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Summary 

In jawed vertebrates, B lymphocytes are part of the adaptive branch of the exceptionally 

complex immune system, which protects the organism from pathogenic infections. B cells are 

central for antibody-mediated immunity, which relies on the ability of B cells to assemble a 

BCR receptor that they can secrete as a soluble form, i.e. antibody, upon differentiation to 

plasma cells. B cells can generate a near infinite number of B cell receptor (BCR) specificities 

despite the constraint of a size-limited genome. The basis for this BCR diversity is somatic 

recombination of a vast repertoire of different receptor gene segments encoding the heavy and 

the light chain of the BCR in the bone marrow. This repertoire is further refined upon antigen 

encounter and recruitment of naive B cells into germinal centers, specific structures in 

secondary lymphoid organs, in which somatic hypermutation and class switch recombination 

improve antigen recognition and effector functions. An elaborate network of transcription 

factors coordinates the sequential stages of B cell development in the bone marrow by 

integrating external signals and regulating the somatic rearrangement of the BCR genes. An 

essential checkpoint that ensures integrity of the heavy chain before enabling subsequent 

recombination of the light chain and differentiation into small pre B cells is the pre-BCR 

checkpoint at the large pre B cell stage. Key features of this checkpoint are signaling events 

downstream of the interleukin-7 receptor (IL-7R), which trigger proliferation of B cells 

expressing a functional heavy chain. Recent evidence has emphasized that proper B cell 

development additionally requires post-transcriptional gene regulatory mechanisms. 

The novel RNA-binding ROQ domain is present in the recently described Roquin protein 

family, which comprises Roquin1 and Roquin2. Roquin paralogs post-transcriptionally 

regulate expression of factors of development and immunity. Following the description of 

mutated Roquin1 in the sanroque mouse strain, which develops a disease resembling human 

systemic lupus erythematosus, most of the work on the Roquin paralogs has centered on their 

functions in T lymphocytes. Roquin family proteins are important regulators of the cell fates 

of follicular helper T cells, TH17 and NKT17 cells. Recently, a series of publications has 

presented conserved cis-regulatory motifs, stem-loop structures in target mRNAs, bound by 

Roquin proteins resulting in recruitment of the CCR4-NOT complex and subsequent mRNA 

degradation.  

In my PhD thesis, I present the first extensive in vivo analyses of the role of Roquin1 and 2 

during B cell development, maturation and activation by conditional loss-of-function studies 

in the mouse. B cell-specific ablation of Roquin proteins during early B cell development 
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(Mb1cre) demonstrates a pivotal role at the pre-BCR checkpoint with loss of all four alleles of 

Roquin1 and 2 resulting in a complete block at the pro to pre B cell transition, whereas 

inactivation of two Roquin1 alleles or two Roquin1 alleles and one Roquin2 allele results in 

intermediate phenotypes. This block appears independent of heavy chain expression or 

formation of the pre-BCR and is characterized by a defect of Roquin1/2-deficient large pre 

B cells to maintain high levels of the IL-7R and correlating proliferative defects. Additionally, 

Roquin1/2-deficient large pre B cells fail to upregulate the chemokine receptor CXCR4, 

which relies on pre-BCR signaling and governs migratory processes involved in the transition 

of large to small pre B cells. Pre-BCR-dependent signaling in Roquin1/2 double-deficient pre 

B cells fails to properly upregulate the transcription factors IRF4 and Aiolos. Consequently, 

peripheral B2, but also B1 cells are completely absent in these mice. Insertion of a pre-

rearranged light chain shows that this developmental defect is independent of light chain 

expression deficits in Roquin1/2-deficient pre B cells. Insertion of a pre-rearranged BCR 

heavy chain in Roquin1/2-deficient B cells on the other hand rescues the pre B cell 

compartment, but these B cells do not develop past the immature stage. 

B cell-specific ablation of Roquin paralogs in B cells at a later developmental stage 

(CD19cre), leads to generation of significant numbers of splenic and mature B cells, 

highlighting the control of specific developmental checkpoints by Roquin1 and 2. Yet, 

Roquin1/2-deficient peripheral B cells are impaired in their maturation and are 

counterselected. These double-deficient peripheral B cells seem hyperactivated in the absence 

of stimulation and exhibit signs of altered BCR signaling. Likewise a hyperactivated state is 

observed in B cells with Mb1cre-mediated inactivation of two alleles of Roquin1 with or 

without additional loss of one allele of Roquin2. The B cell activation status correlates in all 

three mouse models with significant B cell extrinsic effects, such as an increase of the CD4+ 

and CD8+ effector memory T cell compartments. 

Additionally, I present my efforts at investigating the structure of the RNA-binding ROQ 

domain and unraveling novel RNA targets to further enhance our understanding of the 

importance of post-transcriptional gene regulation in B cell immunology. My findings on 

Roquin-mediated mRNA binding were confirmed and extended by publications that were 

released during the course of my PhD work and ended my own efforts. 

In conclusion, my investigation of the function of Roquin1 and 2 contributes significantly to 

the appreciation of the role of post-transcriptional gene regulation in the development of 

B cells and in the generation of B cell-mediated immunity. Furthermore, my results open new 

exciting research questions on the function of post-transcriptional gene regulation in B cells.  
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I. Introduction 

1. B lymphocytes as critical players in the immune system 

All the protective means that have evolved to guard an organism against invading pathogens 

can be collectively encompassed in an organism’s immune system. Mammalian immunity has 

been separated into two types of reactions, innate and adaptive responses that are intertwined 

in manifold and complex ways to provide systemic protection. Generally, innate immune 

reactions are rapidly initiated following detection of conserved structures on pathogenic 

microbes via germline-encoded pattern recognition receptors [1]. 

The adaptive arm of the immune system defends the host from intruders by continuously 

generating an enormous amount of distinct B and T lymphocytes, which can potentially detect 

any pathogen via their unique antigen receptors. Differentiation into antibody-producing 

plasma cells and memory B cells with the capacity to rapidly respond to reinfection are key 

features of the B lineage that confer protection from pathogens. The receptors of B and T cells 

are generated by somatic gene rearrangements of a vast repertoire of different receptor genes. 

This capacity allows lymphocytes of equal i.e. clonal origin to specifically recognize a certain 

antigenic epitope. Upon activation, B cells that receive help form cognate follicular T helper 

(TFH) cells are recruited into structures called germinal centers (GCs). Here, random 

mutations are introduced into the antigen-recognizing part of their antigen receptor gene in a 

process termed somatic hypermutation. B cells are then selected based on their ability to 

recognize antigen presented by follicular dendritic cells with high affinity and present the 

antigen to TFH cells. B cells also switch their antigen receptor isotype through class-switch 

recombination and subsequently differentiate into plasma or memory B cells.  

The quasi-randomness of somatic rearrangements and hypermutations often leads to 

autoreactive antigen receptors, with potentially deleterious consequences. Hence, during the 

development of a B cell, several mechanisms at distinct checkpoints are in place to control the 

specificity and prevent autoreactivity of a B cell antigen receptor (BCR) [2, 3]. This 

underlines the importance of preventing alterations in B cell activation. Malfunctioning of 

these regulatory mechanisms in suppressing an immune reaction to a self-structure can lead to 

different autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus 

(SLE) and psoriasis.  
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The following section will emphasize the stages in the primary and secondary lymphoid 

organs (SLOs), which a B cell passes during its development. Upon encounter of cognate 

antigens mature B cells terminally differentiate into plasma cells and memory B cells, mostly 

via the GC reaction. I will emphasize how somatic rearrangement in the bone marrow 

generates a diverse BCR repertoire, which is then further refined in the GC reaction in terms 

of antigen recognition and effector functions. This ultimately provides the foundation of 

BCR-mediated antigen recognition and durable immune protection.  

1.1 Early hematopoiesis and lineage commitment  

The bone marrow is a hematopoietic organ located inside bones. It comprises the 

parenchyma, the site of adult hematopoiesis, and the stroma, a vascular component [4]. The 

bone marrow is composed of numerous different microniches that each support distinct 

hematopoietic processes and comprises different cell types [5]. Pluripotent, self-renewing 

hematopoietic stem cells (HSCs), which are the origin of every hematopoietic lineage, can be 

found in the fetal liver. From there they colonize the fetal bone marrow during fetal 

development [6, 7]. HSCs lose their self-renewal potential as they differentiate. Lineage 

commitment is mainly achieved by ordered activation of key transcription factors eventually 

resulting in precursors restricted to single lineages. HSCs differentiate into multipotent 

progenitors (MPPs) [8]. In the prevailing model, MPPs undergo the initial step of lineage 

commitment separating myelopoiesis and lymphopoiesis by development into the oligopotent 

common myeloid progenitors (CMPs) or the common lymphoid progenitors (CLPs), 

respectively [8]. In the so far generally accepted model, CMPs can differentiate into 

granulocyte/monocyte progenitors (GMPs) or into megakaryocyte/erythroid progenitors 

(MkEP). GMPs are the origin of granulocytes (basophils, eosinophils and neutrophils) and 

monocytes and macrophages whereas MkEPs can develop further into megakaryocytes and 

erythrocytes. Recently, the concept of a uniform CMP population has been challenged. CMPs 

were suggested to rather consist of a pool of unipotent progenitors, which can directly give 

rise to the above-mentioned lineages [9]. The CLPs can give rise to dendritic cells, NK cells, 

T cells and B cells [8].  

1.2 Commitment to the B cell lineage 

Commitment to B cell lymphopoiesis is the result of serial action of many pivotal 

transcription factors. IRF8 regulates expression of PU.1, which synergizes with Ikaros, to 
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induce MPP development, at which stage E2A proteins further determine commitment [10-

12]. E2A proteins activate early B cell factor (EBF1), an essential step for differentiation of 

prepro B cells. EBF1 acts synergistically with forkhead box O1 (FOXO1) to confer the B cell 

fate onto prepro B cells [13, 14], which critically involves activation of paired box protein 5 

(PAX5) by these factors [15-17]. EBF1 and PAX5 act together to repress other hematopoietic 

potentials [15, 18].  

1.3 Orchestration of B cell development in the bone marrow 

V(D)J recombination and classical non-homologous end joining repair (cNHEJ). A 

characteristic feature of B and T lymphocytes is the generation of a near infinite number of 

different receptors despite the constraints of a size-limiting genome [19]. In B cells, this is 

achieved by the process of somatic gene recombination of variable (V), diversity (D) and 

joining (J) gene segments in the loci encoding for the Ig heavy chain (IgH: V, D and J) and 

light chain (IgL, respectively Igκ and Igλ: V and J). Consecutive stages of early B cell 

development in the bone marrow have been designated based on the ordered patterns of 

V(D)J recombination in the IgH and IgL chain loci together with surface marker expression 

(Fig. 1) [20]. The V(D)J recombination products, a VHDJH gene exon (IgH) and a VκJκ or VλJλ 

(IgL) gene exon respectively, encode for the variable component of the antigen receptor. This 

variable part comprises the three complementary determining regions (CDRs) where antigen 

contact is made. The recombination activating gene (RAG) protein complex, consisting of 

RAG1 and RAG2, initiates V(D)J recombination upon binding to recombination signal 

sequences (RSSs). The RSSs flank recombining V, D and J segments, followed by site-

specific cleavage. The resulting DNA hairpin ends are processed by RAG and factors of the 

classical non-homologous end joining (cNHEJ) repair pathway to join gene segments [21]. 

RSSs are composed of two highly conserved DNA motifs, a palindromic heptamer sequence 

and an AT-rich nonamer sequence. These sequences are separated by a spacer region of 12 or 

23 bases forming either a 12RSS or a 23RSS respectively [22]. Recombination in the IgH and 

the IgL loci follows the 12/23-rule, a restriction confining joining of gene segments by V(D)J 

recombination to complementary 12 and 23RSSs [23].  
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Figure 1: Simplified illustration of early B cell lymphopoiesis and B cell maturation in the periphery. 
(A) Simplified scheme of the Ig heavy chain (IgH) and the Igκ light chain loci in germline and rearranged 
configurations. The VHDJH exon encodes the variable part of the µHC and Cµ its constant region, which joins 
the VHDJH exon through splicing. Alternative splicing governs expression of a secreted BCR as antibody (µS) or 
a membrane-bound BCR (µM). The arrangement of Vκs and Jκs allows for multiple successive rearrangement 
attempts at the Igκ locus, while joining of a Vκ segment or intronic recombination signal sequence (IRS) to the 
non-coding recombining sequence (RS) closes the locus for further rearrangements. (B) Simplified overview of 
B cell development in the bone marrow (BM) and periphery with expressed surface markers used for flow 
cytometry at defined stages. B cell development is initiated with V(D)J recombination at the IgH locus during 
the pro B cell stage, which results in expression of µHC together with a surrogate light chain as the pre-BCR on 
large pre B cells. Pre-BCR signaling induces IgL chain rearrangement, first at the Igκ locus, enabling expression 
of the IgM-BCR, the first BCR expressed on the surface of immature B cells. (Continued on next page) 
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Immature B cells can egress from the bone marrow and enter the periphery as transitional (T1, T2) B cells, 
which migrate to the spleen, where they mature into follicular (FO B) or via marginal zone precursor B cells 
(MZP B) into marginal zone (MZ B) B cells. T2 B cells acquire the ability to recirculate to the BM. Mature B1 
cells are also present in spleen.  

In the IgH locus, VHs are flanked by 23RSSs, DHs on both ends by 12RSSs and JHs by 

23RSSs, whereas in the IgL loci Vκs and Jλs are flanked by 12RSSs and Jκs and Vλs by 

23RSSs [24]. The 12/23-rule guides V(D)J recombination by preventing direct VH to JH 

rearrangements and enables additional regulatory processes, such as secondary 

rearrangements in the IgL loci [19, 25].  

The structure of the κ locus is unique, with an upstream set of Vκ gene segments, followed by 

four Jκs genes, an intronic recombination signal sequence (IRS), the κ constant (Cκ) region 

and the non-coding recombining sequence (RS), 25 kb downstream of the Cκ region (Fig. 1) 

[26, 27]. In case of a non-functional or self-reactive VκJκ joint, this can be replaced by further 

rearrangement of a more 5' Vκ gene and a more 3' Jκ gene, thereby deleting the intervening 

previous VκJκ joint. Most of the λ light chain expressing B cells have terminally rearranged 

the κ locus. This closure of the κ locus can occur by secondary rearrangement of either a Vκ 

gene or the IRS to the RS sequence thereby deleting the Cκ region and precluding further 

productive rearrangements in this locus [27-29].  

RAG nucleases tightly connect introduction of DSBs with specific repair by cNHEJ, a 

function primarily attributed to RAG2. This function greatly minimizes the risk of 

chromosomal translocations [30-32]. At the beginning of V(D)J rearrangement, RAG proteins 

form a synaptic complex by simultaneous binding to a 12RSS and a 23RSS [25]. The RAG 

complex introduces DSBs between the gene segments and the RSSs and holds all four ends in 

a post-synaptic complex. Gene segments end in hairpin structures, while RSSs have blunt 

ends [22], which are both subsequently bound by the Ku70/80 heterodimer [21]. Ku70/80 

initiate cNHEJ by serving as a scaffold and recruiting DNA-dependent protein kinase 

catalytic subunit (DNA-PKcs), the nuclease Artemis, X-ray cross complementing protein 4 

(XRCC4), DNA Ligase IV (Lig4), terminal deoxynucleotidyl transferase (TdT) and 

components of the DNA-damage response [22]. The blunt ends of the RSSs are immediately 

ligated by action of an XRCC4/Lig4 complex forming an RSS joint. In contrast, the hairpin 

ends are opened by Artemis, which enables processing of the open DNA ends. This step is 

followed by subsequent XRCC4/Lig4-mediated ligation generating a coding joint [22]. 

Junctional diversification of gene segment ends in the coding joint is achieved by nucleotide 

loss as consequence of cNHEJ repair and addition of non-templated nucleotides in opened 

hairpins by TdT.  
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TdT expression in B cells is confined to pro and pre B cell stages [19, 21, 32]. RAG-mediated 

V(D)J recombination is essential for the development of mature T and B lymphocytes [33, 

34], yet harbors the potential to promote lymphocytic malignancies [35, 36]. Tight regulatory 

mechanisms control V(D)J rearrangement in an allele-, stage- and lineage-specific manner 

[37]. These include restriction of RAG expression, regulating RSS accessibility, subnuclear 

localization of gene segments and topology of Ig gene receptor loci [25, 38, 39]. 

The relation and regulation of V(D)J rearrangement and B cell stages. DH to JH segment 

recombination occurs on both IgH alleles producing DJH joints in prepro B cells (Fig. 1). VH 

to DJH joining is initiated subsequently in pro B cells [40, 41]. Upon productive in-frame 

assembly of a VHDJH exon, which results in expression of an Igµ heavy chain protein (µHC or 

Igµ), the late pro B cells transits to the large pre B cell stage [42]. Transcription of µHC-

encoding mRNA is initiated at the promoter of a V gene, runs through the rearranged VHDJH 

exon and adjacent 3' exons, which encode the constant (CH) region Cµ and in some cells also 

a second constant region, Cδ [43, 44]. Alternative splicing of these IgH transcripts regulates 

usage of the constant region (Igµ vs. Igδ decision) as well as expression of a membrane-

bound BCR (µM) or its secreted form, the antibody (µS) (Fig. 1) [45]. The immature bone 

marrow B cell subsets, the first B cell subset that continuously expresses a surface B cell 

receptor (BCR), solely expresses membrane-bound Igµ [46]. This Igµ protein is expressed 

transiently on the cell surface of large pre B cells in a membrane complex with the surrogate 

light chain proteins VpreB and λ5 which are joined by the transmembrane proteins Igα and Igβ 

to form the pre-B cell receptor (pre-BCR) [47, 48]. Pre-BCR surface expression and signaling 

constitutes a quality feedback control mechanism essential for allelic exclusion in 

B lymphopoiesis. Pre-BCR expression at this developmental stage confirms successful 

rearrangement of one IgH allele and shuts down rearrangement on the other [49, 50]. Large 

pre B cells express the pre-BCR on the surface, which promotes a proliferative burst that 

ensures that enough cells carrying a productive IgH joint can undergo V(D)J recombination of 

the IgL chain loci. Somatic rearrangement of the Igκ locus normally precedes Igλ 

rearrangement at the ensuing small pre B cell stage [51]. Successful VκJκ or VλJλ gene 

segment recombination forms a light chain variable region that is transcribed in association 

with a downstream constant (Cκ or Cλ) region for subsequent expression of an IgL chain 

protein that can assemble with the existing µHC protein to form an IgM molecule [43]. 

Consecutively, a membrane-bound IgM molecule is expressed on the surface of immature 

B cells, the BCR common to all (antigen-)naive B cells. BCR expression represents a further 

major quality control checkpoint in B cell development and the first in which the newly 
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formed BCR is tested for self-reactivity, to avoid BM egress of autoreactive B cells [3, 52]. 

This is a crucial feedback mechanism as at least 50% of the initial BCR output in human and 

mice was reported to be self-specific [53, 54]. Autoreactive B cells can undergo receptor 

editing changing the specificity of their BCR to avoid clonal deletion. Clonal deletion is the 

apoptotic cell death of B cells with persisting self-reactivity, a mechanism of central B cell 

tolerance [3]. Reacquisition of self-tolerance relies largely on secondary IgL rearrangements 

that allow autoreactive B cells to change the expressed light chain [3]. In contrast, the extent 

of contribution of VH replacement, a process in which the VH part of an expressed VHDJH 

exon is replaced by an upstream VH element, as a means of central tolerance remains under 

investigation [55-57]. Furthermore, self-reactive BCRs of low avidity can escape clonal 

deletion, differentiate and convert to an anergic stage [52]. 

Molecular signaling events downstream of IL-7R and pre-BCR. Developing B cells 

maintain genomic integrity by clear segregation of their two major signaling cascades. These 

are the opposing IL-7 receptor (IL-7R, composed of IL-7Rα and the common γ chain) and 

pre-BCR signaling pathways [58]. The intertwined signaling pathways originating from these 

two receptors provide the intricate foundation of the pre-BCR checkpoint. This checkpoint 

connects proliferation mainly mediated by the IL-7R with signaling from the pre-BCR to 

induce V(D)J recombination in the IgL gene loci [59]. This separation is already reflected by 

the confinement of V(D)J recombination to the G0 and G1 phases of the cell cycle. This is 

partly achieved by the phosphorylation of RAG2 at Thr490 by CDK2, the most prominent 

CDK in late G1 phase, signaling the degradation of RAG2 [19, 25]. The underlying regulatory 

molecular network ensures dominance of the respective pathway to properly decide early 

B cell fate [60]. Pro B cell survival and proliferation is largely driven by IL-7R signaling 

through signal transducer and activator of transcription 5 (STAT5) and the phosphoinositide 

3-kinase (PI3K)-AKT pathway [61]. Downstream of STAT5, expression of the B cell 

lymphoma 2 (BCL2) family members myeloid cell leukemia 1 (MCL1) and BCL2 is 

activated and mediates pro B cell survival [60]. Key targets of the PI3K pathway are 

transcription factors of the FOXO family, which are phosphorylated by AKT promoting their 

nuclear export and subsequent proteosomal degradation [42]. Nuclear FOXO1 and FOXO3a 

are among the factors that induce expression of the RAG complex leading to pre-BCR 

expression and transition to the pre B cell stage [62, 63]. Recent studies have highlighted a 

role of the transcription factor BTB and CNC homologue 2 (BACH2) in the negative 

selection of pro B cells that fail to productively rearrange the IgH locus [64, 65]. Initial low 

levels of the negative regulator of the PI3K-AKT pathway, SH2-domain-containing 
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leukocytes protein of 65kDa (SLP65) are thought to allow the newly formed large pre B cells 

to undergo four to five rounds of proliferation concomitant with high expression levels of IL-

7R [59, 60, 66]. Signals downstream of the pre-BCR result in upregulation of SLP65 levels 

terminating proliferation and activating RAG expression as well the expression of several 

factors including interferon regulator factors 4, 8 (IRF4, IRF8) and BCL6 [67]. Tyrosine 

kinases such as spleen tyrosine kinase (SYK) or ζ-chain-associated protein kinase of 70 kDa 

(ZAP70) are among the first factors recruited to the pre-BCR upon receptor engagement to 

further relay and amplify the signaling. They activate SLP65 by multiple phosphorylations 

[42]. BCL6 positively selects pre B cells, which express a productive, signaling competent 

µHC by counteracting the apoptosis inducing function of BACH2 through repression of DNA 

damage response and checkpoint genes [65, 68]. Transcription of BCL6 is activated by 

FOXO1, which is retained in the nucleus as a consequence of SLP65 signaling, and aids in 

maintaining a quiescent state, which further stabilizes RAG2 [67]. IRF4 is essential for 

inducing expression of Ikaros and Aiolos, all of which are pivotal to render the IgL gene loci 

accessible for V(D)J recombination, to downregulate SLC components and to terminate 

proliferation [42, 69, 70]. Moreover, expression of Aiolos is activated by extracellular signal-

regulated kinase (ERK) downstream of pre-BCR signaling independent of IRF4 [71]. 

However, pre-BCR signaling is insufficient to initiate V(D)J recombination in small pre 

B cells. IgL recombination occurs only if IL-7R signaling is attenuated, which depends on the 

action of SLP65 [71, 72]. 

Instructive roles of distinct bone marrow niches. The diverse microniches of the bone 

marrow provide spatial and temporal cues for HSCs and developing B cells in the context of 

cytokines, chemokines, growth factors and cell-cell contacts [73]. The chemokine CXCL12 

and its receptor CXCR4 are the main regulators of HSC migration during adult life and are 

already central to B cell development in the fetal liver and immigration of HSCs into the 

emerging fetal bone marrow [7, 73]. Both contribute essentially to the localization and the 

maintenance of developing B cells in the adult bone marrow [74, 75]. CXCL12 is found 

within the entire bone marrow as part of the extracellular matrix, immobilized to stromal cells 

or soluble [76]. Prepro B cells localize with CXCL12hi expressing cells, whereas pro B cells 

are associated with stromal cells producing high levels of IL-7 in a CXCL12lo environment 

[77]. Retention of pro B cells in their microniche has been shown to rely on CXCR4-based 

activation of focal adhesion kinase (FAK). FAK increases affinity of very late antigen 4 

(VLA4/α4β1integrin) for its ligand vascular cell adhesion molecule 1 (VCAM1) [76]. 

CXCR4 levels steadily decline from the pro to immature B cell stage [78], yet following pre-
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BCR signaling, IRF4 induces transient high expression levels of CXCR4 [79]. This induced 

CXCR4 expression was suggested to result in migration of pre B cells away from bone 

marrow niches rich in IL-7 towards CXCL12-expressing stromal cells, providing an essential 

step in the dampening of IL-7R signaling in small pre B cells [60]. Termination of IL-7R 

signaling besides pre-BCR signaling enables V(D)J recombination in the IgL loci in small pre 

B cells [71, 72]. After the successful expression of an innocuous BCR, immature B cells that 

are located close to the bone marrow sinusoids can egress. Immature B cells leave the 

parenchyma with the bone marrow perfusing blood stream and enter the sinusoids from the 

bone marrow by down regulating CXCR4 [78, 80]. Many immature B cells in lupus models 

express high levels of CXCR4 [81] and BCR engagement of immature B cells results in 

failure to downmodulate CXCR4 expression [80]. Therefore, CXCR4-mediated BM retention 

of self-reactive immature B cells likely enables receptor editing and contributes thereby to 

central tolerance. 

1.4 Maturation of naive B cells in the periphery 

Immature or transitional B cells. Immature B cells carrying a non self-specific BCR can 

egress from the bone marrow into the periphery as immature or transitional B cells. Immature 

B cells have short half-lives and express markers of immaturity, such as AA4.1 (CD93) (Fig. 

1). Splenic transitional B cells have been resolved into three different populations with their 

successful development culminating in the binary commitment choice between a marginal 

zone and a follicular B cell fate. Survival of transitional T1 cells is governed by tonic BCR 

signaling, these cells lack the ability to recirculate and locate to the bone marrow and spleen. 

In mature B cells, tonic BCR signaling has been shown to rely on downstream PI3K activity 

involving FOXO1 [82]. Upon entering splenic follicles, these cells mature into T2 B cells, 

which acquire the ability to recirculate through spleen and bone marrow. T2 cells are 

characterized by surface expression of CD23, IgD through alternative splicing to the Cδ 

constant region supported by the protein ZFP318, and the receptor for B cell activating factor 

belonging to TNF family (BAFFR) [46, 83]. Splenic follicles are rich in BAFF, which 

provides survival signals in addition to the tonic BCR signal for T2 B cells and ensuing 

developmental stages [84, 85]. The originally described IgMlo T3 B cells have meanwhile 

been shown to be enriched for self-reactive and anergic B cell clones and it remains to be 

resolved whether they are developmental intermediates or rather a group of anergic cells [86, 

87]. Transitional B cells are either deleted by negative selection, driven into anergy or receive 
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positive selection signals allowing their development into either follicular (FO) or marginal 

zone precursor (MZP) B cells, which give rise to marginal zone (MZ) B cells [85, 88].  

Follicular versus marginal zone B cell commitment in mice. Newly generated FO B cells, 

which have a lifespan of some weeks, but constitute the majority of mature B cells, repeatedly 

circulate through the blood and lymph to the bone marrow and migrate into follicles of 

secondary lymphoid organs (SLOs), such as spleen, lymph nodes (LNs) and Peyer's Patches 

(PP) [84]. These follicles are located in the vicinity of T cell rich areas, an anatomical 

arrangement, which enables FO B cells to present protein antigens to T cells and drive T cell 

dependent (TD) immune responses [85]. The exact combination of temporal and spatial cues 

that drive the follicular versus marginal zone commitment remains to be fully elucidated [84], 

however BCR signaling, also in response to autoantigens, appears central in refining the 

mature peripheral B cell compartment [87, 89]. Strong BCR signaling is regarded as a 

predisposing factor for the development of FO B cells and weaker signaling for MZ B cells 

[85, 90]. Complex interactions of BAFFR signaling and activation of NF-κB transcription 

factors also contribute to this fate choice [84, 91]. Notch2 signaling induced by Delta-like-1 

binding (DL-1), which is expressed intraluminally in venules inside marginal zones and the 

red pulp of the spleen, is pivotal for the development of MZ B cells and their precursors 

(MZPs) [85, 92]. A recent study has revealed the key role of DL-1 expression on fibroblast-

like cells in SLOs in this process [93]. In contrast to FO B cells, long-lived, self-renewing MZ 

B cells are rather sessile and reside adjacent to the marginal sinus in the marginal zone, the 

outer area of the white pulp. This localization in proximity to the sinus enables MZ B cells to 

act as key initiators of rapid T cell independent (TI) immune responses against blood-borne 

pathogens (Fig. 1) [85]. MZ B cells may also contribute to TD immune responses against 

lipid and protein antigens as a result of high expression of CD1d, MHC class II, CD80 and 

CD86 [85]. Some of these and additional feats of MZ B cells, such as the rapid production of 

natural antibodies by differentiation into short-lived plasmablasts in the absence of BCR 

ligation have led to the grouping of MZ B and the below discussed B1 cells as "innate-like" 

cells [94]. 

B1 cells. Besides the FO and MZ B cells, which are grouped as B2 B cells, a distinct mature 

B cell population exists, termed B1 cells. B1 cells, which develop earlier in ontogeny than B2 

cells, are present in the periphery of mice. B1 cell development dominates during fetal and 

neonatal stages and is almost absent in mature mice [95]. The mature B1 population is 

sustained by self-renewal and B1 cells in adult mice nearly lack de novo generation, unlike 

the B2 subset, which is constantly replenished from developing bone marrow precursors [96]. 
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B1 cells constitute the major B cell population in the coelomic cavities, the peritoneal and 

pleural cavities, and are a scarce B cell subset in other lymphoid tissues, such as bone 

marrow, spleen or lymph nodes [96]. B1 cells are distinguished as "innate-like" cells by 

production of "natural" antibodies of the IgM subtype, which employ a restricted set of 

mostly un-mutated IgH V-genes and are also present in "antigen-free" mice [97]. These 

antibodies have an overall low affinity, but provide polyspecific, TI immune response against 

a broad range of pathogens by binding recurrent structural motifs on pathogens [98]. Contrary 

to B2 cells, which are negatively selected for self-reactivity of their BCR, B1 cell formation 

critically requires strong BCR signaling [99, 100], which was suggested to positively select 

for self-reactivity of B1 cells [101], and activation of classical NF-κB signaling [102]. 

Together, peripheral B1 and B2 B cells comprise a pool of mature, yet (antigen-)naive B cells.  

1.5 Antigen-induced B cell activation and terminal differentiation 

Mature (antigen-)naive B cells are activated upon antigen encounter [94, 103]. While FO 

B cells require BCR ligation, innate-like B cells can also be activated by pattern recognition 

receptors (PRRs), such as Toll-like receptors (TLRs), independent of BCR engagement [84, 

104]. Binding of a cognate antigen to the BCR induces the assembly of BCR-proximal 

signaling molecules resulting in the activation of genes associated with B cell activation 

[103]. The BCR-antigen complex is subsequently internalized and the contained antigen 

processed and presented on major histocompatibility complex class II (MHC-II), as a 

consequence of these signaling cascades. Presentation in an MHC-II-context enables CD4+ 

helper T cells to recognize their cognate antigen [105]. A long-lived interaction between T 

and B cells is established in the interfollicular region of lymph nodes (LNs) or at the border of 

the T cell and B cell zones in the spleen, the so called "immunological synapse". This 

"synapse" involves cell-cell contacts through inducible costimulator (ICOS) and its ligand 

ICOSL, CD40 and CD40L and co-stimulatory cytokines [105, 106]. B cells activated in this 

TD manner can transform into short-lived extrafollicular plasmablasts that migrate to the 

medullary cords of LNs or the space between the red pulp and the T cell zone in the spleen, 

whereas the T cells start to acquire a follicular helper (TFH) cell phenotype [107]. 

Alternatively, activated B cells seed transient structures called germinal center (GC), the 

anatomical site of the GC reaction [108]. B cell activation in TI immune responses occurs in 

the absence of T cell help and involves strong co-stimulation through PRRs by conserved 

microbial structures or extensive BCR crosslinking [107]. 
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The germinal center reaction 

Initiation of mature GC formation. GCs are formed in SLOs following B cell activation in 

TD immune responses [109]. They are the anatomical sites where B cells differentiate 

terminally into antibody-producing plasma cells or memory B cells. A mature GC is a polar 

structure composed of a light and a dark zone (LZ and DZ, respectively), which is contained 

within an area of naive FO B cells termed mantle zone [110]. These names were given 

according to the histological appearances of the respective zones. The DZ is composed of 

CXCL12 expressing reticular cells and densely packed B cell blasts, while proportionate 

fewer B cells populate the CXCL13 rich LZ, together with TFH cells, follicular dendritic cells 

(fDCs) and macrophages [110]. The dynamics of the ordered events that take place in the GC 

reaction subsequent to B cell activation have been thoroughly analyzed in mice. The 

maturation of a GC takes approximately eight days and it can persist for many weeks, 

depending on its experimental induction [109-111]. GC reactions are continuously triggered 

by commensal bacteria in the gut-associated lymphoid tissue (GALT), independent of further 

external stimulation [112]. Subsequent to its activation and interaction with a cognate T cell, a 

GC-founding B cell migrates into the center of a follicle. In this center, marked by the 

presence of fDCs, the B cell proliferates massively and pushes non-activated FO B cells to the 

sides, thereby establishing the mantle zone [113]. At this time, the expanding GC B cells have 

upregulated expression of BCL6, the key transcription factor of GC B and TFH cell fates, 

leading to the establishment of the mature GC [110]. Murine GC B cells bind to peanut 

agglutinin (PNA), downregulate CD38, lose IgD expression and express high levels of Fas 

(CD95) [114]. The LZ/DZ spatial separation of GC B cells is established and maintained by 

expression of chemokine receptors, CXCL12 attracts CXCR4hi DZ GC cells (CXCR5lo, 

CD83lo, CD86lo), while migration and localization of CXCR5hi LZ GC B cells (CXCR4hi, 

CD83hi, CD86hi) is mediated by CXCL13 [113]. 

Regulatory molecular pathways of GC initiation and maintenance. Upregulation of BCL6 

and continuous signaling throughout the first four days post induction are essentially required 

for formation of a mature GC. BCL6 signaling regulates the expression of many target 

molecules, such as CXCR4, which orchestrate the migration of the GC B cell into the center 

of a follicle and its initial migration into the DZ [115, 116]. c-Myc-dependent proliferation is 

pivotal in the first four days following induction of GC formation [110]. Similar to BCL6, 

IRF4 has T and B cell-intrinsic functions that are essential for the formation of TFH and GC 

B cells [117-119], but its initiating function in B cells has been suggested to be temporally 

restricted to the first two days of GC formation [110].  
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Recently, the PI3K pathway and its target FOXO1 were demonstrated to have an important 

role in the functional and polar LZ/DZ separation of the mature GC, with active FOXO1 

enabling proliferation and appropriate CXCR4 expression in the DZ and PI3K signaling 

antagonizing FOXO1 function in LZ GC B cells [120-122]. c-Myc expression by positively 

selected LZ GC B cells is pivotal for reentry into the DZ as well as enabling these cells to 

terminally differentiate [121, 123]. Moreover, it was suggested that a subset of c-Myc+ LZ 

GC B cells initiate a DZ specific transcriptional program by upregulating FOXO1 and 

CXCR4 to reenter the DZ for additional rounds of proliferation and somatic hypermutation 

[122]. 

Affinity maturation and somatic hypermutation (SHM). Once a mature GC has been 

established, the affinity of the BCR repertoire present in a GC is steadily increased in a 

phenomenon known as affinity maturation. Iterative cycles of SHM in the DZ, a process in 

which random point mutations are introduced into the variable gene exons (VHDJH for the 

IgH locus, VκJκ or VλJλ for the IgL loci) of the BCR, and their subsequent selection mainly in 

the LZ culminate in affinity maturation [114]. Affinity maturation is crucial for the ultimate 

generation of high-affinity antibodies by plasma cells [124]. SHM and proliferation are tightly 

linked in the DZ, with the frequency of newly introduced point mutations resulting from SHM 

being estimated at 10-3 per division [125, 126]. Point mutation introduced by SHM are 

particularly enriched in the CDRs and result in transition and transversion mutations [43, 127, 

128]. The enzyme activation-induced cytidine deaminase (AID), whose action is restricted to 

G1 cell cycle phase [129, 130], triggers the first steps of SHM and class switch recombination 

(CSR) alike by deaminating cytosines to uridines in single-stranded DNA [128, 131]. B cells 

containing mutations introduced by SHM resulting in decreased binding affinities or self-

reactivity of their respective BCRs are cleared by apoptotic cell death in the LZ [114]. 

Whether this clearance occurs by negative selection or through death by neglect as a 

consequence of absent positive selection remains debated [132-134]. GC B cells are sensitive 

to extrinsic activation of apoptosis by expression of high levels of the Fas receptor 

(Fas/CD95) as well as low levels of the pro survival protein BCL2 [114, 135].  

Theories of survival-mediated selection of BCR clones in the GC are founded on the 

assumption of B cells competing for limited amounts of selection triggering signals. 

Moreover, GC B cells were shown to strongly rely on survival signals produced by the GC 

microniche [114]. In the prevailing model of selection of BCR affinities in the GC, BCR-

ligand affinity is measured as a function of antigen binding, uptake and presentation in an 

MHC-II-context. In this model TFH cells provide the means of selection.  
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This model is supported by intravital imaging studies visualizing migration of GC B cells and 

TFH cells, their transient interactions, specific expansion of GC B cells in MHC-II-TCR 

contact with TFH cells and release of IL-4 and IL-21, factors that induce GC B cell 

proliferation and differentiation [136, 137]. The essential function of T cells in selection of 

GC B cells is further corroborated by studies, which suggest that BCR signaling must be 

dampened in G1 phase GC B cells to sustain the GC reaction. These results argue against a 

direct involvement of BCR signaling in the selection process but support the notion that 

antigen capture and internalization by the BCR is the critical determinant for positive 

selection [138-140]. The later finding is not mutually exclusive with earlier models of GC 

B cell selection via their binding to antigen presented by fDCs in the LZ [141]. As BCR 

signaling is still active in G2/M phase GC B cells, this data could therefore be integrated in a 

model involving selection cues from TFH cells as well as BCR based signaling [110, 114]. 

Roles for TFH cells and the recently described follicular regulatory TFR cells, which exert 

regulatory functions on TFH and GC B cells, in positive and negative selection in the GC 

reaction and prevention of autoimmunity have been suggested [142-144]. Questions remain 

unsolved regarding the specific role of Fas-induced apoptotic clearance of GC B cells, the Fas 

ligand (FasL)-signal delivering cell type or the role of the antiapoptotic BCL2 family member 

MCL1 in DZ/LZ processes [144, 145]. However, negative selection of GC B cells via this 

pathway provides a means of establishing peripheral B cell tolerance [143, 146, 147]. Besides 

the crucial signals from TFH cell, several other factors were shown to contribute to efficient 

affinity maturation. Limiting the access of GC B cells to antigen loaded on fDCs by secreted 

antibodies, which mask the epitopes, has been demonstrated to enforce evolution of BCR 

affinities to replace these antibodies in an intra and inter GC-specific manner [148]. The 

migration of TFH cells between GCs and the emigration of newly activated B cells into 

existing GCs further support the generation and selection of BCRs with highest affinity 

possible [110]. Some of the selected LZ GC B cells undergo class switching and terminally 

differentiate into memory B cells or plasma cells, while some of the switched GC B cells 

recircle to the DZ to undergo further rounds of affinity maturation. 

Class switch recombination (CSR). The process by which GC B cells stably alter the 

expressed BCR isotype is known as CSR. CSR occurs through replacement of the CH region 

of their BCR, Cµ, with a different class, such as Cγ, Cε or Cα, resulting in expression of IgG, 

IgE or IgA respectively, while maintaining its antigen-binding part [22]. CSR permanently 

alters the effector function of secreted antibodies, contributing essentially to a more effective 

clearance of pathogens and changes BCR signaling capacities [67, 140].  
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Switch (S) regions, are long (1-10 kb), repetitive motives, enriched for the same SHM-

attracting "DGYW"-nucleotide motif present in the CDRs, located upstream of all constant 

regions except Cδ [22, 43]. CSR is not allelically excluded and is induced by AID-dependent 

DSBs in the donor region Sµ and an acceptor S region on both IgH alleles. This results in the 

fusion of the two S regions, thereby deleting the intrachromosomal sequences, by cNHEJ 

repair juxtaposing the CH region downstream of the acceptor S region to the VHDJH exon [22, 

127]. AID-introduced U/G mismatch-pairs are processed by components of the base excision 

repair (BER) and mismatch repair (MMR) pathways to yield point mutations in V(D)J exons 

during SHM and DSBs in S regions during CSR. Common to SHM and CSR is the 

intermediate introduction of both, mutations and DSBs, by AID at either location [43, 128]. 

AID expression is not restricted to lymphoid cells, unlike RAG expression [22]. While DSBs 

introduced by RAG enzymes in V(D)J recombination are cooperatively guided by signal and 

RSS joint, a mechanism to dictate directionality of fusing DSBs in CSR remains elusive. 

However, similar to V(D)J recombination, germline transcription targets AID in SHM/CSR to 

different V(D)J exon or S regions, respectively [22]. Other factors beyond the DGYW-motif 

that contribute to AID targeting and outcome are still debated and include DNA-sequence 

context of V(D)J exons and S regions [43], differential use of co-factors [149, 150] or 

employed repair mechanisms [151].  

Exit of GC B cells as plasma cells or memory B cells  

The ability to develop immunological memory is a hallmark of vertebrate immune systems 

[152]. This is provided by long-lived plasma cells secreting protective high-affinity 

antibodies, sustained antibody titers in the serum as well as antigen-induced reactivation of 

long-lived memory B cells, which can recirculate to SLOs [152, 153]. While memory B cells 

and short-lived plasmablasts can develop outside the GC, GC provide the main source of both 

memory B and plasma cells [153, 154]. It remains unclear whether terminal differentiation 

occurs in a cell autonomous manner, which might be temporally pre-imposed [108, 152], or is 

induced in B cells extrinsically by GC microenvironments, which remain incompletely 

understood [121]. IRF4 has been implicated to play a central role in triggering the switch 

from GC B cells recycling in the GC to induction of terminal differentiation into plasma cells 

[110]. BCR signaling strength increases with ongoing affinity maturation, increasing IRF4 

expression, which may either directly repress BCL6, as IRF4 can exert BCL6-activating and 

repressive functions [118, 155], and/or induce B lymphocyte-induced maturation protein 1 

(BLIMP1, encoded by Prdm1), a repressor of BCL6 and PAX5 and master regulator of 

plasma cell differentiation [156].  
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Plasma cells. Differentiation into antibody secreting cells (ASCs) requires silencing of the 

B cell specific transcriptional program in an IRF4, BLIMP1 and X-box-binding protein 1 

(XBP1)-dependent manner [142]. In the B cell lineage, BLIMP1 is exclusively expressed in 

ASCs. It is expressed at intermediated levels in plasmablasts, a type of ASCs generated 

rapidly in the extrafollicular response, which retain migratory and proliferative capacities. 

Plasmablasts may further differentiate into the post-mitotic plasma cells, which express high 

levels of BLIMP1 and are the type of ASC that emerges from GCs [108]. The second 

determinant of plasma cell differentiation is XBP1, which acts downstream of BLIMP1 to 

induce molecular alterations required for the production of large quantities of antibodies, such 

as remodeling of the endoplasmatic reticulum, induction of the unfolded protein response and 

autophagy pathways that among other functions ensure membrane-homeostasis [157, 158]. 

Zinc finger and BTB domain-containing protein 20 (ZBTB20) has recently been shown to 

contribute significantly to enforcing ASC phenotypes by enhancing the expression of IRF4, 

XBP1 and BLIMP1 [108]. Antibodies produced by plasmablasts can be class switched, but 

exhibit low levels of SHM [156]. Under physiological conditions, long-lived plasma cells 

reside mainly in distinct bone marrow niches. Their precursors are thought to phenotypically 

resemble plasmablasts. These precursors home to the bone marrow in a CXCR4-dependent 

manner, where they upregulate BLIMP1 expression and attach to CXCL12-producing stromal 

cells via VLA4 binding to VCAM1 [108, 156]. In these niches they receive survival cues 

produced by hematopoietic cells via the IL-6 receptor and B cell maturation antigen (BCMA). 

The stimulation of BCMA by a proliferation inducing ligand (APRIL) induces MCL1 

expression, which is essential for plasma cell survival in this niche [159, 160].  

Memory B cells. After encountering and responding to a primary antigen challenge some 

B cells subsequently return to a quiescent state. These B cells, which are present in increased 

clonal numbers compared to naive B cells and are capable of rapidly responding upon 

rechallenge, are functionally defined as memory B cells [152]. Memory B cells are very 

heterogeneous with regards to their phenotype, function and origin. For instance they may 

vary in their expression of IgM-BCRs or class switched-BCRs, GC-dependent or GC-

independent origin in TD immune responses or emergence from B1 or FO B cells [153, 154]. 

In contrast to plasma cells, memory B cells maintain BCR expression, which activates 

expression of antiapoptotic BCL2 family members BCL2 and BCL2a supporting longevity as 

well as a B cell-specific transcriptional profile achieved by persisting expression of PAX5 

[108, 153]. PAX5 expression also reinforces expression of BACH2, which is essential for the 

ability of memory B cells to respond to antigen rechallenge, and IRF8, both contributing to 
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the repression of Prdm1 [65, 108]. However, due to the immense heterogeneity of memory 

B cells this pool of terminally differentiated B cells remains incompletely understood.  
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2. The RNA-binding proteins Roquin1 and Roquin2 

Roquin1 and 2 constitute a novel family of RNA-binding proteins that regulate important 

mediators of development and immunity. Mutated Roquin1 was initially described in a mouse 

strain exhibiting features of human SLE and led to the characterization of many functions of 

both Roquin paralogs in T cells. These include repression of TFH, TH17 and NKT17 cell fates, 

as well as the molecular mechanism of Roquin binding to cis-regulatory motifs in target 

mRNAs, which results in mRNA degradation.  

2.1 Initial description of Roquin in the sanroque strain 

In an attempt to identify mechanisms that repress autoimmune responses, Vinuesa and 

colleagues performed an ethylnitrosourea (ENU) mutagenesis screen in mice and discovered 

the sanroque (san) strain [161]. This strain shows characteristics, which resemble systemic 

lupus erythematosus, including splenomegaly, lymphadenopathy, plasmacytosis, polyclonal 

hypergammaglobulinemia and high titers of anti-nuclear antibodies [161]. In addition, this 

strain exhibits necrotizing hepatitis, anemia and renal pathology showing focal proliferative 

glomerulonephritis with IgG-containing immune complexes [161, 162]. The causative 

mutation alters amino acid 199 from a methionine to an arginine (M199R) in Roquin1, a 

ubiquitously expressed cytoplasmic protein with a RING-type E3 ubiquitin ligase domain. 

This mutation is located in a novel protein domain termed ROQ, which so far has been 

identified only in Roquin1 and its paralog, membrane-associated nucleic acid binding protein 

Mnab or Roquin2 [163]. The name "sanroque" derives from the patron saint invoked in 

bubonic plague, since the enlarged spleen and lymph nodes in this mouse strain are 

reminiscent of those seen in plague victims [164]. The homozygous Roquin1san/san mutation 

was believed to act mainly in CD4+ T cells resulting in spontaneous follicular T helper cell 

(TFH) differentiation, ectopic expression of the inducible costimulator (ICOS) with ensuing 

inappropriate B cell activation, GC formation and production of self-reactive antinuclear 

antibodies (ANAs) despite the presence of elevated numbers of functional regulatory T (Treg) 

cells [162]. Subsequent work showed that Roquin1 can directly bind to and repress Icos 

mRNA via processing body components and mRNA decay pathways [165]. Ectopic ICOS 

expression on CD4+ T cells in Roquin1san/san mice was demonstrated to employ downstream 

signaling components of CD28, thereby relieving naive CD4+ T cells of the requirement for 

simultaneous TCR and CD28 stimulation by antigen presenting cells for induction of 



David K. Rieß I. Introduction 
 

 19	

differentiation into T effector cells [166]. A subsequent study demonstrated that homozygous 

ICOS-deficiency neither rescued the increased splenic cellularity nor the autoimmunity in 

sanroque mice corroborating the requirement for a novel mechanism driving the autoimmune 

disease in these mice [167]. 

A central driver of the development of TFH and CD8+ short-lived effector-like (CD44+ 

CD62Llo KLRG1hi SLEC-like) cells present in Roquin1san/san mice, is overproduction of the 

cytokine IFNγ produced by several T cell subsets in this mouse strain, in which an increased 

half-life of Ifng mRNA was determined [167, 168]. IFNγ signaling induces high expression 

levels of BCL6 in TFH cells and their precursors in Roquin1san/san mice [167]. Moreover, 

experimentally generated absence of TFH cells or IFNγ signaling in T cells confirmed aberrant 

TFH cell development caused by excessive IFNγ signaling as a central pathomechanism of the 

lupus like autoimmune syndrome [167].  

2.2 Messenger RNA (mRNA) quality control and degradation pathways 

mRNA quality control and degradation needs to be monitored at every step from early 

transcription to translation in order for aberrant mRNAs to be removed as well as to 

maintaining cellular mRNA homeostasis. While there are several mechanisms in place for 

surveillance of every kind of RNA species, such as ribosomal RNAs (rRNAs), transfer RNAs 

(tRNAs) or small nuclear RNAs (snRNAs), in the following part I will focus on the 

mechanisms that regulate protein-coding mRNAs. These pathways rely on the action of two 

types of RNA-degrading enzymes, endoribonucleases, such as Regnase1 or SMG6, or 

exoribonucleases. Endoribonucleases act via nonsense-mediated decay (NMD) and cleavage 

occurs within the mRNA thereby initiating its degradation, whilst exoribonucleases digest the 

mRNA molecule from either end [169]. Surveillance of mRNA molecules in the nucleus is 

intimately linked to initiation of RNA polymerase II activity [170]. Pre-mRNAs lacking a 5' 

7-methyl-guanosine cap (m7G-cap) as well as mRNAs exhibiting defects in transcriptional 

elongation, splicing or export in the cytoplasm are degraded from the 3'-end towards the 5'-

end by the nuclear exosome or in 5' to 3' direction by nuclear exoribonucleases [170]. 

Following export in the cytoplasm, several degradation pathways can be triggered, including 

no-go decay (NGD), no-stop decay (NSD) and the most thoroughly studied NMD pathway. 

Free ribosomes that got stalled on secondary structures of mRNAs can cause NGD, mRNAs 

that lack stop codons mediate NSD mRNAs that contain a premature termination codon 

(PTC) are degraded via NMD. In NMD mRNA degradation is stimulated by the RNA 
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helicase up-frameshift protein1 (UPF1) [171], which in mammals locates in the vicinity of the 

PTC and upstream of the exon junction complex (EJC). In a subsequent step, UPF1 

translocates to the 3' end of the EJC and SMG5, SMG6 and SMG7 bind the complex, 

initiating the degradation of the mRNA by SMG6-mediated internal cleavage of the transcript 

and recruitment of the CCR4-CAF1-NOT deadenylase complex in a SMG5- and SMG7-

dependent manner [172, 173]. Many of these proteins involved in mRNA decay are enriched 

in so called processing bodies (P bodies), distinct cytoplasmic foci in unstressed cells [174]. 

Intact mRNA molecules are protected from exoribonuclease-specific degradation by virtue of 

their 5' m7G-cap and the 3' poly(A) tail [175, 176]. Translationally silent messenger 

ribonucleoprotein (mRNP) complexes can localize to different cytoplasmic granules, P bodies 

or in stressed cells, so called stress granules in which translation can be reinitiated [174]. Both 

major deadenylase complexes, Pan2-Pan3 and CCR4-CAF1-NOT, are present in P bodies and 

mediate shortening of the poly(A) tail, which results in generation of a linear mRNA 

molecular amenable to further degradative processing from the 3' as well as 5' end (Fig. 2).  

 

Figure 2: Simplified overview of bulk mRNA degradation pathways. 
The most common initial step in mRNA decay is the opening of the closed loop form of the mRNA by action of 
the 3'-5' deadenylase complexes Pan2-Pan3 and CCR4-CAF1-NOT. The latter complex consists of the 
components NOT, which provide an essential scaffold function, and the deadenylases CCR4 and CAF1, all of 
which localize to P bodies. The resulting linear mRNA can either be degraded in 3'-5' direction by action of the 
exosome/ski-complex and its nuclease component Dis3/Dis3l or in 5'-3' direction by Xrn1 following removal of 
the m7G-cap. Decapping in mammals is performed by Dcp2 as part of a ribonucleoprotein complex with 
regulatory partners such as Dcp1, Edc4 and Rck/p54 (Edc4 and Rck/p54 not shown) [169]. Most components of 
these pathways are enriched in P bodies. Alternative mRNA decay pathways independent of initial 
deadenylation include those involving uridylation of the mRNA 3'-end [169] (Figure taken from [177]). 



David K. Rieß I. Introduction 
 

 21	

The exosome/ski-complex possesses 3' to 5' exoribonuclease activity, which can result in 

complete degradation of the target mRNA [178]. Alternatively, the 5' m7G-cap is hydrolyzed 

by the Dcp1/Dcp2 complex exposing the unprotected mRNA 5' end to complete digestion by 

Xrn1 in a 5'-3' manner [179]. In mammals many factors aid in the establishment of the 

Dcp1/Dcp2 complex, among which is the Lsm1-7/Pat1 complex that binds to the poly(A)-tail 

and together with enhancers of decapping, such as Edc4 or Rck/p54 facilitates binding and 

activity of the complex (Fig. 2) [179]. In contrast, endoribonucleases, such as Regnase1 can 

act on capped mRNA and hydrolyze internal ester-bonds yielding two RNA fragments that 

are subjected to degradation by the presented pathways [180]. Specificity of mRNA decay is 

maintained by cis-acting mRNA sequence motifs as well as a plethora of regulatory trans-

acting protein and non-coding RNA factors, many of which play fundamental roles in the 

immune system [169]. In AU-rich and GU-rich element (ARE/GRE)-mediated decay, the 

short half-lives of mediators of cytokine signaling and cell growth are regulated by 

ARE/GRE-binding proteins [181, 182]. Furthermore, miRNA-dependent mRNA decay in 

many organisms has been found to rely on the protein GW182, which recruits the CCR4-NOT 

complex [183]. An additional group of RNA-binding proteins that can recognize cis-

regulatory elements in coding sequences or the 3'UTR and subsequently induce CCR4-NOT 

mediated deadenylation include Smaug [184], Nanos2 [185], the Puf protein family as well as 

the Roquin paralogs [186]. 

2.3 The genomic loci encoding Roquin1 and 2 

Roquin proteins have a unique combination of E3 ligase (RING) and zinc finger CCCH (C3H) 

domains, based on which they were assigned the gene symbols Rc3h1/2 (mouse) or RC3H1/2 

(human) [161]. Rc3h1 situated on chromosome 1 in mice and humans encodes for a protein of 

1130 amino acids (aa) in length (1133aa in humans) and a molecular weight (MW) of 125 

kDa [187], while the murine Rc3h2 gene locates to chromosome 2 and encodes the 1187 aa 

long Roquin2 with a MW of 131kDa (human RC3H2: chromosome 16, 1191 aa and about 

132kDa) [188]. Moreover, different splice variants occur in humans and mice giving rise to 

shorter protein isoforms. The murine Rc3h1 gene comprises 20 exons, which can be 

transcribed into three transcripts, two of which are protein-coding, whereas the murine Rc3h2 

contains 22 exons, which can be transcribed into ten transcripts of which three are protein 

coding [189]. Rc3h1 is nearly ubiquitously expressed [161] and the two transcripts encode 

nearly identical proteins that differ only nine amino acids in length at the C-terminus. Instead 
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two of the three protein-coding Rc3h2 mRNAs are translated into isoforms of 1187 aa and the 

third into a 1125 aa long isoform, which are identical in their N-termini and differ only in 

their C-termini [190]. The expression of Roquin paralogs was examined in many mouse 

tissues, with exception of the bone marrow, and the highest expression levels were seen in 

tissue extracts from thymus and lymph nodes and lower expression in spleen, brain and lung 

[191]. Usually Roquin1 and 2 are expressed in the same tissues with lower expression levels 

of Roquin2 compared to Roquin1. For example, quantification in CD4+ and CD8+ T cells 

revealed approximately five-fold higher expression levels of Roquin1 in both T cell subsets 

[190]. 

2.4 Regulation of Roquin gene expression and protein abundance 

A gene duplication event in the ancestral vertebrates led to the presence of both Roquin 

paralogs, since the genomes of Drosophila melanogaster and Caenorhabditis elegans encode 

only a single homolog, DmRoquin and RLE-1, respectively [190, 192]. Extensive 5' 

juxtaposed sequences were also involved in this gene duplication event, thus it is possible that 

both genes share 5' regulatory elements [190]. Yet, investigations on the regulation of gene 

expression of Roquin1 and 2 have only been started recently. Colonic intraepithelial 

lymphocytes of IL-10 deficient mice have decreased Rc3h1 gene expression levels, which are 

restored upon in vitro treatment with IL-10 [193]. In addition, IL-10 treatment moderately 

increased Rc3h1 gene expression in the mouse EL4 T cell line [194] suggesting a regulatory 

role for IL-10 in Rc3h1 expression. IL-10 signaling employs the JAK-STAT pathway [195]. 

IL-10 stimulation of EL4 T cells was shown to induce the transcription of the transcription 

factors STAT1, STAT3, c-Rel, IKZF2 and GATA2, all of which were shown to bind within a 

2.2 kb region upstream of the 5'UTR of Roquin1. STAT1, STAT3, c-Rel and GATA2 were 

suggested to trigger Rc3h1 gene expression, while IKZF2 was suggested to have inhibitory 

effects on its transcription following IL-10 stimulation [194]. Additionally, expression of 

Roquin paralogs has been suggested to be subject of post-transcriptional gene regulation [193, 

196]. miR-223 was found to be significantly upregulated in Roquin1san/san T cells compared to 

wild-type T cells [197]. Inhibition of miR-223 in colonic intraepithelial lymphocytes resulted 

in increased Rc3h1 mRNA levels and the 3'UTR of Rc3h1 was subsequently shown to be 

amenable to miR-223-mediated repression in a luciferase reporter assay [193]. These findings 

suggest that Roquin1 mRNA levels may be fine-tuned by miRNAs, including some that are 

regulated by Roquin1.  
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In addition, it was suggested that Roquin paralogs limit the expression of their own transcripts 

as they were shown to contain the constitutive decay element (CDE), a cis-regulatory motif 

found in some mRNA targets of Roquin1 and 2 (see below) [196]. Furthermore, abundance of 

active protein of Roquin paralogs as well as Regnase1 in T cells is regulated by the 

paracaspase function of mucosa-associated lymphoid tissue lymphoma translocation protein 1 

(MALT1) [198, 199]. MALT1 is part of the CARMA1-BCL10-MALT1 (CBM) complex that 

is strongly linked with induction of canonical NF-κB signaling downstream of TCR and BCR 

ligation [102] as well as regulation of lymphocyte activation by the proteolytic function of 

MALT1 [200]. MALT1 cleaves mouse Roquin1 preferentially after Arg510 or alternatively 

after Arg579, while murine Roquin2 is cleaved between Arg510 and Gly511 [199] separating 

the N- and the C-terminal part of the proteins and thereby inactivating their mRNA-regulating 

activities (Fig. 3A). 

2.5 The Roquin proteins – domain organization and function 

Roquin proteins are cytosolic proteins, which are enriched in P bodies and stress granules 

[191, 192, 201]. Amino acid sequences of murine Roquin paralogs are highly similar with 

their homologs in different species. Human and mouse Roquin1 are more than 90% identical, 

the sequence identity in the N-terminal part, the first 450 amino acids that comprise 

distinguishable domains (Fig. 3A), even exceeds 99% [187]. The C-terminal part comprising 

approximately 650 amino acids is predicted to be intrinsically disordered [187] and 

accordingly shows less homology in between species. Accordingly, the RING and zinc finger 

(ZF) domains of Roquin1 and 2 have over 80% and the name-giving ROQ domain even 99% 

sequence similarity in mice [202]. Moreover, the first 450 amino acids of murine Roquin2 are 

75% similar to that of DmRoquin and RLE-1 [192]. The N-termini of both Roquin paralogs 

comprise a RING-type E3 ubiquitin ligase motif followed by a higher eukaryotes and 

prokaryotes nucleotide binding (HEPN) domain bordering the ROQ domain C- and N-

terminally followed by a CCCH-type zinc finger (Fig. 3A). The novel ROQ domain is the 

most highly conserved part among the paralogs [203]. When this PhD project was initiated, 

the ROQ domain had solely been described based on sequence conservation [161] as well as 

the ability of the mRNA-binding capacity of the sequence between amino acid 130 and 360 

[165, 192]. The RING domain of murine and human Roquin paralogs adopts a canonical 

cross-braced double zinc finger fold [197, 203] with a typical Cys4 and an atypical Cys-Cys-

His-Asp coordination site [197, 203, 204]. 
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Figure 3: Domain organization of Roquin paralogs and described cis-regulatory motif in target mRNAs. 
(A) Numbers below the schematic mark position of amino acids and N- and C-terminal ends are indicated. The 
star highlights the position of the sanroque-Met to Arg mutation at amino acid position 199. RING really 
interesting new gene; HEPN (N- or C- terminal part of) higher eukaryotes and prokaryotes nucleotide-binding; 
ROQ novel RNA-binding domain; ZF Cys3-His/CCCH-type zinc finger; Pro-rich proline-rich region; Gly/Asn 
region containing stretches enriched in Gly and Asn; CC coiled-coil stretch. Figure based on [188, 197, 203, 
205-207] with the additional helix N-terminal to HEPNN [197] incorporated into HEPNN as suggested by 
Schlundt and colleagues [187] (B) Stem-loop structures of cis-regulatory motifs identified in target mRNAs of 
Roquin1 and 2 with indicated 5' and 3' ends. The conserved decay element CDE [208], predicted stem-loop 
motifs 1 and 2 for which an enrichment was observed [209] and alternative decay element ADE [210] as 
described in the respective publications. N any nucleotide; R purine; Y pyrimidine. Purines/pyrimidines in a 
black circle can be individually substituted by pyrimidines with moderate affinity loss provided base pairs are 
maintained. A dashed line indicates putative non-Watson-Crick base pairing as suggested by the authors [210]. 

Whether the RING domain retains E3 ubiquitin ligase function remained elusive for a long 

time. An initial report demonstrated that the C. elegans ortholog of Roquin, RLE-1, interacts 

with DAF-16, the nematode-ortholog of FOXO3a [211]. Knockout of rle-1 resulted in a 

prolonged lifespan and increased resistance to environmental stress [211]. DAF-16, the 

molecular target of RLE-1, displayed increased protein but not mRNA levels in RLE-1 

deficient worms. Subsequently RLE-1 and DAF-16 were demonstrated to co-localize to the 

cytoplasm and interact with DAF-16 resulting in its polyubiquitination [211]. The role of the 

RING domains was studied in the ringless Roquin1 and 2 mouse strains [202]. While 

Roquin1 ringless mice die perinatally, similar to Roquin1-/- mice [202, 212], Roquin2 ringless 

mice do not show any phenotype [202].  
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Specific deletion of the RING domain in T cells ("Tringless" mice), which exhibit only a very 

mild immune phenotype in promoting GC B cell reactions following immunization, impaired 

the localization of Roquin proteins to stress granules but not P bodies [202]. Repression of 

adenosine monophosphate-activated protein kinase (AMPK) activity is essential for correct 

mTOR signaling in CD4+ T cells, a signaling pathway that contributes to CD4+ effector T cell 

expansion and T cell-specific support of the GC B cell reaction [204]. The RING domain was 

subsequently demonstrated to be important for interaction of Roquin with the catalytic α1 

subunit of AMPK and sequestration of the complex into stress granules as well as 

antagonizing AMPK activity [204]. Although, repression of AMPK activity was independent 

of its ubiquitination, Roquin1 was demonstrated to be capable of autoubiquitination, a process 

that was speculated to be important for co-localization of Roquin and AMPK into stress-

granules [204]. Recently, apoptosis signal-regulating kinase1 (ASK1), a signaling protein 

involved in mediating resistance to reactive oxygen species-induced cell death, was found be 

polyubiquitinated on Lys48 by Roquin2, but not Roquin1, in human cell lines triggering its 

proteosomal degradation [213]. Maryuma and colleagues additionally presented evidence that 

RLE-1 regulates abundance of NSY-1, the worm ortholog of ASK1 [213]. These findings 

support the hypothesis that differences in the RING domain enable diverging functions of 

Roquin1 and Roquin2. Indeed, a recent in vitro study confirmed that the RING domain of 

both paralogs can function as an E3 ubiquitin ligase, but did not confirm autoubiquitination of 

Roquin1 [203]. However, in this study Roquin paralogs were shown to have both overlapping 

E2 enzyme partners such as Ubc13, an E2 ligase that assembles Lys63 linked ubiquitin chains 

and that is also involved in B cell signaling processes [203, 214]. Additionally, specific, non-

shared E2 partners, such as UBE2L3 that only interacts with Roquin1 but not Roquin2, were 

demonstrated [203]. This highlights that the RING domains of Roquin1 and 2 support 

formation of not only Lys48 linked polyubiquitin chains and that they differ in their 

preferences for E2 partners potentially enabling them to trigger dissimilar molecular effects. 

Similar to the RING domain, also the function of the ZF domain remains largely elusive. The 

Roquin ZF domain is predicted to resemble the structure of other Cys3-His ZFs, such as those 

found in the ARE-binding proteins TIS11d and tristetraprolin. Although inactivating 

mutations in the ZF or the complete ZF domain ablation [165, 192], affected in vitro RNA 

binding of Roquin1 only mildly, there is evidence that it might contribute to functional in vivo 

RNA binding by establishing additional contact sites such as AREs present in the vicinity of 

ROQ-bound cis-regulatory motifs [165, 209].  
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Common to many RNA binding proteins, Roquin paralogs express more than one RNA-

binding domain, the ZF and the ROQ domain [187]. Until the publication of many high 

resolution structures of the ROQ domain-containing N-terminal region of Roquin1 in 2014, 

secondary structure predictions for the region of amino acids 60-410, predicted a 

predominantly helical fold [D. Rieß, unpublished data]. Limited proteolysis of the N-terminal 

regions of mouse and human Roquin identified the ROQ domain boundaries yielding a core 

ROQ domain of approximately 20 kDa ranging from aa176 and aa326 in murine Roquin1 

[205, 206]. The regions flanking the ROQ core are susceptible to proteolytic cleavage and 

were subsequently shown to comprise flexible linker regions connecting the ROQ and the 

HEPN domains, similarly present in Roquin2 [188, 197, 203, 207]. The novel ROQ domain 

fold exhibits an extended winged helix-turn-helix motif comprising three α helices and three β 

strands (WH, residues 191-274) as well as additional helices packed against the WH motif 

[205, 206]. This WH motif is the essential RNA binding element [187]. Three groups have 

meanwhile reported the molecular structure of larger Roquin1 and 2 fragments [197, 203, 

207]. The subdomain I identified by Tan and colleagues was later shown to comprise the 

ROQ-flanking HEPN domains, each part consisting of 3 helices [197, 203, 207]. Subdomain 

III contains the WH motif, termed A site, and together with subdomain II forms the ROQ core 

[207]. All reported structures of the ROQ core are essentially identical with regard to fold and 

domain arrangement. The ROQ core is therefore a novel RNA-binding domain which 

organization was not predicted from the primary amino acid sequence. The ROQ domain 

structures reported in the absence of mRNA substrate [197, 205, 206] all showed dimeric 

arrangement in the asymmetric unit, yet all studies concluded that the ROQ domain is likely 

to be a monomer in solution and dimerization resulted from unphysiological ROQ 

concentrations. Therefore, it remains still elusive whether Roquin paralogs form homo- or 

heterodimers in vivo. Interestingly, while the HEPN domain was demonstrated to contribute 

to RNA binding in a so-called B site [207], a nucleotide-binding motif remains to be 

determined [203]. The consensus sequence of the first cis-regulatory motif, termed 

constitutive decay element (CDE), bound by Roquin proteins is characterized by a 

pyrimidine-purine-pyrimidine (Py-Pu-Py) tri-loop, a closing C-G base pair, followed by two 

U-A base pairs on top of a stem comprising another two to five unspecific base pairs (Fig. 

3A) [196]. Concomitant with the description of the CDE, a mechanistic explanation for 

Roquin-based mRNA degradation was demonstrated as Roquin was shown to interact with 

the CCR4-CAF1-NOT deadenylase complex causing mRNA degradation [196].  
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The CDE sequence was identified in a set of approximately 50 evolutionary conserved target 

mRNAs in vertebrate genomes [196]. The structural basis for the recognition of this CDE 

structure in the A site by the WH motif was demonstrated by several groups for Roquin1 and 

2 [188, 203, 205-207]. While the CDE stem-loop structure is recognized by the WH motif, the 

B site was demonstrated to bind complementary dsRNA, which had formed from the CDE of 

TNFα mRNA instead of a stem-loop ssRNA structure, in a sequence-independent manner 

[207]. While it cannot be excluded that this binding of dsRNA by Roquin at a second site 

might have been an artifact of the high TNFα mRNA concentration employed for co-

crystallization, it is suggestive of a second RNA binding site in Roquin paralogs. However, 

mutational analysis subsequently showed that the A site is absolutely essential for decay of 

CDE-containing mRNAs and residues of the B site may contribute therein [207]. The 

obtained structures of the ROQ-CDE complex revealed a primarily sequence-independent 

interaction and indicated that requirements for CDE recognition might not be as restrictive as 

originally described (Fig. 3B) [205, 208]. Indeed, it was demonstrated that the ROQ domain 

still binds altered CDE sequences in vitro as long as the overall stem-loop with the Py-Pu-Py 

tri-loop is maintained [205]. Subsequently, a structure-based binding of Roquin to non-CDE 

like motifs was confirmed [209]. Roquin was shown to bind stem-loop structures with U-rich 

penta- or hexa-nucleotide loops [209]. One such motif was identified in the 3'UTR of A20, a 

negative regulator of signaling leading to NF-κB transcription factor activation. Post-

transcriptional regulation of A20 and downstream mediators of NF-κB signaling involving the 

ROQ and ZF domains of Roquin was demonstrated in cell lines (Fig. 3B) [209]. This finding 

helped explain why many of the mRNA targets bound by Roquin paralogs did not fulfill the 

strict CDE requirements [196], which was concomitantly modified by the authors presenting a 

more relaxed CDE sequence, including a less restricted tri-loop composition [208]. Recently, 

an additional cis-regulatory element termed alternative decay element (ADE) (Fig. 3B) [209], 

comprising an U-rich hexa-loop structure was presented and its role in post-transcriptional 

regulation of OX40 demonstrated [210]. ADE and CDE share some features, including an 

important role of sequence-independent contacts of amino acids in the ROQ A site to the 

RNA stem and the recognition of the hexa- and tri-loops primarily mediated by their shapes 

(Fig. 3B) [210]. Whereas the cis-regulatory motifs, such as the ADE and CDE sequences, and 

their roles in posttranslational repression are being unraveled the functional role and 

contribution of potential binding of dsRNA in the B site remains elusive.  
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The Stoecklin group first demonstrated that the C-terminal part of Roquin1 contributes 

significantly to Roquin-mediated mRNA decay by recruiting the CCR4-CAF1-NOT 

deadenlyase complex [196], while work from the Heismeyer group in T cells indicated 

Roquin paralogs interact with members of the decapping pathway, such as Dcp2, Edc4 and 

Rck [165, 191], for degradation of target mRNA. A recent study confirmed the mRNA-

independent interaction of Roquin1 with members of the CCR4-CAF1-NOT complex [209]. 

Additionally, the C-terminus of Roquin1 and 2 harbors an extended proline-rich sequence 

stretch, a motif commonly found in signaling adaptor proteins, such as spliceosomal proteins 

[187]. The functional relevance of Gly/Asn-rich stretches or of a bioinformatically predicted 

coiled-coil region in the C-terminus of Roquin1 has not been investigated, but they could 

represent sites essential for formation of RNP complexes or protein-protein interactions [187]. 

Zhang and colleagues postulated that in solution and in absence of bound mRNAs, the N- and 

C-terminal part of HEPN align and move together with the RING domain, independent of the 

ROQ domain which moves together with the ZF domain [197, 203]. This could facilitate a 

cooperative scanning of mRNA targets.  

2.5 Roquin in T cells 

Since T cells were demonstrated to be the cause of the autoimmune syndrome in the 

Roquin1san/san mouse strain, most mouse models were designed to unravel the function of 

Roquin proteins in the T cell compartment to identify signs of a lupus-like phenotype. 

Strikingly, the systemic ablation of Roquin1 in mice resulted in perinatal death, which could 

be partially rescued by crossing the complete knockout onto an outbred genetic CD1 

background [212]. Surprisingly, the ablation of Roquin1 did not cause overt autoimmunity, 

although it resulted in elevated ICOS expression through T cell-intrinsic and -extrinsic 

mechanisms. Furthermore, absence of Roquin1 in T cells in CD4cre/+ (cre: inserted, wild type: 

+) Roquin1F/F mice did not lead to an increase in Treg or TFH cell differentiation or formation 

of spontaneous GCs, although an increase of CD8+ SLEC-like cells in peripheral lymphoid 

organs was noted [212]. The discrepancy between the Roquin1san/san mice and Roquin1-

knockout mice pointed to a compensatory role for Roquin2 in case of Roquin1 deficiency. 

Further analyses to clarify the causative alterations leading to aberrant TFH differentiation in 

the sanroque strain resulted in identification of the function of IFNγ in the pathology [167]. 

Systemic Roquin2 deficiency causes postnatal death with delayed kinetics compared to 

systemic Roquin1 ablation, which could be rescued in the same manner as the Roquin1 
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complete knockout. Mice with systemic Roquin2 deficiency as well as T cell-specific ablation 

of Roquin2 develop a normal immune system with unchanged ICOS levels on T cells [191]. 

The near-identical subcellular localization [165, 192], shared interaction with components of 

the RNA decay system, including enhancer of decapping Edc4 [191], and the striking 

sequence homology between the paralogs, especially in the protein regions attributed to 

functional domains, strongly argued for a compensatory role of Roquin2 in the case of 

Roquin1-deficiency, but not in the Roquin1san/san mutation. Indeed, mice with T cell-specific 

ablation of Roquin1 and 2 (CD4cre/+ Roquin1-2F/F) present many features of the Roquin1san/san 

mouse, such as splenomegaly, lymphadenopathy, increased frequencies of thymic and 

peripheral Treg cells and striking activation of CD4+ and CD8+ T cells, exceeding activation of 

these subsets observed in sanroque mice [191]. Likewise, ICOS levels on all T cells are 

increased even more than in the Roquin1san/san or CD4cre/+ Roquin1F/F mice, suggesting 

hypomorphic activity of the Roquin1san allele [191]. Despite elevated numbers of TFH and GC 

B cells comparable to the sanroque strain, CD4cre/+ Roquin1-2F/F do not produce similar levels 

of anti-nuclear antibodies (ANAs), potentially due to the demonstrated collapsed splenic 

microarchitecture in this mouse strain [191]. Absence or deficits of follicular structures, the 

underlying reason for the defective splenic structure, were observed already in young CD4cre/+ 

Roquin1-2F/F mice three weeks after birth [191]. In addition, Vogel and colleagues presented 

activation-induced tumor necrosis receptor superfamily 4 (Tnfrs4 or Ox40) as a third T cell-

specific target regulated by Roquin proteins. They showed binding of Roquin1 and 2 to the 

3'UTR of Ox40 mRNA and 3'UTR-dependent posttranscranscriptional repression of Ox40 

mRNA [191]. On the other hand, it remains elusive how Roquin proteins act in T cells to 

reduce the half-life of IFNg mRNA [167]. The concerted post-transcriptional gene regulation 

by Roquin1 and 2 together with Regnase1 was subsequently described to critically antagonize 

the differentiation of naive CD4+ T cells into IL-17 producing TH17 cells by repressing the 

TH17-promoting factors ICOS, IRF4, IL-6, c-Rel, IκBNS and IκBζ [199]. Furthermore, it was 

shown that Roquin1/2-deficient naive T cells, when stimulated under TH0 or TH1 conditions, 

differentiated at significantly increased frequencies into IFNγ-producing TH1 cells compared 

to wild type controls [199]. Remarkably, the thymic NKT cell compartment, a small subset of 

glycolypid-recognizing T cells that in mice mainly express a semi-invariant TCR [215], has 

recently been demonstrated to comprise a massively expanded NKT17 cell subset caused by 

increased NKT17 polarization of developing NKTs in CD4cre/+ Roquin1-2F/F. On the other 

hand, other NKT cell subsets are essentially absent in these mice [216].  
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In contrast to Roquin1/2-deficient conventional T cells, Roquin1/2-deficient NKT cells 

exhibit an impaired ability to secrete cytokines [216]. Due to the ability of Roquin paralogs to 

inhibit many terminal T cell differentiation fates by repressing key signaling mediators and 

the concomitant regulation of Roquin protein by MALT1 downstream of TCR signaling, it 

has been suggested that Roquin paralogs molecularly translate TCR and costimulatory 

signaling strength into graded expression of activation- or differentiation-inducing 

transcription factors [199]. In this model, TCR-based activation of MALT1 induces cleavage 

of Roquin paralogs to relieve repression of these factors [198, 199]. Besides these loss-of-

function studies on Roquin paralogs in T cells, also gain-of-function studies employing T cell-

restricted overexpression of Roquin1 in vivo and in cell lines were performed [217-219]. 

Surprisingly, mice with T cell-specific Roquin1 overexpression mount stronger immune 

reactions in models of arthritis and hepatitis, with expanded TH17 populations and elevated 

serum levels of IFNγ, IL-6 and TNFα [217, 218]. However, drawing definitive conclusions 

from this model has been obstructed by the reduced number of Treg cells in this model [217] 

and the pending requirement to analyze their suppressive function among other unresolved 

questions. Taken together, the tight regulation of mRNAs encoding mediators of T cell 

activation and differentiation by Roquin1 and 2 is essential for preventing the onset of the 

lupus-like phenotype observed in the sanroque mice. The Roquin paralogs are causaly linked 

to regulation of cell fate choices of naive T cells into TFH and TH17 cells and inhibition of 

NKT17 differentiation in thymic NKT cells. 

2.6 Roquin in B cells 

In contrast to the well-described role of Roquin paralogs in T cells, analyses of their function 

in B cells remain significantly less comprehensive. Bone marrow B cell numbers and early 

B cell development in the sanroque strain was reported to be unaltered, however the 

frequency of B220+ AA4.1+ immature B cells among CD19+ bone marrow B cells appears to 

be increased [161]. The increased ratio of GC B cells in mixed bone marrow chimeras, 

reconstituted with 50:50 san/wt compared to 50:50 wt/wt bone marrow, provided a first hint 

at a potential B cell-intrinsic function of Roquin1 in the GC reaction [161]. Furthermore, 

neither ablation of TFH cell development by systemic ablation of signaling lymphocytic 

activation molecule (SLAM)-associated protein (SAP) nor other means of ameliorating 

T cell-driven aspects of the lupus-like phenotype in the sanroque strain were able to cure 

splenomegaly, lymphadenopathy or hypergammaglobulinemia [162, 167].  
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Strikingly, systemic IFNγ-receptor deficiency in Roquin1san/san mice rescues the autoimmune-

phenotype, splenomegaly and lymphadenopathy, yet effects on excessive CSR in these mice 

were not conclusively shown. Additionally, in bone marrow reconstitution experiments 

designed to specifically address the pathomechanistic role of IFNγ signaling in T cells, a 

significant contribution of IFNγ signaling in non-T cell populations of the spleen to the 

increased GC B cell numbers in the sanroque phenotype was demonstrated [167]. Indications 

for a potential additional role of Roquin in sustaining self-tolerance in TI immune responses 

in FO and B1 B cells were obtained when the Roquin1san/san mice were crossed with Obf1 

complete knockout mice. In Obf1-/- mice, MZ B cells are absent and FO B cells lack the 

ability to undergo a GC reaction [220]. Remarkably, the hypergammaglobulinemia observed 

in Roquin1san/san Obf1-/- mice stems from specific generation of GC-independent IgM 

autoantibodies and selection of self-reactive B cells seems to occur independently of T cells 

[221]. A B cell-specific role of Roquin1 was more specifically interrogated in CD19cre/+ 

Rc3h1F/F mice [212]. These mice have enlarged spleens as a consequence of expanded 

populations of B cells, Treg cells, effector-like (CD44+ CD62Llo) CD4+ and CD8+ and 

eosinophils [212]. Moreover, the cell numbers of monocytic/macrophage and memory-like 

CD44+ CD62L+ CD4+ and CD8+ populations tended to be increased in this mouse line [212]. 

In contrast, ablation of Roquin1 in the whole hematopoietic system in Vavcre/+ Rc3h1F/F mice, 

did not cause an expansion of the splenic B cell compartment but a significant reduction of 

immature and mature recirculating B cell numbers in the bone marrow [212]. This early block 

in B cell generation in Vavcre/+ Rc3h1F/F mice could neutralize the B cell expansion observed 

by later ablation of Roquin1 in B lineage cells by CD19Cre. As Vavcre initiates 

recombination of loxP-flanked alleles in HSCs [222], every hematopoietic population is 

affected from its earliest stages onwards. Development of B cells in the bone marrow is 

largely an autonomous process driven by rearrangement of the IgH and IgL chain loci in 

defined stromal niches of HSC-independent origin [223]. Therefore, the partial block in B cell 

development observed in Vavcre/+ Rc3h1F/F mice suggested a regulatory role of Roquin 

paralogs in early B cell development.  
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II. Aim of the thesis 

Extensive work on the RNA-binding binding proteins Roquin1 and 2 characterized their 

function in sustaining peripheral tolerance in the germinal center reaction by antagonizing 

aberrant TFH development through post-transcriptional repression of key signaling mediators, 

including IFNγ, ICOS and OX40 [167, 191]. Furthermore, Roquin paralogs critically regulate 

T cell differentiation in TH17 cells and potentially TH1 cell fates as well as inhibiting NKT 

differentiation into NKT17 cells. Initial experiments indicated B cell-specific roles of 

Roquin1 in vivo. Additionally, at the time when this project was initiated, no cis-regulatory 

elements in Roquin1 and 2 target mRNAs were described and the molecular organization of 

the novel ROQ domain, its boundaries, as well as the mechanisms underlying binding of 

Roquin paralogs to an obscure mRNA target motif remained enigmatic.  

The objective of this thesis was to investigate the precise function of Roquin1 and 2 in early 

B cell development and peripheral B cell maturation in vivo. This research aim was 

complemented by efforts to molecularly characterize the binding of the ROQ domain to target 

mRNAs. Together, my objectives should unravel the roles of Roquin1 and 2 in 

B lymphocytes in physiology and pathology, the central aim of this thesis. 

In achieving these aims, the following conclusions were made in my research and are further 

presented in the results part of this thesis: 

1. Roquin family proteins are central regulators of B cell lymphopoiesis in the bone 

marrow and early B cell physiology. 

2. Roquin proteins regulate the maturation, activation and differentiation of peripheral 

B cells.  

3. Roquin proteins bind target mRNAs directly through defined structural principles. 
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III. Material and Methods 

1. Basic materials, reagents and methods 

Main standard methods of extraction, purification, quantification, analysis and manipulation 

of DNA, RNA and proteins were essentially performed as stated in Sambrook et al. (1989) 

and Sambrook and Russel (2001), unless indicated otherwise in the following sections. 

Plasmid DNA isolation and gel extraction was performed employing kits from Qiagen and 

Macherey-Nagel.  

Reagents and materials for molecular biological methods were obtained from the following 

manufacturers: Invitrogen, New England Biolabs, Promega, Metabion, Eurofins, GenScript, 

and Thermo Fischer Scientific. 

Chemicals were purchased from: Applichem, Calbiochem, Fluka, Merck, Roth and Sigma-

Aldrich. 

Consumables were purchased from suppliers including BD Biosciences, Braun, Corning, 

Costar, Eppendorf, Greiner bio-one, Sarstedt and TPP. 

General lab equipment from the following suppliers was employed: Bio-Rad, Bosch, 

Eppendorf, Gilson, Heraeus, Integra, Liebherr, Thermo Fisher Scientific and Zeiss. 

2. Analyses of genetically modified mouse strains 

2.1 Genetically modified mouse strains 

All mouse lines described in this PhD thesis were maintained on a C57BL/6 genetic 

background. Mice were housed in specific pathogen-free animal facilities of the Max-Planck-

institute of biochemistry and the Klinikum rechts der Isar of the Technische University 

München. All animal procedures were approved by the Regierung of Oberbayern. 

Recombination of loxP flanked alleles in early B cell lymphopoiesis was realized by crossing 

these alleles to the Mb1cre mouse line [224]. Continiuous deletion of these alleles during B 

cell maturation was achieved employing crosses to the CD19cre mouse strain [225]. The 

IgHMOG and IgLD23κ knockin alleles encoding a prearragend IgH and Igκ light chain have been 

described previously [28, 226].  
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Most mice were sacrificed for experimental use at 8 weeks to a maximum of 24 weeks of age 

(termed “young”), depending on the genetic model, as specificied in the results part. 

Mb1cre/+ Rc3h1F/F-2F/F mice were analyzed at varying ages from 8 weeks to 1 year of age, to 

ensure stability of the phenotype (data not shown).  

2.2 Genotyping of mouse strains 

Genomic DNA was prepared from mouse earclip biopsies. The genotyping PCR for the 

IgHMOG allele was established during the course of this work, to circumvent flow cytometry 

based genotyping. The primers used for genotyping are listed in Table 1.  

Table 1: Genotyping oligonucleotide primers. 
Sequences are shown in 5' to 3' orientation; for forward, rev reverse. 

Designation Direction Sequence 

Mb1cre 

for 
for 
rev 
rev 

ACC TCT GAT GAA GTC AGG AAG AAC 
CTG CGG GTA GAA GGG GGT C  

GGA GAT GTC CTT CAC TCT GAT TCT 
CCT TGC GAG GTC AGG GAG CC 

CD19cre 
for 
rev 
rev 

CCC AGA AAT GCC AGA TTA 
AAC CAG TCA ACA CCC TTC C 

CCA GAC TAG ATA CAG ACC AG 

Rc3h1 
for 
for 
rev 

AAA GCC CTC AAG ATT CTT TGG GCA 
GTA AAT GAG ATT CAG TGT GTC CAG 
TAC AAG GTA GAG ACG TTT GGG AAG 

Rc3h2 
for 
for 
rev 

TGC AGC CAC CTC ATA TTA AC  
GCC CAC AGT CTT ATT GGA TG 

CCA TGT TTT ATT AGC AGG CAC 

IgHMOG 
for 
for 
rev 

AGA ATG GCC TCT CCA GGT CT 
CCT GCA AGG CTA CTG GCT AC 
TCT CCA ACT ACA GCC CCA AC 

IgLD23κ 
for 
rev 

CTT GGC TTG GTA CCA GC 
TTC AGC TCC AGC TTG GTC 

R26CARStopFL 
for 
for 
rev 

AAA GTC GCT CTG AGT TGT TAT 
GGA GCG GGA GAA ATG GAT ATG 

GGG CTA TGA ACT AAT GAC CCC G 

2.3 Mouse organs employed for analyses 

For analyses of bone marrow, two femurs and two tibias were used and total bone marrow 

cell numbers are based on the number of cells obtained from these bones.  
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Numbers of Peyer's Patches or mesenteric lymph nodes are based on total number of 

lymphoid structures removed. Samples resulting from lavage of peritioneal cavity were 

excluded if erythrocytes were visible by the naked eye. 

2.4 Flow cytometry 

Single cell suspension were prepared from mouse lymphoid organs, red blood cell lysis was 

performed using Gey's solution. Fc receptors were blocked by incubation with anti-mouse 

CD16/CD32 (clone 93, eBioscience) to reduce unspecific antibody binding before extra- and 

intracellular staining of single cell suspensions with antibodies listed in Table 2 or peanut 

gglutinin (PNA, Vector Laboratories). Streptavidin fluorophore conjugates (BD Biosciences, 

BioLegend, eBioscience) were used to visualize biotinylated primary antibodies. The FoxP3-

transcription factor staining buffer kit (eBioscience) was employed according to the 

manufacturer's protocol for intracellular stainings. Analyses of viable cells was ensured by 

applying 7-AAD staining solution (7-amino-actinomycin D, eBioscience) or live/dead fixable 

near-IR (infrared) dead cell staining kit (Invitrogen). Primary intracellular Bim staining (clone 

C34C5, Cell signaling, host: rabbit) was visualized by secondary staining using rabbit specific 

fluorophore conjugates, as described before [227]. Single cell analyses were based on 

consecutive gating for FSC-H/-A and SSC-W/-A properties. Visualization of DNA content 

for in vitro cell cycle analyses was achieved using DRAQ5 (Abcam) and was based on BrdU 

in in vivo analyses as correlate of proliferation. For BrdU analyses, 2mg of diluted BrdU (BD 

Biosciences) were injected intra-peritoneally into mice. Mice were sacrificed, single cell 

suspensions prepared and intracellular BrdU (BD Biosciences) staining preformed according 

to the manufacturer's protocol. Analyses of apoptotic cells were performed using 7-AAD in 

combination with either the CaspGlow active staining kit (flourescein, BioVision) or the 

AnnexinV apoptosis detection kit (APC, eBioscience) according to the manufacturer's 

instructions. 

A FACS Canto II (BD Biosciences) flow cytometer was used for sample acquisition and cells 

were sorted on a FACS Aria II or a FACS Aria III (BD Biosciences). 

2.5 Magnetic activated cell sorting (MACS) 

Single cell suspensions were labelled with anti-CD43 magnetic microbeads (Miltenyi Biotec) 

according to the manufacturer's protocol. Labelled samples were separated on an AutoMACS 
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Pro Separator (Miltenyi Biotec) machine employing the recommended program for negative 

depletion.  

Table 2: Flow cytometry antibodies. 
Antibodies employed in flow cytometry together. Information on recognized antigens in cluster of differentiation 
(CD) and alternative nomenclature, clone number manufacturer are listed. 

Specificity Clone Manufacturer Specificity	 Clone	 Manufacturer	
AA4.1/CD93 AA4.1 eBioscience CD86 GL1 eBioscience 

Aiolos 8B2 eBioscience CD95/Fas Jo2 BD Biosciences 

B220 RA3-6B2 
eBioscience, 
BioLegend 

CD117/c-kit 2B8 eBioscience 

BCL6 K112-91 BD Biosciences CD127/IL-7Rα SB/199 eBioscience 

CAR Rmcb Millipore CD184/CXCR4 2B11 eBioscience 

CD1d 1B1 eBioscience FcεRIα MAR-1 eBioscience 

CD3 500A2 eBioscience F4/80 CI:A3-1 AbD serotec 

CD4 RM4-5 eBioscience Gr1 RB6-8CS eBioscience 

CD5 53-7.3 eBioscience IRF4 3E4 eBioscience 

CD8a 53-6.7 eBioscience IRF8 V3GYWCH eBioscience 

CD11b/Mac1 M1/70 eBioscience IgM 
polyclonal 

II/41 
Dianova 

eBioscience 

CD11c N418 eBioscience IgMa DS-1 BD Biosciences 

FcγRIIB 
CD16/CD32 

93 eBioscience IgD 11-26c eBioscience 

CD19 
1D3 
6D5 

eBioscience, 
BioLegend 

IgE 23G3 eBioscience 

CD21/CD35 8D9 eBioscience Igκ 187.1 BD Biosciences 

CD23 B3B4 eBioscience Igλ (1, 2, 3) R26-46 BD Biosciences 

CD24 M1/69 eBioscience Ki-67 SolA15 eBioscience 

CD25 3C7, PC61.5 eBioscience λ5 LM34 BD Biosciences 

CD38 90 eBioscience MHC-II M5/114.15.2 eBioscience 

CD43 R2/60 eBioscience Siglec-F E50-2440 BD Biosciences 

CD44 IM7 eBioscience ST2/IL-33R RMST2-2 eBioscience 

CD62L MEL-14 eBioscience TCRβ H57-597 eBioscience 

CD69 H1-2F3 eBioscience Ter119 Ter119 eBioscience 

CD80 16-10A1 eBioscience ZAP70 1E7.2 RUO eBioscience 
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2.6 Primary mouse and mast cell culture 

B cells obtained from CD43-based MACS depletion or splenocytes were cultured in 

RPMI1640 GlutaMAX medium supplemented with 5% FCS, HEPES, NEAA, sodium-

pyruvate and penicillin/streptomycin (all Gibco). Stimulants were added for the following 

final concentrations: anti-CD40 4µg/ml (Sigman-Aldrich), anti-IgM 10 µg/ml (Jackson 

ImmunoResearch Laboratories), CpG 0.1 µM (InvivoGen) and LPS 20 µg/ml (Sigma-

Aldrich). KitcreERT2/+ Rc3h1-2F/F CARStopFL/StopFL mast cells were generated and treated as 

described elsewhere [228].  

2.7 Cloning the NFκbid reporter and Roquin1 expression constructs  

Golden Gate [229] and Gateway cloning (Invitrogen) methods were employed to generate the 

NFκbid reporter plasmids flanked by Sleeping Beauty transposon recognition sites [230]. 

Required modules for Golden Gate cloning were either present in the Schmidt-Supprian 

laboratory or cloned from existing plasmids in the course of this thesis. The Golden Gate 

module carrying the NFκbid sequence was amplified from genomic DNA of splenocytes and 

subsequently mutated using site-specific olignucleotide primer pairs.  

Expression constructs for crystallization purposes were cloned into pCoofy expression vectors 

employing the seamless ligation independent cloning (SLIC) method established by the core 

facilty of the MPI of biochemistry [231]. 

2.8 Mouse embryonic fibroblast (MEF) cell culture 

Wild type, Roquin1-2F/F and Roquin1-2Δ/Δ MEFs [191] were maintained in Dulbecco’s 

Modified Eagle’s Medium (DMEM) cell culture medium (Gibco) supplemented with 10% 

FCS, L-glutamine, NEAA, sodium pyruvate, HEPES and penicillin/streptomycin (Gibco) at 

37° C and 5% CO2. For the generation of MEFs stably expressing the NFκbid reporter, 

plasmids comprising the wild type or mutated reporter plasmids were cotransfected. MEFs 

were incubated for 14h with 2µM sterile recombinant His-TAT-NLS-Cre (HTNC) fusion 

protein [232] dissolved in serum free-media for deletion of loxP-flanked alleles and treated as 

described elsewhere [233].  
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2.9 Lentiviral transduction of MEF cells 

Roquin constructs were cloned into the pF 5x upstream activating sequence (UAS) vector. 

Transcription from this promoter is initiated upon binding of GEV16-ERT2. GEV16-ERT 

was transduced employing a separate lentiviral vector [234, 235]. 4-hydroxy tamoxifen 

treatment (100nM) induced nuclear localisation of GEV16-ERT2 resulting in the initiation of 

Roquin transcription. 

To generate lentiviral particles, HEK cells were transfected with packaging constructs psPAX 

and pMD2.G and the relevant lentiviral plasmid in a ratio of 2.5/1/1.5. Supernatant containing 

the virus of interest was harvested and filtered after 48h. MEFs were spin-infected using this 

supernatant and 10 mg/ml polybrene. The medium was changed after 24h and antibiotic-

mediated selection of transduced cells was initiated. 2-5 µg/ml puromycin were added for 

selection of the pF 5xUAS construct and 100 µg/ml hygromycin were employed for selection 

of the GEV16-ERT2 construct. 	

2.10 Quantitative realtime-PCR (qRT-PCR) 

Total RNA was isolated from flow-cytometry sorted B cell populations using the RNeasy 

Plus Micro kit (Qiagen) according to the supplier's instructions. The First Strand cDNA 

Synthesis Kit (Fermentas) was employed in accordance with the supplier's protocol for 

preparation of cDNA. Gene expression analyses were based on the Roche Universal 

ProbeLibrary (UPL) system and performed according to the Roche protocol. Primers and 

probes employed are listed in Table 3. Samples for qRT-PCR analysis were run on the 

LightCycler (Roche). 

Table 3: Primer and probe setup for qRT-PCR experiments. 
Amplified targets of qRT-PCR reaction and employed UPL probe number and primer sequences are listed. 
Primer sequences are shown in 5' to 3' orientation; UPL Universal ProbeLibrary, for forward, rev reverse. 

Target Direction UPL probe number Primer sequence 

Rc3h1 
for 
rev 

17 
AAC CAG CAT TGG GCA TGT 

CTT CAT CAC GTT TGG TGA CCT 

Rc3h2 for 
rev 

31 
TTG GCA CTC TAC TTA AAA CCA CTA AG 

TCG CAT AGC TCT GAC ACG AC 

PBGD for 
for 

22 
CAG TGA TGA AAG ATG GGC AAC 

AAC AGG GAC CTG GAT GGT G 
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2.11 Western blot 

Protein extracts from whole cell lysates of defined cell numbers were prepared by incubation 

of cells for 30 min on ice in a RIPA lysis buffer (50mM Tris pH 7.5, 0.25% sodium 

deoxycholate, 150mM NaCl, 1% NP-40) comprising 1 mM DTT (dithiothreitol), 1mM PMSF 

(phenylmethylsulfonylfluorid), 5mM NaF (sodium fluorid), 1mM Na3VO4 (sodium 

orthovanadate), 8mM β-glycerophosphate, 10µg/µl leupeptin and 10µg/µl aprotinin. Protein 

samples were run and proteins separated by sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE, Bio-Rad) and blotted (Bio-Rad system) onto 0.45µM 

polyvinylidene fluoride (PVDF, Immobilon-P, Millipore) membranes, which were 

subsequently incubated with primary antibody against α-actinin (#3134, Cell Signaling) or 

serum containing polyclonal primary antibodies directed against Roquin1 and 2 [191] 

followed by incubation with HRP-conjugated secondary antibodies (Dianova). Blots were 

developed using a chemiluminescent HRP substrate (Immobilon Western, Millipore) on a 

digital imager (FLA 4000, GE Healthcare Life Sciences). 

2.12 Enzyme-linked immunosorbent assay (ELISA) 

ELISA was performed to determine serum concentrations of IL-6 and TNFα using kits (BD 

Biosciences) according to the supplier's protocols. Absolute concentrations were calculated 

based on serial dilutions. Tetramethylbenzidine (TMB) was used as an HRP-substrate (BD 

OptEIA, BD Biosciences). 

2.13 Data and statistical analyses and visualization 

Data from flow cytometry was analyzed with FlowJo (Treestar). The Watson pragmatic 

model of the FlowJo platform was applied for cell cycle analyses. The UPL assay design 

center software (Roche) was used to create gene-specific combinations of primers and UPL 

probes. Quantification of Western blot images was performed using ImageJ [236]. Excel 

(Microsoft) was employed for calculations. Statistical analyses and graphical representations 

were performed in R [237] and GraphPad Prism (GraphPad Software). Generally, visual 

representation of statistically not significant results is omitted, whereas statistical significance 

and p values are provided in the figure legends. Figures were prepared using Adobe illustrator 

(Adobe Systems) and this entire thesis was compiled in Word (Microsoft). 
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IV. Results 

1. Roquin family proteins are central regulators of B cell 

lymphopoiesis in the bone marrow and early B cell physiology 

1.1 Early loss of Roquin1 and 2 alleles perturbs bone marrow B cell 

lymphopoiesis at different time points  

To ablate the loxP-flanked Rc3h1 [212] and Rc3h2 [191] alleles in early B cell 

lymphopoiesis, I used the Mb1cre mouse strain (cre: inserted/+: wild type) in which Cre 

transcription is controlled by the B cell-specific Igα promoter (CD79a/mb1) [224]. In the 

Mb1cre mouse, loxP-flanked alleles are recombined with a high efficacy starting from the 

earliest pro B cell stage [224, 238]. Mice with an early B cell-specific inactivation of both 

Roquin1 and both Roquin2 alleles (Mb1cre/+ Rc3h1F/F-2F/F), of both Roquin1 and one Roquin2 

allele (Mb1cre/+ Rc3h1F/F-2F/wt) or ablation of Roquin1 or Roquin2 alone (Mb1cre/+ Rc3h1F/F, 

Mb1cre/+ Rc3h2F/F, respectively) were generated by crossing the relevant conditional, loxP-

flanked allele carrying mice with the Mb1cre mouse strain. For all studies employing Mb1cre-

based ablation of Rc3h1 and/or Rc3h2, age-matched Mb1cre/+ and loxP-flanked/wild type mice 

(collectively referred to as "controls" or "wild type controls") were used as pooled controls, 

since the Mb1cre/+mouse line does not show B cell-specific alterations [239, 240]. The effect 

of Rc3h1 ablation with or without additional inactivation of Rc3h2 alleles was studied in mice 

aged 8-20 weeks, while the consequences of Mb1cre-based Rc3h2 ablation alone was studied 

in 8-24 weeks old mice.  

Initial flow cytometric analyses of B cell lymphopoiesis in the bone marrow of young 

Mb1cre/+ Rc3h1F/F mice revealed a reduction of the percentage of immature and mature B cells 

(Fig. 4). Both bone marrow B cell populations were defined according to two different gating 

schemes yielding equivalent results. This prompted the investigation of redundant functions 

of Roquin2, which could potentially compensate the loss of Roquin1 during B cell 

lymphopoiesis. Mb1cre/+ Rc3h1F/F-2F/F mice developed normally and no alterations in mouse 

weight or total number of cells in the bone marrow at time of analysis were detected (Fig. S1).  
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Figure 4: Reduction of immature and mature B cells in the bone marrow of Mb1cre/+ Rc3h1F/F mice. 
Representative flow cytometry plots of immature and mature B cells illustrating two possible gating strategies 
based on (A) IgD (mature B220+ IgD+; immature B220+ IgD- IgM+) or (B) AA4.1 (mature B220+ AA4.1-; 
immature B220+ AA4.1+) expression. Gates depict proportions of viable lymphocytes if not indicated otherwise 
and percentages of these gates refer to an individual, representative experiment; Mb1cre/+ and wild type mice 
(collectively referred to as controls) were used as controls for comparison of Mb1cre based experiments if not 
mentioned otherwise.  

Mb1cre-mediated Rc3h1/2-deficiency causes a nearly complete loss of mature and immature 

B cell numbers in the bone marrow (Fig. 5A). Furthermore, whereas total pro B cell numbers 

are unchanged, a dramatic loss of pre B cells can be detected (Fig. 5B, 6). Within the pre B 

cell compartment, the number of large pre B cells in Mb1cre/+ Rc3h1F/F-2F/F mice is massively 

reduced and equals approximately one fourth of that in controls.	However, the diminution of 

small pre B cells is even more pronounced, as small pre B cell numbers in Mb1cre/+ Rc3h1F/F-

2F/F mice are almost reduced tenfold compared to controls (Fig. 5B, 6). As we observed 

dramatic defects in early B cells development, we included Mb1cre/cre mice in our experiments. 

Mb1cre/cre mice represent functional Igα knockouts and B cell lymphopoiesis is therefore 

arrested at the late pro B stage with VHDJH rearrangement producing functional IgH chains 

[241]. The B cell numbers determined in these mice were compared to the numbers in 

Mb1cre/+ Rc3h1F/F-2F/F and control mice and thus serve as an additional control to further 

characterize the apparent block of bone marrow B cell development in Mb1cre/+ Rc3h1F/F-2F/F 

mice. There are significantly fewer late pro B cells in Mb1cre/+ Rc3h1F/F-2F/F than in Mb1cre/cre 

mice (Fig. 5B, 6), where this population is expanded due to the developmental block. Late pro 

B cells are defined in this thesis as CD19+ B220lo ckit+ B cells to distinguish them from their 

developmental precursors, CD19- B220lo ckit+ prepro B cells.  
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Figure 5: Bone marrow B cells of Mb1cre/+ Rc3h1F/F-2F/F and Mb1cre/+ Rc3h1F/F-2F/wt mice. 
Representative flow cytometry plots depicting the gating strategy for bone marrow B cells (A) of mature and 
immature B cells and (B) pro and pre B cell subsets within the pro/pre B cell compartment. Gated B cell subsets: 
prepro B B220lo CD19- c-kit+ CD25- IgD- IgM-; late pro B B220lo CD19+ c-kit+ CD25- IgD- IgM-; pro B B220lo 
c-kit+ CD25- IgD- IgM-; pre B B220lo CD19- c-kit- CD25+ IgD- IgM-; large pre B B220lo CD19- c-kit- CD25+ 
IgD- IgM- FSChi; small pre B B220lo CD19- c-kit- CD25+ IgD- IgM- FSClo; pro/pre B B220lo IgD- IgM+. 
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Figure 6: Pre B cell numbers are severely diminished in Mb1cre/+ Rc3h1F/F-2F/F mice, reduced in Mb1cre/+ 
Rc3h1F/F-2F/wt mice and not significantly decreased in Mb1cre/+ Rc3h1F/F mice. 
Total cell numbers of indicated bone marrow B cell populations as determined by flow cytometry. Gating 
strategy is shown in Fig. 5. BM: bone marrow; #: number. Numbers below bars show mean values (x 106). 
****p ≤ 0.0001, **p ≤ 0.01, *p ≤ 0.05, ANOVA. Significances for Mb1cre/cre versus Mb1cre/+ Rc3h1F/F-2F/wt and 
versus Mb1cre/+ Rc3h1F/F are not shown. Since the pro B cell compartment essentially comprises prepro and late 
pro B cells and pre B cells contain large and small pre B cells, I have omitted information on pro and pre B cells 
if data on prepro or late pro and large and small pre B cells was available. 

Pre B cells are strongly reduced in Mb1cre/+ Rc3h1F/F-2F/F mice, while the B cells detected in 

Mb1cre/cre mice beyond the pro B cell stage essentially represent background staining (Fig. 5B, 

6). Reduced pre B cell numbers were also observed in Mb1cre/+ Rc3h1F/F-2F/wt mice, albeit to a 

lesser extent, while there is no significant change at the pre B cell stage in Mb1cre/+ Rc3h1F/F 

mice. Immature B cells are almost completely absent and mature recirculating B cells are 

lacking completely in Mb1cre/+ Rc3h1F/F-2F/F mice (Fig. 7A, 7B). Correspondinly, cell counts 

of immature and mature B cells are strongly reduced in Mb1cre/+ Rc3h1F/F-2F/wt and are also 

significantly reduced in Mb1cre/+ Rc3h1F/F mice (Fig. 7A, 7B). Mb1cre-based ablation of 

Rc3h2 alone does not alter the total number of bone marrow cells nor the cell numbers of pro, 

pre and immature B cells, yet the number of mature recirculating B cells are significantly 

reduced (Fig. S2).  
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Figure 7: Bone marrow B cell development block in Mb1cre/+ Rc3h1F/F-2F/F and impediment in Mb1cre/+ 
Rc3h1F/F-2F/wt and Mb1cre/+ Rc3h1F/F mice.  
(A) Representative flow cytometry plots of immature and mature bone marrow B cells. (B) Percentages of 
immature and mature B cells of total BM cells and total immature and mature B cell numbers. BM: bone 
marrow. Numbers below graphs and bars represent mean percentages and cell numbers (#). ****p ≤ 0.0001, 
***p ≤ 0.001, **p ≤ 0.01, *p ≤ 0.05, ANOVA. Significances for Mb1cre/cre versus Mb1cre/+ Rc3h1F/F-2F/wt and 
versus Mb1cre/+ Rc3h1F/F are not shown. 

In conclusion, Roquin1 and 2 are crucial regulators of B lymphocyte development in the bone 

marrow and inactivation of all alleles culminates in a massive block of pro to pre B transition, 

while inactivation of two Roquin1 alleles or two Roquin1 alleles and one Roquin2 allele 

produces intermediate phenotypes. Roquin1 appears to fulfill a main regulatory function at 

the pro to pre and pre to immature B cell transition, whereas Roquin2 exerts redundant 

functions that can partially compensate loss of Roquin1.	
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1.2 Absence of peripheral B cells upon B cell specific Roquin1 and 2 

ablation and gene dosage effect on splenic B cell maturation 

As bone marrow B cell lymphopoiesis is severely blocked in Mb1cre/+ Rc3h1F/F-2F/F mice and 

strikingly impeded in Mb1cre/+ Rc3h1F/F-2F/wt and Mb1cre/+ Rc3h1F/F mice, I further 

investigated peripheral B cell stages [84]. Surprisingly, the weight of the spleens of Mb1cre/+ 

Rc3h1F/F-2F/wt and Mb1cre/+ Rc3h1F/F mice are increased while the increase in splenocyte 

numbers is less pronounced (Fig. 8A). The percentage of B cells among total splenocytes are 

reduced in these two mouse strains, yet total B cell numbers are unchanged as a consequence 

of slightly increased splenocyte numbers. This decline in percentage was noted in 

immature/transitional, mature and B1 cell populations in Mb1cre/+ Rc3h1F/F-2F/wt mice, while 

only the cell numbers of B1 cells are significantly reduced in this strain. In Mb1cre/+ Rc3h1F/F 

mice, there is an increment of percentage and total cell numbers of immature B cells, the 

ratios of mature and B1 cells among splenocytes are reduced with cell numbers remaining 

unchanged (Fig. 8B, 8C). In contrast, the weight of the spleens of Mb1cre/+ Rc3h1F/F-2F/F mice 

as well as the number of splenocytes in this line, are heavily diminished (Fig. 8A). Immature, 

mature and B1 B cell populations in the spleen are almost absent. Ratios and cell numbers 

determined for Mb1cre/cre mice were employed as a means to assess background staining and 

to identify B cell populations present or absent in Mb1cre/+ Rc3h1F/F-2F/F mice (Fig. 8B, 8C). 

This comparison demonstrates that the immature B cell population is the only population in 

which percentage of splenocytes and cell numbers are higher in Mb1cre/+ Rc3h1F/F-2F/F than 

Mb1cre/cre mice, establishing a complete absence of the mature splenic B cell populations and 

minimal counts for immature/transitional B cells in Mb1cre/+ Rc3h1F/F-2F/F mice. Spleen 

weight and splenocyte numbers are not altered in Mb1cre/+ Rc3h2F/F mice (data not shown), 

while the percentage of splenic B cells is reduced. A trend towards decreased total numbers of 

immature and mature B cells in the spleen of these mice is observed, but the differences did 

not reach statistical significance (Fig. S3). Further discrimination of immature/transitional 

splenic B cells based on surface expression of CD23 and IgM, yielded significantly reduced 

percentages and total numbers of CD23- IgM- and transitional T1 B cells in Mb1cre/+ Rc3h1F/F-

2F/F mice. Analysis of this CD23- IgM- subset was prompted by initial experiments indicating 

an increase of these cells (Fig. 9). In constrast, in Mb1cre/+ Rc3h1F/F mice there is a significant 

increase in percentage and total cell numbers of these splenic B cell subsets (Fig. 9, 10).  
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Figure 8 (previous page): Spleens and splenic B cells of Mb1cre/+ Rc3h1F/F-2F/F, Mb1cre/+ Rc3h1F/F-2F/wt and 
Mb1cre/+ Rc3h1F/F mice. 
(A) Representative flow cytometry plots depicting gating scheme for immature, mature, B1, B1a and B1b B 
cells. (B) Spleen weight and total splenocyte number. (C) Percentages of splenocytes and total cell numbers of 
indicated B cell subsets. SPL: spleen; n.d.: not depicted. Numbers below graphs and bars show mean percentages 
and cell numbers (#). ****p ≤ 0.0001, ***p ≤ 0.001, **p ≤ 0.01, *p ≤ 0.05, ANOVA. Significances for Mb1cre/cre 
versus Mb1cre/+ Rc3h1F/F-2F/wt and versus Mb1cre/+ Rc3h1F/F are not shown. Plots of gates on populations that 
were equal to or lower than 0.0% were omitted. 
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Figure 9 (previous page): Splenic B cells of Mb1cre/+ Rc3h1F/F-2F/F, Mb1cre/+ Rc3h1F/F-2F/wt and Mb1cre/+ 
Rc3h1F/F mice. 
Representative flow cytometry plots illustrating gating scheme for splenic (SPL) immature/transitional, mature 
and GC B cells. Gated B cell subsets: immature/transitional B B220+ AA4.1+; mature B B220+ AA4.1-; CD23- 
IgM- immature B B220+ AA4.1+ CD23- IgM-; transitional 1 (T1) B B220+ AA4.1+ CD23- IgM+; transitional 2 
(T2) B B220+ AA4.1+ CD23+ IgM+; transitional 3 (T3) B B220+ AA4.1+ CD23+ IgM-; follicular (FO) B B220+ 
AA4.1- CD21int CD1dint; marginal zone (MZB/MZP) B B220+ AA4.1- CD21hi CD1dhi; mature marginal zone 
(MZB) B220+ AA4.1- CD21hi CD1dhi CD23-; marginal zone precursor (MZB) B B220+ AA4.1- CD21hi CD1dhi 
CD23+; germinal center (GC) B B220+ Fas+ PNA+ CD19+ CD38lo. Plots of gates on populations that showed less 
than 100 events were omitted (n.d. not depicted).  

 

Figure 10: Essentially no B cell stages past transitional T1 found in spleens of Mb1cre/+ Rc3h1F/F-2F/F mice.  
Percentages of viable splenocytes and total cell numbers of indicated B cell subsets show graphs and bars are 
mean values. ****p ≤ 0.0001, ***p ≤ 0.001, **p ≤ 0.01, *p ≤ 0.05, ANOVA. Significances for Mb1cre/cre versus 
Mb1cre/+ Rc3h1F/F-2F/wt and versus Mb1cre/+ Rc3h1F/F are not shown.  

Since total transitional T2 B cell numbers in Mb1cre/+ Rc3h1F/F-2F/F mice are just marginally 

above the T2 B cell number calculated for Mb1cre/cre mice, and also mature B cell populations 

in the spleen are just minimally higher compared to Mb1cre/cre mice, I focused my analyses of 

naive and germinal center B cell populations on the Mb1cre/+ Rc3h1F/F-2F/wt and Mb1cre/+ 

Rc3h1F/F mouse lines. Naive B cells of transitional T2 and T3 and mature follicular (FO) and 

marginal zone precursor (MZP) type are reduced in percentage and cell numbers in Mb1cre/+ 

Rc3h1F/F-2F/wt mice but not in Mb1cre/+ Rc3h1F/F mice (Fig. 11). Interestingly, spontaneous 

germinal center (GC) B cells are expanded in percentage and total cell number specifically in 

Mb1cre/+ Rc3h1F/F mice (Fig. 11), as observed previously in CD19cre/+ Rc3h1F/F mice [212]. In 

Mb1cre/+ Rc3h2F/F mice there is a slight trend of reduction of naive B cell populations or GC B 

cell populations in the spleen but no significant alterations (data not shown). Next, I analyzed 

additional lymphoid organs for naive and germinal center B cell populations. B cells, and 

especially B1 cells are near absent in the peritoneal cavity of Mb1cre/+ Rc3h1F/F-2F/F mice and 

are significantly reduced in Mb1cre/+ Rc3h1F/F-2F/wt and Mb1cre/+ Rc3h1F/F mice (Fig. 12A, 

12B). In the latter two genotypes, reduction of B1a B cells is even more pronounced than 

reduction of B1b.  
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Figure 11: Reduction of splenic B cell populations in Mb1cre/+ Rc3h1F/F-2F/wt mice and expansion of the GC 
B cell subset in Mb1cre/+ Rc3h1F/F mice.  
Percentages of viable splenic cells and total cell numbers of indicated B cell subsets. T2: transitional 2; T3: 
transitional 3; FO: follicular; MZ: mature marginal zone; MZP: marginal zone precursor cells; GC: germinal 
center; SPL: spleen. Numbers below graphs and bars represent mean percentages and cell numbers (#). ***p ≤ 
0.001, **p ≤ 0.01, *p ≤ 0.05, ANOVA.  

Remarkably, Peyer’s patches (PPs) are generally absent in Mb1cre/+ Rc3h1F/F-2F/F mice and 

therefore no B cells or GC B cells could be detected in PP of this strain. Furthermore, B cells 

and spontaneous GC B cells in mesenteric lymph nodes (mLN) are almost completely missing 

in in these mice (Fig. 13A, 13B). Similarly in Mb1cre/+ Rc3h1F/F-2F/wt mice the total number of 

cells in PPs tends to be reduced (Fig. 13B). B cells and spontaneous GC B cells are reduced in 

percentage and cell number in mLN of these mice. While B cell percentages and numbers in 

PP are also decreased, the ratio of spontaneous GC B cells in PPs of the Mb1cre/+ Rc3h1F/F-

2F/wt mouse strain is not altered compared to controls (Fig. 13B). In mLN of Mb1cre/+ Rc3h1F/F 

mice, percentage and cell number of B cells are decreased, while GC B cells are unchanged. 

The percentages and total B cell numbers in the PPs of Mb1cre/+ Rc3h1F/F mice are unchanged. 

Remarkably, the percentage of GC B cells but not the total cell number is significantly 

increased, despite unchanged total cell counts in PP (Fig. 13), possibly due to the low sample 

number (n=3).  
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Figure 12: Peritoneal cavitiy B cells of Mb1cre/+ Rc3h1F/F-2F/F, Mb1cre/+ Rc3h1F/F-2F/wt and Mb1cre/+ Rc3h1F/F 
mice. 
(A) Representative flow cytometric analysis of peritoneal cavity (PC) B cells. (B) Percentages of indicated B cell 
subsets among viable peritoneal cavitiy cells and total cell numbers. Numbers below graphs and bars show mean 
percentages and cell numbers (#). ****p ≤ 0.0001, ***p ≤ 0.001, **p ≤ 0.01, *p ≤ 0.05, ANOVA. Significances 
versus Mb1cre/cre were not determined since only two data points were obtained. Plots of gates on populations that 
showed less than 100 events were omitted (n.d. not depicted). 
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Figure 13: B and GC B cells of Mb1cre/+ Rc3h1F/F-2F/F, Mb1cre/+ Rc3h1F/F-2F/wt and Mb1cre/+ Rc3h1F/F mice in 
the GALT.  
(A) Representative flow cytometric analysis of B and GC B cells in the GALT (mLN shown here, PP not 
shown). (B) Percentages of B cell subsets among viable cells of mLN or PP and total cell numbers as indicated. 
GALT: gut-associated lymphoid tissue; mLN: mesenteric lymph nodes; PP: Peyer’s patches; GC: germinal 
center. Numbers below graphs and bars represent mean percentages and cell numbers (#). ****p ≤ 0.0001, ***p 
≤ 0.001, **p ≤ 0.01, *p ≤ 0.05, ANOVA. Significances versus Mb1cre/cre were not determined since only two data 
points were obtained. Calculated cell numbers of < 100 were rounded to 0 and denoted as ≈0.0. 
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The B cell populations observed in peritoneal cavity or gut-associated lymphoid tissue B cell 

populations in Mb1cre/+ Rc3h2F/F mice did not differ from control mice (data not shown). 

These findings indicate a gene-dosage effect of ablation of Roquin1 and 2 on peripheral B cell 

development and post-activation behavior. Complete loss of both Roquin1 alleles seems to 

only sligthly impact peripheral B cell development but causes a B cell-activating effect, as 

judged by the increase in germinal center B cell numbers. Ablation of Roquin1 together with 

loss of one or both alleles of Roquin2 impedes peripheral B cell development severely, 

culminating in virtual absence of peripheral B cells in the double knockout. B1 cell 

development appears to be more sensitive to loss of Roquin proteins, as it is already 

significantly inhibited by B cell-specific loss of Roquin1 alone. Interestingly, B1b 

development appears less affected by loss of Roquin proteins.  

1.3 Highly efficient ablation of Rc3h1 and 2 from pro B to immature B cells 

in the bone marrow of Mb1cre/+ Rc3h1F/F-2F/F mice 

In order to monitor efficiency of Mb1cre-mediated inactivation of Roquin1/2 alleles, qRT-

PCR analysis was performed to detect Rc3h1 and 2 mRNA in flow cytometry-sorted pro B, 

pre B and immature B cells of Mb1cre/+ Rc3h1F/F-2F/F mice (Fig. 14A). Primers were designed 

such that they only amplify cDNA derived from the loxP-flanked, but not the recombined 

mRNA (Fig. 14B). This analysis demonstrates the presence of intact Rc3h1 mRNA in 6% of 

pro B and pre B cells and 4% in immature B cells as well as remaining expression of intact 

Rc3h2 mRNA in 3% of pro B and pre B cells and 1% in immature B cells (Fig. 14A). 6% of 

RNA expression can come from two intact Roquin alleles in 6% of the cells or from one 

intact Roquin allele in 12% of the cells. Therefore, assuming that no cell retains more than 

one intact loxP-flanked Roquin1 or Roquin2 allele, a maximum of 18% (12% Rc3h1 + 6% 

Rc3h2) pro B, 18% of pre B and 10% of immature B cells may still express one intact Rc3h1 

or 2 allele. This analysis thus suggests that subsequent analyses were performed in cell 

populations where at least 82% of cells completely lacked Roquin. Analysis of Roquin1 and 2 

protein levels in pro and pre B cells by Western blotting was precluded by the small number 

of cells that one can isolate from Mb1cre/+ Rc3h1F/F-2F/F mice. To date, no antibodies are 

available to detect Roquin proteins in intracellular flow cytometry experiments.  

To identify cells in which Cre-mediated recombination had occurred at the single cell level 

through an indirect approach, I therefore employed the R26/CAG-CARΔ1StopF (R26CARStopFL) 

allele (Fig. 14C, 14D) [242]. These cells start expressing a truncated version of the human 
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coxsackie adenovirus receptor (CARΔ1, for simplicity also referred to as CAR) upon excision 

of a loxP-flanked stop cassette by Cre. CAR expression can be monitored by flow cytometry 

with antibodies directed against CAR. Hence, Cre-induced intracellular or surface expression 

of CAR functions as an indirect assessment of recombination status of other loxP-flanked 

alleles within the same cell subset. Experiments assessing CAR expression were performed in 

8 to 28 weeks old mice. The proportion of CAR expressing B cells in Mb1Cre R26CARStopFL 

mice is lowest among pro B cells and then increases to over 90% from the small pre B cell 

stage onwards. The proportion of CAR-expressing pro B cells is lower than expected from 

Mb1cre-mediated expression of YFP [240] and might indicate a temporal delay of CAR 

surface expression. CAR expression is significantly reduced on all bone marrow B cell 

populations, except small pre B cells, of Mb1cre/+ Rc3h1F/F-2F/F R26CARStopFL mice compared 

to corresponding subsets of Mb1cre/+ R26CARStopFL control mice (Fig. 14D). This decrease in 

CAR expression on bone marrow B cells from Mb1cre/+ Rc3h1F/F-2F/F R26CARStopFL mice, 

which is most apparent at the large pre B cell stage, is indicative of a selective advantage of 

cells with delayed or incomplete Cre-mediated recombination. The drop in CAR expression in 

B cell populations from Mb1cre/+ Rc3h1F/F-2F/F R26CARStopFL compared to Mb1cre/+ 

R26CARStopFL mice corresponds quite well to the estimation of cells still expression one intact 

Roquin1 or 2 alleles based on RNA expression. Pro B: 19% less CAR+ cells, 18% of cells 

retain maximally one Roquin allele; large pre B: 29% less CAR+ cells, small pre B: 5% less 

CAR+ cells, total pre B: 18% of cells retain maximally one Roquin allele; immature B: 23% 

less CAR+ cells, 10% of cells retain maximally one Roquin allele. The high percentages of 

CAR+ pro, pre and immature B cells in Mb1cre/+ Rc3h1F/F-2F/F R26CARStopFL mice thus 

underscore the notion that these cell populations are only slightly counterselected. 

Specifically, the percentage of CAR+ double-deficient small pre B cells is not reduced, 

indicating that those double-deficient B cells that pass the pre-BCR checkpoint stage at the 

large pre B cell stage can differentiate normally into small pre B cells. In contrast, mature 

Roquin1/2-deficient bone marrow B cells are strongly counterselected in Mb1cre/+ Rc3h1F/F-

2F/F R26CARStopFL mice, evidenced by a reduction of 70% of CAR+ cells in AA4.1- B cells and 

59% of CAR+ cells in IgD+ cells compared to Mb1cre/+ R26CARStopFL mice (Fig. 14D). 

Correspondingly, CAR levels steadily decline from transitional T1 over T2/T3 to any mature 

B cell subset in Mb1cre/+ Rc3h1F/F-2F/F R26CARStopFL mice, mirroring B cell numbers 

determined for these subsets (Fig. S4). Likewise, CAR expression is near absent in double-

deficient B cells analyzed from peritoneal cavity or mesenteric lymph nodes.  
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Figure 14: Analyses of Rc3h1-2 deletion in BM B cells of of Mb1cre/+ Rc3h1F/F-2F/F mice by qRT-PCR and 
employment of R26CARStopFL reporter allele. 
(A) Indicated bone marrow B cell subsets were sorted. Measured Rc3h1-2 mRNA levels were normalized to 
PBGD and relative expression compared to Mb1cre/+ controls is depicted. (B) Schematic on the design of the 
qRT-PCR assays for Rc3h1 and 2, indicating position of primers (arrows), probes and loxP sites in intact (loxP-
flanked) and rearranged (ablated) loci as well as the distance between the involved exons. (C) Representative 
flow cytometric analysis of cell surface expression on indicated B cell subsets of the CAR reporter after Mb1cre-
mediated deletion. The dotted line indicates CAR expressing (CAR+) cells. (Continued on next page)  
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(D) Percentages of CAR+ B cells among the respective subsets. Black * represent significant differences of 
Mb1cre/+ Rc3h1F/F-2F/F R26CARStopFL versus Mb1cre/+ Rc3h1F/F-2F/wt R26CARStopFL or Mb1cre/+ R26CARStopFL B cells as 
indicated by position of the *, gray * describe significant differences of Mb1cre/+ Rc3h1F/F-2F/wt R26CARStopFL 
versus Mb1cre/+ R26CARStopFL B cells. CAR signal on respective B cell populations in wt and Mb1cre/+ mice was 
always < 1% (data not shown). Mature recirculating B BM B cells were included despite near absence in 
Mb1cre/+ Rc3h1F/F-2F/F R26CARStopFL mice to highlight counterselection. Gated B cell subsets: pro B B220lo c-kit+ 
CD25- IgD- IgM-; large pre B B220lo c-kit- CD25+ IgD- IgM- FSChi; small pre B B220lo c-kit- CD25+ IgD- IgM- 
FSClo; AA4.1+ immature B B220+ IgM+ AA4.1+; IgD- immature B B220+ IgD- IgM+, AA4.1- mature B B220+ 
IgM+ AA4.1-; IgD- immature B B220+ IgD+, BM: bone marrow; fw: forward; rv: reverse; R: Rc3h. Bars 
represent means and error bars standard deviation. ****p ≤ 0.0001, ***p ≤ 0.001, **p ≤ 0.01, *p ≤ 0.05, 
ANOVA. 

There are no recombined splenic T cells, as judged by CAR expression, confirming B cell 

specificity of Rc3h1 and 2 ablation. The lack of significance of observed reductions of CAR 

expression percentages on B cells of Mb1cre/+ Rc3h1F/F-2F/wt R26CARStopFL mice, might be due 

to the low number of mice analyzed (n=3) (Fig. 14C, 14D, S4). The reduction of pre, 

immature and mature recirculating B cells of Mb1cre/+ Rc3h1F/F-2F/wt R26CARStopFL expressing 

CAR compared to Mb1cre/+ R26CARStopFL control mice, coincides with the observed partial 

impairment of pre to immature B cell transition in these mice (Fig. 14C, 14D). Similarly, 

CAR expression is significantly reduced on splenic T3 and mature B cell populations, most 

significantly on follicular B cells as well as germinal center B cells and B cells from 

mesenteric lymph nodes and Peyer’s patches of Mb1cre/+ Rc3h1F/F-2F/wt R26CARStopFL mice 

compared to Mb1cre/+ R26CARStopFL mice (Fig. S4). Surprisingly, more innate like B cell 

populations, such as marginal zone B or B1 cell subsets in these mice, do not show reduced 

recombination efficiencies, as assessed by CAR, compared to respective Mb1cre/+ R26CARStopFL 

controls (Fig. S4). In summary, ablation of Roquin1 and 2 by Mb1cre occurs very early and 

very efficiently in B cell development. Roquin1-deficient B cells additionally missing one 

allele of Roquin2 are under slight counterselection during B cell development and maturation 

in the bone marrow and periphery. Roquin1/2-deficient B cells are under strong 

counterselection at the large pre B cell stage and from the immature B cell stage onwards. 

However, unchanged CAR levels at the small pre B cell stage indicate that a double-deficient 

B cell, which has passed the pre-BCR checkpoint at the large pre B cell stage can mature 

normally into a small pre B cell.  
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1.4 Rc3h1 and 2 are pivotal for normal expression of IgH and IgL chains in 

bone marrow B cells 

Successful somatic rearrangement of VH, DH and JH segments at the pro B cell stage results in 

a variable region VHDJH exon, which allows for subsequent expression of µ heavy chain 

protein (µHC) [19]. Most commonly, differentiation proceeds to the pre B cell stage by 

pairing of µ to surrogate light chain to generate the pre-BCR, an Igα/β-dependent signaling 

unit [19, 243, 244]. To investigate if pre-BCR assembly or signaling might be affected by loss 

of Roquin1 and 2, I performed intracellular staining for the pre-BCR components λ5 and µHC 

(Igµ) in bone marrow B cells (Fig. 15, 16). The percentage of pro/pre B cells (B220lo surface 

IgM-), which express an intracellular µHC, is massively decreased in Mb1cre/+ Rc3h1F/F-2F/F 

mice (Fig. 15B, 16B). Percentages of µHC+ pre and immature B cells in these mice are 

immensely reduced (Fig. 15B), whereas intracellular µHC expression levels are unchanged or 

even increased (small pre B and immature B cells) in µHC+ double-deficient bone marrow B 

cell populations compared to controls (Fig. 15B, 15C). Similarly, percentages of intracellular 

µHC+ pro/pre B cells and total µHC+ pro/pre B cell numbers are reduced in Mb1cre/+ 

Rc3h1F/F-2F/wt mice (Fig. 15B, 16B) and expression levels in µHC+ cells are unchanged (Fig. 

15C).  
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Figure 15: Reduced percentage of intracellular µHC (Igµ) expression at the pro to pre B transition in 
Roquin1/2-deficient B cells. 
(A) Representative flow cytometric analysis of intracellular (IC) protein expression of IgM (Igµ). (Continued on 
next page)  
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The antibody employed for IgM detection binds to Ig heavy chain (HC), thus detects exclusively intracellular 
µHC expression in pro and pre B cells and µHC bound to Ig light chain as IgM in immature B cells. In this 
thesis, this intracellular detection is collectively referred to as Igµ or µHC. (B) Representative histogram 
overlays of IC µHC expression in indicated B cell populations, numbers are median percentages with standard 
deviation and significances. µHC expressing cells are denoted as µHC+. (C) Flow cytometric determination of IC 
protein expression of Igµ relative to immature control B cells in denoted IC µHC+ bone marrow (BM) B cell 
populations. In (B) and (C) B cells from Mb1cre/cre mice were excluded from pre and immature analyses. BM: 
bone marrow; sIgM: surface IgM; n.d.: not determined. Bars represent means and error bars standard deviation. 
****p ≤ 0.0001, ***p ≤ 0.001, **p ≤ 0.01, *p ≤ 0.05, (B) ANOVA, (C) 2way ANOVA with Tukey test applied. 

	

Figure 16: Analysis of intracellular expression of λ5 and µHC (Igµ) in B220lo IgM- pro/pre B cells. 
(A) Representative flow cytometric analysis of intracellular (IC) expression of λ5 and Igµ in the pro/pre (B220lo 
IgM-) B cell compartment. (B) Total cell number of pro/pre B cells in the designated IC λ5 and Igµ expression 
stages; Igµ+ denotes total IgM intracellular (IC) positive pro/pre B cells independent of IC λ5 expression as 
indicated by dotted line and shown in Fig. 15B. (B) Bars represent means and error bars standard deviation. B 
cells from Mb1cre/cre mice were excluded from pre and immature overlays. ****p ≤ 0.0001, ***p ≤ 0.001, 2way 
ANOVA with Tukey test applied. 
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Intracellular expression of λ5 is not affected by absence of Roquin proteins (Fig. 16A). 

Hence, expression of VpreB protein is presumably also not affected, since these surrogate light 

chain (SLC) proteins stabilize each other and no decrease of λ5 protein levels was noted (Fig. 

16) [245, 246]. Pro/pre B cells of Mb1cre/cre mice are arrested at an intracellular λ5 and Igµ 

double positive stage and cannot mature to a λ5- Igµ+ stage. This reflects the fact that the pre-

BCR cannot signal due to absence of Igα. In pro/pre B cells of Mb1cre/+ Rc3h1F/F-2F/F mice 

there is a tendency of decreased numbers of λ5+ Igµ+ pro/pre B cells and significantly 

decreased numbers of λ5- Igµ+ pro/pre B cells (Fig. 16). At the stage of λ5+ Igµ+ pro/pre B 

cells, the pre-BCR forms to signal downregulation of SLC components and the cell 

differentiates into a λ5- Igµ+ stage. Thus pairing of SLC to µHC appears still possible in the 

absence of Roquin1/2 proteins and differentiation to λ5- Igµ+ pre B cells can occur, but at a 

dramatically reduced rate with reduced levels of µHC. Yet, molecular events in the context of 

pre-BCR signaling events are certainly affected by loss of both alleles of Roquin1 and 2, 

respectively. This phenotype is similar but less pronounced in Mb1cre/+ Rc3h1F/F-2F/wt mice 

(Fig. 16A, 16B). Moreover, I investigated the consequences of ablation of Roquin1 and 2 on 

expression of Ig light chain proteins and λ5 in bone marrow B cell subsets (Fig. 17). 

Regulation of λ5 expression and its downregulation in intracellular IgL chain (Igκ)+ pro/pre B 

cells of Mb1cre/+ Rc3h1F/F-2F/F and Mb1cre/+ Rc3h1F/F-2F/wt mice remains intact as determined 

by absence of intracellular λ5+ Igκ+ pro/pre B cells (Fig. 17A, 17B). Despite the massive 

percent reduction of intracellular Igκ+ or λ5- Igκ+ double-deficient pro/pre B cells, 

intracellular Igκ+ pro/pre and immature B cells are also present in Mb1cre/+ Rc3h1F/F-2F/F mice 

in contrast to Mb1cre/cre mice (Fig. 17B, 17C). Whereas the vast majority of Roquin1/2-

deficient pro/pre B cells fails to express Igκ, Igλ expression levels in these cells are similar to 

those controls (Fig. S5A). Furthermore, in contrast to Mb1cre/cre mice, Roquin1/2-deficient 

immature B cells exist and about 50% of these cells are intracellular Igκ+, which is 

significantly less compared to immature B cells with one allele of Roquin2 left (Fig. 17C). 

The population of intracellular Igκ+ immature B cells is reduced 43-fold compared to controls 

(Fig. 17C), yet intracellular expression levels of Igκ protein is not changed in these cells (Fig. 

17D). Subsequently, I analyzed light chain surface expression on immature B cells (Fig. 18). 

The percentage of Roquin1/2-deficient surface Igκ+ immature B cells is significantly reduced, 

whereas the percentage of surface Igλ+ immature B cells (Fig. 18B) or intracellular expression 

of Igλ protein in immature B cells of Mb1cre/+ Rc3h1F/F-2F/F mice (Fig. S5A).  
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Figure 17: Analysis of intracellular expression of Igκ in bone marrow B cells. 
(A) Representative flow cytometric analysis of (B220lo IgM-) pro/pre B cells stained intracellularly (IC) for λ5 
and Igκ as used in (B) is shown. (B) Percentages of respective subsets of pro/pre B cells. Igκ+ denotes total Igκ 
IC positive pro/pre B cells independent of λ5 IC expression (not shown in A), as indicated by the dotted line. (C) 
Representative histogram of immature B cells stained (IC) for Igκ expression, numbers are median percentages 
with standard deviation and significances. (D) Number of IC Igκ+ immature B cells and bar chart representation 
of IC Igκ protein expression in Igκ+ immature B cells. Immature B cells B220int IgM+. MFI: median fluorescence 
intensity. Bars represent means and error bars standard deviation. ****p ≤ 0.0001, ***p ≤ 0.001, **p ≤ 0.01, *p 
≤ 0.05, (B) 2way ANOVA with Tukey test applied or (C, D) ANOVA. 

Strikingly, the percentage of surface Igκ+ immature B cells is not altered in immature B cells 

that express at least one allele of Roquin proteins (Fig. 18B). However, as a consequence of 

severly reduced numbers of immature B cells are the percentages of Igκ+ and Igλ+immature B 

cells among total bone marrow cells was well as the total numbers of Igκ+ and Igλ+ immature 

B cells significantly reduced upon ablation of both alleles of Roquin1 compared to controls 

(Fig. 18B). 

Rc3h2-deficiency does not alter cytoplasmic expression of Igµ, Igκ (Fig. S5B-S5E) or Igλ 

(data not shown) in bone marrow B cells, nor does it change intracellular protein levels of Igκ 

or Igλ in splenic B cells (Fig. S5F). However, percentages and total cell numbers of Igκ+ as 

well as Igλ+ splenic B cells are reduced in Mb1cre/+ Rc3h2F/F mice (Fig. S6). This tendency 

was also observed in IgDlo IgMhi B cells of Mb1cre/+ Rc3h2F/F mice (Fig. S6).  
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Figure 18: Analysis of surface expression of Igκ and Igλ (Igλ1, 2 and 3) on bone marrow B cells of Mb1cre/+ 
Rc3h1F/F-2F/F, Mb1cre/+ Rc3h1F/F-2F/wt and Mb1cre/+ Rc3h1F/F mice. 
(A) Representative flow cytometric analysis of bone marrow (BM) B cells illustrating gating for surface Igκ+ and 
Igλ+ immature B cells. (B) Percentages of surface Igκ+ or Igλ+ immature B cells, percentage of Igκ+ or Igλ+ 
immature B cells of viable cells of BM and their total cell numbers (#). Numbers below graphs and bars show 
mean values. Calculated cell numbers of < 100 were rounded to 0 and denoted as 0.0. ****p ≤ 0.0001, ***p ≤ 
0.001, **p ≤ 0.01, *p ≤ 0.05, ANOVA. Significances for Mb1cre/cre versus Mb1cre/+ Rc3h1F/F-2F/wt and versus 
Mb1cre/+ Rc3h1F/F are not shown. 

Collectively these experiments suggest an important role of Roquin1 for correct expression of 

Igµ, Igκ and Igλ and/or signaling events mediated by pre-BCR or BCR in bone marrow 

B cells. Roquin2 has a partially substituting role for normal expression of heavy and light 

chain as well as for Igκ and Igλ expression on splenic B cells. 
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1.5 Severly reduced levels of mediators of IL-7R and pre-BCR signaling in 

Roquin1/2 double-deficient large pre B cells  

Having established that the pre-BCR can form in Roquin1/2 double-deficient pre B cells, I 

investigated the consequences of Roquin1/2 ablation on the protein levels of key molecules of 

pre-BCR and IL-7R signaling, two fundamental pathways for the transition of pro B into pre 

B and subsequently into immature B cells [60, 67]. The IL-7R is composed of IL-7Rα and the 

common γ chain. IL-7R signaling is pivotal for proliferation of pro B and large pre B cells 

[60]. Strikingly, the surface levels of IL-7Rα are significantly lower on large pre B cells of 

Mb1cre/+ Rc3h1F/F-2F/F and Mb1cre/+ Rc3h1F/F-2F/wt mice compared to controls but not on late 

pro B of these mouse strains (Fig. 19A, 19B). A significantly reduced percentage of 

Roquin1/2-deficient large pre B cells express high surface levels of IL-7Rα (IL-7Rαhi) (Fig. 

19A). Furthermore, the number of large pre B cells that express high surface levels of IL-7Rα 

are significantly reduced in Mb1cre/+ Rc3h1F/F-2F/F mice (Fig. 19A, 19C), suggesting that 

proliferative deficiencies at the large pre B cell stage might contribute to the observed block 

in these mice. In order to investigate if this defect in maintaining high surface levels of IL-

7Rα is specific to cells that have ablated Roquin1 and 2, I examined IL-7Rα expression on 

bone marrow B cells of Mb1cre/+ Rc3h1F/F-2F/F R26CARStopFL mice (Fig. 19D-19F). 

Remarkably, there are CAR+ double-deficient large and small pre B cells that express high 

surface levels of IL-7Rα (Fig. 19D, 19E), indicating that complete loss all Roquin alleles does 

not completelly prohibit IL-7Rα expression. However, the amount of IL-7Rα protein 

expressed is significantly lower on CAR+ large pre B cells of Mb1cre/+ Rc3h1F/F-2F/F 

R26CARStopFL and Mb1cre/+ Rc3h1F/F-2F/wt R26CARStopFL mice (Fig. 19F). Protein surface levels 

of IL-7Rα are not changed on large pre B cells of Mb1cre/+ Rc3h2F/F mice (Fig. S7A), which is 

in line with the unaltered bone marrow B cell development in these mice.  

Upregulation of CXCR4 surface levels, the chemokine receptor for CXCL12, on large pre B 

cells is essential for their migration towards CXCL12-expressing stromal cells, thereby 

attenuating IL-7R signaling and inducing Ig light chain rearrangement and ensuing 

differentiation into small pre B cells [78, 80]. Remarkably, fewer Roquin1/2 double-deficient 

large pre B cells upregulate CXCR4 surface protein levels and those that express high surface 

levels (CXCR4hi cells) fail to upregulate expression to the level on control large pre B cells, 

suggesting ensuing migratory defects (Fig. 20A, 20B). In addition to this protein level 

reduction on pre B cells, there is a severe decrease in cell numbers of CXCR4hi large pre B 

cells and ensuing stages in Mb1cre/+ Rc3h1F/F-2F/F (Fig. 20A, 20C). Egress from the bone 
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marrow requires a reduction of CXCR4 surface levels on immature B cells compared to small 

pre B cells. This was observed on control and Roquin1/2-deficient cells (Fig. 20A) and also 

the number of CXCR4hi cells declines in the immature B cell subset in Mb1cre/+ Rc3h1F/F-2F/F 

and control mice (Fig. 20C). Upregulation of CXCR4 surface levels through pre-BCR 

signaling is mediated by transcription factors IRF4 and IRF8, simultaneous to induction of 

IgL rearrangement [79, 247]. A similar percent of Roquin1/2-deficient small pre B cells 

compared to controls upregulate IRF4 protein expression to high levels (IRF4hi cells) (Fig. 

21A). Noteworthy, intracellular levels of IRF4 are higher in double-deficient IRF4hi late pro B 

cells compared to controls (Fig. 21B). 
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Figure 19: Large pre B cells of Mb1cre/+ Rc3h1F/F-2F/F and Mb1cre/+ Rc3h1F/F-2F/wt mice do not maintain 
high IL-7Rα surface levels, but Roquin1/2-deficient IL-7Rαhi large pre B cells exist. (Continued on next 
page) 
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(A) Representative cytometry histograms illustrating surface IL-7Rα expression on indicated bone marrow (BM) 
B cell populations. Percentages of cells expressing high levels of IL-Rα (IL-7Rαhi), based on IL-7Rα expression 
on large pre B cells, are indicated. Mean percentages with standard deviation and significances are indicated. (B) 
Bar chart representation of IL-7Rα protein expression on the surface of indicated bone marrow (BM) B cell 
populations. (C) Total number of IL-7Rαhi cells in the indicated BM cell populations. (D) and (E) Representative 
flow cytometry plots illustrating surface IL-7Rα expression versus surface CAR expression, which was 
employed for (F), on indicated bone marrow (BM) B cell populations in the three experimental genotypes, as no 
experiment comprising all three experimental genotypes was performed. Absence of CAR expression on cells 
devoid of the R26CARStopFL allele is illustrated (D). Cre-mediated recombination has occured in CAR+ cells. (F) 
Bar chart representation of IL-7Rα surface protein expression on indicated CAR+ B cell populations in the bone 
marrow. Gated B cell subsets: prepro B CD19- B220lo c-kit+ CD25- IgD- IgM-; late pro B CD19+ B220lo c-kit+ 
CD25- IgD- IgM-; pro B B220lo c-kit+ CD25- IgD- IgM-; large pre B B220lo c-kit- CD25+ IgD- IgM- FSChi; small 
pre B B220lo c-kit- CD25+ IgD- IgM- FSClo; immature B B220int IgM+ R: Rc3h; MFI: median fluorescence 
intensity. Bars represent means and error bars standard deviation. ****p ≤ 0.0001, ***p ≤ 0.001, **p ≤ 0.01, *p 
≤ 0.05, 2way ANOVA with Tukey test applied.  

 

Figure 20: Large pre B cells of Mb1cre/+ Rc3h1F/F-2F/F mice do not upregulate CXCR4. 
(A) Representative cytometry histograms depicting surface CXCR4 expression on indicated bone marrow (BM) 
B cell populations and percentage of cells expressing high surface levels of CXCR4 (designated CXCR4hi), 
based on large pre B cells. Percentages with standard deviation and significances are shown. (B) Bar chart 
representation of CXCR4 protein expression on the surface of CXCR4hi cells among indicated bone marrow 
(BM) B cells populations. (C) Total number of CXCR4hi cells in the indicated BM cell populations. Bars 
represent means and error bars standard deviation. Gated B cell subsets: prepro B CD19- B220lo c-kit+ CD25- 
IgD- IgM-; late pro B CD19+ B220lo c-kit+ CD25- IgD- IgM-; large pre B B220lo c-kit- CD25+ IgD- IgM- FSChi; 
small pre B B220lo c-kit- CD25+ IgD- IgM- FSClo; immature B B220lo IgM+. MFI: median fluorescence intensity. 
Bars depict mean values and error bars standard deviation. ****p ≤ 0.0001, **p ≤ 0.01, multiple t tests with 
Holm-Sidak method applied.  
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Figure 21: Deregulation of IRF4 levels in bone marrow B cells of Mb1cre/+ Rc3h1F/F-2F/F, while IRF8 levels 
remain largely unchanged in Mb1cre/+ Rc3h1F/F-2F/F. 
(A) Representative flow cytometric analysis illustrating intracellular (IC) IRF4 expression in indicated BM B 
cell subsets and designation of cells expressing high intracellular IRF4 protein levels (IRF4hi) based on small pre 
B cells. Shown are mean percentages with standard deviation and significant differences. (B) Bar chart 
representation of IC IRF4 levels in IRF4hi B cells as determined by flow cytometry. (C) Total cell number of 
IRF4hi B cells within the indicated B cell subsets. (D) Representative cytometry histograms depicting IC IRF8 
expression in specified BM B cell populations. (E) Bar chart representation of flow cytometry-determined IC 
IRF8 levels in indicated BM cell populations. Gated B cell subsets: prepro B CD19- B220lo c-kit+ CD25- IgD- 
IgM-; late pro B CD19+ B220lo c-kit+ CD25- IgD- IgM-; pro B B220lo c-kit+ CD25- IgD- IgM-; large pre B B220lo 
c-kit- CD25+ IgD- IgM- FSChi; small pre B B220lo c-kit- CD25+ IgD- IgM- FSClo; immature B B220int IgM+. BM: 
bone marrow; MFI: median fluorescence intensity. Bars depict mean values and error bars standard deviation. 
****p ≤ 0.0001, ***p ≤ 0.001 **p ≤ 0.01, *p ≤ 0.05, multiple t tests with Holm-Sidak method applied. 
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In contrast large pre B cells of these mice do not upregulate IRF4 as efficiently as control 

large pre B cells (Fig. 21A). IRF4hi large pre B cells of Mb1cre/+ Rc3h1F/F-2F/F mice express 

significantly less IRF4 (Fig. 21B), while the IRF4 level in all double-deficient large pre B 

cells is approximately 50% of that of control large pre B cells (data not shown). Hence, the 

reduced IRF4 levels in double-deficient large large pre B cells result from significantly fewer 

cells expressing high levels of IRF4 (IRF4hi cells) (Fig. 21A, 21C). Furthermore, percent of 

IRF4hi cells and IRF4 levels in IRF4hi cells remain higher in Roquin1/2-deficient immature B 

cells compared to controls (Fig. 21A, 21B). IRF8 protein expression levels on the other hand 

are generally unaltered in Roquin1/2-deficient bone marrow B cells, except for a marginal 

upregulation of IRF8 in small pre B cells of Mb1cre/+ Rc3h1F/F-2F/F mice (Fig. 21D, 21E). 

IRF4 and IRF8 signaling arrests proliferation of pre B cells by activating expression of Ikaros 

and Aiolos [248]. The Aiolos expression pattern of Roquin1/2-deficient pre B cells mirrors 

IRF4 levels (Fig. 22A) with regard to the percent of large and small B cells expressing high 

intracellular protein levels of Aiolos (Aioloshi).  

 

Figure 22: Severe reduction of Aioloshi level-expressing Roquin1/2-deficient large pre B and ensuing B cell 
stages.  
(A) Representative flow cytometric histogram analysis displaying intracellular (IC) Aiolos expression in 
indicated BM B cell subsets and mean percentage with standard deviation of cells expressing high intracellular 
levels of Aiolos (Aioloshi cells) based on Aiolos expression in small pre B cells. (B) Bar chart representation of 
IC Aiolos protein levels in Aioloshi cells of respective B cell subset, as determined by flow cytometry. (C) Total 
numbers of Aioloshi BM B cells in indicated subsets. Gated B cell subsets: prepro B CD19- B220lo c-kit+ CD25- 
IgD- IgM-; late pro B CD19+ B220lo c-kit+ CD25- IgD- IgM-; pro B B220lo c-kit+ CD25- IgD- IgM-; large pre B 
B220lo c-kit- CD25+ IgD- IgM- FSChi; small pre B B220lo c-kit- CD25+ IgD- IgM- FSClo; immature B B220lo IgD- 
IgM+. BM: bone marrow. MFI: median fluorescence intensity. Bars depict mean values and error bars standard 
deviation. ****p ≤ 0.0001, *p ≤ 0.05, multiple t tests with Holm-Sidak method applied. 
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Surprisingly, Aiolos levels in Aioloshi double-deficient small pre B cells are increased 

compared to controls (Fig. 22A, 22B). Given the general dramatic decrease in B cell numbers 

in absence of Roquin1/2 proteins, the cell numbers of every pre B cell subset and of immature 

B cells, which show high intracellular expression of Aiolos (Aioloshi cells), is significantly 

lower in Mb1cre/+ Rc3h1F/F-2F/F mice (Fig. 22C). However, these numbers correlate to the cell 

numbers of IRF4hi pre and immature double-deficient B cells (Fig. 21C). Functional pre-BCR 

signaling inhibits activation of AKT and thereby induces nuclear translocation of FOXO1, 

which initiates BCL6 transcription [67]. BCL6 is essential for survival of pre B cells carrying 

a functional Igµ [65, 68]. Therefore, I quantified intracellular BCL6 to determine whether 

defective Igµ expression affects BCL6 levels in bone marrow B cells (Fig. 23). Overall BCL6 

expression varies strongly in the populations analyzed, however relative expression of BCL6 

is higher in late pro B cells and ensuing developmental stages in Mb1cre/+ Rc3h1F/F-2F/F mice 

(Fig. 23). IRF4, Aiolos, and BCL6 protein levels are unaltered in bone marrow B cell subsets 

of Mb1cre/+ Rc3h2F/F mice reflecting the normal B cell development in these mice (Fig. S7B-

S7D).  

 

Figure 23: Relative increase of BCL6 protein levels in late pro to immature B cells of Mb1cre/+ Rc3h1F/F-
2F/F mice. 
(A) Representative cytometry histograms illustrating intracellular (IC) BCL6 expression in specified BM B cell 
populations. (B) Bar chart representation of IC BCL6 levels as determined by flow cytometry in referred BM 
cell populations. (C) IC BCL6 expression levels normalized to respective control values. Gated B cell subsets: 
prepro B CD19- B220lo c-kit+ CD25- IgD- IgM-; late pro B CD19+ B220lo c-kit+ CD25- IgD- IgM-; large pre B 
B220lo c-kit- CD25+ IgD- IgM- FSChi; small pre B B220lo c-kit- CD25+ IgD- IgM- FSClo; immature B B220+ IgD- 
IgM+. MFI: median fluorescence intensity. Bars depict mean values and error bars standard deviation. ***p ≤ 
0.001, **p ≤ 0.01, multiple t tests with Holm-Sidak method applied. 
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Proximal pre-BCR signaling requires the tyrosine kinases SYK and to some extent ZAP70 

[249]. In order to investigate if the defects in the development of Roquin1/2-deficient pre B 

cells are caused by impaired pre-BCR signaling, I examined ZAP70 expression in bone 

marrow B cells populations (Fig. 24). Surprisingly, while intracellular ZAP70 protein levels 

decline in control B cells from pro/pre B cell to the immature B cell stage, in Mb1cre/+ 

Rc3h1F/F-2F/F mice they remain constant (Fig. 24B, 24C).  

 

Figure 24: Intracellular protein levels of ZAP70 are increased in pro/pre B and immature B cells in 
Mb1cre/+ Rc3h1F/F-2F/F mice.  
(A) Representative flow cytometric analysis illustrating gating scheme for Hardy Fractions B and C (B+C), C’ 
and D, pro/pre and immature B cells in bone marrow (BM) for intracellular (IC) detection of ZAP70. (B) 
Representative cytometry histograms illustrating IC ZAP70 expression in specified B cell populations. (C) Bar 
chart representation of IC ZAP70 protein levels as analyzed by flow cytometry in designated B cell subsets. 
MFI: median fluorescence intensity. Bars depict mean values and error bars standard deviation. ****p ≤ 0.0001, 
**p ≤ 0.01, multiple t tests with Holm-Sidak method applied.  
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Whereas ZAP70 expression is unaltered in double-deficient cells of Hardy Fractions B to C or 

C', which are cycling large pre B cells, but is lower in cells in Hardy Fraction D (Fig. 24B, 

24C). Hardy Fraction D comprises small pre B cells, which in Mb1cre/+ Rc3h1F/F-2F/F mice 

retain higher ZAP70 levels compared to control cells (Fig. 24B, 24C).  

Collectively, my results indicate that many mediators of pre-BCR and IL-7R signaling are 

expressed at overall significant lower levels in Roquin1/2 double-deficient large pre 

B lymphocytes indicating defective signaling and an important role of Roquin proteins in the 

regulation of the affected pathways. 

1.6 The arrest at the pro to pre B cell transition in Mb1cre/+ Rc3h1F/F-2F/F 

mice appears independent of cell survival 

Based on the specific block at the late pro to large pre B cell transition combined with the 

multiple deregulated mediators of signaling at these developmental stages, I aimed to analyze 

the contribution of survival to this phenotype. Furthermore, the rate of in vivo cell death 

among pre B cells has been estimated to be in the range of 50 to 75% underlining its 

significant contribution to shaping the B cell compartment [250-252]. In a first step, I 

quantified intracellular levels of the pro-apoptotic BH3 family member Bim in ex vivo 

isolated bone marrow B cells (Fig. 25). 

 

Figure 25: Bone marrow B cell populations of Mb1cre/+ Rc3h1F/F-2F/F mice have increased intracellular Bim 
levels relative to control B cells.  
(A) Representative histograms depicting flow cytometric analysis of IC Bim protein levels in ex vivo isolated 
bone marrow cells. (Continued on next page) 
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(B) Bar charts displaying IC Bim protein levels as analyzed by flow cytometry and (right) normalized to levels 
in corresponding control populations. Gated B cell subsets: pro B B220lo c-kit+ CD25- IgD- IgM-; large pre B 
B220lo c-kit- CD25+ IgD- IgM- FSChi; small pre B B220lo c-kit- CD25+ IgD- IgM- FSClo; immature B B220+ IgD- 
IgM+. MFI: median fluorescence intensity, BM: bone marrow. Bars depict mean values and error bars standard 
deviation. ****p ≤ 0.0001, **p ≤ 0.01, *p ≤ 0.05, multiple t tests with Holm-Sidak method applied. 

High inter-experimental variations in Bim levels complicated the analysis. Yet, normalization 

of Bim levels of Roquin1/2 double-deficient pro, large and small pre and immature B cell 

stages to their respective controls reveals a general upregulation of Bim in double-deficient 

bone marrow B cells (Fig. 25B, 25C). Further evaluation of apoptosis in ex vivo isolated bone 

marrow cells by AnnexinV staining indicates no dramatic changes of apoptosis in pro or pre 

B cell populations of Mb1cre/+ Rc3h1F/F-2F/F mice (Fig. 26A, 26B).  

 

Figure 26: Analyses of apoptosis by surface binding of AnnexinV on bone marrow B cells in Mb1cre/+ 
Rc3h1F/F-2F/F mice. 
(A) Representative flow cytometry plots of Annexin V/7-AAD staining on indicated bone marrow (BM) B cell 
populations. (B) Stacked bar charts displaying percentage of viable, early apoptotic, late apoptotic and non 
apoptotic dead cells within designated BM B cell populations as measured by flow cytometry in ex vivo cells and 
significance is indicated following the same order. Gated B cell subsets: prepro B CD19- B220lo c-kit+ CD25- 
IgD- IgM-; late pro B CD19+ B220lo c-kit+ CD25- IgD- IgM-; large pre B B220lo c-kit- CD25+ IgD- IgM- FSChi; 
small pre B B220lo c-kit- CD25+ IgD- IgM- FSClo; immature B B220int IgM+. (Continued on next page) 
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Viable Annexin V- 7-AAD-; early apoptotic Annexin V+ 7-AAD-, late apoptotic Annexin V+ 7-AAD+, non-
apoptotic dead Annexin V- 7-AAD+. Bars depict mean values and error bars standard deviation. ****p ≤ 0.0001, 
***p ≤ 0.001, **p ≤ 0.01, ns non-significant, unpaired t test. 

However, the fraction of viable Roquin1/2 double-deficient immature B cells is strikingly 

reduced compared to controls indicating a possible role of immature B cell apoptosis in the 

near absence of peripheral Roquin1/2-deficient B cells (Fig. 26B). To further corroborate this 

result, I investigated caspase activation in ex vivo isolated bone marrow B cell subsets (Fig. 

27). There is a slight but significant decrease of viable Roquin 1/2 double-deficient large and 

small pre B cells that is even more pronounced at the immature B cell stage. The ratio of 

viable immature B cells is approximately 30% lower in Mb1cre/+ Rc3h1F/F-2F/F mice (Fig. 

27B), confirming the AnnexinV staining result on immature B cells and further supporting the 

hypothesis that apoptotic cell death may contribute to the reduced immature B cells numbers 

in bone marrow and the near absence of transitional splenic B cells in the Mb1cre/+ Rc3h1F/F-

2F/F mouse line. As expected, apoptosis is only marginaly altered in bone marrow B cell 

populations of Mb1cre/+ Rc3h2F/F mice as analyzed by caspase activation in ex vivo cells (Fig. 

S8A, S8B) despite a relative increase of intracellular Bim in Roquin2-deficient early bone 

marrow B cell populations (Fig. S8C). 

In conclusion, apoptosis does not contribute to the striking reduction of pre B cells in Mb1cre/+ 

Rc3h1F/F-2F/F mice, but programmed cell death might play an important role in final cessation 

of development at the immature B cell stage and therefore it may prevent exit of B cells from 

the bone marrow into the periphery in these mice. 
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Figure 27: Reduced fractions of viable cells among pre, immature and mature bone marrow B cell 
populations in Mb1cre/+ Rc3h1F/F-2F/F mice. 
For staining active caspases (caspglow stain), ex vivo bone marrow (BM) cells were cultured for 1h in vitro. (A) 
Representative flow cytometric analysis of caspglow and 7-AAD staining on indicated BM B cell populations. 
(B) Quantification of percentages of viable, early apoptotic, late apoptotic and non-apoptotic dead cells with 
respective analysis of significance of BM cell subsets as determined by flow cytometry in ex vivo cells shown as 
stacked bar charts. Gated B cell subsets: pro B B220lo c-kit+ CD25- IgD- IgM-; large pre B B220lo c-kit- CD25+ 
IgD- IgM- FSChi; small pre B B220lo c-kit- CD25+ IgD- IgM- FSClo; immature B B220+ IgD- IgM+; mature B 
B220+ IgD+. Viable caspglow- 7-AAD-; early apoptotic caspglow+ 7-AAD-, late apoptotic caspglow+ 7-AAD+, 
non-apoptotic dead caspglow- 7-AAD+. Bars represent mean values and error bars standard deviation. ****p ≤ 
0.0001, ns non-significant, unpaired t test. 

1.7 Defective proliferation of large pre B cells may contribute to the 

observed developmental arrest in Mb1cre/+ Rc3h1F/F-2F/F mice 

In light of the broadly unchanged cell death in pro or pre B cells of Mb1cre/+ Rc3h1F/F-2F/F 

mice, I evaluated the consequences of Roquin1 and 2 ablation on the proliferative capacities 

of bone marrow B cells as a possible mechanism for the immense reduction of large pre B 

cells and subsequent B cell developmental stages. As aforementioned, massive proliferation 

of large pre B cells following successful pre-BCR assembly is a fundamental feature of B cell 

lymphopoiesis in the bone marrow. 
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Figure 28: Strinking reduction of large pre B cells in S/G2/M phase in Mb1cre/+ Rc3h1F/F-2F/F mice. 
(A) Representative flow cytometry plots and histograms of stated BM B cell populations illustrating gating and 
analysis strategy. Ki67 expression is only deteced in active cell cycle phases (G1, S, G2 and M) phase [253] and 
DRAQ5 intercalates DNA [254]. (B) Percentages of indicated B cell populations in cell cycle phases. Pro B 
cells B B220lo c-kit+ CD25- IgD- IgM-; G0 phase Ki67- DRAQ5lo; G1 phase Ki67+ DRAQ5lo; S/G2/M phase 
Ki67+ DRAQ5hi. BM: bone marrow. Bars represent mean values and error bars standard deviation. ****p ≤ 
0.0001, ns non-significant, unpaired t test. 

The strongly reduced number of Roquin1/2-deficient large pre B cells that express high 

surface levels of IL-7Rα (Fig. 19A, 19B) suggested impaired proliferative capacities of these 

cells. Remarkably, analysis of cell cycle stages of ex vivo isolated bone marrow B cell subsets 

demonstrates that a significantly smaller proportion of Roquin1/2 double-deficient large pre B 

cells enters the proliferative S/G2/M phases of the cell cycle (50% in dKO vs 80% in 

controls), while a significantly increased ratio remains in the G1 phase (Fig. 28). In an 

interesting contrast, this is reversed in immature and mature B cells of Mb1cre/+ Rc3h1F/F-2F/F 

mice in which a higher proportion is detected in S/G2/M phases of the cell cycle (Fig. 28B). 

This observation is noteworthy, as control immature B cells are almost exclusively in G1 

phase while control mature B cells are to a major extent in the resting G0 phase (Fig. 28B). 

DRAQ5 based ex vivo flow cytometry analysis of cell cycle stages allows the discrimination 
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of S phase versus G2/M phase. This analysis demonstrates that proportion of Roquin1/2-

deficient large pre B cells in S phase is reduced by a factor of 2 compared to controls (Fig. 

S9). In contrast, an increased ratio of cells in S and G2/M phases can be detected in immature 

and mature recirculating B cell populations in Mb1cre/+ Rc3h1F/F-2F/F mice (Fig. S9). This 

likely represents homeostatic proliferation in response to the severe B cell deficiency in these 

mice. 

I next combined analysis of cell cycle phases with assessment of intracellular expression of 

IRF4. High IRF4 levels were shown to be essential for withdrawal of pre B cells from the cell 

cycle [69]. In an initial experiment, I compared expression of IRF4 in combined G0/1 phases 

and in the proliferative S/G2/M phases (Fig. 29). Strikingly, IRF4 protein levels differ only 

slightly between small pre B cells of Mb1cre/+ Rc3h1F/F-2F/F mice and controls in G0/1 phases. 

However, the IRF4 level in double-deficient large and small pre B cells in S/G2/M phases is 

reduced to 50% of wild type levels as a result of fewer cells expressing high IRF4 levels (Fig. 

29A), possibly indicating a failure of these IRF4lo cycling large pre B cells to terminate 

proliferation and start Ig light chain rearrangement in double-deficient small pre B cells (Fig. 

29A). Interestingly, this ratio is reversed at the immature B cell stage with double-deficient 

immature B cells in S/G2/M phases having twofold increased IRF4 levels compared to 

controls. These elevated IRF4 levels in immature B cells from Mb1cre/+ Rc3h1F/F-2F/F mice, 

potentially suggest non-resolved, open light chain gene loci in these immature B cells [255].  

Furthermore, I investigated proliferative capacities in vivo by employing BrdU incorporation 

studies. Mb1cre/+ Rc3h1F/F-2F/F and control mice were injected with BrdU and incorporation in 

B cells assessed 4, 18 and 30h post-injection (Fig. 30, 31). Noteably, 50mg of 

intraperitoneally injected BrdU per kg mouse body weight (50mg/kg) has been shown to 

remain available for incorporation into newly synthesized DNA for ca. 90 min. [256]. In these 

experiments, during the BrdU pulse, BrdU is incorporated into the DNA of proliferating cells, 

in early B cell development, therefore into large pre B cells. BrdU+ pre B cells then 

differentiate into small pre B cells, which do not divide (Fig. 28A) and therefore retain the 

BrdU label.  

As expected from the ex vivo analyses, the percentage of proliferating BrdU+ large pre B cells 

is strongly and significantly reduced in Mb1cre/+ Rc3h1F/F-2F/F mice 4h after BrdU injection 

(Fig. 30, 31). In control mice, the proportion of BrdU+ cell then decreases over time, probably 

reflecting the differentiation of BrdU- pro B cells into proliferating large pre B cells in the 

absence of BrdU.  
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Figure 29: Intracellular levels of IRF4 in G0/1 and S/G2 cell cycle phase of bone marrow B cells in Mb1cre/+ 
Rc3h1F/F-2F/F mice. 
(A) Representative flow cytometry histograms of stated bone marrow (BM) B cell populations illustrating 
intracellular (IC) IRF4 staining and determination of IRF4lo and IRF4hi cells among respective populations at 
either G0/1 or S/G2/M as based on IRF4 expression in S/G2/M phase control small pre B cells. (B) Bar chart 
representations of IC IRF4 protein levels as analyzed by flow cytometry in given B cell subsets in G0/1 (left) 
versus S/G2 (right) cell cycle stages. Colors of cell cycle stages (G0/1 in black vs S/G2 phases in blue) in 
histograms correspond to colors in bar graphs. Cell cycle stages were defined as shown in Fig. S9, gated B cell 
subsets: pro B B220lo c-kit+ CD25- IgD- IgM-; large pre B B220lo c-kit- CD25+ IgD- IgM- FSChi; small pre B 
B220lo c-kit- CD25+ IgD- IgM- FSClo; immature B B220+ IgD- IgM+; MFI: median flourescence intensity. Bars 
depict mean values and error bars standard deviation. ****p ≤ 0.0001, ***p ≤ 0.001, *p ≤ 0.05, multiple t tests 
with Holm-Sidak method applied. 

In contrast, in Roquin1/2-deficient large pre B cells the proportion of BrdU+ cells remains 

stable over 26h. The appearance of BrdU+ small pre B cells occurs with a minor delay 18h 

post BrdU injection in the absence of Roquin1/2 proteins (Fig. 31). This difference in 

percentage of BrdU+ small pre B cells increases 30h post injection (Fig. 31), underscoring a 

deficit of Roquin1/2-deficient large pre B cells to differentiate normally in small pre B cells. 

The situation in immature and mature B cells is complicated by the fact that both of these 

populations are actively dividing in Mb1cre/+ Rc3h1F/F-2F/F as opposed to in control mice (Fig. 

28). Correspondingly, there is a significantly higher proportion of BrdU+ immature B cells in 

Mb1cre/+ Rc3h1F/F-2F/F mice as compared to respective wild type controls, already 4 hours post 

BrdU injection. This suggests that Roquin1/2-deficient BrdU+ immature and mature B cells 

are at least partially arising due to active division of these cells. In contrast BrdU+ immature 

control B cells are almost exclusively arising from the differentiation of BrdU+ pre B cells 

over time (Fig. 31). 
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In conclusion, both ex vivo and in vivo analyses demonstrate that the markedly decreased 

proliferative capabilities of Roquin1/2 double-deficient large pre B cells likely contribute to 

the developmental arrest at the pro to pre B transition in Mb1cre/+ Rc3h1F/F-2F/F mice. 

However, decrease proliferation does suffice to explain the near complete absence of 

immature B cells. Moreover, Roquin1/2 double-deficient immature B cells display a higher 

proliferative capacity ex vivo and in vivo.  

 

Figure 30: Analysis of in vivo BrdU incorporation into the DNA in bone marrow B cell populations of 
Mb1cre/+ Rc3h1F/F-2F/F mice. 
Representative flow cytometry plots of designated bone marrow (BM) B cell populations 4h post injection 
illustrating intracellular detection of BRDU incorporation and gating strategies post BrdU injection. BrdU was 
injected into mice intraperitoneally and incorporation analyzed ex vivo 4, 18 and 32h later. The black bar 
characterizes BrdU+ cells. 
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Figure 31: BrdU incorporation in vivo into the DNA is strongly impaired in large pre B cells of Mb1cre/+ 
Rc3h1F/F-2F/F mice. 
2mg BrdU (80mg/kg body weight, assuming a mouse weight of 25g) was injected intraperitoneally 30, 18 and 
4h prior to analysis of indicated B cell populations. Gating for BrdU+ cells was performed as shown in Fig. 30. 
Mean values for each time point are given left (for Mb1cre/+ Rc3h1F/F-2F/F) and right (for controls) of the dotted, 
vertical line and were connected by a straight line (for Mb1cre/+ Rc3h1F/F-2F/F) or a dashed line (for controls) as 
trend lines. ****p ≤ 0.0001, **p ≤ 0.01, *p ≤ 0.05, unpaired t test. 
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1.8 Extrinsic effects in T cells and myeloid cells of Mb1cre/+ Rc3h1F/F-2F/F, 

Mb1cre/+ Rc3h1F/F-2F/wt and Mb1cre/+ Rc3h1F/F mice 

Roquin1-deficiency in individual cell-types, amongst them B cells [212], can have severe 

cell-extrinsic effects on various other immune cell populations. Therefore, I set out to 

elucidate the B cell-extrinsic effects that might be associated with the severe and yet different 

B cell-intrinsic phenotypes in Mb1cre/+ Rc3h1F/F-2F/F, Mb1cre/+ Rc3h1F/F-2F/wt and Mb1cre/+ 

Rc3h1F/F mice. I also aimed at elucidating extrinsic effects in these mouse strains. Percentages 

of splenic T cell subsets of Mb1cre/+ Rc3h1F/F-2F/F mice resemble those of Mb1cre/cre mice with 

the exception of the CD4+ CD25+ T cell compartment, which contains the pool of regulatory 

T (Treg) cells. The population of CD4+ CD25+ T cell is significantly increased in percentage 

and total cell number in the former strain compared to Mb1cre/cre mice (Fig. S10). As this was 

the only clear difference within T cell subsets between these strains in bone marrow, spleen or 

thymus (data not shown), I focused on splenic T cell subsets in Mb1cre/+ Rc3h1F/F-2F/wt and 

Mb1cre/+ Rc3h1F/F mice. 

Compared to controls, the spleens of these two mouse strains are increased in weight and 

cellularity (Fig. 8). The percentage and total number of T cells are increased in both strains, as 

are CD4+ T cells and CD4+ CD25+ T cells. Noteably, the percent increase in this Treg-

containing compartment is twofold in both mouse strains. There is only a slight tendency of 

percent and cell number increase of the CD8+ T cell pool in the two strains (Fig. S10). 

Remarkably, in Mb1cre/+ Rc3h1F/F-2F/wt and Mb1cre/+ Rc3h1F/F mice, central memory-like and 

effector memory-like CD4+ T cells are significantly expanded with regard to percentage and 

total cell numbers (Fig. 32). This effect is less pronounced for the respective CD8+ T cell 

subsets. In the Mb1cre/+ Rc3h1F/F-2F/wt mouse line, there is a trend towards an increase in 

percentage and total cell number increase of central memory-like CD8+ T cells, while effector 

memory-like CD8+ T cells are significantly increased in this strain. In Mb1cre/+ Rc3h1F/F mice, 

naive and central memory-like CD8+ T cell populations are not altered, however the pool of 

effector memory-like CD8+ T cells is significantly enlarged in percentage and total cell 

number (Fig. 32). 

Surprisingly, there is an increase in percentage of CD4+, CD8+ and also overall T cells in 

Mb1cre/+ Rc3h2F/F mice (Fig. S11), whereas differences in cell numbers did not reach 

significance. Remarkably, within the CD4+ T cell population, the effector memory-like subset 

is not altered, while the percentages of naive and central memory-like CD4+ are expanded. 

Furthermore, there is a significantly larger proportion of naive CD4+ and CD8+ T cells, while 
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effector memory-like and central memory-like are essentially not changed in Mb1cre/+ 

Rc3h2F/F mice (Fig. S11). Splenic NKT cell numbers were also investigated, yet no difference 

was observed (data not shown). As the myeloid cell compartment is significantly affected by 

CD19cre-mediated deletion of Roquin1 [212], I next aimed to elucidate the consequences of 

Roquin1 and/or 2 ablation on the splenic myeloid cell compartment in Mb1cre/+ Rc3h1F/F-2F/F, 

Mb1cre/+ Rc3h1F/F-2F/wt and Mb1cre/+ Rc3h1F/F mice (Fig. S12). The percentages of every 

myeloid cell population analysed are increased in Mb1cre/+ Rc3h1F/F-2F/F mice (Fig. S12B). 

Percentages of dendritic cells are unaltered in Mb1cre/+ Rc3h1F/F-2F/wt and Mb1cre/+ Rc3h1F/F 

mice compared to controls (Fig. S12B). 

 

Figure 32: Effector memory-like T cells in CD4+ and CD8+ subsets are expanded in the spleen of Mb1cre/+ 
Rc3h1F/F-2F/wt and Mb1cre/+ Rc3h1F/F mice. 
(A) Representative flow cytometry plots depicting the gating strategy for splenic (SPL) CD4+ and CD8+ T cell 
subsets. T cell subsets as indicated in (B). (B) Percentages of designated T cell subsets among total splenocytes 
and total subset cell numbers as analyzed by flow cytometry. Numbers below graphs and bars represent mean 
percentages or cell numbers (#). ****p ≤ 0.0001, ***p ≤ 0.001, **p ≤ 0.01, *p ≤ 0.05, ANOVA. 
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There is an increase in percentages and cell numbers of eosinophils in Mb1cre/+ Rc3h1F/F-2F/wt 

and Mb1cre/+ Rc3h1F/F mice as was observed in CD19cre/+ Rc3h1F/F mice (Fig. S12B) [212], 

yet the differences in Mb1cre/+ Rc3h1F/F mice did not reach significance. Similarly, there is a 

tendency of increased populations of monocytes/macrophage and neutrophils in Mb1cre/+ 

Rc3h1F/F-2F/wt mice (Fig. S12B). Unexpectedly, there is a distinguishable population of Gr1+ 

monocytes or macrophages in Mb1cre/+ Rc3h1F/F-2F/F, Mb1cre/+ Rc3h1F/F-2F/wt and Mb1cre/+ 

Rc3h1F/F mice (Fig. S12A), which is absent in Mb1cre/+ Rc3h2F/F mice (Fig. S13). However, 

the percentage of classical dendritic cells is significantly increased, while neutrophils and 

activated monocytes and macrophages are reduced in percent in this mouse strain (Fig. S13). 

However, differences in cell numbers did not reach significance (Fig. S13). 

Furthermore, the near absence of B cells leads to a paucity in plasma cells and antibody 

production. Secreted IgE is loaded onto mast cells, which results in upregulation of FceRI on 

the mast cell surface and transient cellular activation. Therefore, I investigated the cellularity 

and surface phenotype of serosal mast cells in the peritoneal cavity of Mb1cre/+ Rc3h1F/F-2F/F 

mice (Fig. 33A, 33B). As expected, mast cells in Mb1cre/+ Rc3h1F/F-2F/F mice displayed nearly 

no bound IgE on their surface, while FceRI surface levels are surprisingly not increased and 

remain unchanged on control mast cells (Fig. 33C). FcγRIIB, a negative regulator of 

proliferation [257], shows a tendency for lower expression levels on mast cells of Mb1cre/+ 

Rc3h1F/F-2F/F mice. Additionally, the surface protein levels of IL-33R, the receptor for the 

alarmin IL-33 [258, 259], are significantly reduced on these mast cells.  

In conclusion, the observed changes in splenic cellularity in Mb1cre/+ Rc3h1F/F-2F/wt and 

Mb1cre/+ Rc3h1F/F mice originate to some extent from expansion of primarily CD4+ memory-

like cells and partly CD8+ effector memory-like cells but not to any major extent from 

changes in myeloid populations. Remarkably cell-extrinsic effects of Mb1cre-mediate 

ablation of Roquin1 or Roquin2 differ, while the T cell compartment appears hyperactivated 

upon ablation of Roquin1, Roquin2 ablation appears to result in hypoactivation of the T cells. 

Furthermore, B cell-specific Roquin1 and 2 ablation results in different effects on the myeloid 

compartment. 
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Figure 33: Analysis of peritoneal cavity mast cells in Mb1cre/+ Rc3h1F/F-2F/F mice. 
(A) Representative plots illustrating gating for mast cells in peritoneal cavity (PC). (B) Percentages of mast cells 
of total PC cells and total cell numbers (#) as determined by flow cytometry. (C) (Top) Representative flow 
cytometry plots of PC mast cells depicting surface expression of FcεR-bound IgE, FcεRI, FcγRII and IL-33R. 
(Bottom) FcεR-bound IgE, FcεRI, FcγRIIB and IL-33R cell surface protein levels on mast cells as determined by 
flow cytometry. Numbers below graphs and bars show mean values. ****p ≤ 0.0001, *p ≤ 0.05, unpaired t test. 

1.9 A pre-rearranged IgH knock-in (IgHMOG) rescues the development of 

pre B cells and partially rescues the immature and mature recirculating 

B cell pool in Mb1cre/+ Rc3h1F/F-2F/F IgHMOG mice 

Considering the strikingly reduced intracellular protein levels of µHC, I interrogated if defects 

in VHDJH rearrangement and heavy chain expression are the underlying reason for the 

developmental arrest of Roquin1/2-deficient B cells at the pro to pre B cell transition as well 

as the reason for the changes observed in mediators of signaling downstream of the pre-BCR. 

To this end, I decided to evaluate whether expression of a pre-rearranged heavy chain can 

rescue some of the developmental defects observed in the B cell lineage of Mb1cre/+ Rc3h1F/F-

2F/F mice. For this purpose, I employed the IgHMOG heavy chain knock-in allele [226].  
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IgHMOG knock-in B cells have intact allelic exclusion and can undergo class-switch 

recombination (CSR) and somatic hypermuation (SHM) in the germinal center reaction. 

Furthermore, despite specificity of the heavy chain for the myelin oligodendrocyte 

glycoprotein (MOG), there are no self-reactive antibodies produced in IgHMOG transgenic 

mice [226, 260, 261]. As detailed analyses of Mb1cre/+ Rc3h1F/F-2F/F mice up to one year of 

age revealed no difference in the phenotype described here compared to 8-20 week old mice, I 

decided to maintain this 8-20 week age span for all experiments based on Mb1cre-mediated 

ablation of Roquin1/2 proteins.  

First, I analyzed bone marrow B cell lymphopoiesis in Mb1cre/+ Rc3h1F/F-2F/F IgHMOG mice 

(Fig. 34). The overall bone marrow B cell number is not altered, but the percentage (data not 

shown) and total cell number of pro B cells of both Mb1cre/+ Rc3h1F/F-2F/F IgHMOG and 

IgHMOG control mice are reduced compared to mice without heavy chain insertion. This stems 

from a nearly complete absence of late pro B cells, the developmental stage when VHDJH 

recombination is being (Fig. 34). Likewise, there is a trend towards lower percentage and cell 

numbers in small pre B cells of these genotypes (Fig. 34) This observation underlines the 

innocuousness of the BCR encoded by the IgHMOG allele, as pro and pre B cell can transit 

quicker through these developmental stages if no self-reactive BCRs are expressed [57, 255]. 

In accordance with this result, the percentage and total cell numbers of large pre B cells are 

not altered in Mb1cre/+ Rc3h1F/F-2F/F IgHMOG mice (Fig. 34). However, at the small pre B cell 

stage, when Ig light chain rearrangement occurs, percentage and total cell number are reduced 

in Mb1cre/+ Rc3h1F/F-2F/F IgHMOG mice compared to IgHMOG and wt controls, although the 

difference is only significant compared to the wt controls. Furthermore, percentage and total 

cell number of immature B cells in Mb1cre/+ Rc3h1F/F-2F/F IgHMOG mice are even lower than in 

IgHMOG mice, which are also reduced compared to control mice (Fig. 34). Incompatility of the 

IgHMOG heavy chain with certain light chains may result in the lower numbers of IgHMOG-

transgenic immature B cells compared to controls (Fig. 34). Nevertheless, the percentage and 

number of mature B cells in IgHMOG mice are unaltered compared to control mice, while they 

are strikingly decreased in Mb1cre/+ Rc3h1F/F-2F/F IgHMOG mice (Fig. 34). 

In summary, analysis of bone marrow B cell numbers indicates that a pre-rearranged µHC 

rescues pre B cell development, but does not reconstitute immature and mature recirculating 

B cell numbers to wild type levels in Mb1cre/+ Rc3h1F/F-2F/F IgHMOG mice. 
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Figure 34: The pre B cell compartment is, but immature and mature bone marrow B cell populations are 
not rescued in Mb1cre/+ Rc3h1F/F-2F/F IgHMOG mice. 
(A) Representative flow cytometry plots of indicated bone marrow (BM) B cell subsets illustrating the employed 
gating strategies. (B) Percentages of respective B cell subsets of total BM cells and total subset cell numbers as 
determined by flow cytometry. Mb1cre/+ and wild type mice (collectively refered to as controls) were used as 
controls for comparison of Mb1cre based experiments if not otherwise mentioned. Numbers below graphs and 
bars represent mean percentages and cell numbers (#). ****p ≤ 0.0001, ***p ≤ 0.001, *p ≤ 0.05, ANOVA. 
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1.10 B cells populate secondary lymphoid organs with very divergent 

efficiencies in Mb1cre Rc3h1F/F-2F/F IgHMOG mice and show a defect in 

peripheral development 

The spleen weight of Mb1cre/+ Rc3h1F/F-2F/F IgHMOG mice is significantly increased (Fig. 

35A), although the total cell count of splenocytes is not changed. There are splenic 

Roquin1/2-deficient IgHMOG B cells, yet their percentage and total cell count are significantly 

reduced by over two fold (Fig. 35B, 35C). The immature/transitional splenic B cell pool of 

Mb1cre/+ Rc3h1F/F-2F/F IgHMOG mice matches that of IgHMOG control mice in percent and cell 

number, while the Roquin1/2-deficient IgHMOG mature splenic B cell compartment is three 

fold reduced with regard to percentage and total cell count compared to both control mouse 

strains (Fig. 35C). To further delineate the developmental stage at which splenic B cells of 

Mb1cre/+ Rc3h1F/F-2F/F IgHMOG mice accumulate, I further characterized transitional B cell 

stages within the AA4.1- immature/transitional compartment as well as follicular and 

marginal zone B cell subsets of the mature AA4.1- B220+ B cell pool (Fig. 36). Numbers and 

percentages of transitional T1 B cells are not reduced. 

 

Figure 35: Spleens of Mb1cre/+ Rc3h1F/F-2F/F IgHMOG mice are enlarged, but B cell numbers are reduced. 
(A) SPL weight and total number of splenocytes. (B) Representative flow cytometric analysis of splenic (SPL) B 
cells showing the employed gating scheme. (C) Percentages of respective B cell subsets of total SPL cells and 
total subset cell numbers as determined by flow cytometry. Numbers below graphs and bars show mean 
percentages and cell numbers (#). ****p ≤ 0.0001, ***p ≤ 0.001, *p ≤ 0.05, ANOVA. 
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Figure 36: Mb1cre/+ Rc3h1F/F-2F/F IgHMOG splenic B cell development is arrested between transitional 
stages 1 and 2. 
(A) Representative flow cytometric analysis of splenic (SPL) B cells illustrating the gating strategy. (B, C) 
Percentages of respective AA4.1+ immature or AA4.1- mature (B, C) B cell subsets of total SPL cells and total 
subset cell numbers as determined by flow cytometry. T: transitional; FO: follicular; MZB/MZP: mature and 
marginal zone precursor; MZB or MZ B: mature marginal zone; MZP: marginal zone precursor. Numbers below 
graphs and bars represent mean percentages and cell numbers (#). ****p ≤ 0.0001, ***p ≤ 0.001, **p ≤ 0.01, *p 
≤ 0.05, ANOVA. 
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Yet, as described previously for Mb1cre/+ Rc3h1F/F-2F/F mice, there is a clear deficit of 

development at the T1 to T2 transition in Mb1cre/+ Rc3h1F/F-2F/F IgHMOG mice as reflected by 

the reduced cell numbers and percentages of T2 and T3 in both strains (Fig. 36B). 

Furthermore, follicular, marginal zone and marginal zone precursor populations are all 

significantly reduced in Mb1cre/+ Rc3h1F/F-2F/F IgHMOG mice (Fig. 36C), although this flow 

cytometric analysis was complicated by the deregulated expression pattern of the employed 

surface markers CD21, CD1d and CD23 (Fig. 36A).  

Classification of transitional stages as well as MZ precursor B cell relies on CD23-based 

gating. As I noticed an unusual CD23 expression pattern among splenic B cell populations in 

Mb1cre/+ Rc3h1F/F-2F/F IgHMOG mice (Fig. 36), I quantified CD23 surface expression (Fig. 

34A). This analysis demonstrated that CD23 is downregulated on all splenic B cell 

populations of Mb1cre/+ Rc3h1F/F-2F/F IgHMOG mice, except for marginal zone B cells (Fig. 

37). Accordingly, the stated percentages and total cell numbers of splenic B cell populations 

could be biased (Fig. 36).  

Preliminary data in the Schmidt-Supprian laboratory suggested that Roquin proteins could 

regulate CD24 surface expression on mast cells. The GPI-anchored surface receptor CD24 

promotes apoptosis in pro and pre B cells plays a role in cell adhesion. Additionally its 

expression levels decline with progressing B cell maturation [262, 263], with the exception of 

marginal zone B cells. Evaluation of surface CD24 levels on splenic B cell populations of 

Mb1cre/+ Rc3h1F/F-2F/F IgHMOG mice showed very specific and significant higher expression 

levels on all mature splenic B cell populations, further substantiating Roquin-mediated 

regulation of CD24 or indicating a function in apoptosis of mature double-deficient B cells 

(Fig. 37B). 

Furthermore, the general developmental arrest at the T1 to T2 transition was supported also 

independently of CD23 staining (Fig. 38A). The described impairment of B cell development 

past the transitional T1 stage in Mb1cre/+ Rc3h1F/F-2F/F IgHMOG mice is underlined by the 

almost unchanged population of the more immature IgDlo IgMhi B cell compartment in 

contrast to the almost absent more mature IgDhi IgMlo B cells in this mouse line in 

comparison to control mice (Fig. 38A). Strikingly, the cell number of the more mature IgDhi 

IgMlo B cell subset was shown to comprise only a fourth of the cell number of the B220+ 

AA4.1- mature B cell subset (Fig. 36, 38A). Subsequent analysis of B220 surface expression 

on B220+ AA4.1+ immature and B220+ AA4.1- mature B demonstrated significantly lower 

relative expression of B220 on B220+ AA4.1- mature B cells in Mb1cre/+ Rc3h1F/F-2F/F IgHMOG 

mice compared to IgHMOG wild type control mice (Fig. 38B). 
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Figure 37: Surface CD23 levels are reduced on splenic B cells of Mb1cre/+ Rc3h1F/F-2F/F IgHMOG mice, while 
CD24 surface levels are increased on mature splenic B cell populations of these mice. 
Bar chart representation of surface expression levels of CD23 (A) and CD24 (B) as determined by flow 
cytometry on indicated B cell populations. Gated B cell subsets: immature B B220+ AA4.1+; Transitional 1 (T1) 
B220+ AA4.1+ CD23- IgM+; T2 B220+ AA4.1+ CD23+ IgM+; T3 B220+AA4.1+CD23+ IgM-; Mature B B220+ 
AA4.1-; mature MZ B cells (MZB) B220+ AA4.1- CD1dhi CD21hi CD23lo; MZ precursors (MZP) B220+ AA4.1- 
CD1dhi CD21hi CD23hi; follicular (FO) B B220+ AA4.1- CD1dint CD21int. SPL: spleen; MFI: median 
fluorescence intensity. Bars represent mean values and error bars standard deviation. ****p ≤ 0.0001, ***p ≤ 
0.001, **p ≤ 0.01, *p ≤ 0.05, 2way ANOVA with Tukey test applied. 

This suggests that the splenic B220+ AA4.1- mature B cell pool of Mb1cre/+ Rc3h1F/F-2F/F 

IgHMOG mice contains reasonably more B1 B cells. Likewise, the B cell compartment in the 

peritoneum, altogether missing in Mb1cre/+ Rc3h1F/F-2F/F mice, is rescued and entirely 

composed of B1b cells in Mb1cre/+ Rc3h1F/F-2F/F IgHMOG mice (Fig. 39B). It is noteworthy, 

that the B1 cell compartment in the spleen of Mb1cre/+ Rc3h1F/F-2F/F IgHMOG mice is 

significantly increased in percent and in total cell number, which is caused by a five fold 

increase of the B1b cell pool, while the splenic B1a subset is not changed compared to 

IgHMOG controls and reduced compared to wt controls (Fig. 39A). In addition, the remarkable 

deficiency of truly mature peripheral B cells in Mb1cre/+ Rc3h1F/F-2F/F IgHMOG mice is 

emphasized by the almost entire absence of Peyer’s patches on the small intestines of these 

mice (data not shown) as well as the significantly reduced percentage of germinal center B 

cells in the spleen and in the GALT (mLN and PP) (Fig. S14).  
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Figure 38: IgDhi IgMlo B cell reflects mature B2 cells in Mb1cre/+ Rc3h1F/F-2F/F IgHMOG mice. 
(A) Percentages of stated B cell subsets of total splenic (SPL) cells and total subset cell numbers as determined 
by flow cytometry. (B) Bar chart representation of surface expression levels of B220 on AA4.1+ 
immature/transitional and AA4.1- mature splenic as determined by flow cytometry on indicated B cell 
populations. Numbers below graphs and bars show mean values. ****p ≤ 0.0001, ***p ≤ 0.001, **p ≤ 0.01, 
ANOVA. 

In conclusion, Mb1cre/+ Rc3h1F/F-2F/F IgHMOG mice can develop splenic B cells, which 

however are mainly arrested at the T1 to T2 transition and essentially fail to develop into 

mature IgD expressing peripheral B cells. The absence of functional mature B cells is 

mirrored by near complete absence of splenic or GALT germinal center B cells. Furthermore, 

CD23 surface levels on splenic B cells appear to depend on Roquin proteins while the data 

indicates that Roquin1 and 2 repress CD24 expression levels in mature B cell subsets with 

CD24 potentially being a Roquin target. Unexpectedly, B1 cell development in the spleen and 

peritoneal cavity is rescued in these mice due to an unexpected, massive increase of B1b cells.  
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Figure 39: Expansion of B1b cells in spleen and peritoneal cavity of Mb1cre/+ Rc3h1F/F-2F/F IgHMOG mice. 
(A, C) Representative flow cytometry analyses of SPL/PC B cells illustrating the gating scheme. (B, D) 
Percentages of respective B1 cell populations of total SPL/PC (B, D) cells and total subset cell numbers as 
determined by flow cytometry. SPL: spleen; PC: peritoneal cavity. Numbers below graphs and bars represent 
mean percentages and cell numbers (#). ****p ≤ 0.0001, **p ≤ 0.001 **p ≤ 0.01, *p ≤ 0.05, ANOVA. 
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1.11 Bone marrow immature B and successive B cell stages use almost 

exclusively IgHMOG in Mb1cre/+ Rc3h1F/F-2F/F IgHMOG mice 

Endogenous or transgenic heavy chain usage in naive B cells in IgHMOG mice can be 

determined by flow cytometric analysis of IgH allotypes, as the IgHMOG allele has a Igµ 

allotype a (IgMa), while µ chains of the second endogenous C57BL/6 allele have the IgMb 

allotype (Fig. 40) [226]. 

 

Figure 40: Immature B cells in the bone marrow and splenic B1 cell populations of Mb1cre/+ Rc3h1F/F-2F/F 
IgHMOG mice express almost exclusively IgMa. 
(A) Representative flow cytometry histograms depicting surface staining of IgMa on designated BM B cell 
populations. Cells expressing IgMa (IgMa+) are indicated. The positive signal in controls represents background 
staining. (B) Percentages of IgMa-positive (IgMa+) B and T cell subsets among the respective subsets. Black * 
represent significant differences between cell populations from Mb1cre/+ Rc3h1F/F-2F/F IgHMOG and IgHMOG 
controls. B cell subset gating: BM small pre B B220lo IgD- IgM- c-kit- CD25+ FSClo, immature B B220+ IgD- 
IgM+; mature B B220+ IgD+; SPL B cells B220+; immature B B220+ AA4.1+; mature B B220+ AA4.1-; GC B 
B220+ CD19+ PNA+ Fas+ CD38lo; B1 CD19+ B220lo; B1a CD19+ B220lo CD43+ CD5+, B1a CD19+ B220lo CD5-. 
BM: bone marrow; SPL: spleen; GC: germinal center. Bars represent means and error bars standard deviation. 
****p ≤ 0.0001, **p ≤ 0.01, ANOVA. 
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Therefore, IgMa surface positive (IgMa+) B cells express the IgHMOG knock-in allele. Almost 

all, and thereby significantly more, immature and mature B cells in the bone marrow of 

Mb1cre/+ Rc3h1F/F-2F/F IgHMOG mice are IgMa+ compared to IgHMOG control mice. In addition, 

there is near exclusive IgHMOG usage also in splenic immature and mature B cells of the 

experimental mice. Interestingly, essentially all splenic and peritoneal cavity B1 cell 

populations in Mb1cre/+ Rc3h1F/F-2F/F IgHMOG mice were found to use IgHMOG which is 

significantly more as compared to IgHMOG controls (Fig. 40, S15).  

In summary, the bone marrow and peripheral B cell populations present in Mb1cre/+ Rc3h1F/F-

2F/F IgHMOG, which are absent in Mb1cre/+ Rc3h1F/F-2F/F mice, rely nearly exclusively on the 

IgHMOG allele. Therefore, development of mature Roquin1/2-deficient B cells is only possible 

in the context of IgHMOG expression and these cells nearly exclusively develop into B1b cells. 

1.12 Intracellular Igµ levels are restored in bone marrow B cell populations, 

but Igκ expression is reduced in splenic B cells of Mb1cre/+ Rc3h1F/F-2F/F 

IgHMOG mice  

To analyse the expression of the inserted IgHMOG heavy chain during B cell development, I 

investigated whether the IgHMOG allele could restore proper intracellular expression of Igµ in 

the different bone marrow B cell populations. Additionally, I characterized light chain usage 

in bone marrow and splenic B cell subsets in these mice (Fig. 41). The cells numbers in 

populations defined by Igµ and λ5 expression in Mb1cre/+ Rc3h1F/F-2F/F IgHMOG pro/pre B 

cells is not altered compared to respective IgHMOG control cells with the exception of the 

number of Igµ- λ5- pro/pre B cells indicating that Roquin1/2-deficiency might accelerate 

transition through this developmental phase on a IgHMOG background even further (Fig. 41). 

The percentages of intracellular Igµ+ are significantly increased in all pro, pre and immature B 

cells populations investigated and match the level of relevant controls in mature recirculating 

B cells (Fig. 41B). 
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Figure 41: Analyses of intracellular expression of Igµ and Igκ in bone marrow and splenic B cell 
populations of Mb1cre/+ Rc3h1F/F-2F/F IgHMOG and control mice. 
(A) Bar chart depicting analysis of subsets of the pro/pre B cell compartment based on intracellular (IC) 
expression of µHC/Igµ and λ5. Igµ+ marks total IC IgM+ pro/pre B cells independent of IC λ5 as indicated by 
the dotted line. (B) Flow cytometric determination of percentage of µHC+ bone marrow (BM) B cell populations 
(left) and Igµ protein levels in µHC+ B cell populations (right). The antibody employed for IgM detection binds 
to Ig heavy (IgH) chain, thus detects expression of only IgH chain in pro and most pre B cells. (C) Flow 
cytometric determination of percentage of Igκ+ BM and splenic (SPL) B cell populations (left) and Igκ protein 
levels in Igκ + B cell populations (right). µHC: µ heavy chain; Igµ: Intracellular IgM; IC: intracellular; MFI: 
median fluorescence intensity. Bars represent means and error bars standard deviation. ****p ≤ 0.0001, ***p ≤ 
0.001, **p ≤ 0.01, *p ≤ 0.05, multiple t test with Holm-Sidak method applied. 
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Additionally, Igµ protein levels are unaltered in every µHC+ bone marrow B cell population 

of Mb1cre/+ Rc3h1F/F-2F/F IgHMOG compared to IgHMOG control mice. Remarkably, the 

percentage of intracellular Igκ+ splenic IgDhi IgMlo and mature recirculating bone marrow 

Mb1cre/+ Rc3h1F/F-2F/F IgHMOG B cells are significantly reduced compared to IgHMOG controls 

(Fig. 41C). Intracellular Igκ expression levels in Igκ+ bone marrow and splenic B cell 

populations are unaltered (Fig. 41C). 

I further validated this result by flow cytometric analysis of cells expression Igκ and Igλ on 

their surface (Fig. S16). The percentage and total cell numbers of Igκ+ and Igλ+ immature B 

cells are not changed in Mb1cre/+ Rc3h1F/F-2F/F IgHMOG compared to IgHMOG controls. The 

percentage and total cell number of Igκ+ and Igλ+ mature recirculating B cells in the bone 

marrow (Fig. S16B) and splenic B cells (data not shown) of Mb1cre/+ Rc3h1F/F-2F/F IgHMOG 

mice are significantly decreased. There is also no detectable change in the ratio of Igκ over 

Igλ usage between immature and mature B cells. This observation indicates that the 

deficiency of intracellular Igκ expression (Fig. 41C) does not originate from an exhaustion of 

the Igκ locus by light chain editing which would result in an increase of Igλ surface usage, but 

rather a general deficiency in light chain expression in Mb1cre/+ Rc3h1F/F-2F/F IgHMOG mice.  

In summary, the IgHMOG allele restores expression of Igµ to at least control levels, yet tends to 

rush early pro B cells through development, while intracellular light chain expression is still 

impaired compared to controls in Mb1cre/+ Rc3h1F/F-2F/F IgHMOG mice. 

1.13 The rescue of pre B cell development in Mb1cre/+ Rc3h1F/F-2F/F IgHMOG 

mice is reflected by rescued IL-7Rα and IRF4 expression, apoptosis and 

proliferation 

To investigate the underlying reason for the rescued pre B cell compartment in Mb1cre/+ 

Rc3h1F/F-2F/F IgHMOG mice, I performed analysis of IL-7Rα surface expression and 

proliferative capabilities of bone marrow B cells in these mice (Fig. 42). Remarkably, the 

percent of IL-7Rαhi pro and pre Mb1cre/+ Rc3h1F/F-2F/F IgHMOG B cells are unchanged 

compared to IgHMOG controls, but are significantly lower than control B cells (Fig. 42A). 

Likewise, IL-7Rα protein surface levels are almost 50% lower in the two IgHMOG transgenic 

mouse strains compared to wild type controls (Fig. 42B). Moreover, IL-7Rαhi cell numbers of 

the pro, pre and immature B cell subset are strongly reduced in IgHMOG transgenic Roquin1/2 

deficient and control mice compared to wild type controls (Fig. 42C).  
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Figure 42: IgHMOG transgenic Roquin1/2-deficient and control pro and pre B cells develop independent of 
IL-R7α-driven proliferation. 
Data on IL-7Rα expression in control B cell populations contains data shown in Fig. 19 to allow comparison of 
IL-7Rα in IgHMOG transgenic B cells compared to wild type controls. (A) Representative cytometry histograms 
illustrating surface IL-7Rα expression on indicated bone marrow (BM) B cell populations. Percentages of cells 
expressing high levels of IL-Rα (IL-7Rαhi), based on IL-7Rα expression on large pre B cells, are indicated. Mean 
percentages with standard deviation and significances are indicated. (B) Bar chart representation of IL-7Rα 
protein expression on the surface of indicated bone marrow (BM) B cell populations. (C) Total number of IL-
7Rαhi cells in the indicated BM cell populations. (D) Quantification of percentages of designated B cell 
populations in different cell cycle phases. Cell cycle phases were distinguished as in Fig. 28, briefly: G0 phase 
(dark grey) Ki67- DRAQ5lo; G1 phase (light grey) Ki67+ DRAQ5lo; S/G2/M phase (white) Ki67+ DRAQ5hi. Flow 
cytometric analysis was performed as in Fig. 28. Gated B cell subsets: pro B B220lo c-kit+ CD25- IgD- IgM-; 
large pre B B220lo c-kit- CD25+ IgD- IgM- FSChi; small pre B B220lo c-kit- CD25+ IgD- IgM- FSClo; immature B 
B220int IgM+; Bars represent means and error bars standard deviation. BM: bone marrow; MFI: median 
fluorescence intensity. ****p ≤ 0.0001, **p ≤ 0.01, *p ≤ 0.05, (A-C) 2way ANOVA with Tukey test applied; 
(D) unpaired t test, ns: non significant. 

The IL-7Rα data (Fig. 42A-42C) indicated that presence of the IgHMOG allele renders pro and 

pre B cells independent of IL-7Rα mediated proliferation. To corroborate the finding, I 

performed cell cycle analysis of bone marrow B cells to investigate their proliferative 

capabilites (Fig. 42D). Remarkably, the percentage of large pre B cells of IgHMOG and 

Mb1cre/+ Rc3h1F/F-2F/F mice in the proliferative S/G2/M phase are approximately 50%, similar 
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to Roquin1/2-deficient large pre B cells (Fig. 28). Importantly, no pronounced difference in 

proliferation was observed in ex vivo isolated cells in pro to immature B cell stages between 

the Mb1cre/+ Rc3h1F/F-2F/F IgHMOG and the IgHMOG control strain (Fig. 42D). Interestingly, as 

was observed before in the few detected Roquin1/2-deficient mature recirculating B cells 

(Fig. 28), the ratio of cells in G0 phase is also significantly lower in mature B cells of Mb1cre/+ 

Rc3h1F/F-2F/F IgHMOG mice (Fig. 42D). Therefore, IgHMOG Roquin1/2-deficient and control 

transgenic pro and pre B cells appear to develop largely autonomous of IL-7Rα-mediated 

proliferation. Next, I monitored IRF4, Aiolos and ZAP70 expression and apoptosis in 

experimental and control IgHMOG mice, to assess whether the observed differences are a direct 

consequence of Roquin1/2-deficiency or more indirectly connected to the block in B cell 

development. I quantified intracellular IRF4 expression, which is essential for light chain 

expression in B cells (Fig. 43A-43C) [264]. In contrast to Mb1cre/+ Rc3h1F/F-2F/F mice, 

percentage of IRF4hi cells and IRF4 levels in Mb1cre/+ Rc3h1F/F-2F/F IgHMOG mice do not 

decrease in large pre B cells compared to relevant IgHMOG controls, which correlates with the 

rescued numbers of large pre B cells. As shown before, IRF4 levels in immature B cells of the 

Mb1cre/+ Rc3h1F/F-2F/F IgHMOG genotype are not increased, further underlining a general IRF4 

independent defect in expression of Ig light chain as opposed to ongoing receptor editing 

similar to the explanation for the lower intracellular Igκ levels in mature B cells (Fig. 41). In 

addition, the observed developmental impairment of B cells in Mb1cre/+ Rc3h1F/F-2F/F IgHMOG 

mice appears to be independent of Aiolos, since percentages of Aioloshi bone marrow B cells 

and Aiolos levels in Aioloshi bone marrow B cells of these mice resemble that of IgHMOG 

controls (Fig. 43D-43F). Similar data were obtained for BCL6 (data not shown). Interestingly, 

ZAP70 intracellular expression is increased in mature B cells of the experimental Mb1cre/+ 

Rc3h1F/F-2F/F IgHMOG mice (Fig. 43G), similar as in pro/pre and immature B cells of Mb1cre/+ 

Rc3h1F/F-2F/F (Fig. 24). As ZAP70 protein levels decline during development, this could 

reflect defective maturation of Roquin1/2-deficient IgHMOG immature and mature B cells. 

This deregulated ZAP70 expression unlikely stems from mature B1, as preliminary data did 

not indicate increased cell numbers of B1 cells in the bone marrow of Mb1cre/+ Rc3h1F/F-2F/F 

IgHMOG mice (data not shown). 

Furthermore, it is unlikely that increased apoptosis has a major role in the reduced immature 

B cell numbers in Mb1cre/+ Rc3h1F/F-2F/F IgHMOG mice, as the proportion of viable ex vivo 

isolated immature B cells in these mice is only slightly reduced (Fig. S17) and in general not 

affected in other bone marrow B cell populations.  
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Figure 43: Analysis of intracellular levels of Aiolos, IRF4 and ZAP70 in bone marrow B cell populations 
of Mb1cre/+ Rc3h1F/F-2F/F IgHMOG mice. 
(A) Representative flow cytometry histograms of stated bone marrow (BM) B cell populations illustrating 
intracellular (IC) IRF4 expression in indicated BM B cell subset and mean percentage with standard deviation of 
cells expressing high intracellular levels of IRF4 (IRF4hi cells) based on IRF4 expression in small pre B cells. 
(Continued on next page)  
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(B) Bar chart representation of IC IRF4 protein levels in respective B cell subset, as determined by flow 
cytometry. (C) Total numbers of IRF4hi BM B cells in indicated subsets. (D) Representative flow cytometry 
histograms of stated bone marrow (BM) B cell populations illustrating intracellular (IC) Aiolos expression in 
indicated BM B cell subset and mean percentage with standard deviation of cells expressing high intracellular 
levels of Aiolos (Aioloshi cells). Aioloshi cell determination is based on Aiolos expression in small pre B cells. 
(E) Bar chart representation of IC Aiolos protein levels in Aioloshi cells of respective B cell subset, as 
determined by flow cytometry. (F) Total numbers of Aioloshi BM B cells in indicated subsets. (G) Bar chart 
representation of IC expression levels ZAP70 as determined by flow cytometry on indicated BM B cell 
populations, data used for wild type controls include data employed in controls of Fig. 24 to allow comparison to 
wild type controls. Gated B cell subsets: Gated B cell subsets: pro/pre B B220lo IgM-, pro B B220lo c-kit+ CD25- 
IgD- IgM-; large pre B B220lo c-kit- CD25+ IgD- IgM- FSChi; small pre B B220lo c-kit- CD25+ IgD- IgM- FSClo; 
immature B B220int IgD- IgM+ (D-F)/B220int IgM- (A-C&G), mature B B220+ IgD+ (D-F)/ B220+ IgM+ (A-
C&G), Fraction B+C B220+ CD43+ CD24-; Fraction C' B220+ CD43+ CD24+; Fraction D B220+ CD43- CD19+ 
IgM-; Bars represent means and error bars standard deviation. R: Rc3h; IC: intracellular; BM: bone marrow; 
MFI: median fluorescence intensity. Bars represent mean values and error bars standard deviation. ****p ≤ 
0.0001, ***p ≤ 0.001, *p ≤ 0.05, 2way ANOVA with Tukey test applied.  

Approximately 75% of immature B cells were classified as viable in Mb1cre/+ Rc3h1F/F-2F/F 

IgHMOG mice, while this was the case for only 50% of the even lower immature B cells 

numbers in the Mb1cre/+ Rc3h1F/F-2F/F strain (Fig. 27). In the Mb1cre/+ Rc3h1F/F-2F/F IgHMOG 

mouse strain, intracellular Bim levels are also not changed in any bone marrow B cell subset 

compared to IgHMOG controls (data not shown).  

Taken together, the IgHMOG insertion rescues nearly all aspects of Roquin1/2-deficient B cell 

development up to the immature B cell stage, which are independent of IL-7R signaling and 

proliferation, such as IRF4 and Aiolos protein levels or apoptotic cell death. The IgHMOG 

allele, appears to render developing pro and pre B cells largely independent of IL-7R-

mediated proliferation. This likely allows Roquin1/2-deficient IgHMOG transgenic pro and pre 

B cells to develop into small and immature pre B cells, despite their impairment in IL-7R 

signaling, such as upregulation of IL-7Rα protein levels and proliferation. 

1.14 Expansion of T cells but not myeloid cells in the Mb1cre/+ Rc3h1F/F-2F/F 

IgHMOG mouse line 

Since the spleens of Mb1cre/+ Rc3h1F/F-2F/F IgHMOG mice are significantly heavier than control 

spleens and splenocyte numbers in these mice are not altered, despite a significant reduction 

of B cell numbers, I investigated cell-extrinsic effects of Roquin1/2-deficient B cells on the T 

cell and myeloid cell compartments in the spleen. There is a general increase of the splenic 

T cell compartment, including CD4+, CD8+ and also double negative subsets (data not 

shown), in percentage and total cell number (Fig. S18A) Moreover, the Treg-containing pool 

of CD4+ CD25+ T cells, the CD69+ activated T cell subset and CD4+ and CD8+ naive, effector 
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memory-like and central memory-like subsets are increased in percent (Fig. S18B) and thus 

also in cell numbers (data not shown) in this strain. However, there is no change in percentage 

or total cell number (data not shown) of myeloid cell populations, except for the Gr1+ 

monocyte and macrophage population, which is also increased in Mb1cre/+ Rc3h1F/F-2F/F 

IgHMOG mice (Fig. S19). Hence, the splenic B cells of Mb1cre/+ Rc3h1F/F-2F/F IgHMOG mice 

appear to unspecifically increase the entire T cell compartment, but lack effects on myeloid 

cells, that were observed in Mb1cre/+ Rc3h1F/F-2F/F mice. 

1.15 The developmental arrest in Roquin1/2-deficient bone marrow B cells 

is largely independent of Ig heavy and light chain rearrangements 

In light of the striking defects in Ig light chain (IgL) expression in splenic B cells of Mb1cre/+ 

Rc3h1F/F-2F/F mice and the developmental impairment in bone marrow B cells of this strain, I 

aimed at investigating if Roquin1 and 2 might play a role in IgL somatic rearrangement or 

expression and if this might be the cause of the developmental arrest of Roquin1/2-deficient B 

cells following the late pro B cell stage. The near absence of IgL chain expression in pro/pre 

B cells and the strong reduction of intracellular Igκ+ immature B cells in Roquin1/2-deficient 

B cells (Fig. 17) indicated either an inability to undergo somatic rearrangement of the IgL loci 

or a severe block in differentiation before Igκ recombination. Noteably, there are a significant 

number of Roquin1/2-deficient pro/pre B cells, which express µHC (Fig. 15, 16). To 

accomplish this goal, I employed the IgLD23κ light chain knock-in allele [28, 243] to generate 

Mb1cre/+ Rc3h1F/F-2F/F IgLD23κ and Mb1cre/+ Rc3h1F/F-2F/F IgHMOG IgLD23κ mice. The 

combination of these strains allows analyzing if Roquin1/2-deficiency results in a 

developmental arrest due to defects in rearrangement of heavy and light chain, light chain 

alone or a yet unknown defect independent of somatic rearrangement.  

The overall bone marrow cell count is not altered in any of the above mice compared to 

controls (data not shown). Strikingly, expression of the D23κ light chain did not lead to any 

rescue in the development of small pre B, immature and mature B cells in Roquin1/2-

deficiency compared to controls (Fig. 44A, 44B, S20), indicating that lack of IgL chain 

expression is not the cause of the developmental defect. Furthermore, percentage and total 

cell numbers of immature and mature recirculating B cells are significantly reduced in 

Mb1cre/+ Rc3h1F/F-2F/F IgHMOG IgLD23κ mice compared to IgHMOG IgLD23κ controls (Fig. 44A, 

44B). The bone marrow B cell compartments of Mb1cre/+ Rc3h1F/F-2F/F IgHMOG IgLD23κ and 

Mb1cre/+ Rc3h1F/F-2F/F IgHMOG mice appear very similar with regard to immature and mature 
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B cell pools, except that there is an approximately twofold increase in immature B cell 

numbers in the heavy and light chain insertion mice compared to the heavy chain only 

insertion mice (Fig. 34, 44). This may for instrance result from either more efficient pairing of 

IgHMOG µHC to the D23κ IgL chain in contrast to paring of IgHMOG to recombined 

endogenous IgL chain or of an even further accelerated transition through bone marrow B cell 

development leading to more B cells that have incomplete Roquin1 or 2 ablation. This might 

more likely be an indication for an enhanced formation of functional, innoccuous BCRs on 

immature B cells of Mb1cre/+ Rc3h1F/F-2F/F IgHMOG IgLD23κ mice as also the number of 

immature IgHMOG IgLD23κ control B cells is almost 2.5fold higher than that of IgHMOG control 

B cells (Fig. 34, 44). 
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Figure 44: Immature and mature bone marrow B cell populations in Mb1cre/+ Rc3h1-2F/F IgHMOG IgLD23κ 
and Mb1cre/+ Rc3h1-2F/F IgLD23κ mice. 
(A) Representative flow cytometry plots illustrating the gating strategy for bone marrow (BM) B cells and 
highlighting the similarity of B cell populations of Mb1cre/+ IgHMOG IgLD23κ R1-2F/F with those of Mb1cre/+ R1-
2F/F IgHMOG mice, R: Rc3h. (B) Percentages of respective B cell subsets of total BM cells and total subset cell 
numbers as determined by flow cytometry. The genotypes represented in the bar charts differ from (A). Ctrls: 
controls; R: Rc3h. Numbers below graphs and bars show mean values. ****p ≤ 0.0001, ***p ≤ 0.001, **p ≤ 
0.01, *p ≤ 0.05, ANOVA. Significances for Mb1cre/+ R1-2F/F IgHMOG IgLD23κ and IgHMOG IgLD23κ ctrls versus 
IgLD23κ ctrls and Mb1cre/+ R1-2F/F IgLD23κ versus IgHMOG IgLD23κ ctrls and ctrls are not shown. 

The presence of pre-rearranged heavy and light chains essentially leads to skipping of pro and 

pre B cell stages in Mb1cre/+ Rc3h1F/F-2F/F IgHMOG IgLD23κ and IgHMOG IgLD23κ mice alike, as 

indicated by the significantl lower cell numbers of pro and pre B cells from both strains 

compared to controls, which is not observed in Mb1cre/+ Rc3h1F/F-2F/F IgHMOG mice (Fig. S20, 

34).  
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Likewise, the presence of a pre-rearranged light chain in pre B cells of the Mb1cre/+ Rc3h1F/F-

2F/F IgLD23κ mouse line or the IgLD23κ control genotype significantly reduces the number of 

pre B cells in comparison to those of controls. The total cell number of pre B cells in Mb1cre/+ 

Rc3h1F/F-2F/F IgLD23κ mice compared to IgLD23κ controls is significantly reduced, suggesting 

the presence of a developmental block in the pre B cell stages, as aforementioned.  

Next, I analyzed peripheral B cell subsets in these experimental mice. Interestingly, Mb1cre/+ 

Rc3h1F/F-2F/F IgHMOG IgLD23κ mice have significantly enlarged spleens and increased 

splenocyte counts (Fig. S21A). Yet the percentage and number of total splenic B cells is 

significantly reduced in the Mb1cre/+ Rc3h1F/F-2F/F IgHMOG IgLD23κ strain compared to IgHMOG 

IgLD23κ mice, emanating from immense reduction of percentage and cell number of mature 

splenic B cells (Fig. S21, data not shown). This is reminiscent of the phenotype observed in 

the spleens of Mb1cre/+ Rc3h1F/F-2F/F IgHMOG mice (Fig. 35, 38). However, the difference in 

cell numbers determined for mature B Mb1cre/+ Rc3h1F/F-2F/F IgHMOG IgLD23κ B cells based on 

AA4.1 is only twofold that determined by IgDhi IgMlo staining (Fig. S21), indicating that the 

described splenic B1b expasion in Mb1cre/+ Rc3h1F/F-2F/F IgHMOG mice is reduced by 

expression of the D23κ light chain. 

Likewise, in Mb1cre/+ Rc3h1F/F-2F/F IgHMOG IgLD23κ mice, transitional/immature B cell 

numbers decline strongly from T1 to T2 stage as in Mb1cre/+ Rc3h1F/F-2F/F IgHMOG mice (Fig. 

36, S22) Moreover, the mature splenic B cell compartment in the Mb1cre/+ Rc3h1F/F-2F/F 

IgHMOG IgLD23κ mouse strain resembles that of Mb1cre/+ Rc3h1F/F-2F/F IgHMOG mice (Fig. S14) 

with regard to the absence of germinal center B cells in spleen (Fig. S22), mesenteric lymph 

nodes and Peyer’s patches (data not shown). In addition, as in the Mb1cre/+ Rc3h1F/F-2F/F 

IgHMOG strain, B1b cell percentage and total cell numbers in spleen and peritoneal cavity of 

Mb1cre/+ Rc3h1F/F-2F/F IgHMOG IgLD23κ mice are rescued, while B1a cells are not rescued (Fig. 

S23), resembling the phenotype of Mb1cre/+ Rc3h1F/F-2F/F IgHMOG mice. However, the B1b 

cell expansion is not as pronounced in the Roquin1/2-deficient heavy and light chain insertion 

B lineage compared to the heavy chain insertion B lineage only (Fig. 39). This indicates that 

other light chains than D23κ favor B1b cell development in combination with IgHMOG. 

Total splenocytes and splenic B cells in Mb1cre/+ Rc3h1F/F-2F/F IgLD23κ mice recapitulate the 

observations made in the Mb1cre/+ Rc3h1F/F-2F/F mouse strain (Fig. 44, S21-S23, data not 

shown). Similarly, there are no splenic or peritoneal cavity B1 cells in Mb1cre/+ Rc3h1F/F-2F/F 

IgLD23κ mice (Fig. S23). In conclusion, it appears that a pre-rearranged heavy and light chain, 

despite further increasing the number of immature bone marrow B cells in Mb1cre/+ Rc3h1F/F-

2F/F IgHMOG IgLD23κ mice do not rescue B cell development to wild type levels as the number 
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of mature recirculating B cells is still dramatically decreased (Fig. 44). Furthermore, splenic 

and GALT B cell populations are not reconstituted, more pronouncedly in this mouse line 

than in the Mb1cre/+ Rc3h1F/F-2F/F IgHMOG genotype with a very strong developmental 

hindrance from transitional T1 to T2 stage.  

Taken together with the data obtained in the Mb1cre/+ Rc3h1F/F-2F/F IgLD23κ strain, the 

developmental arrest in Mb1cre/+ Rc3h1F/F-2F/F mice appears to be independent of somatic 

rearrangement of Ig heavy and light chain provided that µHC (from the IgHMOG allele) and 

Igκ (from the IgLD23κ allele) are correctly expressed and can efficiently pair in Mb1cre/+ 

Rc3h1F/F-2F/F IgHMOG IgLD23κ mice. 

1.16 Igκ light chain is expressed in B cells of IgLD23κ transgenic mice and 

can pair with IgHMOG 

The decreased cell numbers and percentages of pre B cells in IgLD23κ control mice compared 

to wild type controls suggest that a majority of developing pre B cells in IgLD23κ transgenic 

mice bypasses this developmental step by expressing the pre-rearranged Igκ light chain. 

Moreover, it remained possible that the observed reduced percentages of µHC+ pro/pre B cells 

and the respective reduction in λ5- Igκ+ pro/pre B cells of Mb1cre/+ Rc3h1F/F-2F/F mice stem 

from a defect in light chain expression (Fig. 15, 16). To answer these questions, Igµ and Igκ 

intracellular expression was quantified in bone marrow and splenic B cell subsets in the 

Mb1cre/+ Rc3h1F/F-2F/F IgLD23κ and IgLD23κ strains (Fig. 45) Interestingly, an intracellular λ5+ 

Igκ+ pro/pre B cell subset is clearly distinguishable in Mb1cre/+ Rc3h1F/F-2F/F IgLD23κ mice 

(Fig. 45A). The percentage of this population is significantly increased in Mb1cre/+ Rc3h1F/F-

2F/F IgLD23κ mice compared to IgLD23κ controls (Fig. 45B). In contrast, the intracellular λ5- 

Igκ+ pro/pre B cell population is significantly reduced in Mb1cre/+ Rc3h1F/F-2F/F IgLD23κ mice 

(Fig. 45B). The overall proportion of intracellular Igκ+ pro/pre B cells is not altered between 

Mb1cre/+ Rc3h1F/F-2F/F IgLD23κ and IgLD23κ control mice. Therefore, there is a clear block at 

the λ5+ Igκ+ to λ5- Igκ+ transition in absence of Roquin1/2 proteins in D23κ light chain 

insertion mice. It is noteworthy that intracellular Igµ expression is significantly reduced in λ5+ 

Igκ+ pro/pre B cells of Mb1cre/+ Rc3h1F/F-2F/F IgLD23κ compared to the relevant IgLD23κ 

controls (Fig. 45C). 

Moreover, I quantified intracellular Igκ expression in Igκ+ bone marrow and splenic B cell 

populations (Fig. 45D, 45E). The percentage of Igκ+ and the intracellular Igκ levels are not 

altered in pre to immature bone marrow B cell populations of Mb1cre/+ Rc3h1F/F-2F/F IgLD23κ 



David K. Rieß IV. Results 
 

	
	

105	

compared to IgLD23κ mice (Fig. 45D, 45E), but both are significantly decreased in the few 

generated mature recirculating bone marrow B cells and mature splenic IgDhi IgMlo B cells 

(Fig. 45D, 45E). This demonstrates that despite presence of Igκ light chain, Igµ heavy chain 

levels are reduced. Hence the reduction in Igµ heavy chain levels observed in pre B cells of 

Mb1cre/+ Rc3h1F/F-2F/F mice is unlikely caused by destabilization of Igµ protein resulting from 

absence of IgL chain protein for binding. 

I performed identical analyses in Mb1cre/+ Rc3h1F/F-2F/F IgHMOG IgLD23κ mice in which the λ5+ 

Igκ+ pro/pre B subset is clearly distinguishable (Fig. 46), yet remarkably reduced compared to 

Mb1cre/+ Rc3h1F/F-2F/F IgLD23κ mice. Furthermore, as stated before for Mb1cre/+ Rc3h1F/F-2F/F 

IgLD23κ mice, the ratio of λ5- Igκ+ pro/pre B is reduced compared to IgHMOG IgLD23κ controls 

(Fig. 46A, 46B). It is noteworthy that intracellular expression levels of Igµ in the λ5+ Igκ+ as 

well as the λ5+ Igκ+ pro/pre B cell populations tends to be even increased in experimental 

mice (Fig. 46C) as well as in all bone marrow B cell populations of the Mb1cre/+ Rc3h1F/F-2F/F 

IgHMOG IgLD23κ mouse strain (data not shown). Quantification of intracellular Igκ in Igκ+ 

bone marrow and splenic B cell populations of these mice yielded a result similar to the 

analysis in Mb1cre/+ Rc3h1F/F-2F/F IgLD23κ mice, except that differences in percent of Igκ+ cells 

and Igκ levels in these cells in splenic IgDhi IgMlo B cells and mature recirculating bone 

marrow B cells of Mb1cre/+ Rc3h1F/F-2F/F IgHMOG IgLD23κ are less pronounced (Fig. 46D, 

46E). 



David K. Rieß IV. Results 
 

	
	

106	

 

Figure 45: Analysis of intracellullar Igµ and Igκ expression in bone marrow and splenic B cell subsets of 
Mb1cre/+ Rc3h1-2F/F IgLD23κ mice. 
(A) Representative flow cytometry plots illustrating the gating strategies for pro/pre (B220lo IgD- IgM-) B cells. 
(B) Bar chart depicting analysis of the pro/pre B cell compartment based on IC expression of Igκ and λ5. Igκ+ 
marks percentage of IC Igκ+ pro/pre B cells independent of IC λ5 expression. (C) Flow cytometric determination 
of IC protein expression of µHC/Igµ in the discriminated (B) pro/pre B cell subset. (D) Determination of 
percentage of IC Igκ+ among stated BM (left) or SPL (right) B cell populations as analyzed by flow cytometry 
and (E) IC Igκ protein levels in these Igκ+ cells. Gated B cell subsets: small pre B B220lo c-kit- CD25+ IgD- IgM- 
FSClo; immature B B220int IgD- IgM+, mature B B220+ IgD+, B cells B220+, IgDlo IgMhi and IgDhi IgMlo B cells. 
R: Rc3h; Igµ: intracellular IgM; IC: intracellular; n.d.: not depicted; MFI: median fluorescence intensity; BM: 
bone marrow; SPL: spleen. Bars represent means and error bars standard deviation. ****p ≤ 0.0001, ***p ≤ 
0.001, *p ≤ 0.05, multiple t tests with Holm-Sidak method applied. 
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Figure 46: Analysis of intracellullar Igµ and Igκ expression in bone marrow and splenic B cell subsets of 
Mb1cre/+ Rc3h1-2F/F IgHMOG IgLD23κ mice. 
Similar analysis performed as in Fig. 45. (A) Representative flow cytometry plots illustrating the gating for 
pro/pre (B220lo IgD- IgM-) B cells. (B) Bar chart depicting analysis of the pro/pre B cell compartment based on 
IC expression of Igκ and λ5. Igκ+ marks percentage of IC Igκ+ pro/pre B cells independent of IC λ5 expression. 
(C) Flow cytometric determination of IC protein expression of µHC/Igµ in the discriminated (B) pro/pre B cell 
subset. (D) Determination of percentage of IC Igκ+ among stated BM (left) or SPL (right) B cell populations as 
analyzed by flow cytometry and (E) IC Igκ protein levels in these Igκ+ cells. Gated B cell subsets: small pre B 
B220lo c-kit- CD25+ IgD- IgM- FSClo; immature B B220int IgD- IgM+, mature B B220+ IgD+, B cells B220+, IgDlo 
IgMhi and IgDhi IgMlo B cells. R: Rc3h; Igµ: intracellular IgM; n.d.: not depicted; IC: intracellular; MFI: median 
fluorescence intensity; BM: bone marrow; SPL: spleen. Bars represent means and error bars standard deviation. 
**p ≤ 0.01, *p ≤ 0.05, multiple t tests with Holm-Sidak method applied. 
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Efficient pairing of IgHMOG heavy chain and IgLD23κ light chain in B cells of Mb1cre/+ 

Rc3h1F/F-2F/F IgHMOG IgLD23κ was confirmed by surface staining for Igκ and Igλ (Fig. 47A). 

Mature recirculating B cells of these mice express almost exclusively Igκ, most likely 

originating from the IgLD23κ allele, while in the relevant Mb1cre/+ Rc3h1F/F-2F/F IgHMOG 

controls a significant fraction expresses Igλ on the cell surface (Fig. 47A). This is consistend 

with the observed phenotype that pre B cell development appears accelerated by the pre-

rearranged IgLD23κ allele in Mb1cre/+ Rc3h1F/F-2F/F IgHMOG IgLD23κ compared to Mb1cre/+ 

Rc3h1F/F-2F/F IgHMOG mice (Fig. 34, S20). The same was observed for immature B cells of 

Mb1cre/+ Rc3h1F/F-2F/F IgHMOG IgLD23κ and Mb1cre/+ Rc3h1F/F-2F/F IgHMOG mouse lines (Fig. 

34, 41). Moreover, cell numbers of Igλ+ immature B cells in the IgLD23κ transgenic IgHMOG 

IgLD23κ and IgLD23κ mouse lines tend to be reduced compared to wild type controls, which is 

not the case for Igκ+ immature B cells in these mice, indicating a bias for Igκ usage 

independent of IgHMOG or endogenous heavy chain usage (Fig. 47B).  

Interestingly, there is a peculiar population of Igκ/λ double positive (Igκ+ Igλ+) mature 

recirculating B cells in the bone marrow (Fig. 47A) and more mature IgDhi IgMlo splenic B 

cell pool (data not shown) in the IgHMOG IgLD23κ control mouse. As it has been shown that 

IgLD23κ-driven Igκ expression occurs in the presence of an Igκ locus closed by recombination 

to the recombining sequence, which deletes the Cκ gene segment (Fig. 1) [28, 265] and co-

expression of a MOG-specific Ig heavy and light chain cause ongoing receptor editing [226], 

I aimed to investigate if receptor editing by secondary rearrangements might be the cause of 

this Igκ/λ double positive population. Downregulation of the BCR as well as IRF4 

upregulation are hallmarks of receptor editing [28, 255, 266]. However, I neither found IgM 

surface expression levels (Fig. 44, data not shown) to be reduced nor intracellular IRF4 levels 

to be increased in pro, pre or immature B cells of IgHMOG IgLD23κ mice compared to IgLD23κ 

and wild type control mice (Fig. 48). Therefore, these Igκ/λ double positive B cells appear 

due to a yet unknown reason. The quantification of intracellular IRF4 levels strongly 

highlights the similarity of IgHMOG containing Roquin1/2-deficient B cells and the Roquin1/2-

deficient genotypes without IgHMOG (Fig. 48). Additionally, IgHMOG inserted pre B cells 

exhibit (Fig. 48) a tendency of higher IRF4 levels compared to those with D23κ inserted (Fig. 

48). This observation further supports the conclusion that insertion of D23κ allows the pre B 

cells to transition quicker to the immature B cell stage compared to IgHMOG only inserted pre 

B cells, which must successfully recombine IgL. Strikingly, IRF4 levels in IgHMOG inserted 

Roquin1/2-deficient and wild type pro, pre and immature B cells are near identical, further 

supporting the conclusion of partial IgHMOG-mediated rescue (Fig. 48). Remarkably, IRF4 
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levels in Roquin1/2-deficient pro, pre and immature B cells are very similar irrespective if 

they have the D23κ allele inserted or not (Fig. 48).  

In conclusion, lack of an IgLD23κ-specific antibody prohibited specific staining of Ig light 

chain derived from this allele, yet appearance of a novel cytoplasmic λ5+ Igκ+ pro/pre B cell 

population suggests efficient expression of transgene-derived κ light chain. Moreover, I 

provide evidence for successful pairing of IgHMOG heavy chain and IgLD23κ light chain 

suggesting that despite formation of a BCR on the cell surface of immature B cells of Mb1cre/+ 

Rc3h1F/F-2F/F IgHMOG IgLD23κ mice, B cell lymphopoiesis is not rescued and the 

developmental pro to pre B cell block observed upon Mb1cre-mediated deletion of Roquin1 

and 2 is independent of Igµ or Igκ/λ rearrangement and (pre-)BCR expression. 

 

Figure 47: Analysis of surface expression of Igκ and Igλ on BM B cells of Mb1cre/+ Rc3h1-2F/F IgHMOG 
IgLD23κ and Mb1cre/+ Rc3h1-2F/F IgLD23κ mice. 
(A) Representative flow cytometric analysis of mature, recirculating (B220+ IgD+) bone marrow (BM) B cells. 
(B) Total cell numbers of immature/mature Igκ-positive (Igκ+) or Igλ-positive (Igλ+) or double positive (Igκ+ 
Igλ+) B cells. R: Rc3h. The genotypes displayed in the bar charts differ from (A). Numbers below graphs and 
bars indicate mean cell numbers (#). ****p ≤ 0.0001, ***p ≤ 0.001, **p ≤ 0.01, *p ≤ 0.05, ANOVA. Calculated 
cell numbers of < 1000 were rounded to 0 and denoted as ≈0.0. Significances for Mb1cre/+ R1-2F/F IgHMOG 
IgLD23κ versus IgLD23κ ctrls and Mb1cre/+ R1-2F/F IgLD23κ versus IgHMOG IgLD23κ ctrls and ctrls are not shown. 
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Figure 48: Analysis of intracellular IRF4 levels in bone marrow B cell populations of Mb1cre/+ Rc3h1-2F/F, 
Mb1cre/+ Rc3h1-2F/F IgLD23κ, Mb1cre/+ Rc3h1-2F/F IgHMOG and Mb1cre/+ Rc3h1-2F/F IgHMOG IgLD23κ mice. 
Bar chart representation of IC IRF4 levels as determined by flow cytometry in indicated BM B cell populations. 
Bars and numbers below bars represent mean MFI values and error bars standard deviation. All significances 
determined are shown. Mouse grouping based on insertion of IgHMOG or not and additional insertion of IgLD23κ 
(+IgLD23κ) or not (-IgLD23κ) are grouped as stated on top. Values for data points of Mb1cre/+ Rc3h1-2F/F IgHMOG 
and IgHMOG ctrl are the sames as used for Fig. 43. B cell subset gating: Pro B B220lo IgD- IgM- ckit+ CD25-; 
Large pre B B220lo IgD- IgM- ckit- CD25+ FSChi; Immature B B220+ IgD- IgM+. BM: bone marrow; MFI: 
median flourescence intensity; IC: intracellular; R: Rc3h. Numbers below bars indicate mean MFI values. ****p 
≤ 0.0001, **p ≤ 0.01, *p ≤ 0.05, ns non-significant, ANOVA. 
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1.17 Loss of immature and mature bone marrow B cells in Mb1cre/+ 

Rc3h1F/F-2F/F IgHMOG IgLD23κ and Mb1cre/+ Rc3h1F/F-2F/F IgLD23κ mouse lines 

is mostly independent of apoptosis and proliferation 

Subsequently, I aimed to dissect the role of apoptosis and proliferation in the hindered 

development of bone marrow B cells in Mb1cre/+ Rc3h1F/F-2F/F IgHMOG IgLD23κ and Mb1cre/+ 

Rc3h1F/F-2F/F IgLD23κ mice. As expected the ratios of viable B cells of the individual subsets 

in Mb1cre/+ Rc3h1F/F-2F/F IgHMOG IgLD23κ mice do not differ much from those of IgHMOG 

IgLD23κ control (Fig. S24A) or Mb1cre/+ Rc3h1F/F-2F/F IgHMOG mice (data not shown), except 

for the fraction of viable small pre B cells, which is strongly decreased in the former mouse 

line. However, this decreased viability of small pre B cells is unlikely to have strong 

consequences as the total cell number of small pre B cells is very low in Mb1cre/+ Rc3h1F/F-

2F/F IgHMOG IgLD23κ mice (Fig. S20). Similarly, survival of bone marrow B cell populations is 

hardly altered in Mb1cre/+ Rc3h1F/F-2F/F IgLD23κ mice compared to IgLD23κ control mice (Fig. 

24B) or Mb1cre/+ Rc3h1F/F-2F/F mice (data not shown), except for a significant decrease in the 

percentage of viable immature B cells, which however affects only a very small total cell 

number (Fig. 44). Moreover, quantification of Bim levels in bone marrow B cells of Mb1cre/+ 

Rc3h1F/F-2F/F IgHMOG IgLD23κ in relation to IgHMOG IgLD23κ mice showed no significant 

differences (data not shown). 

IL-7Rα expression levels on bone marrow B cells of Mb1cre/+ Rc3h1F/F-2F/F IgHMOG IgLD23κ 

mice recapitulated that of Mb1cre/+ Rc3h1F/F-2F/F IgHMOG mice, while IL-7Rα levels in the 

Mb1cre/+ Rc3h1F/F-2F/F IgLD23κ mice phenocopied that of the Mb1cre/+ Rc3h1F/F-2F/F genotype 

(data not shown). There is a significant, but small increase of the proportion of immature B 

cells of Mb1cre/+ Rc3h1F/F-2F/F IgHMOG IgLD23κ mice in the proliferative S/G2/M-phase 

compared to IgHMOG IgLD23κ (Fig. S25A) or Mb1cre/+ Rc3h1F/F-2F/F IgHMOG mice (data not 

shown). Likewise, mature recirculating B cells in the Mb1cre/+ Rc3h1F/F-2F/F IgHMOG IgLD23κ 

and Mb1cre/+ Rc3h1F/F-2F/F IgLD23κ mouse strains were demonstrated to have a higher ratio of 

cells in S/G2/M-phase in comparison to IgHMOG IgLD23κ or IgLD23κ mice, respectively (Fig. 

S25A). However the loss of immature and mature recirculating bone marrow B cells in 

Mb1cre/+ Rc3h1F/F-2F/F IgHMOG IgLD23κ and Mb1cre/+ Rc3h1F/F-2F/F IgLD23κ mice appears to a 

large part independent of increased apoptosis and defects in proliferation. 
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1.18 Altered extrinsic effects in T and myeloid populations in presence of 

IgLD23κ in Mb1cre/+ Rc3h1F/F-2F/F IgHMOG IgLD23κ and Mb1cre/+ Rc3h1F/F-2F/F 

IgLD23κ mice 

Unexpectedly, despite an increase in splenic B cells numbers, there is no change with regard 

to percentage in the T cell compartment in the Mb1cre/+ Rc3h1F/F-2F/F IgHMOG IgLD23κ mouse 

line compared to IgHMOG IgLD23κ controls (Fig. S26). Due to the increase in total splenic cell 

numbers some T cell populations are significantly increased in cell numbers, such as CD4+ 

and the Treg-containing CD4+ CD25+ T cell pool (Fig. S26). Moreover, the striking increases 

observed in the splenic T cell compartment of Mb1cre/+ Rc3h1F/F-2F/F IgHMOG mice are 

altogether reduced (Fig. S18). Surprisingly, all splenic T cell populations investigated in mice 

of the Mb1cre/+ Rc3h1F/F-2F/F IgLD23κ genotype are significantly increased in percentage in 

comparison to IgLD23κ controls (Fig. S26) and also show a trend of elevated percentages 

compared to Mb1cre/+ Rc3h1F/F-2F/F IgHMOG IgLD23κ mice. 

Next, I analyzed splenic myeloid cell populations. Plasmacytoid dendritic cells as well as 

activated monocytes and macrophages are increased in percentage in the Mb1cre/+ Rc3h1F/F-

2F/F IgHMOG IgLD23κ mouse line compared to IgHMOG IgLD23κ controls (Fig. S27). 

Furthermore, percentages of myeloid cell populations are in general elevated in Mb1cre/+ 

Rc3h1F/F-2F/F IgHMOG IgLD23κ mice in comparison to the Mb1cre/+ Rc3h1F/F-2F/F IgHMOG mouse 

line. Likewise, all myeloid cell subsets are expanded percentagewise in the Mb1cre/+ Rc3h1F/F-

2F/F IgLD23κ mouse line compared to IgLD23κ controls (Fig. S27). 

Summary of the most important findings of part 1 

Collectively, Mb1cre-mediated deletion of Roquin1 and 2 has revealed a novel and 

unexpected role of both proteins in early B cell development in the bone marrow. Roquin1 

and 2 have important functions at the pre-BCR checkpoint largely independent of µHC 

expression or formation of a pre-BCR/BCR. The indications presented in this thesis point 

towards a contribution of Roquin1 and 2 to normal IL-7R and (pre-)BCR signaling and 

downstream effects mediated by these pathways such as expansion of the large pre B cell pool 

by proliferation. 
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2. Roquin proteins regulate the maturation, activation and 

differentiation of peripheral B cells 

2.1 B cells of CD19cre/+ Rc3h1F/F-2F/F mice do not show signs of a 

developmental block in the bone marrow  

In addition to investigating the role of Roquin1 and 2 in early B cell development, I also 

studied their role in splenic B cell development and peripheral B cell physiology. To this end, 

I used the CD19cre knock-in mouse strain (cre: inserted / +: wild type), which expresses cre 

recombinase under endogenous control of the B cell-confined CD19 locus [224, 225]. 

Recombination efficiency of loxP flanked alleles by CD19cre has been shown to be 75-80% 

in bone marrow and above 90% in splenic B cells, thus reflecting the fact that CD19cre-

mediated deletion is a continuous process resulting in complete deletion in mature B cells 

[225, 238, 267]. The experiments employing CD19cre-mediated Roquin1 and 2 deletion were 

performed in 8-16 weeks old experimental and CD19cre/+ control mice. An Rc3h1-2F/F 

nomenclature is used for CD19cre-based experiments to reflect the fact that every experiment 

was aimed at deleting all four alleles of Roquin1 and 2, unlike in the initial Mb1cre 

experiments. 

Mice of the CD19cre/+ Rc3h1-2F/F strain developed normally and no changes in weight or total 

cell number of bone marrow cells were noted (Fig. 49A). As CD19 expression, and hence 

CD19cre activity, starts at the pro B cell stage, unexpectedly the number of pro B cells is 

significantly increased, while total numbers of pre or immature B cells remain unchanged 

(Fig. 49B, 49C). This observation was surprising in the context of the Mb1cre-mediated 

developmental block upon deletion of both Roquin paralogs. However, the total number of 

mature recirculating B cells is strongly decreased in CD19cre/+ Rc3h1-2F/F mice. Yet, very 

significantly and in contrast to the Mb1cre experiments, a population of mature recirculating 

B cells is generated in this strain. 
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Figure 49: Minute mature recirculating B cells numbers in CD19cre/+ Rc3h1-2F/F mice. 
(A) Mouse weight and total number of bone marrow cells. (B) Representative flow cytometry plots illustrating 
the gating strategies for bone marrow B cell populations. (C) Total bone marrow B cell subset numbers as 
determined by flow cytometry. #: numbers; BM: bone marrow. Numbers below graphs and bars show mean 
values. ****p ≤ 0.0001, *p ≤ 0.05, paired t test. 
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2.2 Maturation defect of splenic B cells and reduction of B1a cells in 

CD19cre/+ Rc3h1F/F-2F/F mice 

As the number of mature recirculating B cells in the bone marrow is strongly reduced in 

experimental mice, I further investigated naive peripheral B cell stages. Surprisingly, the 

spleens of these mice are significantly heavier and contain more splenocytes (Fig. 50A). 

However, percentage and total splenic B cell numbers are reduced. There is no alteration in 

splenic immature/transitional B cells, but percentage and total cell number of the mature 

B cell subsets are reduced in the CD19cre/+ Rc3h1-2F/F mouse line (Fig. 50B, 50C). Similarly, 

the number of the immature splenic B cell population as defined by IgDlo IgMhi expression is 

not altered, while the cell number of the more mature IgDhi IgMlo B cells is strongly reduced 

(Fig. 51). Remarkably, the AA4.1- mature B cell numbers are twofold higher than the IgDhi 

IgMlo mature B cell numbers, indicating that similar to Mb1cre/+ Rc3h1F/F-2F/F IgHMOG mice, 

AA4.1- mature splenic B cells in CD19cre/+ Rc3h1-2F/F comprise a significant ratio of B1 cells 

(Fig. 51).  

 

Figure 50: CD19cre/+ Rc3h1-2F/F mice have an enlarged spleen, but a reduction in mature splenic B cells. 
(A) Spleen weight and absolute number of splenocytes. (B) Representative flow cytometry analysis depicting 
gating scheme of splenic (SPL) B cells. (C) Percentage of stated SPL B cell populations among total splenocytes 
and total subset cell numbers as determined by flow cytometry. SPL: spleen. Numbers below graphs and bars 
represent mean percentages and cell numbers (#). ****p ≤ 0.0001, ***p ≤ 0.001, *p ≤ 0.05, paired t test. 
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Figure 51: Reduction of splenic B cell population sizes post the T1 stage in CD19cre/+ Rc3h1-2F/F mice. 
(A) Representative flow cytometric analysis illustrating the gating strategy for splenic B cells. (B) Total splenic 
(SPL) subset B cell numbers as determined by flow cytometry. T1: transitional 1; T2: transitional 2, T3: 
transitional T3; FO: follicular, MZB/MZ B: mature marginal zone; MZP: marginal zone precursor. SPL: spleen. 
Numbers below graphs and bars show mean percentages and cell numbers (#). ****p ≤ 0.0001, **p ≤ 0.01, *p ≤ 
0.05, paired t test. 
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However, within the immature/transitional B cell subset, there is a trend for increased 

percentages and cell numbers of transitional T1 B cells, whereas percentages and numbers of 

T2 and T3 B cells are decreased in CD19cre/+ Rc3h1-2F/F mice (Fig. 51) Within the mature 

compartment, the percentages and cell numbers of follicular, marginal zone and marginal 

zone precursors are significantly reduced. In line with previous experiments, I observed a 

similar deregulation of the surface markers CD21, CD1d and CD23 on splenic B cells of 

CD19cre/+ Rc3h1-2F/F mice (Fig. 51A) as noted for Mb1cre/+ Rc3h1F/F -2F/F IgHMOG mice (Fig. 

36).  

As indicated by the twofold higher numbers of AA4.1- mature B cells compared to IgDhi 

IgMlo B cell numbers, the percentage and cell number of the splenic B1 cell pool is 

significantly increased in CD19cre/+ Rc3h1-2F/F mice. There is a reduction of the splenic B1a 

population in percentage and cell number, whereas the B1b pool is significantly and strongly 

increased in percent and cell number (Fig. 52) culminating in the overall increase of the 

splenic B1 compartment. Similarly, the peritoneal cavity B1a subset is significantly decreased 

in percentage and cell number, while the B1b population is increased resulting in an overall 

increase of the B1 cell population in the peritoneal cavity (Fig. 52).  

Thus, the B1 cell compartment in spleen and peritoneal cavity of CD19cre/+ Rc3h1-2F/F mice 

(Fig. 52) resembles that of the Mb1cre/+ Rc3h1F/F -2F/F IgHMOG mouse strain (Fig. 39). The 

numbers of Peyer's patches as well as the number of cells per Peyer's patch are significantly 

reduced in the CD19cre/+ Rc3h1-2F/F mouse strain (Fig. S28A), which I have similarly 

observed for Peyer's patches of Mb1cre/+ Rc3h1F/F -2F/wt mice (Fig. 13). 

In conclusion, splenic B cells of CD19cre/+ Rc3h1-2F/F mice show a strong reduction in mature 

recirculating B cells in the bone marrow and in mature IgDlo splenic B cells. Detected 

phenotypes in this strain resemble those described before in the different Mb1cre models. 

This suggests that the later onset of recombination of loxP-flanked Rc3h1 and 2 alleles in the 

CD19cre model allows B cell development in the bone marrow to occur. However, loss of 

Roquin proteins at a later time point eventually cause similar maturation defects as observed 

in Mb1cre/+ Rc3h1F/F -2F/F IgHMOG mice: Roquin1/2-deficient B lineage cells cannot 

differentiate into mature recirculating bone marrow B cells, mature IgDhi IgMlo splenic B cells 

and B1a cells in spleen and peritoneal cavity. Interestingly, both genetic models also point to 

an inhibitory role for Roquin proteins in controlling the expansion of B1b cells in spleen and 

peritoneal cavity. 
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Figure 52: Splenic and peritoneal cavity B1 cell populations are increased in CD19cre/+ Rc3h1-2F/F mice 
resulting from increased B1b cell compartments, wheres B1a subsets are reduced.  
(A) Representative flow cytometric analysis depicting the gating strategy for B1 cells. (B) Percentage of 
indicated SPL/PC B cell populations among total SPL/PC cells and total subset cell numbers as determined by 
flow cytometry. SPL: spleen; PC: peritoneal cavity. Numbers below graphs and bars indicate mean values. 
****p ≤ 0.0001, ***p ≤ 0.001, **p ≤ 0.01, *p ≤ 0.05, paired t test. 
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2.3 Evidence for counterselection of Roquin1/2-ablated mature splenic B 

cells in CD19cre/+ Rc3h1F/F-2F/F mice  

Subsequently, I further investigated the striking maturation inability of Roquin1/2 ablated 

splenic B cells. To this end, I performed qRT-PCR analysis to quantify Rc3h1 and 2 mRNA 

in flow-cytometry purified mature follicular and marginal zone B cell subsets (Fig. 53)  

 

Figure 53: Efficient recombination of Rc3h1 and 2 alleles in mature B cell populations of CD19cre/+ Rc3h1-
2F/F mice and reduction of Roquin1 and 2 protein levels in immature und mature B cell subsets. 
(A) Follicular and marginal zone splenic B cell subsets were purified as stated below the respective subset by 
flow cytometry. Measured Rc3h1-2 mRNA levels were normalized to PBGD and resulting relative gene 
expression compared to CD19cre/+ controls is depicted. (B) (Top) Immature and mature splenic B cells were 
purified by flow cytometry. Representative Western blot analyses of two samples for each CD19cre/+ Rc3h1-2F/F 
and CD19cre/+ controls with quantified ratios of Roquin1 or 2 expression relative to α-actinin. (Continued on next 
page) 
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(Bottom) Roquin1 and 2 expression was quantified relative to α-actinin and expression normalized to CD19cre/+ 
controls. SPL: spleen. Number below graphs and bars are mean values (A) or geometric means (B). ****p ≤ 
0.0001, unpaired t test. 

I calculated Rc3h1 and 2 mRNA levels in these mature populations from the CD19cre/+ Rc3h1-

2F/F genotype to correspond to 5-10% of the levels in CD19cre/+ controls. To more direcly 

monitor Roquin1/2-deficiency at the protein levels, I quantified the relative protein expression 

of Roquin1 and 2 by Western blot in FACS purified immature and mature splenic B cells 

(Fig. 53B). The protein levels of Roquin1 and 2 normalized to a-actinin increase in double-

deficient mature B cells compared to immature B cells. This in in contrast to the 

recombination efficiency of CD19cre, which increases from immature to mature B cells in the 

absence of selective pressures [238]. Therefore, this result indicates ongoing counterselection 

against Roquin1/2-deficient B cells. Analyses of Roquin1 protein levels compared to Roquin2 

revealed an approximately 3fold higher expression in immature and 2.5fold higher expression 

in mature splenic B cells from CD19cre/+ mice (data not shown). To further evaluate selection 

process by an additional method, I again employed the R26/CAG-CARΔ1StopF (R26CARStopFL) 

allele. The increase of pro B cell numbers (Fig. 49) correlates with a significantly lower 

surface expression of CAR on late pro B cells of CD19cre/+ Rc3h1-2F/F R26CARStopFL mice (Fig. 

54). This expression pattern might reflect early counterselective pressure in Roquin1/2-

ablated late pro B cells. However, there is no increase in proliferation of ex vivo isolated pro 

B cells of CD19cre/+ Rc3h1-2F/F that could explain this increase in pro B cell numbers (Fig. 

S28B). As expected from the protein quantification (Fig. 53B), while CAR surface expression 

does not differ on immature splenic B cells, it is significantly lower on mature splenic B cells 

and mature recirculating bone marrow B cells of CD19cre/+ Rc3h1-2F/F R26CARStopFL mice (Fig. 

54). Mature recirculating B cells of experimental mice show a significantly increased 

proliferative capacity as judged by the ratio of cells in G1 and S/G2/M phases potentially as a 

consequence of homeostatic proliferation in response to the low number of mature B cells in 

the bone marrow (Fig. S28B). Taken together, Roquin1 and 2 protein levels and CAR surface 

expression together with the data on indicate that Roquin1/2-deficient mature B cells have a 

competitive disadvantage in CD19cre/+ Rc3h1-2F/F R26CARStopFL mice. 
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Figure 54: Counterselection of Rc3h1/2-deficient mature B cells in CD19cre/+ Rc3h1-2F/F R26CARStopFL 
reporter mice. 
(A) Representative flow cytometric analysis of cell surface expression on indicated bone marrow and splenic B 
cell subsets of the CAR reporter after CD19cre-mediated deletion. The dotted line in the histograms denotes CAR 
expression (CAR+). (B) Percentages of CAR+ B cells among the respective B cell subsets in bone marrow (BM) 
and spleen (SPL). CAR signal in the respective B cell populations in wild type and CD19cre/+ mice was always < 
1% (data not shown). Gated B cell subsets: BM - Prepro B B220lo IgD- IgM- ckit+ CD25- CD19-; Late pro B 
B220lo IgD- IgM- ckit+ CD25- CD19+; Pro B B220lo IgD- IgM- ckit+ CD25-; Large pre B B220lo IgD- IgM- ckit- 
CD25+ FSChi; Small pre B B220lo IgD- IgM- ckit- CD25+ FSClo; Immature B B220+ IgD- IgM+; Mature B B220+ 
IgD+; SPL - Immature B B220+ AA4.1+; Mature B B220+ AA4.1-. Bars represent mean values and error bars 
standard deviation. ****p ≤ 0.0001, ***p ≤ 0.001, *p ≤ 0.05, unpaired t test. 

2.4 Shifted ratios of Igκ and Igλ light chain usage with progressing 

maturation of Roquin1/2-deficient B cells 

Since the pro to pre B cell transition appeared unaltered in CD19cre/+ Rc3h1-2F/F mice, I 
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(Fig. 55B). Subsequently, I analyzed the ratio of Igκ to Igλ usage in splenic B cells (Fig. 55A, 

55C). As expected, there is a significant change towards an increased Igλ usage in splenic B 

cells with a concomitant decrease in Igκ usage from the rather immature IgDlo IgMhi B cells to 

the more mature IgDhi IgMlo B cells and also mature recirculating B cells in the bone marrow 

(Fig. 55C) of the CD19cre/+ Rc3h1-2F/F mouse strain. This shift from Igκ to Igλ usage was also 

observed in the total B220+ splenic B cell population.  

 

Figure 55: Shifted ratio of Igκ versus Igλ expression on splenic B and mature B cells in the bone marrow 
of CD19cre/+ Rc3h1-2F/F mice. 
(A) Representative flow cytometry analysisof Igκ versus Igλ (λ1, 2 and 3) expression on bone marrow (BM) B 
cells. (B) Total cell numbers of Igκ- or Igλ-expressing immature and mature recirculating BM cells. (C) Bar 
chart representation of percentages determined by flow cytometry of Igκ (left) or Igλ (right) positive BM or 
spleen (SPL) B cells among parent population as stated. Gated B cell subsets: BM - immature B B220+ IgD- 
IgM+, mature B B220+ IgD, SPL - B cells B220+, IgMhi IgDlo and IgMlo IgDhi B cells. Numbers below graphs 
and bars show mean values. ****p ≤ 0.0001, paired t test. 
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In conclusion, the shift in ratios of Igκ and Igλ light chain usage with progressing maturation 

in splenic B cells of CD19cre/+ Rc3h1-2F/F mice is indicative of superior survival and/or 

expansion of Roquin1/2-deficient Igλ+ compared to Igκ+ mature B cells. Alternatively, 

secondary rearrangements could occur in immature and mature splenic B cells [268]. 

2.5 Ex vivo verification of potential direct and indirect Roquin targets in 

splenic B cells of CD19cre/+ Rc3h1F/F-2F/F mice 

Since CD23 surface levels are downregulated on splenic B cells of the Mb1cre/+ Rc3h1F/F-2F/F 

IgHMOG mouse strain, whereas CD24 surface levels are significantly increased on mature B 

cells of this strain (Fig. 37), I quantified CD23 and CD24 surface levels on splenic B cells of 

CD19cre/+ Rc3h1-2F/F mice (Fig. 56A, 56B). Flow cytometric analysis confirmed the 

downregulation of CD23 on all splenic B cell populations investigated, particularly on 

follicular B cells. CD24 surface expression levels are significantly increased on mature 

splenic B cell populations in CD19cre/+ Rc3h1-2F/F mice (Fig. 56B), confirming the relevance 

of Roquin1 and 2 in the regulation of CD23 and CD24. 

 

Figure 56: Reduced CD23 surface levels on splenic B cells and enhanced CD24 surface levels on mature 
splenic B cells in CD19cre/+ Rc3h1-2F/F mice.  
(A left) Representative flow cytometry histogram showing CD23 surface expression on designated splenic (SPL) 
B cell subsets. (Continued on next page)  
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(A right) Bar chart representation of CD23 surface levels on indicated B cell populations as measured by flow 
cytometry. (B left) Representative flow cytometry analysis depicting determination of CD24 surface expression 
on stated splenic B cells. (B right) Bar chart represenation of CD24 surface levels as analyzed by flow cytometry 
on designated B cell popoulations. Immature B B220+ AA4.1+; CD23- IgM- B cells B220+ AA4.1+ CD23- IgM-; 
Transitional 1 (T1) B220+ AA4.1+ CD23- IgM+; T2 B220+ AA4.1+ CD23+ IgM+; T3 B220+ AA4.1+ CD23+ IgM-; 
Mature B B220+ AA4.1-; Marginal zone B cells (MZB) B220+ AA4.1- CD1dhi CD21hi CD23lo; MZ precursors 
(MZP) B220+ AA4.1- CD1dhi CD21hi CD23hi; follicular (FO) B B220+ AA4.1- CD1dint CD21int. MFI: median 
fluorescence intensity. Bars represent mean values and error bars standard deviation. ****p ≤ 0.0001, ***p ≤ 
0.001, *p ≤ 0.05, unpaired t test. 

The altered CD23 expression levels could result in biased percentages and cell numbers of 

splenic B cells which were calculated partially based on CD23 expression (Fig. 51). Yet the 

general statement on the impairment of maturation holds true as it is supported by the ratio of 

IgDlo IgMhi to IgDhi IgMlo B cells (Fig. 51). 

Previous work by Leppek and colleagues has established the relevance of Roquin in binding 

and repression of TNFα [196]. I therefore aimed to test whether Roquin1 and 2 play a role in 

the regulation of TNFα in splenic B cells. As intracellular levels of cytokines, such as TNFα, 

are low in ex vivo cells due to their secretory nature, their concentration can be enriched by 

culturing the cells in the presence of Brefeldin A (BFA), an inhibitor of the secretory pathway 

[269]. This procedure enables intracellular flow cytometry-based detection of cytokines. 

Interestingly, the percentages of various unstimulated (BFA only) ex vivo isolated Roquin1/2-

ablated B cell populations that stain positive for TNFα are significantly increased (Fig. 57A, 

57B). Moreover, the MFI of TNF, correlating to intracellular levels of TNFα, in unstimulated 

B cells are slightly, yet significantly increased (Fig. 57A, 57C). I do not observe an increase 

in percentage of TNFα+ Roquin1/2-deficient B cells in Phorbol 12-myristate 13-acetate 

(PMA) and Ionomycin-stimulated (PMA/Iono/BFA) ex vivo isolated B cells (Fig. 57A, 57B), 

but the increase TNF MFI is also observed in stimulated ex vivo isolated B cells (Fig. 57C). 

As expected, ex vivo isolated T cells express TNFα only after stimulation. To my surprise, 

while about 50% of control T cells express cytolasmic TNFα, there is less than 30% and thus 

significantly fewer TNFα+ T cells from CD19cre/+ Rc3h1-2F/F mice which also express lower 

levels of TNFα (Fig. 57B, 57C). The increase of TNFα in unstimulated Roquin1/2-deficient B 

cells does not result in altered serum levels of TNFα in untreated CD19cre/+ Rc3h1-2F/F mice 

(Fig. 57D), suggesting that in vivo Roquin proteins do play a rather small role in the 

regulation of serum TNFα in the absence of an external stimulus. 

IL-6 can be secreted by nearly every cell type of the immune system and critically shapes the 

mature B cell compartment as well as the post-activation development of B cells [270]. IL-6 

mRNA is degraded following binding of the endonuclease Regnase-1 (Zc3h12a) to a 
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stemloop motif in its 3'UTR [271] and repression of IL-6 mRNA following Roquin binding 

has been shown in vitro [207]. As there is an overlap in Regnase and Roquin target motifs 

[201], I wanted to investigate if Roquin1 and 2 play a role in the regulation of IL-6 by B cells 

in vivo (Fig. 58).  
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CD19cre/+

Rc3h1-2F/F
CD19cre/+

control
SPL

AA4.1+ 
immature 
B cells

CD19cre/+ Rc3h1-2F/F

CD19cre/+ controls

IC TNFα

S
S

C

BFA

PMA
Iono
BFA

CD19cre/+ Rc3h1-2F/F CD19cre/+ controls

T ce
lls

B ce
lls

Im
matu

re 
B

Matu
re 

B

IgD
lo  Ig

M
hi  B

IgD
hi  Ig

M
lo  B

B1 c
ell

s
0

1000

2000

3000

TN
F

 p
ro

te
in

 [M
FI

]

*** *** *** * ** ***

T ce
lls

B ce
lls

Im
matu

re 
B

Matu
re 

B

IgD
lo  Ig

M
hi  B

IgD
hi  Ig

M
lo  B

B1 c
ell

s
0

1000

2000

3000

TN
F

 p
ro

te
in

 [M
FI

]

* ** *** * * ****nd

PMA/Iono/BFA

T ce
lls

B ce
lls

Im
matu

re 
B

Matu
re 

B

IgD
lo  Ig

M
hi  B

IgD
hi  Ig

M
lo  B

B1 c
ell

s
0

20

40

60

80

%
 o

f c
el

ls
 T

N
F

 p
ro

du
ci

ng

******

(n= 10) 

(n= 10) 

A

(n= 5-10) (n= 5-10) B

D

BFA

T ce
lls

B ce
lls

Im
matu

re 
B

Matu
re 

B

IgD
lo  Ig

M
hi  B

IgD
hi  Ig

M
lo  B

B1 c
ell

s
0

20

40

60

80

%
 o

f c
el

ls
 T

N
F

 p
ro

du
ci

ng

*** ** *** ** *** ***

TNFα ELISA

0

10

20

30

40

TN
F

 c
on

ce
nt

ra
tio

n 
[p

g/
m

l]

7.1 9.2

C

0 104 105
0

50K

100K

150K

200K

250K

3.1

0 104 105
0

50K

100K

150K

200K

250K

1.2

0 104 105
0

50K

100K

150K

200K

250K

9.2

0 104 105
0

50K

100K

150K

200K

250K

11

Figure 57

mean concentration [pg/ml] 



David K. Rieß IV. Results 
 

	
	

126	

Figure 57 (previous page): Investigation of TNFα expression in B cell subsets of CD19cre/+ Rc3h1-2F/F mice.  
For analyses depicted in (A), (B) and (C) ex vivo splenocytes were stimulated for 4-6h in Brefeldin A (BFA) or 
BFA, Phorbol 12-myristate 13-acetate (PMA) and Ionomycin (Iono). (A) Representative flow cytometry analysis 
depicting intracellular gating strategy for TNFα-producing cells. (B) Percentage of TNFα-producing cells among 
indicated cell population after stimulation with BFA only (left) or with BFA, PMA and Iono (right) as 
determined by flow cytometry. (C) Bar chart representation of intracellular TNFα protein levels as analyzed by 
flow cytometry after BFA (left) or BFA, PMA and Iono (right) treatment in the indicated lymphocyte 
populations. (D) Serum titer of TNFα as determined by ELISA. T cells TCRβ+; B cells B220+; Immature B 
B220+ AA4.1+; Mature B B220+ AA4.1-; B1 cells CD19+ B220lo. SPL: spleen; MFI: median fluorescence 
intensity; nd: not detected. Bars represent mean values and error bars standard deviation. ***p ≤ 0.001, **p ≤ 
0.01, *p ≤ 0.05, unpaired t test. 

There is a significant increase in the percentage of intracellular IL-6+ unstimulated (BFA), 

mature splenic ex vivo isolated B cells from CD19cre/+ Rc3h1-2F/F mice and a trend for an 

increase in immature B cells (Fig. 58A, 58B). Quantification of intracellular IL-6 levels in 

total lymphocyte populations showed a significant increase in mature B cells and a tendency 

for an increase in immature B cells. Similarly, after stimulation (PMA/Iono/BFA) the ratio of 

IL-6+ Roquin1/2-deficient immature B cells is significantly higher (Fig. 58B). However, the 

overall intracellular IL-6 levels are approximately similar between stimulated and 

unstimulated cells for every analyzed B cell population (Fig. 58C), indicating that IL-6 

induction after stimulation with PMA and Iono was not very efficient. Moreover, the 

observed marginal changes in IL-6 producing cells as well as total IL-6 levels suggest Roquin 

proteins play only a minor role in the regulation of IL-6 expression in B cells. Accordingly, 

there are no changes in the IL-6 serum levels of untreated CD19cre/+ Rc3h1-2F/F mice (Fig. 

58D).  

In addition to deregulated CD23 and CD24 surface levels, splenic Roquin1/2 double-deficient 

B cells express significantly higher surface levels of the high affinity IL-2 receptor chain 

CD25, also a marker of proliferation (Fig. 59A). To investigate the surface phenotpe of 

activated Roquin1/2-deficient B cells further, I analyzed various cell surface activation 

markers on purified B cells, both unstimulated and upon over night stimulation with different 

B cell mitogens (Fig. 59B). As expected, the surface levels of CD25, CD69, CD80, CD86 and 

MHC class II are significantly higher on unstimulated B cells of CD19cre/+ Rc3h1-2F/F mice, 

reinforcing the concept of a general hyperactivation of Roquin1/2-deficient B cells. 

Remarkably, CD25 generally upregulated to a lesser extent upon stimulation in double-

deficient compared to control B cells. Moreover, CD25, CD69 and CD86 are significantly 

less upregulated after stimulation through the BCR (αIgM), whereas CD80 is significantly 

more upregulated on B cells of CD19cre/+ Rc3h1-2F/F mice following stimulation via the BCR 

(Fig. 59B). 
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Figure 58: Analysis of IL-6 expression in B cell subsets of CD19cre/+ Rc3h1-2F/F mice. 
For analyses depicted in (A) and (B) ex vivo splenocytes were cultured for 4-6h in BFA or PMA, Iono and BFA. 
(A) Representative flow cytometry plots of IC IL-6-expressing cells. (B) Flow cytometrically determined 
proportion of IL-6-producing cells as percentage of cell population indicated after stimulation with BFA only 
(left) or with BFA, PMA and Iono (right). (C) Bar chart representation of intracellular IL-6 protein levels as 
analyzed by flow cytometry after BFA (left) or BFA, PMA and Iono (right) treatment in the indicated 
lymphocyte populations. (D) Serum titer of IL-6 as determined by ELISA. T cells TCRβ+; B cells B220+; 
Immature B B220+ AA4.1+; Mature B B220+ AA4.1-; B1 cells CD19+ B220lo. SPL: spleen; MFI: median 
fluorescence intensity; nd: not detected. Bars represent mean values and error bars standard deviation. ****p ≤ 
0.0001, ***p ≤ 0.001, *p ≤ 0.05, unpaired t test. 
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Figure 59: Regulation of activation cell surface markers on B cell purified from CD19cre/+ Rc3h1-2F/F and 
control mice. 
(A) Surface expression levels of CD25 on splenic ex vivo B cells as determined by flow cytometry. (B) Heatmap 
representation of log2-transformed values of geometric means of relative changes of activation marker protein 
amounts for CD19cre/+ Rc3h1-2F/F mice and CD19cre/+ controls. Levels of indicated activation markers were 
assessed by flow cytometry after over night stimulation with stated stimuli in MACS-isolated splenic B cells and 
normalized to unstimulated (unstim) CD19cre/+controls. SPL: spleen; MFI: median fluorescence intensity. Bars 
and numbers below graph represent mean values. ****p ≤ 0.0001, ***p ≤ 0.001, **p ≤ 0.01, *p ≤ 0.05, unpaired 
t test. Red * indicate a significantly increased upregulation in B cells of CD19cre/+ Rc3h1-2F/F mice compared to 
controls while black * mark a significantly reduced upregulation in these B cells. 

In conclusion, unstimulated naive B cells isolated ex vivo from CD19cre/+ Rc3h1-2F/F mice 

appear to be hyperactivated including increased surface expression of prototypical activation 

markers such as CD69, MHC-II, CD80 and CD86 as well as increased TNFα production. 

However, upon stimulation most of the hyperactivated status is lost and in part turns into a 

hypoactivated status, especially upon BCR stimulation. 
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2.6 Increased T cell and myeloid compartments in the spleens of CD19cre/+ 

Rc3h1F/F-2F/F mice  

In line with the hypothesis of cell-extrinsic effects mediated by hyperactive Roquin1/2-

deficient B cells the numbers of CD69+ T cells are significantly increased in CD19cre/+ Rc3h1-

2F/F mice (Fig. S29). Moreover, percentages and absolute numbers of naive CD4+ and CD8+ T 

cells are significantly reduced while those of CD4+ and CD8+ effector memory-like T cells 

are significantly increased. The Treg cell-containing CD4+ CD25+ T cell is also expanded in 

this mouse line. Furthermore, I analyzed the myeloid compartment (Fig. S30). All splenic 

myeloid populations are strongly increased in percentage and cell number (Fig. S30A). 

Furthermore, as observed in Mb1cre/+ Rc3h1F/F -2F/F mice, there is a trend for an increase of 

the total cell number of peritoneal mast cells (Fig. S30B) stemming from an increased 

cellularity of the peritoneal cavity in CD19cre/+ Rc3h1-2F/F mice. 

Summary of the most important findings of part 2 

In conclusion, later onset of Roquin1 and 2 ablation in the CD19cre-based experiments 

compared to the Mb1cre-based experiments, leads to significant production of splenic B cells 

in the former. This shows, that in absence of a complete block in B cell development at the 

pre B and immature B cell stages, Roquin1/2-deficient mature B cells can be produced. Yet, 

peripheral B cells in CD19cre/+ Rc3h1-2F/F mice have a clear maturation defect and Roquin1/2-

deficient mature B cells are counterselected. Furthermore, peripheral Roquin1/2-deficient B 

cells appear hyperactivated in the absence of stimulation and these cells shown signs of 

altered BCR signaling. 
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3. Unraveling structural principles of mRNA binding by Roquin 

proteins 

3.1 Structural analysis of ROQ, a novel RNA-binding domain  

The second focus of my thesis, the structural characterization of Roquin-mediated mRNA 

binding, was initiated and yielded exciting new insights before various other groups reported 

the structure, essentially ending our own efforts [188, 197, 205-208]. The entire data on 

crystallization as well as the figures on peptide structures presented in this thesis were 

generated by Dr. Christian Benda, a research fellow in the group of Prof. Dr. Elena Conti. I 

performed all the molecular cloning and cellular validation analyses. I would like to 

acknowledge this joint effort in the subsequent part of my thesis. In addition, the premature 

termination of the project is the reason for the absence of a table containing collected data and 

refinement statistics. 

Since the ROQ domain in the first description of Roquin1 was predicted exclusively on the 

basis of sequence conservation and the original experiments to analyze Roquin-mediated 

binding did not exclude involvement of additional parts of the protein, we wanted to 

biochemically and functionally investigate the RNA binding domain of murine Roquin1 [161, 

165, 192].  

Based on interspecies homology of the ROQ domain sequence various different domain 

boundaries were suggested (Fig. 60A) [161, 165, 192]. To delineate the structural boundaries 

of the RNA-binding domain of Roquin1 we performed subtilisin-mediated, limited 

proteolysis of different constructs expressing the ROQ domain. Proteolysis performed on 

constructs N-term1 and N-term2 reproducibly yielded a stable protein fragment spanning 

amino acids 174-326 (ROQ). Subsequently, we solved the crystal structure of the ROQ 

domain to a resolution of 1.6Å (Fig. 60B left). Potential interaction with the negatively 

charged phosphate backbone of RNA substrates is indicated by the presence of a positively 

charged surface grove (Fig. 60B right). Moreover, a structural winged helix (WH) motif 

covering amino acids K259 to S265, reminiscent of winged helix-turn-helix proteins such as 

the RING ubiquitin ligase cullin and other proteins, was uncovered (Fig. 60B left) [272]. 
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Figure 60: The ROQ domain suffices for binding CDE RNA. 
I performed design and cloning of expression constructs for structural analyses (A). The entire crystallization 
and structure analysis was performed by Dr. Christian Benda (B, C). (A) (Roquin1 FL) and the three variations 
in length (N-term1, N-term2, ROQ) used for this study as defined from limited proteolysis. The boundaries of 
the novel ROQ domain are stated as they were defined by interspecies homology at the beginning of our 
investigations [196]. ZF: zinc finger; P rich: proline-rich sequence; G/N-rich: glycine/asparagine-rich sequence; 
Cc: coiled-coil region. Numbers state length in amino acids (aa). (B left) The crystal structure of the ROQ 
domain (aa 175-321) of mouse Roquin1 was solved at 1.6Å resolution. This domain folds into a helical core 
(gray), which weakly resembles armadillo repeats, and a beta-hairpin protrusion (orange). (Ribbon 
representation with N- and C-terminus colored blue and red, respectively). (B right) Electrostatic surface 
potential mapped on the ROQ domain (same orientation as on the left) revealing a positively charged surface 
patch that could be shown to be involved in RNA binding. (C) The crystal structure of the ROQ domain bound 
to the constitutive decay element (CDE) P2-L2 stem-loop RNA of TNFα (insert) was solved at 3.3Å resolution. 
The structure shows how the CDE RNA (orange stick model, shown with its electron density map) folds into a 
stem-loop (previously shown by [196]) and is recognized and bound between two copies of the ROQ domain 
(light and dark gray). 
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We aimed at qualitatively assessing binding of this ROQ core structure to the TNFα CDE 

[196]. To this end, we crystallized the CDE in complex with the ROQ domain and solved the 

structure to a resolution of 3.3Å (Fig. 60C). Strikingly the asymmetric unit contained dimeric 

ROQ bound to the CDE (the binding site was later termed A site in [207]. Results of 

preparative gel filtration analyses of the subtilisin-digested constructs N-term1 or N-term2 in 

presence or absence of CDE-RNA combined with the dimeric state in the asymmetric unit of 

the crystals generated in both scenarios suggest that the ROQ domain may harbor the 

potential to form homodimers (data not shown). However, analytical size exclusion 

chromatography (SEC) performed independently on undigested construct N-term1 in the 

group of Dr. Sabine Suppman in the core facility of the Max-Planck-Institute suggested a 

monomeric state of Roquin1 in solution (data not shown). 

The general hairpin structure of the CDE of TNFα was confirmed (Fig. 60C). Recognition of 

the CDE by the ROQ domain occurs mainly via sequence-independent contacts to RNA bases 

or the sugar-phosphate backbone. In this structure, the 5' half of the CDE is coordinated via 

interactions of S238, K239 and T240 with the phosphate backbone, whereas Q247, Y250 and 

R251 appear to coordinate the RNA via base-interaction. Additionally, L217 appears to be an 

essential amino acid in the interface between the two units of the dimer. Interestingly, our 

analysis did not reveal the position and binding of the CDE triloop structure (Fig. 60C), yet 

the prominent position of the "wing" residues (K259-S265) suggested them as promising 

interactors of the loop. Overall, the structure of the apoenzyme (Fig. 60B) is very similar to 

that of the RNA-ROQ complex. A search for structural homology of similar folds 

demonstrated that the ROQ domain constitutes a novel RNA-binding fold. The ROQ 

construct alone contains a functional ROQ domain sufficient for structure-specific binding of 

the TNFα CDE that occurs largely irrespective of the nucleotide sequence.  

A larger ROQ fragment termed structure 2, in complex with the CDE was also obtained upon 

limited proteolysis of N-term2 in complex with the RNA (Fig. 61). Structure 2 covers 

approximately amino acids 100 to 321 and was solved at a resolution of 3.3Å. Interestingly, 

the CDE was bound at a different site (termed B site in [207]) compared to the ROQ construct 

in structure 1. Superposition of structure 1 and 2 demonstrates that structure 2 comprises 

structure 1. Moreover, the novel B site is composed in parts by C-terminal helices present in 

structure 1 and a set of N-terminal helices new in structure 2 including S315 and S319. 

Preliminary analysis suggested that while recognition of the CDE RNA in the A site is 

specific for a stemloop structure, dsRNA is recognized in the B site. This part of the project 
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was discontinued upon publication of a series of papers describing both A and B site in detail 

[197, 203, 205-207]. 

 

Figure 61: The ROQ domain comprises two separate RNA-binding sites. 
Structure 1 (aa 175-321) as shown in Fig. 60 and structure 2 (aa 100-321) solved at 3.3 Å resolution both in 
complex with constitutive decay element (CDE) stem-loop RNA (orange). The additional N-terminal helical 
domain contained in structure 2 was found to coordinate CDE dsRNA together with a helical domain shown in 
structure 1 revealing a novel RNA binding site absent in structure 1. The two binding sites for RNA were termed 
A site or B site, respectively [207]. Superposition of the two structures illustrates the site of the additional N-
terminal domain of structure 2 as well as the relative location of the two sites and interaction in coordinating 
RNA.  

3.2 Mutational analysis of the ROQ-RNA interaction  

Subsequently to analysis of structure 1, we performed mutational analysis of the CDE-ROQ 

interaction to investigate the importance of single contact sites of protein and RNA. In initial 

experiments, we knocked-out Roquin1 and 2 in murine mast cells and subsequently virally 

complemented the cells with wild type or mutated Roquin1 co-expressing GFP protein (Fig. 

62). Protein expression of ROQ-mutants compared to ROQ-wild type (wt) was indirectly 

assessed by means of GFP levels, which was at least equal to wt (data not shown). We 

monitored Roquin1 mRNA degradation capacity by measuring normalized changes of the 

mRNA targets Nfκid, which had previously been shown to carry even 2 CDE motifs in its 

3'UTR [196], and EBV-induced gene 3 (EBI3), which Dr. Klaus Heger, a colleague in the 

Schmidt-Supprian laboratory, had identified as a novel Roquin target in mast cells (Fig. 62). 
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Figure 62: Mutational structure-function analysis of mouse Roquin1 in murine mast cells. 
KitcreERT2/+ Rc3h1-2F/F CARStopFL/StopFL mast cells were generated and treated as described [228]. Briefly, after 
culture for 4d in 4-hydroxy tamoxifen (4-OHT) to induce Cre activity resulting in ablation of Rc3h1 and 2 and 
expression of the Coxsackie Adenovirus receptor (CAR) on the cell surface, mast cells were cultured for 3 days 
in 4-OHT free media. Next, 10 x 106 mast cells were infected with adenoviruses transducing Roquin1/2 deficient 
mast cells with different Roquin1 mutants and wild type Roquin at a multiplicity of infection (MOI) of 100. The 
employed adenoviruses co-expressed GFP from an internal ribosomal entry site (IRES). Two days after infection 
GFP positive mast cells were flow cytometrically purified and either left unstimulated (unstim) or stimulated for 
2h with 10ng/ml IL-33 (2h IL-33 stim) before RNA was prepared. GFP MFIs of ROQ-mutants transduced 
matched at least the MFI of ROQ-wt (data not shown). mRNA levels of (A) Nfκbid and (B) EBI3 were 
determined and normalized to Roquin1/2-deficient non-infected control mast cells (ctrl). The following Roquin 
mutants were transduced: SKT S238A K239E T240A; ST S238A T240A; K (A) K239A; QYR (E) Q247A 
Y250A R251E; QY Q247A Y250A; R (E) R251E; L L217Y; wt wt Roquin1; eGFP ctrl eGFP only control; MFI 
median fluorescence intensity, GFP green fluorescent protein. 

Additionally, we quantified changes of target mRNAs following IL-33 stimulation to 

potentially identify changes in dependence on certain protein-RNA contacts. Interestingly, 

mutants S238A K239A T240A (SKT) and S238A T240A (ST) lost their repressional capacity 

of Nfκid mRNA already in the unstimulated setup and are therefore very likely to contribute 

to the binding of RNA in site A (Fig. 62). Following stimulation, mRNA levels of Nfκid and 

EBI3 increased even further for SKT, potentially indicating a role of K239 in improving 

binding and decay of targets. The Q247A Y250A R251E (QYR) and Q247A Y250A (QY) 

failed to repress Nfκid and EBI3 mRNA only after stimulation, with higher mRNA levels for 

the QY mutant, possibly indicating that reversing the charge through the R251E mutation 

results in improved coordination over an H2O molecule in the QYR compared to the QY 

mutant.  

Moreover, we generated a cell culture reporter system for application in Roquin1/2-loxP-

flanked or-ablated mouse embryonic fibroblasts (MEFs) (Fig. 63A). In this reporter system, 

the fluorescent proteins eGFP and Neptune are expressed from the same construct, but from 

independent promoters and eGFP expression was generated to be regulable by action of 

Figure 62
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Roquin proteins by inserting the wild type Nfκid tandem CDE or a mutated version 3' of the 

eGFP coding sequence. In an initial experiment, we generated Roquin1-2F/F MEFs carrying 

wt and mutated Nfκid reporter constructs. We then ablated Roquin1 and 2 in these MEFs by 

His-TAT-NLS-Cre (HTNC) treatment and measured eGFP and Neptune levels. We could 

clearly demonstrate regulation of the wt reporter by Roquin proteins (Fig. 63B). Upon 

ablation of Roquin1 and 2 by HTNC the geometric mean of the ratio of eGFP to Neptune 

expression strikingly increased. Surprisingly, also the mutated reporter displayed some degree 

of regulation by Roquin1 and 2, albeit at a reduced level (Fig. 63B), possibly due to the 

remaining three proximal basepairs in each stem of the CDE. Having shown that in this 

reporter system eGFP expression can be tightly regulated by Roquin, we tested lentiviral 

complementation of Roquin1/2-deficient MEFs. The lentiviruses used place expression of the 

gene of interest under control of the 5x upstream activating sequence (5xUAS). Therefore, in 

our setup expression of wild type Roquin or Roquin mutants could be induced by the addition 

of 4-hydroxy tamoxifen (4-OHT), inducing nuclear translocation of GEV16 and ensuing 

induction of transcription from the 5xUAS promoter [234, 235]. However, in parallel 

experiments we observed that the lentiviral gene of interest is not induced in all treated cells 

that carry the lentivirus. In a pilot experiment, induction of wild type-ROQ expressing Roquin 

but not induction of a S238A K239E T240A Q247A Y250A R251E-ROQ expressing mutant 

resulted in eGFP repression in some of the wt Nfκid reporter MEFs (Fig. 63C). We also 

observed downregulation of eGFP levels in some of the MEFs containing the mutated Nfκid 

reporter system, similar to the previous result (Fig. 63B). The partial effects of Roquin 

regulated eGFP in the reporter MEFs are most likely due to the incomplete induction of wild 

type and mutant Roquin proteins by our inducible lentiviral system. Although strongly 

suggestive, our experiments do not formally establish that binding of Roquin to RNAs is 

required for post-transcriptional regulation of the employed read-outs, as we did not perform 

electromobility shift assay (EMSA) analyses. 

Summary of the most important findings of part 3 

In summary, we made many novel observations regarding the RNA-binding ROQ domain in 

terms of novel structural fold, structural motifs contained, mode of binding, stem loop RNA 

in site A and dsRNA in site B, as well as the suspected amino acids involved in these 

interactions. Our findings were confirmed and extended by the published ROQ structures. 

Furthermore we evaluated Roquin1/2 mediated regulation of EBI3 providing evidence for its 

regulation by Roquin proteins. 
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Figure 63: Functional study of mouse Roquin1 and 2 emplyoing a Roquin-regulable reporter in murine 
endothelial fibroblasts (MEFs). 
(A) Schematics of the cloned Roquin-regulable reporter in which a part of the 3’UTR of Nfκbid, the only mouse 
mRNA described [196] to contain a tandem constitutive decay element (CDE), was cloned 3’ of eGFP. Hence 
eGFP protein expression is under control of CDE-based regulating factors such as Roquin1 and 2. Two versions 
of the reporter were cloned, one with the Nfκbid wt CDE sequence and one in which essential bases (highlighted 
in red, [196]) for Roquin mediated repression were mutated. (Continued on next page) 

wt Nfκbid reporter

pGK eGFP
ITR

A

G

T

T

G

A

A

A

T

C
T

T
G

A
A
A

T
G C

A

Ap pEF1a Neptune IRES Neo
ITR

Ap

C

A

A

A

G

C

A

A
A
G

mut. Nfкbid CDE

mutated Nfκbid reporter

pGK eGFP
ITR

A

G

T

T

T

C

T
G

T

G

A

A

A

T

C
T

T
T

C
T

G
T

G

A
A
A

T
G C

A

Ap pEF1a Neptune

wt Nfкbid CDE
IRES Neo

ITR
Ap

A

B

0 10
3

10
4

10
5

0

10
3

10
4

10
5 96.1

0.6

0 10
3

10
4

10
5

0

10
3

10
4

10
5 99.5 0.0

0 10
3

10
4

10
5

0

10
3

10
4

10
5 0

0

0 10
3

10
4

10
5

0

10
3

10
4

10
5 37

59.5

0 10
3

10
4

10
5

0

10
3

10
4

10
5 36.3 62.9

eGFP

N
e
p
tu

n
e

0.103

0.361

0.533

2.27

0.141

2.18

0.84

3.0

wt Nfκbid reporter mut. Nfκbid reporter

C

0 10
3

10
4

10
5

0

10
3

10
4

10
5 0.4 99.6

0 10
3

10
4

10
5

0

10
3

10
4

10
5 0.7 99.2

0 10
3

10
4

10
5

0

10
3

10
4

10
5 0.8 98.3

0 10
3

10
4

10
5

0

10
3

10
4

10
5 0.6 98.7

wt Nfκbid reporter mutated Nfκbid reporter

0 10
3

10
4

10
5

0

10
3

10
4

10
5 1.7 98.2

0 10
3

10
4

10
5

0

10
3

10
4

10
5 6.1 93.8

0 10
3

10
4

10
5

0

10
3

10
4

10
5 23.3 75.9

0 10
3

10
4

10
5

0

10
3

10
4

10
5 0.6 98.7

0 10
3

10
4

10
5

0

10
3

10
4

10
5 0.3 99.6

0 10
3

10
4

10
5

0

10
3

10
4

10
5 0.2 99.8

0 10
3

10
4

10
5

0

10
3

10
4

10
5 0.8 98.3

0 10
3

10
4

10
5

0

10
3

10
4

10
5 0.4 98.9

eGFP

N
e
p
tu

n
e

Figure 63

non-transfected
untreated

7d post 

HTNC

non-induced 2d induced

wt Roquin

transfected

6x 

mutated 

Roquin

transfected

non-

transfected

non-induced 2d induced

Rc3h1-2F/F MEFs

Rc3h1-2Δ/Δ

MEFs



David K. Rieß IV. Results 
 

	
	

137	

Neptune, a second fluorescent protein, is expressed independently of eGFP from the same construct without 
regulatory 3’ UTR. MEFs with ITR-mediated stable integration of the reporter were generated by co-transfection 
of PiggyBac transposase and selected with neomycin. (B) Representative flow cytometric analysis of an 
experiment testing regulability of eGFP expression in the described setup. Rc3h1-2F/F MEFs carrying either no 
reporter (non-transfected), the wt reporter or the mutated reporter were treated with HTNC to induce Rc3h1-2 
ablation and thus reduction of Roquin1/2-mediated repression of eGFP. eGFP versus Neptune expression was 
analyzed 7d post treatment by flow cytometry. Numbers in green represent the geometric mean of the MFI ratios 
of eGFP to Neptune in the respective gates. Cells that remain low in eGFP protein levels most likely still contain 
Roquin proteins. (C) Flow cytometry-based pilot experiment for reintroduction of mutated Roquin1 into 
reporter-expressing Rc3h1-2Δ/Δ MEFs. MEFs were infected with lentiviruses allowing 4-OHT-induced 
expression of Roquin1 mutants. 4-OHT treatment induced nuclear localization of GEV16, which resulted in 
transcription of Roquin1 driven by a 5xUAS promoter. Wt or 6x mutated Roquin1 (S238A K239E T240A 
Q247A Y250A R251E) were transduced. 2d after Roquin1 induction eGFP versus Neptune expression was 
determined. ITR inverted terminal repeats; UTR untranslated region; HTNC His-TAT-NLS-Cre; Δ ablated, 4-
OHT: 4-hydroxy tamoxifen, 5xUAS: 5x upstream activating sequence. 
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V. Discussion 

Most of the previous work on the function of the RNA-binding proteins Roquin1 and 2 in the 

immune system has focused on their role in T lymphocyte differentiation and function either 

by T cell-specific ablation studies or analyses of the Roquin1 mutant sanroque mouse strain. 

In my PhD thesis, I present the first extensive in vivo analyses of the role of Roquin1 and 2 

during B cell development (Part 1.) and during maturation and activation (Part 2.) by loss-of-

function studies. Moreover, I demonstrate my own efforts at investigating the structure of the 

RNA-binding ROQ domain and unraveling novel RNA targets to further enhance our 

understanding of the importance of post-transcriptional gene regulation in B cell immunology 

(Part 3.). 

1. Roquin family proteins are central regulators of B cell 

lymphopoiesis in the bone marrow and early B cell physiology 

Graded loss of Roquin alleles impairs or blocks B cell lmyphopoiesis at different 

developmental time points. Emerging evidence has highlighted that transcriptional 

networks, which integrate external cues, do not suffice to orchestrate proper B cell 

development on their own and that at least miRNA-dependent post-transcriptional gene 

regulatory mechanisms play essential roles [227, 273, 274]. When work on this study 

commenced, ICOS was the only relevant validated in vivo target of the mRNA binding 

protein Roquin1, resulting from work in the sanroque mouse strain [161, 162, 166, 275], 

mechanistic in vitro studies [165, 192], systemic Roquin1 ablation or specific ablation of 

Roquin1 in T cells, B cells and the entire hematopoietic immune system [212]. Evidence 

steming from the sanroque mouse in which the autoimmune phenotype had been rescued by 

selective ablation of TFH cell development indicated roles of Roquin proteins outside of the T 

cell compartment. In fact, specific ablation of Roquin1 in B cells using CD19cre, a Cre-

knock-in mouse strain ideally suited to address the function of conditional alleles in mature B 

cells [238], resulted in increased splenic B cell numbers. On the other hand, ablation of 

Roquin1 in hematopoietic precursor cells led to reduced B cell development in the bone 

marrow [212].  
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Hence, I reasoned that specific ablation of Roquin1 in early development employing Mb1cre 

should yield a definitive picture of the function of Roquin1 in early B cell lymphopoiesis. 

Moreover, the striking degree of conservation of the N-terminal part, which harbors the E3 

ubiquitin ligase function as well as the novel RNA-binding ROQ domain, of Roquin1 in its 

paralog Roquin2 as well as the cytoplasmic localization of both paralogs [192, 202] strongly 

argued for redundant functions between Roquin1 and Roquin2. Hence, I investigated how 

graded inactivation of Roquin alleles affects early B cell development. Strikingly, loss of both 

alleles of Roquin2 has no obvious effect on B cell development in the bone marrow. On the 

other hand inactivation of both Roquin1 alleles impaired the pre to immature B cell transition, 

whereas additional ablation of one Roquin2 allele reduced the transit of pro to pre B cells. 

Strikingly, B cell-specific complete knockout of Roquin1/2 culminates in a developmental 

block at the pre B cell stage. Noteably, I also repeatedly failed to obtain IL-7 dependent (IL-

7d) B cell lines of Mb1cre/+ Rc3h1F/F-2F/F mice in contrast to the generation of IL-7d B cell 

lines from control mice (data not shown). Moreover, deficiencies of other mediators of B cell 

development, resulting in a similar block at pro to pre B cell transition, permitted the 

generation of IL-7d B cell lines [276]. I speculate that the striking inability of Roquin1/2-

deficient large pre B cells to maintain high surface levels of IL-7Rα may be related to this 

inability through preventing the extensive proliferation required for emergence of 

immortalized cells. In constrast, cell numbers of prepro B cells in Mb1cre/+ Rc3h1F/F-2F/F mice 

and pro B cell numbers in the CD19cre/+ Rc3h1-2F/F mouse line are increased at the onset of 

Cre-mediated Roquin1/2-ablation (Fig. 6, 49). Surprisingly, in both cases I did not observe an 

increase in survival or in proliferation in the respective subsets. Furthermore IL-7Rα 

expression is not changed at any pro B cell stage in Mb1cre/+ Rc3h1F/F-2F/F mice (Fig. 19). A 

similar developmental defect in pro to pre B cell transition was observed in mice with 

Mb1cre-mediated ablation of Jun activation domain-binding protein 1 (JAB1) (Mb1cre/+ 

JAB1F/F) [277]. JAB1 deneddylates and thereby regulates cullin-based ubiquitin-dependent 

protein degradation [277]. Likewise, a lack of proliferation was observed following IL-7 

stimulation of rescued, Bcl2 transgenic pro B cells from Mb1cre/+ JAB1F/F mice [277]. 

In addition to showing the functional consequences of Roquin1-ablation in conjunction with 

additional ablation of Roquin2 alleles in this thesis, I also demonstrated B cell specific roles 

for Roquin2. Mice with systemic knockout of Roquin2 were investigated with regard to total 

splenic B220+ B cell numbers, which did not show significant differences [191]. I show here 

that the number of mature recirculating B cells in the bone marrow of Mb1cre/+ Rc3h2F/F mice 

(Fig. S2) are significantly reduced. Moreover, the splenic B cell population in these mice 
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tends to be reduced (Fig. S3). The milder effects of Roquin2 compared to Roquin1 deficiency 

might relate to their respective protein amounts, as Roquin2 is significantly lower expressed 

in the spleen compared to Roquin1 [191].  

Relevance of highly efficient Mb1cre-mediated deletion of Rc3h1/2 genes. The early onset 

and very high efficiency of Rc3h1/2 ablation in Mb1cre/+ Rc3h1F/F-2F/F mice appears essential 

for uncovering the specific block between the pro and pre B cell stages. The high efficiency 

of ablation already in pro B cells, which is essentially identical with that in pre B cells, 

indicates that inactivation of Rc3h1/2 alleles already occurs in CD19- prepro B cells (Fig. 

14A). The near absence of Roquin1/2-deficient B cells post the immature stage (Fig. 7, Fig. 8) 

correlates with levels of non-recombined, intact Rc3h1 & 2 mRNA remaining stably low in 

double-deficient immature B cells compared to pre B cell stage (Fig. 14A). This indicates 

most remaining pre B cells have inactivated all four alleles of Roquin1/2 in Mb1cre/+ Rc3h1F/F-

2F/F mice and counterselected Roquin-expressing cells cannot expand. This result in 

conjunction with the significantly lower percentage of CAR+ double-deficient large but not 

small pre B cells, compared to control large pre B cells (Fig. 14C, 14D), indicates specific 

deficits at the large pre B cell stage, characterized by pre-BCR signals. 

Reduced CAR surface staining on Roquin1/2 double-deficient pro, immature, mature and 

especially large pre B cells compared to controls (Fig. 14B), indicate negative selection at 

these developmental stages. As potentially 18% of pre B cells retain one allele of either Rc3h1 

or 2 together with the potential absence of negative selection at the small pre B cell stage 

(discussed below), I cannot formally exclude that 18% of small pre and ensuing B cell stages, 

which I have analyzed, still expressed residual’ amounts of Roquin proteins. However, B cell 

development ceases at the immature B cell stage in Mb1cre/+ Rc3h1F/F-2F/F mice, but B cells 

that retain one allele of Roquin2 (Mb1cre/+ Rc3h1F/F-2F/wt mice) can develop into subsequent 

stages (Fig. 7, 8). This indicates that on-going very efficient Cre-mediated recombination 

eventually inactivates all present conditional Roquin alleles. It is remarkable that the small pre 

B cell stage, the stage when neither the pre-BCR nor the BCR are expressed on the surface, is 

the only stage at which CAR expression is not reduced in bone marrow B cell subsets of 

Mb1cre/+ Rc3h1F/F-2F/F R26CARStopFL compared to controls (Fig. 14C, 14D). One could envision 

many explanations for this observation. For instance, CAR+ small pre B cells have not co-

ablated all alleles of Rc3h1 & 2 or recombination is on-going in double-deficient small pre B 

cells, a stage at which they are not subject to negative selection as indicated by unchanged 

CAR expression (Fig. 14C, 14D). Alternatively, double-deficient CAR+ small pre B cells 

become stalled at this developmental stage and cannot develop into immature B cells or the 



David K. Rieß V. Discussion 
 

	
	

141	

negative selection pressure against Roquin1/2-deficient B cells is very specific to pro, large 

pre and immature B cell stages, whereas those cells that have developed into small pre B cells 

have escaped this negative selection. It seems even possible that the higher percentage of 

CAR expressing cells of double-deficient small pre B cells in contrast to double-deficient 

large pre B cells might also indicate a selective advantage. However, I consider the last 

possibility rather unlikely, as I did not observe a strong advantage with regard to proliferation 

or viability (Fig. 26-28) in double-deficient small pre B cells and the percentage of 

Roquin1/2-deficient small pre B cell numbers compared to control small pre B cell numbers is 

lower than for large pre B cells (Number of large and small pre B cells in Mb1cre/+ Rc3h1F/F-

2F/F mice is 25% (large pre B) and 10% (small pre B) of that in control mice) (Fig. 6).  

Double-deficient large pre B cells exhibit many defects around the pre-BCR checkpoint 

including IL-7Rα expression (Fig. 19), proliferation (Fig. 28, 30, 31) and upregulation of 

IRF4, an essential transcription factor for exit of the cell cycle and initiation of IgL 

rearrangement [278]. Therefore, I suppose that the observed CAR expression on large and 

small pre B cells indicates that there is counterselection of double-deficient large pre B cells, 

which is absent or reduced at the small pre B cell stage. Moreover, as Roquin1/2-deficient B 

cells fail to develop past the immature B cell stage (Fig. 7, 8), reduced CAR expression at the 

immature B cell stage on double-deficient B cells might indicate a subsequent checkpoint. 

This checkpoint would involve surface expression of the BCR and associated signaling 

pathways and at this checkpoint the development of Roquin1/2-deficient B cells finally ceases 

completely, potentially due to apoptotis (Fig. 26, 27). This interpretation is supported by the 

observation that also in CD19cre/+ Rc3h1-2F/F mice there is an impaired development 

subsequent to the immature B cell stage (Fig. 49, 54). 

CAR expression is more reduced on FO and GC B cells compared to the innate-like B cells in 

spleen and peritoneal cavity of Mb1cre/+ Rc3h1F/F-2F/wt R26CARStopFL compared to control mice 

(Fig. S4). B2 and B1 B cells differ in their requirement for certain signaling pathways, such as 

IL-7 and BAFF induced signaling [95] that are differentially required for development and 

maturation. The observed difference in CAR expression levels might therefore reflect a 

differential sensitivity to the consequences of Roquin1/2 ablation in the precursors of FO, MZ 

or B1 B cells. Alternatively, the ratio of Rc3h1/2-incompletely ablated CAR+ cells might be 

higher in innate-like B cell subsets. Yet, the precise underlying reason(s) remain to be 

investigated. 

Furthermore, the experiments employing the R26CARStopFL-allele clearly established that the 

phenotype is B cell-intrinsic and does not stem from Mb1cre-mediated recombination in T 
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cells, as frequencies of CAR+ T cells tend to be even reduced in Mb1cre/+ Rc3h1F/F-2F/F 

R26CARStopFL mice compared to Mb1cre/+ R26CARStopFL controls (Fig. S4).  

Absence of µHC in Roquin1/2-deficient pre B cells. In this PhD thesis, I clearly show that 

expression of µHC is defective in pre B cells of Mb1cre/+ Rc3h1F/F-2F/F mice (Fig. 15, 16), but 

I do not observe such a reduction of µHC in B220lo ckit+ pro B cells (Fig. 12B, 12C) or in 

CD19+ late pro B cells (data not shown). This may be due to residual amounts of Roquin1/2 

protein sufficient to support initial µHC expression in late pro B cells, which might be 

degraded and diluted during further developmental stages resulting in defective Igµ 

expression at the large pre B cell stage. However, to more definitively identify late pro B cells 

I suggest to include the surface markers CD24 and BP-1 in future analyses. 

I considered that Roquin1/2-deficient B cells might have a defect in splicing of the VHDJH 

exon to the CH segment exons, which as a direct effect of Roquin proteins would require their 

nuclear localization [279, 280]. However, as the prerearranged VHDJH exon of the IgHMOG 

allele, which also requires splicing to the CH exons, is readily processed and expressed in B 

cells of Mb1cre/+ Rc3h1F/F-2F/F IgHMOG mice (Fig. 40), splicing and processing of the µHC 

pre-mRNA does not seem to be affected.  

Furthermore, Roquin has a role in stabilizing the miRNA-RNA-induced silencing complex 

(RISC) [197, 275]. Thus, one might hypothesize that impaired RISC function could hinder 

µHC expression, and also be involved with the other deficiencies observed, in Roquin1/2-

deficient large pre B cells. Similar to the absence of mature recirculating B cells in the bone 

marrow of Mb1cre/+ Rc3h1F/F-2F/F IgHMOG or Mb1cre/+ Rc3h1F/F-2F/F IgHMOG IgLD23κ mice (Fig. 

34, 44), insertion of a pre-rearranged IgHEL BCR does not rescue the development of mature 

recirculating Dicer/miRNA-deficient B cells [227]. Pro B cells deficient for Dicer, the 

essential enzyme involved in the second miRNA-processing step preceding formation of the 

RISC, do not exhibit a defect in intracellular µHC expression [227]. To my knowledge, no 

data on µHC expression in miRNA-deficient pre B cells is available and Roquin1/2-deficient 

pro B cells exhibit unchanged µHC expression (Fig. 15). Therefore, I cannot exclude the 

contribution of absent miRNA-mediated gene regulation upon ablation of Roquin paralogs to 

the developmental block observed. 

It remains to be determined if impaired V(D)J recombination is a consequence of ablation of 

Roquin paralogs, as well as whether VH usage is affected. Since the IgHMOG allele appears to 

be able to rescue B cell development at the large pre B cell stage, defects in VHDJH 

rearrangement might contribute to the developmental defect in Mb1cre/+ Rc3h1F/F-2F/F mice.  
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Residual Roquin protein levels in pro B cells of Mb1cre/+ Rc3h1F/F-2F/F mice might impede 

analysis of VHDJH recombination in these cells. Therefore, I suggest to investigate V(D)J 

rearrangement in prepro and pro B cells of Vavcre/+ Rc3h1-2F/F mice. Alternatively, a 

Hoxb8FL cell culture system [281] of Rc3h1-2F/F R26CARStopFL B cell precursors cells could 

be employed. In such cells Roquin proteins would be completely ablated by treatment with 

HTNC or a genetically encoded or virally delivered inducible Cre prior to the induction of the 

B cell fate in vitro and in vivo.  

A potential role of Mb1cre-inflicted genotoxycitiy in the phenotype. Recently, a group 

reported a similar developmental block in mice in which MZB1, an endoplasmatic reticulum 

(ER)-resident protein specific to B cells, was ablated using Mb1cre [282]. This group 

observed a striking block in pro to pre B cell transition, massively reduced splenic B cell 

numbers as well as peritoneal B1 and B2 cell numbers [282]. Genotoxicity of the Mb1cre 

allele, which was exposed through MZB1-deficiency in this mouse strain was demonstrated to 

result in increased ER-retainment of the pre-BCR and as a consequence significant reduction 

of the ratio of surface λ5+ µHC+ cells among CD19+ B220+ bone marrow cells [282]. 

Therefore, it seemed possible that similar accumulation of Cre-induced toxicity in the absence 

of Roquin paralagogs results in the intermediate developmental impairments or the block 

observed in Mb1cre/+ Rc3h1F/F-2F/F, Mb1cre/+ Rc3h1F/F-2F/wt, Mb1cre/+ Rc3h1F/F and Mb1cre/+ 

Rc3h2F/F mice (Fig. 6, 7, S2).  

However, this mechanism is rather unlikely to be relevant for the pro to pre B cell block in 

Mb1cre/+ Rc3h1F/F-2F/F mice for several reasons: First, Roquin paralogs have been shown to 

localize to the cytoplasm and not to the ER or ribosomes in all cell types analyzed so far [201, 

202]. Second, we did observe significant numbers of intracellular λ5+ µHC+ Roquin1/2-

deficient pro/pre B cells, indicating that at this intracellular λ5+ stage the intracellular µHC 

expression is not affected (Fig. 16). Third, I did not observe a comparable increase in 

apoptosis in pro B cells, which was suggested to result from Cre-genotoxicity in the MZB1 

mouse model [283]. Fourth, cell numbers of the respective B cell subset in which Cre-

mediated recombination is initiated in the Mb1cre model and the CD19cre model are actually 

increased (Fig. 6, 49). Fifth and most importantly, a pre-rearranged IgH chain, the IgHMOG 

allele, enabled the generation of significant numbers of immature B cells (Fig. 30), while a 

similar approach failed in the case of Mb1cre/+ Mzb1F/F mice [282]. In this context, it is 

important to note that the rescue experiments involving the knockin IgHMOG and IgLD23κ 

alleles clearly established that pre-BCR and BCR are not simple retained in the ER as a 

consequence of ablation of Roquin paralagos. The pre-BCR is capable of signaling in any 
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post-ER compartment but the ER itself [48], hence ER-retainment of the pre-BCR upon 

ablation of Roquin1 and 2 should result in completely abrogated pre-BCR signaling. 

However, Roquin1/2 double-deficient pro and pre B cells readily transit to the immature B 

cell stage in the presence of IgHMOG (Fig. 34).  

Similarly, absence of BCR surface expression significantly reduces tonic as well as BCR 

engagement-induced signaling, evidenced by impaired PI3K activity, which results in the 

inability to prevent the FOXO1-dependent transcription of pro-apoptotic genes [284]. 

Therefore, BCR retainment would likely be reflected by reduced IgM surface levels as well as 

increased fractions of pro-apoptotic immature and later stage B cells. However, neither in 

Mb1cre/+ Rc3h1F/F-2F/F IgHMOG nor in the CD19cre/+ Rc3h1-2F/F mice were IgM surface levels 

reduced on bone marrow immature and splenic transitional B cells (Fig. 34, 36, 47, 49) and 

the fraction of pro-apoptotic bone marrow immature B cells was not increased (Fig. S17, 

S24). 

IL-7R and pre-BCR signaling is impaired in double-deficient pro and pre B cells. The 

signaling circuits in pro and pre B cells are organized to ensure dominance of either the pre-

BCR or the IL-7R pathway at a given developmental time point. Proliferation in pro and large 

pre B cells is largely driven by IL-7R signaling [60]. While the IL-7R is presumably 

functional in Roquin1/2-deficient CD19+ late pro B cells, as judged by unaltered surface 

expression of IL-7Rα (Fig. 19) and normal cell numbers, IL-7Rα surface expression is 

dramatically reduced in double-deficient large pre B cells. Moreover, expression levels of IL-

7Rα are also reduced on large pre B cells of Mb1cre/+ Rc3h1F/F-2F/wt mice (Fig. 19), in which 

B cells are also strongly impaired at the transition from pro to pre B cells (Fig. 6). Therefore, 

it is possible that impaired signaling downstream of the IL-7R causes the very pronounced 

defect in proliferation of Roquin1/2-deficient large pre B cells (Fig. 28-31). It would be 

interesting to attempt to rescue the proliferation phenotype by intercrossing a constitutively 

active form of STAT5A/B, the predominant signaling mediator downstream of IL-7R 

activation [61] or infect sorted BM B cells with a constitutively active STAT5A/B prior to the 

generation of IL-7d cell lines to investigate if this rescues B cell development at the large pre 

B cell stage and proliferation defects. Furthermore, PI3K signaling, which is essential for pre 

B cell development [285] might be affected by loss of Roquin proteins, maybe through 

upregulation of PTEN or other PI3K inhibitors. As in vivo proliferation of Roquin1/2-

deficient pro B cells, which is independent of PI3K signaling [60], is unaltered (Fig. 28), 

decreased activity of AKT and therefore nuclear retention of FOXO1 may also explain the 

increased Bim levels upon ablation of Roquin1 and 2 (Fig. 25). Decreased PI3K signaling 
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would also explain defects in tonic BCR signaling and effects observed in mature B cells of 

Mb1cre/+ Rc3h1F/F-2F/F IgHMOG and CD19cre/+ Rc3h1-2F/F, such as reduction of follicular B 

cells, loss of marginal zone and reductions in CD23 surface levels [285].  

To my surprise, the strong reduction of IL-7Rα expression does not correlate with an increase 

of classical mediators of pre-BCR signaling at the large pre B cell stage (Fig. 24). SYK and 

ZAP70 amplify pre-BCR proximal signaling events and mediate phosphorylation and 

activation of SLP65, the expression of which is induced upon attenuation of IL-7R signaling 

[59]. ZAP70 expression levels are not increased in Roquin1/2-deficient Hardy fraction C' 

cells, the large pre B cell stage, but ZAP70 levels are increased in double-deficient pro/pre, 

Hardy Fraction D (small pre B cells) and immature B cells (Fig. 24). ZAP70 has been shown 

to support pre B cell development, albeit less efficiently than SYK, and its expression in bone 

marrow B cells peaks in large pre B cells [249, 286]. Moreover, SYK-/- bone marrow 

chimeras exhibit a partial block in B cell development with dramatically reduced immature B 

cell numbers reminiscent of that exhibited in Mb1cre/+ Rc3h1F/F-2F/F mice [287, 288]. The 

onset of this block was shown to occur at the Hardy C to C' transition, the transition from late 

pro B into large pre B cells and additional absence of ZAP70 results in a complete block at 

this stage [249]. This complete block is not caused by defective synthesis or assembly of the 

pre-BCR, but is rather a consequence of defective pre-BCR signaling [249, 289]. Moreover, 

functional ZAP70 is sufficient to promote generation of approximately 10-fold more 

immature B cells in Mb1cre/+ SykF/F mice compared to Mb1cre/+ Rc3h1F/F-2F/F mice, with total 

numbers based on two femurs, whereas the numbers presented in this thesis are based on two 

femurs and two tibias [289]. Therefore, the deficiency in Roquin1/2 proteins causes a more 

severe block than the absence of SYK. This supports the notion that in Mb1cre/+ Rc3h1F/F-2F/F 

B cells not just signaling downstream of the pre-BCR is affected, but also events before pre-

BCR signaling such as VHDJH recombination or IL-7R signaling. 

Furthermore, phosphorylated SLP65 is central for mediating many of the differentiation-

inducing effects of pre-BCR signaling [63] and its ablation results in a partial block of B cell 

development at the pre B cell stage with an increased ratio of cycling large B cells versus 

small pre B cells [290, 291]. Functions of SLP65 serve to cease proliferation and induce IgL 

rearrangement [246], including suppression of PI3K activity [63] and induction of Ikaros and 

Aiolos, which repress transcription of c-Myc, cyclin D3 [248], λ5 and VpreB [292, 293].  

Pre-BCR signaling additionally induces the expression of BCL6, potentially involving 

interference of SLP65 with JAK3-STAT5 signaling downstream of IL-7R signaling [294], 

which results in additional repression of c-Myc. Interestingly, Bcl6 mRNA has been shown to 
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be expressed at high levels in naive mature B cells [295] and post-transcriptional control of its 

expression has been suggested [296]. It is tempting to speculate that Bcl6 mRNA is also 

expressed in developing pro and pre B cells and is partially regulated by Roquin paralogs, 

which could explain the relative increase of BCL6 protein levels in double-deficient bone 

marrow B cells (Fig. 23). Alternatively, Lee and colleagues have shown indirect upregulation 

of BCL6 levels in TFH and GC B cells in sanroque mice as a consequence of increased IFNγ 

signaling [167]. Moreover, the Bcl6 promoter in effector TH1 cells is bound by STAT5 and 

BCL6 expression is repressed, following strong IL-2 signaling, while in an IL-2lo 

environment STAT3, FOXO1 and FOXO3a bind and induce Bcl6 expression [297]. 

Repression of Bcl6 expression by STAT5 binding to the Bcl6 promoter has also been shown 

in a B cell lymphoma line [298]. Therefore, it can be envisioned that defective IL-7R 

signaling results in reduced phosphorylated STAT5 levels and hence increased BCL6 levels 

in late pro and ensuing B cell stages of Mb1cre/+ Rc3h1F/F-2F/F mice (Fig. 23).  

Additionally, SLP65 was demonstrated to induce the expression of IRF4, which activates 

surface expression of CXCR4 enabling CXCL12-instructed migration and attenuation of IL-

7R signaling [79, 299]. In the present study, I show that induction of IRF4 is impaired in 

Roquin1/2-deficient large pre B cells (Fig. 21), more specifically in proliferating large pre B 

cells (Fig. 29). Additionally, CXCR4 and Aiolos upregulation are impaired in this subset, 

whereas relative BCL6 levels are increased (Fig. 20, 22, 23). Defective µHC expression is 

likely not the major cause of the developmental block in Mb1cre/+ Rc3h1F/F-2F/F mice, as 

evidenced by the set of experiments involving the IgHMOG allele. Moreover, expression of 

SLC components with ensuing formation of the pre-BCR remains functional upon Mb1cre-

mediated ablation of Roquin paralogs (Fig. 15, 16). Therefore, an impaired signaling 

capability downstream of the pre-BCR is likely to be the main cause of the developmental 

block upon Roquin1/2 ablation.  

In addition, IRF4 and IRF8 are important for IgL chain rearrangement as they induce 

expression of Aiolos and Ikaros as well as mediate accessibility of the IgL chain loci [69, 

264]. Strikingly, the ratios of cells expressing high levels of IRF4 are normal in double-

deficient small pre B cells and Aiolos protein levels are even increased in Roquin1/2-deficient 

Aioloshi small pre B cells is even increased (Fig. 21, 22). However, IgL chains are absent in 

pro/pre B cells (Fig. 17). As the pre-rearranged IgLD23κ allele does not rescue immature B cell 

development (Fig. 44), it is important to note that the developmental block in Mb1cre/+ 

Rc3h1F/F-2F/F mice is thus independent of IgL expression, also in the µHC+ double-deficient 

pro/pre B cells. As Aiolos levels in small pre B cells of Mb1cre/+ Rc3h1F/F-2F/F IgLD23κ are 
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normal (data not shown), I assume that the increased Aiolos levels in double-deficient small 

pre B cells stem from absence of IgL expression and are thus a cause of the developmental 

block (Fig. 22). 

Taken together, the differentiation of late pro B cells into immature B cells relies initially on 

IL-7R signaling and afterwards on pre-BCR signaling [60]. Therefore, I propose that the 

developmental block around the large pre B cell stage in Mb1cre/+ Rc3h1F/F-2F/F mice is a 

consequence of consecutive defects in both pathways. Initially it is presumably the result of a 

defect upstream of SLP65 signaling, as already large pre B cell numbers in this mouse line are 

strongly reduced and IL-7R signaling and proliferation are dramatically impaired. 

Subsequently, defective pre-BCR signaling, which fails to induce IRF4, expression of 

CXCR4, upregulation of Aiolos and IgL chain expression, contributes to the developmental 

block [42, 60, 67]. I suggest to specifically investigate the signaling capacities of the pre-BCR 

in Roquin1/2-deficient pre B cells by examining proximal events, such as SYK and SLP65 

expression, phosphorylation of SYK, ZAP70 and SLP65 and measuring Ca2+ influx. I plan to 

perform these experiments in an SLP65-/-, RAG2-/- and λ5 triple knockout IL-7d pre B cell 

line transduced with a 4-OHT (tamoxifen)-inducible SLP65creERT2, a µHC and λ5 [299]. 

Roquin1/2 paralogs will be inactivated in this cell line employing CRISPR/Cas9 methodology 

[300].  

Additionally, a potential role for apoptosis remains to be investigated in vivo. Ex vivo analysis 

of intracellular Bim expression demonstrated relatively increased Bim levels at all stages of B 

cell development in Mb1cre/+ Rc3h1F/F-2F/F mice (Fig. 25). However, ex vivo analyses of 

AnnexinV binding to exposed phosphatidylserine and pancaspase activation (Fig. 26, 27) 

revealed only a possible mild contribution to the defects in pro and pre B cells, but apoptosis 

seems to contribute more significantly to the absence of double-deficient immature B cells. I 

suggest analyzing the expression of MCL1, the most important anti-apoptotic BCL2 family 

member in pro B cells [301, 302], BCL-xL and BCL2, all shown to be expressed in pro B 

cells [60]. If apoptosis is relevant for the phenotype I describe in this present thesis, it 

presumably also contributes to the inability of generating IL-7d cell lines from Mb1cre/+ 

Rc3h1F/F-2F/F mice. Hence viral transduction of these antiapoptotic genes into primary cells 

sorted from the bone marrow of this mouse line prior to generation of an IL-7d cell line might 

help to understand the role of apoptosis in the developmental block. 

Possible mechanisms causing the phenotypes observed in Roquin-deficient B cell 

lineages include defects in ubiquitination or post-transcriptional regulation of mRNA 

targets. The regulatory roles of RING E3 ubiquitin ligases in B cell development have 
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primarily been described with respect to apoptosis or proliferation [277, 303, 304]. For 

example stabilization of p53 in absence of the RNA-binding RING-type E3 ligase Mdm2 

[303] or upregulation of apoptosis-inducing FasL on the surface of pro B cells upon Mb1cre-

based ablation of JAB1 [277]. The later model shares many phenotypic traits with Mb1cre/+ 

Rc3h1F/F-2F/F mice, a block at the pro to pre B cell transition with deficiencies in µHC 

expression and lack of peripheral B cells, including B1 cells in the spleen [277]. However, the 

fraction of proliferative active (S/G2/M phase) residual pre B cells in these mice is 

significantly increased in contrast to my observations [277]. In this regard, it would be very 

interesting to investigate the B cell-specific phenotype of the Roquin1/2 ringless mutations 

(hypothetical "Bringless" mice - Mb1cre/+ Rc3h1rin/rin-2rin/rin) [202]). Such experiments could 

reveal whether or to what extent post-transcriptional regulation of protein stability by K48-

linked poly-ubiquitination of target proteins represents a means how Roquin paralogs control 

B cell development in the bone marrow.  

The developmental block observed in Mb1cre/+ Rc3h1F/F-2F/F is also reminiscent of the 

recently published Mb1cre-mediated ablation of Cnot3, which affects nuclear and 

cytoplasmic functions mediated by the CCR4-NOT complex [283, 305]. This suggests that 

the developmental block is rather a function of the absent cytoplasmic post-transcriptional 

gene regulation function of Roquin proteins, rather than a consequence of a lack of E3 ligase 

function. mRNA-binding by the NOT component, which comprises CNOT1, CNOT2 and 

CNOT3, is a requirement for subsequent association of the CCR4 part to form the mammalian 

CCR4-NOT complex on a specific mRNA [306]. The CCR4-NOT complex was shown to be 

involved in all facets of the mRNA life cycle, from synthesis to its best-known function in 

mRNA degradation [307]. Mb1cre/+ Cnot3F/F mice show a block at the pre B cell stage with an 

even earlier onset already at the late pro B cell stage and a more pronounced reduction of 

immature B cells [283, 305]. Rescue experiments involving the B1-8hi IgH-knockin allele 

similarly enabled only the generation of CNOT3-deficient immature bone marrow B cells but 

not of mature recirculating B cells [283, 305]. However, the two reports on CNOT3-deficient 

B cells differ in the presented underlying cause of the developmental block. Inoue et al. stated 

increased p53 stability and defective NMD in pro B cells [305], whereas Yang and colleagues 

reported the absence of important functions of the CCR4-NOT complex performed in 

conjunction with EBF1 and resulting dysregulated gene expression, including pre-BCR 

components, as a contributing factor [283]. In the later study, the authors demonstrated a 

specific interaction of EBF1 with CNOT3 and assembly of the CCR4-NOT complex [283]. 

Strikingly, the ablation of Cnot3 resulted in down-regulation of EBF1 mRNA and protein 
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levels as a result of decreased transcription of EBF1 [283]. Similarly, Roquin paralogs were 

shown to interact with the CNOT1, 2 and 3, but also with CCR4 part of the CCR4-NOT 

complex in an RNA independent manner [196, 209]. However, it appears less likely that loss 

of the Roquin-CCR4-NOT complex will result in reduced transcription, as Roquin proteins 

have so far been described to localize to the cytoplasm [201], whereas EBF1 is a nuclear 

transcription factor.  

This might indicate that the specific increase of IRF4hi late pro B cells and upregulation of 

protein levels of IRF4, which carries a CDE motif in its 3'UTR [196], in IRF4hi Roquin1/2-

deficient late pro B cells (Fig. 21) is the consequence of absent Roquin-mediated regulation of 

IRF4 mRNA. That this effect is then overridden, when pre-BCR mediated signaling induces 

further IRF4 expression. IRF4 upregulation was also observed in Roquin1/2-ablated T cells 

[191], which was thought to result from increased NF-κB activation downstream of 

upregulated OX40 surface levels rather than IRF4 mRNA representing a potential novel 

Roquin1/2 target. The specific upregulation at the late pro B cell stage, when NFκB signaling 

is dispensable [239, 308], underscores that IRF4 mRNA might be directly regulated post-

transcriptionally by Roquin paralogs.  

Ectopic over-expression of IRF4 in pro B cells at levels similar to those observed in pre B 

cells results in premature IgL chain expression and annulment of the order of IgH before IgL 

chain rearrangement [309]. However, I do not observe a premature induction of IgL 

expression in late pro B cells (Fig. 17, data not shown), despite levels of IRF4 in IRF4hi 

Roquin1/2-deficient late pro B cells reaching the levels of IRF4 in IRF4hi small pre B control 

cells (Fig. 21). This further supports the notion that impairments in IgL chain expression are a 

consequence of the absence of Roquin paralogs. 

2. Roquin proteins regulate the maturation, activation and 

differentiation of peripheral B cells 

Roquin paralogs are important for peripheral B cell maturation. As the specific ablation 

of Roquin paralogs in early B cell development employing Mb1cre results in a complete 

developmental block, I investigated whether these proteins fulfill an additional essential 

function in peripheral B cells maturation employing the CD19cre model. B cell development 

in the bone marrow of CD19cre/+ Rc3h1-2F/F mice is not altered (Fig. 49), most likely due to 

incomplete Cre-mediated recombination and residual mRNA and protein levels in recombined 

developing B cells. Peripheral B cell maturation is impaired from the T1 to T2 transition 
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onwards with strong reduction of FO and MZ B cell numbers, which appears more 

pronounced in MZ B cells and MZP B cells (Fig. 50, 51). In addition, I observed reduced 

numbers and cellularity of PPs (Fig. S28A). Furthermore, B1a development is nearly absent 

in spleen and peritoneal cavity, whereas increased B1b cell numbers result in overall elevated 

B1 cell numbers (Fig. 52). A similar picture, but somewhat less pronounced is seen in 

Mb1cre/+ Rc3h1F/F-2F/F IgHMOG mice (Fig. 39). This increased B1b population affected 

analysis of total AA4.1- mature B cells numbers in both models (Fig. 35, 50), such that IgDhi 

IgMlo splenic B cell numbers reflect the real number of mature B cells. Additionally, some of 

the analyses involving AA4.1- mature B cell gating, such as analysis of CD23 and CD24 (Fig. 

37, 56) might be partially skewed by this phenomenon. 

The reduction of MZ and B1a cells might be the consequence of an essential E3 ligase 

function performed by the RING domain of Roquin paralogs. Both Roquin1 and 2 were 

shown to pair with the E2 enzyme UBE2N or Ubc13 resulting in K63-linked polyubiquitin 

chains in vitro [203]. The CD19cre-mediated ablation of Ubc13 similarly shows strong 

reduction of MZ and peripheral CD5+ B1 cell numbers [214]. Ex vivo MACS-sorted B220+ 

B cells from this mouse model proliferate less in response to mitogenic stimuli, but cell death 

is increased post-stimulation. However, B cells from CD19cre/+ Ubc13F/F mice produce less IL-

6 48h post CpG stimulation [214]. Although IL-6 mRNA was shown to be suppressed by 

Roquin proteins in vitro [207], it cannot be excluded that Roquin1/2-mediated K63 

ubiquitination supports IL-6 production in B cells. Here, I did not find increased IL-6 serum 

levels or strongly increased IL-6 production in stimulated MACS-purified B cells in CD19cre/+ 

Rc3h1-2F/F mice (Fig. 58). However, my stimulation experiment should be repeated using 

LPS, as PMA/Iono stimulation did not result in increased IL-6 production or percentage of 

IL-6 expressing cells also in the controls (Fig. 58).  

The E3 Ubiquitin ligase function of Roquin paralogs might also be specifically relevant for 

MZ B cell development, that is critically instructed by Notch2 signaling induced by its ligand 

DL-1 [310]. Notch activation involves ligand induced proteolytic cleavage steps leading to 

the liberation and nuclear translocation of the cytoplasmic domain of the respective Notch 

protein. Proteolytic cleavage by γ-secretase, subsequent to endocytosis of Notch receptors, 

critically depends on monoubiquitination at K1749 [311], by a not yet identified E3 ligase 

[312]. However, thymocyte development, which requires Notch1 signaling, was not reported 

to be impaired in Tringless mice [202], which would be expected if Roquin proteins were 

Notch E3 ligases [313]. Yet, homozygosity for the germline Rc3h1rin/rin mutation results in 

perinathal death [202] due to similar defects as described for homozygous Rc3h1-/- mice 
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[212], indicating an important function of the RING domain. A detailed study of Bringless 

mice would help greatly in determining the role of the RING domain of Roquin1 and 2 in 

maturation of B cells in the periphery.  

In addition, the weak interaction of Notch2 with DL-1 was shown to be strengthened 

significantly by lunatic fringe (LNFG) and manic fringe glycosoltransferes [207]. In the 

Schmidt-Supprian laboratory, we observed Roquin-mediated regulation of LNFG mRNA in 

the Roquin1/2-devoid mast cell system (Fig. 62, data not shown), which remains to be 

confirmed for B cells as well as potential functional consequences.  

Surface IgM levels are no reliable readout to assess the cause of shifted ratios of Igκ and 

Igλ light chain usage with progressing maturation in CD19cre/+ Rc3h1-2F/F mice. The 

reason causing the shift in ratios of Igκ and Igλ light chain usage with progressing maturation 

in splenic B cells of CD19cre/+ Rc3h1-2F/F mice remains to be determined. The occurrence of 

secondary rearrangements in peripheral B cells is controversial [268]. Hence, the informative 

value of employed experiments, including a potential downregulation of surface IgM on 

editing cells, must be scrutinized. IgM levels are not downregulated in any of the analyzed B 

cell populations of the Mb1cre/+ Rc3h1F/F-2F/F IgHMOG or the CD19cre/+ Rc3h1-2F/F mouse 

strains. In the former model, general deficits of IgL chain rearrangement and expression seem 

more relevant (Fig. 41), whereas in CD19cre/+ Rc3h1-2F/F mice a shift towards increased Igλ 

usage with B cell maturation was observed (Fig. 55). This shift occurs in the absence of 

reduced IgM surface expression in the respective populations, but rearrangement status of the 

IgL loci and IRF4 expression levels remain to be determined. However, it is now realized that 

IgM surface levels are no clear indication of ongoing BCR receptor editing, as depending on 

the avidity of the BCR for a self-antigen, surface IgM expression can be down-modulated to 

levels resembling those in pre B cells [314, 315] or remain similar to normal surface BCR 

levels [314, 316, 317]. Hence, it remains to be carefully analyzed if the shift in IgL chain 

usage in peripheral B cells of CD19cre/+ Rc3h1-2F/F mice results from receptor editing or more 

likely from a preferential survival or expansion of Igλ+ cells.  

Counterselection of Roquin1/2-deficient B cells in CD19cre/+ Rc3h1-2F/F mice. My 

analyses demonstrate that in splenic B cells protein levels of Roquin1 are significantly higher 

than those of Roquin2 (Fig. 53), which is in accordance with the general expression of Roquin 

paralogs in the spleen [191]. To my knowledge this is the first description of expression levels 

of Roquin paralogs in splenic B cells, in which Roquin1 levels are 2.5 to 3fold increased 

compared to Roquin, which is a smaller difference in expression compared to the 5fold 

difference observed in T cells [191]. This finding indicates a significant possibility for 
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Roquin2 to compensate for loss of Roquin1 in splenic B cells, evidenced by the strongly 

exacerbated effects in double-deficient cells. The relative residual mRNA expression of 

Rc3h1/2 in mature splenic B cells isolated from CD19cre/+ Rc3h1-2F/F mice is low, indicating 

efficient Cre-mediated recombination of the Rc3h1-2F/F alleles. Increasing residual Roquin1/2 

protein levels as well as decreasing CAR surface expression on the other hand strongly 

indicate continuous negative selection of Roquin1/2-deficient splenic B cells with ongoing B 

cell maturation and CD19cre-mediated recombination of the conditional alleles (Fig. 53, 54). 

The on-going counterselection of Roquin1/2-deficient B cells has to be kept in mind when 

drawing conclusions from experiments with peripheral splenic B cell populations in CD19cre/+ 

Rc3h1-2F/F mice. However, the fact that Roquin1/2 deregulate CD23 and CD24 expression 

should enable me to specifically identify B cell populations strongly enriched for Roquin1/2-

deficient cells.  

The consequences of different degrees of Roquin1/2 deficiencies for B cell activation, 

differentiation and B cell-extrinsic effects. As observed in CD19cre/+ Rc3h1F/F mice [212], 

Mb1cre/+ Rc3h1F/F mice have increased ratios of spontaneous GC B cells in spleen and PPs and 

also Mb1cre/+ Rc3h1F/F-2F/wt mice still have normal ratios of GC B cells in PPs, despite their 

developmental defects (Fig. 13). Furthermore, both strains exhibit a deregulated T cell 

compartment with increased numbers of cells resembling central-memory and effector-

memory CD4+ and CD8+ T cells (Fig. 32), as observed in CD19cre/+ Rc3h1-2F/F mice (Fig. 

S29). Splenic B cells from CD19cre/+ Rc3h1-2F/F mice display a primed or pre-activated 

resting state (Fig. 51-53). The development of follicular as well as B1 cells relies on strong 

BCR signaling [99, 100, 318] and loss of Roquin paralogs presumably results in a 

hyperactivated state in (antigen-)naive B cells potentially mirroring some effects of strong 

BCR signaling. It is possible that this increased BCR signaling contributes to the preferential 

development of FO and B1b B cells in Mb1cre/+ Rc3h1F/F-2F/F and CD19cre/+ Rc3h1-2F/F mice. 

Few extensively proliferating cells suffice to nucleate and initiate GC formation [319]. This 

indicates that proliferative defects of activated FO B cells could have severe consequences for 

the generation of GCs and GC B cells. It can be imagined that proliferative defects similar to 

those observed in in large pre B cells of Mb1cre/+ Rc3h1F/F-2F/F mice, as well as reduced CD25 

expression on resting and stimulated Roquin1/2-deficient B cells (Fig. 59A, 59B), contribute 

to the significantly reduced GC B cell numbers in these mice and defective generation of 

Peyer's Patches [M. Kober and D. Rieß, data not shown] (Fig. S28A).  

The increase of the Treg cell-containing CD4+ CD25+ T cell pool in the CD19cre/+ Rc3h1-2F/F 

mouse strain might prevent systemic inflammation and might have aided in repressing TNFα 
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production by T cells in the ex vivo stimulation of splenocytes (Fig. 57). Therefore, I propose 

that Roquin paralogs are critical for repressing B cell activation. Graded reduction in 

Roquin1/2 protein levels first results in a hyperproliferative B cells state as observed in 

Mb1cre/+ Rc3h1F/F mice with additional reduction in protein levels causing developmental and 

maturation defects. To test this hypothesis I suggest analyzing CD19cre/+ Rc3h1F/F-2F/wt mice 

with regard to development and activation status.  

Furthermore, it will be interesting to analyze whether MALT1-mediated regulation of Roquin 

proteins downstream of the BCR plays a role similar to that observed downstream of the TCR 

in T cells [198, 199]. In that context it should be investigated whether cleaved Roquin 

fragments might still fulfill a role of target mRNA sponges, as a dominant negative effect was 

observed in vitro by transfection of N-terminal and C-terminal Roquin1 fragments that 

stabilized a globin-TNFαCDE37nt hybrid mRNA [196]. Moreover, MALT1 has recently been 

shown to be required in B cells downstream of BCR signaling for initial GC formation 

potentially involving MALT1-mediated proliferative and survival effects and plasma cell 

differentiation [320]. It can be imagined that some of the underlying effects are mediated by 

deregulated Roquin paralogs, which repress expression of the negative regulators of NF-κB 

signaling A20 and IκBα in vitro [209]. As the underlying defects for the hyperactivated 

resting state as well as the hypoactivated and hypoproliferative state of peripheral CD19cre/+ 

Rc3h1F/F-2F/F B cells remain elusive, I hypothesize that defined protein levels of Roquin 

paralogs ensure regulation of intricate networks of signaling mediators involving NF-κB 

family members and proliferation for correct peripheral development, activation and post-

activation behavior of B cells.  

3. Unraveling structural principles of mRNA binding by Roquin 

proteins 

The crystallization and description of the bipartite architecture of Roquin's RNA-binding 

regions, comprising the novel RNA-binding ROQ domain and the HEPN domains (Fig. 3) 

[197, 203, 205-208], precluded our efforts to do so. This architecture, the primarily structure-

based mode of recognition as well as relevant amino acids for CDE binding in ROQ and 

HEPN domain were also identified in our structures 1 and 2 (Fig. 60, 61). Surprisingly, 

almost all groups that have reported a crystal apo structure of the ROQ domain, also showed 

two copies of the ROQ peptide in the asymmetric unit. Initially it was suggested that Roquin 

may dimerize through the ROQ domains enabling the binding of different forms of RNA 
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[206]. Although our gel filtration experiments initially also pointed towards a dimeric state in 

solution and reported dimer interfaces appear similar [197, 203], our analytical SEC with 

lower peptide concentrations revealed a monomeric state (data not shown). However, EBI3, 

which encodes a subunit of the cytokines IL-27, IL-35 and IL-39 [321], a novel target of 

Roquin-mediated mRNA regulation is described in this thesis (Fig. 63). B cells express the 

receptor for the immunemodulatory and -suppressive IL-35 [322]. Moreover, infection or 

activation induced IL-35 secretion by the recently suggested "i35-Breg" B cell subset has 

been [323]. It is tempting to speculate that uncontrolled EBI3 upregulation and ensuing IL-35 

secretion upon stimulation of ex vivo purified CD19cre/+ Rc3h1-2F/F B cells (Fig. 59) 

contributed to the dampened upregulation of activation markers observed. However, it 

remains to be investigated if EBI3 is a relevant novel target of Roquin proteins in B cells.  

The physiological relevance of the dsRNA binding B site has not been clearly analyzed. 

Furthermore, it was suggested that the ROQ and the ZF domains of Roquin move together in 

solution [203], and contributions of the ZF domain to RNA binding domains were also 

demonstrated [165, 209], however no study has looked further into the molecular interaction 

of ROQ/ZF and RNAs. With the growing number of cis-regulatory motifs present in target 

mRNAs, which are bound by Roquin proteins [208-210], I propose to investigate if 

HEPN/ROQ and ROQ/ZF domains cooperatively bind and scan target mRNAs enabling a 

more effective recognition of target mRNAs. This analysis could potentially explain the 

different CDEs proposed [196, 208], which were either based on binding affinity or RNA 

decay efficiency readouts. Also all reports that showed ROQ interaction with CDE mRNA 

employed mRNAs that were max. 30 nucleotides long and therefore not suited to address the 

question of a potential involvement of the B site or the ZF domain in cooperative scanning 

and binding of target mRNA. I speculate that similar to the importance of defined Roquin 

protein levels for adequate in vivo function, mRNA binding and decay efficiency is encoded 

by different cis-regulatory motifs in target mRNAs and multiple parts of Roquin facilitating 

binding and degradation of these mRNAs.  
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Supplemental figures 

 

 

 

Figure S1: Normal weight of Mb1cre/+ Rc3h1F/F-2F/F mice and unchanged total bone marrow cell numbers 
in Mb1cre/+ Rc3h1F/F-2F/F, Mb1cre/+ Rc3h1F/F-2F/wt and Mb1cre/+ Rc3h1F/F mice. 
Mouse weight and number (#) of total BM cells. BM: bone marrow. Numbers below graphs and bars indicate 
mean values.  
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Figure S2: Reduction of mature B cells in the bone marrow of Mb1cre/+ Rc3h2F/F mice. 
(A) Representative flow cytometry plots of immature and mature bone marrow B cells. (B) Percentages of 
immature and mature B cells of total BM cells and total immature and mature B cell numbers. BM: bone 
marrow. Numbers below graphs and bars represent mean values. *p ≤ 0.05, unpaired t test.  
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Figure S3: Splenic B cells in Mb1cre/+ Rc3h2F/F mice. 
(A) Representative flow cytometric analysis and (B) percentages of viable splenic cells and total cell numbers of 
indicated B cell subsets. SPL: spleen. Numbers below graphs and bars indicate mean percentages and cell 
numbers (#). *p ≤ 0.05, unpaired t test.  
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Figure S4: Expression of the R26CARStopFL reporter allele in peripheral B cells and T cells. 
Percentages of CAR+ B cells among indicated B and T cell subsets. Specification of CAR+ cells was performed 
as in Fig. 14. Black * describe significant differences of Mb1cre/+ Rc3h1F/F-2F/F R26CARStopFL versus Mb1cre/+ 

Rc3h1F/F-2F/wt R26CARStopFL or Mb1cre/+ R26CARStopFL B cells as designated by position of the *, gray * show 
significant differences of Mb1cre/+ Rc3h1F/F-2F/wt R26CARStopFL versus Mb1cre/+ R26CARStopFL B cell. CAR signal in 
the respective cell populations in wild type and Mb1cre/+ mice was always < 1% (data not shown). Subset gating: 
B cells B220+, Immature B B220+ AA4.1+, T1 (transitional T1) B B220+ AA4.1+ CD23- IgM+, T2 B B220+ 
AA4.1+ CD23+ IgM+, T3 B B220+ AA4.1+ CD23+ IgM-, Mature B B220+ AA4.1-, FO (follicular) B B220+ 
AA4.1+ CD1dint CD21int, MZB/MZP (marginal zone and MZ precursor) B220+ AA4.1+ CD1dhi CD21hi, GC 
(germinal center) B220+ CD19+ PNA+ Fas+ CD38lo, B1 B220lo CD19hi, B1a B220lo CD19hi CD43+ CD5+, B1b 
B220lo CD19hi CD5-, T cells TCRβ+. Bars represent means and error bars standard deviation. ****p ≤ 0.0001, 
***p ≤ 0.001, **p ≤ 0.01, *p ≤ 0.05, 2way ANOVA with Tukey test applied. 
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Figure S5: Analysis of intracellular expression of Igµ, Igκ and Igλ in bone marrow and splenic B cells of 
Mb1cre/+ Rc3h1F/F-2F/F, Mb1cre/+ Rc3h1F/F-2F/wt and Mb1cre/+ Rc3h2F/F mice. 
(A) Flow cytometry based quantification of intracellular (IC) expression levels of Igλ (Igλ1, 2 and 3) in indicated 
bone marrow B cells. (B) Analyses of pro/pre B cells (B220lo IgM-) and pro/pre B cell subgating according to 
intracellular Igµ and λ5 expression. (C) Flow cytometry based quantification of IC µHC expression in indicated 
bone marrow B cells. (D) Analyses of pro/pre B cells and their subgating according to intracellular Igκ and λ5 
expression. (E) IC protein expression of Igκ in denoted BM B cell populations as measured by flow cytometry. 
(F) Flow cytometric determination of IC protein expression of Igκ and Igλ (Igλ1, 2 and 3) in B220+ splenic B 
cell. B cell subsets analysed: pro B B220lo IgM- CD25- c-kit+, large pre B B220lo c-kit- CD25+ IgD- IgM- FSChi; 
small pre B B220lo c-kit- CD25+ IgD- IgM- FSClo; immature B B220+ IgD- IgM+. BM: bone marrow; MFI: 
median fluorescence intensity. Numbers below bars represent mean values and error bars standard deviation. (A) 
2way ANOVA with Tukey test applied, (B-E) multiple t tests with Holm-Sidak method applied and unpaired (F) 
t test. 
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Figure S6: Analysis of surface expression of Igκ and Igλ on splenic B cells of Mb1cre/+ Rc3h2F/F mice. 
(A) Representative flow cytometric analysis for surface expression of Igκ or Igλ (Igλ1, 2 and 3) on splenic (SPL) 
B cells. (B) Percentages of indicated B cell subsets among viable splenocytes and total cell numbers (#). SPL: 
spleen. Numbers below graphs and bars represent mean percentages and cell numbers (#). ***p ≤ 0.001, **p ≤ 
0.01, *p ≤ 0.05, unpaired t test.  
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Figure S7: Extracellular IL-7α expression and intracellular levels of IRF4, Aiolos and BCL6 are not 
altered in Mb1cre/+ Rc3h2F/F bone marrow B cell subsets. 
(A) Bar chart representation of IL-7Rα protein expression on the surface of indicated bone marrow (BM) B cells 
populations. (B-D) Bar charts displaying intracellular (IC) levels of (B) IRF4, (C) Aiolos and (D) BCL6 as 
determined by flow cytometry in designated bone marrow (BM) cells. B cell subsets analysed: pro B B220lo 
IgM- CD25- c-kit+, large pre B B220lo c-kit- CD25+ IgD- IgM- FSChi; small pre B B220lo c-kit- CD25+ IgD- IgM- 
FSClo; immature B B220+ IgD- IgM+, mature B B220hi IgD+. BM: bone marrow; MFI: median fluorescence 
intensity. Numbers below bars represent mean values and error bars standard deviation. MFI: median 
fluorescence intensity. Multiple t tests with Holm-Sidak method applied.  
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Figure S8: Analyses of active caspases and intracellular Bim levels in bone marrow B cell populations in 
Mb1cre/+ Rc3h2F/F mice. 
For staining active caspases (caspglow stain) ex vivo BM cells were cultured for 1h in vitro. (A) Representative 
flow cytometry plots illustrating active caspase stain (caspglow) and 7-AAD staining on indicated BM B cell 
subsets. (B) Stacked bar charts displaying percentages of viable, early apoptotic, late apoptotic and non-
apoptotic dead cells within stated BM B cell populations as measured by flow cytometry in ex vivo cells with 
analyses of significance also following this order. Viable caspglow- 7-AAD-; early apoptotic caspglow+ 7-AAD-, 
late apoptotic caspglow+ 7-AAD+, non-apoptotic dead caspglow- 7-AAD+. (C) Bar charts displaying intracellular 
Bim protein levels normalized to levels in control populations as analyzed by flow cytometry. No significant 
differences were observed with non-normalized values. B cell subset gating: pro B B220lo IgM- CD25- c-kit+, 
large pre B B220lo c-kit- CD25+ IgD- IgM- FSChi; small pre B B220lo c-kit- CD25+ IgD- IgM- FSClo; immature B 
B220+ IgD- IgM+, mature B B220hi IgD+. BM: bone marrow. Bars represent mean values and error bars standard 
deviation. ***p ≤ 0.001, **p ≤ 0.01, *p ≤ 0.05, ns notsignificant, (B) unpaired t test or (C) multiple t test with 
Holm-Sidak method applied.  
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Figure S9: Cell cycle stages of bone marrow B cells in Mb1cre/+ Rc3h1F/F-2F/F mice. 
(A) Representative flow cytometry plots and histograms of indicated bone marrow (BM B cell populations 
depicting gating and analysis strategy. (B) Percentages of designated B cell populations in cell cycle phases. B 
cell subsets analysed: pro B B220lo IgM- CD25- c-kit+, large pre B B220lo c-kit- CD25+ IgD- IgM- FSChi; small 
pre B B220lo c-kit- CD25+ IgD- IgM- FSClo; immature B B220+ IgD- IgM+, mature B B220hi IgD+. G0/1, S, and 
G2/M phase according to DRAQ5 signal intensity as indicated by grey-scale coding (G0/1 white, S light grey, 
G2/M dark grey). BM: bone marrow. Bars represent mean values and error bars standard deviation. ****p ≤ 
0.0001, **p ≤ 0.01, ns non-significant, unpaired t test. 
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Figure S10: Increase of CD25+ CD4+ T cells in Mb1cre/+ Rc3h1F/F-2F/F mice, but their T cell compartment 
otherwise resembles Mb1cre/cre mice. 
(A) Representative flow cytometry plots depicting the gating strategy for splenic (SPL) T cells. T cell subsets: T 
cells TCRβ+; CD4+ T cells TCRβ+ CD4+; CD4+ CD25+ T cells TCRβ+ CD4+ CD25+. (B) Percentages of 
respective T cell subsets of total SPL cells and total subset cell numbers as determined by flow cytometry. SPL: 
spleen. Numbers below graphs and bars indicate mean percentages and cell numbers (#). ****p ≤ 0.0001, ***p 
≤ 0.001, **p ≤ 0.01, *p ≤ 0.05, ANOVA. Significances for Mb1cre/cre versus Mb1cre/+ Rc3h1F/F-2F/wt and versus 
Mb1cre/+ Rc3h1F/F are not shown, for CD8+ T cells significances versus Mb1cre/cre (n= 2) were not determined.  
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Figure S11: Expansion of naive and CM-like CD4 splenic T cell subsets in Mb1cre/+ Rc3h2F/F mice. 
(A) Representative flow cytometry histograms of stated splenic (SPL) B cell populations illustrating gating 
schemes. (B) Percentages of and cell numbers of designated T cell subsets of total splenocytes as determined by 
flow cytometry. CM: central memory; EM: effector memory. Numbers below graphs and bars represent mean 
percentages or cell numbers (#). ****p ≤ 0.0001, ***p ≤ 0.001, **p ≤ 0.01, *p ≤ 0.05, unpaired t test.  
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Figure S12: Analysis of splenic myeloid cell populations in Mb1cre/+ Rc3h1F/F-2F/F, Mb1cre/+ Rc3h1F/F-2F/wt 
and Mb1cre/+ Rc3h1F/F mice. 
(A) Representative plots depicting the gating strategy for myeloid cells in spleen (SPL). Myeloid cell 
populations were analyzed as indicated. (B) Percentages of respective myeloid cell subsets of total splenocytes 
as determined by flow cytometry. DCs: dendritic cells; Activated Monos: activated monocytes and macrophages; 
Gr1lo; Gr1+ Monos: Gr1 expressing Monocytes. Numbers below graphs and bars show mean values. ****p ≤ 
0.0001, ***p ≤ 0.001, **p ≤ 0.01, *p ≤ 0.05, ANOVA. Significances versus Mb1cre/cre (n= 2) were not 
determined and for Gr1+ Monocytes also not compared to Mb1cre/+ Rc3h1F/F (n= 2).  
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Figure S13: Analysis of myeloid cells in the spleen of Mb1cre/+ Rc3h2F/F mice. 
(A) Representative flow cytometric analysis illustrating gating strategy for myeloid populations in the spleen 
(SPL). (B) Percentages of stated myeloid cell subsets of total splenocytes and total cell numbers as determined 
by flow cytometry. DCs: dendritic cells, cDCs: classical DCs; pDCs: plasmacytoid DCs; Activated Monos: 
activated monocytes and macrophages. Numbers below graphs and bars indicate mean mean percentages and 
cell numbers (#). *p ≤ 0.05, unpaired t test. 
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Figure S14: Near absence of splenic and GALT Mb1cre/+ Rc3h1F/F-2F/F IgHMOG germinal center B cells. 
(A) Percentages of stated B cell subsets of total splenic (SPL) cells and total subset cell numbers as determined 
by flow cytometry. (B) Percentages and total cell numbers (#) of GC B cells of total SPL, mLN or PP cells as 
analyzed by flow cytometry. Calculated cell numbers of < 100 were rounded to 0 and denoted as ≈0.0. GALT: 
gut-associated lymphoid tissue; mLN: mesenteric lymph node; PP: Peyer’s patches; GC: germinal center. 
Numbers below graphs and bars indicate mean percentages or cell numbers. ****p ≤ 0.0001, **p ≤ 0.01, *p ≤ 
0.05, ANOVA. 
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Figure S15: Peritoneal cavity B1 cell populations of Mb1cre/+ Rc3h1F/F-2F/F IgHMOG mice are largely IgMa-
positive. 
Percentages of IgMa+ B cell subsets among the respective subsets. Black * represent significant differences 
between cell populations from Mb1cre/+ Rc3h1F/F-2F/F IgHMOG and IgHMOG controls. The positive signal in control 
samples represents background. Gated B cell subsets: B cells B220+; B1 CD19+ B220lo; B1a CD19+ B220lo 
CD43+ CD5+, B1a CD19+ B220lo CD5- immature B B220+ AA4.1+; mature B B220+ AA4.1-; GC B B220+ 
CD19+ PNA+ Fas+ CD38lo. BM: bone marrow; PC: peritoneal cavity; mLN: mesenteric lymph nodes; PP: 
Peyer’s patches; GC: germinal centers. Bars indicate mean values and error bars standard deviation. ****p ≤ 
0.0001, ANOVA. 
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Figure S16: Analysis of surface expression of Igκ and Igλ (λ1, 2 and 3) on BM B cells of Mb1cre/+ Rc3h1F/F-
2F/F IgHMOG mice. 
(A) Representative flow cytometric analysis of bone marrow (BM) B cells. (B) Percentages of indicated Igκ+ or 
Igλ+ B cell subsets among viable cells of BM and total cell numbers. Numbers below graphs and bars show 
mean percentages or cell numbers (#). ****p ≤ 0.0001, **p ≤ 0.01, *p ≤ 0.05, ANOVA.  
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Figure S17: Minor reduction of the fraction of viable pre and immature B cells in Mb1cre/+ Rc3h1F/F-2F/F 
IgHMOG mice. 
For staining active caspases (caspglow stain as in Fig. 27), ex vivo BM cells were cultured for 1h in vitro. 
Quantification of percentages of viable, early apoptotic, late apoptotic and non-apoptotic dead cells of BM cell 
subsets as determined by flow cytometry in ex vivo cells shown as stacked bar charts. Viable caspglow- 7-AAD-; 
early apoptotic caspglow+ 7-AAD-, late apoptotic caspglow+ 7-AAD+, non-apoptotic dead caspglow- 7-AAD+. 
Gated B cell subsets: pro B B220lo IgM- CD25- c-kit+, large pre B B220lo c-kit- CD25+ IgD- IgM- FSChi; small 
pre B B220lo c-kit- CD25+ IgD- IgM- FSClo; immature B B220+ IgD- IgM+, mature B B220hi IgD+. BM: bone 
marrow. Bars represent mean values and error bars standard deviation. *p ≤ 0.05, ns non-significant, unpaired t 
test. 

  

BM

Early apoptotic

Viable

Non-apoptotic dead

Late apoptotic 

Pro B cells

0

50

100

150

%
 o

f p
ro

 B
 c

el
ls

ns
ns
ns

ns

Large pre B cells

0

50

100

150

%
 o

f l
ar

ge
 p

re
 B

 c
el

ls

nsns*

*

Immature B 

0

50

100

150

%
 o

f i
m

m
at

ur
e 

B
 c

el
ls

 

ns
ns
ns

*

Mature B cells

0

50

100

150

%
 o

f m
at

ur
e 

B
 c

el
ls

 

ns
ns
ns

ns

Small pre B cells

0

50

100
%

 o
f s

m
al

l p
re

 B
 c

el
ls

ns
ns
ns

ns

150

Figure S17
Mb1cre/+ IgHMOG Rc3h1F/F-2F/F (n= 7) 

IgHMOG controls (n= 7) 



David K. Rieß Supplemental figures 
 

	
	

172	

 

 

Figure S18: T cell expansion in the spleen of Mb1cre/+ Rc3h1F/F-2F/F IgHMOG mice. 
(A) Percentages of respective T cell subsets of total splenocytes and total subset cell numbers as determined by 
flow cytometry. (B) Percentages of designated T cell subsets of total splenocytes as determined by flow 
cytometry. T cell subsets gated as indicated. SPL: spleen, CM: central memory; EM: effector memory. Numbers 
below graphs and bars show mean percentages and cell numbers (#). ****p ≤ 0.0001, ***p ≤ 0.001, **p ≤ 0.01, 
*p ≤ 0.05, unpaired t test.  
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Figure S19: Myeloid cell populations are not altered in Mb1cre/+ Rc3h1F/F-2F/F IgHMOG mice. 
Percentages of respective myeloid cell subsets of total SPL cells as determined by flow cytometry. Myeloid cells 
were gated as indicated. SPL: spleen, cDCs: classical dendritic cells (DCs); pDCs: plasmacytoid dendritic cells; 
Act. Monocytes: activated monocytes and macrophages. Numbers below graphs and bars represent mean 
percentages. *p ≤ 0.05, ANOVA.  
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Figure S20: Pro and pre B bone marrow B cell populations in Mb1cre/+ Rc3h1-2F/F IgHMOG IgLD23κ and 
Mb1cre/+ Rc3h1-2F/F IgLD23κ mice. 
(A) Representative flow cytometry plots depicting the gating strategy for bone marrow (BM) B cells. (B) Total 
subset cell numbers of stated BM B cells as determined by flow cytometry. The genotypes represented in the bar 
charts differ from (A). Ctrls: controls; R: Rc3h; BM: bone marrow. Numbers below graphs and bars indicate 
mean cell numbers (#). ****p ≤ 0.0001, ***p ≤ 0.001, **p ≤ 0.01, *p ≤ 0.05, ANOVA. Significances for 
Mb1cre/+ R1-2F/F IgHMOG IgLD23κ and IgHMOG IgLD23κ ctrls versus IgLD23κ ctrls and Mb1cre/+ R1-2F/F IgLD23κ versus 
IgHMOG IgLD23κ ctrls and ctrls are not shown.  

IgD

B
22

0
BM Mb1cre/+ R1-2F/F 

IgHMOG

FSC

Pro/pre
B cells 

ControlIgHMOG IgLD23κ

control
Mb1cre/+  R1-2F/F 

IgHMOG IgLD23κ
Mb1cre/+  R1-2F/F

IgLD23κ

0 103 104 105

0

103

104

105

0.1

12.5

0 103 104 105

0

103

104

105

3.2

21.4

0 103 104 105

0

103

104

105

2.6

12.3

0 103 104 105

0

103

104

105

12.6

23.8

0 103 104 105

0

103

104

105

18.9

34.4

IgD-

B cells 

0 50K 100K 150K 200K 250K
0

2

4

6

8

10

4.495.6

0 50K 100K 150K 200K 250K
0

20

40

60

80

4.695.4

0 50K 100K 150K 200K 250K
0

2

4

6

8

7.293.1

0 50K 100K 150K 200K 250K
0

10

20

30

40

50

3.596.5

0 50K 100K 150K 200K 250K
0

50

100

150

200

4.195.9

Pre B 

A

B Mb1cre/+ R1-2F/F IgHMOG IgLD23κ (n= 10) 

Mb1cre/+ R1-2F/F IgLD23κ (n= 16) 

IgHMOG IgLD23κ ctrls (n= 12) 

IgLD23κ ctrls (n= 14) 

Ctrls (n= 21) 

largesmall

0103 104 105

0

103

104

105

2.3

97.5

0103 104 105

0

103

104

105

24.5

74.6

0103 104 105

0

103

104

105

64.5

34.7

0103 104 105

0

103

104

105

51.8

48

0103 104 105

0

103

104

105

25

74.9

IgM

B
22

0

mature

immature

pro/pre

CD25

c-
ki

t

0 104 105

0
103

104

105

5.2

13.5

0 104 105

0
103

104

105

24.8

2.3

0 104 105

0
103

104

105

8.6

4.8

0 104 105

0
103

104

105

12.5

2.7

0 104 105

0
103

104

105

23.7

3.1 pro 

pre

0.0

0.5

1.0

1.5

ce
lls

 (x
 1

06 )

0.12 0.43 0.18 0.43 0.48

****

****

****

Pro B cells
B220lo IgD- IgM- c-kit+

0.0

0.1

0.2

0.3

0.4

0.5

ce
lls

 (x
 1

06 )

0.03 0.02 0.03 0.10 0.17

****
*

****
**

Large pre B cells
B220lo IgD- IgM- CD25+ FSChi

0

1

2

3

4

ce
lls

 (x
 1

06 )

0.04 0.13 0.21 1.1 1.7

****
****

****
**

Small pre B cells
B220lo IgD- IgM- CD25+ FSClo

Figure S20

mean cell # (x 106)



David K. Rieß Supplemental figures 
 

	
	

175	

 

 

 

 

Figure S21: Near absence of splenic B cells in Mb1cre/+ Rc3h1-2F/F IgLD23κ mice, while mature splenic B 
cells are strongly reduced in Mb1cre/+ Rc3h1-2F/F IgHMOG IgLD23κ mice. 
(A) Spleen weight and total splenocyte number of stated mice. (B) Representative flow cytometric analysis of 
splenic (SPL) B cells. (C) Percentages of indicated B cell subsets among viable splenocytes and total cell 
numbers; R: Rc3h. Numbers below graphs and bars represent mean values. ****p ≤ 0.0001, ***p ≤ 0.001, **p ≤ 
0.01, *p ≤ 0.05, ANOVA. Significances for Mb1cre/+ R1-2F/F IgHMOG IgLD23κ and IgHMOG IgLD23κ ctrls versus 
IgLD23κ ctrls and Mb1cre/+ R1-2F/F IgLD23κ versus IgHMOG IgLD23κ ctrls and ctrls are not shown. 
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Figure S22: Analysis of splenic B cell populations in Mb1cre/+ Rc3h1-2F/F IgHMOG IgLD23κ mice and Mb1cre/+ 
Rc3h1-2F/F IgLD23κ mice. 
Percentages of indicated B cell subsets among viable cells of SPL (spleen) and total cell numbers. FO: follicular; 
MZ: mature marginal zone; MZP: marginal zone precursor; GC: germinal center; R: Rc3h. Numbers below 
graphs and bars represent mean percentages and cell numbers (#). ****p ≤ 0.0001, ***p ≤ 0.001, **p ≤ 0.01, *p 
≤ 0.05, ANOVA. Significances for Mb1cre/+ R1-2F/F IgHMOG IgLD23κ and IgHMOG IgLD23κ ctrls versus IgLD23κ ctrls 
and Mb1cre/+ R1-2F/F IgLD23κ versus IgHMOG IgLD23κ ctrls and ctrls are not shown. 
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Figure S23: Lack of splenic and peritoneal cavity B1 cells in Mb1cre/+ Rc3h1-2F/F IgLD23κ mice while the 
splenic B1b subset is increased in Mb1cre/+ Rc3h1-2F/F IgHMOG IgLD23κ mice. 
Percentages of indicated B cell subsets among viable cells of SPL or PC and total cell numbers; R: Rc3h. 
Numbers below graphs and bars show mean percentages and cell numbers (#). SPL: spleen; PC: peritoneal 
cavity; R: Rc3h. ****p ≤ 0.0001, ***p ≤ 0.001, **p ≤ 0.01, *p ≤ 0.05, ANOVA. Significances for Mb1cre/+ R1-
2F/F IgHMOG IgLD23κ and IgHMOG IgLD23κ ctrls versus IgLD23κ ctrls and Mb1cre/+ R1-2F/F IgLD23κ versus IgHMOG 
IgLD23κ ctrls and ctrls are not shown.  
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Figure S24: Strongly reduced ratio of viable small pre B cells in Mb1cre/+ Rc3h1-2F/F IgHMOG IgLD23κ mice 
and immature and mature B cells in Mb1cre/+ Rc3h1-2F/F IgLD23κ mice. 
Caspglow stain was performed as described in Fig. 27 for Mb1cre/+ Rc3h1-2F/F IgHMOG IgLD23κ mice (A) and 
Mb1cre/+ Rc3h1-2F/F IgLD23κ mice (B). Quantification of percentages of viable, early apoptotic, late apoptotic and 
non-apoptotic dead cells of BM cell subsets as determined by flow cytometry in ex vivo cells shown as stacked 
bar charts. Viable caspglow- 7-AAD-; early apoptotic caspglow+ 7-AAD-, late apoptotic caspglow+ 7-AAD+, 
non-apoptotic dead caspglow- 7-AAD+. Gated B cell subsets: pro B B220lo IgM- CD25- c-kit+, large pre B B220lo 
c-kit- CD25+ IgD- IgM- FSChi; small pre B B220lo c-kit- CD25+ IgD- IgM- FSClo; immature B B220+ IgD- IgM+, 
mature B B220hi IgD+. Bars represent mean values and error bars standard deviation. ****p ≤ 0.0001, ***p ≤ 
0.001, **p ≤ 0.01, *p ≤ 0.05, ns non-significant, unpaired t test.  
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Figure S25: Cell cycle analysis of bone marrow B cell populations in Mb1cre/+ Rc3h1-2F/F IgHMOG IgLD23κ 
and Mb1cre/+ Rc3h1-2F/F IgLD23κ mice. 
Stacked bar chart representation of cell cycle analysis (Ki67 and DRAQ5-based) of indicated B cell populations. 
Analysis was performed as in Fig. 28. Bars show mean values and error bars standard deviation. BM: bone 
marrow. Cell cycle phases were distinguished as follow: G0 phase (dark grey) Ki67- DRAQ5lo; G1 phase (light 
grey) Ki67+ DRAQ5lo; S/G2/M phase (white) Ki67+ DRAQ5hi. Gated B cell subsets: pro B B220lo IgM- CD25- c-
kit+, large pre B B220lo c-kit- CD25+ IgD- IgM- FSChi; small pre B B220lo c-kit- CD25+ IgD- IgM- FSClo; 
immature B B220+ IgD- IgM+, mature B B220hi IgD+. ****p ≤ 0.0001, **p ≤ 0.01, *p ≤ 0.05, ns non-significant, 
unpaired t test.  
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Figure S26: Expanded splenic T cell compartment in Mb1cre/+ Rc3h1-2F/F IgHMOG IgLD23κ mice. 
Percentages of respective T cell subsets of total SPL cells and total subset cell numbers as determined by flow 
cytometry. Gating of T cell subsets as indicated. Ctrls: controls; R: Rc3h; SPL: spleen. Numbers below graphs 
and bars indicate mean values. ****p ≤ 0.0001, ***p ≤ 0.001, **p ≤ 0.01, *p ≤ 0.05; ANOVA. Significances for 
Mb1cre/+ R1-2F/F IgHMOG IgLD23κ and IgHMOG IgLD23κ ctrls versus IgLD23κ ctrls and Mb1cre/+ R1-2F/F IgLD23κ versus 
IgHMOG IgLD23κ ctrls and ctrls are not shown. 
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Figure S27: Expansion of myeloid cell populations in Mb1cre/+ Rc3h1-2F/F IgHMOG IgLD23κ mice. 
Percentages of indicated myeloid cell subsets of total splenocytes as determined by flow cytometry. Gating of 
myeloid cell types as indicated. Ctrls: controls; R: Rc3h; SPL: spleen; DCs: Dendritic cells; Monocytes: 
Macrophages and Monocytes. Numbers below graphs and bars show mean percentages. ****p ≤ 0.0001, ***p ≤ 
0.001, **p ≤ 0.01, *p ≤ 0.05, ANOVA. Significances for Mb1cre/+ R1-2F/F IgHMOG IgLD23κ and IgHMOG IgLD23κ 
ctrls versus IgLD23κ ctrls and Mb1cre/+ R1-2F/F IgLD23κ versus IgHMOG IgLD23κ ctrls and ctrls are not shown. 
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Figure S28: Number of Peyer’s patches and their cellularity are decreased (A) and proliferation of mature 
recirculating B cells is increased in CD19cre/+ Rc3h1-2F/F mice (B). 
(A) Total number of Peyer’s patches (PP) and total cell count per PP. Further analyses of GALT B cells as well 
as analyses of GC B cells in CD19cre/+ Rc3h1-2F/F mice were performed by my colleague Dr. Maike Kober and 
were therefore excluded from my thesis. (B) Percentages of designated B cell populations in different cell cycle 
phases. Analysis performed as in Fig. 28. Cell cycle phases distinguished as shown in Fig. 28, briefly: G0 phase 
(dark grey) Ki67- DRAQ5lo; G1 phase (light grey) Ki67+ DRAQ5lo; S/G2/M phase (white) Ki67+ DRAQ5hi. 
Gated B cell subsets: pro B B220lo IgM- CD25- c-kit+, large pre B B220lo c-kit- CD25+ IgD- IgM- FSChi; small 
pre B B220lo c-kit- CD25+ IgD- IgM- FSClo; immature B B220+ IgD- IgM+, mature B B220hi IgD+. GALT: gut-
associated lymphoid tissue. Numbers below graphs and bars represent mean values. ****p ≤ 0.0001, ***p ≤ 
0.001, **p ≤ 0.01, *p ≤ 0.05, ns non-significant, (A) paired and (B) unpaired t test. 
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Figure S29: Expansion of the splenic T cell compartment in CD19cre/+ Rc3h1-2F/F mice. 
Percentages of indicated T cell subsets among viable cells of SPL (spleen) and total cell numbers as determined 
by flow cytometry. EM: effector memory; CM: central memory. Numbers below graphs and bars show mean 
values. ****p ≤ 0.0001, ***p ≤ 0.001, **p ≤ 0.01, paired t test. 
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Figure S30: Expansion of splenic myeloid populations and peritoneal cavity mast cells in CD19cre/+ Rc3h1-
2F/F mice. 
(A) Percentages of indicated myeloid cell populations among viable cells of SPL (spleen) and (B) percentages of 
mast cells of viable cells of peritoneal cavity (PC) and total cell number as determined by flow cytometry. DC: 
dendritic cells; Act: activated. Numbers below graphs and bars indicate mean values. ****p ≤ 0.0001, ***p ≤ 
0.001, **p ≤ 0.01, (A) paired t test, (B) unpaired t test. 
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List of abbreviations 

aa   amino acid 

ADE   alternative decay element 

AID   activation-induced cytidine deaminase 

ANA   anti-nuclear antibodies 

APC   allophycocyanin 

APRIL  a proliferation inducing ligand 

ATK   also known as PKB  

BACH2  BTB and CNC homolog 2 

BAFF   B cell-activating factor belonging to TNF family 

BCL2   anti-apoptotic protein B cell lymphoma 2 

BCL6   B cell lymphoma 6 

BCMA  B cell maturation antigen 

BCR   B cell receptor 

BER   base excision repair 

Bim   pro-apoptotic protein Bcl-2 interacting mediator of cell death 

BLIMP1  B lymphocyte-induced maturation protein 1 

BM   bone marrow 

Ca2+   calcium ion 

(Δ)CAR  truncated version of the human coxsackie adenovirus receptor 

CARD   caspase activation and recruitment domain 

CARMA1  CARD-containing membrane-associated guanylate kinase-1 

Cas   CRISPR-associated 

CD   cluster of differentiation 

CDE   constitutive decay element 

CD40L  CD40 ligand 

CDK   cyclin-dependent kinase 

c-Myc   myelocytomatosis oncogene cellular homolog 

cNHEJ  classical non-homologous end joining repair pathway 

CpG   cytosine-guanosine deoxynucleotide-containing oligonucleotides 

CRISPR  clustered regulary interspaced short palindromic repeats 

CSR   class switch recombination 

CXCL   CXC-chemokine ligand  

CXCR   CXC-chemokine receptor  

DL-1   Delta-like-1 
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DNA   deoxyribonucleic acid 

DNA-PK  DNA-dependent protein kinase 

DSB   double strand breaks 

DTT   dithiothreitol 

DZ   dark zone 

EBF   early Bcell factor 

ELISA  enzyme-linked immunosorbent assay 

EZH2   enhancer of zeste homolog 2 

F   floxed – loxP-flanked 

FAK   focal adhesion kinase 

FCS   fetal calf serum 

fDC   follicular dendritic cells 

FO   follicular 

FOXO   forkhead box O 

FSC-A/H  forward scatter area/height 

GALT   gut-associated lymphoid tissue 

GC   germinal center 

GC B   germinal center B cell 

GFP   green fluorescent protein 

HRP   horseradish peroxidase 

ICOS   inducible Tcell co-stimulator 

ICOSL  ICOS ligand 

IFN   interferon 

Ig   immunoglobulin 

IgH   immunoglobulin heavy (chain) 

IgL   immunoglobulin light (chain) 

IL   interleukin 

IRES   internal ribosomal entry site 

IRF4, 8  interferon regulatory factor 4, 8 

LN   lymph nodes 

LPS   lipopolysaccharide 

LZ   light zone 

MALT  mucosa-assocaited lymphoid tissue 

MALT1  MALT lymphoma translocation protein 1 

MEF   mouse embryonic fibroblasts 

MFI   median fluorescence intensity 

MHC-II  major histocompatibility complex class II 
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miRNA  microRNA 

mLN   mesenteric lymph nodes 

MMR   mismatch repair 

MZ   marginal zone 

MZP   marginal zone precursor 

NF-κB   nuclear factor κ-light-chain-enhancer of activated B cells 

PAX5   paired box protein 5 

PC   peritoneal cavity 

PCR   polymerase chain reaction 

PI3K   phosphatidylinositol 3-kinase 

PKB   protein kinase B 

PNA   peanut agglutinin 

PP   Peyer’s patches 

PVDF   polyvinylidene fluoride 

R   Rc3h 

RAG   recombination activation gene 

RNA   ribonucleic acid 

SDS-PAGE  sodium dodecyl sulfate polyacrylamide gel electrophoresis 

SHM   somatic hypermutation 

SLE   systemic lupus erythematosus 

SLP65   SH2-domain-containing leukocytes protein of 65kDa  

SPL   spleen 

SSC-A/H  side scatter area/height 

STAT   signal transducer and activator of transcription 

SYK   spleen tyrosine kinase 

TCR   T cell receptor 

TD   T cell-dependent or thymus-dependent 

TFH   follicular helper Tcell 

TI   T cell-independent or thymus-independent 

TLR   toll-like receptor 

TNF(R)  tumor necrosis factor (receptor) 

Treg   regulatory Tcell 

wt   wild type 

XBP-1   X-box-binding protein 1 

XRCC4  X-ray repair cross complementing protein 4 

ZAP70  70kDa zeta-chain associated protein 

7-AAD  7-amino-actinomycin D	
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