rigid and can not be deformed, the extended algebra AΓ is soft and can be deformed.

Since the physical zero-form C takes values in the representation twisted by π, it is not

surprising that the deformation that leads to interaction vertices Vn has something to do

with deforming AΓ along π. The problem now reduces to the problem of deforming AΓ to

all orders so as to find Vn, which we already know how to do.

5.2.3 Consistency Criteria and Physical Implications

Let us recall some of the information for the undeformed higher spin algebra. The hs

contains all the higher-spin generators TA(s−1),B(s−1) described by rectangular, two-row,
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Young diagrams:

hs = • ⊕
⊕
s≥1

s
s . (5.40)

This algebra is obtained as a quotient of the universal enveloping algebra U(so(d, 2)) by

the two sided Joseph ideal I that is generated by

[
C2 − λ

]
⊕ ⊕ ≡ J ⊕ J AB ⊕ J ABCD . (5.41)

More explicitly,

J ABCD = T [ABTCD] , (5.42)

J AB = TACT
BC + TBCT

AC − (d− 2)ηAB , (5.43)

J = −1

2
TABT

AB +
1

4
(d2 − 4) . (5.44)

We can write the above relations in terms of Pa and Lab by identifying Pa = T �
a and

Lab = Tab, we simply get:12

J abcd = L[abLcd], J abc� = {L[ab, P c]} (5.45)

J ab = {Lac, Lbc} − {P a, P b} − (d− 2)ηab. (5.46)

J a� = {Lac, P c}, J �� = 2PaP
a + (d− 2) (5.47)

J = −1

2
LabL

ab + PaP
a +

d2 − 4

4
(5.48)

The commutation relations of so(d, 2) in terms of Pa and Lab are:

[Pa, Pb] = Lab, [Lab, Lcd] = Ladηbc + ... , [Lab, Pc] = Paηbc − Pbηac . (5.49)

The remaining task is to show that we can deform the infinite-dimensional AΓ = hs o Γ

consistently. This might be a very complicated problem because there are infinitely many

12We set the cosmological constant to 1. The so(d, 2) index A = {a,�} with � being the extra direction
of so(d, 2)-vector as compared to the vector of the Lorentz algebra so(d, 1).
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structure constants that will receive correction. However, as the matter of fact, we can

deform very few relations by hand and all of the structure constants can be derived easily.

For Type-A HSGRA in generic AdSd+1, the simplest relation that needs to be deformed is

[Pa, Pb] = (1 + νκ)Lab . (5.50)

Note that we want to keep [L,L] and [L, P ] intact to preserve local Lorentz algebra and its

action on tensorial objects. [P, P ]-bracket plays the role of the seed that drives the whole

deformation making AΓ → Aν . To see the physical implication of this deformation, let us

for the moment turn off all the HS fields (but we will not truncate them) and look at the

gravitational sector of the cubic vertex where C = ...+Wab,cdLabLcd + ..., then

V3(ω, ω, C) = ec ∧ ed φ1(P c, P d) ? C ∼ ec ∧ edWab,cdLab + ... . (5.51)

Here, because e ∧ e is anti-symmetric the appropriate substitution to φ1(P, P ) is nothing

but the first order deformation of the [P, P ]-bracket. The appearance of the Wab,cd allows

us to get the correct Einstein equations in the frame-like formalism. Indeed, the coefficient

of Lab from dω = V2 + V3 + ... should lead to

d$ab −$a
c ∧$cb − Λea ∧ ebLab = ec ∧ edWab,cd , (5.52)

which is achieved iff the [P, P ]-bracket reads

[Pa, Pb] = (1 + νκ)Lab ⇔ Einstein equations . (5.53)

Therefore, the physical interpretation of the deformed [P, P ]-bracket is that it leads to the

Einstein equations. Together with other higher spin fields, we have obtained consistency

bosonic HSGRAs in generic AdSd+1 via the above construction.
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5.3 Initial Data for AdS5

Above we have reviewed how to construct type-A HSGRA starting from free scalar CFT.

This construction indeed can work with any free CFT and therefore the only input we

need to construct HSGRAs is hs. For the case of type-A HSGRA in AdS5, the higher-

spin algebra comes from the universal enveloping algebra of su(2, 2), whose generators

T B
A , A,B = 1, ..., 4 obey

[T B
A , T D

C ] = δ D
A T B

C − δ B
C T D

A . (5.54)

Here, the indices A,B, ... are the indices of the (anti)-fundamental representation of

su(2, 2). The ideal is generated by the quadratic relations

C2 = T B
A T A

B = −3 , (5.55a)

T C
A T B

C = −2T B
A +

1

4
C2δ

B
A , (5.55b)

{T [B
[A , T

D]
C] } = δ B

A δ D
C − δ B

C δ D
A . (5.55c)

Elements of the higher spin algebra hs are polynomials f(T ) in T B
A modulo the Joseph

relations. Therefore, following the definition in subsection 2.4.2, it is easy to see that

f =
∑
k

fA1...Ak
B1...Bk

T B1
A1

... T Bk
Ak

, (5.56)

where the coefficients are traceless and symmetric in upper and lower indices, i.e., define

an irreducible representation of weight (k, 0, k) .

Although one can take relations (5.54) and (5.55) as an initial definition of hs. In practice,

it is sometimes convenient to resolve (some of) the Joseph relations by passing to an

appropriate realization. We will introduce two quartets of oscillator variables aA and bB in

the fundamental and anti-fundamental representations of su(2, 2) (they generate the Weyl

algebra A4):

[aA, aB] = 0 , [bA, bB] = 0 , [aA, b
B] = δ B

A . (5.57)
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Then the su(2, 2) generators are given by

T B
A =

1

2
{aA, bB} −

1

4
δ B
A N , (5.58)

where the u(1) generator N = 1
2
{aC , bC} commutes with T B

A . We can then define hs as a

subquotient of the oscillator algebra:

f ∈ hs ⇐⇒ [f,N ]? = 0 , f ∼ f + g ? N , (5.59)

The first relation demands f(a, b) to have an equal number of a and b oscillators. The

quotient with respect to N makes the Taylor coefficients effectively traceless, as in (5.56).

It is this realization that was used in [62] to study the spectrum and free higher spin

equations.13

Another way to resolve all Joseph’s relations is to utilize quasi-conformal realization (QCR)

[54,55,63]. The idea is to represent hs by a minimal possible number of oscillators. We

have the following of canonical pairs of oscillators

[z, pz] = [y, py] = [x, px] = i . (5.60)

In QCR approach, it can be shown that the following two composite operators

Y A
L =

{
z, pz, 0,

1

x
(zpy − pzy −

1

2
)

}
, Y A

R = {y, py, x, px} (5.61)

can be used to define the generators of hs. Indeed,

T B
A = − i

2

(
Y +
A Y

B
− −

1

4
δ B
A Y +

C Y
C
−

)
(5.62)

obey the commutation relations (5.54) as well as (5.55).

Recall that the Lorentz subalgebra so(4, 1) ∼ sp(4) — the maximally symmetric subalgebra

of so(4, 2) that remains undeformed. It allows one to split the su(2, 2) generators into the

13Note that we need to gauge u(1) generator N in order to have the right algebra. This is because the
first two relations of (5.55) do not satisfy the trace conditions.



5.4 Deformation of Higher Spin Algebra 143

Lorentz generators LAB and translations PAB:

LAB = TAB + TBA , PAB = TAB − TBA . (5.63)

Here and after, we will raise and lower sp(4)-indices with the help of sp(4)-invariant tensor

CAB = −CBA. Then, the su(2, 2) commutation relations (5.54) read

[LAB, LCD] = LADCBC + LBDCAC + LACCBD + LBCCAD , (5.64)

[LAB, PCD] = PADCBC + PBDCAC − PACCBD − PBCCAD , (5.65)

[PAB, PCD] = LADCBC − LBDCAC − LACCBD + LBCCAD . (5.66)

In order to write the equations of motion, we need the automorphism π as explained above.

Here, π acts on L and P generators as π f(T ) = f(L,−P ). The spin-two subsector of the

master one-form ω reads

$0 =
1

2
ēABPAB +

1

2
$̄ABLAB . (5.67)

Here, ēAB = −ēBA is the background fünfbein and $̄AB = $̄BA is the background spin-

connection. It is worth stressing that A,B are sp(4)-indices.

5.4 Deformation of Higher Spin Algebra

As explained in section 2, the problem of constructing the interaction vertices Vn is equiv-

alent to finding the deformation of AΓ = hs o Γ. In what follows, we will show how to

deform the algebra to obtain bosonic HSGRA in AdS5.

The usual oscillator realization of (5.62) does not allow us to deform the algebra since

the π-map gives us the smash-product algebra A4 o Z2. This algebra does not admit any

non-trivial deformations [270, 289] since its second Hochschild cohomology group vanishes.

Therefore, we should deform the hs through U(su(2, 2)) or QCR [280, 151, 281].
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5.4.1 Deformation through The Universal Enveloping Algebra

We learnt in section 2 that it is useful to introduce the κ operator14 to expand the algebra,

and to absorb π. The universal enveloping algebra is now expanded to U(su(2, 2)) o Z2.

The set of Joseph relations (5.55) split into the triple of finite-dimensional irreducible

modules of su(2, 2): the first module corresponds to the Casimir operator and is a trivial

one; the second module is the 15-dimensional adjoint representation (1, 0, 1), and the last

module is the 20-dimensional representation of (0, 2, 0). Since the modules are irreducible,

we can take the following components as the lowest weight vector

I =
1

2
PABP

AB −m2 , IAB ≡ {LAM , P M
B }+ {LBM , P M

A } (5.68)

and commute these with PAB to generate other relations. The consistency of the ideal

fixes m2 = −2 (in which we set the cosmological constant to one). Then, following the

discussion in section 2, the only commutation relation that we need to deform from su(2, 2)

algebra is

[PAB, PCD] = (1 + νκ)(LADCBC − LBDCAC − LACCBD + LBCCAD) . (5.69)

This commutation relation acts as a seed that drives the whole deformation of the AΓ. We

also know that it will lead to Einstein’s equations. Starting from (5.68), we act on them

with [PAB, •] to generate the other components of the deformed Joseph’s ideal. We obtain

14This operator is also known as the Klein operator, see e.g. [127, 105].
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(0, 0, 0) : 2C2 =
1

2
PABP

AB − 1

2
LABL

AB = −1

2
(6 + νκ)(2 + νκ) ,

(0, 2, 0) :



1
2
PABP

AB −m2 = 0 ,

{LAM , P M
B } − {LBM , P M

A } − 2νκPAB = 0 ,

{L [B
[A , L

D]
C] }+ {P [B

[A , P
D]
C] }+

+2νκ(2 + νκ)CACC
BD − (2 + νκ)2(δ B

A δ D
C − δ B

C δ D
A ) = 0 ,

(1, 0, 1) :

{LAM , P M
B }+ {LBM , P M

A } = 0 ,

{LAM , L M
B }+ 1

2
CAB(2 + νκ)(−4 + νκ) = 0 .

(5.70)

For the consistency of the deformed Joseph’s ideal we find m2 = −(2 + νκ)(1 + νκ). It is

easy to see that by setting ν = 0, we return to the original Joseph’s relations. The above

relations (5.70) together with [L,L], [L, P ] and the deformed [P, P ]-brackets determine

the deformation of AΓ. The deformation is smooth in the sense that we can construct

the product of (f ∗ g)(L, P,K) from any f, g ∈ AΓ and decompose it into irreducible

Lorentz tensors. Therefore, the deformation is well-defined which eventually leads us to

the equations of motion (5.37) of HSGRA.

To read off the spectrum of the algebra from (5.70), we first notice that there are no singlets

except for the unit element itself because P 2, L2 are κ-dependent numbers. It easy to see

that all single contractions, namely LAMP
M
B , LAML

M
B , and PAMP

M
B , can be transformed

into LAB, PAB and CAB. Moreover, relations with un-contracted indices implies that it is

equivalent to get (0, 2) of sp(4) from either LABLCD or PABPCD projections. Therefore,

the spectrum of the algebra consists of sp(4)-tensors of weight (2t,m)

m
m+ 2t , m, t = 0, 1, 2, ... , (5.71)

which can be thought of as coefficients of the appropriately symmetrized monomials LtPm .
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5.4.2 Deformation through QCR

In [6], we show that QCR also admit a deformation and it is a minimal one. The auto-

morphism π acts as

π f(z, pz, •) = f(−z,−pz, •) , (5.72)

meaning π flips the sign of z, pz while leaving other oscillators, denoted as •, intact. There-

fore

{z, κ} = 0, {pz, κ} = 0 . (5.73)

The desired deformation can be obtained by redefining the momentum pz as

pz −→ p̃z = pz +
iν

2z
κ . (5.74)

The deformation of QCR is realized through [75]:15

[z, p̃z] = i(1 + νκ) , {z, κ} = 0 , {p̃z, κ} = 0 . (5.75)

Then, the composite operators Y A
L changes accordingly as

Y A
L =

{
z, pz, 0,

1

x
(zpy − pzy −

1

2
− 1

2
νκ)

}
, (5.76)

while Y A
R stay the same. It can be shown that from the deformed QCR, we will obtain

precisely the deformed su(2, 2) algebra and the deformed Joseph’s relations. This gives an

explicit QCR of AΓ. Thus, (5.70) provide the complete solution of HSGRA in AdS5.

15This deformed oscillators have a long history and were discovered by Wigner, 70 years ago, who asked
the question whether it is possible to modify the canonical commutation relations in such a way that basic
commutation relations still remain valid. The answer is yes, and it is precisely the deformed [z, p̃z] that
allows us to have one-parameter deformation.
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5.4.3 Einstein’s Equations

For completeness, let us show once again that the deformed [P, P ]-bracket does lead to

Einstein’s equations and therefore well-motivated. If we look at the spin-two sector from

HSGRA equations of motion, we see that16

V3(ω, ω, C) = ēMC ∧ ēNDφ1(PMC , PND) ? Cκ ∼ ē M
C ∧ ēMD κL

CDWABEFLABLEFκ

∼ ē M
C ∧ ēMDδ

C
A δ D

B WABEFLEF ∼ ē M
C ∧ ēMDWABCDLAB ,

where we used the fact that LABL
AB = 8 +O(ν) and therefore {LAB, LCD} = CACCBD +

... .The Einstein equations are realized as the coefficients in front of PAB and LAB, they

are

PAB : dēAB − $̄[A
C ∧ ē

CB] = 0 ,

LAB : d$̄AB − $̄A
C ∧ $̄CB − ēAC ∧ ēCB = ē M

C ∧ ēMDWABCD .

Note that the potentially dangerous $̄$̄W and $̄ēW terms vanish since the deformation

preserves both [L,L] and [L, P ] commutators.

We will end this section with general discussion using so(d, 2) language. The Einstein

equations is a part17 of numerous HSGRAs which is the result of formal deformation of the

[Pa, Pb]-bracket. The deformation (5.50) is a small part of the Hochschild cocycle φ1 of hs

which eventually leads to the A∞-algebra [80, 81]. For more details, we refer the interested

readers to [6, 81].

5.5 Non-Locality Problem in HSGRAs

In the body of the thesis we have already mentioned that besides chiral HSGRA, three-

dimensional HSGRA and conformal HSGRA, other (holographic) higher-spin theories turn

16Note that C = Cκ in the extended algebra.
17We would like to stress that there is not consistent truncation of a HSGRA that eliminates higher spin

fields: graviton sources higher spin fields and higher spin fields backreact onto the graviton.
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out to be non-local. To understand how to make sense out of these non-localities is one

of the main challenges in HSGRA. Let us recall that the formally consistent equations of

motion for HSGRAs read as

dω = ω ? ω + V3(ω, ω, C) + V4(ω, ω, C,C) +O(C3) , (5.77a)

dC = ω ? C − C ? π(ω) + V3(ω,C,C) +O(C3) . (5.77b)

We will translate vertices to the Fronsdal (field theory) language to understand why non-

locality appears. First of all, the 1-form ω contains the Fronsdal field Φa(s) for s = 1, 2, 3, ...

and other components that are derivatives of the Fronsdal field up to order-(s−1). There-

fore, ω contains a finite number of derivatives of every Φa(s). On the other hand, the

0-form C starts with the generalized Weyl tensor W a(s),b(s) — that are the order-s curl of

the Fronsdal field, and there is an infinite tower of fields that are k-derivatives of W a(s),b(s),

where k = 0, ...,∞. The spectrum can simply be presented as the following Young diagrams

ω :
t
s− 1 ∼ ∇tΦs, t = 0, 1, 2, ..., s− 1 , (5.78)

C : s
s+ k ∼ ∇s+kΦs, k = 0, ...,∞ , (5.79)

or pictorially as

The x-axis represents the number of boxes of the first row of Young diagrams while the
y-axis is the number of boxes in the second row. The grey zone is the forbidden region due
to Young symmetry.

Naively, the system is non-local in the field theory context since there is an unbounded
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number of derivatives. It is known, see e.g. [90], that the only dynamical equations con-

tained in (5.77) are the Fronsdal equations with sources that take the following schematic

form:

(�−M2
s )Φa(s) =

∑
k,`

ak,`∇c(`)∇a(s−k)Φ∇c(`)∇a(k)Φ + ... , with ` = 0, ...,∞ . (5.80)

The sources above correspond to V3(ω, ω, C) and V4(ω, ω, C,C) vertices in the frame-like

formalism. For simplicity, we omit the spin labels on the right hand side (for example, we

can think that only the backreaction of the scalar field is taken into account). Moreover,

the sum over derivatives can in principle be infinite. This certainly can happen when at

least two C’s are found in a vertex, e.g. it is so for V4(ω, ω, C,C), see [90, 290].18

Now we need to distinguish between cubic and higher order terms from the action point of

view (or bilinear and higher from the equations of motion vantage point). HSGRA’s (and

any other theory in AdS) are local at the cubic level: given any three spins there is a finite

number of independent cubic vertices each of which contains a finite number of derivatives.

Starting for the quartic order there are infinitely many independent quartic structures that

can contribute and, more importantly, the number of derivatives is unbounded, i.e. each

such quartic interaction contain a finite number of derivatives, but there exist interactions

with any given number of derivatives.

As was shown in [85] (see also [55, 137]) the quartic vertex in the Type-A HSGRA is

non-local. Moreover, it is proportional to the contribution of exchanges to the quartic

amplitude. This means that: (i) the complete quartic interaction in the Type-A HSGRA

has an unbounded number of derivatives; (ii) the coefficients do not decay fast enough

with the number of derivatives. Therefore, there is no difference between the contribution

of the contact vertex and of the exchanges to the quartic amplitude. This invalidates the

Noether procedure [55, 137]: one cannot construct the Type-A HSGRA by writing the

most general ansatz for interactions and fixing it by the requirement of gauge invariance.

The situation with (5.77) and (5.80) is more subtle. The vertices V are fixed by the formal

consistency, which is equivalent to a formal gauge invariance. The formal consistency

18See also, [128] for the early discussion about non-local behaviour of V3(ω,C,C).
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by itself does not constrain the number of derivatives. Therefore, unless one controls the

number of derivatives by hand one can easily get formally consistent equations that contain

too many derivatives for them to make sense as a field theory. This issue has nothing to

do with HSGRA and will be faced even for low spin theories once trying to write them

as (5.77). This is exactly what happens with the original proposal [291], as was shown

in [90, 290], based on the earlier observation [128] that certain holographic correlation

functions, as computed from (5.77), are infinite and/or inconsistent. While the issue can

clearly be resolved at the cubic level, it is an open question if the non-locality can be tamed

at higher orders.

As an example, we can consider Φ3 theory. Then, C consists only of Ca(k) that encode

derivatives of Φ. Let’s us also go flat space to simplify the algebra

(�−M2)Φ =
∑
`

(
2

M2

)`
a`∂c(`)Φ∂

c(`)Φ . (5.81)

This what one generically gets unless no locality constraints are imposed on the vertices

— general infinite series corresponding to terms Ca(`)C
a(`) in V(ω,C,C) for ω being the

background vielbein. Suppose we would like to compute the cubic amplitude A3 in this

theory. It is easy to do that in momentum space where ∂ turns into pi, p
2
i = −M2 and,

hence, p1 · p2 = M2/2. Therefore, all derivatives disappear and the cubic amplitude will

get a contribution proportional to19

A3 =
∑
`

a` . (5.82)

It is easy to anticipate that A3 gets a contribution from every term on the r.h.s. of

(5.81) since there exists only one independent cubic amplitude in the scalar theory, the

one arising simply from the Φ3 coupling in the action. All the other terms, which involve

higher derivatives, are not independent from this one and can be reduced to Φ3, one by

one, via field redefinitions.

Now we make a worrisome observation: (i) Eq. (5.81), and hence (5.77), are certainly

19We should have started with an action where the derivatives are effectively symmetrized over the three
fields. We will ignore this complication.
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formally consistent for any choice of a`; (ii) for most a` the cubic amplitude is infinite

and does not make any sense. This gives a simple example to illustrate the fact that

formal consistency does not imply actual consistency. The observation has nothing to do

with HSGRA. It is just the fact that field redefinitions can generate infinitely many higher

derivative avatars of the same basic interaction and all such avatars will contribute to the

physical observables. In reality one would like a0 to be the actual coupling and constrain

V(ω,C,C) in such a way that a`>0 = 0. Therefore, one has to keep by hand under control

various terms in vertices V that are related via field redefinitions. This issue is present for

all vertices V that have at least two C fields.

Another way to understand the non-locality problem in HSGRA is to look at the higher spin

gauge transformations: higher-spin symmetry mixes not only fields together, it intertwines

also derivatives. Indeed, the gauge transformation for ω reads

δξω = dξ − [ω, ξ] + ξ
∂

∂ω
V(ω, ω, C) + ... , (5.83)

It is clear that with the help of C, which is a generating function of infinite number of

derivatives, one easily change the number of derivatives in vertices. Therefore, even though

higher-spin symmetry demands the present of all vertices Vn for consistency, it is unclear

how to give them physical interpretation at present.

There are several observations that help to tame the non-localities and may eventually

solve the problem. One can argue that if the observables, e.g. (holographical) S-matrix is

well-defined, then non-locality is just an artifact of HSGRA. One can directly focus on the

constraints imposed by the higher spin symmetry on physical observables. For example,

the holographic correlation functions are the simplest invariants of the higher spin algebra

[75, 76, 77, 78].

If we are only interested in the solutions coming out of formal HSGRAs, we can then solve

explicitly the equations of motion for HSGRA in terms of Lax pair system [6, 81]

dω = ω ∗ ω, dC = ω ∗C −C ∗ ω , (5.84a)

where ω and C take values in the deform algebra Aν . The system (5.84) can be solved in
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a pure gauge form, namely

ω = g−1 ∗ dg, C = g−1 ∗C0 ∗ g . (5.85)

It is important to stress that even though the solutions (5.85) look like ones from a free

system they are not. The reason is that the fields (ω,C) ≡ (ω(ν, x),C(ν, x)) are sources

of the following system [81]:

dω = ω ∗ ω + t∂νµ(ω, ω) +
t2

2
∂2
νµ(ω, ω) ∗ C ∗ C + t2∂νµ(∂νµ(ω, ω), C) ∗ C + ... , (5.86)

dC = ω ∗ C − C ∗ ω + t∂νµ(ω,C)− t∂νµ(C, ω) ∗ C + ... , (5.87)

where µ(a, b) = a ? b+
∑
φn(a, b)νn and

ω = ω + t∂νω ∗C +
t2

2
∂2
νω ∗C ∗C + t2∂νω ∗ ∂νC ∗C + t2∂νµ(∂νω,C) ∗ C + ... ,

(5.88)

C = C + t∂νC ∗C + ... . (5.89)

By setting ν = 0, we will return to the formal equations of motion for HSGRA. In other

words, one can obtain well-defined solutions of the formally consistent equations that

are not by themselves well-defined in being too non-local. From here, one can construct

observables in terms of traces a.k.a invariants. There are scalar invariants, for example,

which given by the on-shell closed 0-forms

In(ν) = Tr
[
C ∗C ∗ ... ∗C︸ ︷︷ ︸

n

]
. (5.90)

Indeed, at ν = 0, they reduce to correlation functions of higher spin currents in the dual

free CFT [75, 76, 77, 78]. Therefore, we conclude that while the equations of motion

exhibit problematic non-locality that needs to be understood, the solution space seems to

be well-defined. We summarize the whole procedure in this chapter as follows:
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5.6 Summary of Chapter 5

In this chapter, we reviewed the construction that leads to formally consistent equations

of motion for HSGRAs starting from the higher-spin algebra. The construction captures

certain algebraic aspects of the higher spin problems that survives even in the presence

of non-localities. It is also hard, if not impossible, to detect these algebraic structures in

any perturbative approach like the Noether procedure. We also showed that we only need

to deform the [P, P ]-bracket to drive the whole deformation of the algebra. Moreover this

deformed [P, P ]-bracket leads to Einstein’s equation and therefore is well-motivated.

We constructed the Type-A HSGRA in AdS5 at the level of formally consistent equations.

There, we employ two approach to deform the algebra: (i) we deform the universal en-

veloping algebra via the deformed Joseph’s relations and the deformed [P, P ]-bracket of

su(2, 2); (ii) utilizing QCR, we found a minimal set of canonical pairs of oscillators that

generate the deformation.

It is worth mentioning, that there are not so many ways to deform enveloping algebras. A

well-known approach is to deform the Hopf algebra structure. In this chapter, we presented

another way: enveloping algebras evaluated in certain irreducible representations turn out

to admit a deformation as associative algebras once they are extended with a group of

automorphisms Γ. This is closely related to the Deformation quantization of Poisson

manifolds [263].
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Outlook

We can extend the results of this chapter to the case of supersymmetric HSGRAs. Some

interesting examples include the 5, 7-dimensional supersymmetric theories [282, 292], and

the 6-dimensional exceptional HSGRA based on F (4) superalgebra [1]. We also expect

that the massless sector of tensionless strings should be described by a theory based on

the higher spin extension of the gauge symmetry psu(2, 2|4). The approaches we used in

this chapter should, in principle, admit a straightforward supersymmetric extension.



Chapter 6

Summary and Discussion

6.1 Summary of Results

In this thesis, we studied three different approaches to HSGRAs that including the metric-

like formalism, light-front formalism and frame-like formalism. Each of them has their

own advantages and drawbacks when we tackle a specific problem in HSGRA. However,

the main messages and results of this thesis indicate that HSGRAs are UV-finite thanks to

higher-spin symmetry. Therefore, HSGRAs can be thought of as toy models for Quantum

Gravity. We summarise our results as follows:

One loop Tests of HSGRAs/Vector Models Duality

We derive the spectral zeta-functions for various HSGRAs where fields are totally sym-

metric or mixed-symmetric. Using zeta-regularization, we computed the one-loop vacuum

contributions for several HS theories and most of them precicely match the predictions

from the CFT duals. The test failed naively for type-B theory in even dimension and calls

for better understanding of the duality.

We computed the vacuum one-loop energy in Type-A HSGRA in all (including fractional)

dimensions and showed that it gives exactly the generalized sphere free energy of a scalar

field. Upon changing the boundary condition, the Type-A theory gives a change in the

generalized sphere free energy of the critical O(N) vector model as compared to the free
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one to the leading order in 1/N expansion.

UV-finiteness of Quantum Chiral HSGRA

Chiral HSGRA is a local quantum higher-spin theory that has a simple action in light-cone

gauge. Due to the specific form of the coupling constant C ∼ 1
Γ[λ1+λ2+λ3]

, the interactions

conspire as to make the S-matrix trivial at the tree level. We also showed that there are no

UV divergences at one-loop order in all diagrams we have analyzed. Therefore, our results

showed that chiral HSGRA is a consistent quantum theory in flat space.

It is important to stress that our results confirm the expectation that higher-spin symmetry

is rich enough to forbid all counterterms that can spoil renormalizability of the model.

Formal HSGRA in AdS5

We constructed formally consistent HSGRA in AdS5. We found two solutions. The first

is to deform Joseph relations and su(2, 2)-algebra, which ultimately deforms the whole

higher-spin algebra. The second solution is via the quasi-conformal realization (QCR)

which is built from the minimal number of canonical pairs of oscillators. We deform

some of the commutation relations, and as the result, the deformed (QCR) also gives us

the deformed higher-spin algebra which allows us to construct interaction vertices. Our

construction should admit a simple supersymmetric extension. The most interesting case

is a HSGRA based on universal enveloping algebra of the gauge symmetry psu(2, 2|4) that

should describe massless sector of tensionless strings in AdS5.

6.2 Discussion

Inspired by the original work of Fronsdal and Fang [31, 103] on free higher-spin fields, there

has been a lot of development to uplift the free theories to interacting ones. They include

the frame-like formalism and its extensions [127, 293, 294], the Noether procedure [295,

296, 297, 298], the holographic reconstruction of higher-spin theories [257, 85, 155, 91, 258]

and the light-front formalism [32, 33, 65, 66, 67, 69, 70].

There are very few higher spin theories that are local enough as to be treated by the

field theory methods: chiral HSGRA, conformal HSGRA and purely massless HSGRA
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in 3d. Generic holographic HSGRA’s that are dual to free or weakly-coupled CFT’s like

vector models were shown to be too non-local. This is not an end of the story and calls

for a better understanding of locality in HSGRA. It is also clear at present that there

is not much difference between the problems of HSGRA in flat space and in (anti)-de

Sitter space. Indeed, (i) the main no-go theorems, e.g. Weinberg and Coleman-Mandula

theorems, have a direct counterpart in anti-de Sitter space: the (holographic) S-matrix is

fixed by the higher spin symmetry to be S = 1 in flat space and S =free CFT in AdS

[71, 72]; (ii) the obstructions for HSGRA in flat space that arise at the quartic order

[228, 233, 234] indicate that the theory becomes badly non-local, which is exactly what

has been established recently in AdS [85, 86, 55, 87]. The only difference between flat

space and AdS is that, thanks to the existence of simple CFT duals, we expect to tame

holographic HSGRA’s one way or another.

At very high energies all particles should effectively become massless. Therefore, HSGRA

can be good probes of the quantum gravity problem since many purely quantum issues

seem to find their counterparts already at the classical level. For example, if higher spin

symmetry is powerful enough as to forbid the relevant counterterms, then constructing a

classical HSGRA is equivalent to having a consistent quantum gravity model (in the sense

that there is nothing to be analyzed at the quantum level, at least perturbatively). Not to

forget that HSGRA’s exhibit certain features that make them closer to string theory than

to a field theory (e.g. infinite number of states, Chan-Paton factors, ...). Due to these

stringy features, one should not expect to look at HSGRAs as conventional field theories.

There are, however, some classes of HSGRAs that are very close to field theories.

The study of HSGRAs should help to better understand some aspects of the Quantum

Gravity Problem. HSGRAs are also useful in view of their relation to the weakly coupled

CFTs that describe the critical phenomena. It would be interesting to further investigate

the tensionless limit of string theory in order to understand the bizarre behaviour of HS-

GRA’s. Indeed, a world-sheet model should resolve the non-locality problem of HSGRAs.
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Appendix A

Appendix for One-loop Tests in

Integer Dimensions

A.1 Characters, Dimensions and all that

Below are some useful formulas for the dimensions of various irreducible representations.

The general formulae for the dimensions of irreducible representations for the case of so(2k)

and so(2k + 1) read:

Yso(2k)(s1, ..., sk) :
∏

1≤i<j≤k

(si − sj − i+ j)(si + sj − i− j + 2k)

(j − i)(2k − i− j)
, (A.1a)

Yso(2k+1)(s1, ..., sk) :
∏

1≤i<j≤k

(si − sj − i+ j)

(j − i)
∏

1≤i≤j≤k

(si + sj − i− j + 2k + 1)

(2k + 1− i− j)
, (A.1b)

where the representation is defined by Young diagram Y(s1, ..., sk) with the i-th row having

length si or si − 1
2

if all si are half-integer. For some of the particular cases of use we find

for so(d):

Y(s) :
(d+ 2s− 2)Γ(d+ s− 2)

Γ(d− 1)Γ(s+ 1)
, (A.2a)

Y1
2
(s) :

Γ(d+ s− 1)2[ d2 ]

Γ(d− 1)Γ(s+ 1)
, (A.2b)
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Y(a, b) :
(a− b+ 1)(2a+ d− 2)(2b+ d− 4)(a+ b+ d− 3)Γ(a+ d− 3)Γ(b+ d− 4)

Γ(a+ 2)Γ(b+ 1)Γ(d− 3)Γ(d− 1)
,

(A.2c)

Y1
2
(a, b) :

(a− b+ 1)(a+ b+ d− 2)Γ(a+ d− 2)Γ(b+ d− 3)2[ d2 ]

(a+ 1)!b!Γ(d− 3)Γ(d− 1)
, (A.2d)

Y(s, 1p) :
(N + 2s− 2)Γ(N + s− 1)

(p+ s)Γ(p+ 1)Γ(s)(N − p+ s− 2)Γ(N − p− 1)
, (A.2e)

Y(a, b, 1h) :
(a− b+ 1)(2a+ d− 2)(2b+ d− 4)(a+ b+ d− 3)Γ(a+ d− 2)Γ(b+ d− 3)

(a+ h+ 1)a!(b+ h)Γ(b)Γ(d− 1)h!(a+ d− h− 3)(b+ d− h− 4)Γ(d− h− 3)
,

(A.2f)

where we use Y1
2
(m1, ...) to denote spinorial representations. For example, Y1

2
(m) is a

symmetric rank-m spin-tensor T a(s);α, i.e. it has spin s = m+ 1
2
. Similar formula for sp(N)

yields:

Y(a, b) :
(a− b+ 1)(a+ b+N − 1)Γ(a+N − 1)Γ(b+N − 2)

Γ(a+ 2)Γ(b+ 1)Γ(N − 2)Γ(N)
, (A.3)

which allows to compute the dimension of any representation of so(5) ∼ sp(4):

Y(a, b) :
1

6
(3 + 2a)(1 + a− b)(2 + a+ b)(1 + 2b) , (A.4)

Y1
2
(s) :

2

3
(s+ 1)(s+ 2)(s+ 3) , (A.5)

where a, b can be half-integers. Analogously, for special linear algebra sl(d):

Y(a, b, c) :
(b+ c)Γ(b)c!(a+ b− c− 2)Γ(a− c− 1)Γ(a+ d)Γ(b+ d− 1)Γ(c+ d− 2)

(a+ 2b− 2)Γ(d− 2)Γ(d− 1)Γ(d)Γ(a+ b− 1)
.

(A.6)

The isomorphism su(4) ∼ so(6) gives for so(6):

Y(a, b, c) :
(2a− 2)!(a+ b+ 3)!(a− c− 1)!(a− c+ 2)!(a+ c− 2)!(b− c)!(b− c+ 1)!(a+ b− 2c)

12(2a− 3)!(3a+ b− 2(c+ 1))(2a+ b− c− 2)!
.

Note that the dimension (A.1) in the even case so(2k) is the dimension of irreducible

representation, while (A.2) formulas pack (anti)-selfdual representations together, so that

(A.2) sometimes gives twice that of (A.1).
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Characters. We will discuss only one-particle partition-functions without extra chemical

potentials. Character of a generic representation with spin S is obtained by counting ∂k-

descendants assuming there are no relations among them:

χ∆,S = dimS× q∆

(1− q)d
. (A.7)

The following short exact sequence is the simplest representations that correspond to

partially-massless HS fields:

0 −→ V (∆,S′) −→ V (∆− t, S) −→ D(∆− t,S) −→ 0 , (A.8)

where V (...) denotes generalized Verma module, which can be reducible, and D is the

irreducible module. Here, ∆ = d + si − 1 − i and S′ is the spin of the gauge parameter

in AdSd+1 or, equivalently, the symmetry type of the conservation law for a higher-spin

current.1 An additional parameter t is the depth of partially-masslessness [299] and t = 1

for massless fields.

In the case of free scalar, Rac, and free fermion, Di, the sequence is short but different.

The singular vectors are associated with �φ and /∂ψ:

Rac : 0 −→ V (d+2
2
, 0) −→ V (d−2

2
, 0) −→ D(d−2

2
, 0) −→ 0 , (A.10)

Di : 0 −→ V (d+1
2
, 1

2
) −→ V (d−1

2
, 1

2
) −→ D(d−1

2
, 1

2
) −→ 0 . (A.11)

1In the case of massless totally-symmetric fields we have

0 −→ V (d+ s− 2, s− 1) −→ V (d+ s− 2, s) −→ D(d+ s− 2, s) −→ 0 . (A.9)
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Below we collect some of the blind characters of so(d, 2). The dimensions of irreducible

so(d) representations can be found above

χ(φ∆) = (1− q)−dq∆ , scalar of dimension ∆ ,

χ(Rac) = χ(φ∆)− χ(φ∆+2)
∣∣∣
∆= d−2

2

=
(
1− q2

)
(1− q)−dq

d
2
−1 ,

χ(O∆,s) =
(1− q)−d(d+ 2s− 2)q∆Γ(d+ s− 2)

Γ(d− 1)Γ(s+ 1)
, symmetric tensor operator ,

χ(Js) = χ(O∆,s)− χ(O∆+1,s−1)
∣∣∣
∆=d+s−2

, conserved tensor ,

χ(ψ∆) = (1− q)−dq∆2[
d
2

] , fermion of dimension ∆ ,

χ(Di) = χ(ψ∆)− χ(ψ∆+1)
∣∣∣
∆=

(d−1)
2

.

The simplest instance of the Flato-Fronsdal theorem then follows from

χ2(Rac) =
∑
s

χ(Js) . (A.12)

Given a character Z(q = e−β), the (anti)-symmetric parts of the tensor product can be

extracted in a standard way:

symmetric :
1

2
Z2(β) +

1

2
Z(2β) , (A.13)

anti-symmetric :
1

2
Z2(β)− 1

2
Z(2β) . (A.14)

The character of the weight-∆ spin-(s, 1h) operator and the associated conserved current

are:

χ(Os,1h) =
(1− q)−d(d+ 2s− 2)q∆Γ(d+ s− 1)

(h+ s)Γ(h+ 1)Γ(s)(d− h+ s− 2)Γ(d− h− 1)
, (A.15)

χ(J∆,s,1h) = χ(O∆,s,1h)− χ(O∆+1,s−1,1h)
∣∣∣
∆=d+s−2

. (A.16)

Fermionic spin-tensor conformal quasi-primary operator Oα;a(s) obeys γmβαOβ;ma(s−1) = 0,

which allows to compute its character and the character of the conserved higher-spin super-
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current:

χ(O) =
(1− q)−dq∆Γ(d+ s− 1)2[ d2 ]

Γ(d− 1)Γ(s+ 1)
,

χ(JFs ) = χ(O∆,s)− χ(O∆+1,s−1)
∣∣∣
∆=d+s−3/2

=
(1− q)−dqd+s− 3

2 (d− qs+ s− 2)Γ(d+ s− 2)2[ d2 ]

Γ(d− 1)Γ(s+ 1)
.

Tensor Products of Spinors. To derive the decomposition of Di ⊗ Di together with

its (anti)-symmetric projections we need to know how to take tensor product of two so(d)

spinors. For d odd we have Dirac spinors, which we denote D. For d even there are two

Weyl spinors, which we denote W and W̄.2 There are three distinct cases: so(2k + 1),

so(4k) and so(4k + 2). Consulting math literature we can find out that:

so(2k + 1) :

(D⊗D)S =
⊕

Y
(
1k−4i

)
⊕ Y

(
1k−4i−3

)
(D⊗D)A =

⊕
Y
(
1k−4i−1

)
⊕ Y

(
1k−4i−2

) (A.17)

so(4k) :


(W ⊗W)S = Y

(
12k
)

+
⊕
⊕

Y
(
12k−4i

)
(W ⊗W)A =

⊕
Y
(
12k−4i−2

)
(W ⊗ W̄) =

⊕
Y
(
12k−2i−1

) (A.18)

so(4k + 2) :


(W ⊗W)S = Y

(
12k+1

)
+
⊕
⊕

Y
(
12k+1−4i

)
(W ⊗W)A =

⊕
Y
(
12k−4i−1

)
(W ⊗ W̄) =

⊕
Y
(
12k−2i

) (A.19)

where the sums are from i = 0 to the maximal value it can take in each of the cases.

Defining in even dimensions D = W ⊕ W̄ we observe:

so(2k + 1) : D⊗D =
⊕
i=0

Y
(
1k−i

)
, (A.20)

so(2k) : D⊗D = Y
(
1k
)

+
⊕ Y

(
1k
)
− ⊕ 2

⊕
i=1

Y
(
1k−i

)
. (A.21)

2Various other possibilities like symplectic Majorana-Weyl spinors in some dimensions will be ignored.
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The decomposition of Di⊗Di of the O(N)-singlet is known and is quoted in the main text.

We simply present the result for other cases:

so(2k + 1) :

(Di⊗Di)A =
⊕

Y
(
2n+ 1, 1k−4i−1

)
⊕ Y

(
2n+ 1, 1k−4i−4

)
⊕⊕

Y
(
2n, 1k−4i−2

)
⊕ Y

(
2n, 1k−4i−3

) (A.22)

so(4k) :


(Wi⊗Wi)A =Y

(
2n+ 1, 12k−1

)
+
⊕
⊕

Y
(
2n+ 1, 12k−4i−1

)
⊕

⊕
Y
(
2n, 12k−4i−3

)
⊕

• , k = 2m+ 1

∅ , k = 2m

(A.23)

so(4k + 2) :

(Wi⊗Wi)A =Y
(
2n+ 1, 12k

)
+
⊕
⊕

Y
(
2n+ 1, 12k−4i

)
⊕⊕

Y
(
2n, 12k−4i−2

) (A.24)

where we indicated the so(d)-spin of the singlet quasi-primary operators, the conformal

weight being obvious from Di ⊗ Di. The above formulae generalize the Flato-Fronsdal

theorem to the O(N)-singlet sector of free fermion theory in any dimension. Other versions

of the singlet constraint follow from the above results.

A.2 Amusing Numbers

We collect below various numbers associated to the fields discussed in the main text:

Casimir Energy, sphere free energy, Weyl a-anomaly coefficients.

Casimir Energy. Casimir Energy, Ec, is given by a formally divergent sum

Ec = (−)F
1

2

∑
n

dnωn , (A.25)

for which the standard regularization is to use the exp[−εωn] as a cut-off and then remove

all poles in ε. All the data can be extracted from the characters. We see that the spin
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degrees of freedom factor out for massive fields and the Casimir energy is given by

(−)FEc(χ∆,S) =
1

2
dim S

∑ Γ[d+ n]

n!Γ[d]
(∆ + n)e−ε(∆+n)

∣∣∣∣
finite

= dim S
e−(∆+1)ε (d+ ∆(eε − 1))

(1− e−ε)d+1

∣∣∣∣∣
finite

.

Casimir Energy for a massive scalar field of weight ∆:

d Ec

2 1
24

(∆− 1) (2∆2 − 4∆ + 1)

3 1
480

(−10∆4 + 60∆3 − 120∆2 + 90∆− 19)

4 1
1440

(∆− 2) (6∆4 − 48∆3 + 124∆2 − 112∆ + 27)

5 −84∆6+1260∆5−7350∆4+21000∆3−30240∆2+19950∆−4315
120960

6
(∆−3)(12∆6−216∆5+1494∆4−4968∆3+8112∆2−5904∆+1375)

120960

allows one to get the Casimir Energy for any massive representation by multiplying it by

dimS. Formulas for massless representations are obtained as differences of the massive

ones according to exact sequences. Some of the formulae below can be found in [300, 301].

The Casimir Energies for higher-spin bosonic fields in lower dimensions are:

d Ec

3 1
240

(30s4 − 20s2 + 1)

4 − 1
1440

s(s+ 1) (18s4 + 36s3 + 4s2 − 14s− 11)

5
(s+1)2(84s6+504s5+994s4+616s3−308s2−504s−31)

120960

6 − (s+1)2(s+2)2(12s6+108s5+338s4+408s3+32s2−282s−31)
483840

Note that d = 3 and s = 0 case is special in that the fake ghost contribution does not

vanish automatically and the right value is Ec = 1
480

. Casimir Energies for higher-spin

fermionic fields in lower dimensions are:

d Ec

3 1
240

(−30s4 + 20s2 − 1)

4
(2s+1)2(18s4+36s3−8s2−26s+3)

2880

5 − (2s+1)(2s+3)(84s6+504s5+910s4+280s3−532s2−280s+11)
241920

6
(2s+1)(2s+3)2(2s+5)(12s6+108s5+314s4+264s3−144s2−162s−3)

1935360
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Note that d = 3 and s = 1
2

the general formula does not oversubtract the fake descen-

dants and the right value is still Ec = 17
1920

. Casimir Energies for Rac’s and Di’s in lower

dimensions d = 2, 3, ... are:3

Ec(Rac) =

{
− 1

12
, 0,

1

240
, 0,− 31

60480
, 0,

289

3628800
, 0,− 317

22809600
, 0,

6803477

2615348736000

}
,

(A.26)

Ec(Di) =

{
− 1

24
, 0,

17

960
, 0,− 367

48384
, 0,

27859

8294400
, 0,− 1295803

851558400
, 0,

5329242827

7608287232000

}
.

(A.27)

Casimir Energies for massive ∆ = d− 1 anti-symmetric tensors Y(1h), h = 2, 3, ...:4

d Ec

4 − 1
20h!Γ(5−h)

5 221
1008h!Γ(6−h)

6 − 95
84h!Γ(7−h)

The Casimir Energies for massless hooks Y(s, 1p):

d Ec, p = 1

4 1
720

(−s(s+ 1)(2s(s+ 1)(9s(s+ 1)− 22) + 19)− 3)

5 3s(s+2)(42(s−1)s(s+2)(s+3)(2s(s+2)+1)+221)+221
120960

6 − (s+1)(s+2)(s(s+3)(2s(s+3)(s(s+3)(6s(s+3)−11)−54)+111)+95)
120960

Sphere Free Energy. Also, we will need the free energy on a sphere for free scalar and

fermion, see e.g. [174],

F 3
φ =

1

16
(2 log 2− 3ζ(3)

π2
) , F 5

φ =
−1

28
(2 log 2 +

2ζ(3)

π2
− 15ζ(5)

π4
) , (A.28)

F 3
ψ =

1

16
(2 log 2 +

3ζ(3)

π2
) , F 5

ψ =
−1

28
(6 log 2 +

10ζ(3)

π2
+

15ζ(5)

π4
) . (A.29)

3The fermion is always a Dirac one. Ec for the Weyl fermion is half of the value in the table.
4When self-duality applies it is the Casimir energy of the two fields.
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Weyl Anomaly. The general formula for Weyl anomaly a for real conformal scalar [172]

and fermion [189] gives for d = 4, 6, 8, ...:5

aφ =

{
1

90
,− 1

756
,

23

113400
,− 263

7484400
,

133787

20432412000

}
, (A.30)

aψ =

{
11

180
,− 191

7560
,

2497

226800
,− 14797

2993760
,

92427157

40864824000

}
. (A.31)

Volumes. The volume of d-sphere and the regularized volume of the hyperbolic space,

which is Euclidean anti-de Sitter space, are [187]:

volSd =
2π(d+1)/2

Γ
(
d+1

2

) , volHd+1 =


2(−π)d/2

Γ( d2 +1)
logR , d = 2k ,

πd/2Γ
(
−d

2

)
, d = 2k + 1 .

(A.32)

A.3 Other Classes

In this section we discuss higher-spin doubletons that result in more general mixed-

symmetry fields and higher-order singletons that lead to partially-massless fields and

mixed-symmetry fields.

A.3.1 Higher-Spin Doubletons

In any AdS2n+1, n ≥ 2, we have higher-spin doubletons [167, 166, 168, 124, 54] as conformal

fields in CFT2n. These are parametrized by (half)-integer spin J , with J = 0, 1
2

being the

usual Rac and Di.6 The J = 1 is free massless spin-one field, i.e. Maxwell. For J > 1 the

HS doubletons are unusual CFT’s in not having a local stress-tensor, while they still are

unitary representations of the conformal algebra.

In [145, 130] it was conjectured that there should exist an AdS HS theory that is dual to N

5We changed normalization as compared to [189].
6The Young diagram of so(2n) that determines the spin of the field has a form of a rectangular block

of length J and height n, i.e. the labels are Y(J, ..., J). One can also consider higher-spin representations
of more complicated symmetry type, however they may be non-unitary.
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free Maxwell fields, called Type-C in analogy with Type-A, J = 0, and Type-B, J = 1
2
. It

was found that one-loop tests are successfully passed, but already the non-minimal theory

requires to modify the bulk coupling as G−1 = 2N − 2. Similar conclusions were arrived

at in [146] for the J = 1 doubleton in AdS7/CFT6 [166].

Let us show that all Type-D,E,... theories, i.e. those with J > 1, do not pass the one-loop

test. The Casimir Energy of the spin-J doubleton is easy to find:7

Ec,J =
1

120
(−1)2J

(
30J4 − 20J2 + 1

)
. (A.33)

The spectrum of Type-X theory can be found by evaluating the tensor product of two

spin-J doubletons [158, 194, 145]:

(J, 0)⊗ (J, 0) =
2J∑
k=0

D (2 + 2J ; k, 0)⊕
∑
k=1

D
(
2 + 2J + k; 2J + k

2
, k

2

)
, (A.34)

(J, 0)⊗ (0, J) =
∑
k=0

D
(
2 + 2J + k; J + k

2
, J + k

2

)
, (A.35)

where in the first line we see massive and massless mixed-symmetry tensors and massless

symmetric HS fields in the second line. The absence of the stress-tensor reveals itself in

that the spectrum of massless HS fields is bounded from below by 2J . In particular, there

is no dynamical graviton for J > 1.

The Casimir Energies for the three parts of the spectrum: massive, mixed-symmetry mass-

less, and symmetric massless, can be computed with the net result:

EJ
c = − 1

630
J(2J − 1)(2J + 1)

(
288J4 − 208J2 − 3

)
. (A.36)

We see that the total Casimir energy vanishes for J = 0, 1
2

in accordance with [99]. It does

not vanish for J = 1 [145, 130], rather it equals that of the two Maxwell fields, which still

can be compensated by shifting the bulk coupling. However, for J > 1 there does not seem

to be any natural way of compensating the excess of the Casimir energy.

7For J = 0 it gives the Casimir Energy of two real scalars. For lower spins J = 0, 1
2 , 1 we therefore find

Ec = 1
240 ,

17
960 ,

11
120 .
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The same problem can be understood at the level of characters, which is a simpler approach.

The blind character of the spin-j doubleton is, see e.g. [145]:

Zj =
∑
k

(2j + k + 1)(k + 1)qj+1+k =
(2j(q − 1)− q − 1)qj+1

(q − 1)3
. (A.37)

The singlet partition function is [Zj]
2. It is symmetric in β, q = eβ, for j = 0, 1

2
. For j = 1

it is not symmetric but the anti-symmetric part can be expressed as a multiple of Z1, which

can be compensated by modifying G−1 = N [145]. However, for j > 1 the anti-symmetric

part cannot be compensated this way, but can be expanded in terms of Zi≤j.

Therefore, we see that the duals of HS doubletons J > 1 should have pathologies as

quantum theories. Assuming AdS/CFT holds at classical level, by reconstruction, we can

manufacture some interaction vertices in AdS [302, 229, 88] such that

〈Js1 ...Jsk〉 = Holographic Amplitudes , si ≥ 2J . (A.38)

The generating function of three-point correlators was constructed in [303]. The number

that counts independent structures is n = min(s1, s2, s3) + 1 and is given by the minimal

spin, which is related to the fact that the currents that one can construct from a spin-J

doubleton must have s ≥ 2J , see [304] for the explicit form in 4d. Indeed, only those

doubletons can give a contribution to 〈Js1Js2Js3〉 that have 2J ≤ min(s1, s2, s3). This fact

certainly causes a puzzle in the sense that V3(s1, s2, s3) obtained by reconstruction cannot

be a part of any consistent unitary HSGRA.8

8Although HS doubletons can only exist for even boundary dimension, the number of independent
correlators 〈Js1Js2Js3〉 seems to be indifferent to this fact, as if one could formally define HS doubletons
in odd dimensions as well.
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A.3.2 Partially-Massless Fields

If we sacrifice unitarity, the list of free CFT’s becomes infinitely richer. The simplest

one-parameter family corresponds to higher-order singletons is

Rack : �kφ = 0 , ∆ =
d

2
− k . (A.39)

The spectrum of single-trace operators contains partially-conserved currents [305]

Js = φ�i∂sφ+ ... , ∂k−i · Js = 0 . (A.40)

The spectrum is encoded in the tensor product of two Rack [125]:

Rack ⊗ Rack =
∞∑
s=0

k∑
i=1

D(d+ s− 2i, s) . (A.41)

The fields that are dual to partially-conserved currents are partially-massless fields [299,

115]:

∂m...∂mJm(t)a(s−t) = 0 ⇐⇒ δΦa(s) = ∇a...∇aξa(s−t) + ... , (A.42)

where t is the depth of partially-masslessness. Massless fields occur at t = 1. Therefore,

the spectrum of a theory that is dual to Rack is a nested tower of (partially)-massless fields

with the Rack−1 tower contained in the Rack one. In particular, usual massless HS fields

are present. Note that the depth t is an odd number in Rack ⊗ Rack. We can call the

dual theory of Rack (which has weight-∆) as Type-Ak [126]. In the irreducible module

D(d+s−2i, s), the operators with s < i are not conserved tensors and are dual to massive

fields, which for k > 2 also contain massive HS fields. Therefore, duals of Rack provide an

example of HS theories that contain HS gauges fields and HS massive fields with a spin

bounded from above.

To test AdS/CFT duality we can check the vanishing of Casimir Energy in the non-minimal

Type-Ak theory, see also [216]. It is important to stress that the Casimir Energy of Rack
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should vanish in odd dimensions. We find in d = 3, 4, ... that:

Ec = {0,− 1

720
t
(
6t4 − 20t2 + 11

)
, 0,−

t
(
12t6 − 126t4 + 336t2 − 191

)
60480

, 0,−
t
(
10t8 − 240t6 + 1764t4 − 4320t2 + 2497

)
3628800

}

The Casimir Energy of a depth-t partially-massless spin-s field can be computed in a

standard way. For example, in the d = 3 case we find (g = 2s+ 1):

Ec =
t (5g(g − 2t) (3g2 − 6gt+ 4t2 − 6)− 17)

1920
. (A.43)

Consider the simplest case of Rac2. The spectrum contains that of Type-A and massive

fields Φ, Φa, Φaa plus depth-3 partially-massless fields s = 3, 4, .... The sum over the Type-

A spectrum was already found to vanish [216]. At least for odd d we have to ensure that the

sum over the rest vanishes as well. Using the standard exponential cut-off exp[−ε(s + x)]

we find that this is the case for x = (d − 5)/2. Therefore, different parts of the spectrum

should be summed with different regulators.

The dual of Rac3 contains the spectrum of Type-A=Type-A1, the fields we have just

studied plus massive fields Φa(k), k = 0, 1, 2, 3, 4 and depth-5 partially-massless fields. The

sum of the Casimir Energies of this last part gives zero for x = (d− 7)/2.

Let us turn to the minimal Type-Ak theory. It is useful to recall that the Casimir Energy

can also be computed as

Ec = (−)F
1

2
ζ(−1) , ζ(z) =

1

Γ(z)

∫
βz−1dβ Z(q = e−β) . (A.44)

The non-zero contribution to Ec comes from the β−1 pole, which is absent if Z(β) is an

even function of β [99]. This is typically the case for the tensor product of two singletons,

but is not for the (anti)-symmetric projections, which results in

Zsing =
1

2
Z2(β)± 1

2
Z(2β) , (A.45)

where the first term is an even function of β in most cases. The contribution to the Casimir

Energy is equal to that of the free field due to the last term. A slight generalization of

[216, 125] implies that the minimal type-A2 contains fields of even spins only. The excess
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of the Casimir Energy can be reduced to a linear combination of Rack by expressing the

β-odd part of (Rack ⊗ Rack)S:

β − odd part

[
(Rack ⊗ Rack)S −

1

2
Zk(2β)

]
= 0 , (A.46)

where Zk is the character of Rack:

Zk(q) = (1− q)−d
(
1− q2k

)
q

1
2

(d−2k) . (A.47)

This identity directly implies that the Casimir energy of the minimal type-Ak theory is

equal to that of one Rack, E
k
c . If instead we sum over spins with exp[−ε(s+ x)] cut-off we

will have to use x = (d − 3)/2 for depth-1 fields, x = (d − 5)/2 for depth-2 fields etc. In

particular, for type-A2 the sum over its type-A sub-sector gives Ec of Rac1, while the sum

over the depth-2 fields gives E2
c − E1

c with the total result E2
c , as before.

Also, it can be checked that the tensor product Racn ⊗ Racm with m 6= n gives zero

contribution to the Casimir Energy. Such products should arise in a theory built of several

different higher-order singletons.

With the help of the zeta-function we can also check that −2−1ζ ′(0) matches the a-anomaly

of �kφ = 0 free field. The latter can be extracted from the same zeta-function according

to aCHS = −2aHS where the conformal field dual to the order-k singleton has weight

(d + 2k)/2. The summation over spins can be done as before given that the depth-t

partially-massless field of spin-s has weight ∆ = d+s− t−1 and the spin-(s− t) ghost has

weight d + s − 1. Lastly, the contribution of the massive fields that appear in the tensor

product of two higher-order singletons need to be separated. For example, let us consider

AdS5 and set k = 2 as above. We find:

ζ ′A(0) = 0 , ζ ′PM(0) =
logR

15
, ζ ′massive(0) = − logR

15
, (A.48)

so that the total contribution is zero. For the minimal Type-A2 model, i.e. the one above
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truncated to even spins only, we have:

ζ ′min,A(0) = − logR

45
, ζ ′PM,even(0) =

logR

3
, ζ ′massive, even(0) =

14 logR

45
, (A.49)

the total contribution being −2−1ζ ′(0) = − 1
45

(14 logR), which is exactly the value of the

zeta-function

1

180
(∆− 2)3logR(s+ 1)2

(
5(s+ 1)2 − 3(∆− 2)2

)
(A.50)

at s = 0 and ∆ = (d+ 4)/2. Using the explicit form of ζ ′(0) for d = 2k it is easy to extract

the a-anomaly of higher-order singletons.

Therefore, despite non-unitarity, higher-order singletons that lead to partially-massless

fields seem to be consistent at one-loop.

A.4 On the Computations in Even Dimensions

Let us briefly summary the steps for computing ζ and ζ ′ in even dimensions. Recall the

full zeta-function that is given in the form

ζ(z) =

∫ ∞
0

dλ
µ̃(λ)

[λ2 + ν2]z
h(λ) , µ̃(λ) =

∑
k

µkλ
k , (A.1)

where ν = ∆− d/2 and h(λ) is either tanhπλ or coth πλ as in (3.60). The computation of

ζ(0) can be done by using

tanhx = 1 +
−2

1 + ex
, cothx = 1 +

2

−1 + ex
, (A.2)

which leads to

ζ(z) =

∫ ∞
0

dλ
µ̃(λ)

[λ2 + ν2]z
∓ 2

∫ ∞
0

dλ
µ̃(λ)

[λ2 + ν2]z(e2πλ ± 1)
= I + II . (A.3)
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The first integral can be done for large enough z and then continued to z = 0. The second

one is perfectly convergent and we can set z = 0 and use∫
−2λk

e2πλ + 1
= −4−k

(
2k − 1

)
π−k−1ζ(k + 1)Γ(k + 1) , (A.4)∫

2λk

e2πλ − 1
= 2−kπ−k−1Lik+1(1)Γ(k + 1) . (A.5)

To compute ζ ′(0) we first differentiate ζ(z) with respect to z. This can be directly done

for the first part I, with two contributions produced:

∂

∂z
I
∣∣∣
z=0

= p1(ν) + log ν × p2(ν) , (A.6)

where p1,2 are polynomials. In the second part II we find no problem with convergence,

but a quite complicated integral

∂

∂z
II
∣∣∣
z=0

= ±2

∫ ∞
0

dλ
µ̃(λ) log[λ2 + ν2]

(e2πλ ± 1)
. (A.7)

Using log[λ2 + ν2] = log λ2 +
∫ ν

0
dx 2x(x2 + λ2)−1 we can split it into two parts:

II.1 = ±2

∫ ∞
0

dλ
µ̃(λ) log[λ2]

(e2πλ ± 1)
= ±2

∑
k

µkc
±
k , (A.8)

II.2 = ±2

∫ ∞
0

dλ
µ̃(λ)

(e2πλ ± 1)

∫ ν

0

dx
2x

(x2 + λ2)
. (A.9)

Now we introduce two types of auxiliary integrals

c±n =

∫ ∞
0

dλ
λn log[u2]

(e2πu ± 1)
, J±n =

∫ ∞
0

dλ
λn

(x2 + λ2)(e2πλ ± 1)
. (A.10)

The first one we will not attempt to evaluate since all cn will cancel in the final expressions.

The second one can be done iteratively by first finding

J±1 =

∫ ∞
0

dλ
λ

(x2 + λ2)(e2πλ ± 1)
, (A.11)
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where in [3.415, Table of integral],

J−1 =

∫ ∞
0

dλ
λ

(λ2 + x2)(e2πλ − 1)
=

1

2

(
log(x)− 1

2x
− ψ(x)

)
. (A.12)

Together with a useful formula in [192], J+
n (2π) = J−n (2π)− 2J−n (4π), one can get

J+
1 =

1

2
ψ(x+ 1/2)− 1

2
log x . (A.13)

Consider the following equation∫ ∞
0

dλ
λn

e2πλ ± 1
log(aλ2 + x2) = log a

∫ ∞
0

dλ
λn

e2πλ ± 1
+

∫ ∞
0

dλ
λn

e2πλ ± 1
log(λ2 + x2/a) .

(A.14)

Taking the derivative at a = 1 on both sides, we obtain

J±n+2 =

∫ ∞
0

dλ
λn

e2πλ ± 1
− x2J±n . (A.15)

Therefore, J±n will contain two types of contributions:

J+
n = q+

n (x)ψ(x+ 1/2) + [p̃+
2 (x) log x+ p̃+

3 (x)] , (A.16)

J−n = q−n (x)ψ(x) + [p̃−2 (x) log x+ p̃−3 (x)] . (A.17)

The second terms in each equation can be easily integrated over x:

±2

∫ ν

0

dx 2x[p̃±2 (x) log x+ p̃±3 (x)] = p3(ν)− p2(ν) log ν . (A.18)

Importantly, all log ν now cancel because p2(ν) is the same as the one at ∂zI
∣∣
z=0

. The

purely polynomial leftovers p1 and p3 from J±n and ∂zI
∣∣
z=0

can be added up. We also need

to add II.1 to them. Then ν is replaced with ∆ − d/2 and we can sum over all spins as

usual. This contribution we call P =
∑
Pν,s−Pν+1,s−1. Importantly, all coefficients cn will

be gone and we do not need to deal with their real form, both for Type-A and Type-B.

Now we are left with the contribution that we call Q =
∑
Qν,s −Qν+1,s−1, which consists
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of either ψ(x+ 1/2) or ψ(x) times a polynomial in x, where

Qν,s = 4
∑
s,k

∫ ∆−d/2

0

dxµkqk(x)ψ(x+ 1/2) , (for bosons) , (A.19)

Qν,m = −4
∑

s=m+ 1
2
,k

∫ ∆−d/2

0

dxµkqk(x)ψ(x) , (for fermions) . (A.20)

It can be simplified by using the integral representation for ψ(x):

ψ(x) =

∫ ∞
0

dt

[
e−t

t
− e−tx

1− e−t

]
. (A.21)

Next, the integral over x can be done and the sum over the spectrum is taken. As a result

we are left with

Q =
∑

fn,ma,b,c

∫
dt

ebtta

(1− e−t)n+1(1 + e−t)m+1
. (A.22)

The summands can be expressed as derivatives at z = 1 and z = −1 of Hurwitz-Lerch

function [97, 98]

Φ(z, s, ν) =
1

Γ(s)

∫ ∞
0

dt
ts−1eνt

1− ze−t
, (A.23)

which in return, can be analytically continued into Hurwitz zeta function ζ(s, ν). It is

worth noting that only in the minimal higher-spin theories there will be (1 + e−t)m in

the denominator. Using this zeta regularization scheme, we will display the results of for

HS theories in different even dimensions, which are subdivided into four categories in the

following appendices: Type-A (non-minimal and minimal), HS fermions, Hook fields and

the result for Hooks and Type-A can be added up to get Type-B theories (non-minimal

and minimal). The case of AdS6 is presented in more detail while for other dimensions we

only show the main intermediate steps.

A.4.1 Zeta Function in AdS6

Following the previous steps, let us show explicitly how to calculate the zeta function in

AdS6 for Type-A, fermionic HS theory, hook fields and Type-B.
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Type-A

Zeta. Starting with Vasiliev type A theory, we recall the zeta-function in the main text

µ̃(u) = −
u
(
u2 + 1

4

)
(s+ 1)(s+ 2)(2s+ 3) tanh(πu)

(
u2 +

(
s+ 3

2

)2
)

720
. (A.1)

With tanh x = 1− 2
e2πx+1

, we can write the spectral zeta function as

ζH(z) = − 1

720
(s+ 1)(2s+ 3)(s+ 2)

[
lim
z→0

∫ ∞
0

du
u(u2 + 1/4) (u2 + (s+ 3/2)2)

(u2 + ν2)z

− 2

∫ ∞
0

du
u(u2 + 1/4) (u2 + (s+ 3/2)2)

(1 + e2πu)

]
.

(A.2)

Using (A.4), one can obtain easily the zeta function for the Type-A HS theory [98]

ζ(∆,s)(0) = −(s+ 1) (2s+ 3) (s+ 2)

29030400

[
− 1835− 714s(s+ 3)

− 420ν2(27− 60ν2 + 16ν4 + s(36− 72ν2) + s2(12− 24ν2))
]
.

(A.3)

The total contribution from HS fields and ghosts is

ζA(0) =
∞∑
s=0

ζ(∆,s)(0)− ζ(∆+1,s−1)(0)

= ζ(3,0) +
∞∑
s=1

ζ(∆,s) − ζ(∆+1,s−1) (A.4)

=
1

1512
−
∞∑
s=1

(1 + s)2(−20 + 28s+ 378s2 + 868s3 + 847s4 + 378s5 + 63s6)

30240
,

where ∆ = s+3 and ν = s+ 1
2
. We use the exponential cut-off exp[−ε(s+ d−3

2
)] to take the

summation with d = 5. A straightforward calculation shows that ζA = 0 . The vanishing

of zeta function is also true for the minimal Type-A theory, where s = 0, 2, ....

ζAmin = ζAmin = ζ(3,0) +
∞∑

s=2,4,...

ζ(∆,s) − ζ(∆+1,s−1) = 0 . (A.5)
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Zeta-prime. After making sure that the conformal anomaly does not contribute to the

free energy, we now can take the z-derivative of ζ at z = 0 to calculate ζ ′(0). One can

easily obtain

ζ ′(0) = −(s+ 1)(s+ 2)(2s+ 3)

720

[
1

288
ν2
(
− 81 + 270ν2 − 88ν4 + 108s(−1 + 3ν2) + 36s2(−1 + 3ν2)

+ 3
(
27− 60ν2 + 16ν4 + s(36− 72ν2) + s2(12− 24ν2)

)
log(ν2)

)
+ 2

∫ ∞
0

du
u(u2 + 1

4
)(u2 + (s+ 3

2
)2) log(u2)

e2πu + 1
+ 4

∫ ∞
0

du

∫ ν

0

dxx
u(u2 + 1

4
)(u2 + (s+ 3

2
)2)

(e2πu + 1)(u2 + x2)

]
.

Following Appendix A.4, the first integral is therefore

II.1 = −(s+ 1)(s+ 2)(2s+ 3)

360

[
c+

5 + c+
3

(
1

4
+

(
s+

3

2

)2
)

+
c+

1

4

(
s+

3

2

)2
]
. (A.6)

The second integral is just

II.2 = −(s+ 1)(s+ 2)(2s+ 3)

180

∫ v

0

dxx

(
J+

5 +

(
1

4
+

(
s+

3

2

)2
)
J+

3 +
1

4

(
s+

3

2

)2

J+
1

)

= −(s+ 1)(s+ 2)(2s+ 3)

720

[
1

2880
ν2
(

3(377 + 160s(3 + s))− 120(8 + 3s(3 + s))ν2 + 160ν4

+ 60(−3(3 + 2s)2 + 12(5 + 2s(3 + s))ν2 − 16ν4) log(ν)
)

− 1

8

∫ ν

0

x(9 + 12s+ 4s2 − 4x2)(−1 + 4x2)ψ(1/2 + x)

]
.

It is easy to see that the log constribution in (E.7) and (E.9) cancel each other. In the

end, we are left with

ζ ′A(0) = Pν,s +Qν,s , (A.7)
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where,

Pν,s = −(s+ 1)(s+ 2)(2s+ 3)

720

[
ν2(107 + 580ν2 − 240ν4 + 120s(1 + 6ν2) + 40s2(1 + 6ν2))

960

+
c+

1

2

(
s+

3

2

)2
+ 2c+

3

((
s+

3

2

)2
+ 1/4

)
+ 2c+

5

]
,

(A.8)

Qν,s =
(s+ 1)(s+ 2)(2s+ 3)

5760

∫ ν

0

x(9 + 12s+ 4s2 − 4x2)(−1 + 4x2)ψ(1/2 + x) . (A.9)

Using the cut-off method, the evaluation of P =
∑

s Pν,s − Pν+1,s−1 in the case of all spins

and in the case of even spins only leads to the same result of zero, i.e the contribution

of Pν,s to ζ ′(0) vanishes for both cases. The evaluation of Q∆,s is a little bit harder if

one wishes to obtain an analytical result. We write the di-gamma function in its integral

representation (A.21) and obtain

Q =
∞∑
s=0

Qν,s −Qν+1,s−1 = 0 . (A.10)

Hence,
∞∑
s=1

Qν,s −Qν+1,s−1 = −Q 1
2
,0 , (A.11)

where,

Q 1
2
,0 = − 1

120

(
1181

11520
− 211 log(2)

4032
− 23 logA

16
+

5ζ(3)

4π2
+

15ζ(5)

4π4
− 63

16
ζ ′(−5) +

35

8
ζ ′(−3)

)
(A.12)

here, A = e
1
12
−ζ′(−1) is the Glaisher-Kinkelin constant. Above, we used the exponential

cut-off exp[−εν] to evaluate the sum over all spins. For minimal Type-A theory, a straight-

forward calculation shows that the ζ ′(0)min is just

ζ ′(0)min = Q 1
2
,0 +

∑
s=2,4...

Qs+ 1
2
,s −Qs+ 3

2
,s−1 =

1

27

(
2 log 2 +

2ζ(3)

π2
− 15ζ(5)

π4

)
= −2F φ

5 ,

(A.13)
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where,

∑
s=2,4...

Qs+ 1
2
,s −Qs+ 3

2
,s−1 = − 1

180

[
− 1181

7680
− 7349 log(2)

2688
+

69 logA

32
− 75ζ(3)

16π2

+
495ζ(5)

32π4
+

189

32
ζ ′(−5)− 105

16
ζ ′(−3)

]
.

(A.14)

Fermionic HS fields

Zeta. Above, we showed explicitly how to evaluate the zeta-function for the Type-A case.

For fermionic HS fields, the computation is similar with the change of variable s = m+1/2.

We recall the spectral function for fermions from the main text

µ̃(u) = −
u (u2 + 1)

(
s+ 1

2

) (
s+ 3

2

) (
s+ 5

2

)
coth(πu)

(
u2 +

(
s+ 3

2

)2
)

180
. (A.15)

We write s = m + 1/2, so that we can take the sum from m = 0 to ∞. The degeneracy

becomes

g(m) ∼ (m+ 1)(m+ 2)(m+ 3) . (A.16)

As we shall see the overall normalization factor does not affect the final result for fermions.

Using (A.5), we get

ζ 1
2
∼
∞∑
m=0

1

168
(−542− 99m+ 8094m2 + 22806m3 + 28497m4 + 19404m5 + 7448m6 + 1512m7 + 126m8) = 0 .

Zeta-prime. To find ζ ′1
2

, the integral that one needs to evaluate is

∂z

∣∣∣
z=0

g(m)

∫ ∞
0

u(u2 + 1)(u2 + (m+ 2)2)

(ν2 + u2)z

(
1 +

2

e2πu − 1

)
∼ ∂z

∣∣∣
z=0

(∫ ∞
0

u(u2 + 1)(u2 + (m+ 2)2)

(ν2 + u2)z
+

∫ ∞
0

2u(u2 + 1)(u2 + (m+ 2)2)

(e2πu − 1)(ν2 + u2)z

)
.

(A.17)
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We ignore g(m) at the moment for simplicity. The first integral equals with

I =
1

72
ν2

[
− 144 + 135ν2 − 22ν4 + 36m(−4 + 3ν2) + 9m2(−4 + 3ν2)

− 6(−24 + 15ν2 − 2ν4 + 12m(−2 + ν2) + 3m2(−2 + ν2)) log ν2

]
.

(A.18)

The second integral is just II = II.1 + II.2, where

II.1 = 2
(
2c−1 (m+ 2)2 + 2c−3 ((m+ 2)2 + 1) + 2c−5

)
, (A.19)

II.2 = −4

∫ ν

0

xdx

∫ ∞
0

du
u(1 + u2)((2 +m)2 + u2)

(−1 + e2πu)(u2 + x2)

= −4

∫ ν

0

xdx
[
(2 +m)2J−1 + ((2 +m)2 + 1)J−3 + J−5

]
.

(A.20)

Repeating the same algorithm as in the case of bosonic theory, we get

Pν,m = −g(m)

[
− 1

120
ν(−480 + 51ν + 200ν2 − 155ν3 − 24ν4 + 30ν5 − 40m(12− ν − 4ν2 + 3ν3) ,

− 10m2(12− ν − 4ν2 + 3ν3))− 2c−1 (m+ 2)2 − 2c−3 ((m+ 2)2 + 1)− 2c−5

]
,

(A.21)

Qν,m = −2g(m)

∫ ν

0

dxx(x2 − 1)(x2 − (m+ 2)2)ψ(x) , (A.22)

where, we have returned the degeneracy into the calculation.

P =
∞∑
m=0

(
e−ε(m+1)Pm+1,m − e−ε(m+2)Pm+2,m−1

)
= − 1787

3402000
, (A.23)
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and Q is just

Q =
∞∑
m=0

(
e−ε(m+1)Qm+1,m − e−ε(m+2)Qm+2,m−1

)
= − 1

180

∫ ∞
0

dt

[
1440(e3t − 7e4t − 12e5t − 7e6t − e7t)

(−1 + et)9t
− 72e2t(3 + 47et + 47e2t + 3e3t)

3(1 + et)6t2

+
120e2t(1 + 24et + 33e2t)

(−1 + et)9t3
+

360e2t(1 + 19et + 19e2t + e3t)

(−1 + et)6t4

+
1440e2t(1 + 4et + e2t)

(−1 + et)5t5
+

1440e2t(1 + et)

(−1 + et)4t6

]
=

1787

3402000
.

(A.24)

Hence, ζ ′(0) 1
2

= 0, which guarantees that the consistency of SUSY HS theories relies on

the bosonic part thereof.

Height-one Hook HS fields

Zeta. To get to the Type-B theory we need to calculate the contribution of hook fields

in AdS6. The zeta-function is

µ̃(u) = −
u
(
u2 + 9

4

)
s(s+ 3)(2s+ 3) tanh(πu)

(
u2 +

(
s+ 3

2

)2
)

240
. (A.25)

Since ∆ = s + 3 with s = 1, 2, ... and ν = s + 1/2, we can repeat the same calculation as

for bosonic HS fields. The zeta function is therefore

ζHook = − 1

240

∞∑
s=1

74

63
− 58s

7
− 1109s2

21
− 94s3 − 337s4

6
+ 14s5 +

91s6

3
+ 12s7 +

3s8

2
=

1

180
.

(A.26)
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While the result of zeta-function for even spin case is

ζHookmin = − 1

240

∞∑
s=2,4,...

74

63
− 58s

7
− 1109s2

21
−94s3− 337s4

6
+14s5 +

91s6

3
+12s7 +

3s8

2
=

37

7560
.

(A.27)

It is easy to see that the zeta function for hook fields is not zero, which is not a problem

since they make only a part of the Type-B spectrum.

Zeta-prime. The ζ ′ = Pν,s + Qν,s can be obtained by using the same treatment for

bosonic theory, where we find that

Pν,s = −s(3 + s)(3 + 2s)

240

[
2c+

5 +
9

8
c+

1 (3 + 2s)2 + c+
3 (9 + 6s+ 2s2)

+
ν2

960

(
187 + 1060ν2 − 240ν4 + 120s(1 + 6ν2) + 40s2(1 + 6ν2)

)]
,

(A.28)

and

Qν,s = −s(s+ 3)(2s+ 3)

1920

∫ ν

0

dx x(−9 + 4x2)(−9− 12s− 4s2 + 4x2)ψ(x+ 1/2) . (A.29)

Summing over all spins, the result of P is

PHook =
∞∑
s=1

Ps+1/2,s − Ps+3/2,s−1 =
1

300
, (A.30)

while for the minimal case of Type-B, one needs to have

PHook
min =

∞∑
s=2,4,...

Ps+ 1
2
,s − Ps+ 3

2
,s−1 =

197

51200
+

3c+
1

320
+
c+

3

24
+
c+

5

60
. (A.31)
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Next, we evaluate the QHook for the non-minimal and minimal Type-B. We find for all

spins:

QHook = − 623

21600
+

logA

6
+

1

6
ζ ′(−4)− 1

3
ζ ′(−3) +

1

3
ζ ′(−2)

= − 623

21600
+

logA

6
+
ζ(5)

8π4
− ζ(3)

12π2
− 1

3
ζ ′(−3) ,

(A.32)

and for even spins only:

QHook
min = − 1433

51200
+

52709 log(2)

483840
+

99 logA

640
+
ζ(3)

64π2
−93ζ(5)

128π4
− 21

640
ζ ′(−5)−19

64
ζ ′(−3) , (A.33)

where we utilized,

ζ ′(−2n) =
(−1)nζ(2n+ 1)(2n)!

22n+1π2n
. (A.34)

Having these results at hand, we are now able to compute the ζ ′B for the non-minimal and

minimal Type-B theories.

A.4.2 Non-minimal Type-B

In order to calculate the zeta function for Type-B, we need to collect all the information

from Type-A, scalar field with ∆ = 4 and the above hook fields. From (E.4), one can easily

obtain the ζAs>0 for non-minimal which is − 1
1512

. For the scalar with ∆ = 4, we simply get

from (A.3) that

ζ4,0 = − 37

7560
. (A.35)

The spectrum of non-minimal Type-B involves the spectrum of Type-A theory with s ≥ 1,

a scalar with ∆ = 4 and the hook fields with s ≥ 1.

ζB = ζA + ζ4,0 + ζHook = − 1

1512
− 37

7560
+

1

180
= 0 . (A.36)
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Below, we will list all the components in terms of their P and Q to calculate the ζ ′B

Type P

PA 79
153600

+
3c+1
320

+
c+3
24

+
c+5
60

PA
3
2
,0

− 197
51200

− 3c+1
320
− c+3

24
− c+5

60

PHook 1
300

(A.37)

It is easy to recognize that PB = PA + PA
3
2
,0

+ PHook = 0, i.e there is no contribution from

P in the Type-B theory. The relevant Q-terms are

Type Q

QA 1
120

(
1181
11520

− 211 log(2)
4032

− 23 logA
16

+ 5ζ(3)
4π2 + 15ζ(5)

4π4 − 63
16
ζ ′(−5) + 35

8
ζ ′(−3)

)
QA

3
2
,0

1433
51200

+ 211 log(2)
483840

− 99 logA
640

+ 3ζ(3)
32π2 − 3ζ(5)

32π4 + 21
640
ζ ′(−5) + 19

64
ζ ′(−3)

QHook − 623
21600

+ logA
6

+ ζ(5)
8π4 − ζ(3)

12π2 − 1
3
ζ ′(−3)

(A.38)

Bringing everything together, we obtain

ζ ′B = ζ ′A,s≥1 + ζ ′Hook,s≥1 + ζ ′4,0 =
ζ(3)

48π2
+
ζ(5)

16π4
. (A.39)

As explaining in the main text, this number is not random.

A.4.3 Minimal Type-B

From (A.4), the zeta-function of Type-A with odd spins only is 0. One can read off the

minimal Type-B ζBmin by considering the symmetric traceless fields with odd spins only,

the hook fields with even spin and a scalar with ∆ = 4.

ζBmin = ζAodd + ζ4,0 + ζHookeven = 0− 37

7560
+

37

7560
= 0 . (A.40)
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Therefore, the zeta function for Type-B is vanishing in both non-minimal and minimal

cases. Next, we list the result for the minimal Type-B in terms of P and Q

Type P

PA 0

PA
3
2
,0

− 197
51200

− 3c+1
320
− c+3

24
− c+5

60

PHook 197
51200

+
3c+1
320

+
c+3
24

+
c+5
60

(A.41)

Type Q

QA − log(2)
64
− ζ(3)

64π2 + 15ζ(5)
128π4

QA
3
2
,0

1433
51200

+ 211 log(2)
483840

− 99 logA
640

+ 3ζ(3)
32π2 − 3ζ(5)

32π4 + 21
640
ζ ′(−5) + 19

64
ζ ′(−3)

QHook − 1433
51200

+ 52709 log(2)
483840

+ 99 logA
640

+ ζ(3)
64π2 − 93ζ(5)

128π4 − 21
640
ζ ′(−5)− 19

64
ζ ′(−3)

(A.42)

The ζ ′Bmin for the minimal Type-B theory is just that:

ζ ′Bmin = ζ ′A,odd + ζ ′Hook,even + ζ ′4,0 =
3

32
log 2 +

3ζ(3)

32π2
− 45ζ(5)

64π4
. (A.43)

In the following appendices, we list the result of zeta function of Type-A, fermions, hook

fields and Type-B in various dimensions, which can be used for later work.
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A.5 Summary of the Results in Other Even Dimen-

sions

A.5.1 Type-A

We first evaluate the zeta function in term of spin-s. Following the algorithm in the

Appendix D, the results are listed below

d ζ∆,s − ζ∆+1,s−1

3 1
180

(−2 + 15s2 − 75s4)

5 (1+s)2(−20+28s+378s2+868s3+847s4+378s5+63s6)
30240

7 (2+s)2(−3048+1024s+55568s2+162632s2+228337s4+188892s5+98397s6+32688s7+6723s8+780s9+39s10)
21772800

(A.44)

The sum over spins will make ζ(0) vanish in both non-minimal and minimal cases.9 Next,

we compute Pν,s and Qν,s

Table for Pν,s:
10

d = 3 :
(2s+ 1)(12c+

1 + 48c+
3 + 48c+

1 s+ 48c+
1 s

2 + ν2 + 6ν4)

144

d = 5 : −(s+ 1)(s+ 2)(2s+ 3)

691200

[
1080c+

1 + 4800c+
3 + 1920c+

5 + 1440c+
1 s+ 5760c+

3 s+ 480c+
1 s

2 + 1920c+
3 s

2

+ 107ν2 + 120sν2 + 40s2ν2 + 580ν4 + 720sν4 + 240s2ν4 − 240ν6
]

d = 7 :
(1 + s)(2 + s)(3 + s)(4 + s)(5 + 2s)

48771072000

[
567000c+

1 + 2610720c+
3 + 1411200c+

5 + 161280c+
7 + 453600c+

1 s

+ 2016000c+
3 s+ 806400c+

5 s+ 90720c+
1 s

2 + 403200c+
3 s

2 + 161280c+
5 s

2 + 343345ν2 + 271740sν2

+ 54348s2ν2 − 667674ν4 − 512400sν4 − 102480s2ν4 + 255920ν6 + 145600sν6 + 29120s2ν6 − 23520ν8
]

9We used the cut-off exponential exp[−ε(s + d−3
2 )]. The case with d = 3 is special since one should

start the sum from s ≥ 1 and then add the scalar to have vanishing zeta function.
10From here, it is very easy to evaluate P =

∑
s Pν,s − Pν+1,s−1 by the exponential cut-off.
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Table of Qν,s:

d Qν,s

3 1
3
(2s+ 1)

∫ ν
0
dx
[
(s+ 1

2
)2x− x3

]
ψ(x+ 1

2
)

5 (s+1)(s+2)(2s+3)
5760

∫ ν
0
x(9 + 12s+ 4s2 − 4x2)(−1 + 4x2)ψ(1/2 + x)

7 (s+1)(s+2)(s+3)(s+4)(2s+5)
604800

∫ ν
0
dx x

32
(25 + 20s+ 4s2 − 4x2)(9− 40x2 + 16x4)ψ(x+ 1

2
)

(A.45)

Non-minimal Type-A. The result for P in both non-minimal and minimal theory are

zero, i.e P vanishes. Hence, one only needs to deal with Q =
∑

sQν,s − Qν+1,s−1. The

sum is evaluated with exp[−εν] for Qν,s and with exp[−ε(ν + 1)] for Qν+1,s−1. Analytical

computation in the non-minimal Type-A shows that Q also vanishes.

Minimal Type-A. In minimal theory, the story is a little bit different. Using the method

of analytical continuation of Appendix D, we get

d Q

3 − 1
23

(
2 log 2− 3ζ(3)

π2

)
5 1

27

(
2 log 2 + 2ζ(3)

π2 − 15ζ(5)
π4

)
7 − 1

211

(
4 log 2 + 82ζ(3)

15π2 − 10ζ(5)
π4 − 63ζ(7)

π6

) (A.46)

These results can also be found in [98, 174].

A.5.2 HS Fermions

Above, we showed that ζ 1
2

and ζ ′1
2

is zero for AdS6. In this Appendix, let us rewrite the

result in d = 3, 5 and then make a general statement about higher dimensional cases. First

of all, one needs to make the change of variable s = m + 1
2
. The zeta-functions with the
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ghost subtracted are

d ζ∆,s − ζ∆+1,s−1

3 −47−360m−1560m2−2400m3−1200m4

2880

5 542+99m−8094m2−22806m3−28497m4−19404m5−7448m6−1512m7−126m8

30240

(A.47)

Summing over all spin starting from m = 0 with the cut-off exp[−ε(m+ d−2
2

)], we see that

the total zeta-functions in d = 3, 5 vanished. As a simple check, one can confirm that for

higher dimensions this statement is also true.

Next, to calculate the ζ ′-function, we again split it into Pν,m and Qν,m.

Table for Pν,m:

d = 3 : − (1 +m)(24c−1 + 24c−3 + 48c−1 m+ 24c−1 m
2 − 12ν − 24mν − 12m2ν + ν2 + 4ν3 − 3ν4)

36
, (A.48)

d = 5 :

− (1 +m)(2 +m)(3 +m)

21600

[
960c−1 + 1200c−3 + 240c−5 + 960c−1 m+ 960c−3 m+ 240c−1 m

2 + 240c−3 m
2

− 480ν − 480mν − 120m2ν + 51ν2 + 40mν2 + 10m2ν2 + 200ν3 + 160mν3 + 40m2ν3 − 155ν4

− 120mν4 − 30m2ν4 − 24ν5 + 30ν6
]
.

(A.49)

Summing over all spins leads to

d P

3 − 11
270

5 1787
3402000

One can see that for fermions P is non-zero which is different from Type-A theories. For

Qν,m we get

d Qν,m Q

3 −2(m+1)
3

∫ ν
0
dx(x3 − (m+ 1)2x) 11

270

5 (m+1)(m+2)(m+3)
90

∫ ν
0
dx(x3 − x)(x2 − (m+ 2)2)ψ(x) − 1787

3402000

It is easy to see that P and Q always cancel each other. A further check confirms that

ζ ′(0) is zero in higher dimensions.



190 A. Appendix for One-loop Tests in Integer Dimensions

A.5.3 Hook fields

The hook fields only appear in dimensions higher than four. For the computation of the

spectral density function µ(u) of hooks with different p, the reader can refer to Section

3.2.2.

Zeta

In d = 5, we only have p = 1, while in d = 7, p can be one or two.11

d = 5 , p = 1 :
148− 1044s− 6654s2 − 11844s3 − 7077s4 + 1764s5 + 3822s6 + 1512s7 + 189s8

30240
,

d = 7 , p = 1 :

− (2 + s)

5573836800

[
− 81336637326− 260554380359s− 287920256390s2 − 124396596105s3

+ 7147903040s4 + 30702694976s5 + 14557085760s6 + 3622437600s7 + 540003840s8

+ 48318720s9 + 2388480s10 + 49920s11
] ,

d = 7 , p = 2 :

− s(4 + s)

2786918400

[
− 79449809509− 151977792308s− 101475411753s2 − 17276191808s3

+ 13378662464s4 + 9277153920s5 + 2721896160s6 + 451660800s7 + 43687680s8

+ 2288640s9 + 49920s10
]
.

We will list the result of ζ-function in both the non-minimal and minimal theory for hook

fields below since it is important for our computation of Type-B theory12

d p (ζ, ζmin)

5 1
(

1
180
,− 37

7560

)
7 1

(
1

280
,− 23

226800

)
2

(
1

1512
, 23

226800

) (A.50)

It is interesting that the zeta function for hook fields alone is not zero as in bosonic and

fermionic theory. However, when one considers the whole spectrum of Type-B theory, the

zeta function will again vanish.

11Due to the length of the final results, we only list the zeta function for d = 5, 7 here.
12The hook fields of minimal theory in d = 5 come with even spins while the hook fields with p = 1 in

d = 7 come with odd spins and p = 2 come with even spins.
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Zeta-prime

Below are the tables for Pν,s and Qν,s of hook fields.

Table for Pν,s:

d = 5 , p = 1 :
− s(3 + s)(3 + 2s)

230400

[
9720c+1 + 8640c+3 + 1920c+5 + 12960c+1 s+ 5760c+3 s+ 4320c+1 s

2

+ 1920c+3 s
2 + 187ν2 + 120sν2 + 40s2ν2 + 1060ν4 + 720sν4 + 240s2ν4 − 240ν6

] ,

d = 7 , p = 1 :

s(2 + s)(3 + s)(5 + s)(5 + 2s)

9754214400

[
1575000c+1 + 6804000c+3 + 2056320c5 + 161280c+7 + 1260000c+1 s

+ 5241600c+3 s+ 806400c+5 s+ 252000c+1 s
2 + 1048320c+3 s

2 + 161280c+5 s
2 + 149557ν2 + 112140sν2

+ 22428s2ν2 + 828786ν4 + 646800sν4 + 129360s2ν4 − 255920ν6 − 100800sν6 − 20160s2ν6 + 18480ν8
] ,

d = 7 , p = 2 :

s(1 + s)(4 + s)(5 + s)(5 + 2s)

4877107200

[
14175000c+1 + 10836000c+3 + 2378880c+5 + 161280c+7 + 11340000c+1 s

+ 6854400c+3 s+ 806400c+5 s+ 2268000c+1 s
2 + 1370880c+3 s

2 + 161280c+5 s
2 + 234733ν2 + 145740sν2

+ 29148s2ν2 + 1329426ν4 + 848400sν4 + 169680s2ν4 − 296240ν6 − 100800sν6 − 20160s2ν6 + 18480ν8
]
.

Summing over spins leads to

d p (P, Pmin)

5 1
(

1
300
, 197

51200
+

3c+1
320

+
c+3
24

+
c+5
60

)
7 1

(
1361

264600
, 508061

6502809600
+

5c+1
3584

+
37c+3
5760

+
c+5
288

+
c+7

2520

)
2
(

61
158760

,− 508061
6502809600

− 5c+1
3584
− 37c+3

5760
− c+5

288
− c+7

2520

) (A.51)

Table for Qν,s:

d = 5 , p = 1 : − s(s+ 3)(2s+ 3)

1920

∫ ν

0

dx x(−9 + 4x2)(−9− 12s− 4s2 + 4x2)ψ(x+ 1/2) ,

d = 7 , p = 1 :
s(s+ 2)(s+ 3)(s+ 5)(2s+ 5)

120960

∫ ν

0

dx
x

32
(25 + 20s+ 4s2 − 4x2)(25− 104x2 + 16x4)ψ(x+

1

2
) ,

d = 7 , p = 2 :
s(s+ 1)(s+ 4)(s+ 5)(2s+ 5)

60480

∫ ν

0

dx
x

32
(25 + 20s+ 4s2 − 4x2)(225− 136x2 + 16x4)ψ(x+

1

2
) .
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Non-minimal Type-B. Following the method in appendix D, we list the results of Q

in d = 5, 7.

d p Q

5 1 − 623
21600

+ logA
6

+ ζ(5)
8π4 − ζ(3)

12π2 − ζ′(−3)
3

7 1 − 26777
1058400

+ 7 logA
60
− 113ζ(3)

1440π2 + 13ζ(5)
96π4 − ζ(7)

32π6 − ζ′(−3)
3
− ζ′(−5)

20

2 − 991
317520

+ logA
60
− 7ζ(3)

1440π2 − ζ(5)
96π4 + ζ(7)

32π6 + ζ′(−5)
60

(A.52)

Minimal Type-B. In the minimal theory, the computations are much longer since there

are more derivatives involved when one calculates the Hurwitz-Lersch functions.

d p Q

5 1 − 1433
51200 + 52709 log(2)

483840 + 99 logA
640 + ζ(3)

64π2 − 93ζ(5)
128π4 − 21ζ′(−5)

640 − 19ζ′(−3)
64

7 1 2545 log(A)
21504 + 535ζ′(−4)

2304 + 4787ζ′(−2)
11520 − 139ζ′(−5)

3072 − 1037ζ′(−3)
3072 − 487ζ′(−6)

11520 − 17ζ′(−7)
21504 − 6610955

260112384 −
4067243 log(2)

232243200

2 181 log(A)
107520 + 73ζ′(−5)

15360 + 113ζ′(−4)
1152 + 389ζ′(−2)

1152 − 13ζ′(−3)
3072 − 17ζ′(−7)

21504 + 1205ζ(7)
1024π6 − 755987

6502809600 −
13592843 log(2)

232243200

A.5.4 Type-B

We can now combine the results above to get the results for Type-B models. The spectrum

of such models is given in Section 3.4.4.

Non-minimal

Scalar Field. The scalar in Type-B has ∆φ
B = ∆φ

A+1, where ∆φ
A is the conformal weight

of the scalar in Type-A theory. One can use this to compute ζ, P,Q using all the formulas

in Type-A:

d ζ∆B ,0

5 − 37
7560

7 − 119
32400

d P φ

5 − 197
51200

− 3c+1
320
− c+2

24
− c+5

60

7 − 1317595
260112384

+
5c+1
3584

+
37c+3
5760

+
c+5
288

+
c+7

2520
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d Qφ

5 1433
51200

+ 211 log(2)
483840

− 99 logA
640

+ 3ζ(3)
32π2 − 3ζ(5)

32π4 + 21ζ′(−5)
640

+ 19ζ′(−3)
64

7 6610955
260112384

− 15157 log(2)
232243200

− 2545 logA
21504

+ 23ζ(3)
288π2 − 25ζ(5)

192π4 + 5ζ(7)
128π6 + 1037ζ′(−3)

3072
+ 139ζ′(−5)

3072
+ 17ζ′(−7)

21504

Summary. In non-minimal Type-B theory, we have one scalar with ∆B = ∆A+1, Type-

A with s ≥ 1, and the hook fields with s ≥ 1. The total contribution to the zeta-function

gives zero

d ζA + ζHook + ζφ∆,s ζB

5 − 1
1512

+ 1
180
− 37

7560
0

7 − 127
226800

+ 1
280

+ 1
1512
− 119

32400
0

For higher dimensions, this is also true and we can confirm that the zeta-function for

non-minimal Type-B is always zero by combining all the component fields. Next, we need

ζ ′B = ζ ′∆B ,0
+ ζ ′A,s≥1 + ζ ′Hook:

d ζ ′B

5 ζ(3)
48π2 + ζ(5)

16π4

7 ζ(3)
360π2 + ζ(5)

96π4 + ζ(7)
64π6

(A.53)

In the main text, our results were generated up to AdS12 or d = 11, but we checked up to

AdS18 that they agree with the change of F -energy.

Minimal

We need to combine the scalar field from the previous sub-section with the results for

odd/even spins that can be found above. The final results can be found in the main text.
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Appendix B

Appendix for One-loop Tests in

Fractional Dimensions

B.1 From Intermediate to Final Form

As a result of the AdS computation we arrived at the intermediate form (3.160), which

can easily be seen to arise in the computation of the determinant on the CFT side. Let us

now show how to reach the (generalized) sphere free energy Fφ in its final form. In order

to compute the β-integral we use

1

β
=

1

2

(
1

1− e−β

∫ 1

0

due−uβ − 1

1− eβ

∫ 1

0

dueuβ
)
. (B.1)

This allows for an analytic evaluation of the β integral. One obtains

F φ
min. =

Γ(−d)

4

∫ 1

0

du(d+ 4(−1 + u)u)

(
Γ
(
−1 + d

2
+ u
)

Γ
(
1− d

2
+ u
) +

Γ
(
d
2
− u
)

Γ
(
2− d

2
− u
)) (B.2)
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After some straightforward algebra (B.2) can be shown to split in two parts, the first one

we can bring to the form of (for ∆ = d
2
− 1) [187, 100]:

F∆ = Γ(−d)

∫ ∆− d
2

0

duu

[
Γ(d

2
− u)

Γ(1− u− d
2
)
−

Γ(d
2

+ u)

Γ(1 + u− d
2
)

]

= − 1

sin(πd
2

)Γ(d+ 1)

∫ ∆− d
2

0

duu sin(πu)Γ

(
d

2
+ u

)
Γ

(
d

2
− u
)
,

(B.3)

where the result for the free scalar field corresponds to ∆ = d
2
− 1. The second part has

the form

f =
1

4Γ(d) sin
(
πd
2

) ∫ 1

0

(1− 2u) sin(πu)Γ

(
−1 +

d

2
+ u

)
Γ

(
d

2
− u
)
. (B.4)

However, this extra term vanishes due to the anti-symmetry of the integrand around u =

1/2. This shows that

F φ
min. =

1

2

∫ ∞
0

dβ

β

e−β(2+d)/2(1 + eβ)2

(1− e−β)d
=

−1

Γ(d+ 1) sin
(
πd
2

) ∫ 1

0

du u sin(πu)Γ

(
d

2
− u
)

Γ

(
d

2
+ u

)

B.2 Modified Zeta Function

In this Appendix we elaborate on the properties of the modified zeta-function we introduced

in Section 3.7. It follows from the definition that the value of ζ∆,s(0) is unaffected, which is

illustrated in B.2.1. The value of ζ ′∆,s(0) differs in general from its true value. Fortunately,

ζ ′(0) is still the same for for the spectrum of (non)-minimal Type-A, which is studied in

B.2.2. It is also shown there that there is no deficit for the difference between the scalars

with ∆ = d− 2 and ∆ = 2 boundary conditions.
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B.2.1 Zeta

From (3.144), one can easily obtain the full zeta in various odd dimensions with the help

of analytical continuation to the Lerch transcendent and then set z → 0. For example,

d = 3 : ζ̃ν,s =
(2s+ 1)(−17− 40s− 40s2 + 240ν4 − 120(ν + 2sν)2)

5760

d = 5 : ζ̃ν,s = − (1 + s)(2 + s)(3 + 2s)(−1835− 2142s− 714s2 − 1260(3 + 2s)2ν2 + 5040(5 + 2s(s+ 3))ν4 − 6720ν6)

29030400

It is easy to see that these polynomials in ν and s are exactly the zeta function for Type-A

in [98], see also [1]. Therefore, there is no deficit at z0 order, i.e

ζ̃ν,s(0)− ζν,s(0) = 0 +O(z) . (B.5)

This explains how we can get all the correct ζ̃d,s(0) for individual spins in general odd

dimensions. There are many results on zeta-function at d = 3, see e.g. [181, 97, 98]. Let

us illustrate that the modified zeta-function is solid enough to obtain these results. The

spin factor in d = 3 is

gA3 (s) = 2s+ 1 (B.6)

Together with ν = s− 1
2
, (3.144) becomes

ζ̃A3 (z) = −(2s+ 1)

3!Γ(2z)

∫ ∞
0

dβ

∞∑
l=0

e−β(s− 1
2

)β2z−1e−β(
1
2

+l)
(

1

2
+ l

)((
1

2
+ s

)2

−
(

1

2
+ l

)2
)
.

Now we can sum over l and obtain

ζ̃A3,s(z) =
1

12Γ(2z)

∫ ∞
0

dβ
β2z−1e−β(s−1)(1 + eβ)(1 + 2s)(s(1 + s) + e2βs(1 + s)− 2eβ(3 + s+ s2))

(−1 + eβ)4

In order to get to the actual numbers one needs to plug s = 0, 1, 2, 3, ... then use the trick

of analytical continuation via the Hurwitz-Lerch zeta function [97, 98]. For example,

ζ̃A3,s(0) =

{
− 1

180
,−11

60
,−181

36
,−6097

180
, ...

}
(B.7)

Note that, after the continuation to the Hurwitz-Lerch transcendent, there will be another

Γ(2z) function in the nominator. This will cancel 1/Γ(2z) factor in the modified zeta
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function. Therefore, the modified zeta-function reproduces the correct result, which is

expected.

B.2.2 Deficit

As we already explained in Section 3.7, we changed the regularization prescription. As a

result the values of ζ ′∆,s(0) might be different from the correct ones for individual fields. It

was noted in [132] that the deficit vanishes for certain representations (with even character).

In particular, the deficit is absent for (non)-minimal Type-A theory. The purpose of this

Section is to quantify the deficit for a number of cases.

For example, let us take the scalar field in d = 3. The zeta-prime can be derived by

calculating ζ(z) at z order:

ζ3,0(z) =
ζ(−3 + 2z)

6
+
ζ(−2 + 2z)

4
+
ζ(−1 + 2z)

12
= − 1

180
+

(
1

72
− logA

6
+
ζ ′(−3)

3
+
ζ ′(−2)

2

)
z+O(z2)

(B.8)

One can already notice that there is a deficit between the value of ζ̃ ′A3,0(0) that is evaluated

by the standard zeta function and (B.8). This was also discussed in Appendix (B.1) of

[132], when the authors use characters to evaluate ζ̃ ′(0) for different fields. Let us have a

look at the deficit in d = 3 and d = 5 as to observe the general pattern.

d=3

The result before sending z to 0 for the modified zeta function is

ζ̃3
ν,s(z) =

(2s+ 1)

24

[
ν
(
(1 + 2s)2 − 4ν2

)
ζ(2z, ν +

1

2
) + 4ζ(−3 + 2z, ν +

1

2
)

− 12νζ(−2 + 2z, ν +
1

2
) + (−1− 4s(1 + s) + 12ν2)ζ(−1 + 2z, ν +

1

2
)
]
.

(B.9)

In order to compute the zeta-prime, one just needs to take the z derivative and set z = 0:

ζ̃ ′3ν,s(0) =
(2s+ 1)

12

[
ν
(
(1 + 2s)2 − 4ν2

)
ζ ′(0, ν +

1

2
) + 4ζ ′(−3, ν +

1

2
)

− 12νζ ′(−2, ν +
1

2
) + (−1− 4s(1 + s) + 12ν2)ζ ′(−1, ν +

1

2
)
]
.

(B.10)
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We then follow the procedure in [132] to find the deficit. First, we set ν = 0 and obtain

ζ̃ ′30,s(0) =
(2s+ 1)

12

(
4ζ ′(−3,

1

2
)− (2s+ 1)2ζ ′(−1,

1

2
)

)
. (B.11)

Recall that for the standard zeta-prime in d = 3, see [97, 98], we have

ζ ′30,s(0) =
2s+ 1

3

(
c3 +

(
s+

1

2

)2

c1

)
. (B.12)

We note that

ζ ′(−n, 1

2
) = (−)

n+1
2 cn, where cn =

∫ ∞
0

du
2un log u

e2πu + 1
. (B.13)

Therefore, ζ ′30,s(0) and ζ̃ ′30,s(0) do match. Then, we consider the ν derivatives for each of the

zetas:

∂ν ζ̃
′3
ν,s(0) =

(2s+ 1)

12

((
(2s+ 1)2 − 12ν2

)
ζ ′(0, ν +

1

2
)− 12ζ ′(−2, ν +

1

2
) + 24νζ ′(−1, ν +

1

2
)

+ ν((2s+ 1)2 − 4ν2)∂νζ
′(0, ν +

1

2
) + 4∂νζ

′(−3, ν +
1

2
)− 12ν∂νζ

′(−2, ν +
1

2
)

+ (−1− 4s(s+ 1) + 12ν2)∂νζ
′(−1, ν +

1

2
) + ν((2s+ 1)2 − 4ν2)∂νζ

′(0, ν +
1

2
)

)
(B.14)

∂νζ
′3
ν,s(0) =

(2s+ 1)

3

(
ν3

2
+

ν

24
+ ν

((
s+

1

2

)2

− ν2

)
ψ(ν +

1

2
)

)
(B.15)

Next, using the identities for Hurwitz zeta function

∂νζ(s, ν) = −sζ(s+ 1, ν), ∂νζ
′(0, ν) = ψ(ν) (B.16)

we can reduce the ν derivative of the modified zeta-prime to

∂ν ζ̃
′3
ν,s(0) =

(2s+ 1)ν((2s+ 1)2 − 4ν2)ψ(ν + 1
2
)

12
(B.17)
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Subtracting (B.17) and (B.15) together, then integrating over ν, one obtains the deficit for

individual fields at order z:

δζ ′ν,s(0) = ζ̃ ′ν,s − ζ ′ν,s = −(2s+ 1)(ν2 + 6ν4)

144
(B.18)

Since the deficit is an even function of ν, we can compute the difference between the

scalars with ∆ = d− 2, 2 boundary conditions using the modified zeta function thanks to

δζ ′d−2,0 − δζ ′2,0 = 0. Using the cut-off e−ε(s+
d−3

2
), one can sum over either all spins or even

spins and observe that the deficit does vanish:

∑
s

δζ ′ν,s(0) = 0 . (B.19)

Therefore, the deficit is absent both for the non-minimal and minimal Type-A theories at

order z, which is what we need for ζ ′HS(0).

d=5

In higher dimensions, there is another useful identity that we illustrate on the example of

d = 5. Following the procedure outlined above, we obtain

ζ̃ ′5ν,s(0) =
(1 + s)(2 + s)(3 + 2s)

5760

[
− 16ζ ′(−5, ν +

3

2
) + 8ν(−3(5 + 2s(3 + s)) + 20ν2)ζ ′(−2, ν +

3

2
)

+ 80νζ ′(−4, ν +
3

2
) + (−(3 + 2s)2 + 24(5 + 2s(3 + s))ν2 − 80ν4)ζ ′(−1, ν +

3

2
)

+ ν(−1 + 4ν2)(−9− 4s(3 + s) + 4ν2)ζ ′(0, ν +
3

2
) + 8(5 + 2s(3 + s)− 20ν2)ζ ′(−3, ν +

3

2
)

]
.

Setting ν = 0 we arrive at

ζ̃ ′50,s(0) =
(1 + s)(2 + s)(3 + 2s)

5760

[
− 16ζ ′(−5,

3

2
) + 8(5 + 2s(3 + s))ζ ′(−3,

3

2
)− (3 + 2s)2ζ ′(−1,

3

2
)

]
.
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We massage the formula above as to be able to compare ζ ′(−k, 1
2
) with cn, which can be

done with the help of

ζ(s, ν) = ζ(s, ν +m) +
m−1∑
n=0

1

(n+ ν)s
(B.20)

We arrive at

ζ̃ ′50,s(0) =− (1 + s)(2 + s)(3 + 2s)

5760

[
− 16ζ ′(−5,

1

2
) + 8(5 + 2s(3 + s))ζ ′(−3,

1

2
)− (3 + 2s)2ζ ′(−1,

1

2
)

]
,

(B.21)

which can be compared with the standard zeta-prime:

ζ ′50,s(0) = −(1 + s)(2 + s)(3 + 2s)

360

(
c5 + c3

(
1

4
+

(
s+

3

2

)2
)

+
c1

4

(
s+

3

2

)2
)
. (B.22)

Using the identity (B.13), it is easy to realize that (B.21) and (B.22) are the same. Next,

one can proceed as in the previous Section and get

δζ ′5ν,s = −(s+ 1)(s+ 2)(2s+ 3)ν2(107 + 580ν2 − 240ν4 + 120s(1 + 6ν2) + 40s2(1 + 6ν2))

691200
.

(B.23)

The sum over all (even) spins can be found to vanish, which guarantees that the deficit

does not contribute to the zeta-prime of the (non)-minimal Type-A. Also the deficit is an

even function of ν and therefore the difference due to ∆ = d − 2, 2 boundary conditions

for the scalar field is also free of any deficit.

Let us note that the deficit has already appeared in implicit form in the literature. It is the

leftover of Pν,s in [1] without the part including c+
n , see also [98] where the same structures

are present but in different notation.
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Appendix C

On Chiral HSGRA

C.1 Kinematics

The four-dimensional Poincare algebra in light-cone gauge introduced in chapter 4 implies

that momenta should only enter the game as the following combinations

Pkm = pkβm − pmβk , Pkm = p̄kβm − p̄mβk . (C.1)

Also, it can be shown that only N − 2 out of N(N − 1)/2 Pij are independent, likewise for

P. In particular, for the three-point case there is just one independent transverse momenta

(and its conjugate). In particular, all Pij are anti-symmetric under permutations:

Pa12 = ... = Pa =
1

3
[(β1 − β2)p3 + (β2 − β3)p1 + (β3 − β1)p2] , (C.2)

σ123P = P , σ12P = σ23P = σ13P = −P . (C.3)

where conservation of the total momenta has been used. Also, for three points we have

−
∑
i

pip̄i
βi

=
PP

β1β2β3

=
P · P

2β1β2β3

. (C.4)
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We have a number of useful identities (we use d-dimensional notation sometimes, a = z, z̄

in 4d). Bianchi-like identities:

∑
i

Pai = 0 β[iPajk] ≡ 0 Pai[jPakl] ≡ 0 (C.5)

Other kinematic identities include

∑
j

PijPjk
βj

= −1

2
βiβk

∑
j

p2
j

βj
(C.6)

∑
j

PijPjk
βj

= −βiβk
∑
j

pj p̄j (C.7)

PijPij = −1

2
βiβj(pi + pj)

2 for p2
i ,p

2
j = 0 (C.8)

and one of the most important for dealing with one off-shell leg is (sik = (pi + pk)
2):

PikPik = −βiβk
2
sik +

1

2
βi(βk + βi)p

2
k, p2

i = 0, p2
k 6= 0 (C.9)

C.2 Color Effects on Dynamical Constraints

As pointed out in chapter 4 and also [65, 66, 67], the dynamical constraint that allows for

closure of Poincare algebra at cubic vertices is

[H3(P), J3] = 0. (C.10)

Here, we simply give the Hamiltonian H3

H3 =
∑
λi

∫ 3∏
i=1

d3piδ
3

(∑
i

pi

)
h3(pi, ∂pi)Φ

λ1
p1

Φλ2
p2

Φλ3
p3
, h3 = Cλ1,λ2,λ3

Pλ1+λ2+λ3

βλ1
1 βλ2

2 βλ3
3

. (C.11)

The dynamical boost generator J3 reads

J3 =
∑
λi

∫ 3∏
i=1

d3piδ
3

(∑
i

pi

)[
j3(pi)−

h3(pi)

3

(∑
k

∂

∂pk

)] 3∏
i=1

Φλi
pi , (C.12)
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where

j3 =
2

3
Cλ1,λ2,λ3

Pλ1+λ2+λ3−1

βλ1
1 βλ2

2 βλ3
3

χλ1,λ2,λ3 and χ = (λ1−λ2)β3 +(λ2−λ3)β1 +(λ3−λ1)β2. (C.13)

While the authors in [67] work with colorless minimal chiral HiSGRA1, most of the technical

details therein can be directly generalized to colorful non-minimal cases. For a generic case,

the constraint (C.10) reads

[H3, J3] =
∑
λi,µj

∫
DpiDqjδ

3

∑
j

qj

[j3(qj)−
h3(qj)

3

(∑
k

∂

∂qk

)]

× δ3

(∑
i

pi

)
h3(pi)

[ 3∏
i=1

Φλi
pi ,

3∏
j=1

Φ
µj
qj

]
.

(C.14)

There are two type of contributions in (C.14). The first contribution comes without deriva-

tives, namely

M1 =
∑
λi,µj

∫
DpiDqiδ

3

∑
j

qj

 δ3

(∑
i

pi

)
j3(qj)h3(pi)

[ 3∏
i=1

Φλi
pi ,

3∏
j=1

Φ
µj
qj

]
(C.15)

and the second contribution comes with derivatives

M2 = −1

3

∑
λi,µj

∫
DpiDqi

[
δ3

∑
j

qj

h3(qj)
(∑

k

∂

∂qk

)]
δ3

(∑
i

pi

)
h3(pi)

[ 3∏
i=1

Φλi
pi ,

3∏
j=1

Φ
µj
qj

]
,

(C.16)

where Dpi =
∏3

i=1 d
3pi. Note that the derivatives ∂qk in M2 also act on Φ

µj
qj . To make the

fields only interact with themselves through Poisson brackets, we will integrate by part the

operator (
∑

k ∂qk). So, M2 becomes

M2 =
1

3

∑
λi,µj

∫
DpiDqi

(∑
k

∂

∂qk

)[
δ3

∑
j

qj

h3(qj)

]
δ3

(∑
i

pi

)
h3(pi)

[ 3∏
i=1

Φλi
pi ,

3∏
j=1

Φ
µj
qj

]
.

(C.17)

1There are only even spins in the spectrum.
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Now, since both h3 and j3 are cyclic invariant, the associated fields can be reorganized

with the same ordering. Hence, the Poisson bracket in (C.14) can be written as

[ 3∏
i=1

Φλi
pi
,

3∏
j=1

Φµj
qj

]
=

2∏
i,j=1

Φλi
pi

Φµj
qj

[
Φλ3
p3
,Φµ3

q3

]
. (C.18)

where we choose the ”contract” the last fields Φλ3
p3

and Φµ3
q3

in H3 and J3, respectively.

Below, we present solutions of (C.10) in various colorful cases.

U(N) gauging

We now assume that the fields take values in some algebra and the generators of these

algebra are labelled as Ta. We first look at the case where fields take U(N)-valued

Φλ(p) ≡ Φλ
a(p)T a ≡ (Φλ

p)AB, (C.19)

so that the trace in (4.30) is over U(N) indices. The Poisson bracket in this case can be

defined as

[(Φλ
p)
A
B, (Φ

µ
q )CD] =

δλ,−µδ3(p+ q)

2q+
× [θλδ

C
Bδ

A
D] (C.20)

where θλ is some phase factor that can be used to rescaling fields in order to obtain (4.28).

Explicitly solving the commutator in (C.10) by using (C.15), (C.17) and (C.18) gives

0 =
∑
ω

Sym (−)ωθωTr(Φ1Φ2Φ3Φ4)

×
[(λ1 + ω − λ2)β1 − (λ2 + ω − λ1)β2

β1 + β2
Cλ1,λ2,ωCλ3,λ4,−ωPλ1+λ2+ω−1

12 Pλ3+λ4−ω
34

] (C.21)

Next, we let θω = eixω to be an arbitrary phase factor and determine the value of x so that

the coupling constant (4.28) is the solution of (C.21). Note that the symmetried sum in

(C.21) appears from the contraction between fields [67] that preserve the all possible color-

orderings. If we denote Tr(ΦiΦjΦkΦl)E(i, j, k, l) as [i, j, k, l] where E are the kinematic

parts, then we have in total six partial color-ordered contribution (or partial-contribution
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for short) of the constraint (C.10) in terms of [i, j, k, l]:

0 = [1, 2, 3, 4] + [1, 3, 4, 2] + [1, 4, 2, 3] + [1, 3, 2, 4] + [1, 2, 4, 3] + [1, 4, 3, 2] (C.22)

Each of the terms in (C.22) need to vanish in order to make (C.21) satisfied since there

is no way to make different partial contributions canceling each others. We can take

[1, 2, 3, 4] as an example. It is a combination of the following permutations that preserve

the color-ordering of Tr(Φ1Φ2Φ3Φ4)

[1, 2, 3, 4] = {1, 2, 3, 4}+ {2, 3, 4, 1}+ {3, 4, 1, 2}+ {4, 1, 2, 3}. (C.23)

where the curly brackets {i, j, k, l} notation is for permutations with i, j, k, l are indices of

left-over external sources. First of all, the combination when we consider the permutation

{1, 2, 3, 4} → {3, 4, 1, 2} with ω → −ω, two of them combine to be

∑
ω

eiπω
Pλ1+λ2+ω−1

12

Γ(λ1 + λ2 + ω)

Pλ3+λ4−ω−1

34

Γ(λ3 + λ4 − ω)
Tr(Φ1Φ2Φ3Φ4)

×

[
eixω(λ1 − λ2)P34 + e−ixω(λ3 − λ4)P12 + ω

(
eixω

β1 − β2

β1 + β2

P34 + e−ixω
β3 − β4

β1 + β2

P12

)]
(C.24)

Secondly, for the combination of {2, 3, 4, 1} ω→−ω−−−−→ {4, 1, 2, 3}, we get

∑
ω

eiπω
Pλ2+λ3+ω−1

23

Γ(λ2 + λ3 + ω)

Pλ4+λ1−ω−1

41

Γ(λ4 + λ1 − ω)
Tr(Φ2Φ3Φ4Φ1)

×

[
eixω(λ2 − λ3)P41 + e−ixω(λ4 − λ1)P23 + ω

(
eixω

β2 − β3

β2 + β3

P41 + e−ixω
β4 − β1

β2 + β3

P23

)]
(C.25)

Taking the sum over ω in (C.24) for example, we introduce Λ4 = λ1 + λ2 + λ3 + λ4 and
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obtain

(2.21) =
e−iπ(λ1+λ2−1)

Γ(Λ4 − 1)

[
e
−ix(λ1+λ2−1)

(P34 − e
ixP12)

Λ4−2
(λ1 − λ2)P34 + e

ix(λ1+λ2−1)
(P34 − e

−ixP12)
Λ4−2

(λ3 − λ4)P12

− e−ix(λ1+λ2−1)
(P34 − e

ixP12)
Λ4−3 β1 − β2

β1 + β2

P34

[
P34(λ1 + λ2 − 1) + e

ixP12(λ3 + λ4 − 1)
]

− eix(λ1+λ2−1)
(P34 − e

−ixP12)
Λ4−3 β3 − β4

β1 + β2

P12

[
P34(λ1 + λ2 − 1) + e

−ixP12(λ3 + λ4 − 1)
]]

Tr(h1h2h3h4)

(C.26)

The sum over ω in (C.25) gives somewhat similar result with (C.26) by relabelling (1, 2)→
(2, 3) and (3, 4)→ (4, 1). Now, as we noted, [1, 2, 3, 4] should vanish by itself. This is only

possible if x = π or θω = (−)ω. In this case, the computation above get simplified and it

reads

[1, 2, 3, 4] =Tr(Φ1Φ2Φ3Φ4)(P12 − P23 + P34 − P41)× (P12 + P34)Λ4−3

Γ(Λ4 − 1)

×
[
λ1(P23 + P34)− λ2(P34 + P41) + λ3(P41 + P12)− λ4(P12 + P23)

]
=0

(C.27)

In order to obtain the above result we used momentum conservation and noticed that

P12 +P34 = P23 +P41. Without having the common factor (P12 +P34)Λ4−4 = (P23 +P41)Λ4−4,

one can not make another choice for θω to have (4.28) as the solution of [1, 2, 3, 4] = 0.

For other partial contribution in (C.22), we also see that they are vanishing if θω = (−)ω.

Hence, θω = (−)ω is the unique solution of (C.10) for U(N) color chiral HSGRA that has

(4.28) as the coupling constants.

SO(N) and USp(N) gauging

In the case where fields have O(N) color, the trace is understood as

Tr(Φλ1
p1
...Φλn

pn
) = Φ1

AB1
Φ2
B1B2

...Φn
BnA, Φi ≡ Φλi

pi
. (C.28)

For the O(N) case where the Poisson brackets is defined as

[(Φλ
p)AB, (Φ

µ
q )CD] =

δλ,−µδ3(p+ q)

2q+
× [δACδBD + θλδADδBC ]. (C.29)
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where δAB are invariant symmetric tensor. Note that φλ is a phase factor that enter the

Poisson bracket. Next, we solve the constraints (C.10) and get

0 =
∑
ω

Sym(−)ω
[
θλ3θλ4Tr(Φ1Φ2Φ4Φ3) + θωTr(Φ1Φ2Φ3Φ4)

]
×
[(λ1 + ω − λ2)β1 − (λ2 + ω − λ1)β2

β1 + β2

Cλ1,λ2,ωCλ3,λ4,−ωPλ1+λ2+ω−1

12 Pλ3+λ4−ω
34

] (C.30)

Now, we repeat the same treatment with the above analysis for U(N)-case to determine

the phase factor θλi = eixλi . However, unlike the U(N)-case, SO(N)-case contains an

extra trace that comes from the Möbius twist in the Poisson brackets (C.29). As a conse-

quence, there will be mixing between [i, j, k, l] partial contributions. First, let us look at

{1, 2, 3, 4} ω→−ω−−−−→ {3, 4, 1, 2} in [1, 2, 3, 4]

∑
ω

eiπω Pλ1+λ2+ω−1
12 Pλ3+λ4−ω−1

34

Γ(λ1 + λ2 + ω)Γ(λ3 + λ4 − ω)

×

[
Tr(1234)

[
eixω(λ1 − λ2)P34 + e−ixω(λ3 − λ4)P12 + ω

eixω(β1 − β2)P34 + e−ixω(β3 − β4)P12

β1 + β2

]
+ Tr(1243)eix(λ3+λ4)

[
(λ1 − λ2)P34 + (λ3 − λ4)P12 + ω

(β1 − β2)P34 + (β3 − β4)P12

β1 + β2

]]
(C.31)

where we denote Tr(ijkl) ≡ Tr(ΦiΦjΦlΦk) for simplicity. Similarly, the permutation

{2, 3, 4, 1} ω→−ω−−−−→ {4, 1, 2, 3} in [1, 2, 3, 4] reads

∑
ω

eiπω Pλ2+λ3+ω−1
23 Pλ4+λ1−ω−1

41

Γ(λ2 + λ3 + ω)Γ(λ4 + λ1 − ω)

×

[
Tr(2341)

[
eixω(λ2 − λ3)P41 + e−ixω(λ4 − λ1)P12 + ω

eixω(β2 − β3)P41 + e−ixω(β4 − β1)P23

β2 + β3

]
+ Tr(2314)eix(λ1+λ4)

[
(λ2 − λ3)P41 + (λ4 − λ1)P23 + ω

(β2 − β3)P41 + (β4 − β1)P23

β2 + β3

]]
(C.32)

One can notice that there are additional contributions (compared to the U(N)-case) in

the equation (C.32) that combine two traces inside [1, 2, 3, 4]: namely Tr(2314) and an

exotic one Tr(1243). Hence, [1, 2, 3, 4] can not vanish by itself and we need to borrow
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some contributions from others [i, j, k, l] in order to satisfy (C.30). Take a look at the

permutation {1, 3, 2, 4} ω→−ω−−−−→ {2, 4, 1, 3} in [1, 3, 2, 4]

∑
ω

eiπω Pλ1+λ3+ω−1
13 Pλ2+λ4−ω−1

24

Γ(λ1 + λ3 + ω)Γ(λ2 + λ4 − ω)

×

[
Tr(1324)

[
eixω(λ1 − λ3)P24 + e−ixω(λ2 − λ4)P13 + ω

eixω(β1 − β3)P24 + e−ixω(β2 − β4)P13

β1 + β3

]
+ Tr(3124)eix(λ1+λ3)

[
(λ1 − λ3)P24 + (λ2 − λ4)P13 + ω

(β1 − β3)P24 + (β2 − β4)P13

β1 + β3

]]
(C.33)

Then, we have in total 6 different color-ordered terms. For the combination of permutation

{1, 2, 3, 4} ω→−ω−−−−→ {3, 4, 1, 2} and {2, 3, 4, 1} ω→−ω−−−−→ {4, 1, 2, 3} to get (C.27) for the color-

ordering Tr(1234) we need to set x = π or θλi = (−)λi . Next, it is easy to see that the

contribution coming from Tr(1243)(−)ωθλ4θλ3 and Tr(1324) also cancel each others with

this choice of the phase factors in (C.29). Similar argument works for Tr(2314)(−)ωθλ4θλ1

and Tr(3124)(−)ωθλ3θλ1 . Hence, even though [i, j, k, l] can not vanish by themselves in

the case of SO(N)-gauging, the total contribution vanish by combining all the partial

contributions together. This indicates that θω = (−)ω is the right choice for the phase

factors of Poisson bracket (C.29).

Finally, in the case of USp(N), the Poisson bracket reads

[(Φλ
p)AB, (Φ

µ
q )CD] =

δλ,−µδ3(p+ q)

2q+
× [CACCBD + θλCADCBC ]. (C.34)

where CAB are anti-symmetric matrices invariant tensor

CAB = −CBA, CABC
CB = δCA (C.35)

We can use the C-tensors to raise and lower indices as V A = CABVB, V BCBA = VA.

Finally, the trace for USp(N) case can be understood as

Tr(ΦΦ...) = ΦA
B ΦB

C ... (C.36)
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One then solves (C.10) and get

0 =
∑
ω

Sym(−)ω+1
[
θλ3θλ4Tr(Φ1Φ2Φ4Φ3) + θωTr(Φ1Φ2Φ3Φ4)

]
×
[(λ1 + ω − λ2)β1 − (λ2 + ω − λ1)β2

β1 + β2

Cλ1,λ2,ωCλ3,λ4,−ωPλ1+λ2+ω−1

12 Pλ3+λ4−ω
34

] (C.37)

Repeating the same treatment as in the SO(N)-case with the requirement that (4.28) is the

solution of (C.37), one obtains θω = (−)ω+1. To summarize the SO(N)/USp(N)-valued

fields have the following properties under interchanging SO(N)/USp(N) indices,

O(N) : (Φλ
p)AB = (−)λ(Φλ

p)BA (C.38)

USp(N) : (Φλ
p)AB = (−)λ+1(Φλ

p)BA (C.39)

Here, fields with odd-spin in O(N)/USp(N) case have odd/even parity, while fields with

even-spin have even/odd parity. Fields with odd spins always take values in the adjoint

representation.

It is important to stress that, the constraint (C.10) with the coupling constants (4.28) can

only be satisfied with the above choices of θω for U(N) and O(N)/USp(N)-colored chiral

HSGRAs. Interestingly enough the allowed gauge groups as well as the allowed represen-

tations coincide with the allowed Chan-Paton symmetry groups and the representations in

open string theory [219].

C.3 Worldsheet-Friendly Regularization

In practice we face integrals of the following type:∫
d4q

(2π)4
F (β, qa)

1∏
i(q − ki)2

(C.1)

where the polynomial prefactor F depends on external momenta (not shown here), and

the loop momentum q. Importantly, the q−-component does not enter the vertex. The

regularization proposed in [240] is to introduce the Gaussian cutoff in the transverse part
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of the loop momentum q, i.e. q⊥ ≡ (q, q̄):

I =

∫
d4q

(2π)4
F (β, q⊥)

1∏
i(q − ki)2

e−ξq
2
⊥ (C.2)

The integral can be performed by first using the Schwinger trick with parameters Ti, then

doing the q⊥ Gaussian integral. Integration over q− gives a delta function:

I =
2π2

2(2π)4

∫
dβ F (β,

∑
i

Tiki/(T + ξ))δ(
∑

Tiβ −
∑

Tiβ
+
i )

× exp
[
2
∑

Ti(β − β+
i )k−i −

∑
Tik

2
i⊥ +

1∑
Ti + ξ

(
∑

Tiki⊥)2
] (C.3)

If there are no IR divergences, we can safely solve for β. It is also convenient to change

variables as Ti = Txi,
∑
xi = 1, which gives Jacobian T n−1. This way we get

I = π

∫
dT
∏
dxi

T (2π)4
F (β =

∑
xiβ

+
i , q⊥ = T

T+ξ

∑
xiki⊥)δ(

∑
xi − 1)

π

T + ξ
(C.4)

× exp
[
− T

∑
i≤j

xixj(ki − kj)2 − Tξ

T + ξ
(
∑

xiki⊥)2
]

(C.5)

In a lucky case when the integral is not divergent at all, we simply find

I =
1

(4π)2

∫
dT Tn−3

∏
dxi×

× F (β =
∑

xiβi, q
a =

∑
xik

a
i )δ(

∑
xi − 1) exp

[
− T

2

∑
i≤j

xixj(ki − kj)2
] (C.6)

Next, to understand how to work with dual momenta is also simple. We choose the direction

of the dual loop momentum ki to be clock wise and consider the self-energy diagram as an

example.
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The dual momentum is related with original momentum as follows. Take the external leg-1,

one can define p1 = k1−k0. We can continue with this pattern for other external momenta

as pi = ki−ki−1 at each vertices. The loop momentum is defined as the different of q with

its nearest dual regional momentum ki, where q is the dual momentum that is bounded

by a loop. In our example, p = q − k0. With these rules of labeling dual momenta, one

can easily compute the quantum correction at one-loop with arbitrary legs like in section

4.6.

C.3.1 Anti de-Sitter space

We can lift the above analysis of chiral HSGRA in flat space to AdS4 as well [69, 70]. The

Poincare algebra iso(3, 1) now becomes the conformal algebra so(3, 2) which contains two

new generators that are: dilatation D, and conformal boost generator K. The conformal

algebra reads

[LAB, LCD] = LABηBC − LBDηAC − LACηBD + LBCηAD , (C.7a)

[LAB, PC ] = PAηBC − PBηAC , [LAB, KC ] = KAηBC −KBηAC , (C.7b)

[D,PA] = −PA , [D,KA] = KA , (C.7c)

[PA, KB] = −LAB + ηABD . (C.7d)

The metric of the Poincare patch in light-cone gauge reads

ds2 =
1

z2

[
2dx+dx− + dx2

1 + dz2
]
. (C.8)

Once again, we can work directly with in momentum space paying attention to the fact

that the z coordinate does not admit Fourier-transformation:

Φ(p|z) =
1

(2π)3/2

∫
dx−dx1dx+ e−ipxΦ(x+, x−, x1|z) . (C.9)
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The two scalar fields that describe a massless spin-s gauge field obey the conjugation rules

as

Φλ
p,z ≡ Φλ(p|z), (Φλ

p,z)
† = Φ−λ−p,z . (C.10)

The action up to cubic level was found in [69, 70]:

S =
1

2
λ

∫
Tr
[
Φ†λ(∂

2
z − p2)Φλ

]
+ λ

∫
DΓ3 Tr

[(∏
a

Φ†a

)]
V3(pa|za, ∂za)

∏
a

δ(z − za) . (C.11)

where

λ

∫
≡
∑
λ

∫
, DΓ3 ≡ δ3(

∑
pa)
∏
a

d3pa dza dz . (C.12)

The kernel V3 takes the following form

V3 =


C0z

−1, λi = 0 ,

Cλ1,λ2,λ3

L ULV
0
L , V 0

L = (zPL)−Λ3

z β
−λ1
1 β

−λ2
2 β

−λ3
3

, Λ3 < 0 ,

Cλ1,λ2,λ3

R URV
0
R, V 0

R = (zPR)Λ3

z β
λ1
1 β

λ2
2 β

λ3
3

, Λ3 > 0 .

(C.13)

The holomorphic and anti-holomorphic momenta of flat space get lifted to

PL =
1√
2

(P + Pz), PR =
1√
2

(P− Pz) , (C.14)

where

P =
1

3

∑
a

β̌a p
1
a , Pz =

1

3

∑
a

β̌a ∂za , p̌a = pa+1 − pa−1 (a mod 3) . (C.15)

The main differences with flat space are the following:

1. The space we are integrating over looks like a half four dimensional Minkowski space,

meaning z ≥ 0. These z-factor accounts for the Planck length in flat space with

exactly the same power zΛ3−1 ↔ (lp)
Λ3−1. Therefore, our coupling constant Cλ1,λ2,λ3

in AdS4 is dimensionless.
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2. There are U -maps (unitary-like operators) which address the tails (sub-leading terms

with lower derivatives) of cubic interactions. They are [69]

UL,R = T exp
[ ∫ 1

0

dτ uL,Rτ

]
, (C.16a)

uLt =
√

2MYL −
t

3

[
βM+

∆βΛ3

12

]
Y 2
L −

t∆β

12
Y 2
LNPL −

√
2t2β̌

108
Y 3
LNPL , (C.16b)

uRt =
√

2MYR +
t

3

[
βM+

∆βΛ3

12

]
Y 2
R −

t∆β

12
Y 2
RNPL +

√
2t2β̌

108
Y 3
RNPL , (C.16c)

YL =
1

Nz + 2
∂z∂PL , YR =

1

Nz + 2
∂z∂PR , (C.16d)

where

β = β1β2β3, ∆β = β2
1 + β2

2 + β2
3 , β̌ = β̌1β̌2β̌3, (C.17)

M =
1

3

∑
a

β̌aλa, M =
∑
a

λa
βa
, NPL,R = PL,R∂PL,R , Nz = z∂z . (C.18)

Aesthetically speaking, the vertices do not look pleasing at first, they are, however,

describe the complete cubic interactions in AdS4 of higher spin fields in light-cone

gauge. In the covariant formulation the gauge invariance requires these sub-leading

terms as well.

To fix the coupling constants CL,R
λ1,λ2,λ3

, one can repeat the same computation as in flat

space paying attention to integration by parts. The leading terms (highest power in z)

yield exactly the same equations to solve for Cλ1,λ2,λ3 (see chapter 4), we get

CL
λ1,λ2,λ3

=
g

Γ[Λ3]
, CR

−λ1,−λ2,−λ3
=

g

Γ[−Λ3]
, (C.19)

where g is a dimensionless coupling constant which, in principle, can be set to one. For

more details, see [69, 70].
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Correlation Functions

As shown in [70], the bulk-to-boundary propagators of the scalar fields with conformal

weight ∆ = 1, 2 in AdS4 read

K∆=1(p|z) = − 1

|p|
e−z|p|, K∆=2(p|z) = e−z|p| . (C.20)

Then, one gets the two-point function by sending z → 0

〈JλpJµq 〉 = δ3(p+ q)
δλ+µ,0

|p|
. (C.21)

It is not hard to work out the three-point function

〈Jλ1Jλ2Jλ3〉 ≡
∫

AdS4

V L
3

∏
a

δ(z − za) =
δ3(
∑

a pa)∏
a |pa|βλaa

ŨL PΛ3

|P |Λ3
. (C.22)

where

P =
∑
a

β̌a(|pa|+ p1
a)

3
√

2
, |P | =

∑
a

|pa| . (C.23)

Note that the new ŨL-map reads

ŨL = T exp
[ ∫ 1

0
dt ũLt

]
. (C.24)

ũLt =
√

2M(NP)1∂P −
t

3

[
βM+

∆βΛ3

12

]
(NP)2∂

2
P −

t∆β(NP)3

12
∂2
P −
√

2t2β̌

108
(NP)4∂

3
P . (C.25)

We also employ the Pochhammer symbol notation that (NP)a = NP(NP+1)...(NP+a−1)

with NP = P∂P , and lastly ∂P = |P |∂P . These results look remarkably simple when

we compare them to the answers in covariant gauge [306, 307]. Notice that there is no

appearance of the coupling constant C after we carrying out the integration.
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Flat Limit

If we look at the three-point function at its most singular pole when |P | → 0, then,

according to the prescription in [308], the flat limit reads

(
∏
a

|pa|)|P |Λ3 × 〈Jλ1Jλ2Jλ3〉
∣∣∣
|P |→0

∼ PΛ3∏
a β

λa
a

. (C.26)

The rhs. of (3.72) can be interpreted as three-point scattering amplitude in flat space. The

basic argument for this limit is that 1/|P |Λ3 will play the role of the fourth delta functions.
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Appendix D

Appendix for Formal Construction of

HSGRA

D.1 Important Concepts

Associative Algebra is a vector space with bilinear map ? : A×A→ A that satisfies

associativity

x ? (y ? z) = (x ? y) ? z, ∀x, y, z ∈ A. (D.1)

We shall assume that A is also unital

∃e ∈ A : e ? a = a ? e = a. (D.2)

Two-sided ideal is a sub-algebra of A denoted as I such that

I ?A ⊂ I and A ? I ⊂ I . (D.3)

In other words, I absorbs multiplication from the left and from the right by elements of

the associative algebra A.
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Quotient algebra is defined by equivalent classes [a] with equivalence relation

a ∼ a+ I . (D.4)

We denote the quotient algebra as A/I.

Lie algebra is a vector space g equipped with a Lie bracket [·, ·] : g × g→ g such that

[x+ y, z] = [x, z] + [y, z], [z, x+ y] = [z, x] + [z, y], (D.5)

[x, x] = 0 , [x, y] = −[y, x] (D.6)

for all x, y, z ∈ g. Moreover, the Lie bracket satisfies the Jacobi identity

[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0 . (D.7)

An associative algebra A can be turned into a Lie algebra g by equipping A with the Lie

bracket via the commutator [a, b] = a ? b− b ? a where a, b ∈ A.

Universal enveloping algebra of a Lie algebra g, denoted as U(g), is an associative

algebra. Define I(g) to be the two-sided ideal of the tensor algebra T (g) generated by all

elements of the form xy − yx − [x, y] where x, y ∈ g. The universal enveloping algbera is

defined as

U(g) = T (g)/I(g) . (D.8)

Tensor algebra is the algebra of tensors on a vector space V and denoted as T (V ). For

k ≥ 0, we can define

T kV = V ⊗k = V ⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸
k times

. (D.9)
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Then, T (V ) is just a direct sum of T kV

T (V ) ≡ TV =
∞⊕
k=0

T kV = • ⊕ V ⊕ (V ⊗ V )⊕ (V ⊗ V ⊗ V )⊕ ... . (D.10)

In general, the vector space V can also carry some grading.

Module homomorphism is a space of all maps between modules A,B that preserves

the module structures

f(a+ b) = f(a) + f(b) , (D.11)

f(sa) = sf(a) (left-module), f(as) = f(a)s (right-module) . (D.12)

We denote the module homomorphism as Hom(A,B). In general, A,B can also be algebras.

D.2 Q-Manifolds and Strong Homotopy Algberas

Q-Manifold is a supermanifoldM equipped with a differential Q that is nilpotent [309],

i.e. Q2 = 0. Consider some local coordinates xa on M, then

Q = Qa ∂

∂xa
⇒ Q2 = Qb∂Q

a

∂xb
= 0 . (D.13)

where

Q2 =
1

2
JQ,QK , Qa(x) =

∑
n

∑
b1,...,bn

f
a|n
b1...bn

xb1 ... xbn (D.14)

The coefficients f
a|n
b1...bn

obey

f
a|n
b1...bibi+1...bn

= (−1)|bi||bi+1|f
a|n
b1...bi+1bi...bn

. (D.15)
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Here, |bi| stands for the degree of coordinate xbi . For nilpotency of Q, we have

∑
l+m=n+1

l∑
p=1

∑
i1,...,il
j1,...,jm

±fa|li1...ip...il
f
ip|m
j1...jm

= 0 . (D.16)

where the sign depends on the particular permutation. Assuming f •|0 = 0, the first few

relations read

n = 2 : f
a|1
i1
f
i1|1
j1

= 0 , (D.17a)

n = 3 : f
a|2
i1i2
f
i1|1
j1

+ (−1)|i1||j1|f
a|2
i1j1
f
|1
i2

+ f
a|1
i1
f
i1|2
j1j2

= 0 , (D.17b)

n = 4 : f
a|2
i1i2
f
i1|2
j1j2

+ (−)(|i2|+|j2|)|j1|f
a|2
i1j1
f
|2
j2i2

+ (−)(|j1|+|j2|)|i2|f
a|2
i1j2
f
i1|2
i2j1

+ ... = 0 , (D.17c)

where the ellipses contain terms with f •|1 and f •|3. We can identify f •|1 with a differential

d since it squares to zero. Moreover, we can say that the coefficients f •|n determine an

odd linear map of n-th tensor power of Tp(M) into Tp(M), where Tp(M) is the tangent

space of M at the stationary point p. This map induces a map `k : V ⊗k → V , where

V = ΠTp(M) (the space of tangent bundle to M) is some graded vector space. The map

`1 then determines a differential in V and `2 determines a binary operation and so on.

Strong Homotopy Algebra A linear space equipped with multilinear maps `k satisfy-

ing

J`, `K = 0 , ` = `1 + `2 + ... , ` ∈ Hom(TV, V ) and `k ∈ Hom(T kV, V ) (D.18)

is called a L∞-algebra or strong homotopy Lie algebra. If we remove the condition (D.15),

then we have A∞-algbera or strong homotopy associative algebra. It is easy to see that

at any stationary point p on a Q-manifold we have strong homotopy algebras as local

structures.



Acknowledgement

This PhD thesis would not have been possible without my supervisor Prof. Ivo Sachs who

gave me the opportunity to do my PhD in his group. I am really thankful and blessed for

his support and guidance during my time in Munich. It was always a pleasure to discuss

physics with Ivo in his office where conversation goes endlessly.

I would like to specially address Dr. Evgeny Skvortsov for taking me up as a student and

teaching me most of what I know about higher-spin theory. Under his wise guidance and

advice either through conversation or emails, I have become a true higher-spin comrade. I

am deeply grateful for his continuous support during my PhD time.

I am also very much indebted to Prof. Stefan Theisen for being my second official supervisor

and letting me complete the second half of my PhD. I enjoyed Stefan’s kindness and humour

whenever we chat in the corridor or his office. Thank you also for refereeing this thesis. I

further want to thank Prof. Herman Nicolai for kindly accepting me to AEI and for his

generosity.

My extended gratitude goes to Tomáš Procházka, Sebastian Konopka and Jan Gerken for

many fruitful and enlightening discussions. I am grateful to Maor Ben-Shahar for spending

his time to correct the English in this thesis. Special thanks also go to all the members of

the ’Theoretical Astroparticle Physics and Cosmology’ chair and beyond in Munich and to

all the members or the ’Quantum Gravity and Unified Theories’ division in Potsdam. In

particular, I would like to thank Ottavia Balducci, Igor Bertan, Federico Gnesotto, Katrin

Hammer, Till Heckelbacher, Frederik Lauf, Adiel Meyer, Luca Mattiello, Allison Pinto;

Matteo Broccoli, Lorenzo Casarin, Hugo Camargo, Franz Ciceri, Caroline Jonas, Johannes

Knaute, Lars Kreutzer and Hannes Malcha for making each day at the office entertaining



224

and fun.

I have also benefited from discussions and correspondence with: Antal Jevicki, Per Sun-

dell, Igor Klebanov, Simone Giombi, Murat Gunaydin, Roberto Bonezzi, Gleb Arutyunov,

Karapet Mkrtchyan, Livia Ferro, Xavier Bekaert, Maxim Grigoriev, Arthur Lipstein, Li-

onel Mason, Tristan McLaughlin, Mirian Tsulaia, Axel Kleinschmidt, Oliver Schlotterer,

Matin Mojaza, Rakibur Rahman, Hadi Godazgar, André Coimbra, Alexey Sharapov, Er-
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