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KURZZUSAMMENFASSUNG  

Hintergrund: Eine Parodontalerkrankung ist komplex und multifaktoriell und führt 

zum fortschreitenden Verlust von Zahnstützgewebe. Sie entsteht durch ein Ungleich- 

gewicht zwischen einer dysbiotischen Plaque-Mikrobengemeinschaft und den dage-

gen ankämpfenden Abwehrmechanismen des Organismus, was zu einer anhaltenden 

und zerstörerischen lokalen Entzündung führt. Entzündungshemmende Moleküle 

können die Parodontalerkrankung begrenzen. Zunehmende Hinweise deuten darauf 

hin, dass Parodontitis mit Fettleibigkeit und damit verbundenen Stoffwechselerkran-

kungen verbunden ist. Omentin, ein Adipokine, hat Entzündungs- hemmende Eigen-

schaften gezeigt. Der Omentinspiegel in der Gingival Crevicular Fluid (GCF) ist bei 

Parodontitispatienten mit Adipositas oder Typ-2-Diabetes gesenkt. Parodontalpatho-

gene, insbesondere Porphyromonas gingivalis (P. gingivalis), tragen mehrere Viru-

lenzfaktoren, die helfen, der Immunabwehr zu entgehen und entzündliche Reaktionen 

auslösen, die zur Zerstörung der Parodontose führen. Eine wichtige Virulenzstrategie 

ist die Invasion von Wirtepithelzellen. Die aktuelle Studie zielte darauf ab zu unter-

suchen, wie Omentin die Entzündungs-reaktionen in menschlichen oralen Epithelzel-

len (BHY) moduliert, die durch die Exposition gegenüber P. gingivalis und seinem 

Lipopolysaccharid (LPS) ausgelöst werden.  

Methoden: Orale epitheliale BHY-Zellen wurden als experimentelles Modell ver-

wendet. Die Zellen wurden in unabhängigen Experimenten mit P.gingivalis 

/Escherichia coli (E. coli) infiziert oder mit ihren jeweiligen LPSs stimuliert, gefolgt 

von einer Omentin-Behandlung für eine Dauer von bis zu 48 Stunden. Steigende 

Omentinkonzentrationen (50-200ng/ml) wurden zur Behandlung von LPS- behinder-

ten Zellen eingesetzt. Echtzeit-PCR und ELISA wurden verwendet, um die Auswir-

kungen von Omentin auf die Genexpression und die pro- /entzündungshemmenden 

Mediator Proteinspiegel sowie die Werte der Toll-like-Rezeptoren (TLR)-2 und -4 zu 

quantifizieren. 
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Ergebnisse: P. gingivalis und E. coli Infektion erhöhten jeweils signifikant die 

mRNA Niveaus der pro-inflammatorischen Zytokine; Interleukin (IL) -1β, IL-6, Tu-

mornekrosefaktor-α (TNF-α) und Toll-like-Rezeptor (TLR)-2/4, während an-

ti-inflammatorische Faktoren IL-13 und IL-25 sanken. Omentin dämpfte diese stimu-

lierenden Effekte signifikant, indem es bakteriell infektionsinduziertes IL-1β, IL-6, 

TNF-α und TLR-2/4 mRNA-Expressionsniveau dämpfte und gleichzeitig IL-13 und 

IL-25 erhöhte. Ähnlich wurden signifikante, aber dosisabhängige Effekte von Omen-

tin auf die Bekämpfung von LPS-induzierten Erhöhungen in IL-1β, IL-6, TNF-α und 

TLR- 2/4 festgestellt, während es die entzündungshemmenden IL-10-Spiegel verbes-

serte. In einem pleiotropen Befund stimulierte Omentin unter keinen mikrobiellen 

Bedingungen ein höheres Niveau an proinflammatorischen Zytokinen.  

Fazit: Unsere Studie zeigte, dass Omentin erfolgreich die proinflammatorische Zyto-

kinproduktion und TLR-Aktivierung in Bakterien/LPS-behinderten oralen Epithelzel-

len dämpfte, aber proinflammatorisch war, wenn es auf nicht angegriffene Zellen an-

gewendet wurde. Diese Ergebnisse stützen die Annahme, dass Omentin bei Vorhan-

densein einer mikrobiellen/LPS-Bedingung die Integrität der epithelialen Barriere un-

terstützt und in erster Linie eine entzündungshemmende Funktion ausübt, die einer 

lokalen Entzündung bei Parodontitis entgegenwirken kann, ähnlich wie bei anderen 

immunentzündlichen Erkrankungen. 
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ABSTRACT 

Background: Periodontal disease is complex and multifactorial in nature resulting in 

the progressive loss of tooth-supporting tissues. It arises from an imbalance between a 

dysbiotic plaque microbial community and the combating host defense mechanisms, 

leading to persistent and destructive local inflammation. Anti-inflammatory molecules 

may limit periodontal disease. Increasing evidence suggests that periodontitis is asso-

ciated with obesity and related metabolic diseases. Omentin, an adipokine, has 

demonstrated anti-inflammatory properties. Omentin levels in gingival crevicular flu-

id (GCF) are decreased in periodontitis patients with obese or type 2 diabetes. Perio-

dontal pathogens, in particular, Porphyromonas gingivalis (P. gingivalis), bear multi-

ple virulence factors, which aid in evading host defenses and elicit inflammatory re-

sponses leading to periodontal destruction. A key virulence strategy is the targeting 

and invasion of host epithelial cells. The current study aimed to investigate how 

omentin modulates the inflammatory responses in human oral epithelial (BHY) cells 

elicited by exposure to P. gingivalis and its lipopolysaccharide (LPS).   

Methods: Oral epithelial BHY cells were used as an experimental model. Cells were 

infected with P. gingivalis/Escherichia coli (E. coli) or stimulated with their respec-

tive LPSs in independent experiments, followed by omentin treatment for durations 

up to 48 h. Increasing concentrations of omentin (50-200ng/ml) were used to treat 

LPS challenged cells. Real-time PCR and ELISA were used to quantify the effects of 

omentin on gene expression and pro- / anti-inflammatory mediator protein levels, and 

the levels of Toll-like receptors (TLR) 2 and 4. 

Results: P. gingivalis and E. coli infection each significantly up-regulated mRNA 

levels of pro-inflammatory cytokines; interleukin (IL) -1β, IL-6, tumor necrosis fac-

tor-α (TNF-α), and toll like receptors (TLR)-2/4, while down-regulating an-

ti-inflammatory factors IL-13 and IL-25. Omentin significantly attenuated these stim-

ulatory effects, attenuating bacterial infection-induced IL-1β, IL-6, TNF-α, and 

TLR-2/4 mRNA expression levels, while increasing IL-13 and IL-25. Similarly, sig-
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nificant but dose-dependent effects of omentin on counteracting LPS-induced in-

creases in IL-1β, IL-6, TNF-α, and TLR-2/4 were noted, while it improved an-

ti-inflammatory IL-10 levels. In a pleiotropic finding, omentin stimulated higher lev-

els of pro-inflammatory cytokines under no microbial challenge.   

Conclusion: Our study demonstrated that omentin successfully attenuated 

pro-inflammatory cytokine production and TLR activation in bacteria/LPS challenged 

oral epithelial cells but was pro-inflammatory when applied to non-challenged cells. 

These findings support a premise that in presence of a microbial/LPS challenge, 

omentin aids epithelial barrier integrity, primarily performing an anti-inflammatory 

function that may counter local inflammation in periodontitis, similar to its role noted 

in other immune-inflammatory conditions. 
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1. Introduction 

 

1.1 Omentin 

 

1.1.1 Adipokines 

 

  Obesity has been a pandemic social problem in the worldwide since it has been 

shown to significantly increase the risks for many other diseases including metabolic 

diseases (Ouchi et al. 2011), cardiovascular disorders, chronic inflammatory condi-

tions, and various cancers (Blüher 2013). The obesity-driven adipose tissue, acted as 

an active endocrine organ, has been well known to secrete a variety of bioactive mol-

ecules, so-called ‘adipokines'. The adipokines perform important functions in regulat-

ing various of metabolic, immunological, and inflammatory processes in target organs 

(brain, liver, vasculature, muscle, and immune system) (Fasshauer and Bluher 2015). 

Based on the contrary effects of adipokines in modulating immune inflammatory ac-

tivities, they can be divided into the good anti-inflammatory adipokines and the bad 

pro-inflammatory adipokines. The majority of the adipokines are "bad" (leptin, resis-

tin, visfatin, and TNF-α); by contrast, others are "good" adipokines including inter-

leukin-10 (IL-10), adiponectin, vaspin, and omentin which are as described in the fol-

lowing section. 
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1.1.2 Definition of Omentin 

 

Omentin was originally identified in intestinal Paneth cells and named as intelec-

tin-1. It was implicated to be defensive against micro-organisms, for example, Esche-

richia coli (Wang 2014). In addition to its existence in intestinal Paneth cells, the ex-

pression of omentin mRNA has since been found in varying tissues, for instance, the 

stromal vascular fraction of visceral adipose tissue, lung, heart, small intestine, colon, 

placenta, and ovary (Schaffler et al. 2005). Because of its wide distribution, in 2004, it 

was renamed as omentin and was included in a cDNA library originating from 

omental fat, with the Genbank accession number AY549722 (Schaffler et al. 2005). 

Regarding the nature and genetic location of omentin, it is a 313 amino acid peptide 

and the omentin gene is located on Chromosome 1, at the 1q22 – q23 gene region. 

Two different forms of the omentin protein are recognized and are termed as omentin 

1 and 2. These two forms contain 83% common amino acid sequences. Omentin 1, is 

the main form in circulation and has been more widely investigated among the two 

forms. Therefore, omentin 1 was selected as the target for investigation in this re-

search project. The following section details current evidence regarding the involve-

ment of omentin 1 in various diseases (referred as omentin 1) (Jaikanth et al. 2013). 

 

1.1.3 Omentin: role in Various Diseases 

 

Many recent studies have been conducted in order to examine the potential associa-

tion between omentin and various diseases. The expression alteration patterns and de-

tailed functions of omentin in some representative diseases (i.e., obesity, autoimmune 

diseases, respiratory diseases, cancers, and oral diseases) will be summarized in the 

following section. 
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1.1.3.1 Omentin: role in Obesity-Related Diseases 

 

The expression of omentin has been found to be inversely correlated with obesi-

ty-related diseases and its underlying mechanisms comprising of obesity-related in-

flammatory responses. The expression levels of omentin were found to be signifi-

cantly decreased in the plasma of obese individuals as compared with healthy indi-

viduals (de Souza Batista et al. 2007). Intriguingly, the concentrations of omentin 

were found to be increased in obese subjects after weight reduction (More-

no-Navarrete et al. 2010). The significant dysregulation of omentin was not only 

found in obese patients, but also observed in many other obesity-associated diseases, 

including type 2 diabetes (T2DM) (Pan et al. 2010), polycystic ovary syndrome 

(PCOS) (Tang et al. 2017), and cardiovascular diseases such as carotid atherosclerosis 

(Tang et al. 2017), and coronary artery disease (CAD) (Du et al. 2016). In patients 

with CAD, the expression patterns of omentin were distinct to plasma and epicardial 

adipose tissue (EAT), which were down-regulated and up-regulated, respectively, in-

dicating that omentin expression is specific to tissue (Harada et al. 2016). Harada held 

the opinion that omentin over-expressed in EAT tissue might exert a cardioprotective 

effect during the pathogenesis of CAD disease, and thus could be a potentially valua-

ble therapeutic target molecule (Harada et al. 2016). A recent study concerning obesi-

ty-related disease nonalcoholic fatty liver disease (NAFLD) showed the increase of 

omentin levels in serum of patients with NAFLD, which contrasts with findings in 

obesity, suggesting that the expression pattern of omentin could vary among diseases 

although the same biological specimen types may be examined (Yilmaz et al. 2011). 

Previous evidence has demonstrated the dysregulation of omentin in obesity-related 

disease, however the underlying mechanisms in these diseases are still lacking and 

thus need to be elucidated in the future.  
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1.1.3.2 Omentin: role in Autoimmune Diseases 

 

Reduced omentin levels were also associated with autoimmune diseases, including 

psoriasis (Zhang et al. 2015), rheumatoid arthritis (Robinson et al. 2017), Behcet's 

disease (Turkcu et al. 2015), Crohn's disease (Lu et al. 2014) and ulcerative colitis 

(Yin et al. 2015). In contrary, other research groups noted that plasma omentin levels 

were markedly increased in systemic lupus erythematosus (SLE) and were correlated 

with the presence of nephritis (Zhang et al. 2016). 

 

1.1.3.3 Omentin: role in Respiratory Diseases 

 

Lower omentin levels have been noted in acute respiratory distress syndrome 

(ARDS) (Qi et al. 2016) and chronic obstructive pulmonary disease (COPD) (Zhou et 

al. 2017). In contrast, lower omentin levels have been found in mice with allery to 

ovalbumin (OVA), who overexpress IL-13 (Kuperman et al. 2005). Contradictory re-

sults have been reported in three studies conducted in patients with obstructive sleep 

apnea syndrome (OSAS). Two of these studies noted raised omentin levels in OSAS, 

as compared to healthy controls, but caution must be employed in extrapolating their 

conclusions owing to their relatively small sample sizes (Zirlik et al. 2013, Kurt et al. 

2014)). A separate study with a larger sample size found a marked decrease in omen-

tin levels of OSAS patients, and moreover reported that these omentin levels were 

correlated with disease severity (Wang et al. 2013). Considering such heterogeneity, 

further investigations are warranted to clarify how omentin is altered during OSAS 

pathology. 
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1.1.3.4 Omentin: role in Cancer 

 

Omentin levels have been found as notably lowered in renal cancer (Shen et al. 

2016). In contrast, increased omentin levels have been documented as associated with 

other cancers, including malignant pleural mesothelioma (MPM) (Wali et al. 2005), 

prostate cancer(Uyeturk et al. 2014), colon cancer (Ummugul et al. 2014), gastric 

cancer (Zheng et al. 2011), hepatic cancer (Zhang and Zhou 2013), and pancreatic 

adenocarcinoma (Karabulut et al. 2016). A proposed mechanism of anti-cancer effect 

of omentin involves the attenuation of cell proliferation by upregulating Jun 

N-terminal kinase (JNK)-p53 signaling (Zhang and Zhou 2013). In another instance, 

it was found that omentin could increase the apoptosis of liver cancer cells by in-

creasing caspases-3 activity (Zhang and Zhou 2013).   

 

1.1.3.5 Omentin: role in Oral Diseases 

 

In temporomandibular disorders (TMD) marked by chronic pain, plasma omentin 

has been found to be lower than those in controls, suggesting an association with in-

flammatory pathways (Harmon et al. 2016). At present, two experiments from the 

same group have investigated the omentin levels GCF. The first among these (Bozkurt 

et al. 2016) found reduced omentin levels in GCF of chronic periodontitis (CP) pa-

tients, both with and without diabetes mellitus. A subsequent study (Balli et al. 2016) 

found omentin levels were reduced in obesity and/or periodontal disease. In addition, 

non-surgical periodontal treatment was advantageous for restoring omentin levels. 

Taken together, these findings suggested that omentin has an anti-inflammatory role in 

periodontitis pathology. Moreover, it is plausible that GCF omentin levels could have 

potential value as a biomarker relevant to diagnostic, prognostic and risk prediction in 

periodontal diseases. 
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1.1.4 The anti-inflammatory Mechanism of Omentin 

 

Omentin appears to inhibit inflammation via multiple cellular signaling pathways 

and molecular mechanisms (Zhou et al. 2017). Yamawaki et al reported that omentin 

could have an anti-inflammatory effect on endothelial cells by inhibiting TNF-α in-

duced cyclooxygenase-2 (COX-2) expression. This in turn was affected by blockade 

of JNK activation, possibly by upregulating the AMP-activated protein kinase 

(AMPK) and endothelial nitric oxide synthase (eNOS) / nitric oxide (NO) pathways 

(Yamawaki et al. 2011). Others have demonstrated that in endothelial cells, omentin 

downregulated TNF-α induced expression of intracellular adhesion mole-

cule-1(ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) by inhibiting the 

extracellular regulated protein kinases (ERK)/NF-κB (nuclear factor kappa B) path-

way (Tan et al. 2015). In another mechanism, omentin inhibits TNF-α induced 

VCAM-1 expression in rat vascular smooth muscle cells by blocking p38 and JNK 

pathways (Brunetti et al. 2014). Overall, molecular evidence implies that omentin is 

an adipokine that can reduce inflammation in vascular tissue.  

 

In addition to endothelial cell, omentin effects on macrophages have been demon-

strated. Mizuho et al. (2015) noted omentin lowered the levels of pro-inflammatory 

mediators including TNF-α, IL-6, and monocyte chemotactic protein-1 (MCP-1) in 

macrophages and demonstrated that this effect was mediated via upregulation of the 

AMPK/AKT pathway (Hiramatsu-Ito et al. 2016). 

 

In smooth muscle cells and osteoblasts, omentin has been found to stimulate osteo-

protegerin and inhibit nuclear factor kB ligand (RANKL) production by activation of 

phosphatidylinositol 3 kinase/protein kinase B (PI3K/AKT) (Xie et al. 2011). It is also 

shown to promote human osteoblast (hOB) proliferation via promoting the PI3K/Akt 
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signaling pathway (Wu et al. 2013). Therefore, omentin appears to be a significant 

regulator of bone remodeling. 

 

1.2 Role of P. gingivalis in Periodontal Diseases 

 

Periodontal disease is a complex multifactorial disorder. It etiopathology involves 

plaque biofilm bacteria’ virulence factors that interact with host cells and immune 

systems, leading to a chronic inflammatory state marked by the destruction of 

tooth-supporting tissue. More specifically, periodontal inflammation is initiated in 

gingival soft tissue and the spread of inflammation to the deeper structures including 

periodontal ligament and alveolar bone leads to their progressive destruction (Wil-

liams 1990). 

 

Such progression typically occurs in an episodic manner, marked by active and 

quiescent phases of tissue destruction. These phases may reflect periods where either 

the microbial challenge or the host immune response is dominant and characterized by 

disease progression or containment, respectively.  

 

Porphyromonas gingivalis (P. gingivalis) is a keystone periodontal pathogen. This 

bacterium has multiple different strategies of virulence, which hamper the integrity, 

and function of the host gingival epithelium upon exposure. Other virulence mecha-

nisms enable this pathogen to bypass host immune responses by inactivating immune 

components. Eventually, the hyper-activation of pro-inflammatory host responses 

leads to periodontal tissue destruction. The invasive ability of this pathogen and per-

sistent survival within host tissue can cause periodontitis initiation and progression, 

both (Andrian et al. 2006). 
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P. gingivalis can produce number of known virulence factors. These include fimbria, 

proteases, endotoxin or lipopolysaccharides (LPS) and hemagglutinins (Cutler et al. 

1995). Major fimbriae and cysteine proteinases termed as gingipains are found to ac-

count for its ability of adhering to and invading oral epithelial cells (Weinberg et al. 

1997), events which are plausibly key in the pathogenesis of periodontitis, particularly 

early in disease establishment (Chen et al. 2001). The adhesion mechanism involves 

interactions of cell surface and adhesions with epithelial cell receptors. Moreover, the 

bacterium is also found to replicate inside human epithelial cells after its internaliza-

tion. A combination of bacterial contact-dependent mechanisms and subsequent in-

duction of specific host signaling pathways lead to its intra-cellular survival and per-

sistence.  

 

1.3 Role of LPS in Periodontal Diseases 

 

In gram-negative bacteria, LPS is a key component of the outer membrane and 

maintains cell integrity, while protecting the inner layer from chemical insults. LPS is 

known to induce strong innate immune activation upon contact with host cells. 

 

LPS is a chief component of the P. gingivalis outer membrane and is a potent stim-

ulus for inflammatory cytokine production and bone resorption in context of perio-

dontitis (Diya et al. 2008). As with other types of endotoxins, P. gingivalis-LPS and 

fimbrial components are recognized by TLRs. TLRs constitute an innate pattern 

recognition molecules crucial to pathogen detection and result in downstream activa-

tion of protective pro-inflammatory responses (Swaminathan et al. 2013)). For ex-

perimental purposes, P. gingivalis-LPS is available as a standard preparation. 

 

It is known that LPS from different bacteria can differ in biological activity. P. gin-
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givalis-LPS has been found to differ from E. coli-LPS in its structure and therefore 

bears a different functional profile in terms of host-immune activation. In terms of 

structure, P. gingivalis-LPS is unique and heterogeneous and differs markedly in this 

configuration from LPS of well-recognized enteric pathogens like E. coli (Kang et al. 

2016)). More specifically, conical shaped LPS as that from E. coli has been found to 

activate TLR-4. In contrast, cylindrical LPS molecules such as that from P. gingivalis 

has been found to activate both TLR-2 and TLR-4 (Shaddox et al. 2013), which in 

turn results in different downstream host-signaling pathway being activated and dis-

parate cytokine stimulation profiles 

 

1.4 Role of Human Oral Epithelial Cells in Health and Disease 

 

In the periodontal milieu, the gingival epithelium forms the primary physical barri-

er that prevents the ingress of bacteria. It is a stratified squamous type of epithelium 

that is constantly combating microbial challenges from the plaque biofilm and the oral 

environment. Its basal layer walls off underlying connective tissue, being composed 

of a basal lamina. Physically, the gingival epithelium comprises of oral, crevicular and 

junctional epithelia, depending on location (Groeger et al. 2015) and each of these 

have specific ultrastructural traits. In the course of periodontitis, persistent inflamma-

tion leads to attachment loss and bone resorption and the junctional epithelium mi-

grates apically to form a periodontal pocket (Andrian et al. 2006). 

 

As opposed to earlier views, an active role of the epithelium in the innate immune 

response was first proposed in 2002 (Dale et al. 2002). Signaling pathways activating 

upon epithelial contact with bacterial components were found to initiate host immune 

responses and also responsible for crosstalk between innate and acquired immune 

mechanisms. 
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Epithelial cell invasion is a critical virulence strategy of pathogenic bacteria for 

averting the host immune system is subsequently results in tissue damage (Lamont 

and Jenkinson, 1998). In the periodontal niche, gingival epithelial cells form the 

physical barrier that prevents invasion of periodontal bacteria and are known to be 

penetrable by significant periodontal pathogens such as P. gingivalis.  

 

The mucosal interface presented by the oral epithelium has been a recent focus of 

investigation. It has been elucidated that the gingival epithelium performs multiple 

immune functions, aside from serving as physical barrier. Gingival epithelial cells 

produce several antimicrobial peptides, which counter bacterial survival. In addition, 

immune activation of these cells may enable cytokine production aimed at limiting the 

infection. Critically, these cells play an important function in host-microbial hoemo-

statsis by enabling commensal tolerance. This occurs when tolerogenic immune 

mechanisms are activated by commensal microbiomes, whereby immunoregulatory 

cytokines are produced and a quiescent, clinical inflammation- free state is main-

tained.  

 

1.5 Cytokines  

 

Cytokines include several bioactive molecules like chemokines, interleukins, lym-

phokines, tumor necrosis factors and interferons. A variety of different cells are 

known to produce various cytokines, with different profiles. Importantly, cytokines 

operate as interlinks between innate and adaptive immune mechanisms. Their activity 

is key to health and disease states by modulating infection and immunity, regulating 

inflammation, and serving critical roles in the biology of an array of pathology like 

fever, trauma, and cancer. 
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Cytokines are divided into two main types based on structure: type 1 (TNF, etc.), 

which enables cellular immune responses and facilitates antibody production and type 

2, which includes TGF-β, IL-4, IL-10, IL-13 and others. Pro-inflammatory and an-

ti-inflammatory cytokines both are recognized and known as upstream players that 

trigger the release of other cytokines and acute phase proteins of the liver. An-

ti-inflammatory cytokines may enable therapeutic treatment modalities, example that 

for pain arising from inflammation or neural trauma.  

 

1.5.1 Interleukin 1β (IL-1β) 

 

Interleukin (IL)-1 is well recognized as a biomarker of inflammation, due to its role 

in the inflammation pathology (Andrian et al. 2004). Its two forms are IL-1α and 

IL-1β, of which IL-1β has higher potency. IL-1β is a 17.5-kDa cytokine protein and 

compromises in a number of basic physiological processes (cell proliferation and dif-

ferentiation) (Fettelschoss et al. 2011). 

 

IL-1β is significantly raised in periodontal tissues and GCF in periodontitis (Tsai et 

al. 1995, Ishihara et al. 1997, Giannopoulo et al. 2003). Mechanistically, IL-1β is 

found to activate the pro-inflammatory NF-κB pathway (Steinberg et al. 2006). Asso-

ciation studies have found specific IL-1β gene polymorphisms increase the risk of 

periodontitis (Kornman et al. 1998，Diehl et al. 1999).  

 

IL-1β is a key regulator of immune responses in the periodontal niche (Pan et al. 

2019). IL-1β is central to the pathogenesis of bone resorption in response to inflam-

mation (Deshpande et al. 2013). As a marker of active inflammation and the acute 

phase response, salivary and GCF IL-1β levels correlated to the severity of periodon-

tal destruction (Marques et al. 2016, Rathnayake et al. 2013). Salivary IL-1β is con-
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sidered as a biomarker of periodontitis (Miller et al. 2006). Such biomarker value may 

be limited to oral fluids as others have not found significant associations between se-

rum levels of IL-1β with periodontal disease severity (Górska et al. 2003). In contrast, 

some investigators have found higher IL-1β in both serum and gingival tissues from 

periodontitis patients, suggesting an overlap (Zhong et al. 2007, Orozco et al. 2006, 

Howells et al. 1995). Circulating IL-1β have also been found to be significantly raised 

in aggressive periodontitis (Sun et al. 2008). 

 

1.5.2 Interleukin 6 (IL-6)  

 

IL-6 is primarily secreted by T cells and macrophages. As a multifunctional cyto-

kine, IL-6 is also expressed by other cells including monocytes, fibroblasts, endothe-

lial cells, and keratinocytes that are involved in the inflammatory reaction (Okada et 

al. 1998). IL-6 secreted by osteoblasts is responsible for bone resorption (Tseng et al. 

2009). In periodontitis, higher GCF levels of IL-6 are documented in periodontal 

pockets (Okada et al. 1998, Noh et al. 2013, Javed et al. 2012). In vitro, P. gingivalis 

LPS was found to elicit elevated levels of IL-6 and TNF-α in gingival fibroblasts 

(Kang et al. 2016). IL-6 is elevated in most inflammatory states and although it has 

been chiefly regarded as a pro-inflammatory cytokine.  

 

In addition, IL-6 also has regenerative or anti-inflammatory actions. IL-6 functions 

as an anti-inflammatory ‘myokine’ or a cytokine expressed and grown upon muscle 

contraction (Muñoz et al. 2013). In agreement plasma IL-6 increases during exercise, 

which triggers the release of anti-inflammatory factors IL-1ra and IL-10 (Pedersen et 

al. 2008, Brandt et al. 2010). 

 

However, specific signaling pathways for IL-6 appear to be cell-dependent. 
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Whereas, IL-6 signaling in macrophages depends upon NFκB signaling, the intra-

muscular IL-6 expression is triggered by different mechanisms that include the 

Ca2+/NFAT and glycogen/p38 MAPK pathways. IL-6 signaling in monocytes or mac-

rophages, thus stimulates a pro-inflammatory milieu, in contrast to its an-

ti-inflammatory role in muscle activity (Bruunsgaard et al.1997, Pedersen et al. 2008, 

Brandt et al. 2010,). 

 

1.5.3 Tumor necrosis factor-α (TNF-α) 

 

TNF-α, is a pro-inflammatory cytokine chiefly and primarily secreted by mono-

cytes and macrophages. Other cells that secrete TNF-α include cardiac myocytes, ad-

ipocytes, fibroblasts, neurons, lymphoid cells, mast cells and endothelial cells (Bos-

tröm et al. 1998). Its downstream effects include collagenase secretion from fibro-

blasts and resorption mineralized connective tissues. As such, it is widely implicated 

in periodontal tissue destruction during periodontitis. TNF is secreted in substantial 

amounts in response to LPS and other bacterial components, which in turn 

up-regulates local collagenase production leading to bone resorption (Boström et al. 

1998, Noh et al. 2013). With regard to periodontal diseases, elevated TNF-α has been 

observed in inflamed gingival tissues and GCF (Bastos et al. 2009, Boström et al. 

1998, Noh et al. 2013). Thus, protein expression levels of TNF-α are suggested as a 

biomarker of gingival and periodontal inflammation. 

 

1.5.4 Interleukin (IL)-10  

 

IL-10 is also termed as human cytokine synthesis inhibitory factor (CSIF) and is an 

anti-inflammatory cytokine. It is mainly produced by T/ B cells, monocytes, and 

macrophages (Gemmell et al. 1997). IL-10 prevents pro-inflammatory cytokine pro-
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duction and blocks IL-1, TNF-α, interferon γ (IFNγ), IL-6 and IL-8. IL-10 also inhib-

its metalloproteinase production and raises levels of tissue inhibitors of metallopro-

teinases. 

 

IL-10 has several regulatory effects in controlling periodontal disease. It serves to 

limit the local immune response, tissue destruction and bone resorption as it counters 

pro-inflammatory cytokine production (Luo et al. 2013). Low IL-10 levels are impli-

cated in periodontal disease progression, whereas high levels can be protective owing 

to inhibition of pro-inflammatory cytokines (Luo et al. 2013).  

 

IL-10 is detected in healthy and inflamed human periodontal tissues. In a 

pre-clinical model of P. gingivalis-LPS initiated periodontal disease, IL-10 was found 

to inhibit inflammation (Wang et al. 1999). IL-10 was found to be lower in patients 

infected with the periodontal pathogen Actinobacillus actinomycetemcomitans (Hi-

rose et al., 2001). Other investigators demonstrated that in periodontitis, IL-10 

down-regulated the pro-inflammatory response (Bozkurt et al., 2006).   

 

Clinical parameters of periodontitis were found to negatively correlate to IL-10 in 

serum (Gümüş et al. 2014). Furthermore, low IL-10 levels in serum were noted in 

periodontitis and metabolic syndrome both. In addition, periodontal treatment led to 

improvement in its circulating levels (Chauhan et al., 2016). However, the exact roles 

played by IL-10 and other cytokines in periodontitis, systemic inflammation and their 

inter-relationship are not completely understood (Gonçalves et al., 2010). 
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1.5.5 Interleukin (IL)-13  

 

IL-13 has anti-inflammatory properties and is dominantly produced by neutrophils 

and macrophages. It counters the synthesis of pro-inflammatory cytokines and chem-

okines. It is viewed as a Th2 type of cytokine and known to play a pleiotropic role. It 

modulates a variety of biological functions of activated Th2 cells and supports B cells 

growth and differentiation (Et et al. 2017). IL-13 has a potent anti-inflammatory effect 

and inhibits several proinflammatory cytokines like IL-1β (Narożna et al. 2016). A 

therapeutic role of IL-13 has been most well considered in autoimmune and inflam-

matory diseases like asthma, atopic dermatitis, allergic rhinitis, inflammatory bowel 

disease, and cancer. 

 

IL-13 has a role in inhibiting osteoclast formation and along with IL-4 it can restrict 

inflammation-linked bone resorption in periodontitis (Souza et al. 2012). 

 

Higher IL-13 has been noted in healthy controls, as compared to periodontitis af-

fected patients and in congruence, progressively lower IL-13 levels are associated 

with progressive stages of periodontitis (Et et al. 2017). 

 

1.5.6 Interleukin (IL)-25  

 

IL-25 is also known as IL-17E and is a member of the Cytokine IL-17 family 

(IL-17A to IL-17F). Unlike other members, which have a pro-inflammatory function, 

IL-25 has a unique structure and functions differently in type 2 immune responses 

(Th2) (Valizadeh et al. 2015). Monteleone et al described IL-25 as a ‘double-edged 

sword,' for its promotion of Th2 mediated immunity, as well as its anti-inflammatory 
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effect by limiting destructive inflammation (Monteleone et al. 2010). 

 

Awang et al found IL-25 could inhibit P. gingivalis and IL-17A-induced chemokine 

production by oral epithelial cells (Azman et al. 2014). Besides, the IL-17A:IL-25 ra-

tio in serum has been suggested as a predictive disease marker (Azman et al. 2014). A 

similar study detected the associations between non-surgical periodontal therapies and 

IL-17A:IL-25 ratio (Nile et al. 2016), which found IL-25 serum levels were raised 

after treatment leading to a reduced IL-17A:IL-25 ratio (Nile et al. 2016). 

 

IL-25 not only regulates immune and inflammation responses but also regulates the 

production of several other cytokines, including IL-4, IL-5, and IL-13. IL-25 can 

produce cell specific apoptosis of tumor cells while sparing healthy cells (Valizadeh et 

al. 2015). 

 

1.5.7 Toll-like receptor (TLR)-2 and -4 

 

TLRs are not only expressed by innate immune cells, but also several non-immune 

cells. High levels of TLRs expression are found in cells known to react to LPS such as 

leukocytes, macrophages, and monocytes. TLRs are pattern recognition receptors 

(PRR) and function to recognize conserved molecular patterns that are typical of mi-

crobial pathogens, and commonly referred to as pathogen-associated molecular pat-

terns (PAMPs) (Gumus 2016). PAMPs recognition is central to TLRs role as critical 

receptors in regulating innate immunity and controlling adaptive immunity. 

 

Once activated, TLRs recruit signaling adaptor proteins and initiate TLR-related 

signaling pathways. Toll-IL receptor (TIR) domains regulate the activity of major 
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adaptor proteins such as TIR domain-containing protein (TIRAP), TIR do-

main-containing adaptor inducing IFN-b (TRIF), TRIF-related adaptor molecule 

(TRAM), and myeloid differentiation factor 88 (MyD88) (Gumus 2016, Akira et al. 

2004). This activation results in two types of signaling pathways. These include the 

MyD88-dependent pathway (except TLR3) and the MyD88-independent 

TRAM/TRIF pathway (activated by TLR-3 and some functions of TLR-4). MyD88 

pathways activation in turn leads to transcription factor NF-kB and such activation in 

turn induces cytokines and chemokines (Gumus 2016, Akira et al. 2004, Song, et al. 

2017). Thus, TLRs regulate the production and transcription of of both pro- and an-

ti-inflammatory cytokines (Song et al. 2017).   

 

Currently, TLR activity is a focus area in periodontitis research, as they are recog-

nized as sentinels that recognize periodontal pathogens and trigger a cascade of 

pro-inflammatory factors in periodontal tissues. TLRs are implicated in the initiation 

and progression of periodontitis as evidenced by TLRs expression patterns in diseased 

periodontal tissues. 

 

Two specific members of the TLR family, TLR-2 and TLR-4, are located on the 

cell surface and respond to a wide variety of PAMPs. While TLR2 recognizes lipo-

proteins and lipopeptides from Gram-positive bacteria, both TLR2 and TLR4 detect 

the lipopolysaccharide (LPS) of Gram-negative micro-organisms (Gumus 2016, Akira 

et al. 2004, Song, et al. 2017, Tabeta et al. 2000). 

 

As P gingivalis is gram negative and a major periodontal pathogen, its surface 

components like LPS, fimbriae and other lipoproteins are shown to interact with 

TLR2 and TLR4 present on host cells and in turn trigger proinflammatory cytokine 

responses (Tabeta et al. 2000). 
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Many studies have shown elevated TLR-2 and TLR-4 in periodontitis and found 

positively correlation of these expression levels with the severity of periodontitis (Abe, 

et al. 2014, Buduneli et al. 2011, Mori et al. 2003). However, such findings are not 

always consistent. In a study by Wara-aswapati, TLR-4 levels in periodontal patients 

were not significantly different from controls, whereas TLR-2 expression levels were 

markedly higher (Wara-aswapati et al. 2013). 

 

The interactions of TLRs in oral epithelial cells have been well investigated. Con-

cerning TLR expression, TLR-2 and TLR-4 have been detected in primary oral epi-

thelial cells and oral squamous cell carcinoma cell lines; KB, HSC-2, and HO-1-u-1 

(Uehara et al. 2001). In a study by Sugawara et al., oral epithelial cells were found to 

express TLR-2 and TLR-4, although there was considerable variation in their expres-

sion patterns (Sugawara et al. 2006). In contrast, gingival epithelial cells transfected 

with human papillomavirus mainly expressed TLR-2 but not TLR-4 (Asai et al. 2001). 

These authors also found that while TLR-2 was observed as well-stained in epithelial 

cells, only faint staining with anti-TLR4 Ab was notable (Asai et al. 2001; Kusumoto 

et al., 2004). 

 

TLR-2 and TLR-4 both have been detected in gingival tissues. Notably, marked 

expression of both TLRs has been noted in inflamed tissues, reflecting their upregula-

tion in inflamed states. Such higher expression of TLR-2 and TLR-4 in inflamed epi-

thelium could arise from both bacterial stimulation and pro-inflammatory cytokines. 

In agreement, pro-inflammatory cytokines have been found to up-regulate the expres-

sions of TLRs (Uehara et al., 2005). Recently, some studies have found oral epithelial 

cells respond to bacterial components that stimulate TLRs and nucleotide-binding ol-

igomerization domains (NODs) (Uehara et al. 2001, Uehara et al 2005). In summary, 

TLRs mediated PAMP recognition by oral epithelial cells is an active mechanism of 

bacterial clearance in the absence of clinical inflammation. This mechanism appears 
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to have an important protective role in preventing bacteria from inducing excessive 

innate immune responses, which could result in the destruction of inflammatory tis-

sue. 

 

2. Aims of Study 

 
  This research was established to investigate whether omentin plays an an-

ti-inflammatory role in periodontal diseases. Using an in-vitro cell culture model, it 

should be determined whether omentin modulates critical effects in BHY cells stimu-

lated by periodontal pathogens. For this purpose, expressions of different cytokines, 

which are commonly associated with periodontitis progression, are detected in BHY 

cells upon bacterial challenges (P. gingivalis and E. coli) and their LPS, in presence or 

absence of various doses of omentin at different time points. 

 

3. Materials and Methods 

 

3.1 Cell Culture 

 
  BHY cell line was obtained from the German Collection of Microorganisms and 

Cell Cultures GmbH (DSMZ, Braunschweig, Germany). BHY cells were cultivated in 

the high-glucose-Dulbecco's Modified Eagle Medium (DMEM) (Sigma Aldrich, Mu-

nich, Germany), in addition with 10% FBS (Sigma Aldrich, Munich, Germany) and 

1% Penicillin-Streptomycin (Sigma Aldrich, Munich, Germany). BHY cells were 

cultured in 5% CO2, 37°C, humid incubator (ThermoFisher, Waltham, USA). 
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3.2 Bacteria and Omentin Stimulation 

 

3.2.1 Bacteria Infection 

 

  35/10 MM well was used in the experiment and 2.5 x 105 cells/cm2 were seeded in 

each well. When seeding, the cells were cultured by the medium without Penicil-

lin-Streptomycin, to avoid its anti-inflammatory effect. After the BHY cells were 

grown up to 80% confluence, they were firstly infected with the bacteria for 1 h. Two 

different bacteria stain were applied: Gram-negative bacteria P. gingivalis strain 

(Porphyromonas gingivalis) and Gram-negative bacteria E. coli strain (Escherichia 

coli), as a reference. Bacteria were obtained and scraped from the agar. Before infect-

ing, phosphate-buffered saline (PBS) was used to wash the bacteria and Medium 199 

(Invitrogen Corporation, Carlsbad, CA, USA) was used to resuspend the bacteria to 

the required density of 0.4. The density was detected by ELISA machine at 660 nm. 

Then, 500 ul medium mixed with live bacteria was used immediately for the bacteria 

challenge. 
 

3.2.2 Omentin Stimulation 

   

  After 1 h bacteria's infection, cells needed to be washed with PBS for at least three 

times, to get ready for omentin stimulation. The concentration of the omentin stock 

was 10 µg/ml (Sigma-Alprich, Saint Louis, USA). To get 200 ng/ml omentin, the di-

luted rate of total incubating medium and omentin was 500:1. For example, 1ml 

200ng/ml omentin medium was made up of 20 µl omentin stock and 980 µl DMEM. 

Omentin were applied to stimulate the cells for 6, 24, and 48 h. BHY cells with no 

bacterial inoculation were served as controls. BHY cells infected with E. coli were 

used as positive controls. All groups were subjected to the same incubation conditions. 
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The detailed groups are listed in Table 1. 

 

Table 1 Different Groups of BHY Cells stimulated by Omentin with / without Bacteria infection.  

G1: BHY cells used as controls. G2-4: BHY cells which were only incubated with 200ng/ml omentin for 

6, 24 and 48 h. G5-7: P. gingivalis-infected BHY cells which were harvested at 6, 24 and 48 h. G8-10: P. 

gingivalis-infected BHY cells with 200ng/ml omentin stimulation for 6, 24 and 48 h. G11-13: E. coli 

-infected BHY cells which were harvested at 6, 24 and 48 h. G14-16: E. coli-infected BHY cells with 

200ng/ml omentin stimulation for 6, 24 and 48 h. 

 

Number Groups Name Number Groups Name 

G1 BHY(Control) G11 BHY-E. coli-6h 

G2 BHY-Omentin6h G12 BHY-E. coli-24h 

G3 BHY-Omentin-24h G13 BHY-E. coli-48h 

G4 BHY-Omentin-48h G14 BHY-E. coli+Omentin-6h 

G5 BHY-P. gingivalis-6h G15 BHY-E. coli+Omentin-24h 

G6 BHY-P. gingivalis-24h G16 BHY-E. coli+Omentin-48h 

G7 BHY-P. gingivalis-48h   

G8 BHY-P. gingivalis + Omentin-6h   

G9 BHY-P. gingivalis +Omentin-24h   

G10 BHY-P. gingivalis +Omentin-48h   
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3.3 LPS and Omentin Stimulation 

  

  250,000 BHY cells were seeded in each well on six-well plates and grown to 80% 

confluence. When seeding, the cells were incubated by the medium without Penicil-

lin-Streptomycin. 5 µg/ml LPS (Invivogen, San Diego, USA) from P. gingivalis or E. 

coli K12 strain were added into BHY cells, with or without different concentrations of 

omentin (50 ng, 100 ng and 200 ng/ml) (SIGMA-ALPRICH，Saint Louis,USA). The 

concentration of P. gingivalis-LPS stock and E. coli- LPS stock were 1mg/ml and 

5mg/ml. To reach 5 µg/ml, 1mg/ml P. gingivalis-LPS stock was diluted by DMEM at 

the rate 1:200, which means that each 1ml incubating medium was added into 5 µl P. 

gingivalis-LPS stock. And for E. coli-LPS, the diluted rate was 1:1000 and each 1ml 

incubating medium was added into 1 µl E. coli-LPS stock to reach the applied con-

centration (5µg /ml). 10 µg/ml omentin stock was diluted to 200 ng/ml omentin by the 

same way, and the 200ng/ml was diluted with DMEM by 1:1 and 1:4 to achieve 50 

ng/ml and 100 ng/ml omentin.  

 

  BHY cells were harvested at 6/12/24 h and at each time point, there were 12 dif-

ferent groups stimulated by different factors (Table 2). BHY cells without any stimu-

lation were used as controls. Different volumes of omentin and LPS were added into 

the culture medium separately. Omentin and LPS stimulation were started at the same 

time. 

 

Table 2 Different Groups of BHY Cells stimulated by Omentin with / without LPS infection.  

G1/G13/G25: BHY cells (Controls) cultured for 6/12/24 h. G2-4/G14-16/G25-27: BHY cells incu-
bated with 50/100/200 ng/ml omentin for 6/12/24 h. G5/G17/G29: BHY cells with 6/12/24 h P. gingi-
valis- LPS stimulation. G6-8/G18-20/G30-32: BHY cells with P. gingivalis-LPS stimulation which 
were co- incubated by 50/100/200 ng/ml omentin for 6/12/24 h. G9/G21/G33: BHY cells with 6/ 12/ 
24 h E. coli-LPS stimulation. G10-12/G22-240/G34-36: BHY cells with E. coli-LPS stimulation which 
were co-incubated by 50/100/200 ng/ml omentin for 6/12/24 h. 
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No. Groups name No. Groups name No. Groups name 

6 H  12 H  24 H  

1 BHY-6 h 13 BHY-12 h 25 BHY-24 h 

2 Omentin-50ng/ml-6 h 14 Omentin-50ng/ml-12 h 26 Omentin-50ng/ml-24 h 

3 Omentin-100ng/ml-6 h 15 Omentin-100ng/ml-12 h 27 Omentin-100ng/ml-24 h 

4 Omentin-200ng/ml-6 h 16 Omentin-200ng/ml-12 h 28 Omentin-200ng/ml-24 h 

5 P. gingivalis-LPS-6 h 17 P. gingivalis-LPS-12 h 29 P. gingivalis-LPS-24 h 

6 
P. gingivalis-LPS 

+Omentin(50ng/ml) 

-6 h 
18 

P. gingivalis-LPS 

+Omentin(50ng/ml) 

-12 h 
30 

P. gingivalis-LPS 

+Omentin(50ng/ml) 

-24 h 

7 
P. gingivalis-LPS 

+Omentin(100ng/ml) 

-6 h 
19 

P. gingivalis-LPS 

+Omentin(100ng/ml) 

-12 h 
31 

P. gingivalis-LPS 

+Omentin(100ng/ml) 

-24 h 

8 
P. gingivalis -LPS 

+Omentin(200ng/ml) 

-6 h 
20 

P. gingivalis -LPS 

+Omentin(200ng/ml) 

-12 h 
32 

P. gingivalis -LPS 

+Omentin(200ng/ml) 

-24 h 

9 E. coli-LPS-6 h 21 E. coli-LPS-12 h 33 E. coli-LPS-24 h 

10 
E. coli-LPS 

+Omentin(50ng/ml) 

-6 h 

22 
E. coli-LPS 

+Omentin(50ng/ml) 

-12 h 

34 
E. coli-LPS 

+Omentin(50ng/ml) 

-24 h 

11 
E. coli-LPS 

+Omentin(100ng/ml) 

-6 h 
23 

E. coli-LPS 

+Omentin(100ng/ml) 

-12 h 
35 

E. coli-LPS 

+Omentin(100ng/ml) 

-24 h 

12 
E. coli-LPS 

+Omentin(200ng/ml) 

-6 h 
24 

E. coli-LPS 

+Omentin(200ng/ml) 

-12 h 
36 

E. coli-LPS 

+Omentin(200ng/ml) 

-24 h 
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3.4 rt-qPCR for Quantitative Detection of mRNA Expression 

 

3.4.1 RNA Isolation  

   

  Firstly, the cell culture medium should be aspirated, and then the cells needed to be 

washed by PBS for two times. Secondly, PBS was aspirated and 1ml Lysis puffer was 

added. The preparation ratio of Lysis puffer was 10 µl β-mercaptoethanol (Sigma, 

USA) in each 1ml Buffer RLT (Qiagen, Hilden, Germany). The cell scraper was used 

to pellet cells. Thirdly, the cell scraper was used to pellet cells and all lysate was 

transferred into a QIA shredder spin column (QIA shredder Kit, Qiagen, Hilden, 

Germany). The maximum amount of each transfer was 700 µl and the lysate needed 

to be transferred for two times. The column was placed above the micro test tube, and 

was centrifuged at full speed for 2 min, in a centrifuge machine (Thermo Fisher, 

Waltham, USA). The volume of the centrifuged liquid was measured and then same 

volume of 70% ethyl alcohol (Sigma, St. Louis, USA) was added into tubes and mixed 

gently. 

 

  RNeasy Mini Kit (Qiagen, Hilden, Germany) was used to isolate the RNA. Up to 

700 µl of the sample was needed to be transferred to a rose RNeasy spin column, 

which was already placed in a 2 ml micro test tube. At first, the tube was centrifuged 

for 15 s at 10,000 rpm and repeated until all the liquid was transferred. After discard-

ing the flow-through, the tube was added with 350 µl RW1 and centrifuged again. 

Then, for each sample, 80 µl DNase mix needed to be added, including 10 µl DNase 

Stock Solution and 70µl RDD Buffer (Qiagen, Hilden, Germany). Before applying, 

all DNase should be kept on ice. The 80 µl DNase mix must be added directly on the 

spin and incubated at room temperature for 15min. Next, the spin was washed with 

350 µl RW1 again for 15 s at 10,000 rpm and transferred into a new micro test tube. 
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After that, 500 µl RPE Buffer was added into the tube for washing, 15 sec for the first 

washing and 1min for the second one, at 10,000 rpm. 

 

  Lastly, the spin was placed into a new RNA-free tube and 50 μl RNA-free water 

was added on the spin, directly. The test tube needed to stand for 1 min before cen-

trifugation at 10000 rpm for another 1 min. All collection in the tube was the final 

RNA of the sample. 

 

  All collected RNA was tested with NanoDrop™ (Thermo Fisher, Waltham, USA). 

The optical density A260/A280 ratio of the samples which were used in the experi-

ment is between 1.8 and 2.1. RNA was stored at -80°C fridge. 

 

3.4.2 RNA Transfer to cDNA  

 

3.4.2.1 RNA Donating 

 
  cDNA amounts of different samples should be same and 500ng RNA of each sam-

ple was settled in the experiment. The actual RNA volume was calculated with the 

equation: RNA volume for 500ng RNA = 500 ng / RNA concentration (ng/µl). If the 

volume was less than 11 µl, H2O was added and used to mix the RNA as a 11 µl probe. 

When the RNA concentration was over than 45.5ng/ml, they were heated till all water 

evaporated and then diluted to the needed concentration. When the RNA concentra-

tion was over 500 ng/µl, they were diluted to lower concentrations and then calculated 

as normal. 500 ng RNA for each, which was diluted in 11.0 µl with H2O, and 2.0 µl 

Hexamer Primer were mixed in a micro test tube and denatured for 15 minutes at 

65°C and were kept promptly on ice. PCR grade H2O (SG, Roche, Mannheim, Ger-

many) was added as a replacement of sample to act as a negative control. 
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Table 3 RNA Donating Material 

Reaction-Mix 

Probe (RNA+ H2O) 11.0 µl 

Hexamer Primer 2.0 µl 

 

 

3.4.2.2 cDNA Transfer 

   

  Following components from first-strand cDNA Synthesis Kit (Roche, Mannheim, 

Germany) were added in tubes as Table 4. All the pipetting work was done on ice. 

Then, the products were processed at 25℃ for 15 min, 50℃ for 60 min, 85°C for 5 

min and finally cooled at 4℃ for 5min. The cDNA samples were stored at -20°C or 

-80°C for future tests. 

 

Table 4 cDNA Transfer Material 

Reaction Mix 20.0 µl in total 

Rxnbuffer 4.0 µl 

dNTPs (10 mM each) 2.0 µl 

RNase Inhibitor 40U 0.5 µl 

AMV Reverse Transcriptase 0.5 µl 

Probe (RNA+ H2O+ Hexamer Primer) 13.0 µl 
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3.4.3 Quantitative Real Time Polymerase Chain Reaction (rt-qPCR)  

 

3.4.3.1 Primers 

   

  Inflammatory markers IL-1β, IL- 6, TNF-α, TLR-2 and TLR-4 were tested in the 

experiment, and GAPDH was used as housekeeping gene. The sequences of the pri-

mers were provided by the Biomol company and TIB-MOLBIOL (Berlin, Germany). 

To make sure that all primers work well, they have been tested with positive control 

and the thermocycling conditions are shown in Table 5. The sequences and their 

length are listed in Table 6. 

 

Table 5 Primer sequences and length 

 
Primer Positive Control Thermocycling Conditions 

IL-1β BHY cell 58 °C;   × 45cy 

IL-6 BHY cell 58 °C;   × 45cy 

IL-10 THP-1 cell 60 °C;   × 45cy 

TNF-α THP-1cell 58 °C;   × 45cy 

TLR-2 BHY cell 58 °C;   × 50cy 

TLR-4 Colon Tissue 58 °C;   × 45cy 
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Table 6 Primer sequences and length 

 
Primer 

 

Sequence 

Forward 

Sequence 

Reverse         

Length 

(bp) 

GAPDH 

CAACTACATGGT  

TTACATGTTC  

GCCAGTGGACTC 

CACGAC 181 

IL-1β 

TTCGACACATGG  

GATAAC GA 

TCTTTCAACACG 

CAGGACAG 260 

IL-6 

ATGCAATAACCA  

CCCCTGAC 

GAGGTGCCCATG  

CTACATTT 167 

IL-10 

ACTTTAAGGGTT 

ACCTGGGTTGC 

TCACATGCGCCT  

TGATGTCTG 111 

TNF-α 

TCCTTCAGACAC  

CCTCAACC 

AGGCCCCAGTTT  

GAATTCTT 173 

TLR-2 

ATGCCTACTGGG 

TGGAGAAC 

TGCACCACTCAC  

TCTTCACA 189 

TLR-4 

CAGCTCTTGGTG 

GAAGTTGA 

GCAAGAAGCATC  

AGGTGAAA 191 

 

3.4.3.2 PCR Reaction Materials  

 
  All the samples (cDNA) were tested with PCR machine Light Cycler® 480 (Roche, 

Mannheim, Germany). SYBR Green I Master (SG, Roche, Mannheim, Germany) was 

used as a nucleic acid stain in all the PCRs. PCR standard H2O (SG, Roche, Mann-

heim, Germany) was used during the whole process. 
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Table 7 PCR Reaction Materials  

PCR Mix (Total volume of each sample is 20.0 µl) 

Primer 2.0 µl Master Mix: 

 15.0 µl 
H2O (SG, Roche, Mannheim, Germany) 3.0 µl 

Syber Green I Master (SG, Roche, Mannheim, Germany) 10.0 µl 

cDNA (1:20 diluted)  5.0 µl 

 

3.4.3.3 Standard curve dilutions preparation 

 

  Firstly, 6 sterile 1.5 ml micro test tubes were prepared and labeled with ‘STD 1:2’; 

‘STD 1:4’; ‘STD 1:8’; STD 1:16’; ‘STD 1:32’ and ‘STD 1:64’. Then 30 µl stand-

ard-stabilizer was pipetted into each micro test tube by the edge. To avoid contamina-

tion, the tips were changed every time. After that, 30 µl STD was pipetted into the 

‘STD 1:2’ micro test tube, and the tube was centrifuged and then mixed well. Then 30 

µl ‘STD 1:2’ was pipetted into ‘STD 1:4’ micro test tube, and next, the tube was also 

centrifuged and mixed as former steps. Other concentrations are prepared following 

the same procedure.  

 

  Each cDNA sample was diluted into 1:20 (190 µl H2O and 10 µl cDNA). 15 µl of 

the PCR Mix were pipetted into a 384-well PCR plate (Roche, Mannheim, Germany) 

and then 5 µl of diluted cDNA were added as well. When finished, the plate was 

sealed with the matched PCR parafilm (Roche, Mannheim, Germany) and centrifuged 

at 1500 rpm for 2 min, to make sure that all liquids were without bubbles. Then the 

plate was tested with Light Cycler® 480 with specific thermocycling conditions.  
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3.4.3.4 PCR Reaction Programs (Table 8) 

 

Table 8 PCR Reaction Programs 

 

Program Target 

 (°C) 

Hold 

Sec 

(hh:mm:ss) 

Target 

(°C) 

 

Step size 

(°C) 

Step Delay 

(cycles) 

Cycles 

Pre-incubation 95 00:10:00 0 0 0 1 

Amplification 95 00:00:15 0 0 0  

35/45/50 68 00:00:15 50/58/60 0.5 1 

72 00:00:15 0 0 0 

Melting Curve 95 00:00:05 0 0 0 1 

65 00:01:00 0 0 0 

Cooling 40 00:00:10 0 0 0 1 

 
 
 
3.4.3.5 PCR Results Analysis 

 
  Expressions of IL-1β, IL-6, TNF-α, TLR-2, and TLR-4 in mRNA levels were de-

tected by rt-qPCR. Gene expressions of these cytokines were tested in BHY cells fol-

lowing bacteria P. gingivalis / E. coli infection in presence or absence of omentin 

(200ng/ml) treatment, for 6, 24 and 48 h, as described in methods.  

 

  As not enough RNA was left for the E. coli stimulated cells at 24 h and 48 h, the rest 

RNA was not used to test TLR-2 and TLR-4. 

 

  IL-1β, IL-6, IL-10, TNF-α, TLR-2, and TLR-4 mRNA expressions were also de-

tected in BHY cells under P. gingivalis-LPS/E. coli-LPS infection, with or without 

different concentrations of omentin stimulation (50, 100, 200ng/ml) for 6, 12 and 24h. 
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  Concentrations of the target (primers) and reference (housekeeping) genes from the 

same sample material are calculated by Light Cycler® rt-qPCR program, according to 

the external standard curve from standard dilutions directly. The example of standard 

curve applied was shown in the Fig. 1.  

 

  GAPDH was used to control the concentrations of the samples. The Relative Ratio 

was calculated with the following formula: Relative Ratio = concentration of target / 

concentration of reference. The target concentration in each sample is divided by ref-

erence gene concentration. 

 

Fig 1: The example of standard curve (Light Cycler® rt-qPCR program) 

 

 

 

3.5 Gel Electrophoresis 

 
  Gel electrophoresis was applied to test and analyze the PCR products. 1.8 % 

concentration of agarose gel was applied in the experiment, diluting 1.8 g agarose 

(Biozym, HessischOldendorf, Germany ) in 100 ml Tris-borate-EDTA (TBE) buffer 

(ThermoFisher, Waltham, USA) in a glass bottle. The buffer should be heated in the 
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microwave until all the agarose powder are melted and the buffer is trasparent. Before 

pouring the melted solution into the gel plate, ethidium bromide must be added for the 

visualization. Nomarlly, for each 100 ml buffer, minimum 4 µl ethidium bromide was 

needed. According to the the number of products, different sizes of combs are 

choosed and inserted into the plate to form the slots. Then the heated solution was 

poured into the plate. After the gel is cooled down to solid at room temperature, the 

combs needed to be removed.  

 

  Before running, 5 µl DNA application buffer orange G sodium (Apotheke 

Klinikum Innenstadt, Munich, Germany) should be added into each 20 µl PCR 

products and mixed thoroughly. A appropiate GeneRuler was also needed. Here Low 

Range DNA Ladder (Thermo Scientific) was applied, which aim to test the products 

size between 25 to 700 bp.  

 

  The solidfied gel and gel plate was tansfered into the apparatus, which filled up 

with TBE buffer. 5 µl mixted PCR products were loaded into the slots. At the 

beginning of each line, 5 µl gene ruler must be added to test the product size. Positive 

and negative samples were also added as controls. Start the gel electrophoresis 

apparatus, and run the gel at 80mV-100mV. When the orange G sodium run to about 

2/3 length of the gel, the running was sucessful. 

 

  The gel was then transfered into the Peqlab machine (Erlangen, Germany) and  

visualized under ultraviolet light. Finally, the gel was documented and quantificated 

by InfinityCapt software (Vilber Lourmat, Marne-la-Valée, France). 
 

3.6 Enzyme-linked Immunosorbent Assay (ELISA)  

 

  IL-13 human ELISA Kit (Enzo, USA) and IL-25 human ELISA Kit (Clound - 

Clone-corp, USA) were used to quantify the IL-13 and IL-25 protein level in the cul-
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ture supernatants. 

 

3.6.1 Cell Supernatants Preparation 

  
  Cell supernatants were collected and centrifuged at 1000 x g for 20 minutes at room 

temperature, which to pellet any cells or cellular debris. Then the supernatants of each 

sample were collected in clean micro test tubes and divided into aliquots. The super-

natants were used immediately or stored at -20˚C or -80˚C fridge. 
 

3.6.2 Human IL-13 Elisa Kit Assay  

 

3.6.2.1 Human IL-13 Standards 

   

  Firstly, human IL-13 standard (300pg) was needed to be warmed at room tempera-

ture and then be reconstituted with 3.0ml standard diluent. The stock should be vor-

texed thoroughly and kept for 5 min before use. The concentration of the stock vial 

was 100pg/ml. This vial was labeled #1 and six other tubes were labeled #2 through 

#7. The stock should be vortexed again prior to use. And then, 500 µl standard diluent 

was pipetted into each tube. After that, 500 µl from reconstituted stock vial was added 

to tube #2 and same transfer was then repeated until the stand in tube#7 was diluted as 

Fig 2 showed. Before and after each transfer, the medium was vortexed to reach an 

appropriate concentration. The concentrations of IL-13 in tubes #1 to #7 would be 100, 

50, 25, 12.5, 6.25, 3.13 and 1.56pg/ml respectively (see Fig. 2 below).  
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Fig 2: Standards Preparation of IL-13 ELISA Kit (Image from the manual of 

IL-13 (human), ELISA kit, Catalog # ADI-900-208, Enzo, USA) 

 

 

 

3.6.2.2 Human IL-13 Elisa Kit Procedure 

   

  All procedures were prepared at room temperature. Firstly, the stands S0-S7 should 

be added in the wells one by one. 100 µl culture media was pipetted as the S0 blank 

(0pg/ml standard). And then, 100 µl of other stands in each tube # 1-7 was added into 

the S1-S7 wells. For sample preparation, each well needs 100 µl. Two wells were 

made for the same sample in the 96-well flat bottom plate (Thermo Fisher, Waltham, 

USA) carefully, as technical repeat. Next, to thaw the samples, the plate was covered 

with a sealer, put on a shaker, and mixed at 500 rpm. After 1 hour, the wells were 

emptied and washed with 400 µl wash solution 5 times. After each washing, the plate 

must be tapped on the paper to avoid any remaining buffer. Secondly, all wells, ex-

cept the blanks, were added with 100 µl yellow antibody, and the 96-well plate was 

sealed. The samples were incubated on the shaker for 30 min at 500 rpm, after which 

the plate was washed in the same way as above. Thirdly, all wells were added with 

100 µl substrate solution. After sealing, the plate was incubated for another 30 min at 

500 rpm. Lastly, all wells were added with 100 µl stop solution and read with 450 nm 

and 570 nm wavelength in the ELISA machine (TECAN, infinite M200, Switzerland). 

To avoid the effects of light and measurement errors, the plate should be tested timely 

and the reader was zeroed to the blank.  
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3.6.3 IL-25 Elisa Kit Assay Procedure 

 

3.6.3.1 Human IL-25 Standards 

 

  At first, the standard was reconstituted to original concentration 4,000pg/ml with 

1.0 ml of standard diluent and mixed gently after staying 10 min at room temperature. 

The standards used in IL-25 ELISA test were diluted in the same double dilution way 

shown in Fig 2. Firstly, the stock solution was diluted to 1,000pg/ml which was 

served as the highest standard. 2ml diluted stock solution was transferred to a new 

micro test tube, labeled #1. Then, 6 micro test tubes, labeled #2 through #7, contain-

ing 500 µl standard diluent were prepared. Before each transfer, the micro test tube 

was vortexed and mixed thoroughly. A double dilution was applied and the IL-25 

concentration 5 in tubes #1 through #7 were 1,000pg/ml, 500pg/ml, 250pg/ml, 

125pg/ml, 62.5pg/ml, 31.2pg/ml and 15.6pg/ml, respectively. Standard diluent was 

used as the blank as 0pg/ml. 

 

3.6.3.2 Human IL-25 Elisa Kit Procedure 

 

  Firstly, the wells should be determined for blank, diluted standards and samples. 

Each well was added 100 µl volume and two wells were added for each sample. To 

thaw the samples, plate was sealed and interacted for 2 h, in 37˚C incubator. Secondly, 

all wells ware emptied and added with 100μl detection reagent A working solution. 

After sealing, the plate was incubated for another 1 h in 37˚C incubator. Thirdly, all 

wells were again emptied and washed with 350μl 1× wash solution three times by us-

ing an auto washer, which should rest for 2 min. The plate was inverted and blotted 

against the absorbent paper to avoid any remaining buffer. Fourthly, all wells were 

added with 100μl of detection reagent B, covered with the sealer and incubated for 30 
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min in 37˚C incubator, after which all wells were washed for five times in the same 

way as above. Fifthly, all wells were added with 90μl substrate solution, covered by a 

new sealer, and incubated for 20 min, in 37˚C incubator. At same time, the plate also 

needed to be covered with aluminum foil, which to be protected from light. The sub-

strate solution would interact and turn the samples into blue. Lastly, all wells were 

added with 50μl stop solution, which transfer the blue into yellow. The side of the 

plate should be tapped gently to ensure the liquid being thorough mixed. The plate 

was read at 450nm and 570nm in the ELISA machine (TECAN, infinite M200, Swit-

zerland) timely. To avoid any measurement error, the bubble, the liquid out of wells 

and the fingerprint muss be cleared in advance. 

 

3.6.4 ELISA Results Analysis 

 

  ELISA was used to the quantify protein levels of IL-13 and IL-25 in BHY cell su-

pernatants. According to the known concentration and net optical density (OD) value, 

the standard curve was made of diluted standards. Standards were diluted as the man-

ual. OD used in the equation was the value OD 450nm minus OD 570nm. Equation 

was managed from the standard curve (Fig. 3, Fig. 4). 

 

OD=OD 450nm-OD 570nm 

Net OD=OD of sample – OD of blank  

 

IL-13 equation is: Y=0.014x - 0.0173   R2 =0.9987  

IL-25 equation is: Y=0.0035x - 0.0835  R2 =0.9828 

 
  R2 shows the accuracy of this equation. R2＞0.95 is suggested acceptable. The 

concentration of each sample was acquired by the equation. All the data were calcu-

lated as stated above and analyzed.  
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Fig. 3 Standard curve of IL-13 concentration  

The IL-13 standard curve was made of the known concentrations and net OD value. The known con-
centrations of the diluted standards and blank were 100, 50, 25, 12.5, 6.25, 3.13, 1.56 and 0pg/ml, re-
spectively. The net OD were 1.40, 0.65, 0.34, 0.14, 0.06, 0.03, 0.01 and 0, respectively. Equation was 
managed from the standard curve. IL-13 equation is: Y=0.014x - 0.0173 (R2 =0.9987). 
 
 

 
 

Fig. 4 Standard curve of IL-25 concentration 

The IL-25 standard curve was made of the known concentrations and net OD value. The known con-
centrations of the diluted standards and blank were 1,000, 500, 250, 125, 62.5, 31.2, 15.6 and 0pg/ml, 
respectively. The net OD were 3.31, 1.97, 0.58, 0.27, 0.10, 0.06, 0.04 and 0, respectively. Equation was 
managed from the standard curve. IL-25 equation is: Y=0.0035x - 0.0835 (R2 =0.9828). 
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3.7 Statistical Analysis 

 

  Statistical analysis of differences between experimental groups was performed us-

ing SPSS Software Program (Version 23.0, SPSS Inc, Chicago, IL, USA). For com-

parison of two groups, t-test was carried out to determine the statistical differences. 

Dispersions of the data were described as the standard error of the mean (SEM). *p < 

0.05, **p < 0.01 and ***p < 0.001 have been considered significant.  

 

4. Results 

 

4.1 Omentin Effects on BHY cells under Bacteria Stimulation 

 

4.1.1 Gel electrophoresis 

 

  IL-1β, IL-6, TNF-α, TLR-2 and TLR-4 mRNA expression in BHY cells were test-

ed by Gel electrophoresis. BHY cells were infected by P. gingivalis and E. coli bacte-

ria. Then 200 ng omentin was used to treat the cells with or without infection for 6, 24, 

48 h. Lane 1 C = unstimulated control (BHY cells); lane 2-4 after 6, 24, 48 h, with 

200 ng/ml omentin supplement in the medium; lane 5-10 after 6, 24, 48 h, P. gingi-

valis infection without or with 200 ng/ml omentin supplement in the medium; lane 

11-16 after 6, 24, 48 h, E. coli infection without or with 200 ng/ml omentin supple-

ment in the medium; Each gene expression is the result of a different gel electropho-

resis.  

 

 

 



  43 
 

Fig. 1 Gel Electrophoresis Results of Cytokines in BHY cells. 

Gel electrophoresis of GAPDH, IL-1β, IL-6 and TNF-α mRNA expression in BHY cells, after P. gin-

givalis or E. coli infection with or without 200 ng/ ml omentin treatment, for 6, 24 and 48 h. C = un-

stimulated control (BHY cells). 

 

 
 
 

Fig. 2 Gel Electrophoresis Results of TLR-2 and TLR-4 in BHY cells. 

Gel electrophoresis of TLR-2 and TLR-4 mRNA expression in BHY cells, after P. gingivalis or E. coli 

infection and 200 ng/ ml omentin treatment, for 6, 24 and 48 h. C = unstimulated control (BHY cells). 
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4.1.2 Cytokines Expression in RNA Level 

 

4.1.2.1 IL-1β  

 

  Omentin treatment elevated the mRNA expression of IL-1β at 48 h, compared to 

control (Fig. 3A).  

 

  P. gingivalis exposure stimulated the highest increase in mRNA expression of IL-1β 

at all time points 6/24/48 h (Fig. 3A). At 6 h, the IL-1β was up-regulated following 

exposure to P. gingivalis stimulation by up to 6-fold, relative to control (*p < 0.05), 

which was at the same time, 4-fold higher than the expression stimulated by omentin 

alone (*p < 0.05) (Fig. 3A). When it comes to 24 h and 48 h time point, P. gingivalis 

promoted the IL-1β expression in BHY cells, which were dramatically higher than 

those in controls (both *p < 0.05) (Fig. 3A). In addition, at 24 and 48 h, P. gingivalis 

simulation expressed higher IL-1β than that with omentin stimulation at (both *p < 

0.05) (Fig. 3A). 

 

  Interestingly, omentin treatment then significantly down-regulated the P. gingi-

valis-induced IL-1β expression at all time points 6/24/48 h (all *p < 0.05) (Fig. 3A). 

Epithelial cells cultured in combination with P. gingivalis and omentin also expressed 

higher IL-1β than that in control at all time points 6/24/48 h (all *p < 0.05), and that 

in epithelial cells only cultured by omentin at 6/ 24 h (both *p < 0.05) (Fig. 3A). 

 

  Although omentin treatment didn’t decrease IL-1β expression significantly in E. 

coli infected cells, at 6 h, E. coli exposure without or with omentin treatment stimu-

lated the higher IL-1β expression (Fig. 3B). E. coli exposure up-regulated IL-1β by up 
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to 4-fold relative to control (*p < 0.05) and 2.5-fold relative to omentin stimulation 

alone (*p < 0.05) (Fig. 3B). E. coli and omentin co-cultured cells released higher 

IL-1β than that in controls (*p < 0.05) and omentin alone treated cells (*p < 0.05) (Fig. 

3B).  

 

  Furthermore, P. gingivalis and E. coli exposure both stimulated the highest IL-1β 

expression at 6 h, compared to that at 24 /48 h (both *p < 0.05) (Fig. 3A). Longer 

omentin treatment (24/48 h) also reduced IL-1β expression in BHY cells infected by 

the two bacteria dramatically, in spite of a higher expression at 6 h (Fig. 3A-B). 
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Fig. 3 Omentin Effects on IL-1β in BHY Cells infected with or without Bacteria.  

A. IL-1β gene expression in BHY cells stimulated with omentin (200 ng/ml) and/or P. gingivalis infec-

tion at 6 h, 24 h, and 48 h. B. IL-1β gene expression in BHY cells stimulated with omentin (200 ng/ml) 

and/or E. coli infection at 6 h, 24 h, and 48 h. * p < 0.05, difference between groups. 

 

 

 



  47 
 

4.1.2.2 IL-6 

 

  Omentin increased IL-6 significantly at 6 h, as well as 48 h (both *p < 0.05) 

(Fig.4A). Furthermore, at 6 h, the expression was higher, relative to that at 24/ 48 h 

(both *p < 0.05) (Fig.4A).  

 

P. gingivalis significantly increased the IL-6 level at 6 h, but had no effects on IL-6 

expression at 24/48 h (Fig. 4A). At 6 h, P. gingivalis stimulated the highest increase in 

gene expression of IL-6, which was up-regulated to 4-fold (*p < 0.05), relative to 

control. This expression was also 2-fold relative to omentin stimulation (*p < 0.05) 

(Fig.4A). As observed for IL-1β, IL-6 was significantly down-regulated by omentin in 

P. gingivalis-infected BHY cells at 6 h (*p < 0.05) (Fig. 4A).  

 

Moreover, at 6 h, P. gingivalis exposure stimulated the highest IL-6, relative to that 

at 24/48 h (both *p < 0.05) (Fig. 4A-B). Inconsistent with IL-1β, 48 h omentin treat-

ment decreased the IL-6 level of BHY cells infected by P. gingivalis significantly, rel-

ative to that at 6 h (*p < 0.05) (Fig. 4A).  

 

Simultaneously, E. coli stimulated the highest increase in IL-6 level after 48 h 

omentin incubation, compared to control, omentin stimulation and E. coli infection 

(all *p < 0.05), respectively (Fig. 4B). However, unlike that observed in P. gingivalis 

infected cells, omentin stimulation increased the IL-6 level of E. coli infected cells, 

which level was up to the highest point at 48 h, compared to that at 6 h and 24 h (both 

*p < 0.05) (Fig. 4B). 
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Fig. 4 Omentin Effects on IL-6 in BHY Cells infected with or without Bacteria.  

A. IL-6 gene expression in BHY cells stimulated with omentin (200 ng/ml) and/or P. gingivalis infec-

tion at 6 h, 24 h, and 48 h. B. IL-6 gene expression in BHY cells stimulated with omentin (200 ng/ml) 

and/or E. coli infection at 6 h, 24 h, and 48 h. * p < 0.05, difference between groups. 
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4.1.2.3 TNF-α 

 

  Omentin did not increase the TNF-α level in BHY cells significantly. At all-time 

points 6/24/48 h, P. gingivalis significantly up-regulated the TNF-α expression in 

BHY cells (all *p < 0.05) (Fig. 5A), while P. gingivalis also stimulated higher TNF-α 

level than that stimulated only by omentin (all *p < 0.05) (Fig. 5A).  

 

  However, a decreased TNF-α level was detected in P. gingivalis infected cells after 

6 h omentin treatment (*p < 0.05). Combination of P. gingivalis and omentin stimu-

lated higher TNF-α than controls at all time points 6/24/48 h (all *p < 0.05) (Fig. 5A), 

as well as omentin stimulated groups at 6 h (*p < 0.05) (Fig. 5A). 

 

  Similarly, E. coli, as well as E. coli in the presence with omentin, stimulated higher 

TNF-α in BHY cells at all time points 6/24/48 h (all *p < 0.05) (Fig. 5B). Epithelial 

cells exposed to E. coli released higher TNF-α than those stimulated only by omentin 

at 6 h and 24 h (all *p < 0.05). At the same time, BHY cells stimulated with both E. 

coli and omentin expressed higher TNF-α than those only incubated with omentin at 

all time points 6/24/48 h (all *p < 0.05) (Fig. 5B). 

 

  However, at 48 h, omentin treatment increased TNF-α mRNA expression in E. coli 

cells (*p < 0.05) (Fig. 5B). 

 

  E. coli caused the lowest TNF-α expression at 48h, relative to that at 6 /24 h (both 

*p < 0.05). Lower TNF-α expressions in E. coli infected cells were stimulated by 24 h 

omentin treatment, compared to that by 6 h omentin treatment (Fig. 5B). 
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Fig. 5 Omentin Effects on TNF-α in BHY Cells infected with or without Bacteria.  

A. TNF-α gene expression in BHY cells stimulated with omentin (200 ng/ml) and/or P.gingivalis in-

fection at 6 h, 24 h, and 48 h. B. TNF-α gene expression in BHY cells stimulated with omentin (200 

ng/ml) and/or E. coli infection at 6 h, 24 h, and 48 h. * p < 0.05, difference between groups. 
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4.1.3 Interaction of TLR-2 and TLR-4  

 

4.1.3.1 TLR-2 

  

  Significant elevation of TLR-2 was observed in BHY cells at all time points 6 /24 

/48 h (all *p < 0.05), after treatment with omentin (Fig.6A). 

 

  At 6 h, omentin diminished significantly the TLR-2 mRNA expression induced by 

P. gingivalis (Fig. 6A). In addition, at 6 h, higher TLR-2 levels were expressed in 

cells exposed to P. gingivalis with or without omentin, compared to that expressed in 

omentin stimulated cells (both *p < 0.05). In contrast, at 24 h and 48 h, omentin stim-

ulated cells released the highest TLR-2 expression, relative to control, P. gingivalis 

infected cells and combination of P. gingivalis and omentin (all *p < 0.05) (Fig. 6A). 

 

  P. gingivalis exposure with or without omentin stimulated the highest increase in 

gene expression of TLR-2 at 6 h (Fig. 6A). The levels then decreased dramatically at 

24 h and 48 h (all *p < 0.05) (Fig. 6A).  

 

  At 6 h, TLR-2 level of BHY cells was lowest as well, relative to omentin stimula-

tion, E. coli exposure, and combination of E. coli and omentin (all ***p < 0.001) (Fig. 

6B). Furthermore, omentin decreased TLR-2 level of the E. coli infected cells signifi-

cantly (***p < 0.001), which was lower than that only stimulated with omentin (***p 

< 0.001) (Fig. 6B). 
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Fig. 6 Interactions of Bacteria and Omentin on TLR-2.  

A. TLR-2 gene expression in BHY cells stimulated with omentin (200 ng/ml) and/or P. gingivalis in-

fection at 6 h, 24 h, and 48 h. B. TLR-2 gene expression in BHY cells stimulated with omentin (200 

ng/ml) and/or E. coli infection at 6 h, 24 h, and 48 h. * p < 0.05, difference between groups. 
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4.1.3.2 TLR-4 

 

  TLR-4 was also subject to regulation by omentin: Significant up-regulation of 

TLR-4 was observed at 6 h and 48 h after treating with omentin (Fig.7A).  

 

  At 6 h, exposure to P. gingivalis induced highest TLR-4, and the level was 

up-regulated significantly, relative to control and omentin stimulation (both *p < 

0.05). Similar to TLR-2, omentin significantly down-regulated the TLR-4 level in P. 

gingivalis- induced cells at 6 h (*p < 0.05) (Fig. 7A).  

 

  6 hours of P. gingivalis exposure resulted in the highest TLR-4 expression (Fig. 

7A), and subsequently, the levels decreased dramatically at 24 /48 h (both *p < 0.05) 

(Fig. 7C).  

 

  Interestingly, unlike the TLR-2 expression in the cells, TLR-4 level of BHY cells 

stimulated by omentin was highest, relative to control, E. coli infection and combina-

tion of E. coli and omentin (all **p < 0.01) (Fig. 7B) 
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Fig. 7 Interactions of Bacteria and Omentin on TLR-4.  

A. Gene expression of TLR-4 in BHY cells stimulated with omentin (200 ng/ml) and/or P. gingivalis 

infection at 6 h, 24 h, and 48 h. B. Gene expression of TLR-4 in BHY cells stimulated with omentin 

(200 ng/ml) and/or E. coli infection at 6 h, 24 h, and 48 h. * p < 0.05, difference between groups. 
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4.1.4 Cytokines Expression in Protein Level 

 

4.1.4.1 IL-13 

         

  No significant differences were found in IL-13 protein production between omen-

tin-stimulated cells and controls. 

 

At 6 h, omentin enhanced the highest protein level of anti-inflammatory cytokine 

IL-13 in P. gingivalis infected cells (1.7 ± 0.04pg/ml), compare to that in omentin 

alone stimulated cells (1.4 ± 0.01pg/ml ) , P. gingivalis alone infected cells (1.5 ± 

0.03pg/ml) and control cells (1.4 ± 0.01pg/ml) (both *p < 0.05 ). (Fig. 8A). 

 

  Moreover, after 48 h omentin treatment, P. gingivalis infected BHY cells produced 

1.44 ± 0.01pg IL-13/ml, which was dramatically lower than that produced at 6 h 

(p=0.0140) (Fig. 8A). 

 

However, E. coli and omentin stimulation did not caused a significant difference in 

IL-13 production, at 6/24/48 h (Fig. 8 B) 
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Fig. 8 Omentin Effects on IL-13 Secretion in BHY cells infected with or without Bacteria.  

A. Secretion of IL-13 in BHY cell supernatants following omentin (200 ng/ml) and/or P. gingivalis 

stimulation at 6 h, 24 h, and 48 h. B. Secretion of IL-13 in BHY cells supernatants following omentin 

(200 ng/ml) and/or P. gingivalis stimulation at 6 h, 24 h, and 48 h. * p < 0.05, difference between 

groups. 
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4.1.4.2 IL-25 

 

  No significant differences have been found between BHY cells with or without 

omentin incubation, in IL-25 protein levels. However, IL-25 level was dramatically 

increased at 24 h, compare to that at 6 h (*p < 0.05) (Fig.9A).  

 

  Protein level of IL-25 was decreased by P. gingivalis at 48 h (*p < 0.05), being re-

duced from 41.1 ± 5.9 pg/ml in non-infected cells to 24.6 ± 0.1 pg/ml in P. gingivalis 

infected cells (Fig. 9A). Besides, the protein levels of IL-25 in cells stimulated by P. 

gingivalis and omentin were the lowest at each time point. The IL-25 production in P. 

gingivalis and omentin stimulated BHY cells was 22.1 ± 0.2pg/ml at 6 h, 24.3 ± 

0.8pg/ml at 24 h, and 25.3 ± 1.5pg/ml at 48 h, each of which was significantly lower 

than that expressed in BHY cells without any infection (41.1 ± 5.9pg/ml) (all *p < 

0.05) (Fig. 9A).  

 

  In comparation with P. gingivalis, variable IL-25 expressions reacting to E. coli and 

omentin were also observed. Non-stimulated oral epithelial cells produced a higher 

amount of IL-25 (41.1 ± 5.9pg/ml). After 24 h and 48 h, E. coli inhibited significantly 

the anti-inflammatory cytokine IL-25 constitutive protein production in BHY cells, as 

well as combination of E. coli and omentin ((both *p < 0.05). For example, after 24 h 

or 48 h, E. coli infected BHY cells, without or with omentin, produced 15.8 ± 0.5pg 

IL-25/ml and 14.4 ± 0.03pg IL-25/ml, or 20.6 ± 0.6pg IL-25/ml and 25.0 ± 2.7pg 

IL-25/ml, respectively. Moreover, at 24 h, after omentin treatment, the value of 

non-infected cells was 3 times the level in E. coli infected cells (*p < 0.05) (Fig. 9B).  

 

  Importantly, omentin treatment then significantly up-regulated the E. coli-induced 

IL-25 production at 48 h (*p < 0.05) (Fig. 9B). Furthermore, IL-25 production in E. 
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coli and omentin co-incubated cells were lower at 24 h and 48 h, compared with the 

production at 6 h (both *p < 0.05) (Fig. 9B). 

 

Fig. 9 Omentin Effects on IL-25 Secretion in BHY cells infected with or without Bacteria.  

A. Secretion of IL-25 in BHY cell supernatants following omentin (200 ng/ml) and/or P. gingi-

valis stimulation at 6 h, 24 h, and 48 h. B. Secretion of IL-25 in BHY cells supernatants following 

omentin (200 ng/ml) and/or P. gingivalis stimulation at 6 h, 24 h, and 48 h. * p < 0.05, difference 

between groups. 
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4.2 Effects of Omentin on BHY cells under LPS Stimulation 

 

4.2.1 Cytokines Expression in RNA Level 

 

4.2.1.1 IL-1β 

 

  At 6 h, 50ng/ml omentin up-regulated the constitutive IL-1β expression in oral epi-

thelial cells (**p < 0.01) (Fig.10A). Same upregulation by 50ng/ml omentin was also 

detected at 12 h (*p < 0.05) (Fig.10A). And in a dose-dependent manner, 50ng/ml 

omentin enhanced the level significantly at 6 h, compare to 200ng/ml (*p < 0.05) 

(Fig.10A). 

 

  P. gingivalis-LPS enhanced the IL-1β in epithelial cells at 6 h (*p < 0.05) and 12 h 

(**p < 0.01) but had no stimulatory effect on these cytokines at 24 h (Fig. 1A). At 6 h, 

200ng/ml omentin significantly down-regulated the LPS-induced IL-1β expression at 

6 h, relative to that incubated by 0ng/ml omentin (control cells) (***p < 0.001). 

Higher concentration of omentin declined the LPS-induced IL-1β expression that 200 

ng/ml omentin expressed lower IL-1β than that with 50 ng/ml omentin (***p < 0.001) 

or with 100ng/ml omentin (**p < 0.01). 200ng/ml omentin also significantly de-

creased the LPS-induced IL-1β at 12 h (*p < 0.05) (Fig.10A). 

 

  Similarly, E. coli-LPS caused a IL-1β up-regulation in BHY cells at 6 h (**p < 0.01) 

and 12 h (*p < 0.05), while 200ng/ml omentin decreased the IL-1β expression stimu-

lated by E. coli-LPS at same time points (both *p < 0.05) (Fig.10B). 
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Fig. 10 Omentin Effects on IL-1β in BHY Cells with / without LPS Stimulation.  

A. IL-1β mRNA expression in BHY cells cultured by 50/100/200 ng/ml omentin with/without P. gin-

givalis-LPS stimulation. B. IL-1β mRNA expression in BHY cells cultured by 50/100/200 ng/ml 

omentin with/without E. coli-LPS stimulation. Three different concentrations (50/100/200 ng/ml) of 

omentin and two LPS P. gingivalis/E. coli LPS were applied at 6/12/24 h. BHY cells incubated by 

0ng/ml omentin without LPS stimulation were used as the control. 
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4.2.1.2 IL-6 

 

  At 6 h, 50 ng/ml omentin increased the IL-6 mRNA expression significantly (***p 

< 0.001), as well as 100ng/ml omentin (**p < 0.01). At the same point, in a 

dose-dependent manner, 50ng /ml omentin stimulated cells produced highest IL-6, 

relative to 100ng/ml (**p < 0.01) and 200ng/ml (***p < 0.001) omentin stimulated 

cells (Fig. 11A). In addition, 50ng/ml omentin also enhanced the IL-6 level signifi-

cantly at 12 h (**p < 0.01) (Fig.11A). 

 

  Furthermore, at 6 h, P. gingivalis-LPS raised the IL-6 levels in the epithelial cells 

(***p < 0.001) (Fig.11A). As observed for IL-1β, IL-6 level was also significantly 

down-regulated by omentin, in the cells co-incubated with P. gingivalis-LPS (Fig. 

11A). At 6 h, 200ng/ml omentin stimulated lowest IL-6 level, compare to that ex-

pressed in non-stimulated cells (**p < 0.01) and 50ng/ml omentin stimulation (*p < 

0.05) (Fig.11A). Meanwhile, at 12 h, 200 ng/ml omentin reduced IL-6 level in BHY 

cells, which were infected by P. gingivalis-LPS as well (*p < 0.05) (Fig.11A).  

 

  A significant increase of IL-6 was also observed in oral epithelial cells after 6 h E. 

coli-LPS stimulation, and in presence of 100ng and 200ng omentin, the IL-6 expres-

sion in E. coli-LPS induced cells declined obviously (*p < 0.05 and **p < 0.01) 

(Fig.11B). Furthermore, in a dose-dependent manner, at 6 h, compare to 50 ng/ml 

omentin, 100ng and 200ng omentin reduced much more IL-6 expression in E. 

coli-LPS induced cells (both *p < 0.05) (Fig.11B). Moreover, 200ng/ml omentin de-

clined the IL-6 expression, which was stimulated by LPS from E. coli at 12 h (*p < 

0.05) (Fig.11B). 
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Fig. 11 Omentin Effects on IL-6 in BHY Cells with / without LPS Stimulation. 

A. IL-6 mRNA expression in BHY cells cultured by 50/100/200 ng/ml omentin with/without P. gingi-

valis-LPS stimulation. B. IL-6 mRNA expression in BHY cells cultured by 50/100/200 ng/ml omentin 

with/without E. coli-LPS stimulation. Three different concentrations (50/100/200 ng/ml) of omentin 

and two LPS from P. gingivalis/E. coli were applied at 6/12/24 h. BHY cells incubated by 0ng/ml 

omentin without LPS stimulation were used as the control. 
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4.2.1.3 TNF-α 

 

  TNF-α mRNA expression was elevated by 50ng/ml omentin at 6 h (***p < 0.001), 

by 100ng/ml omentin at 6/12 h, and by 200ng/ml omentin at 12 h (*p < 0.05) 

(Fig.12A). Furthermore, 50ng/ml omentin (*p < 0.05) stimulated higher TNF-α ex-

pression in epithelial cells compared to that incubated by 200ng/ml omentin (Fig. 

12A). 

   

  P. gingivalis-LPS significantly increased TNF-α at 6/12 h (both *p < 0.05) 

(Fig.12A). In consistent with IL-1β and IL-6, TNF-α was decreased by omentin in 

BHY cells with LPS stimulation from P. gingivalis (Fig. 12A). A down-regulation in 

TNF-α was conducted by 100ng/ml omentin at 6 h (*p < 0.05), as well as 100ng/ml 

and 200ng/ml omentin at 12 h (both *p < 0.05) (Fig. 12A).  

 

  Additionally, at 6 h, TNF-α level in mRNA expression was enhanced by LPS from 

E. coli (*p < 0.05) (Fig.12B), which then was decreased by 50 (*p < 0.05), as well as 

100 and 200 ng/ml omentin (both ***p < 0.001) (Fig.12B), respectively. Furthermore, 

in a dose-dependent manner, 200ng/ml omentin incubation reduced more TNF-α than 

50ng/ml omentin (**p < 0.01), in mRNA expression, in E. coli-LPS induced cells 

(Fig.12B). 
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Fig. 12 Omentin Effects on TNF-α in BHY Cells with/without LPS Stimulation.  

A. TNF-α mRNA expression in BHY cells cultured by 50/100/200 ng/ml omentin with/without P. gin-

givalis-LPS stimulation. B. TNF-α mRNA expression in BHY cells cultured 50/100/200 ng/ml omentin 

with/without E. coli-LPS stimulation. Three different concentrations (50/100/200 ng/ml) of omentin 

and two LPS from P. gingivalis/E. coli were applied at 6/12/24 h. BHY cells incubated by 0ng/ml 

omentin without LPS stimulation were used as the control. 
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4.2.1.4 IL-10 

 

  The IL-10 level was also significantly enhanced by 200ng/ml at 6 h (*p < 0.05) 

(Fig. 13A). Conversely, at 12 h, P. gingivalis-LPS down-regulated IL-10 expression at 

12 h (***p < 0.001) (Fig.13A). At 24 h, P. gingivalis-LPS also decreased IL-10 level 

(***p < 0.001), in a similar way (Fig.13A).  

 

  In addition, at 12 h, 50, 100, and 200 ng/ml omentin significantly up-regulated the 

IL-10 levels in BHY cells co-incubated with P. gingivalis-LPS stimulation (all *p < 

0.05) (Fig.13A), in contrast to the regulation of pro-inflammatory cytokines. 

 

  Like P. gingivalis-LPS, LPS from E. coli also lowered the IL-10 level significantly 

at 6 h (*p < 0.05), as well as 12 h and 24 h (both ***p < 0.001), while 200ng/ml 

omentin elevated significantly this anti-inflammatory cytokine at 6 h in E. coli-LPS 

induced cells (Fig. 13B). Moreover, in E. coli-LPS induced cells, 200ng/ml omentin 

released more IL-10 that 50 ng/ml omentin (*p < 0.05) (Fig. 13B). 

 

 

 

 

 

 

 

 

 



  66 
 

Fig. 13 Omentin Effects on IL-10 in BHY Cells with/without LPS Stimulation.  

A. IL-10 mRNA expression in BHY cells cultured by 50/100/200 ng/ml omentin with/without P. gin-

givalis-LPS stimulation. B. IL-10 mRNA expression in BHY cells cultured by 50/100/200 ng/ml 

omentin with/without E. coli-LPS stimulation. Three different concentrations (50/100/200 ng/ml) of 

omentin and two LPS from P. gingivalis/E. coli were applied at 6/12/24 h. BHY cells incubated by 

0ng/ml omentin without LPS stimulation were used as the control. 
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4.2.2 Interaction of TLR-2 and TLR-4 

 

4.2.2.1 TLR-2 

 

  The TLR-2 expression in BHY cells was significantly up-regulated by 50, 100 and 

200ng/ml omentin at 6 h and 12 h (all ***p < 0.001) (Fig. 14A). The TLR-2 level in 

BHY cells was enhanced by 50ng/ml omentin at 24 h as well (**p < 0.01) (Fig.14A). 

At 6 h, 200ng/ml omentin treated epithelial cells expressed lower TLR-2, relative to 

that treated by 50 or 100 ng/ml omentin (both ***p < 0.001) (Fig.14A), depended on 

a dose change. 

 

  Under P. gingivalis-LPS stimulation, TLR-2 expression was significantly 

up-regulated at 6 h and 12 h (both ***p < 0.001), respectively (Fig. 14A).  

 

  More importantly, 50, 100 and 200 ng/ml omentin significantly declined the TLR-2 

level increased by P. gingivalis-LPS stimulation at all time points 6/12/24 h. At 6 h 

and 12 h, 50, 100 and 200 ng/ml omentin reduced the TLR-2 expression in P. gingi-

valis-LPS to a lower level (all ***p < 0.001) (Fig. 14A). Similar reduction was also 

detected after 24 h longer 50 ng/ml omentin incubation (**p < 0.01), as well as 100 

and 200 ng/ml omentin incubation (both ***p < 0.001) (Fig. 14A). Moreover, in a 

dose-dependent manner, concentrations of omentin were negatively associated with 

the TLR-2 level interacted with P. gingivalis-LPS. Higher concentrations of omentin 

(100 or 200ng/ml) induced lower TLR-2, when compared to 50ng/ml omentin at 6 h 

(both ***p < 0.001). 50ng/ml omentin also induced a higher TLR-2 than 100ng/ml 

omentin (*p < 0.05) or 200ng/ml omentin (***p < 0.001) at 12 h (Fig. 14A). 
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  TLR-2 expressions in E. coli-LPS induced cells were also decreased by 50, 100 and 

200ng/ml omentin at both 12 h and 24 h (all ***p < 0.001) (Fig. 14B), while 

200ng/ml omentin stimulated lower TLR-2 in E. coli-LPS induced epithelial cells, 

compared to that by 50ng/ml omentin at 12 h (***p < 0.001) (Fig. 14B).  

 

Fig. 14 Omentin Effects on TLR-2 in BHY Cells with/without LPS Stimulation.  

A. TLR-2 mRNA expression in BHY cells cultured by 50/100/200 ng/ml omentin with/without P. gin-

givalis-LPS stimulation. B. TLR-2 mRNA expression in BHY cells cultured by 50/100/200 ng/ml 

omentin with/without E. coli-LPS stimulation. Three different concentrations (50/100/200 ng/ml) of 

omentin and two LPS from P. gingivalis/E. coli were applied at 6/12/24 h. BHY cells incubated by 

0ng/ml omentin without LPS stimulation were used as the control. 
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4.2.2.2 TLR-4 

 

  At 6 h, 50 ng/ml omentin significantly up-regulated TLR-4 expression (**p < 0.01). 

At the same time, TLR-4 increase was also detected in BHY cells cultured by 100 

ng/ml omentin. (*p < 0.05) (Fig. 15A).   

 

  At 6 h and 12 h, P. gingivalis-LPS stimulated BHY cells and promoted higher 

TLR-4 (both *p < 0.05) (Fig. 16A). Moreover, 100 and 200 ng/ml omentin dimin-

ished TLR-4 in cells under 6/12 h P. gingivalis-LPS stimulation (all *p < 0.05) (Fig. 

15A). 

 

  Stimulatory effects of E. coli-LPS on TLR-4 in BHY cells as well as the omentin 

inhibition effects on LPS were observed (Fig. 16B). TLR-4 was improved by LPS 

from E. coli at 6 /12 h (both *p < 0.05), respectively (Fig. 15B). Furthermore, at 12 h, 

200ng/ml omentin inhibited significantly the TLR-4 rise (**p < 0.01). At the same 

time, lower concentrations of omentin (50/100 ng/ml) also cut down the TLR-4 to a 

lower level at 12 h (*p < 0.05). However, at 6 h, only 200ng/ml omentin significantly 

down-regulated the constitutive TLR-4 expression (*p < 0.05) (Fig.15B).  
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Fig. 15 Omentin Effects on TLR-4 in BHY Cells with/without LPS Stimulation.  

A. TLR-4 mRNA expression in BHY cells cultured by 50/100/200 ng/ml omentin with/without P. gin-
givalis-LPS stimulation. B. TLR-4 mRNA expression in BHY cells cultured by 50/100/200 ng/ml 
omentin with/without E. coli-LPS stimulation. Three different concentrations (50/100/200 ng/ml) of 
omentin and two LPS from P. gingivalis/E. coli were applied at 6/12/24 h. BHY cells incubated by 
0ng/ml omentin without LPS stimulation were used as the control.  

 

 
 



  71 
 

4.2.3 Comparison of different Cytokines in BHY Cells after LPS Challenge. 

 

  LPS from P. gingivalis and E. coli have similar effects on pro- and anti-inflammatory 

cytokines (Fig. 16 A-D).  

 

  At 6 h, P. gingivalis-LPS up-regulated IL-1β significantly (*p < 0.05) while E. 

coli-LPS stimulated similar increase (**p < 0.01) (Fig. 16A). At 12 h, a rise in IL-1β 

was not only induced by LPS from P. gingivalis (**p < 0.01), but an increase was also 

irritated by LPS from E. coli (*p < 0.05) (Fig. 16A).  

 

  At 6 h, the two LPS induced similar up-regulations in IL-6 and TNF-α (Fig. 16 B-C). 

However, P. gingivalis-LPS raised up the TNF-α level at 12 h, meanwhile E. coli-LPS 

only promoted the rise at 24 h (*p < 0.05) (Fig. 16C). In contrast, E. coli-LPS inhibited 

IL-10 expression at 6/12/24 h (all *p < 0.05) while P. gingivalis-LPS reduced IL-10 

level at 12 / 24 h (both *p < 0.05) (Fig. 16D). No significant differences have been 

found between the two kinds of LPS in inducing mRNA expression of these different 

cytokines in BHY cells. 

 

  P. gingivalis-LPS increased TLR-2 significantly at 6 / 12 h (both ***p < 0.001) while 

E. coli-LPS did not. Furthermore, P. gingivalis-LPS stimulated higher TLR-2 than E. 

coli -LPS did at 6 h, as well as 12 h (both ***p < 0.001) (Fig. 16E). As for TLR-4, under 

6 and 12 h stimulation, higher TLR-4 expressions were induced by both of the two LPS 

(all *p < 0.05) (Fig. 16F). 
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Fig. 16 Comparison of different Cytokines in BHY Cells after LPS Challenge from P. gingivalis 

or E. coli. 

A-F: The levels of different cytokines (A: IL-1β B:IL-6 C: TNF-α D: IL-10 E: TLR-2 F: TLR-4) 

expressed in BHY cells, under LPS Challenge from P. gingivalis or E. coli. Expressions induced by the 

two different LPSs were compared with controls and with each other at 6/12/ 24 h. 
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5. Discussion 

 

5.1 General Premise of the Study and major Finding 

 

  The present study investigated the influence of a key adipokine molecule, omentin, 

in the broad context of periodontal disease. Specifically, we examined the in-vitro ef-

fects of exogenous omentin application on human oral epithelial cells challenged by 

the keystone (Hajishengallis et al. 2012) periodontal pathogen P. gingivalis or by its 

LPS, with E. coli as a positive control species. Our findings indicated that omentin 

could attenuate the pro-inflammatory effects induced by pathogen infection and LPS 

stimulation, suggesting omentin may have anti-infective potential. Our experiments 

demonstrated that the keystone periodontal pathogen P. gingivalis and E. coli, both 

elicited TLRs activation and stimulated pro-inflammatory cytokine production by oral 

epithelial cells and such effects were counteracted by omentin. The findings overall 

indicated that omentin plays an anti-inflammatory role in combating bacterial infec-

tion and can alleviate pro-inflammatory responses by oral epithelial cells stimulated 

by a periodontal pathogen challenge. 

 

5.2 Periodontitis: local and systemic inflammation 

 

  Periodontitis is a complex disorder characterized by inflammatory destruction of 

supporting tissues. Persistent inflammation occurs when the local host immune re-

sponse is ineffective in countering the microbial challenge imposed by a dysbiotic 

plaque microbial community. Such chronic and persistent inflammation is able to re-

sult in the irreversible destruction of periodontal tissues over time which is the hall-
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mark of periodontitis. In such a milieu of chronic inflammation, there is an overabun-

dance of pro-inflammatory cytokines such as IL-1β, IL-6, and TNF-α over an-

ti-inflammatory factors like IL-10, IL-13, and IL-25. This skewed balance between 

pro- and anti-inflammatory mediators furthers the inflammatory process in a vicious 

cycle. In this cycle, pro-inflammatory mediators predominate at inflamed sites, result 

in continued recruitment, and activated the inflammation (Garlet et al. 2010). Several 

bacterial virulence factors are known to facilitate evasion of the host’s immune 

mechanisms in this context. One of the key defense mechanisms of the periodontium 

is the epithelial barrier formed by the junctional epithelium. Epithelial cells serve as a 

physical barrier preventing bacterial ingress while playing important roles in modu-

lating local innate immune defense mechanism including the release of 

pro-inflammatory cytokines upon a bacterial challenge to clear or limit bacterial in-

fection (Lundqvist et al. 1994). Periodontal pathogenic bacteria with the capacity to 

invade epithelial cells can lead to the breakdown of this epithelial barrier. Such epi-

thelial invasion is a well-known virulence factor of several periodontal pathogens 

(Lamont and Jenkinson, 1998).  

 

5.3 Omentin: association with Health and Disease States 

 

  Emerging evidence suggests that periodontitis is positively associated with obesity. 

Omentin, an adipokine, is known to possess anti-inflammatory properties. It is pre-

dominantly secreted by visceral adipose tissue and acts to increase insulin sensitivity 

(Yang et al. 2006). Omentin has been recognized as an anti-inflammatory molecule in 

several disease-states, including obesity, diabetes, cardiovascular disease, autoim-

mune disease and cancer and consequently its levels in circulation are increasingly 

investigated as a biomarker in multiple systemic diseases (Zhou et al. 2017). Howev-

er, reported associations of omentin levels with health and disease states seem to be 

variable. In several disease conditions, the concentrations of omentin are found to be 
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increased, whereas other conditions have been associated with decreased omentin 

levels. Little is known about omentin levels in the GCF. To the authors’ knowledge, 

two studies have examined omentin levels in GCF and found omentin levels were 

lower in GCF from chronic periodontitis (Bozkurt et al. 2016, Balli et al. 2016). These 

findings support the purported anti-inflammatory role of omentin and imply that 

omentin levels in GCF may have potential as a diagnostic or prognostic biomarker in 

periodontal disease (Bozkurt et al., 2016, Balli et al. 2016). However, not much is 

known about the effects that omentin exerts in the periodontal niche in disease and 

health states.  

 

5.4 P. gingivalis  

 

  To examine the effects of omentin on gingival epithelial cells under bacterial chal-

lenge, we selected P.gingivalis as a model periodontal pathogen. P. gingivalis is a 

well-established periodontitis-associated gram-negative species and has been consid-

ered as a ‘key-stone’ pathogen, a critical contributor to the development of dysbiosis 

in the plaque biofilm microbial community. Clinically, P. gingivalis is detected with 

higher frequency and bacterial load at sites with periodontal inflammation and de-

struction. This pathogen is well characterized and produces a multitude of virulence 

factors like proteinases, lipopolysaccharide (LPS), fimbriae, and the extracellular re-

lease of membrane vesicles. Aside from testing the effects of omentin on P. gingivalis 

infected cells, we also tested the effects of P. gingivalis-LPS challenge. Sensing of 

microbial or other foreign molecules by the host occurs mainly through host receptor 

proteins termed toll-like receptors (TLRs). This is achieved via TLRs interaction with 

conserved structural patterns termed as PAMP which are commonly found on patho-

gens and most periodontal pathogens, including P. gingivalis bear PAMP structures 

that are recognized by TLR-2 and/or TLR-4 (Beklen et al. 2008). It is established that 

LPS from gram-negative pathogens stimulates a pro-inflammatory response in host 
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cells, however, there are differences in TLR expression profiles of gingival cells when 

challeged by LPS from P. gingivalis versus that from E. coli. Such differences are 

likely to represent their disparate virulence mechanisms. P. gingivalis has been shown 

to invade gingival epithelial cells, and subsequently, replicate and disseminate within 

the cells of the host gingival tissues (Andrian et al. 2006). Previous experiments have 

shown that P. gingivalis can adhere to a number of oral cells including primary human 

gingival epithelial cells and keratinocytes, cell lines like epidermoid carcinoma KB 

cells and HNSCC cell lines like SCC-25 and BHY cells (Weinberg et al. 1997, Yil-

maz et al. 2002, Tezal et al. 2009, Groeger et al. 2017).  

 

  Extra-crevicular bacterial reservoirs of periodontal pathogens lead to the persis-

tence of periodontitis and include oral epithelial cells. Thus, epithelial cell-periodontal 

pathogen interactions are particularly relevant to pathogenesis in periodontitis. Spe-

cifically, P. gingivalis infection is shown to induce robust pro-inflammatory cytokine 

production from several periodontal cells, including epithelial cells, monocytes, neu-

trophils, and macrophages. In-vivo, P. gingivalis bacterial load adherent to the epithe-

lium in periodontal tissues elicits as a strong epithelial pro-inflammatory response 

(Njoroge et al., 1997) concordant with the adhesive/invasive capacity of the particular 

infecting strain (Sandros et al. 2000). P. gingivalis infection triggers signaling cas-

cades in monocytes and epithelial cells that up-regulate the transcription of 

pro-inflammatory factors such as IL-1β, IL-6 and TNF-α (Hajishengallis et al. 2004, 

Sandros et al. 2000). These effects appear to be mediated by its action on signaling of 

TLR-2/TLR-4, which promote the secretions of cytokines (Kikkert et al., 2007). Oral 

epithelial cells as well as oral squamous cells express TLR-2 and TLR-4, although 

variations levels are noted in their expressions (Sugawara et al. 2006, Uehara et al., 

2001).  
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5.5 Effects of Omentin on BHY cells challenged with P. gingivalis 

 

  Consistent with the large body of existing evidence, our studies demonstrated bac-

terial challenges (P. gingivalis, as well as E. coli) promoted a pro-inflammatory re-

sponse of BHY cells. Expression levels of pro-inflammatory cytokines (IL-1β, IL-6, 

TNF-α) and TLR2/4 were significantly up-regulated by these bacteria, while levels of 

the anti-inflammatory cytokine IL-25 were reduced. As expected, omentin treatment 

of BHY cells significantly alleviated the pro-inflammatory effects of bacterial chal-

lenge, supporting its anti-inflammatory role in the epithelial cell-pathogen interaction. 

Interestingly, in a paradoxical finding omentin stimulation alone increased the expres-

sion of pro-inflammatory cytokines as compared to control cells. This finding under-

scores the pleiotropic effects of this adipokine (Jaikanath et al., 2013). Omentin is an 

important regulator of inflammation. It stimulates multiple canonical and 

non-canonical cellular and immune-related signaling pathways, which includes the 

pro-inflammatory NF-κB signaling (Niersmann et al. 2018). NF-κB signaling is in 

turn activated by TLR stimulation (Kawai & Akira, 2007). Our finding of TLR-2 and 

TLR-4 up-regulation by omentin treatment suggests a pro-inflammatory effect may be 

mediated via downstream NF-κB signaling. However, omentin was shown to stimu-

late a strong anti-inflammatory protein TNFAIP6 from adipocytes, only in response to 

inflammatory stimuli (Niersmann et al. 2018). Our findings appear consistent and 

support a hypothesis that similar to adipocytes, omentin may also specifically induce 

anti-inflammatory proteins in the gingival epithelial barrier only in the presence of 

inflammatory stimuli. Further studies are warranted to investigate this hypothesis and 

determine the involved signaling pathways.   
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5.6 Effects of Omentin on BHY cells with LPS Challenge  

 

  Besides live bacterial challenge, we also investigated how omentin affected BHY 

cells challenged by LPS. Bacterial LPS is a dominant virulence factor of 

gram-negative bacteria that can bind to host TLR complexes. LPS is an endotoxin es-

sentially derived from the outer membrane, that maintains bacterial cell integrity and 

protection from chemical attacks. LPS induces a strong innate immune response. In 

particular, P. gingivalis-LPS distinguishes from other bacteria, such as E. coli in its 

structures and functional activities. P. gingivalis-LPS has a unique and heterogeneous 

chemical structure, which differs from many Gram-negative bacterial LPSs, in its 

structure and function (Kang, et al. 2016). On the other hand, E. coli-LPS is a typical 

bacterial endotoxin that is representative of most LPSs. E. coli-LPS primarily acti-

vates TLR-4, whereas LPS from P. gingivalis has been found to induce a different set 

of cytokines and act through both TLR-2 and TLR-4 (Shaddox, et al., 2013), suggest-

ing it invokes different host signaling pathways. In agreement, our findings suggested 

the pro-inflammatory cytokine up-regulation induced by P. gingivalis-LPS and E. 

coli-LPS bore some differences. P. gingivalis-LPS produced an earlier rise in TNF-α 

levels and later inhibition of IL-10 than E. coli-LPS in BHY cells. It is established 

that both LPS from P. gingivalis and E. coli elevate IL-1β gene expression in oral 

keratinocytes (Pleguezuelos et al. 2015). Earlier work has similarly demonstrated that 

P. gingivalis-LPS increases the expression of IL-1β, IL-6 and TNF-α mRNA in acti-

vated gingival epithelial cell lines (Saito et al., 1997), whereas in normal oral epithe-

lium-derived cell lines, IL-1β, IL-6 and TNF-α mRNA, as well as MMP-1 and 

MMP-9 are induced by its LPS (Kibe et al. 2011). Broadly consistent with past re-

sults, our findings demonstrated that both P. gingivalis-LPS and E. coli-LPS, were 

capable of stimulating pro-inflammatory cytokine production (IL-1β, IL-6, and 

TNF-α) and suppressing an anti-inflammatory cytokine (IL-10) from BHY cells, albe-

it with some differences.  
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5.7 Omentin induced modulation of TLR Signalling 

 

  TLR-activation underlies the stimulation of pro-inflammatory responses. Differ-

ences in TLR stimulation by different bacterial LPSs are documented P. gingi-

valis-LPS and E. coli-LPS differently affect immune-competent dendritic cell func-

tions (Su et al. 2015). In THP-1 monocytic cells, P. gingivalis-LPS activates distinct 

signaling pathways from E. coli-LPS. In particular, the TLR2-JNK- pathway was 

found to be an important mechanism of P. gingivalis-LPS associated periodontal in-

flammation (Diya et al. 2008). Others noted that P. gingivalis-LPS triggered TLR-2, 

whereas E. coli-LPS triggered TLR-4 in THP-1 cells (Sun et al. 2014). TLR-2 is 

known to recognize different cell wall components when compared to TLR-4, includ-

ing gram-positive pathogen recognition (Takeuchi et al. 1999). While an earlier held 

paradigm considered TLR 2 signaling to be dominant in P. gingivalis LPS recogni-

tion, recent data has demonstrated that in humans unlike in mice, its Lipid A compo-

nent strongly activates TLR-4 signaling (Nativel et al. 2017), which supports our use 

of a human cell line in-vitro model. In agreement with these past findings, our ex-

periments indicated that the P. gingivalis-LPS induced inflammatory process was me-

diated by activation of TLR-2 and TLR-4, whereas E. coli-LPS only predominantly 

activated TLR-4 signaling. Our study showed that omentin alleviated the 

pro-inflammatory effects of both types of LPS on BHY cells, which closely paralleled 

the effects observed in the live bacterial challenge experiment. Interestingly, the 

omentin dose required for TLR attenuation varied between the two LPS types, which 

could suggest inherent differences in LPS virulence. TLR-4 induced by P. gingivalis 

at 12 h was not significantly reduced in the presence of 50ng/ml of omentin but that 

induced by E. coli was significantly reduced. This finding may be extrapolated into 

two hypotheses; first, that omentin may have a precisely regulated anti-inflammatory 

effect in a periodontitis niche with differences from other sites, owing to the distinct 

nature of periodontitis-associated microbiota, and second, that omentin actions due to 

P. gingivalis endotoxemia may be different from those due to other pathogens such as 
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enteric organisms. This comparison comprises an important strength of this experi-

ment. As systemic dissemination of P. gingivalis has adverse metabolic effects such 

as aggravating atherosclerosis by invasion of vascular tissue, and innate immune ac-

tivation (Yamaguchi et al. 2015), our findings may implicate low omentin levels in 

the shared susceptibility and causal association between periodontitis and metabolic 

disorders.  

 

  We also documented a dose-response relationship of omentin with TLR expression, 

whereby the omentin dose regulated mRNA expression levels of cytokines and TLRs. 

Overall, in a dose-dependent manner, 50, 100, and 200ng/ml omentin attenuated the 

inflammatory responses from BHY cells induced by LPS stimulation. Similar to the 

observation in case of live bacterial challenge, omentin alone stimulated a 

pro-inflammatory response from BHY cells, reinforcing its pleiotropic role in in-

flammation. Largely, the greatest pro-inflammatory effect of omentin was notable at 

50ng/ml, which decreased at higher concentrations. Conversely, the expression of an-

ti-inflammatory IL-10 increased with omentin concentration when BHY cells 

co-cultured with E. coli-LPS. The operation of a feedback loop in omentin-mediated 

regulation of inflammation is recently revealed, whereby it promotes 

pro-inflammatory effects, with counter-regulatory anti-inflammatory effects at higher 

levels (Nieserman, et al. 2018). Our findings are in agreement with these, suggesting 

there is a feedback counter-regulation at higher levels.  

 

5.8 Future Perspectives 

 

  Taken together, these findings reflect a complex role of omentin in the periodontal 

milieu, periodontal disease progression and mediation of periodontal-systemic links, 

indicating a need to study the specific molecular mechanisms and pathways by which 
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omentin operates during periodontal disease progression and how it impacts perio-

dontal disease susceptibility or periodontitis-associated systemic inflammation. The 

correlation between GCF and circulating omentin levels in periodontal health and 

disease states also need further research. The translational implications of our findings 

include the potential to use of omentin as a risk or a prognostic biomarker for perio-

dontitis. The study also raises questions about the role of omentin in periodontitis as-

sociated with metabolic diseases, which could cause systemic dysregulation. Current-

ly, there is a lack of information regarding genetic variants and epigenetic changes 

that regulate circulating omentin levels (Schleinitz, 2015), and plausibly, may con-

tribute to shared susceptibility between metabolic and periodontal diseases. The ge-

netic and environmental regulation of omentin and its effector mechanisms by which 

complex biological feedbacks are affected need further investigation. Omentin is also 

known to exert protective effects on endothelial cells, via activation of the Akt/eNOS 

pathway (Qi et al., 2016). As our results suggest omentin has a protective role in 

maintaining gingival epithelial barrier integrity in the face of inflammation, the spe-

cific molecular mechanisms involved remain to be elucidated. The potential coun-

ter-regulation effect noted also necessitates investigation in the context of the perio-

dontal niche, epithelial barrier and regulation of inflammatory challenge in 

well-designed pre-clinical studies.   
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6. Conclusion 

 

  Our study dissected the omentin potential roles in periodontal health and disease by 

examining its effects in a gingival epithelial cell model under different conditions. 

Using both live bacterial challenge and LPS stimulation of gingival BHY cells with P. 

gingivalis and E. coli in-vitro, we demonstrated that omentin successfully attenuated 

pro-inflammatory cytokine production and TLR activation. These findings support a 

premise that in presence of a microbial/LPS challenge, omentin primarily performs an 

anti-inflammatory function in countering local inflammation in periodontitis, similar 

to its role noted in other immune-inflammatory conditions, and thus plays a role in 

epithelial barrier integrity.   

   

  Furthermore, a dose-response relationship was seen, suggesting that higher levels 

of omentin correlated to lower levels of inflammatory mediators released by oral epi-

thelial cells, consistent with the dominant paradigm from systemic studies of meta-

bolic diseases. The relationship between metabolic diseases and periodontitis is bidi-

rectional (Seymour et al. 2007), where common immune-inflammatory derangements 

may underpin both complex diseases. As omentin expression is negatively correlated 

to obesity (de Souza Batista et al. 2007), insulin resistance, and diabetes (Pan et al. 

2010), our findings imply in these conditions low omentin levels are also present in 

the periodontal niche and aggravate periodontitis. An important implication of our 

findings is that genetic and environmental factors resulting in low omentin levels un-

derlie both periodontal and systemic diseases.  

  

  Our data also demonstrated that in the absence of inflammatory stimulus 

pro-inflammatory effects of omentin on gingival cells along with TLR activation were 
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evident, which resonates with reports of multiple roles played by omentin, pointing to 

the existence of an inflammation-specific anti-inflammatory role. We also demon-

strated that without inflammatory stimuli, the pro-inflammatory cytokine response 

peaked at an optimum level of omentin and diminished with further increase in omen-

tin levels, reinforcing the existence of a feedback regulation mechanism. In summary, 

our comprehensive in-vitro experiments demonstrated a protective role of omentin in 

oral epithelial barrier integrity against a bacterial challenge and ameliorating perio-

dontal inflammation, while suggesting it has a dose-dependent pleiotropic effect. 

These findings should be considered as the basis for the design of pre-clinical and 

clinical studies focused on unraveling the role played by omentin in periodontal dis-

ease and its systemic co-morbidities.  
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8. Abbreviations 

AMPK Adenosine 50-monophosphate-activated protein kinase 

ARDS acute respiratory distress syndrome 

CAD coronary artery disease 

CDK cyclin-dependent kinase  

COPD chronic obstructive pulmonary disease 

COX-2 cyclooxygenase-2 

CP chronic periodontitis  

CSIF cytokine synthesis inhibitory factor 

CTL CD8+cytotoxic T lymphocyte  

CVSMCs calcifying vascular smooth muscle cells 

EAT epicardial adipose tissue 

EMT epithelial to mesenchymal transition  

eNOS endothelial nitric oxide synthase 

ERK extracellular regulated protein kinases 

GAPDH glyceraldehyde-6-phosphate dehydrogenase 

GCF gingival crevicular fluid  

GECs gingival epithelial cells 

HCC hepatocellular carcinoma cells  

HNSCC head and neck squamous cell carcinoma   

hOB human osteoblast 

ICAM-1 intracellular adhesion molecule-1 

IL- 6 interleukin 6  

IL-10 interleukin 10  

IL-1β interleukin 1 beta 

JNK Jun N-Terminal Kinase 

LPS lipopolysaccharide 
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MCP-1 monocyte chemotactic protein-1 

MMPs matrix metalloproteinases  

MPM malignant pleural mesothelioma 

MyD88 myeloid differentiation factor 88  

NAFLD nonalcoholic fatty liver disease 

NF-κB nuclear factor kappa B 

NO nitric oxide  

OPG osteoprotegerin 

OSAS obstructive sleep apnoea syndrome 

OSCC oral squamous cell carcinoma  

OVA ovalbumin 

P. Gingivalis Porphyromonas gingivalis 

PAMPs pathogen - associated molecular patterns 

PAR2 protease-associated receptor 

PCOS polycystic ovary syndrome 

PI3K/Akt phosphatidylinositol 3 kinase/protein kinase B 

pro-MMP-9 pro-matrix metalloproteinase-9  

PRR pattern recognition receptor   

RANKL nuclear factor B ligand 

RNI reactive nitrogen intermediates  

ROS reactive oxygen species  

SARM sterile and heat-armagillo motif  

SLE systemic lupus erythematosus 

SMC smooth muscle cell 

T2DM type-2 diabetes mellitus 

TIR Toll-IL receptor  

TIRAP TIR domain-containing protein  

TLR-2 toll-like receptor 2  
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TLR-4 toll-like receptor 4  

TMD temporo-mandibular disorders  

TNF-α tumor necrosis factor alpha  

TRAM TRIF-related adaptor molecule 

TRIFTIR domain-containing adaptor inducing IFN-b  

VCAM-1 vascular cell adhesion molecule 1 

VSMCs vascular smooth muscle cells 
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