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Zusammenfassung
Auf zellulärer Ebene ist Leben ein kollektives Phänomen unbelebter Makromoleküle. Dieser
Übergang von biochemischen Wechselwirkungen zu belebten Organismen stellt ein zen-
trales Forschungsgebiet der interdisziplinärenWissenschaft dar. Bei der zugrunde liegenden
Problematik, die kollektive Dynamik einer Vielzahl von Komponenten aus ihren individu-
ellen Eigenschaften abzuleiten, handelt es sich um die charakteristische Fragestellung der
statistischen Mechanik. Bedingt durch das weitreichende Interaktionsspektrum der Ba-
siskomponenten bestehen allerdings signifikante Unterschiede im Vergleich zur unbelebten
Materie.

Während einzelne Atome und kleine Moleküle auf einfache Elektrostatik beschränkt
sind, weisen Proteine und andere Makromoleküle komplexe biochemische Wechselwirkun-
gen auf. Da diese oftmals mit der Umwandlung chemischer Energie einhergehen, ist eine
Beschreibung mittels des thermischen Gleichgewichts von Natur aus unzureichend, um die
sich ergebende Dynamik zu erfassen. Hinzu kommt, dass auf zellulären Skalen kollektives
Verhalten zwar von großer Relevanz ist, Komponenten aber in geringerer Zahl vorhanden
und ihre Längenskalen von denen ihrer Umgebung nicht derart verschieden sind, wie dies in
makroskopischen Systemen der Fall ist. Dies führt dazu, dass stochastische Fluktuationen
eine zentrale Rolle bei der Beschreibung einnehmen.

Diese Dissertation befasst sich mit der Frage, wie stochastische Fluktuationen die kollek-
tive Phänomenologie in verschiedenen biochemisch motivierten Systemen beeinflussen. In
meinem ersten Projekt beschäftigte ich mich gemeinsam mit Emanuel Reithmann und Er-
win Frey mit den Folgen der Interaktion verschiedener Arten molekularer Motoren für den
intrazellulären Transport entlang von Mikrotubuli. Hierbei zeigten wir auf, dass eine re-
sultierende langreichweitige Kopplung dazu führt, dass Stauprozesse von weitaus größerer
Bedeutung sind als erwartet. In einem zweiten Projekt untersuchte ich in Zusammenar-
beit mit Florian Gartner, Isabella Graf, Philipp Geiger und Erwin Frey die Selbstassem-
blierung komplexer Makromoleküle. Wir erarbeiteten Kriterien für die Robustheit dieses
Vorgangs und machten deutlich, wie stochastische Effekte gängige Konzepte zur Opti-
mierung der Produktionsausbeute in Frage stellen. Das Thema meines dritten Projekts
war der Phasenübergang des diffusiven epidemischen Prozesses. Basierend auf umfassenden
stochastischen Simulationen gelang es mir gemeinsam mit Borislav Polovnikov und Erwin
Frey bisher ungeklärte Diskrepanzen zwischen störungstheoretischer Renormierungsgrup-
pentheorie und numerischen Untersuchungen aufzuklären.

Allen genannten Arbeiten ist gemein, dass durch die Gegenüberstellung der Resultate
aus deterministischen Näherungen, analytischen Berechnungen und exakten stochastischen
Simulationen die Ursprünge der stochastischen Effekte sowie deren Stärke bestimmende
Faktoren identifiziert werden konnten. Um diesen Ansatz über die von mir untersuchten
Systeme hinaus zu verallgemeinern, entwickelte ich in meinem letzten Projekt eine modular
erweiterbare Umgebung zur exakten stochastischen Simulation allgemeiner Reaktionsdif-
fusionssysteme in unterschiedlichen Geometrien.
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Summary
At the cellular level, life is a collective phenomenon of inanimate macromolecules. This
transition from biochemical interactions to living organisms represents a central research
area of modern interdisciplinary science. The underlying problem of deriving the collective
dynamics of a large number of agents from their microscopic behavior is the characterizing
research question of statistical mechanics. However, due to the broad range of interactions
of the basic components, there are significant differences compared to inanimate matter.

While single atoms and small molecules are limited to simple electrostatics, proteins
and other macromolecules admit complex biochemical interactions. Since these often in-
clude the conversion of chemical energy, descriptions based on the thermal equilibrium are
inherently inadequate to grasp the resulting dynamics. In addition, collective behavior
plays an important role on the cellular level, but there are fewer components and their
length scales are not as different from those of the entire system as in typical macroscopic
setups. As a consequence, stochastic fluctuations are essential for the description of such
systems.

This dissertation deals with the question of how stochastic fluctuations affect the col-
lective phenomenology in different biochemically motivated systems. In my first project,
together with Emanuel Reithmann and Erwin Frey, I analyzed the effects of the interac-
tion of different types of molecular motors on intracellular transport along microtubules.
We showed that a resulting long-range coupling leads to overcrowding being of far greater
relevance than expected. In a second project, I studied the self-assembly of complex macro-
molecules in collaboration with Florian Gartner, Isabella Graf, Philipp Geiger and Erwin
Frey. We developed criteria for its robustness and showed how stochastic effects question
common concepts for optimizing production yield. The research topic of my third project
was the phase transition of the diffusive epidemic process. Based on extensive stochastic
simulations, Borislav Polovnikov, Erwin Frey and I, succeeded in resolving previously unex-
plained discrepancies between perturbative renormalization group methods and numerical
investigations.

All my research projects have in common that by comparing the results from deter-
ministic approximations, analytical calculations and exact stochastic simulations, we were
able to identify the origins of the stochastic effects and their determining factors. In or-
der to generalize this approach beyond the systems I investigated, in my last project I
developed a modularly expandable framework for exact stochastic simulations of general
reaction-diffusion systems in different geometries.
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Chapter 1

Abstracts of the projects

How to derive the collective behavior of a multitude of agents based on their individual
interactions has been a long-standing research question in physics. Most prominently, the
attempt to describe macroscopic systems using only incomplete information about their
microscopic states gave rise to the theory of statistical mechanics; Without exact knowledge
of the considered configurations, randomness is introduced to a theory, which is hence sub-
ject to the laws of statistics. Based on the minimal assumptions of equal probabilities for
all possible states and sufficiently large particle numbers to neglect stochastic fluctuations
the—until then phenomenological—theory of thermodynamics was rigorously derived [1].
This connection between microscopics and macroscopics has been one of the major break-
throughs in modern physics. Remarkably, it is completely independent of the material
considered as long as the system is in thermal equilibrium [2]. So, in one sense the range
of application is very broad and in another very limited. In essence, every object can be
described, but only in one well-defined state.

For systems far from thermal equilibrium no unifying theory was discovered so far and
it is still unknown whether it could be [3]. While the existence of thermodynamics made
it clear that general principles, which are independent of the considered systems, have to
exist before knowledge of the underlying microscopic details was available, for systems far
from thermal equilibrium we do not have such universal phenomenological principles—not
to speak of a general theory connecting them to the microscopic interactions. On the other
hand, it is exactly what makes those systems so complicated to describe that makes them
so versatile and interesting to study. Strong non-linear effects and stochastic fluctuations,
which amplify each other, create far richer and often times unexpected behavior. In this
context, biological systems are of particular interest since a constant consumption of energy
in exchange for local entropy reduction can be seen as one of the defining features of living
organisms [4, 5]. Consequently, their theoretical understanding is closely connected to
physics far from thermal equilibrium. In addition, on the smallest possible, the cellular
level, life starts as a collective phenomenon caused by biochemical interactions of inanimate
macromolecules. But in contrast to macroscopic systems, components are not as abundant
and the length scales of environment and agents are not as different. The description hence
takes place on an intermediate (mesoscopic) scale, which means stochastic fluctuations may
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significantly affect the collective dynamics [6].
In this thesis, I investigate how stochastic fluctuations in biochemically motivated sys-

tems give rise to new phenomenology. Because of the lack of a general theoretical framework
to do so, explicit systems are studied to give proofs of concepts for central mechanisms
and their origins. I show how seemingly minor changes to well understood systems can
drastically alter the collective behavior in a way that cannot be captured using determin-
istic approaches. Comparing analytic calculations, mean-field approximations and exact
stochastic simulations, the sources of stochastic effects are identified and means for their
quantification are derived. To allow for the application of the employed methods beyond
the systems studied in this thesis, as a last step I created a simulation framework which
can be used for the investigation of stochastic effects and critical phenomena in general
spatially extended reaction-diffusion systems in different geometries.
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Active two-species transport along cylindrical structures
with Emanuel Reithmann and Erwin Frey.
Published in “Two-Species Active Transport along Cylindrical Biofilaments is Limited by
Emergent Topological Hindrance” (Phys. Rev. X, 8(3) 031063, 2018) to which I con-
tributed as shared first author.

Summary

In the first project, which is discussed in Chapter 2, we investigate the effects of geom-
etry and particle arrangement on active intracellular transport by kinesin motors along
microtubules. We study an experimentally motivated two-dimensional lattice gas model
that constitutes an extension of the totally asymmetric simple exclusion process (TASEP).
This paradigmatic system has been used as a minimal model for a plethora of transport
phenomena [3, 7–12].

Despite its very simple microscopic dynamics the TASEP admits complex collective
behavior in the form of boundary induced phase transitions. Interestingly, these can be
well described using a mean-field approximation that neglects stochastic fluctuations [13].
Including Langmuir kinetics, the model was successfully applied to describe intracellular
transport along microtubules [14, 15], making predictions that have been verified experi-
mentally [16]. However, both theory and experiment are based on a single motor species
which only follows a one-dimensional pathway such that the cylindrical structure of micro-
tubules does not matter.

In recent years, single motor experiments showed, that different kinesin motor families
admit different modes of motion along the cylindrical microtubule. In particular, members
of the kinesin-2 and kinesin-8 families have been reported to follow helical pathways [18–20].
This naturally raises the question whether a reduction to one dimension is still possible in
the presence of more than one motor species since the entire system may become coupled.
To investigate the effect of multi-species interactions on collective active transport, we
created an extended model that features two motor species with different gaits move along
a cylindrical lattice.

The central new aspects which come into play are the arrangement of molecular motors
and a second length scale in the form of the cylinder circumference which is much shorter
than the individual filaments. Those two at first glance minor changes in our model
cause a complete failure of the previously so successful mean-field theory and give rise to
unexpected phenomena. Since the original TASEP does not exhibit relevant fluctuations,
the source of this behavior has to be solely based on arrangement and geometry. By
comparing mean-field approximations, refined analytic calculations and exact stochastic
simulations, we provide a detailed picture of the underlying mechanics and discuss their
implications for molecular transport along microtubules.
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Research questions
How does the presence of a second molecular motor species with a different gait affect
collective molecular transport along microtubules? Does a mapping exist which allows
us to treat our model as effectively one-dimensional? If not, what are the fundamental
differences compared to the TASEP?

Key findings
Mean-field approximations fail to describe the collective behavior on a qualitative level.
Applying the same approximation steps, that work successfully for the TASEP, to our
model the resulting equations predict identical behavior. However, all phenomenology dis-
cussed in the following is not captured by this prediction. In fact, the notion of a particle
density itself turns out to be incompatible with the observed behavior.
Jamming is not only driven by crowding but also by arrangement.
The most evident difference compared to one-dimensional transport is that total jamming
occurs at densities far below full occupation. If two species with different gaits are present,
their arrangement causes a new type of hindrance to their motion. For a lattice site to be
able to contribute to transport it is not sufficient for it to be empty, it also needs to be
accessible. What seems to be a minor effect drastically amplifies the relevance of stochastic
fluctuations and becomes the most dominant limitation for transport.
The number of lanes and the species ratio have significant impact on transport efficiency.
Increasing the number of lanes of the cylindrical lattice increases the impact of hindrance
driven by arrangement. Simulations even suggest the paradoxical limit of complete arrest
on an empty lattice since no lower bound other than zero has been found for the jamming
density. Furthermore, just small fractions of a second motor species with different gait
are sufficient to cause the described effects. Already at values around 5%, transport is
completely dominated by the limitation in accessible lattice sites.
Long-range correlations result in self-organization and pattern formation.
The reason that the impact of particle arrangement becomes stronger for higher numbers
of lanes is an increase in the correlation length. When the cylindrical lattice is sufficiently
short such that both height and circumference are of the same order in size, a new phe-
nomenon emerges. Wave-like density patterns form in the longitudinal direction with the
wave-length being identical to the number of lanes representing the transversal extension.
This form of stochasticity driven self-organization is strictly prohibited in a density-based
description as it violates current conservation.
Overcrowding may play a more significant role in molecular transport than expected
Using generalized models, we showed that our findings are robust against biochemically
motivated model extensions that allow us to make experimentally verifiable predictions.
For example, gradually adding a second motor species causes significantly stronger crowd-
ing effects than members of the same species do. This effect can induce phase coexistence
in an otherwise sparsely populated system; Which addresses the major criticism for the in
vivo relevance of crowding phenomena.
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Effects of stochastic fluctuations in macromolecular self-assembly
with Florian Gartner, Isabella Graf, Philipp Geiger and Erwin Frey.
Published in “Stochastic yield catastrophes and robustness in self-assembly,” (Elife 8
e51020, 2020) to which I contributed as shared first author.

Summary
Motivated by the fact that functional macromolecules such as microtubules and molecu-
lar motors, whose existence is taken for granted in Chapter 2, need to be created from
simpler subunits without external control, Chapter 3 deals with the problem of reliable
self-assembly. A general principle in this context is that the nucleation of new structures
has to be significantly slower than their growth to achieve high production yield [21–26].
Otherwise, resources may get depleted before all initiated polymers can be finished. This
effect is called a depletion trap and how to circumvent it is one of the central research
questions in the field of self-assembly.

Employing conceptual mathematical models, we study systems in which several struc-
tures of higher complexity are produced simultaneously from a finite number of components
in a well-mixed environment. To avoid having any distinguished subunits, the target struc-
ture is a ring. Despite the existence of several strikingly similar experimental setups [27,28]
it is not our intention to model any of them specifically. They are simply one possible im-
plementation of the characterizing features we are interested in: finite size target structures
built from subunits with equivalent binding properties.

In order to study the influence of the heterogeneity of a structure on its assembly
process, we treat ring size and number of species as independent parameters. In detail, this
means a ring of size 12 can be assembled from just one or up to 12 different species which
all bind to specific neighbors. This way, our model can be seen as an interpolation between
DNA origami and virus capsid assembly. In the first case, complex artificial structures
are designed using highly specialized building blocks [22, 23, 29]. The assembly of capsids
in contrast is a naturally occurring phenomenon in which identical small proteins form a
spherical shell to encapsulate the genetic material of a virus [30, 31]. In both these cases,
self-assembly has been shown to be a nucleation phenomenon [22–24,32–34]. Slowing down
the creation of new polymers compared to structure growth increases production yield by
reducing depletion traps irrespective of the underlying mechanism or the heterogeneity of
the structure.

Using different mechanisms such as the introduction of an activation step or a reduced
dimerization rate to slow down nucleation, we demonstrate that approaches which are
equally successful on a macroscopic level show severe differences in their susceptibility to
stochastic fluctuations when particle numbers are reduced. A combination of deterministic
approximations and stochastic simulations allows us to identify criteria for robust self-
assembly and understand their limitations. In a biological context, the implications of our
results are that cells require sophisticated mechanisms to counteract strong fluctuations
and ensure reliable supply of functioning macromolecules.
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Research questions
What are conditions that ensure robust and efficient self-assembly of macromolecules? Is
it sufficient to slow down nucleation to avoid depletion traps or does the mechanism itself
matter? How does the heterogeneity of a structure affect its self-assembly process?

Key findings
In the limit of abundant resources, assembly is independent of the number of different
species and yield can be maximized by slowing down nucleation irrespective of the underly-
ing mechanism.
If the total number of particles in a system is sufficiently high, fluctuations can be neglected
and its state is well described by a mean-field approximation in terms of continuous densi-
ties. Since the assembled target structure is a ring, no distinguished species exists and all
densities of polymers of equal size have to be identical. Accordingly, the system can always
be mapped to a homogeneous assembly process irrespective of the number of species using
symmetry arguments. Stochastic simulations and analytic solutions both confirm that for
such a system yield is only limited by depletion traps that can be avoided by reducing
nucleation speed.
Heterogeneous systems are susceptible to stochastic fluctuations which limit the maximally
achievable yield.
Reducing the number of initial monomers in the system, the equivalence between homo-
geneous and heterogeneous systems breaks down. If particles undergo an activation step,
yield saturates at an imperfect value irrespective of how much the nucleation speed is
lowered. This effect can be reduced by decreasing the number of different species and it
vanished completely in a homogeneous system.
The existence of a transition from deterministic to stochastic dynamics results in non-
monotonic yield curves.
Since stochastic fluctuations become more relevant for slower supply of constituents in the
heterogeneous system and deterministically decreasing nucleation speed always improves
yield a transition between the two regimes exists. First, a reduction in deterministic de-
pletion traps causes the yield to increase. But at some point, an increase in fluctuations
limits and even reduces the maximally achievable yield. This results in non-monotonic
yield curves and turns self-assembly of heterogeneous structures into a fine-tuning problem
instead of being solved by a simple "more is always better" solution.
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Dynamic spreading of activity in the diffusive epidemic process
with Borislav Polovnikov and Erwin Frey.
In preparation for publication in “Strong Coupling Behavior in the Diffusive Epidemic
Process” to which I contribute as shared first author.

Summary
Following the influence of particle arrangement in Chapter 2 and structure heterogeneity in
Chapter 3, Chapter 4 focuses on reaction kinetics. We study the diffusive epidemic process
(DEP), a mass-conserving extension of the paradigmatic directed percolation model, in one
dimension. Despite its simple structure the model has resisted classification for decades
and hence constitutes a major challenge in the field of interacting lattice gases.

The diffusive epidemic process models the spreading of an infectious disease [35, 36].
Two freely diffusing particle species which are referred to as "healthy" and "infected" pop-
ulate a d-dimensional lattice. Sick particles infect healthy ones with a fixed rate but turn
themselves healthy again after some time. Ignoring stochastic fluctuations, the DEP can
easily be described using methods of non-linear dynamics that predict the existence of a
continuous phase transition which is controlled by the particle density. What makes this
system so interesting is the fact that even for parameter sets for which coexistence of in-
fected and healthy particles constitutes a stable fixed point, the unstable extinction fixed
point is an absorbing state. This means, deterministically the system never approaches it
but if fluctuations bring the particle number of the infected species to zero it will remain
extinct. Consequently, stochasticity plays a significant role and a more complex analysis
is required to characterize the corresponding absorbing-state phase transition [37,38].

Renormalization group methods predict the existence of three different regimes based
on the ratio of the diffusion rates [36]. While the cases of identical diffusion speed and
slower diffusion of the healthy particles are phenomenologically understood and universally
considered to be continuous, the phase transition in systems with slower diffusion of the
infected species has resisted classification for more than 20 years. Perturbative [36] and
non-perturbative [39] renormalization group methods have been applied but did not yield
any fixed point leading to the conclusion that the phase transition has to be discontinuous.
This, however, is inconsistent with stochastic simulations that reported scaling behavior in
lower dimensions, which implies a continuous phase transition [37, 40–46]. Unfortunately,
these simulations, which rely on different approximation methods, are in turn partially
inconsistent among each other.

Using our experiences with exact stochastic simulations [47–49] gathered throughout
previous projects, in combination with measurements of dynamic spreading of activity [38,
50–52], we elucidate the ambiguities of the phase transition of the diffusive epidemic process
in one dimension. By performing reliable data collapses, we prove the existence of a
continuous phase transition. Furthermore, comparing the dynamics of the system for
identical diffusion rates with our finding for slower diffusion of the infected species, we
identify a mass-redistribution mechanism as a possible source of strong coupling behavior,



8 1. Abstracts of the projects

which explains the failure of perturbative mean-field methods. Finally, we argue that a
homogeneous initial state represents a metastable configuration that does not allow for the
correct measurement of all critical exponents, causing the differences compared to previous
numerical studies.

Research questions
Is the absorbing-state phase transition of the diffusive epidemic process always continuous?
If the transition is indeed continuous what are the critical exponents? What is the rea-
son for the discrepancies between renormalization group methods and previous numerical
studies?

Key findings
The phase transition of the diffusive epidemic process is always continuous.
Based on extensive stochastic simulations, we showed that a critical density exists close
to which all data can be collapsed onto universal curves irrespective of the ratio of the
diffusion constants. This allowed us to provide estimates of the critical exponents necessary
to characterize the system. The existence of universal scaling contradicts a discontinuous
phase transition.
Activity spreads sub-diffusively in case of faster diffusion of the healthy species.
One particularly interesting exponent is the dynamical exponent z = ν‖/ν⊥ = 3 for faster
diffusion of healthy particles. On the one hand, its existence contradicts a discontinuous
phase transition as predicted by perturbative renormalization group methods but also on
the other hand previous numerical measurements imply z = 2 in one dimension. z = 3
can be interpreted as activity spreading sub-diffusively instead of diffusively at the phase
transition, which shows that slower diffusion of infected particles indeed constitutes a
special case.
Mass redistribution is responsible for the anomalous behavior in the case of faster diffusion
of healthy particles in one dimension.
Resolving the temporal evolution of a cluster of infected particles over time, we found that
the sub-diffusive spreading of activity indicated by z = 3 is caused by mass redistribution.
Because particles outside of the cluster are mainly healthy and are assumed to move at
higher speed while infected particles inside the cluster have a reduced diffusion rate, a net
flux of total mass into the cluster is created. This depletes the surroundings of the cluster
such that it hampers its own expansion, resulting in the critical exponent z = 3. In a more
general context, the effect is probably related to the cause of the strong coupling behavior
that prohibits perturbative treatment.
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Exact stochastic simulations of reaction-diffusion systems in dif-
ferent geometries
Each of the systems analyzed in this thesis exhibits a different type of fluctuation-driven
phenomenology. In contrast, the approximation methods that can be applied to derive
a deterministic solution are comparably similar. Densities are used for the description of
states instead of particle numbers and discrete lattice sites are replaced by continuous space.
However, whether those approximations are indeed justified and under which conditions
they break down is different for each system. In the end, the only tool that can be applied
reliably without making any prior assumptions are exact stochastic simulations [47–49].

In my last project, which is discussed in Chapter 5, I provide means to study the
effects of stochastic fluctuations beyond the systems investigated in this thesis. To this
end, I created a framework which can be used to perform exact stochastic simulations of
general reaction-diffusion activation-inhibition systems in different geometries. It provides
a simple user interface in the form of a script language based on chemical equations. This
enables usage without any need for a deeper understanding of the underlying program
structures written in C++. Still, to allow for more flexibility, the framework is constructed
in a modular form such that it can be easily extended in case additional functionality is
needed for future research. Furthermore, since measurements of the dynamic spreading
of activity [38, 50–52] in combination with exact stochastic simulations have proven very
successful for the study of phase transitions of reaction-diffusion systems in Chapter 4, it
has been integrated into the program as a native feature. Using the general framework, the
diffusive epidemic process, for example, could now immediately be studied using a simple
7 lines script:
A + B -> 2B : 1
B -> A : 0.2
D: A = 1
D: B = *1
A = *2
B = 10
Ensemble1D(8192,1000000,250,False,results,*3,50000,B)

Chapter 5 serves as an introduction to the program itself as well as the script language
and the usage of its features.

It is important to emphasize that this project is not intended to answer a particular
research question but can be used for a systematic study of the role of stochastic effects
in a broad class of systems. Its purpose is to find overarching patterns which further a
general understanding.
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Chapter 2

Geometry and arrangement: Molecu-
lar transport along microtubules

This chapter deals with the theoretical study of two-species transport of molecular mo-
tors along microtubules. It is based on research results I published as first author in
the manuscript Two-Species Active Transport along Cylindrical Biofilaments is Limited by
Emergent Topological Hindrance [53], in the journal Physical Review X 8(3), 031063 in 2018
(doi: 10.1103/PhysRevX.8.031063) under the CC BY 4.0 license together with Emanuel
Reithmann [54] (who contributed equally) and Erwin Frey. In particular, simulation data
and the graphical presentation thereof have been partially adopted.

The goal of the research project is to investigate and quantify how collective transport
along a cylindrical structure is affected by the existence of different agents which are dis-
tinguished by their gaits. To this end, we created a minimal lattice gas model that can
be used to study the emerging phenomenology in isolation. We do so by combining exact
stochastic simulations with analytical results and mean-field approximation methods. De-
viations between the different approaches are used to determine the relevance of stochastic
effects and find their central determinants. Finally, we compare our results to previous
research performed in the absence of a second species and discuss the implications of the
differences in the context of the biological system. As a start, we give an introduction to
molecular motors and their mathematical modelling as well as the experimental findings
that motivated this project.

2.1 Biological background
The cytoskeleton provides eukaryotic cells with rigidity and plays a central role for their
internal organization as well as their movement [55–58]. It consists of polar microtubules
and actin filaments1 which serve as tracks for molecular motors [59]. While actin filaments
are comparably small and flexible, microtubules, on which we are focusing in this work,

1In addition, intermediate filaments exist which we ignore here because of their minor relevance in this
context.

https://journals.aps.org/prx/abstract/10.1103/PhysRevX.8.031063
https://creativecommons.org/licenses/by/4.0/
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Figure 2.1: Illustration of the microtubule structure. Dimers which consist of alpha
and beta tubulin serve as the fundamental building block (left panel). They bind and
form rod-like structures called protofilaments (middle panel). Typically, 13 protofilaments
compose the cylindrical microtubule (right panel). Because the tubulin dimers are a polar
structures, so are the protofilaments and the final microtubule, which is indicated by the
plus and minus signs.

constitute long and stiff cylindrical structures [57]. Their basic building block is the tubulin
dimer which consists of alpha and beta tubulin. Due to their polar structure, those dimers
bind linearly to each other and form long protofilaments. The filaments in turn (usually
13 [60]) bind laterally amongst each other and form the final microtubule, as illustrated
in Fig. 2.1. Because of the polarity the filaments inherit from the tubulin dimers, the
microtubule itself has a polar structure providing it with an orientation. This feature is used
by different molecular motor families to perform directed transport along the microtubule
via ATP consumption [58,61,62].

While motors of the kinesin family walk from the minus to the plus end [63,64], members
of the dynein family move in the opposite direction [65]. In this project, we are interested
in the derivation of collective transport properties of different types of kinesin motors based
on their individual behavior. For that reason, the motion of motors of the kinesin-1 family
is discussed in more detail in the following.

Kinesin-1 motors have two head domains that bind to neighboring tubulin dimers [66,
67]. Via ATP consumption they perform unidirectional hand-over-hand motion towards
the plus end of the microtubule [68–70]. Because of the two heads, kinesin-1 motors
have a low detachment rate and walk processively over several micrometers along a single
protofilament of the microtubule [61,63,71–73]. Furthermore, this mode of motion results
in a constant step size with the length of a tubulin dimer. The motion of kinesin-1 motors
is illustrated in Fig. 2.2.
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Figure 2.2: Illustration of kinesin-1 type motor proteins. Motor proteins of the
kinesin-1 family feature two head structures that bind to the tubulin dimers of a mi-
crotubule. Using energy from the conversion of ATP to ADP they walk along a single
protofilament in a hand-over-hand fashion from the minus end to the plus end.

In summary, kinesin-1 motors walk unidirectionally along a single protofilament with
a fixed steps size. It is for this reason, that modelling of their collective behavior is based
in particular on the totally asymmetric exclusion process, a one-dimensional lattice gas
model for active transport. The next section provides an introduction to this fundamental
far from equilibrium system.

2.2 The totally asymmetric simple exclusion process
The totally asymmetric simple exclusion process (TASEP) is a one-dimensional lattice gas
model that was originally introduced in a biological context to describe the kinetics of
biopolymerization [74]. However, because of its boundary induced phase transitions [13] it
has turned into an extensively studied paradigmatic system in the field of non-equilibrium
physics [75–79]. Furthermore, it has been applied to model transport phenomena in various
different contexts ranging from ion channels to mRNA translation [3, 7–12].

Fig. 2.3 shows a schematic illustration of the model. Particles populate a one-dimensional
lattice. Movement only takes place in the form of stochastic hopping events to the right
next lattice site. Because the particles obey steric exclusion such an event is prohibited if
the respective site is already occupied. Typically, open boundary conditions are applied.
Particles enter the system on the left at an in rate α — while obeying exclusion — and
leave it on the right at an exit rate β. Using particle occupation numbers nµ ∈ {0, 1}
to describe the current state of the µ-th lattice site, the dynamics of the TASEP can be
mathematically represented by a differential difference equation

d
dtnµ = νnµ−1(1− nµ)− νnµ(1− nµ+1). (2.1)

Despite the simple appearance of this equation, solving it, in general, constitutes a sig-
nificant challenge and was only achieved decades after the original introduction of the
model [75, 76]. Interestingly, the TASEP can be studied very successfully by employing
mean-field approximation methods [13, 80]. Because we are going to make extensive use
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Figure 2.3: Illustration of the totally asymmetric simple exclusion process. Par-
ticles populate a one-dimensional lattice. They enter the system on the left at rate α and
leave it on the right at rate β. Movement takes place in the form of stochastic hopping
events to the right at rate ν. Because particles obey steric exclusion they are only allowed
to enter the system or perform hopping events if the respective site is empty.

of these methods in this and the subsequent chapters, they are discussed in detail in the
following.

Instead of the actual micro-states, the evolution of the macroscopic observables in
the form ensemble averages are considered. In particular, according to Eq. 2.1 the time
evolution of the particle density ρµ := 〈nµ〉 is given by

d
dtρµ = ν〈nµ−1(1− nµ)〉 − ν〈nµ(1− nµ+1)〉 =: Jµ − Jµ+1, (2.2)

where Jµ denotes the particle current towards the µ-th lattice site. This corresponds to a
discrete form of the continuity equation. Making the mean-field approximation 〈nµnξ〉 =
〈nµ〉〈nξ〉, which amounts to the absence of correlations, the hierarchic of equations initiated
by Eq. 2.2 can be brought into a closed form. If the system is further assumed to be in the
stationary state for which d〈nµ〉/dt = 0 holds, Eq. 2.2 is reduced to

0 = 〈nµ−1〉(1− 〈nµ〉)− 〈nµ〉(1− 〈nµ+1〉) = ρµ−1(1− ρµ)− ρµ(1− ρµ+1), (2.3)

which can simply be interpreted as current conservation. To further reduce the complexity
of the problem, a continuous approximation can be performed. The discrete variable µ is
replaced by a continuous one µ

L
=: x ∈ (0, 1]. In this way, the density can be expanded in

a Taylor series in terms of the lattice spacing 1
L

=: ε

ρµ+1 = ρ(x+ ε) = ρ(x) + d
dxρ(x)ε+O(ε2). (2.4)

Plugging the expanded density into the mean-field equation Eq. 2.3 a simple differential
equation for the stationary density can be obtained

0 =
(
ρ(x)− d

dxρ(x)ε
)

(1− ρ(x))− ρ(x)
(

1− ρ(x)− d
dxρ(x)ε

)
+O(ε2)

= 2ρ(x) d
dxρ(x)ε− d

dxρ(x)ε+O(ε2)

= − d
dxρ(x)(1− ρ(x))ε+O(ε2)

= − d
dxJ(x)ε+O(ε2).

(2.5)
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Figure 2.4: Current-density relation and phase diagram of the TASEP. Current
and density have a strict relation. As shown in panel (a), for each density ρ there exists
only one corresponding current J . Depending on the response of the current to a change
in density different phases are characterized which are depicted in the phase diagram (b).
For each combination of values of control parameters α and β a specific density ρ and a
specific current J are realized. The colors in (a) and (b) illustrate this correspondence.

Dividing by ε and taking the number of lattice sites to infinity L→∞ the lattice spacing
vanishes ε→ 0 and the final approximation reads

J(ρ) = ρ(1− ρ) = const. (2.6)

This simple looking current conservation equation is known as the current-density relation
and it is at the center of the TASEPs phenomenology. Importantly, on an infinite lattice the
approximated solution Eq. 2.6 does not differ from the exact result [75–77]. The intuitive
interpretation of its form is that movement from one site to the next can only take place
if a particle is present—reflected by the factor ρ—and the site in front of it is empty,
which is accounted for by the factor (1 − ρ). This immediately implies that correlations
are negligible in the stationary state for transport scenarios described by the TASEP.

The existence of a unique current-density relation can finally be used to derive the
phase behavior of a system [13]. This phenomenological approach goes back to the work
of Lighthill and Whitham [81]. Beyond the TASEP, it has since been applied to many
different transport models [17,82,83].

In the context of the current-density relation Eq. 2.6 the in rate α can be interpreted
as a reservoir on the left end which causes as constant particle flux Jα = α(1− ρ) into the
system. Accordingly, the boundary condition at the right end can be realized by a density
1−β that corresponds to the current Jβ = ρβ. The different currents at the two boundaries
are actually a major discrepancy in general. Because the differential equation Eq. 2.5 is of
first order, only a single free parameter in the form of the density exists. Either the left
(ρ = α) or the right (ρ = 1−β) boundary condition can be fulfilled. The phenomenological
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solution to this paradox situation provides the extremal current principle [13, 82,84,85]

J =


max

ρ∈[ρR,ρL]
J(ρ) if ρL > ρR

min
ρ∈[ρL,ρR]

J(ρ) if ρL < ρR
. (2.7)

Intuitively, it states that the boundary which is limiting the current dictates the behavior of
the system. The current-density relation and the phase diagram according to the extremal
current principle [13] are depicted in Fig. 2.4. Three different phases exist which are
named according to their transport features. In the low-density phase (LD) the current is
limited by a lack of particles in the system. Correspondingly, the high density-phase (HD)
is controlled by the right boundary at which an abundance of particles limits transport.
Finally, in the maximal current phase (MC) a density of ρ = 1/2 is realized and neither of
the boundaries but the particle exclusion itself is the most relevant factor. An important
consequence of this phenomenological derivation that did not rely on any microscopic
details is that every system that has the same current-density relation as the TASEP
should have the same phase diagram structure.

One of the central reasons the TASEP has gained so much importance is its rich phe-
nomenology which can be understood using the very intuitive arguments reviewed above.
Furthermore, it has been extended in various ways to describe a plethora of transport phe-
nomena ranging from different species [83, 86–91] to connected systems [9, 10, 85, 92–100]
and entire networks [101–105]. One particularly successful application is the molecular
transport along microtubules which is discussed in more detail in the next section.

2.3 Modelling active transport by molecular motors
As discussed in Sec. 2.1, molecular motors of the kinesin-1 family walk unidirectional from
the microtubule’s minus to its plus end. Because of the hand-over-hand motion they
perform using their two head domains which are attached to consecutive tubulin dimers,
kinesin motors have a fixed step size. Adding the fact that they are extended objects
which cannot circumvent each other or be bound at the same dimers at the same time, the
TASEP appears to be a natural choice for the modelling of collective transport by such
molecular motors. However, depending on the exact research question, several extensions
may have to be made.

The arguably most successful model for collective transport by kinesin motors is the
TASEP with Langmuir kinetics (TASEP LK) [14, 15]. In addition to the basic TASEP
dynamics, random attachment and detach at all lattice sites is included. This mimics the
interaction of molecular motor with the surrounding cytosol. To facilitate a competition
between boundary effects and Langmuir kinetics in the bulk of the system a mesoscopic
limit is assumed. The local attachment and detachment rates ωa := Ωa/L and ωd := Ωd/L
scale with the inverse of the system length preventing complete domination of the bulk for
large systems. The predictions made by the model, such as phase coexistence, have been
confirmed by in vitro experiments [16]. Despite these astonishing results the application
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Figure 2.5: Illustration of the TASEP with Langmuir kinetics. In addition to the
normal TASEP dynamics, particles can randomly attach and detach at arbitrary lattice
sites. To facilitate actual competition between bulk and boundary effects, a mesoscopic
limit is considered. The attachment rate ωa and the detachment rate ωd are assumed to
scale with the inverse system length L.

to in vivo scenarios is still debated because motor concentrations in cells are considered
too low to cause overcrowding. So, despite the model making correct predictions in vitro,
the interesting physics may simply be not relevant in vivo.

Beyond the TASEP LK, models accounting for rare lane switching [10], internal states [9],
extended or dimeric particles [106], finite resources [107], confined spaces [108] and micro-
tubule length regulation [109,110] have been developed to deepen the knowledge about the
central determinants in molecular transport along microtubules. In particular, it has been
shown that for single-species transport, even if switching events between protofilaments
take place regularly, the transport behavior can still effectively be reduced to one dimen-
sion [17]. This finding nicely complements our results for multi-species transport that are
explained in following.

2.4 Spiralling motion of motors and modelling
Despite kinesin-1 tracking only a single protofilament [73], members of other kinesin families
haven been shown to produce torsional forces while moving along the microtubule [111–
114]. In fact, such behavior is observed for all super-families of molecular motors [115,116].
This has important implications for the modelling of collective transport. While all results
obtained are still valid for kinesin-1 they are in question for the other families. For kinesin-2
and kinesin-8 in particular, regular biased switching of protofilaments causing them to move
on a handed spiral along the microtubule has been reported [18–20]. Transport performed
according to this single molecule behavior exactly corresponds to the one theoretically
studied by Curatolo et al. [17] which showed that the collective dynamics are basically
unaffected—apart from the existence of transversal currents which do not contribute to
the transport along the microtubule.

At this point, we face the question whether transport phenomena along microtubules
are always well described using mean-field methods and can be reduced to one-dimensional
continuous models. Because this thesis is concerned with the modification of phenomenol-
ogy by stochastic fluctuations the general absence of those makes the respective systems
unsuited for our purposes. This, however, changes drastically when we move from the
study of the collective behavior of a single motor species to the interaction of multiple
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Figure 2.6: Model for two-species molecular transport along microtubules. Two
different particle species S and T populate a two-dimensional lattice. They enter the
system at respective rate αS and αT on the left and leave it at rates βS and βT on the
right. Both species perform stochastic hopping events to the right at rates νS and νT .
While the T species follows a single lane of the lattice, the S species, in addition to moving
forward, jumps up one lane. At the top of the lattice periodic boundary conditions are
applied. All particles obey steric exclusion with respect to both species which prohibits
access to an occupied lattice site.

ones. Kinesin-1 is known to processively track single protofilaments while kinesin-2 or
kinesin-8 motors walk along helical pathways. So, a natural question to ask is whether a
system containing motors with different gaits that walk along a cylindrical structure can
be reduced to one dimension via mean-field methods.

To study the effect of a second motor species with a different gait, we employ the ex-
tended model shown in Fig. 2.6. Two species populate a two-dimensional lattice consisting
ofW lanes with L lattice sites each. One species, called the lane tracking species T , follows
the normal TASEP dynamics on each lane. The respective particles enter the lattice on
the left at rate αT and leave it on the right at rate βT . In the bulk, T particles hop at rate
νT to the right most lattice site on the same lane i → i, µ → µ + 1. The second species
performs lane switching while walking across the lattice. For that reason, it is referred as
the switching species S. At each hopping event a particle moves to the right next site on
the upper next lane i → i + 1, µ → µ + 1. At the top of the lattice periodic boundary
conditions are applied such that the S species walks in spirals from the left to the right end
mimicking the behavior of kinesin-2 or kinesin-8 type molecular motors. Apart from its
stepping behavior, the S species behaves in the same way the T species does. It interacts
at rates αS and βS with the right and left boundaries and all particles obey exclusion with
respect to all other species irrespective of their type. As for the TASEP, the entire dy-
namics is considered to be stochastic. At this point, it is important to note that, because
depending on the labelling of lattice sites each species can be considered the straight walk-
ing one, a corresponding symmetry exists. The system has to be invariant under T ↔ S
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transformations. We will refer to this as the species exchange symmetry. Using occupation
numbers nTi,µ, nSi,µ ∈ {0, 1} to describe the current state of a lattice site, the corresponding
time evolution of the system is given by a set of coupled differential difference equations

d
dtn

T
i,µ = νTn

T
i,µ−1(1− ni,µ)− νTnTi,µ(1− ni,µ+1),

d
dtn

S
i,µ = νSn

S
i−1,µ−1(1− ni,µ)− νSnSi,µ(1− ni+1,µ+1).

(2.8)

In analogy to the TASEP, the currents for the individual species can be defined as JSi,µ :=
νS〈nSi−1,µ−1(1−nTi,µ−nSi,µ)〉 and JTi,µ := νT 〈nTi,µ−1(1−nTi,µ−nSi,µ)〉. Furthermore, the density of
a species at a given lattice site reads ρTi,µ := 〈nTi,µ〉 and ρSi,µ := 〈nSi,µ〉, respectively. Because
of the similarities, two important conclusions can be drawn. First, finding an exact solution
to this problem seems futile for now since already the solution to the TASEP admits an
enormous complexity. Second, it might not be necessary to obtain an exact solution to
understand and quantify the model in detail. So far, mean-field methods have been very
successful in describing such systems. Accordingly, we may expect the same for this one.

2.5 Failure of mean-field
A central feature for the analytical study of our system to recognize is that it has a unique
stationary state (if any). It is trivially ergodic since the lattice can be emptied completely
and filled with any desired configuration. Because we are considering a continuous time
Markov process this is sufficient to prove that the stationary state is unique [117]. As a
consequence, each macroscopic observable has to adopt the rotational symmetry of the
system in the stationary state, which we are interested in. A spontaneous symmetry
breaking is not possible. Hence, when considering the stationary state all indices i referring
to a specific lane can be dropped e.g., JSi,µ = JSµ .

To facilitate the comparison with the TASEP, it is convenient to define a different set
of control variables. The total in rate α := αT + αS accounts for the total flux of particles
into the system. Correspondingly, δ = αS/α ∈ [0, 1] denotes the ratio of S type particles2.
For δ = 0 only T type particles are present. Similarly, for δ = 1 the entire system is
populated by S particles. In both cases, the system is reduced to W independent TASEPs
and all known results have to be recovered. In that sense, δ is a measure for how much the
system differs from the TASEP whereas α keeps the original meaning. Another important
realization to make is that, at the last lattice site, particle species are indistinguishable
from each other apart from the rate at which they leave the system. Their gait does not
matter anymore. However, because of particle conservation, we know that the ratio of
particles of the respective types at the last lattice sites has to be δ. This allows us to

2The species ratio δ actually describes the ratio of currents JS/(JS + JT ) in the stationary state. In
case of non-vanishing correlations, the density ratio ρS/(ρS +ρT ) does not need to be identical. The effect
is illustrated in Fig. C.2 of the Appendix.
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calculate the time the last lattice site is on average occupied by an unknown particle. It is
given by T := δ/βS + (1− δ)/βT . This corresponds to an effective exit rate

β := T−1 = βTβS
δβT + (1− δ)βS

. (2.9)

The new control parameter fixes the total particle flux out of the system. Because of the
definition of δ the variables βT and βS combined contain redundant information that can
be removed using only β. Fig. C.1 in the Appendix illustrates this effect. Finally, to
reduce complexity we focus on the case of identical hopping rates ν = νT = νS. Choosing
an appropriate measure of time, we may assume νT = νS = 1 without loss of generality in
this case.

Using (α, δ, β) as our set of control parameters we find that the species exchange sym-
metry simply amounts to an invariance under δ → 1− δ transformations. This realization
will be very useful for later considerations. Finally, defining the joint stationary state
particle density ρµ := ρTµ + ρSµ and current Jµ := JTµ + JSµ we find that the total current
into the system J1 = α(1 − ρ1) and out of it JL+1 = βρL are identical in structure and
meaning to the TASEP. The boundary conditions are the same and all deviations have to
be captured by δ.

Going back to our original intention of deriving a mean-field approximation for Eq. 2.8
we find that in the stationary state the equations

0 = 〈nTi,µ−1(1− ni,µ)〉 − 〈nTi,µ(1− ni,µ+1)〉
= JTi,µ − JTi,µ+1

0 = 〈nSi−1,µ−1(1− ni,µ)〉 − 〈nSi,µ(1− ni+1,µ+1)〉
= JSi,µ − JSi+1,µ+1.

(2.10)

have to hold. Employing the rotational invariance of the stationary state and making the
mean-field assumption 〈nXi,µnYj,ν〉 = 〈nXi,µ〉〈nYj,ν〉, X, Y ∈ {T, S} we are left with two current
conservation equations

JTµ = ρTµ−1(1− ρTµ − ρSµ),
JSµ = ρSµ−1(1− ρTµ − ρSµ).

(2.11)

Summing both up, we find for the total current

Jµ = ρTµ−1(1− ρTµ − ρSµ) + ρSµ−1(1− ρTµ − ρSµ) = ρµ−1(1− ρµ). (2.12)

This means, under the mean-field assumption—which was the only approximation made
everything else only relied on stationary state properties—the system is reduced to W
uncoupled TASEPs irrespective of the species fraction δ. α and β even have the same
meaning as before. From here on we can apply exactly the same reasoning as in Sec. 2.2
to arrive at the current density relation

J = ρ(1− ρ). (2.13)
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Figure 2.7: Stochastic simulations of the current-density relation for δ = 1/2. In
the same way as the TASEP, our model possess a current-density relation which is shown
in panel (a). However, it strongly depends on the numbers of lanes W . Most importantly,
for β → 0 and β = 0 different densities are realized. The dependencies of ρmax (β → 0)
and ρcram (β = 0) on the number of lanes are shown in panels (b) and (c). [Parameters:
L = 16384, (b) α = 0.1, β = 0.001, (c) α = 0.001, β = 0; partially adapted from [53]]

So, if mean-field holds true there should be absolutely no difference between the TASEP
and our system. In particular, the species ratio δ should be irrelevant for the system and
its phase behavior.

Fig. 2.7.a shows the current-density relation obtained for different numbers of lanes W
using exact stochastic simulations according to the methods described in Appendix A.1. It
becomes immediately evident that the basic mean-field approximation fails. Most promi-
nently, a strong dependence on the number of lanes can be observed—a parameter that
does not even exists in the mean-field theory. But still, all curves show the same character-
istic shape. A unique current maximum that separates two regimes of different responses
to a change in density. So, qualitatively the systems seem similar to the TASEP at first
glance despite some apparent flaws in the mean-field argument. However, as it turns out
the observed results are incompatible with a description purely based on a notion of den-
sity. The current vanishes for densities far below one and, as illustrated in Fig. 2.7.b, this
maximal density ρmax which can be realized while still observing a finite current in the
system monotonically decreases with the number of lanes. Furthermore, a discontinuity in
the current-density relation exists indicating an additional phase transition. The density
realized for vanishing current ρmax is actually different from the one right at zero, which we
denote as ρcram. Both even show different convergence with respect to high lane numbers
W . Whereas for ρmax no finite bound different from zero exists, the cramming density
ρcram converges to a value close to 0.6 as illustrated in Fig. 2.7.c.

Summing up the results of this section, numerical findings show that standard mean-
field methods and in particular the one used for the TASEP fail drastically when applied



22 2. Geometry and arrangement: Molecular transport along microtubules

to our system3. Whenever a density is used to describe the flow of a system complete
arrest can only take place at maximum occupation because otherwise a finite chance for
movement always exists. It is important to stress that, here the current does not just
get very low or undetectable. Actually, a phase transition takes place when reducing the
current to zero and it still does not cause the system to reach full occupation. To describe
those effects, we need a modified theory that takes the previously neglected fluctuations
into account that have to be the source of this behavior.

From the greater perspective of this thesis, the deviations found are exactly what we
were looking for. We made a simple change to a well understood system that resulted in
fluctuations that cause a significant change in phenomenology. Since this is most evident
by the existence of the cramming and jamming densities and their discontinuous transition,
a deeper study of them seems to be a good starting point for our analysis.

2.6 Particle arrangement and fluctuations

The best way to identify the cause of the abnormal behavior for low or zero exit rates
β is to take an explicit look at the respective micro-configurations. Those are shown in
Fig. 2.8 panels (a) and (b). As can be seen, despite no particle being able to move in both
configurations there still exist empty lattice sites. Because of the particle arrangement
none of those can be accessed by either species; It causes the system to arrest below full
occupation for both systems. However, there are apparent differences between the two
configurations. While the crammed system (β = 0) looks more like a random surface
growth process, the jammed state (β → 0) appears to be ordered. Transitioning from
zero current to an infinitesimally small one apparently makes the system self-organize into
sorted structures. How this happens and why is the central question of this section.

As shown in Fig. 2.8.c, two major new types of indirect interactions have been intro-
duced to our system compared to the TASEP. The more intuitive configuration 1 is based
on one particle blocking two others. This effectively couples different lanes and leads to a
dependence of the systems dynamics on the explicit particle arrangement. Such an effect
cannot be captured using densities for the description. Effect 2 is slightly subtler but plays
a central role as well. Even if two neighboring particles are in front of two empty lattice
sites it does not necessary imply that both hop at their normal rates. For different species
sequential hopping is enforced leading to further current reduction.

If the in rate α is sufficiently small, particles do not interact before they reach their
right most possible position. In case of a crammed state this is their final position as well
since nothing can leave the system to induce further movement. Only configurations of
type 1 are relevant in this scenario. For the jammed state this is not the case. No matter
how small the exit rate, particles will leave the system and hence cause rearrangement in

3A finite segment mean-field method as sucessfully applied to similar models [10] does not seem to be
promising either. The strong dependence on the number of lanes indicates the presence of very long-ranged
correlations which cannot be contained in a small subset of lattice sites.
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Figure 2.8: Illustration of the phenomenological differences between jamming
and cramming. The panels (a) and (b) show configurations obtained in the cramming
(β = 0) and jamming (β → 0) parameter regime respectively. While the cramming config-
uration appears to be completely random the jamming configuration shows strong sorting.
In both systems many empty lattice sites exist which cannot be accessed by any of the two
species. Panel (c) depicts the particle configurations which cause the failure of mean-field.
The more intuitive configuration 1 is one particle blocking the movement of two others.
This is the static scenario. Configuration 2 is in contrast dynamic. Despite having two
particles in front of two empty sites, an interaction exists because both are forced to hop
sequentially. Only the static part 1 is relevant for the crammed state shown in panel (a).
It is characterized by a random configuration whose density reduction is only caused by
random double-blocking-configurations as illustrated in (d). Because in a stationary state
with finite current each particle that leaves the system has to be replaced by a another
one entering the system, overhead present for the cramming density is removed as shown
in panel (e). This effect couples to the dynamic interaction 2 shown in part (c) and causes
the sorting seen in panel (b).
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Figure 2.9: Illustration of the state-reduction scheme. Because of the existence of
lane and species exchange symmetry, w.l.o.g. it is sufficient to only consider a sequence of
T particles on the upper lane. If a particle of the S species enters the system a barrier is
created that can no longer be passed. Depending on the lane, it is either a two-particle
barrier at the front or a single particle barrier two lattice sites behind it, as shown in panel
(a). This allows for a state reduction by only taking the part of the system into account
that can still be subject to change. The transition rates between those sub-configurations
at the front are given by the matrix shown in panel (b). The green line indicates particle
sequence growth, the blue line shrinking. Red and orange correspond to a double or single
closing of the state. The dashed line marks the region in which the matrix is completely
regular. [partially adapted from [53]]

the system resulting in a contribution of both scenarios 1 and 2. This makes crammed
state the better one to study.

To get an understanding of the central determinants of the cramming density we are
going to derive an exact analytic solution for the totally symmetric case δ = 1/2 in a
two-lane system. As the first step, we create a new stochastic process solely based on
the surface-growth dynamics called the filling process. For α → 0 and β = 0 time in the
previous form becomes meaningless. Whenever a particle enters it will pass through the
system until it reaches a position which is stable and remains there. A second particle
enters at a random time afterwards but how much later exactly is irrelevant. The same is
true for all hopping events before reaching the final position. The most natural measure
of "time" passing in this case is simply the number of particles entering the system. The
according states are the stable particle configurations starting from the right end. This
way, the corresponding state space we are confronted with is still infinite but as illustrated
in Fig. 2.9.a can be made very regular.

The key idea is that certain configurations exist which make everything to their right
irrelevant for the future evolution of the system. Any state can be decomposed into a
sequence of sub-states ending with such a closing configuration. Only the last one decides
on the further evolution of the system. This means the entire dynamics can be reduced
to a discrete time Markov process characterized by the transition matrix that acts on the
sub-configurations shown in Fig. 2.9.b. The configurations in the end are just sequence
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of identical particles on the same lane with the other lane remaining empty. Whenever a
particle of the other species enters the system a closure is created and the length of the
front-state is reduced.

To actually calculate the cramming density, we first need the stationary sub-configuration
probability vector P st. the system converges to. It describes how the front of the surface-
growth process looks on average. As the transition matrix in Fig. 2.9.b has a very regular
structure, we write the vector in the form

P st. =



a
b0
b1
b2
...

 , (2.14)

anticipating the final result. The first and second state differ from the other ones as a
transition to one of those is always possible (red and orange lines). For all other states
however, just two scenarios exist. Either a large sequence shrinks by one element (blue
line) or a smaller one increases by one (green line). This observation can be turned into a
recursion equation

bn = 1
4 (bn−1 + bn+1) , n ≥ 1. (2.15)

Equations of this type have a well-defined general solution

bn = c1
(
2 +
√

3
)n

+ c2
(
2−
√

3
)n
, n ≥ 1. (2.16)

Because a probability vector needs to be normalizable and
(
2 +
√

3
)n

diverges as n −→∞,
c1 = 0 follows immediately. The second constant can be found using the equation obtained
for the first element b1 = 1

4 (b0 + b2) which implies b0 = c2
(
2−
√

3
)0

= c2. In this way, we
find that the solution to the recursion equation reads

bn = b0
(
2−
√

3
)n
. (2.17)

It retroactively explains the choice to name the second vector component b0 despite being
different from the others. For later progress it is useful to note that

∞∑
n=0

bn = b0

∞∑
n=0

(
2−
√

3
)n

= b0√
3− 1

, (2.18)

which is the geometric series of all sequence elements. Using this relation in combination
with the state transitions rates given in Fig. 2.9.b, we obtain a simple expression for the
first vector component

a
!= b0

2 + 1
2

∞∑
n=0

bn = b0

2

(
1 + 1√

3− 1

)
, (2.19)
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which depends only on the second vector component b0. The value of b0 itself can finally
be fixed by demanding that the probability vector has to be normalized4

1 != ‖P st.‖1 = a+
∞∑
n=0

bn = b0

(
1
2 + 3

2
√

3− 2

)
. (2.20)

Taking all information together the stationary probability vector reads

P st. =



2
√

3− 3
6
√

3− 10(
6
√

3− 10
) (

2−
√

3
)

(
6
√

3− 10
) (

2−
√

3
)2

...


. (2.21)

Unfortunately, it is still not sufficient to calculate the final density. A naive approach would
be to just weight the densities of the respective states by their probability to obtain an
expectation value but this is a misinterpretation. A state being at the front of the surface
with a given probability in discrete time does not imply that it occurs that often in the
actual configuration of the system. A particle sequence of length three may just grow into
a sequence of length four and hence simply vanish. In fact, the states themselves are not as
relevant as the transitions between them. Only if a sub-configuration stops growing, at the
right end a permanent contribution to stationary state of the system as a whole is created.
As illustrated in Fig. 2.10, there are four equally likely transition scenarios for each state.
Depending on the length of the considered sequence l the contribution of particles to the
stationary state of the system per unit time Nl can be calculated. It is the probability
of having the respective configuration at the front of the system P st.

l times the expected
number of contributed particles

Nl = 1
4P

st.
l

4∑
k=1

plk = 1
4P

st.
l (2l + 2) . (2.22)

Here, plk denotes the number of particles a sequence of length l contributes during the k-th
transition according to Fig. 2.10. From the length dependent particle contributions Nl, the
total number of particles contributed to the stationary state of the whole system per unit
time N can be calculated

N =
∞∑
l=1

Nl = a+
∞∑
n=0

bn

(1
2n+ 3

2

)
. (2.23)

For this equation we used P st.
1 = a and the fact that the length of a particle sequence l is

directly related to the bn-sequence index via l = n + 2. In the same way, it is possible to
4Since we are solving an eigenvalue problem and we know by now that P st. = b0P̂

st., b0 cannot be
determined using the remaining second equation. It has to be linear dependent by construction.
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Figure 2.10: Contributions to the stationary state by the different transition
types. Depending on the state a particle sequence transitions to, another sub-configuration
of the stationary state is fixated. For each case four different scenarios are possible which
are all equally likely.

derive Z, the total number of lattice sites contributed per unit time

Zl = 1
4P

st.
l

4∑
k=1

slk = 1
4P

st.
l (4l) ,

⇒ Z =
∞∑
l=1

Zl = a+
∞∑
n=0

bn (n+ 2) ,
(2.24)

where slk denotes the number of lattice sites a sequence of length l contributes during the
k-th transition. To actually calculate N and Z, we need in addition to the geometric series
Eq. 2.18 a second series which is closely related

∞∑
n=0

nbn = b0

∞∑
n=0

n
(
2−
√

3
)n

= b0(2−
√

3)
(
√

3− 1)2
= b0

2 . (2.25)

Finally, to obtain the cramming density which is the average particle occupation of the
filling process’ stationary state we need to divide the total particle contribution per unit
time N by the lattice site contribution Z. This results in

ρcram = N

Z
=

1
2

(
1 + 1√

3− 1

)
+ 1

4 + 3
2
√

3− 2
1
2

(
1 + 1√

3− 1

)
+ 1

2 + 2√
3− 1

≈ 0.789, (2.26)

which is exactly the numerical value given in Fig. 2.7. As discussed in detail in Ap-
pendix B.1 the applied method can be generalized to arbitrary species ratios δ. All main
steps and ideas are identical but the computational effort is significantly higher. The final
result

ρcram (δ) =

√
1

(1− δ)2 − 1− 1− δ
(√

1
(1− δ)2 − 1 +

√
1
δ2 − 1− 2

)
4δ − 2 , (2.27)



28 2. Geometry and arrangement: Molecular transport along microtubules

Figure 2.11: Cramming density plotted against the species ratios δ for two lanes.
The analytic theory (dashed line) and the exact stochastic simulations (yellow circles)
are in perfect agreement. The shape of the curve nicely illustrates the species exchange
symmetry δ → 1− δ. [Parameters: L = 131072, α→ 0 (special simulation), β = 0]

is shown in Fig. 2.11 together with data obtained from exact stochastic simulations. Both
are in prefect agreement. Since for the filling process actual time and hence hopping rates
are irrelevant, the solution applies to different hopping rates νT and νS as well. So, for the
two-lane system we derived the most general solution possible.

At this point, it is important to emphasize that, absolutely no approximations haven
been made in the above derivation. Just all symmetries of the two-lane system have been
exploited. This has two central implications. First of all, we have given a proof of principle
showing that our qualitative understanding of the mechanics of our model is correct and
can be quantified. However, secondly, we have seen that all symmetries possible have been
used but still a complex solution had to be specifically tailored to the problem. Hence,
an extension of the method to higher lane numbers seems futile. Already for three lanes
a comparable state reduction is out of the question. Maybe a solution for an infinite lane
number could be approximately derived using method employed in the field of surface
growth. But so far, no suitable mapping could be found.

All previous considerations with regard to an exact quantification of the systems be-
havior only addressed the zero-current case β = 0. Adding correlation effects caused by
dynamical particle interactions make the chance for an analytic solution even lower. The
phase transition for infinitesimal β is a peculiarity of this. From the perspective of this
thesis, one of the central goals was already achieved. The considered system shows a strong
change in phenomenology because of a minor modification which we managed to under-
stand and, at least to small extend, quantify. With respect to the biological motivation
however, approximative solutions to the dynamical case are more relevant because that is
where molecular transport operates. The first step in this direction is to understand how
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Figure 2.12: Cramming to jamming transition. In the limit 1� α� β a separation
of time scales exists. First, the system is filled with particles up to the cramming density
on a time scale controlled by α−1. Afterwards, on a time scale β−1 the system approaches
its true stationary state which is characterized by the maximal density ρmax. To resolve
both processes, progression is measured in events instead of physical time. [Parameters:
W = 2, L = 16384, δ = 1/2, α = 0.02, β = 0.0001; adapted from [53]]

the sorted jammed states of the maximum density ρmax differ from the disordered crammed
states we managed to quantify.

Both densities correspond to stationary states of different processes. The crammed
state is a growth process in an infinite system; Once a particle reaches its position it re-
mains there. In contrast, the jammed stationary state is caused by constant rearrangement
in a restricted area. No matter how small the exit rate, each particle leaving the system
has to be replaced by a new one entering. This thins out the number of particles drasti-
cally and causes the discontinuity in the system (Fig. 2.8 (d) and (e)). Furthermore, the
dynamic interactions result in self organized sorting. This intuition is actually confirmed
by Fig. 2.12. A system with very low exit rate first fills up completely before on a second
time scale the rearrangement takes place because of particles leaving the system. An empty
system approaches the jammed state via a crammed configuration that sorts itself.

Finding a solution for the maximal density for arbitrary numbers of lanes appears to be
a hopeless task. The system cannot be reduced as for the cramming density because the
interactions throughout the entire movement across the lattice have to be considered. But
at this point, it is actually of minor importance. We understand the mechanism behind
it and managed to form an understanding of the mechanics which have been confirmed
by proofs of principle. The relation between particle arrangement, fluctuations and those
singular densities has gotten clear. Extending those ideas to higher lane numbers would be
a nice mathematical result but it would not further the overall understanding too much.
The more interesting question remaining now is: How do all those additional fluctuations
affect actual transport instead of jammed states? Taking the existence of ρmax and ρcram
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Figure 2.13: Extended current-density relation. In addition to the density, the current
depends on the number of lanes W and species ratio δ. Densities above ρmax are never
realized in a stationary state. For high enough numbers of lanes this effect dominates the
entire transport process. [Parameters: L = 16384; adapted from [53]]

for granted the next section deals with the extrapolation of their impact on transport.

2.7 Quantifying the impact on transport
As a consequence of describing our system in terms of the total density ρ instead of the
species specific ones ρS and ρT , the current-density relation depends on the species ratio
δ. Furthermore, because of long-ranged correlations, the number of lanes W has also to be
taken into account. However, as can be seen in Fig. 2.13 the qualitative behavior remains
similar to the TASEP. The major difference only lies in the value of ρmax that limits the
overall transport potential. For a fixed value of δ we still find a normal current-density
relation. It is just shrunk to the interval [0, ρmax]. Based on the approach by Lighthill and
Whitham and the extremal current principle as discussed in Sec. 2.2 we can at least expect
a similar phase behavior in this region despite mean-field failing. Anticipating the desired
outcome, it is hence possible to create an effective theory around a regular current-density
relation which however manages to incorporate the significance of stochastic fluctuations.

We start by rewriting the particle currents as

JSµ = ρSµ−1(1− ρµ)− cov(nSi−1,µ−1, ni,µ),
JTµ = ρTµ−1(1− ρµ)− cov(nTi,µ−1, ni,µ),

(2.28)

with cov(nXi,µ, nYl,ν) = 〈nXi,µnYl,ν〉− 〈nXi,µ〉〈nYl,ν〉 denoting the covariances. This form facilitates
a comparison to the current-density relation of the mean-field solution. Because of the
rotational invariance of the stationary state we can drop the lane index i in general—it
only appears inside the covariances to indicate relative lane positions. Summing up both
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currents we arrive at a joined current-density relation which we know has to reproduce the
TASEP results for δ = 0 and δ = 1

J = ρµ−1(1− ρµ)− cov(nSi−1,µ−1, ni,µ)− cov(nTi,µ−1, ni,µ)
= const.

(2.29)

For reasons which become clear later, we define the hindrance function at lattice column
µ

Hµ :=
cov(nSi−1,µ−1, ni,µ) + cov(nTi,µ−1, ni,µ)

ρµ−1
. (2.30)

This allows us to rewrite the—so far still exact—current-density relation
J = ρµ−1 (1−Hµ − ρµ) . (2.31)

In this form it is easy to see under which conditions the current may vanish. Either
for an empty lattice with ρ = 0 or for ρ = 1 − Hµ. Comparing this to the TASEP
we find an intuitive interpretation for the hindrance function. Normally, all lattice sites
may contribute to transport and only if they are fully occupied transport stops. This
is reflected by the factor of 1 − ρ. In contrast, because of particle arrangement, not all
lattice sites can contribute to transport at all times. The availability is reduced by Hµ.
This means understanding H is the key to quantifying the impact of arrangement effects.
Unfortunately, because of the covariances used to define Hµ, Eq. 2.31 still defines an
unclosed set of equations and we have to rely on approximation methods to make further
progress.

Assuming a slowly varying density profile in space, we can perform a continuous ap-
proximation as explained in Sec. 2.2

J = ρ(x) [1−H(x)− ρ(x)] . (2.32)
This assumption is actually the most severe simplification we make as will be discussed
later. Now, realizing that the system has to obey current conservation, this directly implies
that the hindrance function can only depend on the local density and not explicitly on the
respective location

J = ρ [1−H (ρ)− ρ] . (2.33)
At this point, we have reduced the problem to the derivation of the hindrance function in
dependence of the local density ρ. In the following, we will do so by expanding the function
based on the physical properties we are expecting based on physical arguments. To make
our lives easier, we split the hindrance function into two regimes. HLD corresponds to the
regime in which the current increases if the density increases and HHD corresponds to the
opposite case. We now use extremal density limits in the respective regimes ρ → 0 and
ρ→ ρmax to derive the linear order coefficients of a Taylor series.

For the low-density regime two major properties can be found
HLD (0) = 0, (2.34)

d
dρHLD (ρ)

∣∣∣∣∣
ρ=0

= δ(1− δ). (2.35)
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The first one simply accounts for the fact that on an empty lattice, particles do not interact
and hence no correlations are formed. The second equation is an exact analytic result that
is derived by requiring mean-field to hold in the limit ρ→ 0 because particle interactions
vanish. The detailed calculations are given in Appendix B.2.

In a similar way, in the high-density regime the equations

1−HHD (ρmax) != ρmax, (2.36)
d
dρHHD (ρ)

∣∣∣∣∣
ρ=ρmax

= −δ(1− δ)ρmax, (2.37)

are required to hold. The first is true by the definition of the maximal density as it
corresponds to the point at which the current vanishes. The second the equation is the
only approximative one. It is derived by calculating the effect of removing a single particle
from a completely jammed system assuming a mean-field distribution of species. The
details are provided in Appendix B.2.

Since the linearly approximated hindrance functions do not intersect in the relevant
interval [0, ρmax] additional equations are needed to define a physically meaningful result.
Interestingly, a reason for this problem lies in the negative derivative of the hindrance
function HHD at maximum density. Later on, we will find that the prediction is actually
correct despite being counterintuitive in the beginning. More density causes less inaccessi-
ble lattice sites. The explanation goes back to the different kinds of interactions shown in
Fig .2.8. A dynamical and a static component exist but in a completely jammed system
the dynamical one cannot contribute. Close to the maximum density the reduction of
dynamical effects is larger than the increase by the static interaction. Despite being just a
small detail, this nicely connects to the understanding we built up initially.

The final needed conditions are obtained by taking the transition between both phases
into account5. As it has to be the point where neither a lack of particles nor an abundance
limits transport it has to take place at the maximal current. Accordingly, the derivatives
of both functions have to vanish

HLD (ρMC) = HHD (ρMC) , (2.38)
d
dρρ (1−HLD (ρ)− ρ)

∣∣∣∣∣
ρ=ρMC

= 0, (2.39)

d
dρρ (1−HHD (ρ)− ρ)

∣∣∣∣∣
ρ=ρMC

= 0. (2.40)

Using the set of seven equations, for a fixed number of lattice sites W the hindrance
5It is important to emphasize that, we do not postulate the hindrance function to be of second order.

It is just the lowest expansion which yields a physically meaningful result. In fact, it would be possible
to predict higher order derivatives for further approximation. But in the end, this does not improve our
understanding of the mechanism itself; It just makes the approximation slightly better. However, we can
get as precise estimates as we want from the stochastic simulations. The analytic part just validates our
phenomenological understanding.
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Figure 2.14: Comparison of the current-density relations derived using the hin-
drance function with stochastic simulations. The theory (dashed lines) and stochas-
tic simulations (symbols) are in good agreement. [Parameters: L = 16384, δ = 1/2;
adapted from [53]]

function can be approximated up to second order in the density assuming knowledge of
the respective maximal density. The results for different numbers of lanes are shown in
Fig. 2.14. The good agreement between theory and simulations confirms our effective
approach. In essence, it interpolates the influence of particle arrangement and fluctuations
between the two extremal cases of an empty and a completely jammed system. The
first case can be handled exactly the second one can be well approximated using the
understanding gained in the previous section.

As a final proof of concept, we can use Eq. 2.30 to derive an expression for the covari-
ances in terms of the hindrance function

cov(nSi−1,µ−1 + nTi,µ−1, ni,µ) ≈ ρH (δ,W ; ρ) , (2.41)

To be more explicit, we included the dependencies on the control parameters δ and W . As
shown in Fig. 2.15 the correct covariances are indeed recovered. This again confirms our
understanding of the system’s dynamics. The last thing that is now left is the derivation
of the dependencies on the control parameters α and β and hence the phase diagram.

2.8 Control parameters and phase diagram
After deriving the effective current-density relation in the previous section, the final step to
the full characterization of our model is to find the actual phase diagram. We know by the
extremal current principle that the topology will be similar to the TASEP. Furthermore,
the behavior in the respective phases will be controlled by one of the boundaries or the
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Figure 2.15: Derivation of the covariances from the hindrance function. Panel
(a) shows the hindrance function derived for a two-lane system with symmetric species
ratio δ = 1/2. Employing Eq. 2.30, it can be translated into the respective covariances
hampering transport. The corresponding result (line) is shown in panel (b) and is in good
agreement with the stochastic simulations (symbols). [Parameters: W = 2, L = 16384;
adapted from [53]]

exclusion in the bulk. Hence, we need to calculate the dependencies of the current on the
control parameters first.

The simplest phase to consider is the high-density phase. By current conservation we
know that

βρL = ρ(1−H (ρ)− ρ), (2.42)

has to hold. Here, ρL denotes the density of a lattice site in the last lattice column. For
the TASEP, it is simply given by ρL = 1− β. Since, jamming in our system takes place at
densities far below one, this cannot be the case. However, because particles have to traverse
the entire bulk to reach the right boundary a reasonable and simple assumption to make
is that the density at the last lattice site is identical to the one in the bulk. Accordingly,
the dependency of the density and consequently the current can be found as the solution
to the equation

β = 1−H (ρ)− ρ. (2.43)

This expression cannot further be simplified in general because it depends on the hindrance
function that is approximated for each configuration of species ratio δ and number of lanes
W separately. Nonetheless, the approximation works sufficiently well as can be seen in
Fig. C.3 of the appendix.

In contrast to the high-density phase, we cannot use any features of the bulk to de-
termine the density at the left end in the low-density phase. Particles enter the system
uncorrelated and only while passing through the system they reach the spatially stationary
values used for the hindrance function. The first lattice site may behave completely differ-
ent. For that reason, we need to find a separate theory that approximates the behavior at
the first lattice site to find the dependencies on the in rate α. The presented approach is
based on the phenomenological understanding of the system we derived up to this point.
Its validity is only confirmed posteriori and is not clear from the start.
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Particles enter the system uncorrelated without previous interactions. Members of the
own species on the second lattice site a particle at the first lattice site could interact
with afterwards must have entered the system before it because bypassing is not possible.
However, a particle of the respective other species enters the system on a different lane and
hence always may hop in front; In a one-dimensional description, effectively, one particle
of each species occupies the first lattice site at the same time. In contrast to the TASEP,
this breaks the balance between positive and negative correlations with respect to the
occupation of neighboring sites that was the reason for mean-field to work.

In our system, the other species serves as a randomly appearing obstacle that cannot
directly be affected (at the first lattice site); It can be seen as a simple modification to the
hopping rate. To account for this effect, we start from the normal mean-field solution and
iteratively correct the density until we arrive at a result consistent with the hopping rate
reduction picture. The first part of the idea can be expressed in the following form

ρT
(
1− ρT − ρS

) != ρT
(
1− ρT

)
νT ,

ρS
(
1− ρT − ρS

) != ρS
(
1− ρS

)
νS. (2.44)

To reduce the amount of technical calculations we restrict the further derivation to the
symmetrical case δ = 1/2 which already contains all major ideas. The general ansatz is
discussed in Appendix B.3.

The reduced hopping rate now in turn causes the density to increase. For an indepen-
dent TASEP with hopping rate different from one we can simply rescale time to find the
corresponding reaction to the given in rate α

ρ(α, ν) = α

ν
. (2.45)

So, in the described scenario, both species would slightly increase the density of the re-
spective other at the first lattice site by randomly hopping in front. What was not taken
into account at this point is the feedback that is created because the additional density
will as well contribute to the blocking. This argument can be repeated iteratively creating
a sequence of hopping reductions

νN+1 = 1− ρ(α, νN)
1− 1

2ρ(α, νN) . (2.46)

The final density at the first lattice site is the one obtained as the limit of this sequence
νN → ν which takes all feedback between the different species into account. It should not
create any additional modification of the density and hence has to mapped towards itself.
This can be expressed in the form of a self-consistency equation

ν = 1− ρ(α, ν)
1− 1

2ρ(α, ν) . (2.47)
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a b

Figure 2.16: Comparison of the low-density theory with stochastic simulations.
Up to the transition to the maximal current phase simulations (symbols) and theory
(dashed line) are in good agreement. A lane dependency only enters because the maximal
current decreases with the number of lanes and hence the phase transition is triggered
earlier. After that point, the density at the first lattice site is determined by current
conservation. [Parameters: L = 16384, δ = 1/2, β = 0.8; adapted from [53]]

Plugging in the relation for independent TASEPs with modified hopping rates (Eq. 2.45)
one obtains

ν =
1− α

ν

1− α

2ν
. (2.48)

Two possible solutions exist to this equation

ν∗ = 1
2
(
1 + α±

√
1− 6α + α2

)
, (2.49)

of which only one is stable and can be the attractor of an iteration scheme. Having found
the effective hooping rate we can directly calculate density according to Eq. 2.45 and the
corresponding current J = α(1 − ρ). The equation for the current actually is exact and
has always to be fulfilled. The final results for the symmetric case read

ρ = 4α
2 + α +

√
4 + (−12 + α)α

, (2.50)

J = α

4

(
2− α +

√
4 + (α− 12)α

)
. (2.51)

Notably, those are independent from the number of lanes. In the low-density regime no
long-ranged coupling occurs which would cause this dependency. All systems follow the
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Figure 2.17: Two-point function at the first two lattice sites in the LD phase. Up
to the transition to the maximal current phase the low-density theory (line) and stochastic
simulations (symbols) are in good agreement. Afterwards, long-ranged coupling takes
place which is absent for low densities. [Parameters: W = 2, L = 16384, δ = 1/2, β = 0.8;
adapted from [53]]

same initial curve irrespective of the number of lanes. However, at some point the transition
to the maximal current phase is triggered. When this takes place in turn depends on the
number of lanes. For higher in rates the density at the first lattice site is simply given by
current conservation

ρ1 = 1− Jmax

α
. (2.52)

In contrast, the bulk density, which is shown in Fig. C.4 of the Appendix, takes a fixed
value which corresponds to the maximal current according to the current-density relation.
The comparison with stochastic simulations shown in Fig.2.16 retrospectively confirms our
approach. In addition, the initial equations Eqs. 2.44 can be rewritten in the following way

ρT
(
1− ρT − ρS

) != αT
(
1− ρT

)
,

ρS
(
1− ρT − ρS

) != αS
(
1− ρS

)
, (2.53)

which exactly corresponds to the initial intuitions we used. The current into the system
on the right behaves like an independent TASEP for the respective species but needs to be
balanced with an additional hindrance in the form of the second species inside the system
which is represented by the left side.

A final interesting realization to make is that, since we have successfully calculated
the behavior of the system using a phenomenological approach, we can now use the exact
equations that were unclosed to actually calculate the corresponding strength of stochastic
fluctuations

(1− δ)J = JT = 〈nTi,1〉 − 〈nTi,1nTi,2〉 − 〈nTi,1nSi,2〉
≈ ρT (1− ρT )− 〈nTi,1nSi,2〉.

(2.54)

Here, we again used the argument that in the low density regime a species interacts with
itself as a uncoupled TASEP would do, meaning 〈nTi,1nTi,2〉 = ρTρT , whereas the interaction
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Figure 2.18: Phase diagram for the symmetric two-lane system. The topology of the
phase diagram is identical to the TASEP. Based on the extremal current principle the phase
boundaries can be derived from the theoretical results. Stochastic simulations (colors) and
predictions (thick lines) are in good agreement. [Parameters: W = 2, L = 16384, δ = 1/2;
adapted from [53]]

with the respective other species causes the deviations. The according equation reads

〈nTi,1nSi,2〉 = ρT (1− ρT )− (1− δ)J. (2.55)

The result is in great agreement with the stochastic simulations as shown in Fig. 2.17.
Starting with the beginning of the maximal current phase correlations start to increase
faster as the coupling of lanes comes into play.

Having derived the dependencies on the control parameters, the phase diagram can be
obtained by looking at the current. As soon as the boundary currents Jα and Jβ reach the
maximal current value which is already calculated as a side effect of finding the hindrance
function, the transition between the phases takes place. Furthermore, at the line Jα = Jβ
the discontinuous transition between HD and LD regime occurs. The resulting phase
diagram is shown in Fig. 2.18.

Being able to obtain an approximated phase diagram which is in good agreement with
the stochastic simulations and being able to recover the underlying correlations confirms
our final understanding of the system. It may not be possible to give additional exact
analytic results but at this point there is no real need for it either. The final step left is to
make the way back from our findings for the model to the original motivations for creating
it.

2.9 Conclusion
To properly analyze the implications of our results, it is important to consider which
assumptions and approximations have been made and what their limitations are. We
begin with the methods employed to study our model before turning to the model itself.
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The starting point of our quantitative discussion was the cramming density. In case
of a two-lane system, we managed to derive an exact analytical solution. Because of the
complexity of the problem and the drastic increase in the numbers of states a generalization
to higher lane numbers appears to be impossible at this point. In addition, the cramming
density constitutes a rather pathological case. It is very unlikely to occur if a system
is not explicitly tuned towards this behavior. However, the cramming density and its
calculation serve as proof of principle of our overall understanding and was successfully
used to elucidate the origin of the maximal density. By demanding that every particle
that leaves the system has to be replaced by a new one entering, "dead weight" is removed
from the crammed state. In combination with self-organized particle sorting this effect is
at the heart of the existence of the maximal density. Attempts to quantify this effect have
remained unsuccessful so far due to the lack of a suitable mapping or reduction scheme.

To extrapolate the results found for completely jammed states to actual transport phe-
nomena, we introduced the hindrance function which accounts for the inaccessibility of
lattice sites due to particle arrangement; This in itself is not an approximation. The first
and most severe one that was made in this context was the continuous approximation. It
heavily relies on a slowly varying density profile. In fact, based on our experiences with
the TASEP we assumed the density to be constant in the bulk of the system most of the
time. But it is actually unclear whether this is always the case. Looking further into this
aspect, it turns out that it is not only not always true but a completely unexpected new
phenomenology can be found. As illustrated in Fig. 2.19 for large lane sizes compared to
the number of lanes, a flat density profile is realized and our assumptions are justified. If
the number of lanes and lattice sites do not differ by a significant magnitude the density
profile starts to develop wave-like density patterns. Such an effect is absolutely impossible
to understand using a density-based mean-field picture; It is prohibited by current con-
servation. The length of an oscillation in the longitudinal direction actually corresponds
to the transversal extension in the form of the number of lanes. This is caused by the
fact that if two particles of different species block each other the next time they can do
so again is after the S species has walked once around the cylinder which corresponds to
W steps. Beyond this phenomenological understand no further progress could be achieved
so far. An analytical analysis probably requires an exact solution to the system, which
is far out of reach if possible at all. Similar behavior as in our system was observed in
the Biham-Middleton-Levine model [118] for traffic flow which showed emerging patterns
in case of deterministic movement. The model has been investigated for more than 15
years and its jamming transition is still considered to be an open mathematical prob-
lem [119–121]. From this perspective, that our system self-organizes in a way that allows
for proper distance measurements using only stochastic local interactions is impressive in
its own right, and the fact that we partially found exact approaches to the system is a
significant accomplishment.

Apart from the continuous approximation no other major simplifications beyond mean-
field reasoning have been employed. The basic message obtained is that if the number
of lanes is increased, long-ranged coupling hinders transport and decreases the maximal
current. This results in an expansion of the parameter regime in which the maximal current
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Figure 2.19: Pattern formation for large aspect ratios. If the number of lanes is
small compared to the length of a system a constant density profile as for the TASEP is
realized, which is shown in panel (a). In contrast, oscillatory density patterns occur for
large numbers of lanes which are depicted in panel (b). [Parameters: δ = 1/2, α = 0.6,
β = 0.2; adapted from [53]]

is reached (but still with less efficient transport). This quite general finding does not rely
on any of the model assumptions in particular and can hence be seen as a robust result.

Going back to the model itself and the original question of how species interaction
changes transport we can give a very direct answer. It is always worse than single species
transport. At least as long as our model applies. Since particles walk from one site of
the lattice to the other without detaching, the central feature molecular motors have to
fulfil to be properly described is to be very processive. This is true for kinesin-1 and in
parts for other motor families as well. In the end, it depends on the explicit conditions.
It is for the same reason, that Langmuir kinetics has been added to the TASEP to study
transport by a single motor species. The random attachment and detachment real molec-
ular motors perform might have a significant impact on the overall phenomenology. In
particular since the effects in our system are arrangement driven which is undermined by
particle rearrangement via random attachment and detachment. However, as illustrated
Fig. 2.20 an effect can be found making them more relevant instead of less when Langmuir
kinetics is incorporated in our model. The normal criticism of TASEP LK based models of
cellular transport is that concentrations are actually too low to cause overcrowding. But
as our results show, combining motor species with different modes of motion can lower the
maximum current sufficiently to cause jamming at lower attachment rates. Furthermore,
the position of the shock between different regimes along the lattice can be controlled. This
is a prediction that could be tested experimentally as well as an interesting direction for
future research. Because Langmuir kinetics destroys correlations an extended model might
be even more accessible for analytic methods and appears to be a promising direction for
the continuation of this project.

Taking another step back from the project level to the original question of this thesis, we
achieved our goal. We found a basic system that is well described by mean-field methods
and caused them to fail via a small change to the systems dynamics. The source of this
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a b

Figure 2.20: Langmuir kinetics in combination with different species ratios. A
parameter configuration that corresponds to a system in the low-density phase may be
heavily affected by an increase in the species ratio δ = ωSa /(ωTa + ωSa ); Which in this case
is defined via the ratio of attachment rates. Without increasing the total attachment rate
ωa = ωTa + ωSa , just by lowering the maximal density due to lane coupling (panel (b)) a
rapid spatial transition in the density can be achieved (panel (a)). On the one hand, this
is a simple prediction by our model that can be verified experimentally. On the other
hand, it shows that jamming phenomena could be more relevant for in vivo systems than
currently expected. [Parameters: W = 13, L = 4096, α = 0, β = 1.0, ωa = 1/3, ωd = 1.0]

effect was identified as the introduction of particle arrangement as a new determinant for
the transport properties. We created a basic understanding of the key mechanisms at work
and managed to in parts turn it into a quantitative description.



42 2. Geometry and arrangement: Molecular transport along microtubules



Chapter 3

Reaction paths and depletion traps:
Macromolecular self-assembly

This chapter deals with the theoretical analysis of general principles for efficient self-
assembly of macromolecules. It is based on research results I published as first author in
the manuscript Stochastic Yield Catastrophes and Robustness in Self-Assembly [122] in the
journal eLife, 9:e51020 in 2020 (DOI: https://doi.org/10.7554/eLife.51020) under the CC
BY 4.0 license together with Florian Gartner (who contributed equally), Isabella Graf [123]
(who contributed equally), Philipp Geiger and Erwin Frey. In particular, Philipp Geiger is
credited for the original graphics design and Isabella Graf and Florian Gartner are credited
for the in-depth analysis of the threshold values presented in Appendix D.3. Research data
and the graphical presentation thereof have been adapted from the manuscript.

The goal of this research project is to find general principles in different fields of self-
assembly such as virus capsid assembly and DNA-brick-based assembly. To this end, we
built a mathematical model that combines features from various self-assembly fields. Em-
ploying deterministic approximation methods, we derive a unifying theory for information
rich and homogeneous structures. Comparing our results to exact stochastic simulations we
uncover the limitations of the deterministic behavior and provide insight into how stochas-
ticity differently affects assembly processes depending on the complexity of the target
structure. We give a phenomenological explanation of the origin of stochastic fluctuations
in our system along with methods how they can be mitigated.

3.1 Biochemical background
Reliable self-assembly of macromolecules is a vital feature for self-reproducing organ-
isms [124, 125]. Examples range from the creation of simple virus capsids [34, 126, 127]
to complex flagella motors [128, 129] and ribosomes [130–132] of living cells. Further-
more, great potential for artificial self-assembly exists in the production of designed nano-
structures [133–135]. The goal of this project is to find abstract unifying concepts that
connect all these different fields of application and to investigate how stochasticity comes

https://elifesciences.org/articles/51020
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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into play on a mesoscopic scale. To this end, we are going to give a review of the biochemical
background of the considered systems first.

Virus capsids
Virus capsids are regular structures made of proteins that surround the genome of a virus.
Because the genome has to be encapsulated by proteins created from it, the capsid cannot
consist of only a single protein but has to be assembled from multiple, sufficiently small,
subunits [30]. The exact realization may greatly differ among species. Small homogeneous
capsids exist as well as significantly large and complex ones which have several different
types of components [136–138]. However, the latter ones seem to be rather an exception
since a large proportion of the genome has to be dedicated only to the creation of the
capsid, which may constitute an evolutionary disadvantage [31].

Overarching principles in the self-assembly of virus capsids have been found over the
years. A commonly used picture to describe the conceptual steps is the assembly line
model, which has been studied extensively in this context [21, 26, 33, 34, 126, 139, 140]. It
can be summarized as a nucleation process of identical particles followed by subsequent
growth until the target structure is reached. Several important predictions are made.
First, a sigmoidal curve describes the dependence of the relative number of finished capsids
on the initial concentration of subunits. Second, weak and hence reversible interactions
favor the creation of finished capsids by avoiding depletion of resources in an early stage.
Third, at a given subunit concentration the yield can be improved by slowing down the
nucleation speed compared to growth. Various comparisons with experimental studies
and computer simulations confirmed the assembly line picture but also led to extensions
of the model [32, 127, 141, 142]. One extension which we mention specifically because it
will be relevant later on is the inclusion of an activation step [32]. Before being actually
able to take part in the capsid formation, for some viruses subunits may have to perform
a conformational change first as suggested by short time scale experiments. The same
experiments also estimated the corresponding nucleation size to be around three.

Artificial DNA-based assembly
In a way, DNA-based assembly is the exact opposite of virus capsid assembly. Complex
nano-structures are realized using specifically designed building blocks [143]. The basic
idea for the artificial creation of small-scale objects using DNA strains traces back to
work by Seeman in the early 80’s [144] and was realized in the form of DNA origami by
Rothemund in 2006 [145]. A single strand of DNA is combined with several short staples
which bind to specific parts causing it to fold in a pre-defined way to form the desired
structure [146]; hence the name origami. The method has been extended in multiple
ways to allow for the creation of a plethora of different structures ranging from (almost)
arbitrary two-dimensional objects to three-dimensional structures and entire nano-particles
or crystals [133, 147, 148]. A major source of work using this method is, however, that for
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a b

Figure 3.1: Conceptual illustration of homogeneous and heterogeneous self-
assembly. Depending on the complexity of the target structure, constituents need higher
specificity. The simple ring structure (a) can be assembled using identical components
with suitable curvature. Because no microscopic control is possible during the assembly
process the more complex structure (b) can only be realized reliably using different species
with specific binding partners and tuned binding rates that favor a certain assembly path.

each new creation a suitable origami has to be found which may involve a significant time
and resource investment.

An approach developed to allow for modularity in the creation of artificial nano-
structures is DNA-brick-based assembly [22, 23, 29]. It is not based on folding a single
DNA strand but uses a set of short artificially created DNAs. This allows for the assem-
bly of different three-dimensional structures by choosing the correct combination of pieces
from an existing set. Put together the sub-units self-assembly into their final structure in
a similar way virus capsids do. The only major difference between the two is the specificity
of components and hence the achievable complexity. A conceptual comparison is shown in
Fig. 3.1. The similarity of the dynamics of the two processes hints at the existence of simi-
lar weaknesses and strategies to account for them. Indeed, brick-based assembly is affected
by the same type of depletion traps implied by the assembly line model. Furthermore, it
has been observed experimentally as well as by computational simulations that nucleation
plays a central role for the assembly process [22–24,27]. Accordingly, the reduction in nu-
cleation speed leads to a similar improvement in yield as for virus capsids. In addition, the
variability between sub-units allows for strategies like the creation of hierarchical assem-
bly paths or strongly favor seeds centered around a specific component [149–151]. Which
methods can be used to reliably improve yield in general is an open research question that
is also the basis of our project.
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3.2 General principles and modelling

In this work, we focus on the simultaneous assembly of identical structures into finite sized
target structures. Examples are the assembly of virus capsid or DNA-brick-based creation
of artificial nano-structures as discussed above. Despite occurring in many different bio-
chemical contexts such self-assembly processes seem to follow the same basic principles
(see Fig. 3.1). In a first step, resources need to be made available or enabled to perform
their respective task. This may happen via simple addition to a solution by an experi-
mentalist or more complex biological mechanisms like gene expression or conformational
changes [32, 152]. In the next step, an initial nucleus has to form [22–24, 32–34]. As was
observed experimentally as well as in theoretical studies, a free energy barrier exists that
has to be overcome to enter the actual growth phase [26,153–155]. In this stage, the initi-
ated structures become stable and grow, mainly by monomer attachment, into their final
form [32, 156, 157]. Depending on the time scales considered the growth process may be
assumed to be irreversible. If resources are limited, this may result in the depletion of
all resources with many structures being stuck in intermediate configurations. A univer-
sally observed method to avoid depletion traps is to make structure nucleation significantly
slower than growth [21–26]. The goal of this research project is to study whether this is in-
deed the case, particularly when stochastic effects come into play on mesoscopic scales. To
this end, we introduce a conceptual mathematical model that captures the characteristics
of a generic self-assembly process and study it employing analytical methods in combina-
tion with stochastic simulations. How those two methods compare to each other provides
insight into the relevance of fluctuations and hence directly links to the research question
of this thesis.

An illustration of the model is shown in Fig. 3.2. It extends and combines previous
work in the fields of virus capsids assembly [32,156], linear filament assembly [158–160] and
assembly of information rich structures [151, 161, 162]. S particle species denoted by the
indices 1, . . . , S populate a well-mixed environment. The target structure they assembly
into is a ring of size L. Each species binds to particles with periodically neighboring indices
e.g., 3 to 2 and 4 or 1 to 2 and S. Apart from that, no species is distinguished from the
others. In the special case S = 1 the ring is completely homogeneous and an assembly-
line-like model is obtained. Systems with 1 < S ≤ L are called (fully) heterogeneous and
describe the assembly of information rich structures. Note that because miss binding is not
allowed, L has to be an integer multiple of S. Once a dimer is formed via the combination
of two monomers it can only grow via monomer attachment. A generalized model including
polymer-polymer binding is discussed in the outlook in Section 3.5 in combination with a
second model extension relaxing the linear binding assumption. Both generalizations are,
however, assumed to be of minor importance for our purposes [21,32,151,163–165].

Monomers of all species start in an inactive state and become activated at identical
per capita rate α. Afterwards, they can perform any binding event available to their
species. In the beginning the system contains N particles of each species allowing for the
creation of NS/L ring structures. The yield of the process is measured relative to this
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Figure 3.2: Illustration of the assembly model. S particle species form a ring of size
L via circular binding e.g., species 1 may bind to 2 or S. If the size of the ring is larger
than the number of species each species appears L/S times in the final structure. To have
a unique production yield and well-defined absorbing state, L/S is only allowed to take
integer values. Initially, N particles of each species are in an inactive state. Only after the
activation step, which happens at rate α, the monomers are able to bind to each other.
Structures grow via monomer attachment. A nucleation size Lnuc exist. Above, growth is
irreversible and takes place with identical rates ν. Below, binding is size dependent and
happens at rates µ`. Furthermore, polymers may decay into monomers at size dependent
rates δ`. As soon as a ring is finished it can neither grow nor shrink but remains stable for
the rest of the assembly process. [Adapted from [122]]

number. If NS/L rings are created the yield equals one. The existence of a free energy
barrier is explicitly included in the form of a nucleation size Lnuc corresponding to the
position of its maximum [22–24, 32, 140, 151, 155, 158]. Decay of polymers is only possible
below and happens at size dependent rates δ`. Monomer attachment in the nucleation
regime has size dependent rates µ`. In contrast, the growth process taking place above is
irreversible [32,140,151] and has constant monomer binding rate ν. Once a ring structure
is finished it is completely stable and does not affect other reactions. This way, the system
reaches an absorbing state that marks the well-defined end of the assembly process. The
yield obtained at this point is an upper bound for the best achievable results at finite
times. From an experimental perspective, time in general is another important aspect
to be considered but it introduces a certain level of arbitrariness. When to evaluate or
alternatively which yield should be achieved at compared times is a matter of pure choice.
A more detailed discussion of this topic is given in Appendix D and will also be part of a
follow-up research project [166]. Finally, because of the limited resources in combination
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Figure 3.3: Illustration of kinetic trapping. Because resources are finite not all initi-
ated ring structures might get finished. If several are assembled simultaneously they may
take required monomers from each other. The resources get depleted and the system be-
comes trapped in an unfavorable configuration. This can be avoided if structure growth is
sufficiently favored compared to nucleation events. [Adapted from [122]]

with irreversible binding depletion traps may randomly occur as illustrated in Fig. 3.3.
The yield obtained hence depends on the exact assembly path of the system. To study
how this is related to the existence of significant stochastic fluctuations is what makes the
investigation conceptually interesting beyond its implications for the field of self-assembly
itself. We start our analysis by discussing the derivation of an analytic theory based on a
deterministic approximation.

3.3 Deterministic theory

To allow for a more concise notation, we start by introducing the general binding rates ξ`
and decay rates ∆` which apply to structures above and below the nucleation size

ξ` :=

µ`, if ` < Lnuc

ν, if ` ≥ Lnuc
, (3.1a)

∆` :=

δ`, if ` < Lnuc

0, if ` ≥ Lnuc
. (3.1b)

Similar to the approach employed for TASEP like systems in Chapter 2 particle numbers
ns` ∈ {0, . . . , N} are used to describe the state of the system. The upper index s denotes
the species at the left end of the considered structure and the lower index 0 ≤ ` ≤ L its size
with ` = 0 referring to the inactive state. So, the major difference compared to Chapter 2
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Figure 3.4: Conceptual illustration of the master equation terms. Four possi-
ble types of events may take place. Monomers get activated independently. Two active
monomers can form a dimer. A monomer can bind to either end of a polymer. Finally, a
polymer which is below the nucleation size may decay into monomers. [Adapted from [122]]

is that more than two states and species exist1. The lattice site index µ and the polymer
index ` do not differ conceptually. Accordingly, we can describe the time evolution of our
system by a set of differential difference equations

d
dtn

s
0 = −αns0 , (3.2a)

d
dtn

s
1 = αns0 −

L−1∑
`=1

ξ`
(
ns1n

s+1
` + ns1n

s−`
`

)
+

Lnuc−1∑
`=2

s∑
k=s+1−`

∆`n
k
` , (3.2b)

d
dtn

s
2 = ξ1 n

s
1 n

s+1
1 − ξ2 n

s
2 n

s+2
1 − ξ2 n

s
2 n

s−1
1 −∆2 n

s
2 , (3.2c)

d
dtn

s
` = ξ`−1 n

s
`−1 n

`+s−1
1 + ξ`−1 n

s+1
`−1 n

s
1 − ξ` ns` ns+`1 − ξ` ns` ns−1

1 −∆` n
s
` , (3.2d)

d
dtn

s
L = ξL−1 n

s
L−1 n

L+s−1
1 + ξL−1 n

s+1
L−1 n

s
1 . (3.2e)

Four different types of terms appear corresponding to the events of activation, dimeriza-
tion, structure growth and decay. An illustration of the origin of the respective expressions
is shown in Fig. 3.4. Again, finding an exact solution to these equations is out of scope and
we focus on the analysis of macroscopic observables given in the form of expectation values
〈ns`〉. At this point it is important to note that, while our system studied in Chapter 2 was
trivially ergodic this one trivially is not. The assembly process by construction always ends
up in an absorbing state after a finite number of reaction steps. Afterwards no other state

1In fact, the species index s is in analogy to the lane index i of the lattice gas model. The species S
and D do not have a counterpart in the assembly model.
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Figure 3.5: Illustration of the mean-field assumption. Because of the rotational
symmetry of the assembled ring, species are not distinguishable in the ensemble average.
Factorizing correlations, the system is effectively always treated as being homogeneous,
irrespective of the number of species S. Accordingly, polymers of the same size can be
grouped and are referred to by a single density c`. [Adapted from [122]]

can be reached at all. This directly implies that a time average is not suited to describe
our system and terms of the form 〈ns`〉 have always to be treated as ensemble averages.
As a consequence, we cannot study the stationary state configuration but have to keep
time as an important factor for the current state. Fortunately, since by construction of the
model all species are interchangeable via cyclic relabeling a symmetry breaking between
them cannot occur in the ensemble average, meaning 〈ns`〉 = 〈nk` 〉 ∀s, k. So, as for the lane
index i of the extended TASEP model, we can drop the species index s in the macroscopic
description. To emphasize the similarity to chemical rate equations we use concentrations

c` := 〈n
s
`〉
V

, (3.3)

to describe the current state of the system. As before, no approximations have been made
so far but now become necessary to obtain a closed set of equations. Neglecting stochastic
fluctuations, we make the mean-field assumption

〈nsinkj 〉 = 〈nsi 〉〈nkj 〉 ∀s, k. (3.4)

Any major differences between theory and stochastic simulations must be assumed to
have their origin in this approximation. The corresponding effective model that is studied
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is illustrated in Fig. 3.5 and is described by the differential difference equations

d
dtc0 = −α c0 , (3.5a)

d
dtc1 = α c0 − 2c1

L−1∑
`=1

ξ` c` +
Lnuc−1∑
`=2

l∆` c` , (3.5b)

d
dtc2 = ξ1 c

2
1 − 2 ξ2 c1 c2 −∆2 c2 , (3.5c)

d
dtc` = 2 ξ`−1 c1 c`−1 − 2ξ` c1 c` −∆` c` , for 3 ≤ ` < L , (3.5d)
d
dtcL = 2 ξL−1 c1 cL−1 . (3.5e)

The associated yield is given by

yield(t) = cL(t)V L
SN

. (3.6)

Eq. 3.5 is closely related to the Becker-Döring equation used to describe crystallization
phenomena [167]. Furthermore, it has been used to generally describe the assembly process
of virus capsids previously [32,156,158–160]. In particular, the case Lnuc = 2 in the absence
of an activation steps was studied analytically [140] using a continuous limit similar to the
one discussed for the TASEP in Chapter 2. The difference in this case is that the process
is not assumed to be stationary. To stress this point, we will explicitly include the time
dependence c` = c`(t) from here on. In the following we are going to extend the results
existing for virus capsid assembly [140] to derive an analytic theory describing our model.

In the simplified case Lnuc = 2 the generalized binding and detachment rates reduce to
ξ1 =:µ, ξ`≥2 =: ν and ∆i = 0. This allows to write Eqs. 3.5 for structures with ` > 2 in a
simple form

∂tc`(t) = 2νc1(t)
[
c`−1(t)− c`(t)

]
. (3.7)

Now, similar to the previous chapter we assume ` to be a continuous variable x and c to
vary slowly in space such that it can be approximated via a Taylor series expansion

c(x− 1, t) = c(x, t)− ∂xc(x, t) + 1
2∂

2
xc(x, t) . (3.8)

Plugging the expanded concentration into Eq. 3.7 yields a partial differential equation of
the form

∂tc(x, t) = −2νA(t) ∂xc(x, t) + νA(t) ∂2
xc(x, t) , (3.9)

where A := c1 denotes the concentration of active monomers. Eq. 3.9 can be interpreted
as a continuity equation ∂tc(x, t) = − ∂xJ(x, t) with current J(x, t) = 2νA(t) c(x, t) −
νA(t) ∂xc(x, t). The particle flux into the system takes place in the form of dimeriza-
tion which happens at x = 2 with the rate µA2(t) resulting in the boundary condition

2νA(t) c(2, t)− νA(t) ∂xc(2, t) = µA2(t) . (3.10)
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Figure 3.6: Travelling wave picture. The system’s dynamics can be approximated as
a travelling wave in the space of polymer sizes. It starts at the left and moves to the
right via monomer consumption. The right boundary corresponds to the absorbing state.
Two scenarios exist: (a) All monomers may be bound in intermediate configurations and
the wave gets stuck on its way. (b) Alternatively, it reaches the right boundary which
marks the onset of yield. Active and inactive monomers as well as finished ring structures
have to be treated separately and are not part of the continuous description (symbols).
[Parameters: L = 60, Lnuc = 2, N = 10000, µ = ν = 1; adapted from [122]]

Because finished ring structures do not interact with the rest of the system they can
be treated as leaving the system. This pictures corresponds to an absorbing boundary
condition at the right end of the system c(L, t) = 0. Finally, the monomer concentration
has to fulfil the differential-integral equation

∂tA(t) = αCe−αt − 2µA2(t)− 2νA(t)
L∫

2

c(x, t) dx , (3.11)

with C being the initial inactive monomer concentration C = NS/V . The integral accounts
for the possible binding of an inactive monomer to any unfinished polymer.

The physical interpretation of Eq. 3.9 in combination with Eq. 3.11 is that the assembly
of rings can be seen as a travelling wave whose movement is fueled by the consumption
of monomers. Yield is produced as soon as the wave reaches the right boundary. In
this picture, a depletion trap corresponds to the wave getting stuck because it ran out of
monomers to consume for movement. Fig. 3.6 shows the numerical solution of Eqs. 3.5
confirming the physical interpretation.

The intuitive picture can now be turned into a mathematical condition for the onset
of yield. Two aspects contribute to the travel distance of the right end of the wave. The
center of mass movement dadv = 2ν

∞∫
0
A(t)dt and the spreading of particles around it due

to fluctuations ddiff =
√

2ν
∞∫
0
A(t)dt. The sum of both must be large enough to reach the
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Figure 3.7: Illustration of the yield improvement strategies. Two possible scenarios
exist that favor structure growth over nucleation. Either the activation step a has to
be slow to ensure limited resources such that an existing structure is finished before a
new one can be started. Alternatively, the nucleation of new structures can be slowed
down directly. In this dimerization limited scenario step b is enforced which suppresses
nucleation. [Adapted from [122]]

right boundary

dadv + ddiff ≥ L− 2 . (3.12)

The corresponding equation for the monomer concentration reads

∞∫
0

A(t)dt != 1
8ν

(√
1 + 4(L− 2)− 1

)2
≈ L−

√
L

2ν . (3.13)

This equation has a very intuitive interpretation as well. The left side corresponds to the
availability of monomers over time. A small value means fast depletion of resources while a
large one signals continuous long-time usage. The larger the assembled ring is—represented
by the factor L on the right side—the more control during the assembly is need. In contrast,
faster growth represented by a higher rate ν makes higher yield easier to achieve. This is
reminiscent of the idea that structure nucleation should be slow compared to growth. In
our model two rates exist which can slow down nucleation if they are small compared to
ν, the activation rate α and the dimerization rate µ. Both are included only implicitly
in Eq. 3.13 via the solution for A based on Eq. 3.11. The respective mechanisms are
illustrated in Fig. 3.7. Two extremal cases exist in which only one of them is responsible
for the limitation of nucleation events. We will study both isolated at first to separate
their individual effects. The first one α → ∞ which is controlled by µ we refer to as
the dimerization scenario. The second one µ = ν controlled by α is called the activation
scenario in the following. For both, threshold values of the respective parameters below
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Figure 3.8: Deterministic yield curves. Slowing down nucleation either via reduction
of the activation rate α or the dimerization rate µ increases the yield from zero to up to
one. Increasing the size of the ring L shifts the curves towards slower nucleation. While the
activation scenario µ = ν (a) depends on the number of particles, the dimerization scenario
α → ∞ (b) does not, as emphasized by the overlapping data points. The theoretical
description based on chemical rate equations (lines) and stochastic simulations (symbols)
are in perfect agreement. The symbols on the lower axis and dashed lines indicate the
threshold activation rate αth and dimerization rate µth. Those become more accurate with
increasing ring size L. [Parameters: ens. = 16, S = L, Lnuc = 2, ν = 1; adapted from [122]]

which finite yield is observed can be derived

α < αth := ν

µ

(√
π Γ(2/3)

Γ(7/6)

)3

3
νC

(L−
√
L)3

(3.14)

µ < µth := π2ν

2(L−
√
L)2

. (3.15)

The detailed derivation of the results is presented in the supplemental material of our
research paper [122] which is reprinted in Appendix D to provide a complete picture. They
constitute a generalization of the previous results in the field of virus capsid assembly [140]

Eqs. 3.15 have several interesting implications for the comparison of both mechanisms.
In contrast to the dimerization mechanism, the yield of the activation mechanism depends
on the initial particle number. In addition, it depends cubically on the ring size L while
the dimerization threshold decreases quadratically. A comparison between exact stochastic
simulations, numerical solutions of the original mean-field differential difference equation
Eq. 3.2 and the threshold values in the limit of large particle numbers is shown in Fig. 3.8
for a completely heterogeneous system. As can be seen, the deterministic approximation
for the final yield based on concentrations perfectly agrees with the exact results confirming
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the validity of the performed mean-field approximation. Because the simulations were per-
formed for a fully heterogeneous system while the deterministic ansatz indirectly assumes
a homogeneous system it is implied that the existence of different species actually is irrele-
vant. The threshold values adequately describe the onset of yield with an improvement in
accuracy for larger ring sizes L as expected since L � 1 was assumed for the derivation.
Furthermore, the qualitative predictions are confirmed. The activation scenario depends
on the initial particle number N and shows more sensitivity towards the ring size. Both
mechanisms can be used for yield improvement. Increasing either α or µ sufficiently always
results in perfect yield at some point.

Taking together, in this section we analytically derived an approximation for the yield
realized in the absorbing state in terms of particle concentrations. Further analysis resulted
in explicit conditions for the onset of finite yield in the form of the threshold values Eq. 3.15.
Finally, all results were confirmed in the limit of large particle numbers by stochastic
simulations implying an equivalence between heterogeneous and homogeneous system. This
now serves as the starting point for the study of the impact of stochastic fluctuations.
We have found a system that is well described by an analytic theory based on mean-
field assumptions. Comparing the analytic theory to the stochastic simulations we now
investigate what the limitations are and which parameters are responsible for controlling
the strength of stochastic fluctuations.

3.4 Stochastic effects
The most natural variable to start the analysis of stochastic effects with is the initial
particle number N . Because the system is assumed to be well-mixed no length scale
exists that can be controlled in the system as for the two-dimensional lattice gas model
in the previous chapter. Fig. 3.9 shows how in a completely heterogeneous system the
yield changes for both scenarios if the particle number is lowered while keeping all other
parameters constant. The effects are significantly different for both scenarios.

Irrespective of how low the particle number is, by reducing the dimerization rate µ
sufficiently, perfect yield can always be achieved. Even in the most extreme case of a single
particle per species the curve is just slightly spread out. The inflection point remains in the
same position. Consequently, the dimerization scenario can generally be described by the
deterministic theory which ultimately leads to the conclusion that stochastic fluctuations
are of minor relevance.

While for the activation scenario the activation rate at which yield first can be observed
does not significantly change either, the story drastically changes with respect to the yield
optimization potential. For limited resources the yield saturates below one which is in
sharp contrast to the deterministic theory. Already for 100 particles per species, or 6000 in
total, production of successfully assembled rings is completely suppressed. The difference
between the deterministic approximation and the actual system is as large as possible
there. We thus found the best parameter regime for the investigation of stochastic effects:
The activation scenario with a mesoscopic number of particles in the limit of vanishing



56 3. Reaction paths and depletion traps: Macromolecular self-assembly

0

a b
de

cr
ea

si
ng

N=5000
N=1000
N=500
N=100
theory

10-8 10-7 10-6 10-5 10-4 10-3

yi
el

d

N=1000
N=100
N=10
N=1
theory

10-5 10-4 10-3 10-110-2

dimerization rateactivation rate

1

0.8

0.6

0.4

0.2

Figure 3.9: Yield curves for reduced particle numbers. For the activation scenario
µ = ν (a) strong deviations between deterministic theory (line) and stochastic simulations
(symbols) exist. Most prominently, the yield curves saturate below one. Depending on the
initial numbers of particles, perfect yield might be expected theoretically while no yield is
achieved at all. Because the activation rate α is rescaled, deterministically all curves are
expected to collapse onto the same master curve. In contrast to the activation scenario,
the dimerization scenario α→∞ (b) is barely affected by fluctuations. Even for the lowest
possible number of particles the curve is just flattened and the characteristics like maximum
possible yield and the position of the inflection point do not change. [Parameters: ens. =
1024, L = 60, S = L, Lnuc = 2, ν = 1; adapted from [122]]

activation rate.
To find the source of the drastic deviations between actual dynamics and the determin-

istic theory we compare the stochastic simulations to the travelling wave ansatz. As can be
seen in Fig. 3.10.a the number of structures in unfinished configurations is heavily underes-
timated. This causes the wave to get stuck significantly earlier than expected according to
the deterministic theory. Apparently, there exists a lower limit to the number of actively
built structures that cannot be overcome by reducing the activation rate. The investigation
can further be systematized by taking the effects of nucleation size Lnuc and number of
species S into account2. The dependency of the maximal possible yield in the activation
scenario is show in Fig. 3.10.b. The strength of the stochastic fluctuations, manifesting in
the reduction of the maximum yield, increases with the number of species composing the
ring. While a homogeneous system is not affected at all heterogeneity strengthens devia-
tions from the mean-field behavior. Furthermore, increasing the nucleation size weakens
the yield reduction until prefect yield is always achieved independent of the number of

2In the main text we only focus on constant sub-critical rates µ` = µ and δ` = δ. The more general
case is discussed in the Appendix D
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Figure 3.10: Sources of the stochastic yield reduction. (a) As soon as particle
numbers get low, significant deviations between the deterministic travelling wave solution
and the stochastic simulations can be observed. The height of the wave and accordingly
the number of simultaneously assembled structures becomes much larger. This results
in a faster monomer depletion which causes the wave to freeze further to the left. The
maximum yield limitation can hence be interpreted as a limitation in the travel distance
by too many nucleation events. (b) The strength of the stochastic effects depends on
the number of species composing a ring S and the nucleation size Lnuc. A completely
homogeneous structure (S = 1) is not affected at all. The strength of the stochastic effects
increases with S because more potential for fluctuations among species exists. In contrast,
increasing the nucleation size allows larger structures to disassemble and thereby reduces
the susceptibility to early stage fluctuations. [Parameters: ens. = 1024, µ = ν = 1, (a)
S = L = 100, Lnuc = 2, N = 1000, (b) L = 60, SN = 60000; adapted from [122]]

species. Taking all observations together, the maximum yield decreases with the number
of particles and the nucleation size but most critically the effect depends on the chosen
mechanism and the number of species.

The reason why heterogeneous systems containing few particles saturate at low yield
can be understood in terms of Fig. 3.11. Considering the limit of vanishing activation rate,
time becomes irrelevant since all binding events possible take place before the next particle
is made available. The entire dynamics of the system is determined solely by the order in
which particles are activated. Interestingly, this is fairly similar to the mechanism causing
the extended TASEP model to exhibit a cramming density below one. Everything is simply
reduced to a random sequence of particle species—or species and lanes in the last chapter.
This established combinatorics as the central determinant of the system which brings along
fluctuations that cannot be neglected. Here, those are fluctuations between the particle
numbers of different species. To put it simple, just because the number of particles of
each species at a given time are identical in the ensemble average does not imply they are
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Figure 3.11: Illustration of the combinatorics origin of the maximum yield. In
the limit of infinitely small activation rate α, all possible reactions take place before the
next monomer becomes available for binding. Effectively, the system’s dynamics can be
reduced to a random sequence of particles. The assembly process is purely limited by
combinatorics that cannot be affected by any of the other control parameters. [Adapted
from [122]]

in each run. This invalidates the mean-field assumption 〈nsinkj 〉 = 〈nsi 〉〈nkj 〉. Increasing
the nucleation size relaxes the strict dependence on the particle sequences. Only after the
respective size is reached particles are permanently bound to a single structure. Further-
more, if fewer species are present in the system the potential for large deviations between
them is smaller with the extreme of just a single species without any. A quantification of
this qualitative arguing is the topic of a follow-up research project [168].

Since we have found that our system possesses deterministic mechanisms that increase
the yield by reducing the nucleation rate and stochastic effects that limit the maximum
yield by combinatorics if the activation becomes too low, a natural question to ask is
whether competition between those two effects exists. And indeed, if the activation and
dimerization scenario are combined, a transition between two regimes dominated by either
the deterministic or the stochastic dynamics can be observed as illustrated in Fig. 3.12.
This is possible since the inverse dependence of αth on the dimerization rate µ causes a
shift of the curves to the right. Yield is achieved deterministically in a regime which is not
already dominated by fluctuation. As a result, the yield does not only saturate at some
point but may even decrease again for smaller activation rates. Such a non-monotonic
dependency of the yield is in clear contradiction to the assumption of a sigmoidal shape
and turns yield maximization into a fine-tuning problem. This nicely proofs that our basic
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Figure 3.12: Transition between deterministic and stochastic regime. In case
activation and dimerization reduction are combined, a strongly non-monotonic yield curve
can be achieved. Initially, reducing the activation rate causes the deterministically expected
increase in yield. But at some point, fluctuations become dominant in the system which
triggers a yield reduction. The optimum is achieved not by the slowest possible activation
rate but on an intermediate scale. This turns optimization into a fine-tuning problem.
[Parameters: ens. = 1024, S = L, Lnuc = 2, ν = 1; adapted from [122]]

understanding of the mechanism relevant for the final yield are indeed correct and we can
now conceptually discuss their implications for the field of self-assembly and beyond that
in the context of this thesis.

3.5 Conclusion

We found that in our system two sources for a reduction in yield exist. First, depletion
traps which are present already at a deterministic level and affect the yield irrespective of
the number of species S. They can fully be captured using a mean-field approximation
to derive chemical rate equations that describe the dynamics in terms of concentrations.
A travelling wave fueled by monomer consumption transports mass from smaller to larger
structure sizes in the configuration space. Maximization of yield can be achieved by slowing
down activation or dimerization sufficiently to ensure a lasting supply. In this way, perfect
yield can always be realized. An equivalence between homogeneous and heterogeneous
systems exists because of the symmetry between species in the deterministic limit. The
simple idea of slowing down nucleation compared to growth in an arbitrary way to improve
yield is generally confirmed.

The story drastically changes as soon as resources are no longer abundant. While the
dimerization scenario is still well described using the deterministic theory, significant de-
viations can be observed in the activation scenario. Most prominently, the yield saturates
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Figure 3.13: Polymer-polymer binding model. The original model assumed structure
growth to take place only via monomer attachment. In an extended model, we also include
the possibility of polymer-polymer binding as illustrated in panel (a). Since the extended
model shows the same kind of stochasticity induced yield limitation (panel (b)), we can
conclude that it is not just an artefact of the original model assumptions. [Parameters:
ens. = 1024, S = L = 100, Lnuc = 2, µ = ν = 1; adapted from [122]]

at an imperfect value for heterogeneous systems. This cannot be explained via mean-field
approximations and reveals fundamental differences between homogeneous and heteroge-
neous assembly on the stochastic level. Increasing the nucleation size mitigates this effect
because reversibility allows for the correction of stochastically occurring unfavorable nucle-
ation events. Finally, if both mechanisms are combined a transition from a deterministic to
a stochastic-dynamics-dominated regime can be observed. This results in non-monotonic
yield curves that are not possible for homogeneous systems; Maximization of the yield
turns into a complex fine-tuning problem and cannot be reduced to a simple reduction of
a single rate.

An important question to ask at this point is how much the observed effects rely on
our model assumptions. Particularly, polymer-polymer binding appears to fully resolve
the yield limitation as illustrated in Fig. 3.11. To test the robustness of our results we
simulated the extended dynamics shown in Fig. 3.13.a. Binding is possible as long as no
overlap between two polymers is created (`1 + `2 ≤ L). As can be seen in Fig. 3.13.b the
stochastic yield reduction still exists. The reason is that irreversible binding results in the
creation of polymers that permanently cannot bind to each other because of the partial
overlap. Interestingly, for the assembly of a single ring structure this cannot be the case
and yield has to be always one. Accordingly, the yield does not monotonically depend
on the number of particles as can be seen from the comparison of the 10-particle system
to the others. This is a curiosity for which reducing the number of particles reduces the
relevance of fluctuations. Beyond that, the extended model confirms our findings for the
main model.
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Figure 3.14: Non-linear assembly path model. (a) In a second extended model, we
study the assembly of a fully heterogeneous square of size

√
L ×

√
L. This model does

neither exhibit a complete symmetry between the different species nor a linear assembly
path. In this way, we relaxed all major assumption of the original model. The binding rate
of a monomer to the square is proportional to the numbers of contacts created. As shown
in panel (b), still a reduction of the maximum yield due to stochastic fluctuations exists,
which shows the same characteristics. This confirms that the overall effect is not caused
by a particular model assumption. [Parameters: ens. = 256, S = L = 100, Lnuc = 2,
µ = ν = 1; adapted from [122]]

Another simplifying assumption made is the existence of a linear assembly path. To
ensure validity of our results, we studied the additional model shown in Fig. 3.14.a. A
square is assembled using similar dynamics as in the original model. But because of its
two-dimensional structure it is not limited to a unique assembly path. Note that this
model is only well-defined in the fully heterogeneous case. It is not possible to define a
homogeneous analogue because no limitations in the size could exist. As can be seen in
Fig. 3.14.b the same effects are present as for the ring models. Accordingly, our results do
not rely on the linear assembly path either and hence are robust against this modification.

Our analysis shows that while being deterministically similar, differences between virus
capsid assembly and information rich structures exist when stochastic fluctuations are
taken into account. Capsid assembly is well described by concentration-based models and
favoring growth over nucleation in any way can improve the yield. For DNA-brick-like
assembly processes reducing the dimerization are theoretically preferred if resources are
not abundant. In practice, the experimental realization may not be as easy as for the
activation scenario which only requires gradual provision of components. For a reduced
dimerization rate a sophisticated design causing cooperative or allosteric effects is required.
Alternatively, homogeneity of the components or an increased nucleation size can be em-
ployed to improve yield. But those two options reduce achievable complexity or require
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more specific design. Mechanisms which reliably and efficiently can be used to optimize
yield for information rich structures remain an interesting open question that is the topic
of follow-up research to this project [166,168]. This is particularly true since demographic
noise as caused by the activation mechanism is not the only possible source of fluctuations.
Spatio-temporal fluctuations induced by reactions or diffusion are another example and
are the topic of the next chapter.

From a more general perspective, despite the differences of the system studied in Chap-
ter 2 and this model, conceptually many similarities exist: While one system is a spatially
extended driven lattice gas model with exclusion in the stationary state, the other exhibits
an absorbing state and describes well-mixed assembly of large macromolecules. These do
not seem to have an overlap at all. But on an abstract level the number of lanes plays a
similar role as the number of species and, because of irreversible binding, assembly of a
structure can be interpreted as unidirectional motion in a one-dimensional configuration
space. Furthermore, the ultimate source of stochasticity is given by a combinatorics prob-
lem that manifests in the limit of infinitely slow particle addition. The scale controlling
the strength of fluctuations is in one case the number of lanes and in the other it is the
number of species. If either of the two is increased, stochastic effects become stronger. For
a value equal to one no fluctuations are observed at all.



Chapter 4

Reaction kinetics and absorbing states:
The diffusive epidemic process

This chapter deals with the numerical investigation of the absorbing-state phase transition
in the diffusive epidemic process. The results presented will be part of the manuscript
Strong Coupling Behavior in the Diffusive Epidemic Process [169] which I prepare for
publication1 together with Borislav Polovnikov [170] (who contributes equally) and Erwin
Frey.

Despite its simple structure, the diffusive epidemic process admits a very rich phe-
nomenology which has resisted rigorous classification for several decades. A parame-
ter regime exists for which neither perturbatively nor non-perturbatively renormalization
group methods found a stable fixed point. This was interpreted as an indication for the
existence of a discontinuous phase transition. However, several numerical studies reported
the phase transition to be continuous in lower dimensions. Unfortunately, all these studies
relied on different approximation methods and are partially inconsistent among each other
such that still no definitive answer is available. The goal of this research project is to pro-
vide a concise picture of the one-dimensional diffusive epidemic process’ phase transition.
Since close to a critical point, systems exhibit very strong stochastic fluctuations, we use
exact stochastic simulations to obtain unambiguous numerical data. To avoid finite size
effects and similar artefacts, we employ measurements of dynamic spreading of activity to
show that the phase transition is always continuous and determine the corresponding criti-
cal exponents. Based on our findings, we provide an explanation for the existing deviations
between different previous approaches to study this system, and unravel the underlying
mechanisms. To put our results into perspective, we start with an introduction to the
diffusive epidemic process and methods employed for its quantification.

1Title may change in the process.
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4.1 The diffusive epidemic process
The diffusive epidemic process (DEP) was introduced in 1989 to model the spreading of an
infectious disease [35]. Nine years later it was generalized and reformulated in the form of a
reaction-diffusion system [36]. Alternatively, the DEP can also be interpreted as a minimal
model for cell polarity [171]. An illustration of the system in one dimension is shown in
Fig. 4.1. The diffusive epidemic process consists of two particle species that populate a
d-dimensional lattice. One species, denoted by A, represents "healthy" individuals while
the second species, denoted as B, corresponds to "infected" members of the population.
The interactions between the two are given via the reactions

A+B
λ−→ 2B, (4.1a)

B
1/τ−→ A. (4.1b)

The first reaction 4.1a represents the infection of healthy particles that happens at
rate λ. Recovery of infected particles takes place on a characteristic time scale τ , which
manifests in the form of the second reaction 4.1b. No immunity after recovery exists such
that a particle can immediately be reinfected. Both species move via diffusion at respective
rates DA and DB. In this form, the system constitutes a mass-conserving extension of the
paradigmatic directed percolation model [38]. Because particles only reallocate or switch
between the species, the total number of particles N and the average particle density in
the system ρ are conserved. Accordingly, the global state of the system is well-defined by
the total number of infected particles NB.

As for the systems discussed in Chapters 2 and 3, the stochastic dynamics of the
occupation numbers nAi and nBi at a given lattice site i can be represented by coupled
differential difference equations. In one dimension they read

d
dtn

A
i = DAn

A
i−1 +DAn

A
i+1 + nBi /τ − 2DAn

A
i − λnAi nBi ,

d
dtn

B
i = DBn

B
i−1 +DBn

B
i+1 − nBi /τ − 2DBn

B
i + λnAi n

B
i ,

(4.2)

which can be generalized to higher dimensions by including the possibility of diffusion
events in additional directions. Eqs. 4.2 appear to be fairly simple at first sight, but the
non-linear coupling nAi nBi is sufficient to prohibit an exact solution. Consequently, as a
start the same methods as in the previous chapters are applied to derive a deterministic ap-
proximation. To emphasize the connection to mass-conserving reaction-diffusion systems,
we use the notation ai := 〈nAi 〉 and bi := 〈nBi 〉. This way, the mean-field approximation
takes the form

λ〈nAi nBi 〉 = λaibi. (4.3)
As for the self-assembly model in Chapter 3, it is important to realize that the DEP is

not ergodic. B particles can only be created by other B particles. Once the infected species
goes extinct the system is trapped in an absorbing state; Irreversibility exists in the system.
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Figure 4.1: Illustration of the diffusive epidemic process in one dimension. Two
particle species populate a one-dimensional lattice. Each particle of the infected species B
may infect any particle of the healthy species A at the same lattice site at rate λ. In turn,
an infected B particle turns healthy again at rate 1/τ . Both species randomly diffuse at
fixed rates DA and DB. Because of mass conservation, the global state of the system can
be fully characterized using the total number of B particles NB.

However, this time it is not an explicit part of the model definition but a consequence of
the postulated dynamics. In contrast to Chapter 2, all simulation averages hence have
to be performed as ensemble averages. To emphasize the difference to a stationary state
average, we will include the time dependency explicitly from here on. Assuming the absence
of strong correlations between the species, the set of equations to solve then reads

d
dtai(t) = DA∆ai(t) + bi(t)/τ − λai(t)bi(t),
d
dtbi(t) = DB∆bi(t)− bi(t)/τ + λai(t)bi(t),

(4.4)

where ∆ denotes the discrete Laplacian. Despite being derived for the one-dimensional sys-
tem, in this form the equations can be used to described the DEP in arbitrary dimensions.
The central question now is, what stationary state the deterministic system approaches
for sufficiently long evolution times. A direct solution to Eqs. 4.4 are spatially constant
densities

ai(t) =: ρA(t),
bi(t) =: ρB(t).

(4.5)

The stationary state condition then simply is given by

0 = −λ ρA(t) ρB(t) + ρB(t)/τ. (4.6)

Because of the mass conservation, which requires ρA(t) + ρB(t) = ρ = const, two possible
phase space structures exist in dependence on the initial condition. Fig. 4.2 (a) and (b)
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Figure 4.2: Illustration of the deterministic homogeneous solution of the DEP.
Depending on the total particle density ρ coexistence between infected and healthy species
may be possible. If it is too low (a), only one stable fixed point exists at zero B species
density. When increasing the total density (b), this fixed point becomes unstable while
a stable fixed point at finite ρB is created. (c) Deterministically, a transition between
extinction and coexistence is predicted at (λτ)−1. Because fluctuations can drive the system
into the unstable but absorbing extinction fixed point, the actual system shows different
behavior; Coexistence has to require higher total densities. In the limit of infinite density,
the deterministic behavior has to be recovered. How the transition between extinction
and coexistence takes place is an open question. In particular, it is unclear whether the
transition can be discontinuous or is continuous in general.

illustrate the respective scenarios. Either a stable fixed point of Eqs. 4.4 exists at ρB = 0
or this fixed point becomes unstable and a second, stable one occurs at ρB = ρ − (λτ)−1.
This can be summarized by [38,51,52]

ρB =

ρ− (λτ)−1 if ρ > (λτ)−1

0 if ρ ≤ (λτ)−1 . (4.7)

Deterministically, the system undergoes a continuous phase transition between coexistence
and extinction of the infected species as shown in Fig. 4.2.c. This, however, makes one
important simplification that does not hold true as soon as stochasticity is considered.
Fluctuations may drive the system into the unstable fixed point, trapping it permanently.

The diffusive epidemic process exhibits an absorbing-state phase transition [37,38] that
leads to significant deviations from the mean-field result (which does not even depend on the
dimensionality or diffusion rates). Still, it allows us to draw some important conclusions.
The transition towards coexistence will be shifted to higher densities since fluctuations
favor extinction such that (λτ)−1 is a lower bound for the critical density. Furthermore,
in the macroscopic limit ρ → ∞ the actual behavior of the system should approach the
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mean-field result. Whether the transition that takes place in between is continuous or
discontinuous is at this point an open question and a refined analysis or suitable stochastic
simulations are necessary to obtain accurate predictions. The next sections provide an
overview of the respective approaches.

4.2 Renormalization group methods and stochastic
simulations

To analytically study Eqs. 4.2 without using the rather drastic mean-field approximation
〈nAi nBi 〉 = aibi, the diffusive epidemic process can be mapped onto a continuous field theory;
This allows for the use of renormalization group methods [172–175]. As was already shown
in 1998 [36], the DEP has three different parameter regimes that depend on the ratio of
the diffusion constants DA and DB. For the cases DA = DB and DA < DB perturbative
renormalization predicts the existence of fixed points and hence suggests a second order
phase transition. In contrast, for DA > DB neither using perturbative [36] nor non-
perturbative methods [39] a stable fixed point has been found. This led to the conclusion
that the transition has to be discontinuous in this case [176]. Based on the renormalization
group analysis it seems, both scenarios illustrated in Fig. 4.2.c may occur depending on
the diffusion constants.

Inconsistencies in the understanding of the diffusive epidemic process became evident
when several numerical studies on the one hand confirmed the existence of the three dif-
ferent regimes, but on the other hand reported that all of them show a continuous phase
transition (up to dimension three) [37,40–46]. In addition, the actual values of the critical
exponents associated with the transitions vary among the studies which all used different
numerical approximation methods. Because of the contradictory results, a debate about
the validity of the analytic predictions in dimensions one and two exist [40,41,177,178].

A possible source of the deviations between simulations and analytic calculations in
lower dimensions is that the perturbative renormalization is performed assuming the sys-
tem to be close to four dimensions, with only a small deviation ε := 4−d. Recent theoretical
studies suggest that terms in the action which can be neglected close to the critical dimen-
sion dc = 4 may play a significant role in dimensions below two [39]. Whether this is indeed
the case has to be confirmed numerically. As a first step, the inconsistencies between the
different studies have to be resolved first. We do so by employing exact stochastic simu-
lations that yield unambiguous results for the behavior of the system and combine them
with measurements of the dynamic spreading of activity [179–187]. The advantage of this
method is that finite-size effects are only relevant as soon as the front reaches the system’s
boundaries [38, 50–52].
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Figure 4.3: Illustration of the dynamic spreading measurements. The system is
initialized with a small cluster of infected particles at its center. Three observables are
tracked: First, the total number of B particles in the system NB; Second, the ratio of
systems that still have a B particle population at a given time Psurv; And third, the size
of the B particle cluster in the surviving systems R. For the respective averages extinct
systems are disregarded and do not contribute with the value zero.

4.3 Scaling relations

Instead of measuring observables only in homogeneous systems of different sizes [37,40–46],
we use dynamic spreading of activity [38, 50–52] to determine the critical exponents. The
approach is conceptually illustrated in Fig. 4.3. In the initial state, a cluster of infected
B particles is positioned at the center of the system. Afterwards, the temporal evolution
of the number of B particles in the system NB, the ratio of systems having a surviving
B particle population Psurv and the cluster size squared R2 in the surviving system is
recorded. If the absorbing-state phase transition of the DEP is indeed continuous, the
scaling relations

〈NB(ρ, t)〉 = tθ N̂B

(
(ρ−ρc)ν‖ t

)
, (4.8a)

Psurv(ρ, t) = t−δ P̂ surv
(
(ρ−ρc)ν‖ t

)
, (4.8b)

〈R2(ρ, t)〉 = t2/z R̂2
(
(ρ−ρc)ν‖ t

)
, (4.8c)

have to hold close to it [51,52]. Here ρc denotes the critical density and N̂B, P̂ surv and R̂2

are universal functions. Furthermore, θ, ν‖, δ and z are four independent critical exponents
— note that ν‖ = zν⊥ and δ := β′/ν‖ in the usual notation. In addition, to directly compare
our results to previous work and hyperscaling relations, we also measure the decay of the
order parameter ρB when initializing the system in a homogeneous state. In this case, the
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scaling form reads [38,52]

〈ρB(ρ, t)〉 = t−β/ν‖ ρ̂B
(
(ρ−ρc)ν‖ t

)
. (4.8d)

Altogether, Eqs. 4.8 define four observables and five independent critical exponents that
characterize the absorbing-state phase transition [38,52]. For both types of measurements
long simulation times in combination with sufficiently large ensembles sizes are required.
The respective results, obtained via the simulation methods explained in Appendix A.3,
are discussed in the next section.

4.4 Critical exponents in one dimension

The parameter regime of main interest is the one of faster A particle diffusion (DA > DB).
However, we start by analyzing the case of equal diffusion rates (DA = DB) which is
best understood. It will serve as a reference for our results obtained for the controversial
phase transition for DA > DB. We choose (λτ)−1 = 5 which represents an intermediate
deterministic critical density; Fluctuations are not too strong such that all systems die out
immediately but the behavior is not fully deterministic either. Furthermore, by rescaling
time the A particle diffusion rate is set to one (w.l.o.g. DA = 1).

Fig. 4.4.a shows the time evolution of the average B particle density ρB for systems
initialized homogeneously without any A particle present in the beginning. The large
system size L = 4096 in combination with periodic boundary conditions allows for the
assumption of weak finite size effects. According to Eq. 4.8d it is possible to collapse all
data onto one universal curve ρ̂B using the correct critical exponents ν‖ and β/ν‖ as well
as critical density ρc. The best achievable result is depicted in Fig. 4.4.b. After rather long
initial transients all curves align onto two branches — one below and one above the critical
density. The estimated critical quantities2 are ρc = 7.0 ± 0.05, β/ν‖ = 0.078 ± 0.003 and
ν‖ ≈ 4.

In a next step, we employ the estimated critical density obtained from the homogeneous
initial state to derive the remaining critical exponents using dynamic activity spreading.
Fig. 4.5 displays the time evolution of all four observables given in Eqs. 4.8. Panels (a–c)
were obtained for systems of size L = 8192 initialized with a cluster of ten B particles in the
center3. For comparison, panel (d) shows the density evolution of the homogeneous initial
state as used for the collapse in Fig. 4.4. All four curves converge towards straight lines in
the loglog-plots, with corresponding estimates for the critical exponents4 of z = 2.01±0.05,
θ = 0.333± 0.003, δ = 0.072± 0.005 and β/ν‖ = 0.075± 0.005. This agrees with the value
β/ν‖ = 0.078± 0.003 obtained from the data collapse. Two more consistency checks exist.

2The collapse is comparably insensitive to ν‖. The value ν‖ ≈ 4 is consistent with theoretical predictions
and hence the natural choice.

3The large system size L = 8192 is actually the smallest one possible to ensure that the cluster does
not reach the boundary in the considered time and hence avoid corruption of data.

4The estimates were obtained performing least square fits starting at t=1000.
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a

b

Figure 4.4: Data collapse of the B particle density for DA = DB and a homo-
geneous initial state. All curves can be collapsed assuming ρc = 7.0, ν‖ = 4.0 and
β/ν‖ = 0.078. Long initial transients exist for all densities before the universal curve is
reached. [Parameters: ens. = 5000, L = 4096, DA = 1, λ = 0.2, 1/τ = 1]
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Figure 4.5: Scaling behavior for DA = DB. Panels (a–c) show the power law fits for
systems initialized with a seed of ten B particles in the center. No deviations from the
stochastic simulations can be observed after the initial transients. (d) The particle density
for a system initialized with homogeneously distributed B particles follows a power law as
well. As expected from the scaling theory, we find δ = β/ν‖ within the numerical error
margins. [Parameters: ens. = 20000, L = 8192, DA = 1, λ = 0.2, 1/τ = 1, (d) as in
Fig. 4.4]
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Time-reversal symmetry of the DEP-action enforces β = β′, resulting in the condition
δ = β/ν‖ and the hyperscaling relation [36,52,188]

θ = 1
z
− 2 β

ν‖
. (4.9)

Both are confirmed within reasonable error margins. The difference between δ and β/ν‖
is only 0.003 and the expected value for θ of 0.348 based on the hyperscaling relation dif-
fers by 0.014 from our measurement. In addition, our results for z and ν‖ are compatible
with previous reports using finite-size scaling methods and the existing theoretical pre-
dictions [36, 37, 45]. After the confirmation of our approach by the performed consistency
checks, we now investigate the ambiguous parameter regime DA > DB.

In the following, we choose DB = DA/2 = 1/2 for the diffusion rate of the B species.
As before, we start by measuring and collapsing the data obtained for the time evolution
of the total B particle density ρB in a system with homogeneous initial state. We find
that all data can be collapsed close to the critical density ρc = 6.76 ± 0.05 assuming
critical exponents β/ν‖ = 0.51 ± 0.03 and ν‖ = 3.8 ± 0.3. Note that the maximum time
had to be increased by a factor of ten to ensure that the system has overcome the initial
transients. The scaling behavior confirms the existence of a continuous phase transition
which agrees with previous numerical studies but contradicts the analytic prediction based
on perturbative renormalization group methods [36,37,41,45].

Next, we again use dynamic spreading of activity to derive the remaining critical ex-
ponents. In the DA > DB regime, we find z = 3.02 ± 0.05, θ = −0.41 ± 0.03 and
δ = 0.72 ± 0.02 at the critical density ρc = 6.76. All curves approach straight lines in
the loglog-plot except for the total particle number 〈NB〉 which shows deviations towards
later times. This indicates a slightly higher critical density compared to the measurements
performed in homogeneously initiated systems. To test and refine our results, we collapse
our data according to Eqs. 4.8. As shown in Fig. 4.8 and Fig. 4.9, despite the existence of
very long initial transients all curves approach universal functions and we can estimate 5

the critical exponents z = 3±0.02, θ = −0.38±0.02 and δ = 0.68±0.05 and ν‖ ≈ 4 at the
critical density ρc = 6.765 ± 0.05. Unfortunately, we cannot apply the same consistency
checks as before. Because of the different diffusion rates, the symmetry between β and β′
no longer exists and hence δ 6= β/ν‖ is to be expected. The hyperscaling relation in this
case reads [36,52,188]

θ = 1
z
− β

ν‖
− δ. (4.10)

5Note that, we do not show the collapse for the cluster size squared in the main text but in Fig. C.5 of
the Appendix. Since the effective ensemble size is drastically reduced by the condition on survival, strong
fluctuations result in noisy curves. However, a collapse is still possible assuming z = 3, ρc = 6.765 and
ν‖ = 4 which is consistent with our other results. Furthermore, the shown data implies that z only weakly
changes for densities between 6.73 and 6.81 making a collapse not as necessary for a precise estimate as
for the fast-changing particle number and survival probability.
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a

b

Figure 4.6: Data collapse of the B particle density for DA = 2DB starting from
a homogeneous state. All curves can be collapsed assuming ρc = 6.76, β/ν‖ = 0.51
and ν‖ = 3.8. Strong fluctuations exist at later times because of the higher extinction rate
compared to equal diffusion rates. [Parameters: ens. = 5000, L = 4096, DA = 1, λ = 0.2,
1/τ = 1]
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Figure 4.7: Scaling behavior for DA = 2DB. Panels (a–c) show the power law fits for
systems initialized with a seed of tenB particles in the center. The deviations of the number
of particles for larger times shown in panel (b) indicates that 6.76 is actually slightly below
the critical density. (d) The particle density for a system initialized with homogeneously
distributed B particles follows a strict power law. [Parameters: ens. = 15×104, L = 8192,
DA = 1, λ = 0.2, 1/τ = 1; (d) as in Fig. 4.6]
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b

a

Figure 4.8: Data collapse of the survival probability Psurv for DA = 2DB starting
from a cluster of infected particles. All curves can be collapsed successfully assuming
ρc = 6.765, δ = 0.68 and ν‖ = 4. Long initial transients exist for all densities before the
master curve is reached. [Parameters: ens. = 5×104, L = 8192, DA = 1, λ = 0.2, 1/τ = 1]
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Figure 4.9: Data collapse of the number of B particles NB for DA = 2DB starting
from a cluster of infected particles. All curves can be collapsed assuming ρc = 6.765,
θ = −0.38 and ν‖ = 4. Long initial transients exist for all densities before the universal
curve is reached. [Parameters: ens. = 5× 104, L = 8192, DA = 1, λ = 0.2, 1/τ = 1]
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and predicts θ ≈ −0.86 which is off by more than a factor two; But is unclear whether is
has to hold in the first place. Since we did not make any approximations and all results
were correct in the DA = DB case, we do not have any reason to doubt our findings which
now show clear differences in comparison to other numerical studies. Most importantly,
the value z ≈ 3 implies sub-diffusive spreading of the cluster which is in stark contrast to
the diffusive behavior indicated by z = 2 that was assumed previously [37, 41, 45]. This
immediately raises the question, what the differences in the dynamic spreading behavior
between the two cases DA = DB and DA > DB are and why they have not been observed
before.

4.5 Spreading behavior for different diffusion ratios
The best way to investigate the origin of the sub-diffusive spreading at the phase transition
indicated by the critical exponent z = 3, is to directly resolve the spatio-temporal evolution
of the particle clusters and compare it to the DA = DB case. As it turns out, the quantity
providing the most insight into the underlying mechanism is the total particle number
ni := nAi + nBi . For a system with identical diffusion rates DA = DB = D the dynamics of
the system is described by

d
dtn

A
i = D∆nAi + nBi /τ − λnAi nBi ,

d
dtn

B
i = D∆nBi − nBi /τ + λnAi n

B
i .

(4.11)

Summing up both equations yields

d
dtni = D∆ni. (4.12)

Because of its conservation in combination with the identical diffusion rates, the total
particle density mi(t) = 〈ni〉 obeys a simple diffusion equation. Gradients originating from
the initially placed particle cluster smoothen out over time and the spreading of the B
particles takes place in a homogeneous environment (with respect to the total mass, not
the individual species distributions). This intuitive arguing is confirmed by the stochastic
simulations shown in Fig. 4.10.a.

For the case DA = 2DB a completely different phenomenology can be observed as
presented in Fig. 4.10.b. The B particle cluster does not spread in a homogeneous en-
vironment but accumulates mass. By doing so, it depletes its surroundings and causes a
local reduction in the total density below the average value. The cluster hinders its own
expansion by reshaping the density distribution in the system6. As a result, the cluster
sizes squared R2 grows slower, manifesting in the dynamical exponent z = 3.

6For completeness the time evolution of the individual densities is shown in Fig. C.6 in the Appendix.
However, apart from the expected strong anti-correlations between the species no additional insight com-
pared to the total particle density can be obtained.
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Figure 4.10: Comparison of the activity spreading behavior. (a) For identical
diffusion constants DA = DB, the particle density of the initial particle cluster spreads
diffusively until a flat profile is reached (This does not imply the extinction of the B
species. The total particle density in the system just shows diffusive behavior as a whole.).
(b) In contrast, for different diffusion rates DA = 2DB the cluster accumulates mass and
hence depletes the surrounding area. [Parameters: L = 512, DA = 1, λ = 0.2, 1/τ = 1,
(a) ens. = 50000, ρ = 7.0, (b) ens. = 105, ρ = 6.76]
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The intuitive explanation for the redistribution of mass lies in the heterogeneous initial
B particle distribution. Since infected particles diffuse slower compared to the A particles
present mainly outside the cluster, effectively, a gradient in the diffusion rate of the total
particle density m exists. Movement into the cluster is faster than out of it, which cause a
net particle flux towards the cluster. To phrase it differently, for DA = 2DB twice as many
B particles are required to have the same probability for a hopping event. This idea can
be expressed in the form

DA · ai +DB · bi = const, (4.13)
which has to be fulfilled for no fluxes in the total density to occur. Accordingly, mass
moves from lattice sites with high A density (outside the cluster) towards sites of higher
B density (inside the cluster). Fig. C.7 in the Appendix shows the spatial distribution
of the effective number of hopping events per unit time DAai + DBbi which has indeed a
minimum at the cluster’s boundaries.

For the case DA = 2DB, Eq. 4.13 would require ai = ρc−0.5 ·bi and hence contradicts a
uniform particle distribution. For DA = DB, however, a uniform density distribution and
Eq. 4.13 are identical. Fig. 4.11 compares the phase space distributions for both diffusion
ratios. As can be seen in panel (a), the well-understood case of equal diffusion rates follows
the expected behavior. For different diffusion rates in contrast, neither flux balance nor
a constant density distribution is realized, as shown in panel (b). The actual subspace
representing the states of lattice sites that can occur in the system follows a function
which has a cusp when approaching the a-axis. Empirically we find a = 6.73 − 0.6 · b0.53.
Similarly, as shown in Fig. C.8 of the Appendix, for DB = 0.8 a function of the form
a = 6.92− 0.81 · b0.77 is measured. This suggests an analytic expression of the form

a = ρc − f
(
DB

DA

)
· b
DB

DA , (4.14)

to describe the phase behavior of the system (at least approximately). The shape of this
function is at the heart of an analytic description of the phase transition of the diffusive
epidemic process.

4.6 Conclusion
By measuring the dynamic spreading of activity, we managed to obtain reliable estimates
for the critical exponents of the diffusive epidemic process. In case of identical diffusion
rates DA = DB, which is the best understood of three existing parameter regimes, our
findings agree with all previous results, and the expected symmetries and hyperscaling
relations are fulfilled.

For different diffusion rates DA > DB, we observed significant deviations between our
measurements and other studies. The differences are most evident in the form of the
dynamical exponent z = 3 that indicates sub-diffusive spreading instead of the diffusive
spreading that was reported before. At this point the central question is why our results
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a

b

Figure 4.11: Comparison of phase space distributions. (a) In case of identical diffu-
sion constants DA = DB, the flux balance condition DAa+DBb =const. is identical to the
curve of homogeneous local density a + b = ρc. Apart from small deviations for large B
particle densities caused by the non-homogeneous initial condition, all lattice sites adapt
configurations on this line. (b) For different diffusion rates DA = 2DB configurations nei-
ther adapt to the line of balanced fluxes nor the line of constant local density. Instead a
dependency showing a

√
b like shape is realized. [Parameters: L = 512, t = 1000, DA = 1,

λ = 0.2, 1/τ = 1, (a) ens. = 50000, ρ = 7.0, (b) ens. = 105, ρ = 6.76, c1 = 6.73, c2 = −0.6]
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Figure 4.12: Transition times between diffusive and sub-diffusive spreading close
to the critical density. For systems which have different diffusion constants, close to
the critical density ρc DB < DA a transition between transient diffusive behavior (z = 2)
and asymptotic sub-diffusive spreading (z = 3) takes place. The transition time increases
with the diffusion constant DB. [Parameters: ens. = 25000, L = 8192, DA = 1, λ = 0.2,
1/τ = 1]

differ from other simulations which all hint at z = 2. Two aspects are relevant in this
context. First, the mechanism explained in Sec. 4.5 is caused by local gradients in the
number of A and B particles. For the dynamic spreading of activity this is naturally a
dominating effect since strong differences in the distributions exist by construction. In
contrast, in a homogeneous state it does not occur. Fluctuations would need to create spa-
tial heterogeneities which are then amplified. The time required for the necessary events
to take place and significantly affect the system is most likely far beyond any reasonable
simulation scope. This directly relates to the second reason which is illustrated in Fig. 4.12.
Depending on the difference between the two diffusion rates, the time and length scales
required to resolve the deviations even using the dynamic spreading approach may increase
drastically. Actually, the case of equal diffusion rates can be interpreted as the limit of
infinite transient diffusive behavior for DB → DA. For finite-size scaling methods which
use smaller system sizes and simulation times the transition simply cannot be resolved.
Previous numerical studies hence performed correct measurements, but either in an en-
tirely different state or a transient configuration that may stretch out almost to eternity
depending on the choice of parameters and initial conditions. With respect to the pre-
dictions based on perturbative renormalization group methods, our results suggest that
indeed terms that can be neglected in higher dimensions play a fundamental role in one
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dimension [39]. Based on our findings those should account for the accumulation of mass
in the cluster caused by different diffusion rates.

Taking together, by providing the corresponding critical exponents and data collapses
we succeeded in proving that the diffusive epidemic process exhibits a continuous phase
transition in the notorious DA > DB regime. In this context, we found significant de-
viations compared to existing results but managed to provide a consistent picture of the
underlying phenomenology. Mass is accumulated inside the B particle cluster because of
the reduced diffusion speed inside. Since the number of healthy particles in the surround-
ings gets depleted, the cluster hampers its own spreading. As a consequence, A particle
and B particle densities on identical lattice sites do not follow a simple linear relation that
corresponds to a constant distribution of the total particle density. Instead a non-trivial
function that exhibits a cusp is realized. Mass conservation and flux balance are two ma-
jor determinants of the structure of this function but are by themselves not sufficient to
explain the observed shape. Additional analytic research that mathematically formalizes
our findings is needed to provide a detailed understanding of the mechanisms at work.

Finally, we take a step back and put our results into perspective with respect to the
research goals of this thesis. In the same way as for the systems studied in Chapters 2
and 3, we analyzed a stochastic system that we cannot solve analytically. Employing a
mean-field approximation a solution can be derived which is accurate in the macroscopic
limit of high particle numbers but shows significant deviations at mesoscopic levels. Here,
the reason for the crucial relevance of fluctuations was the existence of an absorbing state.
In contrast to the other cases however, a refined analytic theory already existed as well as
other numerical studies; These, however, presented an inconsistent picture.

The reference for our analysis this time was not a mean-field theory but the parame-
ter choice DA = DB which is affected by fluctuations but is understood on the basis of
renormalization group theory. In this sense, we had to go a step further than in the other
projects. Nonetheless, in a similar way as before by comparing stochastic simulations with
the predictions obtained using simplifying assumptions we identified the driving force of
the observed deviations. For the diffusive epidemic process, it is the mass redistribution
caused by the difference in diffusion rates. Hence, the diffusion parameter DB plays a
similar role as the number of lattice sites for the extended TASEP model or the number
of species for the self-assembly model. In the next step, it has to be clarified whether a
similar effect exists in two dimensions because the same doubts with respect to negligible
terms in the DEP’s action exist [39]. How this can be achieved efficiently and extended to
other systems is the topic of the next chapter.



Chapter 5

Exact stochastic simulations of gen-
eral reaction-diffusion systems

Chapters 2–4 deal with specific systems which all are affected by stochastic fluctuations
in different ways. The deterministic approximation methods, however, are conceptually
similar. They are based on using densities instead of particle numbers and neglecting
correlations. For the deterministic part of the analysis standard approaches exist. This
by no means implies that they are easy or straightforward to apply. There are just tools
available which are known to be promising in this context — in particular in case of large
enough particle numbers and length scales such that fluctuations become negligible. But
for the systems studied in this thesis, they get insufficient at some point because exactly
those stochastic fluctuations become a major determinant of the dynamics. The respective
analytic tools have to be tailored to each problem individually. How this is done and
which aspects necessarily must be included is a priori unclear. The only approach that
can be employed in all cases that does not rely on any ad hoc assumptions are exact
stochastic simulations. They are the reference against which all other methods can be
tested. In addition, they provide a basic understanding of the systems phenomenology.
However, just because stochastic simulations are a universal tool does not mean they can
always be used in the same way. Limitations in time and hardware resources may result in
simulations that solve an underlying problem in principle but are impossible to perform.
Hence, simulations as well have to be optimized for a particular problem, to be useful. How
this is done for the systems considered in this thesis is explained in detail in Appendix A.

The goal of the project discussed in this chapter is to provide means that can be
employed to study stochastic effects for entire classes of systems instead of just the ones
they were designed for. Using analytical methods, this is not feasible. As of today, it is
not even clear if a unifying approach for systems far from thermal equilibrium exists not to
speak of how it could look like. Overarching patterns between different systems have to be
found to further this research. In the biochemical context of this thesis, reaction-diffusion
systems constitute a very promising class of systems with broad applications that may serve
as a starting point. Already at the deterministic level, approximated in terms of densities
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without correlations instead of particle numbers a very rich phenomenology exists. But as
was shown in Chapter 4, even a very simple system can be drastically affected by stochastic
fluctuations.

As a first step towards a more general ansatz for the study of stochastic effects I
created a simulation framework which allows for lattice-based exact stochastic simulations
of arbitrary reaction-diffusion systems. It is constructed in a way such that it can be easily
extended to include new features e.g., different geometries or modes of motion. In addition,
a script language was implemented to make the creation of new simulations as intuitive and
simple as possible. This was done having two kinds of users in mind. On the one hand,
more experienced programmers can extend the code itself and use it to study systems
beyond the provided geometries or even reaction-diffusion dynamics. On the other hand,
researchers who are focused on descriptions based on non-linear dynamics can immediately
check their results against simulation data and verify their approximation methods or find
limitations, and hence possibly discover unknown effects. The primary goal of this project
is to provide easy and fast means to perform exact stochastic simulations without prior
time consuming or inefficient1 implementation by the user. This chapter serves as an
introduction to the framework and its structure as well as the usage of the script language
to create and evaluate simulations.

5.1 Basics
Two central aspects of the framework exist: the script language which is used to create
simulations and the program structure itself which can be modified to allow for new classes
of simulations. As a start, this section gives some basic examples of the functionality and
the work flow using the script language while treating the program itself as black box.
Later sections built on this part to explain the program structure, its extension, general
simulations and possible research applications.

Scripts written in .txt files serve as the input of the main program. A first minimalistic
example which simulates the combination of hydrogen H and oxygen O to form water H2O,
looks as follows.
2H + O − > H2O : 0.0001
H = 3000
O = 1000
SimulateWellMixed(0.05,0.00025,WaterReaction,42)

The initial line "2H + O − > H2O : 0.0001" defines a possible reaction2. In this context
three key symbols exist. The rate at which a reaction takes place is written at the end of a
line and is indicated by the ":". Products and educts of the reaction are separated by the

1A program specifically created for just a single system always admits more optimization potential.
But the additional speed-up is significantly smaller than the one achieved for spatially extended system
using optimized algorithms (see Appendix A.3).

2Expressions like H2 are not supported by normal .txt files hence H2O is used.
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Figure 5.1: Simulation of the minimal example script. A stochastic version of the
reaction 2H + O → H2O was simulated and visualized using the simulation framework.
Because of the large particle numbers all curves are comparably smooth.

reaction arrow "->". Finally, individual components are distinguished via the "+" sign in
between. The names of components are allowed to consist of letters and numbers, however,
they are always assumed to start with letters such that an initial number e.g., 2 in "2H"
is interpreted as two components of H being needed for the reaction. The next two lines
"H = 3000" and "O = 1000" specify the initial particle numbers. They are characterized
by a regular species name followed by an "=" sign and a real number. For a particle-based
simulation of a well-mixed system of course only natural numbers3 can be realized. In
spatially extended systems however, the average density does not have this constraint (see
Sec. 5.3). The last line of the script, "SimulateWellMixed(0.05,0.00025,WaterReaction,42)",
states which kind of simulation should be performed for the above specified system. A list
of all available functions is provided in Table 5.1 at the end of Sec. 5.3. In this case, a
well-mixed system is simulated for 0.05 units of time. Information about the current state
of the system is recorded every 0.00025 units of time and stored in the output-file by the
name "WaterReaction". The last argument 42 specifies the initial seed for the random
number generator4. The output of the resulting simulation is shown in Fig. 5.1.

As another basic example, the three-component cyclic suppression system given below
introduces several additional features such as birth and death, reaction names, reaction
inhibition and ensemble simulations.
U -> 0 : 0.3
V -> 0 : 0.3

3If no initial particle number is specified for a species it is assumed to be 0.
4In this form, the danger of reusing the seed and hence creating correlated simulations exists. Tools to

avoid this problem are explained in later sections.
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W -> 0 : 0.3

inhibU = 0 -> U : 10

inhibV = 0 -> V : 10

inhibW = 0 -> W : 10

U -| inhibV: 0.1

V -| inhibW: 0.2

W -| inhibU: 0.3

U = 25

EnsembleWellMixed(50,0.5,Oscillations,1337,5000)

The first 6 lines describe which reactions are possible. The "0" on either side of the reaction
arrow indicates the absence of any component. Here they amount to birth and death events.
In contrast to the first three reactions, names are assigned to the second three. A regular
character sequence followed by "=" and a reaction, creates the reaction and assigns it to a
variable which can later be referred to in inhibition relations indicated by the " -|" symbol.
Those consists of a species which performs the inhibition on the left side and a reference to
the reaction which is inhibited on the right side of the spacer. As always, the corresponding
rate is indicated by the ":". Negative numbers are interpreted as positive feedback. In this
example, the different species suppress each other’s production. At the current stage, both
kinds of interactions are implemented as being exponential.

Because of the low numbers of particles specified, an ensemble of simulations has to be
performed to obtain meaningful statistics which is achieved using the ensemble function.
All arguments provided are identical to the single simulation request except for the addi-
tional integer 5000 which specifies the number of ensembles to simulate. The output of the
execution of the script is shown in Fig. 5.2.

Both examples discussed so far, are most basic in the sense that no additional work
beyond the creation of the respective scripts was necessary. All simulation set-ups and
visualizations are automatically performed as illustrated in Fig. 5.3. Scripts are translated
by a parser into the desired simulations which create standardized data output that can
be processed via the visualization tools.

In case additional information about the system is needed all is contained in the time
trajectories stored in the .hdf5 files. In this scenario, it is only necessary to extend the
visualization tools e.g., to extract information like time correlations. This is the main use
the project is intended for. The simulations of the script can be treated as a black box as
far as usage is concerned.

To study reaction diffusion systems in general however, a lot of additional functionality
is needed. In fact, so far diffusion was not even a part of the scripts because all systems
were well mixed. The full functionality of the script language is discussed in Sec. 5.3 and
Sec. 5.4. But before that, the next section explains the actual program structure to allow
for a better understanding of how the respective simulations are implemented.
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a b

Figure 5.2: Ensemble simulation example. The three different species U, V and W
cyclically suppress each other’s production resulting in transient oscillations. Panel (a)
shows the results for an average performed over 5000 ensembles. As a contrast, output
from a single simulation is shown in panel (b). Both only differ by the Ensemble keyword
in the simulation script.

5.2 Program structure

The program is implemented in C++ using the object-oriented programming paradigm.
Employing inheritance and polymorphic programming, a modular structure that can easily
be extended is achieved. An illustration of the code architecture is shown in Fig. 5.4.

For every simulation two major components exist. First, the reaction network that
contains initial particle numbers, diffusion rates, inhibition relations and reactions. Those
are themselves classes which are in turn composed of component objects and reaction rates.
The reaction network defines the dynamics that is simulated but is itself independent
from the algorithmic implementation and serves as a data container that only provides
information. The second component is the simulation class which specifies the actual
simulation type that is performed. This includes the algorithm used, the measurement
times and the system’s geometry. A simulation class in combination with a reaction network
defines a simulation.

The execution of the simulation and the entire program is controlled by the parser. It
reads the scripts provided by the user, performs error checks and creates the according
reaction network and simulation class which are then executed. Each line is processed
individually. Fist, regular expressions are used to identify the type of input e.g., reaction
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script parser simulation .hdf5 visualization

Figure 5.3: Illustration of the simulation pipeline. The user creates a script which
specifies the desired dynamics, geometry and simulation type. The script serves as the input
for the main program. A parser translates the human readable request into a stochastic
simulation which is then executed. Depending on the specified parameters available results
are stored in an hdf5 file. The unified data structure for all types of simulations allows for
the use of general visualization tools.

or particle numbers. String operations are used to extract the information and translate
them into the respective data objects which are then used to create reaction networks
and simulation classes. If an Ensemble function is requested, the parser simply performs
several simulations of the same system in parallel and takes care of the relevant statistics.
The simulation classes which are at the heart of the actual execution are constructed
in hierarchical order employing inheritance. The higher the class the more abstract are
the functions it introduces. The simulation base-class only includes the general concepts
of a stochastic algorithm such as iterations, time and random number generation. In
principle, it can be applied to any system because no assumption about the actual type
are made. Following classes add more specific functionality which, however, may still not
define executable simulations but just the basis for a broader group of systems. The system
base-class is used for the implementation of simulations of all actual systems. All examples
discussed in the previous section were based on the well-mixed system class which is a
direct offspring of the system base-class. It implements an efficient Gillespie algorithm by
using dependency graphs to minimize computational effort. In contrast, spatially extended
systems have one more layer of abstraction before actual simulations such as the one-
dimensional system are realized. Everything that can be implemented as a rectangular
lattice or a subset thereof can be created as an offspring of the spatial base-class. To
account for large system sizes, in particular in higher dimensions, a modified version of
the next reaction method [49] is employed for the corresponding simulations (for details see
Appendix A.3).

An example for a stochastic simulation class that is not an offspring of the system class
is the connected systems class. Instead of being an actual system itself it contains two
of them and implements particle exchange and time consistency. The simulation of each
compartment is based on its own algorithm to keep the structure as modular as possible.

At this point, the program structure may seem to be unnecessary complicated. There
are almost as many abstract classes as simulation types and the 1d simulation could just be
realized as a 2d system of width 1. However, the particular structure was not just chosen
to achieve the provided functions in the fastest way. It was designed to make it easier to
add further modules to the code that allow for additional functions without changing any
aspects of the main program. An illustration of how different kinds of new systems can be
included is shown in Fig. 5.5.
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Figure 5.4: Illustration of the program structure. Object-oriented programming
was used as the main paradigm. A hierarchical class structure is employed to create
several simulation types which all possess the same functionalities. Systems contain a
reaction network that is specified via the script provided to the parser (see Fig. 5.3). The
networks are composed of reactions which are in turn composed of components. In the
same way, a connected system simulation contains two basic systems for which it provides
the interactions.

Depending on how different a new simulation type is from the existing ones it has to
be an offspring of a more abstract class and needs to implement more execution aspects
itself e.g., output formats. A class that allows for simulations of reaction-diffusion systems
on a disk for example could simply be realized as a 2d system for which hopping to lattice
sites with a certain distance from the center is prohibited. The effort is rather minimal.
In contrast, the implementation of a simulation of reaction networks on graphs requires
more work. The arrangement of nodes and edges and how they are stored in the output
files have to be designed from scratch and cannot be adapted from any of the spatially
extended systems. But because it still simulates a reaction network created by the parser,
all functionality provided for the system base-class is readily available.

In this form, some additional coding may be needed if a user wants to simulate a specific
type of system, but only a new module instead of an entirely new program is needed. This
adds some advantages beyond just less effort. The unified format simplifies the transfer
of simulations to other members of the research group. Furthermore, once a geometry is
implemented it can not only be used for a particular system but for all types of reaction-
diffusion system. To this end, a commented version is provided to our chair and may later
be turned into an open source project.
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Figure 5.5: Extension of the simulation framework. Depending on how much a new
simulation class differs from the existing ones it has to be added to a different level in
the class hierarchy. The simulation of a disk can simply be included as a 2d system for
which movement is restricted depending on the distance from the center. A 3d system
includes a more complex modification because the arrangement of the lattice and hence
the associated data structure differ from the other systems. The simulation of a graph
structure finally requires its own type of dynamics, definitions of how nodes are connected
and interact, and a completely different storage system for the representation. However,
because of polymorphic programming most functionality can directly be adopted and even
has to be.

5.3 Spatially extended systems
In this section, simulations of reaction-diffusion systems in different lattice-based geome-
tries are explained. All of them make use the modified Gillespie algorithm which is dis-
cussed in Appendix A.3 to improve performance. As before, only the core framework
shown in Fig. 5.3 is used to create the presented output. Beyond the provided scripts no
additional work is required. The following script simulates a stochastic implementation
of the famous Lotka-Volterra dynamics in one dimension [189, 190]. Fig. 5.6 shows the
corresponding output.
prey -> 2prey : 1
2prey -> prey : 0.01
predator -> 0 : 1
prey + predator -> 2predator : 0.1
prey = 10.5
predator = 2.5
D: prey = 1
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a b

Figure 5.6: Ensemble simulation of the one-dimensional Lotka-Volterra system.
The time evolution for both predator and prey is shown in panel (a). However, a phase
space plot as depicted in panel (b) contains the same information but is better suited to
illustrate the dynamics of the system.

D: predator = 0.3
Ensemble1D(50,50,0.2,True,LotkaVolterra1D,*1,1000)

First, reactions and densities are defined. The initial state by default has a homogeneous
particle distribution but since the system has more than a single lattice site non-integer
values can be realized. For a density of 10.5 for example 10 prey elements are placed on
each lattice site. Afterwards, 0.5 · 50 = 25 additional particles are positioned at random
in the system. The resolution of this method is limited to the inverse of the number of
lattice sites (one additional particle shared among all lattice sites). To avoid correlation
effects, additional particles are randomly distributed within the system. The hopping
rates of the different species are defined in lines that start with "D:" followed by the species
name and the respective value. For the one-dimensional ensemble simulation two more
arguments exist in comparison to the well-mixed case: The size of the system 50 right
at the beginning of the function and an additional boolean variable which has the value
True. The boolean decides whether just the state of the system as a whole is recorded
or the exact configurations. For large systems simulated for long times this may require
a significant amount of memory. That is why the option can be turned off passing the
value False. In case all spatial information is recorded it can readily be turned into movies
or plots with spatial resolution as shown in Fig. 5.7. Note that for ensemble simulations
the data represents the entire ensemble, not a single simulation. Finally, it is important
to note that instead of a number the expression "*1" was passed as a seed. It indicates a



92 5. Exact stochastic simulations of general reaction-diffusion systems

predator prey

pa
rt
ic
le
s

Figure 5.7: Kymographs for the one-dimensional Lotka-Volterra system. If re-
quested, not only the time evolution of the system as a whole is recorded but the entire
configurations. This allows for the immediate creation of movies and plots with spatial
resolution.

variable that is not specified in the script but is passed as an argument to the program.
"*1" refers to the first additional argument specified in the command line when the program
is executed. Similarly, "*2" is substituted by the second variable and so on. This allows for
systematic parameters sweeps without creating a new script each time. Furthermore, the
unintended reuse of identical seeds is circumvented since it has to be specified separately
when the script is executed.

The last example script illustrates the full extent of possible simulations. Two two-
dimensional systems which exchange particles on one edge are simulated. One is referred
to as the membrane the other as the bulk. These kinds of simulations were created having
specifically biological systems like cells in mind [191]. The output created from this script
is shown in Fig. 5.8.
#MEMBRANE
reproduction = predator -> 2predator : 1
predator -| reproduction: 0.02
predator = 5
Dext: predator = 0.7
Dint: predator = 1
#BULK
prey -> 2prey : 0.75
predator -> 0 : 1
prey + predator -> 2predator : 0.03
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Figure 5.8: Simulation of a two-dimensional membrane with bulk. Both, membrane
and bulk have to have the same height to be connected. Particles can switch between the
compartments at the columns indicated as 0. The time evolution for each compartment
is recorded individually. Depending on the recording options either only total particle
numbers (a) or entire configurations (b) are recorded.
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prey = 10
D: prey = 0.5
Dint: predator = 1
Simulate2DMembraneWithBulk(5,4,6,100,1,True,Invasion3,*1)

The keywords "#MEMBRANE" and "#BULK" indicate to which of the two compart-
ments the following lines of script apply. Per default the membrane is assumed to be
one-dimensional and the bulk two-dimensional. Here, the membrane is explicitly set dif-
ferently in the Simulate function. In contrast to simulations of independent systems two
types of hopping rates exist. One within the respective compartment called "Dint" and
one out of it, "Dext". The external diffusion parameter is responsible for the particle flux
between the two system parts. If only a general diffusion value "D" is supplied, "Dint"
and "Dext" are assumed to be identical. The final simulation request has to specify the
dimensions of each compartment. The height of both has to be identical such that only
three independent variables exist.

The provided scripts exemplify all different groups of simulation types but not each
individual one. Table 5.1 shows a complete overview of all simulation possibilities. Beyond
the simulation functions the script language supports functions in general as well as optional
arguments; For example, a print function exists. Furthermore, comments indicated by a
"//" are possible, and reactions can be copied between the different compartments via the
"#SAME" macro. All those additional features which emulate a normal script language
have been excluded from the example scripts to make them more concise. Optional function
arguments, however, provide additional functionality with research application discussed
in the next section.

5.4 Measurement of critical exponents
The diffusive epidemic process studied in depth in Chapter 4 is a mass-conserving two com-
ponent reaction-diffusion system. Combining efficient stochastic simulations with measure-
ments of dynamic spreading of activity provided a new perspective one previously existing
discrepancies between analytical methods and numerical investigations with respect to its
phase transition. This, in fact, was the original motivation to create the simulation frame-
work discussed in this chapter. Conceptually, the methods used can be readily applied
to various systems to get a systematic understanding of when and how stochastic effects
change phase behavior and cause approximation methods like perturbative renormaliza-
tion to fail. The major limitation to the method is the computational effort to obtain
good statistics close to a critical point or other extreme configurations that lead to strong
fluctuations. For each system to study a new optimized simulation needs to be created.
This significant time investment can now be dispensed with. In the following, an example
of how the developed script language can be used to perform measurements of dynamic
spreading of activity is presented.

We study the diffusive epidemic process in two dimensions as a possible application to
current research. The necessary stochastic simulations can immediately be created using
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simulation type arguments
SimulateWellMixed simulated time, measurement intervals, output name,

seed
Simulate1D system height, simulated time, measurement intervals,

output name, seed
Simulate2D system height, system width, simulated time,

measurement intervals, output name, seed
SimulateMembraneWithBulk joined height, membrane width, simulated time,

measurement intervals, output name, seed
SimulateMembraneWith0DBulk membrane height, simulated time, measurement

intervals, output name, seed
SimulateMembraneWith1DBulk joined height, simulated time, measurement intervals,

output name, seed
Simulate2DMembraneWithBulk membrane width, joined height, bulk width, simulated

time, measurement intervals, output name, seed
Simulate2DMembraneWith0DBulk membrane width, membrane height, simulated time,

measurement intervals, output name, seed
SimulateConnected0DSystems simulated time, measurement intervals, output name,

seed
EnsembleWellMixed simulated time, measurement intervals, output name,

seed, ensemble size
Ensemble1D system height, simulated time, measurement intervals,

output name, seed, ensemble size, (seed species)
Ensemble2D system height, system width, simulated time,

measurement intervals, output name, seed,
ensemble size, (seed species)

Table 5.1: List of all currently supported simulation types. Arguments—which
have to be specified in the correct order— are listed on the right. The "(seed species)"
represents an optional argument that is used to indicate a request to perform dynamic
spreading measurements.
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Figure 5.9: Dynamic spreading simulation initiation. All particles of the seed species
are placed in the center of the system. All other species are homogeneously distributed.
The ensemble average of the evolution of microscopic states only takes surviving systems
into account.

the following short script.
A + B -> 2B: 0.2
B -> A : 1
A = ∗1
B = 10
D: A = 1
D: B = 0.1
Ensemble2D(128,128,1000,1,False,DEP_2D,∗2,10000,B)

Here, a new type of optional argument was provided to the simulation function. A name of
a species at the end of an ensemble function indicates that it is used for dynamic spreading
measurements5. Instead of being homogeneously distributed, the respective particles are
placed as a cluster in the middle of the system as illustrated in Fig. 5.9. The particle density
"B = 10" is now interpreted as the number of particles in the initial cluster. For the A
species the expression "∗1" is specified instead of an actual particle number. This indicates
that the respective argument is replaced with the first command line input which allows
for a systematic density sweep without creating a new script for each set of parameters.

Because of the large amount of memory, it would require to record all microscopic
configurations, the recording variable is set to False. If set to True, only systems with
a surviving seed species are considered for the state average in contrast to homogeneous

5 A detailed discussion of the respective scaling relations is provided in Sec. 4.2 of the previous chapter.
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Figure 5.10: Dynamic spreading measurements for the diffusive epidemic process
in two dimensions. Assuming the simulation was performed close to the critical point,
the visualization tools automatically create estimates for the critical exponents based on
least square fits. (In this example, the simulated time is too short to make reliable predic-
tions about the asymptotic behavior.)
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ensembles for which all runs are taken into account. To extract the critical exponents
later on, the size of the clusters, the size squared6 and their survival probabilities are
automatically recorded in addition to the other macroscopic observables. In the current
form the script is constructed to perform a parameter-sweep to find the critical density
and the respective critical exponents for a B-particle diffusion rate DB = 0.1. Fig. 5.10
shows the results of a single ensemble run. Estimates for the critical exponents are created
automatically using least square linear fits based on the assumption the simulation was
performed close to the critical point.

5.5 Conclusion
In this chapter, I gave an introduction to the newly created simulation framework. It is
constructed in a modular fashion to allow for easy extension by other researchers. The
program is controlled by a script language whose features were explained based on simple
examples. Those ranged from the basic time evolution of well-mixed systems to deriving
critical exponents in a spatially extended system using dynamic spreading of activity.
Since the framework allows for the simulation of arbitrary reaction-diffusion systems, these
methods can now directly be applied to an entire class of systems. In addition, several
different types of simulation functions exist which are listed in Table 5.1 e.g., particle
exchange between connected compartments.

The provided systematic approach to study not only the dynamics but also the critical
behavior of new systems using exact stochastic simulations is the generalization of the
work shown in Chapter 4 we were aiming for. Now, in principle, arbitrary extensions
of diffusive epidemic process can be studied as well as general reaction-diffusion systems.
The analytic methods may have to be adapted for each of them and it is unclear which
approximations can be made. But at least for the numerical part a simple general solution
is made available.

The commented code is provided to our chair, with the existing option to be made an
open source project at some point to further increase its outreach and functionality.

6Because of correlations the expectation values of size and size squared may not simply be converted.



Chapter 6

Conclusion

In this thesis, I investigated the role of stochastic fluctuations in different biochemically
motivated systems far from thermal equilibrium.

Chapter 2 focused on the influence of geometry and particle arrangement in the context
of intracellular transport along microtubules. By creating an extended model based on
the totally asymmetric simple exclusion process, together with Emanuel Reithmann and
Erwin Frey, I showed how fluctuations strongly hinder transport when protofilaments are
coupled via different motor species. This effect becomes most evident in the existence
of the maximal density and the cramming density which a system realizes in the limits
of vanishing and actually zero current. Both are significantly lower than one, meaning
only a small fraction of the entire system may contribute to transport simultaneously. We
managed to explain the origin of this behavior on a microscopic level, and provided a proof
of our understanding in the form of an exact analytic solution for the cramming density in
the two-lane case.

The variable defining the strength of the transport limitation was identified to be the
number of lanes composing the cylindrical lattice. Counterintuitively, increasing the num-
ber of lanes leads to lower maximal densities even though one might expect to recover an
uncoupled limit. So far, simulations suggest the paradoxical scenario of complete jamming
on an empty lattice. Furthermore, in case the length of individual lanes and the number of
lanes do not differ by a significant margin (∼ 100), the system self-organizes into density
patterns. Applying standard mean-field approximations which work well for the original
TASEP none of the observed phenomena can be explained. To overcome this problem,
we developed effective description methods to quantify and extrapolate the influence of
stochastic fluctuations while giving an intuitive explanation of their origin. Finally, based
on an extended model including Langmuir kinetics, we pointed out how even small fractions
of a second motor species may modify the systems phenomenology in an experimentally
observable way. In the context of the biological setup considered, the results of this project
show that overcrowding phenomena might be far more relevant in intracellular transport
than previously expected.

Continuing the research how stochastic fluctuations affect collective behavior on a cel-
lular level, Chapter 3 deals with depletion traps in macromolecular self-assembly. In a col-
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laboration with Florian Gartner, Isabella Graf, Philipp Geiger and Erwin Frey we showed
that heterogeneous structures strongly differ from homogeneous ones when it comes to low
subunit concentrations, despite being equivalent when described in terms of chemical rate
equations. In fact, a homogeneous system always behaves as deterministically predicted
irrespective of the total number of particles. In contrast, heterogeneous systems are very
susceptible to fluctuations and hence show significant deviations. Most importantly, in a
deterministic system, perfect yield can always be achieved if the nucleation of new struc-
tures is much slower compared to growth of existing ones. However, in the heterogeneous
case, fluctuations create an upper bound for the maximum assembly yield, no matter how
slow this process takes place. This can even cause the yield to be zero despite a deter-
ministically expected value of one. Furthermore, those fluctuations may increase when the
assembly speed is reduced, leading to a non-monotonic dependency on certain parame-
ters caused by a transition from a deterministic to a stochasticity-dominated regime. This
turns self-assembly into a fine-tuning problem compared to a simple "more is always better"
scheme and has important implications for example in the field of artificial self-assembly.

As in Chapter 2, in Chapter 3 we explained and quantified the impact of stochastic
fluctuations by comparing analytic calculations to exact stochastic simulations. Despite
the differences of the biochemical systems themselves, our models for macromolecular self-
assembly and intracellular transport show unexpected similarities on the mathematical
level. The size of a polymer behaves similar to the position of a molecular motor and
both can be approximated by an advection-diffusion equation. Accordingly, the number
of different components assembling a structure and the number of lanes in the extended
TASEP model play the same role. If they are set to one, no relevant fluctuations are present
in the system, but when they are further increased stochastic effects start to dominate the
entire dynamics.

The third system I investigated was the diffusive epidemic process (DEP) in Chapter 3.
The research was performed in collaboration with Borislav Polovnikov and Erwin Frey.
Applying exact stochastic simulations in combination with measurements of the dynamic
spreading of activity, we managed to achieve a unified picture of the previously controver-
sial absorbing-state phase transition. In particular, we discovered that in the regime of
faster diffusion of healthy particles a cluster of infected particles spreads sub diffusively at
the continuous phase transition; The effect manifests in the form of the critical exponent
z = 3. By comparing the DA > DB regime to the better-behaved DA = DB case, we iden-
tified mass redistribution as the driving force. Since the B type particles, which are mainly
present inside the cluster, diffuse slower compared to the A particles outside, a net flux
into the cluster is created that depletes its surroundings. In this way, the cluster hinders
its own expansion. Because the effect is based on heterogeneities in the distribution of the
different species, simulations starting from a homogeneous initial state behave differently;
It would take astronomical amounts of time for the necessary spatial fluctuations to occur.
The mass redistribution probably also induces strong coupling which causes perturbative
renormalization group methods to fail in one dimension. This explains the prediction of
a discontinuous phase transition, in contrast to all numerical investigations indicating a
continuous transition. Interestingly, despite the absorbing-state phase transition being a
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stochasticity-focused phenomenon, the final mechanism we unraveled is rather determin-
istic. The exact values of the exponents, however, are still dependent on the underlying
fluctuations.

Finally, based on the success of our approach presented in Chapter 4, I developed
a general computational framework for exact stochastic simulations of reaction-diffusion
systems which was discussed in Chapter 5. A script language built around chemical reaction
equations provides an interface for easy interaction with the program. Furthermore, direct
support for measurements of dynamic spreading of activity is included. This allows for the
systematic study of critical behavior in stochastic reaction-diffusion systems in different
dimensions which hopefully eases the way towards a general theoretical understanding.

Looking at all systems studied in this thesis, reoccurring themes exist despite all of
them being vastly different with respect to their biological motivations. In all cases closely
related systems exist for which a deterministic approach works perfectly well but one
central modification causes their breakdown. For Chapter 2, it is the importance of particle
arrangement compared to the TASEP, for Chapter 3 it is the non-trivial reaction path of
the heterogeneous system compared to the homogeneous one. Finally, in Chapter 4, the
absorbing unstable fixed point in contrast to many other mass-conserving two component
reaction-diffusion systems leads to a significant relevance of fluctuations. In addition, the
case of equal diffusion rates DA = DB served as a reference for the controversial regime
DA > DB.

For the systems studied in Chapters 2 and 3, we find the introduction of combinatorics
to be the central source of fluctuations. In the case of the diffusive epidemic process it
is the irreversibility caused by the absorbing state which makes the otherwise negligible
fluctuations so relevant. In the end, all three systems possess a combination of stochastic
fluctuations and irreversibility. The TASEP and the homogeneous assembly model exhibit
irreversibility from the start but only the modifications introduced relevant fluctuations.
In contrast, the DEP combined an irreversible step with the existing fluctuations of two-
component reaction-diffusion systems.

Taking another step back and focusing on the central features we used for the choices
of our systems, namely being far from thermal equilibrium and describing a cellular (meso-
scopic) system, we find that each of them accounts for one of the two aspects. Irreversibil-
ity directly links to not reaching thermal equilibrium and a mesoscopic scale leads to
non-negligible fluctuations. To put it simply, a mesoscopic scale causes fluctuations and
irreversibility makes them matter. Hence, only a combination of those creates non-trivial
modifications. In our systems all modifications had a negative effect on performing the
actual task they are meant for. This leads to the conclusion that either irreversibility or
fluctuations should be avoided or at least suppressed.

In the context of understanding mechanisms that are important for collective phenom-
ena on a cellular level, the findings of this thesis point out two central research questions;
On the one hand which mechanisms can be used to suppress the detrimental effects dis-
cussed above and on the other hand whether cases exist for which they may be desired e.g.,
to favor a certain state that is irrelevant in thermal equilibrium. However, at this point,
it seems most likely that such a mechanism is based on the reaction kinetics—which can
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reliably be modified—while fluctuations have to be suppressed in order to ensure proper
function.

Looking at our results from a physical and biological perspective, respectively, we draw
different final conclusions. In terms of physics the combination of strong fluctuations
and dynamics far from thermal equilibrium is the source of complex and interesting new
phenomenology. Coming from the biological side of ensuring robust and reliable function,
a combination of both should certainly be avoided.



Appendix A

Optimization methods

The main goal of this thesis is to investigate how stochasticity affects the phenomenology
of biochemical systems far from thermal equilibrium. We do so by comparing the results
of deterministic approximation methods with the actual stochastic behavior of different
systems. However, because for none of those analytic solutions are feasible we have to
rely on exact stochastic simulations. This adds a new problem layer. Often times we
are specifically interested in extremal cases such as phase transitions and critical points
which go along with strong fluctuations. As a result, a huge number of ensembles, large
system sizes, or even both combined, have to be simulated to obtain meaningful statistics,
causing simulation times and hardware resources to be one of the central limitations of our
research.

All systems discussed in this thesis can be adapted into a Gillespie algorithm [47, 48]
which serves as the basis for the methods described in the following. But extrapolating
the runtime of direct or naive implementations to the extremal parameter configurations
used in the main text, we find that those would takes up to the order of years to complete.
Hardware and programming language choice can only provide speed-ups up to several hun-
dred percent, which remains insufficient. This means we have to use optimization methods
to bring runtimes down to a manageable magnitude by reducing the time complexity per
iteration of the respective algorithm1. In all cases discussed in the following, this can be
achieved by trading runtime for memory but without increasing the memory complexity.

The more an algorithm is tailored to a specific problem the more optimization potential
exists by using all information available. In this chapter I am going to discuss the central
ideas and concepts I have used for the different simulation frameworks employed in this
thesis, to enable easy reproduction and extension by other researchers2. At this point it is
important to emphasize once more that, all methods used are based on existing algorithms
[48,49,192] which are optimized for the respective problems using general knowledge about

1Naturally, the overall time complexity of a simulation is at least linear in the number of events per
unit time. Each event causes one additional iteration. This is a limit set by physics not be the algorithms
considered. For that reason, we focus on the time complexity per iteration as quality measure.

2The methods described have already been adapted by other chair members to improve their simula-
tions.
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data structures and programming language features. Code for crucial functions is provided
in C++ to further the intent for this appendix to be an implementation guide3.

Finally, it is worth noting that, despite being created for one particular system all dis-
cussed methods can be extended to other or more general problems. Hence, this appendix
chapter should be viewed as an introduction to possible methods for implementing efficient
stochastic simulations rather than a guide for simulations of the systems themselves they
were used for.

A.1 TASEP-like systems
The central feature determining the algorithm time complexity for the totally asymmetric
simple exclusion process and extensions thereof (e.g., Chapter 2), is the number of lattice
sites N . At each site, depending on its current state and the respective next site, a hopping
event may take place. Using a naive implementation of the Gillespie algorithm it is either
necessary to iterate over all lattice sites or all possible events which can be mapped to the
lattice sites.

In the first case, by iterating over all lattice sites a vector [193] with the indices of
all sites with hopping events is created. Since the rate for all of them is one w.l.o.g. the
total rate for any event to happen is just the size of the vector and the next hopping
event can be determined by choosing a random position within the vector. However, one
quickly realizes that this method has a lot of unnecessary overhead. Because of the strictly
local interactions only a lattice site and its direct neighbors are affected by an event which
makes checking the entire lattice again a huge over-investment. This leads directly to the
second possibility of keeping a vector of all possible events and updating it according to the
changes on the lattice. From the physics perspective the approach seems to have constant
complexity. At most, events at three lattice sites have to be added or removed. In addition,
one element from the vector is chosen at random. Unfortunately, this argument is not true
for an actual algorithmic implementation. In case elements are added and removed from
the container at random we lose track of their positions and to remove them we have to
search for them amongst at most N other event-representing elements4. This again has
time complexity N . To make thing worse, removing an element at the beginning of the
container results in a shift of at most N elements in addition5.

In the end, both basic implementations amount to a time complexity of the order of
3The following naming conventions are used: functions start and are spaced by capital letter (MyFunc-

tion), variables are entirely lower case and spaced by underscores (my_variable), and class members which
are shared amongst all functions of a simulation are variables terminated by an underscore (my_member_).
Furthermore, integer division (/) and modulo operations (%) are always avoided because of their high costs
in general.

4For the TASEP it is actually N/2 because the most hopping events occur if every second lattice site
is occupied.

5This could be circumvented by using a list which allows for adding and removing elements with constant
complexity. But such a container does not allow for random excess making the determination of the event
a problem of complexity N instead of 1.
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Figure A.1: Illustration of the random-access container. A number corresponds to a
hopping event at the respective lattice site. (a) Initially the elements 0 and 3 are actively
stored in the container. (b) After removing the 0 element only 3 is left. This is achieved
by replacing 0 with 3 and updating the position of 3. (c) The 1 element is added to the
container. It is inserted at the end and its location is updated. In all cases only positions
stored for elements which are considered inside the container are meaningful.

N . For the simulations of our extended model with two species on a lattice with 50 lanes
and 16384 sites per lane performing 1012 iterations as needed would cause at the very
least 8.2 · 1017 processor operations. On a normal 3 GHz processor this would take more
than 8 years to complete assuming ideal conditions. Even using any kind of parallelized
computational method would not be of much use making algorithmic optimization the only
option. The Gillespie algorithm is naturally sequential and splitting the system in parts
handled by different processors requires synchronization and roll backs. As a consequence,
the speed increases sub-linear with the number of processors and resources are wasted.

Looking again at the second method described above two weaknesses exist, namely
finding an element and removing it without losing random access6. Both can be overcome
by using the stochastic nature of the system and its well-defined binary lattice structure.
Each event can or cannot happen on one particular site and it is always possible to find a
mapping between events and consecutive natural numbers. This makes the system perfect
to create a hash map [194] for the positions of the events7. Furthermore, because events
are chosen at random the order of elements is irrelevant. Using the fact that only add
and remove operations of elements which are (almost) identical to their key are needed,
it is possible to create a minimalistic data container which is optimized for those specific
tasks. An illustration of the functionality is shown in Fig. A.1. An implementation of
the container only needs three components. First, the current size has to be known. In
addition, two arrays are needed. One storing the actual elements and a second one storing

6Random access means any element in a data container can be accessed directly without traversing
through memory.

7After each event the hash map needs to be updated.
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the positions of those elements8.
long current_size_;
const std::unique_ptr<LatticePosition[] > elements_;
const std::unique_ptr<long[] > positions_;

Adding an element is fairly simple, in particular for the TASEP for which the references to
lattice sites and hopping events are identical9. The new value is assigned to the position
which is indexed by the current container size. And the position which is accessed via the
lattice site becomes the current container size. Afterwards, the size is increased by one.
void Add(LatticeSite element){

elements_[current_size_] =element;
positions_[ElementToIndex(element)]=current_size_;
++current_size_;

}
For removing an element two cases have to be distinguished. If it was the last one the
size only needs to be reduced to zero. Otherwise, the value of the last element has to
be assigned to the position of the element that is removed and the hash map has to be
updated10.
void Remove(LatticeSite element){
−−current_size_;
if(current_size_> 0){

const long element_position=\
positions_[ElementToIndex(element)];
elements_[element_position]=elements_[current_size_];
positions_[ElementToIndex(elements_[current_size_])]\
=element_position;

}
}

Having implemented the event selection as described above one measurement operation
remains which may still be of linear time complexity and hence becomes critical. If the
density at a lattice site is recorded by summing up each time interval it is occupied and
dividing the final value by the total amount of (system) time, this procedure is again linear
in N . The problem can be circumvented by trading additional memory against runtime.
Instead of adding up time intervals the moment of initial occupation of a lattice site is
stored.
density_counter_[species][row][column]=t_now_;

Only if the particle leaves the lattice site the total amount of time passed is recorded. By
8In this form, the largest index possible has to be known when the container is constructed. Dynamic

versions can be constructed using a vector.
9Note that, in the current form the container does absolutely no error checking to increase performance.

10The position of the removed element does not need to be updated because accessing it would only be
possible as a bug in the main program
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giving each site its own timer, a constant complexity is achieved. Only before the first and
after the last iteration the whole systems needs to be traversed to initiate and evaluate
occupations.
density_[type][row][column]+=\

t_now_-density_counter_[type][row][column];

Applying the described methods to the actual simulations, runtime is reduced to the order
of hours for very large simulations and normally just minutes, compared to several years
if the basic implementations are used. The reason is the reduction of time complexity
for an iteration step from linear in the number of lattice sites to constant. For extended
models with different events one container is used for each type. The selection of the kind
of event taking place is just a random choice weighted by the size of the containers times
the respective rates. The key aspects for this method to work are local interactions and
events that can be grouped because their rates do not differ between lattice sites.

A.2 Heterogeneous self-assembly

In Chapter 3 we study different models for molecular self-assembly in a well-mixed envi-
ronment. Since the focus is on results obtained for low particle numbers causing strong
fluctuations large ensemble averages have to be performed to obtain good statistics. The
time complexity of an iteration step is mainly determined by the number of particle species
S. This is because instead of tracking each growing structure their respective number in
each state is recorded. In case of the ring model this means the state of our system is de-
scribed by an S×L matrix of integer values which correspond to the number of structures
with a given species on their left end and a certain size. In the following, the fully hetero-
geneous case L = S is discussed for simplicity in combination with the polymer-polymer
binding model which can directly be simplified to simulate the main model11.

Considering a general binding event of two polymers, in principle S4 possibilities ex-
ist —S for each end of each polymer. Since binding is only possible between two specific
species the additional constraint reduces the complexity to S3. For a system with S = 100
species hence 106 events exist which all have to be considered individually each iteration.
Fortunately, by breaking up the process of finding the next event into stages, as shown in
Fig. A.2, the time complexity can be reduced to 3S resulting in a speed-up of roughly S2/3
or 3000 for the example S = 100.

In the first stage of determining the event, only the binding ends are chosen. For
convenience and memory efficiency, it is always the left end that is considered to bind to
the right end. To allow for this step a vector of size S stores the accumulated binding

11Note that, this model does not work for the square system. The number of states roughly scales as 2S

and hence becomes unfavorable for N < 21+S/S because more states than possible structures exist. For
example, in case of S = 20 this is fulfilled for particle numbers smaller than 100000.



108 A. Optimization methods

?? 2 3 ? 3 7? 2

a b c

Figure A.2: Illustration of the stages of polymer-polymer binding. (a) Fixing the
binding end of the first polymer also determines the complementary end of the second one.
(b) In the next step, a random right end is chosen for the binding polymer (right one by
definition). (c) Based on all constrains given by the binding polymer, the left end of the
bound-to polymer (left one by definition) is chosen at random. To keep track of all rates
needed to apply this scheme additional bookkeeping after each iteration step is performed.
All affected rates as well as the accumulated rates are update according to the changes
caused by the last event.

rates12 for each species irrespective of the polymer length 13.
const int GetFirstReactingComponenLeftEnd(){

int component= 0;
double random_number=\
std::uniform_real_distribution<double>\
(0,rates_.back())(rng_engine);
while(rates_[component]<random_number){

++component;
}
return component;

}
In the next step, the right end of the binding polymer is chosen. To this end, all binding
possibilities of a polymer in dependence of its right end have to be stored in an additional
S×S matrix. This is then used to give the appropriate stochastic weight to all conditioned
events.
const int GetFirstReactingComponenRightEnd(const int left_end){

int right_end=0;
long particle_index=std::uniform_int_distribution<long>\
(1,all_binding_combinations_of_species_[left_end])(rng_engine);
long sum_of_binding_partners=possible_bindings_2D_\
[left_end][right_end]*ring_structures_[left_end][right_end];
while(sum_of_binding_partners<particle_index){

++right_end;
12A larger vector is actually used to account for events other than binding e.g., activation or depolymer-

ization. Left ends drawn in the first reaction step which are larger than S cause those to happen.
13This method relies on the assumption that it is the species that determines the binding rate. However,

it is possible as well to use polymer sizes instead with the steps: 1. first size, 2. first left end (fixes right
end and other left end), 3. other size.
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sum_of_binding_partners+ =possible_bindings_2D_\
[left_end][right_end]*ring_structures_[left_end][right_end];

}
return right_end;

}
Finally, the left end of the bound-to polymer is chosen. Since, this end does not interact
with the other polymer, except for not being allowed to overlap14, each species is just
weighted by the number of polymers that have the specified combination of left and right
end. At this point, it is important to be careful which configurations create an overlap
because of the periodic ring structure.
const int GetSecondReactingComponentLeftEnd(const int\
left_end_1, const int right_end_1, const int right_end_2){

int left_end_2=0;
long site_index=std::uniform_int_distribution<long>\
(1,possible_bindings_2D_[left_end_1][right_end_1])(rng_engine);
long sum_of_binding_partners;
if(right_end_1<right_end_2){

left_end_2=right_end_1+1;
sum_of_binding_partners=\
ring_structures_[left_end_2][right_end_2];
while(sum_of_binding_partners<site_index){

++left_end_2;
sum_of_binding_partners+=
ring_structures_[left_end_2][right_end_2];

}
}
else{

if(right_end_1+1==number_of_species){
left_end_2=0;

}
else{

left_end_2=right_end_1+1;
}
sum_of_binding_partners=\
ring_structures_[left_end_2][right_end_2];
while(sum_of_binding_partners<site_index){

++left_end_2;
if(left_end_2==number_of_species){

left_end_2=0;

14An additional binding with right end of the other polymer does not need to be considered because of
the definition that it is always the left end which binds to the right end. This binding combination would
simply be another route in the algorithm.
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}
sum_of_binding_partners+=\
ring_structures_[left_end_2][right_end_2];

}
}
return left_end_2;

}
The described methods made it possible to perform series of ensemble simulations within
less than a day that admit high enough accuracy such that errors of the mean could be
completely neglected. And, even though a lot of additional management is added to the
event execution15, making it significantly more error prone compared to the particle-based
implementation, the simulation speed-up makes up for the additional time investment very
fast.

A.3 Reaction-diffusion systems on lattices
For spatially extended systems the time complexity per iteration step scales with the
number of lattice sites N as well as reactions R and diffusion events D. In a normal
setting each reaction and diffusion event may take place at any lattice site leading to a
total of (R + D)N events16. For a basic Gillespie implementation this directly maps to
the time complexity of the problem which is not very efficient for a system with purely
local interactions. In principle, a method similar to the one used in Section A.1 could be
employed which achieves constant time complexity. In practice however, because events at
different lattice sites have different rates depending on the number of particles it is not a
useful approach in general. Only for incredibly large systems containing very few particles
or even obeying exclusion as the TASEP does it could be beneficial.

For the simulation of large numbers of different events the Next Reaction Method [49]
was developed. Instead of using a single random number to determine the (in simulation)
time that passes till the next event happens, for each reaction the absolute time at which it
would take place under the current circumstances is used. Employing a minimal heap [194]
structure, as illustrated in Fig. A.3, with respect to the event times the (wallclock) time
complexity of a general reaction can be reduced to a logarithmic scaling. This is the
lowest complexity apart from a completely constant value which was discussed above to be
not feasible. If implemented as a normal Gillespie algorithm a simulation of 8192 lattice
sites with just one event each would be roughly 8192/ log 8192 ≈ 600 times slower causing
simulations to take years instead of days. However, there is one important limitation.
For each event which takes place a number of k other events whose rates have changed
throughout have to be updated as well. In the case of a spatially extended reaction-diffusion

15Those implementations are not shown as they are not a direct part of the algorithm itself or necessary
for the understanding of the overall concept.

16Note that D depends on the dimensionality of the system.
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Figure A.3: Illustration of a heap structure. (a) The arrangement of heap elements
is defined via a relation ∼ (e.g., ≤ or ≥). The two child nodes always fulfil this relation
with respect to their parent node. (b) Each child node may itself be a parent of two other
nodes. A node without children is called a leaf. There exists just one node, the root, which
does not have a parent. The structure of a heap is not uniquely defined because it depends
on the order in which elements are added (it is not a tree which can be traversed in order).

system the corresponding time complexity hence scales as k log(r+ d)N . Accordingly, this
method works best if k is small corresponding to sparse reaction dependencies. Because
the models at our chair mainly involve a smaller number of components which all interact
with each other, leading to a large number of additional updates k, further room for
improvement exists.

The central idea is to group events which are strongly dependent and sort these groups
into a heap structure such that the number of updates caused by interactions is minimized.
For a lattice with only local interactions the ideal choice is to group by sites.
struct HeapElement{

double time;
long lattice_site;

};
If a reaction takes place no other site is affected. In case of a diffusion event just one
additional element has to be updated. Furthermore, as explained in Sec. A.1 a lattice can
be directly translated into a hash map of unique elements making updating the heap most
efficient. The corresponding data structure is illustrated in Fig. A.4. Accordingly, the time
and lattice site of the next event are always stored as the first heap element.
const double GetMinTime()const{

return elements_[0].time;
}
const long GetMinSite()const{

return elements_[0].lattice_site;
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Figure A.4: Illustration of the minimal heap implementation. (a) Each element
consists of a reference for an event and a random time at which the event takes place. The
heap property is that the time of each child is larger than for the parent. This immediately
implies that the root has the earliest time and hence corresponds to the next event. Because
of the branching the depth of the heap is the logarithm to the power two of the number
of elements. (b) In practice, the heap is stored as a one-dimensional array. The root has
index 0. The children of the n-th element have the indices 2n+ 1 and 2n+ 2. Since, other
elements than the root need to be updated as well, a hash map is used to directly access
all elements without searching.

}
This is an operation of constant time complexity. In the optimal case, only the element at
the top of the heap that corresponds to the lattice site of the event has to be updated.
void UpdateMin(double new_value){

elements_[0].time=new_value;
Heapify(0);

}
The major computational effort has to be put only into maintaining the heap structure
after performing an event which is done using a Heapify function [194]. Assuming that
the heap property is fulfilled for all offspring of the considered element Heapify sorts the
element into the correct position. Because a hash map has to be used to track the positions
of all stored elements, the respective entries need to be updated in addition.
void Heapify(const long ID){

for(long i=ID; i<Size>>1;){
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const long left=2*i+1;
const long right=std::min(2*i+2,Size-1);
if(elements_[i].time>elements_[left].time){

if(elements_[left].time>elements_[right].time){
std::swap(elements_[right], elements_[i]);
std::swap(positions_[elements_[right].lattice_site],\
positions_[elements_[i].lattice_site]);
i=right;

}
else{

std::swap(elements_[left], elements_[i]);
std::swap(positions_[elements_[left].lattice_site],\
positions_[elements_[i].lattice_site]);
i=left;

}
}
else if(elements_[i].time>elements_[right].time){

std::swap(elements_[right], elements_[i]);
std::swap(positions_[elements_[right].lattice_site],\
positions_[elements_[i].lattice_site]);
i=right;

}
else{

return;
}

}
}

By iteratively applying the Heapify function starting from the final leaves upwards to the
root, the initial heap is constructed.
void MakeHeap(){

for(long i=(Size>>1)-1; -1<i; −−i){
Heapify(i);

}
}

Since diffusion events lead to a coupling of lattice sites often times an additional element
which is not the root has to be updated. Knowing that all elements but the one considered
are compatible with the heap structure only minor changes are necessary to re-establish
a fully functioning heap. If the new value is larger than the old one, a single application
of Heapify is enough. The element travels down one branch and the relation of all other
elements stays the same. If the new value is smaller than before the element climbs up the
heap by being swapped with its parents until it has its correct position either as the new
root element or having a parent node with smaller time value.
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void Update(long site,double new_value){
long i=positions_[site];
if(elements_[i].time<new_value){

elements_[i].time=new_value;
Heapify(i);
return;

}
elements_[i].time=new_value;
while(0<i){

const long parent=(i-1)>>1;
if(elements_[parent].time>elements_[i].time){

std::swap(elements_[parent], elements_[i]);
std::swap(positions_[elements_[parent].lattice_site],\
positions_[elements_[i].lattice_site]);
i=parent;

}
else{

return;
}

}
}

At a chosen lattice site, the normal steps of the Gillespie algorithm are performed to
decide on the actual event and the time update. In case of a diffusion event, at the
site the particle diffuses to all rates have to be updated and a new event time has to
be drawn. The corresponding time complexity hence scales as 2a logN + 2kb instead of
ka logN + ka log(R + D) with a and b being empirical constants. The resulting speed-up
is at least k/2 because a can be expected to be larger than b due to the higher complexity
of the underlying operations. For the minimalistic diffusive epidemic process studied in
Chapter 4 for example simulations are on the order of three times faster compared to
an implementation without grouping elements. In conclusion, the next reaction method
applied to spatially extended systems results a significant speed-up on the order of N/ logN
compared to the Gillespie algorithm. For a dense reaction network with several species that
cause k updates of reactions and diffusion events per iteration an additional performance
increase of at least k/2 can be achieved17 by grouping events by lattice sites and using the
hybridized algorithm.

17This will always be larger than 1 since already for one species on a one-dimensional lattice there are
2 diffusion events which are dependent.



Appendix B

Supplementary calculations

This appendix chapter discusses calculations that generalize and extend results derived
in the main text but do not add new methods or concepts by doing so. Despite being
interesting, they do not further the respective segment in a way that makes up for the
increase in technicality required. However, because the final generalizations obtained con-
tribute significant value and are being used in the main text the respective derivations are
provided in the following.

B.1 Cramming density for arbitrary species ratios
In Chapter 2 an extension of the totally asymmetric simple exclusion process is discussed.
It exhibits a phase transition at zero particle exit rate β = 0 characterized by the cramming
density ρcram that differs from the jamming density ρmax realized for β → 0. In sec. 2.6
the filling process that is defined via the limit of vanishing in rate α → 0 and zero exit
rate β = 0 is introduced to calculate the cramming density for a two-lane system with
symmetric species ratio δ = 1/2. In the following the corresponding derivation is extended
to arbitrary δ.

Fig. B.1 shows the generalized version of the transition matrix Fig. 2.9.b in the main
text. Because of its symmetries and the species exchange symmetry δ → 1 − δ of the
system itself the corresponding stationary state vector has to be of the form

P st. =



a [δ]
b0 [δ]

b0 [1− δ]
b1 [δ]

b1 [1− δ]
...


. (B.1)

To make it easier to distinguish between multiplication and δ dependencies the latter ones
are indicated by square brackets for the remainder of this section. Similar to the symmetric



116 B. Supplementary calculations

0

1/2

0

1/2

0

0

1/2

0

0

0

0

0

0

Figure B.1: Generalized transition matrix. The green line indicates particle sequence
growth, the blue line shrinkage. Red and orange correspond to a double or single closing
of the state as defined in the main text. The dashed line indicates the region in which the
matrix becomes completely regular. Because the single particle state does not distinguish
between the species it causes deviations from the regular matrix structure (grey and kinks
in blue and green).

case, the probabilities of sequences are related by a recursion relation that now depends
on the species ratio δ

bn [δ] = 1− δ
2 (bn−1 [δ] + bn+1 [δ]) , n ≥ 1. (B.2)

The corresponding normalizable solution which fulfils the initial condition is given by

bn [δ] = b0 [δ]
(

1
1− δ −

√
1

(1− δ)2 − 1
)n

. (B.3)

At this point, it is convenient to define the following two series

U [δ] :=
∞∑
n=0

bn [δ] =
∞∑
n=0

(
1

1− δ −
√

1
(1− δ)2 − 1

)n
= 1− δ

(1− δ)
√

1
(1− δ)2 − 1− δ

,

V [δ] :=
∞∑
n=0

nbn [δ] =
∞∑
n=0

n

(
1

1− δ −
√

1
(1− δ)2 − 1

)n
= 1− δ

2δ .

(B.4)

This allows us to write the remaining equations which have to be solved to find the sta-
tionary state vector as

a [δ] != (1− δ + δU [δ]) b0 [δ] + (δ + (1− δ)U [1− δ]) b0 [1− δ]

b0 [1− δ] != δ

2(a [δ] + b0 [δ]U [δ] + b1 [δ])

1 != a [δ] + b0 [δ]U [δ] + b0 [1− δ]U [1− δ] .

(B.5)
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Figure B.2: Contributions to the stationary state by transition type for T
species particles. Depending on the state a particle sequence transitions to, another
sub-configuration of the stationary state is fixated. For each case four different scenarios
exist. The transition rates depend on the species ratio δ. The transitions for the S species
can be obtained immediately via the δ → 1− δ symmetry.

The first two equations are obtained by applying the transition matrix to the vector Eq. B.1
and demanding that the first two lines are identical to the respective vector entries. The last
equation reflects that the eigenvector has to be normalized to one. Solving the equations
results in

a [δ] = 1− 1
δ
− 1

1− δ +
√

1
(1− δ)2 − 1 +

√
1
δ2 − 1,

b0 [δ] =

√
1

(1− δ)2 − 1 + δ

(
δ − 3− δ

√
1

(1− δ)2 − 1
)

(1− δ)2 ,

(B.6)

which together with relation Eq. B.3 fully characterizes the eigenvector. To calculate the
final cramming density, we further need the contributed particles and lattice sites for the
different state transitions as explained in detail in the main text. However, because the
species ratio δ is not 1/2, both species need to be treated separately. For the T species the
contributions of the n-th sequence element to the total particle number Nn and number of
lattice sites Zn read

Nn [δ] = δn+ 1 + δ,

Zn [δ] = 2δn+ 1 + 2δ.
(B.7)

Employing the species exchange symmetry δ → 1 − δ it is unnecessary to additionally
calculate those values for the S species. By construction they have to be Nn [1− δ] and
Zn [1− δ]. For the same reason, we know that a [δ] = a [1− δ] = a [δ] /2 + a [1− δ] /2 has
to hold. Using this symmetrized version of a we can define the symmetric total particle
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contribution N [δ] and lattice site contribution Z [δ] of the T species

N [δ] = a [δ]
2 +

∞∑
n=0

bn [δ]Nn [δ] = a [δ]
2 + b0 [δ] (δV [δ] + (1 + δ)U [δ]) ,

Z [δ] = a [δ]
2 +

∞∑
n=0

bn [δ]Zn [δ] = a [δ]
2 + b0 [δ] (2δV [δ] + (1 + 2δ)U [δ]) .

(B.8)

In this form, the respective quantities for the S species are just the complements N [1− δ]
and Z [1− δ]. Dividing the total number of particles by the number of lattice sites yields
the cramming density as stated in the main text

ρ [δ] = N [δ] +N [1− δ]
Z [δ] + Z [1− δ] =

√
1

(1− δ)2 − 1− 1− δ
(√

1
(1− δ)2 − 1 +

√
1
δ2 − 1− 2

)
4δ − 2 .

(B.9)
The expression (N [δ] + N [1− δ])/Z [δ] + Z [1− δ] nicely illustrates the species exchange
symmetry. As was shown in Fig. 2.11, the stochastic simulations are in perfect agreement.
Interestingly, the general solution Eq. B.9 is not defined for the symmetric case δ = 1/2.
Hence, the solution derived in the main text is not a special case of Eq. B.9 but the value
used to lift this gap.

B.2 Derivatives of the hindrance function
In Section 2.7 of the main text we used the derivatives of the hindrance function for
extremal densities to perform a series expansion. In the following, the origin of those are
explained in detail. As the central physical quantity in the system, the current serves as
the basis for our analysis. Taking the derivative with respect to the density we obtain

d
dρJ(ρ) = 1−H(ρ)− ρH ′(ρ)− 2ρ. (B.10)

This allows us to relate the derivative of the current, which can be understood using
physical arguments, to the abstract derivative of the hindrance function. Assuming the
species ratio δ to be identical to the density ratios of both species—which holds exactly
in the limit ρ → 0 but is in approximation otherwise—we can express the species specific
densities as ρT = (1 − δ)ρ and ρS = δρ. This is interpreted as the chance of having an
arbitrary lattice site occupied by the respective species.

Fig. B.3 illustrates the mean-field probabilities of the different states of a single lattice
site in combination with all configurations relevant for the current in the system. For
a hopping event to occur towards a certain lattice site, it has to be empty which is the
case with probability 1− ρ. If this condition is met, three different scenarios exist. First,
two particles of different species may target the same lattice site. This has a probability
of δ(1 − δ)ρ2 to occur. Despite two particles targeting, the same lattice site the state
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a b

Figure B.3: Illustration of the mean-field probabilities of different states. Panel
(a) shows the probabilities for different states of an individual lattice site given a fixed
density ρ in the system. Panel (b) displays the configurations relevant for the refined
mean-field theory in combination with their corresponding probabilities.

only contributes once to the total current. The reason is sequential hopping which cannot
be understood in a notion purely based on densities. If one particle hops, the other is
blocked. So, only one event may occur (to linear order or in the limit dt→ 0). The other
two relevant cases are one particle being able to hop without a particle of the respective
other species being present on the neighboring lane. For an S particle the probability is
given by δρ(1− (1− δ)ρ) and for a T particle is (1− δ)ρ(1− δρ) which amounts to a total
refined mean-field current

J(ρ) =
(
(1− δ)ρ(1− δρ) + δρ(1− (1− δ)ρ) + δ(1− δ)ρ2

)
(1− ρ), (B.11)

which reduces to the derivative of the TASEP’s current for δ = 0 and δ = 1. While the
result is exact in these cases, it is only an approximation in general as long as the density
is finite. We can now use Eq. B.11 to calculate the change in current in response to an
infinitesimal change in density dρ:

dJ = J(ρ+ dρ)− J(ρ) = ((1− 2ρ) + δ(1− δ)(3ρ− 2)ρ) dρ+O(dρ2). (B.12)

Plugging the result into Eq. B.10 yields

dJ
dρ = 1−H(ρ)− ρH ′(ρ)− 2ρ != (1− 2ρ) + δ(1− δ)(3ρ− 2)ρ. (B.13)

Since, H(ρ)/ρ→ H ′(0) for ρ→ 0, this results in

H ′(0) = δ(1− δ), (B.14)

the relation used in the main text. Because correlations vanish for an empty lattice as no
interaction takes place, the mean-field approximation becomes exact in this limit.
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We now apply the same line of thought to a completely jammed configuration ρ = ρmax.
However, instead of adding density we calculate the effect of removing it. Since the system
is assumed to be completely jammed, this will not reduce the current as there was no
potential to contribute to begin with. But, because of its absence are other particles now
able to move. As before the exact change depends on the species present on the neighboring
lattice site. In complete analogy to the low-density case the change in current is given by

dJ
dρ =− δρmax(1− ρmax(1− δ))− (1− δ)ρmax(1− δρmax)− δ(1− δ)ρ2

max

=− ρmax + δ(1− δ)ρ2
max.

Combining the definition of the maximal density H(ρmax) = 1− ρmax with Eq. B.10 yields
the final result

H ′(ρmax) = −δ(1− δ)ρmax. (B.15)

It is important to note that, in contrast to the low-density case this is not an exact result;
But it is not pure mean-filed either. Knowledge about the existence of ρmax is part of the
derivation. This can easily be seen by the fact that Eq. B.15 is not Eq. B.12 evaluated for
ρ = ρmax.

B.3 General low-density theory
In the main text we showed the derivation of the low-density theory for the totally sym-
metric case δ = 1/2. In this appendix, we provide the derivation of the general case for
arbitrary αT and αS. As before, we start from the assumption, that the current reduction
due to the second species can be interpreted as an external field slowing down particle
motion

ρT
(
1− ρT − ρS

)
= ρT

(
1− ρT

)
νT ,

ρS
(
1− ρT − ρS

)
= ρS

(
1− ρS

)
νS.

(B.16)

Taking the interactions of the additional densities into account this yields the recursion
relation

νN+1
T = 1− ρT (α, δ, νNT )− ρS(α, δ, νNS )

1− ρT (α, δ, νNT ) ,

νN+1
S = 1− ρT (α, δ, νNT )− ρS(α, δ, νNS )

1− ρS(α, δ, νNS ) .

(B.17)

The final solution has to fulfil the self consistency conditions

νT = 1− ρT (α, δ, νT )− ρS(α, δ, νS)
1− ρT (α, δ, νT ) ,

νS = 1− ρT (α, δ, νT )− ρS(α, δ, νS)
1− ρS(α, δ, νS) .

(B.18)



B.3 General low-density theory 121

Rescaling time for both species according to their slowdown can be used to derive the
respective densities in dependence of the hopping rates

ρT (α, νT ) = αT
νT
,

ρS(α, νS) = αS
νS
.

(B.19)

Because in the low-density phase the in rates are assumed to be small and the hopping
rates can be considered to be of similar order Eq. B.18 can be expanded to obtain a more
concise solution later on

νT = 1− αS
νS − αT νSνT

≈ 1− αS
νS

(
1 + αT

νT

)
(B.20)

νS = 1− αT
νT − αS νTνS

≈ 1− αT
νT

(
1 + αS

νS

)
. (B.21)

Defining νT =: 1 − γ which makes γ small under the given assumptions, we can further
simplify the first of the two equations

γ = αS
νS

(
1 + αT

1− γ

)
≈ αS
νS

(1 + αT (1 + γ)) . (B.22)

Solving for νT we find

νT ≈
νS
αS
− 1

νS
αS

+ αT
. (B.23)

This can be plugged into Eq. B.21 to obtain an approximate equation

νS ≈ 1− αT
(
νS
αS

+ αT

) αS
νS

+ 1
νS
αS
− 1 ≈ 1− αT

νS
αS

+ 1
νS
αS
− 1 ,

which admits a short analytic solution of the form

νS ≈
1
2

(
1− αT + αS +

√
1− 2αT + α2

T − 2αS − 6αTαS + α2
S

)
. (B.24)

Now, instead of solving the original equation for νT which would result in a lengthy ex-
pression, we simply employ the species exchange symmetry. It tells us that, if Eq. B.24 is
a valid solution for the S species, in the same way

νT ≈
1
2

(
1− αS + αT +

√
1− 2αS + α2

S − 2αT − 6αSαT + α2
T

)
, (B.25)

has to be the solution for the T species.
Having derived expression for the effective hopping rates all physical observables directly

follow using Eq. B.19. An implication of our general low-density has is that in rates of one
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MC

Figure B.4: S species density plotted against the T species in rate αT . In contrast
to the mean-field scenario, in rates affect the density of other species. This confirms the
prediction made by the extended low-density theory. Simulations (symbols) agree well with
the theory (dashed line) for low in rates αT . For higher values stronger deviations occur.
This is to be expected since αT � 1 was assumed during the derivation. [Parameters:
W = 2, L = 16384, αS = 0.05, β = 0.8 ]

species affect the density of the other. This is never the case for the TASEP. We can test
this prediction by measuring the density of the S species while changing the in rate αT of the
T species. The results are shown in Fig. B.4 and confirm our prediction. Slight deviations
between simulation and theory can be observed which is however not surprising taking the
approximations into account which have been made during the derivation. Actually, an
exact analytic solution to Eq. B.18 exists. But because of its highly convoluted structure,
no additional insight with regard to the system’s mechanisms can be obtained. For that
reason, only the approximate solution is presented in this thesis.
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Supplementary figures

Figure C.1: Illustration of the correspondents between different exit rate con-
figurations. The S species exit rate βS is adapted in dependence on the T exit rate βT
to keep the effective exit rate β constant. In agreement with the theoretical predictions,
current and density remain unchanged. [Parameters: W = 2, L = 16384, α = 0.4]
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Figure C.2: Deviations between density ratio and species ratio δ. In the low-density
phase in general and for low numbers of lanes the ratios between the particle densities is
close to the species ratio δ. For high numbers of lanes and very asymmetric species ratios
0 < δ � 1/2 significant deviations occur underlining the relevance of strong fluctuations in
those regimes. The color scales for systems with the same number of lanesW are identical.
[Adapted from [53]]
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Figure C.3: Comparison between high-density theory and stochastic simulations.
In the high-density phase the exit rate β controls the particle current. The dependency
differs from the TASEP because of arrangement driven fluctuations. The derived theory
(dashed line) and stochastic simulations (symbols) are in good agreement. [Parameters:
W = 2, L = 16384, α = 0.4, δ = 1/2; adapted from [53]]

theory

Figure C.4: Comparison of the low-density theory with stochastic simulations
for the bulk density. Up to the transition to the maximal current phase simulations
(symbols) and theory (dashed line) are in good agreement. A lane dependency only enters
because the maximal current decreases with the number of lanes and hence the phase
transition is triggered at a lower densities. [Parameters: L = 16384, δ = 1/2, β = 0.8]
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a
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Figure C.5: Data collapse of the cluster size squared for DA = 2DB. Assuming
ρc = 6.765, ν‖ = 4 and z = 3 a data collapse can be achieved. However, because of the
reduction of the effective ensemble size when only considering surviving clusters, strong
fluctuations occur. [Parameters: ens. = 5× 104, L = 8192, DA = 1, λ = 0.2, 1/τ = 1]
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Figure C.6: Spatial distribution of the local particle densities for DA = 2DB. A
clear anti-correlation between A and B particles can be observed. However, the reduction
in A particles extends further than the B particle cluster. [Parameters: ens. = 105,
L = 512, DA = 1, λ = 0.2, 1/τ = 1, ρ = 6.76]



128 C. Supplementary figures

Figure C.7: Spatial distribution of the effective number of hopping events for
DA = 2DB. Because particles of the B species diffuse slower, the effective number of
hopping events DA · a+DB · b is lower close to the cluster. This causes a net particle flux
towards the center. The additional particles which are present in the center of the system
in the initial state create a local maximum which decreases over time. [Parameters: ens.
= 105, L = 512, DA = 1, λ = 0.2, 1/τ = 1, ρ = 6.76]
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Figure C.8: Phase space plot for 4DA = 5DB. For different diffusion rates 4DA = 5DB

configurations neither adapt to the line of balanced fluxes nor the line of constant local
density. Instead a b0.77 dependency is realized. The exponent is approximately equal to
the ratio of the diffusion rates. At the tip (which corresponds to the center of the cluster),
the curve touches the line that indicates the balance of fluxes. [Parameters: ens. = 105,
L = 512, DA = 1, λ = 0.2, 1/τ = 1, ρ = 6.92, c1 = 6.92, c2 = −0.81]
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Reprint: Supplementary information
for stochastic yield catastrophes and
robustness in self-assembly

This chapter is a publication reprint of the supplementary information of the manuscript
Stochastic Yield Catastrophes and Robustness in Self-Assembly published in eLife, 9:e51020
(2020) under the Creative Commons Attribution License. The layout and labelling have
been adapted to fit this thesis. No further changes to the content originally submitted to
the journal have been made.

Chapter 3 of the main text focuses on the comparison between deterministic theory
and stochastic effects to give an intuitive understanding of the underlying phenomenology
and central determinants. Aspects that were part of the supplementary information of
the published paper were not discussed in detail. To still provide a complete picture by
including the more technical results and simulations, the respective content is reprinted in
the following.

https://creativecommons.org/licenses/by/4.0/
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D.1 Chemical reaction equations and the equivalence
of models with different numbers of species

In this section we derive the chemical rate equations (deterministic equations) for the self-
assembly process as described in the main text. Furthermore, we show that for general
S in the deterministic limit the model is equivalent to a set of S independent assembly
processes with only one species.

Homogeneous structures
First, we consider the homogeneous model (S= 1). By c`(t) we denote the concentration
of complexes of length ` (` ≥ 2) at time t, c1(t) is the concentration of active monomers
and c0(t) the concentration of inactive monomers at time t. In the following we will usually
skip the time argument for better readability. We denote the reaction rate for binding of
a monomer to a polymer of size ` by ν`. The model from the main text is recovered by
setting ν` := µ` if ` < Lnuc, and ν` := ν otherwise. The ensuing set of ordinary differential
equations then reads:

d

dt
c0 = −α c0 , (D.1a)

d

dt
c1 = α c0 − 2c1

L−1∑
`=1

ν` c` +
Lnuc−1∑
`=2

l δ` c` , (D.1b)

d

dt
c2 = ν1 c

2
1 − 2 ν2 c1 c2 − δ2 c2 1{2<Lnuc} , (D.1c)

d

dt
c` = 2 ν`−1 c1 c`−1 − 2ν` c1 c` − δ` c` 1{`<Lnuc} , for 3 ≤ ` < L , (D.1d)

d

dt
cL = 2 νL−1 c1 cL−1 . (D.1e)

The indicator function 1{x<Lnuc} equals 1 if the condition x < Lnuc is satisfied and 0 other-
wise. The first equation describes loss of inactive particles due to activation at rate α. The
equation is uncoupled from the remainder of the equations and is solved by c0(t) =Ce−αt,
with C denoting the initial concentration of inactive monomers. The temporal change of
the active monomers is governed by the following processes (Eq. (D.1b)): activation of
inactive monomers at rate α, binding of active monomers to existing structures at rate ν`
(polymerization), and decay of below-critical polymers into monomers at rate δ` (disas-
sembly). All binding rates appear with a factor of 2 because a monomer can attach to a
polymer on its left or on its right end.

Note that there is a subtlety with the dimerization term “2 ν1 c
2
1”: the dimerization

term as well bears a factor of 2 because two identical monomers A and B can form a dimer
in two possible ways, either as AB or BA. Additionally, there is a stoichiometric factor
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of 2 for this reaction. However, one factor of 2 is cancelled again because, assuming there
are n monomers, the number of ordered pairs of monomers that describe possible reaction
partners is 1

2n(n−1) ≈ n2/2 (if n is large) rather than n2 (the number of reaction partners
when two different species react). This leaves us with a single factor of 2 like for all the
other binding reactions.

Equations (D.1c) and (D.1d) describe the dynamics of dimers and larger polymers of
size 3 ≤ ` < L, respectively. The terms account for reactions of polymers with active
monomers (polymerization) as well as decay in the case of below-critical polymers (disas-
sembly). The dimerization term in the equation for ∂tc2 lacks the factor of 2 because the
stoichiometric factor is missing as compared with the dimerization term in the line above.
Finally, polymers of length L – the complete ring structures – form an absorbing state and
therefore only include a reactive gain term (Eq. (D.1e)).

Heterogeneous structures

Next we consider systems with more than one particle species (S > 1). The heterogeneous
system can be described by dynamical equations equivalent to the homogeneous system.
We show this starting from a full description that distinguishes both monomers and poly-
mers into a set of different species 1, . . . , S. In order to formulate the dynamic equations
and to see the equivalence to a one-species model, we distinguish both monomers and
polymers into a set of different species 1, . . . , S. The species of a polymer is defined by
the species of the respective monomer at its left end. As polymers assemble in consecutive
order of species, a polymer is uniquely determined by its length and species (i.e. species
of leftmost monomer). In that sense, cs` with 0 ≤ ` < L and 1 ≤ s ≤ S denotes the
concentration of a polymer of length ` and species s (cs0 and cs1 again denote inactive and
active monomers of species s, respectively). For example, c5

4 denotes the concentration of
polymers [5678] if S ≥ 8, or of polymers [5612] if S = 6. Upper indices are always assumed
to be taken modulo S whenever they lie outside the range [1, S]. Therefore, the dynamics
of the concentrations cs` with 3 ≤ ` < L is given by

d

dt
cs` = ν`−1 c

s
`−1 c

`+s−1
1 + ν`−1 c

s+1
`−1 c

s
1 − ν` cs` cs+`1 − ν` cs` cs−1

1 − δ cs` 1{`<Lnuc} . (D.2)

The terms on the right-hand side account for the influx due to binding of the respective
polymers of length `−1 with a monomer either on the right or on the left (first and second
term), and for the outflux due to reactions of a polymer of length ` and species s (third
and fourth term), as well as for decay into monomers for ` < Lnuc (last term). For the
dynamics of the dimers, however, there is only one gain term arising from dimerization:

d

dt
cs2 = ν1 c

s
1 c

s+1
1 − ν2 c

s
2 c

s+2
1 − ν2 c

s
2 c

s−1
1 − δ2 c

s
2 1{2<Lnuc} . (D.3)
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Equivalently, for the active monomers we find:

d

dt
cs1 =αCe−αt − cs1

L−1∑
`=1

ν`
(
cs+1
` + cs−``

)
+

Lnuc−1∑
`=2

k=s∑
k=s+1−`

δ`c
k
` . (D.4)

Now we exploit the symmetry of the system with respect to the species index, that is, the
upper index in {cs`}: Since all species in the system are equivalent, the dynamic equations
are invariant under relabelling of the upper indices. Consequently, it must hold that:

cs`(t) = ck` (t), for any s, k ≤ S at any time t. (D.5)

In other words, the upper index is irrelevant and can also be discarded. The variable c`
then denotes the concentration of any one polymer species of length `. Taking advantage
of this symmetry for the equations of the heterogeneous system, (Eq. (D.2), Eq. (D.3) and
Eq. (D.4)), and collecting equal terms leads to a set of equations fully identical to those for
the homogeneous system (Eq. (D.1)). We show the equivalence to the homogeneous model
exemplarily for the dynamics of the polymers with size ` ≥ 3 in Eq. (D.2). Applying
cs`(t) = c`(t) to Eq. (D.2) yields for the dynamics of the concentration of an arbitrary
polymer species of size `:

d

dt
c` = ν`−1 c`−1 c1 + ν`−1 c`−1 c1 − ν` c` c1 − ν` c` c1 − δ c` 1{`<Lnuc} .

= 2ν`−1 c`−1 c1 − 2ν` c` c1 − δ c` 1{`<Lnuc},

which is identical to the respective dynamic equation (D.1d) for the homogeneous model.
The other equations for the heterogeneous system reduce to those for the homogeneous
system in an analogous manner.

Summarizing, we have shown that the (deterministic) heterogeneous assembly process
decouples into a set of S identical and independent homogeneous processes. In particular,
yield, which is given by the quotient of the number of completely assembled rings and the
maximal possible number of complete rings, becomes independent of S:

yield(t) = ScL(t)
SNL−1 = cL(t)L

N
. (D.6)

D.2 Effective description of the evolution of the poly-
mer size distribution as an advection-diffusion
equation

The dynamical properties of the evolution of the polymer size distribution become evident
if the set of ODEs (D.1) is rewritten as a partial differential equation. This approach
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was previously described in the context of virus capsid assembly9,45 but we will restate
the essential steps here for the convenience of the reader. To this end we interpret the
length index of the polymer ` ∈ {2, 3, . . . , L} as a continuous variable that we rename
x ∈ [2, L]. With such a continuous description in view we write c(x= `) := c` to denote
the concentration of polymers of size `.

Since the active monomers play a special role, we denote their concentration in the
following by A. For simplicity we restrict our discussion to the case Lnuc = 2 and let ν1 =µ

and ν`≥2 = ν. Generalizations to Lnuc > 2 can be done in a similar way. Then, for the
polymers with ` ≥ 3 we have:

∂tc(`) = 2νA
[
c(`− 1)− c(`)

]
. (D.7)

Formally, expanding the right-hand side in a Taylor series up to second order

c(`− 1) = c(`)− ∂xc(`) + 1
2∂

2
xc(`) , (D.8)

we arrive at an advection-diffusion equation with both advection and diffusion coefficients
depending on the concentration of active monomers A(t),

∂tc(x) = −2νA∂xc(x) + νA∂2
xc(x) . (D.9)

Equation (D.9) can be written in the form of a continuity equation ∂tc(x) = − ∂xJ(x)
with flux J = 2νA c − νA ∂xc. The flux at the left boundary, x= 2, equals the influx
of polymers due to dimerization of free monomers, J(2, t) =µA2. This enforces a Robin
boundary condition at x= 2,

2νA c(2, t)− νA ∂xc(2, t) = µA2 . (D.10)

At x=L, we have an absorbing boundary c(L, t) = 0 so that completed structures are
removed from the system. Furthermore, the time evolution of the concentration of active
particles is given by

∂tA = αCe−αt − 2µA2 − 2νA
L∫

2

c(x, t) dx . (D.11)

The terms on the right-hand side account for activation of inactive particles, dimerization,
and binding of active particles to polymers (polymerization).

Qualitatively, Eq. (D.9) describes a profile that emerges at x= 2 from the boundary
condition, Eq. (D.10), moves to the right with time dependent velocity 2νA(t) due to
the advection term, and broadens with a time-dependent diffusion coefficient νA(t). The
concentration of active particles A determines both the influx of dimers at x= 2, as well
as the speed and diffusion of the wave profile.
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Next, we derive an expression that solves Eq. (D.9), assuming that we know A(t). We
start by solving Eq. (D.9) at the left boundary c(2, t), and then translate the resulting
expression to obtain a solution for c(x, t). To obtain c(2, t) in dependence of a(t) we can
solve d

dt
c(2, t) = µA2 − νAc(2, t) (see Eq. (D.1c)) by ’variation of the constants’ as

c(2, t) =
t∫

0

µA(t̃)2 exp

− t∫
t̃

νA(t′)dt′
 dt̃ . (D.12)

With help of this expression we find c(x, t): Given c(2, t), the advective part of Eq. (D.9),

∂tc̃(x) = −2νA∂xc̃(x) . (D.13)

is solved by
cadvec(x, t) = c(2, τ(x, t)) . (D.14)

Here, τ(x, t) denotes the time that a particle at position x and time t was at x = 2. In
other words, a particle at time t and position x has entered the system at x = 2 at time
τ(x, t). This ansatz solves the PDE (Eq. (D.13)) if and only if τ(x, t) satisfies

τ(x, t) = Ã−1
(
Ã(t)− x− 2

2ν

)
(D.15)

with Ã being an arbitrary integral of A such that ∂tÃ(t) = A(t) and Ã−1 denoting its
inverse. More easily, we find this form of τ by requiring that the integral over the velocity
from time τ to t equals the travelled distance x− 2:

t∫
τ

2ν A(t′)dt′ = x− 2 . (D.16)

To include the diffusive contribution in Eq. (D.13), we use the diffusion kernel,

k(x, y, t) =
(

4π
∫ t

τ(y,t)
D(t)

)−1/2

exp
 −x2

4
∫ t
τ(y,t) D(t)

, (D.17)

with the time dependent diffusion constant D(t) = νA(t). The kernel k(x, y, t) accounts for
the mass that has been diffusively transported from y a distance of x. Because the mass has
entered the system at x = 2 at time τ(y, t), it diffused for the time t−τ(y, t). The complete
expression for c(x, t) is then obtained as the convolution of cadvec(x, t) (Eq. (D.14)), that is
obtained from Eq. (D.12) and Eq. (D.15), and the diffusion kernel k(x, y, t) (Eq. (D.17)):

c(x, t) =
∫
cadvec(s, t)k(x− s, s, t)ds =

∫
c(2, τ(s, t))k(x− s, s, t)ds . (D.18)

Interpreting the terms in the equations and the general form of the solution, we are
able to understand the qualitative behavior of the system. If both the activation and the
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dimerization rate are large, the system produces zero yield: both advection and diffusion are
driven by the concentration of active monomers A. If activation is fast, the concentration
of active monomers A will become large initially since activation is faster than the reaction
dynamics. Consequently, provided µ ∼ ν, dimerization dominates over binding because it
depends quadratically on A, see Eq. (D.11). The reservoir of free particles then depletes
quickly and cannot sustain the motion of the wave for long enough to reach the absorbing
boundary, resulting in a very low yield. Only if either the activation rate is low enough or
if µ� ν, the motion of the wave can be sustained until it reaches the absorbing boundary.

D.3 Threshold values for the activation and dimeriza-
tion rate

Based on the analysis from the previous section, we will now determine the threshold
activation rate and threshold dimerization rate which mark the onset of non-zero yield.
Yield production starts as soon as the density wave reaches the absorbing boundary at
x=L. Therefore, finite yield is obtained if and only if the sum of the advectively travelled
distance dadv and the diffusively travelled distance ddiff exceeds the system size L− 2:

dadv + ddiff ≥ L− 2 . (D.19)

The condition for the onset of non-zero yield is obtained by assuming equality in this
relation. The advectively travelled distance is obtained from Eq. (D.16) by setting the
borders of the integral over the velocity to τ = 0 and t =∞:

dadv =
∞∫
0

2νA(t′)dt′. (D.20)

The diffusively travelled distance is approximately given by the standard deviation of the
Gaussian diffusion kernel, Eq. (D.17), again with τ = 0 and t =∞,

ddiff =

√√√√√2ν
∞∫
0

A(t)dt. (D.21)

Taken together, we obtain a condition for the onset of finite yield:

2ν
∞∫
0

A(t)dt+

√√√√√2ν
∞∫
0

A(t)dt = L− 2 . (D.22)

Substituting y=
√

2ν
∫
A and requiring that y is positive, we can solve the quadratic equa-

tion and find that Eq. (D.22) is equivalent to

2ν
∞∫
0

A(t)dt = y2 = 1
4

(√
1 + 4(L− 2)− 1

)2
≈ L−

√
L , (D.23)
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where the last approximation is valid for large L.
We determine the threshold values for the activation rate α and the dimerization rate

µ by finding solutions of the dynamical equation for the active particles A(t), Eq. (D.11),
such that the condition, Eq. (D.23), is fulfilled. Thus, we start by deriving the dependence
of
∫∞
0 A(t)dt on α and µ.
The concentration c(x, t) appears in Eq. (D.11) only in terms of an integral

∫ L
2 c(x, t) dx,

counting the total number of polymers in the system. As long as yield is zero there is no
outflux of polymers at the absorbing boundary x=L and the total number of polymers in
the system only increases due to the influx at the left boundary x= 2. As long as yield is
zero we can therefore equivalently consider the limit L→∞. We denote the total number
of polymers in Eq. (D.11) by B(t) :=

∫
c(x, t) dx for which the dynamics is determined

from the boundary condition, Eq. (D.10):

d

dt
B =

∞∫
2

∂tc(x, t) dx =
∞∫
2

−∂xJ(x, t) dx = − J(∞, t)︸ ︷︷ ︸
=0

+J(2, t) = µA(t)2. (D.24)

Hence, as long as yield is zero, the total number of polymers increases with the rate of the
dimerization events. The system then simplifies to a set of two coupled ordinary differential
equations for A and B:

d

dt
A = αCe−αt − 2µA2 − 2νA B , (D.25a)

d

dt
B = µA2 . (D.25b)

The dynamics of A and B is equivalent to a two-state activator-inhibitor system, where A
dimerizes into B at rate µ, and B degrades (inhibits) A at rate 2ν. Note that Eq. (D.25a)
describes the exact dynamics of the active monomers A and total number of polymers B
in the deterministic system as long as yield is zero. The system has therefore been greatly
reduced from originally S N coupled ODEs to now only 2 coupled ODEs.

For the further analysis it is useful to non-dimensionalize Eq. (D.25a) by measuring A
and B in units of the initial concentration of inactive monomers C and time in units of
(νC)−1:

d

dt
A = ωe−ωt − 2ηA2 − 2A B , (D.26a)

d

dt
B = ηA2 , (D.26b)

with the remaining dimensionless parameters ω= α
νC

and η= µ
ν
. We are interested in the

integral over A(t) as a function of ω and η,
∞∫
0

Aω,η(t)dt := g(ω, η) , (D.27)
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which relates to the totally travelled distance of the wave. Note that, in case of zero yield,
2g(ω, η) is the total advectively travelled distance of the wave (cf. Eq. (D.20)) and the
square of the diffusively travelled distance (cf. Eq. (D.21)).

Analysis of the dimerization scenario
The dimerization scenario is characterized by fast activation α� Cν and slow dimerization
µ � ν. For the dimensionless parameters these assumptions translate to η � 1 and
η � ω. Because for small η � 1 nucleation is much slower than growth we neglect the
dimerization term in Eq. (D.26a) against the growth term. Furthermore, because η � ω

activation happens on a fast time scale compared with nucleation and we may therefore
integrate out the fast time scale assuming that all particles are activated instantaneously
at the beginning. The system Eq. (D.26) then reduces to

d

dt
A = −2A B , (D.28a)

d

dt
B = ηA2 , (D.28b)

with the initial condition A(0) = 1 and B(0) = 0. We divide the first equation by the
second one (formally applying the chain rule and the inverse function theorem) to obtain
a single equation for the dynamics of A(B):

dA

dB
= −2

η

B

A
, (D.29)

where A(B=0) = 1. This first order ODE can be solved by separation of variables and
subsequent integration, yielding

A(B) =
√

1− 2
η
B2 . (D.30)

Because the number of active monomers A(t) must vanish for t→∞, the final value of B
is

B∞ := B(t=∞) =
√
η

2 . (D.31)

Thereby, we calculate the function g(η) via variable substitution dt = dB
ηA2 :

g(η) =
∞∫
0

A(t)dt =
B∞∫
0

A(B) dB

ηA(B)2 = 1
η

B∞∫
0

dB√
1− 2

η
B2

= π

2
√

2
η−

1
2 . (D.32)

So, the dependence of the travelled distance of the wave on η obeys a power law with
exponent −1

2 , confirming the previous result9. For the coefficient we find π
2
√

2 ≈ 1.1107.
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Additionally, we can determine the time dependent solutions A(t) and B(t). Using the
solution for A(B) from Eq. (D.30) in Eq. (D.28b) we obtain B(t) as

B(t) =
√
η

2 tanh
(√

2ηt
)
. (D.33)

We use this expression for B(t) in Eq. (D.28a) to obtain A(t). The resulting ODEs can
again be solved by separation of variables as

A(t) = 1
cosh (

√
2ηt) . (D.34)

Analysis of the activation scenario

In the activation scenario, α � Cν, such that ω � 1 and ω � η. As we know already
that decreasing ω will slow down nucleation relative to growth we can again neglect the
dimerization term in Eq. (D.26a). In contrast to the dimerization scenario, however, we
have to keep the activation term. Transforming time via τ := 1− e−ωt such that τ ∈ [0, 1]
and writing a(τ) = a(1 − e−ωt) := A(t) and b(τ) = b(1 − e−ωt) := B(t) the system in
Eq. (D.26) becomes:

d

dτ
a = 1− 2

ω(1− τ)ab , (D.35a)

d

dτ
b = η

ω(1− τ)a
2 , (D.35b)

with the initial condition a(0) = b(0) = 0. The function g(ω, η) transforms as

g(ω, η) =
∞∫
0

A(t)dt = 1
ω

1∫
0

a(τ)
1− τ dτ. (D.36)

In the following we derive the asymptotic solution for a(τ) in the limit of small ω in order
to evaluate the integral in Eq. (D.36). In the limit τ → 1 (⇔ t→∞) both a(τ) and d

dτ
a(τ)

will become small whereas b(τ) increases monotonically. The reaction term in Eq. (D.35a)
is furthermore weighted by a factor 1

ω
which will become large if ω � 1. We therefore

postulate that for sufficiently large τ the derivative d
dτ
a(τ) is much smaller than the two

terms on the right-hand side of Eq. (D.35a) and hence negligible. This assumption has to
be justified a posteriori with the obtained solution. Neglecting the derivative term d

dτ
a in

(D.35a) reduces the equation to an algebraic equation and we find

a = ω(1− τ)
2b . (D.37)
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Using this result in Eq. (D.35b) we can solve for b by separation of variables and subsequent
integration:

b(τ) = (ωη) 1
3 ·
(3

4τ −
3
8τ

2
) 1

3
. (D.38)

From Eq. (D.37) we immediately obtain a(τ):

a(τ) = ω
2
3

η
1
3
· 1− τ

(6τ − 3τ 2) 1
3

:= ω
2
3

η
1
3
h(τ) , (D.39)

where by h(τ) we denote the part of the solution that depends only on τ . Hence, we find
that a and hence also d

dτ
a scale like ∼ ω

2
3 , and will thus become small if ω � 1 and τ

is large enough. Therefore the solution is consistent1 and justifies the approximation in
which we neglected the derivative term in the limit of small ω and sufficiently large τ .

In the limit τ → 0, however, the expression for a(τ) in Eq. (D.39) diverges and consis-
tency is violated. Hence, the obtained solution is valid only for sufficiently large τ .

We fix some small ε > 0 such that the approximation can be assumed to be sufficiently
good if d

dt
a < ε. Furthermore, we define τε such that d

dτ
a < ε for all τ > τε. Using

Eq. (D.39) we can write this as d
dτ
h < εη

1
3/ω

2
3 for all τ > τε, where the left-hand side, d

dτ
h,

depends only on τ . Hence, by decreasing ω we can make τε arbitrarily small: limω→0 τε = 0.
In order to calculate g(ω, η) the integral in Eq. (D.36) can be separated in a domain where
the approximation a(τ) is accurate and a domain where the correct solution ã(τ) deviates

1Consistency of the solution with the approximation is a sufficient criterion for the validity of
the approximation: We can solve the system for A and B in Eq. (D.35) iteratively by defining

d

dτ
ai−1 = 1− 2

ω(1− τ)aibi ,

d

dτ
bi = η

ω(1− τ)a
2
i .

Assuming that for i→∞, ai and bi converge to the correct solutions a(τ) and b(τ) when starting
with a0 = 0, we obtain a1 and b1 as given by Eq. (D.39) and Eq. (D.38) and can iteratively refine
the approximation. The next iteration step then reads: d

dτ a1 = 1 − 2
ω(1−τ)a2b2. As a1 ∼ ω

2
3 we

know that the left-hand side will be small and a1 and b1 solve the system if the left-hand side
equals 0. Writing a2 = a1 + ã2 and b2 = b1 + b̃2 this gives:

d

dτ
a1 = 1− 2

ω(1− τ)(a1 + ã2)(b1 + b̃2) ≈ 2
ω(1− τ)(a1b̃2 + b1ã2) . (D.40)

From dimensional analysis it follows that the correction terms ã2 and b̃2 must scale like ã2 ∼ ω
4
3

and b̃2 ∼ ω and are hence much smaller than the first order approximations a1 and b1. Higher
order corrections will give even smaller contributions showing that if d

dτ a1 � 1, a1 is indeed a
very good approximation.
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strongly from a(τ):

g(ω, η) = 1
ω

∫ τε

0

ã(τ)
1− τ dτ + 1

ω

1∫
τε

a(τ)
1− τ dτ. (D.41)

We see from Eq. (D.35a) that d
dτ
ã = 1 describes an upper bound to ã showing that ã(τ) ≤ τ .

Therefore we can bound the contribution of the first integral as
∫ τε

0
ã(τ)
1−τ dτ ≤

∫ τε
0

τ
1−τεdτ =

1
2

τ2
ε

1−τε . Because this upper bound for the integral goes to 0 if ω and hence τε become
small the first integral will become negligible against the second one. Asymptotically, we
therefore only need to consider the second integral with the solution for a(τ) as given by
Eq. (D.39):

g(ω, η) = (ωη)−
1
3

1∫
0

(6t− 3t2)− 1
3dt = (ωη)−

1
3

3∫
0

dz

6z 1
3
√

1− z
3

=

=
3 2

3
√
π Γ(2

3)
6 Γ(7

6) (ωη)−
1
3 ≈ 0.8969 · (ωη)−

1
3 , (D.42)

where we used the substitution t = 1−
√

1− z/3 and Γ(x) is the (Euler) Gamma function.
So, in the limit of small ω, g scales with ω and η with identical exponent −1

3 . This contrasts
the dimerization scenario where g as well as A and B depend only on η and are independent
of ω (cf. Eq. (D.32), (D.33) and (D.34)).

Numerical analysis and the threshold values for the rate constants
In order to confirm the results of the last two paragraphs and to see how g(ω, η) behaves
in the intermediate regime where ω and η are of the same order of magnitude we also
investigate the function g(ω, η) numerically. For that purpose we numerically integrate the
ODE-system for A(t) and B(t) in Eq. (D.26) for different values of ω and η with a semi-
implicit method. Subsequently, we integrate the solution A(t) using an adaptive recursive
Simpson’s rule. Plotting g in dependence of ω for fixed η on a double-logarithmic scale
reveals a rather simple bipartite form of g, see Fig. SD.1a:

g(ω, η) =

g1(η)ω− 1
3 ω � 1

g2(η) ω � 1.
(D.43)

The transition between these two regimes is rather sharp so that g is best described in a
piecewise fashion

g(ω, η) = max (g1(η)ω− 1
3 , g2(η)) . (D.44)

Next, we plot the coefficients g1(η) and g2(η) against η. Here we find that g1(η) = aη−
1
3 with

a= const ≈ 0.90 and g2(η) is again bipartite with a sharp kink in between (Fig. SD.1b):

g2(η) = min (bη− 1
2 , b′η−0.85) , (D.45)
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Figure D.1: Fit of g(ω, η) on log-log scale. The function g(ω, η) =
∞∫
0
Aω,η(t)dt describes

(half) the travelled distance of the profile of the polymer size distribution in dependence of
ω= α

νC
and η= µ

ν
. Marker points show solutions for g(ω, η) as obtained numerically from

integration of Eq.(D.26). Red lines are linear fits on log-log scale. In (a) we plot g(ω, η)
for fixed η (here exemplarily for η= 0.01) over 25 orders of magnitude in ω and find a
markedly bipartite behavior: For small ω the dependence on ω is perfectly matched by a
power law with exponent −1

3 and η-dependent coefficient g1(η), whereas for large ω it is a
constant g2(η). (b) Plotting g2(η) = g(ω=∞, η) in dependence of η reveals again strictly
bipartite behavior. Here, however, only the brach for small η is realistically relevant. With
the coefficient g1(η) that can be determined in a similar way this leads to the final form of
g(ω, η) as given by Eq. (D.46).

where b ≈ 1.11 and b′ ≈ 1.37. The transition between both regimes is at η ≈ 1.82. The
second regime is not relevant for self-assembly since it refers to both large ω and large η,
hence the travelled distance 2g is too small to give finite yield in this regime. Therefore,
we discard the second regime and obtain as final result

g(ω, η) = max (a(ηω)− 1
3 , bη−

1
2 ), (D.46)

with a ≈ 0.90 and b ≈ 1.11. This confirms perfectly the exponents as well as the coefficients
found in the last two paragraphs. It is, however, surprising that there is such a sharp
transition between both regimes, which allows to define g(ω, η) in a piecewise fashion.
This behavior must be the result of a series of lower oder terms in g(ω, η) which are
unimportant in the limits ω � η and η � ω but cause the sharp transition when ω and η
are of the same order of magnitude.

Finally, we return to our original task of finding the threshold values of the activation
and dimerization rate for the onset of yield. Using our result for g(ω, η) in Eq. (D.23) we
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find as necessary and sufficient condition to obtain finite yield in the deterministic system:

2 max (a(ηω)− 1
3 , bη−

1
2 ) ≥ L−

√
L . (D.47)

Alternatively, we can state this result as two separate conditions out of which at least one
must be fulfilled to obtain finite yield:

2a(ηω)− 1
3 ≥ L−

√
L ⇒ α < αth := Pα

ν

µ

νC

(L−
√
L)3

(D.48)

or 2bη− 1
2 ≥ L−

√
L ⇒ µ < µth := Pµ

ν

(L−
√
L)2

(D.49)

where Pα = 8a3 ≈ 5.77 and Pµ = 4b2 ≈ 4.93. This verifies Eq. (1) in the main text.

D.4 Impact of the implementation of sub-nucleation
reactions

In the main text we focused our discussion on irreversible binding Lnuc = 2. In this section
we investigate the effect of different implementations of the sub-nucleation reactions.

In general, perfect yield is trivially achieved if the complete ring is the only stable
structure. However, yield can be maximal already for smaller nucleation sizes Lnuc de-
pending on the explicit decay rate δ. In the deterministic limit without the dimerization
and activation mechanisms (µ= ν, α → ∞ ) a rapid transition from zero yield to perfect
yield occurs in dependence of the critical nucleation size (see Fig. SD.2). The threshold
value in this case is approximately half the ring size and is weakly affected by the decay
rate δ. In order to obtain finite yield for small nucleation sizes, an extremely high decay
rate would be necessary. Hence, maximizing the yield solely by increasing the nucleation
size is not very feasible.

In our model, the subcritical reaction rates µi may take different values. Here, we
want to restrict our discussion to two scenarios. First, all rates have an identical value
µi =µ and second, the rates increase linearly up to the super-nucleation reaction rate:
µi =µ+ (ν − µ) i−1

Lnuc−1 .
In the deterministic limit, both implementations show the same qualitative behavior

as the dimerization mechanism with Lnuc = 2 in the main text (see Fig. SD.3). The only
relevant aspect for the final yield is the extend to which nucleation is slowed down in total.
In the constant scenario all reaction steps contribute equally. As a results there is a strong
dependence on the number of such reaction steps, i.e. on the critical nucleation size. If
however, the reaction rates increase linearly with the size of the polymers, the dimerzation
rate dominates. Only in the case µ � ν finite yield is observed at all. In this limit the
dimerization rate is much smaller than the subsequent growth rates. The explicit form of
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Figure D.2: Yield maximization due to increased nucleation size. Without acti-
vation and dimerization mechanism (α → ∞, µ= ν) the yield can still be optimized by
increasing the critical nucleation size Lnuc. However, a significant improvement is only
achieved for critical sizes larger than half the ring size. Above, a rapid transition to perfect
yield takes place. Below no effect is observed at all. Increasing δ shifts the onset of yield
to slightly smaller critical nucleation sizes. Other parameters: L= 60, N = 10000.

the different µi is not of major importance for the yield. The total slowdown of nucleation
is the central feature. Structure decay does not play any role for intermediate nucleation
sizes.

The last question we want to address is how the combination of activation and dimer-
ization mechanism and the corresponding non-monotonic behavior is affected by the nu-
cleation size. Again, we compare constant sub-nucleation growth with a linearly increasing
growth rate (see Fig. SD.4). In the deterministic regime both implementations behave
qualitatively similar as the dimerization mechanism discussed in the main text. However,
in both cases the stochastic yield catastrophe is less pronounced. For the constant growth
rates a saturation of the maximal yield is observed for sufficiently low µ. If the profile
is linear this effect is weaker as compared to the constant case and a dependency on the
explicit value of µ is still observed. The saturation value is not reached for these reactions
rates.

Taking all our results for the sub-nucleation behavior together we draw the following
conclusions: First, structure decay by itself it not very efficient in order to maximize
yield. Second, the explicit choice of the sub-nucleation rates is of minor importance for
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Figure D.3: Yield for the dimerization mechanism (α→∞) with different nucle-
ation sizes (colors). (a) If all sub-nucleation growth rates are identical (µi =µ) increasing
the nucleation size increases the threshold value µth. The slow down of nucleation due to
the individual sub-nucleation steps in total determines the yield. (b) If the sub-nucleation
growth rates increase linear

(
µi =µ+ (ν − µ) i−1

Lnuc−1

)
no dependence on the nucleation size

is observed. The dimerization rate µ1 =µ (which is the most limiting step) dominates
entirely. Other parameters: L= 60, N = 10000, δ= 1.

the qualitative behavior. The system behaves similarly to the case Lnuc = 2. Third, larger
nucleation sizes mitigate the stochastic yield catastrophe in general.

D.5 Time evolution of the yield in the activation and
dimerization scenario

In the main text we focus on the final yield, which represents the maximal yield that can
be obtained in the assembly reaction for t → ∞. Here, we briefly discuss the temporal
evolution of the yield in the two scenarios. Figure SD.5 shows the yield as a function of time
for the dimerization scenario (blue) and the activation scenario (red) for the corresponding
parameters indicated in the plot. Drawn lines show the evolution of the yield in the
stochastic simulation whereas dashed lines represent its deterministic evolution obtained
by integrating the corresponding mean-field rate equations (only shown for the activation
scenario).
In both scenarios, yield production sets in after a short lag time16. The emergence of a
lag time can be understood in terms of the interpretation of the assembly process as the
progression of a travelling wave (see Sec. D.2). The travelling wave thereby describes the
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Figure D.4: Combined mechanisms for different nucleation sizes (symbols) and
dimerization rates (color). (a) If the sub-nucleation growth rates are identical (µi =µ)
The stochastic yield catastrophe is weakened but still has a drastic impact. The qualita-
tive behavior remains unchanged. (b) For a linearly increasing sub-nucleation growth rate(
µi =µ+ (ν − µ) i−1

Lnuc−1

)
in the deterministic regime no changes are observed at all. The

effect of the stochastic yield catastrophe is less pronounced. This improvement is mainly
caused by structure decay which mitigates stochastic fluctuations. However, a slight de-
pendency of the saturation value on the rate µ is observed. Other parameters: L= 60,
S=L, N = 100, δ= 0.1.

polymer size distribution and the time that is needed for the wave to reach the absorbing
boundary equals the lag time for yield production observed in Fig. SD.5. After the
lag time, the yield increases very abruptly in the dimerization scenario and a bit more
continually in the activation scenario. Since monomers are provided gradually in the
activation scenario, the emerging wave is flatter and extends over a larger range (in polymer
size space) as compared to the dimerization scenario. Consequently, yield production
is more gradual in the activation scenario than in the dimerization scenario. For the
same reason, the dimerization scenario is generally “faster” or more time efficient than
the activation scenario. For a detailed analysis of the time efficiency of these and other
self-assembly scenarios we refer the reader to [10].

In all depicted situations, the yield increases monotonically with time. This is, of course,
generally true since the completed ring structures define an absorbing state in our system.
The final yield, which is indicated in the right bar, therefore represents the upper limit
for the yield that can be achieved in the assembly reaction. Figure SD.5 shows that the
temporal yield curves initially are rather steep and quickly reach a value that lies within
10% of the final yield (“quickly” thereby refers to the respective time scale), before the
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Figure D.5: Time evolution of the yield in the activation and dimerization sce-
nario. The time dependence of the yield is depicted for a dimerization scenario (blue)
with µ = 5 × 10−4 and N = 100 and for two activation scenarios (red) with α = 0.1 and
N = 102 and N = 104, respectively, for target structures of size L = 20. Drawn lines show
the time evolution of the stochastic systems while dashed lines describe the time evolution
in the corresponding deterministic systems (where the final yield may be higher in the ac-
tivation scenario). In all cases the yield increases monotonically with time. The final yield,
that is indicated in right bar, represents the upper limit of the yield at any time. Yield
production in the activation scenario is generally more gradual than in the dimerization
scenario. Therefore, the dimerization scenario is, in general, more time efficient than the
activation scenario.

curves flatten and increase more slowly. This underlines that the final yield is a meaningful
observable that not only describes the upper limit for the yield but also approximates the
typical yield of the assembly reaction under appropriate time constraints that are not too
restrictive (on the time scale set by the respective lag time).

D.6 Standard deviation of the yield

In the main text, the analysis focuses on the average yield. A priori it is, however, not
apparent that this average quantity is informative, in particular due to the strong effect of
stochasticity in the system. Here, we thus take a step forward to complement this picture
by additionally considering a simple measure for the fluctuations of the yield, its standard
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Figure D.6: Average yield and its sample standard deviation. For average yield
close to 0 or close to 1, the standard deviation has to be small due to the boundedness of
the yield to the interval [0, 1]. For intermediate values, the standard deviation is highest.
Its value is, however, still considerably smaller than the average yield. The parameters are
L= 60, S=L, µ = ν = 1 and different particle numbers N (colors/symbols). To obtain the
average yield, the yield has been averaged over 1000 simulations. The standard deviation
corresponds to the unbiased sample standard deviation.

deviation. Fig. SD.6 is an extension of Fig. 3.a in the main text, showing the dependence
of the average yield and its sample standard deviation on the activation rate. Since yield
is always positive, the standard deviation of the yield has to be small if the average yield
is close to 0 (N = 500 in Fig. SD.6). The same holds true for average yield close to 1 as
the yield is bounded by 1 from above (N = 5000 in Fig. SD.6). For intermediate values of
the average yield, the standard deviation is highest but still small compared to the average
yield (N = 1000 in Fig. SD.6). The average yield is, thus, meaningful. Naturally the ratio
of the standard deviation compared to the average yield also depends on the number of
particles per species N and on the number of species S. Generally speaking, for higher N
and S, this ratio decreases (see Fig. SD.7 for the dependency on S).
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D.7 Influence of the heterogeneity of the target struc-
ture for fixed number of particles per species

Fig. 3(d) in the main text shows how the maximal yield ymax depends on the number of
species S if the ring size L and the number of possible ring structures NS/L is fixed. This
comparison for fixed NS is motivated by the question which role the heterogeneity of a
structure plays for assembly efficiency if a certain number of structures should be realized.
Fig. 3(d) illustrates that a higher number of species S (more heterogeneous structures)
leads to a lower maximally possible yield, suggesting that it is beneficial to build structures
with as few different species as possible. However, this situation does not correspond to
the deterministically equivalent case2 of fixed number of particles per species N . Instead,
for higher number of species S, the number of particles per species N ∝ 1/S decreases.
How does the heterogeneity of the structures S alter the maximally possible yield if L
and N (instead of L and NS) are fixed? Fig. SD.7 shows how the maximal yield ymax

and its standard deviation (obtained as average yield and sample standard deviation for
α = 10−8 when the yield has well saturated and the dynamics (except for the timescale) get
independent of the exact value of the rate-limiting activation rate) depend on the number
of species S. For homogeneous structures S = 1 yield is always perfect since in this case
there can be no fluctuations between species. As a result, the average yield is 1 and the
standard deviation is 0. For increasing S, the average yield decreases until it levels off for
S � 1. This behavior indicates that indeed the decreasing number of particles per species
N for larger S is essential for the decrease of the maximal yield with S in Fig. 3(d). As
mentioned above, the standard deviation is largest for small S > 1 and decreases with S.

2Note, though, that in the deterministic case the maximally possible yield is always 1, namely for
α→ 0.
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Figure D.7: Influence of the heterogeneity of the target structure on the yield
for fixed number of particles per species N . The maximal yield and its standard
deviation (obtained as average yield and sample standard deviation for α = 10−8) are
plotted against the number of species S making up the structure of size L = 60. The
number of particles per species N = 1000 is fixed. Yield drops from a perfect value of 1
for S = 1 to a smaller value and levels off for S � 1. The standard deviation is largest for
small S (except for S = 1 where the yield is always perfect) and decreases with increasing
number of species.
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D.8 Dependence of the maximal yield ymax in the ac-
tivation scenario on N and L

Fig. 3(c) in the main text characterizes the dependence of the maximal yield ymax in
the activation scenario as a “phase diagram” distinguishing different regimes of ymax in
dependence of the particle number N and target size L. Supplementing this figure in
the main text, Fig. SD.8 shows the maximum yield that is obtained in the activation
scenario in the limit α → 0 for fixed L in dependence of N (Fig. SD.8a) as well as for
fixed N in dependence of L (Fig. SD.8b). For larger particle number N , the maximal
yield exhibits a transition from 0 to 1 over roughly three orders of magnitude. Increasing
L shifts the transition to larger N . The threshold particle number where the transition
starts is characterised by N>0

th (L) (see main text). Approximately, for L ≤ 600, we find
N>0

th (L) ∼ L2.8 (cf. main text, Fig. 3(c)).
Similarly, decreasing the target size L for fixed N , the maximal yield exhibits a transition
from 0 to 1 over roughly one order of magnitude in L. The corresponding threshold value
L>0
th as a function of N is obtained as the inverse function of N>0

th (L). Hence, at least for
N ≤ 105, approximately it holds L>0

th (N) ∼ N0.36.
Since ymax is largely independent of the number of species S for fixedN and L (see Sec. D.7),
the maximal yield in the activation scenario (for Lnuc = 2) can be fully characterized as
a function ymax(N,L) of N and L. Hence, ymax can roughly be expressed in terms of the
threshold particle number N>0

th (L) as

ymax(N,L)


≈ 1 if N > 103N>0

th (L)
< 1 if N>0

th (L) < N < 103N>0
th (L)

= 0 if N < N>0
th (L)

(D.50)

As can be seen from Fig. 3(c) in the main text, the transition line between zero and
nonzero yield slightly flattens with increasing L. Hence, the power law N>0

th (L) ∼ L2.8

(and similarly for L>0
th ) only holds approximately and for a restricted range in L and N .

The asymptotic behavior of N>0
th in the limit L→∞ remains elusive.
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Figure D.8: Dependence of the maximal yield ymax in the activation scenario on N
and L. For each data point, ymax was determined as the average yield of 100 independent
stochastic simulations of the activation scenario with α = 10−12. (a) Variation of the
particle number N for different target sizes L. The maximal yield increases from 0 to 1
over roughly three order of magnitude in N . The onset of the transition depends on L.
(b) Variation of the target size L for different particle numbers N . Increasing the target
size L with N being fixed causes the maximal yield to drop to 0. The transition from 1 to
0 spans roughly one order of magnitude in L and its position is determined by N .



Bibliography

[1] F. Schwabl, Statistische Mechanik, vol. 3. Springer Verlag, 2006.

[2] R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman lectures on physics,
Vol. I: The new millennium edition: mainly mechanics, radiation, and heat, vol. 1.
Basic books, 2011.

[3] T. Chou, K. Mallick, and R. K. P. Zia, “Non-equilibrium statistical mechanics: from
a paradigmatic model to biological transport,” Rep. Prog. Phys., vol. 74, no. 11,
p. 116601, 2011.

[4] E. Schrödinger, “What is life? the physical aspect of the living cell and mind.,” 1944.

[5] F. Gnesotto, F. Mura, J. Gladrow, and C. Broedersz, “Broken detailed balance
and non-equilibrium dynamics in living systems: a review,” Reports on Progress
in Physics, vol. 81, no. 6, p. 066601, 2018.

[6] P. C. Bressloff, Stochastic processes in cell biology, vol. 41. Springer, 2014.

[7] S. Katz, J. L. Lebowitz, and H. Spohn, “Phase transitions in stationary nonequilib-
rium states of model lattice systems,” Phys. Rev. B, vol. 28, no. 3, pp. 1655–1658,
1983.

[8] T. Chou, “How Fast Do Fluids Squeeze through Microscopic Single-File Pores?,”
Phys. Rev. Lett., vol. 80, no. 1, p. 85, 1998.

[9] T. Reichenbach, T. Franosch, and E. Frey, “Exclusion Processes with Internal
States,” Phys. Rev. Lett., vol. 97, p. 050603, aug 2006.

[10] T. Reichenbach, E. Frey, and T. Franosch, “Traffic jams induced by rare switching
events in two-lane transport,” New J. Phys., vol. 9, p. 159, 2007.

[11] A. Schadschneider, D. Chowdhury, and K. Nishinari, Stochastic Transport in Complex
Systems. Elsevier, Amsterdam, 2011.

[12] T. Chou and G. Lakatos, “Clustered Bottlenecks in mRNA Translation and Protein
Synthesis,” Phys. Rev. Lett., vol. 93, pp. 198101–1, nov 2004.



158 BIBLIOGRAPHY

[13] J. Krug, “Boundary-Induced Phase Transitions in Driven Diffusive Systems,” Phys.
Rev. Lett., vol. 67, no. 14, p. 1882, 1991.

[14] A. Parmeggiani, T. Franosch, and E. Frey, “Phase coexistence in driven one-
dimensional transport,” Phys. Rev. Lett., vol. 90, no. February, p. 086601, 2003.

[15] A. Parmeggiani, T. Franosch, and E. Frey, “Totally asymmetric simple exclusion
process with langmuir kinetics,” Phys. Rev. E, vol. 70, no. 4, p. 046101, 2004.

[16] C. Leduc, K. Padberg-Gehle, V. Varga, D. Helbing, S. Diez, and J. Howard, “Molec-
ular crowding creates traffic jams of kinesin motors on microtubules,” Proc. Natl.
Acad. Sci. U.S.A., vol. 109, p. 6100, 2012.

[17] A. I. Curatolo, M. R. Evans, Y. Kafri, and J. Tailleur, “Multilane driven diffusive
systems,” J. Phys. A-Math. Theor., vol. 49, no. 9, p. 095601, 2016.

[18] V. Bormuth, B. Nitzsche, F. Ruhnow, A. Mitra, M. Storch, B. Rammner, J. Howard,
and S. Diez, “The highly processive kinesin-8, Kip3, switches microtubule protofila-
ments with a bias toward the left,” Biophys. J., vol. 103, no. 1, pp. L4–L6, 2012.

[19] M. Bugiel, E. Böhl, and E. Schäffer, “The kinesin-8 Kip3 switches protofilaments in a
sideward random walk asymmetrically biased by force,” Biophys. J., vol. 108, no. 8,
pp. 2019–2027, 2015.

[20] M. Brunnbauer, R. Dombi, T. Ho, M. Schliwa, M. Rief, and Z. Ökten, “Torque
generation of kinesin motors is governed by the stability of the neck domain,” Mol.
Cell, vol. 46, pp. 147–58, apr 2012.

[21] A. Zlotnick, J. M. Johnson, P. W. Wingfield, S. J. Stahl, and D. Endres, “A the-
oretical model successfully identifies features of hepatitis b virus capsid assembly,”
Biochemistry, vol. 38, no. 44, pp. 14644–14652, 1999.

[22] Y. Ke, L. L. Ong, W. M. Shih, and P. Yin, “Three-dimensional structures self-
assembled from dna bricks,” Science, vol. 338, no. 6111, pp. 1177–1183, 2012.

[23] B. Wei, M. Dai, and P. Yin, “Complex shapes self-assembled from single-stranded
dna tiles,” Nature, vol. 485, no. 7400, p. 623, 2012.

[24] A. Reinhardt and D. Frenkel, “Numerical evidence for nucleated self-assembly of dna
brick structures,” Phys. Rev. Lett., vol. 112, no. 23, p. 238103, 2014.

[25] W. M. Jacobs, A. Reinhardt, and D. Frenkel, “Rational design of self-assembly path-
ways for complex multicomponent structures,” Proceedings of the National Academy
of Sciences, vol. 112, no. 20, pp. 6313–6318, 2015.

[26] M. F. Hagan and O. M. Elrad, “Understanding the concentration dependence of
viral capsid assembly kinetics - the origin of the lag time and identifying the critical
nucleus size,” Biophysical journal, vol. 98, no. 6, pp. 1065–1074, 2010.



BIBLIOGRAPHY 159

[27] K. F. Wagenbauer, C. Sigl, and H. Dietz, “Gigadalton-scale shape-programmable
dna assemblies,” Nature, vol. 552, no. 7683, pp. 78–83, 2017.

[28] F. Praetorius and H. Dietz, “Self-assembly of genetically encoded dna-protein hybrid
nanoscale shapes,” Science, vol. 355, no. 6331, p. eaam5488, 2017.

[29] K. V. Gothelf, “Lego-like dna structures,” science, vol. 338, no. 6111, pp. 1159–1160,
2012.

[30] F. H. Crick and J. D. Watson, “Structure of small viruses,” Nature, vol. 177, no. 4506,
pp. 473–475, 1956.

[31] D. L. Caspar and A. Klug, “Physical principles in the construction of regular viruses,”
in Cold Spring Harbor symposia on quantitative biology, vol. 27, pp. 1–24, Cold Spring
Harbor Laboratory Press, 1962.

[32] C. Chen, C. C. Kao, and B. Dragnea, “Self-assembly of brome mosaic virus capsids:
insights from shorter time-scale experiments,” The Journal of Physical Chemistry A,
vol. 112, no. 39, pp. 9405–9412, 2008.

[33] D. Endres and A. Zlotnick, “Model-based analysis of assembly kinetics for virus
capsids or other spherical polymers,” Biophysical journal, vol. 83, no. 2, pp. 1217–
1230, 2002.

[34] A. Zlotnick, “Are weak protein–protein interactions the general rule in capsid assem-
bly?,” Virology, vol. 315, no. 2, pp. 269–274, 2003.

[35] R. Kree, B. Schaub, and B. Schmittmann, “Effects of pollution on critical population
dynamics,” Physical Review A, vol. 39, no. 4, p. 2214, 1989.

[36] F. Van Wijland, K. Oerding, and H. Hilhorst, “Wilson renormalization of a reaction–
diffusion process,” Physica A: Statistical Mechanics and its Applications, vol. 251,
no. 1-2, pp. 179–201, 1998.

[37] D. S. Maia and R. Dickman, “Diffusive epidemic process: theory and simulation,”
Journal of Physics: Condensed Matter, vol. 19, no. 6, p. 065143, 2007.

[38] H. Hinrichsen, “Non-equilibrium critical phenomena and phase transitions into ab-
sorbing states,” Advances in physics, vol. 49, no. 7, pp. 815–958, 2000.

[39] M. Tarpin, F. Benitez, L. Canet, and N. Wschebor, “Nonperturbative renormalization
group for the diffusive epidemic process,” Physical Review E, vol. 96, no. 2, p. 022137,
2017.

[40] J. De Freitas, L. Lucena, L. Da Silva, and H. Hilhorst, “Critical behavior of a two-
species reaction-diffusion problem,” Physical Review E, vol. 61, no. 6, p. 6330, 2000.



160 BIBLIOGRAPHY

[41] U. Fulco, D. Messias, and M. Lyra, “Critical behavior of a one-dimensional diffusive
epidemic process,” Physical Review E, vol. 63, no. 6, p. 066118, 2001.

[42] E. Perlsman and S. Havlin, “Method to estimate critical exponents using numerical
studies,” EPL (Europhysics Letters), vol. 58, no. 2, p. 176, 2002.

[43] D. Bertrand, Y. Siqueira, M. Lyra, I. Gleria, and C. Argolo, “Critical behavior of a
two-species reaction–diffusion problem in 2d,” Physica A: Statistical Mechanics and
its Applications, vol. 386, no. 2, pp. 748–751, 2007.

[44] D. S. Maia and R. Dickman, “The nature of the absorbing-state phase transition in
the diffusive epidemic process,” Journal of Physics A: Mathematical and Theoretical,
vol. 41, p. 405002, 2008.

[45] G. Corso, M. Lyra, U. Fulco, et al., “Critical properties of the diffusive epidemic pro-
cess obtained via an automatic search technique,” Journal of Statistical Mechanics:
Theory and Experiment, vol. 2010, no. 04, p. P04027, 2010.

[46] C. Argolo, V. Tenório, and M. Lyra, “Stationary and dynamical critical behavior of
the three-dimensional diffusive epidemic process,” Physica A: Statistical Mechanics
and its Applications, vol. 517, pp. 422–430, 2019.

[47] D. T. Gillesple, “Exact stochastic simulation of coupled chemical reactions,” J. Phys.
Chem-US, vol. 93555, no. 1, pp. 2340–2361, 1977.

[48] D. T. Gillespie, “Stochastic Simulation of Chemical Kinetics,” Annu. Rev. Phys.
Chem., vol. 58, no. 1, pp. 35–55, 2007.

[49] M. A. Gibson and J. Bruck, “Efficient exact stochastic simulation of chemical systems
with many species and many channels,” The journal of physical chemistry A, vol. 104,
no. 9, pp. 1876–1889, 2000.

[50] P. Grassberger and A. de la Torre, “Reggeon field theory (schlögl’s first model) on a
lattice: Monte carlo calculations of critical behaviour,” Annals of Physics, vol. 122,
no. 2, pp. 373 – 396, 1979.

[51] S. Lübeck, “Universal scaling behavior of non-equilibrium phase transitions,” Inter-
national Journal of Modern Physics B, vol. 18, no. 31n32, pp. 3977–4118, 2004.

[52] M. Henkel, H. Hinrichsen, S. Lübeck, and M. Pleimling, Non-equilibrium phase tran-
sitions, vol. 1. Springer, 2008.

[53] P. Wilke, E. Reithmann, and E. Frey, “Two-species active transport along cylindrical
biofilaments is limited by emergent topological hindrance,” Physical Review X, vol. 8,
no. 3, p. 031063, 2018.



BIBLIOGRAPHY 161

[54] E. J. Reithmann, On the role of nonequilibrium processes in intracellular organiza-
tion. PhD thesis, Ludwig–Maximilians–Universität München, 2 2019.

[55] D. A. Fletcher and R. D. Mullins, “Cell mechanics and the cytoskeleton,” Nature,
vol. 463, no. 7280, pp. 485–492, 2010.

[56] T. Vignaud, L. Blanchoin, and M. Théry, “Directed cytoskeleton self-organization,”
Trends in cell biology, vol. 22, no. 12, pp. 671–682, 2012.

[57] T. D. Pollard and R. D. Goldman, “Overview of the cytoskeleton from an evo-
lutionary perspective,” Cold Spring Harbor perspectives in biology, vol. 10, no. 7,
p. a030288, 2018.

[58] S. L. Rogers and V. I. Gelfand, “Membrane trafficking, organelle transport, and the
cytoskeleton,” Current opinion in cell biology, vol. 12, no. 1, pp. 57–62, 2000.

[59] F. Huber, A. Boire, M. P. López, and G. H. Koenderink, “Cytoskeletal crosstalk:
when three different personalities team up,” Current opinion in cell biology, vol. 32,
pp. 39–47, 2015.

[60] K. H. Downing and E. Nogales, “Tubulin and microtubule structure,” Current opin-
ion in cell biology, vol. 10, no. 1, pp. 16–22, 1998.

[61] J. Howard, “Molecular motors: structural adaptations to cellular functions,” Nature,
vol. 389, no. 6651, pp. 561–567, 1997.

[62] A. B. Kolomeisky, Motor proteins and molecular motors. CRC press, 2015.

[63] R. D. Vale and R. J. Fletterick, “The design plan of kinesin motors,” Annual review
of cell and developmental biology, vol. 13, no. 1, pp. 745–777, 1997.

[64] J. Howard, Mechanics of Motor Proteins and the Cytoskeleton. Sinauer Associates,
Sunderland, 2001.

[65] A. J. Roberts, T. Kon, P. J. Knight, K. Sutoh, and S. A. Burgess, “Functions and
mechanics of dynein motor proteins,” Nature reviews Molecular cell biology, vol. 14,
no. 11, pp. 713–726, 2013.

[66] G. Woehlke and M. Schliwa, “Walking on two heads: the many talents of kinesin,”
Nature Reviews Molecular Cell Biology, vol. 1, no. 1, pp. 50–58, 2000.

[67] A. Gennerich and R. D. Vale, “Walking the walk: how kinesin and dynein coordinate
their steps,” Current opinion in cell biology, vol. 21, no. 1, pp. 59–67, 2009.

[68] A. Yildiz, R. D. Tomishige, Michio and, and P. R. Selvin, “Kinesin walks hand-over-
hand,” Science, vol. 303, no. 5658, pp. 676–678, 2004.



162 BIBLIOGRAPHY

[69] A. Yildiz and P. R. Selvin, “Kinesin: walking, crawling or sliding along?,” Trends in
cell biology, vol. 15, no. 2, pp. 112–120, 2005.

[70] R. A. Cross, “The kinetic mechanism of kinesin,” Trends in biochemical sciences,
vol. 29, no. 6, pp. 301–309, 2004.

[71] S. M. Block, L. S. Goldstein, and B. J. Schnapp, “Bead movement by single kinesin
molecules studied with optical tweezers,” Nature, vol. 348, no. 6299, pp. 348–352,
1990.

[72] J. Howard, A. Hudspeth, and R. Vale, “Movement of microtubules by single kinesin
molecules,” Nature, vol. 342, no. 6246, pp. 154–158, 1989.

[73] S. Ray, E. Meyhöfer, R. A. Milligan, and J. Howard, “Kinesin follows the micro-
tubule’s protofilament axis,” J. Cell. Biol., vol. 121, no. 5, pp. 1083–1093, 1993.

[74] C. T. MacDonald, J. H. Gibbs, and A. C. Pipkin, “Kinetics of biopolymerization
on nucleic acid templates,” Biopolymers: Original Research on Biomolecules, vol. 6,
no. 1, pp. 1–25, 1968.

[75] B. Derrida, E. Domany, and D. Mukamel, “An Exact Solution of a One-Dimensional
Asymmetric Exclusion Model with Open Boundaries,” J. Stat. Phys., vol. 69,
pp. 667–687, 1992.

[76] B. Derrida, M. R. Evans, V. Hakim, and V. Pasquier, “Exact solution of a 1D
asymmetric exclusion model using a matrix formulation,” J. Phys. A-Math. Gen.,
vol. 26, no. 7, pp. 1493–1517, 1993.

[77] G. M. Schütz and E. Domany, “Phase transitions in an exactly soluble one-
dimensional exclusion process,” J. Stat. Phys., vol. 72, no. 1-2, pp. 277–296, 1993.

[78] G. M. Schütz, 1-Exactly Solvable Models for Many-Body Systems Far from Equilib-
rium, vol. 19. Academic Press, London, 2001.

[79] M. Gorissen, A. Lazarescu, K. Mallick, and C. Vanderzande, “Exact current statistics
of the asymmetric simple exclusion process with open boundaries,” Phys. Rev. Lett.,
vol. 109, no. 17, pp. 1–5, 2012.

[80] M. Mobilia, T. Reichenbach, H. Hinsch, T. Franosch, and E. Frey, Generic principles
of active transport. Polish Academy of Science, Warsaw, 2008.

[81] M. J. Lighthill and G. B. Whitham, “On Kinematic Waves. II. A Theory of Traffic
Flow on Long Crowded Roads,” P. Roy. Soc. A-Math. Phys., vol. 229, no. 1178,
pp. 317–345, 1955.

[82] V. Popkov and G. M. Schütz, “Steady-state selection in driven diffusive systems with
open boundaries,” Europhys. Lett., vol. 48, no. 3, p. 257, 2000.



BIBLIOGRAPHY 163

[83] R. A. Blythe and M. R. Evans, “Nonequilibrium Steady States of Matrix Product
Form: A Solver’s Guide,” J. Phys. A-Math. Theor., vol. 40, no. 46, p. R333, 2007.

[84] J. Hager, J. Krug, V. Popkov, and G. Schütz, “Minimal current phase and universal
boundary layers in driven diffusive systems,” Phys. Rev. E, vol. 63, p. 056110, apr
2001.

[85] M. R. Evans, Y. Kafri, K. E. P. Sugden, and J. Tailleur, “Phase diagram of two-lane
driven diffusive systems,” J. Stat. Mech-Theory E, p. P06009, 2011.

[86] M. R. Evans, D. P. Foster, C. Godrèche, and D. Mukamel, “Asymmetric exclusion
model with two species: Spontaneous symmetry breaking,” J. Stat. Phys., vol. 80,
no. 1-2, pp. 69–102, 1995.

[87] G. M. Schütz, “Critical phenomena and universal dynamics in one-dimensional driven
diffusive systems with two species of particles,” J. Phys. A-Math. Gen., vol. 36, p. 339,
2003.

[88] S. Klumpp and R. Lipowsky, “Phase transitions in systems with two species of molec-
ular motors,” Europhys. Lett., vol. 66, pp. 90–96, apr 2004.

[89] R. Juhász, “Weakly coupled, antiparallel, totally asymmetric simple exclusion pro-
cesses,” Phys. Rev. E, vol. 76, no. 2, pp. 1–13, 2007.

[90] S. Prolhac, M. R. Evans, and K. Mallick, “The matrix product solution of the mul-
tispecies partially asymmetric exclusion process,” J. Phys. A-Math. Theor., vol. 42,
p. 165004, apr 2009.

[91] D. Johann, D. Goswami, and K. Kruse, “Segregation of diffusible and directionally
moving particles on a polar filament,” Phys. Rev. E, vol. 89, no. 4, pp. 1–6, 2014.

[92] V. Popkov and G. M. Schütz, “Shocks and Excitation Dynamics in a Driven Diffusive
Two-Channel System,” J. Stat. Phys., vol. 112, no. 3-4, pp. 523–540, 2003.

[93] E. Pronina and A. B. Kolomeisky, “Two-channel totally asymmetric simple exclusion
processes,” J. Phys. A-Math. Gen., vol. 37, no. 42, pp. 9907–9918, 2004.

[94] J. Brankov, N. Pesheva, and N. Bunzarova, “Totally asymmetric exclusion process
on chains with a double-chain section in the middle: Computer simulations and a
simple theory,” Phys. Rev. E, vol. 69, no. 6 2, pp. 1–13, 2004.

[95] E. Pronina and A. B. Kolomeisky, “Theoretical investigation of totally asymmetric
exclusion processes on lattices with junctions,” J. Stat. Mech-Theory E, vol. 2005,
pp. P07010–P07010, jul 2005.

[96] R. Wang, M. Liu, and R. Jiang, “Theoretical investigation of synchronous totally
asymmetric exclusion processes on lattices with multiple-input-single-output junc-
tions,” Phys. Rev. E, vol. 77, no. 5, pp. 1–8, 2008.



164 BIBLIOGRAPHY

[97] M. Liu and R. Wang, “Asymmetric exclusion processes on m-input n-output junctions
with parallel update,” Physica A, vol. 388, no. 19, pp. 4068–4074, 2009.

[98] B. Embley, A. Parmeggiani, and N. Kern, “Understanding totally asymmetric simple-
exclusion-process transport on networks: Generic analysis via effective rates and
explicit vertices,” Phys. Rev. E, vol. 80, no. 4, pp. 1–22, 2009.

[99] H. J. Hilhorst and C. Appert-Rolland, “A multi-lane TASEP model for crossing
pedestrian traffic flows,” J. Stat. Mech-Theory E, vol. 2012, no. 06, p. P06009, 2012.

[100] Z. J. Ding, R. Jiang, and B. H. Wang, “Traffic flow in the Biham-Middleton-Levine
model with random update rule,” Phys. Rev. E, vol. 83, no. 4, pp. 2–5, 2011.

[101] S. Klumpp, T. M. Nieuwenhuizen, and R. Lipowsky, “Self-Organized Density Pat-
terns of Molecular Motors in Arrays of Cytoskeletal Filaments,” Biophys. J., vol. 88,
no. 5, pp. 3118–3132, 2005.

[102] B. Embley, A. Parmeggiani, and N. Kern, “HEX-TASEP: dynamics of pinned do-
mains for TASEP transport on a periodic lattice of hexagonal topology,” J. Phys-
Condens. Mat., vol. 20, p. 295213, 2008.

[103] I. Neri, N. Kern, and A. Parmeggiani, “Totally Asymmetric Simple Exclusion Process
on Networks,” Phys. Rev. Lett., vol. 107, p. 068702, aug 2011.

[104] T. Ezaki and K. Nishinari, “A balance network for the asymmetric simple exclusion
process,” J. Stat. Mech-Theory E, vol. 2012, no. 11, p. P11002, 2012.

[105] I. Neri, N. Kern, and A. Parmeggiani, “Modeling cytoskeletal traffic: An Interplay
between passive diffusion and active transport,” Phys. Rev. Lett., vol. 110, no. 9,
pp. 1–5, 2013.

[106] G. Lakatos and T. Chou, “Totally asymmetric exclusion processes with particles
of arbitrary size,” Journal of Physics A: Mathematical and General, vol. 36, no. 8,
p. 2027, 2003.

[107] M. Rank, A. Mitra, L. Reese, S. Diez, and E. Frey, “Limited resources induce bista-
bility in microtubule length regulation,” Physical review letters, vol. 120, no. 14,
p. 148101, 2018.

[108] I. R. Graf and E. Frey, “Generic Transport Mechanisms for Molecular Traffic in
Cellular Protrusions,” Phys. Rev. Lett., vol. 118, no. 12, pp. 6–11, 2017.

[109] A. Melbinger, L. Reese, and E. Frey, “Microtubule Length-Regulation by Molecular
Motors,” Phys. Rev. Lett., vol. 108, no. 25, p. 258104, 2012.

[110] E. Reithmann, L. Reese, and E. Frey, “Nonequilibrium Diffusion and Capture Mecha-
nism Ensures Tip Localization of Regulating Proteins on Dynamic Filaments,” Phys.
Rev. Lett., vol. 117, no. 7, p. 078102, 2016.



BIBLIOGRAPHY 165

[111] J. Yajima and R. A. Cross, “A torque component in the kinesin-1 power stroke,”
Nat. Chem. Biol., vol. 1, no. 6, pp. 338–341, 2005.

[112] R. A. Walker, E. D. Salmon, and S. A. Endow, “The Drosophila claret segregation
protein is a minus-end directed motor molecule,” Nature, vol. 347, no. 6295, pp. 780–
782, 1990.

[113] X. Pan, S. Acar, and J. M. Scholey, “Torque generation by one of the motor subunits
of heterotrimeric kinesin-2,” Biochem. Bioph. Res. Co., vol. 401, no. 1, pp. 53–57,
2010.

[114] J. Yajima, K. Mizutani, and T. Nishizaka, “A torque component present in mitotic
kinesin Eg5 revealed by three-dimensional tracking,” Nat. Struct. Mol. Biol., vol. 15,
no. 10, pp. 1119–1121, 2008.

[115] R. D. Vale and Y. Yano Toyoshima, “Rotation and translocation of microtubules in
vitro induced by dyneins from Tetrahymena cilia,” Cell, vol. 52, no. 3, pp. 459–469,
1988.

[116] T. Nishizaka, T. Yagi, Y. Tanaka, and S. Ishiwata, “Right-handed rotation of an
actin filament in an in vitro motile system,” Nature, vol. 361, no. 6409, pp. 269–271,
1993.

[117] T. Liggett, Continuous Time Markov Processes: An Introduction. American Math-
ematical Society, 2010.

[118] O. Biham, A. A. Middleton, and D. Levine, “Self-organization and a dynamical
transition in traffic-flow models,” Phys. Rev. A, vol. 46, no. 10, pp. 6124–6127, 1992.

[119] P. Winkler, Mathematical Puzzles: A Connoisseur’s Collection. AK Peters, Natick,
2004.

[120] P. Winkler, Mathematical mind-benders. CRC Press, Boca Raton, 2007.

[121] O. Angel and J. B. Martin, “The jammed phase of the Biham-Middleton- Levine
Traffic Model,” Electron. Commun. Prob., vol. 10, pp. 167–178, 2005.

[122] F. M. Gartner, I. R. Graf, P. Wilke, P. M. Geiger, and E. Frey, “Stochastic yield
catastrophes and robustness in self-assembly,” Elife, vol. 9, p. e51020, 2020.

[123] I. Graf, Principles of self-organization and self-assembly in biologically inspired non-
equilibrium systems. PhD thesis, Ludwig–Maximilians–Universität München, 12
2019.

[124] M. Jucker and L. C. Walker, “Self-propagation of pathogenic protein aggregates in
neurodegenerative diseases,” Nature, vol. 501, no. 7465, pp. 45–51, 2013.



166 BIBLIOGRAPHY

[125] D. A. Drummond and C. O. Wilke, “The evolutionary consequences of erroneous
protein synthesis,” Nature Reviews Genetics, vol. 10, no. 10, pp. 715–724, 2009.

[126] J. D. Perlmutter and M. F. Hagan, “Mechanisms of virus assembly,” Annual review
of physical chemistry, vol. 66, pp. 217–239, 2015.

[127] V. L. Morton, P. G. Stockley, N. J. Stonehouse, and A. E. Ashcroft, “Insights into
virus capsid assembly from non-covalent mass spectrometry,” Mass spectrometry re-
views, vol. 27, no. 6, pp. 575–595, 2008.

[128] H. C. Berg, “The rotary motor of bacterial flagella,” Annual review of biochemistry,
vol. 72, 2003.

[129] T. Minamino and K. Imada, “The bacterial flagellar motor and its structural diver-
sity,” Trends in microbiology, vol. 23, no. 5, pp. 267–274, 2015.

[130] A. Fatica and D. Tollervey, “Making ribosomes,” Current opinion in cell biology,
vol. 14, no. 3, pp. 313–318, 2002.

[131] S. Klinge and J. L. Woolford, “Ribosome assembly coming into focus,” Nature Re-
views Molecular Cell Biology, vol. 20, no. 2, pp. 116–131, 2019.

[132] D. Kressler, E. Hurt, and J. Baβler, “Driving ribosome assembly,” Biochimica Et
Biophysica Acta (BBA)-Molecular Cell Research, vol. 1803, no. 6, pp. 673–683, 2010.

[133] F. C. Simmel, “Dna-based assembly lines and nanofactories,” Current opinion in
biotechnology, vol. 23, no. 4, pp. 516–521, 2012.

[134] S. Zhang, “Fabrication of novel biomaterials through molecular self-assembly,” Nature
Biotechnology, vol. 21, no. 10, pp. 1171–1178, 2003.

[135] I. Saaem and T. H. LaBean, “Overview of dna origami for molecular self-assembly,”
Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, vol. 5, no. 2,
pp. 150–162, 2013.

[136] X. S. Chen, R. L. Garcea, I. Goldberg, G. Casini, and S. C. Harrison, “Structure of
small virus-like particles assembled from the l1 protein of human papillomavirus 16,”
Molecular cell, vol. 5, no. 3, pp. 557–567, 2000.

[137] P. G. Leiman, F. Arisaka, M. J. Van Raaij, V. A. Kostyuchenko, A. A. Aksyuk,
S. Kanamaru, and M. G. Rossmann, “Morphogenesis of the t4 tail and tail fibers,”
Virology journal, vol. 7, no. 1, p. 355, 2010.

[138] D. Arslan, M. Legendre, V. Seltzer, C. Abergel, and J.-M. Claverie, “Distant
mimivirus relative with a larger genome highlights the fundamental features of
megaviridae,” Proceedings of the National Academy of Sciences, vol. 108, no. 42,
pp. 17486–17491, 2011.



BIBLIOGRAPHY 167

[139] A. Zlotnick, “To build a virus capsid: an equilibrium model of the self assembly of
polyhedral protein complexes,” Journal of molecular biology, vol. 241, no. 1, pp. 59–
67, 1994.

[140] A. Y. Morozov, R. F. Bruinsma, and J. Rudnick, “Assembly of viruses and the
pseudo-law of mass action,” The Journal of chemical physics, vol. 131, no. 15,
p. 10B607, 2009.

[141] D. Rapaport, J. Johnson, and J. Skolnick, “Supramolecular self-assembly: molecular
dynamics modeling of polyhedral shell formation,” Computer physics communica-
tions, vol. 121, pp. 231–235, 1999.

[142] H. D. Nguyen, V. S. Reddy, and C. L. Brooks, “Deciphering the kinetic mechanism
of spontaneous self-assembly of icosahedral capsids,” Nano Letters, vol. 7, no. 2,
pp. 338–344, 2007.

[143] V. Linko and H. Dietz, “The enabled state of dna nanotechnology,” Current opinion
in biotechnology, vol. 24, no. 4, pp. 555–561, 2013.

[144] N. C. Seeman, “Nucleic acid junctions and lattices,” Journal of theoretical biology,
vol. 99, no. 2, pp. 237–247, 1982.

[145] P. W. Rothemund, “Folding dna to create nanoscale shapes and patterns,” Nature,
vol. 440, no. 7082, pp. 297–302, 2006.

[146] P. Wang, T. A. Meyer, V. Pan, P. K. Dutta, and Y. Ke, “The beauty and utility of
dna origami,” Chem, vol. 2, no. 3, pp. 359–382, 2017.

[147] S. M. Douglas, H. Dietz, T. Liedl, B. Högberg, F. Graf, and W. M. Shih, “Self-
assembly of dna into nanoscale three-dimensional shapes,” Nature, vol. 459, no. 7245,
pp. 414–418, 2009.

[148] J. Zheng, J. J. Birktoft, Y. Chen, T. Wang, R. Sha, P. E. Constantinou, S. L. Ginell,
C. Mao, and N. C. Seeman, “From molecular to macroscopic via the rational design
of a self-assembled 3d dna crystal,” Nature, vol. 461, no. 7260, pp. 74–77, 2009.

[149] S. Whitelam, “Hierarchical assembly may be a way to make large information-rich
structures,” Soft Matter, vol. 11, no. 42, pp. 8225–8235, 2015.

[150] W. M. Jacobs and D. Frenkel, “Self-assembly of structures with addressable com-
plexity,” Journal of the American Chemical Society, vol. 138, no. 8, pp. 2457–2467,
2016.

[151] A. Murugan, J. Zou, and M. P. Brenner, “Undesired usage and the robust self-
assembly of heterogeneous structures,” Nature Communications, vol. 6, p. 6203, 2015.



168 BIBLIOGRAPHY

[152] B. Alberts, A. Johnson, J. Lewis, D. Morgan, M. Raff, K. Roberts, P. Walter, J. Wil-
son, and T. Hunt, Molecular Biology of the Cell. Garland Science, 2015.

[153] W. M. Jacobs and D. Frenkel, “Self-assembly protocol design for periodic multicom-
ponent structures,” Soft Matter, vol. 11, no. 46, pp. 8930–8938, 2015.

[154] R. P. Sear, “Nucleation: theory and applications to protein solutions and colloidal
suspensions,” Journal of Physics: Condensed Matter, vol. 19, no. 3, p. 033101, 2007.

[155] G. R. Lazaro and M. F. Hagan, “Allosteric control of icosahedral capsid assembly,”
The Journal of Physical Chemistry B, vol. 120, no. 26, pp. 6306–6318, 2016.

[156] M. F. Hagan, O. M. Elrad, and R. L. Jack, “Mechanisms of kinetic trapping in
self-assembly and phase transformation,” The Journal of chemical physics, vol. 135,
no. 10, p. 104115, 2011.

[157] J. Grant, R. L. Jack, and S. Whitelam, “Analyzing mechanisms and microscopic
reversibility of self-assembly,” The Journal of chemical physics, vol. 135, no. 21,
p. 214505, 2011.

[158] T. C. Michaels, A. J. Dear, J. B. Kirkegaard, K. L. Saar, D. A. Weitz, and T. P.
Knowles, “Fluctuations in the kinetics of linear protein self-assembly,” Phys. Rev.
Lett., vol. 116, no. 25, p. 258103, 2016.

[159] T. C. Michaels, M. M. Bellaiche, M. F. Hagan, and T. P. Knowles, “Kinetic con-
straints on self-assembly into closed supramolecular structures,” Scientific Reports,
vol. 7, no. 1, p. 12295, 2017.

[160] M. D’Orsogna, G. Lakatos, and T. Chou, “Stochastic self-assembly of incommensu-
rate clusters,” The Journal of chemical physics, vol. 136, no. 8, p. 084110, 2012.

[161] L. O. Hedges, R. V. Mannige, and S. Whitelam, “Growth of equilibrium structures
built from a large number of distinct component types,” Soft Matter, vol. 10, no. 34,
pp. 6404–6416, 2014.

[162] M. R. D’Orsogna, B. Zhao, B. Berenji, and T. Chou, “Combinatoric analysis of
heterogeneous stochastic self-assembly,” The Journal of chemical physics, vol. 139,
no. 12, p. 121918, 2013.

[163] C. Pena, E. Hurt, and V. G. Panse, “Eukaryotic ribosome assembly, transport and
quality control,” Nature structural & molecular biology, vol. 24, no. 9, p. 689, 2017.

[164] F. F. Chevance and K. T. Hughes, “Coordinating assembly of a bacterial macro-
molecular machine,” Nature Reviews Microbiology, vol. 6, no. 6, p. 455, 2008.

[165] T. K. Haxton and S. Whitelam, “Do hierarchical structures assemble best via hier-
archical pathways?,” Soft Matter, vol. 9, no. 29, pp. 6851–6861, 2013.



BIBLIOGRAPHY 169

[166] F. Gartner, I. Graf, and E. Frey, “Controlling fidelity and time-efficiency in self-
assembly,” in preparation, 2020.

[167] R. Becker and W. Döring, “Kinetische behandlung der keimbildung in übersättigten
dämpfen,” Annalen der Physik, vol. 416, no. 8, pp. 719–752, 1935.

[168] I. Graf, F. Gartner, and E. Frey, “Understanding and guiding robust self-assembly
of heterogeneous structures,” in preparation, 2020.

[169] B. Polovnikov, P. Wilke, and E. Frey, “Strong coupling behavior in the diffusive
epidemic process,” in preparation, 2020.

[170] B. Polovnikov, “Fluctuations and criticality in reaction-diffusion systems,” Master’s
thesis, Ludwig–Maximilians–Universität München, 10 2019.

[171] S. J. Altschuler, S. B. Angenent, Y. Wang, and L. F. Wu, “On the spontaneous
emergence of cell polarity,” Nature, vol. 454, no. 7206, pp. 886–889, 2008.

[172] U. C. Täuber, M. Howard, and B. P. Vollmayr-Lee, “Applications of field-theoretic
renormalization group methods to reaction–diffusion problems,” Journal of Physics
A: Mathematical and General, vol. 38, pp. R79–R131, apr 2005.

[173] K. J. Wiese, “Coherent-state path integral versus coarse-grained effective stochastic
equation of motion: From reaction diffusion to stochastic sandpiles,” Physical Review
E, vol. 93, no. 4, p. 042117, 2016.

[174] M. F. Weber and E. Frey, “Master equations and the theory of stochastic path
integrals,” Reports on Progress in Physics, vol. 80, no. 4, p. 046601, 2017.

[175] P. C. Hohenberg and B. I. Halperin, “Theory of dynamic critical phenomena,” Rev.
Mod. Phys., vol. 49, pp. 435–479, Jul 1977.

[176] K. Oerding, F. Van Wijland, J.-P. Leroy, and H. J. Hilhorst, “Fluctuation-induced
first-order transition in a nonequilibrium steady state,” Journal of Statistical Physics,
vol. 99, no. 5-6, pp. 1365–1395, 2000.

[177] H.-K. Janssen, “Comment on “critical behavior of a two-species reaction-diffusion
problem”,” Physical Review E, vol. 64, no. 5, p. 058101, 2001.

[178] J. De Freitas, L. Lucena, L. da Silva, and H. Hilhorst, “Reply to “comment on ‘critical
behavior of a two-species reaction-diffusion problem’”,” Physical Review E, vol. 64,
no. 5, p. 058102, 2001.

[179] P. Grassberger, “Directed percolation in 2 + 1 dimensions,” Journal of Physics A:
Mathematical and General, vol. 22, pp. 3673–3679, sep 1989.

[180] R. Dickman, “Nonequilibrium critical behavior of the triplet annihilation model,”
Phys. Rev. A, vol. 42, pp. 6985–6990, Dec 1990.



170

[181] I. Jensen, H. C. Fogedby, and R. Dickman, “Critical exponents for an irreversible
surface reaction model,” Phys. Rev. A, vol. 41, pp. 3411–3414, Mar 1990.

[182] I. Jensen, “Universality class of a one-dimensional cellular automaton,” Phys. Rev.
A, vol. 43, pp. 3187–3189, Mar 1991.

[183] I. Jensen, “Critical behavior of the three-dimensional contact process,” Phys. Rev.
A, vol. 45, pp. R563–R566, Jan 1992.

[184] I. Jensen, “Critical exponents for branching annihilating random walks with an even
number of offspring,” Phys. Rev. E, vol. 50, pp. 3623–3633, Nov 1994.

[185] P. Grassberger and Y.-C. Zhang, ““self-organized” formulation of standard perco-
lation phenomena,” Physica A: Statistical Mechanics and its Applications, vol. 224,
no. 1, pp. 169 – 179, 1996. Dynamics of Complex Systems.

[186] C. A. Voigt and R. M. Ziff, “Epidemic analysis of the second-order transition in the
ziff-gulari-barshad surface-reaction model,” Phys. Rev. E, vol. 56, pp. R6241–R6244,
Dec 1997.

[187] J. D. Noh and H. Park, “Universality class of absorbing transitions with continuously
varying critical exponents,” Phys. Rev. E, vol. 69, p. 016122, Jan 2004.

[188] H.-K. Janssen, “Survival and percolation probabilities in the field theory of growth
models,” Journal of Physics: Condensed Matter, vol. 17, no. 20, p. S1973, 2005.

[189] V. Volterra, “Variations and fluctuations of the number of individuals in animal
species living together,” ICES Journal of Marine Science, vol. 3, no. 1, pp. 3–51,
1928.

[190] A. Lotka, “Zur theorie der periodischen reaktionen,” Zeitschrift für physikalische
Chemie, vol. 72, no. 1, pp. 508–511, 1910.

[191] J. Halatek, F. Brauns, and E. Frey, “Self-organization principles of intracellular pat-
tern formation,” Philosophical Transactions of the Royal Society B: Biological Sci-
ences, vol. 373, no. 1747, p. 20170107, 2018.

[192] D. T. Gillespie, “A general method for numerically simulating the stochastic time
evolution of coupled chemical reactions,” J. Comput. Phys., vol. 22, no. 4, pp. 403–
434, 1976.

[193] B. Stroustrup, The C++ programming language. Pearson Education, 2013.

[194] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to algorithms.
MIT press, 2009.



Acknowledgments

Completing a PhD is not limited to writing a thesis. It is a process in which a large
number of people are involved to make it possible. In the following I would like to express
my heartfelt gratitude to them.

First and foremost, I want to thank Erwin Frey, who supervised my thesis and made it
possible for me to be part of this wonderful research group. His trust in my work and full
support in my projects were the best environment anyone could hope for. Also, beyond the
research, the time spent together was a great personal gain I will always like to remember.
For example, the visit to an Izakaya as part of a joint research stay in Tokyo remains
unforgettable.

Special thanks also go to my second assessor Ulrich Schollwöck, who without any hes-
itation agreed to take over this task.

During my time at our chair, I was lucky enough to work with many talented other PhD
students. The person who embodies this experience like no other is Emanuel Reithmann.
I wrote my first paper with him and spent countless hours in exciting discussions. From
this time a significant friendship has emerged together with countless great memories.

Also, a group of people I will never forget is our “assembly team”. The working time
together with Florian Gartner, Philipp Geiger and Isabella Graf always felt like a happy
meeting with friends that ultimately resulted in a successful publication. I have rarely
laughed as much in my life as during our sessions.

I would also like to thank Borislav Polovnikov, with whom I not only shared an office,
but also worked together on a publication. Our daily conversations were an integral part
of my everyday university life.

Special thanks also go to Laeschkir Würthner, with whom I shared the position of chair
administrator for many years. In our time together, we averted some disasters and fought
our way through as many.

I would also like to express my gratitude to everyone who proofread this thesis and
gave me valuable feedback: Philipp Geiger, Isabella Graf, David Muramatsu, Borislav
Polovnikov, Emanuel Reithmann, and Moritz Striebel.

For an outstanding time and a valuable friendship, I want to thank my office mate
David Muramatsu. Learning the Japanese language together as well as our trips to Japan
are among the best and happiest memories of my PhD.

Last but not least, I would also like to thank my two flat mates and good friends Philipp
Geiger and Andreas Bluhm. We never needed a lot of words to have good communication.



172

This work was created under special circumstances at a time when a pandemic was
isolating people from each other. The fact that I still managed to complete my thesis
without falling into madness is only thanks to my wonderful partner Annika Kaiser. You
are the one person who can replace all other social contacts. Your love and care have
brought me through this time and will do so through all future challenges. I am so lucky
to have you in my life.

Die letzten Worte dieser Arbeit gebühren meiner Familie. Meine ältere Schwester
Melanie hat mich mein ganzes Leben lang begleitet und war jederzeit für mich da, wenn ich
sie brauchte. Meine Eltern Gabriele und Axel haben immer alles in ihrer Macht Stehende
getan, um mich bei allem so gut es nur menschenmöglich ist zu unterstützen. Ich bin jeden
Tag dankbar so liebevolle und fürsorgliche Menschen in meinem Leben zu haben. Ohne
euch wäre nichts hiervon möglich gewesen.


	Zusammenfassung
	Summary
	Abstracts of the projects
	Geometry and arrangement: Molecular transport along microtubules
	Biological background
	The totally asymmetric simple exclusion process
	Modelling active transport by molecular motors
	Spiralling motion of motors and modelling
	Failure of mean-field
	Particle arrangement and fluctuations
	Quantifying the impact on transport
	Control parameters and phase diagram
	Conclusion

	Reaction paths and depletion traps: Macromolecular self-assembly
	Biochemical background
	General principles and modelling
	Deterministic theory
	Stochastic effects
	Conclusion

	Reaction kinetics and absorbing states: The diffusive epidemic process
	The diffusive epidemic process
	Renormalization group methods and stochastic simulations
	Scaling relations
	Critical exponents in one dimension
	Spreading behavior for different diffusion ratios
	Conclusion

	Exact stochastic simulations of general reaction-diffusion systems
	Basics
	Program structure
	Spatially extended systems
	Measurement of critical exponents
	Conclusion

	Conclusion
	Optimization methods
	TASEP-like systems
	Heterogeneous self-assembly
	Reaction-diffusion systems on lattices

	Supplementary calculations
	Cramming density for arbitrary species ratios
	Derivatives of the hindrance function
	General low-density theory

	Supplementary figures
	Reprint: Supplementary information for stochastic yield catastrophes and robustness in self-assembly
	Chemical reaction equations and the equivalence of models with different numbers of species
	Effective description of the evolution of the polymer size distribution as an advection-diffusion equation
	Threshold values for the activation and dimerization rate
	Impact of the implementation of sub-nucleation reactions
	Time evolution of the yield in the activation and dimerization scenario
	Standard deviation of the yield
	Influence of the heterogeneity of the target structure for fixed number of particles per species
	Dependence of the maximal yield ymax in the activation scenario on N and L

	Bibliography
	Acknowledgments

