
Fast neutrino flavour conversions

Stability analysis in the linear regime

Tobias Stirner

München 2020





Fast neutrino flavour conversions

Stability analysis in the linear regime

Dissertation

an der Fakultät für Physik

der Ludwig–Maximilians–Universität

München

vorgelegt von

Tobias Stirner

aus Troisdorf

München, den 05. Juni 2020



Dissertation

an der Fakultät für Physik
der Ludwig-Maximilians-Universität München
vorgelegt von Tobias Stirner
am 05. Juni 2020.

Erstgutachter: PD Dr. Georg Raffelt

Zweitgutachter: Prof. Dr. Günter Sigl

Tag der mündlichen Prüfung: 17. Juli 2020



Zusammenfassung

Aufgrund ihrer besonderen Eigenschaften sind Neutrinos wertvolle Boten phy-
sikalischer Informationen. Insbesondere durch ihre oftmals geringe Wechsel-
wirkungsrate mit anderen Materiekomponenten ermöglichen sie Einblicke in
unzugängliche Regionen, wie das Innere von Sternen. Für die richtige Inter-
pretation von Neutrinosignalen ist ein umfassendes Verständnis der damit ver-
bundenen Prozesse unumgänglich. Zu diesen Prozessen gehört die Umwand-
lung von Neutrinoflavours, die durch die Mischung von Neutrinos verursacht
wird. Während der Propagation in einem Medium kann die Wechselwirkung
mit der Umgebung die Korrelation zwischen verschiedenen Flavours beein-
flussen, d.h. Flavourkonversionen werden verstärkt oder unterdrückt. Bei ho-
hen Neutrinodichten, wie sie z.B. in Kernkollaps-Supernovae oder bei der Ver-
schmelzung zweier Neutronensterne auftreten, bilden die Neutrinos selbst das
Medium, sodass Neutrino-Neutrino-Wechselwirkungen die Flavourentwicklung
dominieren und kollektiver Flavourmoden auftreten können. Eine Klasse kol-
lektiver Phänomene wird als schnelle Flavourkonversion bezeichnet, da die
Längenskala, bei der die Oszillation auftritt, deutlich kürzer ist als die Skala
anderer Oszillationseffekte. Die Umwandlung findet statt, wenn eine anfänglich
kleine Flavourkohärenz instabil wird und exponentiell wächst. Dabei hängt die
Existenz von instabilen schnellen Flavourmoden entscheidend von der Lepto-
nenzahlverteilung ab.

Diese Arbeit widmet sich der Untersuchung des theoretischen Ursprungs
der schnellen Flavourkonversionen. Zu deren Beschreibung wird auf die Ma-
trix der Flavourdichten zurückgegriffen und die entsprechende Bewegungsglei-
chung hergeleitet. Dabei werden auch die Refraktionsterme berücksichtigt, wel-
che durch die Wechselwirkung mit einem Medium entstehen. Auf Basis dieses
Ergebnisses und durch Linearisierung der Bewegungsgleichung wird die Disper-
sionsrelation der Flavourkorrelationsfunktion berechnet. Der Zusammenhang
zwischen Instabilitäten in der Korrelationsfunktion und Vorzeichenwechseln
in der Winkelverteilung der Leptonenzahl wird für axialsymmetrische Sys-
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teme nachgewiesen. Für diesen Beweis wird der vollständige Satz von Ei-
genfunktionen bestimmt und die jeweiligen Funktionen von kollektiven und
nicht-kollektiven Moden an kritischen Punkten gleichgesetzt. In diesem Zu-
sammenhang wird der Unterschied zwischen der Stabilität von Moden, die
die Axialsymmetrie erhalten oder brechen, demonstriert. Schließlich wird die
Annahme der Axialsymmetrie verworfen und es werden Beispiele für allgemei-
ne Konfigurationen untersucht, d.h. mit beliebigen Wellenvektoren und nicht-
symmetrischen Leptonenzahlverteilungen.



Abstract

Due to their special properties neutrinos are valuable messengers of physical
information. In particular the low interaction rate in matter allows us to
receive neutrino signals from otherwise inaccessible regions, like the interior of
stars. For the correct interpretation of these signals a profound comprehension
of associated processes is necessary. One of them is the conversion of neutrino
flavours caused by neutrino mixing. When neutrinos propagate in a medium,
the interaction with the environment can influence the mixing, i.e. enhance
or suppress flavour conversions. At high neutrino densities, as they occur
for example in core-collapse supernovae or neutron-star mergers, neutrinos
themselves are the medium and neutrino-neutrino interactions can dominate
the flavour evolution, which leads to the appearance of collective flavour modes.
One class of collective phenomena is called fast flavour conversion because the
length scale at which the oscillation takes place is much shorter than the scale
of other oscillation effects. The conversion occurs when the initially small
flavour coherence becomes unstable and grows exponentially. The existence of
unstable fast-flavour modes depends crucially on the angular lepton-number
distribution.

This thesis is dedicated to investigate the theoretical origin of fast flavour
conversions. For this purpose the formalism based on the matrix of flavour
densities is applied and the corresponding equation of motion is derived in-
cluding refraction terms from the interaction with a medium. The result is
used to calculate the dispersion relation for the flavour correlation function as
long as its equation of motion can be linearised. The connection between insta-
bilities in the correlation function and crossings in the angular lepton number
distribution is proven for axially symmetric systems by deriving the full set of
eigenfunctions and matching them for collective and non-collective modes. In
this context the difference between the stability of symmetry preserving and
breaking modes is demonstrated. Finally the assumption of axial symmetry
is dropped and examples are studied for general settings, i.e. with arbitrary
wave vectors and non-symmetric lepton-number distributions.
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CHAPTER 1

Introduction

Neutrinos are light and very weakly interacting elementary particles with
spin 1

2
. For each charged lepton, i.e. electron, muon and tau, there exists one

corresponding neutrino νe, νµ, ντ . Experiments have shown that this flavour
is not conserved. This means that for example a neutrino which was produced
with electron flavour can also be detected as νµ or ντ . This phenomenon is
denoted as neutrino oscillation or more general flavour conversion and has
important consequences for astrophysical processes.

Flavour transformation has a direct influence on neutrino signals. For
their correct interpretation a profound understanding of the occurring effects
is mandatory. In vacuum the calculation is straightforward, but becomes more
complicated in a medium because of neutrino refraction. The medium influ-
ences mixing and under specific circumstances can cause significant flavour
conversion. In environments with high neutrino fluxes, like core-collapse super-
novae, the neutrinos themselves can be the medium, which makes the evolution
equation nonlinear and gives rise to collective flavour conversion. Collective
transformations modify the neutrino signal in a detector and in addition can
play an important role in processes in astrophysical environments. Examples
are the synthesis of heavy elements and the revival of the supernova shock wave,
which are both not understood completely. This thesis is intended to clarify
the theoretical foundation of a particular collective phenomenon, namely fast
flavour conversion.

The structure of this thesis is as follows: In the remainder of this chapter an
overview of neutrino physics is given. Their role in the Standard Model and the
flavour mixing therein are reviewed. Afterwards a brief overview of neutrino
oscillations in vacuum and matter is given. The chosen observable to describe
neutrino oscillations is the matrix of flavour densities, which consists of the
occupation numbers for the mass or flavour states and their respective correla-
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tions. This matrix is introduced in ch. 2 and its evolution equation is derived.
Interaction terms are implemented. The rest of the thesis focuses on unstable
modes of the flavour correlation function. In ch. 3 the dispersion relation of
this function is computed, which depends on the angular spectrum. Differ-
ent input parameters are applied to classify the instabilities. Subsequently
the eigenfunctions of non-collective modes are derived and the connection to
collective instabilities demonstrated. In the final chapter previous symmetry
assumptions are discarded and the directional dependence of unstable modes
pointed out.

1.1 Historical overview

At the beginning of the last century the energy spectrum and spin structure of
β-decay was an unresolved issue. While one part of the community questioned
the strict conservation of energy, Pauli proposed the existence of a light and
very weakly interacting particle with spin 1/2. Nowadays it is known as elec-
tron neutrino. As the story goes he was not very convinced by his idea and
said to Walter Baade [1]:

“I’ve done a terrible thing today, something which no theoretical
physicist should ever do. I have suggested something that can
never be verified experimentally.”

His theoretical claim was correct, but the prediction on its detectability wrong.
In 1956 Cowan and Reines detected electron antineutrinos from a nuclear re-
actor via inverse beta decay [2]

ν̄e + p+ → e+ + n. (1.1)

The observation of neutrinos corresponding to the other leptons, µ and τ ,
followed later [3, 4]. Furthermore the decay width of the Z-boson indicated
that there are no further (light) generations [5].

The experimental evidence for flavour conversion of solar and atmospheric
neutrinos was found in the measurements of Super-Kamiokande and SNO re-
spectively [6, 7]. In both experiments the data on the neutrino flux did not
match the theoretical prediction without flavour transformations originating
in a mixing in the neutrino mass term. However, implementing flavour conver-
sion fitted the measurement with high significance and proved the existence of
neutrino masses.

Nowadays the number of neutrino detectors has increased considerably.
Their measurements are essential to constrain some of the oscillation param-
eters and some of them allow research on more “exotic” questions, like the
density profile of the earth. In astronomy high-energy neutrinos are an im-
portant observation channel. Their weak interaction enables them to carry
information from dense and hot regions, where other particles, like photons
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or protons, are trapped. Because neutrinos are also not deflected by magnetic
fields, their signal is reliable for the identification of astronomical sources. This
feature was used in multi-messenger astronomy to find the origin of highly en-
ergetic cosmic rays [8].

1.2 Neutrinos in the Standard Model

The Standard Model of particle physics conjoins the established matter content
and forces in the universe in the framework of quantum field theory and gauge
theory. It is invariant under local transformations belonging to the SU(3)C ⊗
SU(2)L ⊗ U(1)Y group after electroweak symmetry breaking. The subscripts
denote the charges to which the gauge bosons of the group couple. SU(3)C is
the symmetry group for colour [9,10], a charge that is exclusive to quarks, and
hence not relevant in this thesis. The charges of SU(2)L and U(1)Y are left-
handed chirality and weak hypercharge respectively and their gauge bosons
form the W±, Z-bosons and the photon [11–13]. The spontaneous symmetry
breaking in the electroweak sector is important because it gives masses to
fermions via the Higgs mechanism [14, 15] and moreover to the W and Z-
boson. These masses are the reason for the low interaction rates when the
energy transfer between scattering particles, like neutrinos and electrons, is
small compared to the electroweak scale.

In the Standard Model neutrinos only interact via the massive gauge bosons
of the weak interaction, i.e. W and Z-bosons. A coupling to the photon is
possible in loop processes, which induces an effective dipole moment for the
neutrino [16]. These interaction channels have very small cross sections, so that
neutrinos can be generally considered to be freely streaming. For example we
have σ ∼ 10−41 cm2 for inverse beta decay with a single proton and a neutrino
energy of Eν = 10 MeV [17]. Theses numbers imply a mean free path of almost
a light year in water. For high-energy neutrinos of (∞′′GeV) the situation is
different as they cannot pass astronomical objects like the earth due to their
high cross section with common matter.

Although the predictions of the Standard Model are successful for a plethora
of processes, it does not include neutrino masses. In principle, it is not prob-
lematic to construct a mass term (with or without the Higgs mechanism) and
add it to the theory. But it is not clear yet if neutrinos have a Dirac mass like
the other fermions, a Majorana mass, or both. The last two options would
make neutrinos Majorana particles, which means that particles and antiparti-
cles are identical. Because of this ambivalence the implementation of neutrino
masses in the model is not possible.

If neutrinos are Dirac particles like all other fermions, the mass term is a
combination of a left- and a right-handed field ψL, R [18]

LD
mass = −mD

ν

(
ψ̄LψR + ψ̄RψL

)
. (1.2)

Here and afterwards natural units are applied, i.e. ~ = c = 1. Left and
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right-handed fields are eigenstates of the chirality operator corresponding to
the eigenvalues ∓1. Therefore a Dirac mass term mixes chiral eigenstates. If
eq. (1.2) should complete the Standard Model in the neutrino sector, these
right-handed components must exist, but until now experimental evidence for
them is missing.

The mass term of a Majorana particle is formed by a left-handed neu-
trino field and its charge-conjugated counterpart [19], which is denoted by the
superscript C

LM
mass = −mM

ν

(
ψ̄CLψL + ψ̄Lψ

C
L

)
. (1.3)

This combination is only possible because the neutrino has no electromag-
netic charge. However, the Majorana mass violates lepton number, which
for instance allows for the occurrence of neutrinoless double beta decay. For
an unstable isotope with atomic number A and mass number Z the reaction
(A, Z)→ (A,Z + 2)+2e− would be possible. Several experiments are looking
for it with different nuclei, but until today only bounds on mββ are known,
which is a weighted sum of the neutrino masses. The KamLAND-Zen experi-
ment found the most stringent bound mββ < 0.165 eV at 90% confidence level
(CL) from Xenon decay [20].

The difficulty to determine the mass term is connected with the value of
the neutrino mass, which is much lower than those of other fermions, and so
only upper limits are currently available. Direct measurements use the beta
decay spectrum of tritium and found mν < 1.1 eV (90% CL) [21], whereas a
more stringent bound from cosmology claims

∑
mν < 0.11 eV (95% CL) [22].

Experiments sensitive to the absolute mass scale have not achieved the neces-
sary resolution to observe the searched effects, e.g. a lowered endpoint in beta
decay spectrum or neutrinoless double beta decay. On the other hand the
mass squared differences are measured with a precision on the percent level
in oscillation experiments [23]. With pure vacuum oscillation data it is not
possible to specify the sign of ∆m2, which leaves open the question about the
mass ordering. Until now only m1 < m2 was inferred from solar neutrinos,
which carry additional information due to the matter effect in the sun. This
leaves two possible scenarios, which are shown in fig. 1.1 and are called normal
ordering for m1 < m2 < m3 and inverted ordering for m3 < m1 < m2. The
definition of the mass states is inspired by the contribution of the electron
neutrino, which decreases with the index.

Meanwhile theorists have been looking for an explanation of the smallness
of mν , which is at least six orders of magnitude below the electron mass. A
popular theory is the seesaw mechanism, where Dirac and Majorana mass

terms enter. The lighter mass eigenstate with m1 ∼
(
mD
ν

)2
/mM

R is suppressed
by the very heavy right-handed Majorana mass, which is assumed to have the
scale of grand unified theories mM

R ∼ 1012 GeV. The Dirac mass term could
then be of the order of the electroweak scale. Such a scenario explains the
mass gap and in addition might provide a candidate for dark matter as the
second mass eigenstate with m2 ∼ mM

R would be inert to interactions apart
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Figure 1.1: Neutrino oscillation data allow two possible mass orderings, the normal
and the inverted order, which are displayed for the mass eigenstates ν1, ν2 and ν3.
The length of the coloured bars indicates the probability fraction to measure a par-
ticular flavour eigenstate from a mass eigenstate. One can see that the muon (red)
and tau neutrino (green) have nearly identical contributions to ν1, 2, 3, which repre-
sents the fact that they are almost maximally mixed. The naming of the squared
mass differences accounts for the fact that the oscillation between the different states
was first observed for atmospheric and solar neutrinos.

from gravity. Moreover the seesaw mechanism is also promising to explain the
matter-antimatter asymmetry in the universe. Heavy Majorana neutrino can
decay and generate an asymmetry in the lepton sector, which is converted to
a baryon asymmetry by sphalerons.

1.3 Flavour mixing

In the Standard Model there exists no one-to-one correspondence between the
mass and the flavour of a fermion. This is due to the different bases in which
the corresponding operators are diagonal. The bases are related via

|ψα〉 = U∗αi |ψi〉 . (1.4)

Summation over repeated indices is implied. Here and in the following Greek
indices represent flavour states, i.e. α ∈ {e, µ, τ}, while Roman indices denote
mass states, i ∈ {1, 2, 3}. Uiα is the neutrino mixing matrix, which can be
parameterised by the mixing angles ϑ12, ϑ23, ϑ13 and a complex phase δCP.

The violation of flavour charge was first observed in the weak interaction of
quarks. It was Cabibbo’s idea that this effect is due to a mixing of flavours [24].
Later his work was advanced by Kobayashi and Maskawa, who were able to
explain CP-violation with a 3× 3 matrix with a non-zero complex phase [25].
In the quark sector the mixing matrix is dominated by diagonal elements,
i.e. the mixing is small.

Flavour mixing in the lepton sector was predicted by Pontecorvo [26] and
the structure of the associated mixing matrix worked out by Maki, Naka-
gawa and Sakata [27]. Accordingly the matrix is called PMNS-matrix and
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in contrast to the CKM-matrix for quarks it is not dominated by diagonal
elements. Figure 1.1 visualises the composition of mass states out of flavour
states and as one can see the fractions are mostly of the same order. If neu-
trinos are Dirac particles, the number of mixing angles and complex phases in
the PMNS and CKM-matrix are identical. For Majorana particles more com-
plex phases appear because the mass term violates U(1)-symmetry for lepton
number conservation. These phases have no effect for neutrino oscillations, so
that calculations can be performed without the necessity to specify whether
neutrinos are Dirac or Majorana fermions.

A full treatment of oscillations with three generations is cumbersome. Since
we are interested in theoretical possibilities that follow from neutrino mixing
the number of generations is limited to two. This simplifies calculations and
the mixing matrix

U =

(
cosϑv sinϑv

− sinϑv cosϑv

)
, (1.5)

where ϑv is the vacuum mixing angle.
Since there is a mixing in the lepton sector, which causes the flavour os-

cillation of neutrinos, one might ask if the charged leptons e, µ and τ do the
same. The question was discussed in the literature [28–30] and its answer is
negative, but not for fundamental physical reasons. In order to understand
them it is important to consider the historical context of the experimental
evidence for charged leptons and neutrinos. Electrons, muons and taus were
detected as particles with identical spin and charge, but distinguishable by
their respective mass. Accordingly charged leptons are defined via their mass
eigenstates. On the other hand the neutrino masses could not be measured,
but the different species νe, νµ and ντ were always encountered in conjunction
with an electron, muon or tau. Therefore neutrinos were defined by means
of their respective interaction “partner” particle. Of course, these definitions
can be changed and the relative mixing between neutrinos the other leptons
attributed to the latter, but this is not practicable. Nevertheless oscillation
of the interaction eigenstates of charged leptons exists in principle. However,
to observe it a highly energetic beam with a pure neutrino mass eigenstate is
required, which is not realistic in the end.

1.4 Neutrino oscillations

For the calculation of neutrino oscillations an appropriate observable and its
evolution equation are required. In this thesis the matrix of densities % is
used, which subsumes all flavours and their correlations [31]. Its diagonal
entries specify the occupation number of each flavour and the off-diagonal
components the correlation between two flavours. The equation of motion is
a Liouville equation, which is often written as [31–37]

(∂t + v · ∂x) % = −i [H, %] . (1.6)
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In the formula v is a velocity vector with unit length in the ultra-relativistic
approximation. The Hamiltonian H is a flavour (or mass) matrix depending
on the basis of %. The derivation of eq. (1.6) is the topic of ch. 2.

1.4.1 Vacuum oscillations

Neutrino oscillation phenomena are based on the interference of different prop-
agation eigenstates. These states are produced with small differences in energy
or momentum, which leads to a growing phase difference between them. To
illustrate this, a one-dimensional, stationary system with two flavours in vac-
uum is considered. In vacuum the mass and propagation basis are identical,
so that eq. (1.6) becomes in the ultra-relativistic approximation

∂x

(
%11 %12

%21 %22

)
= i

∆m2

2E

(
0 −%12

%21 0

)
. (1.7)

In this formula the vacuum mixing angle ϑv is hidden in %12, which vanishes
for ϑv = 0. Obviously the occupation number of mass eigenstates remains
constant, whereas the mass correlation oscillates in the spatial coordinate x
with the oscillation length

losc ≡
4πE

∆m2
. (1.8)

For solar neutrinos the mass squared difference ∆m2 = 7.6× 10−5 eV2 results
in an oscillation length of losc = 5 km/GeV.

The phase difference between the mass states translates to a periodically
changing number of neutrinos in the flavour basis. The two bases are related
via the vacuum mixing matrix from eq. (1.5). Assuming that a source emits
mono-energetic neutrinos of flavour α the probability to measure the other
flavour β is

Pνα→νβ = sin2 (2ϑv) sin2

(
x

losc

)
. (1.9)

The formula is blind to the sign of ∆m2, which is the reason for the undeter-
mined mass ordering. Note that in eq. (1.7) the trace of % is conserved and so
only the flavour content changes, but not the total number of neutrinos.

1.4.2 Matter effect

As soon as neutrinos propagate through matter the electroweak potential
sourced by other particles leads to refraction, so that the previous identifi-
cation of neutrino mass and propagation eigenstates does not hold anymore.
Relying on Fermi’s effective theory of weak interaction the Hamiltonian obtains
the additional term

Hmat =
√

2GF

(
ne − 1

2
nn 0

0 −1
2
nn

)
, (1.10)
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where ne is the electron density and nn the neutron density. This equation is
only valid for ordinary matter, as for example it does not include muons, which
would be present in a supernova. Note that the Hamiltonian is written in the
interaction basis and the neutral-current contributions of electrons and protons
cancel each other as long as the medium is not charged. The interaction with
neutrons does not influence neutrino oscillations since it contributes equally to
every flavour and is projected out by the commutator on the right hand side
of eq. (1.6).

The interaction with electrons nullifies the identification of the mass and
propagation basis. Therefore a new mixing angle ϑm is introduced to connect
the flavour and propagation basis [38]

tan (2ϑm) = tan (2ϑv)

[
1∓ 2

√
2GFEne

∆m2 cos (2ϑv)

]−1

. (1.11)

For neutrinos the formula holds with a minus sign in the brackets and for
antineutrinos with a plus sign. The reason for the sign change originates in
the potential sourced by electrons, which affects them differently.

For a specific combination of neutrino energy and electron density the in-
verse factor becomes infinite and so the mixing maximal, i.e. ϑm = π

4
. This

resonant mixing is the basis of the so-called MSW-effect [39,40]. When neutri-
nos propagate through a medium with slowly changing density, which passes
through the critical density, a significant amount of neutrinos can be converted
to the other flavour.

The inclusion of matter effects was particularly successful to explain the
solar neutrino signal. The electron number density of the sun slowly decreases
from its centre and is high enough to be critical for neutrinos from nuclear fu-
sion. Therefore a significant fraction of electron neutrinos is converted to muon
neutrinos, which led to a mismatch between the measured and predicted solar
electron neutrino flux. The MSW-effect resolved this so-called solar neutrino
problem. In a less dense environment like the earth the matter effect is much
smaller, but still measurable for solar neutrinos. It leads to a flux asymmetry
between up- and down-going solar neutrinos, also called day-night asymme-
try [41].

For atmospheric neutrinos the situation is slightly different due to their
higher energy. For example the density in the inner core of the earth can
already be critical if their energy is of the order 10 GeV. Then also for these
neutrinos the resonance condition is satisfied.

If the electron density ne is large in eq. (1.11), which is possible in very dense
environments, the inverse factor suppresses the mixing. Then the interaction
eigenstates are almost propagation eigenstates.
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1.4.3 Neutrino-neutrino interaction

Apart from the coupling of neutrinos to the surrounding medium also the
interaction of neutrinos with each other can change the flavour content. It
was noticed by Pantaleone that a neutrino-neutrino scattering process has an
impact on the correlation of different flavours [42]. This effect becomes only
relevant at very high ν-densities, as they occur for example in core-collapse
supernovae. In an isotropic setting the neutrino interaction potential, which
enters the Hamiltonian in eq. (1.6), is

Hνν =
√

2GF (%− %̄) , (1.12)

where %̄ is the matrix of densities for antineutrinos.
This discovery started the investigation of collective phenomena in the neu-

trino flavour sector. Collectivity occurs when the neutrino-neutrino interac-
tion dominates the equation of motion, which becomes nonlinear and typically
cannot be solved analytically then. For this reason simplifying assumptions
were necessary to investigate possible phenomena. Among these the synchro-
nised and the bipolar oscillation are probably the most well-known. Synchro-
nised oscillation can occur in a homogeneous and isotropic neutrino medium,
whose potential is strong enough to overcome the frequency spread of different
modes [43,44]. Usually each mode oscillates with its own frequency, but the in-
teraction can accelerate slow modes and slow down fast ones, so that effectively
the system can be described by a single mode. However, it is questionable if the
necessary conditions on the environment are realistic on neutrino oscillation
scales [45, 46].

Bipolar oscillations are important in isotropic environments with a compa-
rable number of neutrinos and antineutrinos [44, 47–49]. The phenomenon is
driven by the pairwise conversion of a neutrino and an antineutrino from one
flavour to another. This process does not change the overall flavour content
of the ensemble, but when looking at the matrix of densities for neutrinos and
antineutrinos respectively large variations in the diagonal elements are observ-
able. Immediately after production the difference between % and %̄ in eq. (1.12)
becomes large and dominates the evolution. Mathematically it corresponds to
a pendulum that starts in the upright, unstable position and then falls over
leading to an oscillation with large amplitude. Phenomenologically bimodal
oscillations are observable as a so-called spectral swap [50–52]. Because they
only arise above an energy threshold, a sharp transition appears, where νe

and νµ switch their respective spectrum. Also this phenomenon is probably
not relevant in realistic settings because it was shown later that already small
anisotropies make the system decohere quickly [53,54].

A part of this thesis deals with the rather new topic of fast flavour con-
version. In the past few years this collective phenomenon has been studied
theoretically [55–74], and in the context of supernovae [75–86] and neutron
star mergers [87, 88]. The reason for the attribute “fast” is the difference in
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scales compared to other oscillation phenomena. In vacuum the only scale is
the oscillation frequency losc from eq. (1.8). Matter adds another scale with
Hmat, which can be larger and smaller than losc, so that either can dominate the
oscillation length. With the interaction between neutrinos a third length scale
comes into play, which can be much smaller than the other two. For neutrino
densities as they occur in supernovae it can go down to O (10 cm) [79].

The different energy scales only provide information on the oscillation
length. The important parameter to investigate flavour conversion is the am-
plitude of the oscillation, i.e. the mixing angle between propagation and flavour
basis. In matter the mixing becomes large, when the density is critical. In a
neutrino medium the conversion is driven by instabilities, which lead to a fast
growth of the mixing angle and are comparable to that of bipolar oscillations.
We will look for unstable collective modes in the flavour correlation functions,
the off-diagonal elements in the matrix of densities. They describe the overlap
between different flavours and therefore are directly connected to their mixing.
A very powerful tool for the search of instabilities there is the dispersion re-
lation because unstable are clearly identifiable due to their complex energies.
When the energy ω of a plane wave ∼ eiωt acquires an imaginary value, the
previously complex exponential becomes real and so either decays or blows
up in time. As ω scales with Hνν from eq. (1.12) in a dense neutrino gas,
the conversion takes place on the length scale corresponding to the neutrino
potential and is therefore much faster than others. The important parameter,
which determines the stability of modes, is almost solely the angular lepton
distribution. In this context the surrounding matter has minor influence on
the mixing. Because the fast flavour conversion is only initiated by the mixing
angle, but driven by the instability, a high matter density cannot suppress it.
In order to identify systems with fast flavour conversion easily, criteria on the
parameters, which induce instabilities, need to be derived.

The motivation to understand collective effects is not only theoretically
driven, but might be important to model and predict accurately the processes
in particular environments. A sufficient neutrino abundance is only reached
in the early universe, neutron star mergers and core-collapse supernovae. In
all of them neutrinos affect the synthesis of nuclei and in the case of super-
novae neutrinos might play an additional role. When the star collapses, mat-
ter agglomerates in its centre until almost nuclear density is reached and a
proto-neutron star formed. The continuously infalling material bounces off
this surface and the shock wave appears, which is supposed to eject the outer
layers of the star. Via different processes a shock wave loses energy during
the propagation and stalls [89]. One of the proposed mechanism to revive it
and make the star explode is called neutrino reheating [90], where neutrinos
serve as energy transmitters from the inner core to the shock wave. Since
for this process the interaction with other fermions is of major importance,
possible flavour conversions need to be comprehended and implemented in the
simulations.
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1.4.4 Ongoing discussions

One frequently discussed topic is the interpretation of the Liouville equation
which can be either a wave or a particle transport equation. If it is regarded as
an equation for particle transport, neutrinos are often modelled as wave pack-
ets. This perception has the drawback that the equation of motion must be
solved for each mode individually, but on the other hand the system remains
linear even with neutrino-neutrino interactions [91]. The physical reason for
the linearity is that a neutrino cannot change its own flavour. Considering
eq. (1.6) to be a wave equation does not have the advantage of linearity. How-
ever, by refraining from the wave packet approach a closed set of equations
is obtained. Additionally in this way the interference character of neutrino
oscillations is conveyed.

The other topic is the validity of the mean field approximation and the role
of neutrino entanglement. The mean field approximation is relevant as soon
as neutrino-neutrino interactions might play a role. It claims that quantum
effects like entanglement are smoothed out due to the high number of parti-
cles. Mathematically this means that the expectation value of a product of
operators is approximately identical to the product of each expectation value,
i.e. 〈%̂ ˆ̄%〉 ≈ 〈%̂〉〈 ˆ̄%〉. The mean field approximation has been recently challenged
by numerical calculations which indicate a significant influence of entangle-
ment in systems with up to nine neutrinos [92]. Because the results are not
conclusive for a high number of quantum states we stick with the mean field
approximation in the following.
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CHAPTER 2

Evolution equation for mixed flavour states

The fact that neutrino propagation and their interaction with matter are not
describable in the same basis has not only led to confusions in calculations,
but also to various ways of deriving and interpreting the evolution equation of
neutrino flavours. The differences are based on different approaches, so that
results in the literature are not contradictory. Here the formalism based on
the matrix of flavour densities is used. In this chapter the equation of motion
for the matrix of densities is derived. The main assumptions are motivated,
namely mean-field approximation and the ultra-relativistic limit. The result
is used for calculations in the subsequent chapters.

2.1 Matrix of densities

Before deriving the equation of motion, neutrino states are combined in a
flavour or mass vector ψα = (ψe, ψµ, ψτ , . . .)α. The exact number of fields
is arbitrary, since it does not affect the following calculation and opens the
possibility to include hypothetical sterile neutrinos. For the derivation of a
formula for neutrino flavour evolution during propagation an intuitive first
starting point is Schrödinger’s equation

i∂t|ψα〉 = Hαβ|ψβ〉 =
m2
αβ

2E
|ψβ〉. (2.1)

Here Hαβ has diagonal and off-diagonal terms, where the latter couple the
flavour components in |ψα〉. With the substitution ∂t = c∂x, which is ap-
plicable for relativistic neutrinos, predictions on the conversion and survival
probability can be made between the source and a detector. When performing
the calculation it becomes clear that eq. (2.1) – despite its deficiencies – gives
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correct results for the propagation in vacuum or a medium, e.g. generated by
electrons or nucleons.

However, the use of a vector of wavefunctions is not satisfactory for every
physical system. When neutrinos undergo scattering with matter, information
about flavour correlations can be lost to the environment and the states de-
cohere [93–95]. In such a scenario the wavefunction alone does not provide
sufficient information to model interaction effects, which directly influence the
correlation between different flavours. In order to include these correlations
explicitly we change to a density matrix formulation with ραβ ≡ |ψα〉〈ψβ|,
which is governed by the von Neumann equation

∂tρ = −i [H, ρ] . (2.2)

Since anyway the interest is focused on transition probabilities between flavours,
it is reasonable to deal with them from the start.

In this thesis the entanglement of neutrinos with their environment is not
taken into account as we restrict the system to forward scattering, cf. sec. 2.4.
Nevertheless, the density matrix is a useful tool, escpecially for the implemen-
tation of neutrino-neutrino interactions.

A quantum mechanical approach to neutrino oscillations is reasonable as
a starting point, but not sufficient for more complicated systems. First of
all neutrinos are relativistic particles with spin 1

2
and furthermore they can

be produced and annihilated, which leads to source and sink terms in the
differential equation. To take these properties into account a QFT equivalent
to eq. (2.2) needs to be found, which must be consistent with Dirac’s equation
for fermionic fields in the mass basis

(iγµ∂µ −mi) Ψ̂i = 0. (2.3)

The hat sign denotes an operator in Fock space. Changing this equation to its
equivalent for a flavour field Ψ̂α = U∗αiΨ̂i with mixing matrix Uiα is straightfor-
ward. The main difference is the mass term, which becomes Mαβ = UαiMijU

†
jβ

with Mij = diag {m1, m2, m3, . . . }. As it is easy to see the differential equa-
tions are now coupled via the off-diagonal terms in Mαβ, so that the flavour
fields do not evolve independently in contrast to their massive counterparts.

Various ways of proceeding from eq. (2.3) to the equation of motion can
be found depending on the level of generality and method. In almost all of
them the ultra-relativistic limit is taken, so that all effects which are related
to the neutrino mass are small. Nevertheless it must be specified which effects
are taken into account as the mass does not only lead to flavour oscillation.
For example also helicity flips are generated by the mass and considering them
adds a new dimension to the evolution of a neutrino gas. However, for this
thesis the only relevant consequence of the neutrino mass is the flavour mixing
and other phenomena like helicity flips are not regarded.

Furthermore for non-isotropical systems it must be decided how to deal
with the spin structure of the fermion field Ψ in the Hamiltonian. In an
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unpolarised medium it is allowed to average over all spin configurations, which
will be done in the upcoming calculation. In the presence of magnetic fields
this simplification is not applicable and the influence of spin must be treated
more carefully.

In the literature different derivations of the equation of motion can be
found. In refs. [32, 33, 96] the assumptions are similar, i.e. all of them include
the spin structure and the mass term for helicity flips. However, the respective
methods vary from Dirac’s equation with a Wigner transformation [32] via the
Keldysh formalism [33] to a two-particle irreducible action [96]. A heuristic
approach, which just employs basic physical principles, is also possible [34].
In this paper the transition from a quantum mechanical system with possible
superposition of states and Fermi statistics to a classical distribution function
for flavour states is investigated.

In order to form the matrix of densities a plane wave expansion for an
ultra-relativistic, left-handed fermion field is used

Ψ̂i (t, x) =

∫
d3p

(2π)3√2Ep

[
âi (t, p)up + b̂†i (t, −p) v−p

]
e−ip·x. (2.4)

The time-dependent operator âi annihilates a left-handed neutrino and its
counterpart b̂†i creates a right-handed anti-neutrino, so that the neutrino field
is permanently left-handed. According to the previous assumption helicity flips
are ruled out. The Fock-space operators obey the anti-commutation relations
at equal time {

âi (t, p) , â†j (t, p′)
}

= (2π)3 δ(3) (p− p′) δij. (2.5)

With the operators âi (t, p) and b̂i (t, p) it is possible to define two-point
correlators for neutrinos and anti-neutrinos by introducing the matrix of den-
sities for each of them

%̂ij (t, p, p′) ≡ â†j (t, p) âi (t, p′) (2.6a)

ˆ̄%ij (t, p, p′) ≡ b̂†i (t, p) b̂j (t, p′) . (2.6b)

It contains all relevant information to describe neutrino oscillations. Specifi-
cally neutrino-neutrino coupling can be included with an appropriate interac-
tion term as well as collisions with the surrounding medium. In the following
only %̂ and ˆ̄% are considered, whereas combinations of â and b̂ that violate
the lepton number or correlate particles and antiparticles are not taken into
account. The reversed order of indices in eqs. (2.6) was used in ref. [31] to
ensure that the rotation between the mass and flavour basis is identical for %̂
and its antineutrino counterpart.

The expectation value of eq. (2.6a) is the matrix of densities % ≡ 〈%̂〉 (note
the different notation compared to the density matrix ρ). The difference be-
tween % and ρ becomes clear when looking at their diagonal entries.1 For

1The matrices are only comparable when the momenta p and p′ are integrated out in %.
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the matrix of densities the values on the diagonal are occupation numbers
of flavour or mass eigenstates and their sum, i.e. the trace of %, is the total
neutrino number of the ensemble. Furthermore additional particles can be cre-
ated or annihilated via the appropriate operators â and â†, so that Tr % is not
necessarily conserved. On the other hand the density matrix ρ belongs to an
inherent one-particle system, so that its trace is always unity and its diagonal
components correspond to probabilities to encounter a specific eigenstate.

2.2 Wigner transformation

Until now the interpretation of % (t, p, p′) as the transition function between
momentum modes is rather abstract. With the Wigner transformation it is
possible to assign an almost classical interpretation to it.

Every function can be Wigner transformed as long as it depends on two
variables of the same unit. Mathematically it corresponds to performing a
Fourier transformation with respect to the difference of these variables [97].
The formula for the transformation and its inverse are

F (x, p) =

∫
d3∆

(2π)3 ei∆·xF
(
p− ∆

2
, p + ∆

2

)
(2.7)

F (k, k′) =

∫
d3x e−i(k−k′)·xF

(
x, k+k′

2

)
. (2.8)

Note that the second equation is equivalent to

F
(
p− ∆

2
, p + ∆

2

)
=

∫
d3x e−i∆·xF (x, p) (2.9)

with the substitutions ∆ = k′−k and p = 1
2

(k′ + k), which will be used later.

The power of the Wigner transformation becomes apparent in a system
with two different scales. In the case of oscillating neutrinos one of them is the
neutrino momentum scale at which sharp peaks of F appear when k ≈ k′ in
particular without or only weak interactions. The other one is the wavelength
of flavour oscillations, which is much larger and more interesting for our delib-
erations. Averaging over momentum smooths out those former variations, so
that we end up with a slowly changing function of x.

The Wigner transformation only makes sense in inhomogeneous systems.
In a homogeneous system, e.g. the early universe, the different momentum
modes in eq. (2.6a) decouple, i.e. 〈 ˆ̃% (t, p, p′)〉 ∝ δ(3) (p− p′). In this case the
matrix of densities is a four-dimensional function of time and momentum. The
motivation for the upcoming calculations is a supernova scenario, which is far
from being homogeneous with consequences for the evolution equation.

A special case is the Wigner function, which is obtained by performing
Wigner transformation for a product of quantum mechnical wavefunctions or
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Fock-space operators. The matrix of flavour densities is a Wigner function
following from the two-point correlators in eqs. (2.6)

%̂ij (t, x, p) =

∫
d3∆

(2π)3 ei∆·x â†j
(
t, p− ∆

2

)
âi
(
t, p + ∆

2

)
. (2.10)

The result is an almost classical particle distribution function, i.e. a diagonal
entry of % specifies the occupation number of a neutrino mode with momentum
p at a particular point in spacetime.

The interpretation of 〈%̂ (t, x, p)〉 as a distribution function must be treated
with care. The matrix of densities is still a quantum and not a classical object
and so all values it attains for fixed position and momentum are physically
meaningless as Heisenberg’s uncertainty principle is violated. In order to re-
store the interpretation of % as position dependent occupation numbers the
uncertainty principle must be implemented by hand via averaging over an ap-
propriate volume of configuration space. This process also makes the Wigner
function positive definite [98], which was an issue because negative occupation
numbers do not make sense. For neutrino oscillations this behaviour of the
Wigner function is not relevant as the oscillation scale is much larger than the
quantum scale of a neutrino.

A modification of eq. (2.7) is the Husimi transformation [99]. It is obtained
by smoothing the original function F , e.g. the Wigner function, with the help
of Gaussians for position and momentum [37]

FH (x, p) =

∫
d3x′d3p′

(2πησ)3 F (x, p) exp

{
−(x− x′)2

2η2
− (p− p′)2

2σ2

}
. (2.11)

The quantities η and σ are the length and momentum scales, respectively, over
which the Wigner function F (x, p) is smeared and as long as ησ ≥ ~ holds,
FH is positive definite [98]

A question that might arise, when looking at eq. (2.10), is why the matrix
of densities was not Wigner transformed in the time sector as well. This was
done in ref. [32, 33, 35, 96] and leads to manifestly Lorentz invariant structure
of the differential equation for % (t, x, E, p). In our setting we make the ap-
proximation that all neutrinos are on-shell, i.e. their energy uniquely fixed by
position, momentum and conceivably time. This assumption only applies to
free particles, which are not realised in nature strictly speaking. Therefore
scattering processes must be rare enough that neutrinos can be modelled as
free in the meantime. Especially the effect of neutrinos that appear in loop
processes cannot be taken into account.



18 2. Evolution equation for mixed flavour states

2.3 Moyal equation

For deriving the equation of motion of % it is necessary to deduce one for the
creation and annihilation operators â†i and âi as they appear in eq. (2.4). The
obvious choice is the Heisenberg equation i∂tÂ =

[
Â, Ĥ

]
for an operator Â

and the Hamiltonian Ĥ, which can be written in the form

Ĥ =

∫
d3p

(2π)3

d3p′

(2π)3 â
†
i (p′)Hij (p, p′) âj (p) . (2.12)

Here Hij is the transition matrix between two mass states in different momen-
tum modes. For brevity the time dependence of all quantities is not stated
explicitly from now on.

In general H is an operator in the Fock space of those particles, which
contribute to the refraction of neutrinos. Thus eq. (2.12) is only valid as long
as the expectation value of that operator can be taken. This is relevant, when
neutrino-neutrino interaction has an effect because then the expectation value
of Ĥ is only calculable in the mean-field approximation. Without additional
terms would appear in the equation of motion. The basis of this approximation
is the assumption that the expectation value of every product of operators
is (approximately) equivalent to the product of their individual expectation
values, i.e. 〈%̂%̂〉 = 〈%̂〉〈%̂〉. Physically this means that entanglement between
neutrinos is either negligible or non-existent. The validity of the mean-field
approximation has been questioned recently. In ref. [92] it is argued that at
high density entanglement between different neutrinos cannot be neglected
and leads to additional effects. If this turns out to be true, the mean-field
approach is not applicable and concepts from many-body physics have to used.
As explained in subsection 1.4.4 we stay in the mean-field setting, since this
issue has not been finally resolved and the contradicting results from older
papers not been refuted [100,101].

A short comment about the connection of eqs. (2.3) and (2.4) with Heisen-
berg’s equation and the way of writing the Hamiltonian is appropriate. Plug-
ging the plane wave expansion into Dirac’s equation it is straightforward to
derive a first order wave equation for âi by multiplying with upγ

0 from the
right. The equivalence then becomes obvious, when eq. (2.12) is used in the
Heisenberg equation for âi and the anticommutators applied to derive

i∂tâi (p) =

∫
d3p′

(2π)3Hik (p′, p) âk (p′) . (2.13)

The corresponding equation for the antiparticle operator b̂i is computed anal-
ogously.

With eq. (2.13) it is straightforward to compute the time evolution of the
matrix of densities % (p, p′). Taking the expectation value and performing a
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Wigner transformation we get

i∂t%̂ij(x,p) =

∫
d3∆

(2π)3

d3p′

(2π)3 ei∆·x (2.14)

×
[
Hik
(
p + ∆

2
,p′
)
â†j
(
p− ∆

2

)
âk (p′)

− â†k (p′) âi
(
p + ∆

2

)
Hkj

(
p− ∆

2
,p′
) ]
.

The definition of ∆1 and ∆2 via p′ = p + 1
2

(∆1 −∆2) and ∆ = ∆1 + ∆2

leads to the more symmetric expression

i∂t%̂ij (x, p) =

∫
d3∆1

(2π)3

d3∆2

(2π)3 ei(∆1+∆2)·x (2.15)

×
[
Hik
(
p1 + ∆2

2
,p1 − ∆2

2

)
â†j
(
p2 − ∆1

2

)
âk
(
p2 + ∆1

2

)
− â†k

(
p1 − ∆2

2

)
âi
(
p1 + ∆2

2

)
Hkj

(
p2 − ∆1

2
,p2 + ∆1

2

)]
,

where the notation p1 = p + 1
2
∆1 and p2 = p − 1

2
∆2 was used for brevity.

Notice that evaluating the integrals over d3∆1,2 does not produce Wigner trans-
forms because ∆1,2 is also hidden in p1,2. However, under the integral we can
substitute for each factor the inverse Wigner transformation in the form of
equation (2.9) and find

i∂t%̂x,p =

∫
d3∆1

(2π)3

d3∆2

(2π)3 d3x1 d3x2 e−i∆1·(x1−x)−i∆2·(x2−x) (2.16)

×
[
Hx2,p1 %̂x1,p2 − %̂x2,p1 Hx1,p2

]
,

where x1,2 are the conjugate variables to ∆1,2.
To obtain the argument p instead of p1,2 we use the shift operator in the

form F (k + q) = eq·∂k F (k). This construction implies e.g. for the Hamilto-
nian H (x2,p1) = e

1
2
∆1·∂pH (x2,p) and overall we find

i∂t%̂x,p =

∫
d3∆1

(2π)3

d3∆2

(2π)3 d3x1 d3x2 (2.17)

×
[
Hx2,p e−i∆1·(x1−x+ i

2

←−
∂ p)−i∆2·(x2−x− i

2

−→
∂ p) %̂x1,p

− %̂x2,p e−i∆1·(x1−x+ i
2

←−
∂ p)−i∆2·(x2−x− i

2

−→
∂ p) Hx1,p

]
,

where
←−
∂ p means that the differential operator is to be applied to the expression

left of it. Representing the delta function as δ(3)(x) =
∫

d3∆ ei∆·x/ (2π)3 it is
now straightforward to evaluate the integrals2 and, for example, the first term

in square brackets becomes H
(
x + i

2

−→
∂ p,p

)
%̂
(
x− i

2

←−
∂ p,p

)
. The differential

2The δ-function of a momentum derivative arising in eq. (2.17) can be avoided. This is
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operator in the argument of one matrix is to be applied to the other matrix.
A more elegant way to express this structure is found by using once more the
shift operator to lift the deviation from x in the arguments to an exponential,

i∂t%̂x,p = Hx,p e
i
2(
←−
∂ x·
−→
∂ p−

←−
∂ p·
−→
∂ x) %̂x,p − %̂x,p e

i
2(
←−
∂ x·
−→
∂ p−

←−
∂ p·
−→
∂ x) Hx,p . (2.18)

An equation equivalent to this result was first derived by Moyal with two
minor differences [102]. We here use matrices in flavor space as opposed to
scalar functions and our matrix %̂ is derived from a second-quantized operator
in contrast to a purely quantum-mechanical setting. We also note that if
we were to keep Planck’s constant ~, it would multiply the left hand side of
equation (2.18) as well as the exponents on the right-hand side.

Under the assumption that the variation of H and %̂ is slow in coordinate
and momentum space eq. (2.18) can be expanded to first order. The result is
a modified version of the frequently used Liouville equation

∂t%̂+ 1
2
{∂pH , ∂x%̂} − 1

2
{∂xH , ∂p%̂} = −i [H , %̂] . (2.19)

Our notation implies that scalar products of the gradients in the anticommu-
tators are taken.

The first anticommutator describes the advection of neutrinos, where ∂pH
is interpreted as a matrix of velocities. This term is often simplified to v ·
∂x%̂, where v is a unit vector without matrix character. A closer look at the
momentum derivative of the Hamiltonian clarifies this approximation. In the
relativistic limit one can write

Hij = δij

√
p2 +m2

i ≈ δij

(
|p| − m2

i

2 |p|

)
. (2.20)

The first term is proportional to the identity matrix, so that for this part the
anticommutator vanishes. When calculating the momentum derivative explic-
itly, one obtains p

|p| · ∂x%̂. The mass term in eq. (2.20) is non-diagonal in the
flavour basis and is considered to be responsible for the kinematical decoher-
ence of the propagation eigenstates [36]. This means that the accumulated

demonstrated by a simplified version of eq. (2.16),∫
dx1

d∆

2π
e−i∆(x1−x)f (p+ ∆) g (x1) =

∫
dx1

d∆

2π
e−i∆(x1−x)

∞∑
n=0

1

n!
(∆∂p)

n
f(p)g (x1)

=
∑
n

1

n!

∫
dx1

d∆

2π
e−i∆(x1−x)

(
i
←−
∂ x1−x

−→
∂ p

)n
f(p)g (x1)

=
∑
n

in

n!
f (n)(p)

∫
dx1δ

(n) (x1 − x) g (x1) .

After an integration by parts it is obvious that a δ-function of a derivative leads to the same
result as a sum of derivatives of a δ-function in this specific context.
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phase between flavour states becomes harder to measure with increasing dis-
tance. Comparing the scales of this decoherence term (with ∂x%̂ ∼ 1/losc%̂
cf. eq. (1.8)) and the oscillation term on the right hand side of eq. (2.19) shows

that the former is suppressed by
m2
i

p2 . In this thesis only the leading mass term,
responsible for neutrino oscillations, is taken into account and so the advec-
tion term becomes v · ∂x%̂, when identifying v ≡ p

|p| . The vector v can be
interpreted as a velocity, which matches our intuition for ∂pH.

The second anticommutator describes the influence of a spatially varying
potential on the momentum of the neutrinos. Possible effects of an external
potential are redshift and deflection. This thesis concentrates on neutrino re-
fraction that is sourced by interaction terms without considering the dynamical
evolution when propagating in a changing medium. Accordingly the second
anticommutator is neglected in following calculations.

In ref. [35] the analogue to eq. (2.19) is derived for two-point correlators.
In contrast to the matrix of densities these objects have an explicit energy
dependence, which sources an additional anticommutator term of the form
{∂tH, ∂E %̂}. Obviously it is only relevant for a time-dependent Hamiltonian
and accounts for changes in the spectrum when the external potential varies.

There are no further assumptions necessary to deduce the evolution equa-
tion for the matrix of densities % = 〈%̂〉 from eq. (2.18). The mean field
approximation was already used to justify that H is not a Fock space operator
and so only %̂ acts non-trivially on the Fock state of the system.

2.3.1 Oscillation in vacuum

As an example the derivation of the vacuum oscillation probability (1.9) from
the Liouville equation (2.19) is illustrated. The system is assumed to be one-
dimensional and stationary, so that the time derivative is zero and the advec-
tion term does not need a scalar product. Neutrinos are ultra-relativistic and
for simplicity have only two flavours. With these approximations eq. (2.20)
is applicable and for the derivative ∂pH ≈ 12 holds, where 12 represents the
2×2 identity matrix. In the mass basis the Hamiltonian is diagonal and so
the commutator with % is zero on the diagonal. The other entries are complex
conjugated and satisfy the differential equation

∂x%12 = −i
2π

losc

%12. (2.21)

The occupation numbers of the mass eigenstates remain constant during the
evolution and the differential equation for the mass correlation function is
solved by

%12 (x) = A12 exp

{
−i

2π

losc

x

}
. (2.22)

The variable A12 is an entry of the amplitude matrix, which must be fixed from
boundary conditions. In order to obtain the matrix of densities in flavour space
it needs to be rotated with the mixing matrix in eq. (1.5), i.e. %αβ = U∗αi%ijUjβ.
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Assuming that the source emits electron neutrinos exclusively the boundary
condition is %αβ (0) = δee, which rotated to the mass basis is identical to the
amplitude matrix

Aij = Uiα%αβ (0)U∗βj =

(
cos2 θv

1
2

sin 2θv

−1
2

sin 2θv sin2 θv

)
. (2.23)

With this input the solution for %ij (x) can be rotated to the flavour basis and
the %µµ (x) entry coincides with the oscillation probability in eq. (1.9).

Let us see what changes when the deviations of the matrix of velocities
from the identity matrix are explicitly included in this setting. Then the term
∂pH has the structure

V ≡ ∂p

(√
p2 +m2

1 0

0
√

p2 +m2
2

)
= v12 +

δv

2
σ3. (2.24)

The first term v contains the contribution proportional to the identity matrix
and the second term the difference δv with Pauli matrix σ3. In the considered
one-dimensional, stationary system the evolution equation becomes

∂x%+
δv

2v
{σ3, ∂x%} = − i

v
[H, %] . (2.25)

In comparison with eq. (2.21) the anticommutator is new, but it does not
correspond to a damping term [37]. This can be derived from the fact, that
the differential operator is identical to the one governing the evolution. Fur-
thermore {σ3, ∂x%} is diagonal and so in the case of vacuum oscillations only
nonzero for constant parts of %, i.e. it does not change the evolution. The only
modification comes from the factor 1/v on the right hand side and decreases
the oscillation length slightly.

One should keep in mind that the proposed damping from the anticommu-
tator was attributed to the separation of wave packets [36]. In a stationary
scenario with plane waves the study of wave packet separation is certainly
futile and so the calculated example cannot account for this effect.

2.4 Matter refraction

When the coupling of neutrinos with the surrounding matter or other neutrinos
is relevant for the oscillation behaviour, the Hamiltonian in eq. (2.19) must be
supplemented with the appropriate interaction terms. The most well-known
and established consequence of matter refraction is the resonant conversion
from the interaction of electron neutrinos with electrons, which leads to the
MSW-effect [39, 40]. This section is intended to illuminate how the Standard
Model coupling is transformed to the refractive terms as they can be found in
the literature on neutrino oscillations.
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The refraction of a neutrino via matter effects is sourced by scattering pro-
cesses that change neither the kinematic components of the scattering partners
nor their respective properties like the flavour. On the kinematical level this
effect is implemented later by restricting the calculation to forward scattering.
The other parts of the simplification are used from the start. For example it is
not necessary to take neutrino creation and annihilation into account because
these effects change the neutrino gas as well as the environment. In a realistic
environment like a supernova this would be an unreasonable approximation,
but it is sufficient for neutrino refraction.

Since neutrinos have neither electrical charge nor colour, the only coupling
is to W and Z-bosons. It is assumed that the energy transfer is small, so that
these particles can be integrated out and Fermi’s theory for weak interactions
is applicable. Then the interaction terms from the Standard Model for neutral
and charged currents can be written as

Ĥ int
CC =

GF√
2

∑
l

∫
d3x ˆ̄ψνlγ

µ
(
1− γ5

)
ψ̂l

ˆ̄ψlγµ
(
1− γ5

)
ψ̂νl (2.26)

Ĥ int
NC =

GF√
2

∑
f, l

∫
d3x ˆ̄ψνlγ

µ
(
1− γ5

)
ψ̂νl (2.27)

ˆ̄ψfγµ
(
I3
(
1− γ5

)
− 2qem sin2 θW

)
ψ̂f .

In the first equation a lepton l and an (anti-)neutrino of the same flavour
scatter via exchange of a W -boson. GF is the Fermi coupling constant, which
depends on the coupling constant of the weak interaction and the mass of the
W-boson. In the second equation I3 denotes the weak isospin and qem the
electromagnetic charge of the fermion; the latter appears in combination with
the weak mixing angle θW which rotates the gauge fields W 3 and B to form the
photon and Z-boson field. Due to this structure every left-handed or charged
elementary particle couples to the Z-boson.

In the following it is explained how the scattering processes sourced by
eqs. (2.26) and (2.27) can be brought to a form, which can be implemented in
the transition matrix H in eq. (2.12). The important difference between them is
the spinor term, which mainly contributes the kinematical part of the coupling
and can be simplified notably for forward scattering. Before the derivation one
should note that Ĥ int

CC already has a form comparable to eq. (2.12) and after a

Fierz transformation also Ĥ int
NC has the structure ˆ̄ψνÔψ̂ν .

As an example the scattering νe + e− → νe + e− under exchange of a W -
boson is calculated. Effectively the neutral channel does not influence neutrino
oscillation as it is independent of flavour and hence its contribution to H is pro-
portional to the identity matrix in the flavour basis. Most scattering processes
via exchange of a Z-boson are irrelevant for neutrino oscillation as long as the
scattering partner is not in a mixed flavour state. Therefore the only particle
species in the Standard Model for which Ĥ int

NC is important in the context of
neutrino oscillation are neutrinos themselves.
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These considerations imply the Hamiltonian for νee-scattering

Ĥ int
νee =

GF√
2

∫
d3x ˆ̄ψνeγµ

(
1− γ5

)
ψ̂e

ˆ̄ψeγ
µ
(
1− γ5

)
ψ̂νe . (2.28)

Inserting now the plane wave expansion for the Dirac fields3 results in several
terms, but only a single one describes the scattering diagram we are interested
in. The operators on the neutrino Fock space and corresponding momentum
integrals are removed from the formula to obtain the refraction term in the
transition matrix H in eq. (2.12). Its only nonzero element in the flavour basis
is

H11 (p, p′) =
GF

8
√

2EpEp′

∑
he, h′e

∫
d3x

d3pe

(2π)3

d3p′e
(2π)3

1√
EpeEp′

e

e−i(p+pe−p′−p′
e)·x

(2.29)

· ūp′γµ
(
1− γ5

)
uhepe

ū
h′e
p′
e
γµ
(
1− γ5

)
up 〈â†p′

e, h
′
e
âpe, he〉.

Here the average of electron helicities is computed. The integral over space and
one electron momentum can be performed and together with the exponential
enforce momentum conservation during the process.

At this point the limitation to neutrino refraction is implemented. On
the one hand this means that the helicity of the electron does not change
h′e = he. On the other hand the respective initial and final momenta of the
scattering partners are identical, i.e. p′ = p and p′e = pe. Both assump-
tions are mathematically integrated in eq. (2.29) by introducing the factor
δh′ehe (2π)3 δ(3) (p′e − pe). After performing the summation over h′e and the in-
tegration over p′e eq. (2.29) becomes

H11 (p, p′) =
GF

8Ep

√
2

(2π)3 δ(3) (p′ − p)
∑
he

∫
d3pe

(2π)3

1

Epe

(2.30)

× ūpγ
µ
(
1− γ5

)
uhepe

ūhepe
γµ
(
1− γ5

)
up 〈â†pe, he

âpe, he〉.

The last term is identical to the occupation number of an electron mode with
specific helicity. For notational compactness we define

Ne (pe, he) ≡ 〈â†pe, he
âpe, he〉. (2.31)

In the following it is assumed that the medium is not polarised, which means
that Ne is independent of helicity as the respective occupation numbers for
he = ±1 are identical.

The only part of the transition matrix that needs to be modified is the
spinor product. It is simplified by plugging the formula for Dirac spinors in
the helicity representation [38]

uhp =

( √
Ep +mχhp

h
√
Ep −mχhp

)
, (2.32)

3Since the electrons are massive, the creation and annihilation operator have a helicity
index and the sum over all helicity states must be added in eq. (2.4).
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where χhp is an eigenstate of the helicity operator p̂ · σσσ corresponding to the
eigenvalue h = ±1 (right/left-handed). During the calculation the identity
χh †p σµχhp = (1, h p̂)µ is useful and in the end one obtains

ūpγ
µ
(
1− γ5

)
uhepe

ūhepe
γµ
(
1− γ5

)
up = 8Ep (Epe − hepe)

(
1 + he

p · pe

p pe

)
(2.33)

with pf = |pf |. When the sum over all helicity states is taken and Ep = p,
this equation becomes∑
he

Ep (Epe − hepe)

(
1 + he

p · pe

p pe

)
= EpEpe−p ·pe = EpEpevp, µv

µ
pe
. (2.34)

The introduced variables vµpe
≡ (1, pe/Epe) correspond to four velocities. This

vector-vector coupling is a consequence of the assumption that the electrons
are not polarised. Otherwise an additional term with the product of two axial
vectors would appear.

The final result for the transition matrix element is obtained by combining
eqs. (2.30), (2.31) and (2.34)

Hνee
11 (p, p′) =

√
2GF (2π)3 δ(3) (p− p′) vp, µ

∫
d3pe v

µ
pe
Ne (pe) . (2.35)

The integral is equivalent to the charged four-vector current of electrons. A
similar vector current is obtained for electron neutrinos when eq. (2.35) is
plugged into eq. (2.12), one integration performed, and %̂11 (p) identified as
the number operator for electron neutrinos N̂νe (p). Then the Hamiltonian
from this specific interaction is

Ĥνee =
√

2GF

∫
d3p vp, µN̂νe (p)

∫
d3pe v

µ
pe
Ne (pe) . (2.36)

For positrons the calculation is almost identical, only a few signs change
due to a different spinor for antiparticles eq. (2.32), e.g. χhp → χ−hp as a positron
with left chirality is right-handed. Although the interaction channel is different
because now the two particles annihilate, in the end the result is the same up
to an overall sign change. Thus when the neutrino interaction with one lepton
family is summed up, due to the different signs only the net current appears
in the transition matrix.

Also for neutrino-neutrino scattering the computation is very similar, al-
though the interaction Hamiltonian for the neutral current must be applied,
since neutrinos cannot exchange electromagnetic charge. In ref. [42] it was
shown that a high neutrino density can also source an off-diagonal refractive
index via the neutral current interaction, so that this process is important
for flavour evolution. Differences in the calculation appear in eqs. (2.31) and
(2.33). In the former equation the counterpart of the electron number must
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be used, which is the matrix of densities %αβ determining the flavour structure
of the transition matrix. A minor difference is the disappearance of the minus
sign in eq. (2.33) due to changed spinor contraction; otherwise the application
of neutrino properties to electron quantities in eq. (2.33) produces the correct
result, which is

Hνναβ (p, p′) =
√

2GF (2π)3 δ(3) (p− p′) vp, µ

∫
d3pν

(2π)3 v
µ
pν%αβ (pν , pν) . (2.37)

For antineutrinos the same changes as for positrons apply, i.e. the only dif-
ference in eq. (2.37) is the overall sign, so that just the difference of % and %̄
matters.



CHAPTER 3

Dispersion relation of flavour correlations

In the current and the following chapter the consequences of a high neutrino
density on the stability of flavour waves are investigated for a linearised system.
The stability of the flavour correlation function, i.e. the off-diagonal element
in the matrix of densities, is accessible via its dispersion relation. When the
oscillation frequency of a flavour wave attains a non-real value, the imaginary
term causes the amplitude to undergo an exponential growth or decay.

A linearised stability analysis for the flavour correlation function is per-
formed and the dispersion relation for that off-diagonal entry in the matrix of
densities is calculated. After the general derivation the focus is turned to the
investigation of fast modes alone, in particular the condition for instabilities
is studied and how they can be classified. In the end the interplay of fast and
slow modes is analysed. The mathematical difference between fast and slow
modes can be found in the equation of motion, where for fast ones the vacuum
oscillation frequency is set to zero and for slow modes it is explicitly included.
Unless mentioned only two-flavour systems are studied here.

3.1 Polarisation Matrix

When neutrinos are ultra-relativistic and all momentum-changing, external
potentials negligible, eq. (2.19) simplifies to Liouville’s equation, cf. eq. (1.6)

i (∂t + v · ∂x) %x,p = [Hp, %x,p] . (3.1)

As in the previous chapter the time dependence is implicit for notational
brevity. Here and in the following v is a unit vector, which points in the
direction of the momentum p. It can be interpreted as a velocity consis-
tent with the relativistic limit. The corresponding velocity four-vectors satisfy
vµ = (1, p/ |p|).
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When not only forward scattering is taken into account, a collision term
appears in the equation. This term incorporates the entanglement of neutrinos
with their environment, potentially damping flavour correlations. This thesis
focuses on propagation effects and so the influence of collisions on neutrino
oscillation is not regarded.

3.1.1 Hamiltonian

The Hamiltonian in eq. (3.1) includes the vacuum term Hvac
p =

√
p2 + M2 as

well as the interaction with matter Hmat
p and the neutrino background Hννp ,

cf. eqs. (2.35) and (2.37) respectively. In this chapter the flavour basis is used
and so the mass matrix M is not diagonal. The commutator on the right
hand side of eq. (3.1) makes the equation insensitive to all terms proportional
to the identity matrix. Consequently, when the ultra-relativistic limit is ap-
plied, the mass-independent momentum term drops out in the vacuum part,
so that the approximation Hvac = M2

2E
is sufficient. Moreover contributions

from the neutral current are proportional to the identity matrix at tree level
and thus do not source neutrino refraction. However, this argument does not
apply to radiative corrections, when the scattering terms become flavour de-
pendent [103, 104]. Because in the upcoming analysis only the leading order
in the coupling constant is considered, these terms are neglected.

With these assumptions the general form of the Hamiltonian in eq. (3.1) is

Hp =
M2

2E
+
√

2GFvµ (Jµmat + Jµνν) . (3.2)

The symbols Jmat and Jνν describe a matrix of four-vector currents, which orig-
inate in the interaction of neutrinos with charged leptons and other neutrinos
respectively. Their form was derived in sec. 2.4 for particular scattering pro-
cesses. The formula for the matter current can be deduced from eq. (2.35). As
explained there only the net current, i.e. the difference between leptons and
antileptons, enters. In the flavour basis this implies the current matrix

Jρmat =

∫
d3p

(2π)3

vρp, e (Ne − N̄e

)
0 0

0 vρp, µ
(
Nµ − N̄µ

)
0

0 0 vρp, τ
(
Nτ − N̄τ

)
 . (3.3)

The occupation numbers Nl are functions of the momentum p, which was
not written down. Here the four-velocities are flavour dependent due to the
different masses of the charged leptons. The current from neutrino-neutrino
interaction has an identical structure with nonzero off-diagonal entries. The
appropriate occupation numbers are subsumed in the matrices of densities for
neutrinos and antineutrinos and from eq. (2.37) it follows that

Jµνν =

∫
d3p

(2π)3 v
µ
p (%x,p − %̄x,p) . (3.4)
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3.1.2 Linearisation

Our main interest is not the evolution of the complete matrix of densities %,
but only of its off-diagonal elements. Initially these are small because neutrinos
are produced in flavour eigenstates and in a medium with large matter effect
remain suppressed since flavour eigenstates are almost propagation eigenstates.
Then the equation of motion can be linearised in these quantities and allows
one to calculate the dispersion relation to search for unstable modes.

Due to the off-diagonal entry being close to zero a linearisation of the equa-
tion of motion is feasible. Before doing so it is useful to make the substitution

%x,p =
1

2

(
Nνe,p +Nνµ,p

)
+

1

2

(
Nνe,p −Nνµ,p

)(sx,p Sx,p

S∗x,p −sx,p

)
. (3.5)

The functions Nνl,p represent the occupation numbers for νl with momentum
p. Because % comprises occupation numbers the equation s2

x,p + |Sx,p|2 = 1
holds. Linearising eq. (3.1) with respect to Sx,p one obtains

ivµ∂µSx,p = − ωs
vac +

(
ωc

vac +
√

2GFvµJ
µ
mat

)
Sx,p (3.6)

−
∫

d3p′

(2π)3 vµv
′µ (gp′Sx,p′ − ḡp′S̄x,p′

)
,

with the oscillation frequencies ωs
vac =

m2
1−m2

2

2E
sinϑv and ωc

vac =
m2

1−m2
2

2E
cosϑv.

Futhermore the neutrino and antineutrino spectrum were introduced

gp =
√

2GF

(
fνe,p − fνµ,p

)
, (3.7a)

ḡp =
√

2GF

(
fν̄e,p − fν̄µ,p

)
. (3.7b)

The equation of motion for the antineutrino correlation function S̄ is identical
to eq. (3.6) except for a sign changes of the terms ωc, s

vac.
The constant term in eq. (3.6) originates in the non-diagonality of the

mass matrix. It is the only known source for the flavour mixing and without it
the flavour correlation function would not undergo a dynamical evolution, but
remain zero. In this context it was discussed whether a stability analysis of Sx,p

is possible altogether because Sx,p = 0 is not a fixed point [69]. Furthermore
the flavour mixing in the neutrino sector is not small and cannot be treated
as a perturbation. The problem is solved with a large matter density, which
suppresses the flavour mixing. Then Sx,p is close to zero for all modes and
deviations from that initiate the dynamical evolution. Keeping this in mind
the constant term ωs

vac in eq. (3.6) is omitted in the upcoming calculations.
A more compact expression for eq. (3.6) and its antineutrino counterpart

can be achieved by applying the “flavour isospin convention”. It assigns neg-
ative energies to antiparticles and unifies the equations of motion, which only
differ in the sign of the vacuum oscillation frequency. Altough this convention
is physically intuitive, it is not necessarily straightforward to implement the
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convention mathematically. For this reason the modification of the neutrino-
neutrino interaction term is illustrated. In the first step the coordinates of the
integration variable p are changed from Cartesian to spherical with p = |p|
and v = p/p∫

d3p

(2π)3 v
µ
p

(
gpSx,p − ḡpS̄x,p

)
(3.8)

=

∫ ∞
0

dp

2π2
p2

∫
Σ

dv

4π
vµ
(
gp,vSx, p,v − ḡp,vS̄x,−p,v

)
.

The variable Σ represents the surface of a unit sphere in three-dimensional
space. Next the variable E = ±p is introduced, where the identification with
a plus sign holds for particles and with a minus sign for antiparticles. Further-
more two new functions are defined

Sx, E,v =

{
Sx, p,v for E > 0

S̄x, p,v for E < 0
, GE,v =

{
gp,v for E > 0

−ḡp,v for E < 0
. (3.9)

The difference between the newly defined Sx, E,v and Sx, p,v is that the second
argument E of the former can attain negative values, whereas it is strictly
positive in the other one. In an intermediate step the integral can be split up
to clarify the difference between particles and antiparticles∫ ∞

0

dp

2π2
p2

∫
Σ

dv

4π
vµ
(
gp,vSx, p,v − ḡp,vS̄x,−p,v

)
(3.10)

=

∫
Σ

dv

4π
vµ
(∫ ∞

0

dE

2π2
E2GE,vSx, E,v +

∫ 0

−∞

dE

2π2
E2GE,vSx, E,v

)
.

Obviously the two terms can be subsumed in one integral and one obtains with
the new variable Γ = {E, v} and the integral measure dΓ =

∫∞
−∞

dE
2π2 E

2
∫

dv
4π∫

d3p

(2π)3 v
µ
p

(
gpSx,p − ḡpS̄x,p

)
=

∫
dΓ vµGΓSx,Γ. (3.11)

The other terms in eq. (3.6) do not change, when the substitution Sx,p → Sx,Γ

is applied.

3.1.3 Normal mode analysis

Equation (3.6) is linear in Sx,Γ and so a plane wave ansatz is natural

Sx,Γ = QK,Γ e−i(K0t−K·x). (3.12)

The new variable QK,Γ with four-momentum Kµ is the eigenfunction of the
differential operator. The eigenfunction is investigated in the next chapter.
After eq. (3.12) is plugged into eq. (3.6) one notices that the matter term Λµ
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behaves like a constant momentum1, which can be removed easily. The substi-
tution kµ = Kµ − Λµ transforms the system to a corotating frame. Therefore
the matter current does not fundamentally affect the dispersion relation of a
flavour wave. After that the evolution equation of the eigenfunction Qk,Γ has
the form

(vµkµ − ωvac)Qk,Γ = −vµ
∫

dΓ′v′µGΓ′Qk,Γ′ . (3.13)

It is instructive to consider first a system with no neutrino interaction.
The dispersion relation is then k0 (k) = ωvac + v · k and as one expects every
k-mode evolves independently of the others. The systems does not exhibit any
collective properties.

Equation (3.13) is an eigenvalue equation for an infinite dimensional vector
space. In order to find all eigenvalues a functional determinant must be solved.
This intricate procedure can be circumvented by focussing on the dispersion
relation of collective modes. The non-collective modes can be projected out
by assuming vµkµ − ωvac 6= 0 and then eq. (3.13) can be transformed to

Qk,Γ =
vµA

µ
k

vµkµ − ωvac

with Aµk = −
∫

dΓ′v′µGΓ′Qk,Γ′ . (3.14)

This is only possible because the right hand side of eq. (3.13) does not depend
on the Γ-dependent part of Qk,Γ as it is integrated out. Thus the general
form of the eigenfunctions can be deduced and the unknown k-dependent part
encoded in the variable Aµk . There is a one-to-one correspondence between
Qk,Γ and Aµk , so that for a specific GΓ one representation of the eigenfunction
can be calculated from the other.

The partly derived form of the eigenfunctions can be used to rewrite eq. (3.13)
in terms of Aµk

vµ
[
ηµν +

∫
dΓGΓ

vµvν
vρkρ − ωvac

]
Aνk = 0 (3.15)

with the Minkowski metric ηµν = diag (+1, −1, −1, −1). For the matrix,
which is called polarisation matrix, a new variable is introduced

Πµν ≡ ηµν +

∫
dΓGΓ

vµvν
vρkρ − ωvac

. (3.16)

Equation (3.15) must be satisfied for all values of v, which is just a parameter.
This implies the linear system

ΠµνA
µ
k = 0, (3.17)

which only has non-trivial solutions for Ak, if the determinant of the polarisa-
tion matrix vanishes

Det Πµν = 0. (3.18)

1Here and in the following the oscillation frequency and wave vector of the flavour wave
are identified with the energy and momentum.
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With eqs. (3.16) and (3.18) all tools were found to determine the energy of a
flavour wave k0 for a chosen momentum k and particle distribution GΓ.

In its full form the polarisation matrix comprises slow and fast collective
modes, which can have slow and/or fast instabilities. The difference between
them is their behaviour in the fast flavour limit, where ωvac = 0. Then slow
modes become purely kinematical and thus do not describe any collective phe-
nomenon. At the same time slow instabilities vanish. Their respective fast
counterparts do not change significantly. The interplay of these two collective
effects are dealt with in sec. 3.3.

Depending on the question which is adressed, it is sufficient to consider only
fast or slow modes. In a supernova for example fast flavour conversion occurs
closer to the centre, where slow conversion is not relevant because the matter
density suppresses the flavour mixing. Fast modes are picked out by applying
the fast flavour limit to eq. (3.16). Then the integral can be reduced because
only the distribution function GΓ depends on the energy. After integrating it
out we define

Gv ≡
∫ ∞
−∞

dE

2π2
E2GE,v (3.19)

=

∫ ∞
0

dE

2π2
E2
(
fνe, E,v − fν̄e, E,v − fνµ, E,v + fν̄µ, E,v

)
.

The restriction to collective flavour modes that persist in the fast flavour limit
illustrates that these fast modes are insensitive to the energy spectrum and only
depend on the angular distribution Gv. This observation shows a difference
between fast and slow modes because the stability of the latter mainly depends
on the energy spectrum.

In practice it is useful to modify eq. (3.16) slightly. The reason for that is
the intricacy to solve eq. (3.18) for k0. Even if the integration can be performed
analytically, the outcome can be a transcendental equation, which requires a
numerical analysis after all. The risk to miss some solutions can be avoided
with the parametric ansatz |k| = nk0 with −1 < n < 1. Then the polarisation
matrix can be transformed to

Πµν = k0ηµν +

∫
dv

4π
Gv

vµvν
1− n cos θvk

, (3.20)

where θvk the angle between the vectors v and k. The determinant of Π in this
form is a polynomial of degree four in k0 and so the solutions k0 (n) comprise
the complete real part of the dispersion relation k0 (|k|).2 The parametric plot
of {nk0 (n) , k0 (n)} helps to get an impression of the dispersion relation and
its stability. If the plot indicates the possibility of unstable behaviour, the
complex branches can be calculated numerically, so that a full picture of the
dispersion relation is obtained.

2Due to the arbitrariness of the coordinate system different directions of k correspond to
different flavour isospin distributions Gv. In the following the wave vector is usually chosen
to point in the z-direction and Gv is changed.
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3.2 Types of instabilities

For specific choices of Gv it can happen that for particular wave vectors k
the corresponding frequency k0 is not real, but has an imaginary contribution.
This results in an exponentially growing or decaying amplitude of the wave.
Specific modes of the flavour correlation function can become unstable until
non-linear effects become relevant. It will be shown, under which conditions
these run-away modes exist and how they can be classified.

3.2.1 Axial symmetry

It is helpful at the beginning to reduce the complexity of the polarisation
matrix, in order to develop an intuition for its solutions. Therefore here and
in the following chapter only configurations of Gv are considered that axially
symmetric around the k-vector. In such cases the flavour isospin distribution
depends only on the parameter u = cos θ, with polar angle θ, after the azimuth
angle has been integrated out. The polarisation matrix decomposes into a 2×2
block matrix and two diagonal entries so the determinant reduces to

Det Πµν =
(
−1 + 1

2
〈1− u2〉k0, k

)2
Det

(
k0 + 〈1〉k0, k 〈u〉k0, k
〈u〉k0, k −k0 + 〈u2〉k0, k

)
= 0,

(3.21)
where we used k = |k| and the abbreviation

〈ui〉a, b =
1

2

∫ +1

−1

du
uiGu

a− bu
. (3.22)

The solution of the first term in eq. (3.21) describes two degenerate axial
symmetry breaking modes of the system and is not of interest for the upcoming
analysis. The determinant of the 2×2 matrix gives a formula for the dispersion
relation of the symmetric modes. Althought the equation looks rather simple,
it is usually transcendental as long as the variables k0 and k are used. However,
when the parametric ansatz from eq. (3.20) is applied, the real part of the
solution is {nk0, k0} with

k0 (n) = −1

2

[
〈1− u2〉1, n ±

√
〈(1− u2)2〉1, n〈(1 + u2)2〉1, n

]
. (3.23)

One should not forget that the parametric ansatz |k| = nk0 breaks down as
soon as k0 (n) has an imaginary contribution. The resulting complex branches
do not coincide with those of the dispersion relation k0 (k). Nevertheless it is
still possible to conclude that an imaginary term in eq. (3.23) implies a com-
plex solution in the dispersion relation. Note that the reverse argumentation,
complex dispersion relation requires complex parametric solution k0 (n), does
not always work because complex and real parts can be decoupled from each
other.
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Keeping this in mind it is clear from eq. (3.23) that as soon as the radicand
becomes negative, i.e. one of 〈(1± u2)

2〉 is smaller than zero, there is a complex
branch in the parametric representation as well as the dispersion relation.
This observation allows the deduction of the necessary condition on Gu. Since
−1 ≤ u ≤ 1 and −1 < n < 1 the factor 1±u2

1−nu in the integral is positive definite
and ergo the flavour isospin distribution needs to have a sign change.

3.2.2 Discrete polar angle distributions

In the early phase of research about fast flavour conversion it was common to
choose axially symmetric isospin distributions with discrete polar angles, so
that Gv describes a fixed number of double cones. Although it was noticed
later that it leads to unrealistic results due to oversimplification, it is still
instructive to address this case since the different kinds of unstable behaviour
are clearly discerned.

The general form of the flavour isospin distribution is

Gu = 2G1δ (u− u1) + 2G2δ (u− u2) , (3.24)

where G1, 2 are numbers specifying the particle content of the respective cone.
The factor of two was implemented to cancel the remaining 1/2 from the
spherical surface 1/4π after integrating over ϕ, cf. eq. (3.8). The solution can
be derived from eq. (3.16) without the help of the parametric ansatz

k0 (k) =
1

2

[
∆1 (k)±

√
∆2

2 (k) + 4G1G2 (1− u1u2)2

]
, (3.25)

where

∆1 (k) = k (u1 + u2)−G1

(
1− u2

1

)
−G2

(
1− u2

2

)
(3.26a)

∆2 (k) = k (u1 − u2)−G1

(
1− u2

1

)
+G2

(
1− u2

2

)
(3.26b)

were introduced. Equation (3.25) describes hyperbolas and it is clear that the
term under the square root can only be negative if G1 and G2 have opposite
signs. One can also see that for a large momentum k the radicand is always
positive.

In fig. 3.1 the four kinds of dispersion relation as they were found in ref. [61]
are shown. According to the classification in ref. [63] we have:

1. Complete stability: The hyperbolas of the dispersion relation do not
leave a gap in either k0 or k, there are no complex branches.

2. Stability with damping: With the same particle content, but opposing
directions, a region in k0 opens up, where k is complex. It was analysed
in ref. [63] that this case does not lead to a conversion of neutrino flavour
because every perturbation is damped away.
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Figure 3.1: These graphs depict the four shapes for the dispersion relation in case of
two beams. The red and green lines signify complex k0 and k-branches respectively.

3. Convective instability: In this configuration there are regions with
only complex values for oscillation frequency and wave number and so
for each one exists a complex connection between the hyperbolas. It
occurs when the Gi have opposite, but ui same signs. The special feature
of the convective instability is that locally perturbations in the unstable
region grow at the beginning, but vanish afterwards. This is only possible
because the propagation velocity is larger than the growth rate.

4. Absolute instability: For colliding beams with different particle con-
tent there are imaginary energies around k = 0. The amplitude of a
mode in the unstable region grows exponentially in time until nonlinear
effects become important.

A possible question arising from the lower plots of fig. 3.1 is whether causal-
ity can be violated. There the dispersion relation is comparable to that of a
tachyon since the group velocity ∂kk

0 can be greater than the speed of light.
However, it was argued in refs. [69,105] that the group velocity does not quan-
tify the propagation speed of information. The modes with imaginary frequen-
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cies are crucial in this context. One might argue that their contributions do not
necessarily enter an arbitrary field excitation. This is true, but in such a case
the information is already accessible in the whole spacetime and quantifying
its propagation speed is futile. If information is localised in spacetime, i.e. the
corresponding wave packet has a spatial cutoff, it requires all modes to have a
nonzero amplitude, also the ones with imaginary frequency. In such a system
the group velocity does not quantify the propagating speed of information as
it is only sensitive to the vicinity of a point in the (k0, k)-plane and does not
include the full dispersion relation.

3.2.3 Continuous polar angle distributions

It was noticed in ref. [71] that as soon as a still axially symmetric, but non-
discrete distribution is chosen the dispersion relation can change significantly
compared to fig. 3.1. The reason for the change is the divergence caused by the
denominator k0−v ·k. When the polar part of the distribution is changed from
discrete to continuous, the space with divergencies in the (k0, k)-plane is not
a number of lines anymore, but an area. These lines, where the denominator
becomes zero, correspond to the asymptotes of the hyperbolas in fig. 3.1 and
it makes sense that the dispersion relation cannot attain real values there. For
a continuous distribution the lines become a region, in which a unit vector v
satisfies k0−v ·k = 0. The solution space is the area between k0 = ±k, which
is called the “forbidden region” from now on.

Figures 3.2 to 3.4 show examples for dispersion relations from continuous
flavour isospin distributions. For the first Gu is constant, but has a sign change
for the other two as shown in the plots. The forbidden region is shaded in light
yellow. In the isotropic case the shape of the collective mode is hyperbolic,
comparable to a particle. Deviations from isotropy distort the shape and when
a crossing occurs the upper and lower branch merge and one finds a form as
in fig. 3.3. Furthermore small, complex k0 branches appear represented by red
lines. If the crossing is further deepened, the dispersion relation is transformed
to the shape in fig. 3.4. From the plots it is clear, that for continuous distri-
butions the association of instabilities with gaps between disconnected lines –
like they exist for a hyperbola pair – does not work. In order to identify the
instabilities of this system, its critical points must be investigated.

A critical point has the feature that complex branches attach to it. There
are three different types of them [71], but only two are relevant for our purposes.
The first type is directly connected to sign changes in the angular distribution.
For each crossing they appear in the excluded region and are the starting points
for a complex conjugated pair of k0- and k-lines each. In the next chapter it
will be explained further how and under which conditions they arise. The
second type of critical points corresponds to turning points in k0 or k and
in contrast to the previous type their number is not fixed by the number of
crossings. At such a turning point the group velocity, i.e. d

dk
k0(k), is either
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Figure 3.2: The graphic displays the symmetric collective mode for an isotropic
flavour isospin distribution Gu = 1. The forbidden region, which appears for all
continuous Gu, is shaded in light yellow.

zero or infinite. It is easy to see that the turning points of the hyperbolas in
fig. 3.1 have either a horizontal or vertical tangent and accordingly a green/red
line connects them.

These observations were used in ref. [71] to categorise the dispersion rela-
tions of flavour isospin distributions with a single crossing depending on the
number of different critical points. The number of critical points in the for-
bidden region is fixed, but the turning points in k0 and k can mutually merge
and disappear. How this merging process occurs becomes clear, when a closer
look at the green lines of figs. 3.3 and 3.4 is taken. In fig. 3.3 there are four
separate k-branches with imaginary contribution. Two of them are clearly vis-
ible, while the others are two close to the complex k0-branches to distinguish
them. When the crossing is deepened, i.e. G(−1) becomes smaller, the turn-
ing points approach each other and merge eventually. In fig. 3.4 this merging
process has recently occurred, which has several consequences. First of all the
number of green lines is decreased to two and the remaining ones feature sharp
turns for real and imaginary k, where the disconnected parts have joined. Fur-
thermore the type of the instability has changed from convective to absolute.
The reason for that is the appearance of a branch cut in the (Re (k0), Im (k0))-
plane (not shown in fig. 3.4). The branching points have become poles in that
complex plane with a branch cut connecting them. These poles cannot be cir-
cumvented by a deformation of the k0-curve and abruptly make the instability
absolute [71].

One should keep in mind that this classification is customised for distribu-
tions with a single crossing. If there are multiple crossings, the shape of the
real part of the dispersion relation can differ from the ones in this section. If for
example G (u) is a quadratic polynomial with two crossings between u = ±1,
the real part of k0 (k) can have the form of a distorted “8”.



38 3. Dispersion relation of flavour correlations

-4

-2

0

2

4

Im
(k

0
)
/1

0
-

3

-1.0 -0.5 0.0 0.5 1.0

0.0

0.1

0.2

u

G
(u
)

-0.4 -0.2 0.0 0.2 0.4

-0.4

-0.2

0.0

0.2

0.4

Re(k)

R
e
(k
0
)

-0.2 0.0 0.2

Im(k)

Figure 3.3: Real and imaginary parts of the dispersion relation for a flavour isospin
distribution with a maximum at G(1) = 1

4 and a tiny crossing G(−1) = −10−2.
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Figure 3.4: Dispersion relation for a deeper crossing G(−1) = −5× 10−2.
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3.3 Slow and fast modes

Until now flavour conversions were considered only in the limiting case ωvac = 0
in eq. (3.16). In this section it is investigated how a nonzero ωvac influences
slow and fast modes. To do so a system with two colliding, mono-energetic
beams in one dimension is investigated [69]. Note that by the reduction from
two to one dimension the conical shape as in subsection 3.2.2 is lost.

3.3.1 Colliding beams

The propagation direction of the beams is chosen to be parallel to the z-axis,
so that u = ±1 holds. The beam energy is fixed at E0 and alongside the
vacuum oscillation frequency is determined ωvac = ∆m2

2E0
≡ ω. Note that due

to the flavour isospin convention the signs of these quantities are different for
neutrinos and antineutrinos. Consequently there are four different combina-
tions of the parameters leading to four distinguished modes as evident from
tab. 3.1.

mode no. u particle
1 +1 ν
2 +1 ν̄
3 −1 ν
4 −1 ν̄

Table 3.1: Direction and particle content of the four modes

In this system the correlation function SE,v is discrete, so that eq. (3.6)
splits up into four coupled differential equations. The modes are named ac-
cording to the scheme of tab. 3.1

i (∂t + ∂z)S1 = (+ω + Λ0 − Λz)S1 − g3S3 + g4S4, (3.27a)

i (∂t + ∂z)S2 = (−ω + Λ0 − Λz)S2 − g3S3 + g4S4, (3.27b)

i (∂t − ∂z)S3 = (+ω + Λ0 + Λz)S3 − g1S1 + g2S2, (3.27c)

i (∂t − ∂z)S4 = (−ω + Λ0 + Λz)S4 − g1S1 + g2S2. (3.27d)

Note that the antiparticle contribution couples with a different sign to the
mode, cf. eq. (3.6). The definition of gi is along the lines of eq. (3.7a) nor-
malised via

∑
i gi = 4 and supplemented by a factor of two. It originates in the

kinematical term vµv′µ, which vanishes for parallel and is maximal for antipar-
allel propagation. There are additional equations to the above four describing
the evolution along the other two spatial directions. They represent symmetry
breaking modes and as before are not taken into consideration.

To derive the function k0(k) with a normal mode analysis the plane wave
ansatz from eq. (3.12) is applied and a transfer to the corotating frame per-
formed in order to remove the matter effect, Λµ. Then eqs. (3.27) can be
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written as a matrix equation
(ω − k0 + k) 0 −g3 g4

0 (−ω − k0 + k) −g3 g4

−g1 g2 (ω − k0 − k) 0
−g1 g2 0 (−ω − k0 − k)



Q1

Q2

Q3

Q4

 = 0.

(3.28)
This is an eigenvalue equation for k0, so that for non-trivial Qi the determinant
must be zero. The defining equation for k0(k) is thus a quartic polynomial((

k0
)2 − k2

) [(
k0
)2 − k2 − (g1 − g2) (g3 − g4)

]
= 2

[
(g1g3 − g2g4) k0 − (g1g4 − g2g3) k

]
ω (3.29)

+
[
2
((
k0
)2

+ k2
)

+ (g1 + g2) (g3 + g4)
]
ω2 − ω4.

As its analytical solutions are neither intuitive nor illuminating in general,
examples are used to point out the important features and distinctions to the
fast flavour limit of previous calculations.

Equation (3.29) gives rise to slow and fast collective modes. As mentioned
before, the distinguishing element is the vacuum oscillation frequency. When
ω is set to zero, only fast modes remain like in the two-cone scenario, which
was calculated in the fast flavour limit. This setting is similar to the colliding
beams and one expects comparable solutions. However, there is a mismatch
in the number of k0(k)-branches. In the fast flavour limit with two cones only
two branches (the hyperbolas) were found, whereas eq. (3.29) gives rise to four.
The root of this difference is the fast flavour limit, which makes some modes
kinematical, and the polarisation matrix approach, which is only sensitive to
dynamical modes and not kinematical ones. Kinematical means that there are
no collective effects, a wave packet only propagates along the beam line and
hence satisfies the equation k0 − v · k− ωvac = 0. On the other hand dynamical
cannot be reduced to a drift, they modulate a field perturbation. An example
for purely kinematical modes are the results of eq. (3.29) in the limit k →
∞. This is identical to the zero coupling limit, where naturally no collective
effect arises. Solving the equation up to first order results in k0 = ±k with a
degeneracy of two each.

Accordingly the character of a mode is determined by the ω → 0 limit.
If it becomes kinematical, we call it “slow” and otherwise “fast.” In a similar
way “slow” and “fast” instabilities are identified. If they are slow, they vanish
for ω → 0 as kinematical modes must be real. Accordingly fast modes remain
dynamical in the same limit. Note that a fast mode can have fast and slow
instabilities, but the latter disappear for ω → 0. On the other hand slow
modes only have slow instabilities because otherwise a drifiting wave packet
would either decay or grow exponentially for ω = 0, which is in contradiction
with simple propagation.
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Before looking at the mixing of slow and fast modes it is instructive to
consider first a setting with only slow modes. A convenient example due
to its high symmetry is the flavour pendulum, where ν and ν̄ are present
in equal amounts [49]. The corresponding numbers of the four modes are
g1 = g2 = g3 = g4 = 1. Several terms become zero in eq. (3.29) and the emerg-
ing biquadratic equation has the solutions(

k0
)2

= k2 + ω2 ± 2ω
√

1 + k2. (3.30)

It is easy to see that the four solutions all become kinematical for ω → 0.
Furthermore one can deduce that only the solutions with a minus sign have
complex oscillation frequencies, since the square root in eq. (3.30) is strictly
positive. From the high symmetry of the system follows that the other two
hyperbolas are connected by a complex k-branch as shown in fig. 3.5.

This is not the only choice for gi with exclusively kinematical modes for a
vanishing vacuum oscillation frequency. In general the equation

(g1 − g2) (g3 − g4) = 0 (3.31)

must be satisfied, which means that the term on the left hand side of eq. (3.29)
is zero. However, not all configurations complying with eq. (3.31) converge
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Figure 3.6: Real and imaginary parts of k0 for g1 = g2 = 1
2 , g3 = 1 and g4 = 2. The

vacuum oscillation frequency is set to ω = 1
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smoothly to kinematical behaviour. An example for that is shown in fig. 3.6.
One can see that the length of the unstable branch increases for smaller ω and
at the same time the imaginary contribution increases. For a tiny vacuum os-
cillation frequency there is a broad range of unstable modes, but their growth
rate is small because Im (k0) converges to zero in the fast flavour limit. For
ω = 0 the instability abruptly vanishes completely and the dispersion rela-
tion is purely kinematical. This behaviour can also be deduced directly from
eq. (3.29). If one beam has a nonzero lepton number, the term linear in ω
remains and causes the transition from dynamical to kinematical behaviour
for ω = 0.

Since in the colliding beams model a scenario with fast modes is similar
to the lower right diagram of fig. 3.1, we refrain from discussing an explicit
example. The main difference is the appearance of kinematical modes k0 = ±k,
which are identical with the asymptotes of the tachyonic dispersion relation.
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3.3.2 Mixing of slow and fast modes

With arbitrary values for gi and nonzero ω slow and fast modes overlap and get
mixed in general. The described picture with only fast modes changes slightly.
Qualitatively the fast, absolute instability between the two dynamical branches
remains unaffected as one would expect. In addition slow instabilities appear
in two separate regions as long as ω is small. The first instability apears for
small momenta where the slow modes obtain a shape similar to fig. 3.5. And
the other occurs where the now nonzero vacuum oscillation frequency sources
the mixing of slow and fast modes. The gap between them becomes smaller
for higher k and so the unstable region moves to large momenta for decreasing
ω.

The polynomial of eq. (3.29) can be solved approximately in the vicinity
of the slow instabilities and for small vacuum oscillation frequencies. There
are two different scales involved and so for the solution also two consecutive
steps are needed. The first deals with the displacement of the symmetry point
from the origin. There k0, k and ω are all of the same order. Keeping only
quadratic terms in eq. (3.29) one obtains

−
((
k0
)2 − k2

)
a0 = 2

(
a1k

0 + a2k
)
ω + a4ω

2, (3.32)

where the shorthand variables

a0 = − (g1 − g2) (g3 − g4) , (3.33a)

a1 = g1g3 − g2g4, (3.33b)

a2 = g2g3 − g1g4 (3.33c)

a3 = (g1 + g2) (g3 + g4) = 1
a0

(
a2

2 − a2
1

)
(3.33d)

were introduced. The solution to the quadratic equation are two linear func-

tions, which intersect in the point
(
a1
a0
ω
∣∣∣−a2

a0
ω
)

. In the second step the vari-

ables y = k0 − a1
a0
ω and x ≡ k + a2

a0
ω are defined and represent the deviation

from the symmetry point. Using them in eq. (3.29) and keeping terms up to
quadratic order of y, x and ω2 gives a correction to the absolute value func-
tion. Note that the vacuum oscillation frequency is squared, so that terms
proportional to ω4 are included. Combining the solutions results in the pair
of hyperbolas3

k0 = −a1

a0

ω ±

√(
k +

a2

a0

ω

)2

− 16
g1g2g3g4

a2
0

ω4. (3.34)

For a particular kind of distributions it is also not hard to calculate the
range of momenta where the slow and fast modes form new instabilities. For

3This result differs from that in the original paper [69], where a perturbative iteration
for small ω was used. However, in this region it is not applicable because the perturbation
is of the same order as k0 and k.
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decreasing vacuum oscillation frequency these parts move away from the origin,
so that the approximation k0, k � ω is feasible. Including all terms up to
second order eq. (3.29) becomes((

k0
)2 − k2

) [(
k0
)2 − k2 − (g1 − g2) (g3 − g4)

]
= −2kω (g1g3 − g2g4) + 2ω2

((
k0
)2

+ k2
)
. (3.35)

The mentioned peculiarity ensures that the equation is biquadratic in k0,
i.e. the k0-coefficient g1g3 − g2g4 vanishes. This happens for example when
the beam composition is antisymmetric. Solving for (k0)

2
and demanding it

to develop an imaginary part results in a condition on k corresponding to the
momentum interval [k−, k+] with

k± =
1

4ω

(
g1g4 − g2g3 ±

√
(g1g4 − g2g3)2 − (g1 − g2)2 (g3 − g4)2

)
. (3.36)

As an example the collision of a beam with neutrino and one with antineu-
trino excess is studied for arbitrary vacuum oscillation frequencies. In a system
with g1, 4 = 3

2
and g2, 3 = 1

2
the condition to apply eq. (3.36) is fulfilled and

hence the slow instabilities from mixing appear for 2−
√

3
4ω

< k < 2+
√

3
4ω

. Due to
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the ω−1-dependence the momentum values and the interval size increase with
decreasing vacuum frequency. Figure 3.7 depicts the system for a rather large
vacuum frequency, which leads to the specific structure of branch points in the
upper plot. The slow absolute instability as already observed in fig. 3.5 and
the convective instabilities are connected at small k. Inserting all the numbers
an already good agreement of the approximations with the analytical solution
is revealed.
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CHAPTER 4

Non-collective modes and instabilities

Non-collective modes are excitations of the flavour field, where the equation
k0 = v ·k has a solution. They are purely kinematical in the fast flavour limit,
i.e. their contribution to a wave packet completely dissipates while the collec-
tive part remains. The transition from non-collective to collective behaviour
can happen in two different ways. The first takes place in the limit of vanishing
coupling strength, where no collective modes exist. As soon as the interaction
is turned on some modes become collective. This is a smooth crossover and
therefore appears at the edge of the forbidden region. However, the second
type of transition is abrupt and occurs inside the forbidden region, where all
collective modes must be complex and so this process is inherently related to
instabilities.

In this chapter the connection between the kinematical, forbidden region
and dynamical, collective modes is outlined. Here all calculations are per-
formed for axially symmetric flavour isospin distribution and so one can dis-
tinguish between modes that preserve or break this symmetry. Without axial
symmetry such a classification of flavour modes is not possible. Here it is
important to distinguish between the symmetry of the system, i.e. the flavour
isospin distribution, and the symmetry of the solutions, i.e. the flavour modes.
We use the notation where quantities for symmetry preserving modes are de-
noted by the letter “S” and symmetry breaking ones by “B”.

Based on our paper [72] the symmetry preserving eigenfunctions QS
k,v are

determined and a sufficient criterion for the occurrence of unstable collective
modes is derived. These results are supplemented by the analogous calculation
for symmetry breaking eigenfunctions QB

k,v, which have not been discussed
in ref. [72]. Furthermore it is shown that the existence of crossings in the
distribution is sufficient to source instabilities in the symmetry breaking sector.
For symmetry preserving modes this is only the necessary condition.
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4.1 Eigenfunctions of non-collective modes

Equation (3.13) does not only determine the oscillation frequency of collective
flavour field excitations, but can also be used to find the eigenfunctions. For
collective modes they follow from eq. (3.17). For their non-collective counter-
part a different method is used to find the solution. As long as k0 is smaller
than or equal to |k| there is always a unit vector v, so that the equation
k0 = v · k is satisfied. Therefore the area between k0 = ±k is densely filled
with eigenvalues and there is no need to calculate them. For the same reason
the previously exploited trick of dividing by k0 − uk does not work any more.
The only exception is a discrete distribution as it is used for the two-beam
case in sub. 3.2.2.

Before taking a closer look at the integral structure of eq. (3.13), a substi-
tution of parameters is undertaken to simplify the notation. After a division
by k the new variables w ≡ ω/k and µ ≡ 1/k are defined. The former is now a
dimesionless eigenvalue and the forbidden region is located between w = ±1.
The latter is a coupling constant and substitutes the momentum as abscissa
in the upcoming plots. In the fast flavour limit the energy can be integrated
out and so eq. (3.13) yields for axially symmetric distributions Gv = Gu

(w − u)Qw,v = − µ
∫

dv′

4π
Gu′Qw,v′ (4.1)

×
(

1− uu′ − cϕ−ϕ′

√
(1− u2) (1− u′2)

)
.

The velocity vector v was parameterised by the polar coordinate u = cos θ with
polar angle θ and the azimuthal angle ϕ. The shorthand notation cϕ ≡ cosϕ
is used.

After a closer look at the right-hand side of eq. (4.1) it becomes apparent
that the eigenfunction there does not depend on v, but only v′, which is
integrated out. Only the second line of eq. (4.1) includes components of the
velocity vector v. Applying a trigonometric identity for cϕ−ϕ′ the general form
of the equation is

(w − u)Qw,v = a− bu+
√

1− u2 (c sϕ + d cϕ) . (4.2)

The parameters a, b, c, d depend on the eigenvalue w and the distribution
Gu. Now it is possible to split up the eigenfunction into a symmetric (S)
and a symmetry breaking (B) contribution Qw,v = QS

w, u +QB
w,v. Noting that

(w − u) δ (w − u) = 0 the natural ansatzes for them are

QS
w, u = S(1)

w

(
1

w − u
+ σwδ (w − u)

)
+ S(2)

w and (4.3a)

QB
w,v =

(
B(1)
w cϕ + B(2)

w sϕ
) √1− u2

w − u
+
(
B(3)
w cϕ + B(4)

w sϕ
)
δ (w − u) . (4.3b)
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The δ-distribution is essential and guarantees that also in an uncoupled system
µ = 0 the eigenfunctions are non-zero. The ansatz above only works, when
the principal value of the integral over 1/ (w − u) is taken in eq. (4.1). In the
new parameters the forbidden region, which is densely filled with modes, lies
between w = ±1, so that the integrand always has a pole.

For QB the prefactor of the δ-function is an arbitrary, periodic function
of ϕ in principle. However, only terms with sinϕ and cosϕ contribute to the
eigenvalue w in eq. (4.1); the amplitudes of higher multipoles, e.g. for cos 2ϕ,
can be set to zero.

4.1.1 Symmetric eigenfunction

When the ansatz is inserted on both sides of eq. (4.1) the symmetric part is

2S(1)
w + 2S(2)

w (w − u) =− µS(1)
w

[
−
∫

du′
1− uu′

w − u′
Gu′ + σwGw (1− uw)

]
− µS(2)

w

∫
du′ (1− uu′)Gu′ . (4.4)

The principal value integral can be modified to

−
∫

du′
1− uu′

w − u′
Gu′ = (1− uw)−

∫
du′

Gu′

w − u′
+ u

∫
du′Gu′ . (4.5)

For brevity the new symbols

Fw, i = −
∫

du
uiGu

w − u
and Gi =

∫
duuiGu (4.6)

are introduced. Plugging these definitions into eq. (4.4) results in

2S(1)
w + 2S(2)

w (w − u) + µS(1)
w

[
(1− uw) (Fw, 0 + αwGw) + uG0

]
(4.7)

+ µS(2)
w (G0 − uG1) = 0.

This can be split into two separate equations – one for constant and the other
for u-dependent contributions. Both equations must hold individually, other-
wise it is not guaranteed that eq. (4.7) is satisfied for all u. Equation (4.7) can
be written in matrix form(

µ (Fw, 0 + αwGw) + 2 µG0 + 2w
µw (Fw, 0 + αwGw)− µG0 µG1 + 2

)(
S(1)
w

S(2)
w

)
= 0 . (4.8)

For non-trivial eigenfunctions the determinant of the matrix must vanish. This
yields an equation for the remaining parameter σw and can be further used to
derive the ratio of S(1)

w and S(2)
w

σwGw = −Fw, 0 −
4 + µG0 (µG0 + 2w) + 2µG1

µ (2− 2w2 − µwG0 + µG1)
, (4.9a)

ζw ≡
S(2)
w

S(1)
w

=
2w + µG0

2− 2w2 − µ (wG0 − G1)
. (4.9b)
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When the angular distribution has a crossing at w, so that Gw = 0, σw is
not determined by eq. (4.9a). In this special case the eigenfunction is just
δ (w − u) leading to the conclusion that eq. (4.3a) is not applicable and σw a
free parameter.

4.1.2 Axially breaking eigenfunction

With a similar procedure the parameters of the symmetry breaking eigenfunc-
tion are determined. One of them is redundant as becomes clear when inserting
the ansatz in eq. (4.1). Instead we introduce

βwGw ≡
B(3)
w cϕ + B(4)

w sϕ

B(1)
w cϕ + B(2)

w sϕ
=

1√
1− w2

(
4

µ
− Fw, 0 + Fw, 2

)
, (4.10)

with an analogous notation to the symmetric eigenfunction. Note that also βw
remains undetermined if there is a crossing at w. The symmetry of the system
makes a further reduction of parameters possible by choosing a coordinate
system in which B(2)

w = 0. The new version of QB
w,v is then

QB
w,v = Bwcϕ

(√
1− u2

w − u
+ βwδ (w − u)

)
(4.11)

with Bw = B(1)
w .

4.1.3 Normalisation

In contrast to collective eigenfunctions, those for non-collective modes cannot
be normalised. The only possibility is to discretise the flavour isospin distri-
bution in steps of ∆u and substitute the integrals with sums∫ +1

−1

du f (u)→ ∆u
N∑
i=1

fi, (4.12)

where N = 2/∆u and fi = f (ui).
The δ-distribution is normalised by definition and integrating over its square

diverges. The discretisation leads to∫
du |δ (u)|2 → 1

∆u
(4.13)

because the discrete counterpart of the δ-distribution is a Kronecker delta
weighted by the spacing to fulfil the normalisation condition.

Next the function 1/ (w − u) is considered. While the principal-part in-
tegration is finite due to its antisymmetry around u = w, its square still
diverges. This can be avoided by choosing carefully the evaluation points ui.
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With a grid symmetric around the pole w, i.e. ui = w +
(

1
2
± i
)

∆u, and the

sum
∑+∞

i=−∞
(

1
2
− i
)−2

= π2 the discretised integral amounts to∫
du (w − u)2 → π2

∆u
. (4.14)

Combining eqs. (4.13) and (4.14) the normalisation of Qw,v can be derived.
For that it is important to note that the products of different summands of
the eigenfunction are finite for ∆u → 0, when the integration is performed.
S(2)
w is not relevant for the normalisation and notation is simplified with the

substitution S(1)
w → Sw. Hence one obtains for the symmetric part

1

2

∫
du
∣∣QS

w, u

∣∣2 = S2
w

∫
du

[
1

(w − u)2 + σ2
w |δ (w − u)|2

]
=
S2
w

2∆u

(
π2 + σ2

w

)
. (4.15)

From this equation follows

Sw = sw

√
2∆u

π2 + σ2
w

(4.16)

and with eq. (4.9b) the symmetric eigenfunction is fully determined. The
variable sw represents an arbitrary phase.

For the axially breaking eigenfunction the procedure is almost identical.
The term proportional to u2

w−u vanishes in the continuum limit and so the
integral is equal to

1

4π

∫
dv
∣∣QB

w,v

∣∣2 = B2
w

∫
dϕ c2

ϕ

∫
du

[
1− u2

(w − u)2 + β2
w |δ (w − u)|2

]
=
B2
w

4∆u

(
π2 + β2

w

)
(4.17)

and accordingly

Bw = 2bw

√
∆u

π2 + β2
w

. (4.18)

Analogous to eq. (4.16) bw is a complex phase.
The general structure of the eigenfunctions can also be understood in a

different way, which is illustrated exemplarily for the symmetric eigenfunction.
With the definition of

sinϕw =

√
2πsw√
π2 + σ2

w

(4.19)

they take the form

QS
w, u = S

[
sinϕw

π (w − u)
+ cosϕwδ (w − u) + ζw

]
. (4.20)
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The discretisation parameter ∆u is absorbed in S and from the appearance
of the trigonometric functions it becomes clear that ϕw is a mixing angle.
One can see that for example in a non-interacting system, where σw → −∞
and consequently ϕ = 0. Then only the δ-function contributes as one would
expect. Note that on the other hand even an infinite interaction strength does
not result in a maximal mixing with ϕw = π

2
.

4.2 Crossings of the angular distribution

Before looking at the mathematical consequences of a crossing let us discuss
how the non-collective eigenvalues are distributed in the forbidden region. Fig-
ure 4.1 displays Re (w) and Im (w) in terms of the coupling µ assuming that
Gu has a single crossing. For µ = 0 all modes are non-collective and evenly
distributed in the forbidden region w ∈ [−1, +1]. As soon as the coupling is
turned on the lines at the edge of the forbidden region peel off and the others
rearrange to fill the area. The main feature of the graphic are the branching
points, where two non-collective modes meet and form a complex conjugated
pair. This pair can leave the forbidden region and split into a pair of real col-
lective modes. It is crucial for every stability analysis to assess whether these
branching points always exist in the presence of a crossing.

In eq. (4.9a) the left hand side vanishes, when Gw has a crossing at w = uc.
The same observation holds for its axially breaking counterpart (4.10). Now
these equations only depend on the coupling constants µS

c and µB
c

0 =Fuc, 0 +
1 + µS

cG0

(
µS

cG0 + uc

)
+ µS

cG1

µS
c (1− u2

c − µS
cucG0 + µS

cG1)
, (4.21a)

0 =
4

µB
c

− Fuc, 0 + Fuc, 2. (4.21b)

The respective solution of these equations are

µS
c =− 2

[
Fuc, 0

(
1− u2

c

)
+ G0uc + G1 ±

√
D
]−1

, (4.22a)

µB
c =

4

Fuc, 0 − Fuc, 2
(4.22b)

where D is the discriminant corresponding to the quadratic equation (4.21a)
in µS

c and has the form

D ≡
[
Fuc, 0

(
1− u2

c

)
+ G0uc + G1

]2 − 4
[
G2

0 + Fuc, 0 (G1 − G0uc)
]
. (4.23)

Thus it was proven that two non-collective modes merge into a complex collec-
tive branch when w = uc and the coupling constant satisfies either eq. (4.22a)
or (4.21b). This result is confirmed by fig. 4.1 where the blue dashed lines indi-
cate the branching points and match the numerical solutions of the discretised
system.
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Figure 4.1: Eigenvalues w for the distribution Gu = u− 2
3 . The blue dashed lines

indicate the crossing at uc (horizontal) and the critical coupling constants µS,B
c

(vertical) from the analytical calculation in eq. (4.22). As one can see the latter
agree well with the merging points, already for a small number of bins N = 12.
Because of the linearity of eq. (4.22b) there is only one critical coupling constant for
each symmetry breaking modes as they are degenerate.

For the symmetry preserving modes to have an instability, Im (w) must
be different from zero, so that eq. (4.22a) has two real solutions, which is
equivalent to

D > 0. (4.24)

In sub. 4.2.2 it will be shown that not every crossing sources a complex branch,
but that this inequality needs to be fulfilled as well.

For the solution for the axially breaking modes (4.22b) to be real, no such
condition is needed as the equation is linear in the coupling constant. Thus
there is always a real solution for µB

c if Gu has a crossing meaning that crossings
are necessary and sufficient condition. This result goes beyond ref. [72] and
shows that symmetry breaking modes are crucial for the question of stability.
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4.2.1 Single crossing

A special case is the class of flavour isospin distributions that have a single
crossing at u = uc, which always gives rise to an instability for symmetry
preserving and breaking modes. In order to prove this point, Gu is factorised
first

Gu = (u− uc)Pu. (4.25)

Here Pu is a strictly positive or negative function. Moreover it is assumed that
Pu does not have any poles, which is also physically reasonable as the lepton
number cannot diverge. Analogous to eq. (4.6) the moments of Pu are written
as

Pn =

∫
duunPu . (4.26)

First, we look at the consequences of eq. (4.25) for the symmetry preserving
modes. When substituting Fuc, 0 = −P0 and Gn = Pn+1 − ucPn in eq. (4.22a),
one obtains

µS
c =

2

P0 − P2 ±
√

(P0 + P2)2 − 4P2
1

. (4.27)

Note that there is no dependence on the eigenvalue, i.e. the crossing point uc.
The particular structure in eq. (4.22a) with pairwise appearance of G0, 1 in
combinations with Fuc, 0 is responsible for the cancellation.

With the definition
〈〈
f (u)

〉〉
=
∫

duPuf (u) we can rewrite eq. (4.27) as

µS
c =

2〈〈
1− u2

〉〉
±
√〈〈

(1 + u)2 〉〉〈〈 (1− u)2 〉〉 . (4.28)

Since Pu does not have a further crossing, the factors under the square root〈〈
(1± u)2 〉〉 are either both positive or negative. Hence if eq. (4.25) applies,

there always exist real µS
c -values, where complex branches start and make the

mode unstable.

The same steps can be performed for the symmetry breaking coupling con-
stant in eq. (4.22b), which results in a simpler form

µB
c =

4〈〈
1− u2

〉〉 . (4.29)

The only case in that this equation attains non-real values is when Pu has
poles, which was excluded at the beginning.

In principle a multiple root at uc is also possible, i.e. Gu = (u− uc)
n Pu

where n is a positive integer. In this case the previous argumentation is only
valid for odd n because Gu has a crossing then and moreover Pu is positive (or
negative). For even n there is no sign change and also no instability.
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Figure 4.2: Eigenvalues for the distribution Gu = u2 − 1
5 for N = 12 bins. There is

no unstable branch in the symmetry preserving solution, but one for each crossing
in the symmetry breaking ones. The displacement of the numerical merging points
and the analytical solution (blue lines) decreases for larger N .

4.2.2 Multiple crossings

In principle the number of crossings in the flavour isospin distribution is arbi-
trary. In analogy to eq. (4.25) a function with n crossings can be written in
the form

Gu = Pu

n∏
i=1

(u− ui) , (4.30)

where again Pu does not change its sign or have any poles. The roots ui are
sorted according to their value.

For symmetry preserving modes it is not certain that there is an instability
and if so, which root (or roots) is responsible for it. There is no simple for-
mula as for the single crossing and so the sufficient condition (4.24) must be
checked for every crossing. In order to illustrate that distributions with several
crossings can be stable, an example is analysed with

Gu = (u− u1) (u− u2) , (4.31)

where u1, 2 ∈ ]− 1, 1[. With uc = u1 eq. (4.23) results in 16
9

(4u2
2 − 1) and thus

is positive as long as |u2| > 1
2
. Due to the symmetry under exchange of indices

1↔ 2 the same condition with u1 classifies the u2-crossing. Figure 4.2 displays
a dispersion relation with complete stability in the symmetric sector despite
two crossings.

In the original paper [72] symmetry breaking modes were not taken into ac-
count and so it went unnoticed that these modes source an instability for every
crossing. Equation (4.22b) indicates that for the exemplary distribution from
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eq. (4.31) the unstable branches start at µB
c, i = 3

ui
with i = 1, 2. Figure 4.2

shows good agreement between the analytical and numerical calculation. A
distribution with two crossings has two instabilities in the symmetry breaking
sector and up to two additional ones in the symmetry preserving modes. Fur-
ther calculations suggest that for u1 = u2 there are no instabilities although
eqs. (4.22) have real solutions. Thus it is not sufficient that Gu has a root, but
it also must change sign.

A similar analysis can be performed for a polynomial of third degree

Gu = (u− u1) (u− u2) (u− u3) . (4.32)

Additional calculations indicate that there is at least one tachyonic solution
in the symmetry preserving sector, the exact number depends on the values of
u1, 2, 3. Based on these observations we conjectured that symmetry preserving
modes for distributions with an odd number of roots, i.e. opposite signs at
u = ±1, have at least one instability. For axial symmetry breaking modes the
previous result holds, i.e. the number is instabilities is identical to the number
of crossings.

4.3 Collective motion vs. dissipation

Although the properties of collective and non-collective modes are interesting
for their own sake, the physically relevant question is how they modulate a wave
packet, i.e. a superposition of modes. For the evolution of such a wave packet
the dissipation from non-collective modes as well as the collective motion must
be taken into account.

In order to investigate the influence of collectivity and dissipation, we anal-
yse the evolution of flavour coherence in a stable system. This requires a def-
inition of the overall flavour coherence. One possibility is to average over all
modes [72]

Stot (t) =
1

2

∫ +1

−1

duSu (t) . (4.33)

The coherence function for a particular mode Su (t) is derived from its
assumed shape and the initial condition. The former is a wave packet in
general, but for simplicity a plane wave like in the normal mode analysis is
used, so the time evolution is a complex exponential eiwt. At t = 0 each
collective and non-collective eigenmode contributes to the coherence weighed
by its amplitude T , so that at an arbitrary time only the proper phases are
multiplied to each term and one obtains

Su (t) =

∫ +1

−1

dw TwQw, u e−iwt +
∑
j=1, 2

TjQwj , u e−iwjt. (4.34)

The integral incorporates the non-collective modes labelled by their eigenfre-
quency whereas the sum covers the collective excitations.
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Figure 4.3: Contributions of the non-collective and collective modes to the total
flavour coherence Stot. The square and factor of one half on the vertical axis origi-
nates in combining eqs. (4.33), (4.34) and (4.36). The “collective 1 (2)” line corre-
sponds to positive (negative) eigenvalues.

As a sanity check of the definition in eq. (4.33) the coherence of a non-
interacting ensemble can be calculated. The non-collective eigenfunctions are
δ-distributions Qw, u = δ (w − u) with the normalisation factor S = 1 from
eq. (4.20) and collective modes do not exist. Assuming a normalised initial
condition Tw = 1 for all w, the time evolution is given by

Stot (t) =
1

2

∫ +1

−1

du

∫ +1

−1

dw δ (w − u) e−iwt =
sin t

t
. (4.35)

Since there is no counteracting collective effect, kinematical decoherence dom-
inates and consequently the initial flavour coherence dissipates with t−1.

A more elaborate example is the isotropic system with Gu = 1. It has the
special feature that due to the high symmetry the eigenfunctions are orthog-
onal. When the initial coherence Su (0) = 1 is normalised, the amplitudes are
calculable with the formula

Tw =

∫
duQw, u. (4.36)

For collective modes the equation is analogous. All variables in eq. (4.20) can
be calculated when the normalisation factor S is set to unity, so that eq. (4.36)
implies

T−2
w =π2µ2

(
1− 2µw − w2

)2
(4.37)

+

[
1 + 2µ (2µ+ w) + µ

(
1− 2µw − w2

)
ln

(
1 + w

1− w

)]2

.

The collective eigenmodes are determined by eq. (3.14), which in the fast
flavour limit for an axially symmetric configuration can be brought in the
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more simple form up to a normalisation factor

Qw, u =
1− κu
w − u

. (4.38)

The variable κ and the normalisation factor can be calculated straightforwardly
and one obtains for the amplitudes

T 2
wj

= 2
(
1− w2

j

)
(1− w acthwj)

2
[
1− 2

(
w2
j + 2wjµ+ 2µ2

)
(4.39)

− 2 acthwj
(
1− w2

j

)
(wj + 2µ (wj + µ) acthwj)

]−1

with acthwj the inverse hyperbolic cotangent. Here wj represents a collective
branch of the dispersion relation. It depends non-analytically on the coupling
µ, as it is the solution of a transcendental equation.

Figure 4.3 displays the contributions of collective and non-collective am-
plitudes to the overall flavour coherence. For a small coupling constant the
collective modes are negligible, but as soon as µ becomes of order one the pic-
ture changes to the opposite. Interestingly the collective mode with negative
eigenvalue goes down for increasing µ, so that the other one with positive w (µ)
comprises the flavour coherence. For a wave packet with different momenta
follows that the weakly coupled fast modulations dissipate quickly and only
the slow ones remain.



CHAPTER 5

Beyond axial symmetry

In the previous chapter we have seen that the existence of crossings in the
flavour isospin distribution is sufficient for the appearance of instabilities in
axially symmetric settings. This observation answered the question on the
general stability of distributions with axial symmetry. The issue of instabili-
ties from non-symmetric distributions has not been studied yet. Furthermore
one might ask if the stability of flavour waves changes with their direction
of propagation. Both issues are related with each other. The reason is that
from the point of view of the wave vector k the flavour isospin distribution is
non-symmetric in most cases, even if it is axially symmetric. As long as the
symmetry axis and the wave vector do not coincide, k is blind to the symmetry.

In this chapter examples for the dispersion relation of systems without axial
symmetry are presented. Embeddings these results in a comprehensive theory
is part of the ongoing research.

5.1 Influence of momentum direction

When the direction of the momentum with respect to the flavour isospin distri-
bution is arbitrary, previous results on the stability of collective flavour modes
do not apply in general. In this section two examples are shown: a discrete
and a continuous distribution. The continuous one is still axially symmet-
ric to reduce the dimensionality, i.e. the amount of possible directions of the
momentum vector.

5.1.1 Two-beam case

In order to get a first idea of possible changes to the stability of flavour cor-
relation depending on the orientation of k it is useful to consider a minimal
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Figure 5.1: Dispersion relation for G1, 2 = ±0.5 and different wave directions as
indicated in the panels. The type of instability changes from absolute to convective,
when the direction of the momentum vector is changed.

system with two beams. The general form of the corresponding flavour isospin
distribution is

Gv = 2δ
(
θ − π

2

)
[G1δ (ϕ− ϕb) +G2δ (ϕ+ ϕb)] , (5.1)

where ϕb represent the beam angle. The coordinate system is chosen so that
both beams are located in the equatorial plane. The wave vector is written
in spherical coordinates k = k (sθkcϕk , sθksϕk , cθk) with the shorthand nota-
tion cα = cosα and sα = sinα. In order to reduce the amount of possible
configuration only the coplanar case is considered, where cθk = π

2
.

For the chosen distribution the dispersion relation is derivable analytically
when applying eqs. (3.16) and (3.18)

k0 (k, ϕk) = kcϕb
cϕk ±

1

2π

√
4π2k2 s2

ϕb
(1− c2ϕk) +G1G2 (1− cϕb

)2 . (5.2)

It is easy to see that the radicand is always positive as long as the product
of G1 and G2 is positive. When these parameters have opposite signs, i.e. a
crossing, complex branches appear in the dispersion relation. In this scenario
the direction of k is changing only the length of the interval in |k| for which
complex branches appear as shown in fig. 5.1. Nevertheless the system remains
unstable regardless of the direction of k. Furthermore in the depicted example
the type of the instability changes according to the classification in sec. 3.2. In
a special configuration the oscillation frequency k0 is complex for all momenta.
This occurs, when k is exactly between the beams, so that 1− c2ϕk = 0.

Summing up the results we conclude that in this simple setting the stability
of modes can change, but not the stability of the whole system.
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5.1.2 Multipole expansion

For a continuous distribution the eigenvalues are often not calculable ana-
lytically because the dispersion relation usually is a transcendental equation.
There is no systematic way to solve the eigenvalue equation (4.1), which is1

(w − u)Qv = − µ

4π

∫ 1

−1

du′
∫ 2π

0

dϕ′ (1− v · v′)Gv′Qv′ . (5.3)

The unit vector v (and v′) is parameterised by the spherical coordinates u =
cos θ and ϕ.

In order to calculate the eigenvalues approximately the polar coordinate u
is discretised as

∫ +1

−1
du → ∆u

∑N
i=1 with ∆u = 2

N
. For the discretisation of

the azimuthal angle ϕ it is important to note that the functions Gv and Qv are
defined on a spherical surface and need to be periodic in ϕ, i.e. Q (u, ϕ+ 2π) =
Q (u, ϕ). This property can be used to rewrite both functions as Fourier series
of the form

Fϕ =
∞∑

m=−∞

f (m)eimϕ with f (m) =

∫ 2π

0

dϕ

2π
Fϕe−imϕ. (5.4)

The coefficient f (m) is the mth multipole of the function Fϕ. For all real
functions like Gv the identity f (m)∗ = f (−m) holds, where the asterisk denotes
complex conjugation.

When the multipole expansion is used, eq. (5.3) can be split up in an infinite
number of equations, one for each multipole. On the right hand side of eq. (5.3)
the entire ϕ-dependence is contained in v, so that only the multipoles q(m) with
m = 0, ±1 have non-trivial equations. Therefore the system is characterised
by

(w − u) q(0)
u = −µ

2

∫
du′ (1− uu′)

∞∑
m=−∞

g
(−m)
u′ q

(m)
u′ , (5.5a)

(w − u) q(±1)
u =

µ

4

√
1− u2

∫
du′
√

1− u′2
∞∑

m=−∞

g
(−m±1)
u′ q

(m)
u′ , (5.5b)

(w − u) q(m)
u = 0 for |m| > 1. (5.5c)

It is nice to see that for an axially symmetric neutrino distribution, i.e. g
(m)
u = 0

for m 6= 0, the equations decouple from each other.

This set of equations can also be written as a matrix equation for the vector
q

(m)
u′ , where the particular structure becomes apparent. The right hand sides of

eqs. (5.5) give rise to an infinite matrix, which is zero apart from a horizontal

1For notational simplicity in this chapter the dependence on the eigenvalue w is implied.
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belt in the middle

(w − u)



...

q
(+1)
u

q
(0)
u

q
(−1)
u

...


=

∫ +1

−1

du′



. . .
... . .

.

0 0 0
. . . I1,−1 I1, 0 I1, 1 . . .

I0,−1 I0, 0 I0, 1

. . . I−1,−1 I−1, 0 I−1, 1 . . .
0 0 0

. .
. ...

. . .





...

q
(+1)
u′

q
(0)
u′

q
(−1)
u′

...


.

(5.6)
The matrix element Ik, l represents the matching integrand from eqs. (5.5)
including all prefactors, so that it depends on u and u′.

The multipole expansion (5.5) discretises the system with respect to ϕ
and it becomes clear that the higher multipoles with m > 1 are not relevant.
The solution to eq. (5.5c) is purely kinematical and does not contribute to the
eigenvalue w. The reason for that is the same as in sec. 4.1, where the ansatz for
the axially breaking eigenfunctions was justified. Therefore the discretisation
of the system in the azimuthal direction does not lead to any approximation
and in the end one obtains a 3N×3N -matrix for the eigenvalue equation.

We emphasise that the eigenvalues only depend on five multipoles of Gv,
more precisely those g(m) with m = −2, −1, 0, 1, 2. Even if the flavour isospin
distributions is very complicated, this observation allows for the truncation of
the multipole expansion without approximations.

5.1.3 Stability for different directions

Finally the dispersion relation for an exemplary flavour isospin distribution is
discussed for different wave vector directions. The flavour isospin distribution
is axially symmetric. One should keep in mind that the whole system is only
symmetric, when the symmetry axis and the wave vector k are aligned. This
configuration corresponds to α = 0, where α parameterises the angle between
the symmetry axis of Gv and k. For α = 0 the distribution has the form
Gu = u− 2

3
, the same as in fig. 4.1.

Figure 5.2 depicts collective (and non-collective) modes for different angles
α and different calculation methods. The first two columns are based on the
previously described discretisation method with multipoles. For N = 100 the
non-collective branches are not shown due to their high number. For the third
column the polarisation-matrix approach was applied. There the real collective
branches are exact, whereas unstable parts have been calculated numerically.

Let us first understand, what is shown in the first row, where α = 0. Be-
cause of identical distributions the first panel with N = 5 is an overlay of the
symmetry preserving and breaking modes from fig. 4.1, but with smaller N .
The symmetry breaking modes are degenerate, so that the number of eigen-
values seems to be smaller than 3N = 15 for N = 5. Furthermore the starting



5.1 Influence of momentum direction 63

points of instabilities that belong to the same crossing, here uc = 2
3
, start at

the same w-value. For small N there are still deviations, but for N = 100 and
in the continuous case the equality of w-values becomes clear.

When α deviates from zero, several things change. The first difference
can be best seen for N = 5. The eigenvalues of axial symmetry breaking
modes are not degenerate anymore and in fact one cannot distinguish between
symmetry breaking and preserving modes because they get mixed. For α = π

5

the previously degenerate branches are still close to each other, but they drift
apart further when α grows.

The second difference is the appearance of additional instabilities in the
discretised solution, which are shown in the first and second column. These
instabilities, also called spurious instabilities, are an artefact of the discreti-
sation. In a linear stability analysis spurious modes appear because branch
cuts in the dispersion relation cannot be resolved due to the discretisation,
but result in a multitude of point singularities [106]. For low N the num-
ber of these singularities is small and it is hard to distinguish them from the
physical instabilities, which also appear in the continuous calculation. With
growing N the number of spurious modes increases, but their imaginary con-
tribution decreases. This behaviour allows the definition of a threshold, which
was done in the panel with N = 100. Modes with non-real eigenvalues, where
Im(w) < 0.01, are colored blue and the others red. The comparison with the
exact calculation shows that for our example this threshold is well-chosen to
distinguish between spurious and physical instabilities.

When deviating from α = 0, one notices that the starting points of unstable
branches do not share the same w-value. This difference becomes apparent
when comparing the continuous case for α = 0 and π

5
. This feature is not

surprising, which becomes clear when considering the mathematical changes
in the distribution when α 6= 0. In order to do so it is necessary to distinguish
between a crossing and a crossing-value. Here a crossing is defined as a sign
change in the flavour isospin distribution, i.e. a closed line on a spherical
surface. A crossing-value can be treated as the coordinate of a specific crossing.
In an axially symmetric setting it is easy to assign a value to a crossing, as the
sign change takes place at a fixed polar coordinate, which was named uc in ch. 4.
The starting point of unstable branches always satisfy w = uc. If the setting is
non-symmetric, such an assignment of a single coordinate, i.e. a crossing-value,
to a crossing is not possible. Therefore it is not surprising that the starting
points of instabilities are not determined by one number. Ongoing research
aims at the generalisation of crossing-values for non-symmetric distributions.

The final difference in the dispersion relation is the varying number of in-
stabilities, when the direction of the wave vector is changed. In particular
for α = π

2
the system is completely stable. The disappearance of all unsta-

ble branches is a special feature and not all distributions exhibit it. Further
computations indicate that for linear distributions of the form Gu = u− a the
transition from unstable to stable only occurs for a > 1

2
.
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Figure 5.2: Real contribution to the eigenvalues for the distribution Gu = u − 2
3

rotated by α. Black lines represent modes without imaginary contribution. Red and
blue coloured modes have an imaginary part, which is smaller than 0.01 for blue
ones. Non-collective modes are only shown in the left panel. In the middle panel
they are not included for better visibility of the rest, whereas in the continuous
calculation non-collective modes densely fill the region −1 < w < 1.
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Figure 5.3: Imaginary and real parts of the eigenvalues for the distribution Gu =
u− 2

3 rotated by α = π
5 . In the middle panel the imaginary contribution of spurious

instabilities becomes so small that they cannot be distinguished from Im(w) = 0 or
they form a blue blob.

When looking at the blue-coloured instabilities in fig. 5.2, their behaviour
seems to be special around µ = 0. At µ = 0 all modes are real and kinematical
as there is no interaction and hence no collectivity. However, already for small,
non-zero µ the eigenvalues attain an imaginary contribution, which apparently
indicates a discontinuity. This impression is created by the projection of eigen-
values on the real plane. When the imaginary parts are taken into account,
the picture changes. Figure 5.3 displays the real and imaginary contributions
of the eigenvalues for α = π

5
. The continuity around µ = 0 is best visible in

the upper panel for N = 5. At µ = 0 the red lines cross Im(w) = 0, so that
the modes become immediately unstable for positive and negative coupling
constants.

5.1.4 Stability criterion

Also for configurations without axial symmetry a criterion is desirable, which
allows one to determine the stability of a specific flavour wave or the whole
system straightforwardly. For this purpose a similar ansatz as in the previous
chapter can be pursued. The multipoles from eqs. (5.12) have the form

q(0)
u = A(0)

(
1

w − u
+ γ(0)δ (w − u)

)
+B, (5.7a)

q(±1)
u = A(±1)

(√
1− u2

w − u
+ γ(±1)δ (w − u)

)
. (5.7b)
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Multipoles with m > 1 do not contribute to the collective behaviour and thus
can be omitted.

Equations (5.7) can be inserted into eqs. (5.5) and written in a matrix form
as it was done in the previous chapter. The parameters A(0,±1) and B form the
vector. The determinant of the mentioned matrix needs to vanish and here
the problem becomes apparent. The matrix depends on all three parameters
γ(0,±1) and there is only one equation. In the symmetric case this equation can
be written in terms of the functions f and g

f
(
γ(0)
)
g
(
γ(+1)

)
g
(
γ(−1)

)
= 0. (5.8)

Due to the mixing of symmetry preserving and breaking modes such a fac-
torisation does not take place, so that another procedure must be found to
determine each of the γ-parameters. This issue has not been resolved and so
finding a stability criterion for non-symmetric distributions remains an open
question.

The described difficulty with non-symmetric systems is not surprising as
the notion of a crossing is less clear then. As explained before there is no
procedure yet to assign crossing values to sign changes in the flavour isospin
distribution. Only in the symmetric case it is clear how to find and use these
values to fix the starting points of instabilities.

5.2 Azimuthal variation

After investigating the consequences of changing the direction of the wave
vector we turn to completely non-symmetric flavour isospin distributions. In
particular the question is addressed how the azimuthal variation of the dis-
tribution affects the stability of the system. For this purpose a ϕ-dependent
distribution with support at a single polar angle is chosen, which implies

Gv = δ (u− ub)
(
g(0) + 2g(1) cosϕ+ g(2)e2iϕ + g(−2)e−2iϕ

)
. (5.9)

The coordinate system was chosen in such a way that both dipoles are real
g(1) = g(−1) and so the angular function is a cosine.

When the polar angle is fixed, all u- and u′-dependent terms can be ab-
sorbed in eqs. (5.5a) and (5.5b). The eigenvalues can be calculated by deriving
the characteristic equation from eq. (5.6). With the substitutions w → w + u
and µ→ µ/s2

θb
the corresponding determinant simplifies to

det
[
w13 − µ

 1
2
g(0) 1

2
g(1) 1

2
g(2)

−g(1) −g(0) −g(1)

1
2
g(−2) 1

2
g(1) 1

2
g(0)

] = 0. (5.10)

The structure of the second term determines whether the eigenvalues can be
complex or not. If the matrix is Hermitian, w is always real. The dipole g(1)

breaks Hermiticity and so sources every instability.
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Equation (5.10) can be solved analytically, but it is hard to gain much
insight from the formula. With a reduction of parameters the solution is more
accessible. The higher multipole g(±2) does not contribute to the instability,
as it does not break hermiticity, and hence it is reasonable to set it to zero.
This assumption results in the solution

w1 =
1

2
µg(0) , w2, 3 = −1

4
µg(0) ± µ

√
9

16
g(0)2 − g(1)2

. (5.11)

The eigenvalues become complex for g(1) > 3
4
g(0). Comparing this result with

eq. (5.9) one finds that for an intermediate range 1
2
g(0) < g(1) < 3

4
g(0) there are

no unstable modes despite the existence of a crossings.

5.3 Connection to polarisation matrix

When looking at eq. (5.6), one might conclude that the eigenvalues w belong
to a 3×4-matrix, which is in contradiction with the 4×4-polarisation matrix in
ch. 3. In order to clarify this point the connection is established between the
multipole equations (5.5) and the polarisation matrix Πµν in eq. (3.16). The
main reason is that in eq. (5.6) the polar coordinate u has not been taken into
account, modifies the matrix structure.

The polarisation matrix approach only takes collective modes into account,
for which w−u 6= 0. Therefore eqs. (5.5) can be divided by that factor, which
implies

q(−1)
u =

µ
√

1− u2

4 (w − u)

∫
du′
√

1− u′2
(
g

(0)
u′ q

(−1)
u′ + g

(−1)
u′ q

(0)
u′ + g

(−2)
u′ q

(+1)
u′

)
(5.12a)

q(0)
u =

−µ
2 (w − u)

∫
du′ (1− uu′)

(
g

(+1)
u′ q

(−1)
u′ + g

(0)
u′ q

(0)
u′ + g

(−1)
u′ q

(+1)
u′

)
(5.12b)

q(+1)
u =

µ
√

1− u2

4 (w − u)

∫
du′
√

1− u′2
(
g

(2)
u′ q

(−1)
u′ + g

(+1)
u′ q

(0)
u′ + g

(0)
u′ q

(+1)
u′

)
. (5.12c)

Here it was used that higher multipoles with m > 1 do not contribute to the
eigenvalue w.

As the multipoles are completely integrated out on the right hand side of
this system of equations, the general form of q

(0,±1)
u can be deduced

q(0)
u =

a+ b(0)u

w − u
(5.13a)

q(±1)
u = b(±1)

√
1− u2

w − u
. (5.13b)

Plugging eqs. (5.13) into eqs. (5.12) results in three equations for the four
parameters a, b(0,±1). However, the monopole equation can be split into two
equations for constant and u-dependent terms respectively.
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For writing down the complete system of equations it is helpful to change
notation. Firstly, u-dependent terms are substituted by trigonometric function
of the polar angle θ, so that u = cos θ ≡ cθ and

√
1− u2 = sin θ ≡ sθ. Secondly,

the integrals over cos θ are abbreviated as

I
(i)
f =

1

2

∫ +1

−1

dcθ
g

(i)
θ fθ

w − cθ
. (5.14)

The index can take the values f = 1, c, s, cc, cs or ss, for which fθ = 1, cos θ
and so forth. Then the parameters in eqs. (5.13) are determined by the fol-
lowing matrix equation

a
b(+1)

b(−1)

b(0)

 = µ


I

(0)
1 I

(−1)
s I

(+1)
s I

(0)
c

1
2
I

(+1)
s

1
2
I

(0)
ss

1
2
I

(+2)
ss

1
2
I

(+1)
cs

1
2
I

(−1)
s

1
2
I

(−2)
ss

1
2
I

(0)
ss

1
2
I

(−1)
cs

I
(0)
c I

(−1)
cs I

(+1)
cs I

(0)
cc




a
b(+1)

b(−1)

b(0)

 . (5.15)

By performing the substitution b(±1) → 1√
2
b(±1) the tensor on the right hand

side becomes symmetric and with a rearrangement of terms eq. (5.15) can be
written in the form Π̃µνaν = 0 for the vector aν =

(
a, b(+1), b(−1), b(0)

)
. The

polarisation tensor Π̃ has the form

Π̃µν =


+1

−1
−1

−1

+ µ


I

(0)
1

1√
2
I

(−1)
s

1√
2
I

(+1)
s I

(0)
c

1√
2
I

(+1)
s

1
2
I

(0)
ss

1
2
I

(+2)
ss

1√
2
I

(+1)
cs

1√
2
I

(−1)
s

1
2
I

(−2)
ss

1
2
I

(0)
ss

1√
2
I

(−1)
cs

I
(0)
c

1√
2
I

(−1)
cs

1√
2
I

(+1)
cs I

(0)
cc

 .

(5.16)
If aν has non-trivial values, the determinant of Π̃ must vanish, which results
in the defining equation for the collective eigenvalues w. Note that the po-
larisation tensors from eq. (3.16) in the fast flavour limit and eq. (5.16) are
not identical. They are written in different coordinate bases and can be trans-
formed into each other with a proper rotation in the b(+1)-b(−1)-plane.

5.4 Summary

This section dealt with several questions that arise when the assumption of
axial symmetry is discarded. It was shown that for a chosen wave vector
the existence of a crossing in the flavour isospin distribution is not sufficient
to cause instabilities. Indeed, we have demonstrated that instabilities can
disappear when changing the direction of propagation of the flavour wave.
Also the calculation regarding the influence of azimuthal variations on the
stability lead to this result as the crossing needs to reach a critical depth.
Some questions still require an answer. For example it would be interesting to
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know which underlying principles cause the stability variation. Furthermore it
is not certain that in a non-symmetric setting a crossing in the flavour isospin
distribution is necessary to cause instabilities.
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CHAPTER 6

Conclusions and Outlook

Although the theoretical and experimental research on neutrino flavour con-
version has been going on for decades there are still unresolved issues and
possible new effects. On the one hand important progress has been made re-
garding the influence of matter on the neutrino flavour content, e.g. by solving
the solar neutrino problem. On the other hand it remains unclear how refrac-
tion from neutrino-neutrino coupling affects the oscillation behaviour, which
might be important for the physics of core-collapse supernovae among others.
During such an explosion the majority of the energy is emitted as neutrinos,
which leads to extremely high number densities, so that the requirement for
neutrino-neutrino refraction is fulfilled. Furthermore neutrinos are considered
to be a possible candidate to reenergise the stalled shock wave, which drives
the explosion. In addition the neutrino flavour content is relevant for the syn-
thesis of heavy nuclei, so that for a profound comprehension of these processes
neutrino oscillations must be included. In this thesis several aspects of a par-
ticular effect from neutrino-neutrino interaction, the fast flavour conversion,
were illustrated.

Before the investigation of fast neutrino flavour conversion the required
equation of motion was derived. It was shown that the usually applied Liou-
ville equation for the matrix of densities is an approximation of a more general
expression. This complete version is called Moyal equation and is the conse-
quence of forming the matrix of densities out of quantum fields. The Moyal
equation features an infinite sum of spatial and momentum derivatives and
the leading terms describe the advection and deflection of particles. When
neutrinos are relativistic, the matrix of velocities in the advection term is close
to the identity matrix and hence the simplification to the Liouville equation
with unit velocity vector is reasonable. Nevertheless small deviations from the
identity matrix remain. In case of a plane flavour wave these deviations give



72 6. Conclusions and Outlook

rise to a small correction of the oscillation length, which can be neglected.
Additionally, it was demonstrated how the neutrino interaction terms in the
Standard Model provide the refraction terms, which are important for neutrino
oscillation in matter.

It is also possible to derive a modified version of Moyal’s equation which
can model additional effects. For example the time component in the two-point
correlators can be Wigner transformed as well, which leads to a term that is
relevant for time-dependent Hamiltonians. Furthermore the whole derivation
can be performed on the operator level without the mean field approximation,
so that in the end also effects from entanglement can be studied.

The equation of motion derived in ch. 2 has been applied in the context of
systems with high neutrino density, where neutrino-neutrino interaction play
an important role for the flavour evolution. Then the equation of motion
is non-linear and gives rise to new phenomena, which are called “collective”
due to the arising compliance in the oscillation behaviour. Slow and fast
neutrino flavour conversion denote two classes of collective effects and in both
the conversion is linked to instabilities of the flavour correlation function. The
underlying theoretical distinction between slow and fast conversion is the role
of masses. For slow conversion their existence is mandatory, whereas fast
conversions can also occur without them. The different attributes “slow” and
“fast” originate in the different length scales at which the conversion appears.
These differences have phenomenological consequences because for example
the region in a supernova, where fast effects arise, is closer to the core than
the layer where slow conversion would be expected.

As long as flavour coherence is small, the equation of motion can be lin-
earised, which is necessary to apply a plane-wave ansatz and define the disper-
sion relation for these flavour waves. If the oscillation frequency of a mode has
an imaginary contribution, the mode is unstable. Depending on the vacuum
oscillation frequency and the angular neutrino distribution, different kinds of
instabilities can appear in the dispersion relation. One classification is nec-
essary when slow and fast modes are dealt with simultaneously. Then their
behaviour in the fast flavour limit, i.e. ωvac = 0, is used to distinguish be-
tween “slow” and “fast” instabilities. The former are sourced by the vacuum
oscillation frequency and accordingly vanish in that limit, whereas fast insta-
bilities remain. When both types are present, the nonzero vacuum oscillation
frequency can mix them and give rise to additional non-real branches in the
dispersion relation. For this reason fast modes can have slow instabilities and
so there is no one-to-one correspondence between the classification of instabili-
ties and the naming of collective flavour modes. For fast instabilities there is a
second attribute, which describes the growth behaviour. An absolute instabil-
ity always grows locally. On the other hand convective instability grows while
propagating, so that locally the amplitude of the mode decays after some time.
Apart from the classification of unstable modes it was shown that instabilities
appear when there is a crossing, i.e. a sign change, in the angular part of the
flavour isospin distribution.
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The origin of instabilities in the flavour correlation function was investi-
gated further. Outside of the forbidden region unstable branches start, where
two real, collective branches merge. The location of this process is called a
critical or branching point. It was shown that an analogous process also oc-
curs in the forbidden region. There two kinematical, non-collective modes
merge and become a complex conjugated pair of collective modes. There-
fore at the branching point a transition between collective and non-collective
modes takes place, which requires that their respective eigenfunctions coincide
there. The observation of this matching of functions enables one to calculate
the exact eigenvalue and coupling constant of the critical point for a specific
distribution. Demanding that the solution is real results in the wanted suffi-
cient condition on the distribution to feature unstable modes. The sufficient
condition depends crucially on the symmetry properties of the flavour modes.
Those modes that break the axial symmetry are always unstable as soon as
the flavour isospin distribution has at least one crossing. For symmetry pre-
serving modes there is no such general criterion. If the distribution has a
single crossing, also these modes are certain to be unstable, but for multiple
crossings the sufficient condition needs to be checked for each crossing value
uc. Furthermore it was shown how an increasing interaction strength modu-
lates the flavour coherence carried by the non-collective and collective modes.
In agreement with physical intuition, an increasing neutrino-neutrino coupling
shifts the dominance from non-collective to collective modes.

When axial symmetry is broken, the system becomes more complicated be-
cause symmetric and non-symmetric modes are not distinguishable, but mix
with each other. Calculations for exemplary distributions indicate that a cross-
ing is still required to have instabilities, but it is possible that for another
direction of the wave vector all modes are stable. As a next step these qual-
itative results are to be put on a quantitative basis. A part of this can be
the derivation of the starting points for instabilities, analogous to the axially
symmetric case.

Theoretical investigations of fast neutrino flavour conversion have been
advanced in the past few years and improved the insight into this collective
phenomenon. In particular the connection between a crossing in the angu-
lar flavour isospin distribution and the occurrence of unstable modes is well-
established by now. However, most of the calculations have been performed
for axially symmetric and linearised systems. Both assumptions should just
be provisional to gain some intuition for the phenomenon. Some research was
accomplished on the late-time behaviour of unstable modes, but results on
the stability of non-symmetric distributions are still lacking and it is neces-
sary to analyse them to complete the theoretical understanding of fast flavour
transformations.

The phenomenological investigation has only recently begun and concen-
trated on the question whether fast flavour conversions occur in core-collapse
supernovae and neutron-star mergers by either looking for imaginary oscillation
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frequencies or crossings of the flavour isospin distribution. The few analyses
for neutron-star mergers confirmed the occurrence of angular crossings, while
the results for supernovae are more numerous, but not conclusive. For exam-
ple, regions with instabilities were found deep inside the proto-neutron star
and it is unclear if fast conversions there have an effect on the dynamics of a
supernova. In this area a lot more research needs to be done with the pur-
pose of implementing fast flavour conversions consistently in the simulations.
Then it might be possible to address the big questions, i.e. to which extent
fast conversions have an impact on nucleosynthesis and supernova dynamics.
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