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Abstract

This thesis is concerned with the topology and geometry of Sasakian manifolds. Sasaki
structures consist of certain contact forms equipped with special Riemannian metrics.
Sasakian manifolds relate to arbitrary contact manifolds as Kihlerian or projective com-
plex manifolds relate to arbitrary symplectic manifolds. Therefore, Sasakian manifolds
are the odd-dimensional analogs of Kéhler manifolds.

In the first part of the thesis we discuss some geometric invariants of Sasaki struc-
tures. Specifically, the socalled basic Hodge numbers, the type and their relation to
the underlying contact and almost contact structures are discussed. We produce many
pairs of negative Sasakian structures with distinct basic Hodge numbers on the same
differentiable manifold in any odd dimension larger than 3.

In the second part of the thesis we discuss topological properties of Sasakian mani-
folds, focussing particularly on the fundamental groups of compact Sasakian manifolds.
In parallel with the theory of Kihler and projective groups, we call these groups Sasaki
groups. We prove that any projective group is realizable as the fundamental group of a
compact Sasakian manifold in every odd dimension larger than three. Similarly, every
finitely presentable group is realizable as the fundamental group of a compact K-contact
manifold in every odd dimension larger than three. Nevertheless, Sasaki groups satisfy
some very strong constraints, some of which are reminiscent of known constraints on
Kihler groups. We show that the class of Sasaki groups is not closed under direct
products and that there exist Sasaki groups that cannot be realized in arbitrarily large
dimension. We prove that Sasaki groups behave similarly to Kéhler groups regarding
their relation to 3-manifold groups and to free products.

Zusammenfassung

Thema der vorliegenden Arbeit ist die Topologie und Geometrie von Sasakimannig-
faltigkeiten. Eine Sasaki Struktur setzt sich aus einer gewissen Kontaktform und einer
speziellen Riemannschen Metrik zusammen. Sasaki Mannigfaltigkeiten verhalten sich
zu Kontaktmannigfaltigkeiten wie Kidhlermannigfaltigkeiten oder projektive komplexe
Mannigfaltigkeiten zu beliebigen symplektischen Mannigfaltigkeiten. Daher sind Sa-
saki Mannigfaltigkeiten als das ungerade dimensionale Analogon von Kihlermannig-
faltigkeiten anzusehen.

Im ersten Teil der Arbeit diskutieren wir einige geometrische Invarianten von Sasaki
Strukturen. Genauer behandeln wir die sogenannten basischen Hodge Zahlen, den Typ
und den Zusammenhang mit den unterliegenden Kontakt- und Fastkontaktstrukturen.
Wir konstruieren, in jeder ungeraden Dimension grof3er als 3, viele Beispiele von Paaren
negativer Sasaki Strukturen mit verschiedenen basischen Hodge Zahlen auf derselben
differenzierbaren Mannigfaltigkeit.

Im zweiten Teil der Arbeit diskutieren wir topologische Eigenschaften von Sasaki
Mannigfaltigkeiten, wobei der Fokus auf den Fundamentalgruppen kompakter Sasaki



Mannigfaltigkeiten liegt. Parallel zur Theorie der Kéhlergruppen und projektiven Grup-
pen nennen wir solche Gruppen Sasakigruppen. Wir zeigen, dass sich jede projek-
tive Gruppe als Fundamentalgruppe einer kompakten Sasakimannigfaltigkeit in jeder
ungeraden Dimension grofer als drei realisieren ldsst. Analog lasst sich jede endlich
prasentierbare Gruppe als Fundamentalgruppe einer K-Kontaktmannigfaltigkeit in jeder
ungeraden Dimension grofler als drei realisieren. Nichtsdestotrotz unterliegen Sasaki-
gruppen einigen sehr starken Einschrinkungen, von denen manche an bekannte Ein-
schrinkungen fiir Kéhlergruppen erinnern. Wir zeigen dass die Klasse der Sasaki-
gruppen nicht unter direkten Produkten abgeschlossen ist und dass es Sasakigruppen
gibt die nicht in beliebig groBer Dimension realisiert werden konnen. Wir beweisen
dass sich Sasakigruppen beziiglich ihrer Beziehung zu 3-Mannigfaltigkeitsgruppen und
freien Produkten dhnlich wie Kéhlergruppen verhalten.
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Chapter 1

Introduction

Sasaki structures were introduced by Sasaki and Hatakeyama in [103] building on pre-
vious work of Sasaki [102]]. Unfortunately the study of Sasaki manifolds, although very
active, remained confined to Japan for the following years. The first attempt to spread
the interest for the subject was made by Blair [8]. Nevertheless, the study of Sasakian
geometry did not meet the enthusiasm reserved for its even dimensional analogue, Kih-
ler geometry. In fact, Sasakian geometry was not seen as the multifaceted subject it is
but rather considered as a subfield of Riemannian geometry. Sasakian geometry and
topology met renewed interest after the work of Boyer and Galicki and, specifically, the
publication of their seminal book [15]. In [15] Boyer and Galicki give an account of
the interplay between Sasakian and complex algebraic geometry as well as differential
topology, albeit the main focus of the book remains on Sasaki-Einstein metrics. This
initiated an intensive study of Sasakian geometry and topology through the interrelation
with other geometries.

Sasaki structures are contact structures with a special transverse complex structure.
As such, they are related to symplectic and Kéhler manifolds as follows. A contact
manifold (M, n) is a smooth (2n + 1)-dimensional manifold M endowed with a contact
form n, i.e. a 1-form such that n A dy® # 0. It is easy to check that the cone over a
contact manifold C = M x R* carries the symplectic form Q = d(rn7). Moreover, the
contact form 7 defines the Reeb foliation 7, that is, the foliation given by the orbits of
the Reeb vector field R. The contact distribution D = kern is endowed with the sym-
plectic structure drn. Therefore the transverse space X to the Reeb foliation is naturally
symplectic. The existence of an almost complex structure J on X compatible with the
symplectic form is equivalent to the existence of an almost complex structure J on the
contact distribution  compatible with dn which is preserved by the Reeb vector field,
that is, such that LRJN = 0. In fact, this is a one-to-one correspondence. A contact
manifold endowed with such an almost complex structure is a K-contact manifold. The
cone over a K-contact manifold is naturally equipped with an almost complex structure
I compatible with d(7n7) and hence is itself an almost Kihler manifold. This is the re-
lation between contact and symplectic structures or, more precisely, between K-contact

1



2 Introduction

and almost Kihler manifolds.

A Sasaki manifold is a K-contact manifold whose cone (M x R*, d(), ) is Kihler.
This condition is equivalent to the space X being Kihler. That is, every Sasaki manifold
can be viewed as a manifold endowed with a contact form n whose Reeb foliation is
transversally Kéhler. Therefore, Sasaki structures can be thought of as the odd dimen-
sional analogue of Kihler structures. This description highlights the fact that Sasaki
manifolds relate to K-contact manifolds as Kéhler manifolds relate to almost Kéhler
manifolds.

We should mention that Sasaki structures are more often defined as contact structures
with a special Riemannian metric g. This is equivalent to our approach. In fact, the
metric g is determined unequivocally by the almost complex structure and vice versa.
This reflects the fact that in an almost Kéhler triple (w, J, 1) on X the metric & determines
J and vice versa.

When the foliation ¥ is regular we have a socalled Boothby-Wang fibration. That
is, a principal S !-bundle

n: (M, n) — (X, w)

where (X, w) is a smooth Kéhler manifold and 7*w = dpn. Furthermore, [w] is the
first Chern class of the bundle and X is a smooth projective variety. This description
is closer to the general case than one might suspect. In fact, every Sasakian manifold
is a principal S '-bundle over a projective orbifold obtained from a quasi-regular Sasaki
structure, cf. the Structure Theorem [3.59

Given the multitude of underlying structures it is evident that Sasakian geometry can
be studied from several viewpoints implementing tools from various other geometries.
In this thesis we will focus on contact and almost contact geometry as well as Kéhler
geometry. The study of Sasakian geometry and topology in this thesis can be divided in
two parts. The first one investigates transverse invariants of Sasaki structures while the
latter investigates fundamental groups of compact Sasakian manifolds.

In this thesis all manifolds are understood to be smooth, closed, connected and ori-
entable unless otherwise stated.

1.1 Invariants of Sasaki structures

In the first part of this thesis we study some invariants of Sasaki structures and discuss
their dependence on the underlying contact and almost contact structures. In particular,
we focus on the type of Sasaki structures and their basic Hodge numbers and relate this
to the topology of almost contact and contact structures.

Contact structures are maximally non-integrable hyperplane distributions on a man-
ifold of dimension 2n + 1. Eliashberg [39] introduced a dichotomy of 3-dimensional
contact structures into overtwisted and tight ones. The definition of overtwisted contact
structure, hence the dichotomy of contact structures, was then extended to higher di-
mensions in [12]. The contrast between overtwisted and tight structures is encountered,
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for instance, when considering symplectic fillability. A (strong) symplectic filling of a
closed contact manifold (M, i) is a symplectic manifold (W, Q) with W = M such that
Q = da near the boundary, O = kern = kere|,,, and da|p > 0. Both in dimension
three and in higher dimensions the existence of a symplectic filling gives an obstruction
to overtwistedness, that is, a symplectically fillable contact manifold is tight [40, [93]].
As mentioned above, a regular Sasaki manifold (M, n) is a principal S '-bundle over a
projective manifold. The disc bundle given by filling the fibers of the Boothby-Wang fi-
bration is a symplectic filling of (M, n). As a consequence of a theorem of Niederkriiger
and Pasquotto [94] on resolutions of cyclic orbifold singularities, the same result holds
for quasi-regular K-contact, hence Sasaki, structures. Therefore, any quasi-regular Sa-
saki structure is tight as a contact structure.

In [39] Eliashberg proved a parametric h-principle for overtwisted contact struc-
tures. Namely, any homotopy class of almost contact structures on a closed 3-manifold
contains a unique isotopy class of overtwisted contact structures. This classification
was later extended to higher dimensions by Borman, Eliashberg and Murphy [12]. By
contrast, the topology of tight contact structures is less understood than that of over-
twisted contact structures and is not necessarily given by an A-principle. For instance,
two overtwisted contact structures with homotopic underlying almost contact structures
are isotopic as contact structures. This is not necessarily the case for Sasaki structure
because their contact structures are always tight. Therefore, two Sasaki structures on
the same manifold can have equivalent almost contact structures but inequivalent con-
tact structures. We discuss instances of this phenomenon in Chapter 5] In particular, we
prove that the fact that an almost contact structure supports a Sasaki structure does not
give a bound on the number of isotopy classes of tight contact structures in its homotopy
class.

Theorem For all positive integers k > 0 there exists a simply connected 5-
manifold admitting k Sasaki structures with homotopic almost contact structures but
pairwise inequivalent contact structures.

Basic Hodge numbers are transverse invariants of the Reeb foliation. As such, they
depend, a priori, on the Reeb vector field and the complex bundle (D, J). The trans-
verse geometry of the Reeb foliation of a Sasaki structure is very rich. Cohomological
properties of the transverse space X, that is, the socalled basic cohomology of the folia-
tion, were studied by El Kacimi-Alaoui, Hector and Nicolau [41} 42, 43]. They proved
that the basic cohomology of a Sasaki manifold shares many properties with the co-
homology of Kihler manifolds. For instance, one can define a basic Dolbeault double
complex and prove that it satisfies the Hodge decomposition Theorem and Poincaré and
Serre duality. This leads to the definition of basic Betti and Hodge numbers b (F ) and
hg’q(?‘ ). While the former turn out to be topological invariants [15, Theorem 7.4.14],
the latter do not depend only on the underlying smooth manifold. However, in [49] it
is proved that basic Hodge numbers are invariant under CR deformations of the Sasaki
structure. Recently Razny [[100] showed that basic Hodge numbers are invariant under
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arbitrary smooth deformations of Sasaki structures. Moreover, in [49] is provided a 5-
dimensional manifold endowed with two Sasaki structures with differing basic Hodge
numbers, see Example [5.3] To the best of the author’s knowledge this was the only
known example of Sasaki structures with different basic Hodge numbers on the same
smooth manifold before this thesis.

Basic Hodge numbers are closely related to another transverse invariant, namely,
the type of the Sasaki structure. In parallel with the standard case one can define basic
Chern classes ¢;(F ) with the use of a a transverse connection. Again many properties
that are encountered on Kihler manifolds are satisfied. For instance, E1 Kacimi-Alaoui
[41] showed that if 27tc, (F) is represented by a real basic (1, 1)-form p, then it is the
Ricci curvature of a unique transverse Kéhler form w with [w] = [dn]. It is then natural
to call a Sasaki structure of positive, respectively negative type or null, if ¢;(¥) can
be represented by a positive definite, resp. negative definite or null, (1, 1)-form. An
instance of the relation between the type and basic Hodge numbers is the transverse
vanishing theorem proven independently by Goto and Nozawa, see [51}95]. Namely, if
a Sasaki structure is positive, its basic Hodge numbers h’;’o(?' ) vanish for all p > 0.

The Sasaki structures with different basic Hodge numbers given in [49] are of dif-
ferent type. Specifically, one of the structures is positive while the other is null. This
motivates our study of manifolds admitting Sasaki structures with different basic Hodge
numbers. We construct many Sasaki structures of the same type whose basic Hodge
numbers disagree. Namely, we prove the following:

Theorem There exist infinitely many simply connected 5-manifolds admitting two
negative Sasaki structures whose basic Hodge numbers disagree. Moreover, these pairs
of Sasaki structures have homotopic underlying almost contact structures but inequiva-
lent contact structures.

These results on 5-manifolds rely on Barden’s classification of simply connected 5-
manifolds [7], Geiges’s classification of almost contact structures on simply connected
5-manifolds [47] and a result of Hamilton’s [S9] on the equivalence classes of almost
contact and contact structures in dimension 5. No similar results exist in higher dimen-
sion. In order to generalize Theorem to higher dimensions we turn our attention
to complete intersections. These projective varieties have a rather simple cohomology
that allows us to control the geometry of Boothby-Wang bundles. Namely, appealing
to Wall’s classification of simply connected 6-manifolds and the Hirzebruch-Riemann-
Roch Theorem, we extend Theorem [5.21]to dimension 7 albeit in the following weaker
form:

Theorem [5.25| There exist infinitely many 7-manifolds admitting two negative Sasaki
structures with different basic Hodge numbers. Moreover, these manifolds can be ar-
ranged to be spin or non-spin.

We conclude the study of transverse invariants generalizing the result above to any
dimension.
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Theorem Forall n > 1 there exist countably many (2n+1)-dimensional manifolds
admitting two Sasaki structures with different basic Hodge numbers. Moreover, these
manifolds can be arranged to be spin or non-spin and one can pick the Sasaki structures
to be negative or indefinite.

1.2 Fundamental groups of compact Sasakian manifolds

It is a classical problem to determine the relations between geometry and topology
or, more specifically, whether a certain geometric property imposes constraints on the
topology of a manifold. A standard instance of this interplay between topology and
geometry is represented by the restriction that positive curvature properties prescribe on
the topology of a manifold. We focus on a specific case of the problem above. Namely,
we are interested in the following:

Question: Which restrictions on the fundamental group of a compact manifold are given
by the existence of a certain geometric structure?

A well known corollary of Hodge theory states that odd degree Betti numbers of
Kéhler manifolds are even. In particular, so is the first Betti number of a Kéhler man-
ifold, hence the rank of the abelianization of its fundamental group. This type of ob-
servation justifies the interest for the class of fundamental groups of compact Kéhler
manifolds as well as symplectic and complex manifolds. Kotschick proved in [75]]
that every finitely presentable group is the fundamental group of a 4-dimensional al-
most complex manifold and asked whether the same holds for symplectic manifolds.
Building on a theorem of Taubes [112] Carlson and Kotschick independently noted that
every finitely presentable group is the fundamental group of a compact complex 3-fold.
Shortly after, Gompf [S0] proved an analogous statement for 4-dimensional symplectic
manifolds. Moreover, he observed that the complex 3-fold in [112] can be arranged to
be simultaneously symplectic.

Therefore, a Kihler structure imposes restrictions on the fundamental group while
complex or symplectic structures do not. Given the analogy between Kéhler and Sasa-
kian geometry it is natural to ask whether or not the same is true for Sasaki structures.
The answer to this question is affirmative. It was proven in [76] that the existence of
an almost contact structure does not impose any restriction on the fundamental group.
We will see later that the same holds for K-contact structures. Moreover, it was pointed
out already in [15]] that the results of El Kacimi-Alaoui [41]] imply that the first Betti
number of a Sasakian manifold is even.

In light of this, in the second part of the thesis we focus on properties of fundamental
groups of compact Sasakian manifolds. In analogy with the Kéhler case we will call
these groups Sasaki groups. Kéhler groups have been an active field of research in the
last 30 years with important contributions from many mathematicians, see [2] for an
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introduction. In comparison, very little is known about Sasaki groups, see however
(10} 130, [68].

Firstly we investigate the realizability problem for Sasaki groups. Namely, we ask
which groups can be realized as fundamental groups of compact Sasakian manifolds
and in which dimension. Three-dimensional Sasaki and K-contact manifolds were clas-
sified by Geiges [48]. As a consequence their fundamental groups are lattices in S O(4),

—_—

SL(2,R) or the real Heisenberg group ;. This provides a solution to the problem of
realizability in dimension 3. Chen showed in [30] that every projective group can be re-
alized as the fundamental group of a compact Sasakian manifold of any odd dimension
2n+1 = 7. More recently a similar statement was proven [[10] for K-contact manifolds.
Namely, every finitely presentable group can be realized as the fundamental group of
a compact K-contact manifold of any odd dimension 2n + 1 > 7. Our first results on
Sasaki and K-contact groups sharpen these results:

Theorem [6.5] Every projective group T can be realized as the fundamental group of a
compact Sasakian manifold of any odd dimension 2n + 1 = 5.

Theorem Every finitely presentable group A can be realized as the fundamental
group of a compact K-contact manifold of any odd dimension 2n + 1 > 5.

We investigate further the problem of realizability by asking in which dimension a
given Sasaki group can be realized. In the projective setting the problem is completely
solved by the classification of Riemann surfaces, the Lefschetz Hyperplane theorem
and the following observation. It is enough to take the Cartesian product with a suitable
number of copies of CP' to realize a Kihler or projective group in arbitrarily large
dimensions. We show that this is not the case for Sasaki groups. Namely we prove the
following

Theorem For n = 1,2,3 there exist (2n + 1)-dimensional Sasakian manifolds
whose fundamental group cannot be realized by a Sasakian manifold of higher dimen-
sion.

We believe this result to be true in any dimension 2n + 1 but we were not able to
prove it.

Another rather elementary property of Kéhler groups is closedness under direct
products. In fact, the product of two Kéhler manifold is again Kéhler. Thus the di-
rect product of two Kéhler groups is a Kéhler group. Products of Sasakian manifolds
are not Sasakian for dimension reasons. A natural approach is to try to perform a con-
struction, e.g. a join construction, while controlling the fundamental group. We prove
in Section|[6.3]that this is not possible:

Theorem The set S of Sasaki groups is not closed under direct products.

Theorem [6.12] and Theorem [6.15] show that the class of Sasaki groups is an inter-
esting research subject in its own right. However some of the constraints satisfied by
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Sasaki groups are reminiscent of the restrictions that Kéhler groups are subject to. In
fact, in some instances Sasaki and Kéhler groups present very similar behaviour.

It is easy to see that free groups cannot be Sasaki. Motivated by this observation we
investigate the case of free products. Namely, we prove that under mild hypotheses on T’
and T, the group (I'; = I,) x H is not Sasaki for any group H. This shows in particular
that such Sasaki groups are indecomposable under free products whose factors have
non-trivial finite quotients. Namely, we prove the Sasakian analogue of a theorem of
Johnson and Rees [66] for Kéhler groups.

Theorem [6.18] Let I'y and T, be two groups. Assume f;: I'; — Q; is a non-trivial
quotient with with |Q;| = m; < o fori = 1,2.

a) Then (T'y = I,) is not Sasaki.
b) For any group H the product (T'y = T'y) x H is not Sasaki.

A well studied class of groups is that of 3-manifold groups, i.e. fundamental groups
of (not necessarily closed) manifolds of dimension 3. These groups enjoy different
properties than Kéhler groups. For instance, by taking connected sums one sees that 3-
manifold groups are closed under free products. Motivated by the results on free groups
and free products we discuss the relation between Sasaki and 3-manifold groups. It was
proved in [[79]] that if a 3-manifold group is also a Kéhler group, then it is a surface group
or a finite group. Clearly the analogous statement in the Sasaki setting should involve
only Sasaki groups realizable in dimension 5 or higher. It turns out that Sasaki groups
have very little in common with 3-manifold groups, apart from the obvious intersection
given by surface groups and finite groups.

Theorem [6.21} Let ' be an infinite 3-manifold group. Then T is the fundamental group
of a Sasakian manifold of dimension 2n + 1 = 5 if and only if T is the fundamental
group of a closed orientable surface.

As an immediate consequence of Theorem[6.2T|we get a dichotomy of infinite Sasaki
groups into those realizable in dimension 3 and all others.

Corollary [6.23] The fundamental group of a three-dimensional Sasakian manifold is
realizable in higher dimensions if and only if it is finite.

1.3 Organization of the thesis

In Chapter [2] we give an overview of orbifolds. Section[2.T]and Section [2.2]focus on the
definitions of orbifolds and of related concepts such as orbibundles, metrics and forms.
In Section [2.3] we turn our attention to orbifold classifying spaces. This allows us to
introduce orbifold invariants such as orbifold cohomology and orbifold fundamental
groups which play a central role in this thesis. In the last section of Chapter [2] we
discuss complex orbifolds with a particular focus on Seifert bundles.
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Chapter [3]is devoted to Sasaki manifolds and their topological and geometric invari-
ants. In the first part of the chapter we introduce almost contact and contact structures.
We then discuss CR structures and the metric cone in order to define K-contact and
Sasaki manifolds. In Section we define Sasaki structures and discuss the various
approaches that can be taken. Moreover, we prove the Structure Theorem [3.59] [15]
Theorem 7.1.3 and Theorem 7.1.6] that will play an essential role in the remainder
of this thesis. Next we present the join construction. This is, roughly speaking, the
analogue of Cartesian products in the Sasaki setting. Section is dedicated to the
transverse geometry of K-contact and Sasaki manifolds. Several geometric invariants
of Sasaki manifolds are defined here making this section crucial for the results proven
in Chapter [5] The last section of Chapter [3] gives an overview of topological properties
of Sasakian manifolds. Due to its importance the role of Boothby-Wang fibrations is
stressed throughout the chapter and their treatment is a constant focus.

Chapter[]serves as motivation for the study of Sasaki groups carried in Chapter[6] In
Section {. 1| we recall some basic notions on group cohomology and central extensions.
We then proceed to present some results on Kahler groups in Section 4.2} This sec-
tion gives a (by no means exhaustive) treatment of our current understanding of Kihler
groups. We conclude Chapter @] with a review of the properties of Sasaki groups proven
in [10, 231130, 68]].

Chapter [5] is dedicated to the proofs of the results presented in Section [I.1] above.
In Section [5.1] we discuss invariance of basic Betti and Hodge numbers. This serves as
motivation for the results in Section [5.3] The proof of these results is preceded by a
review of the geometry of complete intersections carried out in Section [5.2] Particular
attention is reserved to the Hodge and Chern numbers of these projective varieties.

Chapter[6]is dedicated to the study of Sasaki groups. First we give a correspondence
between quasi-regular Sasaki structures and the fundamental group as central extensions
in Section The remainder of the chapter is devoted to the proofs of the results
exposed in Section[I.2]above.
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Chapter 2

Orbifolds

Orbifolds play a fundamental role in the study of Sasakian topology and geometry.
This chapter is dedicated to orbibundles and their classification as well as topological
invariants of orbifolds.

Riemannian orbifolds were introduced and studied by Satake in [[104] and [103]]
under the name of V-manifolds. Independently, Baily introduced complex orbifolds
and proved the Hodge decomposition [5] and Kodaira’s Embedding Theorem [6] in this
setting. Most of the material of this chapter can be found in [15, Chapter 4] and in
the book [1]] which provides an excellent introduction to orbifolds and their relation to
groupoids. Omitted proofs in this chapter can be found in [1,[15] and references therein.

2.1 Definitions

Let us start by defining the central object of this chapter.
Definition 2.1. Let X be a topological space and fix n > 0.

1) An n-dimensional orbifold chart (or uniformizing chart) (17 ,I',¢) on X is given
by an open connected set U < R", a finite group I" (the uniformizing group)
acting effectively on U, and a I'-invariant map ¢: U — X which induces a home-
omorphism of U /T onto an open set U — X.

In the following given an orbifold chart (U, T, ¢) the image ¢(U) will always be denoted
by U.

2) An (orbifold) embedding 1: (U,T,¢) — (U',I",¢') between two charts is a
smooth embedding such that ¢’ 0 1 = ¢.

3) An orbifold atlas on X is a family of charts U = {(17,-,1“,-,(,0,-)} satisfying the
following two properties:
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ii) Let (l7,~,1“l-,go,-) and ((7 »Tj,¢;) be two orbifold charts. For any point x €

~

U;( U, there exist a chart (U, I't, ) with x € Uy and two embeddings
it (U, Tioor) = (Ui, T ) and At (Ug, Tro ) — (U Thu ).

4) An atlas YV is a refinement of an atlas U if every chart in V has an embedding in
some chart of U.

5) Two atlases U and V are equivalent if they admit a common refinement.

6) An orbifold X = (X, U) consists of a second countable Hausdorff space X with
an equivalence class of orbifold atlases represented by U.

Notation. We will sometimes denote an orbifold by X, omitting the underlying topolog-
ical space X and the orbifold atlas U.

Remark 2.2. One can define complex orbifolds in an analogous way. Namely, by re-
placing R” by C" and smooth maps by holomorphic ones. For simplicity, we will work
in the real setting, but all results can be translated to the complex case.

One can prove (see [89]) that given two embeddings A;, A, : (l7, T,p) — (17’,1"’, ¢)
there exists a unique y' € I such that 4, = ¥’ o ;. Therefore the isotropy group of
p € U depends only on x = ¢(p) and will be denoted by I',. A point x € X whose
isotropy group I, is non-trivial is called an orbifold singular point. The set of orbifold
singular point is denoted by £°%(X). Points for which I', = 0 are called regular and
form an open dense subset of X.

Remark 2.3. Notice that the set X(X) of singular points of the space X is contained in
the set £°?(X), i.e. singular points of X are also orbifold singular points for an orbifold
X = (X, U). The converse is false in general. For instance, the global quotient of S?
by a finite cyclic group of rotations Z, is an orbifold with two orbifold singular points.
Nevertheless, the underlying topological space is again S 2.

Orbifolds arise naturally as quotients of a manifold by a smooth and effective action
of a finite group. However, not all orbifolds are of this type. In particular, we will see
in Chapter [3that the orbifolds associated to Sasaki structures are not, in general, global
quotients by finite groups. However, they turn out to be quotients of a manifold by a Lie
group acting smoothly, effectively and with finite isotropy groups.

We conclude this secton by giving the notion of maps between orbifolds. These can
be regarded as a collection of equivariant maps between charts which induce the same
map on the underlying topological space.

Definition 2.4. Let X = (X, U) and Y = (¥,V) be orbifolds.

1) Amap f: X — Y is smooth if for every point x € X there exist charts (U, T, ¢)
around x and (V, A, ) around f(x) and a smooth lift f;;: U — V of f.

2) The orbifolds X and Y are equivalent if there exist two smooth maps f: X — Y
and g: Y — X such that gf = Idy and fg = Idy.
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2.2 Orbibundles

In this section we give the definition of bundles and classical constructions on bundles
in the orbifold setting. In general these will be local data together with compatibility
conditions that ensure the definition of a global object on an orbifold. The first example
is the following.

Definition 2.5. An orbisheaf (or simply sheaf) ¥ on an orbifold X = (X, U) consists
of a sheaf ¥ on each chart (U,, I, 901) satisfying the following compatibility condition.
For each embeddmg Aij: U — U there exists a functorial isomorphism of sheaves

F(4ij): Fg, — ATy,

Next we define orbibundles. These are central objects in this chapter as well as in
the study of Sasaki structures. Once more, orbibundles are defined by bundles over each
chart which can be “glued together".

Definition 2.6. An orbibundle E — X over an orbifold X = (X, U) consists of fiber
bundles Ej; over the charts ( U;,T;, ;) with fiber a manifold F and structure group G
together w1th homomorphisms % : I't — G such that the following conditions hold:

i) Let p be a point in the fiber over ; € U;. Then phy () lies in the fiber over y~'X;
for all y e I';.

i) Let 4;;: U — U ; be an embedding. Given an element y € I; let ¥’ € T'; be the
unique element such that A;; oy = 9’ o A;;. Then there is a bundle morphism
* s F~
A EU‘I,/(U) Ey,
satisfying the conditions that hy, (y) o Af; = A ohy, (7). The morphism 47, is often
called a transition map.

iii) Moreover if A : U ;- U, is another embedding then (4, 0 4;;)* = A0 ﬂjfk.

If the fiber F is a vector space and G ¢ GL(F) then E is a vector orbibundle. If F = G
and the action is given by right multiplication then E is a principal G-orbibundle.

We will sometimes write bundle in place of orbibundle if the meaning is clear from
the context.

The total space E of an orbibundle has an orbifold structure induced from the base.
Consider orbifold charts U; on X which are trivializing sets for E, i.e. such that E i, is

the product U; x F, and define orbifold charts (Ep.T7F,¢*) as follows. The action of T;
extends to E as (X;, p) — (y~'X;, phy (), thus we can define the group I'f to be the
subgroup of I'; that stabilizes the point (x;, p). The total space E is obtained by gluing
together the sets E; /T7.
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Lemma 2.7. Let P be the total space of a principal G-orbibundle over an orbifold
X = (X,U). Then P is a smooth manifold if and only if the maps hy, are injective for
all i.

Proof. For a principal orbibundle the group hy (I7) = G acts freely on the fiber G.
Therefore if hﬁ,- is injective, there is no element of I'; that stabilizes a point under the

action (X;,g) — (y~'%, ghy (v)). Thus the groups I’} are trivial and so is the orbifold
structure on P. O

Example 2.8 (The tangent bundle of X). Let X = (X, U) be an orbifold. For each chart
(ﬁ,,F,,go,) € U consider the set Ey Tl7,, i.e. the tangent space of ﬁi. Given an
embedding A;;: U; — U, the dlfferentlal DA;j: Ejy, — Ep, satisfies DA; ]( x) € GL(n,R).

Hence we define the transition map for the tangent bundle to be the inverse of DA;;.

Since every element of I'; defines an embedding the maps /. are injective and satisty
the first property in Definition[2.6] Moreover by definition the transition maps satisfy the
second condition in Definition[2.6] Therefore we have defined a bundle TX = (TX, U*)
where the elements of U* are given by (lNJ i x R TF, oF) with 'Y = T'; acting linearly on
R™ and ¢} is the quotient projection. Note that 7'X is only the notation for the underlying
topological space since X is in general not a smooth manifold.

Example 2.9 (The linear frame bundle L(X) of X). In the notation of Example
set now G = F = GL(n,R) and let Ey be the linear frame bundle over U;. We
define the linear frame bundle L(X) = (L(X),U*) to have charts of the form (U; x
GL(n,R), T, ¢*). Also in this case ¢! is the quotient projection of the action of I'Y = TI;
given by (X,A) — (y~'X,Ahy (y)) where hy is defined as in Example Notice
that the homomorphisms 4 are injective, thus by Lemma [2.7|the total space L(X )is a
smooth manifold. However ‘the action of GL(n,R) on L(X ) is only locally free; indeed,
the isotropy groups are given by the uniformizing groups I';.

Definition 2.10. Let & = (E, U*) be an orbibundle over X. A section s of & over
U < X consists of a section s; of the bundle E; for each chart (U;, T, ¢;) such that

U; c U satisfying, for all X € U;, the following properties.
i) For eachy € T, si(y™'X) = s5;,(X)hy ().
ii) If A;;: U; — U is an embedding, then A551(4(%)) = si(X).

We can carry out a construction analogous to Example [2.8] in order to define the
cotangent orbibundle and the tensor orbibundles. Combining these with the previous
definition allows us to define vector fields, differential forms , metrics, connections, etc.
in parallel to the smooth case. For instance, we have the following

Definition 2.11. A Riemannian metric on an orbifold X = (X,U) is a collection
of metrics on each chart (U;,T;,¢;) € U such that T; acts by isometries and every
embedding 4;;: U; — U is an isometry.
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Similarly we can define Hermitian metrics on complex orbifolds. Moreover we have
the following

Proposition 2.12 ([88]). Every orbifold admits a Riemannian metric and every complex
orbifold admits a Hermitian metric.

Proof. The proof is analogous to the smooth case. Namely, one makes use of a partition
of unity to patch together metrics on U; which are invariant under I';. O

Notice that differential forms and the exterior derivative are well defined on an orb-
ifold X. Therefore we can define the de Rham complex Quz(X) and, consequently,
its cohomology H’,(X). In his seminal paper Satake already noticed that de Rham’s
theorem holds in the orbifold setting. In particular we have

Proposition 2.13 ([104]). For any orbifold X = (X, U) the de Rham cohomology ring
H,(X) is isomorphic to the singular cohomology ring with real coefficients H*(X;R).

Example 2.14 (The frame bundle Fr(X) of X). In light of Proposition we can de-
fine the (orthonormal) frame orbibundle of an orbifold X = (X, U). The construction is
analogous to that of the linear frame bundle. Namely we patch together the orthonormal
frame bundles E g, over each chart (17,-, [, ¢;) € U. We obtain in this way a subbundle
Fr(X) = (Fr(X),U*) of the linear frame bundle L(X). Moreover, since the homomor-
phisms £ are injective, the total space is again a smooth manifold.

Proposition 2.15. Every orbifold is the quotient orbifold of a locally free action of a
compact Lie group on a smooth manifold.

Proof. The frame bundle Fr(X) of an orbifold X is a smooth manifold , see Exam-
ple Moreover, by definition X is the quotient orbifold of the O(n) action on Fr(X).
The claim follows immediately. O

2.3 Orbifold classifying spaces

We will now present an equivalent definition of orbifolds that will allow us to define
some key topological invariants of orbifolds. We start by describing the correspondence
between orbifolds and proper effective étale Lie groupoids. Recall that a category is
small if its objects and morphisms form sets.

Definition 2.16. 1) A groupoid ©® is a small category whose morphisms are isomor-
phisms.

2) A Lie groupoid is a groupoid whose sets of objects Gy and morphisms G, are
smooth manifolds, the following two maps are smooth submersions

i) the source map s: G; — Gy s(g: x > y) = x,
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ii) the target map t: G; — Gy t(g: x > y) =y,
and the following three maps are smooth

iii) the composition map m: Gi; x;, G; — G; where Gy x, G; = {(h,g) €
G x Gy |1(g) = s(h)},

iv) the identity map u: Gy — Gy,

v) the inverse map i: G; — Gj.
3) A Lie groupoid ® is an étale groupoid if s and ¢ are local diffeomorphisms.
4) A Lie groupoid ® is proper if the map (s,7): G; — Gy x G is proper.

5) An étale Lie groupoid ® is effective if the isotropy group G, = {g € G, |s(g) =
t(g) = x} acts effectively on G.

Notice that given a Lie groupoid ® we can define the space of orbits X to be the
quotient of G, under the following equivalence relation

X ~y<= dg e G;suchthat s(g) = xand #(g) = y.

Example 2.17. An example of Lie groupoid that will be relevant for us is the action
groupoid G x M. Given a Lie group G acting on a manifold M let (G x M)y = M
and (G x M); = G x M, define the source map to be the projection on the second
factor and the target map to be #(g, x) = g(x). The composition map is then given by
multiplication in G.

Remark 2.18. If M is a quasi-regular Sasaki manifold then we can associate to it two
different action groupoids. Namely, the first and more immediate Lie groupoid is given
by the S '-action on M. Now let 7: M — X be the projection on the space of orbits and
consider the O(2n) action on the frame bundle of X. This is again an action of a Lie
group on a smooth manifold therefore it defines another action groupoid.

We will see that one can associate to X yet another Lie groupoid and the three of
them are equivalent in a sense that we will explain below. First, in order to formulate
this equivalence, we need some definitions.

Definition 2.19. A homomorphism of Lie groupoids is a functor ®: & — $ such that
the maps ®y: Gy — Hy and ®,: G; — H; are smooth.

Definition 2.20. A homomorphism ®: & — § of Lie groupoids is an equivalence if
and only if

1) the map topr,: Hi; xo Gy — Hy, is a surjective submersion (where H,; x¢ Gy =
{(h,x) € H x Go|s(h) = ®(x)}), and
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i1) the diagram

G ——— H,

(s,t)i i(s,t)

Go x Go —gr Ho x Ho
is a pullback diagram.

Definition 2.21. Two Lie groupoids ® and ®’ are said to be Morita equivalent if there
exists a third Lie groupoid $ and two equivalences ®: $ — G and ’: H — .

Now given an orbifold X = (X, U) we want to construct a proper effective étale Lie
groupoid which captures the information of the orbifold structure. Let U = U :U; be
the disjoint union of all charts U; € U. Denote by Px the pseudogroup generated by
embeddings 4;; and their inverses. We can identify X with the quotient U/Px where
two points x, y are identified if there exists an element f € P such that f(x) = y. Now
consider the groupoid ®x whose set of objects is U and whose morphisms are germs of
the embeddings. It is clear that the orbit space of ® x is homeomorphic to X. Notice that
the groupoid ®y depends on the orbifold atlas U, nonetheless we have the following
result.

Theorem 2.22 ([89]). Let X = (X,U) be an orbifold. Then ® is a proper effective
étale Lie groupoid. Moreover, if X' = (X', U’) is another orbifold, then ®x and ® . are
Morita equivalent if and only if X and X' are equivalent.

Conversely, it is then clear that we can associate an orbifold X5 = (X, Us) to a
proper effective étale Lie groupoid ® in a straightforward way. Namely, let X be as
above and let U, be a neighbourhood of a point x € G, which is diffeomorphic to an open
set in R”, i.e. there exists a diﬂfeomozphism ¢.: Uy, — U,. Then, with a slight abuse
of notation, the charts are given by (U,,G,, 7 o ¢,) where 7: Gy — X is the quotient
projection. Thus, given a proper effective étale Lie groupoid ® the orbit space X has
a canonical orbifold structure. This shows that proper effective étale Lie groupoids
correspond exactly to orbifold structures on second countable Hausdorff spaces.

We are now interested in finding a classifying space for orbifolds using the above
correspondence with Lie groupoids. In order to do so we need to introduce the concept
of principal ®-bundle for a Lie groupoid 6.

Definition 2.23. Let ® be a Lie groupoid and Y a topological space. Given a continuous
map u: Y — Gy let Gy x,, Y be as in Definition 2.20]

1) The action of ® on Y with moment map u is a map A: G, X, ¥ — Y such that
D) u(Ag.y) = 1(g),
i) A(goh,y) = Alg, A(h,y)),
i) Au(u(y)).y) =y
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The orbit of ® through y is the subset ®(y) = {A(g,y) < Y |s(g) = u(y)}.

2) A principal ®-bundle over Y is a topological space E with a surjectionn: E — Y
and an action of ® on E with moment map u: E — G such that 7(A(g,e)) =
nt(e) for e € E. Moreover the action is transitive on the fibers and each point y € Y
has an open neighbourhood U and a section o: U — E such that the map

Gls Xy U —>7T_1(U)
(&) — Alg, o (y))

is a homeomorphism.

Theorem 2.24 ([55, 56]). Given a Lie groupoid ® there exists a principal ®-bundle
n: E® — B® which is universal in the sense that for any CW-complex X the pullback
E® — f*E® induces a one-to-one correspondence between homotopy classes of maps
f:Y — B® and isomorphism classes of principal &-bundles over Y. Moreover if &' is
Morita equivalent to ® then B® and B®' are weakly homotopy equivalent.

For action groupoids, defined in Example [2.17] the classifying space admits a more
concrete description. Namely, let ® = G x M be an action groupoid. Then a classifying
space B® is the space EG x; M, i.e. the quotient of EG x M by the diagonal action of
G. See [82] for a proof.

In the case of interest to us, i.e. a proper effective étale Lie groupoid ®y arising
from an orbifold X, we can describe the universal principal ® x-bundle more explicitely
in terms of X. Recall that any orbifold X can be seen as the quotient of its frame bundle
Fr(X) by the O(n) action. Let Fr(U) be the disjoint union of the frame bundles over
the charts U; € U. It is clear that the groupoid action on U induces a ®y-action on
Fr(U) whose orbit space is Fr(X). Therefore we can set EGx = Fr(U) x o EO(n).
Moreover, by requiring ®y to act trivially on the second factor, we can see that E®y is
a principal ®x-bundle over Fr(X) x o,y EO(n).

By construction we have a commutative diagram

EGy — —% By
| 17
U =Gy —— X = Go/6y
where the horizontal arrows are ®x-bundles and the vertical arrows are O(n)-bundles.

Moreover, by Theorem and Theorem [2.24] the homotopy type of B®y only
depends on the equivalence class of X. This gives rise to the following fundamental

Definition 2.25. The orbifold classifying space BX of an orbifold X is the classifying
space B®y of the associated proper effective étale Lie groupoid © .
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Definition 2.26. The orbifold homotopy, homology and cohomology groups of an
orbifold X are defined by
H ,(X:Z) = H(BX;Z), H""(X;Z) = H(BX;Z), n7"(X) = n:(BX).

Before showing that BX does indeed classify orbibundles on X we need to give a
different orbifold atlas on BX that will allow us to define local data and patch them
together. Consider an orbifold X with charts (U;,T;,¢;) and let Fr(X) be its frame
bundle with the atlas defined in Example Since the orthogonal group O(n) acts
locally freely on a chart Ej, we have the homeomorphisms Ey /O(n) ~ U/T; ~ U,.

Now we define an atlas of Fr(X) since we can cover it by charts of the form U; Xr,
EO(n). Moreover, any embedding A;;: U — U induces an embedding A;;: U; xr,
EO(n) — U, xr, EO(n) given by A;j[ (%, p)] = [(/l,l(x,),p)]. This allows us to glue

together local data on the charts U; xr, EO(n) given by functions on U; and EO(n)
invariant under I';. As an example consider the following diagram

U; x EO(n) —— U,

! 2

fji X1, EO(I’L) ? Ul'.

Since the local covering maps are smooth and I'; invariant, by definition the induced
map p: BX — X is continuous.

Remark 2.27. Notice that one can consider charts of the form U; x, EO(n) around the
fiber of p: BX — X over a point x € X. Moreover, for U; small enough and x a regular
point the chart is homotopy equivalent to EO(n), and therefore contractible, while when
x is a singular point the chart is an Eilenberg-MacLane space K(I';, 1). This implies that
the cohomology groups H’(p~!(U;); R) vanish for R = Q, R, C. Thus the Leray spectral
sequence implies that the map p: BX — X induces an isomorphism in cohomology, i.e.
H*,(X;R) =~ H*(X;R).

Remark 2.28. Combining the discussion in Remark [2.27] with Proposition [2.13] yields
an isomorphism H* (X;R) =~ H’,(X). That is, every closed form on X represents a
cohomology class with real coefficients in H* , (X;R).

Next we explain in which sense the space BX is classifying. Namely, we give a
correspondence between orbibundles on X with structure group G and generic fiber F/
and isomorphism classes of bundles on BX with structure group G and fiber F'.

Given such an orbibundle on X we can define an action of I'; on U; x F x EO(n) by
(Xi, f-p) = (y"'Xi, fhy (¥), py). This defines a G-bundle with fiber F on U; xr, EO(n)

for all charts (17 i» T, ¢i). Moreover the second property in Deﬁnitionensures that the
cocycle conditions are satisfied to give a globally defined bundle on BX with structure
group G and fiber F.
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Conversely, given such a bundle on BX, we can restrict to a chart U, xr, EO(n) to
get a G-bundle with fiber F there. Now, since the chart U; xr, EO(n) is an Eilenberg-
MacLane space K(I;, 1), there is a one-to-one correspondence between isomorphism
classes of G-bundles on U; xr, EO(n) and conjugacy classes of homomorphisms from
I'; to G. This the defines the homomorphisms /. in Definition @

Proposition 2.29. The correspondence above between isomorphism classes of orbi-
bundles on X with structure group G and generic fiber F and isomorphism classes of
bundles on BX with structure group G and fiber F is one-to-one.

Since BX is a CW-complex, the following result is an immediate consequence.

Corollary 2.30. For any Lie group G there is a one-to-one correspondence between
principal G-orbibundle on an orbifold X and homotopy classes of maps [BX , BG].

Moreover, we get the following corollary whose proof is a straightforward adapta-
tion of the proof in the smooth case.

Corollary 2.31. Isomorphism classes of G-bundles on X are in one-to-one correspon-
dence with the cohomology set H! , (X, ®) = H'(BX, ®) with & denoting the sheaf of
germs of functions to G.

Characteristic classes of a smooth bundle can be defined as the pullback of the gen-
erators of the cohomology of the structure group. The results above allow us to define
orbifold characteristic classes analogously. Namely, since a principal G-bundle on X
is uniquely determined by the homotopy class of a map f: BX — BG, we define the
orbifold characteristic classes to be the elements in the image of f*: H*(BG,R) —
H* (X, R) for aring R. For instance to any orbibundle with structure group O(n), U(n)

or S p(n) we can associate Stiefel-Whitney, Chern or Pontryagin classes respectively.
Since our focus will be on complex vector bundles we give the following

Definition 2.32. Let E — X be an orbibundle with structure group U(n) and let f :
BX — BU(n) be its classifying map. The i-th orbifold Chern class ¢?"*(E) of E are
defined to be

f*(er) € H*(BX; 2)

where the ¢; € H*(BU (n); Z) are such that H*(BU (n);Z) = Z[ci,¢2, . . ., Cal-

On a smooth manifold M Chern-Weil theory gives an equivalent definition of char-
acteristic classes. In particular it provides differential forms representing the image of
Chern classes under the inclusion H*(M;Z) < H,(M). Since all the objects involved
are well defined on orbifolds the theory translates in the orbifold setting, see [31] for
the details. Namely, for a U(n)-orbibundle E consider the image ¢??(E) of the orb-
ifold Chern classes ¢??(E) under the inclusion H*rb(X;Z) — H!rb(X;R). To each
connection 1-form on E the Chern-Weil homomorphism associates differential forms
on X. These forms represent the classes ¢?"”(E)z under the isomorphism given in Re-

mark 2.28]
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Definition 2.33. Let E be a U(n)-orbibundle. The i-th real orbifold Chern class is the
class ¢’ (E)r € H*,(X;R) = H2,(X) defined above.

Notation. When it will be clear from the context we will write simply c"”’( ) for both
real and integral orbifold Chern classes. Moreover we will sometimes write C;(E) drop-
ping the superscript in order to lighten the notation.

We can now prove the orbifold analogue of a classical result.

Proposition 2.34. Principal S'-bundles E over an orbifold X are are in one-to-one

correspondence with elements of H )rb(X ,Z) and the correspondence is given by the
first orbifold Chern class ¢ (E).

Proof. Let & be the sheaf of germs of smooth functions BX — C and &* the subsheaf
of non-vanishing functions. The complex line bundles on BX (up to isomorphism)
are in one-to-one correspondence with classes in H! (X, &*). Since BX is a second
countable CW-complex and & is a fine sheaf the exponential sequence yields an iso-
morphism H! (X,&*) = H?, (X,Z). Now denote by S the subsheaf of & given by
germs of functions from BX to S!. Since &* deformation retracts onto S we get an
isomorphism H! , (X,&*) =~ H! , (X, S). The statement then follows from the fact that

for CW-complexes the connecting morphism in the long exact sequence associated to
the exponential sequence is given by the first Chern class. O

The last result we include in this chapter is pivotal and we will rely on it several times
in the reminder of the thesis. Before we can state it we give the following definition for
clarity albeit it is a special case of Definition [2.23| when regarding a Lie group G as a
groupoid with set of morphism given by G and a singleton as set of objects.

Definition 2.35. The action of a Lie group G on an orbifold X = (X, ) is given by a
continuous action A: G x X — X such that for each g € G and x € X there are charts
(U, T, ;) and (U;, T, goj) over x and ﬂ(g, X) respectively with a neighbourhood V < G
of g and a smooth map A: V x U; — U; such that ¢;(A(g, X)) = A(g, :(X)) and for
all g € G the map defined by X — .?l(g, X) is a diffeomorphism.

Now to a locally free action of a Lie group G on an orbifold Y with quotient orbifold
X we associate the fibration G x EO(n) < BY — BX. This gives rise to a long exact
sequence of homotopy groups. We state this important result in the setting that interest
us the most.

Theorem 2.36 ([57]). Let G be a torus acting locally freely on an orbifold Y with
quotient orbifold X. Then the following sequence of homotopy groups

- m(G) > 1 (Y) = 1(X) = 1y (G) — -

Is exact.
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2.4 Complex cyclic orbifolds

In this final section we focus on the class of orbifolds that will appear in the rest of
the thesis. Namely, complex projective cyclic orbifolds. Moreover, we discuss Seifert
bundles and their relation to S '-orbibundles with particular emphasis on the smoothness
of the total space. For further details on the material presented in this section see [15}
Chapter 4] as well as [/3,[/4].

Recall that for a complex orbifold X = (X, U) the trivialization charts U, are biholo-
morphic to the polydisc D" < C" and the uniformizing groups I', are finite subgroups
of GL(n,C). Moreover, X is cyclic if the groups I', are cyclic for all x € X.

In the following we will consider orbifolds whose underlying space X is a normal
projective variety. In this case we consider Weil divisors D, which lie in the orbifold
singular set °(X). This in particular implies that the local uniformizing group T, is
non-trivial for all points x € D,. Thus we define the ramification index m, of the
divisor D, to be the gcd of all the orders of the uniformizing groups I', for x € D,. The
branch divisor A of the orbifold X = (X, U) is defined to be the the Q-divisor, i.e., a
Weil divisor with coeflicients in Q, of the form

A=Y (1-—)p, 2.1

where the sum is taken over all divisors that lie in the orbifold singular set °?(X) and
the m,’s are as above. Therefore, we can associate a pair (X,A) to a complex cyclic
orbifold (X, U) such that X is a normal projective variety. Conversely, the pair (X, A)
determines the orbifold X uniquely. In fact, the chart ¢;: U ~D'—> U;ata point
x € X, and therefore the atlas U, is uniquely determined by the following conditions:

e ¢, is unramified over U\ (Z(U DU D(,) where the union is taken over all divisors
D, intersecting U; and

e the ramification index m,, is the largest integer that divides the ramification index
of all ¢;: U; —> U, such that the intersection U; (] D, is non-empty.

Thus we will often think of complex cyclic orbifolds as pairs (X, A).

Example 2.37 (Weighted projective spaces). Consider the weighted C*(w)-action on
C"*! with weight w = (wy, ..., w,) defined by

(205 -+ -»20) — (220, ...,2""2,) .

We will assume that w satisfies wyp < w; < ... < w, and ged(wy, ...,w,) = 1. This
can be always arranged by reordering the coordinates on C"**! and redefining the coor-
dinate on C*. The weighted projective space CP"(w) is the quotient C"™! /C*(w) and is
endowed with the following orbifold structure. The charts ¢;: U; — U, are given by
a weighted adaptation of the standard charts of CP". Namely, let U; = {[zo,...,2,] €
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CP"(w)|z; # 0} and set coordinates (y, ..., Yi—1,Yit1---»Yn) On the open set U, >~ Cn
such that e
Z AI

wi _J
Vi = v
Z.

1

The map ¢; is then given by
%’()’Oa L ’yl'fl’yH»l’ e 9yn) = (yg)i’ L ’y;v_i1$y?}_:_19 e 9y;:i)'

This defines an orbifold chart (l~]i, [;, ;) where I'; = Z,, is the group of w;-th rooths of
unity in C*(w). The atlas U on CP"(w) consists of the charts (U;, Z,,, ¢;) together with
the intersection (U;, _i;» Zgcd(w, ... wl-_,)","il...ij) where U;, i, = 17,-1 NN l7,-/..

We focus now on the algebraic variety underlying weighted projective spaces. We
have the following result of Dolgachev.

Lemma 2.38 ([36]). As algebraic varieties CP"(w) =~ CP"/G,, where G,, = Z,, X
- X Z,,. Moreover, CP"(w) and CP"/G,, are isomorphic as orbifolds if and only if
w=(1,...,1).

In order to study the underlying algebraic variety of weighted projective spaces

CP"(w) let us introduce some notation. For all i = 0,...,n we define the following
integers:
dl' = ng(Wo,...,Wi_l,Wi+1,...,Wn) , (22)
ei=]]d. (2.3)
Viall
W (20 (24)
€o (%
It follows directly from these definitions and the assumption ged(wy, . .., w,) = 1 that:

i) the d;’s are pairwise relatively prime,
i1) d; divides w; for all i # j,
iii) the e; divides w; for all i so that the entries of the vector w are integers and w = w
ifand only if w = (1,...,1).

The following result of Delorme [34] says that, when interested in CP"(w) as an alge-
braic variety, we can consider CP"(w) instead, see [36] for a proof.

Proposition 2.39 ([34]). There is an isomorphism CP"(w) =~ CP"(w) of algebraic va-
rieties.

Example 2.40. Notice that if d; # 0, then the weight vector

/ Wo Wy
w = E,...,Wi,...,?i
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satisfies the property w = w'. Therefore we have an isomorphism of weighted projective
spaces CP"(w) =~ CP"(w’) as algebraic varieties. For instance, the algebraic variety
CP*(6,2(6k — 1),3(6k — 1)) is isomorphic to the standard projective space CP*. This
can be easily verified by applying the argument above first with dy = 6k — 1, then with
d; = 3 and finally with d, = 2.

Remark 2.41. Notice that singular set of the orbifold CP"(w’) consists of the points
[0:...:z :...:0]for all i such that w; # 0. Therefore, in the notation introduced
above, the orbifold CP"(w’) is denoted by (CP"(w'), A = 0). On the other hand, given a
vector wif d; # 0 for some i, then the divisor D; = (z; = 0) is contained in Z°?(CP"(w))
and has ramification index d;. Hence A # 0.

Example 2.42. Let us now clarify with an example the relation between the orbifold
X = CP"(w) and the pair (X, A).

Consider the weighted projective space CP?(3,4,6). From the description of the
orbifold atlas it is clear that the singular locus is given by

2" (CP*(3,4,6)) = {z0 = 0} J{z1 = 0}.

Moreover, the divisors Dy = (zp = 0) and D; = (z; = 0) have ramification index
2 and 3 respectively. Thus we have A = 1Dy + 3D;. By Proposition the orb-
ifold CP*(3,4,6) is given by (CP*(1,2,1),1D, + 2D,). Notice that CP*(1,2,1) and
CP*(3,4,6) are isomorphic as algebraic varieties, even though they are not isomorphic
as orbifolds since the former has trivial branch divisor A.

A large class of examples of complex cyclic orbifolds is given by hypersurfaces, or
more generally complete intersections, in a weighted projective space CP"(w).

Definition 2.43. A polynomial f(z,...,z,) is called a weighted homogeneous poly-
nomial of degree d and weight w = (wy, ..., w,) if

A%z, ..., A"z,) = /ldf(zo, ceesZn)
with A € C*.

If V is a variety of C**! defined by weighted homogeneous polynomials fi,..., f;
with weights w = (wy, ..., w,), then it is invariant under the C*(w)-action on C**!. This
leads to the following:

Definition 2.44. A weighted variety in CP"(w) is the zero set of a collection fi,..., f;
of weighted homogeneous polynomials with weights w. The variety X is called a
weighted complete intersection if r = codim(X). A weighted hypersurface X is
the zero locus of a single weighted homogeneous polynomial.

It is natural to require that the weighted variety X carries an orbifold structure which
is naturally induced by CP"(w). The next proposition gives a necessary condition.
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Proposition 2.45. Let pr: C"*'\{0} — CP"(w) be the quotient by the C*(w)-action
and t: X —> CP"(w) be a weighted variety. If pr~='(X) is smooth, then CP"(w) natu-
rally induces a locally cyclic orbifold structure X = (X, U) on X.

Proof. Since pr—!(X) is smooth and invariant under the C*(w)-action we can use charts
of pr!(X) at a point y € pr—!(x) to define orbifold charts at x € X. The orbifold
structure on X is then naturally given by the C*(w)-action on pr—'(X). Moreover, the
local uniformizing group I', at a point x € X is the uniformizing group at the point
t(x) € CP"w). Hence the orbifold X is locally cyclic. O

Example 2.46 (Brieskorn-Pham Polynomials). A Brieskorn-Pham polynomial with
exponent a = (ay,...,a,) is a degree d weighted homogeneous polynomial f of the
form

f(zoseoszn) =20+ -+ 27

with ¢; > 1 for all i. Notice that we have w;a; = d for all i and d = lcm(ay, .. .,a,)
since we are assuming gcd(wy,...,w,) = 1. The polynomial f defines a weighted
hypersurface X; < CP"(w). It is easy to see that the set pr—'(X;) is smooth. Thus X;
is naturally endowed with a cyclic orbifold structure. Moreover, we see that the branch
divisor A that identifies this orbifold structure is

A:Z(l—%)])i

where the d;’s were defined in (2.2)) and D; is the hyperplane divisor (z; = 0) () X;.

Before we move on to the definition of a Seifert bundle we recall that a Stein space
is a holomorphically convex space such that any compact analytic subset is finite.

Definition 2.47. Let X be a normal complex space. A Seifert bundle over X is a map
n: Y — X from a normal complex space Y together with a C*-action on Y satisfying
the following conditions:

e 7 is C* invariant with the respect to the trivial action on X,
e the preimage n~! of any open Stein set is Stein and

e For every x € X, the C*-action on the fiber Y, = n~!(x) is C*-equivariantly
biholomorphic to the standard C*-action on C*/u,, for some m = m(x,Y/X),
where u,, = C* denotes the group of m-th roots of unity.

One can always assume that m(x,Y/X) = 1 on a dense open set, that is, one can
assume the C*-action to be effective.

Consider now the set of points {x € X|m(x, X/Y) > 1}. This is a closed analytic sub-
set of X. It can be written as the union of Weil divisors D; and of a subset of codimension
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at least 2 contained in singular locus X(X). The multiplicity m(x, Y/X) is constant on a
dense open subset of each D;. This common value is denoted by m;. The Q-divisor

Asz](l—mi)D

is called the branch divisor of 7r: ¥ — X. When we want to emphasize the branch
divisor we will write the Seifert bundle as 7: ¥ — (X, A).

It is clear from the description above that if Y is smooth, the pair (X, A) defines a
cyclic orbifold as discussed in the beginning of this section. In fact, for every x € X
and any y € 7~ !(x) let V, be a u,,-invariant smooth hypersurface transverse to 7! (x),
where m = m(x, Y/X). Then the maps ¢,: V, = U, — V,/um = U, give an orbifold
structure X = (X, U). Moreover, the orbifold branch divisor coincides with the branch
divisor of 7: ¥ — X so that X = (X, A). It follows from the definition of the orbifold
X that 7: Y — (X, A) is a principal C*-orbibundle whose local uniformizing groups
inject into C*, cf. Lemma[2.7]

Consider the splitting C* = R x S of C* as a Lie group. Since the definition of a
Seifert bundle only involve subgroups of S!' we can write Y as M x R and restrict the
Seifert bundle to M. By abuse of notation we will call this a Seifert bundle. Clearly,
M is smooth if and only if Y is smooth. In this instance the manifold M is a principal
S 1-orbibundle over the orbifold (X, A). We have proven the following:

Theorem 2.48. Every Seifert bundle n: M — (X, A) with M smooth is a principal S'-
orbibundle over a cyclic orbifold X = (X, A) Conversely, every principal S '-orbibundle
n: M — (X,A) over a cyclic orbifold X = (X,A) whose local uniformizing groups
inject into S is a Seifert bundle with M smooth.

The following result of Kollar gives a useful correspondence.

Theorem 2.49 ([73]]). Let X be a normal complex space with at worst quotient singu-
larities and A = Y (1 — %)Di a Q-divisor. There is a one—to—one correspondence

between Seifert bundles n : Y — (X, A) and the following data:
1. For each D; an integer 0 < b; < my, relatively prime to m;, and

2. a linear equivalence class of Weil divisors |B], i.e. an element of the divisor class
group CI(X).

Definition 2.50. Let 7 : ¥ — (X, A) be a Seifert bundle and let [B],m; and b; as in
Theorem The first Chern class ¢, (Y /X) of the Seifert bundle 7 : ¥ — (X, A) is
defined to be the rational homology class

c1(Y/X) = [B] + Z | € H*(X;Q) (2.5)



2.4 Complex cyclic orbifolds 25

where we identify the linear equivalence class of a divisor with the first Chern class of
the associated line orbibundle.

We want to understand the smoothness condition on M in terms of the data that
determines the Seifert bundle according to Theorem[2.49] In order to do so let us recall
some notions.

Definition 2.51. An element of GL(n,C) is a reflection if it has eigenvalue 1 with
multiplicity n— 1, that is, if it fixes an hyperplane in C". A finite subgroupI' € GL(n, C)
generated by reflections is called a reflection group. A finite group A < GL(n,C) is
small if it contains no reflection.

Theorem 2.52 ([98]). Let T = GL(n,C) be a finite grop. Then
1. the quotient C" /T is smooth if and only if T is a reflection group and
2. there exist a small group A such that C"/T" and C"/A are biholomorphic.

We can now study the local geometry of a Seifert bundle in terms of the C*-action.
Letm: Y — (X, A) be a Seifert bundle and suppose X has complex dimension 7. Pick
a point x € X such that Y is smooth along 7' (x). Let (U,T,¢) be an orbifold chart
at x. We can assume that U is biholomorphic to the polydisc D". Thus we have U =

~

¢(U) = D"/u,, where m = m(x,Y/X). Now picking a generator A of the uniformizing

group u,, and diagonalising the action we get the vector (ay, ..., a,) such that the action
on the i-th coordinate is given by z; — A%z;. We can assume that the action is effective,
i.e. that ged(ay, ..., a,,m) = 1. Now consider the following integers:

o m; = gcd(ay,...,a; 1,411, ..,a,,m) and

o M= ]_[ml-.
Notice that the integers m; are relatively prime since ged(ay, . .., a,, m) = 1. Moreover,

by construction they are the multiplicities of the irreducible components D; of A passing
through x. Hence the number of m; # 1 i the number of irreducible components D; of
A passing through x.

Now we can give a clear local description of X at x. Namely, since the subgroups
Hm; < M fix all but one coordinate hyperplane in 9, they are reflection groups. By part
(1) of Theorem 2.52]the quotient D" /uy, is smooth and biholomorphic to D". Therefore
we have that y1,, where r = m/M, is a small group. By part (2) of Theorem[2.52]there is
a biholomorphism U = D" /u,.

Therefore, at a point x € X with [[',| = m such that 77!(x) is smooth we have a
factorization m = m, - - - m,r satisfying the following conditions:

1. The numbers m; are relatively prime and are the multiplicities of the irreducible
components D; of A passing through x with the necessary number of 1’s if there
are less than n components.
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2. As an algebraic variety U =~ D"/u,.

As a consequence the local divisor class group CI(X, x) at x is u, =~ Z,, see [[73, Part 24].
Given a Weil divisor passing through x we can consider its restriction to U =~ D"/u,.
This gives a well defined map R, : CI(X) — CI(X, x) from the divisor class group of
X to the local divisor class group CI(X, x) = Z,.

We now define the number m(x, A) to be lem(m; | x € D;). Consider the element

m(x, A)b;
m(x,A) - c1(Y/X) = m(x,A)[B] + > ng_ (2.6)
ilxep, M
where ¢ (Y/X is the first Chern class of the Seifert bundle 7: ¥ — X, see Equa-
tion (2.5)). Since m; devides m(x, A) for all i, m(x, A) - ¢;(Y/X) defines an element of the
divisor class group CI(X). Kolldr [[74] gives a criterion for the smoothness of the bundle
Y — X.

Theorem 2.53 ([[/4]). Let n: Y — X be the bundle determined by B and b; over the
orbifold (X,A = ¥(1 — ml)Dl) as in Theorem Then Y is smooth along n~ ' (x) if
and only if the element

R.(m(x,A) - c1(Y/X))

is a generator of the local divisor class group CI(X, x).

We conclude this chapter with a result of Baily on Kéhler orbifolds. In this context
a Kihler form w is a collection of forms w; on each chart (U;, T, ¢;) satisfying the
compatibility conditions. Notice that the Kéhler form w defines a class in H*(X;R) =~
H?,(X;R). We will say that the class [w] is integral if it lies in the image of the map

H?*(X;Z) — H*(X;R). The following theorem of Baily is the orbifold analogue of
Kodaira Embedding Theorem.

Theorem 2.54 ([6]). Let X = (X, U) be a Kiihler orbifold with integral Kdhler class
[w]. Then X is a projective algebraic variety.



Chapter 3

Sasaki manifolds

The aim of this chapter is to give a (partial) overview of Sasakian geometry and topol-
ogy. Namely, we define Sasaki manifolds and discuss the various underlying structures.
We then proceed to prove the Structure Theorem which will lead to most of the topo-
logical properties of Sasakian manifolds that we discuss in later chapters. Section
and Section [3.9]are of particular importance for later chapters. The former is concerned
with the transverse geometry of Sasaki structures while the latter gives a brief overview
of the topology of Sasakian manifolds.

An introduction to contact and almost contact structures can be found in [9]]. Most
of the results in this chapter are included in the seminal book of Boyer and Galicki [[15]].
We refer the reader to [15]] for a detailed exposition of the topics in this chapter and
Sasakian geometry in general.

3.1 Contact and almost contact structures

Definition 3.1. An almost contact structure on a smooth manifold M is a triple (7, ¢, R)
where 77 is a 1 —form, ¢ is an endomorphism of 7M and R is a non-vanishing vector field
such that

n(R) =1, ¢* = —1d + R®n.

From this definition we can easily derive the following identities:
¢R = 0, no¢ =0.

In order to prove them notice first that ¢*’R = 0. Suppose now ¢R # 0. From 0 =
#*(pR) = —¢R + n(pR)R we get R = n(#pR)R # 0. Substituting twice in 0 = ¢*R =
n(@R)$R = (n7(¢R))*R # 0 yields a contradiction. Now given X € X(M) the second
identity follows from 1(¢X)R = ¢*X + ¢X = —¢X + ¢(n(X)R) + ¢X = 0. Moreover
if X € X(M) satisfies X = 0 then 0 = ¢*’X = —X + n(X)R, which proves that
rank(¢) = 2n.

Equivalently we can define almost contact structures as follows.

27
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Definition 3.2. An almost contact structure on a manifold M of dimension 2n + 1 is
a reduction of the structure group to U(n) x 1.

In order to show that these definitions are indeed equivalent let us introduce some
auxiliary structure.

Definition 3.3. An almost contact manifold (M, 7, ¢, R) is a pair consisting of a smooth
manifold M and an almost contact structure (1, ¢, R) on M. We will sometimes write M
for an almost contact manifold and omit the almost contact structure.

Definition 3.4. A Riemannian metric g on an almost contact manifold (M, n, ¢, R) is
said to be compatible with the almost contact structure if it satisfies

8(¢X.¢Y) = g(X.Y) — n(X)n(Y)
for any two vector fields X, Y € X(M).

For a compatible metric g we have n(X) = g(X,R). Notice that any almost con-
tact manifold admits a compatible metric. In fact given any Riemannian metric g/, a
compatible metric g is given by

S0 Y) = S(@X4Y) + ¢ (9X.0)) + n(X)n(Y).

For future reference we give the following.

Definition 3.5. An almost contact structure (7, ¢, R) with a choice of a compatible met-
ric g is called an almost contact metric structure and denoted by (7, ¢, R, g).

We can now define an almost contact basis of vector fields in a coordinate chart
U. Let X; be a unit vector field orthogonal to R. Then Y; = ¢X; is also a unit vector
field orthogonal to both X; and R. Now choose X, orthogonal to the span of X, Y;
and R. Then so is Y, = ¢X,. Iterating this process we get a local orthonormal basis
{Xi,....X,,Y1,..., Y, R}. Notice that this shows that an almost contact manifold is odd
dimensional. Choosing such a basis for each coordinate chart U, the endomorphism ¢
is given locally by

0 —Id 0
d 0 :
0 --- 0

Now for p € U, n Ug and X € T, M let X,, and Xz be the expressions of X in the local
basis. In particular we have

A B 0
Xﬁ' = C D Xa
0 1
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where (2 5) € O(2n). Therefore we have

0 -1d 0\ /A B O

d 0 |lc D ]Xe=0¢X) = (¢X)p=
0 o/ \o --- 1
A B O\ /0 —Id 0
=|1C D Id 0 Xa/
0O --- 1 0O --- 0

which shows that (£ 5) commutes with <I%l *(I)d), ie. (A8)eU(n).

Conversely, if there exists a reduction to U(n) x 1 of the structural group, consider
an atlas {U,} whose transition functions take values in U(n) x 1. Define locally

0 —Id 0 0
o = Id 0 s Me = (0 0 1) and R, =
0 --- 0 X

Now since ¢, commutes with U(n) x 1 this defines a global endomorphism of 7M.
Moreover, 1, and R, define 7 and R globally. Finally, the identities

n(R) =1, #*=—-Id+R®n

hold since they are verified in each chart. This shows that Definition and Defini-
tion [3.2] are equivalent.

An almost contact manifold is equipped with a canonical splitting of the tangent
bundle. Namely, the non-vanishing vector field R defines a trivial line bundle Lz while
D = kern defines a codimension 1 sub-bundle of 7M with almost complex structure
@|p. Thus the tangent bundle canonically splits as TM = D @ Lg.

From the very definition of an almost contact structure one gets a topological ob-
struction for the existence of such structures. In fact if a 2n + 1-dimensional manifold
M admits an almost contact structure then the classifying map M — BSO(2n + 1)
of TM factorizes through BS U(n). The characteristic classes of M are obtained by
pulling back those of S U(n). However the odd Stiefel-Whitney classes wy; and inte-
gral Stiefel-Whitney classes W) of S U(n) vanish. Thus we get the following classical
theorem of Gray.

Theorem 3.6 ([52]). Let M be a 2n + 1-dimensional almost contact manifold. Then
the odd Stiefel-Whitney classes wy1(M) and integral Stiefel-Whitney classes Wi (M)
vanish. Thus all Stiefel-Whitney numbers vanish and M is the boundary of a compact
manifold.
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Let us discuss now equivalence of almost contact structures. Since the notion of
equivalence depends on the nature of problem that is studied, we introduce now several
relations on almost contact manifolds.

In light of Definition we can regard almost contact structures on a (2n + 1)-
dimensional manifold M as maps from M to SO(2n+1)/U(n). In fact, fix an embedding
of U(n) in SO(2n+ 1). An almost contact structure at a point amounts to an equivalence
class of orthonormal frames under the action of U(n). That is, a section f: M —>
SO(2n+ 1)/U(n) of the quotient bundle Fr(M)/U(n) of the frame bundle Fr(M). Then
we can define homotopies of almost contact structure as follows.

Definition 3.7. Let fi: M — SO(2n + 1)/U(n) and f,: M — SO(2n + 1)/U(n) be
almost contact structures on a manifold M. The two almost contact structures are said
homotopic if there exists a homotopy F: M x I — SO(2n + 1)/U(n) between f; and

fa-

Classifying homotopy classes of almost contact structures on arbitrary manifolds is
a hard problem. However, in some particular cases the classification can be carried out
by means of obstruction theory. We will see such instances in Chapter 3]

Definition 3.8. Let (M;,n;,¢1,R,) and (M,,n,, ¢2, Ry) be two almost contact mani-
folds. A diffeomorphism f: M; — M, is an isomorphism of almost contact struc-
tures if the following two conditions are satisfied

L. f*¢1 = ¢2f*,
2. f*m, = gn for a non-vanishing function g € C*(M,).
The two almost contact manifolds are then called isomorphic.

Definition 3.9. Two almost contact structures (17;, ¢1, R) and (12, ¢», R>) on a manifold
M are equivalent if they can be identified by a sequence of homotopies and isomor-
phisms.

Let us now turn our attention to contact structures.

Definition 3.10. A contact form on a manifold M of dimension 2n + 1 is a 1-form
n satisfying 7 A (dn)" # 0. A contact structure is an equivalence class of contact
forms, where two forms 7, 1/ are equivalent if there exists a positive function f such

that p = fn.

Remark 3.11. Notice that kern = ker#’ if and only if two contact forms 7,7’ belong
to the same equivalence class. Therefore we will identify a contact structure with the
distribution D = ker n.

Definition 3.12. A contact manifold (M, ) is a pair consisting of a smooth manifold
M and a contact form 7 on M. By abuse of notation we will often write M for a contact
manifold omitting the contact form.
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A choice of a contact form uniquely determines a vector field R by requiring that
n(R) =1, wdn=0.

To see this notice that the volume form n A (dn)" gives an isomorphism of C*(M)-
modules between vector fields on M and 2n-forms on M. Thus there is a unique vector
field R such that (g (7 A (dn))" = dn". Contracting again shows that tg(dn)" = 0 which
in turn implies ¢gdny = 0 since rank(dn) = 2n. Moreover, we have

" = w(n A (dn))" = n(R)dn" — 1 A wr(dn)" = n(R)dr"

which implies the first identity. The vector field R is called the Reeb vector field of
and the foliation determined by the orbits of R is called the characteristic foliation or
Reeb foliation of the contact structure.
It is easy to check that the Reeb vector field preserves the contact form nd its exterior
derivative, that is,
Lrn = Lrdn =0, (3.1

In fact we have
Lrn =1gdn+dign =0+dl =0.

Moreover, using (gdn = 0 we get
Lrdn = 1rd*n + digdny = 0.

Notice that a choice of almost complex structure J on 9 = kern determines an al-
most contact structure (7, ¢, R). In fact, as in the almost contact case we get a canonical
splitting of the tangent bundle

TM = D® Ly

where Ly, is the trivial line bundle given by R and D = ker ; is the contact distribution.
Moreover, since tzgdnp = 0 and rank(dn) = 2n, D is a symplectic sub-bundle with sym-
plectic form dn. Then a compatible almost complex structure J on D can be extended
trivially on L to define ¢ on T M.

Definition 3.13. A contact form is quasi-regular if each point has a foliated chart for
the characteristic foliation such that the intersection with each leaf has at most k£ con-
nected components and it is irregular otherwise. When k£ = 1 the contact form is called
regular. By abuse of notation we call a contact manifold (M, n) regular (quasi-regular,
irregular) if 7 is a regular contact (quasi-regular, irregular) form.

We now state a classical theorem of Darboux which shows that contact structures
admit no local invariants.

Theorem 3.14. At each point of a contact manifold (M, n) there exist local coordinates
(Xls e e vy Xns V1o e v vy Yo 2) With respect to whichn = dz + Y., yidx;.
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As in the almost contact case we can define several notions of equivalence of contact
structures.

Definition 3.15. Let (M}, n,) and (M, n,) be two contact manifolds. A diffeomorphism
f: My — M, is a contactomorphism if f*7, = gn; for a non-vanishing function
g € C*(M,). The contact manifolds (My,n,) and (M,,n,) are then called contacto-
morphic.

One can give a definition of smooth families of contact structures. A celebrated
theorem of Gray shows that this is in fact equivalent to an isotopy.

Theorem 3.16 ([52]]). Let M be a closed contact manifold. Assume D, is a smooth
family of contact structures for t € [0, 1]. Then there is an isotopy ¥, of M with t € [0, 1]
such that

(W) Do = D, forallte|0,1].

Remark 3.17. Theorem [3.16| does not hold for a smooth deformation of contact forms
n:.
In parallel with the almost contact case we give the following:

Definition 3.18. Two contact structures 9; and 9, on a closed manifold M are equiv-
alent if they can be identified by a sequence of isotopies and contactomorphisms.

We present now several examples of contact structures, some of which will turn out
to be fundamental examples of Sasaki structures.

Example 3.19 (Standard contact structure on S2**!). Consider S?'*! < C"*!' with
standard coordinates z = (zo,...,z,) Where z; = x; + iy;. The restriction of 7y =
>lio(xdy; — y;dx;) to $#**! is a contact form. In order to see that consider the form
a = >_(x;dx; + y;dy;) normal to the unit sphere. A simple computation shows that

@ A Adny =2"n! z(xf +y§)dxo Adyy A A dx, A dy,
=0

therefore n9 A dr) is a volume form on §2"*+!.

In other words if N is the unit normal to the sphere and w = 27:0 dx; A dy;j is the
standard Kihler form then iy = ¢yw. It is easy to check that if J is the standard complex
structure on C"*! then JN = R, is the Reeb vector field.

Example 3.20. The previous example provides a contact structure on odd dimensional
real projective spaces since the standard structure on §2**! is invariant under the reflec-
tion z — —z.

Example 3.21. It was proven by Bourgeois [14] that all odd dimensional tori admit
contact structures. Even though it is not trivial to show this in full generality, one can
easily give an explicit contact structure on 73 = R3/Z3. In fact the 1-form 1 = sin ydx +
cos ydz is such that A dy = —dx A dy A dz in the standard coordinates (x,y, z) of R>.
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3.2 The Boothby-Wang fibration

In this section we introduce a construction that will be crucial in the rest of the thesis.
Namely, we present a special class of contact manifolds, called Boothby-Wang fibra-
tions, which arise as principal S !-bundles over symplectic manifolds.

Let X be a smooth manifold and 7: M — X a principal S'-bundle. Suppose w is
a 2-form representing the first Chern class of M in H*(X;Z). Any connection 1-form n’
satisfies dy = —2min*«' for some 2-form «' representing [w]. Now consider 3 to be a
1-form on X such that d8 = w — «’ and set = ’ — 2xin*B. The form 7 is a connection
1-form on M since n*f is horizontal and invariant. Moreover, we have

dn =dy’ — 2ridn*B = —2rin*w' — 2rin*dB
= — 2nin*w — 27in* (w — W)
= —2min*w .

We have shown that on the principal S'-bundle associated to [w] one can choose a
connection 1-form 7 such that dp = —27in*w.

Notation. The first Chern class c,(M) = [w| € H*(X;Z) associated to the principal
S'-bundle M 5 X coincide with the Euler class of the associated rank 2 vector bundle
bundle. Therefore, we will not distinguish between the two.

Notation. In order to lighten the notation we identify the Lie algebra iR of U(1) with R
and drop the complex notation. In the same spirit we omit the coefficient 2.

The following theorem of Boothby and Wang gives a one-to-one correspondence be-
tween regular contact structures and non-trivial principal circle bundles over symplectic
manifolds with integral symplectic class.

Theorem 3.22 ([11]). Let (M,n') be a compact regular contact manifold . Then there
exists a non-vanishing function f such that the Reeb vector field R associated to the
contact formn = fn generates a free S'-action on M. Moreover; the orbits of R are the
fibers of a principal S'-bundle n: M — X over a symplectic manifold (X, w) such that
n is a connection form with curvature form dn = n*w.

Conversely, if (X,w) is a symplectic manifold such that the class |w] is integral, then
the principal S'-bundle M associated to [w| is a regular contact manifold with contact
form n such that dn = nm*w.

Proof. Since the contact structure is regular and M is compact, the leaves of the char-
acteristic foliation are homeomorphic to circles. Moreover, again by regularity of the
characteristic foliation, M is a fiber bundle over a smooth manifold X.

Let ¢’ be the flow of the Reeb vector field R’ of 1/ and f be its period map, i.e.
f(p) = min{r € R|¢/(p) = p}. The map f is constant along orbits of R' and it is
positive and finite since there are no fixed points and the leaves are circles. We now show
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that f is constant on M. Denote the projection by 7: M — X and define a compatible
metric by ¢ = 7*h + ’ ® n’ where h is a metric on X. Now R’ is a Killing vector
field for g since /(R’) = 1 and Lrn' = 0. Moreover, its orbits are geodesics because
g(VrR',V) = —g(VyR',R’") = 0 where V is the Levi-Civita connection of g. Let y
be the orbit through p and vy’ a sufficiently close orbit. Then there is a unique minimal
geodesic from p to y' and it meets y and y’ orthogonally. Denote by 6 the geodesic arc
between p and y’. Now since ¢’ acts by isometries the image of ¢ is orthogonal to both
v and v/ at all times. Therefore, when p moves by one period on 7y, the endpoint of &
also moves by one period. Thus the function f is locally constant, therefore constant,
on M.

Now define n = }77’ and R = fR’. Notice that R is the Reeb vector field of n since
f is constant. Moreover, the period function of R is identically 1 thus the action of its
flow ¢, only depends on ¢ mod 1. Therefore R induces a free S !-action on M.

Recall that Lzn = Lrdn = 0 so that both n and dn are invariant forms. Now,
having identified the Lie algebra of S' with R, we can regard n as the connection 1-
form associated to the Ehresmann connection O = kerz. Since S! is abelian we get
that dn is the curvature form for . Now dn is horizontal and invariant therefore there
exists a 2-form w on X such that 7*w = dr. Moreover 7*dw = dr*w = d*n = 0 implies
dw = 0. Thus w is closed and defines an integral cohomology class on X. Furthermore
X is symplectic because d(w") = dw" = dn" # 0 yields " # 0.

Conversely, let (X, w) be a 2n-dimensional symplectic manifold such that the sym-
plectic form w represents an integral class [w] € H*(X;Z). Let 1: M — X be the
principal S '-bundle associated to [w]. Then, as explained in the beginning of this sec-
tion, there exists a connection form 7 such that dp = 7*w. Denote by R a vertical vector
field such that n(R) = 1 and let V|, ..., V,, be linearly independent horizontal vector
fields. Then n A (dn)" = n(R)dn"(Vi,...,Va,) # 0 and we can regard i as a contact
form by identifying the Lie algebra of S! with R. Moreover the contact structure on M
is regular by construction. O

Notation. In the setting of Theorem [3.22] the regular contact manifold M is called the
Boothby-Wang fibration, or Boothby-Wang construction, over (X, w).

Remark 3.23. In general we can associate (not uniquely) a Boothby-Wang fibration to
any symplectic manifold (X, Q) regardless of whether or not [Q] is integral. Namely, let
g be any metric on X. Consider a ball B, of radius € around the origin of the space of
harmonic 2-forms on X with respect to g. Since non-degeneracy is an open condition,
for € small enough every form in Q2 + B, is symplectic. Moreover, Q + B, represents an
open set of classes in H*(X; R). Therefore we can choose a form Q' in Q + B, such that
[Q'] lies in the image of the map H*(X; Q) — H?*(X;R), i.e. such that [Q'] is a rational
class. Thus a suitable multiple w of Q' represents an integral class [w] € H*(X;Z). Now
Theorem provides a contact manifold (M, ) which is a principal S '-bundle over
X. Notice that the choice of Q' is not canonical. Hence a different choice can lead to a
different principal S !-bundle M’ — X.
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Example 3.24. The most classical example of a Boothby-Wang fibration is the Hopf fi-
bration of odd-dimensional spheres. These are indeed S !-bundles associated to the gen-
erator [wrs | of H*(CP",Z) and give the standard contact structure on spheres discussed
in Example [3.19] In order to see this consider the Hopf fibration, i.e. the restriction to
§21+1 of the fibration C* — C"*'\{0} 5 CP". Now the Reeb vector field Ry = JN is
in ker (7, ) because N € ker(r,) and the kernel is a complex line. Therefore, the orbits
of R, are the fibers of the fibration which, in particular, assures that 7, defines a regu-
lar contact structure. Now an orbit of R, is a maximal circle on the sphere. Thus its
period is 27 because R, has constant norm 1. Therefore the contact form 7, defines a
connection form on the principal S '-bundle §2"+! %> CP”" such that n*wps = dn.

3.3 K-contact structures

We have introduced the concept of metrics compatible with an almost contact structure
in Definition [3.5] In the remainder of this chapter we will discuss contact structures
endowed with such metrics satisfying some additional properties.

As seen before, one can associate an almost contact structure (17, ¢, R) to a given
contact form 7 in the following way. Fix an almost complex structure J on D = kern
compatible with di. The extension ¢ to TM given by setting ¢R = 0 satisfies ¢*> =
—Id + R®mn. Therefore, the triple (1, ¢, R), given by the contact form 7, the Reeb vector
field R and the endomorphism ¢, is an almost contact structure.

Remark 3.25. Notice that the almost contact structure so induced depends on the choice
of J while its homotopy class does not since the space of almost complex structures
compatible with dn is contractible.

Definition 3.26. Let (M, n) be a contact manifold. An almost contact (metric) structure
(7,6, R, g) is compatible with the contact structure if 77 = 5, R’ is the Reeb vector
field R of n and ¢ satisfies

dn(¢X,¢Y) =dn(X,Y), dn(¢X,X) > 0.

This is equivalent to the compatibility of the almost complex structure ¢, with dn.
Moreover, given a contact manifold (M, n), every compatible almost contact structure
is uniquely determined by ¢)p.

For an almost contact structure (1, @, R) it is possible to define a unique metric g such
that g(X, #Y) = dn(X, Y). Such a metric is called the associated metric to (77, », R).

Definition 3.27. A contact metric structure (7, ¢, R, g) is given by a contact structure
n, with a compatible almost contact metric structure (1, ¢, R, g) such that g(X, ¢Y) =
dn(X,Y). A manifold endowed with such a structure is called a contact metric mani-
fold.



36  Sasaki manifolds

Remark 3.28. Notice that a contact metric structure does not impose any restriction on
the topology of the underlying manifold in addition to those seen in Theorem [3.6] since
every contact structure 7 admits a compatible almost contact metric structure (7, ¢, R, g)
such that g(X, ¢Y) = dn(X,Y).

In order to see this let 7 be a contact form on a manifold M. Then D = kern is a
symplectic distribution endowed with the symplectic form dn. Fix an almost complex
structure J on D which is compatible with d. We can extend J to an endomorphism ¢
of T M by requiring that ¢R = 0. This defines an almost contact structure (1, ¢, R). The
associated metric g makes (7, ¢, R, g) a contact metric structure by definition.

Therefore, we can regard a contact metric structure (1, ¢, R, g) as a contact form 7
with a choice of compatible almost complex structure J on D.

Definition 3.29. A K-contact structure (7, ¢, R, g) is a contact metric structure such
that R is a Killing vector field of g. A manifold with such a structure is a K-contact
manifold.

Notation. We will use the terminology K-contact manifold both for a manifold endowed
with a K-contact structure and for a manifold admitting a K-contact structure. The
meaning will be clear from the context.

Several different structures with suitable compatibility conditions come together in
the definition of K-contact manifold. The abundance of underlying structures allows
several equivalent definitions of K-contact manifolds. Let us then discuss some equiva-
lent definitions of K-contact manifolds.

Very often K-contact structures are referred to as contact structures whose Reeb flow
preserves a transverse almost Kéhler structure. Let us explain this phrasing. The
term transverse refers to the Reeb foliation. A contact form 7 has a certain transverse
geometric structure if this structure is transverse to the Reeb foliation. In this setting
an almost Kihler structure transverse to the characteristic foliation is induced naturally
by a contact metric structure. Namely, the restriction ¢, of the endomorphism ¢ to the
contact distribution defines an almost complex structure J on 9 compatible with the
symplectic form dn.

As discussed in Remark [3.28] given a contact form 7 we can always define a trans-
verse almost Kihler structure induced by a contact metric structure (7, #, R, g). How-
ever, invariance under the Reeb flow is a non-trivial condition. The canonical transverse
almost Kihler structure is preserved by R if and only if the flow of R preserves dn, ¢
and g. Now the Reeb vector field preserves dn by definition. Moreover, the metric is
given by ¢ = dn o (¢ ® Id). Hence g is invariant under the flow of R if and only if so
is ¢, see also the proof of Proposition We have shown the following equivalences
for a contact manifold (M, n, ¢, R, g):

Lrg = 0= Li¢p = 0 < K-contact < R preserves transverse a.K.s. .

Hence one can regard K-contact structures as contact metric structures whose endomor-
phism ¢ or metric g are invariant under the flow of R.
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Furthermore, we can rephrase these conditions in terms of the almost complex and
symplectic structures transverse to the characteristic foliation. The choice of a compati-
ble almost complex structure J on O determines the endomorphism ¢ and the associated
metric g such that (7, ¢, R, g) is a contact metric structure. Conversely, since dz is a sym-
plectic form on D, the choice of a transversal metric g5 on D determines a compatible
almost complex structure J. Thus we get a contact metric structure (1, @, R, g) by requir-
ing that R is a normal vector orthogonal to O and extending J to T M trivially. Moreover,
it is clear that

Lrp =0 LJ =0, Lrg=0<= Lrgp=0.
Hence we can rewrite the conditions above as
Lrgp = 0 <= LJ = 0 < K-contact .

Notice that the choice of a compatible almost complex structure J defines a trans-
verse almost Kihler structure of the form (dn, J, gp) where gp is determined by the
compatibility condition. Hence a K-contact structure can be seen as a contact form with
the choice of an R-invariant transverse almost Kihler structure of the form (dn, J, gop).

We summarize the discussion above in the following:

Definition 3.30. Let (M, ) be a contact manifold. A K-contact structure on (M, ) is
given by one of the following:

i) A contact metric structure (7, ¢, R, g) such that R is Killing for g, i.e. Lzrg = 0.

ii) A contact metric structure (1, ¢, R, g) such that the flow of R preserves ¢, i.e.

Lrp = 0.

ii1) The choice of a compatible almost complex structure J on D = ker 7 such that the
flow of R preserves J, i.e. LrJ = 0.

iv) The choice of a transverse metric g5 on D = kern such that the flow of R pre-
serves ggp, i.e. Lrgp = 0.

v) A transverse almost Kihler structure (dn, J, gp) which is preserved by the flow of
R.

Example 3.31 (Standard sphere). In Example [3.19|we have presented the standard con-
tact structure on the odd dimensional sphere S2**!. Identifying R***? with C"*! with
the complex structure given by Jo,, = 0), we can describe the contact distribution as
TS+ A JTS?**! = kern. Therefore, J restricts to an almost complex structure on
D = kern and the round metric on the sphere induced by the Euclidian metric on R*"*2
is compatible with the contact structure. We have shown that the standard contact struc-
ture on S?"*! with the round metric is a contact metric structure. We show that this
structure is indeed K-contact in the following example.



38  Sasaki manifolds

Example [3.3T] above is an instance of a larger class of K-contact manifolds that we
have already encountered, namely Boothby-Wang fibrations. We now show that all such
manifolds are K-contact.

Proposition 3.32. A Boothby-Wang bundle over an almost Kihler manifold has a canon-
ical K-contact structure. Equivalently, a regular contact manifold is K-contact. Con-
versely, every regular K-contact manifold is a Boothby-Wang bundle over an almost
Kdhler manifold.

Proof. Let (M, n) be a regular contact manifold of dimension 2n + 1 and 7: M — X its
Boothby-Wang fibration. Then X has an integral symplectic form w such that 7%w = dn.
Since 7 is a connection form for the principal S !-bundle M, it defines a horizontal lift,
say . Now let J be an almost complex structure compatible with w and 4 the associated
metric on X. We can define a tensor ¢ on M by ¢V = 7(Jr.(V)). Since the Reeb
vector field R is vertical we have ¢*> = —7 o, = —Id + n ® R. Therefore (1, ¢, R) is a
compatible almost contact structure. Now for the metric on M defined by g = n*h+n®n
we have

gV, oW) = h(m,V,Jn W) on = w(m,V,m« W)on = n*w(V,W) = dn(V,W).

Thus (1, ¢, R, g) defines a contact metric structure on M. Moreover, it is clear that R
is a Killing vector field because 7*h is invariant under the S'-action and Lz = 0
by definition of R. We have shown that a Boothby-Wang fibration admits a K-contact
structure which depends on the choice of an almost Kéhler structure on the base.
Conversely, a regular K-contact structure define a Boothby-Wang bundle by The-
orem [3.22] Moreover, the endomorphism ¢ restricts to a transverse almost complex
structure compatible with dn. Therefore, it induces an almost Kéhler structure on the
base of the Boothby-Wang fibration. O

Remark 3.33. An alternative proof of the fact that a regular contact manifold is K-
contact is given by averaging an associated metric over the S !-action. Namely, given a
regular contact structure 7 take any contact metric structure (1, ¢, R, g’) and replace g’
by

g= f rg'dt
Sl
where ¢, is the flow of R.

As discussed in Remark given a contact manifold (M, n) the existence of a
contact metric structure on (1, ¢, R, g) does not restrict further the topology of M. Nev-
ertheless, the existence of K-contact structures is, in general, obstructed by the topology
of M. The following theorems will give us such restrictions and will enable us to find
examples of contact manifolds admitting contact structures but no K-contact structures.

Theorem 3.34 ([110]). Let 7: M — X be the Boothby-Wang fibration associated to a
compact regular contact manifold (M, n). Then by(M) = b (X).
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Proof. Lete = |[w] be the Euler class of the S '-bundle 7: M — X. The Gysin sequence
of the bundle reads

0 — H'(X;R) ©> H'(M;R) — H(X;R) %% H*(X;R) — --- .
Since w is a symplectic form the last map - U e is injective and the pullback map
H'(X;R) => H'(M;R) is an isomorphism. m
Corollary 3.35. The torus T***! does not admit a regular contact structure.

Proof. Assume T?"*! admits a regular contact structure and let 7?"*! — X be the asso-
ciated Boothby-Wang fibration. The long homotopy sequence of the fibration becomes

0 — m(X) > m(S") - m (T - 7 (X) -0

because m;(S!) = m(T?"!) = 0 for all k > 1. Now consider the lift of the fibration
to the universal cover R**™!. Here the leaves lift to lines therefore the fibration does not
have nullhomotopic fibers. Thus the map 7;(S') — ;(T*"™") is non-trivial. This, in
turn, implies that m,(X) = 0 since &r;(T?>"*!) is torsion free. Hence m;(X) = Z*"*1/Z
and by (X) = 2n which is a contradiction to Theorem [3.34] m

We can actually prove that tori cannot support a K-contact structure, being it regular
or not. This is because the existence of a K-contact structure constrains the topology of
M. Before we make this statement precise let us prove the following:

Lemma 3.36. Let (M,n,$,R, g) be a compact K-contact manifold. If « is a harmonic
1-form then a(R) = 0.

Proof. Let f = a(R) and decompose « into @ = B + fn. Since harmonic forms are
invariant under isometries and R is Killing one gets

0= LRQ’ = dLRQ’ + LRdQ’ = dLRQ’ = df

so that f is constant. Thus 0 = do = dB + fdn. By Stokes’ Theorem we have

O:J d(ﬂAn/\dn"_l)z—J fnAdn
M M

which implies the claim since n A dn”* is a volume form. O

The following result was first proved by Rukimbira [101] in a slightly different,
although equivalent, setting and later by Itoh [63] in the K-contact setting.

Theorem 3.37 ([101L, 163]]). Let (M,n,$,R, g) be a compact K-contact manifold of di-
mension 2n + 1. Then the cup length cup(M) of M satisfies

1 < cup(M) < 2n.
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Proof. By Hodge theory we can represent every cohomology class by a harmonic form.
If the cup length of M equals 21 + 1, we can write a non-trivial class ¢ € H*"*'(M;R)
as the cup product of 2n + 1 harmonic 1-forms @; A - -+ A @z,+1. Now we complete R
to a local basis {R,vy,...,vs,}. By Lemma[3.36/a; A -+ A @21 (R, V1, ..., v2,) = 0.
Therefore ¢ € H**"1(M;R) is the trivial class contradicting the assumption. o

Corollary 3.38. Let X, be a compact orientable surface of genus g > 1. Then the
manifold £, x - x Z, x S' does not admit a K-contact structure (hence it does not
admit a regular contact structure). In particular, tori do not admit K-contact structures.

3.4 Complex structures on the Riemannian cone

Let us take a step back and consider again almost contact manifolds. We now draw a
parallel between almost contact structures and almost complex structures. In this light
we will define an odd dimensional counterpart of complex structures. Namely, consider
an almost contact structure (M, 17, ¢, R) and its cone M x R*. Let ¢, be the vector tangent
to the second factor and define an automorphism of the tangent bundle by

where X € X(M). Since I = —Id, the almost contact structure (1, ¢, R) defines an
almost complex structure / on M x R*. This is called the almost complex structure
associated to (17,4, R). By analogy, an almost contact manifold (M, n, ¢, R) which in-
duces an integrable almost complex structure I on M x R™ can be considered the odd
dimensional analogue of a complex manifold.

Definition 3.39. An almost contact structure (7, ¢, R) on a manifold M is called normal
if the induced almost complex structure / on the cone M x R* is integrable.

By a classical result of Newlander and Nirenberg, an almost complex structure J is
integrable if and only if the Nijenhuis tensor N, (X, Y) = J*[X, Y]+[JX, JY]|-J[JX, Y]—
J[X, JY| vanishes. We compute the tensor N; in order to express the integrability of I in
terms of the almost contact structure (1, ¢, R). Since N; is a tensor on M x R* it suffices
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to compute it for pairs of the form (X, Y) and (X, ¢,) with X, Y € ¥(M).
Ni(X,Y) =P[X,Y] + [IX,IY] — I[IX, Y] — I[X, IY]
—[X, Y] + [¢X + n(X)0,, Y + 1(Y)0/]
—1[¢X +n(X)0, Y] — I[ X, ¢Y + n(Y)d,]
—@ X, Y] = n([X YR + [#X.Y] + (#X(n(Y)) — #¥ (n(X)) ),
—1[¢X. Y] + IY (n(X)) 0, — I[X, ¢Y] — IX(n(Y))&,
—@1X, Y] = n([X YR + [#X.Y] + (#X(n(Y)) — #¥ (1(X)) ),
— 9[oX. Y]~ 9[X.6Y] - ((¢XY)+n(X¢Y>)
+ (X(() = Y(n(x)) )R
=N,y(X,Y) + 2dn(X, Y)R + 2dn(¢X, Y)o, + 2dn(X, ¢Y)é,
=Ny(X,Y) + 2dn(X, Y)R — 2((Lsxn)(Y) — (Loyn) (X)) ..
Similarly we have
Ni(X,0,) =I*[X,0,] + [IX, 10, — I[IX, 6] — I[X,10,]
— [¢X +n(X)0,, R| — I[¢X +n(X)0,, 0] + I[ X, R|
— [¢X.R] + R(n(X)) &, + ¢[X. R] + n([X. R]) &,
~ [#X.R] + $IX.R] + (n([X.R]) + R(n(X)) ),
=(Lrp)(X) + (Lrn) (X))

Separating the components tangent to the two factors, we define the following tensors
on M:

NW(X,Y) =Ny(X,Y) + 2dn(X, Y)R (3.2)

NOX,Y) =(Loxn)(Y) = (Loyn)(X) (3.3)

NO(X) =(Lrg)(X) (3.4)

N®(X) =(Lrn)(X). (3.5)

It is clear that the tensors N vanish foralli = 1, ..., 4 if and only if the almost contact

structure (17, ¢, R) is normal. The next lemma shows that this condition is redundant.

Lemma 3.40. If NV vanishes, then N = 0 fori = 2,3, 4.
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Proof. For any X € X(M) we have

0 =N"(X,R) = Ny(X,R) + 2dn(X, R)R

=¢’[X,R] — ¢[¢X,R] — Rp(X)R — n([X,R])R (3.6)
= — [X.R] + n([X.R])R — $[#X.R] — Rn(X)R — ([X.R])R
= — [X,R] — ¢[¢X,R] — Ryp(X)R . (3.7)

Applying 17 to (3.6) in the equation above yields n([X,R]) + Ry(X) = 0. This in turns
implies diy(R, X) = O for all X € X(M). Therefore Lzn = tzdy = 0,i.e. N® = 0.
Now replacing X by ¢X in in the above equation we get
N'"(¢X.R) = — [¢X.R] — $[¢°X.R] — Rn(¢X)R
=[R,¢X] - ¢[~X,R] — ¢[n(X)R,R]
=[R, ¢X] — ¢[R. X] = (Lrs)(X)
=N (X).
Thus NV = 0 implies N® = 0.
Finally, applying 5 to N\ (¢X, Y) with X, Y € X(M) gives
0 =n(N(¢X, Y)) = n(No(¢X. Y)) + 2dn(¢X, Y)
=n([¢°X.¢Y]) +2dy(¢X.Y)
= —n([X.0Y]) + n([n(X)R.¢Y]) + 2dn(¢X.Y)
= —1([X, ¢Y]) — ¢¥n(X) + n(X)n([R, #Y]) + 2dn(¢X.Y)
=2dn(¢X,Y) + 2dn(X, ¢Y) — 2n(X)dn(R, ¢Y)
=2((Loxm)(Y) = (Loyn)(X)) — 27(X)dn(R, ¢Y)
=2N@(X,Y) — 2n(X)dn(R, ¢Y) = 2N (X, Y).

O

So far we have only assumed that (7, ¢, R) is an almost contact structure. In the case
of a contact metric structure (7, ¢, R, g) the expression of the tensors simplifies.

Proposition 3.41. The tensor fields N® and N® vanish on a contact metric manifold
(M,n,$,R,g) . Moreover, N® = 0 if and only if (1, ¢, R, g) is K-contact.

Proof. When 7 is contact N*) = 0 trivially. Moreover, for any X, Y € X(M) we have

NO(X,Y) =(Lpxm)(Y) = (Loyn)(X)

=¢Xn(Y) — n([oX. Y]) — ¢Yn(X) + n([¢Y. X])
=2dn(¢X,Y) — 2dn(¢Y, X) = 2g(¥, X) — 2¢(X,Y) = 0.
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For the last statement recall that Lzdy = 0 because 7 is contact. Now we have
Lrg = dn o (Lrp ® Id) because g is the associated metric. Hence R is Killing if N©)
vanishes. Conversely, if R is Killing, then N®(X) = 0 for all X € D since dy is
non-degenerate on 9. Then N©® vanishes identically on M because Lz$(R) = 0. O

3.5 CR Structures

Contact structures, in particular normal ones, are closely related to CR structures. In
this section we recall some terminology on CR structures and explain their relation to
contact structures.

Definition 3.42. An almost CR structure on a manifold M is a subbundle D of the
tangent bundle TM endowed with an almost complex structure J. The subbundle (D, J)
is a CR structure if the Nijenhuis tensor N, vanishes and the vector field [JX, Y] +
[X,JY] is tangent to D for X,Y € D. In this case we will say that the almost CR
structure (D, J) is integrable.

Equivalently, an almost CR structure can be defined as a complex subbundle H of
the complexified tangent bundle T°M = TM ®; C such that H nH = 0. In this setting
the integrability condition corresponds to H being closed under Lie brackets, i.e. [X, Y]
being tangent to H for any two sections X, Y € H. In fact, given a subbundle D with
an almost complex structure J we can define H = {X — iJX| X € D}. Then the Lie
brackets of two vectors X, Y € H read

[X —iJX, Y —iJY] = [X,Y] — [JX,JY] —i([JX, Y] + [X,]Y])

so that H is involutive if and only if [JX, Y] + [X, JY] is tangent to D for X, Y € D and
the Nijenhuis tensor N, vanishes. Conversely, one can define D as the real part of the
complex subbundle H @ H and J by J(V + V) = i(V — V). Also in this case is clear
that the two integrability conditions are equivalent.

We focus now on the corank 1 case, that is, M has dimension 2n + 1 and D has rank
2n. In this case, assuming the orientability of M, there exists a 1-form 1 on M such
that 9 = kern and the tangent bundle of M splits non-canonically as TM = D ® R.
Therefore, given an almost CR structure (D, J), we can define an endomorphism ¢ of
TM by extending J trivially. This defines an almost contact structure (7, ¢, R) where
R is a section of R such that n(R) = 1. Vice versa, the distribution (D = kern, ¢p)
coming from an almost complex structure is clearly an almost CR structure.

We want to express the integrability condition of an almost CR structure in terms of
the associated almost contact structure. Ianus [62] proved that normality of the almost
contact structure is a sufficient condition. More precisely, this relation is given in the
following:

Proposition 3.43. An almost contact structure (1, $,R) on a manifold M is normal if
and only if
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1. the almost CR structure (D, ¢p) is integrable and

2. N® vanishes.

Proof. Denote by J the restriction of ¢ to the contact distribution . Then we rewrite
the first condition as

0=N,(X,Y) =[JX,JY] - [X, Y] - J([JX, Y] + [X,JY])

=[¢X, Y] — n([X. Y])R + ¢°[X, Y] — ¢([¢X. Y] + [X, ¢Y])
=N4(X,Y) + 2dn(X, Y)R

for X, Y of D. Moreover, we can read the second condition as
0 = (Lr¢)(X) = N ($X,R) = Ny($X, R) + 2dn(pX, R)R

where we used (Lz¢)(X) = N (¢X, R) from the proof of Lemma It is clear that
N = 0 on TM if and only if both these conditions are satisfied. O

The Levi form L of a corank 1 almost CR structure (D, J) is defined by L(X,Y) =
—dn(X,JY) for X,Y € D, where n is a 1-form such that kern = 9. If L is non-
degenerate then 7 is a contact form and its Reeb vector field R is transverse to 9. More-
over, if the Levi form is positive or negative definite, we say that (D, J) is strictly
pseudoconvex. In this case one can extend the Levi form to the metric g associated to n
by setting g(R,R) = 1 and g(R, X) = 0 for X € D. Thus a strictly pseudoconvex almost
CR structure defines a contact metric structure. Clearly the converse holds because a
contact metric structure is in particular an almost contact structure.

3.6 Sasaki structures

We are now ready to introduce the main object f this thesis, i.e. Sasaki manifolds. The
remainder of the chapter is dedicated to Sasaki structures and their properties.

Definition 3.44. A Sasaki structure (7, ¢, R, g) is a contact metric structure whose un-
derlying almost contact structure is normal, i.e. such that N() = 0. A Sasaki manifold
(M,n,$,R, g) is a smooth manifold M equipped with a Sasaki structure (1, ¢, R, g). A
manifold M admitting a Sasaki structure is called a Sasakian manifold.

Notation. In order to lighten the notation we may write M for a Sasaki manifold. In
this case the Sasaki structure is understood to be fixed.

As in the K-contact case several different structures with suitable compatibility con-
ditions come together in the definition of Sasaki structures. The abundance of under-
lying structures allows many approaches to Sasakian geometry. In analogy with the
K-contact case we discuss now various definitions of Sasaki manifolds.
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We begin by investigating the relation between Sasaki and K-contact structures. It
turns out that every Sasaki structure has a canonical underlying K-contact structure.

Corollary 3.45. A Sasaki structure (n, ¢, R, g) is K-contact.
Proof. This is a direct consequence of Lemma [3.40] and Proposition [3.41] |

Remark 3.46. Corollary [3.43] implies that Sasakian manifolds satisfy the topological
properties of K-contact manifolds presented in Section [3.3] in particular tori are not
Sasakian.

It is then natural to ask which additional conditions guarantee that a K-contact man-
ifold is indeed Sasaki. Combining Proposition [3.43] with Proposition [3.41] we get a
necessary and sufficient condition for a K-contact structure to be Sasaki. Namely, a
Sasaki structure consists of a K-contact structure satisfying an integrability condition.

Corollary 3.47. A K-contact structure (1, ¢, R, g) is Sasaki if and only if the underlying
almost CR structure is integrable.

This leads to two different viewpoints on Sasakian geometry. One may think of
Sasaki structures as strictly pseudoconvex CR structures (9, J) whose associated Reeb
vector field preserves J. In fact, such a CR structure defines a contact structure. The
Levi form L defines a transverse metric compatible with the contact structure. Since J
1s R-invariant this defines a K-contact structure, that is, a Sasaki structure because we
assumed the CR structure to be integrable.

Sasaki structures can also be regarded as K-contact structures whose underlying CR
structure is integrable. Hence, bearing in mind the additional integrability condition,
the discussion that led to Definition applies to Sasaki structures. In particular, one
can view Sasaki structures as contact forms with the choice of an integrable compatible
almost complex structure J which is R-invariant.

Sasaki manifolds can also be characterized as contact metric manifold whose metric
cone is Kihler.

Proposition 3.48. A contact metric manifold (M,n, ¢, R, g) is Sasaki if and only if the
cone (M x R*,d(t*n),1) is Kdihler.

Proof. 1t is clear that the form d(#*n) is symplectic and the almost complex structure [
is compatible with it. By definition a metric contact structure is normal if the associ-
ated almost complex structure on the metric cone is integrable. The claim then follows
directly from Definition [3.44] |

In fact, the analogy between Sasaki and Kéhler manifolds goes further than Propo-
sition [3.48] Namely, we can characterize Sasaki structures as contact forms with a
specific transverse Kihler geometry. In Section [3.3] we have discussed the analogy
between K-contact structures and almost Kdhler structures. Specifically, we have seen
that a K-contact manifold (M, n, ¢, R, g) is a contact manifold (M, ) with an R-invariant
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transverse almost Kihler structure of the form (dn, J, gp). Since a Sasaki manifold is
K-contact, the same applies in this context but more can be said. In fact, the transverse
almost complex structure J is integrable. That is, there exist foliated charts for the char-
acteristic foliation such that the transverse transition functions are holomorphic. This is
equivalent to integrability of the underlying almost CR structure.

Summarizing the discussion above we get several equivalent definitions of Sasaki
structures:

Definition 3.49. A Sasaki structure on a smooth manifold M is given by one of the
following equivalent structures:

i) A contact metric structure (1, ¢, R, g) whose underlying almost contact structure
is normal.

ii) A contact metric structure (7, ¢, R, g) whose metric cone (M X R*,d(tzn),l) is
Kihler.

iii) A strictly pseudoconvex CR structure (D, J) such that the associated Reeb vector
field R preserves J, i.e. LxJ = 0.

iv) A strictly pseudoconvex CR structure (D, J) such that the associated Reeb vector
field R preserves the Levi form L, i.e. LzL = 0.

v) A contact form n with an integrable compatible almost complex structure J such
that the flow of R preserves J, i.e. LgJ = 0.

vi) A contact form 1 with a metric g5 associated to a complex structure J such that
the flow of R preserves gp, i.e. Lrgp = 0.

vii) A contact form n with a transverse Kéhler structure of the form (dn, J, gp).

viii) A K-contact structure (7, #, R, g) whose underlying almost CR structure is inte-
grable.

These equivalences justify the heuristic of regarding Sasaki manifolds as the odd
dimensional analogues of Kihler manifolds. Moreover, it is clear that Sasaki manifolds
relate to K-contact manifolds as Kédhler manifolds relate to almost Kdhler manifolds. In
fact, a Sasaki structure, respectively Kéhler structure, is given by a K-contact strcture,
resp. almost Kihler triple, whose almost complex structure is integrable. We refer to
the discussion following Theorem [3.59)for further details.

Note that a Sasaki structure (1, ¢, R, g) is uniquely determined by the underlying CR
structure (kern = D, ¢|,, = J) and the Reeb vector field R. In order to see this suppose
(D, J) and R are given. Then the endomorphism ¢ is determined by simply extending
J trivially to TM. Now, since D is a contact distribution, there exists a contact form »’

such thatkern’ = D. Therefore we can recover n by setting n = "7, where f =1/ (R). We

want to show that R is indeed the Reeb vector field for . Notice that Lz = f'n since
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R preserves the contact distribution. Moreover, Lzn = tgdn + dign = tgdn. Therefore
we get
= fn(R) = Lrn(R) = trdn(R) = 0.

We conclude that R is the Reeb vector field of . Now the Sasaki structure is determined
by the identity g = dpold® ¢ + n®@n.

The above discussion suggests that it may be fruitful to consider deformations of
Sasaki structures that leave the CR structure or the Reeb vector field invariant. A defor-
mation of the former type is called a deformation of type I.

Definition 3.50. Let (M, n, ¢, R, g) be a Sasaki manifold and denote by (D, J) the under-
lying strictly pseudoconvex CR structure. Let S(D, J) be the space of Sasaki structures
with underlying CR structure (D, J). A deformation of type I is a deformation of the
Sasaki structure that leaves the underlying CR structure invariant, i.e. a deformation

inside S(D, J).

Deformations of type I have a very explicit description. Namely, let (1, ¢,, R;, g;) be
such a deformation. Since the contact distribution is preserved we have 1, = fi and
R, = R + p, where f; is a non-vanishing function and p is a vector field. Moreover, f;

has the form
1 1

n(R) 1+ n(p)

because 7,(R;) = 1. This implies n(p,) > —1. The endomorphism ¢, is then defined by
¢ = ¢ — PR, ® n, and the metric g; is determined by

fi=

gt:dntold®¢z+ﬂz®nz-

Conversely a deformation of the form R — R + p, with 7(p,) > —1 yields a deformation
of type L.

Now given a Sasaki manifold (M, n, ¢, R, g) we can consider deformations that leave
the Reeb vector field unchanged. Such deformations are given by a family of structures
(ns = n + &, &5, R, g5) with the following properties. The form ; is a basic 1-form, i.e.
Lres = {(R) = 0, and 575 A (dn,)" is nowhere vanishing. It is clear that R is the Reeb
vector field of ;. The endomorphism ¢, is then given by

¢S:¢_R®§SO¢

and the metric g, is associated to 17, and ¢, by by

gs:dnsold®¢s+7]s®ns-

We focus now on deformations that preserve the Reeb foliation ¥ but not necessarily
the Reeb vector field R. One can obtain such a deformation by composing a deformation
that fixes the Reeb vector field R with a rescaling of R by a constant function, i.e. R —
aR for a € R\{0}.
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Definition 3.51. Let (M,n,¢,R,g) be a Sasaki manifold and denote by ¥ the Reeb
foliation. Let S(F) be the space of Sasaki structures with Reeb foliation . A defor-
mation of type II is a deformation of the Sasaki structure that leaves the Reeb foliation
invariant, i.e. a deformation inside S(%).

Later in this thesis we will also study Sasaki structures up to isomorphisms and
equivalences.

Definition 3.52. Let (M, 1, $1, Ry, g1) and (M>, n2, ¢, Ra, g2) be two Sasaki manifolds.
A diffeomorphism f: M; — M, is an isomorphism of Sasaki manifolds if

f*m =m, and fid = ¢ f

(hence clearly f*g, = g1 and f,R; = R,). The two Sasaki structures (1, ¢, R, g;) and
(m2, ¢2, R2, g2) are then called isomorphic.

Definition 3.53. Two Sasaki structures (1, ¢1, R, g1) and (172, ¢, R», g») on a manifold
M are called equivalent if they can by identified by a sequence of isomorphisms and
smooth deformations. In this case the smooth deformations are arbitrary, hence, in
particular, they need not to be of type I and II.

We present now the structure theorem for Sasaki and K-contact manifolds which
will play a key role in this thesis. In order to do so we recall some classical results.
The first of these results is a theorem of Wadsley which gives a necessary and sufficient
condition for foliations by circles to be induced by smooth S '-actions.

Theorem 3.54 ([115)]). Let M be a manifold and F a foliation of M by circles. The
leaves of F are the orbits of a smooth S '-action if and only if there exists a metric g on
M for which the leaves of  are geodesics.

Remark 3.55. The condition in Theorem [3.54]is always satisfied on K-contact manifolds
or, more generally, contact metric manifolds. In fact, since the metric g is compatible

with 7 (cf. Definition [3.4)), the equality n(X) = g(X, R) holds. Therefore we get

0 = dn(R, X) = R(n(X)) — X(n(R)) — n([R, X])
(g(R

= RIg(R, X)) ~ n(VaX) + n(VxR)
= §(VR.X) + §(R ViX) — g(R V4X) + 3X(s(R.R))
= g(VrR, X)

for all X € X(M). This shows that the orbits of R are geodesics for g.

Corollary 3.56. Let (M,n, ¢, R, g) be a K-contact manifold such that the orbits of R are
circles. Then the flow of R induces a locally free smooth S'-action.
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Proof. By Remark the leaves of the Reeb foliation are geodesics for the metric
g. Therefore, Theorem implies that the flow of R defines a smooth S !-action.
Moreover, since R is nowhere vanishing, the action is locally free. O

We consider now compact K-contact manifolds. In this case the following theorem
of Rukimbira implies that if a compact manifold admits a K-contact structure, then it
admits one whose leaves of the Reeb fibration are circles, see [101]. We will state
and prove the result for K-contact manifolds even though it was originally proved in a
slightly different, although equivalent, setting.

Theorem 3.57 ([101]]). Let (M,n,¢,R,g) be a compact K-contact (Sasaki) manifold.
Then M admits a quasi-regular K-contact (Sasaki) structure.

Proof. Let (M,n, ¢,R, g) be a compact K-contact manifold. The Reeb vector field R is
Killing and, by Proposition [3.41] it preserves the endomorphism ¢. Therefore, its flow
defines a homomorphism

¢: R — Isom(M, g) n CR(M, D)

where CR(M, D) is the group of CR-transformations of (M, D). If the structure is
irregular, then the image of this homomorphism is not S!. Nevertheless, its closure is
an abelian subgroup, hence a torus because Isom(M, g) is a compact Lie group. We can
now pick an S'! in this torus corresponding to a vector field R’ arbitrarily close to R.

Consider the form n
/

n = .
n(R')
This is clearly a contact form because R’ is close enough to R and its Reeb vector field
is R'. With respect to the splitting TM = DD Ly the metric g is given by g = g Dn®n
where D = kern = kern’ and g = dn o (¢ ®1d). Let ¢’ be an endomorphism of TM
defined by

¢T]) = ¢\D’ ¢/<R,) =0.

We define a metric g’ on M as
/ / / / /
g =djo(¢®Id)+717' ®n'.

Since R’ is the Reeb vector field of 77/, its flow preserves 1’ and dry’. Moreover, it pre-
serves ¢ because it lies in the closure of the image of the homomorphism ¢. We conclude
that R’ is Killing for g’ and it preserves the CR structure. Therefore (1,¢',R’,g’) is a
quasi-regular K-contact structure on M.

By Corollary the K-contact structure (17, ¢, R, g) is Sasaki if and only if the un-
derlying almost CR structure (D, ¢|p) is integrable. Notice that the underlying almost
CR structure did not change in deforming (1, ¢, R, g) into (1, ¢', R, g') because, by def-
inition, ¢11) = ¢|p and kernp = kern/. Therefore, (17, ¢', R, g') is Sasaki if and only if
(n, ¢, R, g) is Sasaki. O
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Remark 3.58. By compactness, the leaves of a quasi-regular K-contact (Sasaki) structure
on a compact manifold are circles. Thus Theorem [3.57]implies that a compact (possibly
irregular) K-contact or Sasaki manifold admits a locally free S !-action given by the flow
of the Reeb vector field of a quasi-regular structure.

We are now ready to prove the structure theorem for K-contact and Sasaki mani-
folds. We state this theorem in a compact form that collects several results. Namely,
Theorem 6.3.8, Theorem 7.1.3 and Theorem 7.1.6 in [[15]].

Theorem 3.59 (Structure Theorem [15]). Let (M, n, ¢, R, g) be a compact quasi-regular
K-contact manifold and m: M — X the projection on the space of orbits of R. Then

i) X admits a symplectic cyclic orbifold structure X = (X, U) with symplectic form
w.

ii) m: M — X is a principal S '-orbibundle with connection 1-form n and curvature
dn = m*w.

iii) (M,n,$,R,g) is Sasaki if and only if w is a Kdhler form on X.

iv) The orbifold structure on X is trivial if and only if the K-contact (Sasaki) structure
is regular.

Conversely, let X = (X, U) be an almost Kiihler orbifold with integral symplectic class
[w]. Then the principal S'-orbibundle M = X associated to |w] is a quasi-regular
K-contact orbifold with contact form n such that dn = n*w. Moreover, M is Sasaki if
and only if X is a Kdhler orbifold.

Proof. We refer to Chapter [2] for the theory of orbifolds. By quasi-regularity and com-
pactness, every orbit can be covered by finitely many foliated charts and the intersection
of the orbit with each chart has finitely many connected components. Therefore, all or-
bits are circles. By Corollary [3.56] the flow of the Reeb vector field defines a locally
free S!'-action.

Now the first two claims follow from the Slice Theorem for smooth actions. Namely,
let x € X be an orbit and p a point on the orbit x. Let Z, be the isotropy group of p. There
exists a tubular neighbourhood of the form S, xz, S ' = M where S, is diffeomorphic to
(a neighbourhood of the zero section of) the normal bundle, i.e. the contact distribution
D. LetI', < Z, be the subgroup of the isotropy group acting effectively on the slice
S.. Thus we can define an orbifold atlas U on X consisting of charts of the form
(ST, 7| s.) around x € X. Notice that iv) follows immediately from this description.

Now n: M — X is a principal S'-orbibundle with charts (S, xz, S',T,,x) since
the S !-action is locally free. It is clear that D defines an Ehresmann connection for the
S !'-bundle with connection 1-form n. Let V denote the horizontal lift of a vector field V
on X. Then the formula JV = m.¢V gives a well defined almost complex structure J
on X because ¢ is invariant under the flow of R. Similarly, w(V, W) = dn(V, W) defines
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a symplectic form on X compatible with J. Therefore, (X, w, J) is an almost Kéhler
orbifold and we have proven claims i), ii) and iv).

Finally (X, w, J) is Kédhler if and only if J is integrable. This holds if and only if the
underlying almost CR structure is integrable because N,[V, W] = 7r*N¢‘D[‘~/, W]. Thus
iii) follows from Corollary R

Conversely, let U = {(U;, T, ¢;} and denote embeddings by A;;: U; — U;. The
integrality of [w] means that there exists a class e € H2, (X;Z) mapping to [w] under
the inclusion H?, (X;Z) — H?,(X;R). By Proposition the class [w] determines
a principal S'-orbibundle M 5 X with first Chern class ¢?”(M) = e. Namely, it
determines the transition maps A;; and the homorphisms 4, : I't — G in Definition W
Moreover, there is an atlas of M given by charts of the form (Ei,l";", ‘/’1*> where E; =
171' X Sl.

The form w is given by gluing together a collection of invariant forms w; € Qz(f] i)
By the argument given in Section [3.2] there exist a connection 1-form 7 on M such that
dn = n*w. This amounts to the existence of connections n; for the S !-bundle E; such
that dn; = 7y, w; satisfying the compatibility conditions. Now let R; be the vector field
in TS! < TE; such that n;(R;) = 1. Clearly we have dn;(R;) = 0. Consider a basis
(Viy..., Vo, R;) for TE; with Vi, ..., V,, € kern;. Then

ni N (dﬂi)n(vl, cees V2nsRi) = Ui(Ri)(dUi)n(Vl, cees Vzn)
= (T*w)"(Vi,..., Vo) = " (m Vi, ..., Vo) # 0

because 7, is an isomorphism when restricted to ker n;. Therefore, 1 is a contact form
on M because n; A (dn;)" is non-vanishing. Moreover, the R;’s patch together to give the
Reeb vector field R of 7.

Let J be the almost complex structure on X and A the associated metric. Once again
we lift 4 to a metric on the subbundle D = kern < TM. Define then a metric g on M

—_—

by setting g = n*h + n ® . Moreover, for V € TM we can define ¢V = Jr,(V) where
X denotes the horizontal lift of X € TU;. Then the discussion in Section shows that
(M,n,¢,R, g) is a K-contact manifold by construction.

Moreover, since 7, is an isomorphism on 9, the underlying almost CR structure is
integrable if and only if the almost complex structure J is integrable. In that case X is a
Kiéhler orbifold. O

The Structure Theorem [3.59) further justifies the analogy between Kéahler and Sa-
sakian geometry. Moreover, for quasi-regular structures it is even more evident that
Sasaki manifolds relate to K-contact manifolds as K#hler manifolds relate to almost
Kihler manifolds. Namely, a quasi-regular K-contact manifold M is a principle S !-
orbibundle over a symplectic orbifold (X, w). The K-contact structure (1, ¢, R, g) on M
determines an almost Kihler triple (w, J,h) on X and vice versa. The almost Kéhler
structure is then Kihler if and only if the K-contact structure is Sasaki.

Remark 3.60. We have already seen that an orbibundle has a trivial orbifold structure
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if the uniformizing groups of the base inject into the structure group. Therefore the
orbibundle M in Theorem [3.59| can be manifold only if the symplectic orbifold X is
cyclic, i.e. all its uniformizing groups are cyclic.

Remark 3.61. The form w represents the Euler class of the bundle M — X. Hence
it defines an integral class. In the Sasakian case this implies that the base orbifold is
a projective variety, see Theorem [2.54] Moreover, the topological space X underlying
the orbifold X is the quotient of a smooth manifold by a locally free smooth S '-action.
Thus the space X is a normal variety with cyclic quotient singularities and falls into the
discussion of Section In this sense Sasakian geometry can be considered the odd
dimensional counterpart to projective geometry rather than Kéhler geometry.

Remark 3.62. By Theorem any compact K-contact (Sasaki) manifold M admits
a quasi-regular structure. Therefore, M is always the total space of a principal S !-
orbibundle over a symplectic (projective) orbifold. Moreover, by Theorem [3.22] M is a
Boothby-Wang bundle over a symplectic (projective) manifold if and only if it admits a
regular K-contact (Sasaki) structure.

Remark 3.63. While every Sasakian manifold admits a quasi-regular structure, it is still
an open question whether all Sasakian manifolds admit a regular structure. In other
words, it is not known whether all Sasakian manifolds arise as Boothby-Wang bundles
over projective manifolds.

We conclude this section by presenting some examples of Sasaki structures. We
begin with the odd dimensional sphere S?**!. In Example we have seen the stan-
dard contact structure on S "1, c¢f. Example as a Boothby-Wang bundle over the
complex projective space CP" equipped with the Fubini-Study form. The Structure The-
orem implies that the standard contact structure on S >**! is indeed a regular Sasaki
structure. In fact, every projective manifold X with integral Kéhler class [w] provides an
example of regular Sasaki structure, see for instance Example .19 and Example [4.20]
Next we present some irregular and quasi-regular Sasaki structures on §'*+1,

Example 3.64. We produce now irregular contact structures on S2"™! as type I defor-
mations of the standard Sasaki structure (19, ¢o, Ro, o), see the description after Defi-
nition As usual we regard the sphere S2"! as the space of unit vectors in C"*1,

Define . ] ]
R, = Zwi (yia_x,- - Xia_y,-)

i=0
where w = (wy,...,w,) and w; is a positive real number for each i = 0,...,n. The
vector field R,, is the Reeb vector field for the contact form

T = Mo
T Xewi )

Following the description of deformations of type I we can write R,, = Ry + p,,. Notice
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that .
n(pw) = n(Ry) — 1= > wilad +y7) — 1> —1
i=0

so that R,, defines indeed a type I deformation (n,,, @,,, R, g,) of the standard structure
where ¢,, = ¢ — #R,, ®n,, and g,, is determined by

8w :dnwold®¢w+nw®nw‘

We denote by S*""!(w) the sphere S*'*! as a Sasaki manifold endowed with the Sa-
saki structure (1,,, ¢, Ry, ). It is easy to see that the structure just defined is irregular
unless w; € Q for all i = 0, ...,n. This instance is described in further detail in Exam-

ple[3.63 below.

Example 3.65. Consider the weighted sphere S*'*!(w) defined in Example As-
sume that wg < --- < w, and that w; € Q for all i = 0, ..., n. Then the orbits of R,, are
circles, i.e. the structure (1., @, Ry, &) is quasi-regular.

By the Structure Theorem this determines a S !-orbibundle : $*"*!(w) — X
over a projective orbifold (X, w). Without loss of generality we can multiply w by the
lcm of the denominators and redefine the action to get 0 < w; € Z. Moreover we can
divide by the ged of the integers so obtained to achieve the condition ged(wy, ..., w,) =
1. This does not change the space of leaves of the S'-action, i.e. the base orbifold X,
but it rescales the Kéhler form w on X.

Recall the C*(w) action on C"*! defined in Example [2.37} Now the orbits of R,
coincide with the restriction to S*'*! of the orbits of the C*(w)-action. Thus the base
orbifold X of the fibration is the weighted projective space CP"(w) defined in Exam-
ple Namely, there exists a unique Kéhler form w on CP"(w) such that 7*(w) = n,,.
The class [w] is the image in H2 (CP"(w);R) of the first Chern class of the principal
orbibundle 7: §**1(w) — CP"(w).

Example 3.66 (Links). Consider the C*(w) action on C**! of Example [2.37| and let f
be a weighted homogeneous polynomial as in Definition [2.43] Recall that f defines
a hypersurface in CP"(w) if pr=!(X;) < C"*'\{0} is smooth, see Proposition [2.45
Notice that this condition is equivalent to smoothness of the set of zeroes V, of f. We
will assume that f satisfies this condition. The link of V; is the smooth manifold L,

given by the intersection
Lf _ Vfﬂ52n+1 )

If 0 € C"*!is a regular point for f, then L; is diffeomorphic to the standard sphere S2"~!
by the Morse Lemma, see [87, Lemma 2.12]. Hence we will assume that 0 € C"*! is
a singular point for f, that is, f has no linear terms. As a differentiable manifold L is
rather simple. Namely, it is (n — 2)-connected by Milnor’s Fibration Theorem [§7].

We want to show that L, supports a Sasaki structure. More precisely, the structure
(s Pws Ryys &) o0 SZT1(w) of Example induces a Sasaki structure on L. In order
to show that we need the following:
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Definition 3.67. Let (M,n, ¢, R, g) be a Sasaki manifold. An immersed submanifold N
is said to be an invariant submanifold if

1. Ris tangent to TN at all points p of N and
2. ¢T,N c T,N forall pe N.

The following result shows that an invariant submanifold is a Sasaki manifold in a
natural way.

Lemma 3.68 ([96]]). An invariant submanifold N of a Sasaki manifold (M,n,$,R, g) is
Sasaki with the structure given by the restriction of (n, ¢, R, g) to N.

Proof. Clearly the restrictions of 7 and g to N are well defined. The two conditions in
Definition ensure that R and ¢ are well defined on N. Moreover they satisfy on N
all the compatibility conditions that are satisfied on M. Thus (N, 7,4, R, g) is a Sasaki
manifold. o

We can now show that L, inherits a Sasaki structure from S2"*!(w) . According to
Lemma (3.68 we have to show that

1. R, is everywhere tangent to 7L and
2. ¢,T,Ly < T,Lyforall p e Ly.

Let A be an element of §! < C*. Differentiating the equation f(1z) = A%f(z) in the
direction of R,, we get

R,(f) = df(Ry)d - f.

Thus df(R,,) vanishes along Vs and, a fortiori, along L. In order to prove the second
claim denote by J the standard complex structure of C"*!. The endomorphism ¢,, coin-
cides with J both on D,, = kern, and on Dy, = kern;,, where we are writing n, for
N, restricted to Ly to avoid the clash of notation. Since ¢,,R,, = 0 condition 2 in Defi-
nition becomes ¢wDr, < Dy,. Notice that Dy, = D,, N TV;. Now ¢, leaves D,,
invariant and coincides with J on Dy .. The set V is defined by a holomorphic equation
hence JTV; < TV;. We conclude that ¢,,D;, ;< Dy i

We have shown that the weighted sphere S?'*!(w) induces a Sasaki structure on
Ly. Recall that we have a principal orbibundle 7: $%'*!(w) — CP"(w) because the
weights w; are positive integers. What we have just proven implies that the canonical
inclusion ¢: Ly — S?"*!(w) is a Sasakian embedding. Moreover the two structures
are regular, see Example [3.65] Hence we have the following commutative diagram

Lf L ) SZn-H(W)

Xf H CP” (W)
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where the horizontal lines are Sasakian and Kihler embeddings respectively while the
vertical arrows are principal S '-orbibundles.

3.7 Transverse Hodge theory

This section is dedicated to the transverse geometry of K-contact and Sasaki manifolds.
We review some properties of Sasaki manifolds which depend on the transverse Kihler
structure. In particular, we focus on the basic cohomology of the Reeb foliation.

Let us begin with the definition of the basic cohomology of a foliation. Let ¥ be
a foliation on a smooth manifold M. Denote by Q7 () be the set of basic r-forms. A
form is basic if it is horizontal and invariant. Namely, a r-form a € Q' (M) is basic if

tya =0 and (yda=0 (3.8)

for all vector fields V tangent to #. It is clear that the exterior derivative of a basic
form is again basic. Therefore, the direct sum Qz(F) = @,Q%(F) is a subcomplex of
the de Rham complex Q(M). When relevant, we denote the restriction of the exterior
derivative to basic forms by dp.

Definition 3.69. The basic cohomology of the foliation 7 is the cohomology of the
complex Qp(F).

Now let (M, n, ¢, R, g) be a compact K-contact manifold. When the contact structure
is regular M is a S '-bundle over a symplectic manifold X. Thus the cohomology ring
of M can be computed from that of X via the Leray-Hirsch Theorem and the Gysin
sequence of the bundle. We want to derive a generalization of the Gysin sequence for
K-contact structures which are not necessarily regular, namely, we want to get a long
exact sequence which gives a relation between the cohomology groups of M and those
of the base orbifold.

Assume ¥ is the Reeb foliation of a compact K-contact manifold (M,n, ¢, R, g).
The isometry group Isom(M, g) is a compact Lie group because M is compact and
the flow of the Reeb vector field R generates a one-parameter subgroup in Isom(M, g).
Therefore, the closure of the flow of R in Isom(M, g) is a torus T. Let Q(M)” be the
set of T-invariant forms on M, i.e. the set of forms 8 such that Ly = 0 for all vector
fields V tangent to T. Notice that Qp(F) < Q(M)T since the orbit of R is dense in
T. On the other hand, the form ¢z is basic for any T-invariant form «. This follows
from tgiger = 0 and g(diga) = Lr(tga) = 0. Therefore, we have a short sequence of
complexes

0 — Q}(F) — Q*(M)" -5 Q1 (F) — 0.

We want to show that this sequence is exact and study the induced long exact se-
quence in cohomology. Exactness in the middle term follows directly from the defini-
tions of Qz(F) and Q(M)". Thus we only have to prove surjectivity of the last map. For
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any form a we have (z(n A @) = @. We want to show that the form n A « is T-invariant
when « is basic. Let V be a vector field in the Lie algebra t of 7. Then we have

Lv(nra)=(Lyn) na+nn Lyla).

Here the first summand vanishes because V € t preserves the contact form. Moreover,
the second summand vanishes because basic forms are 7T-invariant.

The cohomology of the complex Q(M)T is isomorphic to the de Rham cohomology
H*(M;R) because T is compact [53, Chapter IV]. Therefore, the induced long exact
sequence reads

. — Hy(F) — H'(M;R) — Hy Y(F) - HYF) — - (3.9)

where the connecting morphism § is given by 6[a| = [dn A ] = [dn] U [a].

Now let (M, n, ¢, R, g) be a quasi-regular K-contact manifold and let 7: M — X be
the associated principal S !-orbibundle. We want to show that r induces an isomorphism

of complexes
QY (X) — Qp(F)

where Q*(X) is the complex of forms in the orbifold sense. Let 8 be a form on X.
Clearly (g*B = 1,88 = 0. Moreover, the form 7* is invariant under the flow of R
because 0 = Ln*B = (zgdn*B. Thus 7B is a basic form on M. Conversely, given a
basic form @ on M, we can define a form 8 on X such that 7*8 = «@. Recall from the
proof of the Structure Theorem that the charts of X around x = n(p) are given by
slices S, for the S !-action around the orbit x. The form S is then given by the pullback
of @ under the embedding S, <— M. This is independent of the choice of the point p in
the orbit x at which we take the slice. It is clear that this is a one-to-one correspondence.
Hence, for quasi-regular K-contact manifold one gets an isomorphism

"2 Hp(X) = H*(X;R) — Hy(F),

where the first isomorphism is described in Proposition [2.13]

Therefore, the long exact sequence (3.9) now reads
.- H'(X;R) — H'(M;R) — H'(X;R) -5 H*' (X;R) > --- . (3.10)

One clearly recovers the usual Gysin sequence with real coefficients in the case of reg-
ular compact K-contact manifolds.

The basic cohomology of compact K-contact manifolds satisfies many properties
due to the existence of a transverse Hodge theory. Let us introduce the main objects
involved. We begin by defining the transverse Hodge star:

a=+nAra)=(—1)ig*xa (3.11)
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where « is a r-form. Following the analogy with standard Hodge theory, we define
the adjoint 65 of the exterior derivative dg by 65 = —xDp*. The basic Laplacian Ag
is then given by Ap = dpdp + dpds. We can now define the vector space 7{{3(7“) of
harmonic r-forms to be the kernel of the basic Laplacian ker Az < Q%(7). One easily
sees that ker A = ker 63 n kerdp. The next theorem of El Kacimi-Alaoui and Hector
[42] constitutes the transverse analogue of the Hodge Theorem and of Poincaré duality.

Theorem 3.70 ([42]). Let (M, n, ¢, R, g) be a compact K-contact manifold of dimension
2n + 1 and F its Reeb foliation. Then we have

i) Each basic cohomology class admits a unique harmonic representative, i.e.
HL(F) =~ Hz(F).

it) The vector spaces Hy(F ) are finite dimensional and Hy(¥) = 0 for r > 2n.
iii) There is a non-degenerate pairing
Hy(F)®H,'(F) — R
(aklg) | nnang.

From this theorem and the sequence (3.9) we can derive the following

Proposition 3.71. Let (M,n,¢,R,g) be a compact K-contact manifold of dimension
2n + 1. Then

i) Hi(F) =R,

ii) [dn| is a non-trivial class in H3(F),
iii) the even degree basic cohomology vector spaces Hy (¥) are non-trivial and
iv) Hy(F) =~ H'(M).

Proof. Recall the long exact sequence (3.9):
o HY(F) — H'(M:R) = Hy™!(F) = it (F) — -

For r = 2n + 1 the sequence gives an isomorphism ¢: H*'*'(M;R) — H3'(¥) because

Hy(F) = 0 for r > 2n. This isomorphism is induced by contracting with R. Therefore,

¢ maps the class [ A (dn)"] to the basic class [dn"]. We conclude that [dr] is a non-trivial

class. Moreover, since [drf"] generates H2'(F ) we have [dn'] # O forall 0 < r < n+ 1.
Now consider the sequence (3.9) for r = 1, i.e.

0 —> HY(F) — H' (M;R) —> R > HA(F) — -
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Recall that the connecting morphism § maps a class [@] to [dp A @] = [dn] U [].
Since [dn| # 0, the connecting morphism ¢ is injective in degree 0. Hence we get an
isomorphism Hy(F) =~ H'(M;R). m

Remark 3.72. If the K-contact structure is quasi-regular the previous theorem holds
when replacing basic cohomology by orbifold cohomology.

We can then define some transverse invariants of K-contact structures which origi-
nate from basic cohomology.

Definition 3.73. Let (M, n, ¢, R, g) be a compact K-contact manifold of dimension 2n+1
and F its Reeb foliation. The r-th basic Betti number b”(F) is the dimension of the
r-th basic cohomology vector space, i.e.

b2(F) = dim (Hy(F)).
Similarly, we define the basic Euler characteristic y () to be

2n

X(F) = X (=1) dim(Hg(F)).

r=0

It was proven in [43] that if f: (M,n,¢,R,g) — (M,n',¢',R’,g’) is a K-contact
transformation, then f induces a ring isomorphism f*: Hj(¥') — Hj(¥). That is,
the basic cohomology of a K-contact manifold is invariant under K-contact transforma-
tions. A stronger result holds when the K-contact structure is Sasaki. Namely, the basic
cohomology of a Sasaki manifold M is a topological invariant of M, see Theorem 5.2}

Let us move on to Hodge theory for Sasaki manifolds. Assume (M, n, ¢, R, g) to be
a Sasaki manifold for the remainder of this section. We consider the complexification
De = DR C of the contact distribution D. Since (D, ¢),,) is a complex bundle, ¢, has
eigenvalues i and —i. Denote by D, o, respectively Dy, the eigenspace relative to the
eigenvalue i, resp. —i. Now let D', resp. D!, be their duals. Then we can define the
basic forms of type (p, g) to be sections of the bundle (A" D) A(A? D). The set
of basic (p, g)-forms will be denoted by Q74(F). In analogy with the almost complex
case, we can define the operators ¢ and ¢. Moreover, the integrability of the CR structure
yields dg = 0 + 0.

Definition 3.74. The complex (Q**(F), 0) is called the basic Dolbeault complex and
its cohomology H**(F) is the basic Dolbeault cohomology of the Sasaki manifold
(M,n,$,R,g). The basic Hodge numbers /7?(F) are defined to be

H4(F) = dim(HP(F)).

Notation. When the Sasaki structure on a manifold M is understood we will write
he4 (M) instead of Wy (F).
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Remark 3.75. If the Sasaki structure is quasi-regular, the basic Dolbeault complex is the
Dolbeault complex of the orbifold X.

Since the Reeb foliation of a Sasaki manifold is transversally Kihler, it is natural
to ask whether the basic Dolbeault cohomology of a Sasaki manifold enjoys some of
the properties of the Dolbeaut cohomology of a Kihler manifold. The following the-
orems of El Kacimi-Alaoui [41] give a positive answer to this question. In particular
El Kacimi-Alaoui’s results provide a relation between basic Dolbeault cohomology and
the cohomology H(F; C) of the complex of basic complex valued forms Q% (%). In
order to lighten the notation, we will not specify the coefficients when they are clear
from the context.

The first theorem that we present collects some results from [41] among which the
transverse versions of the Hodge decomposition and of Serre duality.

Theorem 3.76 ([41]). Let (M,n,$,R, g) be a compact Sasaki manifold of dimension
2n + 1. Then

i) H™(F) o HY(F) ~ R.

ii) The basic form dn is of pure type (1,1), i.e. [dn] € H"'(F) n H3(F).
iii) The group H"" (F) is non-trivial for all 0 < r < n + 1.
iv) Complex conjugation induces an isomorphism HP4(F) =~ H?P(F).

v) There is a decomposition Hy(F;C) = HPA(F).

p+q=r

vi) The odd degree basic cohomology vector space H?“ (F) is even dimensional for
r<n.

vii) There is an isomorphism HP(F ) =~ H"~P"~4(F).
Corollary 3.77. The basic Hodge and Betti numbers of a Sasaki manifold satisfy the

following relations

' (F) = Wy 7T = WGP (F). - bp(F) = Y, ().

ptgq=r

In analogy with the Kihler case, the basic operator L: Q3(F) — QpF*(F) is
defined by
La = a A dn. (3.12)

Its adjoint A: Q7 (F) —> Q *(F) is therefore given by
A = —*Lx. (3.13)

The proof of the standard case applies mutatis mutandis to prove Theorem In
particular, we define the basic primitive cohomology group P’ () as the kernel of the
map induced by A in cohomology.
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Another result in [41] which is relevant to our discussion is the transverse Hard
Lefschetz Theorem.

Theorem 3.78 ([41]]). Let (M,n,¢,R,g) be a compact Sasaki manifold of dimension
2n+1 and let L be the operator induced in cohomology by (3.12). Then L*: Hg*k (F) —

Hg+k(T ) is an isomorphism for 1 < k < n. Moreover there is a decomposition

Hy(F) = P LPMF).

k=0

Remark 3.79. Let (M, n, ¢, R, g) be a compact quasi-regular Sasaki manifold of dimen-
sion 2n + 1. By the Structure Theorem, M is the total space of a principal S '-orbibundle
M % X over a Kihler orbifold. Thus the basic and Dolbeault cohomology of the Reeb
foliation are isomorphic to the de Rham and Dolbeault cohomology of X. Since the
isomorphism is given by 7*, the Kéhler class [w] maps to [dr].

If the structure on M is regular, then the basic forms agree with pullbacks of forms on
the base of the S !-bundle M ©> X where now X is a smooth projective variety. Then the
basic and Dolbeault cohomology are isomorphic to the standard de Rham and Dolbeault
cohomologies. In this case the transverse Hodge decomposition and transverse Hard
Lefschetz Theorem reduce to the standard ones.

Let us now discuss further transverse invariants of Sasaki structures. Consider the
contact distribution P and its Chern classes. We can compute representatives of the
Chern classes of 9 via Chern-Weil theory with the use of a connection V? on D. We
consider a connection V given by taking the projection of the Levi-Civita connection of g
onto D. When restricting V to D, we get a connection V2 on D. This is compatible with
the transverse Kihler metric g4 and torsion-free by definition. Moreover LzV? = 0
because the metric is compatible with g4 and R is Killing. Therefore, the connection 1-
form of V? is basic because (V2 = 0, see [9, Lemma 6.2]. Hence, the curvature 2-form
Q of V is also basic. Moreover, since the Reeb foliation is transversally holomorphic, Q
is a basic (1, 1)-form. Chern-Weil theory then implies that the i-th Chern class ¢;(D) €
H?*(M,Z) of D is represented by a basic (i, i)-form a;.

Definition 3.80. Let (M, 7, ¢, R, g) be a compact Sasaki manifold. The i-th basic Chern
class ¢;(¥) is defined to be the class [@;] € H"(F) defined above.

Remark 3.81. Let (M, n, ¢, R, g) be acompact (quasi-)regular Sasaki manifold and M 5
X the associated principal S!-(orbi)bundle. Then the basic Chern classes of M are
identified with the (orbifold) Chern classes of the tangent bundle of X.

Lemma 3.82. Let (M,n,¢,R, g) be a compact Sasaki manifold. Then the basic Chern
classes map to the Chern classes of D under the natural inclusion H" () — H*(M).
In particular, if M is quasi-regular with associated principal S'-orbibundle M > X,

then ¢ (X) = c;i(F).

Proof. Both statements follow directly from the construction of basic Chern classes. 0O
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We conclude this section with the definition of type for Sasaki structures.

Definition 3.83. Let (M, n, ¢, R, g) be a compact Sasaki manifold. The Sasaki structure
is of positive type, respectively negative type, if the first basic Chern class ¢;(¥) can
be represented by a positive, resp. negative, definite (1, 1)-form. The structure will be
called null if ¢, () = 0. In these cases the Sasaki structure is definite. Otherwise it is
called indefinite.

Notation. We often simply say that a Sasaki structure of positive, respectively negative,
type is positive, resp. negative. When we refer to the type of a definite Sasaki structure
we are considering whether it is positive, negative or null.

Example 3.84. Let X be a Kihler manifold with ample canonical bundle Kx. By the
Kodaira Embedding Theorem X is a projective manifold and the canonical class Ky, or
any positive multiple of it, can be represented by a Kihler form w. Now the Boothby-
Wang bundle M over (X, w) is a regular Sasaki manifold whose first basic Chern class
is exactly ¢1(X) = —Ky, that is, a negative multiple of a Kéhler class. Therefore M is a
negative Sasaki manifold. Summarizing, given a Kédhler manifold with ample canonical
bundle we can associate a negative Sasaki manifold to each choice of a Kihler form
representing a negative multiple of ¢;(X).

Links provide a class of Sasaki manifolds that are always of definite type, see Ex-
ample[3.66] The following proposition gives a simple numerical condition for the type
of the standard Sasaki structure on a link. We use here the notation from Example [3.66]

Proposition 3.85 ([16]). Let Ly = S*'*!(w) be a link. Then the basic first Chern class
is a multiple of |dn,,|p and the Sasaki structure is

i) positive if and only if > w; —d > 0,
i) negative if and only if >, w; —d < 0,
i) null if and only if Y w; —d = 0.

3.8 The join construction

In the Kihler setting there exists a straightforward way to produce new Kéhler manifolds
from known ones. Namely, the product M, x M, of two Kihler manifolds (M;, w) and
(M,, w,) can be endowed with the Kihler forms kyw; + kyw, for parameters ky, k, > 0.
Clearly the product of two Sasakian manifolds cannot be Sasakian for dimension rea-
sons. The goal of this section is to present a construction of Sasaki manifolds introduced
in [[17]. This operation, called the join construction, plays the role of products in the Sa-
saki setting.

Remark 3.86. The results in this section will be proved for Sasaki manifolds but they
hold true in the K-contact setting. Therefore we will give the definitions and the state-
ments for both cases.
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Definition 3.87. Let (M,n,$,R, g) be a quasi-regular contact manifold such that the
leaves of the Reeb foliation are compact, e.g. M is compact. The order v(M,n, ¢, R, g)
of the contact manifold M is the least common multiple of the orders of the isotropy
groups of the S'-action on M. We will write v(M) when the contact structure is under-
stood.

Now let (My,n1,¢1,R1,g1) and (My, 12, #,, R», g2) be two compact quasi-regular Sa-
saki manifolds. By the Structure Theorem M, is a principal S '-orbibundle over a
Kihler orbifold X; with Kihler class [w;| € H>, (X;;Z). For all integers ky, k, > 0 the
form kyw; + kyw, is an integral Kéhler form on the orbifold X; x X,. Therefore, the
class [kjw; + kyw,] € H?, (X x X,;Z) determines a principal S '-orbibundle

orb

T M1 *f ko Mz —>X1 X Xz.

By the Structure Theorem [3.59, M, % «, M has a Sasaki structure determined by a
connection 1-form with curvature 7*(kjw; + krw,). Note that the total space of this
orbibundle is in general an orbifold and not a smooth manifold.

Definition 3.88. The (k;, k»)-join of two compact quasi-regular Sasaki, respectively
K-contact, manifolds (M, 7, ¢1, Ry, g1) and (M,, n2, ¢2, Ra, g2) is the Sasaki, resp. K-
contact, orbifold M, *, x, M, constructed above.

Since we are interested in constructing smooth Sasaki manifolds, we characterize
the pairs (k;, ky) for which M, x;, x, M, is a smooth manifold. In order to do so consider
the manifold M; x M, as a torus orbibundle bundle over X; x X,. Notice that the total
space M, x, x, M, can be seen as the quotient of M, x M, by a circle action given by

SIXM1XM2%M1XM2
(3.14)

<€i6, X, y> 3 (xeikzﬂ’ ye—ikle)

Therefore, the orbifold structure on M; ;, x, M> is trivial if and only if the circle action
above is free. Let (x,y) be a point in M; x M, and denote by v,, respectively v,,
the order of the isotropy group of x, resp y, for the S!'-action on the compact quasi-
regular Sasaki manifold M, resp. M,. Clearly the isotropy subgroup at (x, y) has order
V(xy) = ged(vika, vyky). In conclusion, the circle action on M, x M, is free if and only
if ged(v ko, vyky) = 1 for all (x,y) € My x M.

A notable case is when both M and M, are compact regular Sasaki manifolds. In
this case M| %, x, M, is a regular Sasaki manifold whenever k; and k, are relatively
prime, e.g. when k; = k, = 1. For this reason we give the following

Definition 3.89. The join MM, of two compact regular Sasaki or K-contact manifolds
is the (1, 1)-join M, *;; M,.

We close this section with a characterization of the join in terms of the S '-orbibundle
associated to the Sasaki structures.
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Proposition 3.90. Let M, *i, x, M, be the smooth join of two compact quasi-regular
Sasaki or K-contact manifolds M, and M,. Then M, y, 1, M, is a bundle over X, with
fiber M/Zy, associated to the orbibundle M, — X.

Proof. My %, 1, M, is the quotient of M; x M, by the circle action (3.14). Let the

subgroup Z;, < S U act first to obtain the quotient M; x M,/Z;,. Denote a point in

M, x M, /Zy, by (x, [y]). Now M %, «, M5 is the quotient of M, x M, /Z;, by the diagonal
. . 'k

S1-action where S! = S!/Z,, acts by (x, [y])e? = (xe®, [ye '=?]). By definition this is

the M,/Zy,-bundle associated to M; — X. O

Corollary 3.91. Let M, x M, be the join of two compact regular Sasaki or K-contact
manifolds My and M,. Denote by M — X, and M, — X, the associated Boothby-Wang
fibrations. Then My x M, is a M,-bundle over X.

Remark 3.92. The roles of the compact regular Sasaki manifolds M, and M, are inter-
changeable. Hence, M, » M, is a M,-bundle over X5.

Remark 3.93. The join construction for K-contact manifolds is a special case of the
contact fiber bundles by Lerman, see [83]].

3.9 Topology of Sasakian manifolds

We conclude this chapter by reviewing some of the topological properties of Sasakian
manifolds.

We begin by showing that in dimension 3 every K-contact structure is Sasaki. This is
a consequence of the fact that every almost complex structure on a surface is integrable.

Theorem 3.94. A 3-dimensional K-contact manifold (M,n, ¢, R, g) is Sasaki.

Proof. By Corollary [3.47, we have to show that the induced almost CR structure is
integrable. Let H = {X — iJX|X € D} as in Section We want to prove the
integrability condition

[X — ipX,Y — ipY] € H forall X,Y € D. (3.15)

By Proposition m the tensor N vanishes. Thus we get N (¢X,Y) = n([¢X, Y] +
[X,¢Y]) = 0for X,Y € D. Thus (3.15) is equivalent to

O[X, Y] — [6X, pY] — [¢X, Y] — [X,#Y] = O forall X,Y € D.

The equation above is easily verified by choosing a basis of D of the form {X,Y =
dX}. O

We now turn our attention to Sasaki manifolds of higher dimension. It is very nat-
ural to ask which topological properties of Kéhler manifolds are enjoyed by Sasakian
manifolds.
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We begin by investigating formality. For the basic material we refer the reader to
[44]. Consider a commutative differential graded algebra (A,ds) (CDGA A for short)
over R. We denote by |a| the degree of an element a € A and by H*(A) the cohomology
of the complex (A,d4). The CDGA we mainly focus on is the de Rham complex of a
Sasakian manifold.

A CDGA A is called minimal if

1) A is the free algebra /\ V over a graded vector space V.
2) There exists a set of generators {q;}, indexed by a well-ordered set, such that

i) |a;| < |a;|fori < jand

i1) daa; is expressed in terms of a; for j < i.

A morphism of CDGA’s is then a morphism of algebras that commutes with the differ-
ential and respects the grading. A quasi-isomorphism of CDGA’s is a morphism which
induces an isomorphism in cohomology. More generally, we can define the notion of
weak equivalence. Namely, two commutative differential graded algebras A and B are
said to be weakly equivalent if there is a sequence of quasi-isomorphisms

A<—C1—>C2<—<—Cn—>B

An elementary extension of a CDGA (A, d,) is a CDGA of the form (B = A® /\ V, d3)
satisfying the following properties:

1) V is finite-dimensional and all elements of V have the same degree.
ii) dg(a) = da(a) foralla € A and dg(v) € Aforallve V.

A minimal model for a CDGA A is a minimal commutative differential graded algebra
/\ V together with a quasi-isomorphism p: /\ V — A. A CDGA is called connected
if its O-th cohomology group is isomorphic to R. Every connected CDGA admits a min-
imal model which is unique up to isomorphism, see [38]. Therefore, weakly equivalent
connected CDGA'’s have isomorphic minimal models.

Definition 3.95. Let M be a connected manifold and /\ V the minimal model for its de
Rham complex Q(M). Consider the cohomology H’j,(M) as a CDGA with trivial differ-
ential. The manifold M is formal if /\ V is a minimal model for H%,(M). Equivalently,
M is formal if there exists a morphism of CDGA’s y: /\ V — H’ (M) inducing an
isomorphism in cohomology.

Kéhler manifolds form a class of manifolds which enjoys formality [33]]. It is then
natural to ask whether Sasakian manifolds are formal. The first results in this direction
were given by Tievsky in his Ph.D. thesis [[113]. We briefly review his results.

Let (M, n, ¢, R, g) be a compact Sasaki manifold. Consider the operator d} = i(0—0)
on complex valued basic forms. Let Q5(7) be the complex of d‘-closed forms with
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differential given by dg and Hy(¥ ) its cohomology. Let V = (y) be a graded vector
space with [y| = 1. An elementary extension by /\ V is then determined by defining
dy. Now one can define morphisms relating an elementary extension of the basic d‘-
cohomology with the de Rham complex. Namely, consider

(Q‘g(?") ® AV.dy = dn) — (H;;(?‘) ®AV.dy = [dn]>

a+BRy > o]+ [Bl®y.

Moreover, we can define the morphism

(5 @ AVidy = di) —Z (@(M),d)

a+BR)Y ———— a+BA7.
The main result in [113] is the following:

Theorem 3.96 ([113])). Let (M,n, ¢, R, g) be a compact Sasaki manifold. Then the dia-
gram

(H57) @ A Vady = [dn) < (Q57) ® A Vody = d) = (Q(M), d)
is a weak equivalence of CDGA’s.

Moreover, (H5(F) ® /\ V.dy = [dy]) is isomorphic to (Hz(F) ® A V,dy = [dn]).
Therefore, the minimal model of (H 3(F)® A\ V,dy = [dn]) is isomorphic to the min-
imal model of (Hz(M),0). A compact contact manifold satisfying this condition will
be called a Tievsky type manifold.

Generally, determining whether a manifold is formal is a difficult problem. An im-
portant tool in detecting non-formality is given by Massey products. Massey products
are indeed an obstruction to formality, a proof of this fact can be found in [33]] in the dis-
cussion after Theorem 4.1. Using this result, it is easy to see that there exist non-formal
Sasakian manifolds. In fact the Boothby-Wang fibration over a torus (72)" with stan-
dard Kihler class gives such a manifold. In [10] Biswas, Ferndndez, Mufioz and Tralle
proved that all higher order Massey products vanish on Sasakian manifolds. Hence only
triple Massey products can detect non-formality.

Another important topological property of Sasakian manifolds is the Hard Lefschetz
Theorem which was proven in the Sasaki setting by Cappelletti Montano, De Nicola
and Yudin.

Theorem 3.97 ([25]). Let (M,n,¢,R,g) be a compact Sasaki manifold of dimension
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2n + 1. Then for 0 < r < n there exists an isomorphism

L anr(M) _ Hn+r+l(M)
18] = [n A (dn)" ~ Bl

where B is the unique harmonic representative of its cohomology class. Moreover, the
isomorphism is independent of the Sasaki metric.

A compact contact manifold with such an isomorphism is called a Lefschetz contact
manifold. An example of Lefschetz K-contact manifold of Tievsky type which does not
admit a Sasaki structure was given in [24]. In this case the obstruction is given by the
fundamental group.

As in the Kihler case, the class of fundamental groups of compact Sasakian mani-
folds satisfies several properties. For instance, we have the following:

Proposition 3.98. The abelianization H,(M) of the fundamental group n;(M) of a Sa-
sakian manifold M has even rank.

Proof. This follows directly from part iv) in Proposition and Corollary on the
basic Hodge numbers of a Sasaki manifold M. Namely, for any Sasaki structure on M
the basic Hodge numbers satisfy 2'%(F) = h®(F) = 1b,(F) = 1b(M). O

Fundamental groups of compact Sasakian manifolds are known to meet further con-
straints. Since such groups are the subject of Chapter [6] we review the literature on
Sasaki groups in detail in Section4.3]



Chapter 4

Group extensions and Kihler groups

As a consequence of the Structure Theorem [3.59] the topology of Sasakian manifolds is
closely related to the topology of Kihler orbifolds. In particular, fundamental groups of
compact Sasakian manifolds can be described in terms of projective orbifold fundamen-
tal groups. In turn, these groups are related to projective groups. Hence, we explain here
these relations in order to discuss fundamental groups of compact Sasakian manifolds.

4.1 Group cohomology and central extensions

In this section we recall the definition of group cohomology and discuss group exten-
sions. The proofs which are omitted in this section, as well as a detailed discussion on
these topics, can be found in [19, 81} [108]].

Given a group I a connected aspherical space BI" with r;(BI') = T is a classifying
space for I'. The classifying space is determined by I" up to homotopy equivalence.
There are several construction of classifying spaces. Since we are only interested in
fundamental groups of compact manifolds, we present below one such construction
which is particularly convenient for us.

The space BI is classifying for I' in the following sense. Any homomorphism of
groups I' — A is induced by a map BI' — BA unique up to homotopy. Therefore,
the homotopy type of BI is determined uniquely by I'.

We define the group cohomology H*(I'; R) of T to be the cohomology H*(BI'; R)
for a ring R.

Example 4.1 (Finite cyclic groups). A classifying space for I' = Z, is given by the
infinite dimensional lens space L(co,n). Namely, the quotient of S* < C* by the
standard action of Z,. Clearly m(L(c0,n)) = Z,. Moreover, L(co,n) is aspherical

67
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because its universal covering space S “ is contractible. Thus we have

Z, ifk=0;
HY(Z,,Z) = { Z,, fork > 0even;
0, otherwise.

Example 4.2 (Surface groups). Let I', be the fundamental group of a closed oriented
surface X, of genus g > 2. Then X, is the classifying space for I', because its universal
covering is a hyperbolic disk. We conclude that H*(I'; Z) =~ H*(X,;Z). The groups I',
are called surface groups.

Example 4.3 (Free groups). Let F, be the free group on n generators. Then F), is the
fundamental group of a wedge of n circles \/ nS'. Moreover, \/ nS' has trivial higher
homotopy groups. Hence \/ nS! = BF,. It follows that the cohomology of F,, is trivial
in degree larger than 1.

We present now an alternative defintion of group cohomology. In certain situations
this will turn out to be more suitable than the definition given above.

LetT be a group and R a I'-module. Consider the group Hom(I"", R) of homogeneous
homomorphisms from the r-fold direct productI" x - - - xI" to R. In other words, consider
the group of homomorphisms

p:I'x---xI'—R

such that
YOY1s-o s ¥e) = (YY1 YY)

for y,v1,...,y, € I. Now consider the map d: Hom(I'*, R) —> Hom(I"**!, R) defined
by

r+1

d‘P(?’l» L »7’r+1) = Z(_1)1+1¢(715 s ,)71', s ,7r+1)

i=1
where the notation y; means that the i-th entry is omitted. Then (Hom(I'*,R),d) is a
cochain complex. One can show that the group cohomology H*(I', R) is isomorphic to
the cohomology of the complex (Hom(I'**!, R),d). Let us present an instance in which
this definition is more convenient for computations.

Example 4.4. From the above description follows that the cohomology of a torsion
group of order m vanishes if the coefficients are divisible by m. For simplicity let us con-
sider real coefficients. Namely, let I" be a group such that y™ = 0 for all y € I" and con-
sider R as a trivial [-module. It is clear that every homomorphism ¢: I'x --- xI' — R
satisfies mg = 0. Therefore, we have mH"(I'; R) = O for all » > 0. On the other hand
mH'([;R) = H'(T;mR) = H'(T;R) = 0. Hence we have H*(T'; Z) = 0.

Consider now a fiber bundle M — B with fiber F. If the fiber and the base are
aspherical spaces, then so is M. That is, M, B and F are classifying spaces for their
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fundamental groups. Then the long exact sequence of homotopy groups reduces to a
short exact sequence of the form

00— 7T1<F) — 7T1(M> — 7T1<B) —> 0.
Conversely, consider the following short exact sequence
0—K-5T-2%0-—0. 4.1)

Then there exists a fiber bundle BI' — BQ with fiber BK inducing the above short
exact sequence.

We can construct such a fiber bundle in the following way. For discrete groups
one can consider the universal covering space EI' — BI'. In fact, this is the universal
bundle for principal I'-bundles. Consider the space ET" xrEQ. Since I acts freely on ET,
this is a classifying space BI'. Moreover, ET'/K is a classifying space BK. Therefore,
by taking the quotient by K first we get

ET xr EQ = BK x, EQ.

One can regard this space as a fiber bundle 7n: BK xy EQ — BQ associated to the
principal Q-bundle EQ — BQ. Furthermore, the space ET" xr EQ is the fiber bundle
associated to the principal Q-bundle EQ — BQby p: I' — Q. Itis then clear that the
bundle map 7 induces the homomorphism p at the level of fundamental groups. Thus,
the long exact sequence of homotopy groups of the bundle 7: BK xy EQ — BQ is
exactly (.1).

We are particularly interested in central extensions I' of a group Q by an abelian
group C. Namely, we are interested in short exact sequences of groups of the form

0—C-->T-50—0 4.2)

where i(C) lies in the center of T".

Given a group extension as in (4.1)), we derive the Lyndon-Hochschild-Serre spec-
tral sequence as a special case of Serre spectral sequence for the associated fibration
described above. In particular, the second page of the Lyndon-Hochschild-Serre spectral
sequence is given by

EL = HY(Q; H'(C;R))

and it converges to the group cohomology H”*4(T'; R).

Remark 4.5. When C 1is torsion of order m and R is m divisible Example 4.4| shows
that the cohomology groups H"(C;R) vanish for all » > 0. In this case the Lyndon-
Hochschild-Serre spectral sequence with values in R degenerates at the second page
and gives an isomorphism H*(Q;R) =~ H*(T'; R).

The case C = Z plays a special role for us. Therefore we describe this situation in
further detail. When C = Z the fibration associated to the extension (4.2)) is a principal
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S!'-bundle. Conversely, every principal S '-bundle over a classifying space BQ gives rise
to a group extension by looking at the long exact sequence of homotopy groups. More-
over, the total space of such an S '-bundle is aspherical, hence a classifying space for its
fundamental group. Therefore central extensions I' of a group Q by Z are classified by
their Euler class of the associated principal S !-bundle in H?(Q;Z). We will call this the
Euler class of the central extension and denote it by e(I').

Remark 4.6. This is not the usual definition of the characteristic class of a central ex-
tension. In general central extensions

0—C-->T-50-—0

are classified by their characteristic class in H*(Q;C). Since we will not need this
classification in full generality, we use our simplified definition.

Next we give a construction of the classifying space Brry(M) for a manifold M. In
fact, we will also construct a classifying map M — Brry(M). Let I be the fundamental
group of a manifold M. Then a classifying space BI" for I can be constructed in the
following way. We attach cells of dimension 3 to M along generators of (M) in order
to get a space M, with m,(M,) = 0. Subsequently, we attach 4-cells in order to get a
space M3 such that r3(M3) = 0 and so on. Since we only attached cells of dimension 3
or higher, the result is an aspherical space M., which has the same fundamental group
as M. Hence M, = BI'. Thus we have a natural inclusion

t: M — BI. 4.3)
By definition ¢ induces an isomorphism
*: H'(BT) — H'(M) (4.4)
and a injection
*: H*(BT) — H*(M). (4.5)

In particular it follows that by (T') = by (M) for any manifold M with 7;(M) =T.

Now suppose X is an orbifold. Then we can replicate the above construction on
the orbifold classifying space BX. We obtain a map ¢: BX — Bn¢"(X) such that the
homomorphisms (@.4) and (#.9) satisfy the same properties when replacing H*(M) by
H* (X).

orb

4.2 Kaihler groups

The aim of this section is to present some properties of Kihler groups. These will
serve as comparison as we discuss Sasaki groups later on. We will see in Chapter []
that some of these properties are shared by Sasaki groups while others, arguably more
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interestingly, do not hold in Sasakian setting. If no reference is provided, the proofs of
the results in this section can be found in [2]].

Definition 4.7. A Kihler group is the fundamental group of a compact Kéhler man-
ifold. Analogously, the fundamental group of a smooth projective variety over C is a
projective group. Denote by %, respectively %, the set of Kihler groups, resp. projec-
tive groups. We define %K, resp. P, to be the set of fundamental groups of compact
Kéhler manifolds, resp. projective manifolds, of real dimension 2n.

Let X be a 2n-dimensional Kéhler manifold with ;(X) = I'. Given a finite index
subgroup I" < TI', we can lift the Kédhler structure to the compact covering space X’
associated to I'". This simple observation immediately yields the following property of
Kéhler groups.

Proposition 4.8. The set K>, is closed under taking finite index subgroups.

Clearly the product of two Kihler, respectively projective, manifolds is again Kih-
ler, resp. projective. Thus the sets ¥ and K are closed under taking direct products.
Moreover, taking cartesian products with CP' increases the dimension in which a Kih-
ler or projective group can be realized. We collect these properties in a proposition for
future reference.

Proposition 4.9. The classes of Kdhler and projective groups enjoy the following prop-
erties.

i) The sets P and K are closed under taking direct products.

ii) There are inclusions 9, < Kouin and Poy, < Poyyo for all n.

Under a natural dimension restriction, one can prove the converse of ii) in Proposi-
tion [4.9]in the projective setting. This is due to the following version of the Lefschetz
Hyperplane Theorem proven by Bott.

Theorem 4.10 (Lefschetz Hyperplane Theorem [[13])). Let X < CP" be a projective
variety of complex dimension n. Consider a hyperplane section Y — X given by a
hyperplane transverse to X. Then the induced map on homotopy groups

mi(Y) — mi(X)
is an isomorphism for all i < n.

Corollary 4.11. Every projective group is realizable in real dimension 4. In particular
there are bijections P»; = P,j for all i, j = 2.

Remark 4.12. Whether the same result holds for Kéhler groups is still an open problem.

Remark 4.13. It follows from Kodaira’s classification of complex surfaces that the set
P, coincides with the set K. Therefore, every projective group is the fundamental
group of a 4-dimensional Kéhler manifold, i.e. # = P4 = K,.
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The next properties of Kéhler groups that we will review are consequences of Hodge
theory. In particular, the following classical result have important implications for Kih-
ler groups.

Theorem 4.14 (Hard Lefschetz Theorem). Let (X, w) be a compact Kéhler manifold of
complex dimension n. Then taking the wedge product with the k-th power of the Kdihler
class induces an isomorphism

L' HM(X) — HIFH(X)
[a] — [an o]
forall k < n.

Moreover, Hodge theory implies that the first Betti number b, (X) of a Kihler man-
ifold is even. This follows from Hodge decomposition and the fact that complex con-
jugation yields an isomorphism in Dolbeault cohomology. Then the construction of the
inclusion (@.3)) shows that b (T') is even. Therefore we have the following:

Proposition 4.15. The first Betti number of a Kdhler group is even.
Proposition 4.15] in turn, implies the following
Corollary 4.16. Free groups are not Kdhler.

Proof. Let F, be the free group on n generators. Then b;(F,) = n. This rules out all
free groups on an odd number of generators. In all other cases F, admits finite index
subgroups which are isomorphic to Fy for N odd. Therefore the claim follows from
Proposition 4.8 o

This is not the only application of Hodge theory to the study of Kéhler groups. In
particular, Theorem [4.14 has a non-trivial consequence which we present now. Let I be
the fundamental group of a compact Kihler manifold X of real dimension 2n. Consider
the isomorphism L"~': H! (X) — H3%~'(X). Combining this with Poincaré duality
we get a non-degenerate bilinear pairing

HCIZR(X)XH;R(X) —R
(@) — (e upu ! [X]).
which factorizes through the cup product
Hp(X) x Hyg(X) — Hop(X).

We have seen in the previous section that there exists a map ¢: X — BI' where I' =
71(X). This map induces an isomorphism

*: H'(BI) — H'(X)
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and a injection
*: H*(BT) — H*(X).

This is explained in the discussion before (#.4) and (.5). Combining this with the
previous discussion we get the following:

Proposition 4.17. Let I" be a Kdihler group. Then there is a non-degenerate skew-
symmetric bilinear product

H'T)x H'(T) —R (4.6)
which factorizes through the cup product
H'(T') x H'(T) =% H*(T).

Proposition 4.18. Let 1: M — X be the principal orbibundle associated to a quasi-
regular Sasaki structure. Then there is a non-degenerate skew-symmetric bilinear prod-
uct

H'(m9?(X);R) x H'(7?"(X);R) — R (4.7)
which factorizes through the cup product
H'(n7""(X);R) x H'(n{"(X);R) —> H*(n{"(X);R).

Proof. Theorem[3.78]is the analogue of the Hard Leftschetz Theorem in basic cohomol-
ogy of a Sasaki structure. In the quasi-regular case the basic cohomology ring Hy(7; R)
coincides with the orbifold cohomology ring H* , (X;R). Therefore, the claim follows
from the fact that the homomorphisms and (#.9) are defined also in the orbifold
case. O

Example 4.19 (The Heisenberg group ). Let T2 = S! x S! be the two dimensional
torus. Consider the classes @y, a, € H'(T?;Z) given by the generators of the cohomol-
ogy of the two factors. Denote by 8 = @, U «, the generator of H*(T?;Z). Now let
M be the principal S'-bundle on the torus 7% with Euler class 5. The 3-dimensional
Heisenberg group Hj; is the fundamental group 7y (M). Clearly M is aspherical, thus
M = BHj;. Since H*(T?;Z) =~ Z and the Euler class is a generator, it follows from
the Gysin sequence of the principal S !-bundle that H?(M) = 0. It is then evident that
the cup product of classes in H!(M) vanishes. Hence a non-degenerate skew-symmetric
bilinear product on H' (H3) cannot factorize through the cup product. We conclude that
Hj; is not a Kéhler group.

Example 4.20 (Higher rank Heisenberg groups). Now let 7" be the 2n-dimensional
torus and let a; be the generator of the integral cohomology of the i-th factor. Denote by
B the class Z?:l asi_1 U as;. Then we define the 2n + 1-dimensional Heisenberg group
Hy,,41 to be the fundamental group of the principal S !-bundle determined by . Carlson
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and Toledo [27] proved that Hs and H; are not Kdhler groups while Campana [20]
proved that H,, is Kéhler for n > 4.

Johnson and Rees [66] used Proposition[4.17|to show that the free product of groups
with non-trivial finite quotients is not a Kéhler group. In fact, they proved a much more
general statement. The proof we give here is a simplified version of the original proof,
relying on Lemma {.21]

Lemma 4.21 ([[/8]). Let 'y and I'; be two groups. Assume f;: I'; — Q; is a non-trivial
quotient with kernel K; and |Q;| = m; < oo for i = 1,2. Then the free product T'y = T,
admits a finite index subgroup with odd first Betti number.

Proof. Consider the following homomorphism
[« 25T x I RIEN 01 x0,.

By the Kurosh subgroup theorem, the kernel of the above homomorphism has the form
F,, =K where F,, is the free group on m = (m; — 1)(m, — 1) generators and K = K| = K.
Now let f: F,, —> Q be a finite quotient with |Q| = d. Extend f trivially on K to get
a homomorphism f: F,, + K —> Q. Then the kernel of f has the form F, « K * --- « K

where n = 1 + d(m — 1) and K appears d many times. Thus, ker(f) is a finite index
subgroup in I'; * I', and

By picking d = 2¢ we get a finite index subgroup of I'; = I'; with odd first Betti number.
O

Theorem 4.22 ([66]). Let I'y and I'; be groups admitting a non-trivial finite quotient.
Then the group
I'= (Fl * Fz) x H

is not Kdhler for any group H. In particular I'y = I, is not a Kahler group.

Proof. Suppose that the first Betti number b; (H) of the group H is even. By Lemmaf4.21]
there exists a finite index subgroup A c T’y =I', with b, (A) odd. Hence, the group A x H
is a finite index subgroup of I' with odd first Betti number. Thus I" cannot be Kihler by
Proposition .8 and Proposition

If, instead, the first Betti number b, (H) is odd, then b;(I'; = ;) > 0. Thus we can
assume that the first Betti number of I'; is positive. The proof of Lemma[4.21] provides
a finite index subgroup of I'y x I'; of the form F, * G where F, is the free group on n
generators. Moreover, the rank of F, can be chosen to be arbitrarily large. Since the
class of Kéahler groups is closed under taking finite index subgroups, we can assume
I' = (F, » G) x H with n > by (H). Moreover, the bilinear product

H'(T)x H'(T) — R
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given in Proposition 4.17|is non-degenerate and factorizes through the cup product.
Therefore H'(F,) is an isotropic subspace in H'(T') ~ H'(F,) ® H'(G) ® H'(H)

which is orthogonal to H'(G). Hence, the inequality n > b;(H) implies that the skew-

symmetric product is degenerate. Therefore I' cannot be a Kéhler group. O

Corollary and Theorem [4.22] show that Kiahler groups have little in common
with free groups and free products. In [54] Gromov proved, without the technical as-
sumption of Theorem[4.22] that Kéhler groups are indecomposable under free products.
These results highlight the contrast between Kéhler groups and 3-manifolds groups. The
class of 3-manifold groups consists of fundamental groups of (not necessarily closed)
3-manifolds. Clearly 3-manifold groups are closed under free products as the con-
nected sum of three-manifolds is also a three-manifold. It is natural to conjecture that
3-manifolds groups have a very small intersection with Kéhler groups. This was proved
by Dimca and Suciu in [35] for closed 3-manifolds. Namely, they showed that fun-
damental groups of closed 3-manifolds are Kihler if and only if they are finite. Later
Kotschick improved this result to the following:

Theorem 4.23 ([/9]). An infinite Kdhler group T is the fundamental group of a (not
necessarily closed) 3-manifold if and only if it is a surface group.

Indecomposability under free products is closely related to the number of ends of a
group. Let us explain how. One can define the number of ends E(I") of a group I" in the
following way. Let M be a manifold with 7r;(M) = I and denote by M the universal
covering of M. Suppose K; < K, < --- is an exhaustion of M by compact sets. Then
E(T) is the limit of the number of connected components of M \K;. Tt is a classical result
that for any group I' the number of ends is 0, 1,2 or co. A group has 0 ends if and only
if it is finite and it has 2 ends if and only if it has an infinite cyclic subgroup of finite
index. By Stallings” Theorem a group has infinitely many ends if and only if it is an
amalgamated product or a HNN-estension, both over a finite group. It is then natural to
ask whether a Kéhler group can have infinitely many ends. The methods introduced by
Gromov in [54]] led to the proof (see [2, Chapter 4] or [3]) of the next theorem on ends
of Kéhler groups.

Theorem 4.24 ([3]]). A Kdhler group has 0 or 1 end.

4.3 Analogues in the Sasakian setting

How much do Sasaki and Kéhler groups have in common? In this section we summarize
the partial answers to this question which were given recently in [[10} 23} 30} 68]]
In order to state these recent results, we begin by giving the definition of Sasaki

group.
Definition 4.25. A Sasaki group is the fundamental group of a compact Sasakian man-
ifold. Denote by S the set of Sasaki groups. The set of fundamental groups of Sasakian
manifolds of dimension 2n + 1 is denoted by S,,. .
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One sees immediately that the Sasakian analogue of Proposition holds true.
Namely, the set S, is closed under taking finite index subgroups. One is then en-
couraged to translate Proposition [4.9]in the Sasakian setting. This is where the first
obstacles arise. In fact, the product of Sasakian manifolds is not Sasakian for trivial
reasons. We will see in Sections [0.2] and [6.3] that Sasaki groups do not satisfy the prop-
erties in Proposition .9] Nevertheless, Chen [30] showed that projective groups form
a subset of Sasaki groups. In that sense, these properties are satisfied by a subclass of
Sasaki groups.

Theorem 4.26 ([30]). Every projective group is the fundamental group of a Sasakian
manifold of dimension2n + 1 > 7.

Proof. Let ' = m(X) be a projective group with X a smooth projective variety of
complex dimension n > 1. Let M be the Boothby-Wang bundle over X. Then taking the
join with the standard 3-sphere yields a manifold M = S diffeomorphic to an S bundle
over X. This is a Sasakian manifold with 7r; (M » §3) =T. o

In [10] the authors discussed formality of Sasakian manifolds. Their examples are
also built as joins of a given Sasaki or K-contact manifold with S°. With the same
methods they proved the analogous result in the K-contact setting.

Theorem 4.27 ([10l]). Every finitely presentable group is the fundamental group of a
K-contact manifold of dimension 2n + 1 > 7.

Proof. Given a finitely presented group I' there exists a symplectic 2rn-manifold X with
m(X) =T and n > 1, see [50]. By Remark we can construct a Botthby-Wang bun-
dle M over X. Now the same argument in the proof of Theorem 4.26| applies. Namely,
the join M = 3 is a (2n + 1)-dimensional K-contact manifold with fundamental group
I.

]

In [30] Chen proved several results on Sasaki groups which can be considered as the
Sasakian analogues of results from the Kihler case. Let us review them:

Theorem 4.28. Suppose U is a Sasaki group. Then T is the fundamental group of some
compact three-manifold M if and only if M has geometry modelled on S3, the three-

dimensional Heisenberg group or S L(2,R).

Remark 4.29. Theorem [4.28| can be considered the Sasakian analogue of a theorem of
Dimca and Suciu [35] which we discussed in Section 4.2] In Section [6.5| we prove a
sharpening of this result which can be regarded as the analogue of Theorem {.23] see
Theorem [6.211

Theorem 4.30. Suppose I is a Sasaki group.

1. Then I has either zero or one end. In particular, I cannot split as a non-trivial
free product.
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2. If T is solvable, it contains a nilpotent subgroup of finite index.

Remark 4.31. Theorem {.30|relies on the work of Campana [21], 22]] on orbifold funda-
mental groups of compact Kéhler orbifolds, see [30, Lemma 3.1] and references therein.
However, the only Kihler orbifolds that are considered in [21), 22] are those whose un-
derlying topological space is smooth. This assumption is not always satisfied for the
orbifolds associated to quasi-regular Sasaki manifolds, since these can have genuine
singularities. It is not clear to the author how it is possible to apply Campana’s results
in this situation.

The authors of [10] discuss torsion in orbifold fundamental groups to prove the
following:

Theorem 4.32 ([10]). Let I" be an irreducible arithmetic lattice in a semi-simple real
Lie group G of rank at least two with no co-compact factors and with trivial center. If
[ is Sasaki, then it must be isomorphic to the group n"(X) of some Kéihler orbifold X.
Moreover, T cannot be a cocompact arithmetic lattice in S O(1,n) for n = 3.

We will see later that this is a special case of a more general statement, see Proposi-
tion

The results that we have seen rely only on the Structure Theorem and the join con-
struction. On the other hand, the authors of [23] used topological properties of Sasakian
manifolds to constrain their fundamental groups. Namely, in [23] is given a characteri-
zation of Sasaki nilmanifolds using the results of Tievsky [[113]] on minimal models for
Sasakian manifolds.

Theorem 4.33 ([23]]). A compact nilmanifold of dimension 2n + 1 is Sasakian if and
only if it is a quotient of the real Heisenberg group H,, | by a co-compact lattice T.

Later Kasuya [68] extended this result to solvmanifolds. The generalization follows
from the study of the representations of Sasaki groups in GL(1,C). With the same
methods Kasuya proved the following:

Theorem 4.34 ([68]). A polycyclic Sasaki group is virtually nilpotent.

We have already seen that Proposition does not hold in the Sasakian setting.
This is the first instance of a feature of Kéhler groups which is not enjoyed by Sasaki
groups. On the other hand, the results in this section seem to suggest that Sasaki and
Kihler groups have very similar behaviour. In Chapter [6| we will see that, although
Sasaki groups are deeply related to Kihler groups and enjoy many of their properties,
they also display antithetical behaviour in certain aspects.






Chapter 5

Invariants and underlying structures

Sasaki structures have a variety of underlying structures. When defining invariants of
Sasaki structures it is natural to ask which of the underlying structures they depend
on. In this chapter we will focus on invariants of the transverse Kéhler structure. In
particular, we will discuss basic Hodge numbers, basic Chern classes and the type of
Sasaki structures. Moreover, we relate these invariants to the topology of the under-
lying almost contact and contact structures. Specifically, we will provide examples of
Sasaki structures on smooth manifolds whose invariants disagree and discuss which of
the underlying structures are equivalent.

In Section we present the results in [15, 49] on invariance of basic Betti and
Hodge numbers. This will serve as motivation for the results proven in Section[5.3]

5.1 Invariance of basic Betti and Hodge numbers

In Chapter [3] we have introduced several invariants of Sasaki manifolds. In this section
we will focus on basic Betti an Hodge numbers. We begin by showing that the former
are topological invariants of the Sasakian manifold. In order to prove this we need a
lemma of Tachibana.

Lemma 5.1 ([109])). Let (M, n, ¢, R, g) be a compact Sasaki manifold of dimension 2n+
1. Let a be a harmonic p-form on M with 1 < p < n. Then (g = 0 and the form ¢a
given by

p(Xi.,....X,) = > a(X),....¢X.....X,)
i=1
is harmonic.

We can now prove the following:

Theorem 5.2 ([15, Theorem 7.4.14]). Let (M,n, ¢,R, g) be a compact Sasaki manifold
of dimension 2n + 1. Then the basic cohomology H};(F ) only depends on the topology
of M. In particular, the basic Betti numbers of any two Sasaki structures on M agree.

79
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Proof. Let @ be a harmonic p-form on M with 1 < p < n. By Lemma[5.1) (e = 0.
Moreover, Lra = 0 because R is Killing and « is harmonic. Hence « is basic. From
the definition of the basic Hodge star operator * it follows that x@ = n A *a, see (3.11)).
This yields

d(xa) =dn A *a — n A d(3a) = Lxa — n A dpxa (5.1)

where L is the operator defined in (3.12). Now the left-hand side vanishes since «
is coclosed. The two forms on the right-hand side are not proportional so they both
must vanish. The equation Lxa@ = 0 means that « is primitive while the vanishing
of the second term shows that « is basic harmonic. We conclude that @ must be the
unique harmonic representative of its class in the basic primitive cohomology group
P’(F). Thus P’(F) is a topological invariant because it is isomorphic to the de Rham
cohomology of M. Now the basic cohomology groups Hj(#) are topological invariants
because Theorem gives a decomposition

Hy(F) = P LPF).

k=0

O

It is natural to ask whether or not basic Hodge numbers can distinguish Sasaki struc-
tures on the same smooth manifold. This is indeed the case as shown by the following
example due to Boyer and explained in [49].

Example 5.3 ([49, Example 3.4]). We present here two Sasaki structures with different
Hodge numbers are given on M = #21(S? x ), the 21-fold connected sum of §2 x § 3.
The first such structure (171, ¢1, Ry, g1) is the Boothby-Wang fibration on a K3 surface.
Therefore, the basic Hodge numbers are the Hodge numbers of the K3 surface. In
particular #2°(#,) = 1. On the other hand, M supports the following positive Sasaki
structure (12, o, Ry, g2); cf. Example and [15) page 356]. The connected sum
#21(S? x %) can be realized as the link Ly = V, (S’ < C* where

22 22 22
f(Zo,Z1,Z2,Z3) =2y +727 + 237 + 223

is a weighted homogeneous polynomial of degree d = 22 with weight w = (1, 1, 1,21).
That is, M is the S '-orbibundle over the hypersurface X, < CP?. This Sasaki structure
is positive because >, w; —d = 2 > 0, see Proposition [3.85] Then a vanishing result
proved independently in [93] and [51]] implies that h*°(%5) = 0.

It is then natural to ask whether an example of Sasaki structures of the same type but
with different Hodge numbers exists, see Section

The fact that the Reeb foliation of a Sasaki manifold is transversally Kéhler imposes
some rigidity on the transverse geometry. Namely, the basic Dolbeault cohomology
groups, and therefore the basic Hodge numbers, are invariant under deformations of
type II, see Definition [3.51] because these deformations preserve the Reeb foliation and
the transverse holomorphic structure. It turns out that basic Hodge numbers are invariant
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under an even larger class of deformations [49]]. In particular they are invariant under
deformations of type I.

Theorem 5.4 ([49]). Two Sasaki structures on a compact manifold with isomorphic CR
structure have the same basic Hodge numbers.

The behaviour of basic Hodge numbers under general smooth deformations of Sa-
saki structures has been studied in [[100].

5.2 Complete intersections

Here we present some classic results on complete intersections. These projective mani-
folds have a relatively simple and easily computable cohomology ring. Moreover, com-
plete intersections often have ample canonical bundle, allowing us to construct negative
Sasaki structures via Boothby-Wang fibrations, see Example [3.84]

A complete intersection X(d,...,d,) of complex dimension n and multidegree
d = (dy,...,d,) is a smooth projective variety given by the intersection of r hypersur-
faces of degree d, ..., d, in CP"*". It follows from the Lefschetz Hyperplane Theorem
that the cohomology of complete intersections is very simple. We give here the Dol-
beault version of the theorem which was proven by Kodaira and Spencer.

Theorem 5.5 (Lefschetz Hyperplane Theorem [71]]). Let X = CP be a smooth projec-
tive variety of complex dimension n. Consider a hyperplane section Y — X given by a
hyperplane transverse to X. Then the induced map in Dolbeault cohomology

Hp’q(X) N Hp,q(y)
is an isomorphism for all p, q such that p + g < n.

Remark 5.6. This means that for p + ¢ < n we have h”4(X) = h”4(CP") for any
complete intersection X = X(dj, ..., d,). Then Serre duality implies that #”(X) = §,,
if p+q #n.

Let X = X(d,,...,d,) be a complete intersection of complex dimension n. Denote
by v(X) the normal bundle to X in CP"*". We have the following splitting

TCP"" = TX @ v(X) = TX©O(d)) ®- -+ © O(d,).

Therefore, the characteristic classes of X can be computed in terms of its multidegree
and dimension. This computation was first carried out by Libgober and Wood in [84]].
Note that the Chern and Pontryagin classes of X are multiples of (the pullbacks of)
powers of the generator x € H>(CP"*").

In order to write explicitly the characteristic classes of X as multiples of x', denote
by d = dd, - - - d, the total degree of X and let s, = Z;zl dl’.‘. Then the coefficients of
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the Chern classes ¢;(X), Pontryagin classes p;(X) and the Euler characteristic y(X) are
given by polynomials in the sums s;. Namely,

1 ,
c,-(X):i—‘g,-(nﬁ—r—i—l—sl,...,n+r+1—sl~)x’, 1 <i<n,

]

1 ‘
pi(X):.—‘gi(n—i—r—l—l—sz,...,n—i-r—i-l—szk)x’, 1<i<
!

NS

1
e(X) =d—ga(n+r+1—si,...,n+r+1-s,),
n.

where the polynomials are determined recursively by the formulas

1 1 )
si— &1(s1)si-1 + 582(51,52)51'—2 + -+ (—1)li—'gi(51, o 8)i = 0.

Since we are mostly interested in complete intersections of complex dimension 3, we
recall here the coeflicients of the non-trivial Chern and Pontryagin classes for n = 3.

C1 :4+}’—S1 (52)
) :%((4+r—51)2— (4+r—s)) (53)
e =é((4 +r—s51) =34 +r—s)d+r—s5)+2(4+r—-s)) (54
pr=4+r—s (5.5)

Moreover, given the simplicity of the Hodge diamond of complete intersections, the
Hirzebruch-Riemann-Roch Theorem [60] provides a method to compute the Hodge
numbers of complete intersections in terms of their Chern numbers. We state here a
special case which suits our discussion.

Theorem 5.7 (Hirzebruch-Riemann-Roch Theorem [60]). Let X be an n-dimensional
projective manifold. Let T? be the p-th coefficient in the Todd genus. Then

n

D=1 = xP(X) = TP(X).

i=0
In particular Y;_(—1)'h*? is a linear combination of the Chern numbers of X.

Summarizing the above discussion, the Hodge numbers of a complete intersection
are determined by its dimension and multidegree. Moreover, the Lefschetz Hyperplane
Theorem [5.5]implies

vy ) (CDTP(RPP (1)), i p £ g.
x"(X) {(_1)p(w), itp— 2. (5.6)
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Since Thom noted that the diffeomorphism type of complete intersections is deter-
mined solely by the multidegree, many efforts have been made to classify complete in-
tersections up to homemorphisms or diffeomorphisms. In particular, a result of Traving
gives sufficient conditions under which the diffeomorphism type of a complete intersec-
tion is determined by the total degree d, the Pontryagin classes and the Euler charac-
teristic, see [80]. Let X(d,...,d,) = X(d) be an n-dimensional complete intersection.
Denote by d = [] p*¥ the prime factorization of d. Assume that v,(d) > 221 + 1 for

2p—2
all primes p such that p(p — 1) < n + 1. Then we have the following:

Theorem 5.8 ([114]). Let X(d) and X(d') be two complete intersections of dimension
n > 2 satisfying the above condition. Then X(d) and X(d') are diffeomorphic if and
only if the total degrees, the Pontryagin classes and the Euler characteristic agree.

Analogously, we can define a complete intersection of codimension r in a product
of projective spaces CP™ x --- x CP™ to be the intersection of hypersurfaces whose
degrees are now given by k-tuples (d!,...,d") whith i = 1,...,r. The computation of
the Chern classes of X is carried out in the same way after noticing that

T(CP’H X oo X CPnk)lx = TX@ (®5{=1 O(dll)) :
i=1

With an abuse of notation, in the equation above we are denoting by O(d!) the bundle
p(O(d})) with p;: CP" x - x CP™ — CP" the projection on the [-th factor.

We will use these results in the next section to provide examples of different Sasaki
structures on the same smooth manifold.

5.3 Distinguished Sasaki structures on a smooth manifold

In this section we construct examples of Sasaki structures on the same smooth manifold
distinguished by transverse invariants. These examples are given by Boothby-Wang
fibrations over smooth projective varieties. The invariants that we use to distinguish
the Sasaki structures are basic Hodge numbers, divisibility of the basic first Chern class
and the type of the Sasaki structure. In particular, we give examples of negative Sasaki
structures with different Hodge numbers in all dimensions 2n + 1 > 5.

5.3.1 Simply connected 5-manifold

Firstly we focus on 5-dimensional Sasaki structures. In particular we will consider sim-
ply connected regular Sasaki manifolds. In this setting, that is, regular contact structures
on simply connected 5-manifolds with indivisible Euler class, the equivalence classes
of (almost) contact structured were studied by Hamilton [59]. Let us introduce the ter-
minology needed in order to state his result.
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Definition 5.9. Let X be a topological space and pick @ € H?(X;Z). The divisibility
d(a) of a class « is the maximum number n € Z such that @ = ng for some 0 # 8 €
H?(X;Z). A class a is called indivisible, or primitive, if d(a) = 1.

Given a regular K-contact manifold 7: M — X, let D be the underlying almost
contact structure. Denote by ¢ (D) the first Chern class of D and by c¢;(X) the first
Chern class of the symplectic manifold X. We will be interested in the divisibility of
these classes in H>(M) and H*(X) respectively.

We are now ready to state following result of Hamilton:

Theorem 5.10 ([S9]). Let M be a simply connected 5-manifold admitting two different
(regular) Boothby-Wang fibrations

l)/M

and denote by (n;, ;, R;, &) the associated K-contact structures for i = 1,2.

(Xl,wl (Xz,wz)

1. Then the underlying almost contact structures are equivalent if and only if the
divisibilities of their first Chern classes agree, i.e. d(ci(D;)) = d(c1(Da)) in
H*(M).

2. Assume that the underlying contact structures are equivalent.

[ chéggl)(ﬂl)) = d(Cl(Dz)) = 0in HZ(M), then d(Cl(Xl)) = d(Cl(Xz)) in
o Ifd(ci(D))) =d(ci(D,)) # 0in H*(M), then either d(c,(X;)),d(ci(X2)) <
3ord(ci(X))) =d(ci(X2)) = 4in H*(X,).

As discussed in the introduction the contact structures underlying Sasaki structures
are tight. Hence they are not necessarily classified by an A-principle, see [12]. In par-
ticular, the isotopy classes of contact structures underlying Sasaki structures can lie in
the same homotopy class of almost contact structures. In general homotopy classes of
almost contact structures are determined by obstruction theory. By these means Geiges
[47] proved that almost contact structures on simply connected 5-manifolds are classi-
fied up to homtopy by their first Chern class.

Theorem 5.11 ([47]]). Let M be a simply connected 5S-manifold. Then two almost con-
tact structures on M are homotopic if and only if they have the same first Chern class.

Remark 5.12. Let m: M — X be a regular Sasaki structure. Then the first Chern class
c1(D) of the contact distribution D is the pullback 7*(c; (X)) of first Chern class of the
base X.
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The previous remark also gives a necessary and sufficient condition for M to be spin
which only depends on X:

Lemma 5.13. Let M be a Boothby-Wang bundle over a smooth projective manifold
(X, w). Then M is spin if and only if X is spin or ¢;(X) = [w] mod 2.

Proof. Denote by D and Ly the contact distribution and the Reeb line bundle given by
the Boothby-Wang structure on M. Since TM = D@ Lg the Whitney sum formula gives
wy (M) = wy (D). Moreover, w, (D) is the mod 2 reduction of ¢;(D). It follows from
Remark [5.12]that wy (M) = 7*(w,(X)). Therefore wy(M) = 0 if and only if w,(X) = 0
or wy(X) € kerr*, that is, ¢1(X) = [w] mod 2. O

Remark 5.14. Suppose M is a simply connected 5-manifold with torsion-free cohomol-
ogy. Then Barden’s classification of simply connected 5-manifolds [7] implies that the
diffeomorphism type of M depends only on its second Betti number and whether M is
spin or non-spin. Namely,

M~ #bz(M)(Sz X S3), 1fW2(M) =
— | #(ba(M) — 1)(S? x SA)#(S2XS?), if wy(M) #

where S2XS3 is the non-trivial S3-bundle over S 2.

Lemma 5.15. Let X| and X, be simply connected Kdihler surfaces endowed with indivis-
ible integral Kiihler classes [w1] and [w,] respectively. Suppose that by(X1) = by(X>).
Then the associated Boothby-Wang fibrations M, and M, are diffeomorphic if and only
if they are both spin or non-spin, i.e. if and only if wo(M,) and w,(M,) have the same
parity.

Proof. Since the Kihler class [w;] is indivisible, the Boothby-Wang bundle M, is simply
connected with torsion-free cohomology for i = 1,2. Moreover by(M;) = by(X;) — 1.
Thus the claim is a direct consequence of Remark [5.14] |

Lemma [5.15]is the key observation to construct most examples of diffeomorphic 5-
dimensional Boothby-Wang bundles in this section. Before presenting some results on
simply connected Sasakian manifolds in dimension 5 we a state a lemma about complex
surfaces for future reference.

Lemma 5.16. Let X be a simply connected complex surface. Then its Hodge numbers
h°? and h'"!' are related to its Chern numbers c% and c; by the following formulas:

1

h0’2 = E(C% + C2) —1
1

hl’l = 6(562 — C%) .
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We now give a result on Sasaki structures with inequivalent underlying contact struc-
tures and different basic Hodge numbers on a simply connected 5-manifold.

Proposition 5.17. Let X; and X, be simply connected complex surfaces with ample
canonical classes Kx, and Ky, respectively. Suppose that by(X,) = by(X,). Then the
principal S'-bundle M over X, with Euler class the indivisible class underlying Ky,
admits two negative Sasaki structures with homotopic underlying almost contact struc-
tures. Moreover,

i) if (X)) # o(Xy), then the Sasaki structures have different basic Hodge numbers,

ii) if gcd(Ky , K3 ) is square-free and d(Ky,) # 1 or d(Ky,) # 1, then the underlying
contact structures are inequivalent.

Proof. By the Kodaira Embedding Theorem the indivisible classes underlying Ky, and
Ky, are represented by Kéhler forms. The associated Boothby-Wang bundles M, and M,
are both spin because Ky, = —c;(X;) is a multiple of the Euler class, hence 7* (¢ (X;)) =
0; cf. Remark [5.12] Moreover, b,(M;) = b,(M,) because the Euler classes are indi-
visible. Therefore, M, is diffeomorphic to M, by Lemma In addition the Sasaki
structures are negative because ¢ (X;) is a negative multiple of a Kéhler class. The un-
derlying almost contact structures are homotopic as a consequence of Theorem [5.11]
because ¢;(D;) = 7*(c1(X;)) = 0.

To prove part i) notice first that the basic Hodge numbers of M; are the Hodge num-
bers of X; for i = 1,2. Since o(X;) # o (X>), we can assume b; (X;) = b, (X,) + a for
some a > 0. Now on a simply connected complex surface we have

¢t =20+ p =2(2+b; +by) +3(b] —b,) =4+5b; —b,.

Thus b} (X;) = bJ (X5) + a implies ¢?(X;) = ¢}(Xz) + 7a. On the other hand ¢, (X;) =
by(X;) + 2. Therefore c;(X;) = c2(X,). Now, by Lemma|5.16| the Hodge numbers are
related to the Chern numbers by

= (€1(X0) + e2(Xi)) = x(Ox) = (X)) + 1

because b;(X;) = 0. Therefore the basic Hodge numbers of M; and M, disagree if
a # 0.

Now, without loss of generality, suppose that d(Ky,) # 1 and gcd(Kf(l,K)z(z) is
square-free. If the contact structures were equivalent, then d(c;(X;)) = d(c1(X,)) in
H?(X;) by Theorem This means that ¢;(X;) = k - a; for some primitive class
a@; € H*(X;) and some integer k > 1. Therefore K3 = cj(X;) = k* - a] contradicting the
hypothesis. This proves part ii). O

A first application of the results above is the following:
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Theorem 5.18. There exist countably infinitely many simply connected 5-dimensional
manifolds admitting negative Sasaki structures with inequivalent underlying contact
structures in the same homotopy class of almost contact structures.

Proof. The proof makes use of a family of complete intersections presented in [[18]
Example 4]

Let X, be the hypersurface of bidegree (5 + k, 6) in CP' x CP?. As explained in Sec-
tion [5.2] the computation of the characteristic numbers of X is carried out by noticing
that T(CP' x CP?)y, = v(Xx) ® T X In particular we have ¢;(X;) = —(k + 3)x; — 3x
where x; and x; are the generators of the cohomology rings of CP' and CP? respectively.

Consider now the complete intersection Y of multidegree [(2, 1), (1+k,6)] in CP' x
CP?. We can compute the characteristic numbers of Y as above. In this case we have
c1(Yy) = —(k+ 1)y; — 3y, where y; and y, are now the generators of the cohomology
rings of CP' and CP? respectively. The calculation of the characteristic numbers yields

cl(Xy) = i (Vi) = 9(17 + 5k), c2(X;) = c2(Yi) = 3(113 + 25k).

Thus b,y (X)) = by(Yx) = 337 + 75k. Since the canonical bundles Ky, and Ky, are am-
ple, the Kodaira Embedding Theorem yields a Kédhler form representing the indivisible
classes underlying Kx, and Ky,. Hence we can perform the Boothby-Wang construc-
tion with Euler classes given by such Kéhler classes. The resulting 5-manifolds My
and My are spin because the first Chern class ¢ (Xy), respectively c¢;(Y%), is a multi-
ple of the Euler class of the bundle. Hence, My and My are diffeomorphic because
they have torsion-free cohomology and they have the same second Betti number, see
Proposition [5.17]

These two Sasaki structures cannot be distinguished by the basic Hodge numbers
because the characteristic numbers of X; and Y, agree, see Lemma [5.16] Moreover,
since the first Chern classes ¢;(X;) and ¢;(Yx) are in the kernel of the pullback, the
underlying almost contact structures are homotopic by Theorem [5.11] Nevertheless, by
the above computation of ¢;(X;) and ¢, (Yk), the divisibilities of the first Chern classes
are

d(ci(Xy)) = ged(k,3), d(ci(Yx)) = ged(k + 1,3).

Thus the underlying contact structures are inequivalent for k£ # 37+ 1 by Theorem[5.10]
We conclude that the two Sasaki structures cannot be equivalent unless k = 3/ + 1. O

Remark 5.19. The above construction relies on examples of pairs of homeomorphic
complete intersections of complex dimension 2 whose canonical classes have different
divisibilities. Any pair of such complete intersections provides two Sasaki structures on
the same smooth manifold with the property that the underlying almost contact struc-
tures are equivalent while the contact structures are not. Further examples of such pairs
can be found in [38, Theorem 5] and [[117, Table 1].

When looking at Theorem [5.18§]it is natural to ask whether or not there is a bound
on the number of Sasaki structures with inequivalent contact structures but homotopic
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almost contact structures. The following proposition gives a negative answer to this
question.

Theorem 5.20. For all positive integers k > 0 there exists a simply connected 5-
manifold admitting k Sasaki structures with homotopic almost contact structures but
pairwise inequivalent contact structures.

Proof. In [18] Braungardt and Kotschick constructed arbitrarily large tuples (X, ..., X;)
of homeomorphic branched covers of projective planes CP*>. These are pairwise non-
diffeomorphic projective surfaces distinguished by the divisibility of the first Chern
class. Moreover, the surfaces X; have ample canonical bundle Ky, fori = 1,...,k;
cf. [18, Corollary 1].

By Proposition we can perform the Boothby-Wang construction to get k Sasaki
structures on a simply connected spin 5-manifold. Since the first Chern class ¢ (X;) is
a multiple of the Euler class, the underlying almost contact structures are homotopic by
Theorem Moreover, the equalities

1 1
Y =c, 0=zp=x(ci—2c)

3 3
together with Lemma [5.16| show that the Hodge numbers of complex surfaces are topo-
logical invariants. Hence the basic Hodge numbers of the Boothby-Wang fibrations
agree.
However, the basic first Chern classes c;(X;) have pairwise different divisibilities.
Thus the underlying contact structures are inequivalent by Theorem [5.10] O

Next we turn our attention to the relation between basic Hodge numbers, the type
and homotopy classes of underlying almost contact structures. Namely, we show that a
manifold can support two Sasaki structures with different Hodge numbers even if they
are both negative and the underlying almost contact structures are homotopic.

Theorem 5.21. There exist countably infinitely many simply connected 5-manifolds ad-
mitting two negative Sasaki structures whose basic Hodge numbers disagree. Moreover,
these pairs of Sasaki structures have homotopic underlying almost contact structures
but inequivalent contact structures.

Proof. We construct these Sasaki manifolds as Boothby-Wang fibrations over a family
of complete intersections and a family of Horikawa surfaces respectively.

Let X, be the complete intersection in CP' x CP? given by intersecting hypersurfaces
of bidegree (2,5) and (k, 1). As explained in Section the computation of the char-
acteristic numbers of X, is carried out by noticing that T(CP' x CP%)x, = v(Xy) ® T X;.
In particular, we have ¢;(X;) = —kx; — 2x, where x; and x, are the generators of the
cohomology rings of CP! and CP? respectively. The Chern numbers and holomorphic
Euler characteristic of X, are:

cl(Xy) = 40k + 8, c»(X;) = 80k + 76, x(Ox,) = 10k + 7.
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Moreover, X is simply connected thus the second Betti number is given by b,(X;) =

On the other hand, consider the following family of Horikawa surfaces Y; from [61]].
Let X; be the Hirzebruch surface of degree i, that is the CP'-bundle over CP' whose zero
section A has self-intersection —i. Let F denote the class of the fiber of the fibration.
Then we can construct the Horikawa surface Y; as the double cover pr: Y; — X; with
branch locus homologous to B = 6A+2(2i+3)F. Notice that these surfaces have ample
canonical bundle Ky, since Ky, = pr*(Ks, + 1B) = pr*(A+ (i+ 1)F) and A+ (i + 1)F
is an ample bundle. Moreover, these surfaces are simply connected because the branch
locus B is ample. Now the characteristic numbers of Y; are:

cA(Y) =2i+4, c(Y;) =10i+56, x(Oy)=i+5.

Hence b,(Y;) = 10i + 54 so by(Xy) = by(Y;) for i = 8k + 2.
From now on we denote Y., by Y; and restrict to this case for which we have:

ci(Yy) = 16k + 8, ¢ (Y;) = 80k + 76, x(Oy,) = 8k + 7.

Both X; and Y, have ample canonical line bundle. Hence, by the Kodaira Embed-
ding Theorem, we can perform the Boothby-Wang construction with indivisible Eu-
ler class underlying Kx,, respectively Ky,, see Proposition [5.17, Denote the associ-
ated Boothby-Wang fibration over X, respectively over Y, by (M1, 1, $1, Ry, g1), resp.
(My, m2, ¢2, Ra, g2). Since the canonical classes Ky, and Ky, are multiples of the respec-
tive Kéhler classes, the associated Sasaki manifolds M; and M, are spin. Hence M, and
M, are both diffeomorphic to the (80k + 73)-fold connected sum #(80k + 73)(S? x S?)
by Lemma [5.15] Since the Sasaki structures are regular, the basic Hodge numbers are
the Hodge numbers of the base of the Boothby-Wang fibration. Therefore Lemma[5.16|
gives

(X)) = 10k + 6, h“'(X) = 60k + 62,
(1) = 8k + 6, h"(Y;) = 64k +62.

Moreover, the underlying almost contact structures are homotopic by Proposition
Notice that d(c; (X;)) = ged{k, 2}. On the other hand, the main result of [91]] implies
that Y} is spin if and only if B/2 is the Poincaré dual of the second Stiefel-Whitney class
wy(Zgkt2). In other words, Y, is spin if and only if B/2 is divisible by 2 because gy >
is spin. Now the intersection number of B/2 with F equals 3 and this implies that Y} is
not spin. In particular, since d(Ky) is always odd, the structures are not equivalent as
contact structures whenever k is even.
O

Note that the Sasaki structures we have constructed in Theorem [5.18] Theorem [5.20]
and Theorem @ are negative. On the other hand, the two Sasaki structures in Exam-
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ple are positive and null. This is the first example of a manifold admitting Sasaki
structures of the same type whose basic Hodge numbers disagree.

On the other hand, the next result shows that one can have structures of different
type whose underlying almost contact structures are homotopic.

Proposition 5.22. There exists a simply connected 5-manifold admitting negative, pos-
itive and null Sasaki structures which have homotopic almost contact structures.

Proof. Let us denote by X the del Pezzo surface CP*#8CP?. This is a complex surface
with ample anti-canonical class —Ky represented by a Kéhler form.

On the other hand consider the Craighero-Gattazzo surface Y, see [32]. It was proven
in [37] that the Craighero-Gattazzo surface Y has ample canonical class Ky. This can
therefore be represented by a Kidhler form. Moreover, Y is simply connected [99].

Thus X and Y are homeomorphic by Freedman’s classification. Denote by My and
My the Boothby-Wang bundles over X and Y respectively. The former is positive while
the latter is negative because c¢;(X), respectively c;(Y), is a positive, resp. negative,
multiple of the Euler class [w].

Both My and My are diffeomorphic to #8(S* x S%) by Barden’s classification of
simply connected 5-manifolds. Moreover, #8(S?2 x S*) admits several null structures as
a link, see [15, Table B.1]. For instance, the Boothby-Wang bundle over a hypersurface
of degree d = 17in CP(2, 3,5, 7) is a null Sasaki manifold diffeomorphic to #8(S?x S ?).

In all cases the first Chern class of the contact distribution vanishes. Hence the
underlying almost contact structures are homotopic by Theorem [5.11] O

Remark 5.23. In the notation of Proposition Kf( = K)Z, = 1, therefore the first basic
Chern classes are indivisible. It is not clear whether or not the contact structures are
isotopic. Moreover, the Hodge numbers of X and Y agree since they are topological
invariants of complex surfaces. Hence the Sasaki structures cannot be distinguished by
their basic Hodge numbers.

5.3.2 Simply connected 7-manifolds

Here we turn our attention to Sasaki structures on 7-dimensional manifolds. In this
setting we cannot rely on an analogue to Theorem [5.10] to classify equivalent contact
structures, nor there exists a classification of almost contact structures on 7-manifolds.
Nevertheless, when restricting to Boothby-Wang fibrations over complete intersections
one has some control on invariants such as the basic Hodge numbers.

Let us begin with a discussion on complete intersections of complex dimension 3.
Let X be such a complete intersection. As seen in Remark [5.6] the interesting Hodge



5.3 Distinguished Sasaki structures on a smooth manifold 91

numbers /79 lie in the middle degree. That is, its Hodge diamond is given by

1
0 0
0 1 0
330 B2 B2 103 5.7)
0 1 0
0 0
1

as showed in the discussion leading to (5.06).

We are particularly interested in diffeomorphic complete intersections with different
Hodge numbers. By the Hirzebruch-Riemann-Roch Theorem the middle dimen-
sional Hodge numbers of a 3-dimensional complete intersection X can be computed
from the Chern numbers:

1

h0,3 _ h3,0 =1 */\/O(X) =1 —Ci0 (58)
24
1 1

B2 = =14+ (X) =1+ 376162 = 563 - (5.9)

The following lemma characterizes diffeomorphic complete intersections with dif-
ferent Hodge numbers in terms of the first Chern class.

Lemma 5.24. Two diffeomorphic complete intersection X and Y of complex dimension
3 have different Hodge numbers if and only if ¢ (X) # ¢, (Y).

Proof. Since X and Y are diffeomorphic, we have p;(X) = p;(Y) and ¢3(X) = c3(Y).
It is clear that, if ¢;(X) = ¢;(Y), then also ¢2(X) = ¢»(Y) because p; = ¢} — 2¢,. Thus
all the Chern numbers agree. It follows from and that the Hodge numbers of
X and Y agree. Conversely, denote by x the generator of the second cohomology group
determined by the orientation. Suppose
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with |k| > |I|. Then we have

262(X) = a1(X)* = pi(X) = (K* —m) - x*
26,(Y) = (V)2 = p1(Y) = (P —m) - x*.

Thus ¢,(X) # c»(Y) since k> — m > I> — m. This implies that

2¢1(X)cy(X) = k(k* —m) - x°
2¢1(Y)er(Y) = (P —m) - x° .

Therefore the equalities (5.8)) and (5.9) yield

R (X) > h3(Y)
h'2(X) < h'2(Y) .

O

Complete intersections of complex dimension 3 are simply connected 6-manifolds
with torsion-free cohomology. Therefore, by Wall’s classification the diffeomorphism
type of 3-dimensional complete intersection is determined by the Euler number, the first
Pontryagin class and the parity of the first Chern class, see [67, [116]. In their study
of moduli spaces of complete intersections Libgober and Wood [84] conjectured the
existence of diffeomorphic complete intersections with different Chern classes. Such
pairs of complete intersections (X;, X,) were given by Wang and Du [117]:

d d pi x=d-c €1
(70,16,16,14,7,6) 73.5.3.21 —5683  —7767425433600 —119
(56,49,8,6,5,4,4) 73.5.3.21 —5683  —7767425433600 —121

(88,28,19,14,6,6) | 19-11-72-32.28 9147  —35445749391360 —151
(76,56,11,7,6,6,2) | 19-11-7>-32.2% 9147  —35445749391360 —153

(84,29,25,25,18,7) | 29-72.5%.3%.2% 9510 —384536710530000 —178
(60,58,49,9,5,5,5) | 29-7>-54.3%.23 9510 —384536710530000 —180

Table 5.1: Diffeomorphic 3-dimensional complete intersections with different ¢,

The characteristic classes of a complete intersection X are multiples of the generators
x, x* of the groups H*(X) =~ H*(X) =~ Z. The values in Table |5.1|are the coefficients
that determine the characteristic classes as multiples of x and x2.

These pairs of complete intersections allows us to extend Theorem[5.21]to dimension
7 although in the following weaker form:

Theorem 5.25. There exist countably many T7-manifolds admitting two negative Sasaki
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structures with different basic Hodge numbers. Moreover, these manifolds can be ar-
ranged to be spin or non-spin.

Proof. Let X; and X, be two diffeomorphic 3-dimensional complete intersections with
different first Chern class given in Table [5.1] Since these complete intersections have
ample canonical bundle, the positive generator x of H*(X;) =~ H?(X,) is a Kihler class
by Kodaira Embedding Theorem. Thus we can perform the Boothby-Wang construction
with Euler class x, see Proposition

The resulting Sasaki manifolds (M, n;,$1, Ry, g1) and (M, 1., $2, Ry, g2) are diffeo-
morphic because X; and X, are diffeomorphic and the Euler classes of the Boothby-
Wang bundles coincide. Moreover, H*(M) = 0 because H?*(X;) is generated by the
Euler class x. Then Lemma [5.24] and Table [5.1] imply that these structures are distin-
guished by their basic Hodge numbers which coincide with the Hodge numbers of X,
and X,.

Now let X; and X; be two diffeomorphic 3-dimensional complete intersections with
odd first Chern class given in Table Let M¥ be the Boothby-Wang bundle over
X; with Euler class k - x. We can arrange the manifold M* to be spin or non-spin. In
fact this depends on the parity of k. For k odd the second homology group H?(M l" Z) ~
H?(X;;Z)/kx = Z has no 2-torsion. Therefore the second Stiefel-Whitney class w,(M¥)
is trivial. On the other hand, when k is even the class w,(X;) does not have the same
parity of ¢;(X;). Hence MY is not spin by Lemma

Notice that all these Sasaki structures are negative by construction. O

Remark 5.26. The almost contact structures underlying the Sasaki manifolds M¥ defined
in the proof of Theorem5.25|are inequivalent. In fact it is easy to see that their first Chern
classes have different divisibilities.

Remark 5.27. The embeddings ¢;: X; — CP" given by Kodaira Embedding Theorem
depend on the complex structure on X;. The Kihler forms w; used in the Boothby-
Wang construction are given by rescaling the restriction of the Fubini-Study form to X;.
Therefore, even though [w;]| = [w,] = x, the Kihler forms w; and w, cannot be joined
by a smooth path of symplectic forms w,. In fact, in that case the complex structures
on X; and X, would be deformation equivalent, at least as almost complex structures.
Hence their Chern classes would agree.

5.3.3 Simply connected higher dimensional manifolds

In this last part of the chapter we focus on higher dimensional Sasaki manifolds with
different Hodge numbers. Our next result extends Theorem [5.25]to any dimension 2n +
1>3.

Theorem 5.28. For all n > 1 there exist countably many (2n+1)-dimensional manifolds
admitting two Sasaki structures with different basic Hodge numbers. Moreover, these
manifolds can be arranged to be spin or non-spin and one can pick the Sasaki structures
to be negative.
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Proof. The case n = 2,3 is proved in Theorem [5.21] and Theorem[5.23]

Let X; and X, be two diffeomorphic 3-dimensional complete intersections with dif-
ferent first Chern class given in Table [5.1] Recall that X; and X, have different Hodge
numbers by Lemma([5.24] We adopt the notation from the proof of Theorem [5.25]

Since X is diffeomorphic to X,, the projective manifolds X; x CP" and X, x CP" are
diffeomorphic. Now consider the forms w; from Remark [5.27] Let M} be the Boothby-
Wang bundle over (X; x CP", w; + wrs).

Since the Kihler forms w; + wps represent the same class x + [wrs |, the resulting
Sasaki manifolds are diffeomorphic. Moreover, their basic Hodge numbers disagree
because the Sasaki structures are regular and the Hodge numbers of X; x CP" and X, x
CP" disagree. Therefore, for all n we get simply connected manifolds of dimension
2n + 1 with different Hodge numbers.

Unfortunately the Sasaki structures constructed as Boothby-Wang bundles over X; x
CP" are not of definite type. Nevertheless, we can get negative Sasaki manifolds with the
same properties as follows. Consider the k-fold products X¥ = X; x ... x X;. The class
(x,...,x) € H*(X[) = ®_ H*(X;) is represented by the standard product Kéhler form.
Hence the Boothby-Wang fibrations over X} and X4 are diffeomorphic for the argument
above. In this case the canonical bundle of X! is ample. Thus the Sasaki structures that
we have constructed are negative. Moreover, their Hodge numbers disagree because the
Sasaki structures are regular and the Hodge numbers of X} and X% disagree.

As in the proof of Theorem [5.25| we consider diffeomorphic complete intersections
X, and X, with odd first Chern class given in Table [5.I] Now we can construct the
Boothby-Wang bundle on the k-fold products X¥ = X; x ... x X; with Euler class
(Ix,...,lx) € H*(X}) for [ € N. By the same arguments above these yield two neg-
ative Sasaki structures with different basic Hodge numbers on the same differentiable
manifold M. Moreover, Lemma implies that M is spin if and only if / is odd.

Since the first Chern classes of the almost contact structures are the pullbacks under
the bundle map of ¢;(X}) and ¢, (X5), they define elements of different order in H*(M}).
Therefore the underlying almost contact structures cannot be equivalent.

In order to obtain such examples in dimension 6k + 3 and 6k + 5 it is enough to
reproduce the above construction on the products X* x ¥ and X5 x Y, where Y is a
complex curve, respectively surface, with ample canonical bundle. O

Remark 5.29. As pointed out in Remark the Kéhler forms used in the Boothby-
Wang construction are given by rescaling the restriction of the Fubini-Study form to X¥.
Therefore, even though they are cohomologous, they cannot be joined by a smooth path
of symplectic forms w;.

Remark 5.30. Theorem [5.28] cannot be extended to dimension 3. Indeed, in the three-

dimensional case h%’o = hllg’1 = 1 and hllg’0 = %bg. Therefore, basic Hodge numbers are

topological invariants of Sasakian 3-manifolds by Theorem[5.2]



Chapter 6

Sasaki groups

We consider now topological properties of K-contact and Sasakian manifolds. Specit-
ically, we focus on fundamental groups of compact K-contact and Sasakian manifolds.
In parallel with the projective and Kihler case we call these groups K-contact groups
and Sasaki groups respectively. It is very interesting to understand how far the analogy
between Kihler and Sasakian geometry goes in terms of fundamental groups. Follow-
ing the discussion of Chapter 4] we give an interpretation of Sasaki groups as group
extensions. In particular, these extensions depend on a choice of quasi-regular structure
on a Sasakian manifold realizing the group. We prove that Sasaki groups enjoy many
properties of projective groups. Perhaps more interestingly, we also prove that Sasaki
groups do not enjoy some properties that are satisfied by Kéhler and projective groups.

In Section [6.1| we present Sasaki groups as group extensions and discuss this inter-
pretation. The remainder of the chapter is dedicated to the proof of the results presented
in the introduction.

6.1 The short exact sequence of a quasi-regular Sasaki structure

Let M be a compact Sasakian manifold and denote by I' = x;(M) its fundamental
group. Rukimbira’s Theorem implies that M admits a quasi-regular Sasaki struc-
ture. Moreover, the Structure Theoremm shows that M is a principal S '-orbibundle
over a Kihler orbifold X = (X,U). Therefore, the manifold M admits a locally free
S!l.action. As a consequence of Theorem the fundamental group of a compact
Sasakian manifold fits into the long exact sequence of homotopy groups

P (X) S (S 22— T — 1(X) — 0.
In particular, every Sasaki group fits in a short exact sequence of the form
0—C—T—a9"(X)—0 (6.1)

95
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where C = Z/Im(6). Therefore, the group C can be as follows

0, if o 1s surjective.
C=<2, if{istrivial. (6.2)
Zy, otherwise.

Hence we have an associated fibration of classifying spaces
mr: BT — BrS™(X) (6.3)

with fiber BC.

Suppose now that the map ¢ : n‘z”b (X) — Z s trivial, i.e. assume C = Z. Then
we get a principal S '-bundle r: BT — Br¢"?(X) which is classified by its Euler class
e(T). By definition principal S '-orbibundles P on X correspond to principal S '-bundles
P on BX. In particular, the Euler classes of P and P coincide. Consider the principal
bundle M on BX determined by 7: M — X. Notice that 7r; (M) = I so that we can
obtain BI" from M by glueing cells of dimension m > 2 as explained in Section
It is easy to see that the bundle M is the restriction of (BI,7r) to BX < B9 (X).
Equivalently, the bundle M is the pullback of (6.3) under ¢; see (@.3) for the definition
of «. This follows directly from the construction of the classifying space in the orbifold
case. Visually we have

M« s BT

|k

BX —— Brn?(X)

where the vertical arrows are principal S '-bundles and the horizontal maps are defined
in (@4.3).

Thus we identify the principal S!-orbibundle 7: M — X with the pullback of
(BT, r) under ¢: BX — Bn9"*(X). In particular, by naturality of the Euler class, we
have proven the following

Proposition 6.1. Let M be a compact Sasakian manifold and T = my(M). Assume
that M is endowed with a quasi-regular Sasaki structure m: M — X such that the
associated central extension defined above has the form

0—Z—T—n"X)—0.

Then we have [w] = (*(e(T')) € H?

orb

(X;Z).

We discuss now the map & : 75”(X) — Z to describe the group C in geometrical
terms. In order to give an explicit description of the homomorphism &, we consider the
universal bundle §® — CP®. The principal S!-bundle M — BX is the pullback of
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S ® under the classifying map f: BX — CP®. By naturality, we get a map between
the long exact sequences of homotopy groups yielding the commutative diagram

~
S

\
4

- —3 m(CPP) =2Z —=3 Z=m(S))

>0 0
f*T f*T f*T f*T
> T

ey (BX) —— Z =1 (S)) s 11 (BX) — 0.

We focus on the isomorphism 7, (CP*) — m;(S1). This clearly factorizes through the
Hurewicz map 7,(CP*) - H,(CP*;Z) to give

7, (CP%) > m(Sh)

x )

H,(CP*;Z)

where the map (-, x) is capping with the generator x € H*(CP*;Z). By definition the
Euler class e(M) = [w] of the bundle M — BX is the pullback f*(x). From the
diagram

7T2(CPOO 1)
fx H,(CP*;Z fx
fx
7 (BX) 0 > m(ST)
S
H,(BX;Z)

we conclude that §(S) = (fi(S),x) = (S, [w]) for any element S € m(BX). We
summarize the above discussion in the following:

Lemma 6.2. Let M be a compact Sasakian manifold. Denote by m: M — X the
principal S '-bundle over a Kiihler orbifold (X, w) determined by a quasi-regular Sasaki
structure on M. Then the map ¢ : n”’b (X) — Zin the long exact sequence of homotopy
groups

X)L (S 22— T — (X)) — 0
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is given by the composition
1(X) 5 HY (X Z) sy (81) =z

where h is the Hurewicz map and the map {-, |w)) is evaluation on the Euler class of the
bundle m: M — X.

Let us now come back to the extension (6.I). In particular, we want to relate the
orbifold fundamental group 7¢"”(X) to a genuine projective group. Note that the map
p: BX — X defined in Section [2.3]induces a surjective map p, at the level of funda-
mental groups. Moreover, the kernel of p, is normally generated by loops around the
irreducible divisors D; contained in the singular set of X, see Section These loops
represent torsion elements of order m; the ramification index of D;. Therefore the kernel
K of the map p,.: 1" (X) — m;(X) is generated by (possibly infinitely many) torsion
elements.

Assume now that K is finitely generated. Then by Remark 4.5 we get an isomor-
phism

H*(n9"(X);R) =~ H*(m;(X); R). (6.4)
Moreover, X admits a resolution which preserves the fundamental group by a result of
Kolldr, see [72, Theorem 7.5.2]. Thus the real cohomology ring of 79”(X) is that of a
projective group. Notice that whenever C # Z we have an isomorphism

H*(n9""(X);R) =~ H*(T;R).

In this instance I itself has the cohomology ring of the projective group 7r; (X). We have
proven the following:

Lemma 6.3. For any quasi-regular structure n: M — X on a Sasakian manifold M
one has the diagram

K
y 77(X) — 0 (6.5)

I

7T1(X

es

0 > C > I

~—

where T' = m(M). Moreover, n\(X) is a projective group and the kernel K of p.
is generated by torsion elements. If K is finitely generated by torsion elements, then
H*(n9"(X);R) = H*(m1(X); R). If in addition C # Z, then H*(m;(X);R) =~ H*(T; R).

Remark 6.4. The results of this section are stated and proved in the Sasakian setting.
Nevertheless, it is easy to check that none of the arguments in the proofs of Propo-



6.2 Realizability 99

sition and Lemma uses integrability of the CR structure. Therefore, Proposi-
tion[6.1)and Lemma [6.2] hold true in the K-contact setting.

6.2 Realizability

This section is dedicated to realizability results. Namely, we discuss which groups are
Sasaki groups and in which dimension they can be realized. In particular, we show that
Ssn41 s not contained in | J, _ So1 for small n.

We begin this section by investigating in which dimensions projective groups, re-
spectively finitely presentable groups, can be realized as fundamental groups of compact
Sasakian manifolds, resp. K-contact manifolds.

Theorem 6.5. Every projective group I" can be realized as the fundamental group of a
compact Sasakian manifold of any odd dimension 2n + 1 = 5.

Proof. Let T be a projective group. By the discussion in Section 4.2] we can assume
' = m(X) where X is a smooth projective variety of any (real) dimension 2n > 4.
Denote by [w] the integral Kéhler class of X. The blow-up of X at a point, topologically
X#CP", can be endowed with the integral Kihler class k|w] + E where E is the Poincaré
dual of the exceptional divisor D and k € N is large enough.

Consider now the Boothby-Wang fibration M over X#CP" with Euler class e =
k|w] + E and the associated long exact sequence

o (x#@) O a(S)) — (M) —>T —0.

The exceptional divisor D =~ CP"~' contributes a non-torsion spherical class [D] to
H, (X#@; Z> on which the Euler class evaluates to 1. By Lemma the map ¢ is

surjective, that is, we get the desired isomorphism 7y (M) ~ T O

Remark 6.6. Chen [30] proved that all projective groups are Sasaki, cf. Theorem [4.26]
However, his proof only realizes these groups as fundamental groups of Sasakian man-
ifolds of dimension 2n + 1 > 7 because it relies on the join construction.

Theorem 6.7. Every finitely presentable group A can be realized as the fundamental
group of a compact K-contact manifold of any odd dimension 2n + 1 > 5.

Proof. The proof is similar to that of Theorem [6.5] Namely, we replace the projective
variety X by a symplectic manifold.

Let A be any finitely presented group. By a celebrated theorem of Gompf [S0] there
exists a closed symplectic 2n-manifold Y such that 7;(Y) = A, for any n > 2. Since
non-degeneracy is an open condition, there exists a symplectic form on Y representing a
rational class in cohomology. After multiplication with a large integer we may assume



100  Sasaki groups

that Y is equipped with a symplectic form w representing an integral class [w], see
Remark 3.23

After possibly replacing Y by its symplectic blow-up at a point, there exists a spher-
ical class in H, (Y;Z) on which [w] evaluates to 1. Therefore, the Boothby-Wang fibra-
tion over Y with Euler class [w] is a compact 2n + 1-dimensional K-contact manifold N
with 11 (N) = A. o

Remark 6.8. It was shown in [10] that all finitely presentable groups are K-contact, cf.
Theorem 4.27] However, the proof only realizes these groups as fundamental groups of
K-contact manifolds of dimension 2n + 1 > 7 because it relies on the join construction.

Remark 6.9. Theorem [3.94] implies that K-contact groups in dimension 3 are Sasaki
groups. Moreover, three-dimensional Sasaki manifolds were classified by Geiges [48]].
As a result their fundamental groups are lattices in S O(4), S L(2,R) or the real Heisen-
berg group H;. This shows that the bounds on the dimension in Theorem and
Theorem[6.7] are optimal.

As a motivation to discuss the quasi-regular setting, let us rephrase the above results.
Consider the central extension (6.1]) associated to a regular Sasaki structure:

0—C—T—m(X)—0.

Here 7, (X) is the ordinary fundamental group of a compact projective manifold. The
Boothby-Wang Theorem ensures that all projective groups figure as the last term of the
extension ([6.1)) associated to some regular Sasaki structure. Moreover, Theorem [6.5|
shows that every projective group is the fundamental group of a compact regular Sasaki
manifold. We can then rephrase Theorem[6.5|as: every group which appears at the right
of a central extension associated to a regular Sasaki structure also figures in the middle
of some other such extension.

It is then natural to ask whether the analogous statement holds true in the quasi-
regular case. Our next theorem gives an affirmative answer to this question.

Theorem 6.10. Let M be a 2n + 1-dimensional compact quasi-regular Sasaki manifold
and let
0—C—T— X)) —0

be the associated central extension. Then n9'"(X) is a Sasaki group.

Proof. The proof is a generalization to the orbifold setting of the argument in Theo-
rem[6.3]

Let 7: M — X be the S!-orbibundle with Euler class [w] associated to the quasi-
regular structure on M. Consider the blow-up of X at a smooth point. This gives a
projective orbifold Y/ with underlying topological space Y = X#CP". Clearly 79"(X) =
79" (Y). Moreover, we can endow Y with an integral Kéhler class e = k[w] + E where
E is the Poincaré dual to the exceptional divisor D =~ CP""! and & is a positive, large
enough integer.
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We make use of Theorem [2.53|to ensure that we can pick k such that the principal
S'-bundle associated to e € H? (Y;Z) is smooth. For instance, it is enough to take
k relatively prime to the orders of the uniformizing groups of X. Let N denote this
bundle. By the Structure Theorem [3.59] N is a Sasaki manifold. We want to prove that
m(N) = 9" (Y).

Now consider the map p,: 75°(Y) — n5”(X) induced by the blow-down map
p:Y — X. Let f: §? — BJ/ be a representative of the generator of ker(p,). By
construction the pullback of N under f is the Hopf bundle S® — S2. Therefore, f

induces the following map of long exact sequences

- — m(BY) (s — -
e H>(BY;Z) f
Fi
- —— m(S?) = > (S — -
N =
HQ(SZ;Z)

where x is the generator of H*(S?;Z) given by the orientation. Since x = f*(e), it
follows that the map &: 75”(Y) — m;(S"') is surjective. We conclude that 71 (N) =
w(Y) = 7 (X). o

Remark 6.11. The orbifold fundamental group of a compact orbifold is finitely pre-
sentable. Since every such group is the fundamental group of a symplectic manifold,
the K-contact analogue of Theorem [6.10]is, in fact, weaker than Theorem [6.7]

A natural question to ask on Sasaki groups is the following:

Question: In which dimension does there exist a Sasakian manifold M with 1(M) =T
for a given Sasaki group I'?

Theorem [6.5]together with Remark [6.9] provide an answer to this question when I"is
also a projective group. In the Kéhler case the analogous problem has a partial answer
in Proposition 4.9 However, in the Sasakian setting taking products with simply con-
nected manifolds does not yield Sasaki manifolds in a natural way. Moreover, consider
a quasi-regular Sasaki structure such that the map ¢ of Lemma [6.2]is surjective. Then
the Euler class e of the associated group extension pulls back to the Kihler class of X by
Proposition Hence the powers e* of the Euler class cannot vanish for k < dime(X).
This suggests that some dimensional restrictions may apply. Our next result exploits
this observation to prove that the Sasakian analogue of ii) in Proposition 4.9]is false.
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Theorem 6.12. The set Sy, is not contained in | J, ., Sami1 forn =1,2,3.

Proof. Fix n € {1,2,3}. We want to find elements of S,,,1, i.e., fundamental groups of
a compact Sasakian manifold of dimension 2n + 1, which cannot be realized as 7, (M)
for M a Sasakian manifold of dimension larger than 2n + 1. In particular we will show
that this property is satisfied by the integral Heisenberg groups of dimension 3,5 and 7.

We have seen in Example that the Heisenberg group H,,. arises as the fun-
damental group of the Sasaki manifold given by the Boothby-Wang fibration over the
2n-dimensional torus 72", Thus Ho,i1 € Sapti.

Now suppose H,,1 = 71 (M) where M is a Sasakian manifold of dimension 2m + 1.
A quasi-regular structure on M yields a central extension of the form:

m>n

0— C -5 Hypyy — 197(X) — 0. (6.6)

First we prove by contradiction that C # 0 and C # Z; leaving as the only pos-
sibility C = Z, see (6.2)). Since Hy,, is torsion-free, C cannot be a non-trivial finite
group. Now suppose that C is the trivial group. By Lemma 79" (X) surjects onto
71 (X) with kernel generated by elements of finite order. Hence H,41 = 79"°(X) and
torsion-freeness yields an isomorphism H,,,; = 7;(X). Thus H,, is a Kéhler group,
contradicting the results of [27]].

The only possibility left is C =~ Z. We will first treat the case where ¢(1) = zis a
generator of the center of H,, . In this case the central extension (6.6) reads

0—Z— Hopyy — 2" — 0

with Euler class e € H*(Z*';Z). Let BZ*" be the classifying space obtained by attaching
cells to BX as explained in Section By Proposition [6.1] the Euler class e of the
extension above is mapped to the Euler class [w] of the S !-orbibundle 7: M — X by
the injection «*: H*(BZ*";Z) — H?,(X;Z). Thus

0= L*(en+1) _ L*(e)"H _ [w]n+1 )

On the other hand, w is a Kiahler form on a 2m-dimensional orbifold so that [w]' # 0
for all I < m. We conclude that m < n.
If we are not in the preceding case, then ¢(1) = z* so that the sequence (6.6) reads

O—>Z—>7‘{2n+1—> Gk—>0, (67)
where, in turn, G, fits in the short exact sequence
0—Zi— G, — 7" —0.

Again by Proposition *(ex) = [w] where ¢ is the Euler class of the central
extension (6.7). The class ¢, is not torsion because [w] is a Kihler class and ¢* is
injective. Moreover, the Lyndon—Hochschild—Serre spectral sequence for Z; < G, gives



6.3 Direct products 103

H*(Z*;R) =~ H*(G;R), hence eﬁ( = 0 for all / > n. As in the previous case, we get
0 =c*(ef™) = (&) = [w]"".

This proves that H,, | ¢ Sy,,41 for m > n and concludes the proof. O

Remark 6.13. In order to show that S; & | J, -, Sam+1, it is enough to consider a Z
central extension A,, of the fundamental group I', of a closed orientable surface X,
of genus g > 1 with non-trivial Euler class e € H*(T';;Z) = H?*(Z,;Z). This is the
fundamental group of the principal S '-bundle over X, with Euler class e, thus a Sasaki
group. On the other hand, A, . is not Kihler since the cup product

H'(Ag;R) x H' (Ag;R) —> H* (A R)

is degenerate, cf. Proposition
In fact, we will see in Corollary [6.23]that this is the case for any infinite Sasaki group
I'e 83.

Remark 6.14. One cannot use higher dimensional Heisenberg groups H,, . to prove
the same result for S,,, | with n > 4. In fact Campana [20] proved that these groups are
projective. Therefore, they are Sasaki groups realizable in any odd dimension 2n+1 > 5
by Theorem [6.5]

6.3 Direct products

Recall that the class of Kdhler groups is closed under direct products because the product
of Kéhler manifold is again a Kéhler manifold. Motivated by this rather elementary
property of Kihler groups in this section we study direct products of Sasaki groups.
Products of Sasakian manifolds are not Sasakian for dimension reasons. Nevertheless,
one can ask whether or not the set of Sasaki groups is closed under direct products.
A natural approach is to try to perform a construction, e.g. a join construction, while
controlling the fundamental group. It turns out that this method cannot work because
the set of Sasaki groups is not closed under direct products.

Theorem 6.15. The set S is not closed under direct products.

Proof. Let X, be the closed orientable surface of genus ¢ > 2 and denote its fundamental
group by I',. We will show that, even though ;3 and I', are Sasaki groups, their product
‘H; x I'y cannot be the fundamental group of any compact Sasakian manifold.

Assume there were a compact Sasakian manifold M with (M) = H; x I',. Note
that 7r; (M) is not a Kéhler group by Proposition Thus, by the same argument in
the proof of Theorem[6.12] we would have the following central extension:

0— Z — m(M) — Gy x Ty, — 0, (6.8)

where G is a Z-extension of Z? (with possibly k = 1 and G, = Z?). Again the
Lyndon—Hochschild—Serre spectral sequence for Z;, < Gy x I, yields H*(Z* x T;;R) =
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H*(Gy x T'y;R). Furthermore, the extension is the pullback of the extension (6.7)
for n = 1 via the projection on the first factor. That is, we have the following pullback
diagram:

0 >Z >711(M)—>Gk><l"g%0

| Lk

0 —>7Z > H; > Gy 5 0.

Therefore the characteristic class pri(e;) = dy € H*(BGy x I'y; Z) of the extension (6.8)
satisfies d,f = 0. This implies dim(X) = 2, that is, the underlying space X is a closed
surface. Thus by(X) = by(X) = 1 because H*  (X;R) = H*(X;R), see Remark [2.27]
Moreover, the injection (4.5)) in the orbifold case implies b, (G, xT',) < by(X). However,
b2(Gy x Ty) = ba(Z? x Ty) > 1. Therefore G; x T, is not the orbifold fundamental
group of an orbifold surface. Hence H; x I', is not a Sasaki group. O

Remark 6.16. Let A, , be the groups defined in Remark [6.13] The same argument proves
that none of the products A, , x I', is a Sasaki group. More generally, the product A x I’y
is not Sasaki if A is an infinite Sasaki group in dimension 3, see|6.21

Remark 6.17. An alternative proof of Theorem [6.15|follows by combining [69, Propo-
sition 7.2] with the classification of 3-dimensional Sasakian manifolds in [48]]. In order
to see this, let H be the Boothby-Wang bundle over 7% with Euler class a generator of
H?(T?). Then Proposition 7.2 in [69] implies that for any compact even dimensional
manifold M the product M x H is not Sasakian. However, the proof of this proposition
shows more. Namely, it proves that 7r; (M) x Hj is not realizable as the fundamental
group of a Sasakian manifold of dimension 2n + 1 > 5. On the other hand, the clas-
sification of 3-dimensional Sasakian manifolds in [48] ensures that H; x I, is not the
fundamental group of a Sasakian manifold of dimension 3.

6.4 Free products

We focus now on instances in which Sasaki and Kéhler groups present similar be-
haviour. We are mainly interested in the relation with free products. Specifically, in this
section we prove that free products of groups with a non-trivial finite quotient cannot
be Sasaki. In fact, we show more, i.e., we give the Sasakian analogue of Theorem@
Namely, we prove that under mild hypotheses on I'; and I'; the group (I'; «I',) x H is not
Sasaki for any group H. This shows in particular that Sasaki groups are indecomposable
under free products whose factors have non-trivial finite quotients. The proof we give
here is an adaptation to the Sasakian setting of an argument from the Kdhler case; see
the proof of Theorem [4.22]

Theorem 6.18. Let I'y and ', be two groups. Assume f;: I'; — Q; is a non-trivial
quotient with |Q;| = m; < w fori = 1,2.
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a) Then (T'y = I') is not Sasaki.
b) For any group H the product (T'y = T'y) x H is not Sasaki.

Proof. Clearly part a) follows from the second claim so we prove only b). Set ' =
('y »T2) x H. The proof is divided into two cases.
Case 1 (b;(H) even) By Lemma there exists a finite index subgroup A < T’y =T,
with by (A) odd. Hence, the group A x H is a finite index subgroup of " with odd first
Betti number. Thus I' cannot be Sasaki.
Case 2 (b;(H) odd) In this case b; (T'; #I';) > 0. Then we can assume that the first Betti
number of I'y is positive. The proof of Lemma provides a finite index subgroup of
I't x I'; of the form F, * G. Moreover, the rank of F, can be chosen to be arbitrarily
large. Since the class of Sasaki groups is closed under taking finite index subgroups, we
can assume I' = (F, » G) x H withn > b;(H).

Let M be a compact Sasakian manifold with 7r;(M) = I'. Consider a quasi-regular
Sasaki structure 7: M — X and let

0—C—T—1"X)—0

be the associated central extension. Since C is mapped to the center of I', the extension
is a pullback of the following form

0——C > T s (Fp+G) x K — 0
H L
0—>C—>H y K 5 0

where pr; is the projection on the second factor and 79"*(X) = (F, » G) x K. Now
H'(n9?(X);R) is endowed with a skew-symmetric non-degenerate bilinear product by
Proposition .18 Moreover, this factorizes through the cup product, i.e.

H'(m9"(X);R) x H'(n9*(X);R) —— H*(n9"(X);R) —— R.. (6.9)

Therefore, H'(F,) is an isotropic subspace in H'(n"”(X)) =~ H'(F,) ® H'(G) @
H'(K) which is orthogonal to H'(G). We also have that b;(K) = b;(H) since H is
a non-trivial cyclic central extension of K. Now the inequality n > b;(H) = b;(K)
implies that the skew-symmetric product is degenerate. We conclude that I" is not a
Sasaki group.

O

Remark 6.19. Sasaki manifolds do satisfy the Hard Lefschetz Theorem but this
does not induce a non-degenrate bilinear product as in Proposition In particular,
such a bilinear map would not factorize through the cup product as Example shows.
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Remark 6.20. Theorem implies that Sasaki groups are indecomposable under free
products. In particular, it implies part a) of Theorem [6.18] However, it does not imply
part b) of Theorem [6.18] Moreover, the proof of Theorem [6.18]does not rely on [21] 22],
cf. Remark 4.31]

6.5 Three-manifold groups

Motivated by the results on free groups and free products we discuss the relation be-
tween Sasaki and 3-manifold groups. These groups enjoy different properties than Kih-
ler groups. For instance, by taking connected sums one sees that 3-manifolds groups are
closed under free products. It was proved in [[79] that an infinite 3-manifold group is also
a Kahler group if and only if it is a surface group, see Theorem[4.23] Clearly the funda-
mental group of a compact 3-dimensional Sasakian manifold lies in the intersection of
3-manifold groups and Sasaki groups. Thus the analogous statement to Theorem [4.23]
in the Sasakian setting involves only Sasaki groups realizable in dimension 5 or higher,
that is, it only involves the sets S, ; for n > 2. It turns out that Sasaki groups have
very little in common with 3-manifold groups, apart from the obvious intersection given
by surface groups and some finite groups.

Theorem 6.21. Let I be an infinite 3-manifold group. ThenT" € Sy, for some n = 2
if and only if T is the fundamental group of a closed orientable surface.

Proof. Throughout this proof N will denote a (not necessarily closed) 3-manifold.

All fundamental groups of closed orientable surfaces are projective, thus the neces-
sity follows from Theorem [6.5]

Now let I' = 7 (N) where N is a 3-manifold and |I'| = oo.

Suppose I is the fundamental group of a closed Sasakian manifold M of dimension
larger than 3. In particular, I" is finitely presentable and, by a result of Jaco [64], we can
assume that N is compact.

Now suppose N is not prime. This means that I' = I'; = I, for two three-manifold
groups I'; and I',. The groups I'; and I', satisfy the hypothesis of Lemma [#.21| because
3-manifold groups are residually finite, see [4]. Thus I" has a finite index subgroup with
odd first Betti number contradicting the assumption that I" is Sasaki. Hence we can
assume that N is prime.

Moreover, if I is virtually cyclic, then it is not a Sasaki group by parity of the first
Betti number. Hence we can assume N to be irreducible as a consequence of the sphere
theorem [86]. This in particular implies that N is aspherical and I is torsion-free.

Now consider the central extension (4.2)) associated to a quasi-regular structure on
M:

0—C—T— X)) —0.

Since I’ is torsion-free, C cannot be a non-trivial finite cyclic group. Moreover, if C is

the trivial group, then I' is isomorphic 7¢"”(X). Hence the torsion-freeness of I' implies
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that the kernel K in diagram (6.3) is trivial. Thus I is isomorphic to the projective group
n1(X). In this case the claim follows from Theorem see also Proposition [6.24]

In order to conclude the proof we have to show that the case C = 7Z cannot occur.
In this case since I has an infinite cyclic normal subgroup, the 3-manifold N is the total
space of a Seifert bundle over a 2-dimensional orbifold Z; see [28, 45]].

If N is closed, then it is finitely covered by a principal S!-bundle N over a surface
%, of genus g > 1. Since the class of Sasaki groups realizable in a given dimension is
closed under passing to finite index subgroups, it suffices to prove that 7 (N) is not a
Sasaki group realizable in dimension higher than 3. If the S !-bundle N is trivial, then
71 (N) is not a Sasaki group because b, (7, (N)) = 2g + 1. Therefore 7 (N) = A, must
be one of the groups discussed in Remark [6.13] i.e. a Sasaki group that can only be
realized in dimension 3. This settles the case in which N is closed.

If N has non-empty boundary, any cyclic subgroup of I' is generated by a power
of the fiber of some Seifert fibration of N; see [65, Lemma I11.4.8]. In other words,
C is generated by y* for some k > 1 where y generates an infinite cyclic subgroup
D = 7Z c I'. Moreover, D fits in the short exact sequence

0—D—T—n/Z)—0

associated to the Seifert fibration of N over a 2-dimensional orbifold .
In particular 79”(X) is a Z extension of 79"*(Z) for some k > 1. Thus the Lyndon—
Hochschild-Serre spectral sequence for Z; < 79"(X) gives

H*(ﬂf’b(z\’);R) > H*(ﬂ‘l”b(Z);R) )

Moreover, the isomorphism (6.4) yields H*(n9"?(2);R) =~ H*(m(2);R) where 71 (Z)
has cohomological dimension 2.

Neither of the above extensions can be trivial because, by Proposition [6.1] one has
[w] = ¢*(e) where [w] € H?, (X;Z) is the Euler class of the principal S '-orbibundle
m: M — X and e € H*(n9"?(X); Z) classifies the associated central extension.

Since e has infinite order it defines a non-trivial real class in H*(79"?(X);R). which,
by abuse of notation, we denote by e. The isomorphism H* (7" (X);R) =~ H*(m(2); R)
yields t*(e)* = [w]?* = 0 thus, the Kihler orbifold X must be 2-dimensional.

This implies that dim(M) = 3 contradicting the assumption and concluding the
proof. O

Remark 6.22. Serre proved in [107] that all finite groups are projective. This explains
why I is assumed to be infinite.
As an immediate consequence of Theorem[6.2T|we get a dichotomy of infinite Sasaki

groups into those realizable in dimension 3 and all others.

Corollary 6.23. A Sasaki group I € S5 is realizable in higher dimensions if and only if
it is finite.
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6.6 Further consequences

Here we present a collection of results that follow directly from diagram (6.5). We begin
with a general observation. Most results in this section will then be special occurrences
of the following:

Proposition 6.24. If T is a torsion-free non-Kdhler group with trivial center, then I is
not Sasaki.

Proof. 1f I were a Sasaki group it would fit in the following central extension:
0—C—T— (X)) —0.

Since the center of T' is trivial we would have an isomorphism I' = 79*(X). We have
seen in Section 6.1|that 79" (X) surjects on 71 (X) with kernel generated by elements of
finite order. Thus I" would be isomorphic to the Kihler group 7, (X) by torsion-freeness
and this contradicts the assumption. m|

In [92] Napier and Ramachandran proved that Thompson’s group F and its general-
izations F, o, and F, are not Kihler groups. The analogue of the above statement holds
true in the Sasakian setting and is indeed a special instance of Proposition [6.24]

Corollary 6.25. The Thompson groups F,T and V and their generalizations F, , and
F, are not Sasaki groups.

In particular, we get Theorem [4.32]as a corollary of Proposition [6.24]
Corollary 6.26. Let T be a lattice in S O(1,n) withn > 2. ThenT is not a Sasaki group.

It is sometimes possible to combine Lemma [6.3] with the properties of specific
classes of groups in order to get restrictions on Sasaki groups. This happens for limit
groups, a class of groups that was introduced by Sela in [106]. One can characterize
limit groups as the class of groups I' such that for every finite set S < I’ there is a homo-
morphism to a free group which is injective on §, see [29, Corollary 3.10]. Exploiting
the properties of limit groups we prove Proposition [0.28| which is the Sasakian analogue
of [77, Theorem 6]. Before proving the result we state the following theorem for future
reference.

Theorem 6.27 ([85,146]])). If a finitely presentable group T fits into an exact sequence
0—C—I—0—0.

with C and Q infinite, and C finitely generated, then the first €*-Betti number B (') of T
vanishes.

We can now prove the following
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Proposition 6.28. A non-abelian limit group is a Sasaki group if and only if it is the
Jfundamental group of a closed orientable surface.

Proof. All surface groups are projective, hence Sasaki.
Conversely, let I' be a limit group which is the fundamental group of a compact
Sasakian manifold M. Then a quasi-regular structure on M yields the sequence

0—C—T—na"X)—0.

Here C cannot be a non-trivial finite group since limit groups are torsion-free. It was
proven in [97] that the first £2-Betti number of non-abelian limit groups is positive. This,
together with Theorem rules out the instance C = Z. The last case is C = 0 but
this instance cannot occur either. In fact, if C = 0, then I' is isomorphic to the Kihler
group m;(X) as a consequence of Lemma and torsion-freeness. The claim follows
from [7/7, Theorem 6]. O
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