
PERVASIVE LEARNING
ANALYTICS FOR FOSTERING

LEARNERS’
SELF-REGULATION

Dissertation
an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig-Maximilians-Universität München

eingereicht von

Niels Heller

München, den 04.05.2020

ii

1. Gutachter: Prof. Dr. François Bry

2. Gutachter: Prof. Dr. Carlos Delgado Kloos

Tag der mündlichen Prüfung: 21.07.2020

Eidesstattliche Versicherung
(Siehe Promotionsordnung vom 12.07.11, § 8, Abs. 2 Pkt. .5.)

Hiermit erkläre ich an Eidesstatt, dass die Dissertation von mir selbstständig, ohne uner-
laubte Beihilfe angefertigt ist.

München, den 05.05.2020 Niels Heller

iii

iv

Abstract

Today’s tertiary STEM (Science, Technology, Engineering and Mathematics) education in
Europe poses problems to both teachers and students. With growing enrolment numbers,
and numbers of teaching staff that are outmatched by this growth, student-teacher contact
becomes more and more difficult to provide. Therefore, students are required to quickly
adopt self-regulated and autonomous learning styles when entering European universities.
Furthermore, teachers are required to divide their attention between large numbers of
students. As a consequence, classical teaching formats of STEM education which often
encompass experimentation or active exploration, become harder to implement.

Educational software holds the promise of easing these problems, or, if not fully solving,
at least of making them less acute: Learning Analytics generated by such software can
foster self-regulation by providing students with both formative feedback and assessments.
Educational software, in form of collaborative social media, makes it easier for teachers to
collaborate, allows to reduce their workload and enables learning and teaching formats
otherwise infeasible in large classes.

The contribution of this thesis is threefold: Firstly, it reports on a social medium for tertiary
STEM education called “Backstage 2 / Projects” aimed specifically at these points: Improv-
ing learners’ self-regulation by providing pervasive Learning Analytics, fostering teacher
collaboration so as to reduce their workload, and providing means to deploy a variety of
classical and novel learning and teaching formats in large classes. Secondly, it reports on
several case studies conducted with that medium which point at the effectiveness of the
medium and its provided Learning Analytics to increase learners’ self-regulation, reduce
teachers’ workload, and improve how students learn. Thirdly, this thesis reports on findings
from Learning Analytics which could be used in the future in designing further teaching
and learning formats or case studies, yielding a rich perspective for future research and
indications for improving tertiary STEM education.

v

vi

Acknowledgments

First and foremost, I would like to thank Professor Francois Bry for his help and constant
support and for his most valuable advice on all kinds of matters.

Secondly, I would like to thank Sebastian Mader for setting up Backstage 2 with me, attacking
the thankless task of sustaining the document service, his constant and enthusiastic help,
and especially for his company in the conferences we attended together.

Thirdly, I would like to thank Elisabeth Lempa for sticking around in the cellar of our
institute, “executing” the most valuable proof reading, developing CoCoNut with all her
imagination and creativity, and especially for her ability to calmly and cleverly point out
different perspectives.

Special thanks go to: Mathias Schlenker for his work on the representation of systematic
errors and for polishing code (which was totally unasked and very welcome!), Andreas
Born for his work on predicting systematic errors and on improving the prediction unit, and
to Steven Dostert for his work on predicting skipping and devising the prediction unit.

Furthermore, I would like to thank, Zorig Dorj, Joana Haag, Marco Hoffman, Florian
Holzinger, Galina Keil, Caroline Marot, Robert Pospisil, Julian Reff and David Tellenbach
for their contributions to the software.

Last but certainly not least, I would like to thank my wife Dörte for always being there,
supporting me in all stages of this doctoral project, and for contributing more than once her
ideas to the research project.

vii

viii

Contents

1 Introduction 1

2 Motivation 5

3 Related Work 9
3.1 Software for Mass Education . 9
3.2 Pervasive and Collaborative Learning Technologies 12
3.3 Learning Theories in Technology-Enhanced Learning 15

4 Technology-Enhanced Formats 19
4.1 Software Components and Functionalities . 21
4.2 Teacher Collaboration on Written Feedback . 28
4.3 Analytics-based Nudging . 32
4.4 Peer Teaching . 38
4.5 Exploratory Learning of Formal Languanges 43

5 Predictive Learning Analytics 49
5.1 Predicting Skipping and Absenteeism . 51
5.2 Predicting Examination Performance . 54
5.3 Predicting Systematic Errors and Misconceptions 57
5.4 Predicting Levels of Programming Competence 62

6 Fostering Self-Regulation and Exploratory Learning 67
6.1 Fostering Conceptual Change . 67
6.2 Fostering Behavioural Change . 72
6.3 Sustaining Exploratory Learning . 74
6.4 Discussion . 78

7 Perspectives 81
7.1 Improving Learning and Teaching Formats . 82
7.2 Towards Prescriptive Learning Analytics . 86

8 Conclusion 89

9 Appendix 91

Bibliography 103

ix

x CONTENTS

CHAPTER 1

Introduction

This report presents the conception, implementation, and evaluation of the educational
software “Backstage 2 / Projects” and its ecosystem which has been designed to address
problems inherent to tertiary mass education in STEM (Science, Technology, Engineering,
and Mathematics). The following paragraphs introduce this work by briefly discussing the
relevant terms (namely: Tertiary mass education, self-regulated learning, STEM education,
and Technology Enhanced Learning), summarizing the results of the presented research,
and laying out its structure.

Mass education. The term “mass education” is commonly used to describe education
systems which accommodate large parts of a country’s population [24]. Europe’s universities
have become institutions of mass education over the last century [188, 179], a process often
attributed to the economic advantages of graduation and the democratization of education
in the second half of the 20th century [114, 188]. This process of university “massification”
[114] has proceeded in the last decades: In their extensive report on academic staff in
higher education and their recent challenges in Europe, Crosier et al. [53, Chap. 1.1.1]
found an increase in student enrolment numbers in tertiary education programmes of 40%
between the years 2000 and 2015. Crosier et al. point out that these numbers have to be
interpreted with caution, due to, among other reasons, the difference in population sizes
and demographics between European states, and incomplete data. STEM fields, which
constituted the second-largest fields of study by student numbers in Europe in 2018 [82],
are no exception to this development. The number of STEM students grew with a rate
comparable to the growth rate across all fields: 37% between 2003 and 2012 [4].

Tertiary mass education is often associated with large class teaching [114, 10], with course
sizes of several hundred students being common in today’s European universities. The
resulting very large student-teacher ratios, which are known to impede student success
[166, 139, 169, 18], are a persistent problem in Europe: While Crosier et al. found that
academic staff sizes grew during the last decades, they conclude that the numbers of
academic staff did not grow consistently with student numbers [53]. Indeed, comparing
both growth rates between the years 2000 and 2015 yields that student numbers grew in

1

2 CHAPTER 1. INTRODUCTION

average 3.9 times faster than staff sizes.1 It has to be noted that these numbers are national
averages, and the situation might differ between universities or even faculties. As an
indication, the student-professor ratio grew from 142 students per professor in 2014 to 212
students per professor in 2018 at the author’s department of Mathematics, Informatics and
Statistics.

Tertiary mass education and large classes entail a multitude of problems, three of which
seem particularly striking:

1. Large classes foster passivity among students, who show less engagement and lower
motivation than students taught in small classes [169, 253].

2. Large classes severely limit teacher-student contact and interaction [81, 169] which
limits the amount of feedback teachers can provide to students. Note that both
feedback provided by teachers to students [102] and provided by students to teachers
[101, 171] is considered largely beneficial for student learning.

3. Large classes foster social isolation and an impression of anonymity among students
[253, 22, 243] which can in turn “reduce students’ sense of responsibility for class
interaction” [114].

Self-regulated learning. A general approach to solving problems caused by large classes
is to foster self-regulated learning. Self-regulated learning theory describes how students
“personally activate, alter, and sustain their learning practices in specific contexts” [267, p.
307]. Several authors identify different components of self-regulated learning, among others:
Goal orientation and motivation [189, 190], meta-cognition [190] (in the sense of reflection on
one’s own learning process), help-seeking [154, 31], and learning organization [154, 31] (such
as time management, choice of a learning method, etc.). Undoubtedly, learners endowed
with such skills would be less subject to the aforementioned problem of passivity and
inactivity, while being better at coping with the problem of limited teacher contact through
better help-seeking abilities.

Tertiary STEM education. The goal of this research is to improve tertiary STEM education,
yet the term STEM has different connotations depending on the perspective (educational
or political) it is used for. The term was coined by the US American National Science
Foundation in the late 1990s [218] and was since then often used by western governments to
label educational funding programs which pursue vocational and economic goals [23, 258].
From the educational perspective, the term is often criticized: In secondary education there
usually are no engineering courses [23], there is no consensus on what is exactly included in
the technologies the “T” stands for [258], and in tertiary education the term just refers to a
set of separate fields which are often taught independently of each other, hence making the
introduction of a combining term inappropriate [218]. In the late 2000s, the term “integrated
STEM education” emerged [23] which refers to methods of integrating the content of several
STEM disciplines into one course or lesson, for instance by using an engineering problem to
introduce a new mathematical principle [167]. Integrated STEM approaches often rely on
active teaching methods such as problem-solving and inquiry learning [23].

While interdisciplinary STEM teaching is arguably an interesting approach to improve
motivation and learning in these fields, this work is devoted to a different issue: It tries to
identify teaching and learning problems in tertiary STEM education as it currently is, and to
solve (or to alleviate) these problems by deploying educational software.

Technology Enhanced Learning. This report is a contribution to the research field of Tech-
nology Enhanced Learning (TEL), which can be defined as the “application of information

1Based on Eurostat tables educ enrl1tl, educ uoe enrt02, educ enrl1at, educ uoe enrt01 used in
[53], by comparing only countries where complete datasets were available.

3

and communication technologies to teaching and learning” [133]. Kirkwood found in a
literature review that most of the examined TEL applications were either used to replicate
or supplement existing teaching practices (such as providing video recordings of lectures),
with only about a third of the applications using technology to restructure or change the
learning and teaching process [133]. Similarly, Henderson et al. found recently that uni-
versity students used technology mostly for organizational purposes, such as locating and
retrieving lecture content and handing in homework assignments [111].

In this way, TEL applications are already widely used to solve organizational problems of
mass teaching: It is nowadays unthinkable to organize for instance homework assignments
or to provide lecture material for hundreds of students without software. The general
contribution of this report, however, is to introduce and evaluate educational software
designed to solve the specific problems of tertiary mass STEM learning. To pursue this goal
the software described in this report provides Learning Analytics that are adjusted to tertiary
STEM education.

Learning Analytics. Learning Analytics use techniques from Statistics and Machine Learn-
ing to accomplish educational goals, and can be defined as “the measurement, collection,
analysis and reporting of data about learners and their contexts, for purposes of under-
standing and optimizing learning and the environments in which it occurs” [228]. The
most common approaches to improve learning through learning analytics are presenting
descriptive statistics (such as summaries of recorded learner data), alerting students in case
of detected problems (such as high risks of failing a course), and adapting or choosing
course material according to the students’ needs (such as choosing exercises of a suitable
difficulty) [181, 85].

Contribution of this report. The contributions of this report are as follows:

• A web-based educational software is introduced, its implementation, the software
eco-system it is embedded in, and several learning and teaching formats supported
by the software are described. The software aims to alleviate problems occurring in
tertiary STEM education, and design decisions which reflect the special requirements
of these fields of study are highlighted.

• Learning analytics which are provided by the software, as well as their pedagogical
and scientific use, are described. The pedagogical use describes how these analytics
can be (and were) used in a course to solve an educational problem (such as reducing
passivity or absenteeism); the scientific use is to provide insights in learning behaviours
of students in the case studies and to examine the efficacy of the software for learning.

• The results of several evaluations, gathered either in case or laboratory studies, are
reported: Collaboration on the platform, both of learners and teachers, helped learning
and teaching. Behavioural changes indicating higher self-regulation could (with
some limitations) be triggered by the software using Learning Analytics. Exploratory
learning was fostered (students used the software for voluntary elaboration and
experimentation), and the attitudes towards the software were generally good among
students and teachers alike.

Several case and laboratory studies were conducted for this research, each evaluating and
experimenting certain of the software’s aspects. As many of the results were published
(either in articles or in student theses), this report aims to summarize general results and
implications that can be derived from the research as a whole, therefore the same case study
may be referenced in different sections. A list of the author’s publications cited in this thesis,
naming the main contributors to these publications, can be found in Appendix D. All case
studies were conducted in courses held at the author’s department of computer science, and
a list of all these courses as well as short descriptions of the regarding topics can be found in

4 CHAPTER 1. INTRODUCTION

Appendix A.

This report is organized as follows: The next chapter describes the specific problems of
tertiary mass STEM education and motivates choices in the design of the software. Chapter
3 describes related work by discussing related educational software, Learning Analytics
approaches, and several learning theories. Chapter 4 describes the implementation of the
software by first describing its components and then introducing several teaching formats
that can be supported by these components. Results on the students’ and teachers’ attitudes
towards these formats, as well as general observations can also be found in this chapter.
Chapter 5 discusses Learning Analytics integrated into the software, which aim to predict
learner behaviour. Chapter 6 presents and discusses results regarding learning and teaching
effectiveness. Chapter 7 discusses perspectives for future research and implications for the
design of tertiary mass education in STEM fields, and Chapter 8 concludes this report.

CHAPTER 2

Motivation

This chapter motivates both software and research design choices by analyzing problems
specific to STEM mass education. Further, limitations of the scope and the methodology of
this research are noted.

To achieve the aforementioned goals (providing and evaluating software solutions to the
problems specific to tertiary mass STEM education), particularities in the ways STEM
subjects are learned have to be considered. While there is no “STEM learning” theory in
general, three observations which seem relevant for software design can be drawn from the
literature:

1. Active Learning approaches seem particularly suited for STEM education. Active
learning is defined by Prince as “any instructional method that engages students in
the learning process” [196, p. 1] and is often contrasted with “passively listening to
a lecture” [196, 7]. While the plethora of teaching methods encompassed under the
term “Active Learning” may apply to other fields, the term is commonly used in the
STEM education literature (see for instance [90, 151, 237] for meta-analyses of Active
Learning methods which solely rely on evaluations in STEM fields).

2. Learners in STEM fields often make systematic errors or have systematic misconcep-
tions while learning. Notable properties of these misconceptions are their consistency
across ages and abilities, and their “resistance to change through traditional instruc-
tion” [45, p. 4]. Teaching in STEM education often encompasses teaching to overcome
misconceptions, and methods which account for this fact are often inspired by the
“conceptual change model”. It describes how misconceptions are exchanged for other
(hopefully) better conceptions [192]. While the terms misconception and conceptual
change are traditionally used in the science education literature, it has recently been
used to describe learning problems in computer science [198] and mathematics [201].

3. STEM fields rely on formal languages for their discourses: Programming languages
in computer science, structural formulas in chemistry, differential equations in cal-
culus, and so on. These formal languages are (in contrast to natural languages)
non-ambiguous and dense in the sense that they convey a lot of abstract information
with few symbols, and are often perceived as counterintuitive and challenging by

5

6 CHAPTER 2. MOTIVATION

learners [216]. To use formal languages, STEM learners must learn to master their
syntax, and numerous studies report on the problems of students in facing this task:
See for instance [96, 122, 148, 150] as of computer science and [134, 25, 200] as of
secondary mathematics education.

It has to be noted that these observations are neither exclusive to STEM education, nor
can they be regarded as a complete description of STEM learning. For instance, peer
instruction and peer review, which certainly are Active Learning methods, are widely used
in non-STEM fields [241], and systematic errors might very well occur while, for example,
learning a secondary natural language. Also, there surely are further important aspects
of STEM learning which are not addressed in this report. Yet, it is evident that these
observations conflict directly with the problems of mass education: While in the literature,
Active Learning approaches are praised especially for STEM fields, the current state of
affairs in European tertiary education seems to encourage (or at least foster) passive student
behaviour. And while Active Learning methods are attempted in large classes, they seem
to be most effective in class sizes below 50 students [90]. The literature, especially in the
tradition of social constructivism, praises direct interaction and tutoring for helping students
building knowledge [252, 126], and teaching methods that facilitate conceptual change often
encompass active experimentation and classroom discussion [224] – which conflicts with
the widespread shortage of teacher-student contact in European tertiary education.

As a result of this analysis, the software introduced in this report pursues three goals:
Supporting and encouraging active and self-regulated learning, identifying and helping
students in overcoming systematic errors and misconceptions, and finally helping students
in using STEM’s formal languages. These goals have to be pursued while requiring limited
teacher involvement, or increasing teaching effectiveness – teachers are the limiting resource
in mass education.

A key technique in this pursuit are Learning Analytics because they allow to “mimick”
teacher behaviours typical to small class teaching: With Learning Analytics struggling
students, as well as common problems, can be identified, and the learning progress of large
groups can be automatically assessed. Also, with Learning Analytics, decision-making
can be automatized: Choosing suitable partners for group work, providing personalized
scaffolds, and nudging students who are dragging behind towards more participation.
Hattie writes on the profession of teaching: “When these professionals (teachers) see learning
occurring or not occurring, they intervene in calculated and meaningful ways to alter the
direction of learning to attain various shared, specific, and challenging goals” [101, p. 22].
The notion of “calculated” interventions is interesting: Learning Analytics provide such
calculations without relying on the teacher as a “calculator”.

Interestingly, for the implementation of Learning Analytics, mass education and large class
sizes are advantageous. Here, many students are taught under very similar conditions
which are often reproduced with few changes in the following course venues. These
conditions allow mathematical models (such as statistical procedures) to deliver more
reliable results than they would in small classes. This means that, firstly, finding Learning
Analytics approaches is easier in large classes (for instance because correlations that would
be indistinguishable from noise in smaller datasets can be identified), and secondly that the
effectiveness of introduced interventions can be measured more reliably.

The following paragraphs describe how the software was used in the teaching practice
and how data collection was realized, what kinds of evaluations were conducted, and the
limitations inherent to these approaches.

Software functionalities and use. The software was used to support several courses taken
from the standard bachelor degree computer of science curriculum which were held at the

7

author’s university. Hereby, the software provided functionalities supporting asynchronous
learning activities, which do not depend on teachers being present and do not require an
exact time of activity (consider in contrast attending a lecture held by a teacher on a specific
date). Note that these activities are often self-regulated: Students choose to work (or not to
work) on homework at a specific time or to post a question in an online forum. Therefore,
examining the use of these functionalities seem appropriate for examining self-regulated
learning. The software is a web application, which is the common technique for providing
asynchronous learning services [205].

The functionalities provided by the software can be categorized as follows:

• Learning management functionalities: Organizing learning materials and their dis-
cussion, scheduling and assigning deadlines for homework and so on.

• Functionalities imitating teacher behaviours: These functionalities encompass identi-
fying and nudging students towards better learning with predictive Learning Analytics
(see Section 4.3), providing scaffolds and feedback while students work on a problem
(see Section 4.5), and functionalities to intelligently orchestrate interactions between
students (such as assigning suitable partners for peer review). While functionalities
of the latter kind were implemented (and are operational!), evaluations of these are
largely missing. Section 7.2 discusses perspectives for the use of these functionalities.

• Functionalities providing means for collaborative learning and teaching. As an exam-
ple, the software allows teachers to collaborate while providing feedback on homework
submissions (an evaluation of this functionality is found in 4.2), and for students to
communicate and collaborate on their learning tasks (evaluations of these functionali-
ties are presented in Section 6.2).

As data collection is both needed to fuel Learning Analytics during the courses and to
evaluate the effectiveness of implemented measures, it was a major concern for the imple-
mentation of the platform. During a course, the software collects data both explicitly and
implicitly. Explicit data collection refers to data that was directly entered by the users, for
instance by teachers entering homework assessments, while implicit data collection hap-
pened without explicitly informing the users, for instance by logging the actions performed
by students on the platform. After a course ends, the software stores the collected data as
training data for Learning Analytics in future courses (see Section 5 for more details).

Evaluation approaches. The majority of the data evaluated for this research has been
gathered in case studies, more precisely, by collecting data in courses that are part of every
bachelor student’s course of study at the author’s faculty. While the data collected in this
way may be confounded by non-controlled variables, this approach gives insights on the
practical use of the software: After all, the goal is to solve hands-on problems in tertiary
education. Also, in this way, data could be collected over long periods (courses take weeks
or months), which allowed studying the change of behaviour during a course. Such time
data series can hardly be obtained in laboratory studies.

In several instances, the repeating cycle of the bachelor degree course venues was used to
examine the effectiveness of interventions in quasi-cohort studies by comparing data of
consecutive course venues, where one was taught without and the next with an intervention
(e.g. an additional software functionality) in place. While it might be more suited to evaluate
the effectiveness of an intervention by applying it to a random sample of students of one
course (forming the experimental group) and teaching the rest of the students as usual,
such a method was not incorporated into the teaching practice: Firstly, this design would
rely upon the ignorance of the subjects of their treatment (which could not possibly be
upheld for hundreds of students over several months), and secondly, ethical problems arise
as the evaluated interventions were supposed to improve learning. It is hardly ethical

8 CHAPTER 2. MOTIVATION

to deprive a group of students of functionalities deemed helpful while supporting others
with it. On the other hand, it is a common practice of teachers to evaluate new teaching
methods for whole courses and compare the results to improve their teaching. One software
improvement (aimed to scaffold students while learning simple programming languages)
was not evaluated in a course, but in a laboratory study unrelated to the current courses
(see Section 6.1).

“Learning effectiveness” is often measured by “examination success” in the following chap-
ters. Note that this allows comparing examination results between students of the same
venue (e.g. allowing statements like “students that used the platform in a certain manner
were more successful in the examination”), yet not to compare examination results between
venues: Examinations are not standardized and may yield different results because of differ-
ences in the examination questions. To test the efficiency of interventions, other measures
such as comparing the error rates for specific exercises between course venues were used.

Limitations. While thoroughly chosen, several limitations of this research design have
to be noted. Firstly, the evaluation is based on a very specific group of learners as only
bachelor degree courses and topics were chosen for evaluation. These have the “advantage”
of providing large numbers of students, which often have limited previous knowledge
about the topics taught, yet it might limit the generalizability of the findings. Similarly,
the evaluations all stem from computer science and mathematics courses, with no other
STEM fields involved which might limit the generalizability of the findings to other STEM
fields. Secondly, the assumption of “reproduced study conditions between course venues”
stated earlier is flawed. Students enrol in several courses in parallel, and while the setting
of a course may be quite accurately reproduced in the next venue, the setting of others
may change: In one year a course might be especially well taught or the teachers may have
decided to provide bonus points for participation – which may divert activity between
courses. Indications for the occurrence of such problems are reported in Section 4.3. Also,
parts of the teaching staff, exercises, and course content may change between course venues,
which might limit the comparability.

CHAPTER 3

Related Work

This chapter reviews the literature on related work. The field of Technology-Enhanced
Learning is both an applied field, as today’s teaching and learning practice is usually sup-
ported by a variety of software, and a field of theoretical research which is rooted in learning
theories, where new software is often being tested in laboratory settings. This chapter tries
to account for this dichotomy of the teaching practice on the one hand and the theoretical
research on the other.

Section 3.1 reports on the current use of software in tertiary mass education, by focussing
on the use of social media and learning analytics. Section 3.2 discusses concrete learning
software applications (which are often evaluated in laboratory studies). Here, a special focus
lies on software fostering Self-Regulated Learning, sustaining collaboration and applications
conveying STEM’s formal languages. Section 3.3 discusses learning theories, which have
informed certain design choices of Backstage 2 / Projects.

3.1 Software for Mass Education

Mass education with its large classes is a fact of tertiary education in many countries [114],
and it is uncontested that increased class sizes have a detrimental effect on learning [231].
Using software, especially web-applications, to remedy these effects has been advocated for
decades (see for instance [48] published in 2000). This section reviews reports on the current
use and the reported benefits of educational software in tertiary education.

Software usage in tertiary education. In 2008, Dillenbourg wrote that the use of technology
in education would become more and more natural, and would eventually blend into the
practice just like other media have [64]. Indeed, Learning Management Systems (LMSs) are
ubiquitous in today’s universities. In a survey published in 2014, Dahlstrom et al. found that
99% of 151 evaluated universities in the US provided an LMS to its members [56]. Yet, while
such systems provided a variety of features, most teachers and students only used the “basic”
functionalities (allowing content management), with “advanced” features (allowing student
collaboration) often being underused [56]. This is unfortunate because, as might be expected,

9

10 CHAPTER 3. RELATED WORK

using software merely as a different medium to deliver the same content does not increase
learning [133]. Chow et al. found in a comparative study that specific teacher training can
diversify the use of educational software [44]. Hence, using interactive and collaborative
features of an LMS seems to be a matter of training or habituation of the teacher.

Several authors argue for a less exaggerated language in the TEL literature, as the real-world
applications of educational software seem to have much less revolutionary consequences for
learning than many research articles suggest [64, 226, 111]. In general, the most beneficial
aspects of software use in tertiary education seem to relate to content organization [111] and
flexible access to learning materials [160].

Specific software applications however have been shown to improve learning in practice.
Online homework systems for instance, which are often used in tertiary STEM education,
can improve learning in mathematics [34], chemistry [208], and physics [61]. Often, these
systems are equipped with automated grading or feedback mechanisms, which both reduces
the teachers’ workload and the time between homework-delivery and received feedback
[197, 128]. An example of a technology-enhanced teaching method which can increase
learning is the “flipped classroom”, in which study material is provided online before class,
and applications of the new concepts are acted out in class [13].

Social media in tertiary education. The term social media encompasses a large variety
of web-applications with common functionalities being the integration of user-generated
content, user-created personal profiles, and interactions between users (such as discussions)
which allow the construction of social networks [174].

Using social media in education has been advocated among other reasons because they
can foster collaborative learning (by allowing students to create and share content) [145],
because they allow students to define their own (collaborative) learning spaces [55], and
because it allows students to share their accomplishments with a wider audience outside
the classroom (which can be encouraging) [142].

Yet, just as teachers have to be willing (and able) to use the collaborative features of an LMS,
students have to be open to such uses of social media. To examine usage patterns of social
media, White proposes the “visitors and residents model”. Here, “visitors” use social media
as a tool to achieve a specific goal (such as gathering information) while usually leaving few
traces (generating less content). “Residents”, in contrast, perceive social media as a social
space, use it for social interaction, and usually leave more traces [257]. For collaborative
learning with social media, “resident”-type behaviour would be preferable because students
would be more comfortable discussing their learning progress with others [262]. However,
students do not always use social offers for education in such a way: Druce and Howden
found that a minority of examined students could be regarded as “residents” [72], similarly,
Rambe found that most social media use for education was administrative and formal [202],
and Ophus and Abitt found that students expected from an educational social medium
mostly to “view their schedule” and “access notes and materials”, and only rarely to use it
for social interactions [177]. Junco found that performing social activities on Facebook like
commenting was correlated to overall student engagement and co-curricular activities [123]
which might suggest that “resident”-like behaviours are usually performed by students
who are overall more social.

Teacher activities in social media are important. Wright argues that students will not show
collaborative learning behaviours online if the teachers do not engage in such behaviours, too
[262]. In a survey conducted with 333 university teachers, participants indicated that content
sharing (between students and between students and teachers) was the most common use
of social media, while collaborative components (opening a forum to discuss course content)
being used less often [97]. In a study in 2012, Sadaf et al. found that about half of the

3.1. SOFTWARE FOR MASS EDUCATION 11

examined K-12 teachers were committed to integrating social media into their teaching
while being uncertain how to do so [217].

Online Learning. Online Learning can be defined as “learning that takes place partially
or entirely over the Internet” [163, p. 9]. In this definition, Means et al. subsume “blended
learning” which is commonly defined as learning which involves both asynchronous online
and synchronous face-to-face activities. In this sense, online learning is the most common
form of learning in tertiary education, as Learning Management Systems are ubiquitous in
today’s universities [56].

Means et al. found in a meta-study that online learning per se can be advantageous over
“face-to-face only” learning, among other reasons because it allows students to spend more
time on specific tasks [163]. Yet, they also note that most reported advantages of online over
face-to-face learning were likely to be caused by a change in pedagogy and instructional
approach, not by a change in medium alone. For instance, they found that courses which
were specifically designed for blended learning were more efficient than face-to-face or
online-only courses.

A major concern expressed in the online learning literature is the social isolation which
online environments can create [129], and the increased requirement of self-regulation and
self-motivation [129], which are both capabilities not all university students possess [247].

Learning Analytics. A commonly used definition of Learning Analytics is “the measure-
ment, collection, analysis and reporting of data about learners and their contexts, for pur-
poses of understanding and optimizing learning and the environments in which it occurs”
[228].

Three main approaches used to improve learning with learning analytics can found in the
literature: Firstly providing descriptive statistics to the learners or teachers (such as summa-
rizing reports on the previous learning behaviour), secondly alerting “at-risk” students (with
high estimated risks of failing or dropping out of a course), and thirdly adapting or choosing
course material according to the students’ needs [85, 181]. Yet, there is no consensus on
whether such applications have a positive effect on learning in general. Ferguson et al.
conclude (in 2016) that there is “no overwhelming evidence that learning analytics have
fostered more effective and efficient learning processes and organizations.”[85, p. 9], while
admitting that this might be due to the youth of the field which originated between 2010
and 2011.

Many reports in the Learning Analytics literature suggest statistical methods for behaviour
prediction without putting these to a pedagogic use [92, 86]. Commonly predicted learning
behaviours are academic performance and dropout (from a course or course of study).
Section 5.1 and Section 5.2 define and evaluate predictors of these behaviours, and review
the literature concerning these types of predictions in greater detail.

Learning Analytics are often presented within Learning Management Systems in so-called
“analytics dashboards”. Sometimes, only the teachers of a course are provided with such a
dashboard to allow progress monitoring [248]. Yet, students have been shown to benefit
from such presentations, for instance with improved self-assessments [131] and increased
motivation [49]. Informing students about their participation behaviour in online discus-
sions improved their mode of participation [261], and informing students about the prior
knowledge of their peers improved collaboration effectiveness [219]. Park et al. found that
an introduced analytics dashboard, while positively received by the students, who reported
an improved learning behaviour, did not improve examination outcomes significantly [185].

Apart from providing analytics dashboards, identifying “at-risk” students in order to im-
plement interventions is a common use of learning analytics [141, 144]. Here, “at-risk”

12 CHAPTER 3. RELATED WORK

usually refers to a predicted dropout or failing of a course. Interventions often encompass
proactively warning the student, and initializing personal communication with the teacher.
Cambruzzi et al. let teachers contact students who were identified to match a “drop-out
profile” by a learning analytics system, which resulted in higher retention [37]. Similarly,
Arnold et al. increased retention and examination success by sending personalized emails
containing performance predictions which were encoded as a traffic light signal. Often,
students perceived these emails as a personal communication from the teacher even though
they were computer-generated. Choi et al. identified at-risk students by analyzing data
obtained in an audience response system and used a combination of automatically sent
emails and personal communication (including phone calls) which decreased dropout [43].
It is noteworthy that teacher support alone can increase retention: Onah et al. report that
students taught in a MOOC with increased teacher contact exhibited lower dropout rates
[176], and a similar finding was published by Holmgren and Johannson [113].

3.2 Pervasive and Collaborative Learning Technologies

In this section, literature regarding the effects of educational software on Self-Regulated
Learning, collaboration, and the learning of STEM’s formal languages is reviewed. Research
in these fields is often conducted in laboratory studies and is often rooted in specific learning
theories or models.

Self-Regulated Learning. Self-regulated learning theory describes how students “person-
ally activate, alter, and sustain their learning practices in specific contexts”[267, p. 307], and
self-regulation is often stressed to be necessary for students both in tertiary education [163],
and online or blended learning [129].

As most of tertiary education today is a form of blended or online learning [56], it seems
appropriate to examine how software can foster self-regulation. Dabbagh and Kitsantas
suggest a pedagogical framework on how existing social web applications (such as a blog
software) can be used to sustain self-regulation, by analysing different uses of such software:
For instance, an instructor can encourage students to use a blog as a private learning journal
(the use being personal information management), or to visit and comment in blogs of their
peers (the use being collaborative learning), or to use tools such as RSS feeds to aggregate
blog posts (the use being information aggregation) [55]. This illustrates that students have
access to a large variety of software applications which are potentially suited to sustain
self-regulation, while initially not being conceived as educational software. Arguably, such
uses require technical knowledge, and (to some extent) creativity from the learners.

Other research focusses on examining software explicitly designed to sustain self-regulated
learning. A challenge mentioned in the literature is the measurement of self-regulated
behaviours, which is often assessed using questionnaires or structured interviews [246].
An approach to automatic assessment of self-regulated learning behaviour is suggested by
Hadwin et al. who used extensive analyses of trace data recorded in a controlled experiment
in which students used a note-taking and annotation tool [99]. Yet, no correlation of reported
and traced self-regulated learning behaviour could be found, which arguably illustrates that
such an automatic assessment is difficult to realize.

Stage models of self-regulated learning structure the learning process in a repeating sequence
of stages the learner enacts while learning.

3.2. PERVASIVE AND COLLABORATIVE LEARNING TECHNOLOGIES 13

One commonly used model is Winne’s four-stage model [260], with the four stages being:

1. “Task definition”, in which the learner conceptualizes the task to be performed.

2. “Goal-setting or planning”, in which the learner chooses strategies they want to carry
out.

3. “Enactment”, in which the strategies from phase two are used.

4. “Adaption”, in which the learner reflects on their learning.

One approach to foster self-regulated learning with educational software is to address
specific phases (such as supporting the planning phase by providing a schedule application)
[59].

Van Lear and Elen evaluated 95 reports on self-regulation in blended learning and found
seven attributes common for software applications which fostered self-regulation [246]:

1. Authenticity: The application provides “real-world” and relevant practice or shows
connections to “real-life” situations.

2. Personalization: The application adapts to the need of the learner (ranging from
name-recognition to adapting to the performance level).

3. Learner-control: The application allows the learner to make relevant decisions (such
as controlling pacing, choosing content or content sequencing, etc.).

4. Scaffolding: The application supports learners in performing tasks that would have
been out of their reach otherwise, with the support being reduced (faded) over time.

5. Interaction: The application provides interactions with the teacher or peers or provides
interactive learning material.

6. Reflection: The application prompts the learner to reflect on their learning.

7. Calibration: The application allows the learner to compare actual to perceived achieve-
ment (for instance by providing assessments).

Van Lear and Elen argue that these attributes can be related to different phases of the four-
stage model, for instance, authenticity and personalization features help to conceptualize
(phase one) and so on.

Another branch of self-regulated learning research, which has only been briefly touched
on by Van Lear and Stijn (by examining the interactivity between peers) is co-regulation,
that is regulation occurring between learners. Kaplan makes suggestions about how to
foster co-regulation in an LMS [127]; For instance by providing co-assessment alongside
self-assessment functionalities. Crough and Christopher increased self-regulated learning
and engagement by integrating co-regulative processes (collaboratively choosing material
and devising suggestions for examination questions) into a second-year biochemistry course
[54].

Collaborative learning. Computer-Supported Collaborative Learning (CSCL) theory de-
scribes how software can sustain collaborative learning. Stahl [232] builds this theory
around four concepts which can each be supported by software: Collaborative knowledge
building through interactions and discourse between learners (supported for instance by
discussion forums), individual and group perspectives which result from these interactions,
mediating artefacts which are represented by software (for instance a physics simulation), and
interaction analysis which refers to the (possibly software-driven) evaluation of interactions
to draw conclusions about the learning progress.

An example of software-driven interaction analysis is given by Sundararajan, who evaluated
online discussions in LMSs using social network analysis (analysing graph representations

14 CHAPTER 3. RELATED WORK

of interactions between learners) and found that students whose knowledge increased also
became more prominent (more central) in the social network of the course. Indeed, these
students functioned as “knowledge mediators” [236].

While the focus in the last decades lay mainly on software to sustain “collaborative knowl-
edge construction” (for instance in online forums or chats), more recent approaches focus on
regulation in CSCL [120]. In general, collaborative learning demands both self-regulation
and co-regulation from the students [165, 120]. An example for software applications which
foster self- and co-regulation are group awareness tools, which provide its users with in-
formation about the other users’ knowledge or ability or the group progress as a whole
[165]. Sangin et al. prompted students with assessments of their peers’ prior knowledge
in an online learning environment and found an improved collaboration effectiveness and
improved learning outcomes [219].

A rather strict form of regulation is provided by computer-supported collaboration scripts,
which guide interactions between learners. Usually, the role of the computer within such
scripts is to prompt students with specific tasks or to keep track of the overall progress of
a class. In the MURDER script, pairs of learners review text passages where each learner
assumes either the role of the summarizer (who summarizes the passage) or a listener (who
detects errors in the other’s summary)[137]. In the Concept Grid script [66], each member
of a group gives a short definition of a term they are tasked to research. Afterwards, the
definitions are placed on a map, and descriptions of the relationships between neighbouring
concepts are elaborated collaboratively.

It is worth noting that both the literature on “group awareness tools” and especially on
collaboration scripts evaluates learning in small groups (usually ranging from 2 to 5 students)
within relatively small classes [50]. In tertiary mass education, with class sizes of a few
hundred students, collaboration (if not further scripted) might more resemble the “mass
collaboration” of platforms like Wikipedia, where relatively few users perform the majority
of actions [51].

Formal languages and Microworlds. The discourse in STEM fields is replete with the
use of formal languages, and software seems to be suited to ease the learning and use of
these languages. Consequently, there is a plethora of learning tools aimed specifically at
conveying formal languages, which are often provided in a stand-alone web application, or
are integrated into online homework systems (see [197] and [128] for examples).

These tools are often referred to as “editors”, “verifiers” or “checkers”, or “development
environments”. Three major uses of such tools can be identified:

• Program evaluation: The software evaluates source code written in a programming
language and prompts the learner with the results. Languages from various program-
ming paradigms have been supported with such systems: Ranging from functional
programming [5] and logic programming [5] to imperative object-oriented program-
ming [128]. Mini-languages, also referred to as pedagogic languages, which usually
only comprise a small set of syntactic elements and are conceived for programming
beginners, also fall under this category [32]. Examples of mini-languages are robot
Karel 3D [244], turtle graphics (implemented in the programming language Logo)
[230], and scratch [158].

• Artefact Verification: The software verifies the semantic correctness of an artefact writ-
ten in a formal language. This is especially interesting in mathematics and logic
education. Examples of such “verified artefacts” are proofs in formal logic [112, 235]
or term manipulations in algebra [250].

3.3. LEARNING THEORIES IN TECHNOLOGY-ENHANCED LEARNING 15

• Simulation: The software simulates a virtual machine given an operation code and dis-
plays the operation of the machine. Examples are assembly code computers [251, 213],
or various automata used in theoretical computer science (finite automata, pushdown
automata and Turing machines in various forms) [212].

Note that this categorization is not strict: Mini languages like Karel 3D [244] are often used to
simulate agents (robots, turtles, etc.), and could, therefore, be categorized as “simulations”.
Software which allows writing and running assembly code could be categorized under
“program evaluation”. There are applications which combine aspects of several categories
such as LLparse and LRparse [212], which are used to teach formal grammars (the software
verifies aspects of the grammar, and simulates a parsing machine afterwards).

Often, blocks are used to represent formal languages, where the elements of a language (such
as keywords in programming languages) are represented by user interface elements and can
be manipulated by the user [207, 28, 84]. Block languages are often used for programming
beginners as it has been argued that simultaneously mastering syntax and semantics of a
programming language is a strong hurdle for beginners [96, 122]. Yet, block representations
can also be found in mathematical applications, where parts of a formula or parts of a proof
are represented as blocks [112, 235].

All of these applications can be regarded as “microworlds”, defined as “open-ended ex-
ploratory computer environments” [76, p.1]. Microworlds usually consist of objects which
can be manipulated according to given rules, and often encompass multiple representations
of these objects [76]. Such applications have been successfully used in teaching various
STEM fields [121], and have been praised, among others, because they enable playful
exploration of a domain [209].

In the examples discussed above, the domains to be explored by the learners are formal
languages (operation codes, programming languages, formal proofs, etc.) with the syntax
and semantics of these languages defining the rules within the domain. From a Computer-
Supported Collaborative Learning perspective as proposed by Stahl [232], these tools are
media by which collaboration can take place (for instance when peers discuss why a program
works, or does not work, as intended).

3.3 Learning Theories in Technology-Enhanced Learning

Design decisions made for the implementation of Backstage 2 / Projects were (often) in-
formed by learning theories, and the following section discusses briefly the main influences
for this work, namely the conceptual change model and a group of hierarchical learning
models (where learning is grouped in stages which have to be consecutively mastered to
advance).

The over-arching learning theory behind these models is Constructivism, a learning theory
which emerged in the 20th century and is very prevalent today’s discourse [126]. Con-
structivism models learning as the active construction of knowledge by the learner through
interaction with other learners or teachers (referred to as social Constructivism, pioneered by
Vygotsky) or through active experience (referred to as cognitive Constructivism, pioneered
by Piaget) [126].

The field of Technology-Enhanced Learning, while not following a coherent learning theory,
has produced certain learning theories in their own right, which have been largely influenced
by the constructivist mindset: Computer-Supported Collaborative Learning theory (which
was briefly discussed in the last section), models learning as a constructive process between
learners which is mediated by a software artefact (such as a physics simulation students can

16 CHAPTER 3. LEARNING THEORIES IN TEL

discuss and explore) [232]. Online Collaborative Learning theory, introduced by Harasism,
focusses on learning in online environments through group discussion, collaboration, and
conceptual change [100], concepts which prominent in constructivism. Arguably, the con-
nectivist learning theory introduced by Siemens, which models learning as an exchange of
information within a community [94], was also influenced by social constructivism.

The cognitivist learning theory, which views learning as processing and organization of
information, has influenced many concrete learning software projects such as the first intelli-
gent tutor systems, or knowledge organization tools (such as mind mapping applications)
[152]. Educational software is praised, among others, for its capacity to reduce the learners’
cognitive load [71], and Cognitive Load Theory, which describes how different mental efforts
influence learning, originated in cognitivist ideas [152].

It has to be noted that there is a difference between a learning theory and a pedagogy
informed by a learning theory. In the constructivist model, for instance, all knowledge has to
be constructed by the learner, but this does not mean that the teacher has to enforce constant
collaboration or exploration on the learners’ side. Indeed, actively listening to a lecture is a
form of constructivist learning (while lecturing is not necessarily a form of constructivist
pedagogy).

Conceptual Change and Systematic Errors The constructivist learning theory describes the
state of “disequilibrium”, as a state a learner can be in when encountering new information
which conflicts with their perceptions [126]. By resolving this conflict, (by “equilibrating”) a
learner integrates the new information into their perceptions which might require them to
rebuild (“accommodate”) parts of their knowledge structures. This, arguably theoretical,
view on learning has been supported by numerous observations in science education. Here,
students often have misconceptions (also referred to as naı̈ve concepts or preconcepts) of a
scientific phenomenon. Learning in these cases requires students to undergo “conceptual
change”: Abolishing the misconception and accommodating the “correct” concept. Stu-
dent misconceptions and conceptual change are typically researched in secondary science
education [45, 192].

Systematic errors, which can be defined as “erroneous, non-random applications of beliefs”
[45, p. 33], are typically discussed with a cognitivist mindset (information being erroneously
interpreted, or internal organizations failing to produce the correct output) and are usually
discussed in mathematics and computer science education literature [45]. Several attempts
have been made to classify systematic errors in student responses in general categories (see
for instance [200] and [168]), resulting in error categories like “errors due to deficient mastery
of prerequisite skills”[200]. More recently, Rakes and Ronau classified erroneous student
responses in mathematics and evaluated the data using structural equation modelling,
discovering strong interrelationships between errors in different content domains (such as
geometry and algebra) [201].

While misconceptions are usually related to concrete phenomena and systematic errors
usually refer to abstractions (like algorithms), both are very similar concepts, and recently,
authors have started to discuss learning problems caused by misconceptions in the computer
science and mathematics literature [198, 201].

Regardless of the terminology used, or the learning theoretical background of the teacher,
systematic errors and misconceptions are known to be particularly robust against “tradi-
tional” instruction [45]. Posner et al. suggested that students abolish old (even if erroneous)
concepts only if they are perceived as inadequate while new concepts are perceived as intel-
ligible, plausible and fruitful [192]. Hence, teaching methods fostering conceptual change
usually involve face-to-face instruction where the teacher induces an internal conflict (the
afore-mentioned disequilibrium) of the students with their conceptions [224]. An arguably
more scalable approach are refutation texts which usually contain an argument against a
common misconception [240].

17

Hierarchical Learning Models Several models propose hierarchies of skills of learner pro-
ficiency. In these models, “higher-order skills” can only be obtained when the student
masters “lower-order skills”. This is relevant for learning software, as such models can
allow modelling behaviour which is natural for “human” tutors: Some exercises can only be
tasked if lower-order skills are known to be sufficiently mastered.

A prominent example of such a learning model is Fisher’s Skill Theory, according to which
learners navigate a hierarchical framework of skills where high-level skills depend on
lower-level skills [236].

In the literature on problem-solving, hierarchical models are more concrete: Newman’s
Hierarchical Error Model describes the process of problem-solving in a hierarchy of steps
[170], similar to the Hierarchical Model of Programming Skill Acquisition proposed by
Lopez et al. [150]. Arguably, programming is related to problem-solving. In both models,
the first steps are concerned with “understanding the problem” (encompassing capabilities
in a natural or a programming language).

Other learning models imply a hierarchy of skills: The Conscious-Competence Model pro-
posed by Burch, organizes learning in four phases, the first of which consists in recognizing
what the learner is yet incapable of doing [35]. The Kruger Dunning effect, famously sum-
marized by the phrase “we argue that the skills that engender competence in a particular
domain are often the very same skills necessary to evaluate competence in that domain”[140,
p.1] implies a similar hierarchy.

18 CHAPTER 3. LEARNING THEORIES IN TEL

CHAPTER 4

Technology-Enhanced Learning and Teaching Formats

This chapter describes the design principles and components of the educational software
prototype Backstage 2 / Projects, the functionalities it provides to learners and teachers, the
learning and teaching formats it enables, and the evaluation of these formats. For brevity,
“learning and teaching formats” are referred to simply as “teaching formats” in the following.

Teaching formats. There is no commonly accepted definition of the term “teaching format”,
which is frequently used to describe the general organization of a course: Several authors
report on the integration of different teaching methods, such as group work or experimental
tasks, in a course format which would traditionally only encompass a didactic lecture
[36, 3, 89]. According to this practice, we loosely define a teaching and learning format as the
“long term” or “general” organization of teaching methods within a course. Note that teaching
methods, defined as “a set of principles, procedures or strategies to be implemented by
teachers to achieve desired learning in students” [256, p. v], usually describe the interactions
within a single lesson, while teaching formats span over several lessons. In that sense,
learning and teaching formats are similar to Dillenbourg’s definition of “macro scripts”,
while “teaching methods” are similar to Dillenbourg’s “micro scripts” [68].

Combining teaching methods to realize teaching formats is a common practice: A computer
science course typically encompasses lectures (introducing new concepts) and lab sessions
or homework (for putting the concepts introduced in the lectures to use), a seminar may
encompass an oral presentation of a topic as well as a written essay.

Enhanced formats and enhanced methods. Software is often used to improve teaching
formats by improving the teaching format’s teaching methods, for example by making these
teaching methods suitable for large classes: Digital backchannels allow discussions within
large lectures that would be impossible otherwise, audience response systems allow con-
ducting quizzes and get assessments in large lectures, and virtual laboratories can give
large numbers of students access to experiments which are too costly to be provided in a
traditional, non-mediated form.

This approach of solving problems of large-class teaching by improving teaching meth-
ods with technology seems common: Bower et al. found that most technology-enhanced
learning design frameworks (i.e. sets of general guidelines to help teachers create technology-

19

20 CHAPTER 4. TECHNOLOGY-ENHANCED FORMATS

supported learning scenarios) gave indications how to design learning tasks, while few
were concerned with course formats [29].

A teaching format may be considered as “technology-enhanced” if it encompasses at least
one “technology-enhanced” teaching method, yet software can improve a format as a whole
by connecting its components: Information gathered while teaching with one method can
be used to improve teaching with other methods. For instance, information on learning
problems or common errors detected in homework submissions can be prompted to the
lecturer who can then address these problems upcoming lectures. The formats described in
the following subsections use this approach of transferring information between teaching
methods to some extend, yet its potential goes beyond these few examples. A perspective
on teaching formats relying on information transfer between teaching methods, which could
be realized relatively easily with the present software, can be found in Section 7.2.

Homework and feedback. The formats discussed in the following focus on asynchronous
learning, in which homework assignments and feedback (provided automatically or by
teachers) play an important role. Findings on the effectiveness of homework are mixed. In a
popular meta-study, Cooper found that there were generally positive effects of homework
on achievement while unveiling an influence effect of student age on the effectiveness of
homework: In primary education positive effects were near zero, yet the positive effects grew
according to student age with the largest effects being measured for high-school students
of grades 10 to 12 [46]. This observation has been reproduced in more recent meta-studies
[47] and [101, Chap. 10]. Although these findings stem from secondary education research,
they are considered of importance here, as effects holding for older students in secondary
education can be expected to hold for university students in their first terms.

Published evaluations of homework effectiveness in tertiary STEM education are less com-
mon than reports on primary and secondary education, yet assigning homework exercises
is a common practice in these fields. Here, homework typically requires students to make
use of freshly acquired techniques. Often, online homework systems are used to manage
assignments and to provide automated feedback (see [180] for examples in statistics, [30] for
mathematics, [254] for physics, and [60] for computer science). The formats introduced in
the following rely on similar functionalities.

Several authors criticize research methods of studies on homework efficacy [46, 101, 242],
often pointing out the that large variety of actual practices of implementing homework can
hardly be generalized, and because the actual effectiveness may be caused by secondary
effects and not by the task of doing homework itself. Indeed, Zimmerman and Kitsantas
found that doing homework had an impact on the students’ self-efficacy and perceived
responsibility, which in turn influenced academic achievement [268], and Cooper already
noted in the first meta-analysis that it presumably makes a large difference for learning
whether the teacher just collects homework, grades it, or gives detailed feedback [46].

Feedback, for that matter, is known to have one of the largest impacts on learning (estab-
lished for instance by Hattie in his “visible learning” study [101], or in [102]). Yet, in tertiary
education, giving elaborated and directive feedback (as Hattie suggests), is difficult, and
large classes and limited teacher time are often cited as causes of imprecise or shallow
feedback [171, 38]. An interesting branch of research in higher education focusses on the
inability of certain students to put the received feedback (even if of high quality) to use, a
phenomenon referred to as the “feedback gap” [80]. Different causes for this problem are
discussed in the literature, among others difficulties in the subject matter [80], attitudinal and
motivational factors [264], and pedagogical literacy [195]. To “bridge that gap”, feedback
dialogues between teacher and student (in contrast to one-way feedback provided by the
teacher) are often suggested [171, 195, 38].

4.1. SOFTWARE COMPONENTS AND FUNCTIONALITIES 21

The formats presented in this section each try to improve certain aspects of homework and
feedback: Reducing workload when revising homework (Section 4.2), nudging students to
do homework (Section 4.3), evaluating peer feedback on progamming homework (Section
4.4), and facilitating the use of formal languages with automated feedback (Section 4.5).

Teaching formats built from components. Often, the same educational software can be
used for different (educational) purposes. Distributing learning material can be used to
support a flipped classroom, as well as distributing additional sources. Online-quizzes can
be published in the weeks before the examination for recapitulation, or to spark a discussion
in class. It is then the teacher’s task to devise a format that suits the intended learning
outcomes, which can encompass choosing the appropriate software.

There seems to be an established set of “common” functionalities which are found in most
available Learning Management Systems (LMSs). In the scope for this research, a set of
86 currently available LMSs were categorized by the functionalities they provided [110].
We found that all examined LMSs provided functionalities for document management
(which is not surprising), and most of them allowed workflow management (such as
assigning exercises) and provided some kind of interactivity (such as conducting quizzes).
Interestingly, functionalities for student collaboration and communication were less common.
Also, all functionalities provided by the examined LMSs could be classified under five
categories (namely: Document Management, Workflow Management, Content Enrichment,
Input Interactions, and Learning Analytics), with no functionalities being unclassifiable
under these categories [110].

Backstage 2 / Projects is in that sense a Learning Management System (providing many of
the “common” functionalities) specialized on conducting asynchronous learning formats.
The following section describes the functionalities of the software in general and the subse-
quent sections describe how these functionalities were used to define and conduct teaching
formats.

Results on the effectiveness of these formats in improving learning outcomes or behaviours
are discussed in Chapter 6. Evaluation results regarding the students’ attitude towards
these formats, as well as general observations, are reported in this Chapter. Some formats
rely on predictive learning analytics which are computed while a course is carried out. In
these cases, the predictors are briefly described and a reference to the sections discussing
the implementation and quality of these predictors are given.

4.1 Software Components and Functionalities

The basic building block for learning formats with Backstage 2 / Projects are projects. Every
user of the platform can start a project and invite other users to join. A project is simply
a collection of at least one participant, a set of documents, a set of assignments, a set of
subprojects, and a schedule. Note that the term “project” is used in a broad sense: A
project is a collaboration between participants which is supported by the software with
functionalities to organize and author documents, assign tasks, and schedule events.

For the sake of completeness it has to be noted, that Backstage’s projects can be used to
enact Project-Based Learning (PBL): A teaching format in which students collaborate over a
longer period and “apply what they know to solve authentic problems and produce results
that matter” [159, p. 2], with the exact results not being specified as the project starts. The
software was used to organize PBL in several instances, yet this use did not address concrete
problems of tertiary mass education as the other formats introduced in the following sections.
Therefore, reports on using the software for PBL is not included in this report.

22 CHAPTER 4. TECHNOLOGY-ENHANCED FORMATS

https://chat.pms.ifi.lmu.de

Figure 4.1: Project navigation and document view of the project “About Backstage Projects”.

Figure 4.1 shows the main view and the documents of a project titled “About Backstage
/ Projects”, which was (and is at the time of writing this report) used to document the
software. The navigation bar (below the project title) allows navigating the different views
of the project via tabs. Often, projects do not make use of all the provided functionalities
(the documentation project, for instance, has no scheduled dates, and no assignments), in
which case the regarding tabs are hidden from the navigation view.1

Several project views encompass lists of objects (lists of documents, assignments, participants
and subprojects). In these cases the regarding view is always organized similar to the
document view seen in Figure 4.1: A list of the objects in question is displayed below by a
search bar and an add-button (to invite a participant, to add a document, etc.).

Documents. Documents can be added by all participants of a project. They play a central
role for all teaching formats presented in the following, as they can be used for a multi-
tude of purposes: Documents can contain homework submissions, teaching material and
supplementary material, student questions, etc.

There are three different types of documents: Code documents (containing source code
of programming languages or other formal languages), text documents containing text
following the markdown syntax2 which are automatically rendered, and PDF documents.
The platform allows users to run code documents provided by any user directly in the
browser.

Documents can have different visibilities: Private (only visible to the authors of a document),
teacher (only visible for teachers and the author), project (only visible to the members of
the project), and public (visible for everyone, including all members of the parent project).
Documents can be commented on, and every participant can comment on any document he
or she can see. A document with an attached comment can be seen in Figure 4.2. Comments
can also be commented on, following the same rules as commenting on a document.

An important functionality for documents is “labelling”. With labelling, a label-document
can be attached to labelled document, which is then displayed below it. Generally, labelling
can be used if one document is relevant for several other documents. In this way, labelling is

1Figure 4.1 shows all possible tabs for the sake of completeness.
2https://daringfireball.net/projects/markdown/

https://daringfireball.net/projects/markdown/

4.1. SOFTWARE COMPONENTS AND FUNCTIONALITIES 23

Figure 4.2: A code document titled “Hello ICL” containing Haskell code (which was executed), and a
comment.

used to attach descriptions of systematic errors to homework submissions which contain
that error (described in Section 4.2), and to assess the quality of homework submissions
(described in Section 4.3). Generally, document labelling is similar to commenting, as it
attaches further information to a document. Yet, different from comments, labels can be
attached to any number of documents, and changes to a label are reflected in all labelled
documents. Consider for instance a label which contains the assessment that a subject was
not well understood and needs to be studied more thoroughly. Several students might find
this label attached to their homework. Students might then want to have additional (or
alternative) material on the subject, and references to this material can then be added by all
members of a project (for instance through comments on the label) and little by little as needed.
Currently, labelling is only available to teachers.

Schedule. A project’s schedule is simply a set of dates encompassing description texts,
which are displayed in a calendar view. Currently, only teachers can add dates to a schedule.

Participants. Each participant of a project has a role, either teacher, learner or administrator.
Teachers and administrators may change project settings and pose assignments. For technical
reasons, administrators are the only participants who are allowed to remove members
or documents from a project. The system guarantees that there is always at least one
administrator in each project.

Assignments. Assignments encapsulate actions to be performed by a project participant
of any role. They consist of a context (telling the member what to do and providing the
necessary information), an artefact (which is the outcome of the performed action), and an
optional due date. This system allows to guide a large variety of actions performed on the
platform: If, for example, a student is tasked to provide a solution to a homework exercise,
the exercise text (a document containing the problem statement) is part of the assignment’s
context, and their submission (a document containing the solution) is the artefact. If a teacher
is tasked to provide feedback on that student’s submission in the following assignment, the
student’s submission is that assignment’s context, and the teacher’s review (typically in
form of a comment) is the artefact.

This structure is reflected in the assignment view: The left-hand side of this view always
displays the context, while the right-hand side always displays the artefact of an assignment.
An example assignment can be seen in Figure 4.3: The right-hand side of the interface

24 CHAPTER 4. TECHNOLOGY-ENHANCED FORMATS

Figure 4.3: An assignment review a sample homework submission by the user Niels. The left-hand
side displays “labels” which can be used to annotate the submission.

Figure 4.4: Examination fitness prediction for a student.

shows the assignment’s artefact (the comment given by the reviewer below the reviewed
document) and the left-hand side shows the context (here a list of common labels which can
be attached to the reviewed document). The context of a review assignment can also contain
other additional material such as exemplary solutions.

Learning Analytics. The platform allows teachers and administrators to add a set of pre-
dictors to a project. A predictor consists of a set of training datasets (which are typically
gathered in previous projects), for each participant a set of observations (that were gath-
ered while the course is carried out), and for each participant a prediction. For example,
the examination fitness predictor holds for each learner in a project an estimation of their
examination outcome in the form of a value between 0% and 100%. This prediction is based
on the numbers of submitted homework assignments and submission qualities.

Figure 4.4 shows the student view of their current examination fitness prediction. Currently,
teachers and administrators of a project can see all predictions for all students and can
specify the training datasets the predictions are based upon, while learners only see their
own predictions. Section 5 describes the predictors, their definitions and qualities in greater
detail.

Subprojects. A project can encompass several subprojects, which may serve different pur-
poses: For instance, they can organize homework assignments by topic, or organize student
teams for group work. The depth of project nesting is not limited by the software. Data rele-
vant for behaviour prediction that is gathered within a subproject is stored in the subproject
if it has a fitting predictor, in the deepest parent project holding a fitting predictor if the
subproject has no such predictor, or not at all if no such parent project exists.

4.1. SOFTWARE COMPONENTS AND FUNCTIONALITIES 25

Options. Users can configure certain aspects of the projects they are in, such as whether,
and when, they want to receive news emails on the latest activity in the project, or whether
they want to be reminded of assignment deadlines via email.

Newsfeed. Actions performed within a project (such as adding or commenting on a doc-
ument) are logged by the system, and displayed in the project newsfeed. News can be
searched, and by clicking on an item in the newsfeed the platform navigates to the regarding
item (for instance, clicking on the message that a user has commented on a document
navigates to that document).

The orchestration mechanism. Orchestration is referred to as “the design and real-time
management of multiple classroom activities, various learning processes and numerous
teaching actions” [67, p. 3]. While in this definition technology is not mentioned, it plays
a large role in many “orchestrated designs” found in the literature. In these designs, the
emphasis lies on lesson structuring and time-management within lessons with the help of
technology. A formalized approach to classroom orchestration are Computer-Supported
Collaboration Scripts (CSCSs). CSCSs enable collaborative learning by organizing learning
activities, and the roles learners take within these activities, in sequences of phases [65, 137],
while focussing on group formation and organization. Note that the term “orchestration”
implies a certain teacher-centeredness, as it implies that a centralized conductor (arguably
the teacher) organizes the learning [67]. Yet, teacher orchestration and (student-centred)
collaborative learning scripts are usually carried out together, with the students carrying
out different learning activities in different phases, and the teacher overseeing the learning,
and starting and ending the phases.

While the literature on orchestration technologies and CSCSs focusses on synchronous learn-
ing, the orchestration mechanism of Backstage 2 Projects allows the organisation of asyn-
chronous learning. In contrast to CSCSs, the mechanism introduced in the following focusses
not on learning activities, but on the artefacts produced as a result of learning activities.
When students (or teachers) are tasked to author a document, write a comment, or to start a
project, the resulting artefacts are the document, the comment or the project. In this model,
an assignment encapsulates the process of producing an artefact.

The orchestration mechanism allows the definition of orchestration scripts, which generate
sequences of assignments, usually worked on by different actors, where the next assignment
in a sequence depends on the artefact produced by the last assignment in the sequence.
In the homework-review example described above, the orchestration mechanism would
create an assignment for each homework exercise and each learner in a project, wait for their
completion, generate a review assignment for each completed homework, and assign it to
one of the project’s teachers.

Arguably, this approach may appear quite technical on the cost of pedagogical reasoning:
Approaches focussing on learning phases and activities seem to better reflect constructivist
ideas, which are prevalent in today’s pedagogical discourses. Yet, this approach holds
several advantages for software design and for large class teaching formats:

• The mechanism realizes a separation of concerns as it only specifies task allocation
(what is done by whom), and leaves task execution (how something is done) unspecified.
This simplifies software design. Also, it takes into account that students and teachers
have different preferred modes of working (especially if tasks are to performed asyn-
chronously). In this way, the orchestration presented here reflects what Kobbe et al.
refer to as “script mechanisms” as opposed to “script components” (which encompass
for instance the learning activities) [137].

• The mechanism is flexible with regard to exceptions as scripted “decisions” are made
for individual students. Consider for example a course in which a student needs

26 CHAPTER 4. TECHNOLOGY-ENHANCED FORMATS

longer for a task than provided, and that the teacher grants a delay. In a phase-based
approach, the “working phase” for that student would be extended, getting it of sync
with the rest of the course. This might be undesirable because phases are arguably
understood as guidances for complete courses, and it can be difficult to assess how
future phases will be influenced by that decision. In an artefact-based approach, the
realization of exceptions seems easier, as it requires simply changing one deadline.
Also, it can be inferred directly from the script which depending assignments will
be influenced by that decision (if the assignment allocations are not or not entirely
based upon learning analytics). Another example of exceptions are failed assignments.
Students might not meet deadlines (and a delay may be impossible to grant), leave
the course, or fail for other reasons. The simple solution implemented here is that a
failed assignment cannot lead to consecutive assignments (because no artefact was
produced on which the next assignments would rely). While the unpredictability of
classrooms is mentioned in the orchestration literature [215] and flexibility is praised
in the CSCS literature [68], generic solutions to automatically react to such exceptions
are (to the author’s best knowledge) missing.

Note that scripts would need to halt over long periods of time while waiting for assignments
to be completed. In order to prevent the software from blocking and to maintain code-
readability, a mechanism similar to the “crash-and-rerun” model introduced by Little et al.
in [149] was implemented. This model involves re-running a script several times until it
completes, while relying on memoization: Tasks are only allocated if they have never been
allocated before, with stored responses being used otherwise.

Scripts are executed in the following manner: The first assignment of a script (in the above
example providing the solution for an exercise problem) is retrieved from the database. If
the assignment failed or is not yet completed, nothing is done (the script evaluation crashes
after step one). If the assignment as been completed (the student provided a solution), the
next assignment in the script (the task to review the solution) is either retrieved from the
database or assigned and stored if it did not yet exist. If it already existed and failed, or was
not yet completed, nothing happens (the script crashes after step two). If it was completed,
the next assignment is considered and so on. A script is then executed at regular intervals,
either generating new assignments, crashing at the first failed or running assignment, or
stopping at the script’s last assignment.

This approach and the implemented API allow specifying orchestration scripts in a declara-
tive manner. Listing 4.1 shows a simplified version of the homework-review orchestration
script used in Sections 4.2 and 4.4. The orchestration component is implemented in the
programming language Scala3, and takes advantage of Scala’s for-comprehensions4 to run
orchestration scripts. The current implementation also allows splitting execution chains,
if more than one assignment should be assigned in parallel (for instance if more than one
reviewer should review a solution as used in Section 4.4).

3https://scala-lang.org
4https://docs.scala-lang.org/tour/for-comprehensions.html

https://scala-lang.org
https://docs.scala-lang.org/tour/for-comprehensions.html

4.1. SOFTWARE COMPONENTS AND FUNCTIONALITIES 27

Listing 4.1: An orchestration script defining homework and review tasks. “solution” and “review”
refer to the artefacts produced by the regarding tasks, “taskToReview” is a method generating a review
task, and “informAboutReview” is a method sending a notifaction to the reviewed student.

//for all homework assignments a and a teacher t in the project
for {

solution <- a
review <- taskToReview(solution, t)

} yield {
informAboutReview(...)

}

Note that, while modelling individual students as actors receiving assignments, this ap-
proach does explicitly include collaborative teaching formats: Review tasks can be assigned
to peers instead of teachers (realizing peer review), and an assignment can encompass
starting or joining a project with a number of peers (the artefact of this assignment being a
project) which can be used to orchestrate group work.

As a last note on the orchestration component, consider the scalability of orchestration
scripts defined in that manner. Many CSCSs in the literature include group formations
with specific group sizes: Groups of 4 in the “Concept Grid script” [66], groups of 2 in
the “MURDER script” [137], fixed group sizes determined by the course content in the
“jigsaw script” [9]. The definitions of these scripts do not specify how groups should be
formed if the number of students is not divisible by the specified group size, presumably
because they are usually enacted in relatively small classes where workarounds can be
found by the teacher “on the fly”. For large classes of several hundred students, teachers
could not possibly provide such solutions easily. When specifying an orchestration script
as introduced above, the programmer would need to implement a certain flexibility in the
group formation process (which can be realized with standard programming techniques),
making it then scalable to arbitrary large classes. Dillenbourg identified a loss of flexibility
as the main drawback of “computerized” scripts [66]. It might be added that flexibility has
to be a property of a “computerized” script, the specification and implementation of which
requires a suitable mechanism.

Eco-system and service architecture. Backstage 2 / Projects is a part of a larger eco-system
and uses other software (both user interface components and web services) to provide its
functionalities. Figure 4.5 illustrates the software components of the eco-system that are
relevant for this report. All the displayed components, apart from the authentication service,
were implemented either by computer science students in their bachelor or master theses,
by Sebastian Mader who is currently working on the Backstage 2 research project, or by the
author of this report.

There are three web-services on which the Backstage 2 / Projects relies: Firstly the service to
create, read, update and delete (CRUD) documents of the platform, also providing document
versioning which allows restoring previous versions of a document. Secondly, an instance
of the open-source software keycloak5 which manages authentication, login and logout as
well as general user data. Thirdly, the web service “CoCoNut” (standing for concurrent
code compile unit) is used to provide code compilation functionalities of code documents
discussed above. The design of CoCoNut is introduced in the Elisabeth Lempa’s bachelor
thesis “Coconut 2: Concurrently Virtualising User Code Compilation” [146]. The teaching
formats discussed in Section 4.4 and 4.5 largely rely on the use of this service.

5https://www.keycloak.org/

https://www.keycloak.org/

28 CHAPTER 4. TECHNOLOGY-ENHANCED FORMATS

Projects

Learning Analytics

Orchestration

Documents
document CRUD

CoCoNut
code compilation

Authentication
login, etc.

Backstage 2 / Projects

project main page

Documents

Analytics

...

Vizard
data vizualisation

Knoala
code editor

uses

http request

Back-end
Front-end

Figure 4.5: Service architecture of the Backstage 2. Front-end components (that can be displayed in a
browser) are shown in the lower half, Back-end components (web-servers) are displayed in the upper
half.

Two different front-end components are used throughout the application. Vizard is a
software that is used for data visualization, for instance to display Learning Analytics, and
Knoala (standing for Knowledgeable Other for Abstract Languages) is a text editor which is
used to create and comment on documents on the platform, as well as providing the user
interface for code compilation.

A big, yet unmentioned, component of the eco-system is called “Backstage 2 Courses”: it
is developed by Sebastian Mader [155] and is focussed mainly on synchronous teaching
methods for large classes. While the scope of research of both systems is different, they
share resources (such as the same webservices).

The following sections describe learning formats that can be built from the components.

4.2 Teacher Collaboration on Written Feedback

This learning and teaching format aims to improve teacher-written feedback while reducing
the teachers’ workload. The format was evaluated in a case study conducted in a course
on theoretical computer science, the results of which can be found in [104]. This section
summarizes the findings which regard student and teacher attitudes towards the format,
while also discussing the pedagogical reasoning and perspectives for improvement.

Format definition. The teaching format uses the platform’s assignments and orchestration
mechanism to organize both homework delivered by students and homework correction
performed by teachers. Assignments on different topics are grouped into subprojects
which are used to schedule (typically weekly) homework assignments. The exercise texts,
additional material, and the students’ submissions are all represented as documents in the
respective subprojects. Document comments can be used by students and teachers to discuss
the teaching material, and by teachers to provide feedback on homework submissions.

4.2. TEACHER COLLABORATION ON WRITTEN FEEDBACK 29

Note that this layout allows to break the often criticized one-sided nature of feedback (see
for instance [171]), as students can comment on the comments they received. An evaluation
of this use can be found in Section 6.2, as it is not specific to this teaching format.

The format tries to reduce teachers’ workload by allowing them to create notes about
prevalent errors and misconceptions while revising homework, attach these notes to student
submissions as feedback, reuse them for all submissions they revise, and (of course) share
these notes with other teachers.

It is consistent with the platform design to store descriptions of misconceptions as docu-
ments: This allows their improvement over time, reusing them in future course venues,
and allows students to publicly post questions about the presented error descriptions. As
mentioned earlier, these documents are referred to as labels, and all labels of a project are
part of a review assignment’s context (depicted in Figure 4.3 in the previous section).

For the case study reported in the following, systematic errors which occurred in a previous
course venue were known. This allowed providing the regarding label documents alongside
the exercises as additional course material. This is referred to as a priori use as students
could use descriptions of typical errors before submitting homework, while using labels to
give feedback is referred to as a posteriori use. Students were more likely to avoid certain
errors due to the a priori provision, an effect discussed in further detail in Section 6.1
and in [104]. Commonly, university courses are held at regular intervals (e.g. each year),
encompassing similar exercises and materials. Therefore, providing students with common
error descriptions from previous venues a priori is regarded as a part of this teaching format.

Note that the “intended” use of labels was to identify common errors and misconceptions,
yet they are not restricted to that use. Indeed, they can be used for praise or for assessment
(see Section 4.3), which motivates the generic term “label” used on the platform. In the
format, teachers categorize student submissions while, at the same time, devising the
categorization scheme (the most common errors). This collection of error descriptions, along
with numbers of error occurrences, can provide valuable insights for teachers. It elicits which
misconceptions remained after a lesson (or presumably were introduced by it), and may be
used to test whether a new teaching method prevents misconceptions from occurring.

Preliminary results: Labelling validity. In a first evaluation, error occurrence rates were
measured by examining homework submissions of a course on theoretical computer science.
Figure 4.6 shows the results of evaluating 57 students’ homework submitted in the second
week of that course. Of 57 students, 46 made at least one error, with the most prevalent error
occurring 27 times. The error distribution follows a power law: The four most prevalent
errors constitute 47% of all errors found in the evaluated submissions, while about two-thirds
of all errors occurred only once or twice.

This means that a software having stored descriptions of the four most common errors for
these exercises could be useful in about half of all homework revisions.

A second validation was conducted to establish whether different teachers would be able to
detect the same set of systematic errors in the same submissions when being provided with
error descriptions (otherwise collaboration would be futile because different teachers would
use error descriptions differently). Two measures were taken: Firstly, two teachers of the
course were asked to record over four weeks the most common errors or misconceptions they
found when revising exercises. Even though it was not specified how many misconceptions
to record, both choose to report about 2 or 3 misconceptions per week. In two of the
four weeks, the teachers agreed completely (set aside differences in phrasing), and in one
week one teacher reported one misconception more than the other. Secondly, four other
teachers were provided with descriptions of misconceptions previously gathered and asked
to independently label a set of 20 homework submissions.

30 CHAPTER 4. TECHNOLOGY-ENHANCED FORMATS

Figure 4.6: Distribution of systematic errors for the exercises of the second week of a course on
theoretical computer science. One bar presents the occurrence frequency of one specific error. Figure
adapted from [156]

To measure the inter-rater reliability the Fleiss-κ metric was used, which yielded an aver-
age value of 0.70 (which can regarded as a “substantial” agreement [143]) for all labelled
misconceptions.

Case study results: Attitudes. The format was used in an introductory computer science
course on the theory of computer science in the summer semester of 2018 at the author’s
university. The course lasted 14 weeks and encompassed 11 weekly homework assignments,
each consisting of 3 to 4 exercises. The course’s staff consisted of a professor, a teaching
assistant, and 5 student tutors.

After the course had ended, students were asked to take an online survey on the course
format in general, and the use of labels in particular. They were asked to indicate on a
6-point Likert scale ranging from “not at all” to “absolutely” whether they found the labels
provided with the exercises helpful for their learning, whether they would be interested in
knowing if peers made the same mistakes as they did, and if they found the labels helpful
when received as feedback. The answers to these questions where somewhat ambiguous, as
depicted in Figure 4.7 (left): Students found the a priori use more helpful than not, and the
a posteriori use a bit less helpful. Answers regarding the interest of students in the errors
made by their peers showed a large variance.

In an open item question for general remarks, some students praised the additional material
provided by the labels.

In the questionnaire, students also indicated whether they used labels a priori while carrying
out homework and whether they perceived personalized feedback as more or less helpful
than feedback provided with labels. The results can be seen in Figure 4.7 (right): Most
students who used labels a priori found both modes of feedback equally helpful, while most
students who did not use them a priori perceived them as less helpful than personalized
feedback. It has to be noted that the teachers in the course choose nearly always to provide
an additional comment when attaching a label to a submission, often indicating that the
error described in the label might be of concern for them.

Three of the four teachers of the course who had been using the labelling function for 11
weeks participated in a survey on their attitudes towards the system. They indicated that
the functionalities reduced their workload and they found it helpful for revising homework.
They also indicated that they would like to use such a system in the future and would share
the systematic errors they found with other teachers.

4.2. TEACHER COLLABORATION ON WRITTEN FEEDBACK 31

Figure 4.7: Left: Attitudes towards a priori and a posteriori use of labels. Right: Perceived helpfulness
in comparison to personalized feedback and whether labels were used a priori. Figure adapted from
[104].

Discussion and perspectives. It can be concluded that the format reaches its goals: Teachers
reported the functionalities to be helpful, and the students were more or less ambivalent
towards “labels as feedback” and a bit more favourable towards using labels as extra
material while carrying out homework. Hence, the format introduces no negative aspects
for the learners, while being positive for the teachers.

Though, it is unclear whether the format improved the feedback provided on the platform.
Possibly, having the labels at hand encouraged the teachers to generally prefer labels over
personalized comments which could have been more appropriate. On the other hand,
compiling a set of common error descriptions and corrections in a text file, and pasting them
as feedback when suitable, seems to be a common practice (at least at the author’s faculty).
With this regard, the reduced helpfulness of label-feedback perceived by certain students
may be an illusion: What students perceive as “personalized” may just have been pasted
from another text document.

It was found that students preferring personalized feedback over labels also did not use
the labels a priori for their learning. Presumably, these students could not draw much help
from the labels in either way, which seems related to the “feedback gap” discussed earlier.
Note that this effect is believed to be (in part) caused by reduced academic literacy. This
gives rise to an interesting software-based intervention: Software can detect whether a label
document was examined by a student, or whether they deliberately avoid such documents.
Additionally, students could be automatically asked if the content of such documents was
comprehensible or useful for them. A teacher revising homework of a student who is known
not to benefit from “label-feedback” could be advised to refrain from using labels for that
student, to provide feedback in greater detail, or to seek direct contact with the student.

It has to be noted that this teaching format may not be applicable in all courses. Firstly,
the subject matter might simply not cause systematic errors. Secondly, the occurrence
distribution of errors is important for the format to work properly. Consider a previously
unknown error which occurs in 15% of all submissions (which is among the highest rates
of error occurrences found in the dataset) and that a teacher would need to encounter 3
instances of that error to classify it as systematic. Assuming a binary distribution of error
occurrence (i.e. the submissions are not sorted by the errors they contain), it can be shown
that at least 34 homework submissions have to be corrected by the teacher to be 90% sure
to identify this error as systematic (respectively 52 submissions if the error occurs in 10%
of all submissions). Hence this number of submissions has to be reached for the system to
provide a benefit. While this may not seem like much, certain courses evaluated for this
report did not meet this criterion (see the next section for an example).

32 CHAPTER 4. TECHNOLOGY-ENHANCED FORMATS

An interesting perspective of this teaching format is its long-term use: In the evaluated case
study, the label documents often contained mere error descriptions and explanations on how
to correct these errors. In the future, further material could be added both by teachers and
students: Counterexamples and worked examples of similar problems, links to additional
material or exercises and so on. Also, such improvements could be guided to address
material on the most prevalent errors first, as they will arguably have the greatest impact.

As a final remark on the perspectives of this teaching format, consider the following anec-
dote, which illustrates certain subtleties of teaching: In one venue (used to initially collect
systematic errors and occurrence rates) a systematic error in the field of formal grammars
was identified. Students were tasked to create a formal grammar describing a specified
formal language. Many students submitted an unnecessarily complicated grammar using
the Chomsky normal form6. This is not an error inherently, but nearly all students who tried
to provide the grammar in normal form failed (presumably, because this form is not easy to
master). In the subsequent venue (used to test whether the same systematic errors would
reoccur), this error did not occur once. This was surprising, yet an explanation was easily
found: In the first venue, the exercise introducing the normal form was provided alongside
the exercise producing the error. In the second venue, the two exercises were given in sub-
sequent weeks, due to organizational differences in the schedules. It is quite possible that
many students were primed by the “normal form” exercise and used it unnecessarily in the
other exercise. There are several effects known in the learning psychology literature which
could explain this phenomenon: Namely priming [255] (exposition to a concept influences
the responses towards a subsequently exposed concept) or retroactive inhibition [77, p.234
ff.] (learning of a new technique may inhibit the use of previously learned techniques). It
was not the goal of this research to detect such effects, nor to reduce the occurrence of this
particular error, yet its accidental observation is more than a curious side note: It exposes a
direct effect of a teaching decision, and teaching formats which exploit teacher collaboration
combined with statistical analysis might bring more such effects to light.

4.3 Analytics-based Nudging

Student passivity and class absenteeism are often mentioned in the literature on large class
tertiary education [169, 253, 221, 214]. Related to these issues is insufficient homework com-
pletion, which can be regarded as a form of passivity. In evaluating homework completion
rates at the author’s faculty, it was found that students tend to continue skipping homework
assignments after having skipped once (see Section 5.1 for figures on this observation). This
relates passivity to course dropout: It is questionable whether a student neither attending a
course’s classes or other course-related venues nor submitting homework can be regarded
as “taking the course”. Indeed, in the literature on MOOCs (Massive Open Online Courses),
where the problem of low course completion is often discussed [37, 263, 136, 132], dropout
is commonly defined as “longer periods of inactivity” or as “discontinued participation”.

The teaching format introduced in this section addresses the problem of low homework com-
pletion, which is less often discussed in the literature than passivity and class absenteeism.
This under-representation might result from the difficulty to compare homework completion
rates between courses, as they are influenced by course arrangements: If homework is com-
pulsory or directly contributes to a course’s final grade, completion rates can be expected to
be higher than in a course with voluntary homework submission. By comparing different
introductory computer science courses, Edgcomb et al. found homework completion rates

6The Wikipedia article defining the Chomsky normal form: https://en.wikipedia.org/wiki/Chomsky_
normal_form, retrieved October 10th 2019

https://en.wikipedia.org/wiki/Chomsky_normal_form
https://en.wikipedia.org/wiki/Chomsky_normal_form

4.3. ANALYTICS-BASED NUDGING 33

Figure 4.8: Development of homework completion rates for two computer science coures. Left: Theory
of Computer Science in 2016 (TCS-2016) dropping from 49% to 21% completed homework assignments.
Right: Logic and Discrete Structures in 2018 (LDM-2018) dropping from 11% to below 1% completed
homework assignments. Note that in TCS-2016, homework completion was rewarded with up to 11%
of the final grade, in LDM-2018 no rewards were given.

to vary as a function of grade points awarded for completing homework, with completion
rates ranging from about 40% (in courses without compensation for homework) to near
100% (in a course awarding up to 30 of 100 available grade points) [75].

Figure 4.8 illustrates the development of homework completion rates throughout two com-
puter science courses at the author’s faculty: An introduction to theoretical computer science
in 2016 (TCS) where each student’s final grade was increased by 1% for each submitted
homework, and a course on logic and discrete structures (LDM) in 2018, where no bonus
was given. While completion rates in both courses differ largely in magnitude (TCS starting
with 51% of homework being submitted in the first week, and LDM starting with 10%), a
strong decrease in numbers of homework submissions can be easily identified throughout
both courses.

The teaching format tries to increase homework completion rates by nudging the learners
with individual predictions of their anticipated examination performances and risks of
skipping (i.e., not handing in) their next assignments, to improve self-regulation and self-
efficacy7 which are known to positively influence homework completion [135, 19].

A “nudge” is defined by Thaler and Sunstein as “any aspect of the choice architecture
that alters people’s behaviour in a predictable way without forbidding any options” [239,
p. 6], where “choice architecture” refers to the available options and their presentation to
a choosing person. In education, nudges often take the form of deadlines, reminders, and
“informational nudges” which aim to present important information in a salient way [57].
Interestingly, informational nudges, of which the nudging presented in the following is an
example, are reported to have both positive and negative effects on task completion [57].

This teaching format encompasses sending automatically personalized emails to a course’s
students, a practice which has already been evaluated in the literature: Arnold et al. in-
creased retention by informing students about their learning progress using a traffic light
visualisation [8], and Lim et al. report an increased achievement and changes in learning pat-
terns (related to Self-regulated Learning) for students who received personalized feedback
emails from the OnTask8 system [147].

7Self-efficacy refers to the personal judgement of “how well one can execute courses of action required to deal
with prospective situations”[14].

8https://www.ontasklearning.org/

https://www.ontasklearning.org/

34 CHAPTER 4. TECHNOLOGY-ENHANCED FORMATS

This section summarizes and extends the research presented in [106]. Results regarding
changes of behaviour are discussed in greater detail in section 6.2, details on the implemen-
tation and the quality of the predictive Learning Analytics used in this course format are
provided in Section 5.1 and Section 5.2.

Format definition. As in the format defined Section 4.2, assignments are used for weekly
homework as well as to organize teacher reviews. Subprojects are used to group assignments,
submissions and discussions on the several topics of a course.

Similar to the teaching format described in the last section, teachers use labels to categorize
assignments. Yet, instead of using labels to organize and collaborate on descriptions of
systematic errors, labels in this format are used to provide three assessment categories:

• IK, for insufficient knowledge, reflected by an incorrect use of symbols, statements
like “I don’t know how to solve this”, or an answer not fitting the question, requiring
the student to re-learn parts of the course.

• OE, for other errors, that is, errors not due to insufficient knowledge.

• NE, for no errors, otherwise.

A label document representing a category can contain additional information: For instance,
an IK-label might list teaching material necessary for the completion of this topic’s exercises,
while an NE-label might provide material for further reading.

Sequences of categorized homework assignments are compiled for each of the course’s stu-
dents (encompassing an additional category SKIP, for skipped assignments). The software
uses these sequences to compute predictions of examination results and risks of skipping
the upcoming assignments, both represented by a number between zero and one. These
predictions are then presented in two ways: Firstly, the predicted values are displayed in
each students’ analytics page (as seen in Figure 4.4) alongside changes in predictions since
the most recent computation. Secondly, so-called “analytics reports” are sent regularly to all
students of a course via e-mail. An example of such a report can be seen in Listing 4.2. It
consists of three paragraphs which are adapted to the students’ current predictions: The
first paragraph reports the current examination fitness prediction and its change since the
last computation. The second paragraph is only included if the student has, according to
the analytics, a high risk of skipping and reports an estimated benefit of handing in the
next assignment on the examination outcome. The third paragraph concludes the report
with contact data of the course’s teachers and instructions on how to unsubscribe analytics
reports.

While the course is carried out, students provide (or choose not to provide) homework,
which is then categorized by the teachers of the course. This categorization is similar to
a grading (with three possible grades), which is a common task for teachers. Therefore,
it can be argued that realizing this teaching format does not require much extra work
form the course’s teachers. The analytics used in this teaching format are based on the
teachers’ assessments – but these are not provided directly after the students handed in
their assignments (teachers need time to make the assessments). This might seem counter-
intuitive to the students, as personal predictions would change only when the teacher hands
in their review. To make the system more responsive, unassessed submissions are counted as
OE (other error), which is (in the data examined) by far the largest category of submissions.
In this way, predictions change as students hand in homework submissions – yielding, for
instance, higher examination fitness predictions.

4.3. ANALYTICS-BASED NUDGING 35

Listing 4.2: Exemplary analytics report.

Dear <username>,

based on your previous assignments, we estimate your examination
fitness to be at 51%. This is 2% lower than our last estimation (
computed Tuesday the 11. of June). Please consider revising your
previous assignments.

You seem to have skipped one or several of your last assignments.
Consider that submitting your current assignments would increase
your estimated examination grade to 53%.

If you have problems with your assignments or further questions,
don’t hesitate to contact one of your tutors:
...
If you don’t want to receive any further analytics reports, you
can disable them in your personal options found at: <projecturl>/
options
Greetings and happy studying.

The predictors used in this teaching format depend on training data, which influence
the predictor’s properties. For instance, with the training data used for the experimental
evaluation, skipping assignments and IK-assessments (insufficient knowledge) had negative
effects on the examination fitness prediction (1.8% and 0.8 % respectively), while assessments
of OE (other error) and NE (no error) had positive effects (of 0.7% and 0.3% respectively).
Section 5.2 discusses these properties in greater detail. These values reflect the training data
and seem reasonable: Skipping homework or making severe errors reduces the predicted
examination outcome while making not-so-severe errors or no errors at all improves the
prediction. Yet, with other courses, using different training data (possibly resulting in
different predictions) might be more appropriate.

Note that using labels for quality assessment as presented above and for assessing sys-
tematic errors as described in the last section can be realized in the same course: In their
current implementation, labels can represent a assessment category (for instance IK), and
a systematic error (in this case caused by insufficient knowledge) at once. Teachers can
even decide whether a systematic error belongs to a certain assessment category after the
student submissions have been labelled, which would then change the currently computed
predictions.

Results: Attitudes towards predictive analytics. The first evaluation of this course format
was conducted in a bachelor degree computer science course on theoretical computer
science in 2018.9 At the time of that evaluation, the software did not provide analytics
reports via e-mail, and the personal predictions visible to the students only included the
current prediction, without indicating changes since the last estimation.

Nevertheless, students visited their personal analytics throughout the semester with notable
peaks in visits at the beginning of the course and in the last weeks, which is illustrated in
Figure 4.9. In average, students visited their personal analytics about once per week (median
interval in days: 6.9, first quartile 2.7, third quartile 12.4), which was the interval with which
predictions did change.

Student attitudes were measured in a survey at the end of the semester. Students indicated

9TCS-2018 see Apendix A.

36 CHAPTER 4. TECHNOLOGY-ENHANCED FORMATS

Figure 4.9: Frequencies of visits of the personal skipping and examination fitness predictions, through-
out the courses duration. Notable peaks of activity are visible for the start and the end of the course.

for both the skipping and the examination fitness predictions whether these predictions
motivated them to learn more, whether they were interesting, discouraging, helpful, or
motivated them to hand in the next assignments on a six-point Likert scale ranging from “not
at all” to “absolutely”. The results can be seen in Figure 4.10. In general, it can be concluded
that students did find the displayed predictions moderately interesting, yet not particularly
encouraging or discouraging (while the skipping predictor seems to be perceived as a bit
more discouraging, than the examination fitness predictor).

Attitudes towards analytics reports. A second case study was conducted in a course on
logic and discrete mathematics in 2019 (LDM-2019 described in Appendix A). For this
case study, the software was extended to send analytics reports and to indicate changes of
predictions along with the personal predictions. About 10% of the students chose to disable
their analytics reports, with none of them handing in a single assignment.

Figure 4.10: Attitudes towards predictions. Left: Skipping predictions. Right: Examination fitness
predictions.

4.3. ANALYTICS-BASED NUDGING 37

In a final survey, students indicated whether the reports encouraged or discouraged them, or
if they were indifferent towards the reports. Two-thirds of the students indicated indifference,
with the rest of the students equally often indicating encouragement and discouragement.
In a open item question, students stated general remarks towards the reports, which one
student used to indicate his discouragement: “After the first 6 weeks of the semester, I had a
score only 2 per cent better than my friends, even though I had submitted every exercise so
far and my friends none. It was very discouraging to see that doing these exercises didn’t
improve my chance of passing the exam.” While this observation could not be reproduced by
testing the software, even perceiving such a software behaviour is undoubtedly discouraging.

Students were also asked to indicate reasons for not submitting homework. The given
reasons included a lack of incentives like bonus points, specifically focussing on homework
for other courses that provide incentives, and doing the homework but not uploading them
because no feedback was deemed necessary. Also, technical problems and a confusing user
interface were mentioned several times. Interestingly, students did not complain about
problems with the same user interface in the case study conducted in TCS-2018 (where
bonus points were awarded for delivering homework).

Discussion and perspectives. All in all, the results regarding the student attitudes towards
analytics-based nudging are sobering, as they range from annoyance to ignorance with a
minority of students being encouraged or motivated by the software. On the other hand,
students found the provided analytics interesting, a finding which is underpinned by
statistics illustrating that students frequently retrieved their personal predictions.

Arnold et al. report higher retention and generally positive attitudes of students being
nudged with e-mail reports similar to those described above [8]. Yet, many students
perceived the e-mails generated by the system described by Arnold et al. as personal
communication with their instructor – which it was not (initially) as they were completely
computer-generated. While it can be argued that students would feel more encouraged by
analytics reports feigning human correspondence, this approach was well knowingly not
chosen for Backstage 2 / Projects. It is the author’s conviction that students should know if
they were nudged by a person or by software. An interesting perspective on that problem is
provided by the OnTask system, which lets teachers compose message templates specifying
which text passages are to be included under which conditions (e.g. including nudging
passages on if the student did not yet access certain learning materials) [183]. In this way,
teachers could choose inform learners about this analytics-driven message personalization.

Some students reported problems with the software as reasons for not submitting homework.
Remarkably, these comments were only made by participants of the course where no bonus
points for homework were granted. In the courses with bonus points, no such problems
were reported in the final surveys, while, in a handful of occasions, students decided to
contact the teaching staff during the course and asked how they could submit homework.
This observation is important when considering a further evaluation of the software (or
similar software such as online homework systems): Maybe the bonus points incentivised
students to accustom themselves to an unfamiliar software, where the non-incentivised
students could not be bothered to do so. However, students reporting not submitting
homework due to software inconveniences may suffer from a self-serving bias [162] and
systematically overemphasise external reasons for skipping homework (unhandy software)
while underemphasizing internal reasons (such as lack of motivation).

38 CHAPTER 4. TECHNOLOGY-ENHANCED FORMATS

4.4 Peer Teaching

This teaching format results from the obligation at the author’s faculty to conduct exam-
inations for bachelor degree computer science courses twice a year and in each semester.
While this regulation is sensible as it prevents students from having to wait long periods to
take an examination (possibly completing their course of study), this regulation also poses
organizational problems for the teaching staff who can offer courses only once per year.
The teaching format described in the following tries to alleviate this problem by requiring
minimal teacher intervention and relying on orchestrated peer teaching.

Peer teaching is defined by Goldschmid as any form of instruction where learners teach
each other [95]. Among the benefits of peer teaching are improved teamwork abilities and
social skills among learners [225] and increased comprehension of the subject matter for
both student teachers and learners [20, 21].

The format described in this section orchestrates peer review, which is a form of peer teaching
defined as a “reciprocal process whereby students produce feedback reviews on the work
of peers and receive feedback reviews from peers on their own work”[172]. The efficiency
of peer review for learning has been established in several meta-analyses [69, 83, 241], and,
similar to peer teaching in general, positive effects of both reviewing other learners and
being reviewed by other learners have been reported in the literature [42, 172, 153]. Note
that, in the literature, peer review is often discussed as part of a teaching format which also
encompasses face-to-face meetings with the teacher. In the format described in this section,
this is not the case: No face-to-face teaching was conducted in this course.

The results presented in this section were initially published in [108], an extension of which
can be found in [107].

Format definition. As in the teaching format discussed in the last sections, subprojects of a
general course project are used to organize material and exercises on different topics, where
a new topic is introduced every week. In this way, students are provided each week with
lecture material covering a topic and homework assignments requiring the application of
the newly acquired knowledge. After having handed in their homework, each student is
tasked to review submissions of two other students. Students have a week each to deliver
homework and to deliver peer reviews, which leads to an interleaved schedule:

1. At the beginning of the first week of a topic, course material and corresponding
homework assignments on the topic are published. Students are tasked to deliver
homework within that week.

2. At the beginning of the second week of a topic, each student is tasked to review the
homework of two other students. They are tasked to deliver their reviews within that
week.

3. At the beginning of a topic’s third week, exemplary solutions for the homework
assignments are published. Students are tasked to correct their assignments by using
the received reviews and exemplary solutions. Note that a self-correction of homework
in that manner is regarded to have beneficial effects on learning [203]. No deadline is
given for performing self-correction.

Note that this schedule realizes a form of spaced instruction (requiring students to reconsider
a topic regularly), which is known to be beneficial for learning [227].

To realize this schedule, an adapted form of the homework-delivery-review script given in
Listing 4.1 was used, choosing students instead of teachers as reviewers and generating two
(instead of one) review assignment for each completed homework. Student participation

4.4. PEER TEACHING 39

Figure 4.11: Participation development throughout the course. Left: Development of the number of
participating students. Right: Comparison of delivered homework assignments and delivered reviews.
Figure adapted from [107]

both in delivering homework and in providing reviews is crucial for the operation of this
teaching format, as the goal is to enable learning by both giving and receiving feedback. To
ensure participation, reminder emails are sent after two consecutive missed assignments
(not regarding whether homework or review assignments were missed), and students are
excluded from the course after having missed three consecutive assignments.

Results: Participation and student competence. The teaching format was used in an in-
troductory computer science course on functional programming using the programming
language Haskell (see FP-2017-p in Appendix A). The course lasted 13 weeks from October
2017 to January 2018 and counted 45 students. In total, 27 homework assignments covering
11 topics could be worked out by the students according to the review scheme described
above. Topics were covered by two or three exercises each.

Throughout the course, student participation declined, and students were excluded from the
course as a consequence of the exclusion rule. Figure 4.11 illustrates this development. Note
that far fewer review assignments were completed than homework assignments (while each
delivered homework led to the creation of two review assignments). In total 316 homework
submissions and 147 reviews were delivered, which means that less than half of all delivered
homework was reviewed. The distribution of reviews given in the course followed a long
tail distribution, with 18 of the 45 students giving 90% of the reviews. A more detailed
description of student participation is given in [107].

Students were asked in a final survey whether they dropped out of the course, and if so,
why. Of the 18 responses gathered in the survey, the most prevalent reasons for dropout
were time constraints and other courses, and lack of motivation due to missing feedback.

Both the homework and reviews delivered by the students varied largely in quality. To
assess the review quality, two teachers categorized all reviews given in the course after the
course’s end. A review is hereby counted as “correct” if it either correctly points out errors
in a submission or correctly assesses its correctness. Accordingly, a review is “incorrect” if it
fails to point out errors, or points out errors that are not present in the reviewed submission.
This definition led to the following categorization:

• +FF : “false correctly reported by the reviewer as false”, accounting for 25% of the
reviews.

• -FC : “false wrongly reported by the reviewer as correct”, 22% of the reviews

• +CC :“correct correctly reported by the reviewer as correct”, 47% of the reviews

• -CF : “correct wrongly reported by the reviewer as false”, 6% of the reviews.

40 CHAPTER 4. TECHNOLOGY-ENHANCED FORMATS

Figure 4.12: Left: Absolute numbers of code submissions in the respecting categories. Right: Perceived
helpfulness of provided material, unit tests, and online compilation functionalities.

Frequencies of +FF and +CC significantly correlated positively (Pearson’s r = 0.44, p < 0.05),
and frequencies of +FF and -FC significantly correlated negatively (Pearson’s r = −0.45,
p < 0.05). In other words: Students who were able to correctly identify errors were also able
to correctly identify the correctness, as well as being less susceptible to making assessment
errors. This motivates the definition of a student’s review quality score: The difference of a
student’s relative frequency of correct assessments (+FF and +CC) and incorrect assessments
(-FC and -CF). To assess the homework quality, an automated procedure relying on the
compilation service of the software (see Section 4.1) was used.

Homework submissions were automatically categorized according to the following scheme:

• “wrong format”: For submissions that contained no code (such as PDF files), encom-
passing 15% of the submissions.

• “compiling with errors”: For submission that could not be compiled (e.g., due to
syntax errors), 37% of the submissions.

• “failed unit tests”: For submissions that could be compiled and executed, but failed at
least one of the provided unit tests, 6% of the submissions

• “succeeding tests”: For submissions succeeding all tests, 42% of the submissions.

This categorization is only sensible for programming homework, which constituted 23 of
the 27 assignments. The quality of the remaining 5 non-programming assignments (usually
requiring some kind of argumentation) was not assessed. Figure 4.12 illustrates the category
sizes.

The students’ review quality scores correlated significantly with review participation (r = 0.4,
p < 0.05): Students giving the best reviews (in the sense of correctness), gave the most
reviews. Review participation, meanwhile, correlated significantly with coding proficiency,
calculated as the relative frequency of code submissions compiling without error (Pearson’s
r = 0.35, p < 0.01). In summary: Proficient students gave more reviews which were, on
average, of higher quality, than their less proficient peers.

Comparing examination results with student behaviour yielded mixed results: Students
participating in the course were not more successful in the final examination than students
preparing otherwise. Furthermore, examination success of course participants did not
correlate with the number of submitted homework, as it did in the “traditionally” conducted
course preceding this course. Figure 4.13 illustrates the difference in the relation of counts of
delivered homework on examination success for both courses: In the “traditional” course
there are few students delivering homework and having low grades, while many students

4.4. PEER TEACHING 41

Figure 4.13: Comparison of the relation of count of submitted exercises and examination performance.
Left: “traditional” relying on the teaching staff. Right: Peer teaching. Note that exercises on the left
are aggregated by week.

are delivering no homework and having high grades. In this “traditional” course, delivering
homework resulted in good grades, while good grades could also be achieved by students
delivering little or no homework. In the course relying solely on peer teaching, no such
implication can be seen. Yet, examination success in the peer taught course correlated with
the relative frequency of received reviews. It seems that feedback is the main contributor for
homework efficiency: In the preceding course, all homework was revised by the teaching
staff, while in the peer taught course, feedback was often missing, possibly resulting in
students generally not benefiting from their delivered homework. Not surprisingly, coding
proficiency correlated positively with student success in the peer taught course.

Results: Attitudes. In the final survey, students indicated that the provided material on the
platform and the provided unit tests accompanying the exercises were helpful (medians
5 and 4.5 on a 6-point Likert scale ranging from “not helpful at all” to “absolutely”). The
provided online compilation functionalities were perceived as less helpful (median 3.5 on
the same scale). Figure 4.12 illustrates these findings.

Notable are differences of perceived properties of given versus received peer reviews: Most
students indicated that the peer reviews they received were only sometimes helpful, and only
sometimes identified errors correctly (see Figure 4.14 left). On the other hand, students were
relatively confident that the reviews they gave were helpful for others (responses exhibited
a median of 4 on a 6 point Likert scale ranging from “not helpful at all” to “absolutely
helpful”).

Most of the students indicated that the process of giving reviews was helpful for their learning,
gave them new ideas and allowed them to compare their work with other solutions (see
Figure 4.14).

Discussion and perspective. The main problem of the peer teaching format identified by
the evaluation is low participation, resulting in few delivered peer reviews, which in turn
was reported to decrease motivation to participate. Further developments of this teaching
format would need to address this problem. Yet, the teaching format was already designed
with this problem in mind: Not participating led to the exclusion of students from the
course, and each homework was reviewed by two peers, a measure taken among others
to compensate for missing reviews. One can argue that the exclusion rule was not strict
enough and that reviewing could have been assigned to more than two students in parallel.

The 15 students who participated throughout the course (and did not drop out) skipped
about half of their assigned reviews (51%). Hence, if the course had started with only these

42 CHAPTER 4. TECHNOLOGY-ENHANCED FORMATS

Figure 4.14: Left: Beneficial properties of giving reviews. Right: Properties of the received peer
reviews.

15 (or if the others would have been excluded very early from the course), the policy of
letting two students review the same submission for redundancy could have worked out,
possibly providing a sufficiently large coverage of feedback to sustain participation.

Another measure for improvement would address feedback efficiency instead of feedback
coverage. The evaluation revealed that more proficient students gave more and better reviews.
By letting more proficient students review the less proficient and vice versa, feedback could
be more efficient: The less proficient would profit from more and better feedback, while the
more proficient would (hopefully) not be hindered too much by missing feedback. As the
proficiency was estimated automatically (by searching source code for errors, compilation
messages, and compliance to unit tests), this could be implemented without increasing the
workload of the teaching staff.

Interestingly, there are no reports in the literature of peer review quality being influenced by
the reviewer’s competence. The author proposes three explanations for this unusual result:
Firstly, the dataset available for evaluation is small, relying on only 45 students, and this
effect (while being significant to the 5% threshold) might result from noise. Secondly, there
are many interpretations of the term “peer review”, and the results may depend largely
on details of the implementation. Many authors include peer review in teaching formats
including face-to-face teaching sessions and others implement non-vocational peer review
[191]. Indeed, Pirttinen et al. reported that only the best students gave peer reviews in
a course on programming [191], which is a finding comparable to those presented above.
Thirdly, much of the literature on peer review is concerned with reviews on essays and
homework written in natural language (instead of programming homework reviewed
in this evaluation). Yet, there is a fundamental difference in reviewing, for instance, an
essay explaining the principle of recursion, and reviewing a program using recursion: When
reviewing an essay, the reviewer can assess (to a certain degree) its quality even without a
sufficient understanding of the topic. If the reviewer does not understand recursion, and
the essay does not convey that understanding (while it should!), they can assess the essay
as insufficiently comprehensible. When assessing the quality of a recursive program, on
the other hand, the reviewer needs to understand recursion, simply to assess whether the
reviewed program is indeed recursive (let alone assessing qualities such as termination,
correctness, and technique).

If this third explanation is (at least in part) correct, then orchestrating peer review needs to
be adapted in courses which heavily rely on formal languages or mathematical formalisms,
using the more proficient students (giving more higher-quality reviews more reliably) to
revise the work of the less proficient students. Also, further experimentation with the
teaching format could try to estimate a “tipping point” of participant composition: What

4.5. EXPLORATORY LEARNING OF FORMAL LANGUANGES 43

distribution of competence among the course participants is necessary to make the peer
teaching format sustainable?

To assess “proficiency” among the students, automated code categorization was used. These
results led to the implementation of a novel predictor, using automated code assessments to
predict “levels of competence” (for instance the ability to provide semantically correct code).
This predictor is described and evaluated in Section 5.4. A second case study, relying on the
same student-driven teaching format, was conducted in a course on discrete mathematics.
For this second case study, the orchestration script presented earlier was edited not to
choose review-reviewee pairs at random but to maximise the difference in their estimated
competence levels. Yet, the evaluation yielded no conclusive data due to the lack of student
involvement (which was lower from the beginning than in the case study presented above).

As a last remark, consider the social dimension of this course format which orchestrates peer
review as a starter for peer teaching. In the evaluated course, reviews were rarely commented
on by the reviewed students, which would indicate peer teaching in the form of a discussion.
Further improvements of this teaching format could involve emphasizing social aspects of
the software.

4.5 Exploratory Learning of Formal Languanges

Exploratory Learning is a pedagogical approach in which a learner “investigates a system
on their own initiative, often in pursuit of a real or artificial task” [210, p. 1]. Exploratory
learning found its first applications in the early 1980s in the field of software training, where
it was found that users could, and were willing to, learn to operate software applications
through exploration and discovery, and without formal training [39]. The related term
Discovery Learning is more common in the formal education literature and refers to “a type
of learning where learners construct their own knowledge by experimenting with a domain
and inferring rules from the results of these experiments” [245, p. 386]. Note that both terms
(Discovery Learning and Exploratory Learning) are sometimes used interchangeably [173].
Software is commonly used to realise exploratory learning by providing the learner with a
visualization of the conceptual space to be explored and tools for exploration, a so-called
microworld [182]. Microworlds have found numerous applications in different STEM fields,
examples of which are discussed in greater detail in Section 3.2.

Backstage 2 / Projects’ functionalities which aim to sustain the exploratory learning of
STEM’s formal languages are the code editor Knoala and the compilation and execution
service Coconut described in Section 4.1. As both components cannot be used separately by
the platform’s users, “using the compile and edit functionalities” is just referred to as “using
Knoala” in the following.

Knoala was used to sustain learning in all courses evaluated for this research. Learning the
theory of computer science was supported with simulators of Turing Machines and push
down automatons, evaluators for theoretical programming languages WHILE, LOOP and
GOTO, and functionalities to evaluate expressions of primitive recursion and µ-recursion.
Courses on logic and discrete structures were supported with functionalities to evaluate
expressions in predicate logic, with a scaffold easing the transformation of logic expressions
to clause normal form, and with a scaffold verifying proofs by structural induction. Courses
were also supported with “practical” programming languages such a Haskell compiler for
courses on functional programming.

Theoretical programming languages, simulators, and mathematical formalisms are like
“practical” programming languages (like Python or Java), as they follow a non-ambiguous

44 CHAPTER 4. TECHNOLOGY-ENHANCED FORMATS

Figure 4.15: Different interactions for different formal languages. Left: “checking” a transformation of
a logical expression into clause normal form. Right: “running” a Turing Machine simulator.

syntax which can be verified by software. Yet, these formalisms are used to prove mathe-
matical theorems, not to develop real-life applications: The programming language LOOP,
for instance, is used to explore which functions can be expressed by fixed-length loops.
Note that theoretical programming languages are “executed” or “run”, while mathematical
formalisms are “verified” by Knoala. This difference is represented by providing different
interactions available for different languages: The interactions of the Turing Machine simula-
tor are “run” and “stop” (See figure 4.15 right), the interaction provided for a transformation
of a logical expression into clause normal form is “check” (See figure 4.15 left).

Knoala was commonly used for delivering and assigning homework: If students were
tasked to provide homework requiring the use of a formal language, they could use Knoala
to test their solution. Also, the exercise text provided by the teachers sometimes contained
a partial solution for the students to complete. Further, worked examples and additional
material were often provided using Knoala. Even descriptions of systematic errors (see
Section 4.2) could be provided using a formal language (giving an example of the error), yet
this was not done in any course by the teaching staff.

While the support for formal languages is undoubtedly a versatile learning and teaching
tool, it is not a teaching format on its own. Yet, it is a ubiquitous part of the software which
was repeatedly used to accompany whole courses (such as the analytics-based nudging
presented in Section 4.3), and therefore student attitudes toward these functionalities and
several striking patterns of behaviour in its use are reported in this section. The presented
results are a summary of the results published in [105].

Software characterization. To the author’s best knowledge, “exploratory learning for for-
mal languages” is rarely discussed in the literature, or if so, only implicitly: Students learn
formal languages by specifying operation codes for simulated machines [251], or mini-
languages that steer simulated robots [32]. On the other hand, several studies explore tools
which scaffold the learning of mathematical formalisms, where the focus typically lies on
solving exercises, measured by a correct input: Entering a correct formula [124], a correct
numerical value [187, 91], or a correct single line of code [6]. These forms of exercises
have been shown to encourage trial and error behaviour, where learners try to produce a
correct solution by trying out different possibilities instead of reconsidering the problem
[187]. Also, this view of “using a formalism to solve an exercise” is quite narrow, because
mathematical formalisms can be used to generate new ideas through exploration, as argued
by Dubinsky: “it is not only possible, but a standard activity of mathematicians, to use

4.5. EXPLORATORY LEARNING OF FORMAL LANGUANGES 45

formalism to construct meaning and this can also be a source of mathematical ideas” [73,
p.1].

Consider for that matter the scaffold supporting the transformation of expressions in predi-
cate logic depicted in Figure 4.15. It can be regarded as an explorable microworld: There
are few very restrictive rules for manipulation (distributivity, commutativity, etc), the tool
is easy to use (if the user knows how to use a text editor), and it contains a minimal set of
objects that are subject of the exploration (the logical variables, and the expressions). Also,
this scaffold does not have to be used to construct clause normal forms, in fact, it just checks
whether all two consecutive lines contain equivalent logical expressions – it just displays a
special message if the last line is in clause normal form.

While many of the aforementioned tools use graphical user interfaces to represent parts of
the artefact produced by the learner as interactive elements (such as blocks or buttons)[33,
93, 233], this work focusses on text-based interfaces for several reasons:

• simplicity: Text documents can be easily exported from and imported to the software
without requiring a special encoding. Also, new documents containing, for instance,
an exercise description can be composed with the same software as the learner would
use to solve the exercise.

• commenting: It is common for programmers to interleave formal language (the source
code) with natural language (comments, which are not part of the formalism). Un-
doubtedly, commenting is useful for many educational purposes: Stating hints or
problems, leaving remarks, or simply to exclude parts of the work from interpre-
tation without having to delete them. Text-based formalisms usually support this
functionality by introducing symbols (which are not part of the formalism) that mark
all following symbols of that line as comment text, which an easy to use approach.

• extensibility: To support a new formalism, large parts of the same software (providing
the text editing functionalities) can be re-used. Note that implementing the “language-
specific” parts of the software can be achieved with techniques from programming
language design (relying for instance on parsers and parser generators and frameworks
for syntax highlighting).

Evaluated data. The evaluation presented in the following reports solely on the use of
theoretical programming languages and mathematical formalisms, not on“practical” pro-
gramming languages. This restriction was made for two reasons: Firstly, in this way, most (if
not all) of the students’ interactions with the provided languages could be observed. Most
students, especially the more proficient, would arguably prefer to edit, compile and run
programs in “practical” programming languages on their computers instead of relying on a
web application. Yet, the theoretical programming languages and formalisms evaluated in
the following were only available through Backstage 2 / Projects. Secondly, this restriction
ensures to observe many students’ first interactions with the examined languages. Many
students have previous experience with “practical” programming languages which could
bias the results.

The data presented in the following was gathered in two courses: A course on theoretical
computer science lasting from April 2018 to July 201910 attended by 433 students (of which
85 used Knoala at least once), and a course on logic and discrete mathematics11 lasting
from September 2018 to February 2019 attended by 42 students (of which 17 used Knoala at
least once). Throughout these courses, several formal languages were introduced, with the
following homework assignments requiring their use.

10TCS-2018, see Appendix A
11LDM-2018, see Appendix A

46 CHAPTER 4. TECHNOLOGY-ENHANCED FORMATS

Figure 4.16: Left: Activities of the Turing-machine simulator from introduction of the topic, two
homework deadlines to the final examination. Right: Examination success students, grouped by types
of activity.

Results: Patterns of use. Two phases of activities could be distinguished: An “exercise
phase” shortly before or after a formal language was introduced and homework had to be
delivered, and a “pre-examination phase” shortly before the final examination (see Figure
4.16 left). Students using Knoala in both phases or only in the first phase were significantly
more successful in the final examination (p < 0.05) than students using Knoala only shortly
before the examination or not at all (see Figure 4.16 right).

Similar to other activity counts reported in the previous sections, Knoala’s usage was
very unequally distributed: 35% of the students performed 90% of the absolute activity
(i.e. executed or automatically verified code), with only 39% of the students using Knoala
more than twice. These 39% of all students are referred to as “fiddling” students, as their
behaviour entailed a more intensive use and more engagement with Knoala when compared
to the behaviour of their “non-fiddling” peers:

• Fiddling students made significantly more use of the examples and templates provided
by the teaching staff than non-fiddling students.

• Fiddling students made syntax errors with a significantly lower frequency, and syn-
tax errors happened later in their active phases. In turn, these active phases were
significantly longer.

• Non-fiddling students, on the other hand, edited more between tests and re-tested the
same code without modifying it more often. All code which was re-tested unchanged
contained syntax errors.

Results: Attitudes. In August 2018, a survey was conducted among the participants of
the course on theoretical computer science, evaluating Knoala’s perceived helpfulness and
ease of use. Students were asked on a six-point Likert scale ranging from not at all (1) to
absolutely (6) to indicate Knoala’s helpfulness for learning, its ease of use, and whether
they found running code of other students easy. 27 students participated in the survey. The
results are depicted in Figure 4.17: Knoala was perceived as helpful (response median of 5),
not so easy to use (response median of 3), and compiling code of other users was perceived
as not easy (response median of 2.5).

Also, students indicated in a general open item question the functionalities they liked best
of Backstage 2 / Projects. 13 students (about half of all participants) mentioned Knoala in
positive statements like “The language compiler/ interpreter is a really cool feature” or “The
online compilation tools are somewhat useful.”, while a request for better error messages
was mentioned several times.

4.5. EXPLORATORY LEARNING OF FORMAL LANGUANGES 47

Figure 4.17: Survey results regarding the helpfulness, the ease of use and the ease to test foreign code.

Discussion and perspective. Several observations suggest that students benefited from
Knoala: Many students used the tool to deliver homework and to prepare for the examina-
tion, and some even explored formal languages before their introduction in class. Students
using the tool were more successful in the final examination, and students, in general, found
the tool helpful for learning.

It is interesting to compare the perceived helpfulness of “practical” programming languages
and “theoretical” programming languages and formalisms. In a course on functional
programming with Haskell12 (reported about in Section 4.4 and in [108] and [107]), students
found the online compiler much less helpful than in theoretical computer science (response
mean of 3.5 for functional programming, 4.4 for theoretical computer science on a scale
ranging from not at all (1) to absolutely (6)). This may be because many of the theoretical
formalisms were available exclusively through Knoala, while the Haskell compiler is freely
available.

For teachers providing feedback, Knoala’s benefit is obvious: Assessing whether a program
indeed does what it should is much easier if one can run the program, and the similar
statements can be made for proofs, or expressions in any formal language. This advan-
tage of online homework systems supporting mathematical formalisms over hand-written
homework submissions is often mentioned in the literature [124, 34].

The goal of this teaching format is to encourage exploratory learning of STEM’s formal
languages. Unfortunately, the data presented here cannot establish for certain whether
students used the Knoala in that way. Exploratory learning could be detected for instance if
students would evaluate expressions of a formal language which not directly solves one of
the provided exercises. From the currently available data however, it cannot be deduced for
which purpose Knoala was used, not even whether an active phase with Knoala led to the
completion of homework. Yet, certain behaviours of “fiddling students” (the minority of
students performing the majority of activities) seem to relate to exploratory learning: They
regularly used templates and examples provided by the teaching staff to start their active
phases and worked in longer phases than their non-fiddling peers.

The evaluation revealed that the error messages provided by Knoala should be improved:
This is indicated both in the survey responses and by the fact that non-fiddling students
made many syntax errors which happened early in their active phases. Possibly, better error
reporting could have helped these students. It has to be noted that implementing “good”
error messages is subtle, as this anecdotal experience illustrates: One student submitted
a homework in the course on theoretical computer science in 2018 containing a WHILE-

12FP-2017-p see Appendix A

48 CHAPTER 4. TECHNOLOGY-ENHANCED FORMATS

program with an (obviously frustrated) remark stating that “nothing works on this site”
(referring to Backstage 2 / Projects and Knoala). The submitted program contained an
infinite loop, leading the compiler to report (correctly!) a timeout error after 20 seconds of
computation. Learning that WHILE programs can get trapped in infinite loops (while other
computational models discussed in the course cannot) is an important learning goal, and
this student could have learned this fact in that instant, yet the displayed error message was
misunderstood as an error of Knoala instead of the evaluated program.

A laboratory study was conducted to establish whether better error messages could in fact
“lower the syntax barrier”, and the positive results of this study are presented in Section
6.3. Yet, the syntax barrier could also be lowered without additional software. “Fiddling”
students used the examples and templates provided by the teaching staff more often, and, if
so, always from the beginning of an active phase. Possibly, these students took advantage
of the syntactically correct examples by modifying them and “fiddling” until the solutions
fit their needs. This could be integrated into the teaching practice with assignments asking
the students to modify or complete syntactically correct programs, instead of letting them
produce complete programs from the start. Also, learning analytics could be used to
determine how likely it is that a student will be able to produce syntactically correct code,
and the choice of assignment could be adapted accordingly. An approach for predicting
such student qualities is presented in Section 5.4.

The observed behaviour of “retesting code without changing it”, typical for non-fiddlers, is
to some degree irrational: Incorrect code will not start working on its own. Therefore, this
behaviour can be interpreted as a sign of frustration. In the future, Knoala could detect such
behaviour and establish contact between the possibly frustrated student and a tutor or peer.

CHAPTER 5

Predictive Learning Analytics

In this chapter, four predictors of learning behaviour are introduced, which predict skipping
and absenteeism (Section 5.1), examination performance (Section 5.2), systematic errors
and misconceptions (Section 5.3), and levels of programming competence (Section 5.4).
The skipping and the examination performance predictors are task-agnostic: They predict
a behaviour independent of the task a student attempts next (for instance, every task can
be skipped). The misconception and the competence level predictors are task-specific: They
make predictions which pertain to a specific task. For instance, a misconception related to
the use of arithmetic expressions is most likely to occur in exercises relying on arithmetic.

Backstage 2 / Projects supports each of these predictors, which can be added to any project
on the platform. After a predictor is added to a project, it has to be trained with data
previously gathered on the platform. Once trained, the predictor will make predictions
based on data gathered in the project as described in Section 4.1.

While the accuracy of each predictor was evaluated with data gathered on the platform,
only two of the predictors were used to accompany running courses: The skipping predictor
described in Section 5.1 and the examination performance predictor described in Section 5.2
were used to implement analytics-based nudging as described in Section 4.3.

The sections in this chapter are organized as follows: Each section introduces a predictor by
describing the statistical methods used for prediction, how the predictor is trained, and how
predictions are computed. Further, accuracy measures are reported and perspectives for its
future use and improvements are developed.

Data sources. To compute learning analytics, a multitude of data are considered in the
literature such as login times and activity measures [1, 52, 78], demographic data [52], and
performances in previous courses [52, 98].

Arguably, much of the data collected in these ways, such as login times or counts of course
material visits, may reflect passive learning. The predictors presented in the following
use data on active learning: Artefacts generated by learners during or as a result of their
learning such as homework submissions, delivered source code, quiz results, etc. An often
used data source are quality assessments of homework submissions, which were either

49

50 CHAPTER 5. PREDICTIVE LEARNING ANALYTICS

performed by the teachers of a course (Section 5.1, 5.2, and 5.3), or automatically (Section
5.4). Using teacher assessments as a data source seemed to be particularly powerful for
behaviour prediction, possibly because humans can detect problems that are difficult to
automatically assess: A solution for a programming assignment may be technically correct
(which can be detected automatically), but it might be overcomplicated (which is difficult to
automatically assess). Yet, students might have problems later if such a programming style
was maintained; problems which could be predicted because of the teacher assessment.

The predictors aim to improve learning by predicting (possibly problematic) learning be-
haviour within a course. Therefore, all predictions are based solely on data gathered within the
considered course. While “course-independent” data (such as previous performances and
demographic data) have been successfully used in the literature to predict learner behaviour
[52, 98], such data was not considered as it would rather serve to cluster students beforehand
instead of predicting learning problems based on observed behaviour.

Predictor requirements. As all predictors only use “course-dependent” behaviour data,
no data about a student’s recent behaviour is available at the beginning of a course. The
predictors are designed to make predictions from day one of a course, with predictions usually
increasing in accuracy as more data is gathered. To measure the quality of a predictor,
average performances are reported in the following.

A challenge in designing behaviour predictors based on educational data is to achieve
robustness against data irregularities: Students may join a course several weeks late, different
course venues may treat the same topics but in a different order, and course lengths may
differ between course venues. Indeed, in all the datasets evaluated for this research, no
two course venues were conducted completely identically. The predictors introduced in this
section are designed with this problem in mind, and further considerations on this issue can
be found in the sections introducing the specific predictors.

Predictors for nudging. One application of learning analytics is to “nudge” students to-
wards a better learning. This can be achieved by predicting problematic learning behaviour
and providing automated personalized interventions accordingly. Interestingly, these inter-
ventions aim to falsify the prediction made: To avoid problematic behaviour. For instance, if
certain systematic errors were predicted for a learner, and they would indeed not make these
errors (due to the prediction being reported to the learner), the predictor would make a false
positive prediction. Hence, by using a predictor for nudging, one would expect to reduce its
accuracy. It is an open question how data gathered in a course encompassing predictor-based
nudging could be used in the future: If specific problems did not occur (or occurred less
often) due to such a nudging, a predictor trained on this freshly gathered data would most
certainly fail to predict exactly these problems.

The author proposes three desirable properties for behaviour predictors for nudging, which
have guided the design of Backstage 2 / Projects’ predictors:

• Intelligibility: It should be clear on which data a prediction is based, and how this data
reflects the student’s learning. Predicting examination performance with performances
in previous courses (as performed in [98]) is not intelligible in this sense, as it is usually
not clear how the learning of topic A reflects the learning of topic B.

• Actionability: Predictions should reflect a students changes in behaviour. For instance,
if the software warns of a problematic behaviour such as skipping homework, and
the student does indeed avoid that behaviour (and delivers homework), further
predictions should reflect that change. Note that intelligibility can be of greater
importance than actionability: Elbadrawy et al. used (among others) simple forum
activity to predict course performances [78]. Such a prediction is certainly actionable as
it can be improved by being more active in an online forum, yet it is not intelligible as
not every kind of forum activity relates to learning.

5.1. PREDICTING SKIPPING AND ABSENTEEISM 51

Figure 5.1: Homework assessment for weekly homework assignments in a course on theoretical
computer science (TCS-2015), heights of coloured bars indicate counts of submissions in the respective
categories. Beams connecting categories in subsequent assignments indicate counts of students
subsequently submitting homework in these categories.

• Accuracy: Obviously, predictions should be accurate. Yet, actionability can be of
greater importance than accuracy: A predictor using a student’s data (such as gender
and race, as done in [52]) might be more accurate than a predictor not incorporating
that data. Yet, these predictions would only partially reflect a student’s actions, hence
they would not be actionable and therefore not be suited for nudging.

5.1 Predicting Skipping and Absenteeism

The predictor introduced in this section estimates the probability of a student to skip his or
her next homework. It aims to identify students on the verge of skipping, to allow a sensible
intervention. Figure 5.1 shows the development of skipping behaviour of students through-
out a course of theoretical computer science.1 Homework submissions were categorized
based on the scheme introduced in Section 4.3:

• NE for “no error”

• IK for “insufficient knowledge”

• OE for ‘other error”

• SKIP for skipped activities

Two observations can be drawn from the data: Firstly, students who skip homework once
rarely rarely submit homework afterwards. Secondly, students showing insufficient knowledge
in one assignment are more likely to skip than students making no or other errors. Hence, a
possible cause of skipping may be lagging behind and finally losing track of the course.

Similar observations have been drawn in the literature: Robins explained bimodal grade
distributions2 by simulating learning behaviour [211]. Each student was simulated to have

1TCS-2015 see Apendix A.
2Bimodal grade distribution: Outcomes with both a high number of very well performing and a high number

52 CHAPTER 5. PREDICTIVE LEARNING ANALYTICS

a certain “momentum”, signifying their grade of activity, which could be lost during the
course (for instance by failing to learn a topic). Similarly, Kizilcec et al. analysed patterns
of learner behaviour related to disengagement in MOOCs by automatically categorizing
the participants’ behaviour as either “Auditing”, “Behind”, “On Track”, or “Out”. Here,
“Behind” refers to learning actions performed belatedly. Prototypical learner behaviours
were then identified by clustering the behaviour trajectories (with disengaging behaviour
being one of them) [136]. Similar to the approach proposed by Kizilec et al., the skipping
predictor relies on sequences of categorized homework submissions.

The predictor was devised and preliminarily evaluated by the author of this thesis while
Steven Dostert provided a thorough evaluation in his master’s thesis [70], as well as inte-
grating the predictor into Backstage 2 / Projects. The predictor’s description and a brief
evaluation can be found in [103]. Predictions of skipping together with predictions of exami-
nation performance (described in Section 5.2) are used to realise analytics-based nudging
(described in Section 4.3). An evaluation on the impact of this learning format on student
behaviour can be found in Section 6.2.

Predictor definition. The predictor relies on a Hidden Markov Model (HMM) [199]. HMMs
consist of a set of “hidden” (i.e. not directly observable) states, transition probabilities
between these states, a set of (directly observable) emissions or signals, and for each hidden
state, a probability distribution modelling the probability of observing each emission in
this state. After emitting a signal, the HMM changes its state based on the state transition
probabilities. Given an HMM and a sequence of signals, the likelihood of the HMM to
produce this sequence of signals can be determined using the so-called Forward-Backward
algorithm [199].

The HMM used for skipping prediction consists of two states, and the signals NE, OE, IK,
and SKIP. Training an HMM consists of using the Baum-Welch [16] algorithm to estimate
the transition and emission probabilities that would best describe a set of signal sequences
(in this case sequences of categorized homework submissions).

Predicting skipping for a student is then performed by analysing their sequence of submitted
assignments s1, ..., sn. Given that these assignments were assessed with categories c =
c1, ..., cn (ci ∈ {ne, oe, ik, skip} for i ∈ 1...n), consider the four extended category sequences

cne = c1, ...cn, ne

coe = c1, ...cn, oe

cik = c1, ...cn, ik

cskip = c1, ...cn, skip.

If cskip is the most likely sequence to be produced by the trained HMM, skipping is predicted
for the student.

Evaluation. The predictor was trained with data gathered by categorizing homework sub-
missions of 80 randomly chosen students of a course on theoretical computer science 3.

Figure 5.2 shows the trained model. Here, the two states are referred to as inert in which
SKIP is the most probable emission, and busy in which OE is the most probable emission.
Note that both NE and OE are much more likely to be observed in the busy state than in
the inert state (which motivates the naming). This fits the intuition of “losing momentum”
referred to earlier: The hidden busy state (or, more precisely, the probability of being in
the busy state) models the “momentum” a learner currently has while having insufficient
knowledge or skipping reduces this momentum.

very poorly performing students, and a “gap” in between.
3TCS-2015 see Apendix A.

5.1. PREDICTING SKIPPING AND ABSENTEEISM 53

busy inert

NE OE IK SKIP

0.13

0.02
0.980.87

0.2
5 0.44

0.18 0.130.01 0.07

0.
02

0.90

emission probability
transition probability

signalstate

Figure 5.2: The trained HMM, with transition and emission probabilities

An evaluation was performed using 10-fold cross-validation, which yielded an accuracy of
79%, a sensitivity of 73% and a specificity of 85%.

Note that assessment categories were chosen for skipping prediction because they identify
lacks of knowledge, which could lead to skipping. To test this hypothesis, a simplified
HMM was trained which only knew two signals: “submitted” (observed instead of IK,
OE or NE) and “skipped”. This model performed slightly a worse in predicting skipping,
yielding an accuracy of 0.77%, a sensitivity of 70%, and a specificity of 84%. This confirms
the assumption that lagging behind may cause skipping, and that the detection of such
behaviour (through IK assessments) can lead to a better skipping prediction. Yet, the fact
that the simplified predictor only performed slightly worse indicates that there probably are
more influential reasons for skipping.

Perspective. In the dataset, skipping might be a bit overrepresented: If a student decides
to drop out of the course (which might be a reasonable choice, if, for instance, too many
courses were joined that semester) they are considered to be skipping, and it can be argued
whether that is true: The aim of predicting skipping is to deliver interventions which should
only be provided to students that are still possibly willing to participate. Hence, in the future,
the assessment of skipping should be reconsidered, which would probably lead to different
predictor properties.

The skipping predictor is independent of the exact number of exercises of the course it
is used in, yet, it will most likely work best in courses which have a similar number of
exercises as the course the training data was gathered in. As can be seen by the state
transition properties depicted in Figure 5.2, transitioning from busy to inert is much more
probable than transitioning from inert to busy: The predictor will predict higher and higher
probabilities of skipping, even for learners who solve all exercises flawlessly. Note that
this rate of “attraction” is specific to the training data, and might change for instance in
longer courses. However, that the predictor is robust against small changes in the number of
exercises is a desired property, as this number may change between different venues. In the
future it might be interesting to compare these models between courses: Do some courses

54 CHAPTER 5. PREDICTIVE LEARNING ANALYTICS

yield higher “re-entry probabilities” (transitions form inert to busy) than others?

The predictor is task-agnostic as it does not distinguish between tasks. While this allows
to change a course’s schedule, or even to use the training data on a completely different
course, maybe a task-specific skipping prediction would be more accurate. Figure 5.1 shows
large differences in assessments between weeks: Submissions in week three, for instance,
show the largest proportion of insufficient knowledge assessments. Accordingly, the increase
in skipping in week 4 is one of the largest in the dataset. If such “hurdles” were known
beforehand, specific interventions could be implemented. In the evaluated course on
theoretical computer science, the homework of week 3 was the first to require the students
to independently construct a proof, which was arguable the cause of the rise in insufficient
knowledge assessments. A task-specific predictor would need to hold a representation which
topic holds particular challenges for the learners.

5.2 Predicting Examination Performance

This section describes a predictor of examination performance which has been briefly
introduced in [103].

Predicting examination performances is one of the most common applications of Learning
Analytics found in the literature. To make such predictions, a plethora of data sources
have been considered, among others: Emotional affects [184], grades in previous courses
and demographic data [98, 52], engagement measures [1, 52, 78], homework performance
[186, 40], online quiz performances [238], and the use of supplementary learning material
[164].

The set of statistical measures employed for examination performance prediction is also
quite diverse, ranging from Neural Networks [175] to Decision Trees [98] and Regression
Analysis [1, 186, 40].

The predictor introduced in this section uses counts of labels assessing student performances
to make predictions. The labelling scheme, which is described in Section 4.3 and is also
used for skipping prediction (Section 5.1) encompasses the labels NE for “no error”, IK
for “insufficient knowledge”, OE for “other error”, and SKIP for skipped activities. As
described in Section 4.3 such label counts can be gathered by teachers labelling homework
assignments as part of their teaching routine. Multiple choice quizzes, where each possible
answer is associated with one of the labels NE (correct answer), IK (answer indicating a
lack of knowledge by the learner) and OE (for all other wrong answers), are a second data
source. Note that using quiz responses in this manner does only require human labour
when designing the quizzes, while homework labelling has to be performed throughout a
course.

The examination performance predictor relies on a linear regression model. Linear regression
models express a numerical target variable (also referred to as the dependent variable) as a
linear combination of different independent variables. For the predictor described in the
following, the dependent variable is examination performance (encoded by a mark between
0% and 100%), and the counts of different labels are the independent variables.

Using data gathered from student homework to feed linear regression models to predict
examination performances has been attempted before in the literature: Parker et al. used
sums of numerical homework assessments as independent variables [186], while Carter et
al. used the time spent in different “working states” a student could be in while delivering
programming homework [40].

5.2. PREDICTING EXAMINATION PERFORMANCE 55

Figure 5.3: Comparison of the influence of homework completion on examination performance.
Left: A course on theoretical computer science in 2018 (TCS-2018). Right: A course on Functional
Programming in 2017 (FP-2017). Dots represent sets of students, sizes represent set sizes.

Arguably, the relation of homework completion and homework quality on examination
success depends on characteristics of the course (the topic, the teaching method, etc.), and
obviously on the examination itself. See Figure 5.3 as an illustration of the influence of
homework completion on examination success in a course on functional programming4 and
a course on theoretical computer science.5 In both cases, students delivering more homework
performed better in the final examination than their inactive peers: In FP-2017 the average
performance of students who skipped at most two assignments is at 1.47 standard deviations
above the average performance, these students outperform in average 81% of their peers.
In TCS-2017 the figures are similar, strongly participating students (skipping at most two
assignments) outperform in average 72% of the other students, their performance is at 1.23
standard deviations above average. In both cases, the linear model (plotted in the figures)
predicts a gain of 2.7% per submitted exercise. For both courses, this influence is significant
(p < 0.01).

Yet, both datasets show remarkable differences: Firstly, homework completion was dis-
tributed differently. In FP-2017, 40% of students chose not to do any homework, in TCS-2017
these were only 24%. Secondly, in TCS-2017 there were a considerable number of students
not performing well in the examination while having delivered most homework, in FP-2017 this
number is much smaller (visible in the bottom right corners of the plots). And thirdly,
average grades in FP-2017 are about 15% higher than in TCS-2018. Considering these facts,
linear regression models seem to be suited for examination performance prediction as they
perform comparably well on these fairly different datasets.

Also, linear regression models yield actionable predictions, as delivering homework always
changes the prediction by the same amount. This allows the learner (and the software) to
easily predict what would happen if the next homework was delivered or skipped.

The predictors of examination performance and skipping can be used together to inform
students with a high estimated risk of skipping of the benefit of doing homework. A course
format using this technique is described in Section 4.3 and an evaluation of this course
format can found in Section 6.2.

Predictor definition. Linear regression models describe a predicted variable Y as a linear
combination of several independent variables X1...Xk:

Y = β0 + β1X1...βnXn

4FP-2017 see Apendix A.
5TCS-2015 see Apendix A.

56 CHAPTER 5. PREDICTIVE LEARNING ANALYTICS

Fitting a linear regression model consists of finding coefficients the β1...βk, so that the error
terms ε in the following equations are small for all observed values y of Y and xk of Xk:

y = β0 · x1 + ...βp · xp + ε.

Accordingly, the examination performance predictor is trained with a set of observed
examination results along with counts of assessed labels, yielding a linear model:

E = β0 + β1 ·Xne + β2 ·Xik + β3 ·Xoe + β4 ·Xskip

Where E is the estimated examination performance and Xl are the counts of observed labels
l. Note that β0, referred to as the intercept, signifies the predicted examination performance
if no label counts are available, which is the case at the beginning of a course.

A prediction can be made for a student by counting the labels the student received and
calculating E given these counts.

Note that this model violates two requirements often mentioned in the literature: Firstly,
the error terms ε are usually required to be normally distributed [117]. This requirement
cannot hold, because examination marks are bounded (by 0 and 1). For very large or very
small predictions (near 0, or 1) the error ε can only assume small values because values
above 1 or below 0 can not be observed. Hence, ε cannot follow a normal distribution which
would allow any value. Secondly, the independent variables are required to be statistically
independent. This is not the case here as labels are disjoint classifications of student behaviour
and exclude each other.

Evaluation. The quality of the examination performance predictor was evaluated with two
datasets. The first dataset encompasses data from 11 labelled homework assignments of
82 randomly chosen students in a course on theoretical computer science6. The homework
assignments were tasked every week over the period of the whole course. This dataset is
referred to as the “homework dataset”. The second evaluation used data gathered from
online quizzes using the audience response system of Backstage 2 in a course on functional
programming7. This dataset encompasses data of 253 students. Quizzes were conducted
on a weekly basis throughout the course and served to recapitulate the content of the last
lecture. In total, 10 quizzes were conducted (with two of the course’s weeks encompassing
no quizzes), yet due to the internet connection in the auditorium failing in three occasions,
only data from 7 quizzes could be recorded. This dataset is referred to as the “quiz dataset”.

With the homework dataset, SKIP (missed learning activity) and IK (insufficient knowledge)
impact on examination fitness with a significance level of 0.05, while the inclusion of the
other variables does not worsen the predictor’s accuracy. The final model Ehw trained on
the homework dataset yields the following coefficients:

Ehw = 0.57 + 0.019 ·Xne − 0.018 ·Xik + 0.007 ·Xoe − 0.006 ·Xskip

The R2 error of Ehw is 20%. Note that a linear model only accounting for homework
completion (similar to the model seen in Figure 5.3) performs worse, with an R2 error of
14%.

With the quiz dataset, OE (other error) and IK (insufficient knowledge) impact on examina-
tion fitness with a significance level of 0.05. This dataset contained no SKIP labels, because
of software failures leading to gaps in the data (whether students skipped in these gaps
cannot be determined). Nevertheless, the model model trained on the quiz dataset Equiz

has an R2 error of 19.8%, which comparable to Ehw.

Equiz = 0.67 + 0.02 ·Xne − 0.008 ·Xik + 0.003 ·Xoe

6TCS-2015 see Apendix A.
7FP-2017 see Apendix A.

5.3. PREDICTING SYSTEMATIC ERRORS AND MISCONCEPTIONS 57

As with the homework dataset, using label counts as independent variables yields a better
predictor than using quiz correctness alone. The linear model using only quiz correctness
only exhibited an R2 error of 10%.

Perspective. Choosing the set of independent variables used for prediction can not only
change the predictive qualities of the predictor but also its pedagogical use. If only the
count of submitted assignments is used, β0 (the estimation displayed at the beginning
of the course) estimates the examination performance when no homework is delivered,
with predictions improving by submitting homework and remaining stable by skipping.
If, in contrast, only the count of skipped assignments was used, β0 signifies the estimated
examination performance if all homework was delivered, with predictions decreasing by
skipping and remaining stable by delivering homework. Both models describe the data
equally well, as the independent variables are inversions of one another, but both models
might be chosen with different pedagogic intentions: The first model might be perceived as
an encouragement to do homework and as a reification of the work done so far. The second
model might be perceived as a punishment for skipping homework while exploiting the
endowment effect.8

The predicted values computed with Ehw can both increase and decrease depending on a
student’s behaviour: Skipping and exhibiting insufficient knowledge decrease predicted per-
formances while making no errors or other errors increases the predicted values. Therefore,
predictions made by this model can both be perceived as encouragement and punishment.
Yet, by inverting the respective variables, the model could be easily adapted to suit only one
of these “pedagogical modes”. An interesting approach would be to let students choose
which model they want to receive predictions from: Some students might prefer to have an
optimistic model, starting with high predictions which can decrease along the course, while
others might prefer to see their estimated score increase as they deliver homework.

The evaluation showed that models using label counts for prediction outperform models
which simply use counts of delivered homework or quiz correctness. Future developments
could aim to further increase the predictor’s accuracy. One approach could be to find
shared behaviours of students who delivered homework or made quizzes while receiving
grades that were lower than the predictor estimated. These students could not benefit
from delivering homework or making quizzes as the others, and integrating data on these
behaviours into the model could both increase the predictor accuracy and, hopefully, the
learning efficiency.

The current predictor only accounts for homework quality but not for the feedback the
students received on their homework, which might overemphasize the severity of making
errors. Indeed, feedback quality can make the difference between changing misconceptions
and maintaining them until the examination. Obviously “receiving good quality feedback”
is not in the power of the student, but in Backstage 2 / Projects students can ask questions on
their feedback and finally indicate their understanding. If the teaching staff can assure that
student questions on feedback are answered until the student is satisfied with the answers,
data gathered in this way could also be integrated into examination performance predictions.
This would emphasize that both the teacher giving feedback, and the students making an
effort in understanding feedback are part of the learning process.

5.3 Predicting Systematic Errors and Misconceptions

The predictor presented in this section aims to predict systematic errors and misconceptions
a student will make in a course, which is, to the author’s best knowledge, a novel application
of Learning Analytics. As the predictors presented in the previous sections, it relies on

8The preference of people of keeping possession over acquiring new possession [125].

58 CHAPTER 5. PREDICTIVE LEARNING ANALYTICS

sequences of labelled homework submissions, where labels are used to model systematic
errors and misconceptions.

The misconception predictor was conceptualized and preliminarily evaluated by the author
of this report, but Andreas Born integrated it into Backstage 2 / Projects and evaluated
and optimized its performance. A thorough description of the implementation and the
optimization process can be found his thesis [26], a brief description of the predictor and its
properties can be found in [103].

The predictor relies on collaborative filtering, a technique often used for product recom-
mendation e-commerce systems. In such systems, users rate products either explicitly by
awarding points or stars, or implicitly (e.g. by buying a product or watching a film). Collab-
orative filtering identifies similarities between users by identifying similarities in the ratings
they gave (whether they liked or bought the same products). The intuition is that if two
users bought or liked the same products in the past, they will probably like and buy the
same products in the future: If one them buys a specific product, it can be recommended
to the other. Similarly, one could assume that if two students made the same errors in the
past, they might make the same errors in the future. This intuition is underpinned by the
notion of latent variables, which are common personal properties which are not directly
observable but can be used to explain a large variety of behaviours [27]. In e-commerce, a
latent variable could be the preference for certain book genre or a specific hobby which leads
a group of people to prefer certain products. In the case of systematic errors in education,
a latent variable could be a shared fundamental misconception or missing preliminary
knowledge. The basic data structure used for collaborative filtering is the so-called rating
matrix R ∈ Mn,m, which contains for each of the n users and each of the m products the
rating the user gave to the product, or no value if the user did not rate that product. The
“missing” ratings are typical for explicit rating data (as users usually cannot have opinions
on all products available), and collaborative filtering approaches often try to predict ratings
a user would give to a product if they bought it. Recommendations are then compiled from
products the user did not (yet) buy that have the highest predicted rating.

The misconception predictor uses a label matrix (similar to a rating matrix) containing for
each student and each known error whether the student made the error (denoted by a 1),
did not make the error (denoted by a 0), or no data if the value cannot be specified. A
specific systematic error can only be observed if a regarding exercise was assigned and
submitted by a student. Therefore, missing values in the label matrix occur if students
skipped assignments, or if a regarding exercise was not yet submitted.

A technique related to collaborative filtering is frequent pattern mining, where sets of items
that are usually bought together are recorded. Figure 5.4 depicts a section of the label
matrix generated from homework submitted by students in a course on theoretical computer
science in 2015, with a notable frequent pattern.

Predictor definition. A common practice for collaborative filtering is to find and approxi-
mate a decomposition of the rating matrix R ∈Mn,m into two smaller matrices U ∈Mn,k

and P ∈Mk,m, where R ≈ U · P [266].

The rank k ∈ N of U is referred to as the number of latent or hidden variables, and U and
P as user and product features respectively. These notions are sensible because, if U · P
estimates R well, then the rating behaviour of user i (encoded by the row i of R, ri,?) can be
approximated well by a linear combination of rows of P :

ri,? ≈ ui,? · P =

k∑
j=1

ui,j · pj,?

5.3. PREDICTING SYSTEMATIC ERRORS AND MISCONCEPTIONS 59

Figure 5.4: A section of the label matrix generated from homework submissions in a course on theo-
retical computer science (TCS-2015). The rows represent students, the columns represent systematic
errors. Systematic errors are grouped by the exercise they can occur in (u-0-1, u-0-2, u-0-5, u-1-1). A
matrix entry is white if the error was not made by a student, and coloured if it was made. The coloured
entries represent a frequent pattern shared by five students.

60 CHAPTER 5. PREDICTIVE LEARNING ANALYTICS

In this sense, the rows of P represent prototypes of rating behaviour, and U estimates to
which degree each user fits each prototype.

As stated above, R may contain missing values, so finding an approximate decomposition
of R refers to finding two matrices U and P whose product approximates the known values
of R. To find such a decomposition, Zhou et al. propose the Alternating-Least-Squares
with Weighted-λ-Regularization (ALS-WR) algorithm [266], which tries to minimize the
following cost function f

f(U,P) =
∑

(i,j)∈I

(ri,j − ui,? · p?,j)2 + λ

 n∑
i=1

ri,? ||ui,?||2 +
m∑
j=1

r?,j ||p?,j ||2

Where I is the set of indices of known ratings in R, ri,? is the number of ratings given by
user i, r?,j is the number of ratings product j received, and λ is a numerical regularization
parameter. The second term of the function, which is weighted by λ, penalizes large
parameters in U and P , and is used to prevent overfitting.

Numerical solutions for U and P are then found by first filling both matrices with random
values, and then using the gradient descent technique to alternatingly improve the esti-
mation of U while fixing entries of P and then improving the estimation of P while fixing
entries in U . Note that the algorithm ignores the “missing values” in R (they do not occur in
the cost function) while producing matrices P and U without missing values. The entries of
P · U can then be used as predictions of ratings “missing” in R.

Note that the number of latent variables k and the regularization parameter λ have to be
estimated for this algorithm.

To predict systematic errors a student s would make when attempting a specific exercise, a
personalised label matrix Ls is constructed for s by adding a row encoding the systematic
errors s made so far to a (previously collected) label matrix L. Then, predictions of error
occurrences are made for s by using the ALS-WR algorithm described above and using Ls

as the rating matrix. From all systematic errors which can occur for the exercise in question,
the errors with values exceeding a chosen threshold t are chosen as prediction.

Choosing a set of predicted errors with an occurrence probability above t is used false
positives: Possibly, a student will not make any systematic error (in contrast, product
recommendation sites typically assume that all users will buy products).

Evaluation. For the evaluation of the predictor, homework submissions of 82 randomly
chosen students of a course on theoretical computer science 9 were labelled. This dataset is
described in Section 4.2 where the labelling validity is reported.

For each exercise, 10-fold cross-validation was performed: The data of 90% of the students
were chosen as training data, yielding a label matrix L. For each of the remaining students,
Ls was constructed by adding all known labels of the student up to the exercise in question
while marking the rest of the labels as unknown. The prediction was then performed as
described above, and compared to the observed labels.

This was repeated for different configurations of parameters k (the number of latent vari-
ables) and λ (the regulation parameter), yielding an optimal model with parameters k = 40
and λ = 0.065. Figure 5.5 shows the performance of this optimized model with varying
thresholds t in a ROC curve. The results are promising: The ROC curve diverts notably
from the diagonal (which would signify random guessing), and an optimal trade-off can be
found with a threshold 0.05 yielding a specificity of 80.7% and a sensitivity of 71.8%.

9TCS-2015 see Apendix A.

5.3. PREDICTING SYSTEMATIC ERRORS AND MISCONCEPTIONS 61

Figure 5.5: ROC curve of the optimized misconception predictor for various thresholds, taken from
[26].

It is noteworthy that more frequent misconceptions are predicted with higher accuracy
than less frequent misconceptions, which can be seen in Figure 5.6. Possibly, the predictor
would perform better with training data of more students (yielding higher misconception
frequencies).

Perspective. The misconception predictor is interesting because it delivers data directly pro-
viding “feed-forward” (i.e. an indication “what to do next”), while other learning analytics
(such as the predictors described above) rather present assessments such as predictions of
examination performance, based on the learning behaviour shown so far. In the future, such
predictions could be used for learning personalization, for instance by prompting students
with descriptions of systematic errors and possibly additional material chosen specifically
for a student when they attempt an exercise.

Yet, as shown in Section 6.1, simply by providing all students with descriptions of all known
systematic errors without personalization, the occurrence of these errors can be drastically
reduced. Indeed, introducing a predictor bears the risk of making false predictions: Prompt-
ing students with error descriptions which are not helpful for them, or (which is arguably
worse) failing to prompt error descriptions which would have been helpful. If there are few
systematic errors known for each exercise, prompting all error descriptions to all students
seems to be the “safer” option.

A different use of such predictions would be to identify causes of systematic errors. If
certain errors often occur in combination, they possibly share an underlying cause. Such an
analysis could be achieved by presenting teachers with sets of correlating errors (possibly
derived from the factor matrix P described above) and asking the teachers to identify
similarities between these errors. Identifying underlying causes of errors would be a
promising approach to improve teaching.

In the future, the implementation of the predictor could be improved. Firstly, its current
implementation is not very efficient: Matrix factorizations are computed for each student

62 CHAPTER 5. PREDICTIVE LEARNING ANALYTICS

Figure 5.6: Comparison of the F-scores (triangles) and frequencies (bars) for the 27 most frequent
misconceptions, showing a notable correlation. Image taken from [26].

and exercise, while they could be stored and re-used. Secondly, the predictor currently
models exercises and errors as unique entities which share no properties other than their
co-occurrence: If a new exercise is introduced to the course, the predictor cannot predict
systematic errors for it, even if certain predictions would be sensible: Many systematic
errors of, for instance, proofs by induction may occur in different exercises requiring this
technique. Such an extension would require some kind of ontology for exercises, topics, and
associated systematic errors.

5.4 Predicting Levels of Programming Competence

The predictor presented in this section aims to predict the programming competence of
students. To assess programming competence, source code is categorized into three levels:

1. Code written in a correct file format.

2. Syntactically correct code.

3. Semantically correct code.

The predictor estimates for each competence level the likelihood of a student being able to
produce code of that level. As an input, the predictor uses sequences of categorized code
submissions.

This level scheme is motivated by observations reported in Section 4.4: In a peer-taught
course on functional programming (FP-2017-p), submitted programming assignments were
automatically classified in this manner. For all competence levels, examples of code reaching
the level, and examples of code failing the level were observed.

Competence levels are inclusive: Syntactically correct code is assumed to be provided in
a correct file format, and semantically correct code is assumed to be syntactically correct.
Note that with this assumption, a student’s competence may be underestimated: Source
code embedded in, for instance, a PDF file may be semantically correct – and the student
was able to write such code. Also, if a student writes a semantically correct program and
accidentally deletes one character from the document, resulting in a syntactically incorrect
program, it can be argued whether that student really does struggle with the syntax barrier.
Yet, enforcing a strict hierarchy eases the automatic categorization of source code using the
language’s compiler or interpreter.

5.4. PREDICTING LEVELS OF PROGRAMMING COMPETENCE 63

Similar categorization approaches can be found in the literature: Carter categorized code
written by students while working on assignments by defining four “states” resulting
from combinations of “syntactically correct” / “syntactically incorrect” and “semantically
unknown” / “semantically incorrect” [40]. “Semantically unknown” refers to code which
runs without throwing any runtime errors, which is interpreted by the authors as an
indication for semantic correctness. One of the states proposed by Carter is “semantically
unknown and syntactically incorrect”. In Carter’s model, this state is reached by introducing
a syntax error to a program which was previously semantically correct. Hence, to describe
the process of programming, this state may be sensible. Yet, to describe a submitted program
(the outcome of the programming process), such a category is less sensible because a program
that cannot be interpreted cannot “work as intended”.

Another code categorization approach was performed by Denny et al. who categorized code
as “passing all tests” (similar to level 3), “compiling but not passing all tests” (similar to
level 2), and “not compiling” (similar to level 1) [63]. Note that this categorization scheme
does not assess code submissions “in the wrong file format” as the software used in [63]
would not allow such submissions. Similar to the evaluation presented in Section 4.4,
Denny et al. found a large number of students struggling with the syntax of the taught
programming language. Yet, different to the results presented above, Denny found that
“compiling code failing the provided tests” (level 2 but not 3) was more common than
code “passing all tests” (level 3). Interestingly, the evaluation presented in Section 4.4
yielded the opposite result: Most students who were able to write syntactically correct
code, also wrote semantically correct code. This difference might be caused by the different
programming languages taught: Haskell (taught in the course described in Section 4.4) being
declarative and functional, and Java (taught in the course evaluated by Denny et al.) being
imperative and object-oriented. This can be explained intuitively: Programs in a functional
and declarative language are correct if the programmer managed to correctly declare what a
solution to a problem is (which encompasses syntax and semantics simultaneously), while a
program in an imperative programming language is correct if the programmer formulated
syntactically correct instructions for the interpreter and these instructions “realise the right
thing” upon interpretation.

The predictor presented in this section can model such “hurdle situations” where mastering
one level often leads to the mastering of the next level.

The competence level predictor was devised and preliminarily evaluated by the author
of this thesis, while Robert Pospisil provided the implementation as well as the idea of
making task-specific predictions (described below). A more thorough evaluation and the
documentation of the implementation can be found in his master’s thesis in [193].

Predictor definition. The competence level predictor relies on a Bayesian network, which
consists of a set of random variables, and a set of statistical dependencies between these
variables. If some of the variables (referred to as the evidence variables) are observed,
inferences can be drawn about the probability distributions of the other (unobserved)
variables.

Bayesian networks are usually visualized by directed acyclic graphs, where a node represents
a variable, and an edge represents statistical dependence between two variables (an edge
from variable a to variable b is read as “b depends on a”). Every variable is associated with
a random distribution, where variables depending on other variables are associated with
conditional distributions. Because all variables of the Bayesian network described here can
only assume a finite set of values, random distributions can be displayed by probability
tables (in the case of independent variables) or conditional probability tables (in the case of
dependent variables).

64 CHAPTER 5. PREDICTIVE LEARNING ANALYTICS

Figure 5.7 depicts the whole Bayesian network used for prediction. It consists of three types
of variables:

• The three unobserved competence level variables “form”, “syntax”, and “semantic”
model the probability of a student submitting code satisfying or failing the respective
level. These variables can assume the values “correct” (reaching the level) or “incorrect”
(failing to reach the level).

• The three history variables represent assessments of previous student submissions,
and can assume the values “positive”, “neutral” or “negative”. For instance, observing
a “negative” syntax history for a student signifies that the student struggled often
with the syntax of a programming language in the past. Observations of history
variables are made by analysing all previous code submissions of a student. Consider
a sequence s0 . . . sn of student code submissions where s0 is the first (hence oldest)
and sn is the last (hence newest) submission. From these, submission level scores
l0 . . . ln are computed by mapping each submission satisfying a given level to 1 or −1
respectively. The level score L is then defined as a weighted sum of submission level
scores:

L =

n∑
i=0

2i−nli =
1

2n
l0 + . . .+

1

2
ln−1 + ln

Note that the weighting emphasises newer submissions over older submissions. If
L is smaller than −0.5 a “negative” level history is observed, if it is larger than 0.5 a
“positive” level history is observed, and a “neutral” level history is observed otherwise.

• The difficulty variable models the difficulty of the courses exercises. The difficulty
of an exercise is defined by the number of students being able to correctly solve the
exercise (submitting a semantically correct solution). If 66% or more of all students
can solve an exercise, it is regarded as “easy”; if only 33% of students or less can solve
an exercise, it is regarded as “difficult”; and it is regarded to be of “medium” difficulty
otherwise.

The following dependencies are introduced between the variables:

• Each competence level variable (“form”, “syntax”, and “semantic”) depends on its
respective history variable (following the intuition that recently having struggled with
a specific problem influences the current performance).

• The competence level variables “syntax” and “semantic” depend on the variables
modelling the next lower level. This allows to model hurdle situations as mentioned
above.

• All competence level variables depend on the difficulty variable.

The model is trained by using student code submissions of a course, counting the occurrences
of the competence levels for each student, and computing the (conditional) probability tables
which completes the Bayesian network.

Predictions for a student are made by computing the history assessments as described
above for each level, entering the computed assessments as observations in the trained
Bayesian network, and inferring the competence level variables (for instance using variable
elimination [265]).

Additionally, if the difficulty of an attempted exercise is known, it can be also entered as an
observation of the “difficulty” variable. Note that this additional step performs a task-specific
prediction: Estimating the likelihood for a student to reach a certain level given a specific
exercise.

5.4. PREDICTING LEVELS OF PROGRAMMING COMPETENCE 65

form

correct

incorrect

syntax

correct

incorrect

semantic

correct

incorrect

form history

positive

neutral
negative

syntax history

positive

neutral
negative

semantic history

positive

neutral
negative

difficulty

easy

medium
hard

Figure 5.7: Complete Bayesian network of the competence level predictor. Possible values a variable
can assume are displayed in grey below the variable names.

task-specific task-agnostic

accuracy 0.82 0.71
sensitivity 0.78 0.64
specificity 0.69 0.75
F1-score 0.74 0.43

Table 5.1: Performance of the competence level predictor. The task-specific predictor uses difficulty
observations of the attempted exercise, while the task-agnostic predictor does not.

Finally, it is predicted that a student reaches a competence level in their next assignment
if the probability of the regarding competence level variable to assume the value “correct”
exceeds a chosen threshold.

Evaluation. The predictor was evaluated with data gathered in a peer taught course on
functional programming (FP-2017-p, introduced in Section 4.4). For the evaluation, 10-fold
cross-validation was used.

Table 5.1 reports the average accuracy, sensitivity, specificity, and F1-score the predictor
exhibited both for the task-specific usage (using observed exercise difficulties for predicting)
and the task-agnostic usage (leaving the difficulty variable unobserved). The predictor
benefits from the use of difficulty observations, improving the accuracy by 11%. Interestingly,
the task-specific predictor is more sensitive than specific, while the task-agnostic predictor is
more specific than sensitive: Knowing the difficulty of an exercise aids at identifying the
competence levels a student will reach, while hindering the correct identification of levels a
student will fail.

Perspectives. In the current form, the predictor showed quite promising properties, with
an accuracy of 82% in the task-specific use and 71% in the task-agnostic use. Yet, certain
parameters such as the weighting coefficients of the level history assessment were arbitrarily
chosen. Future developments could try to improve these parameters.

66 CHAPTER 5. PREDICTIVE LEARNING ANALYTICS

Note that the nature of a Bayesian network allows making both task-specific and task-agnostic
predictions in the same course without changing the implementation: Difficulty observations
of exercises could be used if available, with the predictor still being functional if they are not.
In this way, new exercises can be added to a course, with the predictor taking advantage of
the assessed difficulty of old exercises while still delivering predictions for the new exercises.
This is a clear advantage of the competence level predictor over similar approaches such as
Rash models (introduced in [161]) which rely on data on all attempted tasks being available
before making a prediction.

In the future, competence level predictions could be used to implement personalized scaf-
folding for programming assignments: If a user is predicted to struggle with the syntax of
a programming language, the software could provide them with additional aids, such as
worked examples, or even providing a block-based interface (famously implemented by the
scratch programming language [158]) instead of a text editor.

Another use of the competence level predictions would be to realise “smart” orchestration
of peer teaching: Students predicted to master, for instance, the syntax level of a language
could help students which are predicted to struggle with this level. In this way, the students’
abilities could be used efficiently, assuming that all students who mastered a competence
level could help students who have not yet reached that level.

CHAPTER 6

Fostering Self-Regulation and Exploratory Learning

This chapter presents results on the improvement of learning behaviours and learning
outcomes caused or sustained by Backstage 2 / Projects. In Section 6.1 results regarding
conceptual change are reported, Section 6.2 discusses observed changes in the students’
learning behaviour, and Section 6.3 reports on a laboratory study aimed at sustaining
exploratory learning of STEM’s formal languages. Each of these sections is concluded with
perspectives for software improvements or further research. In Section 6.4, the results are
interpreted with regard to self-regulated learning and teaching efficiency.

6.1 Fostering Conceptual Change

The conceptual change model describes learning as a process in which students change their
existing (possibly erroneous) beliefs based on the experiences they have. Fostering concep-
tual change is a well established and effective teaching method: Hattie found conceptual
change programs among the most effective teaching methods (average reported effect size
Cohen’s d = 0.99) [101], and Harasim presents conceptual change as a central component
of her “Online Collaborative Learning” theory [100]. Section 3.3 gives a brief overview of
related work on the topic, as well as discussing different uses of the terms systematic error
and misconception.

This section discusses two software-driven measures aimed to foster conceptual change:
Collaboratively-generated refutation texts, and a specialized scaffolding embedded in the
platform’s code editor Knoala (described in Section 4.1).

Many software-driven interventions aiming to induce conceptual change found in the litera-
ture address misconceptions which were established before the interventions for a population
of students [15, 116, 115]. One contribution of Backstage 2 / Projects is its support for the
collaborative collection of misconceptions (see Section 4.2). Note that a list of common
misconceptions along with their prevalences is a simple yet very powerful form of Learn-
ing Analytics. It is (in part) due to this collaboratively generated data that the measures
discussed in this section could be implemented and evaluated.

67

68 CHAPTER 6. SELF-REGULATION AND EXPLORATIVE LEARNING

Collaboratively-generated refutation texts. The evaluation presented in Section 4.2 showed
that the use of collaboratively collected descriptions of systematic errors was well accepted
among students: They perceived these descriptions, which were presented alongside their
exercises and were often written as “refutation texts” [240], as helpful for their learning. The
data presented in the following shows that this measure was not only perceived as helpful,
but did help students in avoiding systematic errors. This result was published in [104].

Data gathered in three consecutive courses on theoretical computer science (TCS-2016,
TCS-2017, TCS-20181) was evaluated to measure the effectiveness of the intervention. The
first dataset gathered in TCS-2016 is referred to as the base-dataset. It was collected to
initially establish which systematic errors occurred in the course as well as to determine
their occurrence frequencies (see Section 4.2 for a description of this process).

The second dataset, gathered in TCS-2017 and referred to as the validation-dataset, was
collected to establish whether systematic errors would re-occur with similar frequencies in
the following course venue. The third dataset, referred to as the primed-students-dataset, was
gathered in TCS-2018. In this course, students were provided with error descriptions while
working out homework exercises as described in Section 4.2. This intervention aimed at
reducing the occurrence rates of the displayed errors.

Many experiments on conceptual change are conducted in laboratory settings with pre and
post-tests to establish whether a teaching method administered between tests was effective
in reducing misconceptions. The research presented in this section does not follow this
approach. While laboratory studies have the important advantage of providing controlled
variables, the design used here can provide insights on the learning of far more students
over a longer period.

Error occurrences in the base-dataset and the validation-dataset correlated positively (k = 0.49),
which indicates that systematic errors were made with similar frequencies in these courses.
The correlation between error occurrences in the base-dataset and the primed-students-dataset
was also positive but smaller (k = 0.21). This indicates that systematic error occurrences
changed due to the implemented priming in TCS-2018. Yet, the correlation between the
base-dataset and the primed-student-dataset is still significantly positive: Common errors in
TCS-2016 were still common in TCS-2018. Possibly, the implemented measure affected only
certain students.

In TCS-2016, 35% of all homework submissions contained systematic errors. In TCS-2018,
this number dropped to 18%, which is a significant change (p < 0.01). To further evaluate
which students avoided systematic errors, the primed-student-dataset was split by student
activity into four equally sized sets. Here, student activity was assessed by the number of
hours in which an action of a student was registered on the platform. The results of this
evaluation are shown in Figure 6.1: Student activity had a large impact on the likelihood of
making systematic errors. Only 14% of the homework submitted by students in the “most
active quartile” contained systematic errors. In contrast, 31% of the homework submitted
by students in the “least active” quartile contained systematic errors. Note that the rate of
systematic errors for the least active students in TCS-2018 is comparable to the average rate
of systematic errors of all students in TCS-2016 (35% compared to 31%).

The fact that the most active students made the fewest systematic errors strongly indicates
that the overall drop in systematic errors in TCS-2018 was indeed caused by the implemented
intervention, as the least active students in TCS-2018 (who rarely visited the platform) made
nearly as many systematic errors as the students TCS-2016 which were instructed without
the intervention.

1See Appendix A for descriptions of these courses

6.1. FOSTERING CONCEPTUAL CHANGE 69

Figure 6.1: Relative frequency of occurrences of systematic errors, by student activity. Quartile 1
encompasses data from the least active quarter of students, quartile 2 data from the second least active
students, etc. Image taken from [104]

Scaffolding. The courses on theoretical computer science evaluated for this research re-
quired students to learn a set of “theoretical programming languages” (described in Section
4.5), two of which, referred to as LOOP and WHILE, are discussed in greater detail in the
following. The imperative programming languages LOOP and WHILE follow mainly the
same syntax while providing different means to realise repetition: WHILE allows to specify
“while-loops” which are executed until a certain condition is met, and LOOP only allows to
specify fixed-length loops [222, Chap. 2.3].

As for all other topics of the course, systematic errors also occurred during the learning of
these languages and were collected on the platform. Even though the online code editor
Knoala supported students in delivering homework for these topics, syntax errors were
very common in the submitted homework.

The most common systematic error observed for these topics was a syntax error caused by
an incorrect placement of semicolons. In LOOP and WHILE, two statements are separated by
a semicolon, while in many of today’s practical programming languages (java, JavaScript,
Python, C, etc.) semicolons are used to end a statement. This means that placing semicolons
in LOOP in the same ways as in more “common” programming languages (like the ones the
students are used to) causes syntax errors.

It is noteworthy that the special semicolon placement in LOOP and WHILE is somewhat
arbitrary (possibly it was chosen to resemble older programming languages like Pascal
[118]), and an equivalent definition of these languages with “more common” semicolon
placement could be devised easily. Fortunately for this research, such an adaptation was
not attempted, which allowed observing conceptual change among the students: Starting
with a concept like “semicolons are always used to end a statement” and ending with a
concept like “In LOOP and WHILE, semicolons are used to separate statements”. From
an educational point of view, it can be argued whether fostering this particular conceptual
change is worth an educator’s or a student’s time as the difference seems rather benign. Yet,
computer science students, and arguably all students studying STEM fields, regularly have
to learn new formalisms, many of which may seem unintuitive at a first encounter.

70 CHAPTER 6. SELF-REGULATION AND EXPLORATIVE LEARNING

Figure 6.2: Knoala containing an erroneous LOOP program. The implemented scaffolding provides
the red error mark left of line 3, and an tooltip text made visible by hovering the error mark.

The syntax errors Knoala provided for these languages were rather limited as they were only
displayed after executing a program (while many development environments constantly
verify code syntax), and did not indicate the line of text in which an error occurred. For
her bachelor thesis, Galina Keil extended Knoala with a scaffold component for LOOP and
WHILE, consisting of improved error messages and a continuous code analysis [130], which
are shown in Figure 6.2. The following paragraphs report results gathered in a laboratory
study which evaluated these improvements.

One goal of the laboratory study was to assess whether students who were provided with
the scaffolding would learn the “unintuitive” placement of semicolons in LOOP and WHILE
better than students who were not. Other results of this case study are discussed in Section
6.3.

The study followed an AB test design and was conducted with 36 participants of which 16
where assigned the scaffold condition and 20 the default condition. All students heard a short
lesson on the definition and use of the programming languages LOOP and a lesson on the
definition and use of the programming language WHILE. After each lesson, students were
asked to solve one code correction exercise, in which they were provided with an erroneous
program they had to correct, and two programming exercises, in which they had to write a
program fulfilling a given specification. All students were asked to use Knoala to work out
their solutions, yet only students in the scaffold condition were provided with the additional
scaffolding.

“Scaffolded” students less often attempted to run code containing syntax errors (including
the “semicolon-error” in question) while working out their solutions. This is not surprising,
as the implemented scaffold immediately reported syntax errors, while the “unscaffolded”
students had to run their programs to be informed about them.

In a post-test, all students were asked to correct a given program which contained, among
others, an “incorrectly placed semicolon” as described above. In this post-tests students
had no access to Knoala. Students understanding the “unintuitive” use of semicolons in
LOOP and WHILE would have no problem finding this error. Indeed, students who learned
with scaffolding identified this error significantly more often (p < 0.05), which is illustrated
in Figure 6.3: Arguably, the implemented scaffolding helped the students in learning the
unintuitive concept, and hence it fostered conceptual change.

Perspectives. This section discussed two technology-driven interventions which fostered
conceptual change, one through displaying refutation texts of systematic errors and mis-
conceptions, and one through a scaffolding embedded in a code editor. Yet, before these
interventions could be implemented, the systematic errors the interventions addressed had

6.1. FOSTERING CONCEPTUAL CHANGE 71

Figure 6.3: Relative frequencies of the results of the code correction task in the post test. Correct
answers correctly identified the “semicolon error” and gave a correct explanation for its occurrence.

to be identified – a task which, in sum, required at least as much work as implementing the
software which delivered the interventions.

A perspective for future work is to identify specific systematic errors and implement
technology-driven interventions in other courses as the evaluation presented here solely
relies on data gathered in courses on theoretical computer science. Yet, if homework submis-
sions are to be used as a data source, gathering a sufficient amount of data can be a problem.
As noted in Section 4.2, a teacher would have to review 52 homework submissions to be
90% sure to identify an error occurring in 10% of the submissions. Besides having to do this
substantial amount of work, one has to assert that there are so many submissions to revise!
In several examined courses (LDM-2018, LDM-2019, FP-20172), systematic errors could not
be sensibly identified because homework delivery rates were too low (even though the
courses encompassed several hundred students each). Note that the general problem of
skipping homework is discussed in Section 4.3, and attempts in solving this problem are
discussed in Section 6.2.

If however such an error analysis can be carried out, it allows to directly measure the
effectiveness of teaching on a semantically deep level: Not only how well a subject is
learned, but also which misconceptions were reduced (or caused) by a change in teaching.

An idea for a technology-driven intervention aimed to foster conceptual change which was
not integrated into the Backstage 2 ecosystem is developed in [156]: Relevant concepts of
a course’s topics are represented as interactive concept maps on the platform, which can
be created, extended and rearranged by the students. A student who made a systematic
error can be asked to rearrange their concept map of the regarding topic. This approach is
equally generic as displaying refutation texts (as concept maps can always be drawn), while
also being interactive. Note that letting students draw so-called “pre-concept maps” before
instruction has been used to assess which misconceptions are present within a population of
students [229], and comparing such “pre-concept maps” to “post-concept maps” (drawn
after instruction) have been used to assess conceptual change [116].

2see Appendix A for descriptions of these courses

72 CHAPTER 6. SELF-REGULATION AND EXPLORATIVE LEARNING

Figure 6.4: Relative frequency of skipped assignments throughout different course venues of theoretical
computer science, in 2018 analytics-based nudging was implemented.

6.2 Fostering Behavioural Change

This section describes behavioural changes which were fostered with Backstage 2 / Projects.
First, influences of analytics-based nudging (described in Section 4.3) are reported, then a
general change in the use of the platform between two courses is described.

The influence of nudging. The learning and teaching format “Analytics-based Nudging”
encompasses the provision of predictions of a student’s examination fitness (see Section 5.2)
and risk of skipping homework (Section 5.1) to nudge students to deliver (more) homework.
A first evaluation of this learning and teaching format was conducted in a course on
theoretical computer science (TCS-2018). The results of this evaluation are published in [106].
In this course, in which personal analytics were provided in an online dashboard on the
platform, students skipped fewer homework submissions than in the three previous course
venues, as seen in Figure 6.4. While the homework skipping rate of 2018 was significantly
lower to the skipping rates of 2015 and 2017, it was not significantly lower than in 2016.

A second evaluation was performed in a course on logic and discrete mathematics (LDM-
2019). For this evaluation, Backstage 2 / Projects sent personalized analytics reports via
email to the course’s participants, as well as providing an analytics dashboard (both are
described in Section 4.3). Yet, despite the analytics-based nudging being more prominent
than in the previous evaluation, no significant decrease in homework skipping was found:
Skipping rates changed from 96.8% of all homework being skipped to 96.4%.

Both evaluated courses differed not only in the implemented nudging but also in taught
subjects, teaching staff and other details. Furthermore, only in the TCS courses, bonus points
for delivered homework were awarded, and students reported missing incentives as a cause
of not submitting homework (reported in Section 4.3). This might be a major cause for the
large difference in homework skipping rates between the TCS courses (between 61% and
74%) and the LDM courses (96.8% and 96.4%).

A culture of dialogue. In the following, data from LDM-2018 and LDM-2019 are evaluated.
Between these course venues, the software remained fairly similar, with the only changes
being the implementation of the afore-mentioned analytics reports, and an improved com-

6.2. FOSTERING BEHAVIOURAL CHANGE 73

commented
feedback

mean HFD
length

commented
exercises

mean ED
length

LDM-2018 1% 2 29% 2.75
LDM-2019 4% 2.4 9% 1.75

Table 6.1: Comparison of discussion lengths in LDM-2018 and LDM-2019, “commented feedback”
refers to the frequency in which students commented on feedback they received from a teacher, “HFD
length” refers to the total numbers of comments in a homework feedback dialogue, and “ED length”
refers to the total numbers of comments in an exercise dialogue.

munication awareness (users could choose to be informed via email on general activities in
2019, while in the previous venue they were only informed when their homework received
feedback). Also, the exercise texts of LDM-2019 were improved or reworked by the teaching
staff using comments which students left in LDM-2018. As mentioned before, homework de-
livery rates could not be increased between LDM-2018 and LDM-2019, but other behaviours
changed between these course venues.

Firstly, students replied more often to reviews they got from their teachers in LDM-2019 than
in LDM-2018, and these “homework-feedback-dialogues” (HFDs) increased significantly
in length. In both courses, HFDs were initiated by the student either with a final remark
(like “thank you” or “Ok, I see”) or with an inquiry asking further questions on the exercise,
the given solution, or the feedback. In both courses, “final remarks” and “inquiries” were
posted approximately equally often. Notably, in LDM-2018 there were student inquiries
which remained unanswered by the teachers, and this did not happen in LDM-2019.

Secondly, exercises (i.e. problem statements) received significantly fewer comments in LDM-
2019 than in LDM-2018, and these exercise dialogues (EDs) were shorter. In both courses,
comments posted on exercises only contained questions regarding the exercises. These
differences in communication behaviour are displayed in Table 6.1.

Thirdly, students, including those who neither delivered any homework nor left any com-
ments, spent more time on the platform in LDM-2019 than in LDM-2018: In LDM-2018 an
average of 6.8 active hours, and in LDM-2019 an average of 14.8 active hours was measured3.

In summary: While homework delivery rates stayed the same in both courses, the use of
the platform changed. Students visited the platform more often (possibly to see homework
submissions of other students and the feedback they received, as submissions made up
the majority of the content available), and engaged more in feedback dialogues with their
teachers. At the same time, the course’s exercises themselves seemed to have caused fewer
questions than in the previous course venue, a possible result of the attempted exercise
improvements.

The increase in feedback dialogues and time spent on the platform may have been caused
by the improvement of communication awareness on the platform. Furthermore, it has to be
noted that the learning management systems used prior to Backstage 2 / Projects did neither
provide any communication functionalities to publicly discuss feedback or exercises nor the
possibility to see the homework submissions of other students. Possibly, students needed
time to perceive Backstage 2 / Projects as a social medium and not only as a mere homework
delivery platform.

Nicol argues that teacher feedback has to be provided as a dialogue instead of a one-way
communication [171]. The results above show that simply providing the students and
teachers with the technology to do so (in LDM-2018) is initially not sufficient, but that a

3an active hour is defined as an hour in which at least one user-action is registered on the platform.

74 CHAPTER 6. SELF-REGULATION AND EXPLORATIVE LEARNING

“culture of dialogue” can emerge when simple awareness measures are implemented and
students and teachers alike get used to the new functionalities.

Perspectives. The results regarding analytics-based nudging indicated that students can (in
certain cases) be motivated by such nudging, but also that other motivators such as bonus
points are a much more effective motivator. Arguably, further developments of analytics-
based nudging should reflect how the “nudged behaviour” influences or is influenced by
other factors such as the workload in other courses or external motivations.

One perspective for future developments would be to motivate students to become active
early within a learning phase (for instance shortly after an assignment is given and not
shortly before the deadline). Firstly, this would foster a spacing effect, which is beneficial
for learning [227], and secondly, it could increase the efficiency of exercise dialogues, as it
could allow more students to benefit from the answers while working on their homework.
Communication on the platform happened solely between teachers and students, never
did students enter dialogues with their peers. Yet, such communication could reduce the
teachers’ workload [172], and future developments of the software could aim to foster such
dialogues.

6.3 Sustaining Exploratory Learning

In Section 4.5, the code editor Knoala and its use in enabling exploratory learning of formal
languages is described. The evaluation presented in Section 4.5 showed that, while many
students appreciated the editor’s functionalities and used it for studying, a large number of
students struggled with the “syntax barrier” and used Knoala only rarely.

In Section 6.1, results of a laboratory study were reported, which indicated that the learning
of unintuitive concepts could be fostered by implementing a simple scaffolding. This study
and the implemented improvements are discussed in greater detail in the bachelor thesis of
Galina Keil [130]. This section further evaluates the data gathered in that laboratory study
with respect to the successful use of the editor and patterns of exploratory learning.

Successful use. As mentioned before, students participating in the laboratory study, learned
to understand and use the theoretical programming languages LOOP and WHILE with the
help of Knoala. They were divided into a scaffold group (students who used Knoala with
scaffolding), and a default group (students who used Knoala without scaffolding).

During the study, students were asked to perform correction tasks (in which they were
provided with erroneous source code they should correct) and programming tasks (in which
they should write programs realising a given specification). As seen in Figure 6.5 Students in
the scaffold group completed the tasks significantly more often and in a significantly shorter
time than students in the default group.

In Section 5.4, the notion of “programming competence levels” was introduced with

• level 0 being the ability to provide code in the correct format,

• level 1 being the ability to write syntactically correct code,

• and level 2 being the ability to write semantically correct code.

The laboratory study required students to use a correctly configured code editor, hence
all students reached level 0 by study design. Figure 6.6 shows that, in both groups, more
students reached level 0 than level 1, and more students reached level 1 than level 2. This
result was to be expected as higher levels entailed more complex tasks. However, it is
striking that scaffolded students reached higher competence levels easier.

6.3. SUSTAINING EXPLORATORY LEARNING 75

Figure 6.5: Comparisons of behaviour in the scaffold and default group. Left: Task completion rates.
Right: Mean times students spent editing exercise solutions.

Figure 6.6: Relative frequencies of reached the competence levels (counting the highest reached level
for each student and exercise) in the scaffold and default group.

76 CHAPTER 6. SELF-REGULATION AND EXPLORATIVE LEARNING

Flow and play. Besides being more successful in writing correct programs, students in the
scaffold group used Knoala differently than students in the default group. Firstly, scaffolded
students ran their programs less often while solving exercises than non-scaffolded students
(on average 4.5 times per exercise in the scaffold group, and 6.8 times in the default group).
Furthermore, after having run syntactically correct code, students in the default group ran
syntactically incorrect code more often: Syntactically incorrect code followed syntactically
correct code in 32% of the cases in the default group, and only 14% of the times in the
scaffold group. These differences may have been caused by the continuous display of syntax
errors in the scaffold group. Students in the default group had to run their code to verify its
syntactic correctness.

Arguably, the laborious process of having to run the source code and of finding syntax errors
without further indications broke the workflow for students in the default group, which
might explain the increased time these students needed to complete exercises.

To further investigate how the use of Knoala differed in both groups, all code samples
executed during the study were categorized in the following way:

1. Two code samples which both are semantically correct belong to the same category.

2. Two code samples which are both semantically incorrect, yet syntactically correct belong
to the same category if they compute the same result (which is incorrect for the task at
hand).

3. Two code samples which are syntactically incorrect belong to the same category if they
were caused by the same syntax error (such as a misplaced semicolon, as described
before). Here, two syntax errors were identified to be identical if they produced the
same error message disregarding line numbers and variable names.

Evaluating the occurrence frequencies of these categories revealed that “scaffolded” students
ran “semantically incorrect” code belonging to categories which did not occur in the default
group. Some of these “scaffold-only” categories contained code which obviously resulted
from students trying out variations of the same program. One relatively large category, for
instance, entails programs which compute the triple of the input while the exercise asked to
compute the double. These categories were often reached after having executed semantically
correct code: Some students in the scaffold group played with their source code after having
solved an exercise. This behaviour was not observed in the default group.

The observation of “play” is further illustrated by Figure 6.7, which shows trajectories of
categories the scaffolded students’ code passed while programming exercises were worked
out. The three highlighted clusters encompass closely connected categories, one of which
(highlighted in blue) contains only syntactically correct code. Students “passing” this cluster
were able to consistently test and manipulate the semantics of their programs without
destroying its syntactical correctness. Notably, this cluster was only entered after the exercise
was solved correctly.

Perspectives. The implemented scaffolding improved Knoala. Yet it has to be noted, that the
implemented improvements are not perfect: Among others, the displayed error messages
are sometimes ambiguous, and sometimes point one line below the actual error. While
further improvements could try to remedy these problems, it can be doubted whether such
improvements would have an equally large effect on the students’ learning as the scaffolding
implemented so far.

It would be interesting to detect “patterns of exploratory learning and play” outside the
laboratory. In general, any educational software could be evaluated with regard to whether
it allows or encourages such learning and how it enables the detection of such behaviours.

6.3. SUSTAINING EXPLORATORY LEARNING 77

Figure 6.7: Trajectories of code categories in the scaffold group. Nodes signify code categories, with size
indicating occurrence frequency. Red nodes represent code with syntax errors, yellow nodes represent
code with semantic errors, and the green node represents semantically correct code. An edge from
node C to node D signifies that at least once a student ran code in category D directly after running
code in category C. Only categories which were visited more than twice are shown. Highlighted
clusters represent densely connected subgraphs. Descriptions of the error categories can be found in
Appendix B.

78 CHAPTER 6. SELF-REGULATION AND EXPLORATIVE LEARNING

Note that the detection of playful behaviour was only possible because, besides logging
all the code run by the students, the software also logged the exercise the students were
working on when running the code. Only this allowed to analyze whether a syntactically
correct code was semantically correct or to speculate whether a code was a result of “playing
around” with a working solution. While in its current form, Knoala does not provide
these capacities natively, it would be possible to integrate testing functionalities into the
definition of the languages Knoala provides. LOOP-code documents, for instance, could
encompass test cases (in a syntax yet to be defined) which the LOOP-code should satisfy,
and the LOOP-interpreter could be extended to run the test cases and respond with sensible
messages. Such an extension would ease future evaluations.

In the evaluation presented above, errors were detected automatically, leading to 11 distinct
syntax errors, and 14 distinct semantic errors which occurred more than twice. One way to
further help students in overcoming these errors could be to let teachers write specific help
texts, which the software could then display if it detects the regarding errors. Yet, rather
than requiring 25 different texts to address each error, teachers could focus on the most
common errors or the ones that took the students the longest to resolve. Further, the clusters
of errors shown in Figure 6.7 could help in deciding whether an error actually is an error, or
rather a sign of a playful behaviour (which the software arguably should not interrupt).

6.4 Discussion

This section discusses the previously presented results by first considering general limita-
tions, and then discussing the results concerning self-regulated and teaching efficiency.

Limitations. Most of the results presented above rely on data gathered in courses on theoret-
ical computer science (four course venues) and courses on logic and discrete structures (two
course venues). Arguably, this allows reporting relatively certain results concerning these
courses: While parts of the teaching staff changed, the exercises and topics stayed largely
the same. Yet, transferring the results to other courses might not be possible. For instance,
theoretical computer science might be a field prone to cause a large number of systematic
errors, or errors that can very well be eradicated using refutation texts. Similarly, students in
LDM-2019 might have asked fewer questions regarding the course’s exercises because they
were higher-achieving students, or simply less concerned with understanding the exercises.

Furthermore, the evaluation does not consider which courses were heard by the students in
parallel. As discussed before, certain properties can divert attention between concurrently
attended courses. Also, using Backstage 2 / Projects was non-obligatory in all of the exam-
ined courses (while teachers encouraged its use), and obviously the results presented here
can only reflect the behaviour of learners who chose to use the software.

The results regarding exploratory learning in Section 6.3 were based on a laboratory study.
These results might be caused by a biased or undersized sample of participants, and might
simply not be transferable to everyday teaching.

Fostering self-regulated learning. According to Zimmerman, self-regulated learners “per-
sonally activate, alter, and sustain their learning practices in specific contexts” [267, p.
307], and certain results presented in this report indeed indicate that Backstage 2 / Projects
fostered self-regulated learning among students.

Students changed certain misconceptions based on descriptions of systematic errors pro-
vided on the platform, which required them to reflect on the conceptions they had and
whether these could be true. This kind of meta-cognition is considered a part of self-
regulated learning [190].

6.4. DISCUSSION 79

While these refutation texts seem to have enabled self-regulated learning in the sense of “self-
reflection”, the results indicate that self-regulated learning in the sense of “self-motivation”
was required to benefit from them: Students who were not active on the platform (besides
in submitting homework) did not show conceptual change as often as their more active
peers. These students were often not motivated to read the error descriptions regarding the
homework they attempted or to ask questions if they found them incomprehensible.

As shown in Section 4.5, the “syntax barrier” was a challenge for many students who tried to
use the online code editor Knoala. It has to be noted that the students were not required to
use Knoala, so every attempt to use it can be regarded as self-regulated learning. In Section
6.3 it was shown that implementing scaffolding “lowered” the syntax barrier. It seems likely
that these improvements could increase the self-regulated use of Knoala in future, as they
also encouraged exploratory “playful” learning.

A problem arguably related to learner self-regulation are decreasing numbers of homework
submissions throughout a course (described for instance in Section 4.3). To increase self-
regulation in this regard (i.e. motivating students to submit homework) students were pro-
vided with personalized learning analytics reports in an analytics dashboard (in TCS-2018)
and both in an analytics dashboard and through analytics reports via email (in LDM-2019).
The evaluation revealed mixed results: While the intervention seems to have motivated the
students in TCS-2018, such a result could not be reproduced in LDM-2019.

Further evaluations revealed that, in LDM-2019, a major reason for not submitting home-
work was a lack of incentives, or, more precisely, that other courses provided concrete
incentives (bonus points for the examination), while LDM-2019 provided solely intangible
incentives in the form of predictions. Arguably, this diverted the students’ motivation
towards other courses, as an intangible prediction “you will probably be 1% better in the ex-
amination if you submit this assignment” is simply outperformed by a tangible bonus “you
will get 1% on your final examination grade if you submit this assignment”. Interestingly,
the combination of tangible and intangible incentives in TCS-2018 seemed to have motivated
more students compared to the previous course venues in which only tangible incentives
were offered.

Yet, certain forms of self-regulation increased between LDM-2018 and LDM-2019 without
them being intentionally reinforced by the teachers or the software: Students replied more
often on the feedback they received on their homework, and visited the platform more often.
Possible causes may be the improvement of awareness functionalities between the courses
(better notification emails and news-feeds, described in Section 4.1) as well as a changed
mindset of the students regarding what the software should and can provide.

Increasing teaching efficiency. Embedding documents containing descriptions of system-
atic errors in the platform increased teaching effectiveness. Firstly, teachers reported that
using these labels for giving feedback decreased their workload (see Section 4.2, and [104]).
Secondly, students who were provided with error descriptions (and were active on the
platform) avoided the presented errors. While it is unclear whether these students made
fewer errors in total (they could have come up with new errors to make), the intervention
arguably increased teaching effectiveness as it allowed teachers either to find new systematic
errors (which they did not) or to focus on the new individual errors students made.

Improving teaching material (such as exercises) is a different way of increasing teaching
effectiveness. Indeed, the improved exercises of LDM-2019, which addressed the feedback
students gave in LDM-2018, received fewer questions than the same exercises in the previous
venue, and consequently teachers spent less time answering questions.

Furthermore, in LDM-2019, students replied more often to the feedback they got on their
homework, often asking questions regarding the feedback or their solutions. Allowing

80 CHAPTER 6. SELF-REGULATION AND EXPLORATIVE LEARNING

(or even encouraging) such questions does not decrease the teachers’ workload. Yet it
can nevertheless increase the teaching effectiveness as giving feedback the student does not
understand (a problem especially prevalent for low-achieving students [178, 195]) is very
inefficient, and by encouraging dialogue, feedback can become more comprehensible.

Arguably, Backstage 2 / Projects improved teaching effectiveness most by pointing out how
teaching could be improved; for instance by displaying systematic errors and student
questions on exercises.

CHAPTER 7

Perspectives

This chapter develops perspectives for future research connected to the results presented
in this report and to tertiary STEM education in general. First, a broad software-driven
approach referred to as “agile learning format development” is defined. In Section 7.1, this
approach is applied to the learning and teaching formats introduced in Chapter 4 with
respect to the results presented in Chapter 6. Section 7.2 suggests further developments of
learning and teaching formats using “prescriptive learning analytics”, in which software
makes pedagogical decisions based on data gathered within a course.

Agile learning format development. The term “agile software development” was coined
in 2001 in a document known (among software developers) as the “agile manifesto” [88].
The manifesto states desirable properties of the process of software development, which,
in general, promote flexibility (for instance when changing plans) and communication
(between developers, customers, managers, etc.). “Agile”, which is often confusingly used
as a noun instead of an adjective, has since become a term commonly known among software
developers, and providing “Agile coaching” has become a proper industry [74].

Testing is an important component of agile software development, which is reflected by
approaches like “continuous integration” [87], “exploratory testing” [12], or “test-driven
development” [119]. In these approaches, testing is often one step in an iterative process: It
provides means to realize flexibility during development, it is not a tool to confirm software
qualities after development.

Certain approaches presented in the education literature are strikingly similar to the general
ideas of agile software development: The exploratory assessment theory [79] and the
cognitive apprenticeship model [62] emphasize that learning has to be assessed during
the learning process, instead of after a learning process in order to timely react to arising
problems. The eXtreme apprenticeship model [249] (a name obviously referring to the agile
software development method “Extreme Programming”[17]) comprises short feedback–
work iterations, which is a common feature of agile software development processes. Face-
to-face communication between customers and programmers is emphasized in the agile
manifesto. Similarly, two-way feedback between students and teachers is emphasized in the
literature [171, 172, 38].

81

82 CHAPTER 7. PERSPECTIVES

While the “agile manifesto” explicitly argued to favour flexibility over sticking to fixed
processes, the agile software development literature devotes much effort to specifying and
evaluating fixed processes (like Scrum [223], Kanban [2], and Extreme Programming [17]).
Similarly, much education literature is devoted to defining fixed learning processes in the
form of learning and teaching formats [3, 36] (and this report’s chapter 4), or collaboration
scripts [137, 65, 68]. Arguably, a major reason to advocate for flexibility in software devel-
opment is the unpredictability of problems which will be encountered while programming.
Similarly, it is difficult for teachers to foresee what exactly will pose problems to the learners
while learning (and frequently, the causes of learning problems surprise teachers).

Obviously, software development is different from teaching. Courses are usually taught
repeatedly in several venues, while the same software is usually not re-developed on a regu-
lar basis. Yet, the process of improving teaching can be compared to software developments
processes like continuous integration, where working software is steadily improved and
repaired. The following (simplistic) algorithm is derived from the iterative processes found
in the agile software development literature (for instance [223] or [17]), and aims to flexibly
improve technology-driven learning and teaching formats:

1. Identify learning or teaching problems by collecting and evaluating learning analytics.

2. Devise an intervention and, at the same time, define how newly gathered learning
analytics would reflect the success of the intervention.

3. Implement the intervention, collect data, and evaluate it with respect to the crite-
ria devised in step 2. Include the intervention in the current teaching format if the
intervention was successful, and discard it otherwise. Go to step 1.

In fact, the learning and teaching formats presented in Section 4 are in part a result of a
similar process as they are focussed on observed problems (low homework completion rates,
problems of students in using abstract formalisms, etc).

While this algorithm aims to improve learning and teaching formats (the iteration length
being a whole course of 3 months) it can be applied on different scales: Within a lesson (for
instance if students have problems which need timely solutions), within an educational
institution such as a school or a faculty (for instance if motivating students in certain courses
diverts attention from other courses), or even within governmental structures (for instance
if there is a considerable impact of the socio-economic status on educational achievement as
reported in [58]).

Educational software is the key component for such improvements because it allows col-
lecting and evaluating learning analytics for a large number of students. Hattie writes “It
was only when I discovered that feedback was most powerful when it is from the student to
the teacher that I started to understand it better” [101, chap. 9]. Obviously, Hattie regards
feedback given by students as a means to (flexibly) improve teaching. Similar to Hattie’s
revelation, one could argue that learning analytics are most effective if provided to the teach-
ers. “Agile learning format development” is a proposal for an approach to developing and
adapting teaching formats by presenting teachers with automatically generated feedback.

7.1 Improving Learning and Teaching Formats

This section presents perspectives for improving the learning and teaching formats con-
ducted with Backstage 2 / Projects by following the approach defined above: Reporting
learning or teaching problems which have been observed, suggesting interventions and how
intervention success could be measured. The focus hereby lies on further developments of

7.1. IMPROVING LEARNING AND TEACHING FORMATS 83

learning and teaching formats discussed in Section 4. Note that some problems reported in
the following are only supported by anecdotal evidence. In these cases, the focus lies on
developing appropriate measurements to concretely detect the problem.

Often, implementing the suggested interventions, as well as setting up the needed structures
for data collection, would require extending the software. Suggestions are made on how to
re-use as much of the existing infrastructures as possible.

The gap between synchronous and asynchronous learning. The Backstage 2 ecosystem
encompasses, besides the “project component” for asynchronous learning, a “course compo-
nent” for synchronous learning. This component provides a digital backchannel in form
of a collaborative annotation system and an audience response system [155] to its users.
Two courses on logic and discrete mathematics (LDM-2018 and LDM-2019) were supported
with both synchronous services (for lecture slides, collaborative annotations, and lecture-
accompanying quizzes) and asynchronous services (analytics-based nudging and homework
delivery).

In general, we registered much more activity in the synchronous component than in the
asynchronous component. While the homework delivery rates lay in both courses between
4% and 5%, about 30% of the students joined the digital backchannel during lectures, and
lecture quizzes (multiple choice quizzes which were interleaved with the lecture slides)
were played by 70% of students who were online [155].

This observation obviously points to a problem, as all components of a course are considered
helpful by the teachers to successfully learn the subject.

There may be different causes for the observed “gap” in activity. Firstly, synchronous ac-
tivities require less self-regulation from the students than asynchronous activities. Playing
multiple-choice quizzes takes minutes, while working out exercise solutions can take (de-
pending on the exercise) hours or days. Also, playing a quiz consists in choosing an answer,
while homework usually consists in constructing a solution from a blank slate. Secondly,
students might be tempted to think that quiz questions are a better preparation for the exam-
ination than elaborate exercises. This argument is not easily refutable as, on the one hand,
examinations often contain multiple choice quizzes, and, on the other hand, homework
exercises often require solutions which could not possibly be constructed within the limited
time of an examination.

Arguably, a further investigation of possible causes would require surveys or interviews
with the students, yet a first intervention would aim to better integrate of the two learning
contexts. This could be achieved by allowing artefacts to be transferred between contexts. An
example of a transfer from a synchronous to an asynchronous context would be if a teacher
starts to solve an example problem in class, and all students are tasked to complete the
partial solution as homework. Discussions started in the synchronous class context could
carry over to the asynchronous homework context. This could reduce the hurdle to get
started, as the teacher could (flexibly) react to the first problems or objections expressed by
the students.

An example for a transfer from an asynchronous to a synchronous context could be realized
by flexibly scheduling discussions of specific topics to specific lessons. If for instance a
systematic error is very prevalent (or the teacher deems its discussion important), it could
be scheduled to be discussed on the next occasion. This could convey the importance of
learning outside the classroom: If the teacher mentions something in a lecture, it must be
important (and so must be asynchronous learning).

These new functionalities would require relatively few extensions of the Backstage 2 ecosys-
tem, as documents (the artefacts created in a learning context) are stored by a central service

84 CHAPTER 7. PERSPECTIVES

every component can use. Hence, providing such functionalities would solely require to
devise a suited user interface (which has nevertheless to be carefully devised). Yet, using the
new functionalities efficiently would require effort from the teachers: For instance, teachers
would have to be willing (and able) to devote a part of their lecture time to a topic which
was scheduled by the software.

The metric for success of these interventions is obvious: A more balanced use of both
synchronous and asynchronous services by the students (without the use being generally
lower). The long term goal would be to encourage students to start their own synchronous
and asynchronous contexts (for instance to organize learner groups or learning projects),
and to let them regulate the transfer between their contexts.

Fostering intrinsic motivation. Obviously, examination results are a main motivator for
students, and a number of observations reported in the previous chapters sustain this claim:
Consider for instance motivations for homework delivery reported by the students which
are discussed in Section 6.2, or the fact that a considerable number of students started to use
the platforms functionalities only days before the examination (Section 4.5).

“Grade motivation” and its numerous detrimental effects on learning has been studied
for decades (summarized for instance by Kohn in [138]), with the main effects being a
diminished interest in the learned subject, an increased preference for the easiest possible
task, and a reduction of the students’ quality of thinking (manifested through behaviours
like skimming books for “what they I need to know”) [138]. Arguably, abolishing grades
completely (as Kohn requests) is an endeavour outside the scope of this research. Yet, if not
abolishing grades, educational software could help in shifting the focus away from grades
towards the actual learning content. Interventions with this goal could try to foster playful
exploratory learning as illustrated in Section 6.3, or point out concrete learning problems or
learner achievements. The representation of commonly held misconceptions or common
errors as discussed in Section 4.2 is certainly a step in this direction, and further interventions
could emphasize this feature more (for instance through synchronous class discussions as
mentioned above). An idea to reify student achievements within the Backstage 2 ecosystem
is given in [156]: Concrete achievements of a student are represented by tokens of various
playful forms (for instance trees blossoming or withering depending on the completion of a
task).

Arguably, nudging students with predictions of examination outcomes as discussed in
Section 4.3 might have increased their grade motivation. A perspective for future work
would be to assess whether this is indeed an effect of such nudging.

These interventions would be known to work if playful behaviour was observed (or such
behaviour increased), or if the number of students only visiting the platform shortly before
the examination decreased.

Flexibly-flipped classrooms. Many of the courses supported with learning teaching for-
mats described in Section 4 encompassed lectures (in which a professor conveyed new
content) and practical lessons (in which homework exercises were discussed). Certain tutors,
including the author of this report, frequently had the impression that a substantial num-
ber of students visited the practical lessons simply to “copy the board” where exemplary
solutions were presented, instead of actively engaging with the problems (not to mention
presenting alternative solutions, or posing further questions). Obviously, teaching a group
of students consisting mostly of “passive copiers” is unpleasant, and ineffective: Copying
material is not learning, and therefore presenting anything solely for it to be copied is not
teaching.

A flipped classroom could remedy such effects, as it requires student activity. Also, topics
discussed in the practice lesson could be scheduled flexibly to the students’ needs, who

7.1. IMPROVING LEARNING AND TEACHING FORMATS 85

could be asked to prepare questions they have on the exercises they are currently attempting.
Students could endorse questions (e.g. through an upvote mechanism), which could lead
to the questions being discussed in more (possibly concurrently held) lecture sessions.
Additionally, students could be provided with exemplary solutions of exercises they already
submitted, and questions on these exemplary solutions could be similarly scheduled for
discussion.

While the observation of passively solution-copying students is anecdotal, it fits the symp-
toms of grade motivation, which “tends to diminish students’ interest in whatever they are
learning” [138]. Measuring this behaviour (probably requiring interviews or surveys) would
be a first step, as it would allow to measure the effectiveness of further interventions.

Exploring STEM’s formalisms. Backstage 2 / Project’s code editor Knoala allows students
to explore a number of text-based formal languages. Improvements in the way Knoala
reports and displays syntax errors, evaluated in Section 6.3, were shown to lower the syntax
barrier for two evaluated formal languages. An extension to Knoala (also proposed in
Section 6.3) would be to use block representations of programs (famously introduced by
the scratch project [158]) as it could further lower the syntax barrier; one cannot misplace a
semicolon, if the blocks don’t allow such a placement.

More generally, one can ask which representation (for instance blocks or text) of a formal
artefact entails which didactic merits or problems. Arguably, the choice of such a representa-
tion can be subtle. Consider for instance the two “proof-editors” presented in Figure 7.1.
Both editors allow constructing proofs by natural deduction, and both represent proofs as
trees. Yet, in the right one (which is integrated in Backstage 21), the depth of an expression
reflects the number of steps needed to prove that expression. In the left one, the depth of
an expression reflects the number of assumptions which have to be made to prove that
expression. Both representations might have specific didactic merits, while being technically
equivalent. Similar “concurrent” representations can be found throughout the STEM fields:
Turing machines can represented by finite automata or by operation code, algorithms can be
represented by flow-charts or by source code, molecules can be represented by structural or
molecular formulas, etc. Indeed, it is part of each STEM profession to choose a representation
suited for the current problem.

A considerable perspective regarding exploratory learning of formal languages would be
to allow learners to switch seamlessly between such different representations, or to show
several representations simultaneously and continuously reflect changes made to either of
them.

A different kind of extension could allow students to interactively trace the steps an inter-
preter takes in executing or verifying an artefact. Debugger interfaces, which are commonly
integrated in software development environments, enable such interactions for many pro-
gramming languages. Such interfaces allow the user to stop the execution of a program
at any point. The user can then examine the state of the runtime environment (e.g. which
variables are bound to which values) and let the program run stepwise or let the interpreter
continue the execution of the program. Undoubtedly, this is not only a powerful tool to find
bugs in a program, but also to explore how a program is evaluated. Such an interface could
be implemented for the execution of Turing machines, just like for the verification of formal
proofs.

Collecting usage data of the new features would then give insight on whether more students
are successful in using STEM’s formal languages, and whether more students are encouraged
to explore the formalisms on their own initiatives.

1This editor was implemented by Korbinian Staudacher for his bachelor thesis which is found in [234].

86 CHAPTER 7. PERSPECTIVES

Figure 7.1: Two proof editors for prooffs by natural deduction. Both editors contain correct proofs of
the general validity of the formula (¬A ⇒ ¬B) ⇒ (B ⇒ A). The left editor is available at https://
proofs.openlogicproject.org/ (retrieved 29th of January 2020), and follows a syntax described
in [157]. The right editor is integrated in Backstage 2 and is described in [235]

.

7.2 Towards Prescriptive Learning Analytics

Prescriptive Learning Analytics refers to educational software which makes didactic deci-
sions based on learning analytics [259]. At the time of writing this report, such applications
are rare, as learning analytics are mostly used for assessment or monitoring [11] (see Section
3.1 for a brief discussion of the literature).

Analytics-based nudging as introduced in Section 4.3 can be, to a certain degree, considered
as “prescriptive” because the personal analytics sent to students include personalized
“nudging paragraphs”. Obviously, with learning analytics available in a learning platform,
more sophisticated “prescriptions” are possible, and this section tries to give perspectives
on such applications.

Scripted peer teaching. In Section 4.4, a teaching format relying on peer teaching was
introduced. The evaluation in a course on functional programming showed that a main
problem of the format was a lack of participation from the students, who often did not
provide the peer reviews they were tasked with. At the same time, the students who did
participate the most, and who could have arguably sustained the format if there were no
rarely participating students, were also the most proficient students. Proficiency was hereby
assessed as the ability to write semantically correct source code.

In a follow-up study, a second instance of the course format was conducted in a course on
logic and discrete mathematics (between LDM-2018 and LDM-2019). The course required
the students to deliver homework using a number of mathematical formalisms which were
supported by the platform. Such homework submissions were automatically assessed in a
similar manner as in the course on functional programming.

Predictions on the students’ abilities to write semantically correct “code” were then com-
puted using the predictor described in Section 5.4. These predictions were then used to
intelligently pair students so that the most proficient student would review, and be reviewed
by, the least proficient students. The exact mechanism for this pairing is described Robert
Pospisil’s master thesis in [193].

https://proofs.openlogicproject.org/
https://proofs.openlogicproject.org/

7.2. TOWARDS PRESCRIPTIVE LEARNING ANALYTICS 87

This approach has similarities to the “calibrated peer review” process presented in [194].
Calibrated peer review requires students to perform tasks in a “calibration step” in which
their ability to make correct peer-assessments is measured by comparing their assessments
against teacher-given assessments. The peer teaching approach presented here simply uses
the student’s proficiency in the taught subject instead of “calibration tasks” to approximate
their assessment capabilities. Yet, the further uses of these approximations differ: Calibrated
peer review is centred at peer grading: Grades are calculated as a weighted averages of all
peer-assessed grades with weights reflecting the assessment capabilities of the students.
In the approach presented here, the focus lies on peer teaching and estimated assessment
capabilities are used to maximize feedback efficiency, as arguably the least proficient students
could benefit the most from the best feedback.

Sadly, and despite the elaborated Learning Analytics orchestration machinery in place,
the experiment failed. The number of peer reviews given by the 38 participants was
even lower than in the first study. Arguably, this was not entirely the fault of the altered
pairing mechanism, as the peer-review participation was low from the start (before sensible
assessments could be made). Besides from treating a different subject than the course in the
first study, certain course arrangements were made differently for the follow-up study. For
one, this course encompassed presence sessions every three weeks, which may have caused
the students not to care too much about peer teaching, as problems could be discussed with
a teacher face-to-face. Also, as only very few peer reviews were given, the tutors started
(thankfully) to give feedback on the submissions after the peer review phase had ended.
This is a sensible decision (students often needed the feedback), but this may have decreased
the motivation for giving peer reviews even more: Why bothering with giving peer reviews
if the teacher will provide feedback anyway?

Spontaneous peer teaching. Apart from using concrete assignments to realize peer teaching
(which entails certain problems as seen above), one could try to sustain spontaneous peer
teaching between students. As a starting point for such a communication a “help-button”
was added to the assignment interface. This feature became available in the second half of
the course LDM-2019. By pressing on a button labelled “Help me, I’m stuck!” a two-step
dialogue was opened. In a first step, the students were provided with the current content
of the assignment’s project (arranged in categories like “currently discussed”, or “current
questions”). This step was introduced to avoid double questions, as a student having a
specific problem might not be the first to have that problem. If the student was not satisfied
with the content available, they could choose to send a help request. In this second step,
the student was asked to specify their questions. The help request was then forwarded
to the teachers of the course and two students of the course having the highest predicted
examination outcome (estimated by an examination fitness predictor described in Section
5.2). Yet, in order to be able to send a help request, the student had to first provide an
attempt of a solution, a restriction implemented to avoid the platform being flooded with
requests simply asking for solutions instead of help.

Sadly, this feature was only rarely used and did (even more sadly) not work properly: Only
two students (of about 500) send help requests, which were, due to a software error, not
forwarded to their peers, but only to the course’s teachers.

Nevertheless, the data gained from this experiment allows certain insights. The two students
who posted a help request each, were (arguably not coincidently) the two most proficient
students in the course (as estimated by the examination fitness predictor). Notably, their
questions were well formulated and precise. Furthermore, 12 other students reached step 1
of the two-step process and aborted there. In total, 17 help requests were aborted in that
manner. This might be a sign that step one actually helped the students because they were
satisfied with the content they were presented with, yet, in most of the cases there was

88 CHAPTER 7. PERSPECTIVES

simply no additional content available apart from the exercise texts. More likely, students
were discouraged when seeing that they had to provide a first attempt in order to get help.

This explanation is underpinned by the observed timing of interactions. None of the students
who only reached step one saved solution attempts before querying the system for help. Yet,
they frequently queried the system for helpful content and abandoned their requests after
a few minutes or hours. The two students who actually posted help requests did show a
similar behaviour, frequently querying the system, and spend 42 and 51 minutes on the
platform before finally formulating their questions.

It is important to mention that the two-step process, and the requirement of “having to make
an attempt before asking for help”, were introduced to counter anticipated and not observed
problems: Double help requests referring to the same problem, and a flood of help requests
which simply asked for a solution. In retrospect, this was unfortunate, because the fact that
these problems did indeed not occur does not allow the conclusion that the measures did
reach their goals. Instead, the data suggests that the implemented measures discouraged
the use of the system as a whole.

By referring to the approach developed at the beginning of this chapter, the more “agile”
approach would have been to implement a less restrictive help mechanism, letting the
students use it, monitor the system for problems, and implementing restrictions if necessary
as a reaction to these problems (possibly deactivating the service completely if the system
would have been flooded by nonsensical requests).

Nevertheless, perspectives for future developments can be drawn from this (failed) experi-
ment. For instance, the system could provide a “Help me, I don’t know how to start” button
if no solution attempt has been made for the assignment. As about half of the students
who pressed the help-button did not submit any homework afterwards, not knowing how to
start might be a major problem. Indeed, “inert knowledge” [206] (i.e. the inability to apply
knowledge to solve a problem), is a phenomenon common for STEM students [204].

Adaptive content choices. Learning analytics can be used to adaptively choose content
for a student, and throughout this research, a number of concrete starting points for such
adaptive components were suggested. Note that recommender systems are a common
application of learning analytics [41], yet usually such applications try to suggest whole
courses a learner could join, based on the courses a learner already completed. A different
use of adaptive content choices would be to provide a learner with the material they would
profit most from to reach a specific learning goal.

Such an approach is proposed in Section 5.3: Providing a student with descriptions of
systematic errors they might most probably make. To efficiently use such a system, some
kind of ontology would be necessary, modelling which errors occur in which kind of
exercises, which topics were involved, etc. To this end, the notion of a project based
learning platform, where sharing documents between projects seems cumbersome, might
not be appropriate. A learning platform supporting such an ontology could realized as a
semantic wiki [220]: A wiki with an underlying knowledge structure which allows to draw
connections between pages (in this case containing errors, exercises, learning material, and
so on).

A perspective for an adaptive choice of content representation is given in Section 5.4: Choosing
for instance a block or a text interface for coding exercises based on the likelihood of a
student to struggle with the syntax of a formalism. A similar approach is commonly used in
intelligent tutor systems, which choose exercises fitting the current estimated proficiency
level of a learner [41].

CHAPTER 8

Conclusion

In this report, the social learning platform Backstage 2 / Projects and its components were
introduced. The platform uses projects (defined as collections of users, documents and
assignments) as basic building blocks to define learning and teaching formats. These
learning and teaching formats are devised to tackle concrete problems observed in tertiary
mass STEM education: Easing the time-consuming work of revising student homework
(Section 4.2), nudging students with learning analytics to deliver (more) homework (Section
4.3), using peer teaching to reduce the teachers’ workload (Section 4.4), and supporting the
learning of STEM’s formalisms with automated feedback (Section 4.5).

The software is able to automatically compute learning analytics, which predict skipping
and absenteeism (Section 5.1), examination performances (Section 5.2), systematic errors and
misconceptions (Section 5.3), and programming competence (Section 5.4). The predictors are
designed to be intelligible (it is clear how the data reflects the students’ learning), actionable
(the predictions reflect changes in behaviour) and accurate. As a main data source, the
predictors use teacher-labelled or automatically labelled homework submissions. Collecting
labels given by teachers on homework submissions was integrated into teaching in a process
similar to grading, and teachers reported a decreased workload when using labels referring
to systematic errors.

The learning and teaching formats were evaluated in several case studies focussing on the
students perceptions of the software (reported in Section 4) and on the formats’ successes in
improving learning (reported in Section 6). The students’ attitudes were generally positive,
with the software’s compile and edit functions for formalisms and formal languages being
among the best-liked features. Presenting students with predictive learning analytics,
predicting examination performances and risks of skipping homework, attracted mixed
attitudes. Conceptual change could be fostered by prompting students with descriptions of
systematic errors which were collaboratively collected by the teachers of a previous course
venue. Behavioural change in the form of motivating students to deliver (more) homework
could not consistently be induced: Significant changes in homework delivery rates could be
measured between courses on theoretical computer science, but not on logic and discrete
mathematics.

89

90 CHAPTER 8. CONCLUSION

Students used, and benefited from, the software’s edit and compile functionalities which
supported several of the taught formalisms and formal languages. Yet, the majority of stu-
dents who used these functionalities used them only rarely. Characteristics of the successful
use of these functionalities were identified, and are reported in Section 4.5. Problems in
mastering the syntax of a taught formalism (the so-called “syntax barrier”) were identified
to be a major hurdle for the students. Further evaluations (reported in Section 6.3) showed
that improving the error messaging of the software’s editor could both improve learning of
a formal language and foster exploratory learning.

Perspectives for future research were developed, focussing on both the development of learn-
ing and teaching formats in tertiary STEM education (Section 7.1) and further developments
in the use of learning analytics (Section 7.2). To improve learning and teaching formats, a
scheme referred to as “agile learning format development” was devised. Perspectives on
the use of learning analytics in tertiary STEM education encompassed “prescriptive” uses
of learning analytics which could realised by extending (if not completely relying on) the
existing software.

CHAPTER 9

Appendix

A: Table of Evaluated Courses

The following list describes all courses which were evaluated during this research and are
referenced throughout this report.

Notation of course periods. “winter” and “summer” stand for winter semester starting
in April and ending in August, and winter semesters starting in October and ending in
February.

Courses on Functional Programming

These course venues introduced bachelor degree students to programming using the func-
tional programming language Haskell. Topics included, among others: Datatypes, functions
and recursion, evaluation, termination properties of programs, and monads.

shorthand: FP-2017
period: Summer 2017

number of students: 593
evaluation purpose: Reference data for FP-2017-p

software use: None
teaching staff: One professor and 10 tutors

shorthand: FP-2017-p
period: Winter 2017

number of students: 45
evaluation purpose: Measuring efficacy of peer teaching with minimal teacher inter-

vention for learning.
software use: Homework delivery and peer teaching as described in Section 4.4

teaching staff: none

91

92 CHAPTER 9. APPENDIX

Courses on Theoretical Computer Science

These course venues introduced bachelor degree students to theoretical computer science.
Topics included among others: The Chomsky-Hierarchy, finite automata, pushdown au-
tomata, Turing-Machines, and complexity classes.

shorthand: TCS-2015
period: Summer 2015

number of students: 272
evaluation purpose: Initial identification of systematic errors

software use: None
teaching staff: One professor and four tutors (including the author)

shorthand: TCS-2016
period: Summer 2016

number of students: 344
evaluation purpose: Reference data for TCS-2018, validating occurrence rates of sys-

tematic errors.
software use: Projects were used to provide additional material.

teaching staff: One professor and three tutors (including the author)

shorthand: TCS-2017
period: Summer 2017

number of students: 383
evaluation purpose: Reference data for TCS-2018, validating occurrence rates of sys-

tematic errors
software use: Projects were used to organize homework and to provide addi-

tional material.
teaching staff: One professor and 5 tutors (including the author)

shorthand: TCS-2018
period: Summer 2018

number of students: 338
evaluation purpose: Measuring the influence of analytics-based nudging on retention

and of providing systematic error descriptions on learning.
software use: Teacher collaboration on written feedback as described in Section

4.2 and analytics-based nudging as described in Section 4.3.
teaching staff: one professor and 5 tutors (including the author)

93

Courses on Logic and Discrete Mathematics

These course venues introduced bachelor degree students to formal logic and discrete
mathematics. Topics in formal logic included among others: Propositional logic, first order
predicate logic, proofs by natural deduction, and proofs by resolution. Topics in discrete
mathematics included among others: Proofs by induction, combinatorics, and modular
arithmetic.

shorthand: LDM-2018
period: Summer 2018

number of students: 614
evaluation purpose: Reference data for LDM-2019

software use: Projects were used to organize homework and to provide addi-
tional material.

teaching staff: One professor and 5 tutors

shorthand: LDM-2019
period: Summer 2019

number of students: 609
evaluation purpose: Measuring the influence of analytics-based nudging on retention

software use: Teacher collaboration on written feedback as described in Section
4.2 and analytics-based nudging as described in Section 4.3.

teaching staff: one professor and 6 tutors

94 CHAPTER 9. APPENDIX

B: Error Categories of LOOP and WHILE Programs

ID Level Description
1 0 expected ; or END, got something else.
2 2 semantically correct.
3 1 no semantics needed (correction task).
4 0 expected variable like xn, got something else.
5 0 expected ; or end of input, got something else.
6 0 expected LOOP, WHILE or variable like xn, got something else.
7 0 incorrect constant declaration.
8 0 incorrect assignment.
9 1 expected 76 got 1219.

10 0 expected DO got something else.
11 1 program get trapped in an infinite loop.
12 0 expected LOOP or variable like xn, got something else.
13 1 expected 26, got 0.
14 1 expected 76, got 24.
15 1 expected 76 got 54.
16 0 expected :=, got something else.
17 1 expected 26, got 13.
18 1 expected 76 got 0.
19 1 expected 26 got 169.
20 1 expected 26 got 14.
21 0 expected LOOP, WHILE, end of input, or variable like xn, got something else.
22 0 expected LOOP, end of input, or variable like xn, got something else.
23 1 expected 76, got 3.
24 1 expected 26, got 28.

95

C: Surveys

This section lists the questionnaires used for this research.

Demographic Data

This survey was always included.

question: Which is your gender?
response type: male | female | divers | no response

question: How old are you?
response type: Number

question: Name your field(s) of study
response type: Text

question: Name your highest educational degree
response type: Text

question: Which semester are you in? (Referring to your current course of
study)

response type: Number

Peer Teaching and Attitudes Towards Peer Teaching

This was administered after FP-2017-p. Results are reported in Section 4.4.

Time management
question: In the course, I spent time on solving assignments

response type: Not at all | less than 2 hours per week |2-5 hours per week |5 hours
- 1 day per week |1 day - 2 days per week |more than 2 days per
week

question: In the course, I spent time on giving peer review
response type: Not at all | less than 2 hours per week |2-5 hours per week |5 hours

- 1 day per week |1 day - 2 days per week |more than 2 days per
week

question: In the course, I spent time on reviewing course material
response type: Not at all | less than 2 hours per week |2-5 hours per week |5 hours

- 1 day per week |1 day - 2 days per week |more than 2 days per
week

question: In the course, I spent time on discussing questions with peers or
posting questions

response type: Not at all | less than 2 hours per week |2-5 hours per week |5 hours
- 1 day per week |1 day - 2 days per week |more than 2 days per
week

96 CHAPTER 9. APPENDIX

General questions.

question: Do you have any additional comments regarding the course or the
exercises?

response type: Text

question: I finished the course (I reached topic 10-Monad)
response type: Yes | No

question: Why did you not finish the course?
response type: Text

remark: Only asked if the respondent did indicate not to have finished the
course.

Material and software.

question: The course material (apart from the exercises) provided on Back-
stage was helpful for my examination preparation

response type: 6 Point Likert scale ranging from “not at all” to “absolutely”

question: Compiling and running code documents provided by others on
Backstage was easy.

response type: 6 Point Likert scale ranging from “not at all” to “absolutely”

question: Compiling and running my own code documents on Backstage
was easy.

response type: 6 Point Likert scale ranging from “not at all” to “absolutely”

question: For my learning, using the provided unit tests (typically in Test.hs)
was helpful

response type: 6 Point Likert scale ranging from “not at all” to “absolutely”

question: For my learning, using the online compiler was helpful
response type: 6 Point Likert scale ranging from “not at all” to “absolutely”

Peer teaching.
question: What are for you the best aspects of peer review as conducted in

this course?
response type: Text

question: What are for you notable negative aspects of peer review as con-
ducted in this course?

response type: Text

question: What are for you notable differences of peer reviews you received
and reviews given by tutors in other courses? (If any)

response type: Text

question: Reviewing submissions of others was helpful for my learning.
response type: never | sometimes |most of the time | always

question: Reviewing submissions of others gave me new ideas about possi-
ble approaches.

response type: never | sometimes |most of the time | always

97

question: Reviewing submissions of others allowed me to compare my stan-
dard of work.

response type: never | sometimes |most of the time | always

question: Reviewing submissions of others was helpful for my learning.
response type: 6 Point Likert scale ranging from “not at all” to “absolutely”

question: Reviewing submissions of others gave me new ideas about possi-
ble approaches.

response type: 6 Point Likert scale ranging from “not at all” to “absolutely”

question: Reviewing submissions of others allowed me to compare my stan-
dard of work.

response type: 6 Point Likert scale ranging from “not at all” to “absolutely”

question: The reviews I recevived from others were helpful for my learning.
response type: 6 Point Likert scale ranging from “not at all” to “absolutely”

question: The reviews I recevived from others identified problems in my
submission correctly.

response type: never | sometimes |most of the time | always

question: The reviews I recevived from others identified correct solutions
correctly.

response type: never | sometimes |most of the time | always

question: The reviews I recevived from others varied in quality.
response type: never | sometimes |most of the time | always

question: The feedback I provided in peer reviews was helpful.
response type: never | sometimes |most of the time | always

question: Do you have any additional comments or ideas on how to improve
the peer review process?

response type: Text

Attitudes Towards Analytics-based Nudging

This survey was administered after TCS-2018, and additional questions were administered
after LDM-2019. The results of this survey are reported in Section 4.3, and in Section 6.2.

Analytics and Predictions.

question: Have you seen your personal examination fitness prediction on Back-
stage? It might have looked something like this: image of
personal analytics interface

response type: Yes | No

question: Have you seen your personal skipping prediction on Backstage? It
might have looked something like this: image of personal
analytics interface

response type: Yes | No

98 CHAPTER 9. APPENDIX

question: The examination fitness prediction motivated me to learn more
response type: 6 Point Likert scale ranging from “not at all” to “absolutely”

question: The examination fitness prediction was interesting for me
response type: 6 Point Likert scale ranging from “not at all” to “absolutely”

question: The examination fitness prediction discouraged me
response type: 6 Point Likert scale ranging from “not at all” to “absolutely”

question: The examination fitness prediction was helpful
response type: 6 Point Likert scale ranging from “not at all” to “absolutely”

question: The examination fitness prediction motivated me to hand in the
next assignments

response type: 6 Point Likert scale ranging from “not at all” to “absolutely”

question: The skipping prediction motivated me to learn more
response type: 6 Point Likert scale ranging from “not at all” to “absolutely”

question: The skipping prediction was interesting for me
response type: 6 Point Likert scale ranging from “not at all” to “absolutely”

question: The skipping prediction discouraged me
response type: 6 Point Likert scale ranging from “not at all” to “absolutely”

question: The skipping prediction was helpful
response type: 6 Point Likert scale ranging from “not at all” to “absolutely”

question: The skipping prediction motivated me to hand in the next assign-
ments

response type: 6 Point Likert scale ranging from “not at all” to “absolutely”

Additional questions for LDM-2019.

question: For how many weeks (approximately) did you hand in assign-
ments via Backstage?

response type: Number

question: If you skipped homework, why?
response type: Text

question: I received analytics reports via e-mail.
response type: Yes | No

question: The analytics reports motivated me to learn more.
response type: Yes | No

question: The analytics reports discouraged me.
response type: Yes | No

question: The analytics reports motivated me to hand in the next assign-
ments.

response type: Yes | No

99

question: Do you have any remarks regarding the analytics reports?
response type: Text

Attitudes Towards Labels

This survey was administered after TCS-2018. Results are reported in Section 4.2.

Student attitudes.

question: At least once, I read label documents before handing in my assign-
ments.

response type: Yes | No

question: I have seen and read label documents in the course content, or
received one as feedback attached to my homework.

response type: Yes | No

question: Knowing the labels for the current exercises was helpful for me.
response type: 6 Point Likert scale ranging from “not at all” to “absolutely”

question: In a future course, if I made a mistake in an exercise, knowing
whether (and how many) others made the same mistake would be
interesting to me.

response type: 6 Point Likert scale ranging from “not at all” to “absolutely”

question: For my learning, reading a label document attached to my home-
work as feedback was helpful.

response type: 6 Point Likert scale ranging from “not at all” to “absolutely”

question: Compared to a personal comment, an error description is ...
response type: ... less helpful | ... equally helpful | ... more helpful

question: Do you have further suggestions for the use of labels?
response type: Text

Teacher attitudes.

question: While giving feedback to students, the labels were easy to use.
response type: 6 Point Likert scale ranging from “not at all” to “absolutely”

question: While giving feedback to students, the labels were helpful.
response type: 6 Point Likert scale ranging from “not at all” to “absolutely”

question: While giving feedback to students, the labels were hindering.
response type: 6 Point Likert scale ranging from “not at all” to “absolutely”

question: While giving feedback to students, the labels reduced workload.
response type: 6 Point Likert scale ranging from “not at all” to “absolutely”

question: When giving feedback to students in future courses, I would like
to use a software that supports labels.

response type: 6 Point Likert scale ranging from “not at all” to “absolutely”

100 CHAPTER 9. APPENDIX

question: When giving feedback to students in future courses, I would like
to share my labels with other tutors.

response type: 6 Point Likert scale ranging from “not at all” to “absolutely”

question: When giving feedback to students in future courses, I would like
to know how many students received which labels.

response type: 6 Point Likert scale ranging from “not at all” to “absolutely”

question: Do you have further suggestions for the use of labels?
response type: Text

Attitudes Towards Knoala

This survey was administered after TCS-2019. Results are reported in Section 4.5.

question: Backstage supports several programming languages and simula-
tors. (For example a Turing machine simulator). I have used a
language or simulator on Backstage at least once

response type: Yes | No

question: For my learning, using the online compiler was helpful.
response type: 6 Point Likert scale ranging from “not at all” to “absolutely”

question: Creating and running my own code examples was easy.
response type: 6 Point Likert scale ranging from “not at all” to “absolutely”

question: Running code examples provided on Backstage was.
response type: 6 Point Likert scale ranging from “not at all” to “absolutely”

question: I used the following languages or simulators
response type: Select an arbritary number of LOOP / WHILE, TuringMachine,

GOTO, Pushdown Automaton, Haskell, µ-recursion, CNF Solver
(Klauselnormalform editor), Others.

101

D: Own Publications

General information. Throughout the thesis, all direct citations are declared as such. This
thesis does not contain direct citations of the author’s publications.

Figures taken directly or adapted from other publications (including the author’s) are
declared as such in the figures’ captions.

Often, parts of results presented in one of the author’s publications are summarized in
this thesis, (e.g. by omitting the methods sections). Perspectives generally extend upon
previously published work.

Publication contributions. In the following, the “main contributor” of a publication is the
author who contributed most to the planning, conduction, and evaluation of the research as
well as to the written report.

• In [103, 104, 105, 106, 107, 108] Niels Heller is the main contributor.

• In [109, 110] contributions were provided in equal parts by Sebastian Mader and Niels
Heller

• In [156], Sebastian Mader is the main contributor.

Citations of the author’s publications by paragraph. The following list names passages
in which the author’s publications are cited and states the nature of the citation. Novel
contributions (only published in the thesis) are not listed.

• Chapter 4: Technology-Enhanced Formats, page 19

– paragraph Teaching formats built from components, page 21

Summarizes an idea presented in [110].

– Section 4.1: Software Components and Functionalities, page 21

Extends work presented in [103, 104, 105, 106, 107, 108].

– Section 4.2: Teacher Collaboration on Written Feedback, page 28

∗ paragraph Preliminary results: Labelling validity, page 29

Summarizes parts of the results presented in [103].

∗ paragraph Case study results: Attitudes., page 30

Summarizes parts of the results presented in [104].

– Section 4.3: Analytics-based Nudging, page 32

∗ paragraph Results: Attitudes towards predictive analytics, page 35

Summarizes parts of the results presented in [106].

– Section 4.4: Peer Teaching, page 38

∗ paragraph Results: Participation and student competence, page 39

Summarizes parts of the results presented in [108].

∗ paragraph Results: Attitudes, page 41

Summarizes parts of the results presented in [108].

– Section 4.5: Exploratory Learning of Formal Languanges, page 43

∗ paragraph Evaluated data, page 45

Reports about the dataset presented in [105].

102 CHAPTER 9. APPENDIX

∗ paragraph Results: Patterns of use, page 46

Summarizes parts of the results presented in [105].

∗ paragraph Results: Attitudes, page 46

Summarizes parts of the results presented in [105].

• Chapter 5: Predictive Learning Analytics, page 49

– Section 5.1: Predicting Skipping and Absenteeism, page 51.

Extends upon the work presented in [103].

– Section 5.2: Predicting Examination Performance, page 54

Extends upon the work presented in [103].

– Section 5.3: Predicting Systematic Errors and Misconceptions, page 57

Extends upon the work presented in [103].

– Section 5.4: Predicting Levels of Programming Competence, page 62

Summarizes research conducted with Robert Pospisil, his Master’s thesis can be
found in [193].

• Chapter 6: Fostering Self-Regulation and Exploratory Learning, page 67

– Section 6.1: Fostering Conceptual Change, page 67

∗ paragraph Collaboratively-generated refutation texts, page 68

Summarizes parts of the results presented in [104].

∗ paragraph Scaffolding, page 69

Summarizes research conducted with Galina Keil, her Bachelor’s thesis can
be found in [130].

– Section 6.2: Fostering Behavioural Change, page 71

∗ paragraph The influence of nudging, page 72

Summarizes parts of the results presented in [106].

– Section 6.3: Sustaining Exploratory Learning, page 74

∗ paragraph Successful use, page 74

Summarizes parts of the results presented in [105].

∗ paragraph Flow and play, page 76

Extends work presented in [130].

Bibliography

[1] M’hammed Abdous, He Wu, and Cherng-Jyh Yen, Using data mining for predicting rela-
tionships between online question theme and final grade, Journal of Educational Technology
& Society 15 (2012), no. 3, 77.

[2] Muhammad Ovais Ahmad, Jouni Markkula, and Markku Oivo, Kanban in software
development: A systematic literature review, 2013 39th Euromicro conference on software
engineering and advanced applications, IEEE, 2013, pp. 9–16.

[3] Ma’en Aljezawi and Mohammed Albashtawy, Quiz game teaching format versus didactic
lectures, British Journal of Nursing 24 (2015), no. 2, 86–92.

[4] STEM Allicance, Introduction to stem education, online publication, avail-
able at http://www.stemalliance.eu/documents/99712/104016/
STEM-Alliance-Fact-Sheet/4ae068f4-ca07-459a-92c9-17ff305341b1,
retrieved 08.2019.

[5] Mario Amelung, Michael Piotrowski, and Dietmar Rösner, Educomponents: Experiences
in e-assessment in computer science education, Proceedings of the 11th annual SIGCSE
conference on Innovation and technology in computer science education, 2006, pp. 88–
92.

[6] Anna Maria Angelone and Pierpaolo Vittorini, The automated grading of r code snippets:
Preliminary results in a course of health informatics, International Conference in Method-
ologies and intelligent Systems for Techhnology Enhanced Learning, Springer, 2019,
pp. 19–27.

[7] Glenda Anthony, Active learning in a constructivist framework, Educational studies in
mathematics 31 (1996), no. 4, 349–369.

[8] Kimberly E Arnold and Matthew D Pistilli, Course signals at purdue: Using learning
analytics to increase student success, Proceedings of the 2nd international conference on
learning analytics and knowledge, ACM, 2012, pp. 267–270.

[9] Elliot Aronson et al., The jigsaw classroom., Sage, 1978.

[10] James Arvanitakis, Massification and the large lecture theatre: From panic to excitement,
Higher Education 67 (2014), no. 6, 735–745.

[11] John T Avella, Mansureh Kebritchi, Sandra G Nunn, and Therese Kanai, Learning
analytics methods, benefits, and challenges in higher education: A systematic literature review.,
Online Learning 20 (2016), no. 2, 13–29.

103

http://www.stemalliance.eu/documents/99712/104016/STEM-Alliance-Fact-Sheet/4ae068f4-ca07-459a-92c9-17ff305341b1
http://www.stemalliance.eu/documents/99712/104016/STEM-Alliance-Fact-Sheet/4ae068f4-ca07-459a-92c9-17ff305341b1

104 BIBLIOGRAPHY

[12] James Bach, Exploratory testing explained, 2003.

[13] Paul Baepler, JD Walker, and Michelle Driessen, It’s not about seat time: Blending,
flipping, and efficiency in active learning classrooms, Computers & Education 78 (2014),
227–236.

[14] Albert Bandura, Self-efficacy mechanism in human agency., American psychologist 37
(1982), no. 2, 122.

[15] Mustafa Baser, Promoting conceptual change through active learning using open source
software for physics simulations, Australasian Journal of Educational Technology 22
(2006), no. 3, 336–354.

[16] Leonard E Baum, Ted Petrie, George Soules, and Norman Weiss, A maximization
technique occurring in the statistical analysis of probabilistic functions of markov chains, The
annals of mathematical statistics 41 (1970), no. 1, 164–171.

[17] Kent Beck, Embracing change with extreme programming, Computer 32 (1999), no. 10,
70–77.

[18] Kelly Bedard and Peter Kuhn, Where class size really matters: Class size and student ratings
of instructor effectiveness, Economics of Education Review 27 (2008), no. 3, 253–265.

[19] Hefer Bembenutty and Barry J Zimmerman, The relation of motivational beliefs and
self-regulatory processes to homework completion and academic achievement., Proceedings of
the Annual Meeting American Educational Research Association (Chicago, IL, April
21-25, 2003), American Educational Research Association (AERA), 2003.

[20] Kristen L Benè and George Bergus, When learners become teachers, Family medicine 46
(2014), 783–787.

[21] Lucas Bester, Gregg Muller, Brendon Munge, Marcus Morse, and Noel Meyers, Those
who teach learn: Near-peer teaching as outdoor environmental education curriculum and
pedagogy, Journal of Outdoor and Environmental Education 20 (2017), no. 1, 35–46.

[22] John B Biggs, Teaching for quality learning at university: What the student does, McGraw-
hill education (UK), 2011.

[23] Susan Blackley and Jennifer Howell, A stem narrative: 15 years in the making., Australian
Journal of Teacher Education 40 (2015), no. 7, 8.

[24] John Boli, Francisco O Ramirez, and John W Meyer, Explaining the origins and expansion
of mass education, Comparative education review 29 (1985), no. 2, 145–170.

[25] Raffaella Borasi, Exploring mathematics through the analysis of errors, For the learning of
Mathematics 7 (1987), no. 3, 2–8.

[26] Andreas Born, Predicting students’ assignment performance to personalize blended learning,
master thesis, Institute of Computer Science, LMU, Munich, 2017.

[27] Denny Borsboom, Gideon J Mellenbergh, and Jaap Van Heerden, The theoretical status
of latent variables., Psychological review 110 (2003), no. 2, 203.

[28] Patrick Borunda, Chris Brewer, and Cesim Erten, Gspim: Graphical visualization tool
for mips assembly programming and simulation, ACM SIGCSE Bulletin 38 (2006), no. 1,
244–248.

[29] Matt Bower and Panos Vlachopoulos, A critical analysis of technology-enhanced learning
design frameworks, British Journal of Educational Technology 49 (2018), no. 6, 981–997.

BIBLIOGRAPHY 105

[30] David Shane Brewer and Kurt Becker, Online homework effectiveness for underprepared
and repeating college algebra students, Journal of Computers in Mathematics and Science
Teaching 29 (2010), no. 4, 353–371.

[31] Jim Broadbent and Walter L Poon, Self-regulated learning strategies & academic achieve-
ment in online higher education learning environments: A systematic review, The Internet
and Higher Education 27 (2015), 1–13.

[32] Peter Brusilovsky, Eduardo Calabrese, Jozef Hvorecky, Anatoly Kouchnirenko, and
Philip Miller, Mini-languages: A way to learn programming principles, Education and
information technologies 2 (1997), no. 1, 65–83.

[33] Samuel P Bryfczynski, Rebecca Brown, Josiah Hester, Andrew Herrmann, Danielle L
Koch, Melanie M Cooper, and Nathaniel P Grove, urespond: ipad as interactive, personal
response system, Journal of Chemical Education 91 (2014), no. 3, 357–363.

[34] Kimberly Jordan Burch and Yu-Ju Kuo, Traditional vs. online homework in college algebra,
Mathematics and computer education 44 (2010), no. 1, 53–63.

[35] Noel Burch, The four stages for learning any new skill, Gordon Training International,
CA, 1970.

[36] Jennifer A Butler, Use of teaching methods within the lecture format, Medical teacher 14
(1992), no. 1, 11–25.

[37] Wagner Cambruzzi, Sandro José Rigo, and Jorge L V Barbosa, Dropout prediction and
reduction in distance education courses with the learning analytics multitrail approach., J.
UCS 21 (2015), no. 1, 23–47.

[38] David Carless, Differing perceptions in the feedback process, Studies in higher education
31 (2006), no. 2, 219–233.

[39] John M Carroll, Robert L Mack, Clayton H Lewis, Nancy L Grischkowsky, and Scott R
Robertson, Exploring exploring a word processor, Human-computer interaction 1 (1985),
no. 3, 283–307.

[40] Adam S Carter, Christopher D Hundhausen, and Olusola Adesope, The normalized
programming state model: Predicting student performance in computing courses based on
programming behavior, Proceedings of the eleventh annual International Conference on
International Computing Education Research, ACM, 2015, pp. 141–150.

[41] Mohamed Amine Chatti, Anna Lea Dyckhoff, Ulrik Schroeder, and Hendrik Thüs,
A reference model for learning analytics, International Journal of Technology Enhanced
Learning 4 (2013), no. 5-6, 318–331.

[42] Kwangsu Cho and Charles MacArthur, Learning by reviewing., Journal of Educational
Psychology 103 (2011), no. 1, 73.

[43] Samuel PM Choi, Sze Sing Lam, Kam Cheong Li, and Billy TM Wong, Learning analytics
at low cost: At-risk student prediction with clicker data and systematic proactive interventions,
Journal of Educational Technology & Society 21 (2018), no. 2, 273–290.

[44] Joseph Chow, Ada Tse, and Christine Armatas, Comparing trained and untrained teachers
on their use of lms tools using the rasch analysis, Computers & Education 123 (2018),
124–137.

[45] Jere Confrey, Chapter 1: A review of the research on student conceptions in mathematics,
science, and programming, Review of research in education 16 (1990), no. 1, 3–56.

106 BIBLIOGRAPHY

[46] Harris Cooper, Synthesis of research on homework, Educational leadership 47 (1989),
no. 3, 85–91.

[47] Harris Cooper and Jeffrey C Valentine, Using research to answer practical questions about
homework, Educational psychologist 36 (2001), no. 3, 143–153.

[48] James L Cooper and Pamela Robinson, The argument for making large classes seem small,
New directions for teaching and learning 81 (2000), no. 81, 5–16.

[49] Linda Corrin and Paula de Barba, Exploring students’ interpretation of feedback deliv-
ered through learning analytics dashboards, Proceedings of the ascilite conference, 2014,
pp. 629–633.

[50] Ulrike Cress, Mass collaboration-an emerging field for cscl research, To See the World
and a Grain of Sand: Learning across Levels of Space, Time, and Scale: CSCL 2013
Conference Proceedings Volume 1 — Full Papers & Symposia, International Society of
the Learning Sciences, 2013, pp. 557–563.

[51] Ulrike Cress and Gerhard Fischer, Mass collaboration with social software in tel, Technol-
ogy Enhanced Learning, Springer, 2017, pp. 59–67.

[52] Al Cripps, Using artificial neural nets to predict academic performance, Proceedings of the
1996 ACM Symposium on Applied Computing, ACM, 1996, pp. 33–37.

[53] David Crosier, Peter Birch, Olga Davydovskaia, Daniela Kocanova, and Teodora
Parveva, Modernisation of higher education in europe: Academic staff–2017. eurydice report.,
Education, Audiovisual and Culture Executive Agency, European Commission (2017),
1–172.

[54] Julie Crough and Christopher Love, Improving student engagement and self-regulated
learning through technology-enhanced student partnerships, Proceedings of the Interna-
tional Conference on Information, Communication Technologies in Education, 2019.

[55] Nada Dabbagh and Anastasia Kitsantas, Personal learning environments, social media,
and self-regulated learning: A natural formula for connecting formal and informal learning,
The Internet and higher education 15 (2012), no. 1, 3–8.

[56] Eden Dahlstrom, D Christopher Brooks, and Jacqueline Bichsel, The current ecosystem
of learning management systems in higher education: Student, faculty, and it perspectives,
2014.

[57] Mette Trier Damgaard and Helena Skyt Nielsen, Nudging in education, Economics of
Education Review 64 (2018), 313 – 342.

[58] Maddalena Davoli and Horst Entorf, The pisa shock, socioeconomic inequality, and school
reforms in germany, Tech. report, IZA Policy Paper, 2018.

[59] Manuela Delfino and Donatella Persico, Unfolding the potential of ict for srl development,
Self-Regulated Learning in Technology Enhanced Learning Environments, Brill Sense,
2011, pp. 51–74.

[60] Önder Demir, Aykut Soysal, Ahmet Arslan, Burcu Yürekli, and Özgür Yılmazel,
Automatic grading system for programming homework, Computer Science Education:
Innovation and Technology, CSEIT (2010).

[61] Neset Demirci, University students’ perceptions of web-based vs. paper-based homework in a
general physics course., Online Submission 3 (2007), no. 1, 29–34.

BIBLIOGRAPHY 107

[62] Vanessa P Dennen and Kerry J Burner, The cognitive apprenticeship model in educational
practice, Handbook of research on educational communications and technology 3
(2008), 425–439.

[63] Paul Denny, Andrew Luxton-Reilly, Ewan Tempero, and Jacob Hendrickx, Understand-
ing the syntax barrier for novices, Proceedings of the 16th annual joint conference on
Innovation and technology in computer science education, ACM, 2011, pp. 208–212.

[64] Pierre Dillenbourg, Integrating technologies into educational ecosystems, Distance Educa-
tion 29 (2008), no. 2, 127–140.

[65] Pierre Dillenbourg and Fabrice Hong, The mechanics of cscl macro scripts, International
Journal of Computer-Supported Collaborative Learning 3 (2008), no. 1, 5–23.

[66] Pierre Dillenbourg and Patrick Jermann, Designing integrative scripts, Scripting
computer-supported collaborative learning, Springer, 2007, pp. 275–301.

[67] , Technology for classroom orchestration, New science of learning, Springer, 2010,
pp. 525–552.

[68] Pierre Dillenbourg and Pierre Tchounikine, Flexibility in macro-scripts for computer-
supported collaborative learning, Journal of computer assisted learning 23 (2007), no. 1,
1–13.

[69] Filip Dochy, Mien Segers, and Dominique Sluijsmans, The use of self-, peer and co-
assessment in higher education: A review, Studies in Higher education 24 (1999), no. 3,
331–350.

[70] Steven Dostert, Predicting the learning behaviour of students from their weekly work assign-
ments, master thesis, Institute of Computer Science, LMU, Munich, 2017.

[71] Itiel E Dror, Technology enhanced learning: The good, the bad, and the ugly, Pragmatics &
Cognition 16 (2008), no. 2, 215–223.

[72] Maralyn Druce and Stella Howden, New perspectives on health professions students’e-
learning: Looking through the lens of the “visitor and resident” model, Medical teacher 39
(2017), no. 7, 704–709.

[73] Ed Dubinsky, Meaning and formalism in mathematics, International Journal of Computers
for Mathematical Learning 5 (2000), no. 3, 211–240.

[74] Christof Ebert and Maria Paasivaara, Scaling agile, IEEE Software 34 (2017), no. 6,
98–103.

[75] Alex Edgcomb, Frank Vahid, Roman Lysecky, and Susan Lysecky, Getting students
to earnestly do reading, studying, and homework in an introductory programming class,
Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science
Education, ACM, 2017, pp. 171–176.

[76] Laurie D Edwards, Microworlds as representations, Computers and exploratory learning,
Springer, 1995, pp. 127–154.

[77] William H Edwards, Motor learning and control: From theory to practice, Cengage Learn-
ing, 2010.

[78] Asmaa Elbadrawy, R Scott Studham, and George Karypis, Collaborative multi-regression
models for predicting students’ performance in course activities, Proceedings of the Fifth
International Conference on Learning Analytics And Knowledge, ACM, 2015, pp. 103–
107.

108 BIBLIOGRAPHY

[79] Julian G Elliott, Wilma CM Resing, and Jens F Beckmann, Dynamic assessment: A case
of unfulfilled potential?, Educational Review 70 (2018), no. 1, 7–17.

[80] Carol Evans, Making sense of assessment feedback in higher education, Review of educa-
tional research 83 (2013), no. 1, 70–120.

[81] Daniel J Exeter, Shanthi Ameratunga, Matiu Ratima, Susan Morton, Martin Dickson,
Dennis Hsu, and Rod Jackson, Student engagement in very large classes: The teachers’
perspective, Studies in Higher Education 35 (2010), no. 7, 761–775.

[82] Statistics Explained, Tertiary education statistics, online publication, avail-
able at https://ec.europa.eu/eurostat/statistics-explained/index.
php/Tertiary_education_statistics, retrieved 02.09.2019.

[83] Nancy Falchikov and Judy Goldfinch, Student peer assessment in higher education: A
meta-analysis comparing peer and teacher marks, Review of educational research 70 (2000),
no. 3, 287–322.

[84] Stefano Federici, A minimal, extensible, drag-and-drop implementation of the c programming
language, Proceedings of the 2011 conference on Information technology education,
2011, pp. 191–196.

[85] Rebecca Ferguson, Andrew Brasher, Doug Clow, Adam Cooper, Garron Hillaire, Jenna
Mittelmeier, Bart Rienties, Thomas Ullmann, and Riina Vuorikari, Research evidence
on the use of learning analytics: Implications for education policy, Joint Research Centre
(2016).

[86] Rebecca Ferguson and Doug Clow, Where is the evidence? a call to action for learning
analytics, Proceedings of the seventh international learning analytics & knowledge
conference, 2017, pp. 56–65.

[87] Martin Fowler and Matthew Foemmel, Continuous integration, 2006.

[88] Martin Fowler, Jim Highsmith, et al., The agile manifesto, Software Development 9
(2001), no. 8, 28–35.

[89] Joseph S Francisco, Gayle Nicoll, and Marcella Trautmann, Integrating multiple teaching
methods into a general chemistry classroom, Journal of chemical education 75 (1998), no. 2,
210.

[90] Scott Freeman, Sarah L Eddy, Miles McDonough, Michelle K Smith, Nnadozie Oko-
roafor, Hannah Jordt, and Mary Pat Wenderoth, Active learning increases student perfor-
mance in science, engineering, and mathematics, Proceedings of the National Academy of
Sciences 111 (2014), no. 23, 8410–8415.

[91] Herb Fynewever, A comparison of the effectiveness of web-based and paper-based homework
for general chemistry, The Chemical Educator 13 (2008), no. 4, 264–269.

[92] Dragan Gašević, Shane Dawson, and George Siemens, Let’s not forget: Learning analytics
are about learning, TechTrends 59 (2015), no. 1, 64–71.

[93] Gaetano Geck, Artur Ljulin, Sebastian Peter, Jonas Schmidt, Fabian Vehlken, and
Thomas Zeume, Introduction to iltis: An interactive, web-based system for teaching logic,
Proceedings of the 23rd Annual ACM Conference on Innovation and Technology in
Computer Science Education, 2018, pp. 141–146.

[94] John Gerard Scott Goldie, Connectivism: A knowledge learning theory for the digital age?,
Medical teacher 38 (2016), no. 10, 1064–1069.

https://ec.europa.eu/eurostat/statistics-explained/index.php/Tertiary_education_statistics
https://ec.europa.eu/eurostat/statistics-explained/index.php/Tertiary_education_statistics

BIBLIOGRAPHY 109

[95] Barbara Goldschmid and Marcel L Goldschmid, Peer teaching in higher education: A
review, Higher education 5 (1976), no. 1, 9–33.

[96] Anabela Gomes and António José Mendes, Learning to program-difficulties and solutions,
International Conference on Engineering Education–ICEE, vol. 2007, 2007.

[97] Anatoliy Gruzd, Caroline Haythornthwaite, Drew Paulin, Sarah Gilbert, and Marc Es-
teve Del Valle, Uses and gratifications factors for social media use in teaching: Instructors’
perspectives, New Media & Society 20 (2018), no. 2, 475–494.

[98] Huseyin Guruler, Ayhan Istanbullu, and Mehmet Karahasan, A new student performance
analysing system using knowledge discovery in higher educational databases, Computers &
Education 55 (2010), no. 1, 247–254.

[99] Allyson F Hadwin, John C Nesbit, Dianne Jamieson-Noel, Jillianne Code, and Philip H
Winne, Examining trace data to explore self-regulated learning, Metacognition and Learn-
ing 2 (2007), no. 2-3, 107–124.

[100] Linda Harasim, Learning theory and online technologies, Routledge, 2017.

[101] John Hattie, Visible learning: A synthesis of over 800 meta-analyses relating to achievement,
routledge, 2008.

[102] John Hattie and Helen Timperley, The power of feedback, Review of educational research
77 (2007), no. 1, 81–112.

[103] Niels Heller and François Bry, Predicting learners’ behaviours to get it wrong, International
Conference in Methodologies and intelligent Systems for Techhnology Enhanced
Learning, Springer, 2018, pp. 12–19.

[104] , Collaborative correction in mass education as a social media application, Proceedings
of the 6th European Conference on Social Media (ECSM 2019), ACPI, 2019, pp. 102 –
110.

[105] , Learning by fiddling: Patterns of behaviour in formal language learning, Inter-
national Conference in Methodologies and intelligent Systems for Techhnology En-
hanced Learning, Springer, 2019, pp. 28–36.

[106] , Nudging by predicting: A case study, Proceedings of the 11th International
Conference on Computer Supported Education - Volume 2: CSEDU, SciTePress, 2019,
pp. 236–243.

[107] , Organizing peer correction in tertiary stem education: An approach and its evalua-
tion, International Journal of Engineering Pedagogy (iJEP) 9 (2019), no. 4, 16–32.

[108] , Peer teaching in tertiary stem education: A case study, The Challenges of the
Digital Transformation in Education - Proceedings of the 21st International Conference
on Interactive Collaborative Learning (ICL2018), vol. 2, Springer, 25-28 September
2018, pp. 87–98.

[109] Niels Heller, Sebastian Mader, and François Bry, Backstage: A versatile platform sup-
porting learning and teaching format composition, Proceedings of the 18th Koli Calling
International Conference on Computing Education Research, ACM, 2018.

[110] Niels Heller, Sebastian Mader, and François Bry, More than the sum of its parts: De-
signing learning formats from core components, Proceedings of the 34th ACM/SIGAPP
Symposium On Applied Computing, ACM, 2019, pp. 1 – 2.

110 BIBLIOGRAPHY

[111] Michael Henderson, Neil Selwyn, and Rachel Aston, What works and why? student
perceptions of ‘useful’digital technology in university teaching and learning, Studies in
Higher Education 42 (2017), no. 8, 1567–1579.

[112] Maxim Hendriks, Cezary Kaliszyk, Femke Van Raamsdonk, and Freek Wiedijk, Teach-
ing logic using a state-of-the-art proof assistant., Acta Didactica Napocensia 3 (2010), no. 2,
35–48.

[113] Robert Holmgren and Sigurd Johansson, Reducing dropouts in online education-group
tutoring in virtual seminars and support structures., Online Submission (2012), 971–978.

[114] David J Hornsby and Ruksana Osman, Massification in higher education: Large classes
and student learning, Higher education 67 (2014), no. 6, 711–719.

[115] Paul Horwitz and Bill Barowy, Designing and using open-ended software to promote
conceptual change, Journal of Science Education and Technology 3 (1994), no. 3, 161–
185.

[116] Ying-Shao Hsu, Hsin-Kai Wu, and Fu-Kwun Hwang, Fostering high school students’
conceptual understandings about seasons: The design of a technology-enhanced learning
environment, Research in Science Education 38 (2008), no. 2, 127–147.

[117] M Qamarul Islam and Moti L Tiku, Multiple linear regression model under nonnormality,
Communications in Statistics-Theory and Methods 33 (2005), no. 10, 2443–2467.

[118] ISO, Pascal, Standard, International Organization for Standardization, Geneva, CH,
1990.

[119] David Janzen and Hossein Saiedian, Test-driven development concepts, taxonomy, and
future direction, Computer 38 (2005), no. 9, 43–50.

[120] Sanna Järvelä and Allyson Hadwin, Promoting and researching adaptive regulation: New
frontiers for cscl research, 2015.

[121] Craig William Jenkins, Microworlds: Building powerful ideas in the secondary school.,
Online Submission, US-China Education Review A 9 (2012), 796–803.

[122] Tony Jenkins, On the difficulty of learning to program, Proceedings of the 3rd Annual
Conference of the LTSN Centre for Information and Computer Sciences, vol. 4, Citeseer,
2002, pp. 53–58.

[123] Reynol Junco, The relationship between frequency of facebook use, participation in facebook
activities, and student engagement, Computers & education 58 (2012), no. 1, 162–171.

[124] Veselin Jungic, Deborah Kent, and Petra Menz, On online assignments in a calculus class,
Journal of University Teaching & Learning Practice 9 (2012), no. 1, 3.

[125] Daniel Kahneman, Jack L Knetsch, and Richard H Thaler, Experimental tests of the
endowment effect and the coase theorem, Journal of political Economy 98 (1990), no. 6,
1325–1348.

[126] Cody Kalina and KC Powell, Cognitive and social constructivism: Developing tools for an
effective classroom, Education 130 (2009), no. 2, 241–250.

[127] Jonathan Kaplan, Co-regulation in technology enhanced learning environments, Interna-
tional Workshop on Learning Technology for Education in Cloud, Springer, 2014,
pp. 72–81.

[128] Mümine Kaya and Selma Ayşe Özel, Integrating an online compiler and a plagiarism
detection tool into the moodle distance education system for easy assessment of programming

BIBLIOGRAPHY 111

assignments, Computer Applications in Engineering Education 23 (2015), no. 3, 363–
373.

[129] Mansureh Kebritchi, Angie Lipschuetz, and Lilia Santiague, Issues and challenges
for teaching successful online courses in higher education: A literature review, Journal of
Educational Technology Systems 46 (2017), no. 1, 4–29.

[130] Galina Keil, Generierung didaktischer fehlermeldungen für minisprachen, institute of com-
puter science, lmu, munich, Bachelorarbeit/bachelor thesis, 2019.

[131] Alice Kerly, Richard Ellis, and Susan Bull, Calmsystem: a conversational agent for learner
modelling, International Conference on Innovative Techniques and Applications of
Artificial Intelligence, Springer, 2007, pp. 89–102.

[132] Hanan Khalil and Martin Ebner, Moocs completion rates and possible methods to im-
prove retention-a literature review, EdMedia+ Innovate Learning, Association for the
Advancement of Computing in Education (AACE), 2014, pp. 1305–1313.

[133] Adrian Kirkwood and Linda Price, Technology-enhanced learning and teaching in higher
education: what is ‘enhanced’and how do we know? a critical literature review, Learning,
media and technology 39 (2014), no. 1, 6–36.

[134] David Kirshner, The visual syntax of algebra, Journal for Research in Mathematics
Education (1989), 274–287.

[135] Anastasia Kitsantas and Barry J Zimmerman, College students’ homework and academic
achievement: The mediating role of self-regulatory beliefs, Metacognition and Learning 4
(2009), no. 2, 97–110.

[136] René F Kizilcec, Chris Piech, and Emily Schneider, Deconstructing disengagement:
Analyzing learner subpopulations in massive open online courses, Proceedings of the third
international conference on learning analytics and knowledge, ACM, 2013, pp. 170–
179.

[137] Lars Kobbe, Armin Weinberger, Pierre Dillenbourg, Andreas Harrer, Raija Hämäläinen,
Päivi Häkkinen, and Frank Fischer, Specifying computer-supported collaboration scripts,
International Journal of Computer-Supported Collaborative Learning 2 (2007), no. 2-3,
211–224.

[138] Alfie Kohn, The case against grades, Educational Leadership 69 (2011), no. 3, 28–33.

[139] Edward C Kokkelenberg, Michael Dillon, and Sean M Christy, The effects of class size on
student grades at a public university, Economics of Education Review 27 (2008), no. 2,
221–233.

[140] Justin Kruger and David Dunning, Unskilled and unaware of it: How difficulties in
recognizing one’s own incompetence lead to inflated self-assessments., Journal of personality
and social psychology 77 (1999), no. 6, 1121.

[141] Anna Kruse and Rob Pongsajapan, Student-centered learning analytics, CNDLS Thought
Papers (2012), 1–9.

[142] Daniel G Krutka and Jeffrey P Carpenter, Why social media must have a place in schools,
Kappa Delta Pi Record 52 (2016), no. 1, 6–10.

[143] J Richard Landis and Gary G Koch, The measurement of observer agreement for categorical
data, biometrics (1977), 159–174.

[144] Celeste Lawson, Colin Beer, Dolene Rossi, Teresa Moore, and Julie Fleming, Identi-
fication of ‘at risk’students using learning analytics: The ethical dilemmas of intervention

112 BIBLIOGRAPHY

strategies in a higher education institution, Educational Technology Research and Devel-
opment 64 (2016), no. 5, 957–968.

[145] Mark JW Lee and Catherine McLoughlin, Teaching and learning in the web 2.0 era: Em-
powering students through learner-generated content, International journal of instructional
technology and distance learning 4 (2007), no. 10, 1–17.

[146] Elisabeth Lempa, Coconut 2: Concurrently virtualising user code compilation, Bachelorar-
beit/bachelor thesis, 2018.

[147] Lisa-Angelique Lim, Sheridan Gentili, Abelardo Pardo, Vitomir Kovanović, Alexander
Whitelock-Wainwright, Dragan Gašević, and Shane Dawson, What changes, and for
whom? a study of the impact of learning analytics-based process feedback in a large course,
Learning and Instruction (2019), 101202.

[148] Raymond Lister, Elizabeth S Adams, Sue Fitzgerald, William Fone, John Hamer,
Morten Lindholm, Robert McCartney, Jan Erik Moström, Kate Sanders, Otto Seppälä,
et al., A multi-national study of reading and tracing skills in novice programmers, ACM
SIGCSE Bulletin, vol. 36, ACM, 2004, pp. 119–150.

[149] Greg Little, Lydia B Chilton, Max Goldman, and Robert C Miller, Turkit: Human compu-
tation algorithms on mechanical turk, Proceedings of the 23nd annual ACM symposium
on User interface software and technology, ACM, 2010, pp. 57–66.

[150] Mike Lopez, Jacqueline Whalley, Phil Robbins, and Raymond Lister, Relationships
between reading, tracing and writing skills in introductory programming, Proceedings of
the fourth international workshop on computing education research, ACM, 2008,
pp. 101–112.

[151] Betty Love, Angie Hodge, Neal Grandgenett, and Andrew W Swift, Student learning
and perceptions in a flipped linear algebra course, International Journal of Mathematical
Education in Science and Technology 45 (2014), no. 3, 317–324.

[152] Joost Lowyck, Bridging learning theories and technology-enhanced environments: A critical
appraisal of its history, Handbook of research on educational communications and
technology, Springer, 2014, pp. 3–20.

[153] Kristi Lundstrom and Wendy Baker, To give is better than to receive: The benefits of peer
review to the reviewer’s own writing, Journal of second language writing 18 (2009), no. 1,
30–43.

[154] Richard Lynch and Myron Dembo, The relationship between self-regulation and online
learning in a blended learning context, The International Review of Research in Open
and Distributed Learning 5 (2004), no. 2.

[155] Sebastian Mader, Technology for interactivity and engagement in large class education,
Dissertation, 2020, to appear.

[156] Sebastian Mader, Niels Heller, and François Bry, Adding narrative to gamification and
educational games with generic templates, Proceedings of the 18th European Conference
on e-Learning (ECEL 2019), ACPI, 2019, pp. 360–368.

[157] PD Magnus, Tim Button, J Robert Loftis, Aaron Thomas-Bolduc, and Richard Zach,
forall x: Calgary remix.

[158] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn Eastmond,
The scratch programming language and environment, ACM Transactions on Computing
Education (TOCE) 10 (2010), no. 4, 16.

BIBLIOGRAPHY 113

[159] Thom Markham, Project based learning a bridge just far enough, Teacher librarian 39
(2011), no. 2, 38.

[160] Tatiana Markova, Irina Glazkova, and Elena Zaborova, Quality issues of online distance
learning, Procedia-Social and Behavioral Sciences 237 (2017), 685–691.

[161] Geoff N Masters, A rasch model for partial credit scoring, Psychometrika 47 (1982), no. 2,
149–174.

[162] Hunter A McAllister, Self-serving bias in the classroom: Who shows it? who knows it?,
Journal of Educational Psychology 88 (1996), no. 1, 123.

[163] Barbara Means, Yuki Toyama, Robert Murphy, Marianne Bakia, and Karla Jones,
Evaluation of evidence-based practices in online learning: A meta-analysis and review of
online learning studies, (2009).

[164] Agathe Merceron and Kalina Yacef, Interestingness measures for association rules in
educational data, Educational Data Mining 2008, 2008.

[165] Mariel Miller and Allyson Hadwin, Scripting and awareness tools for regulating collabora-
tive learning: Changing the landscape of support in cscl, Computers in Human Behavior
52 (2015), 573–588.

[166] James Monks and Robert M Schmidt, The impact of class size on outcomes in higher
education, The BE Journal of Economic Analysis & Policy 11 (2011), no. 1.

[167] Tamara J Moore and Karl A Smith, Advancing the state of the art of stem integration,
Journal of STEM Education: Innovations and Research 15 (2014), no. 1, 5.

[168] Nitsa Movshovitz-Hadar, Orit Zaslavsky, and Shlomo Inbar, An empirical classification
model for errors in high school mathematics, Journal for research in mathematics Education
(1987), 3–14.

[169] Catherine Mulryan-Kyne, Teaching large classes at college and university level: Challenges
and opportunities, Teaching in Higher Education 15 (2010), no. 2, 175–185.

[170] Mary A Newman, An analysis of sixth-grade pupil’s error on written mathematical tasks,
Victorian Institute for Educational Research Bulletin 39 (1977), 31–43.

[171] David Nicol, From monologue to dialogue: Improving written feedback processes in mass
higher education, Assessment & Evaluation in Higher Education 35 (2010), no. 5, 501–
517.

[172] David Nicol, Avril Thomson, and Caroline Breslin, Rethinking feedback practices in higher
education: A peer review perspective, Assessment & Evaluation in Higher Education 39
(2014), no. 1, 102–122.

[173] Melanie Njoo and Ton De Jong, Exploratory learning with a computer simulation for
control theory: Learning processes and instructional support, Journal of research in science
teaching 30 (1993), no. 8, 821–844.

[174] Jonathan A Obar and Steven S Wildman, Social media definition and the governance
challenge-an introduction to the special issue, Obar, JA and Wildman, S.(2015). Social
media definition and the governance challenge: An introduction to the special issue.
Telecommunications policy 39 (2015), no. 9, 745–750.

[175] VO Oladokun, AT Adebanjo, and OE Charles-Owaba, Predicting students’ academic
performance using artificial neural network: A case study of an engineering course, The
Pacific Journal of Science and Technology 9 (2008), no. 1, 72–79.

114 BIBLIOGRAPHY

[176] Daniel FO Onah, Jane Sinclair, and Russell Boyatt, Dropout rates of massive open online
courses: Behavioural patterns, EDULEARN14 proceedings 1 (2014), 5825–5834.

[177] John D Ophus and Jason T Abbitt, Exploring the potential perceptions of social networking
systems in university courses, Journal of Online Learning and Teaching 5 (2009), no. 4,
639–648.

[178] P Orsmond and S Merry, Processing tutor feedback: A consideration of qualitative differences
in learning outcomes for high and non-high achieving students, Fostering Communities of
Learners, 13th EARLI conference, August, 2009, pp. 25–29.

[179] Michael Osborne, Increasing or widening participation in higher education?: A european
overview, European journal of education 38 (2003), no. 1, 5–24.

[180] Susan W Palocsay and Scott P Stevens, A study of the effectiveness of web-based homework
in teaching undergraduate business statistics, Decision Sciences Journal of Innovative
Education 6 (2008), no. 2, 213–232.

[181] Zacharoula Papamitsiou and Anastasios A Economides, Learning analytics and educa-
tional data mining in practice: A systematic literature review of empirical evidence, Journal
of Educational Technology & Society 17 (2014), no. 4, 49–64.

[182] Seymour Papert, Microworlds: Transforming education, Artificial intelligence and educa-
tion, vol. 1, Ablex Utrecht, 1987, pp. 79–94.

[183] Abelardo Pardo, Kathryn Bartimote, Simon Buckingham Shum, Shane Dawson, Jing
Gao, Dragan Gašević, Steve Leichtweis, Danny Liu, Roberto Martı́nez-Maldonado,
Negin Mirriahi, et al., Ontask: Delivering data-informed, personalized learning support
actions, Journal of Learning Analytics 5 (2018), no. 3, 235–249.

[184] Zachary A Pardos, Ryan SJD Baker, Maria OCZ San Pedro, Sujith M Gowda, and
Supreeth M Gowda, Affective states and state tests: Investigating how affect throughout the
school year predicts end of year learning outcomes, Proceedings of the Third International
Conference on Learning Analytics and Knowledge, ACM, 2013, pp. 117–124.

[185] Yeonjeong Park and I-H Jo, Development of the learning analytics dashboard to support
students’ learning performance, Journal of Universal Computer Science 21 (2015), no. 1,
110.

[186] Laurie L Parker and G Marc Loudon, Case study using online homework in undergraduate
organic chemistry: Results and student attitudes, Journal of Chemical Education 90 (2012),
no. 1, 37–44.

[187] Andrea M Pascarella, The influence of web-based homework on quantitative problem-solving
in a university physics class, Proc. NARST Annual Meeting, vol. 4, 2004, pp. 19–28.

[188] Lindsay Paterson, Higher education and european regionalism, Pedagogy Culture and
Society 9 (2001), no. 2, 133–160.

[189] Paul R Pintrich, The role of goal orientation in self-regulated learning, Handbook of self-
regulation, Elsevier, 2000, pp. 451–502.

[190] Paul R Pintrich and Elisabeth V De Groot, Motivational and self-regulated learning
components of classroom academic performance., Journal of educational psychology 82
(1990), no. 1, 33.

[191] Nea Pirttinen, Vilma Kangas, Henrik Nygren, Juho Leinonen, and Arto Hellas, Analysis
of students’ peer reviews to crowdsourced programming assignments, Proceedings of the

BIBLIOGRAPHY 115

18th Koli Calling International Conference on Computing Education Research, ACM,
2018, p. 21.

[192] George J Posner, Kenneth A Strike, Peter W Hewson, and William A Gertzog, Accom-
modation of a scientific conception: Toward a theory of conceptual change, Science education
66 (1982), no. 2, 211–227.

[193] Robert Pospisil, Lerngruppenbildung anhand von kompetenzschätzung mittels bayescher
netze, master thesis, Institute of Computer Science, LMU, Munich, 2019.

[194] Edward Price, Fred Goldberg, Steve Robinson, and Michael McKean, Validity of peer
grading using calibrated peer review in a guided-inquiry, conceptual physics course, Physical
Review Physics Education Research 12 (2016), no. 2, 020145.

[195] Margaret Price, Karen Handley, Jill Millar, and Berry O’donovan, Feedback: All that
effort, but what is the effect?, Assessment & Evaluation in Higher Education 35 (2010),
no. 3, 277–289.

[196] Michael Prince, Does active learning work? a review of the research, Journal of engineering
education 93 (2004), no. 3, 223–231.

[197] David Pritchard and Troy Vasiga, Cs circles: An in-browser python course for beginners,
Proceeding of the 44th ACM technical symposium on Computer science education,
2013, pp. 591–596.

[198] Yizhou Qian and James Lehman, Students’ misconceptions and other difficulties in intro-
ductory programming: A literature review, ACM Transactions on Computing Education
(TOCE) 18 (2017), no. 1, 1.

[199] Lawrence R Rabiner, A tutorial on hidden markov models and selected applications in speech
recognition, Proceedings of the IEEE 77 (1989), no. 2, 257–286.

[200] Hendrik Radatz, Error analysis in mathematics education, Journal for Research in mathe-
matics Education (1979), 163–172.

[201] Christopher R Rakes and Robert N Ronau, Rethinking mathematics misconceptions:
Using knowledge structures to explain systematic errors within and across content domains,
International Journal of Research in Education and Science 5 (2018), no. 1, 1–21.

[202] Patient Rambe, Critical discourse analysis of collaborative engagement in facebook postings,
Australasian Journal of Educational Technology 28 (2012), no. 2.

[203] Darshanand Ramdass and Barry J Zimmerman, Effects of self-correction strategy training
on middle school students’ self-efficacy, self-evaluation, and mathematics division learning,
Journal of advanced academics 20 (2008), no. 1, 18–41.

[204] N Sanjay Rebello, Lili Cui, Andrew G Bennett, Dean A Zollman, and Darryl J Ozimek,
Transfer of learning in problem solving in the context of mathematics and physics, Learning
to solve complex scientific problems, vol. 223, Lawrence Erlbaum Associates Mahwah,
NJ, 2007.

[205] Sasha A Reese, Online learning environments in higher education: Connectivism vs. dissoci-
ation, Education and information technologies 20 (2015), no. 3, 579–588.

[206] Alexander Renkl, Heinz Mandl, and Hans Gruber, Inert knowledge: Analyses and
remedies, Educational Psychologist 31 (1996), no. 2, 115–121.

[207] Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn
Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian Silver-

116 BIBLIOGRAPHY

man, et al., Scratch: Programming for all, Communications of the ACM 52 (2009), no. 11,
60–67.

[208] Michelle Richards-Babb, Janice Drelick, Zachary Henry, and Jennifer Robertson-
Honecker, Online homework, help or hindrance? what students think and how they perform.,
Journal of College Science Teaching 40 (2011), no. 4, 70–82.

[209] Lloyd P Rieber, Seriously considering play: Designing interactive learning environments
based on the blending of microworlds, simulations, and games, Educational technology
research and development 44 (1996), no. 2, 43–58.

[210] John Rieman, A field study of exploratory learning strategies, ACM Transactions on
Computer-Human Interaction (TOCHI) 3 (1996), no. 3, 189–218.

[211] Anthony Robins, Learning edge momentum: A new account of outcomes in cs1, Computer
Science Education 20 (2010), no. 1, 37–71.

[212] Susan H Rodger, Anna O Bilska, Kenneth H Leider, Magdalena Procopiuc, Octavian
Procopiuc, Jason R Salemme, and Edwin Tsang, A collection of tools for making au-
tomata theory and formal languages come alive, Proceedings of the twenty-eighth SIGCSE
technical symposium on Computer science education, 1997, pp. 15–19.

[213] Santiago Rodrı́guez, José L Pedraza, Antonio G Dopico, Francisco Rosales, and Rafael
Méndez, Computer-based management environment for an assembly language programming
laboratory, Computer Applications in Engineering Education 15 (2007), no. 1, 41–54.

[214] David Romer, Do students go to class? should they?, Journal of Economic Perspectives 7
(1993), no. 3, 167–174.

[215] Jeremy Roschelle, Yannis Dimitriadis, and Ulrich Hoppe, Classroom orchestration:
Synthesis, Computers & Education 69 (2013), 523–526.

[216] Rheta N Rubenstein and Denisse R Thompson, Learning mathematical symbolism: Chal-
lenges and instructional strategies, The Mathematics Teacher 94 (2001), no. 4, 265.

[217] Ayesha Sadaf, Timothy J Newby, and Peggy A Ertmer, Exploring pre-service teachers’
beliefs about using web 2.0 technologies in k-12 classroom, Computers & Education 59
(2012), no. 3, 937–945.

[218] Mark E Sanders, STEM, STEM education, STEMmania, The Technology Teacher 68(4)
(2008), 20–26.

[219] Mirweis Sangin, Gaëlle Molinari, Marc-Antoine Nüssli, and Pierre Dillenbourg, Fa-
cilitating peer knowledge modeling: Effects of a knowledge awareness tool on collaborative
learning outcomes and processes, Computers in Human Behavior 27 (2011), no. 3, 1059–
1067.

[220] Sebastian Schaffert, François Bry, Joachim Baumeister, and Malte Kiesel, Semantic wiki,
Informatik-Spektrum 30 (2007), no. 6, 434–439.

[221] Astrid Schmulian and Stephen Coetzee, Class absenteeism: Reasons for non-attendance
and the effect on academic performance, Accounting Research Journal 24 (2011), no. 2,
178–194.

[222] Uwe Schöning, Theoretische informatik.

[223] Ken Schwaber, Scrum development process, Business object design and implementation,
Springer, 1997, pp. 117–134.

BIBLIOGRAPHY 117

[224] PH Scott, HM Asoko, and RH Driver, Teaching for conceptual change: A review of
strategies, Research in physics learning: Theoretical issues and empirical studies (1992),
310–329.

[225] Christopher Seenan, Sivaramkumar Shanmugam, and Jennie Stewart, Group peer
teaching: A strategy for building confidence in communication and teamwork skills in physical
therapy students, Journal of Physical Therapy Education 30 (2016), no. 3, 40–49.

[226] Neil Selwyn, Minding our language: Why education and technology is full of bullshit. . . and
what might be done about it, 2016.

[227] John J Shaughnessy, Long-term retention and the spacing effect in free-recall and frequency
judgments, The American Journal of Psychology (1977), 587–598.

[228] George Siemens (ed.), 1st international conference on learning analytics and knowledge
2011, 2010.

[229] Katrin Soika and Priit Reiska, Using concept mapping for assessment in science education,
Journal of Baltic Science Education 13 (2014), no. 5, 662–673.

[230] Cynthia J Solomon and Seymour Papert, A case study of a young child doing turtle
graphics in logo, Proceedings of the June 7-10, 1976, national computer conference and
exposition, 1976, pp. 1049–1056.

[231] Leonard Springer, Mary Elizabeth Stanne, and Samuel S Donovan, Effects of small-
group learning on undergraduates in science, mathematics, engineering, and technology: A
meta-analysis, Review of educational research 69 (1999), no. 1, 21–51.

[232] Gerry Stahl, Contributions to a theoretical framework for cscl, Proceedings of the Con-
ference on Computer Support for Collaborative Learning: Foundations for a CSCL
Community, 2002, pp. 62–71.

[233] John Stamper, Michael Eagle, Tiffany Barnes, and Marvin Croy, Experimental evaluation
of automatic hint generation for a logic tutor, International Journal of Artificial Intelligence
in Education 22 (2013), no. 1-2, 3–17.

[234] Korbinian Staudacher, Conception, implementation and evaluation of proof editors for
learning, Bachelor thesis, Institute of Computer Science, LMU, Munich, 2018.

[235] Korbinian Staudacher, Sebastian Mader, and François Bry, Automated scaffolding and
feedback for proof construction: A case study, Proceedings of the 18th European Confer-
ence on e-Learning (ECEL 2019), ACPI, 2019, pp. 542–550.

[236] Binod Sundararajan, Emergence of the most knowledgeable other (mko): Social network
analysis of chat and bulletin board conversations in a cscl system, Electronic Journal of
e-Learning 8 (2010), no. 2, 191–208.

[237] Ruhan Ozkardes Tandogan and Akinoglu Orhan, The effects of problem-based active learn-
ing in science education on students’ academic achievement, attitude and concept learning.,
Online Submission 3 (2007), no. 1, 71–81.

[238] Dirk T Tempelaar, Bart Rienties, and Bas Giesbers, In search for the most informative data
for feedback generation: Learning analytics in a data-rich context, Computers in Human
Behavior 47 (2015), 157–167.

[239] RH Thaler and CR Sunstein, Nudge: improving decisions about health, wealth, and happi-
ness, New Haven, CT (USA) Yale Univ. Press, 2008.

[240] Christine D Tippett, Refutation text in science education: A review of two decades of research,
International journal of science and mathematics education 8 (2010), no. 6, 951–970.

118 BIBLIOGRAPHY

[241] Keith Topping, Peer assessment between students in colleges and universities, Review of
educational Research 68 (1998), no. 3, 249–276.

[242] Ulrich Trautwein and Olaf Köller, The relationship between homework and achieve-
ment—still much of a mystery, Educational psychology review 15 (2003), no. 2, 115–145.

[243] April R Trees and Michele H Jackson, The learning environment in clicker classrooms:
Student processes of learning and involvement in large university-level courses using student
response systems, Learning, Media and Technology 32 (2007), no. 1, 21–40.

[244] R Untch, Teaching programming using the karel the robot paradigm realized with a conven-
tional language, SPONS AGENCY REPORT NO PUB DATE (1990), 225.

[245] Wouter Van Joolingen, Cognitive tools for discovery learning, International Journal of
Artificial Intelligence in Education (IJAIED) (1998), 385–397.

[246] Stijn Van Laer and Jan Elen, In search of attributes that support self-regulation in blended
learning environments, Education and Information Technologies 22 (2017), no. 4, 1395–
1454.

[247] Silke Vanslambrouck, Chang Zhu, Bram Pynoo, Koen Lombaerts, Jo Tondeur, and
Ronny Scherer, A latent profile analysis of adult students’ online self-regulation in blended
learning environments, Computers in Human Behavior 99 (2019), 126–136.

[248] Katrien Verbert, Erik Duval, Joris Klerkx, Sten Govaerts, and José Luis Santos, Learning
analytics dashboard applications, American Behavioral Scientist 57 (2013), no. 10, 1500–
1509.

[249] Arto Vihavainen, Matti Paksula, and Matti Luukkainen, Extreme apprenticeship method
in teaching programming for beginners, Proceedings of the 42nd ACM technical sympo-
sium on Computer science education, 2011, pp. 93–98.

[250] Maria Virvou and Maria Moundridou, A web-based authoring tool for algebra-related
intelligent tutoring systems, Journal of Educational Technology & Society 3 (2000), no. 2,
61–70.

[251] Kenneth Vollmar and Pete Sanderson, Mars: an education-oriented mips assembly lan-
guage simulator, SIGCSE, vol. 6, 2006, pp. 239–243.

[252] Lev Semenovich Vygotsky, Thought and language, Annals of Dyslexia 14 (1964), no. 1,
97–98.

[253] Andrew Ward and Alan Jenkins, The problems of learning and teaching in large classes,
Teaching large classes in higher education: How to maintain quality with reduced
resources (1992), 23–36.

[254] Rasil Warnakulasooriya and David Pritchard, Learning and problem-solving transfer
between physics problems using web-based homework tutor, EdMedia+ Innovate Learning,
Association for the Advancement of Computing in Education (AACE), 2005, pp. 2976–
2983.

[255] Evan Weingarten, Qijia Chen, Maxwell McAdams, Jessica Yi, Justin Hepler, and
Dolores Albarracı́n, From primed concepts to action: A meta-analysis of the behavioral effects
of incidentally presented words., Psychological Bulletin 142 (2016), no. 5, 472.

[256] Peter S Westwood, What teachers need to know about teaching methods, Aust Council for
Ed Research, 2008.

[257] David S White and Alison Le Cornu, Visitors and residents: A new typology for online
engagement, First monday 16 (2011), no. 9.

BIBLIOGRAPHY 119

[258] John Williams, Stem education: Proceed with caution, Design and Technology Education:
An International Journal 16 (2011), no. 1, 1360–1431.

[259] Ben Williamson, Digital education governance: Data visualization, predictive analytics, and
‘real-time’policy instruments, Journal of Education Policy 31 (2016), no. 2, 123–141.

[260] PH Winne and AF Hadwin, Studying as self-regulated learning. dj hacker, j. dunlosky, ac
graesser, Metacognition in educational theory and practice (1998), 277–304.

[261] Alyssa Friend Wise, Yuting Zhao, and Simone Nicole Hausknecht, Learning analytics
for online discussions: Embedded and extracted approaches., Journal of Learning Analytics
1 (2014), no. 2, 48–71.

[262] Fiona Wright, David White, Tony Hirst, and Alan Cann, Visitors and residents: Mapping
student attitudes to academic use of social networks, Learning, Media and Technology 39
(2014), no. 1, 126–141.

[263] Cheng Ye and Gautam Biswas, Early prediction of student dropout and performance in
moocs using higher granularity temporal information, Journal of Learning Analytics 1
(2014), no. 3, 169–172.

[264] Pat Young, ’i might as well give up’: Self-esteem and mature students’ feelings about feedback
on assignments, Journal of Further and Higher education 24 (2000), no. 3, 409–418.

[265] Nevin Lianwen Zhang and David Poole, A simple approach to bayesian network computa-
tions, Proceedings of the Biennial Conference-Canadian Society for Computational
Studies of Intelligence, CANADIAN INFORMATION PROCESSING SOCIETY, 1994,
pp. 171–178.

[266] Yunhong Zhou, Dennis Wilkinson, Robert Schreiber, and Rong Pan, Large-scale par-
allel collaborative filtering for the netflix prize, International conference on algorithmic
applications in management, Springer, 2008, pp. 337–348.

[267] Barry J Zimmerman, Becoming a self-regulated learner: Which are the key subprocesses?,
Contemporary educational psychology 11 (1986), no. 4, 307–313.

[268] Barry J Zimmerman and Anastasia Kitsantas, Homework practices and academic achieve-
ment: The mediating role of self-efficacy and perceived responsibility beliefs, Contemporary
Educational Psychology 30 (2005), no. 4, 397–417.

	Introduction
	Motivation
	Related Work
	Software for Mass Education
	Pervasive and Collaborative Learning Technologies
	Learning Theories in Technology-Enhanced Learning

	Technology-Enhanced Formats
	Software Components and Functionalities
	Teacher Collaboration on Written Feedback
	Analytics-based Nudging
	Peer Teaching
	Exploratory Learning of Formal Languanges

	Predictive Learning Analytics
	Predicting Skipping and Absenteeism
	Predicting Examination Performance
	Predicting Systematic Errors and Misconceptions
	Predicting Levels of Programming Competence

	Fostering Self-Regulation and Exploratory Learning
	Fostering Conceptual Change
	Fostering Behavioural Change
	Sustaining Exploratory Learning
	Discussion

	Perspectives
	Improving Learning and Teaching Formats
	Towards Prescriptive Learning Analytics

	Conclusion
	Appendix
	Bibliography

