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Preface

This dissertation is comprised of two parts. Chapters 1 and 2 address the role of in-

vestment banks in initial public offerings. Chapters 3 and 4 analyze incentive provision

when agents are subject to a ‘behavioral bias’.

In Chapter 1 we model the procedure of an initial public offering (IPO) as a sig-

naling game and analyze how the possibility of potentially profitable trading in the

aftermarket influences pricing decisions by investment banks. When maximizing the

sum of both the gross spread of the offer revenue and profits from aftermarket trading,

investment banks have an incentive to distort the offer price by employing aftermar-

ket short covering and exercise of the overallotment option strategically. This results

either in informational inefficiencies or, on average, exacerbated underpricing. Wealth

is redistributed in favor of investment banks.

In Chapter 2 we address two puzzles of the IPO literature: (1) Why do investment

banks earn positive profits in a competitive market? And (2) Why do banks receive

lower gross spreads in VC backed IPOs? The IPO procedure is modeled as a two-

stage signaling game. In the second stage banks set offer prices given their private

information and the level of the spread. Issuers anticipate the bank’s pricing decision

and set in the first stage spreads to maximize expected revenue. Investors are aware of

this process and subscribe only if their expected profits are non-negative. As a result,

issuers offer high spreads to induce banks to set high prices, allowing them profits.

Competition may take place in additional features of the IPO contract as, for example,

the number of co-managers or analyst coverage. We show that in equilibrium superiorly

informed VC backed issuers impose smaller spreads.
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In Chapter 3 we examine self-control problems – modeled as time-inconsistent,

present-biased preferences – in a multi-tasking environment. An agent must allocate

effort between an incentivized and immediately rewarded activity (e.g. effort at the

workplace) and a private activity that pays out only tomorrow (e.g. studying for a

degree). Present-biased agents take decisions that do not maximize their long-run wel-

fare, irrespective of the intensity of incentives. Sophisticated agents are never harmed

by incentives relative to the case where incentives are absent as they always receive

their reservation utility levels. However, naive agents are always harmed in the pres-

ence of incentives as they wrongly predict future behaviors. Furthermore, we show that

the loss to a naive agent can exceed the principal’s gain from providing incentives. In

this case social welfare is reduced if the principal provides incentives.

In Chapter 4 we analyze how inequity aversion interacts with incentive provision in

an otherwise standard moral hazard model with two risk averse agents. We identify the

conditions under which inequity aversion increases agency costs of providing incentives.

We show, first, that inequity aversion can render equitable flat wage contracts optimal

even though incentive contracts are optimal with selfish agents. Second, to avoid

social comparisons the principal may employ one agent only, thereby forgoing the

efficient effort provision of the second agent. We finally discuss the implications of

social preferences for the internal organization and the boundary of the firm.

The decision whether or not to conduct an initial public offering is an important

decision in the life cycle of a firm. The advantages of having shares in a firm quoted on

a stock exchange are manifold. The owner of a firm can realize part of her investments,

it includes the ability to raise additional equity finance, or even the opportunity to set

up share option plans as incentive device for employees. However, there are also costs

of going public. In this context, initial underpricing is most extensively discussed.

Ritter and Welch (2002) report for 6,249 IPOs in the U.S. between 1980 and 2001 an

average first-day return of 18.8 percent. It is usually argued that initial underpricing

constitutes a wealth transfer from the owner of the firm to the new shareholders, and

as such can be regarded as a cost of going public.
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A number of explanations have been advanced for the ‘underpricing anomaly’ which

seems to violate the fundamental tenet of ‘no arbitrage’. The most prominent ones as-

sume informational asymmetries between (or among) some of the main parties involved:

the issuing firm, the investment bank, and the investors.

Rock (1986) proposes a variant of Akerlof’s (1970) ‘lemons problem’. He assumes

asymmetric information between different types of investors. Some are perfectly in-

formed about the intrinsic value of the shares on offer whereas others are uninformed.

Given the presence of informed investors, uninformed investors face a ‘winner’s curse’.

Informed investors subscribe only to ‘hot’ IPOs. Assuming that shares are rationed,

uninformed investors stand a greater chance of being allocated shares in ‘cold’ IPOs

from which informed investors abstain. To however attract uninformed investors to

subscribe to IPOs, shares have to be underpriced on average.

Another strand of the literature assumes asymmetric information between the is-

suing firm and the investors. The signaling models by Allen and Faulhaber (1989),

Grinblatt and Hwang (1989), and Welch (1989) argue that underpricing can – in anal-

ogy to Spence’s (1973) job market signaling – be a signal for a high ‘quality’ of the

firm. A single crossing property is established by assuming that subsequent to the IPO

a secondary offering is conducted. In between these two offerings new information may

arise and reveal a low quality firm’s true value. This firm will then be unable to recoup

the loss from underpricing its shares by way of a secondary offering. A separating equi-

librium can thus be established in which only high quality firms underprice because

they can reap the gain from doing so in the secondary offering.

Apart from missing empirical support for signaling theories of underpricing1 there

is the question why firms would not opt for a different, less costly signal? Booth and

Smith (1986), for example, put forth a theory of investment bank choice. Investment

banks as repeated players have reputational capital at stake and can thus certificate

the value of a firm. Other theories stressing the role of investment banks include Ben-

veniste and Spindt (1989). They assume asymmetric information between investment

1Helwege and Liang (1996) report for a U.S. sample of IPOs in 1983 that only 4 percent of firms
conducted a secondary offering in the subsequent 10 years.
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bank and investors. The latter hold superior information about the value of the shares,

and they are assumed to subscribe repeatedly to IPOs. Benveniste and Spindt design

a mechanism in which banks use underpricing and rationing to elicit investors’ infor-

mation prior to an IPO. If shares are underpriced, investors can be punished by small

allocations in subsequent offerings of other firms if the post-IPO phase reveals that

material information was withheld.

The existing theoretical literature however almost completely neglects that the role

of investment banks does not end with the distribution of shares at the day of the

offering. In fact investment banks pursue supposedly price stabilizing activities in the

aftermarket of IPOs that provide potentially profitable trading opportunities. This

is where the model in Chapter 1 adds to the literature. We explicitly account for

stabilizing activities by investment banks in the aftermarket of an IPO and analyze

how this influences the offer price decision in the first place.

The regulating authorities allow investment banks to establish a short position in

an IPO by selling more shares than initially announced. Aftermarket short covering

refers to the practice of filling these positions in the aftermarket of an IPO. This is

done if the market price falls below the offer price. The idea is that filling short

positions stabilizes prices by increasing demand. The difference between market price

and offer price is – along the way – pure profit for the investment bank. If the price

instead rises, the bank is hedged by an overallotment option which grants the right

to obtain additional shares from the issuer at the offer price. The U.S. Securities and

Exchange Commission (SEC) and the Committee of European Securities Regulators

(CESR) put forward the argument that stabilizing activities ensure an ‘orderly market’

as sudden selling pressure can be countered. In their latest respective release the SEC

(1997, p. 81) opines that aftermarket price stabilization “promotes the interests of

shareholders, underwriters, and issuers.”

In Chapter 1 we challenge this view by showing that – in the context of our model –

stabilizing activities result in either informational inefficiencies or, on average, exacer-

bated underpricing. Furthermore, wealth is redistributed in favor of investment banks.
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We presume that these ‘side effects’ will not be intended by the regulating authori-

ties. Even without trading off potential beneficial effects of stabilization against our

findings, a policy implication arising from the analysis might be the alert that current,

well meant regulation can be gamed to the disadvantage of issuers and investors.

We propose a signaling model of the IPO procedure in which both the investment

bank and investors hold private information about the intrinsic value of the shares.

The bank moves first and sets the offer price. Besides possible trading profits in

the aftermarket, banks are directly remunerated for their services by a fraction of

the offering revenue, the gross spread. In our model banks choose the offer price

strategically to maximize their profits form both the gross spread and trading profits

in the aftermarket. A higher offer price promises a higher revenue, it however reduces

the probability that the IPO is successful. An IPO gets called off if there are not

enough investors subscribing to it, and a higher offer prices reduces the number of

investors subscribing.2

As benchmark, in a setting without aftermarket activities we identify the conditions

for the price equilibrium to be separating. In a separating equilibrium banks with

different information set different offer prices. A bank with favorable information

about the value of the firm deems it more likely that enough investors will hold alike

information. It will thus set a higher price than a bank with less favorable information.

We call a separating equilibrium informationally efficient since the bank’s information

is fully revealed by the offer price. In the aftermarket prices adjust according to market

demand. In equilibrium the security can turn out to be either under- or overpriced,

but on average there is underpricing.

We then introduce stabilizing activities to the model. This augments the incentive

to set high offer prices because the potential profit from aftermarket activities is higher

at higher prices. We find that – relative to the benchmark – either the offer price falls

on average or there is a pooling offer-price equilibrium. In the first case, to uphold

a separating equilibrium, an investment bank with favorable information distorts the

2Busaba, Benveniste, and Guo (2001) report that about 14 percent of cases in their U.S. sample
of more than 2,500 IPOs between 1984-1994 get called off.
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price downwards. This increases, on average, underpricing, i.e. the cost of going public.

In the second case, a separating equilibrium cannot be upheld and investors are thus

unable to infer the investment bank’s signal from the offer price. This equilibrium is

informationally inefficient since investors’ decisions are based on private information

only and not, in addition, on the information of the bank. A major objective of financial

market regulation is market transparency. It is thus beneficial if prices contain more

rather than less information and, consequently, pooling equilibria are undesirable.

The debate among financial economists on the costs of going public has mainly

focused on initial underpricing. Other, direct costs of going public like legal expenses,

audit fees, management time, accountancy, and the gross spread as investment bank

compensation, have received relatively little attention. Among practitioners matters

are different. When Chen and Ritter (2000) published that in more than 90 percent of

IPOs the gross spread is exactly 7 percent, numerous lawsuits against investment banks

for price collusion and a U.S. Department of Justice investigation of “alleged conspiracy

among securities underwriters to fix underwriting fees” were initiated.3 Chapter 2

proposes a different, subtle explanation of why gross spreads are so high that investment

banks are left with profits despite market competition. Furthermore, we address the

related puzzle of why venture capital (VC) backed IPOs are associated with lower gross

spreads than non-VC backed IPOs. To the best of our knowledge, Chapter 2 offers the

first theoretical model to explain the level of gross spreads.

In Chapter 2 we model the IPO procedure as a two-stage signaling game. As in

Chapter 1 we assume that both investment banks and investors hold private infor-

mation about the intrinsic value of the shares. While Chapter 1 is silent about the

role of issuers, in Chapter 2 two different types of issuers are explicitly modeled. VC

backed issuers are assumed to hold private information about the value of the firm.

In contrast, non-VC backed issuers are taken to be uninformed. In the second stage

of the signaling game the investment bank decides on the offer price, given both its

private information and the level of the spread. Issuers anticipate the bank’s pricing

3See Hansen (2001) for an overview of reactions to the Chen and Ritter (2000) article.
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decision. Hence, in the first stage they set spreads strategically to maximize expected

revenue. On both stages we can have either pooling or separating equilibria in spreads

and prices, respectively. Investors are aware of this process and subscribe only if their

expected profits are non-negative.

We find that it can be in the best interest of the issuer to offer high spreads. It is

the investment bank’s discretion to set the final offer price. At high offer prices there

is the danger that the IPO gets called off, because at high prices there may not be

enough investors to subscribe to the offering. We assume that the bank then suffers

a reputation loss. To nevertheless induce the bank to set a high offer price the issuer

must offer a high level of the gross spread. The investment bank then earns a rent:

Given any level of the gross spread, it could always deviate to a low price (at which

the IPO will never fail) and receive its share in the offer revenue with certainty. Hence,

to prevent banks from deviating they are offered a rent at high prices.

Our second main result addresses the differences in spreads between VC and non-

VC backed issuers. We show that in equilibrium superiorly informed VC backed issuers

impose smaller spreads. A VC backed issuer with ‘good news’ about the value of the

shares regards it as likely that the investment bank also holds favorable information.

The issuer then wants the bank to transform this information to the investors via a

separating offer price equilibrium. An issuer with ‘bad news’ will however always mimic

the issuer with favorable information: Issuers receive more than 90 percent of the offer

revenue and thus have a strong interest in high prices – and signaling ‘bad news’ via

the level of the spread reduces investors’ rating of the shares. In equilibrium we thus

observe a pooling spread level and separation offer prices. In contrast, uninformed

non-VC backed issuers prefer the bank to hide its information and set a pooling price

(with uninformed issuers the level of the spread itself cannot carry information). We

show that the according spread offered by non-VC backed issuers is smaller than the

separating price equilibrium inducing spread set by VC backed issuers.

The economic agents in Chapters 1 and 2 – the investors, investment banks, and

issuers – are modeled in accordance with the standard paradigm of neoclassical eco-
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nomics: Individuals have stable and coherent preferences, are purely self-interested,

and fully rational. The investors have no trouble in solving a rather complicated Per-

fect Bayesian Equilibrium in order to decide whether to order or to abstain. The

investment bank is interested in its own material payoff only and does not care that

some actions taken may harm others. And the issuer does not waive his decision to go

public just because the day of the offering arrives.

Over the last decade, however, empirical and experimental evidence mounted against

the paradigm of homo economicus. Numerous studies have shown that even in eco-

nomically relevant environments people systematically deviate from the predictions of

the standard theory. The resulting pursuit for greater psychological realism led to the

field of behavioral economics, which extends the scope of economics by incorporating

findings from experimental economics, psychology, and sociology into economic the-

ory.4 The models in Chapters 3 and 4 pay tribute to this development. We apply

recent behavioral insights, especially present-biased preferences and inequity aversion,

to contract theory in order to analyze how optimal incentive provision within firms

changes if the ‘idea of agent’ is broadened.

One strand of the literature in behavioral economics analyzes the consequences

of time-inconsistent preferences. In a parsimonious way, the standard model of ex-

ponential discounting captures the fact that people have a preference for immediate

gratification. Exponential discounting however implies, in addition, that intertempo-

ral trade-offs remain unaffected no matter when a decision is taken. The evidence, by

contrast, shows that people exhibit present-biased preferences.5 They show very sharp

impatience for short horizons but are much more patient at long horizons. By way of

example: When being asked to decided whether to work 8 hours on, say, Monday four

weeks from now and relax on Tuesday or, alternatively, to relax on Monday and work

9 hours on Tuesday, most people will opt for the first choice. However, when being

asked again Sunday four weeks from now, present-biased preferences may come into

4For an overview see, for example, Camerer, Loewenstein, and Rabin (2003).
5In the wording of Rabin (2002): “As absurd as it sounds, it is probably true to say that exactly

zero papers in all social and behavioral sciences have proposed a test of the basic exponential versus
hyperbolic discounting [...] and claimed exponential explains the generated data better.” (p. 19)



PREFACE 9

play. Many people then reverse their decisions and put off the work for another day –

even though this implies to work an extra hour. This kind of behavior is often referred

to as hyperbolic discounting.

The theory of hyperbolic discounting has very fruitfully been applied to savings

decisions. Laibson (1997) shows that present-biased preferences can explain why con-

sumption tracks income more tightly than predicted by the standard life-cycle model

of savings, especially in the absence of commitment devices. O’Donoghue and Rabin

(1999c) apply hyperbolic discounting to retirement planning. In the U.S. many em-

ployees are eligible for a so called 401(k) retirement savings plan. Participation rates in

these savings plans are relatively low, which is surprising because they are subsidized

by the government and sometimes by the employer as well. Even though present-biased

agents will want to eventually participate (in the long run people are patient), there

is always something that hinders them to join because it promises a greater immedi-

ate reward (in the short run people are impatient). Consequently, these agents may

procrastinate indefinitely. O’Donoghue and Rabin’s theory is well supported by re-

cent evidence. Madrian and Shea (2001) find that automatic enrollment of employees

in 401(k) plans (employees must choose to opt out of rather than opt into the plan)

exerts a strong influence over their saving choices.

O’Donoghue and Rabin (1999b) examine the implications of hyperbolic discounting

for incentive provision. They analyze a principal-agent setting in which the agent must

accomplish a single task but has discretion when to do it. A procrastinating agent is

assumed to face stochastic costs of completion. The principal has an interest in timely

completion and thus offers an incentive contract to induce the agent to finish the task

in time. With asymmetric information about costs timely completion and efficient

delay must be traded-off. The optimal contract involves ‘deadlines’ and increasing

punishment for delay.

The model in Chapter 3 adds to the literature by further exploring how present-

biased preferences and incentive provision interact. Complementary to O’Donoghue

and Rabin (1999b), we examine self-control problems in a multi-tasking environment.
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An agent must allocate effort between an incentivized and immediately rewarded ac-

tivity – effort at the workplace – and a private activity that pays out tomorrow only

– say, caring for one’s health. The seminal contribution on multi-tasking principal-

agent theory is Holmström and Milgrom (1991). They analyze the implications on

optimal incentive intensity, ownership structure, and job design if some activities are

more difficult to measure than others. The focus of Chapter 3 is different. We explore

how a present-biased agent’s allocation of effort between different tasks is affected by

incentives if effort invested in some tasks pays out immediately while effort devoted to

other tasks pays out with some delay.

Following the literature we assume that present-biased agents can be either naive or

sophisticated. Naive agents are ignorant to the fact that they exhibit time-inconsistent

preferences. They think in the future they will act like time consistent agents. In

contrast, sophisticated agents are aware of their time-inconsistent preferences. In the

context of our model, the difference in crucial. We consider a three period setting. In

the first period a principal offers an incentive contract and the agent decides whether

or not to participate. In the second period the agent chooses effort levels whose cost

accrue immediately. While effort devoted to the principal’s purposes is remunerated

in the second period, effort devoted to the agent’s private benefit pays out in the final

period only. Therefore, by the time a naive agent is offered a contract he holds – in

contrast to a sophisticated agent – a too optimistic belief about second period behavior.

The principal takes agents’ beliefs into account when offering a contract, and we show

that he can exploit naiveté.

The focus of the model is the comparison between a situation in which the agent

can engage in the private activity only, and a situation in which the principal adopts

an additional production opportunity (for engagement in which he offers incentives).

We show that present-biased agents take decisions that do not maximize their long-run

welfare, irrespective of the presence of incentives. Sophisticated agents are, however,

never harmed additionally by the adoption of incentive contracts relative to the case

without incentives. They always receive their reservation utility levels. In contrast,

naive agents can be harmed if the principal offers an incentive contract. The incentive
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contract endows them with an additional ‘occasion’ to give in to their present bias.

Due to the fact that naive agents erroneously belief to act like time-consistent agents

in the future, they do not ask for – and consequently do not get – a compensating

payment when accepting the contract. Furthermore, we show that the resulting loss

to the naive agent can even exceed the principal’s gain from providing incentives. In

this case, we find that social welfare is reduced by the adoption of incentive contracts.

Another strand of the literature in behavioral economics is concerned with the

notions of fairness and reciprocity. The standard hypothesis on human motivation

assumes that all people are exclusively interested in their material self-interest. In

recent years results from experimental economics have challenged this hypothesis by

showing that many people are, in addition, strongly motivated by concerns for fairness

and reciprocity. The most prominent experiment in this context is the ultimatum

game. A pair of subjects has to agree on a division of fixed amount of money. One

subject (the proposer) must propose a division of the amount. The other subject (the

responder) can accept or reject the division. In case of rejection both subjects receive

nothing. In case of acceptance the proposed division is implemented. Given standard

assumptions on human motivation, the subgame perfect equilibrium prescribes that the

proposer offers the smallest monetary unit (or even nothing) to the responder, and the

latter accepts because ‘little is better than nothing’. The experimental outcomes across

hundreds of replications of the ultimatum game are however significantly different from

the theoretical prediction. Responders reject with probability .4 to .6 proposals offering

less than 20 percent of the available surplus, and the probability of rejection decreases

as the size of the offer increases. About 70 percent of proposers offer between 40 and

50 percent of the available surplus.6

Early experimenters like the recent Nobel Prize winner Vernon Smith conducted

market experiments and found that experimental markets converge quickly to the com-

petitive equilibrium. These results have been interpreted as confirmation of the self-

interest hypothesis. However, recently developed models of inequity aversion by Fehr

6See, for example, Fehr and Schmidt (2003) for an overview of the experimental evidence.
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and Schmidt (1999) and Bolton and Ockenfels (2000) show that in market environments

the standard competitive equilibrium may prevail even if agents are strongly concerned

about fairness. The theory of inequity aversion assumes that some but not all agents

suffer a utility loss if their own material payoffs differ from the payoffs of other agents in

their reference groups. It can be shown that the interaction of the distribution of types

(fair or selfish) with the strategic environment (market or non-market interaction) can

explain why in some situations very unequal outcome may prevail (competitive equi-

librium) while in others rather equitable outcomes are obtained (ultimatum game).

The reason is that in environments with few players only, a fair agent may be able to

enforce an equitable outcome while this is not possible in a market setting. The virtue

of theories of inequity aversion is that they can – in contrast to other models of social

preferences like altruism or envy – account for a large number of seemingly different

results in wide array of experimental settings.

The model in Chapter 4 goes a step further and applies the theory of inequity

aversion as formulated by Fehr and Schmidt (1999) to contract theory. We analyze

how fairness concerns affect incentive provision in an otherwise standard moral hazard

model with two risk-averse agents. In a classic contribution to the theory of incen-

tives Holmström and Milgrom (1991, p. 24) state that “it remains a puzzle for this

theory that employment contracts so often specify fixed wages and more generally that

incentives within firms appear to be so muted, especially compared to those of the

market.” In Chapter 4 we show that inequity aversion can serve as an explanation for

the scarcity of incentive contracts within firms.

In the standard principal-agent moral hazard model the optimal contract trades off

incentive provision and agent’s risk bearing. Effort choices cannot be contracted upon

such that wages must condition on stochastic output realizations. In optimum the agent

bears some risk for which he must be compensated. This constitutes the agency costs

of providing incentives. We find that behindness aversion (an agent incurs a utility loss

only when being worse off than the other agent) among agents unambiguously increases

agency costs. This holds true if agents also suffer from being better off, unless they



PREFACE 13

account for effort costs when comparing to the other agent. Fairness concerns increase

agency costs because they impose an additional restriction on the design of optimal

contracts. Inequity aversion effects an utility loss in states of the world with diverging

output- and thus diverging wage realizations. The resulting, reduced utility levels could

be generated without inequity aversion as well – simply by lowering the respective wage.

Since these lower utility levels (at lower wage costs) were not optimal without inequity

aversion, they cannot be optimal now.

We find that increased agency costs can undermine efficiency in two ways. First, in-

equity aversion may render equitable flat wage contracts optimal even though incentive

contracts are optimal with selfish agents. Empirical studies (see, for example, Bewley

(1999)) suggest that organizations likes firms are characterized by a dense network

of social relations. Market interactions are, in contrast, rather anonymous. Taking

this into account, our first main result offers an explanation of why incentives within

firms are muted as compared to those in the marketplace. Second, to avoid social

comparisons the principal may employ one agent only, thereby forgoing the efficient

effort provision of the second agent. We call this the ‘reference group effect’. This sec-

ond result has implications for the internal organization and the boundary of the firm.

Suppose the principal can set up different firms but doing so involves fixed costs. The

principal now faces a trade-off. On the one hand, ‘integrating’ several agents within a

single firm causes social comparisons and thus increased agency costs of providing in-

centives. On the other hand, ‘separating’ agents into different firms involves additional

fixed costs. The solution to this trade-off thus defines an optimal size of the firm.



Chapter 1

IPO Pricing and Informational

Efficiency: The Role of Aftermarket

Short Covering∗

1.1 Introduction

Since the Securities Act of 1934, it is legal practice in the U.S. that offering syndicates

stabilize market prices of their recent public offerings. In their latest release the U.S.

Securities and Exchange Commission (SEC) states: “Although stabilization is a price

influencing activity intended to induce others to purchase the offered security, when ap-

propriately regulated it is an effective mechanism for fostering the orderly distribution

of securities and promotes the interests of shareholders, underwriters, and issuers.”8

With this paper we challenge the assertion that current regulation always serves the

interests of all involved parties. We argue that issuing investment banks can combine

two regulated stabilization tools to generate risk-free profits. Employing a model that

captures the impact of this arbitrage opportunity on the offer price, we find that (a)

either market transparency is lower or, on average, underpricing is exacerbated, and (b)

the issuing investment bank’s profits are boosted at the expense of issuer and investors.

∗The chapter is based on joint work with Andreas Park from the University of Toronto.
8SEC (1997), Regulation M, Release No. 34-38067, p. 81. The Committee of European Securities

Regulators (CESR (2002)) proposes rules which resemble the SEC regulations.
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Current regulation allows investment banks to pursue the following three types of

aftermarket activities. First, stabilizing bids can be posted at or below the offer price

during the distribution period of the securities. Second, banks can establish a short

position by selling securities in excess of the pre-announced amount. Aftermarket short

covering refers to the practice of filling these positions in the aftermarket, which is done

if the market price falls below the offer price. If the price instead rises, the bank is

hedged by an overallotment option which grants the right to obtain typically up to 15%

additional securities from the issuer at the offer price. Third, penalty bids are used to

penalize customers who immediately resell their securities in the aftermarket.

Although on average IPOs have high first-day returns, there is a significant number

of IPOs with negative returns. In these ‘cold’ IPOs, stabilizing bids and short covering

should ensure liquidity for the security to offset potential selling pressure (in the first

days after the float), and thus prevent sharp drops in prices. Penalty bids are meant

to reduce selling pressure. In this paper we focus exclusively on the impact of short

covering. An investment bank intending to support the security price adheres to the

following procedure. It enters the aftermarket short. This position must be filled

eventually. Suppose that the market price exceeds the offer price. Then there is

supposedly no selling pressure and no need to provide extra liquidity. Covering the

short position in the market, however, would be expensive. This is why almost all IPO

contracts include a so-called ‘Greenshoe’ or overallotment option. It allows the bank to

buy extra securities from the issuer at the offer price. In the bulk of offerings, the initial

short position is perfectly hedged by this option. Increasing prices are therefore no risk

for the bank. Suppose now that the price drops. The bank does provide liquidity,

however, by doing so it also covers the short position in the market – at a price below

the offer price. The difference between the market price and the offer price (minus

the gross spread) is pure profit. In other words, the opportunity to enter the market

short, paired with the overallotment option, provides investment banks with a second,

risk-free potential source of income.

Only recently, new data became available that allowed to analyze investment banks’

activities in the aftermarket directly. Aggarwal (2000) reports that underwriters utilize
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a combination of aftermarket short covering, penalty bids, and exercise of the overallot-

ment option. Stabilizing bids are never observed. Ellis, Michaely, and O’Hara (2000)

report that the lead underwriter always becomes the dominant market maker. They

also find that market makers take large inventory positions, but reduce their risk by

exercising the overallotment option.

There are two cases studies which support the casual observation that aftermarket

trading can be very profitable. Jenkinson and Ljungqvist (2001) provide a study of

the 1995 GenCo2 IPO (U.K.) during which the price fell in the aftermarket. The as-

signed investment banks Barclays de Zoete Wedd and Kleinwort Benson repurchased

45.7 million securities at the low market price to cover their short positions that were

established at the offer price. Jenkinson and Ljungqvist (2001) conclude: “It demon-

strates how valuable the over-allotment option potentially is to the syndicate of invest-

ment banks selling the issue. Since they will buy back the shares in the market only

if the price is below the issue price, in closing (partially or in full) their short position

they make profits. These profits accrue to the syndicate itself, as the holder of the

option, rather than to the [. . . ] vendors” (p. 180). Boehmer and Fishe (2001) analyze

a case-study of an IPO in which the lead underwriter took a nearly perfectly hedged

short position which was then covered in the aftermarket. The profits from trading

amounted to 52% of the syndicate’s overall profit from the offering. In their words:

“[. . . ][short covering activities] represent an economically significant profit opportunity

for the Lead” (p. 4).9

The existing literature on the impact of price support on offer prices models stabi-

9Aggarwal (2000) finds that “short covering is not expensive for underwriters” (p. 1077). In
more detail, she finds that for weak offerings investment banks make profits, for strong offerings
however they may lose money. This stems from the fact that either the overallotment option is
not fully exercised or investment banks had established a “naked short” prior to the offering such
that short positions had to be covered at prices above the offer price. Our model cannot explain
why investment banks sometimes establish “naked shorts” or do not fully exercise the overallotment
option. We merely analyze the effects aftermarket short covering can have when investment banks
utilize the possibility to make risk-free profits, i.e. when they do not establish “naked shorts” and
fully exercise the overallotment option when prices rise. Ellis, Michaely, and O’Hara (2000) find that
aftermarket activities of the lead underwriter are profitable and account for about 23% of the overall
profit of underwriting. Reported profits stem from both market making and stabilizing activities
(that is accumulating inventory positions). From the presentation in the paper it does not seem
possible to disentangle whether stabilization contributed to or reduced trading profits. The claim
that stabilization can be a profitable activity is thus not rejected by the data.
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lization to be costly. The two seminal theoretical papers on stabilization, Benveniste,

Busaba, and Wilhelm Jr. (1996) and Chowdhry and Nanda (1996), assume that banks

post stabilizing bids to keep prices up. However, such stabilizing bids are never ob-

served. Both models imply that stabilizing activities decrease underpricing – our model

predicts the opposite. This paper thus contrasts the existing literature as we model

explicitly that investment banks can earn money in the aftermarket, and to the best

of our knowledge we are the first to do so in a theoretical framework.

We propose a stylized model of an offering procedure that is in accordance with em-

pirical findings and perceived industry practice. We assume that both the investment

bank and investors hold private information about the intrinsic value of the offered

security. We assume this information asymmetry to arise at a point in time when all

official, mandatory information has been released. Thus, any further public statement

by bank or issuer will be perceived as cheap talk, and it is only actions, i.e. price-setting,

that can convey additional information. We model the procedure as a signaling game

in which the investment bank moves first and sets the offer price. It chooses the of-

fer price strategically to maximize its profits form both the gross spread of the offer

revenue and trading profits in the aftermarket. The bank anticipates investors’ best

replies to the offer price.

As a benchmark, we first analyze a setting without aftermarket activities and iden-

tify the conditions for the equilibrium to be both unique and separating (that is, a

bank with different information sets different prices). We call a separating equilibrium

informationally efficient since the bank’s information is fully revealed by the offer price.

After the offer is floated, prices adjust according to market demand. In equilibrium,

the security can turn out to be either under- or overpriced, but investors account for

this when ordering the security. We show that on average there is underpricing.

When introducing aftermarket short covering, relative to the benchmark one of

two outcomes transpires: either the offer price falls on average, or separation breaks

down and the offer-price equilibrium morphs into a pooling equilibrium. In the first

case, an investment bank with favorable information distorts the price downwards

and thereby, on average, exacerbates underpricing. In the second case investors are
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unable to infer the investment bank’s signal from the offer price. This equilibrium is

informationally inefficient since investors’ decisions are based on private signals only

and not also on the signal of the bank. A major objective of financial market regulation

is market transparency. Without modelling an explicit payoff from higher transparency

we simply assume that it is desirable if prices contain more rather than less information.

Consequently, pooling equilibria are undesirable.

Furthermore, the price distortion leads to redistribution of wealth in favor of the

investment bank. Looking at per-share profits, the issuer loses if separation prevails;

in a pooling equilibrium he is better off. The issuer’s losses are the investors’ gains

and vice versa. On the comparative statics side, an increase of the gross spread or the

amount of overalloted securities reduces the parameter-set with informational efficiency.

The remainder of the paper is organized as follows. In Section 1.2 we introduce

our model of the offering procedure without aftermarket short covering and identify

necessary and sufficient conditions under which the investment bank reveals its private

signals through separating offer prices. In Section 1.3 we introduce aftermarket short

covering, identify the conditions under which the investment bank pools in the offer

price and thus holds back its private information and show that, if separation is upheld,

prices fall on average. We also provide results on comparative statics. In Section 1.4 we

discuss the redistribution of profits. Section 1.5 concludes. Proofs and specifications

of tools used in the equilibrium analysis are in the Appendix.

1.2 The Benchmark: Offer Prices in a Model

without Aftermarket Short Covering

1.2.1 The Model Ingredients and Agents’ Best Replies

Consider the following stylized model of the IPO process.

The Security. The security on offer can take values V ∈ V = {0, 1}, both equally

likely. The number of securities is denoted by S.
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The Investors. There are N identical, risk neutral investors. N is assumed to be

strictly larger than S. They can either order one unit of the security or none. Each

investor receives a costless, private, conditionally i.i.d. signal si ∈ V about the value of

the security. This information is noisy, i.e. Pr(si = v|V = v) = qi with qi ∈ (1
2
, 1). If an

investor orders, he may or may not obtain the security during the offering procedure; if

the issue is oversubscribed shares are distributed with uniform probability. If he does,

his payoff is the market price minus the offer price. If the offer is not floated, his payoff

is zero even if he ordered the security. An investor’s type is his signal. We refer to the

investor as a ‘high-signal investor’ if si = 1. For si = 0, it is a ‘low-signal investor’.

The Issuer. We assume that the issuer has no strategic impact. He holds no private

information about the value of the security. The issuer signs a contract with an invest-

ment bank that delegates the pricing decision and constitutes the amount of securities

S to be sold.10 It also specifies the gross spread β of the offer revenue that remains

as remuneration at the bank. The issuer’s payoff is thus fraction (1 − β) of the offer

revenue if the offer is floated, otherwise it is zero.

The Investment Bank. The risk neutral investment bank who signed the contract

with the issuer receives a private signal sb ∈ V about the value of the security. This

signal is noisy and conditionally independent from investors’ signals. Yet it is more

informative, i.e. qb > qi, where Pr(sb = v|V = v) = qb. Signals characterize a bank’s

type. If sb = 1 we refer to the investment bank as a ‘high-signal bank’. For sb = 0, it

is a ‘low-signal bank’. The bank receives the signal after the contract has been signed

and then announces the offer price p.11 If demand is too weak to match supply, i.e.

if the number of investors willing to buy is less than the number of securities to be

sold, we assume that the offer is called off.12 In case of excess demand securities are

10 The two most widely used contracts between issuers and investment banks are firm commitment
and best efforts contracts. These contracts differ with respect to risk allocation and incentive provision
that may be necessary due to imperfectly observable distribution effort and asymmetric information
about the value of the securities. However, in this stylized model we abstract form these complications.

11We discuss fixed-price offerings vs. bookbuilding at the end of this subsection.
12Busaba, Benveniste, and Guo (2001) report for a sample of 2,510 IPOs filed with the SEC from

1984 to 1994 that 14.3% of the offerings got called off. Issuers have the option to withdraw an offer
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allocated at random. We assume that failure of the offering inflicts fixed costs C on the

investment bank.13 These costs are external to our formulation and can be thought of

as deterioration of reputational capital. They may also capture the opportunity costs

resulting from lost market share when being associated with an unsuccessful IPO.14

Without loss of generality, we do not specify any costs the offering procedure itself may

cause for the investment bank. Thus, if the offer is successful, the bank’s payoff is βpS;

if it fails, its payoff is −C.

Signaling Value of the Offer Price. An investor bases his decision on his private

information and on the information that the investment bank reveals about its own

signal through the offer price. We denote this information by µ(p) and write µ(p) = 1

if the price reflects that the bank’s signal is sb = 1, µ(p) = 0 if the price reflects that

sb = 0, and µ(p) = 1
2

to indicate that the price is uninformative. These three are the

only relevant cases in equilibrium. We refer to µ as the price-information about the

bank’s signal.

The Aftermarket Price. The equilibrium market price is determined by the ag-

gregate number of investors’ favorable signals. In our model this number is always

revealed, either directly through investor demand or immediately after the float through

trading activities. Thus write pm(d) for the market price as a function of d ∈ {0, . . . , N},
the number of high-signal investors. Appendix 1.6.1 fleshes out this argument and pro-

vides an extensive treatment of price formation.

Investors’ Decisions and Expected Payoffs. We admit only symmetric, pure

strategies; thus all investors with the same signal take identical decisions. These can

if the investment bank proposes a price that is perceived as too low. During the road show the bank
learns about investors’ valuations. In a firm commitment contract the bank uses this information to
propose an offer price such that it can find enough investors to sell the entire offer; in a best efforts
contract, such that selling all securities will not be too difficult. This model abstracts from the issuer’s
option to withdraw, and it leaves no room to the bank to adjust the offer price to investors’ valuations.

13The model could be extended to allow the bank to buy up unsold securities. Costs then result
from expensively bought inventory positions and not from failure. C would thus be ‘smoothed’. This
would, however, not alter our qualitative results but complicate the analysis considerably.

14Dunbar (2000), for instance, provides evidence that established investment banks lose market
share when being associated with withdrawn offerings.
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then be aggregated so that only three cases need to be considered. First, all investors

buy, denoted B0,1, second, only high-signal investors subscribe, denoted B1, and third,

no investor buys, denoted B∅. Thus, the set of potential collective best replies is

B := {B0,1, B1, B∅}.
To compute his expected payoff, an investors has to account for the probability of

actually getting the security. There are two cases to consider. In the first, all investors

buy. Thus, market demand is N and all investors receive the security with equal

probability S/N . In the second case, only high-signal investors buy. If d − 1 others

buy, then an investor receives the security with probability S/(d). If overall demand

d is smaller than the number of shares on offer, d < S the IPO fails and the investor

who ordered gets it with probability 0.

Investors order the security whenever their expected payoff from doing so is non-

negative. Suppose only high-signal investors buy, B1. After observing the offer price,

an investor’s information set contains both his signal si and the information inferred

from the offer price, µ(p). Since signals are conditionally i.i.d., for every V ∈ V there is

a different distribution over the number of favorable signals (si = 1), which we denote

f(d|V ). The investors’ posterior distribution over demands is given by

g(d− 1|si, µ(p)) := Pr(V = si|si, µ(p)) · f(d− 1|V = si)

+Pr(V 6= si|si, µ(p)) · f(d− 1|V 6= si). (1.1)

Then for a high-signal investor, at price p his rational-expectation payoff from buying

has to be non-negative,

N∑

d=S

S

d
· (pm(d)− p) · g(d− 1|si = 1, µ(p)) ≥ 0. (1.2)

Likewise for B0,1, in which case the summation runs from 1 to N , S/d is substituted

with S/N , and si = 1 is replaced by si = 0.
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Threshold Prices. Denote by psi,µ the highest price that an investor is willing to

pay in equilibrium if all investors with signal s̃i ≥ si order, given signal si and price-

information µ. Thus p1,1 is the highest (separating) price with B1, p1, 1
2

the highest

(pooling) price with B1, p0, 1
2

the highest (pooling) price with B0,1, and p0,0 the highest

(separating) price with B0,1. Note that at all these prices investors are aware that the

security price may drop in the aftermarket and that they may not get the security.

The threshold prices are formally derived in Appendix 1.6.2.

The Investment Bank’s Expected Payoff. First consider case B1. Variable d

denotes the number of buys, i.e. the number of high-signal investors. If the true value

is V = 1, we have

Pr(d ≥ S|B1) =
N∑

d=S

(
N

d

)
qd
i (1− qi)

N−d, (1.3)

analogously for V = 0. A bank with signal sb assigns probability αsb
(S) to the event

that at least S investors have the favorable signal. Since the investment bank receives

its signal with quality qb, for sb = 1,

α1(S) = qb ·
N∑

d=S

(
N

d

)
qd
i (1− qi)

N−d + (1− qb) ·
N∑

d=S

(
N

d

)
(1− qi)

dqN−d
i . (1.4)

α0(S) is defined analogously. If the bank charges a price at which only high-signal

investors buy, its expected profit is

Π(p|sb, B1) = αsb
(S) · βpS− (1− αsb

(S)) · C. (1.5)

Consider now B0,1, the case where the offer price is low enough so that all investors

are willing to buy, irrespective of their signals. The offer never fails, thus payoffs are

given by Π(p|B0,1) = βpS. If the price is set so high that no investor buys, as in case

B∅, a loss of C results with certainty.

Simplifying Assumptions. The unconditional distribution over favorable signals

is a composite of the two conditional distribution and thus bimodal To obtain closed



AFTERMARKET SHORT COVERING 23

form solutions (or rather approximations) for success-probabilities and prices, we make

two simplifying assumptions: the first simplifies computations, since the two modes of

the distribution over favorable signals are centered around N(1 − qi) and Nqi. The

results of the paper will also hold if it was not satisfied, as long as S < N/2, but the

assumption allows us to get closed form solutions for success-probabilities. The second

assumption ensures that we can analyze the two underlying conditional distributions

separately.

Assumption 1.1 S = (1− qi)N.

For every signal quality qi, there exists an N̄(qi) so that for all N > N̄(qi) the two

conditional distributions over favorable signals generated by V = 0 and V = 1 do

not ‘overlap.’15 By standard results from statistics, sufficient for N̄(qi) is N̄(qi) >

64qi(1− qi)/(2qi − 1)2.

Assumption 1.2 The number of investors N is larger than N̄(qi).

As a consequence of the second assumption we can apply the Law of Large Numbers

and DeMoivre-Laplace’s Theorem.16 Since we assume that the IPO fails whenever

d < S, Assumption 1.1 implies α0(S) = (2− qb)/2 and α1 = (1 + qb)/2; in what follows

we thus omit S. A consequence of the Law of Large Numbers is that pm(d) ∈ {0, 1}
for almost all values of d.17

Fixed Price Offerings vs. Bookbuilding. On most stock exchanges in the world

IPOs are sold through bookbuilding (for instance in the US, the UK, Germany, but not

in France), whereas our model is a fixed-price offering. Current regulation allows risk-

free aftermarket short covering profits and this paper tries to capture their strategic

15To be more precise: We need to ensure that if V = 1, the probability of demand d < S is zero.
16For instance, the mode of a binomial distribution is generally not exactly symmetric. However,

if N is large enough, we can apply DeMoivre-LaPlace (0 < qi ± 2
√

qi(1− qi)/N < 1) and employ the
normal distribution instead. Thus we can treat each mode to be symmetric. The number traders has
to large enough so that for V = 0, there are almost never more than N/2 traders with a favorable
signal and vice versa for V = 1.

17To be more precise, for d À N/2, pm(d) = 1, and for d ¿ N/2, pm(d) = 0. Thus to get
interesting equilibria, it is necessary that S is strictly smaller than N/2. If it was not, an IPO where
only si = 1 investors buy, would never be at risk of being overpriced as it fails in all overpriced cases.
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impact. These potential profits depend primarily on price movements and thus one

should study the the offer price as the strategic decision variable. In any imaginable

framework the investment bank faces a trade-off between higher revenue and likelihood

of failure. Thus it is reasonable to assert that the offer price or, depending on the

formulation, the bookbuilding span has signaling value. A fixed-price mechanism is,

arguably, the simplest possible way to capture the price’s strategic dimension.

A hypothetical bookbuilding model will capture the strategic dimension in a sim-

ilar fashion, yet the analysis would become less tractable without adding insight: In

bookbuilding, the investment bank must set a bookbuilding span. This span can cer-

tainly have signaling value because it is, arguably, similar to setting a single price (a

degenerate span). Suppose bookbuilding spans have to be sufficiently tight so that they

are strictly in the [0, 1]-interval’s interior. During the bookbuilding period, investors

submit their orders which (potentially) reveal their private information – just as with

our fixed price mechanism. At the end of the bookbuilding period the investment bank

will set the final selling price somewhere in the span, distribute the shares, and reveal

overall demand. As long as the span and thus the issue price in the span is strictly in

the interior of the [0, 1]-interval, secondary market prices will adjust to a price outside

the span. Our stylized, parsimonious model is rich enough to capture the same result

that a more complicated bookbuilding model would yield.

1.2.2 Derivation of the Separating Equilibrium

The focus of this paper is the pricing decision of the investment bank given its signal.

In the following we identify the conditions under which a profit maximizing investment

bank will reveal its information through the offer price. A separating equilibrium is

defined as informationally efficient since investors can derive the bank’s signal from the

offer price. In a pooling equilibrium information is shaded and thus it is informationally

inefficient. In this case, investors decide only on the basis of their private signals.

The Equilibrium Concept and Selection Criteria. The equilibrium concept for

this signaling game is, naturally, the Perfect Bayesian Equilibrium (PBE). A common
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problem with PBEs, however, is their multiplicity, stemming equilibria being sup-

ported by “unreasonable” out-of-equilibrium beliefs. The common way to overcome

this problem is to apply an equilibrium selection rule such as the Intuitive Criterion

(IC), introduced by Cho and Kreps (1987). We follow this line of research and consider

only equilibria that do not fail the IC. All of these PBE selection devices favour sepa-

rating over pooling equilibria. It will turn out, however, that in our framework under

certain conditions the IC cannot rule out pooling price equilibria. Moreover, from the

perspective of the investment bank the pooling equilibrium then Pareto dominates any

separating equilibrium. It would thus be unreasonable not to assume that these equi-

libria will be picked. Thus in what follows, we will only consider equilibria that satisfy

the IC and among these, we consider those that are Pareto efficient for the bank

A pooling equilibrium is specified through (i) an equilibrium offer price p∗ from

which investors infer (ii) price-information µ = 1
2
, and (iii) investors’ best replies given

their private signals, µ, and p∗. A separating equilibrium is (i) a system of prices

{p∗, p̄∗} and price-information such that (ii) at p∗ = p̄∗, the high separation price, the

price-information is that the bank has the favorable signal, µ = 1, at p∗ = p∗, the low

separation price, the price-information is that the bank has the low signal, µ = 0, and

(iii) investors’ best replies given their private signals, µ, and p∗. In both separating

and pooling equilibria, for p 6∈ {p̄∗, p∗} out-of-equilibrium public beliefs are chosen

‘appropriately.’ The following result is a straightforward consequence of signaling, the

proof of which is in Appendix 1.6.5.

Lemma 1.1 [The Highest Possible Low Separating Price] There exists no separating

offer price p∗ > p0,0.

In any separating equilibrium, therefore, the low price must be such that all in-

vestors buy, and the highest such separating price, given price-information µ = 0, is

p∗ = p0,0. In what follows we refer to p0,0 as the low separation price.

Signaling equilibria in our setting come in one of three guises: The already men-

tioned separating equilibrium, a pooling equilibrium in which only high-signal investors

buy, and a pooling equilibrium in which all investors buy. In the following, we charac-
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terize the conditions guaranteeing that only separating equilibria survive our selection

criterion.

Fix a potential price p ∈ [p0,0, p0, 1
2
], the interval of potential pooling prices at which

all investors would buy. Define φ1(p) as the price at which the high-signal bank would

be indifferent between charging a risky price φ1(p) at which only high-signal investors

buy, B1, and a safe pooling price p with B0,1 (all investors buy). Formally,

α1βφ1(p)S− (1− α1)C = βpS ⇔ φ1(p) =
p

α1

+
1− α1

α1

C

βS
. (1.6)

Price φ0(p) is defined analogously for the low-signal bank. Thus price φsb
(p) is the

lowest risky price that a bank with signal sb is willing to deviate to from safe price

p.18 In what follows we refer to φ1(p) as the high-signal bank’s deviation price, and

to φ0(p) as the low-signal bank’s deviation price. It is straightforward to see that

φ0(p) > φ1(p) for all p ∈ [p0,0, p0, 1
2
], that is, the low-signal bank requires a higher

price as compensation for risk taking. In addition, ∂φj(p)/∂p > 0, j ∈ {0, 1}, so the

higher the pooling price, the higher the lowest profitable deviation price. We can now

establish our first major result.

Proposition 1.1 (Conditions for Informationally Efficient Prices)

If (i) the high-signal bank’s deviation price from the highest safe pooling price is not

higher than the highest separating price, φ1(p0, 1
2
) ≤ p1,1, and if (ii) the low-signal

bank’s deviation price from the low separating price is not smaller than the highest

risky pooling price, φ0(p0,0) ≥ p1, 1
2

then there exists a unique PBE that satisfies the

Intuitive Criterion and it is the separating equilibrium {(p∗ = p0,0, µ = 0, B0,1); (p̄
∗ =

min{p1,1, φ0(p0,0)}, µ = 1, B1); (p 6= {p∗, p̄∗}, µ = 0, B0,1 if p ≤ p0,0, B1 if p0,0 < p ≤
p1,0, B∅ else)}.

Interpretation of the Proposition. The first condition, φ1(p0, 1
2
) ≤ p1,1, together

with the IC is necessary and sufficient to rule out pooling equilibria in which all in-

18Deviation to a high, risky price can lead to increased overpricing, which is commonly perceived
to be bad for a bank’s reputation. Nanda and Yun (1997) analyze the impact of IPO mispricing on
the market value of investment banks. They find that overpriced offerings result in decreased lead-
underwriter market value. In our model, however, investors fully take into account that the offer price
may drop in the aftermarket. Modelling such reputation effects would thus be contradictory in our
setting.



AFTERMARKET SHORT COVERING 27

vestors buy, irrespective of their signals. The second condition, φ0(p0,0) ≥ p1, 1
2
, ensures

that there is no pooling where only high-signal investors buy, B1. The IC itself ensures

that the bank with sb = 1 always charges the highest sustainable separating price. The

high separation price p̄∗ is the minimum of p1,1 and φ0(p0,0). The bank cannot charge

more than p1,1, and it cannot credibly charge more than φ0(p0,0) as otherwise the bank

with sb = 0 would deviate. Finally, since φ1(p0,0) < φ1(p0, 1
2
) ≤ p1,1, the bank with

sb = 1 is willing to separate. The proof’s details are in Appendix 1.6.5. A definition

of the IC can be found, for instance, in Fudenberg and Tirole (1991)[ p.448].

Underpricing. In the context of this model the first-day return is the difference

between market price and offer price. We can establish the following proposition. The

proof is in Appendix 1.6.5.

Proposition 1.2 (Underpricing)

In a separating equilibrium, on average, securities are underpriced.

Interpretation of the Result. The intuition behind the result is clear: Both types

of investors only buy if their expected payoff is non-negative. At p0,0 the low-signal

investor just breaks even in expectation but the high-signal investor expects a strictly

positive payoff. At p1,1 the high-signal investor just breaks even and the low-signal

investor abstains. Thus, ex-ante, expected payoff is positive, i.e. there is underpricing.

1.2.3 An Intuitive Characterization of the Equilibrium

The concept of deviation prices φsb
is a convenient tool to describe restrictions. We will

now reformulate the conditions from Proposition 1.1 in terms of exogenous costs C.

This allows us to derive a simple linear descriptive characterization of the equilibrium.

Consider first condition (i), φ1(p0, 1
2
) ≤ p1,1. If C is so high that

φ1(p0, 1
2
) =

p0, 1
2

α1

+
1− α1

α1

C

βS
> p1,1 (1.7)

then a separating equilibrium cannot be sustained. Even a high-signal bank then

prefers to sell the security at a price where all investors buy.
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Figure 1.1: Threshold Costs and Equilibrium Prices. For costs smaller than C,
it holds that φ0(p0,0) < p1,1/2 so that the low-signal bank chooses a risky price. A pooling
equilibrium in p1,1/2 results. If C ∈ (C, C̄) a separating equilibrium results. For C ∈ (C, Ĉ)
the high-signal bank cannot charge the highest separation price p1,1 but must set a lower
price φ0(p0,0) to prevent the low-signal bank from mimicking. For C ∈ [Ĉ, C̄) the high signal
bank can charge p̄∗ = p1,1. Finally, if C > C̄ it holds that φ1(p0,1/2) > p1,1 so that even the
high-type bank prefers a safe price and pooling in p0, 1

2
results.

Consider now condition (ii), φ0(p0,0) ≥ p1, 1
2
. If C is so low that

φ0(p0,0) =
p0,0

α0

+
1− α0

α0

C

βS
< p1, 1

2
(1.8)

then a separating equilibrium, again, cannot be sustained (by the SIC). In this case,

even a low-signal bank is willing to choose a high, risky pooling price and the high-signal

bank can thus not credibly signal its information. If C is so high that φ0(p0,0) > p1,1

then for the low-signal bank it does not even pay to deviate to the highest separating

price, p1,1. This bound on C is given by

Ĉ :=
α0p1,1 − p0,0

1− α0

βS. (1.9)

Define, analogously, C̄ and C such that (1.7) and (1.8) hold with equality. We

get C < Ĉ < C̄. The following Corollary to Proposition 1.1 summarizes the above

characterization.

Corollary 1.1 (Proposition 1.1 in Terms of Costs)

If C ∈ (C, C̄) then the unique equilibrium is the separating equilibrium stated in Propo-

sition 1.1. If C ∈ (C, Ĉ) then p̄∗ = φ0(p0,0), and if C ∈ [Ĉ, C̄) then p̄∗ = p1,1.
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It has often been argued that certifying agents, here the investment bank, must have

‘enough’ reputational capital at stake to make certification credible. In this context,

also ‘too much’ reputation can inhibit certification (separation from a low-signal bank)

if it becomes to expensive to jeopardize one’s reputation at a high, risky offer price.

Figure 1.1 plots threshold costs and corresponding equilibrium prices.

1.3 The Impact of Aftermarket Short Covering

In this section we extend the model and allow the investment bank to pursue aftermar-

ket short covering. We analyze its effect on the investment bank’s pricing decision and

investigate under which conditions informational efficiency will be undermined. We

find that, in general, the conditions for a separating equilibrium become more restric-

tive. Upholding separation may come at a cost – thus on average the investment bank

has to distort prices down, which causes more underpricing.

1.3.1 Overview of Short Covering and a Bank’s Strategy

With aftermarket short covering the investment bank has the opportunity to allot a

predetermined amount of up to O securities on top of the principal volume of securities

S. This amount O is referred to as the overallotment facility. It typically constitutes

15% of the number of initial securities S. The investment bank goes short in a position

of this size. If the market price falls below the offer price, the bank fills its short

positions in the aftermarket. This practise is referred to as aftermarket short covering.

If the price is below the offer price, the bank makes a profit. If the market price rises

above the offer price, the bank exercises a so-called overallotment option, the right to

obtain up to O securities from the the issuer at the offer price. The option is only valid

if the bank had indeed established a short position. Consequently, the bank is perfectly

hedged against rising prices. We restrict attention to the case where either the entire

amount of S + O securities is sold or, if only fewer securities can be sold, the IPO fails;

the restriction merely simplifies the analysis and does not affect the qualitative results.

The bank receives the gross spread only on the securities that actually remain floated.
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Intuitively, the size of a potential price drop and thus of profits from aftermarket

short covering is larger the higher the offer price. In the benchmark case’s separating

equilibrium, a low-signal bank would not mimic a high-signal bank because it fears

costs from a potential IPO failure. With short covering expected aftermarket profits

are higher the larger the potential price drop. Moreover, a bank with a low signal

considers such a drop more likely. It is then possible, that potential losses from a failed

offering are offset by higher expected aftermarket gains. Two scenarios are possible:

In equilibrium, the high-signal bank sets a lower price to separate from a low-signal

bank. The high-signal bank, however, is only willing to do so as long as separation

pays. Thus there is a point where defending separation becomes too costly so that

the high-signal bank pools with the low-signal bank and an informationally inefficient

outcome results.

1.3.2 Equilibrium Analysis

We write Π1(p∗, B, sb) for the investment bank’s expected profits from their share of the

offer revenue. Let Π2(p∗, B, sb) denote the expected second period profit from filling

the short position at lower prices. In case of a separating equilibrium these are

Π2(p̄∗, B1, sb = 1) =
N∑

d=S + O

O ·max {p̄∗(1− β)− pm(d), 0} · Pr(d|sb = 1) (1.10)

if the price is risky and sb = 1. For safe prices, the summation in Π2(p∗, B0,1, sb = 0) is

from 0 to N , as the IPO never fails. The conditional distribution Pr(d|sb) of demand

d is the distribution derived for αsb
(S). Note that a high-signal bank sums from S+O,

since lower demand leads to a failure of the IPO. An investment bank with sb = 0,

on the other hand, sums from 0 since the IPO is always successful. The bank also

accounts for the foregone gross spread β when buying back in the market.

The market price after the offering pm(d) adjusts according to investors’ signals and

with respect to these signals it is informationally efficient. The bank cannot stabilize

‘against’ this efficient price, but, of course, if the price is efficient, it need not and

must not be ‘stabilized’. In our model it is, therefore, not possible to study potentially
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beneficial effects of price stabilization. More generally, however, if one believes in

efficient markets, stabilization is undesirable and, if at all, it can have no more than a

short-term impact.

With short covering, a high separation price, p̄∗ has to be small enough so a low-

signal bank cannot profitably deviate from the low, riskless price, p0,0. Thus the in-

vestment bank with sb = 1 has to determine φ′0(p0,0) so that

Π1(φ′0(p0,0)|sb = 0, B1) + Π2(φ′0(p0,0)|sb = 0) =

Π1(p0,0|sb = 0, B0,1) + Π2(p0,0|sb = 0). (1.11)

In what follows, we make two further assumptions. The first states that the overall

amount of shares that can be issued remains constant relative to the scenario without

aftermarket short-covering. This simplifies computations and later allows us to com-

pare the relative payoffs in both scenarios. The second requires that together signals

of investors and bank are sufficiently informative. Figure 1.2 has an illustration of

Assumption 1.4.

Assumption 1.3 S + O = (1− qi)N.

Assumption 1.4 qi and qb are large enough so that p1, 1
2

> 2p0,0.

Using Assumptions 1.3 and 1.4, we can prove the following lemma.

Lemma 1.2 (The Low-Signal Bank’s Deviation Price Drops)

The low-signal bank’s deviation price with short covering is smaller than without short

covering, φ0(p) ≥ φ′0(p) ∀ p ∈ [p0,0, p0, 1
2
].

In the proof we show that for any low-signal bank’s deviation price φ0(p), second period

profits from aftermarket short covering for the low-signal bank are higher at the high,

risky price p̄∗. Consequently, this bank has an additional incentive to deviate. The

low-signal bank considers it more likely that the price drops, hence its potential gain

from short covering is large, in particular, relative to what it can gain by setting the low

separation price. To prevent a low-signal bank from mimicking, the high-signal bank
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has to reduce its offer price. The proof is in Appendix 1.6.5. In what follows, if there

is a switch from separating to pooling, we restrict attention to those switches that are

to the risky pooling price p1, 1
2
.19 We can now establish the main result. Analogously

to Corollary 1 we spell it out in terms of separation costs as this allows for a more

straightforward interpretation. The proof can be found in Appendix 1.6.5.

Proposition 1.3 (Equilibrium with Short Covering Relative to Benchmark)

1. There exists a lower bound threshold cost C ′ > C such that for all costs C ∈
[C, C ′), the only equilibrium that satisfies the Intuitive Criterion and Pareto ef-

ficiency is a pooling equilibrium at the highest risky pooling price p1, 1
2
.This price

is informationally inefficient.

2. There exists an upper bound threshold cost C̄ ′ such that for all costs C ∈ [C ′, C̄ ′]

the unique equilibrium that satisfies the Intuitive Criterion and Pareto efficiency

is a separating equilibrium. For the high separating price p̄∗ there exists a thresh-

old cost level Ĉ ′ ∈ [Ĉ, C̄ ′) so that

(a) for costs C ∈ [C ′, Ĉ ′) the high separation price is the low-signal bank’s devia-

tion price from the low separating price, p̄∗ = φ′0(p0,0), p1, 1
2

< φ′0(p0,0) < p1,1,

and

(b) for costs C ∈ [Ĉ ′, C̄ ′] the high separation price is the highest possible risky

price p̄∗ = p1,1.

On average, underpricing in the separating equilibrium is exacerbated.

Interpretation of the Result. The first part of the proposition states that for all

costs smaller than C ′, both types of the bank prefer to pool and hence prices are

informationally inefficient. Since C ′ > C pooling occurs for a region of parameters

where without aftermarket short covering there was separation. That is, the cost

19Our results on informational efficiency are not affected by this restriction. On the contrary,
taking pooling in a risk-free price also into account would strengthen our findings. In addition, if
there is a choice between the high, risky pooling price, p1, 1

2
, and the low, safe pooling price, p0, 1

2
, the

former will always generate more ex-ante revenue. We thus focus on high pooling prices to keep the
analysis simple.
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region for which we get informational efficiency becomes more restrictive. The second

part of the proposition outlines the region in which separation is sustained. For all

costs smaller than threshold Ĉ ′, the investment bank with the good signal charges

φ′0(p0,0), which, by Lemma 1.2, is smaller than the price charged in that corresponding

parameter region without short covering. In other words, for costs between C ′ and Ĉ ′

offer prices drop. By Proposition 1.2, there is underpricing in a separating equilibrium.

Thus, on average, underpricing is exacerbated when separation is sustained. At first

glance this result is surprising since second period expected gains are larger the higher

the offer price. One might expect that agents are then more inclined to set higher

prices. In our model, this casual intuition fails.

The Impact on the Upper Threshold Level for Costs. So far we have focussed

on the relation of lower bound threshold costs C and C ′ and ‘middle’ bound threshold

costs Ĉ and Ĉ ′. Surely, if Ĉ ′ increases relative to Ĉ (by Lemma 1.2) and C ′ increases

relative to C, then also C̄ ′ should increase relative to C̄. But this is not necessarily

true – it may actually decrease. Furthermore, if it does increase, it is irrelevant. This

is why: Keeping N, β, and O fixed, C̄ and C̄ ′ are functions of the signal qualities qb and

qi. For low signal qualities, C̄ ′ actually decreases. For such values the high separation

price p1,1 and the low, risk-free pooling price p0, 1
2

are close. Expected aftermarket

profits are higher for the risk-free price and this outweighs the lower expected pooling

revenue. For high values of qb and qi, both C̄ and C̄ ′ exceed the ‘natural’ upper bound

for costs: The worst that can happen, is that a bank loses all (discounted) future

business. This upper bound on C can be estimated. In Appendix 1.6.4 we go into the

details of this argument, but in what follows we restrict attention to C, C ′, Ĉ, and Ĉ ′.

To summarize: The first case of a decreasing upper bound strengthens our result, the

second case does not weaken our argument.

Comparative Statics. We can express the overallotment option O as share r of S,

that is S + O = (1 + r)S. Thus, r = 0 is the benchmark case without short covering.

Potential policy variables in this setup are the bank’s share of the revenue, β, and
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the size of the overallotment option, r. The proof of the following Proposition is in

Appendix 1.6.5.

Proposition 1.4 (Comparative Statics)

The conditions for informational efficiency become more restrictive for the gross spread,

β, or the amount of the overallotment facility, r, increasing.

Interpretation of the Proposition. A higher level of β or an increased amount

of r strengthen an investment bank’s incentive to set higher prices. For a high-signal

bank it is thus more difficult to defend a high separation price, consequently, more

pooling results.

1.3.3 How would the result change without signaling?

In order to understand the impact of signaling, consider the case where the investment

bank gets no signal at all. This is equivalent to the case of a neutral signal qb = 1/2.

The conditional probability of there being at least S high-signal investors is

α(S) =
N∑

d=S

(
N

d

)
1

2

(
qd
i (1− qi)

N−d + (1− qi)
dqN−d

i

)
. (1.12)

Here an offer price has no signaling value, investors learn nothing from it. If an investor

has favorable signal si = 1, he buys the security if p ≤ p1, 1
2
, if he has si = 0 he buys if

p ≤ p0, 1
2
. Thus price p0, 1

2
is risk-free. The investment bank then sets risky price p1, 1

2
,

if its expected payoffs are higher than those for the risk-free price,

α(S)βp1, 1
2
S− (1− α(S))C ≥ βp0, 1

2
S, (1.13)

and it sets p0, 1
2

otherwise. Thus there exists a threshold C̃, such that for all costs

C ≤ C̃, the investment bank would charge the high price p1, 1
2
, and for all C > C̃,

it would play safe and charge p0, 1
2
. However, once short covering is introduced, this

second profit opportunity may enable the investment bank to charge a higher price.

Simulation of prices show that, Π2(p1, 1
2
) > Π2(p0, 1

2
). Thus there exists a threshold
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cost C̃ ′ larger than C̃ such that the investment bank charges the higher, riskier price

where it used to charge the low price. In this case, there would be more overpricing,

for C ∈ [C̃, C̃ ′). This contrasts our signaling model, which produces the opposite

effect: For a non trivial region of parameters we expect to observe, on average, more

underpricing.

1.4 Payoff Analysis

Although the investment bank has a second source of profits, it is not immediately

obvious that it will indeed be better off – if it has the high signal, it may have to

distort prices downwards. The bank will thus receive lower expected revenues that

may not be outweighed by short covering profits.

Measuring Payoffs. The investment bank’s expected payoffs can be measured at

two points in time: Ex-ante, that is before the bank receives its private information, and

interim, that is after the signals are realized but before investors take decisions. Issuers

have no private information, so their information is exclusively determined ex-ante. As

a convention, we compare per-share profits and costs.

Table 1.1 summarizes a bank’s conditional signal probabilities, the prices that are

charged for each signal, the conditional probabilities of a successful IPO and, given it

is indeed successful, the probability of short covering and its profitability. For instance,

take V = 0 and sb = 1, which occurs with probability 1−qb. In a separating equilibrium

the high-signal bank charges p̄ without and p̄′ with short covering. The IPO is successful

with probability 1/2 and, given this, there is short covering with probability 1. With

probability 1/2 the IPO fails and the bank incurs cost C. Note that if V = 1, by the

Law of Large Numbers, the IPO almost never fails.

1.4.1 Payoff Comparison for the Investment Bank

We will trickle down from the the strongest to the weakest case: First we analyze the

interim type-specific payoffs. This is the strongest case, because we determine when
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Without Aftermarket Short Covering
sb = 1 sb = 0

Pr(sb|V ) Price Pr(success) Pr(sb|V ) Price Pr(success)
V = 1 qb p̄ = min{p1,1, φ0(p0,0)} 1 1− qb p0,0 1
V = 0 1− qb p̄ = min{p1,1, φ0(p0,0)} 1

2 qb p0,0 1

With Aftermarket Short Covering
sb = 1

Pr(sb|V ) Price Pr(success) Pr(short cov.) Profit p− pm

V = 1 qb p̄′ = min{p1,1, φ
′
0(p0,0)} 1 0 0

V = 0 1− qb p̄′ = min{p1,1, φ
′
0(p0,0)} 1

2 1 κp̄′

sb = 0
Pr(sb|V ) Price Pr(success) Pr(short cov.) Profit p− pm

V = 1 1− qb p0,0 1 0 0
V = 0 qb p0,0 1 1 κp0,0

Table 1.1: Summary of State-Profits. The table summarizes the probabilities of
signals given values, the separating prices that are charged in each case, the probabilities of
a successful IPO and, given that, the probability of short covering, and its profitability. κ is
defined as (1− β)r/β(1 + r).

types gain individually. We then proceed with the ex-ante payoff gains. We specify

under which conditions the bank would prefer a setting with short covering. Payoffs

are then averaged over signal-types because ex-ante, the signal is unknown. This is

the weaker case. We focus on the extreme scenarios, that is (a) on the costs with the

largest price drops after regime shifts and (b) on costs for which ex-ante payoff with

short covering is lowest.

To derive the results, we construct the payoff differences from both settings at a

given threshold cost and then substitute in closed form approximations of the thresh-

old prices. Details of the formulae can be derived straightforwardly from Table 1.1.

Appendix 1.6.3 outlines how the risky threshold prices can be approximated. The

resulting risky threshold prices that we find can be interpreted as

ps,µ =
expected liquidation value given the price’s information content

fraction of cases where this information can be used
.

So for instance, if µ(p) = 1, the unconditional value of this information piece is the

qb, the quality of the bank’s signal. The fraction of cases where this information can

be used is the probability of a successful IPO, given µ(p) = 1: Here it is α1. Thus
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p1,1 = qb/α1. By the same token p1, 1
2

= .5/(3/4). For the statements below we

computed payoff differences for β = 7% and O = .15 S, which are the empirically most

commonly observed parameters.20 In summary:

Interim Payoffs for the Low-Signal Bank. Suppose that separation is main-

tained. Without short covering, per-share profits are p0,0. With short covering there

are additional expected aftermarket profits of qbκp0,0, as can be seen from Table 1.1.

Suppose now that a pooling equilibrium results. Then, by definition of the pooling

equilibrium, the low-signal bank benefits. In both cases the low-signal bank is better

off with short covering.

Interim Payoffs for the High-Signal Bank. If costs are lower than C or if costs

are higher than Ĉ ′, the bank always wins: In both cases expected revenue remains

constant and the bank also gets short covering profits. Suppose now that costs are in

(C, Ĉ ′) and that the price decrease is strongest, from from p1,1 to p1, 1
2
. Then for signal

qualities in areas A and B in the Left Panel of Figure 1.2, the bank is always better

off, despite the maximal price decrease; in areas C and D the bank loses. It may not

be better off in all cases, but the smaller the price decrease, the smaller areas C and D

become.

Ex-ante Payoffs There are two subcases to consider: (i) The threshold costs for

which the highest price decrease occurs, which is Ĉ. (ii) The threshold cost for which

the ex-ante payoff with short covering is lowest, which is C ′.

(i) Suppose at Ĉ, prices drop from separation in p1,1 and p0,0 to pooling in p1, 1
2
.

At Ĉ, without short covering the low type is indifferent between riskless p0,0 and risky

p1,1. Using the risky payoffs, without short covering payoffs are (α1 − α0)p1,1−costs.

20Chen and Ritter (2000) report that β is almost always 7 percent. Naturally, when both O is
small and β is large, some of the statements below may change. Clearly, if these contract variables
are such that there is very little to be won in the aftermarket (low O) but a lot to be lost in revenue
(high β), then matters may change. However, the essence of the arguments below is that even at the
most extreme price drops there is a non-trivial parameter space where the bank is always better off.
Taking also parameters sets for β and O into the description of the analysis would merely complicate
the exposition.
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With short covering payoffs are (α1 − α0)p1, 1
2
−cost+short covering profits. So costs

cancel, revenues are lower, but, as it turns out, the short-covering profits always over-

compensate for the loss in revenue. Thus despite the maximum price decrease at Ĉ,

ex-ante the investment bank is always better off with short-covering.

(ii) The bank has lowest ex-ante payoffs with short covering at C ′, the costs where

the low bank is indifferent between choosing risky separation price p1, 1
2

= φ′0(p0,0) and

riskless price p0,0. The most extreme drop in revenue happens when Ĉ < C ′, so that

without short covering, the bank plays a separation equilibrium. Note that at this

cost C ′, without short covering the low type is not indifferent between a risky and

a riskless price as φ0(p0,0) > p1,1. Payoffs without short covering are of the order

α1p1,1 + p0,0−costs, with short covering they are α1p1, 1
2

+ p0,0−costs+short covering

profits. The investment bank is better off for parameters qb, qi in areas A, B, and C,

but not D (Left Panel, Figure 1.2). With respect to signal qualities, this area appears to

be large. However, taking (i) into account, this is only relevant for a strict subinterval

of [Ĉ, Ĉ ′] and if also C ′ > Ĉ. For all other costs, the bank is ex-ante always better off.

The Right Panel of Figure 1.2 illustrates this point.

To summarize, in most cases the investment bank is ex-ante and interim better off.

1.4.2 Payoff Comparison for Issuer and Investors

Given our model specification we can only compare the revenue that the issuer receives

in settings with and without short covering.21 Suppose with short covering, separation

is maintained. If the separation price decreases, p̄′ < p̄, the issuer loses. Suppose

now, there is a switch from separation to pooling. The high separation price decreases

from p̄ to p1, 1
2
, but at the same time the low separation price rises from p0,0 to p1, 1

2
.

Comparison of expected payoffs shows that in this case the issuer is better off for

all parameter values.22 Investors’ profits are directly opposed to the issuer’s profit.

Whenever the issuer gains (in expectation) investors lose and vice versa.

21This is equivalent to expected profits: Profit here would be defined as the difference between
revenue per share and the true value, which, by the LLN, is identical to the aftermarket price. We do
not take other factors such as, for e.g., costs for alternative financing (if the IPO fails) into account.

22Recall that we restrict the analysis to per-share profits. Taking into account that the number
of securities eventually sold to the market will be lower with short covering it can be the case that
whenever, simultaneously, qi is very small and qb is very large the issuer is worse off even with pooling.
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Figure 1.2: Informational Efficiency and Sign of Bank’s Profit Change.
Left Panel: Areas A, B, C, and D indicate permitted values of qi and qb, i.e. qb > qi > .5 and
p1, 1

2
> 2p0,0. For C = Ĉ, A indicates where an informational efficient separating equilibrium

is uphold with short covering; in B, C, and D a pooling equilibrium results. The high-signal
bank is better off in A and B, and worse off in C and D at C = Ĉ. Ex-ante, the bank is
better off in A, B, and C, for all C; in D there exist C1 ∈ [Ĉ, C ′] and C2 ∈ [C ′, Ĉ ′] such that
for C ∈ [C1, C2] it may lose. The figure is based on simulated values for β = .07, r = .15,
and N = 1000.
Right Panel: The lower line indicates ex-ante profits of the bank as a function of C without
short covering. The higher lines indicate profits with aftermarket short covering. For the
values of qi and qb in areas B and C these profits are always higher; in area D it may be the
case that for C ∈ [C1, C2] these profits are lower.

Even though this section is merely concerned with redistribution, it yields an inter-

esting insight. The investment bank is nearly always better off with aftermarket short

covering, in many cases irrespective of its signal. The issuer never gains but often loses

if separation is upheld, but always wins if separation morphs into pooling; the effect

on investors’ payoffs is the opposite.

1.5 Conclusion

Investment banks legally pursue supposedly price stabilizing activities in the post-offer

market. In this paper we analyze how these aftermarket activities influence the setting

of the offer price in the first place. We take a different perspective from existing
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theoretical work as we build the model around the stylized fact that investment banks

can realize risk-free profits through aftermarket short covering. The current model

cannot assess why some investment banks expose themselves to risk and establish

‘naked shorts’, or why they do not exercise the overallotment option in full even when

prices rise above the offer price. This paper only explains the strategic impact of the

possibility of risk-free profits. The investment bank’s behavior must not be perceived

as rogue or fraud, but as a rational response to a change in the environment. Investors

anticipate the bank’s behavior and react rationally to it.

We propose a stylized model of an offering procedure that is in accordance with em-

pirical findings and perceived industry practice. We assume that both the investment

bank and investors hold private information about the intrinsic value of the offered

security. Prices are set so that rational-expectation investors only order the security if

they expect to make a profit, taking into account the behavior of the investment bank.

The market price after the offering will adjust according to investors’ signals. As these

are conditionally i.i.d., the price almost surely reflects the fundamental value of the

security. The bank cannot stabilize ‘against’ this fully efficient price, but, of course, if

the price is efficient, it need not and must not be ‘stabilized’. So in the best of worlds,

one with full transparency, the bank can make an extra profit through short cover-

ing. In the real world the IPO process is opaque; neither investors nor regulators nor

researchers know precisely the banks’ strategies. It is certainly reasonable to assume

that in such an ‘imperfect world’ the strategic impact of the second source of profits is

rather more than less important.

There is little empirical support that stabilization is possible and has desirable,

positive effects. Indeed it is somewhat surprising that regulators allow price manip-

ulations. It is sometimes argued that investment banks will not always stabilize to

avoid a moral hazard problem with investors who believe being fully protected against

over-pricing. It is likely that this reduces the effect of potential aftermarket profits as

described in this paper. The result itself, however, obviously still holds — there are

still hardly any costs involved. In fact, from the regulators perspective price distortions

can easily be ruled out if the bank is prohibited from filling the short position at prices
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below 1 − β times the offer price. As long as the banks can keep the existence of a

short position secret from investors, a moral hazard problem would not occur.

In our setting, the security may turn out to be overpriced. Investors, however, have

already taken this into account. Investment banks always set the highest feasible price

and thus acts in the issuer’s interest. It is important to notice that in our setting the

investment bank does not temper prices to rob issuers. The informational asymmetry

in the paper arises at a point in time when all official, mandatory information has been

released and any other public statement by investment bank or issuer will be perceived

as cheap talk. Only actions, that is prices, can carry a meaningful message.

The offering procedure was modelled as a signaling game. The investment bank

moves first and strategically chooses the offer price to maximize its profits from both

the gross spread of the offer revenue and profits from short covering in the aftermarket.

We establish a benchmark by analyzing the situation without aftermarket activities,

and identify the conditions under which the equilibrium is both unique and separating.

A separating equilibrium is referred to as informationally efficient since the investment

bank’s information is fully revealed by the offer price. We further show that, on av-

erage, securities are underpriced in the separation equilibrium. With the introduction

of aftermarket short covering payoff functions and, consequently, the strategic environ-

ment change. As a result, either the offer price falls on average, or a pooling equilibrium

results. In the first case, an investment bank with favorable information distorts the

price downwards and thereby, on average, exacerbates underpricing. In the second case

investors are unable to infer the investment bank’s signal from the offer price. This

equilibrium is informationally inefficient since investors’ decisions are based on private

signals only and not also on the signal of the investment bank.

The intuition behind the results can be best explained by relating this paper to

job-market signaling with two types of workers. In the so-called Riley-outcome, the

low type chooses education level zero, and the high type chooses his education just high

enough so that it does not pay for the low type to deviate to his level of education. In

our paper this corresponds to a low-signal bank choosing a low, risk-free price. At this

price all investors want to buy the security and consequently the offering will never
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fail. Nevertheless, in the aftermarket any offering can turn out to be overpriced. The

high-signal bank chooses a high, risky price just low enough so that the risky price does

not pay for the low-signal bank. A price is risky when it is so high that only high-signal

investors buy; in this case the offering will fail if there are not enough investors with

the favorable signal. When introducing profits from short covering, the effect is that of

a personal extra benefit from education. Suppose this perk is higher for the low type

of worker than for the high type worker. As a result, the high type has to choose a

higher level of education to maintain separation. In our model, the low-signal bank

considers a price drop in the aftermarket more likely, thus the potential profits from

short covering are higher than for the high signal bank. And so the high-signal bank

has to distort prices downwards in order to maintain separation. At first sight this is a

surprising result, as casual intuition suggests that potential aftermarket profits should

result in more over-pricing. There may also come a point where it does not pay for

the high signal bank to maintain separation, and so it settles for pooling. The result

is informational inefficiency.

The investment bank enjoys higher payoffs with short covering for the vast majority

of parameter constellations. Looking at per-share profits, the issuer never gains but

often loses if separation prevails; but if there is a switch to a pooling equilibrium he is

always better off. Investors’ payoffs are directly opposed to the issuer’s gains or losses.

An increase in the investment bank’s share of the revenue or an increase in the amount

of overalloted securities reduces the parameter-set with informational efficiency.

Our analysis is in accordance with recent empirical analyzes but contrasts the ex-

isting theoretical literature which argues that stabilizing activities in the aftermarket

serve efficiency. We therefore challenge financial market authorities’ view that cur-

rent regulations simultaneously serve the interests of issuers, investors, and investment

banks.
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1.6 Appendix

1.6.1 Aftermarket Price Formation

The finally prevailing market price depends on the number of positive signals about

the value of the security. In determining the price we have to distinguish between cases

B1 and B0,1.

Consider first case B1. Since only high-signal investors buy, aggregated demand d

indicates the number of high-signal investors. Suppose d ≥ S, i.e. the IPO is successful.

Investors are assumed to take the aggregated information about signals into account

and update their expectations accordingly. At this updated expectation all investors

irrespective of their private signals are indifferent between selling and holding or buying

and abstaining, depending on whether they own a security or not, respectively. The

updated expectation thus becomes the aftermarket price, denoted by pm(d). We will

later show that case B1 will occur at the high price of a separating equilibrium only,

i.e. investors know that the bank’s signal is sb = 1. Taking further into account that

the true value of the security is either 0 or 1, we can write pm(d|µ = 1) = Pr(V =

1|d, µ = 1). Using Bayes’ rule, we can express the aftermarket price as

pm(d|µ = 1) =
Pr(d|V = 1)Pr(sb = 1|V = 1)

Pr(d|V = 1)Pr(sb = 1|V = 1) + Pr(d|V = 0)Pr(sb = 1|V = 0)
. (1.14)

Due to the binomial structure of the prior distributions over signals, the conditional

distribution for demand realization d is, for V = 1,

f(d|V = 1) := Pr(d|V = 1) =

(
N

d

)
qd
i (1− qi)

N−d, (1.15)

and for V = 0 analogously. The price-information about sb is unambiguous in a

separating equilibrium. We can therefore replace it with the conditional probability of

the bank’s signal being correct, which is qb or 1− qb. Bayes’ rule yields

pm(d|µ = 1) =
qbq

2d−N
i

qbq
2d−N
i + (1− qb)(1− qi)2d−N

. (1.16)
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Consider now case B0,1 in which all investors order the security, i.e. stated demand

is N and securities are allocated at random. The demand is uninformative since it does

not reveal the number of high-signal investors. Suppose that we are at the low price of

a separating equilibrium. Note that high-signal investors expect the security to be of

higher value than low-signal investors. Hence, there exists a price larger than the offer

price, p̃ > p∗ at which high-signal investors who were not allocated a security would be

willing to buy the security, and low-signal investors would be willing to sell, in case they

were allocated a security. Without modelling the price-finding procedure explicitly we

assume that the following intermediate process takes place. Those high-signal investors

who did not receive the security in the offering submit a unit market-buy-order. Those

low-signal investors who obtained the security in the offering submit a unit market-

sell-order. All other investors abstain. The number of investors who want to buy or

to sell is denoted by d̃ and S̃, respectively. Aggregate demand of high-signal investors

is then d = d̃ + S − S̃ and the market price pm can be determined as before. The

same procedure can be applied to determine the first period market clearing price in

the case of a pooling equilibrium. The conditional expectation which determines the

price, however, will then not contain the component about the signal of the investment

bank.

1.6.2 Threshold Prices

Denote by psi,µ the maximum price at which an investor with signal si and price infor-

mation µ buys, given all investors with s̃i ≥ si buy. At this price the investor’s expected

return from buying the security is zero, normalizing outside investment opportunities

accordingly.

Define ψ(1|1, 1) := Pr(V = 1|si = 1, µ = 1) and ψ(0|1, 1) := Pr(V = 0|si = 1, µ =

1). Consider now the structure of the conditional distribution f(d− 1|V ). For V = 1,

this is a binomial distribution over {0, . . . , N − 1} with center (N − 1)qi, and likewise

for V = 0 with center (N − 1)(1 − qi). Since by Assumption 1.2, N is ‘large enough’

for every qi, f(d− 1|1) = 0 for d < N/2 and f(d|0) = 0 for d > N/2. When combining

both f(d− 1|1) and f(d− 1|0), we obtain a bi-modal function. In g(·|si, µ), investors’
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posterior distribution over demands, these are weighted with ψ(1|si, µ) and ψ(0|si, µ).

Assumption 1.2 now satisfies two purposes. The first is to ensure that we pick N

large enough, so that the two modes do not overlap. The second can be seen from the

following lemma.

Lemma 1.3 For any qi > 1
2
, there exists a number of investors N(qi), such that

pm(d) · g(d− 1|si, µ) ∈ {0, g(d− 1|si, µ)} almost everywhere.

The lemma states that market prices are mostly 0 or 1, if they are not, then the weight

of this demand is negligible. To see this consider the following heuristic argument.

Proof: pm(d) is a s-shaped function in d, given by equation (1.16). For large N ,

pm(d) ∈ {0, 1} almost everywhere. Define I∗ as the interval of d around N/2 s.t. for

d ∈ I∗ we have pm(d) 6∈ {0, 1}. pm(d) is multiplied with density g(d − 1|si, µ), which

peaks at (N − 1)(1− qi) and (N − 1)qi. For N increasing I∗/N → 0 and the bi-modal

distribution becomes more centered around (N − 1)(1− qi) and (N − 1)qi. Hence, for

every qi there is an (N − 1)(qi) such that for d ∈ I∗, g(d|si, µ) · pm(d) = 0, i.e. the

weight on pm(d) 6∈ {0, 1} can be made arbitrarily small. ¤
Using Lemma 1.3 we can determine the threshold prices as follows. Consider first p1,1.

0 = (1− p1,1)
N−1∑

d=N/2

S

d + 1
g(d− 1|1, 1)− p1,1

N/2∑

d=S−1

S

d + 1
g(d− 1|1, 1)

⇔ p1,1 =

∑N−1
d=N/2

S
d+1

g(d− 1|1, 1)
∑N−1

d=S−1
S

d+1
g(d− 1|1, 1)

. (1.17)

For d > N/2, g(d − 1|si, µ) = ψ(1|si, µ)f(d − 1|1) and for d < N/2, g(d − 1|si, µ) =

ψ(0|si, µ)f(d− 1|0). Also define

Σ0 :=

N/2∑

d=S−1

f(d− 1|0)

d + 1
and likewise Σ1 :=

N−1∑

d=N/2

f(d− 1|1)

d + 1
, and σ := Σ0/Σ1.

Also write `(µ) := ψ(0|1, µ)/ψ(1|1, µ). Thus for the combination of signal si and
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price-information µ with B1 we can write

p1,1 = (1 + σ`(1))−1 and likewise p1, 1
2

= (1 + σ`(1
2
))−1. (1.18)

Consider now the case for p0,0. At this price all agents receive the security with equal

probability and we sum from 0 to N − 1. Thus

0 = (1− p0,0)
N−1∑

d=N/2

S

N
g(d− 1|0, 0)−

p0,0

N/2∑

d=0

S

N
g(d− 1|0, 0) ⇔ p0,0 = ψ(1|0, 0). (1.19)

Likewise we have

p0, 1
2

= ψ(1|0, 1
2
). (1.20)

1.6.3 Approximate Closed Form Solutions

We will now derive approximate closed form solutions so that we can solve our model

analytically. In this appendix we let d denotes the number of other investors with

favourable information — this contrasts the exposition of the main text, but it simplifies

the notation here. First consider the strategy of agent number N . There are N − 1

other investors. Given that he invests and the true value is, say, V = 1, then by the law

of large numbers, demand/the number of favorable signals will always be larger than

N/2. Furthermore, the market price is almost surely pm(d) = 1. If d others order, then

when buying he gets the asset with probability 1/(d + 1). Thus his payoff for price p

(1− p)
N−1∑

d=(1−qi)N−1

1

d + 1

(
N − 1

d

)
qi

d(1− qi)
N−1−d =

(1− p)
N−1∑

d=N/2

1

d + 1

(
N − 1

d

)
qi

d(1− qi)
N−1−d. (1.21)
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To compute the sum we proceed in a similar manner as one would to compute the

expected value of a binomial distribution: First observe that because N is large,

N−1∑

d=N/2

1

d + 1

(
N − 1

d

)
qi

d(1− qi)
N−1−d =

N−1∑

d=0

1

d + 1

(
N − 1

d

)
qi

d(1− qi)
N−1−d (1.22)

Then we can compute

N−1∑

d=0

1
d + 1

(
N − 1

d

)
qi

d(1− qi)N−1−d =
1

qiN

N−1∑

d=0

N !
(N − d)!(d + 1)!

qi
d+1(1− qi)N−1−d

=
1

qiN

(
N∑

l=0

(
N

l

)
qi

l(1− qi)N−l −
(

N

0

)
qi

0(1− qi)N−0

)

=
1

qiN
(1− (1− qi)N ). (1.23)

In the second step we made a change of variable, l = d + 1, but through this change,

we had to subtract the element of the sum for l = 0. Consequently, for large N , we

can say that

N−1∑

d=N/2

1

d + 1

(
N − 1

d

)
qi

d(1− qi)
N−1−d ≈ 1

qiN
. (1.24)

Using the same arguments, we could also show that

N−1∑

d=0

1

d + 1

(
N − 1

d

)
qi

N−1−d(1− qi)
d ≈ 1

(1− qi)N
. (1.25)

Use now familiar notation to denote the combination of private and public beliefs φs,µ.

Recall that we can write p1,1 as

p1,1 =
1

1 + `(1) Σ0

Σ1

. (1.26)

What we now need to find is a closed form for

Σ0 =

N/2∑

d=N(1−qi)−1

1

d + 1

(
N − 1

d

)
qi

N−1−d(1− qi)
d. (1.27)
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For increasing N one can see that 1
d+1

(
N−1

d

)
qi

N−1−d(1−qi)
d gets numerically symmetric

around (1− qi)N − 1. Thus we can express

Σ0 =
1

2

N/2∑

d=0

1

d + 1

(
N − 1

d

)
qi

N−1−d(1− qi)
d =

1

2

N∑

d=0

1

d + 1

(
N − 1

d

)
qi

N−1−d(1− qi)
d

≈ 1

2

1

(1− qi)N
. (1.28)

Assembling, we obtain

p1,1 =
1

1 + `(1) Σ0

Σ1

≈ 1

1 + (1−qi)(1−qb)
qiqb

qiN)
2(1−q)N)

=
2qb

1 + qb

≡ qb

α1

. (1.29)

Equivalently, we get

p1, 1
2
≈ 1

1 + 1−qi

qi

qiN
2(1−qi)N

=
2

3
, and p0,1 ≈ 1− qb

α0

. (1.30)

The information content of a high pooling price is 1/2, and knowing this information,

the probability of the offering being successful is 3/4. Thus the interpretation of risky

prices is thus the ratio of the expected liquidation value given price-information to the

share of successful offerings given this information

p1,µ =
E[ V |µ ]

Pr(IPO successful | µ)
. (1.31)

1.6.4 Maximal Reputation Costs

If an IPO fails, the worst that can happen is that the investment bank loses all future

IPO business, i.e. it is out of the market. Assuming that future business takes place

in the same environment (e.g. the quality of signals remains constant), the bank can

maximally lose all discounted future profits. Assume that the bank discounts future

profits at rate δ. Consider the case of highest potential costs C̄ that can occur from

a failing IPO in a separating equilibrium. An upper bound for costs is given by the
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discounted lost future profits if p̄ = p1,1. Then ex-ante profits of a single IPO are

Π(p0,0, p1,1, C) =
1

2
(S + O)β (p0,0 +

1 + qb

2
p1,1)− 1− qb

4
C. (1.32)

Assuming that an investment bank would conduct one IPO each period and accounting

for the fact that in a separating equilibrium the ex-ante probability of the IPO to be

successful is (3 + qb)/4 we get

Cmax =
∞∑

t=0

(1− δ)t · ((3 + qb)/4)t · Π(p0,0, p1,1, Cmax). (1.33)

Thus maximal possible costs can be solved to be

Cmax = 2(S + O)β
p0,0 + 1+qb

2
p1,1

δ(3 + qb) + 2(1− qb)
. (1.34)

Comparing values of Cmax to those of C̄ shows that for qi and qb sufficiently large

C̄ À Cmax. Furthermore, for reasonable values of the discount rate, the reverse relation

holds true only for values of qi and qb where we get C̄ ′ < C̄. That is, either C̄ ′ < C̄

and informational inefficiencies result, or C̄ is so large that it lies outside the relevant

parameter region in the context of this model.

1.6.5 Omitted Proofs

Proof of Lemma 1.1

Suppose p∗ > p0,0. At this price only high-signal investors buy. A high-signal bank will

always set a price where at least high-signal investors buy. Hence, high-signal investors

buy at both prices p∗ and p̄∗. A low-signal bank can now increase its payoff by setting

a higher price as α0 is not affected by this, a contradiction. ¤

Proof of Proposition 1.1

First we will argue that the only separating equilibrium surviving the IC is the one

outlined in the proposition. Then we will argue that pooling cannot occur.
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Step 1 (Separating) First observe that there cannot be a separating price p̄∗ where

investors choose B0,1 because otherwise the low-signal bank would deviate to

this price. Note that no separating price with p̄∗ > φ0(p0,0) can exist because

at this price, the low-signal bank would prefer to deviate. No price p̄∗ > p1,1

can exist since not even high-signal investors would buy. Furthermore, p̄∗ ≥
φ1(p0,0) must be satisfied since otherwise the high-signal bank would prefer to

deviate to p0,0. Finally no price p̄∗ below p1,0 is reasonable because the high-

signal bank would then deviate to this price. Take p̃, with max{φ1(p0,0), p1,0} ≤
p̃ ≤ min{p1,1, φ0(p0,0)}. Note that such a p̃ always exists as long as φ1(p0,0) ≤ p1,1

and p1,0 ≤ φ0(p0,0). The conditions stated in Proposition 1.1 ensure this is the

case because φ1(p0, 1
2
) > φ1(p0,0) and p1, 1

2
> p1,0.

We analyze the candidate separating equilibrium

{(p∗ = p0,0, µ = 0, B0,1); (p̄
∗ = p̃, µ = 1, B1);

(p∗ 6∈ {p∗, p̄∗}, µ = 0, B0,1 if p ≤ p0,0, B1 if p0,0 < p ≤ p1,0, B∅ else)}.

By definition of φ0(p0,0) it holds that

βp0,0S = α0βφ0(p0,0)S− (1− α0)C > α0βp̃S− (1− α0)C

so that the low-signal bank would not deviate to p̃. Since max{φ1(p0,0), p1,0} ≤ p̃,

the high-signal bank would also not deviate. Hence this is a PBE.

Now consider the application of the IC. Suppose a high separation price p̄ = ˜̃p

with p̃ < ˜̃p ≤ min{p1,1, φ0(p0,0)} is observed. This price is equilibrium dominated

for a bank with sb = 0 by definition of φ0(p0,0). The low-signal bank can therefore

be excluded the set of potential deviators. The only remaining agent is the high-

signal bank. The best response of high-signal investors then is to buy at p̄ = ˜̃p,

i.e. B1. Hence the PBE with p̄∗ = p̃ does not survive the IC. Applying this

reasoning repeatedly, all separating prices with p̄ < min{p1,1, φ0(p0,0)} can be

eliminated.
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Step 2a (Pooling with B0,1) For all investors to buy we must have p ≤ p0, 1
2
. Suppose

there was deviation to p = φ1(p0, 1
2
) < φ0(p0, 1

2
). For the low-signal bank this

would not be profitable by definition of φ0(p0, 1
2
). But for some beliefs about the

signal of the bank and corresponding best responses, high-signal investors could

be better off. The best response for investors with beliefs on the remaining set

of types, i.e. µ = 1, however, is B1 as we have φ1(p0, 1
2
) < p1,1. Hence, applying

IC there cannot be a pooling equilibrium with B0,1.

Step 2b (Pooling with B1) We must have p ≤ p1, 1
2
. Since φ0(p0,0) > p1, 1

2
, the low-

signal bank would prefer to deviate to p0,0, hence this cannot be an equilibrium.

To summarize, restrictions φ1(p0, 1
2
) < p1,1 and φ0(p0,0) > p1, 1

2
ensure that the only

equilibrium surviving the IC is the one depicted in Proposition 1.1. ¤

Proof of Proposition 1.2

Consider the highest possible separating offer prices. The market price will by the Law

of Large Numbers resemble the true value of the security. Assumptions 1.1 and 1.2

imply that the IPO fails with probability 0.5 if the true value is V = 0 and the high

separation price is set. If the true value is V = 1 the IPO never fails. Thus, ex-ante

there is underpricing if 1
2
(1 − p0,0 − α1p1,1) > 0. Substituting in closed form solutions

for threshold prices p1,1 and p1, 1
2

from Appendix 1.6.3 this can be written as

(1− qb)(1− qi)

qbqi + (1− qb)(1− qi)
+ qb ≤ 1 (1.35)

Recall that α1 = 1+qb

2
. Numerically, it is straightforward to check that the inequality

holds for all qb, qi ∈ (.5, 1). ¤

Proof of Lemma 1.2

We will analyze two cases. Firstly we will show that at C = Ĉ, p̄∗ = p1,1 = φ0(p0,0)

can no longer be a sustained as a separating equilibrium if short covering is possible.
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Secondly we will show that at C = C, p̄∗ = p1, 1
2

= φ0(p0,0) cannot be sustained as the

separating equilibrium.

We will regard situations in which with respect to the offering price the low-signal

bank is indifferent between charging p0,0 with all investors buying, B0,1, and p̄∗ where

only high-signal investors buy, B1. If the payoffs from short covering are higher in

the case of deviating to price p̄∗, then this price can no longer be sustained as a sep-

arating price and then, naturally, φ′0(p0,0) < φ0(p0,0). To get this we need to show

Π2(p̄∗|B1, sb = 0) > Π2(p∗|B0,1, sb = 0). Defining ∆(p) s.t. ∀ d ≤ ∆(p) the aftermar-

ket price is not above (1− β)p this is equivalent to

∆(p̄∗)∑

d=S + O

O · {(1− β)p̄∗ − pm(d)} · Pr(d|sb = 0) >

∆(p∗)∑

d=0

O · {(1− β)p∗ − pm(d)} · Pr(d|sb = 0)

⇔
(1− β)p̄∗

∆(p̄∗)∑
d=S + O

Pr(d|sb = 0)

−
∆(p̄∗)∑

d=S + O

pm(d) · Pr(d|sb = 0)





>





(1− β)p∗
∆(p∗)∑
d=0

Pr(d|sb = 0)

−
∆(p∗)∑
d=0

pm(d) · Pr(d|sb = 0)

∼⇔ (1− β)p̄∗
qb

2
> (1− β)p0,0qb. (1.36)

The last step follows from Lemma 1.3 in Appendix 1.6.2. We can now check what

happens at the threshold points. Suppose that C = C so that p̄∗ = p1, 1
2
. Then (1.36)

translates to p1, 1
2
/2 > p0,0 which is ensured by Assumption 1.4. Recall that numerically

this assumption requires that not both qi and qb are small. Suppose that C = Ĉ so that

p̄∗ = p1,1. Then we need that p1,1/2 > p0,0. Informativeness of sb implies p1,1 > p1, 1
2
. ¤

Proof of Proposition 1.3

The second step of the proof of Lemma 1.2 ensures that C ′ ≥ C. The model is set-

up so that all payoffs Π1 + Π2 can be dealt with as one. Hence the aforementioned

procedure can be applied here as well. The proof of the pooling outcome goes exactly

along the lines of the proof of Proposition 1.1. Take a separating equilibrium in which

both agents make less profit than in the pooling equilibrium. Pareto Efficieny rules

this equilibrium out. The existence of Ĉ ′ > Ĉ is again ensured by Lemma 1.2. By

definition, for C > Ĉ ′, the highest attainable price is p1,1, and it is the only one selected

by the IC. ¤
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Proof of Proposition 1.4

From Proposition 1.3 we know that a pooling equilibrium results for all C < C ′. C ′

is defined as the value of C for which equation (1.11) is fulfilled with φ′0(p0,0) = p1, 1
2
.

Solving for C ′ one obtains

C ′ ∝ β(S + O)

(
2− qb

2
p1, 1

2
− p0,0

)
+ (1− β)Oqb

(
p1, 1

2

2
− p0,0

)
. (1.37)

Partially differentiating w.r.t. O we obtain

∂C ′

∂O
= β

(
2− qb

2
p1, 1

2
− p0,0

)
+ (1− β)qb

(
p1, 1

2

2
− p0,0

)
. (1.38)

Both terms in brackets are positive by Assumption 1.4 as long as qb < 1. Partial

differentiation w.r.t. β yields

∂C ′

∂O
= (S + O)

(
2− qb

2
p1, 1

2
− p0,0

)
− qb

(
p1, 1

2

2
− p0,0

)

∝
[
p1, 1

2

2

(
2− qb − r

1 + r
qb

)
− p0,0

(
1− r

1 + r
qb

)]
. (1.39)

Since 2 − qb − r
1+r

qb > 1 − r
1+r

qb whenever qb < 1, Assumption 1.4 ensures that the

term is positive. ¤



Chapter 2

Investment Bank Compensation in

Venture and Non-Venture Capital

Backed IPOs∗

2.1 Introduction

This paper proposes a signaling model of the initial public offering (IPO) process that

can explain two related puzzles. First, why investment banks’ share of IPO revenue, the

gross spread, is so large that they are left with profits despite market competition and,

second, why these spreads are significantly lower in venture capital (VC) backed IPOs

than in non-VC backed IPOs. Megginson and Weiss (1991) report for a U.S. sample of

640 IPOs between 1983 and 1987 gross spreads of 7.4% for VC backed IPOs and 8.2%

for non-VC backed IPOs. Data on the profitability of IPOs is hard to obtain. However,

Chen and Ritter (2000) argue that there are economies of scale in underwriting IPOs.

They show that spreads do not differ in offerings that raise between $20 million and $80

million. Since investment banks at least break even in small offerings large offerings

must be profitable. They report that “investment bankers readily admit that the IPO

business is very profitable” (p. 1105).

∗The chapter is based on joint work with Andreas Park from the University of Toronto.
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The cost of going public is subject of a long standing and lasting debate among

financial economists. The literature focuses mainly on the underpricing of IPOs, an

empirically well-documented phenomenon. Ritter and Welch (2002), as a recent exam-

ple, report an average first-day return of 18.8% for 6,249 IPOs in the U.S. between 1980

and 2001. However, underpricing is not the only cost of going public. Issuers leave

a fraction of the offer revenue, the gross spread, to investment banks (underwriters)

as compensation for their services. Chen and Ritter (2000) find that the gross spread

amounts to 7% on average for a U.S. sample of 3,203 IPOs between 1985 and 1998.

Although investment bank compensation thus accounts for a substantial proportion of

the cost of going public, it has hardly attracted attention by theorists so far. In light

of the impact that the Chen and Ritter (2000) paper had, this is even more surprising.

Not only do they find that gross spreads average 7% but that they are exactly 7% in

most of the offerings. Hansen (2001) reports that these findings triggered 27 lawsuits

against investment banks for not competing in price and a U.S. Department of Justice

investigation of “alleged conspiracy among securities underwriters to fix underwriting

fees.” Thus, in practice, the size of the gross spread attracts considerable attention.

Even though this paper does not explain the clustering of spreads that called attention

in the first place, we explain the level of spreads – the underlying bone of contention.

Notwithstanding the legal debate on investment bank collusion and the seemingly

obvious empirical evidence, our theoretical formulation allows a very different, subtle

explanation for high spreads. We find that it can be in the best interest of the issuer to

pay seemingly inflated spreads. That is, issuers would strategically pay high spreads

even if a competing bank offered its service at a lower spread. Issuers hence do not

bargain for lower spreads and, consequently, investment banks do not compete in them.

In our model, there are two reasons for this. First, it is at the bank’s discretion to set

the offer price. At high offer prices the IPO can fail because there may not be enough

investors willing to subscribe. Banks then have to bear reputation costs. To induce

them to take the risk and set high offer prices issuers must set sufficiently high spreads.

Banks earn a rent because given the spread they could set a low, risk-free price and

receive their share in revenue with certainty. Secondly, we assume that investment
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banks hold private information about market’s valuation of the firm on offer. In our

model the size of the spread critically affects the bank’s decision whether to reveal or

to hide this information which in turn affects the offer price. Thus a lower spread may

result in lower expected revenue for the issuer. However, competition could instead take

place in features of the IPO contract that are left outside the model, as for example

additional co-managers or analyst coverage. This fits the findings of Chen and Ritter

(2000) as they report that not only the clustering of spreads at 7% has increased

over time – indicating lack of competition in spreads – but that the number of co-

managers in IPOs and analyst coverage has increased over time as well – indicating

some competition in these features of the IPO contract.

Megginson and Weiss (1991) were the first to show that VC backed issuers pay lower

gross spreads than non-VC backed issuers.23 If the IPO is non-VC backed the founder of

the firm takes all relevant decisions. In VC backed IPOs the venture capitalist usually

holds all control rights, so we assume that in a VC backed IPO the venture capitalist

decides on the level of the spread. Our second main result addresses differences between

IPOs with uninformed and privately informed issuers. Assuming that, in contrast to

the founder, the venture capitalist has private information about market sentiment,

our model predicts that in equilibrium spreads are lower in VC than in non-VC backed

IPOs.

We propose a simple stylized model of the offering procedure, cast into a signaling

game. We assume that investment banks and investors have private but noisy infor-

mation about the intrinsic value of the offered security which is either “good news” or

“bad news”. In a wider sense, this signal can also be understood as information about

market sentiment. Investment banks strategically choose the offer price to maximize

their expected profits from the offer revenue gross spread. A higher price does not nec-

essarily increase revenue: at high prices the IPO may fail as there may not be enough

investors to buy up the entire offering. Prior to the signaling game the issuer offers the

investment bank a contract that specifies the gross spread level. This level critically

affects banks’ pricing decisions. Given the contract variables, the investment bank sets

23For more recent data see Francis and Hasan (2001)
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an optimizing price that, first, either reveals (separation) or camouflages (pooling) its

private information and, second, is either low so that all investors subscribe (risk free)

or high so that only investors with “good news” buy (risky). If the issuer is also pri-

vately informed, the gross spread level can be either separating or pooling, too. Banks,

in turn, account for the spread’s information content when deciding on the offer price.

Anticipating the bank’s pricing decision, the issuer sets the level of the gross spread

strategically so that the bank sets the offer price that gives the issuer highest expected

profit. Investors are aware of this process and subscribe only if their expected prof-

its are non-negative. At the equilibrium spread the investment bank makes positive

profits.

For informed issuers we consider two cases: In the first, the issuer receives a private

signal that is conditionally independent from the bank’s signal (later interpreted as

VC backed IPOs). In the second case, the issuer’s signal is perfectly correlated with

the investment bank’s signal (strong banking ties). In the first case, the issuer will

not reveal his private information and set a spread that hides his signal. Nevertheless,

the spreads is set so that the investment bank will separate in prices. In the second

case, an issuer with favorable information sets a spread that prevents its low-signal

counterpart from mimicking. Spreads are thus separating and also indicate the bank’s

signal. Prices can hence carry no additional information. With uninformed issuers the

spread cannot convey information. We show that spreads are then set so that both

types of investment bank pool in the offer price, causing an informationally inefficient

equilibrium. The pooling spreads with independently informed issuers (VC backed) are

lower than the spread set by an uninformed issuer (non-VC backed). Furthermore, if

bank’s and issuer’s signals are perfectly correlated, spreads are, on average, the highest.

The remainder of the paper is organized as follows. Section 2.2 presents our model

of the IPO procedure. Section 2.3 derives the equilibrium prices set by the investment

bank. Section 2.4 analyzes the strategic choice of the gross spread by uninformed

and superiorly informed issuers. Section 2.5 presents the main results on levels and

difference of gross spreads. Section 2.6 concludes.
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2.2 A Stylized Model of the IPO Procedure†

Consider the following stylized model of the IPO process.

The Security. The security on offer can take values V ∈ V = {0, 1}, both equally

likely. The realization is not known to any player in the game.

The Investors. There are N identical, risk neutral investors. Each investor receives a

costless, private, conditionally i.i.d. signal si ∈ V about the value of the security. This

information is noisy but (for technical reasons) sufficiently informative, i.e. Pr(si =

v|V = v) = q, with q ∈ (0.6, 1), where v ∈ V.24 If an investor orders, he may or

may not obtain the security during the offering procedure. Shares are distributed

with uniform probability in case the issue is oversubscribed. If an investor obtains

the security his payoff is the market price minus the offer price. If he does not obtain

the security or if the offer is not floated his payoff is zero. An investor’s type is his

signal. We refer to the investor as a ‘high-signal investor’ if si = 1. For si = 0, it is a

‘low-signal investor’.

The Issuer. In general the issuer can be either informed or uninformed. For the

latter we consider two subcases: in the first, the issuer (firm) receives a private signal

sf ∈ {0, 1}, in the second, the issuer and the investment bank (see below) receive

the identical signal. Any signal is costless and conditionally independent from the

investors’ signals but, for simplicity, of the same quality, i.e. Pr(si = v|V = v) = q. The

uninformed issuer receives no signal. We will refer to these types of issuers as ‘privately

informed’, ‘identically informed’, and ‘uninformed’. In Section 2.5 we interpret the

meaning of informative signals and relate informed and uninformed issuers to real-world

types such as VC backed and non-VC backed issuers. The issuer is risk neutral and signs

a contract with an investment bank that delegates the pricing decision and constitutes

†The model presented here is in part similar to the model presented in Chapter 1. However, to
keep this chapter self-contained we accept some redundancies.

24As turns out in the analysis, for q < .6 we have to distinguish a large number of subcases.
Avoiding these complications, we thus require sufficiently informative signals.
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the amount of securities, S, to be sold. It also specifies the publicly announced gross

spread β ∈ (0, 1), the share of the offer revenue that remains as remuneration at the

bank.25 The issuer chooses this spread. If the offer is floated, his profit is fraction

(1− β) of the offer revenue, otherwise it is zero.

Investment Banks. Investment banks are risk neutral. A bank that gets offered

a contract (we will show that it always accepts) receives a costless, private signal

sb ∈ V about the value of the security. The signal is conditionally independent from

the investors’ and privately informed issuer’s signals but, for simplicity, of the same

quality, i.e. Pr(sb = v|V = v) = q. Signals characterize a bank’s type: If sb = 1 we

refer to the investment bank as a ‘high-signal bank’, for sb = 0, it is a ‘low-signal

bank’. After receiving the signal the bank chooses the offer price p. If there is excess

demand, securities are allocated at random; if the number of investors willing to buy

is less than the number of shares to be sold, the offer is called off. We assume that

failure of the offering inflicts fixed costs C on the investment bank. These costs are

external to our formulation and to be thought of as deterioration of reputational capital.

They may also capture the opportunity costs resulting from lost market share when

being associated with an unsuccessful IPO.26 Without loss of generality, the offering

procedure itself causes no costs for the investment bank. Thus, if the offer is successful,

the bank’s payoff is fraction β of the offer revenue; if it fails, a loss of C results.

Signaling Value of the Gross Spread and the Offer Price. The level of the

gross spread and the offer price are announced first. Then investors decide whether or

not to order, basing their decisions on their private information and on the information

25We want each agent to have only one choice variable: issuers choose the spread, banks the price
and investors may or may not invest. Another candidate choice variable is the number of shares S,
or even the number of potential investors N that are addressed, e.g. during the road-show. However,
including these as choice variables would require a different, more elaborate modelling approach.

26There is an extensive large literature on investment bank reputation. Dunbar (2000), for e.g.,
provides evidence that established investment banks lose market share when being associated with
withdrawn offerings. Booth and Smith (1986) argue that in the context of asymmetric information
between insiders and outsiders the investment bank as a repeated player in the IPO market certifies
that the issue is not overpriced. Following this argument, C can be interpreted as measuring the
deterioration of the certification value of the investment bank’s brand name.
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Figure 2.1: Extensive Form of the Signaling Game.

that issuer and bank reveal about their signals through the level of the gross spread

and the offer price. We denote information contained in prices by µ(p), information in

spreads ν(β). In case of the uninformed issuer, the spread is uninformative and only

prices can carry information. In case of an identically informed issuer, the information

contained in β is hierarchical to the information in p: Issuers with different signals may

set different levels of the gross spread which then reveals the signal of the issuer and

the bank; in this case, prices cannot carry further information. We write µ(p) = 1 if

the price reflects that the bank’s signal is sb = 1, µ(p) = 0 if reveals that sb = 0, and

µ(p) = 1
2

to indicate that the price is uninformative; likewise for ν(β). In equilibrium

these will turn out to be the only relevant cases. Thus µ, ν : [0, 1] → {0, 1/2, 1}. We

refer to µ(p) as the price-information about the bank’s signal and to ν(β) as the spread

information.

The Aftermarket Price. The equilibrium market price is determined by the ag-

gregate number of investors’ favorable signals. In our model this number is always

revealed, either directly through investor demand or immediately after the float through

trading activities. Thus write pm(d) for the market price as a function of d ∈ {0, . . . , N},
the number of high-signal investors. Appendix 2.7.1 fleshes out this argument and pro-

vides an extensive treatment of price formation.

Investors’ Decisions and Expected Payoffs. We admit only symmetric pure

strategies; thus all investors with the same signal take identical decisions. These can

then be aggregated so that only three cases need to be considered: First, all investors
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subscribe, B0,1, second, only high-signal investors subscribe, B1, and third, no investor

subscribes, B∅. Thus, the set of potential collective best replies is B := {B0,1, B1, B∅}.
To compute his expected payoff, an investor has to account for the probability of

receiving the security. There are two cases to consider. In the first, all investors buy,

i.e. B0,1. Thus, market demand is N and all investors receive the security with equal

probability S/N . In the second case, only high-signal investors buy. If d investors

(including oneself) buy, then each one receives the security with probability S/d. If

overall demand d is smaller than the number of shares on offer, d < S, the IPO fails

and investors who ordered the security get it with probability 0.

Investors order the security whenever their expected payoff from doing so is non-

negative. Suppose only high-signal investors buy, i.e. B1. After observing the offer

price, an investor’s information set contains both his signal si and the information

inferred from the offer price and spread, µ(p) and ν(β). Since signals are conditionally

i.i.d., for every V ∈ V there is a different distribution over the number d− 1 of others’

favorable signals (si = 1), which we denote as f(d − 1|V ). Thus investors’ posterior

distribution that the number of others’ favorable signals is d− 1 is given by

g(d− 1|si, µ(p), ν(β)) :=
∑

V ∈V
Pr(V |si, µ(p), ν(β)) · f(d− 1|V ). (2.1)

If only investors with favorable signals order, then for a high-signal investor, at price

p his rational-expectation payoff from buying has to be non-negative,

N−1∑

d=S−1

S

d
· (pm(d)− p) · g(d− 1|si = 1, µ(p), ν(β)) ≥ 0. (2.2)

Likewise for the respective low-signal investors when all investors order, B0,1, in which

case the summation runs from 1 to N , and si = 1 is replaced by si = 0.

Threshold Prices. Denote by psi,µ,ν the highest price that an investor with signal

si, price information µ(p) and spread information ν(β) is willing to pay in equilibrium

if all investors with signal s̃i ≥ si order. If the issuer is uninformed, ν is replaced
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with a diamond, ¦; if issuer and bank get the same signal and if the issuer signals

his private information, µ(p) is replaced with a diamond to indicate that the price

cannot reveal further information. Suppose, the issuer reveals information ν. Then

p1,1,ν is the highest (price-separating) price with B1, p1, 1
2
,ν the highest (price-pooling)

price with B1, p0, 1
2
,ν the highest (price-pooling) price with B0,1, and p0,0,ν the highest

(price-separating) price with B0,1. Note that at all these prices investors are aware that

the security price may drop (or rise) in the aftermarket and that they may not get the

security. The threshold prices are formally derived in Appendix 2.7.2.

The Investment Bank’s Expected Payoff. First consider case B1. Variable d

denotes the number of orders, i.e. the number of high-signal investors. If the true value

is V = 1, we have

Pr(d ≥ S|B1) =
N∑

d=S

(
N

d

)
qd(1− q)N−d, (2.3)

analogously for V = 0. Suppose the issuer gets no signal or its private signal sf . A

bank with signal sb assigns probability αsb,ν(S) to the event that at least S investors

have the favorable signal. If the investment bank has signal sb and spread information

ν, then

α1,ν(S) =
N∑

d=S

(
N

d

) (
Pr(V = 1|sb, ν) · qd(1− q)N−d + Pr(V = 0|sb, ν) · (1− q)dqN−d

)
.(2.4)

If the bank charges a price at which only high-signal investors buy, its expected profit

is

Π(p|sb, ν, B1) = αsb,ν(S) · βpS− (1− αsbν(S)) · C. (2.5)

Consider now B0,1, the case where the offer price is low enough so that all investors

are willing to buy, irrespective of their signals. The offer never fails, thus payoffs are

given by Π(p|B0,1) = βpS. If the price is set so high that no investor buys, as in case

B∅, a loss of C results with certainty.

The unconditional distribution over favorable signals is a composite of the two con-

ditional distribution and thus bimodal. To obtain (approximate) closed form solutions
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-
tt = 1 t = 2 t = 3 t = 4

The issuer offers a
contract specifying the

level of the spread.

The bank sets the
offer price.

Investors decide
whether to order

or to abstain.

Shares are floated
or offering fails.

Figure 2.2: The Timing of the Game.

for success-probabilities and prices, we make two simplifying assumptions: the first

simplifies computations, since the two modes of the distribution over favorable signals

are centered around N(1 − q) and Nq. It allows us to get closed form solutions for

success-probabilities. The second assumption ensures that we can analyze the two

underlying conditional distributions separately.

Assumption 2.1 S = (1− q)N.

For every signal quality q, there exists an Ñ(q) so that for all N > Ñ(q) the two

conditional distributions over favorable signals generated by V = 0 and V = 1 do not

‘overlap’. By standard results from statistics, a sufficient condition for Ñ(q) is given

by Ñ(q) > 64q(1− q)/(2q − 1)2.

Assumption 2.2 The number of investors N is larger than Ñ(q).

As a consequence of the second assumption we can apply the Law of Large Numbers and

DeMoivre-Laplace’s Theorem.27 Since we assume that the IPO fails whenever d < S,

Assumption 2.1 implies, for instance, if the spread is uninformative, i.e. ν = 1/2, then

α0, 1
2
(S) = (2−q)/2 and α1, 1

2
= (1+q)/2. In what follows we thus omit S. A consequence

of the Law of Large Numbers is that pm(d) ∈ {0, 1} for almost all values of d.28

Before proceeding we summarize the timing of the model in Figure 2.2. First,

an (identically) informed issuer receives its signal and then all types of issuer offer

a contract to a bank specifying the spread level. Second, the bank sets the offer

27For instance, the mode of a binomial distribution is generally not exactly symmetric. However,
if N is large enough, we can apply DeMoivre-LaPlace (0 < q ± 2

√
q(1− q)/N < 1) and employ the

normal distribution instead. Thus we can treat each mode to be symmetric.
28To be more precise, for d À N/2, pm(d) = 1, and for d ¿ N/2, pm(d) = 0. Thus to get

interesting equilibria, it is necessary that S is strictly smaller than N/2. If it was not, an IPO where
only si = 1 investors buy, would never be at risk of being overpriced as it fails in all overpriced cases.
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price given the spread, the information contained therein, and its own signal. Third,

investors decide whether to order given all available information. Finally, in case the

IPO takes place, the number of favorable signals is revealed in the aftermarket and the

price adjusts according to it.

In what follows proceed backwardly. In the next section we analyze the price setting

of the investment bank given the level of the gross spread. In Section 2.4 we derive

each type of issuer’s choice of the spread in anticipation of the bank’s price setting.

Section 2.5 interprets the findings of Sections 2.3 and 2.4 and presents our main results

on investment banking profits and differences in spreads between different classes of

issuers.

2.3 Investment Banks’ Equilibrium Price Choice

There are two cases to consider: First, spreads are uninformative or reflect the issuer’s

independent information. In that case, the investment bank plays a signaling game

and needs to decide whether or not to reveal its private information. Second, in case

of the identically informed issuer, spreads can reveal the bank’s signal. Then the bank

has no strategic decision problem but merely chooses the price that is optimal given

all public information.

2.3.1 Uninformative Spreads or Spreads Reflecting the Is-

suer’s Independent Signal

In the following we identify the conditions under which a profit maximizing investment

bank will reveal its information through the offer price. A separating equilibrium is

defined as informationally efficient since investors can derive the bank’s signal from the

offer price. In a pooling equilibrium information is shaded and thus it is informationally

inefficient. In this case, investors decide only on the basis of their private signals. In

what follows we take the information that may be contained in spreads, ν(β), as given.

Separation and pooling thus always refers to prices.



INVESTMENT BANK COMPENSATION 65

The Equilibrium Concept and Selection Criteria. The equilibrium concept for

this signaling game is, naturally, the Perfect Bayesian Equilibrium (PBE). A common

problem with PBEs, however, is their multiplicity, stemming equilibria being sup-

ported by “unreasonable” out-of-equilibrium beliefs. The common way to overcome

this problem is to apply an equilibrium selection rule such as the Intuitive Criterion

(IC), introduced by Cho and Kreps (1987). We follow this line of research and consider

only equilibria that do not fail the IC. All of these PBE selection devices favor sepa-

rating over pooling equilibria. It will turn out, however, that in our framework under

certain conditions pooling equilibria cannot be ruled out by the IC. Moreover, these

pooling equilibria then Pareto dominate any separating equilibrium.29 It would thus be

unreasonable not to assume that these equilibria will be picked. Thus in what follows,

we will only consider equilibria that satisfy the IC and among these, we consider those

that are Pareto efficient for the agent who takes the signaling action. In this section

this agent would be the bank.

A pooling equilibrium in prices is specified through (i) an equilibrium offer price

p∗ from which investors infer (ii) price-information µ = 1
2
, and (iii) investors’ best

replies given their private signals, µ, and p∗. A separating equilibrium in prices is (i)

a system of prices {p∗, p̄∗} and price-information such that (ii) at p∗ = p̄∗, the high

separation price, the price-information is that the bank has the favorable signal, µ = 1,

at p∗ = p∗, the low separation price, the price-information is that the bank has the low

signal, µ = 0, and (iii) investors’ best replies given their private signals, µ, and p̄∗ or

p∗. In both separating and pooling equilibria, for p 6∈ {p̄∗, p∗} or p 6= p∗, respectively,

out-of-equilibrium public beliefs are chosen ‘appropriately’. The following result is a

straightforward consequence of signaling, the proof of which is in Appendix 2.7.4.

Lemma 2.1 (The Highest Possible Low Separating Price)

There exists no PBE (price-)separating offer price p∗ > p0,0,ν.

In any separating equilibrium, therefore, the low price must be such that all in-

vestors buy, and the highest such separating price, given price-information µ = 0, is

p∗ = p0,0,ν . In what follows we refer to p0,0,ν as the low separation price.

29Here Pareto domination refers to the payoffs of the respective banks or issuers who take the
decision first, not to investors who react.
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Price-signaling equilibria in our setting come in one of three guises: The already

mentioned separating equilibrium, a pooling equilibrium in which only high-signal in-

vestors buy, and a pooling equilibrium in which all investors buy. In the following,

we characterize the conditions guaranteeing that only separating equilibria survive our

selection criterion.

Fix a potential price p ∈ [p0,0,ν , p0, 1
2
,ν ], the interval of potential pooling prices at

which all investors would buy.30 Define φ1,ν(p) as the price at which the high-signal

bank would be indifferent between charging a risky price φ1,ν(p) at which only high-

signal investors buy, B1, and a safe pooling price p with B0,1 (all investors buy).

Formally,

α1,νβφ1,ν(p)S− (1− α1,ν) C = βpS ⇔ φ1,ν(p) =
p

α1,ν

+
1− α1,ν

α1,ν

C

βS
. (2.6)

Price φ0,ν(p) is defined analogously for the low-signal bank. Thus price φsb,ν(p) is the

lowest risky price that a bank with signal sb is willing to deviate to from safe price

p.31 In what follows we refer to φ1,ν(p) as the high-signal bank’s deviation price, and

to φ0,ν(p) as the low-signal bank’s deviation price. It is straightforward to see that

φ0,ν(p) > φ1,ν(p) for all p ∈ [p0,0,ν , p0, 1
2
,ν ], that is, the low-signal bank requires a higher

price as compensation for risk taking. In addition, ∂φsb,ν(p)/∂p > 0, sb ∈ {0, 1}, so

the higher the pooling price, the higher the lowest profitable deviation price. Taking

spread-information as given, we omit ν from the equilibrium specification. In what

follows we analyze equilibria depending on two conditions on primitives.

Condition 1 The high-signal bank’s deviation price from the highest safe pooling

price is not higher than the highest separating price, φ1,ν(p0, 1
2
,ν) ≤ p1,1,ν .

Condition 2 The low-signal bank’s deviation price from the low separating price is

not smaller than the highest risky pooling price, φ0,ν(p0,0,ν) ≥ p1, 1
2
,ν .

30The order of prices is immediately obvious from Appendix 2.7.3.
31Deviation to a high, risky price can lead to increased overpricing, which is commonly perceived

to be bad for a bank’s reputation. Nanda and Yun (1997) analyze the impact of IPO mispricing on
the market value of investment banks. They find that overpriced offerings result in decreased lead-
underwriter market value. In our model, however, investors fully take into account that the offer price
may drop in the aftermarket. Modelling such reputation effects would thus be contradictory in our
setting.
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Proposition 2.1 (Equilibrium Price Setting)

(a) If Condition 1 and Condition 2 are both fulfilled then the unique PBE that satisfies

the Intuitive Criterion is the separating equilibrium {(p∗ = p0,0,ν , µ = 0, B0,1); (p̄
∗ =

min{p1,1,ν , φ0,ν(p0,0,ν)}, µ = 1, B1); (p 6= {p∗, p̄∗}, µ = 0, B0,1 if p ≤ p0,0,ν , B1 if p0,0,ν <

p ≤ p1,0,ν , B∅ else)}.
(b) If Condition 1 is not fulfilled then the only PBE that satisfies the Intuitive Cri-

terium and Pareto efficiency is the pooling equilibrium {(p∗ = p0, 1
2
,ν , µ = 1

2
, B0,1); (p 6=

p0, 1
2
,ν , µ = 0, B1 if p ≤ p1,0,ν , B∅ else)} in which all investors buy.

(c) If Condition 2 is not fulfilled then the only PBE that satisfies the Intuitive Cri-

terium and Pareto Efficiency is the pooling equilibrium {(p∗ = p1, 1
2
,ν , µ = 1

2
, B1); (p 6=

p1, 1
2
,ν , µ = 0, B1 if p ≤ p1,0,ν , B∅ else)} in which only high-signal investors buy.

Interpretation of the Proposition. Condition 1, φ1,ν(p0, 1
2
,ν) < p1,1,ν , together with

the IC is necessary and sufficient to rule out pooling equilibria in which all investors

buy, irrespective of their signals. Condition 2, φ0,ν(p0,0,ν) > p1, 1
2
,ν , ensures that there is

no pooling where only investors with “good news” buy, B1. The IC itself ensures that

the high-signal bank always charges the highest sustainable separating price. The high

separation price p̄∗ is the minimum of p1,1,ν and φ0,ν(p0,0,ν). The bank cannot charge

more than p1,1,ν and it cannot credibly charge more than φ0,ν(p0,0,ν) as otherwise the

low-signal bank would deviate. Finally, since φ1,ν(p0,0,ν) < φ1,ν(p0, 1
2
,ν) < p1,1,ν , the

high-signal bank is willing to separate. If Condition 1 is violated not even the high-

signal bank wants to take the risk of setting a price where only high-signal investors

buy. A separating price pair with all investors buying at both prices cannot be an

equilibrium. The bank charging the lower price always had an incentive to deviate to

the higher price since the success probability remains unchanged. Pareto efficiency for

banks together with the IC then ensures that the highest pooling price at which all

investors buy results as unique equilibrium outcome. If Condition 2 is violated also

the low-signal bank wants to set a high price at which only high-signal investors buy.

A separating price pair with only high-signal investors buying at both prices cannot

be an equilibrium. Again, the bank charging the lower price always had an incentive
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to deviate. Under efficiency only the highest such pooling price survives as the unique

equilibrium. Finally, notice that it cannot be the case that both Condition 1 and

Condition 2 are violated simultaneously.

2.3.2 Spreads Reflecting the Issuer’s Identical Signal

The moment the identically informed issuer separates, the bank has no more control

over the the price’s signaling value. We signify this by including a diamond, ¦, instead

of µ(p) into prices, psi,¦,ν . The bank continues to choose the price that, given its

private information, maximizes expected profit. However, a low-signal bank can no

longer mimic a high-signal bank because investors have inferred the bank’s signal form

the spread.

Suppose the bank has signal sb = 0 and spread-information is ν(β) = 0. Then the

highest price high-signal investors are willing to pay is p1,¦,0. This price is risky as only

investors with signal si = 1 are willing to buy. Price p0,¦,0 is the highest safe price at

which all investors buy. However, if the spread is high enough, the risk of a failing IPO

may still be outweighed by potential gains. If the spread βs
0 is large enough so that

risky profits at p1,¦,0 strictly exceed riskless profits at p0,¦,0, i.e.

α¦,0βSp1,¦,0 − (1− α¦,0)C > βSp0,¦,0 (2.7)

then the low-signal bank will choose risky price p1,¦,0. The high-signal bank faces a

similar choice: If the spread is too low, it would rather choose a safe price. Here,

however, the highest riskless price is p0,¦,1, as at this price investors with the low signal

are willing to buy, given they believe that the bank’s/issuer’s signal is sb = 1. So the

high-signal bank only choose risky price p1,¦,1 if spread βs
1 is high enough so that risky

profits at p1,¦,1 strictly exceed riskless profits at p0,1, which is

α¦,1βSp1,¦,1 − (1− α¦,1)C > βSp0,¦,1. (2.8)
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From (2.7) and (2.8) we can derive the respective threshold spreads

βs
0 =

1− α¦,0
α¦,0p1,¦,0 − p0,¦,0

C

S
and βs

1 =
1− α¦,1

α¦,1p1,¦,1 − p0,¦,1

C

S
. (2.9)

It is straightforward to compute that βs
0 − βs

1 = (2(1− q))−1C/S > 0. Consequently, if

spreads are separating and sufficiently large, then banks will set risky prices.

2.4 The Issuer’s Strategic Choice of the Spread

As with the investment bank, the analysis is split into two parts. In the first, the issuer

is uninformed and thus not involved in a strategic situation. He will set prices so as

to make the bank set equilibrium prices that are revenue-maximizing. In the second

part, the issuer does have private information. The issuer then has the power to play a

signaling game. He anticipates the behavior of the investment bank, and thus he will

set spreads strategically to maximize expected revenue.

2.4.1 Equilibrium Spreads if the Issuer is Uninformed

For the investment bank, the choice of equilibrium prices critically depends on Condi-

tions 1 and 2 from Proposition 2.1. In the following we give an intuitive interpretation

of the equilibrium outcome in terms of the gross spread, demonstrating how the spread

affects these conditions. We then derive the uninformed issuer’s decision about the

spread level. As before we indicate that the issuer is uninformed by replacing ν with a

diamond.

An Intuitive Characterization of the Equilibrium. The concept of deviation

prices φsb,¦ is a convenient tool to describe restrictions. We will now reformulate

Conditions 1 and 2 from Proposition 2.1 in terms of the gross spread β. This allows us

to derive a simple linear descriptive characterization of the equilibrium. Consider first
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Condition 1, φ1,¦(p0, 1
2
,¦) ≤ p1,1,¦. If β is so low that

φ1,¦(p0, 1
2
,¦) =

p0, 1
2
,¦

α1,¦
+

1− α1,¦
α1,¦

C

βS
> p1,1,¦ (2.10)

then the separating equilibrium cannot be sustained and the pooling equilibrium in

p0, 1
2
,¦ prevails. In other words, if the gross spread is rather low then the incentive to set

a high price and take the risk of failure is reduced whereas the cost of failure remains

unchanged. The threshold value for β s.t. not even the high-signal bank sets a risky

price is given by

βs
¦ =

1− α1,¦
α1,¦p1,1,¦ − p0, 1

2
,¦

C

S
=

1

2

1

2q − 1

C

N
. (2.11)

Moreover, if β is so high that

φ0,¦(p0,0,¦) =
p0,0,¦
α0,¦

+
1− α0,¦

α0,¦

C

βS
< p1, 1

2
,¦ (2.12)

then a separating equilibrium, again, cannot be sustained and the pooling equilibrium

in p1, 1
2
,¦ prevails. In this case the gross spread is so high that even the low-signal

bank is willing to take the risk of failure and set a high price at which only high-signal

investors buy. For the high-signal bank it becomes too costly to uphold separation, i.e.

it would have to lower the high separation price so much that it prefers pooling. This

threshold value for a pooling β is given by

βp
¦ =

1− α0,¦
α0,¦p1, 1

2
,¦ − p0,0,¦

C

S
=

1

2

q/(1− q)

α0p1, 1
2
,¦ − p0,0,¦

C

N
. (2.13)

Finally, there exists a β̂s
¦ ∈ [βs

¦, β
p
¦ ] such that the deviation price of the low-signal

bank is just p1,1,¦, i.e. for values of β above β̂s
¦ the high-signal bank has to lower

the high separation price in order to uphold separation. The following Corollary to

Proposition 2.1 summarizes the above characterization; Figure 2.3 offers an illustration

of the corollary.



INVESTMENT BANK COMPENSATION 71

6

0

Offer Price

-

Gross Spreadβs
¦ β̂s

¦ βp
¦

XXXXXXXXXXX

p0, 1
2
,¦

p0,0,¦

p1,1
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,¦

Figure 2.3: Equilibrium Offer Prices at Different Levels of Uninformative Spreads.
For levels of the spread below βp

¦ , both types of banks pool in p∗ = p0, 1
2
,¦. For β ∈ [βs¦, β̂s¦]

there is separation: The low-signal bank always sets p∗ = p0,0,¦, and the high-signal bank sets
p̄∗ = p1,1,¦ for β ∈ [βs¦, β̂s¦] and p̄∗ = φ0,¦(p0,0,¦) for β ∈ (β̂s¦, β

p
¦). If β ≥ βp

¦ there is pooling in
p1, 1

2
,¦.

Corollary 2.1 (Proposition 2.1 in Terms of the Gross Spread)

If spreads are uninformative and β ∈ [βs
¦, β

p
¦) then the unique equilibrium is the sep-

arating equilibrium stated in Proposition 2.1. If β ∈ [βs
¦, β̂

s
¦] then p̄∗ = p1,1,¦, and if

β ∈ (β̂s
¦, β

p
¦) then p̄∗ = φ0,¦(p0,0,¦). If β < βs

¦ then pooling in p0, 1
2
,¦ prevails. If β ≥ βp

¦

there is pooling in p1, 1
2
,¦.

Implicitly, we assumed a tie-breaking rule specifying that at spread thresholds βp
¦

banks set a risky pooling price and at βs
¦ they set separating prices. At βp

¦ both types

of banks set p1, 1
2
,¦ even though the low-signal bank is indifferent between p1, 1

2
,¦ and

p0,0,¦. The latter, however, cannot be an equilibrium: Suppose the low-signal bank sets

p0,0,¦. Then the issuer could raise the spread by an arbitrarily small ε > 0 making the

low-signal bank strictly prefer p1, 1
2
,¦. However, by lowering the spread to βp

¦ + ε/2, the

issuer could raise his profits and yet the low-signal bank would still set p1, 1
2
,¦, and so

on. The similar reasoning applies to price setting at βs
¦.

Strategic Choice of the Gross Spread. If the underlying issuer is uninformed,

his strategic choice of spreads conveys no information. For every spread, however, the

issuer knows the best response of both types of banks. Consequently, the issuer has to
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choose the level of the gross spread that maximizes his overall expected payoff. If he

sets the spread too low, even a bank with favorable information chooses a low, riskless

price. If spreads are high, the issuers get a smaller share of the revenue. Furthermore,

for large spreads the high-signal bank may be unable to set a separating price. Pareto

efficiency for the first mover (the issuer) ensures that out of all βs triggering separation

or pooling, the issuer will always choose the smallest one. In particular, to get pooling

in the riskless price p0, 1
2
,¦, the issuer can set spread 0. The issuer then has the choice

between the following expected profits

(1− βs
¦)

α1,¦p1,1,¦ + p0,0,¦
2

S, p0, 1
2
,¦ S, and (1− βp

¦)
α0,¦ + α1,¦

2
p1, 1

2
,¦ S (2.14)

in separation, low riskless pooling, and high risky pooling, respectively. To find the

equilibrium spreads, one has to compare the issuers’ payoffs for given equilibrium

spreads. For given parameters q, C,N , the issuer will always choose the spread with

maximal expected payoffs.

1. Pooling in p1, 1
2
,¦ is better than separation if

(1− βp
¦)

α0,¦ + α1,¦
2

p1, 1
2
,¦ S > (1− β̂)

α1,¦p1,1,¦ + p0,0,¦
2

S ⇔ C

N
< R1(q). (2.15)

2. Pooling in p1, 1
2
,¦ is better than pooling in p0, 1

2
,¦ if

(1− βp
¦)

α0,¦ + α1,¦
2

p1, 1
2
,¦ > p0, 1

2
,¦ ⇔

C

N
< R2(q), (2.16)

where R1(q) and R2(q) are derived by reformulating the inequalities; they depend on

agents’ signal quality. We state their precise form at the end of Appendix 2.7.4.

The above transformations make use of the closed form expressions for prices and

success probabilities. Numerically it can easily be checked that R1(q) < R2(q) for all

q ∈ (.6, 1), that is if high risky pooling is better than separation, it is also better than

low, riskless pooling. We can now state the following proposition.



INVESTMENT BANK COMPENSATION 73

Proposition 2.2 (Gross Spreads with Uninformed Issuers)

Assume C/N < R1(q). There is a unique equilibrium that satisfies the IC and effi-

ciency: The uninformed issuer offers a contract with β = βp
¦ and both types of invest-

ment banks set pooling offer price p1, 1
2
,¦.

Proof: The choice of β follows directly from the comparison of the respective expected

profits. The resulting price-setting by banks follows from Proposition 2.1. ¤

Interpretation of the Proposition. The ratio C/N measures the failure costs

that the investment bank incurs per potential investor. If failure costs per investor are

small, the level of the spread that triggers the high pooling price is most profitable.

Proposition 2.2 is not a complete equilibrium analysis. However, if we impose the

restriction that maximal spreads cannot exceed 10%, the corresponding ratio C/N will

never exceed R1(q). Spreads above 10% are hardly observed,32 thus for the empirically

relevant parameter it is reasonable to restrict attention to the equilibrium characterized

in the proposition.

2.4.2 Equilibrium Spreads if the Issuer is Independently In-

formed

Suppose now that the issuer gets his own, private signal, sf , conditionally independent

from all signals si and sb. Then the signaling game has two stages. In the first, the

issuer may or may not signal his information. Bank and investors incorporate this

information. In the second stage, the bank chooses its equilibrium price, which may

or may not reveal the bank’s private signal. There are multiple different constellations

imaginable:

1. The issuer pools in spreads and the bank separates in prices, pools in a risk-less

price p0, 1
2
, 1
2

or pools in a risky price p1, 1
2
, 1
2
.

32See for e.g. Chen and Ritter (2000).
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2. The issuer separates in spreads, and

(a) given a low-signal issuer ν = 0, the bank separates in p1,1,0 or p0,0,0, pools

in p1, 1
2
,0, or pools in p0, 1

2
,0, and

(b) given a high-signal issuer signal, ν = 1, the bank separates in p1,1,1 or p0,0,1,

pools in p1, 1
2
,1, or pools in p0, 1

2
,1.

Equilibrium prices for given spread-information are covered by Proposition 2.1, it re-

mains to analyze the issuer’s optimal spread-choice.

Analogously to Corollary 2.1 we can determine threshold levels for the gross spread

such that investment banks just set the low pooling price, separating prices, or the

high pooling price. The lowest spread that induces banks to set the low pooling price

is still β = 0. The two other threshold levels are denoted by βs
ν for separation and βp

ν

for risky pooling.

The issuer’s strategic choice of the spread follows from the comparison of the re-

spective profits. As it turns out, there are no spread-separating equilibria — issuers

always pool in the spread. Furthermore, the equilibrium pooling spread induces the

bank to play a separating equilibrium in prices.

Proposition 2.3 (Gross Spreads with Independently Informed Issuers)

Assume C/N < R1(q). Then there exists a unique, spread-pooling equilibrium that

satisfies the IC: Both types of issuers offer a contract with β = βs
1
2

and investment

banks separate by setting prices p1,1, 1
2

and p0,0, 1
2
. At p1,1, 1

2
, investors hold price-spread

information µ = 1 and ν = 1
2

and only investors with si = 1 buy. At p0,0, 1
2
, investors

hold price-spread information µ = 0 and ν = 1
2

and all investors buy.

Interpretation of the Proposition. To prove the claim we proceed counterfactual:

We describe spreads and price-choices in a spread-separating equilibrium and show that

a spread-separating situation is not incentive compatible for the low-signal issuer. He

would always deviate and mimic the high-signal issuer. The intuition is straightforward:

With separating spreads both low- and high-signal issuer prefer to play a spread that

induces risky pooling prices; clearly a low-signal issuer would prefer the higher price
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though. Furthermore, the high-signal issuer cannot defend his position by setting

different spreads, even when trying to play a spread that induces separation-pricing.

We then show that only spread-pooling can result. There will be two candidates for

spread-pooling: The first spread induces price-pooling, the second price-separation.

However, only price-separation is IC-proof. Details of the proof are in Appendix 2.7.4.

2.4.3 Equilibrium Spreads if the Issuer is Identically Informed

If the issuer pools in spreads price setting by banks is as in Subsection 2.3.1. If the

spread, however, is informative the bank has no strategic considerations to take care of

in its optimal price choice: Its signal is the same as the issuer’s who has just revealed

his information. The high-signal bank does not have defend itself against deviation

of the low-signal bank. In Subsection 2.3.2 we have already described banks’ price

setting.

We derived threshold spreads which induce the banks to choose risky prices, βs
ν ,

ν ∈ {0, 1}. The following order holds for spreads: βs
0 > βp

¦ > βs
1 > βs

1
2

= βs
¦. If the

issuer signals, the bank’s pricing decision carries no informational value; we indicate

this by substituting µ with a diamond, ¦. Empirically, the gross spread almost never

exceeds 10%, we thus restrict attention to parameter constellations so that βs
0 ≤ 10%

(which implies C/N < R1(q)). We can now show the following proposition.

Proposition 2.4 (Gross Spreads with Identically Informed Issuers)

Assume spreads do not exceed 10%. Then there exists a unique, separating equilibrium

that satisfies the IC and is first-mover efficient:

(a) The identically informed low-signal issuer offers a contract with spread βs
0 and

the investment bank sets price p1,¦,0. Investors derive information ν(β) = 0, and only

those with signal si = 1 buy.

(b) The identically informed high-signal issuer sets spread βs
1 and the bank sets price

p1,¦,1. Investors derive information ν(β) = 1, and only those with signal si = 1 buy.

Interpretation of the Proposition. We have derived the threshold spread in Sub-

section 2.3.2. The proof follows in three steps. First, we derive conditions under which
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each issuer is satisfied with the bank choosing a risky price at the proposed spreads

βs
0, β

s
1. The conditions will ensure that expected payoffs are higher than profits from

setting zero spreads. In this step we will use that spreads must not exceed 10%. Sec-

ond, we show that these spreads are proof to derivations, so that no type of issuer wants

to mimic the other, and no type favors playing out of equilibrium spreads. Third we

argue that with identically informed issuers there can be no pooling equilibrium (under

the given restriction on β). Details are in Appendix 2.7.4.

To summarize, if the issuers have the same signal as the bank, they play a separation

equilibrium in which both low- and high-signal issuer set spreads at which the bank

sets a risky price. Notice that this is the only informationally efficient case where prices

contain all existing information. In the case with uninformed issuers, banks pool in

prices; in the case with independently informed issuers, spreads are pooling.

2.5 Results and Interpretation

We claimed to address two issues: First, why do investment banks make positive profits

in a competitive market and second, why do VC backed IPOs have lower spreads. We

deal with these issues in this section.

Even though it is hard to obtain data on banking profits, Chen and Ritter (2000)

report that “investment bankers readily admit that the IPO business is very profitable”

(p. 1105). Chen and Ritter argue that there are economies of scale in underwriting

IPOs. They show that spreads do not differ in offerings that raise between $20 million

and $80 million. Since banks at least break even in small offerings large offerings must

be profitable. Megginson and Weiss (1991) were the first to report that spreads are

significantly lower in VC backed IPOs than in non-VC backed IPOs. They show for

a U.S. sample of 640 IPOs between 1983 and 1987 that gross spreads for VC backed

issuers amount to 7.4% whereas they are 8.2% for non-VC backed issuers. Francis

and Hasan (2001) find smaller but significant differences between spreads of VC and

non-VC backed IPOs for their U.S. sample of 843 IPOs between 1990 and 1993 as well.

In the following we show that our model can help explain both these phenomena.
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In addition, we address implications of the model on the level of spreads when a

commercial bank conducts the IPO of a former client. We finally show that our model

is consistent with underpricing.

2.5.1 Positive Profits for Investment Banks

Equilibrium spreads allow investment banks positive profits. Issuers first announce the

level of the spread and then banks choose prices at their discretion. They can always

set a low, riskless price at which all investors buy, so that they receive their revenue

share with certainty. Issuers, on the other hand, have a keen interest that banks set

high prices, receiving the bulk of the revenue (almost always more than 90%). At high

prices, however, only high-signal investors buy, making such prices risky. Spreads,

therefore, have to be sufficiently high so that, banks are compensated for the risk of

failure. This effect alone should leave them with zero expected profits. Moreover,

spreads must be incentive compatible so that banks set high prices and do not deviate

to a risk-free low price. An investment bank’s expected profit, therefore, is always at

least what they would gain by deviating to a low risk free price. Since we assume that

the offering procedure itself causes no costs for the investment bank, it follows that

investment banks earn positive profits.

Proposition 2.5 (Positive Profits for Investment Banks)

Investment banks enjoy positive profits that will not disappear in the face of competition.

Suppose a competing investment bank offered to conduct an IPO at a lower spread than

specified in the contract the issuer offered initially. The issuer would not accept: even

though he would get a higher fraction of the revenue, lower spreads trigger different

equilibrium prices, leading to lower payoffs. In our model, banks have full discretion

over the offer price. Issuers must, therefore, set incentive compatible spreads. In reality

banks do not have full discretion over prices: many offerings fail because issuer and

bank cannot agree on the offer price.33 However, the qualitative result does not hinge

33See Busaba, Benveniste, and Guo (2001).
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upon the assumption that banks have full discretion. Banks have a good deal of power

when it comes to price setting, and this is all we need for the qualitative result to hold.

Issuers thus have no incentive to bargain for lower spreads. Competition, however,

may take place in features of the IPO contract that we do not model. Chen and Ritter

(2000), for example, report that over time the number of co-managers in IPOs and

thus analyst coverage has increased over time as well. These findings complement our

results nicely: Chen and Ritter state that, apparently, issuers cannot negotiate the

spread; we find assert that they do not want to.

2.5.2 VC Issuers set Lower Spreads than Non-VC Issuers

In a strict sense, signals provide information about the asset’s true liquidation value.

In a wider sense, signals can be seen as information about market sentiment – market

prices determine an investor’s payoff, the true liquidation value only affects market

prices through the distribution of signals. In this way it is not unreasonable to assert

that an issuer is uninformed whereas banks and investors are informed. Certainly, some

entrepreneurs have little experience with financial markets. Venture capitalists, on the

other hand, are financial institutions and so they should be able to assess market sen-

timent. As the venture capitalist usually holds all relevant control rights, we interpret

the independently informed issuer to be a VC-backed issuer. The uninformed issuer

we interpret to be the single non-VC backed entrepreneur. In this model investment

banks also hold private information. Before setting the offer price they closely interact

with investors, for example during the road show, and thus are informed about the

market’s valuation of the firm on offer.

Proposition 2.6 (VC Backed Issuers set Lower Gross Spreads)

Assume spreads do not exceed 10%. Then VC backed issuers set lower levels of the

gross spread than non-VC backed issuers.

Proof: If spreads do not exceed 10%, C/N < R1(q), then Proposition 2.2 states that

uninformed issuers set spread level βp
¦ . From Proposition 2.3, the only IC-proof and

efficient equilibrium spread with independently informed issuers is pooling spread βs
1
2

.

Numerically it is straightforward to show that βs
1
2

< βp
1
2

= βp
¦ . ¤
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A VC backed issuer holds private information before setting the spread level. An

issuer with “good news” regards it as likely that the bank will also receive “good news”,

and he wants the bank to transform this information to investors via separating prices.

The high-signal issuer also considers it likely that there are enough high-signal investors

such that the IPO will not fail at the risky separation price. An issuer with “bad news”

will always mimic the high-signal issuer. Issuers receive almost always more than 90%

of the offer revenue and thus have a strong interest in high prices. The reduction in

offer price from signaling “bad news” is thus too costly for the low-signal issuer – even

if he is forced to set the price-separation inducing spread as well.

2.5.3 Strong Commercial Banking Ties

Before going public many companies have strong, long-lasting ties with commercial

banks, for instance through credit-financing. Thus if a commercial bank organizes

a long-term client’s IPO, it is reasonable to believe that they truly have identical

information. Only recently US regulators allowed commercial banks to offer investment

banking services, including IPO underwriting. Our model predicts that bank spreads

in such IPOs will be, on average, higher than in uninformed (non-VC backed) issuer’s

or VC-backed IPOs. In particular, if bank’s and issuer’s signal are unfavorable, the

issuer is willing to set a high spread so that the bank still chooses the risky price.

Proposition 2.7 (Identically Informed Issuers set Higher Average Spreads)

Assume spreads do not exceed 10%. Then on average, identically informed issuers set

higher levels of the spread than uninformed (non-VC backed) or VC backed issuers.

When restricting the analysis to the ‘empirically relevant’ parameter space where

spreads do not exceed 10% the uninformed issuer sets the spread such that invest-

ment banks with different signals pool in a high, risky offer price. If issuers receive

the same signal as the bank, they separate in spreads. In both cases, however, spreads

are so high that banks set the high risky price irrespective of their signals. If investors

observe the low separation spread they infer that the issuer’s inside information is bad.
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But then even the high risky price at which only high-signal investors buy is relatively

low. The issuer thus has to set a relatively high spread to make the bank set the risky

price. The opposite effect occurs when the high separation spread is set. However, the

first effect dominates so that, on average, spreads are higher with identically informed

issuers than in non-VC or VC backed offerings.

One may then conjecture that the low-signal issuer contemplates abandoning its

commercial bank to look for an independent third-party bank. In equilibrium, it turns

out, however, that this deviation is not profitable. Let a deviation be common knowl-

edge. The resulting beliefs will render this deviation unprofitable. It is numerically

straightforward to show that the high signal issuer would not be interested in this

move: The best that can happen to him is that he is perceived as a high type issuer.

But then even the highest expected payoff he’ll get from working with an independent

bank is, in expectation, lower than what he gets from his commercial bank. The reason

is that with a third party, there is a risk that the bank gets an unfavorable signal and

charges the low price.

Thus if the high type would not change, any change of banking-partner would be

perceived as coming from a low type bank. It is straightforward to check numerically

that the low-type bank then would not want to deviate either.

2.5.4 Underpricing

Even though this paper is not mainly concerned with explaining underpricing, in equi-

librium the model is consistent with the empirical findings on first-day returns. In

the context of this model underpricing is the difference between offer price and market

price. We can establish the following proposition.

Proposition 2.8 (Underpricing)

(a) If spreads are uninformative but prices are separating then, on average, securities

are underpriced. (b) If spreads are informative and all equilibrium prices risky then,

on average, ordering the security yields zero profits.

The intuition behind the result is simple. Both types of investors only buy if their

expected payoff is non-negative. At p0,0 the low-signal investor just breaks even in
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expectation but the high-signal investor expects a strictly positive payoff. At p1,1 the

high-signal investor just breaks even and the low-signal investor abstains. Ex-ante

expected payoffs are positive, hence underpricing. If, however, spreads are separating

and prices risky, then only investors with the favorable signal buy. With them buying,

prices are defined so that they yield zero profit.

2.6 Conclusion

We addressed and answered two puzzles of the IPO literature. First, why do investment

banks earn positive profits in a competitive market as argued, for example, by Chen

and Ritter (2000)? Second, why do banks receive lower gross spreads in VC backed

than in non-VC backed IPOs as argued, for example, by Megginson and Weiss (1991)?

Although investment bank compensation accounts for a substantial proportion of the

cost of going public, it has hardly attracted theorists’ attention. Our model is, to the

best of our knowledge, the first to explain the level of the gross spread. We model the

IPO procedure as a two-stage signaling game and find, first, that investment banks are

left with profits and, second, that signaling considerations under different information

constellations cause spreads to differ between classes of issuers.

In the first signaling stage, the issuer decides on the spread. Assuming that ven-

ture capitalists decide on spreads in VC backed offerings and that they have private

information about market sentiment, they set different spreads than a non-VC backed

issuer without much experience with financial markets. In the second stage, investment

banks set offer prices given their private information, the spread, and the information

contained in the spread. Issuers anticipate the bank’s pricing decision and set the

gross spread to maximize their expected revenue. Finally, investors decide whether to

subscribe or refrain. They are aware of the IPO process details and order only if their

expected profit is positive. In equilibrium, VC backed issuers offer lower spreads than

non-VC backed issuers. Furthermore, issuers must offer high enough spreads to ensure

that banks set high prices – allowing them substantial profits. Issuers act rationally,

they do not want to cut spreads since lower spreads induce different, less favorable

equilibrium offering prices.
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2.7 Appendix

2.7.1 Aftermarket Price Formation

The finally prevailing market price depends on the number of positive signals about

the value of the security. In determining the price we have to distinguish between cases

B1 and B0,1.

Consider first case B1. Since only high-signal investors buy, aggregated demand d

indicates the number of high-signal investors. Suppose d ≥ S, i.e. the IPO is successful.

Investors are assumed to take the aggregated information about signals into account

and update their expectations accordingly. At this updated expectation all investors

irrespective of their private signals are indifferent between selling and holding or buying

and abstaining, depending on whether they own a security or not, respectively. The

updated expectation thus becomes the aftermarket price, denoted by pm(d). We will

later show that case B1 will occur at the high price of a separating equilibrium only,

i.e. investors know that the bank’s signal is sb = 1. Taking further into account that

the true value of the security is either 0 or 1, we can write pm(d|µ = 1) = Pr(V =

1|d, µ = 1). Using Bayes’ rule, we can express the aftermarket price as

pm(d|µ = 1) =
Pr(d|V = 1)Pr(sb = 1|V = 1)

Pr(d|V = 1)Pr(sb = 1|V = 1) + Pr(d|V = 0)Pr(sb = 1|V = 0)
. (2.17)

Due to the binomial structure of the prior distributions over signals, the conditional

distribution for demand realization d is, for V = 1,

f(d|V = 1) := Pr(d|V = 1) =

(
N

d

)
qd(1− q)N−d, (2.18)

and for V = 0 analogously. The price-information about sb is unambiguous in a

separating equilibrium. We can therefore replace it with the conditional probability of

the bank’s signal being correct, which is q or 1− q. Bayes’ rule yields

pm(d|µ = 1) =
qq2d−N

qq2d−N + (1− q)(1− q)2d−N
. (2.19)
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Consider now case B0,1 in which all investors order the security, i.e. stated demand

is N and securities are allocated at random. The demand is uninformative since it does

not reveal the number of high-signal investors. Suppose that we are at the low price of

a separating equilibrium. Note that high-signal investors expect the security to be of

higher value than low-signal investors. Hence, there exists a price larger than the offer

price, p̃ > p∗ at which high-signal investors who were not allocated a security would be

willing to buy the security, and low-signal investors would be willing to sell, in case they

were allocated a security. Without modelling the price-finding procedure explicitly we

assume that the following intermediate process takes place. Those high-signal investors

who did not receive the security in the offering submit a unit market-buy-order. Those

low-signal investors who obtained the security in the offering submit a unit market-

sell-order. All other investors abstain. The number of investors who want to buy or

to sell is denoted by d̃ and S̃, respectively. Aggregate demand of high-signal investors

is then d = d̃ + S − S̃ and the market price pm can be determined as before. The

same procedure can be applied to determine the first period market clearing price in

the case of a pooling equilibrium. The conditional expectation which determines the

price, however, will then not contain the component about the signal of the investment

bank.

2.7.2 Threshold Prices

Denote by psi,µ,ν the maximum price at which an investor with signal si and price-

information µ and spread information ν buys, given all investors with s̃i ≥ si buy. At

this price the investor’s expected return from buying the security is zero, normalizing

outside investment opportunities accordingly.

Define ψ(1|1, 1, ν) := Pr(V = 1|si = 1, µ = 1, ν) and ψ(0|1, 1, ν) := Pr(V = 0|si =

1, µ = 1, ν). Consider now the structure of the conditional distribution f(d − 1|V ).

For V = 1, this is a binomial distribution over {0, . . . , N − 1} with center (N − 1)q,

and likewise for V = 0 with center (N − 1)(1 − q). Since by Assumption 2.2, N is

‘large enough’ for every q, f(d − 1|1) = 0 for d < N/2 and f(d|0) = 0 for d > N/2.
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When combining both f(d − 1|1) and f(d − 1|0), we obtain a bi-modal function. In

g(·|si, µ, ν), investors’ posterior distribution over demands, these are weighted with

ψ(1|si, µ, ν) and ψ(0|si, µ, ν). Assumption 2.2 now satisfies two purposes. The first is

to ensure that we pick N large enough, so that the two modes do not overlap. The

second can be seen from the following lemma.

Lemma 2.2 For any q > 1
2
, there exists a number of investors N(q), such that pm(d)·

g(d|si, µ, ν) ∈ {0, g(d|si, µ, ν)} almost everywhere.

The lemma states that market prices are mostly 0 or 1, if they are not, then the weight

of this demand is negligible. To see this consider the following heuristic argument.

Proof: pm(d) is a s-shaped function in d, given by equation (2.19). For large N ,

pm(d) ∈ {0, 1} almost everywhere. Define I∗ as the interval of d around N/2 s.t. for

d ∈ I∗ we have pm(d) 6∈ {0, 1}. pm(d) is multiplied with density g(d|si, µ, ν), which

peaks at (N − 1)(1 − q) and (N − 1)q. For N increasing I∗/N → 0 and the bi-modal

distribution becomes more centered around (N − 1)(1 − q) and (N − 1)q. Hence, for

every q there is an (N − 1)(q) such that for d ∈ I∗, g(d|si, µ, ν) · pm(d) = 0, i.e. the

weight on pm(d) 6∈ {0, 1} can be made arbitrarily small. ¤
Using Lemma 2.2 we can determine the threshold prices as follows. Consider first p1,1,ν .

0 = (1− p1,1,ν)
N−1∑

d=N/2

S

d + 1
g(d− 1|1, 1, ν)− p1,1,ν

N/2∑

d=S−1

S

d + 1
g(d− 1|1, 1, ν)

⇔ p1,1,ν =

∑N−1
d=N/2

S
d+1

g(d− 1|1, 1, ν)
∑N−1

d=S−1
S

d+1
g(d− 1|1, 1, ν)

. (2.20)

For d > N/2, g(d − 1|si, µ, ν) = ψ(1|si, µ, ν)f(d − 1|1) and for d < N/2, g(d −
1|si, µ, ν) = ψ(0|si, µ, ν)f(d− 1|0). Define

Σ0 :=

N/2∑

d=S−1

f(d− 1|0)

d + 1
and likewise Σ1 :=

N−1∑

d=N/2

f(d− 1|1)

d + 1
, and σ := Σ0/Σ1.

Also write `(µ, ν) := ψ(0|1, µ, ν)/ψ(1|1, µ, ν). Thus for the combination of signal si,
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price-information µ and spread information ν with B1 we can write

p1,1,ν = (1 + σ`(1, ν))−1 and likewise p1, 1
2
,ν = (1 + σ`(1

2
, ν))−1. (2.21)

Consider now the case for p0,0,ν . At this price all agents receive the security with equal

probability and we sum from 0 to N − 1. Thus

0 = (1− p0,0,ν)
N−1∑

d=N/2

S

N
g(d− 1|0, 0, ν)− p0,0,ν

N/2∑

d=0

S

N
g(d− 1|0, 0, ν) ⇔ p0,0,ν = ψ(1|0, 0, ν). (2.22)

Likewise we have

p0, 1
2
,ν = ψ(1|0, 1

2
, ν). (2.23)

2.7.3 Approximate Closed Form Solutions

We will now derive approximate closed form solutions so that we can solve our model

analytically. In this appendix we let d denotes the number of other investors with

favorable information — this contrasts the exposition of the main text, but it simplifies

the notation here. First consider the strategy of agent number N . There are N − 1

other investors. Given that he invests and the true value is, say, V = 1, then by the law

of large numbers, demand/the number of favorable signals will always be larger than

N/2. Furthermore, the market price is almost surely pm(d) = 1. If d others order, then

when buying he gets the asset with probability 1/(d + 1). Thus his payoff for price p

(1− p)
N−1∑

d=(1−q)N−1

1

d + 1

(
N − 1

d

)
qd(1− q)N−1−d =

(1− p)
N−1∑

d=N/2

1

d + 1

(
N − 1

d

)
qd(1− q)N−1−d. (2.24)

To compute the sum we proceed in a similar manner as one would to compute the

expected value of a binomial distribution: First observe that because N is large,

N−1∑

d=N/2

1

d + 1

(
N − 1

d

)
qd(1− q)N−1−d =

N−1∑

d=0

1

d + 1

(
N − 1

d

)
qd(1− q)N−1−d (2.25)
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Then we can compute

N−1∑

d=0

1
d + 1

(
N − 1

d

)
qd(1− q)N−1−d =

1
qN

N−1∑

d=0

N !
(N − d)!(d + 1)!

qd+1(1− q)N−1−d

=
1

qN

(
N∑

l=0

(
N

l

)
ql(1− q)N−l −

(
N

0

)
q0(1− q)N−0

)

=
1

qN
(1− (1− q)N ). (2.26)

In the second step we made a change of variable, l = d + 1, but through this change,

we had to subtract the element of the sum for l = 0. Consequently, for large N , we

can say that

N−1∑

d=N/2

1

d + 1

(
N − 1

d

)
qd(1− q)N−1−d ≈ 1

qiN
. (2.27)

Using the same arguments, we could also show that

N−1∑

d=0

1

d + 1

(
N − 1

d

)
qN−1−d(1− q)d ≈ 1

(1− q)N
. (2.28)

Use now familiar notation to denote the combination of private and public beliefs

φs,µ. For the time being, assume the issuer is uninformed so that ν is replaced with a

diamond. Recall that we can write p1,1,¦ as

p1,1,¦ =

(
1 + `(1, ¦) Σ0

Σ1

)−1

. (2.29)

What we now need to find is a closed form for

Σ0 =

N/2∑

d=N(1−q)−1

1

d + 1

(
N − 1

d

)
qN−1−d(1− q)d. (2.30)

For increasing N one can see that 1
d+1

(
N−1

d

)
qN−1−d(1− q)d gets numerically symmetric

around (1− q)N − 1. Thus we can express
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Σ0 =
1

2

N/2∑

d=0

1

d + 1

(
N − 1

d

)
qN−1−d(1− q)d =

1

2

N∑

d=0

1

d + 1

(
N − 1

d

)
qN−1−d(1− q)d

≈ 1

2

1

(1− q)N
. (2.31)

Assembling, we obtain

p1,1 =

(
1 + `(1, ¦) Σ0

Σ1

)−1

≈
(

1 +
(1− q)2

q2

qN

2(1− q)N

)−1

=
2q

1 + q
≡ q

α1,¦
. (2.32)

Equivalently, we get

p1, 1
2
,¦ ≈

(
1 +

1− q

q

qN

2(1− q)N

)−1

=
2

3
, and p0,1,¦ ≈ 1− q

α0,¦
. (2.33)

The information content of a high pooling price is 1/2, and knowing this informa-

tion, the probability of the offering being successful is 3/4. Thus the interpretation of

risky prices is thus the ratio of the expected liquidation value given price- and spread-

information to the share of successful offerings given this information

p1,µ,ν =
Pr(V = 1 | µ, ν)

Pr(IPO successful | µ, ν)
. (2.34)

2.7.4 Omitted Proofs

Proof of Lemma 2.1

Suppose p∗ > p0,0,ν . At this price only high-signal investors buy. A high-signal bank

will always set a price where at least investors with signal si = 1 buy. Hence, investors

with signal si = 1 buy at both prices p∗ and p̄∗. A low-signal bank can now increase

its payoff by setting a higher price as α0,ν is not affected by this, a contradiction. ¤

Proof of Proposition 2.1

(a) First we will argue that given Conditions 1 and 2 the only separating equilibrium

surviving the Intuitive Criterion (IC) is the one outlined in Proposition 2.1(a). Then

we will argue that pooling cannot occur.
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Step 1 (Separating) First observe that there cannot be a separating price p̄∗ where

investors choose B0,1 because otherwise the low-signal bank would deviate to this

price. Note that no separating price with p̄∗ > φ0,ν(p0,0,ν) can exist because at this

price, the low-signal bank would prefer to deviate. No price p̄∗ > p1,1,ν can exist

since not even investors with si = 1 would buy. Furthermore, p̄∗ ≥ φ1,ν(p0,0,ν)

must be satisfied since otherwise the high-signal bank would prefer to deviate to

p0,0,ν . Finally no price p̄∗ below p1,0,ν is reasonable because the high-signal bank

would then deviate to this price. Take p̃, with max{φ1,ν(p0,0,ν), p1,0,ν} ≤ p̃ ≤
min{p1,1,ν , φ0,ν(p0,0,ν)}. Note that such a p̃ always exists as long as φ1,ν(p0,0,ν) ≤
p1,1,ν and p1,0,ν ≤ φ0,ν(p0,0,ν). The conditions stated in Proposition 2.1 ensure

this is the case because φ1,ν(p0, 1
2
,ν) > φ1,ν(p0,0,ν) and p1, 1

2
,ν > p1,0,ν .

We analyze the candidate separating equilibrium

{(p∗ = p0,0,ν , µ = 0, B0,1); (p̄
∗ = p̃, µ = 1, B1);

(p∗ 6∈ {p∗, p̄∗}, µ = 0, B0,1 if p ≤ p0,0,ν , B1 if p0,0,ν < p ≤ p1,0,ν , B∅ else)}.

By definition of φ0,ν(p0,0,ν) it holds that

βp0,0,νS = α0,νβφ0,ν(p0,0,ν)S− (1− α0,ν)C > α0,νβp̃S− (1− α0,ν)C (2.35)

so that the low-signal bank would not deviate to p̃. Since max{φ1,ν(p0,0,ν), p1,0,ν} ≤
p̃, the high-signal bank would also not deviate. Hence this is a PBE.

Now consider the application of the IC. Suppose a high separation price p̄ = ˜̃p

with p̃ < ˜̃p ≤ min{p1,1,ν , φ0,ν(p0,0,ν)} is observed. This price is equilibrium

dominated for a bank with sb = 0 by definition of φ0,ν(p0,0,ν). The low-signal

bank can therefore be excluded the set of potential deviators. The only remain-

ing agent is the high-signal bank. The best response of investors with signal

si = 1 then is to buy at p̄ = ˜̃p, i.e. B1. Hence the PBE with p̄∗ = p̃ does

not survive the IC. Applying this reasoning repeatedly, all separating prices with

p̄ < min{p1,1,ν , φ0,ν(p0,0,ν)} can be eliminated.
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Step 2 (Pooling with B0,1) For all investors to buy we must have p ≤ p0, 1
2
,ν . Suppose

there was deviation to p = φ1,ν(p0, 1
2
,ν) < φ0,ν(p0, 1

2
,ν). For the low-signal bank this

would not be profitable by definition of φ0,ν(p0, 1
2
,ν). But for some beliefs about

the signal of the bank and corresponding best responses, investors with sb = 1

could be better off. The best response for investors with beliefs on the remaining

set of types, i.e. µ = 1, however, is B1 as we have φ1,ν(p0, 1
2
,ν) < p1,1,ν . Hence,

applying the IC, there cannot be a pooling equilibrium with B0,1.

Step 3 (Pooling with B1) We must have p ≤ p1, 1
2
,ν . Since φ0,ν(p0,0,ν) > p1, 1

2
,ν , the low-

signal bank would prefer to deviate to p0,0,ν , hence this cannot be an equilibrium.

(b) We will first argue that if Condition 1 is not fulfilled each separating equilibrium

is Pareto dominated by pooling in the risk-less price. Then we will show that also a

pooling price at which only high-signal investors buy is Pareto dominated. We will

finally argue that among all PBE pooling equilibrium prices at which all investors buy

only the one outlined in Proposition 2.1 is Pareto efficient.

Step 1 (Separating) If Condition 1 is not fulfilled we have

βp0, 1
2
,νS = α1,νβφ1,ν(p0, 1

2
,ν)S− (1− α1,ν)C > α1,νβp1,1,νS− (1− α1,ν)C (2.36)

so the high-signal bank prefers pooling in p0, 1
2
,ν to the highest possible separation

price p1,1,ν . Likewise, since p0, 1
2
,ν > p0,0,ν the risk-free pooling price is Pareto

dominating for the sb = 0 bank. Thus separation is always Pareto dominated

and deselected.

Step 2 (Pooling with B1) Since the high-signal bank can profitably deviate from p1,1,ν

it will and can do so from p1, 1
2
,ν < p1,1,ν . Pooling with B1 can thus be no

equilibrium.

Step 3 (Pooling with B0,1) Not even the high-signal bank wants to set a price where

only high-signal investors buy. Candidate prices for an equilibrium are thus only

prices with B0,1. Consider p = p̃ < p0, 1
2
,ν . Since both types of banks would
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prefer p = ˜̃p with p̃ < ˜̃p < p0, 1
2
,ν Pareto efficiency prescribes that investors must

hold µ = 1
2

and thus all investors will buy at p = ˜̃p. Applying this reasoning

repeatedly, all prices with p < p0, 1
2
,ν can be eliminated.

(c) We will first argue that if Condition 2 is not fulfilled every separating equilibrium

is Pareto dominated. We will then argue that the only pooling equilibrium in which

only high-signal investors buy is the one outlined in Proposition 2.1. We finally show

that pooling in a price where all investors buy cannot be an equilibrium.

Step 1 (Separating) Since Condition 2 does not hold we have

βp0,0,νS = α0,νβφ0,ν(p0,0,ν)S− (1− α0,ν)C < α0,νβp1,1,νS− (1− α0,ν)C (2.37)

so the low-signal bank will mimic the high-signal bank at any price p̃ ≥ φ0,ν(p0,0,ν).

To uphold separation the high-signal bank must lower its price below φ0,ν(p0,0,ν) <

p1, 1
2
,ν . However, a high separation price below p1, 1

2
,ν cannot be an efficient equi-

librium since both types of banks would prefer pooling price p1, 1
2
,ν . There can

thus be no separating equilibrium.

Step 2 (Pooling with B1) From Step 1 we know that both types of banks prefer pooling

in p̃ ∈ [φ0,ν(p0,0,ν), p1, 1
2
,ν ] even to the separating equilibrium with the highest

possible p̄. Consider the candidate pooling price ˜̃p with p̃ < ˜̃p < p1, 1
2
,ν . Since

both types prefer ˜̃p to p̃ efficiency prescribes µ = 0.5 and thus p̃ cannot be an

equilibrium. Applying this reasoning repeatedly, all prices with p < p1, 1
2
,ν can be

eliminated. The only pooling equilibrium surviving is thus the one depicted in

Proposition 2.1.

Step 3 (Pooling with B0,1) Suppose that p0, 1
2
,ν was an equilibrium, supported by out-

of-equilibriums belief that any deviation is by a low-signal bank. Then consider

a deviation to φ1,ν(p0, 1
2
,ν). Naturally, φ1,ν(p0, 1

2
,ν) < φ0,ν(p0, 1

2
,ν), and thus, ap-

plying the IC, this deviation can only be triggered by a high-signal bank. It is

straightforward to check that, numerically, a violation of Condition 2 implies that
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Condition 1 holds, i.e. φ1,ν(p0, 1
2
,ν) < p1,1,ν . Furthermore,

φ1,ν(p0, 1
2
,ν) =

p0, 1
2
,ν

α1,ν

+
1− α1,ν

α1,ν

C

βS
, (2.38)

which is increasing in costs C. The largest C so that Condition 2 just holds

C = βS(α0,νp0, 1
2
,ν − p0,0,ν/(1− α0,ν). Any C violating Condition is smaller than

C. Numerically, then φ1,ν(p0, 1
2
,ν) < p1, 1

2
,ν , thus efficiency holds. ¤

Proof of Proposition 2.3

To prove this result, we proceed in five steps: In the first we derive the issuer’s optimal

spread choice under the assumption that spreads are separating. The issuer then

chooses the spread that maximizes his payoff; the spread will induce the bank to set

either a separating or a pooling price. This step serves as benchmark for comparing

deviation payoffs. The first-mover Pareto efficiency requirement ensures, that in any

spread-separating equilibrium, the low-signal issuer will always set his preferred spread,

irrespective of the high-signal issuer’s choice. In the second step, we argue that the low-

signal issuer will always mimic the high-signal issuer’s optimal choice. In the third step

we show that the high-signal issuer cannot defend separation in spreads by choosing a

different level of the spread. This step consists of three sub-steps in which we show that

neither constellation (price-separation inducing or price-pooling inducing spreads) can

be upheld. In the fourth step we show that pooling in spreads is indeed an equilibrium,

but we also show that there can be two equilibria. In the fifth step we argue that only

the price-separation inducing spread satisfies the Intuitive Criterion (IC).

The results can only be obtained numerically: When comparing different payoffs,

the decisive equations are complicated polynomials, that cannot be expressed in an

appealing simple form. Explicit solutions, however, can be obtained from the authors

upon request. Furthermore, throughout the proof we use the restriction that β < 10%.

Table 2.1 describes how an issuer computes his expected payoffs. In this proof we

let βs
ν denote the spread that yields separation given spread information ν.34

34We emphasize that this is not the same as the spreads defined in Subsection 2.3.2. Nevertheless,
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Pr(V |sf = 1) q 1− q
V = 1 V = 0

Pr(sb|V ) Price Pr(IPO successful|V ) Pr(sb|V ) Price Pr(IPO successful|V )

sb = 1 q p1,1,1 1 1− q p1,1,1
1
2

sb = 0 1− q p0,0,1 1 q p0,0,1 1

Table 2.1: Probabilities Summary. Equilibrium price choice, signal probabilities, and
success-probabilities in price-separating equilibria. Issuer’s expected profit from charging,
e.g., βs

1 is (1− βs
1) · (q · (qp1,1,1 + (1− q)p0,0,1) + (1− q) · ((1− q)p1,1,1

1
2 + qp0,0,1)) = (q2 + (1−

q)2/2)p1,1,1 + 2q(1− q)p0,0,1.

Step 1: Suppose first that the spread is separating and indicates sf = 1, so that

ν = 1. The issuer has the choice between expected profits in separation, low

riskless pooling, and high risky pooling. For given parameters q, C, N , the issuer

will always choose the spread with maximal expected payoffs. The following two

inequalities always holds when C/N < R1(q).

1. Pooling in p1, 1
2
,1 is always better than separation in p1,1,1 and p0,0,1 as

(1− βs
1)

(
(q2 +

(1− q)2

2
)p1,1,1 + 2q(1− q)p0,0,1

)
> (1− βp

1) α1 p1, 1
2
,1(2.39)

2. Pooling in p1, 1
2
,1 is better than pooling in p0, 1

2
,1 if

(1− βp
1) α1,1 p1, 1

2
,1 > p0, 1

2
,1 (2.40)

Suppose now that the spread triggers ν = 0. Again, we have to compare expected

profits. All the inequalities hold if we restrict C/N < R1(q).

1. Pooling in p1, 1
2
,0 is better than separation in p1,1,0 and p0,0,0 if

(1− βp
0)

(
(1− q) +

q

2

)
p1, 1

2 ,0 > (1− βs
0)

(
3
2
q(1− q)p1,1,0 + (q2 + (1− q)2)p0,0,0

)
(2.41)

2. Pooling in p1, 1
2
,0 is better than pooling in p0, 1

2
,0 if

(1− βp
0) α0,0 p1, 1

2
,0 > p0, 1

2
,0 (2.42)

for the purposes of exposition in the proof this notation is best; since the spreads βs
ν as defined here

are no equilibria, there should be no confusion. Details of the β’s used in this proof are placed after
the proof.



INVESTMENT BANK COMPENSATION 93

Thus if spreads are separating, irrespective of the spread-information inducing

risky, high price-pooling is better than both price-separation and low price-

pooling.

Step 2: We now show that the low-signal issuer will always mimic the high-signal

issuer, and that defending separation is too costly. For the low-signal issuer it is

profitable to mimic the high-signal issuer in βp
1 if

(1− βp
1)

(
(1− q) +

q

2

)
p1, 1

2
,1 > (1− βp

0)
(
(1− q) +

q

2

)
p1, 1

2
,0. (2.43)

Numerically the deviation profit is always higher, thus spread-separating in βp
1 , β

p
0

cannot be an equilibrium.

Step 3: The high-signal issuer’s defenses against mimicking have to be analyzed for

any of the three candidate equilibrium spreads. Price-pooling inducing βp
1 , price-

separating inducing βs
1, and risk-less pooling inducing β = 0 would be defended

by setting a higher βs. However, none of these defenses turn out to be feasible.

(a) Defending Price-Separation. The lowest spread β̃ for which the low-signal

issuer will not mimic the price-separation inducing spread any longer, is given by

(1− β̃)
(

3
2
q(1− q)p1,1,1 + (q2 + (1− q)2)p0,0,1

)
=

(1− βp
0)

(
(1− q) +

q

2

)
p1, 1

2
,0. (2.44)

Solving for β̃, numerically β̃ exceeds by far 10% (and thus lies outside the relevant

parameter region). It also exceeds βp
1 , which brings us to the next case.

(b) Defending Risky Price-Pooling. If the high-signal issuer sets β̃ > βp
1 the

low-signal issuer will no longer mimic if

(1− β̃)
(
(1− q) +

q

2

)
p1, 1

2
,1 = (1− βp

0)
(
(1− q) +

q

2

)
p1, 1

2
,0. (2.45)

Solving for β̃, numerically β̃ exceeds by far 10% (and thus lies outside the relevant

parameter region).
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(c) Defending Riskless Price-Pooling. If the high-signal issuer sets β̃ ∈ (0, βs
1) the

low-signal issuer will no longer mimic if

(1− β̃) p0 1
2
,1 = (1− βp

0)
(
(1− q) +

q

2

)
p1, 1

2
,0. (2.46)

Solving for β̃, numerically it exceeds by far 10% (and thus lies outside the relevant

parameter region).

Thus, there is no spread-separating equilibrium.

Step 4: Consider now the spread-pooling equilibria. As usual, there are three can-

didate spreads: β = 0, βs
1
2

and βp
1
2

. It turns out that profits under β = 0 are

dominated by profits under the other two spreads. Moreover, βs
1
2

is preferred by

the high-signal issuer, βp
1
2

from the low-signal issuer.

(a) Low-Signal Issuer. Price-separation is better than riskless price-pooling if

(1− βs
1
2
)

(
3

2
q(1− q)p1,1, 1

2
+ ((1− q)2 + q2)p0,0, 1

2

)
> p0, 1

2
, 1
2
. (2.47)

Numerically, given C/N < R1(q), this inequality always holds. Risky price-

pooling is better than risk-less price-pooling if

(1− βp
1
2

)

(
(1− q)

1 + q

2
+ q

2− q

2

)
p1, 1

2
, 1
2

> p0, 1
2
, 1
2
. (2.48)

Numerically, given C/N < R1(q), this inequality also always holds. However, the

high type prefers risky price-pooling to price-separation as

(1− βp
1
2

)

(
(1− q)

1 + q

2
+ q

2− q

2

)
p1, 1

2
, 1
2

>

(1− βs
1
2
)

(
3

2
q(1− q)p1,1, 1

2
+ ((1− q)2 + q2)p0,0, 1

2

)
(2.49)

holds numerically, given C/N < R1(q).

(b) High-Signal Issuer. Price-separation is better than risk-less price-pooling if

(1− βs
1
2
)
(
(q2 + (1− q)2/2)p1,1, 1

2
+ 2q(1− q)p0,0, 1

2

)
> p0, 1

2
, 1
2
. (2.50)
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Numerically, given C/N < R1(q), this inequality always holds. Risky price-

pooling is better than risk-less price-pooling if

(1− βp
1
2

)

(
q
1 + q

2
+ (1− q)

2− q

2

)
p1, 1

2
, 1
2

> p0, 1
2
, 1
2
. (2.51)

Numerically, given C/N < R1(q), this inequality always holds. However, price-

separation is also almost always preferred to risky price-pooling as

(1− βs
1
2
)
(
(q2 + (1− q)2/2)p1,1, 1

2
+ 2q(1− q)p0,0, 1

2

)
>

(1− βp
1
2

)

(
q
1 + q

2
+ (1− q)

2− q

2

)
p1, 1

2
, 1
2

(2.52)

holds numerically, given C/N < R1(q).

Step 5: Thus there are two spread-equilibria that can be constructed to be PBEs.

Conveniently, however, spread βp
1
2

fails the Intuitive Criterion. To see this, define

β̃(q) to be the spread for given q that makes the low type not wanting to deviate

from βp
1
2

, even if he was perceived to be the highest type. For simplicity, assume

that at the deviation payoff spreads are set to be price-separating. Then β̃(q)

solves

(1− β̃(q))

(
3

2
q(1− q)p1,1,1 + (q2 + (1− q)2)p0,0,1

)
=

(1− βp
1
2

)

(
(1− q)

1 + q

2
+ q

2− q

2

)
p1, 1

2
, 1
2
. (2.53)

Numerically, for q > 0.72, β̃(q) can be set to βs
1, for smaller q, it has to be

larger. However, numerically it also holds that for all q, β̃ < β̂s
1 = C/S(1 −

α0,1)/(α0,1p1,1,1 − p0,0,1), where β̂s
1 is the spread so that the low type bank is

indifferent between choosing p1,1,1 and p0,0,1. (Recall that for higher spread the

bank lowers the price to φ0,1(p0,0,1)). Consequently at every β̃(q) the bank charges

a separation price. Furthermore, numerically at for all q, the high type prefers to

deviate to β̃(q) if he is perceived to be the high type, whereas the low type prefers

the current equilibrium. Hence there is a deviation that, in the best of all worlds
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for beliefs, is only profitable for the high type issuer and so the equilibrium βp
1
2

fails the IC.

Consider now the price-separation-inducing spread and construct the same de-

viation β̃(q) as above. It turns out, however that for every q and any for every

β̃ < 10%,

(1− β̃)

(
p1,1,1

3q(1− q)

2
+ p0,0,1(q

2 + (1− q)2)

)
>

(1− βs
1
2
)

(
p1,1, 1

2

3q(1− q)

2
+ p0,0, 1

2
((1− q)2 + q2)

)
. (2.54)

Any β̃ satisfying this equation with equality could be taken as a benchmark for

deviation-considerations. However, since there’s no feasible β̃ that satisfies our

restriction and equation (2.54) with equality, the out of equilibrium belief of low

type deviation is IC-proof.

As a consequence of all this, the only IC-proof and issuer-efficient equilibrium is

pooling in spreads βs
1
2

which induce price-separation. ¤

In the proof we used the following threshold values for spreads. They are computed in

the same way as demonstrated in Subsection 2.4.1. Note that βs
ν is not the same as

the ones used in the next proof.

βs
1 =

1− α1,1

α1,1p1,1,1 − p0, 1
2
,1

C

S
, βp

1 =
1− α1,0

α1,0p1, 1
2
,1 − p0,0,1

C

S
, βs

0 =
1− α0,1

α0,1p1,1,0 − p0, 1
2
,0

C

S
,

βp
0 =

1− α0,0

α0,0p1, 1
2
,0 − p0,0,0

C

S
, βs

1
2

= βs
¦, βp

1
2

= βp
¦ .

Proof of Proposition 2.4

If the issuer signals his information, the bank’s price choice carries no extra value. Thus

in prices, µ is substituted with a diamond. For the bank’s probability of a successful

IPO, spreads do not carry information, thus in αj,ν , j = 0, 1, spread information ν

is substituted with a diamond. In Subsection 2.3.2, Equation (2.9) we have already

described the spreads which induce banks to choose risky prices: (1) The high-signal

bank chooses risky p1,¦,1 with B1 if it is offered at least βs
1. (2) The low-signal bank



INVESTMENT BANK COMPENSATION 97

chooses risky p1,¦,0 if it is offered at least βs
0, where

βs
1 =

1− α1,¦
α1,¦p1,¦,1 − p0,¦,1

C

S
, and βs

0 =
1− α0,¦

α0,¦p1,¦,0 − p0,¦,0

C

S
. (2.55)

First, we have to show that both types of issuer actually do want the respective bank to

set those risky prices. (1) The high-signal issuer prefers the high-signal bank to set p1,¦,1

and not p0,¦,1 if its expected revenue is higher at the risky price, α1(1−β)p1,¦,1S ≥ p0,¦,1S.

(Note that β = 0 is sufficient for the bank to set the risk-free price.) Solving for β

yields that the spread minimal separating has to satisfy

βs
1 ≤ 1− p0,¦,1

α1p1,¦,1
⇔ C/N ≤ (2q − 1)2

2q
=: R3(q). (2.56)

Applying the same reasoning to the low-signal issuer, he prefers the low-signal bank to

set risky p1,¦,0 and not p0,¦,0 if α0(1−β)p1,¦,0S ≥ p0,¦,0S. Thus the separating threshold

βs
0 has to satisfy35

βs
0 < 1− p0,¦,0

α0p1,¦,0
⇔ C/N ≤ 2q(2q − 1)2

(1− q)2
p0,¦,02 =: R4(q). (2.57)

We restrict the analysis to the empirically relevant parameter space where spreads

do not exceed 10%. Since we know βs
0 > βp > βs

1 we impose βs
0 < 10%. This translates

into any β has to be smaller than (4q − 1 − 5q2 + 2q3)/5(1 − 2q + 2q2) =: R5(q).

Numerically it is easy to check that R5 < min{R1, R2, R3, R4}, that is, requiring spreads

not to exceed 10% is sufficient for all other restrictions to hold.

Second, we have to show that there is no profitable deviation for either issuer.

(1) Consider the low-signal issuer. Notice that βs
1 < βs

0 and p1,¦,1 > p1,¦,0, i.e. the

high-signal issuer’s spread is lower and the offer price is higher so the low-signal issuer

had the incentive to deviate if the low-signal bank sets p1,¦,1 when being offered βs
1.

However, at βs
1 the high-signal bank is just indifferent between risky p1,¦,1 and risk-

free p0,¦,1. Since the low-signal bank holds less favorable prospects about investors’

valuations it will not set p1,¦,1 and thus investors learn that the issuer’s/bank’s signal

35If any of these restrictions on C/N is satisfied strictly, the necessary spreads can be set lower.
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is s = 0. But in this case βs
0 is the best choice for the low-signal issuer. (2) Consider

now the high-signal issuer. Since βs
1 < βs

0 and p1,¦,1 > p1,¦,0 the high-signal issuer will

never mimic the low-signal issuer.

Third, we have to check if pooling in spreads can be an equilibrium. If there is

pooling in spreads banks set prices as in Section 2.3. Since we assume C/N < R5 we

also have C/N < R1, but then the best to do is pooling in βp
1
2

and banks setting p1, 1
2
, 1
2
.

However, since βp
1
2

> βs
1 and p1, 1

2
, 1
2

< p1,¦,1 the high-signal issuer will want to deviate,

and he is the only one who can do so profitably under the conditions set by the IC, so

this cannot be an IC-proof equilibrium. ¤

Proof of Proposition 2.5

We will show that the bank earns non-negative profits at all three possible spread

levels.

(a) With informed issuers, if sb = 0, the spread is βs
0 and the low-signal bank sets

p1,¦,0 and incurs the risk of losing C. Instead of taking this risk, the bank may choose

a risk-free price p0,¦,0 > 0. Being compensated for the risk means that the low-signal

banks gets more than βs
0Sp0,¦,0 > 0.

(b) Likewise, if sb = 1, the issuer sets βs
1 and the bank sets p1,¦,1. Instead, the bank

could set price p0,¦,1 > 0 and realize risk-free profits. To make the bank set the risky

price, the issuer has to pick a compensation which gives the bank at least βs
0Sp0,¦,1 > 0.

(c) With uninformed issuers the spread is βp
¦ and the high pooling price p1, 1

2
,¦ results.

In this case expected profits are positive as long as we have

α0 + α1

2
βpp1, 1

2
S > (1− α0 + α1

2
) C ⇔ βp >

2− α0 − α1

(α0 + α1)p1, 1
2

C

S
. (2.58)

Numerical simulations show that holds true for all q ∈ (.6, 1). ¤

Proof of Proposition 2.7

From Propositions 2.2 and 2.4 we know that an uninformed issuer always sets βp
¦ ; an

identically informed issuer with signal sb = 0 sets βs
0, if he has signal sb = 1 he sets βs

1.
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Ex ante, the identically informed issuer gets either signal with equal probability. Thus

for the claim to be true it must hold that

1

2
βs

1 +
1

2
βs

0 > βp
¦ ⇔ 1

2

1− α1

α1p1,1 − p0,1

+
1

2

1− α0

α0p1,0 − p0,0

>
1− α0

α0p1, 1
2
− p0,0

. (2.59)

Checking this numerically, the inequality holds if C/N < R1(q). By Proposition 2.6,

the VC-backed issuer sets even lower spreads.

Instead of spread deviations suppose that an issuer abandons his commercial bank

and seeks investment banking services from a third party, and let this be common

knowledge. It is numerically straightforward to show that the high-signal issuer would

not be interested in this move: The best to happen is that he would be perceived as a

high-signal issuer. But then the highest expected payoff he could get from an indepen-

dent bank is lower than what he gets from his commercial bank. The reason is that

with a third party, there is a risk that the bank gets an unfavorable signal and charges

the low price. Thus if the high-signal bank would not change, any change of banking-

partner would be perceived as coming from a low-signal bank. It is straightforward to

check numerically that the low-signal bank then would not want to deviate either. ¤

List of Restrictions:

R1 = 2q(2q − 1)2(q − 1)2(1− q2 + q)/(4q − 9q2 + 19q3 − 25q4 + 17q5 − 2q6 − 1)

R2 = 2(q − 1)(1− q − 3q2 + 2q3)(2q − 1)/3q(1− 2q + 2q2)

R3 = (2q − 1)2/2q,

R4 = 2q(2q − 1)2(q − 1)2/(1− 2q + 2q2)2

R5 = (4q − 1− 5q2 + 2q3)/5(1− 2q + 2q2)



Chapter 3

Working for Today or for

Tomorrow: Incentives for

Present-Biased Agents

3.1 Introduction

We examine self-control problems – modeled as time-inconsistent, present-biased pref-

erences – in a multi-tasking environment. An agent must allocate effort between an

incentivized and immediately rewarded activity and a private activity that pays out

with some delay. Effort costs accrue immediately. As an example think of a situation in

with an agent has to decide how much to work on her job and how much to care about

her health. Effort on the job is assumed to pay out immediately (e.g. wage payment

at the end of the month, piecework rate, job promotion, etc.) while time dedicated to

care for one’s health (free weekends, workouts, balanced diet instead of fast-food, etc.)

pays out in the long-run only. Alternatively, one can think of a student’s decision how

much to study for a degree and how much to work for money while being a student.

The existing literature on present-biased preferences (O’Donoghue and Rabin (1999a,

1999b, 2001)) analyzes environments in which an agent must accomplish a single task

only but has discretion when to do it. In contrast, we model situations in which agents

must allocate effort between tasks and has to decide how much of each activity to

accomplish – with the complication that some tasks pay out earlier than others.
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We consider three types of agents. Time-consistent agents, sophisticated agents,

and naive agents. Throughout the paper we abstract from complications of adverse

selection. The principal is thus assumed to know the type of agent he is contracting

with. To capture the basic effects we start out with the most simple set-up. The

agent has to allocate effort between two tasks only. Effort allocated to the first task

is incentivized by a principal by way of a linear contract and rewarded immediately.

Effort devoted to the second task serves the agent’s private benefit but pays out with

some delay. Effort is taken to be perfectly observable and contractable. There is no

risk involved. We consider a three-period setting. In a first period the principal offers

a contract and the agent decides whether to accept or to refrain. In the next period

the agent chooses effort levels. According to the incentive scheme, effort devoted to the

principal’s purposes pays out immediately, and all effort costs are borne in immediately.

In the final period the agent’s private benefit is realized.

We show that present-biased agents take decisions that do not maximize their

long-run interest, irrespective of the intensity of incentives. Sophisticated agents are,

however, never harmed by incentives relative to a situation without incentives as they

always receive their reservation utility levels. With naive agents there are two effects.

On the one hand, they wrongly belief to have a high reservation utility because they

think they will not give in to a present bias in a situation without incentives. They

thus only participate if they are paid high enough wages. On the other hand, they

wrongly predict tomorrow’s effort choices (naive agents think to act like time-consistent

agents but in fact they will always give in to their present bias) which is exploited by

the principal. We show that the second effect always dominates. Naive agents are

thus harmed by incentives relative to the situation without incentives. Furthermore,

we show that social welfare can decrease in the presence of incentives. With naive

agents it may happen that their additional loss due to present-biased effort choices in

the situation with incentives exceeds the principal’s gain from offering the incentive

contract. The model thus offers a new theoretical possibility of detrimental effects

of incentives, complementary to existing arguments like the crowding out of intrinsic

motivation by extrinsic rewards.
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While the current paper is (to the best of our knowledge) the first analysis of

present-biased preferences in a multi-tasking environment, there is an extensive lit-

erature that analyzes choice problems with time-inconsistent preferences in situations

where agents have discretion when do complete a task. O’Donoghue and Rabin (1999a)

derive a present-biased agent’s decision with exogenously given levels for costs and re-

wards – one of those being immediate, the other delayed. O’Donoghue and Rabin

(1999b) analyze a principal-agent setting. A procrastinating agent faces stochastic

costs of completing a task. The principal offers an incentive contract to induce the

agent to complete that task in time. If the principal knows the agent’s cost distribu-

tion he can always achieve the first-best. With asymmetric information about costs

the first-best is achieved with time-consistent agents only. With time-inconsistent

agents incentives for timely completion and efficient delay in case of high costs must

be traded-off. The second-best contract involves an increasing punishment for delay.

O’Donoghue and Rabin (2001) show that providing a present-biased agent with addi-

tional choice options can harm those agents. Agents may refrain from completing an

activity because they change to a better but never-to-completed alternative. DellaV-

igna and Malmendier (2003) analyze the health club industry and provide evidence

for both, time-inconsistent behavior and naiveté. DellaVigna and Malmendier (2004)

go a step further and derive the optimal contract design of firms if consumers have

time-inconsistent preferences. They show that optimal contracts for naive agents have

observed features in some industries like, among others, the health club and credit

card industry – suggesting that people have self-control problems and that they are

not fully aware of it.

The remainder of the paper is organized as follows. Section 3.2 presents the multi-

tasking model with time-inconsistent agents. Section 3.3 presents our main results.

Section 3.4 concludes.
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3.2 The Model

In this section we lay out our model of time-inconsistent preferences in a multi-tasking

environment. First, present-biased preferences and possible believes about future be-

havior are introduced. Second, a multi-tasking principal-agent environment is set up.

In contrast to the seminal contribution by Holmström and Milgrom (1991), we add

the complication that effort devoted to some tasks pays out immediately while effort

devoted to other tasks pays out with delay. We assume that effort costs accrue imme-

diately. Finally, we combine both approaches in a simple, three-period model with two

tasks only.

3.2.1 Present-Biased Preferences and Beliefs

Let ut be an agent’s instantaneous utility in period t. In each period an agent does

not only care about her instantaneous utility, but also about her discounted future

instantaneous utilities. Let U t(ut, ..., uT ) denote an agent’s intertemporal preference

from the point of view of period t. The standard model employed by economists is

exponential discounting, that is U t(ut, ..., uT ) =
∑T

τ=t δ
τuτ , where δ ∈ (0, 1] denotes the

discount factor. In a parsimonious way, exponential discounting captures the fact that

agents are impatient. In addition, it implies that agent’s decisions are time-consistent.

When considering trade-offs between two periods in time it does not matter when the

agent is asked to take a decision. However, people tend to exhibit time-inconsistent

preferences (Benzion, Rapoport, and Yagil (1989), Kirby (1997), Kirby and Herrnstein

(1995)). By way of example: When being asked, most people will prefer to receive

$100 in 6 weeks over $90 in 5 weeks from now. However, when being asked again for

their preference 5 weeks from now, some people will reverse their decisions to wait for

the higher payment and opt for the immediate payment of $90. Such present-biased

preferences have been modelled by Phelps and Pollack (1968) and later, among others,

by Laibson (1997) and O’Donoghue and Rabin (1999a, 1999b, 2001).36 We follow this

36See Frederick, Loewenstein, and O’Donoghue (2002) for a comprehensive overview of the litera-
ture.
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literature and apply a two-parameter model that can capture present-biased preferences

by a simple modification of exponential discounting.

Definition 3.1 (β, δ)-preferences are time-inconsistent preferences that are repre-

sented as follows: For all t, U t(ut, ut+1, ..., uT ) = δtut + β
∑T

τ=t+1 δτuτ , where 0 < β,

δ ≤ 1.

In this formulation, δ represents the long-run, time-consistent discount parameter.

The parameter β represents the the bias for the present. If β = 1, (β, δ)-preferences

coincide with standard exponential discounting. But if β < 1, an agent places more

relative weight to period τ in period τ than she did in any other period prior to τ .

Applied to the above example: Be δ = .95 the weekly discount factor and β = .9

the present-bias. The agent then prefers $100 in week 6 over $90 in week 5 in every

week before week 5 as $90 < .95 · $100. But in week 5 her preference reverses as

$90 > .9 · .95 · $100.

Most researchers have modeled time-inconsistent preferences by interpreting an

agent at each point in time as a separate agent.37 An agent thus consists of ‘multiple

selves’, where each ‘self’ is choosing current behavior to maximize current preferences.

The ‘current self’ knows that her ‘future selves’ control future behaviors and thus holds

believes about her future selves. Strotz (1956) and Pollack (1968) applied two extreme

assumptions and established the following labels:

Definition 3.2 (i) A sophisticated agent is fully aware of her future selves. Such an

agent takes into account that future selves may exhibit time-inconsistent preferences.

(ii) A naive agent thinks that future selves will take time-consistent decisions. Such an

agent does not take into account that future selves in fact take present-biased decisions.

There is a long standing and lasting debate over whether people are naive or sophis-

ticated. On the one hand, O’Donoghue and Rabin (1999a) report on self-commitment

devices such as alcohol clinics, Christmas clubs, or fat farms, indicating that people

are (at least partially) aware of their time-inconsistent behaviors. On the other hand,

37For an alternative approach see Gul and Pesendorfer (2001).
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DellaVigna and Malmendier (2003, 2004) report on evidence from, among others, the

health club and credit card industry that suggests that people are not (fully) aware of

their future self-control problems. Apart from the two extreme assumptions, in prin-

cipal, any degree of sophistication could be modeled. However, in this paper we follow

the approach in O’Donoghue and Rabin (1999a) and analyze fully sophisticated and

fully naive agents only.

3.2.2 Multi-Tasking with Immediate and Delayed Benefits

We analyze a situation in which an agent must allocate effort between different tasks.

We further assume that all effort costs are immediate while some but not all tasks pay

out with a delay only. Effort on the job is assumed to pay out immediately (wage

payment) while time dedicated to care for, say, one’s health pays out in the long-run

only (absence of health problems). As another example, consider a student’s decision

to work a couple of hours per week for a firm or to fully concentrate on one’s studies.

While the wages from working for the firm are paid out immediately, higher wages that

come along with good grades are realized only in the future.

In a classic paper Holmström and Milgrom (1991) derive optimal linear incentive

contracts in a principal-agent setting with non-verifiable effort such that wages must

condition on noisy signals.38 Without loss of generality we employ the linear incentive

model in this paper as well. However, the focus of our model very different. Holm-

ström and Milgrom are interested in the implications on optimal incentive provision

if performance measure are of diverging quality. They show that it can be optimal to

refrain from providing explicit incentives if, for example, only one of two tasks can be

measured, but some engagement in both tasks is desirable. They further analyze asset

ownership and job design. In the current model we abstract from problems of measure-

ment and risk allocation. We are interested in the implications for incentive provision

if the incentivized task pays out immediate while the private activity pays out only

38The underlying assumption in their model is that the agent chooses effort levels continuously
over the time interval [0, 1] to control the drift vector of a Brownian motion. At each point in time
the agent can observe his accumulated performance before acting. Holmström and Milgrom (1987)
show that in such a setting the optimal incentive contract is indeed linear.
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with delay. While existing models of time-inconsistent behavior analyze environments

in which an agent must accomplish a single task but has discretion when to do it, our

focus is on effort allocation between tasks.

3.2.3 Combining Present-Biased Preferences and Multi-Tasking

We now combine present-biased preferences with multi-tasking. To capture the basic

effects we start out with the most simple set-up. The agent has to allocate effort

between two tasks only. Effort allocated to the first task, e1, is incentivized by a

principal and rewarded by way of a linear incentive scheme (e.g. effort in the work

place). The principal’s benefit from e1 is captured by B(e1), with B′(e1) > 0 and

B′′(e1) < 0. Function B(e1) is assumed to measure the principal’s benefit in monetary

terms. The reward is based on a signal µ that is produced by e1. In this basic setting

we abstract from issues of risk-allocation and assume that the signal is deterministic,

i.e. µ(e1) = e1. The incentive scheme can thus be written as w(e1) = αe1 + γ. The

principal’s profit is then given by Π = B(e1)−αe1−γ. Effort devoted to the second task,

e2, serves the agent’s private benefit V (e2), with V ′(e2) > 0 and V ′′(e2) < 0 (e.g. caring

for one’s health). We assume that V (e2) accrues with one period delay only. Effort

costs, C(e1, e2), are however immediate. We assume Ci(e1, e2) > 0, Cii(e1, e2) > 0,

and Cij(e1, e2) > 0, with i, j ∈ {1, 2}, subscripts denoting partial derivatives. We thus

assume that effort levels are substitutes at the margin. This will be the case if, for

example, effort is interpreted as measuring the time devoted to a certain activity. Both,

V (e2) and C(e1, e2) are assumed to represent the agent’s benefit and cost in monetary

terms.

We consider a setting with three periods only. In period t = 0 the principal offers a

contract, i.e. values for α and γ, and the agent decides whether to accept or to refrain.

In the next period, t = 1, the agent chooses effort levels. According to the incentive

scheme, the effort devoted to the principal’s purposes, e1, pays out immediately. The

agent also decides on effort devoted to the own private benefit. All effort costs are

borne in immediately in t = 1. In the final period, t = 2, the agent’s private benefit is

realized. The timing of the game is summarized in Figure 3.1.
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-
tt = 0 t = 1 t = 2

The principal offers a
contract and the agent

decides whether to
accept or to refrain.

Effort levels are
chosen. Effort

costs accrue and
wages are paid.

Benefits of
private activity

are realized.

Figure 3.1: The Timing of the Game.

3.2.4 Benchmark: Incentives for Time-Consistent Agents

As a benchmark we first derive the optimal contract for time-consistent agents (TCs).

Throughout the paper we will assume explicit functional forms in order to obtain closed

form solutions. In Section 3.4 we discuss the generality of our results.

Assumption 3.1 B(e1) = b ln(e1), V (e2) = v ln(e2), and C(e1, e2) = .05(e1 + e2)
2.

In addition, but without loss of generality we normalize δ to unity. We first look at

effort levels without incentives. In this case no action is taken in period t = 0. Without

incentives effort devoted to the principals benefit, e1, will always be set to zero. In

period t = 1 a TC thus chooses e2 to maximize her intertemporal utility which is given

by

max
e2

V (e2)− C(e2) = v ln(e2)− .05(e2)
2. (3.1)

Solving the first-order conditions yields ˜eTC
2 =

√
10v, where superscript TC stands

for ‘time consistency’ and the tilde indicates the situation without incentives. A TC

then realizes an intertemporal (reservation) utility level of UTC = V ( ˜eTC
2 )−C( ˜eTC

2 ) =

.5v(ln(10v)− 1). This is also a TC’s welfare, defining an agent’s welfare as follows.

Definition 3.3 The welfare of an agent is the sum of her instantaneous utility levels

from a long-run perspective, i.e. U t(ut, ut+1, ..., uT ) =
∑T

τ=t δ
τuτ .

With TCs there is no difference between long-run and short-run perspective. The

difference will however be important with time-inconsistent agents.



PRESENT-BIASED AGENTS 108

Consider now a principal who offers a linear incentive contract w(e1) = αe1 + γ in

period t = 0. To determine the parameters of the contract the principal maximizes

max
α,γ

B(e1(α))− αe1(α)− γ (3.2)

subject to the participation constraint (PC)

αeTC
1 (α) + γ + V (eTC

2 (α))− C(eTC
1 (α), eTC

2 (α)) ≥ UTC , (3.3)

where eTC
i (α) with i ∈ {1, 2} are the effort levels that a TC chooses given incentive

intensity α. In optimum (3.3) must hold with equality. Substitution of the PC yields

max
α

B(eTC
1 (α)) + V (eTC

2 (α))− C(eTC
1 (α), eTC

2 (α))− UTC . (3.4)

The principal thus maximizes the intertemporal social welfare by choice of incentive

intensity α, where social welfare is defined as follows.

Definition 3.4 Social welfare is the sum the agent’s welfare and the principal’s profit.

Recall that we assumed B(e1), V (e2), and C(e1, e2) to be measured in monetary terms.

As the incentivized activity can be measured without error, the linear incentive scheme

allows the principal to implement any level of e1 at first-best costs.

If the TC accepts the contract she will choose effort levels in period t = 1 by

maximizing

max
e1,e2

αe1 + γ + v ln(e2)− .05(e1 + e2)
2. (3.5)

Solving the first-order conditions we get

eTC
1 (α) = 10α− v

α
and eTC

2 (α) =
v

α
. (3.6)
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Maximization of (3.4) then yields

αTC =
√

(b + v)/10, (3.7)

such that effort levels are given by

eTC
1 (αTC) =

√
10 b√
b + v

and eTC
2 (αTC) =

√
10 v√
b + v

, (3.8)

the first-best levels of e1 and e2 that maximize social welfare.

3.2.5 Incentives for Sophisticated Agents

The optimal incentive contract for sophisticated agents (sophisticates) is derived anal-

ogously. Absent incentives a sophisticate chooses e2 in t = 1 to maximize

max
e2

β V (e2)− C(e2) = βv ln(e2)− .05(e2)
2, (3.9)

which differs from (3.1) in the time-inconsistency parameter β only. Her optimal choice

of e2 is given by ˜ePB
2 =

√
10βv, where superscript PB indicates ‘present bias’. Ab-

sent incentives a sophisticate thus realizes a welfare level UPB = V ( ˜tPB
2 ) − C( ˜tPB

2 ) =

.5v(ln(10βv)−β). Notice that from a long-run perspective the discount factor between

periods one and two is given by 1 and not by β. The difference of UTC and UPB is

thus an agent’s welfare loss in monetary terms due to time-inconsistent preferences.

Subtracting UPB from UTC we get .5v(β−1− ln(β)), which is positive whenever β < 1,

and increasing with β decreasing.

The principal’s objective function (3.2) is now subject to a sophisticate’s PC

αePB
1 (α) + γ + V (ePB

2 (α))− C(ePB
1 (α), ePB

2 (α)) ≥ UPB. (3.10)

Notice that the agent’s benefit from e2, V , is not discounted by β. A sophisticate

decides in period t = 0 whether or not to accept the incentive contract. Both sides

of (3.10) are thus discounted by β which therefore cancels. In optimum the PC must
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hold with equality. Substituting (3.10) into (3.2) yields

max
α

B(ePB
1 (α)) + V (ePB

2 (α))− C(ePB
1 (α), ePB

2 (α))− UPB. (3.11)

When choosing incentive intensity α the principal now has to take into account that

the agent will give in to her present-biased preference when she decides on effort levels

in period t = 1. If the contract is accepted a sophisticate maximizes

max
e1,e2

αe1 + γ + βv ln(e2)− .05(e1 + e2)
2. (3.12)

Solving the first-order conditions gives effort choices

ePB
1 (α) = 10α− βv

α
and ePB

2 (α) =
βv

α
, (3.13)

which differ from (3.6) only in the time-inconsistency parameter β. Maximizing now

the principal’s objective function (3.11) with respect to α yields

αS =
√

(b + βv)/10, (3.14)

such that effort levels are given by

eTC
1 (αTC) =

√
10 b√

b + βv
and eTC

2 (αTC) =

√
10 βv√
b + βv

, (3.15)

Again, for β = 1 both effort and incentive levels of TCs and sophisticates coincide.

By comparison of (3.7) and (3.14) it can be seen that αTC > αS whenever β < 1.

Comparing (3.8) and (3.15) shows that β < 1 ensures eS
1 > eTC

1 but eTC
2 > eS

2 . That

is, given Assumption 3.1, TCs receive stronger incentives to work for the principal but

work less hard than sophisticates. TCs choose a higher effort level in their private

activities. This higher effort level increases effort costs such that it becomes relatively

more expensive for the principal to compensate for the incentivized activity. Figures

3.2, 3.3, and 3.4 provide an illustration.
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Figure 3.2: Alpha levels. The figure shows alpha levels as functions of β, given b = 2 and
v = 4. The top straight line depicts incentive intensity with TCs. The curve in the middle is
alpha for sophisticates, the lowest curve for naifs. For β = 1 incentive intensities coincide.

Sophisticates harm themselves due to time-inconsistent preferences. Their welfare

is maximized at effort levels (3.8) which differ from (3.15) whenever β < 1. However,

there is no additional loss caused by the introduction of explicit incentives for an

immediately rewarded task. The participation constraint ensures that a sophisticate

always receives her reservation welfare level of US.

3.2.6 Incentives for Naive Agents

We now turn to naive agents (naifs). Absent incentives there is no difference between

sophisticates and naifs. No action is taken in period t = 0, and it is only then that

beliefs about preferences in period t = 1 can differ. In the case with incentives it

appears - at first sight - unclear whether naifs or sophisticates will be better off. There

are two opposing effects. On the one hand, in period t = 0 naifs wrongly believe that

they will take a time-consistent, welfare maximizing decision in period t = 1. Hence,

to ensure a naif’s participation she must be given a perceived reservation utility of UTC

which exceeds her true reservation utility of UPB. On the other hand, a naif wrongly

predicts her effort choices in t = 1 given incentive intensity α. She expects to act like a

TC according to (3.6), but will indeed give in to her time-inconsistent preferences and
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Figure 3.3: Levels of e1. The figure depicts
levels of e1 as functions of β, given b = 2 and
v = 4. The straight line in the middle is
eTC
1 , the highest, decreasing line is eS

1 , and
the lowest, increasing line depicts eN

1 . For
β = 1 levels of e1 coincide.

1

2

3

4

5

0.2 0.4 0.6 0.8 1

beta

Figure 3.4: Levels of e2. The figure depicts
levels of e2 as functions of β, given b = 2
and v = 4. The top, straight line is eTC

2 ,
the line in the middle is eN

2 , and the lowest,
steepest line depicts eS

2 . For β = 1 levels of
e2 coincide.

act like a present-biased agent according to (3.13). Her perceived utility must not fall

short of UTC , but as she will make different effort choices her realized utility level will

fall short of UTC . In Section 3.3 we show that, given Assumption 3.1, it will always

even fall short of UPB. That is, the effect due to wrong beliefs about future selves

dominates and naifs are thus worse off than sophisticates. Since a sophisticate receives

her reservation utility level which is identical to a naif’s welfare without incentives, a

naif is harmed by the principal’s incentive contract.

In the following we derive the optimal incentive contract from a principal’s point

of view. The principal’s objective function (3.2) is now subject to a naif’s PC which is

identical to a TC’s PC, which is given in equation (3.3). Substituting (3.3) into (3.2)

now yields

max
α

B(ePB
1 (α))− αePB

1 (α)− UTC + αeTC
1 (α) + V (eTC

2 (α))− C(eTC
1 (α), eTC

2 (α)).(3.16)

Recall that the principal is assumed to know both an agent’s time preference and her

belief about future selves. The principal thus takes into account that the naif will give
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in to her time-inconsistent preferences in period t = 1 and choose effort levels according

to equation (3.13). The first-order condition is now given by

(B′(ePB
1 )− α)

∂ePB
1

∂α
− ePB

1 + eTC
1 + (α− C1)︸ ︷︷ ︸

=0

∂eTC
1

∂α
+ (V ′(eTC

2 )− C2)︸ ︷︷ ︸
=0

∂eTC
2

∂α
= 0(3.17)

⇔
(

b

10α− βv
α

− α

) (
10 +

βv

α2

)
−

(
10α− βv

α

)
+

(
10α− v

α

)
= 0. (3.18)

Solving for α we get

αS =

√
5

10

√
k + b− v(1− β), (3.19)

with k =
√

β2v2 + (2v2 + 6bv)β + (v − b)2. It is straightforward to show that αN

coincides with αTC for β = 1. Given the optimized level of alpha naifs choose effort

levels

eS
1 (αS) =

√
5 (k + b− v(1 + β))√

k + b− v(1− β)
and eS

2 (αS) =

√
5 (2βv)√

k + b− v(1− β)
. (3.20)

Figures 3.2, 3.3, and 3.4 illustrate the relative size of incentive and resulting effort

levels for the three different types of agents.

3.3 Results

Since general functions only implicitly define the solutions to the maximization prob-

lems in Sections 3.2.4 to 3.2.6 we have assumed explicit functional forms. But even

these simple functional forms do not always allow for closed form solutions. If neces-

sary we will therefore stick to numerical examples to show the results of the paper. For

completeness we first establish the following proposition.

Proposition 3.1 A time-consistent agent’s welfare is always higher than a sophisti-

cated or naive agent’s welfare.
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Proof: An agent’s welfare is defined as the sum of her instantaneous utility levels set-

ting β = 1. Without incentives only TCs maximize welfare. Both, a sophisticate’s and

a naif’s objective functions at time of effort choice differ from their welfare maximizing

objective functions. Their choices must thus be suboptimal. The optimal incentive

contracts offer both TCs and sophisticates their reservation utility levels. By the first

part of this proof the first exceeds the latter. A naif requests the reservation utility

level of a TC. She is thus offered a value for α such that she received UTC if she indeed

chose like a TC. But in period t = 1 she gives in to her present-bias and deviates from

her planned effort choice. Her realized utility level must thus lie below UTC . q.e.d.

The focus of the paper is the comparison of sophisticates and naifs. Naifs wrongly

predict their future behaviors: In period t = 0 naifs think that they will behave like

TCs in period t = 1. To accept the principal’s incentive contract in t = 0 they must

be given an perceived utility level that matches the reservation utility level of a TC.

This ‘commitment effect’ works in favor of a naif. However, once in period t = 1 a naif

deviates from her perceived effort choices and gives in to her present-bias. A naif is

thus harmed by this second effect. In contrast, a sophisticate anticipates that she will

act according to her present-biased preferences in t = 1 and thus requires an perceived

utility level that matches the reservation utility of an time-inconsistent agent only.

However, even though naifs receive a higher perceived utility level, they realize a lower

actual utility level. We show that, given Assumption 3.1, this second effect always

dominates. Naifs thus realize a lower welfare than sophisticates, and this welfare is

even lower than the welfare level naifs realize without incentives. This is summarized

in the following proposition.

Proposition 3.2 Given Assumption 3.1, in the presence of incentives a naive agent’s

welfare can be lower than a sophisticated agent’s welfare. A naive agent’s welfare can

thus be reduced by accepting the incentive contract.

Proof: The existence of a non-empty parameter space for which the result holds true

is shown by numerical example. Figure 3.5 plots welfare levels as functions of β, given

b = 2 and v = 4. The top, straight line depicts a TC’s welfare. The curve below
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Figure 3.5: Agents’ Welfare Levels with Incentives. The figure depicts welfare levels
as a functions of β, given v = 4. The top, straight line depicts a TC’s welfare. The curve
below depicts a sophisticate’s welfare, the lowest curve depicts a naif’s welfare. For β = 1
welfare levels coincide.

depicts a sophisticate’s welfare, the lowest curve depicts a naif’s welfare. For β = 1

welfare levels coincide. q.e.d.

From Proposition 3.1 we already know that sophisticates and naifs are always worse

off than TCs. We now show that, given Assumption 3.1, even though social welfare re-

alized with sophisticates and naifs is always below social welfare realized with TCs, the

principal’s profit can be higher if the agent is naive; it can be lower with sophisticates.

Proposition 3.3 Given Assumption 3.1, the principal’s profit from contracting with

naive agents can be higher than profit from contracting with TCs, even though social

welfare is always lower if agents have present-biased preferences. With sophisticates

the principal’s profit can be lower than with TCs.

Proof: The existence of a non-empty parameter space for which the result holds true

is shown by numerical example. Figure 3.6 plots levels of social welfare against β, given

b = 6 and v = 4. The top straight line is social welfare with TCs. The curve below

depicts social welfare with naifs, and the lowest curve with sophisticates. Figure 3.7

depicts profit levels. The straight line in the middle are profits in case of a TC. The

top, decreasing line depicts the principal’s profits with naifs. Profits with sophisticates
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Figure 3.6: Social Welfare Levels. The
figure depicts social welfare as function of β

for b = 6 and v = 4. The top, straight line
depicts social welfare with TCs, the curve in
the middle with naifs, the lowest with sophis-
ticates. For β = 1 values coincide.
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Figure 3.7: Profit Levels. The figure de-
picts profit levels as function of β, given b = 6
and v = 4. The straight line depicts prof-
its with TCs, the top, decreasing curve with
naifs, the lowest curve with sophisticates.
For β = 1 values coincide.

are the lowest, increasing line. q.e.d.

In the following we are interested in the change of social welfare when the principal

offers incentive contracts as compared to the situation without incentives. From Propo-

sition 3.2 we know that naifs are harmed by incentives. The principal, on the contrary,

gains when offering incentive contracts. From Proposition 3.3 we know that his profit

when contracting with naifs can increase, the more severe the time-inconsistency prob-

lem gets, i.e. the lower β. Furthermore, in the following we show that the agent’s loss

can exceed the principal’s gain. That is, social welfare may decrease if the principal

provides incentives relative to the situation without incentives. With TCs or sophis-

ticates this can never happen. Those agents always receive their reservation welfare

levels and the principal extracts the complete surplus from the additional, efficient

activity. This finding is summarized in the following proposition.

Proposition 3.4 Given Assumption 3.1, with naive agents social welfare may de-

crease if the principal offers incentive contracts as compared to the situation without

incentives.
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Figure 3.8: Welfare Comparison. The figure shows welfare levels as function of β, given
b = 2 and v = 4. The top straight line depicts social welfare with TCs. The curve that
coincides with social welfare with TCs at β = 1 is social welfare with naif agents. The curve
that lies below at β = 1 is the welfare of a time-inconsistent agent without incentives. Social
surplus with a naif decreases faster than a naif’s welfare without incentives and eventually
falls short of it as β decreases.

Proof: The existence of the effect is shown by numerical example. Figure 3.8 plots

levels of social welfare against β, given b = 2 and v = 4. The top straight line depicts

social welfare with TCs and is included as benchmark only. The curve that coincides

with social welfare with TCs at β = 1 is social welfare with time-inconsistent agents.

The curve that lies below at β = 1 is the welfare of a time-inconsistent agent without

incentives. Given the parameter, social surplus with a naif decreases faster than a

naif’s welfare without incentives and eventually falls short of a naif’s welfare without

incentives. Social welfare is then lower if the principal offers an incentive contract as

compared to the situation without incentives. With a sophisticate this cannot happen,

even though both a sophisticate’s welfare without incentives and social welfare with

incentives coincide with the respective curves for a naif. With naifs social welfare falls

short of a time-inconsistent agent’s welfare without incentives exactly at the value of

where the principal’s profit with sophisticates falls negative. For such low values of

γ the principal would thus not offer not offer an incentive contract to a sophisticate.

With naifs her rises as γ decreases. q.e.d.
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Proposition 3.4 shows that incentives can have detrimental effects. From a very dif-

ferent perspective, beginning with Titmuss (1970), there exists a literature discussing

negative effects of incentives. The main argument is ‘motivation crowding out’. Ac-

cording to this theory extrinsic rewards can be harmful because they may destroy in-

trinsic motivation. See Frey and Jegen (2001) for an overview of both ‘crowing theory’

and empirical evidence. For recent experimental evidence see Gneezy and Rustichini

(2000a, 2000b) and Fehr and Gächter (2002). In the context of our model the cause of

the detrimental effect of incentives is very different. We show that naifs are harmed by

incentives because the presence of incentives increases the mistake they make due to

their present-biased preferences. By definition of naiveté, the agent does not anticipate

this behavior and thus does not get compensated for this mistake. Furthermore, we

have shown that the principal’s profit from providing incentives can be smaller than

the loss that accrues to a naive agent. In this case, social welfare is reduced by the

presence of incentives.

3.4 Conclusion

In this paper we have analyzed self-control problems in a multi-tasking environment.

While the existing literature analyzed environments in which a present-biased agent

must decide when to accomplish a single task, in this model we look at situations in

which an agent must allocate effort between multiple tasks and decide how much effort

to exert. We furthermore assumed that effort devoted to different activities pays out

at different points in time.

More specifically, a principal offers a linear incentive contract for an immediately

rewarded task. Agents must allocate effort between this task and a private activity

that pays out only tomorrow. Such an activity could be, for example, caring for one’s

health or continuing to go to school. Effort costs accrue immediately. There are

three different types of agents. Time-consistent agents, sophisticated agents, and naive

agents. Throughout the paper we assumed away complications of adverse selection.

It was thus assumed that the principal knows the type of agent he is contracting
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with. We find that present-biased agents take decisions that do not maximize their

long-run welfare, irrespective of the intensity of incentives. Sophisticated agents are

never harmed by incentives relative to the case without incentives as they always

receive their reservation utility levels. However, naive agents can be worse off in the

presence of incentive contracts as compared to the case without incentives. On the one

hand, they wrongly expect a high reservation utility and participate only if they are

paid high enough wages. On the other hand, they wrongly predict tomorrow’s effort

choices which is exploited by the principal. Furthermore, even though agents with

time-inconsistent preferences are always harmed by their present bias, the principal’s

profit with naifs can increase as the present-bias becomes more severe. Finally we show

that social welfare can decrease in the presence of incentives even though the principal

offers an efficient additional production opportunity. With naive agents it can happen

that the additional welfare loss due to present-biased effort choices in the presence of

incentive contracts exceeds the principal’s gain from offering the incentive contract.

The model thus offers a new theoretical possibility of detrimental effects of incentives,

complementary to existing arguments like the crowding out of intrinsic motivation by

extrinsic rewards.

The results of the paper were shown assuming explicit utility functions. The exact

conditions under which the effects highlighted in this paper hold true remain to be

identified in future research activity. However, their existence could be established.

An possible extension of the model will be to drop the assumption that the prin-

cipal knows the type of agents the is contracting with and analyze possible screening

contracts. Another possible extension will be the analysis of a setting with immediate

private benefits and delayed wage payment. There are plenty natural situations imag-

inable where this constellation is of relevance. While continuing to work on one’s Ph.D.

thesis after 5 p.m. pays out only with delay, the private benefit of a relaxed evening

however accrues immediately.



Chapter 4

Inequity Aversion and Moral

Hazard with Multiple Agents∗

4.1 Introduction

We analyze how inequity aversion (Fehr and Schmidt (1999), Bolton and Ockenfels

(2000)) interacts with incentive provision in an otherwise standard moral hazard model

with multiple agents.39 The theory of inequity aversion assumes that some but not all

agents suffer a utility loss if their own material payoffs differ from the payoffs of other

agents in their reference groups. The approach can explain a large variety of seemingly

diverging experimental findings that often conflict with the standard assumption of

pure selfishness.40 This paper goes a step further and applies the theory of inequity

aversion to the theory of incentives. If agents do not simply maximize their own

material payoffs but also care for other agents’ payoffs they will respond differently

to incentives than predicted under the assumption of pure selfishness. Incorporating

social preferences into the theory of incentives – thereby either exploiting them or

paying tribute to an additional constraint – may help to understand why real world

contracts often differ from those contracts found optimal by the standard theory.

∗The chapter is based on joint work with Ferdinand von Siemens from the University of Munich.
39See Grossman and Hart (1983) and Mookherjee (1984)
40For an overview of the literature see, for example, Fehr and Schmidt (2003) and Camerer (2003).
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In a classic contribution to the theory of incentives Holmström and Milgrom (1991,

p. 24) state that “it remains a puzzle for this theory that employment contracts so often

specify fixed wages and more generally that incentives within firms appear to be so

muted, especially compared to those of the market.” The authors offer an explanation

for the paucity of incentives based on the assumption that agents conduct multiple

tasks, and that tasks are measured with varying degrees of precision.

We offer an alternative, behavioral explanation to account for the observation that

incentives offered to employees within firms are generally ‘low-powered’ compared to

‘high-powered’ incentives offered to independent contractors. We assume that within

firms social comparisons are pronounced whereas in the marketplace they are negligi-

ble.41 We further assume that an agent suffers a utility loss if another agent conducting

a similar task within the same firm receives a higher wage. We find that behindness

aversion (suffering only when being worse off) unambiguously increases agency costs

of providing incentives. As a consequence, behindness aversion may render equitable

flat wage contracts optimal – even though incentive contracts are optimal with selfish

agents. Hence, within firms where social comparisons are significant we find ‘low pow-

ered’ flat wage contracts to be optimal, whereas ‘high powered’ incentive contracts will

be given to ‘unrelated agents’ in the marketplace.

Furthermore, we argue that our analysis can contribute to the question of the

optimal size of a firm. Suppose the principal can set up different firms, but setting

up a firm involves fixed costs. The principal now faces a trade-off. On the one hand,

‘integration’ of several agents within a single firm causes social comparisons and, as

shown in this paper, increased agency costs of providing incentives. On the other hand,

‘separation’ of agents into different firms involves additional fixed costs. The solution

to this trade-off defines, in the context of this model, the optimal degree of integration.

More specifically, in this paper we derive optimal moral hazard contracts assum-

ing risk- and inequity averse agents that constitute each other’s reference group. The

agents however do not compare themselves to the principal. Agents carry out iden-

tical tasks and regard it as unfair if their wage payments differ. We further assume

41See, for example, Bewley (1999) for supporting evidence.
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that the principal is both risk neutral and selfish. To keep the analysis tractable we

consider the most simple set-up with two agents, two effort levels and two possible

output realizations; to receive closed form solutions we assume an explicit utility func-

tion and a linear inequity term as in Fehr and Schmidt (1999). In the appendix we

however show that our results hold true (1) for any concave utility function and (2)

irrespective of the functional form of disutility from inequity. Effort is taken to be

non-contractible such that incentive compatible wages must condition on stochastic

output realizations. Hence, agents suffer if output realizations and thus wages differ.

We show that behindness aversion among agents unambiguously increases agency costs

of providing incentives. This also holds true if agents, in addition, suffer from being

better off unless they account for effort costs in their comparisons.

The intuition behind this finding can be seen as follows. Inequity aversion effects

an utility loss if output realizations diverge. The resulting, reduced utility levels could

be implemented without inequity aversion as well, simply by lowering the wages. Since

these lower utility levels were not optimal without inequity aversion, they cannot be

optimal now.

Increased agency costs can undermine efficiency in two ways. First, equitable flat

wage contracts may become optimal even though incentive contracts are optimal with

selfish agents. Second, to avoid social comparisons the principal may employ one agent

only, thereby forgoing the efficient effort provision of the other agent. This second effect

of inequity aversion is qualitatively different from the impact of risk aversion on optimal

contracts. The principal can respond to high degrees of risk aversion only by waiving

incentives and offering flat wages, whereas with inequity aversion – or more generally

with social preferences – he has an additional instrument at hand if he can control an

agent’s reference group. It is possible to eliminate inequity and still provide incentives

to at least one agent. We call this the ‘reference group effect’. Third, endowing the

principal with the option to set up a second firm at a fixed cost allows to analyze

whether ‘integration’ or ‘separation’ is optimal.

Further results are derived. Since optimal wages condition on the output realization

of the respective other agent as well, the sufficient statistics result due to Holmström
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(1979) does not apply. We find that inequity aversion renders team contracts optimal

even if output is uncorrelated. Analyzing the interaction between risk and inequity

aversion, we find that the additional agency costs due to inequity aversion are higher,

the higher the degree of risk aversion. With risk neutral agents inequity aversion does

not impact equilibrium agency costs as long as no limited liability constraint binds.

Finally, labor contacts often encompass a clause prohibiting employees to communi-

cate their salary. At first sight, inequity aversion could serve as an explanation for

this observation. We however show that secrecy of salaries only further increases the

additional agency costs due to inequity aversion.

Related Literature

Itoh (2003) and Demougin and Fluet (2003) are most related to our paper. Itoh (2003)

analyzes how inequity aversion among risk neutral agents changes optimal incentive

contracts, assuming limited liability to be the source of moral hazard. In contrast

to our results, Itoh finds that inequity aversion can never harm the principal. With

risk neutrality the principal can always choose a fully equitable contract out of the set

of contracts that are optimal without inequity aversion. Moreover, inequity aversion

can even increase the principal’s profit. With limited liability the principal may be

forced to pay the agents rents to provide incentives because there is a lower bound

on agents’ wage payments. However, inequity aversion enables the principal to punish

an agent harsher than paying the lowest possible wage level, simply by paying other

agents more, thereby reducing agents’ rents. Demougin and Fluet (2003) also analyze

a two agents moral hazard problem assuming risk neutrality and limited liability. They

compare group and individual bonus schemes for behindness-averse agents and derive

conditions under which either scheme implements a given effort level at least costs.

Inequity aversion between multiple agents is also analyzed by Rey Biel (2003) and

Neilson and Stowe (2003). Rey Biel (2003) analyzes a setting with two inequity averse

agents and a principal in which agents’ effort choices deterministically translate into

output. He exogenously assumes the participation constraint to be slack and finds

that the principal can always exploit inequity aversion to extract more rents from his
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agents. Neilson and Stowe (2003) restrict their analysis to linear piece-rate contracts

and identify the conditions under which other-regarding preferences lead workers to

exert more or less effort than selfish agents, and whether the optimal piece rate is

higher or lower for inequity averse agents.

Englmaier and Wambach (2003) and Dur and Glaser (2004) consider comparisons

between agents and principal. Englmaier and Wambach (2003) find that the sufficient

statistics result does not apply and that inequity aversion causes a strong tendency

towards linear sharing rules. Dur and Glaser (2004) show that inequity aversion can

be a reason for high incentives, even for profit sharing, as this reduces inequity.

In Bartling and von Siemens (2004) we analyze how incentive provision in team

production is affected if agents are inequity averse. In contrast to the classic result by

Holmström (1982) we find that efficient effort choices can be implemented by simple

budget-balancing sharing rules if agents are sufficiently inequity averse. Conditions for

efficiency become less restrictive the smaller the team. This fits common observation

that small teams often work well whereas larger ones suffer from free-riding.

The remainder of the paper is organized as follows. Section 4.2 presents the basic

model. In Section 4.3 we derive the optimal incentive contracts for inequity averse

agents. Section 4.4 presents our main results. Section 4.5 explores the implications of

our results for the optimal firm size. Section 4.6 analyzes the case with secret salaries.

In Section 4.7 we discuss comparison of rents, disutility from being better off, and

status preferences. Section 4.8 concludes. In the Appendix we discuss the generality

of our results.

4.2 The Model

4.2.1 Projects, Effort, and Probabilities

Suppose a principal can employ two risk averse agents. If employed, each agent manages

a project with stochastic output x ∈ {xl, xh}, where xh > xl and ∆x := xh − xl. Each

agent faces a binary effort choice. He either exerts effort, e = 1, or he shirks, e = 0.
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Effort costs are denoted by ψ(1) = ψ > 0 while shirking is assumed to be costless,

ψ(0) = 0. If an agent exerts effort, the output of his project is xh with probability π

and xl with probability 1 − π, where π ∈]0, 1[. If an agent shirks, the output of his

project is always xl. Effort is assumed not to be contractible. The agents’ projects are

independent, their production outcomes are uncorrelated.

4.2.2 Preferences: Risk- and Inequity Aversion

We depart from the standard literature by assuming that agents are inequity averse in

the sense of Fehr and Schmidt (1999).42 We assume that an agent’s utility is additively

separable in the following three components. First, each agent enjoys utility u(w) from

his wage payment w by the principal. To derive explicit results we assume this utility

function to take on the specific form43

u(w) = (−1 +
√

1 + 2rw)/r. (4.1)

This function is strictly increasing and convex for all w > −1/2r. Thus, the agent

is risk averse with respect to his income. The corresponding inverse function h(x) :=

u−1(x) = x + rx2/2 is well defined for all x > −1/r. For small w, r can be considered

as the agent’s approximated degree of absolute risk aversion. This approximation is

correct at a zero wage: −u′′(w)/u′(w)|w=0 = r. Second, an agent incurs effort costs ψ

if he works; shirking is costless. Finally, an agent suffers from inequity. We assume

an agent’s reference group to be confined to the other agent, thus the agents do not

compare themselves to the principal. Agents carry out an identical task and regard

it as unfair if wage payments differ. Since the principal conducts a different ‘task’ his

payoff is not taken to be a point of reference. The identification of an agent’s relevant

reference group will, however, ultimately be an empirical question.

In the body of the paper we restrict attention to ‘behindness aversion’. Whenever

42See Bolton and Ockenfels (2000) for a related formulation of inequity aversion.
43In the appendix we show that our results neither hinge upon this explicit utility function nor

on the assumed linear formulation of inequity aversion by Fehr and Schmidt (1999). The chosen
functional forms however allow to derive closed from solutions.
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an agent receives a lower payoff than the other agent he suffers a utility loss, but agents

do not suffer if they are better off than the other agent. More formally, suppose agent

i ∈ {1, 2} receives wage wi, whereas agent j 6= i receives wage wj. Agent i′s utility

function can then be written as

vi(wi, wj) = u(wi)− ψ(e)− α ·max[u(wj)− u(wi), 0]. (4.2)

The parameter α ≥ 0 is a measure of behindness aversion. The higher α the more

an agent suffers from inequity. Notice that the above formulation does not imply

that agents compare utilities interpersonally, but rather that agent i suffers from the

inequity between the utility he obtains from wage wi and the utility he would enjoy

when receiving the higher wage wj himself. Both agents maximize expected utility.

Despite the evident experimental evidence on inequity aversion it is still an open

question what exactly people compare; whether they focus, for example, on wage pay-

ments or utility from wage payments, and whether they account for differences in

effort costs or not.44 In this paper, we assume that agents compare utility levels as

this renders the principal’s maximization problem well behaved.45 To avoid tedious

case distinctions we neglect the possibility that agents account for effort costs in their

comparisons. In Section 4.7.1 we however show that accounting for effort costs in the

inequity term does not conflict with but rather reinforces the qualitative results of this

paper. In Section 4.7.2 we show that introducing suffering from being better off, again,

only reinforces our qualitative results unless agents account for effort costs in their

comparisons.

The principal is both risk-neutral and unaffected by inequity concerns. He maxi-

mizes expected output minus expected wage payments.

44For a more detailed discussion of inequity aversion see Fehr and Schmidt (1999, 2003).
45Otherwise constraints are not linear, the maximization problem not concave, and the solution

not straightforwardly characterized by first-order conditions.
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4.3 Contracts

We focus on symmetric contracting such that the principal offers identical contracts

when employing both agents. The principal has three options. He can either employ

both agents and implement effort or shirking, or he can decide to employ one agent

only to avoid social comparisons.46 In the following section we derive optimal contracts

implementing these effort choices.

4.3.1 Benchmark: The Single Agent Case

The principal can avoid social comparisons by employing one agent only. Recall that

we have confined an agent’s reference group to the respective other agent working

with the same principal. With a single agent inequity aversion is thus irrelevant. The

optimal contract for the employed agent (incentive or flat wage contract) then depends

on the standard parameters of the model via the participation and incentive constraint.

Suppose first the principal wants to implement high effort. Since effort is not verifiable

wages must condition on stochastic output realizations and the classic risk-incentive

trade-off arises. Define wi as the agent’s wage if his output is i ∈ {h, l}, and define

ui := u(wi). To render the principal’s maximization problem concave, we rewrite the

principal’s objective function and the constraints in terms of uh and ul. An agents

outside option is normalized to zero. The resulting first-order conditions then yield

u∗h =
ψ

π
and u∗l = 0 (4.3)

as the optimal contract, and profit can be written as

P i
1 = πxh + (1− π)xl −

[
h(ψ) +

rψ2(1− π)

2π

]
(4.4)

46In principle, he could also offer a ‘hybrid contract’: an incentive contract to one agent and a
‘non-incentive contract’ to the other agent. Note that due to inequity aversion such a ‘non-incentive
contract’ would not be a flat wage contract. It can be shown that considering the ‘hybrid contract’
would not change the qualitative results of this paper.
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where superscript i denotes ‘incentive contract’ and the subscript shows the number of

agents employed. Define

RAC :=
rψ2(1− π)

2π

as the ‘risk-agency-costs’ that have to be payed on top of the first-best cost of effort

implementation h(ψ) due to risk aversion.

Suppose now the principal offers a flat wage contract. The agent then never exerts

effort and the participation constraint is satisfied at flat wage wf = 0. The principal’s

profit in this case is P f
1 = xl. The difference in expected profit from implementing

effort as compared to paying a flat wage is given by

B := π∆x− h(ψ)−RAC.

Thus, it is optimal for the principal to implement high effort if and only if

B ≥ 0 ⇔ π∆x ≥ h(ψ) + RAC. (4.5)

The principal offers an incentive contract whenever the expected output increase is

sufficiently large relative to the first best cost of implementing effort and the RAC.

The condition is more likely to be met if effort cost and risk aversion are small and

the information content of the project outcomes is high. Exerting effort is efficient if

π∆x ≥ h(ψ) but risk aversion leads to a trade-off between insurance and efficiency and

causes additional RAC. This leads to inefficient effort choices if h(ψ)+RAC ≥ π∆x ≥
h(ψ). If π∆x ≥ h(ψ) + RAC the efficient effort level is implemented but risk aversion

reduces the principal’s expected profit.

In the next section we show that inequity aversion amplifies these effects. Inequity

aversion causes additional agency costs which unambiguously rise as the level of in-

equity aversion rises. This further reduces the principal’s expected profit, and it can

lead to additional inefficiencies. Throughout the paper we therefore assume incentive

condition (4.5) to be fulfilled. B < 0 is the uninteresting case since flat wage contracts

would then always be optimal – even without inequity aversion.
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4.3.2 The Two Agents Case

In this section we consider the two agents case. Both agents work within the same firm

and we thus assume that they compare their wage levels. An agent suffers a utility

loss in case he is behind. In contrast, we assume that an agent would not compare his

wage to the wage of an agent with whom he only interacts in the market, i.e. an agent

that works for another principal.

With incentive contracts inequity arises naturally as output is stochastic and in-

centive compatible wages must condition on output realizations. At first glance the

effect of inequity aversion on agency costs is ambiguous. Behindness aversion increases

incentives because exerting effort reduces the probability of being behind. At the same

time agents anticipate that even if they exert high effort with positive probability they

will be behind. Ex ante agents have to be compensated for this expected utility loss

to ensure participation.

We show that the positive effect on incentives is always dominated by the negative

effect on participation and, therefore, behindness aversion unambiguously increases the

agency costs of providing incentives. The intuition can be seen as follows. Without

inequity aversion the second-best optimal incentive contract assigns wage levels to each

possible output realization such that both IC and PC are fulfilled and binding. For

some output realizations (i.e. agent one is successful, agent two is not) the contract

assigns diverging wage levels to the agents (agent one receives a higher wage than

agent two, assuming the monotone likelihood ration to hold). If now inequity aversion

is considered, the utility of agents receiving less than others (agent two) is reduced

by the amount of suffering from being behind. However, this lower utility level could

have been achieved without inequity aversion as well – simply by lowering the respective

wage level, which reduces the principal’s cost. As this was not optimal without inequity

aversion it cannot be optimal now.

In the appendix we show that this intuition holds generally. Assuming only con-

cavity of the utility function we show that inequity aversion renders it weakly more

expensive to implement each possible effort level. However, our arguing does not hold
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when there is limited liability. With limited liability the lowest possible wage pay-

ment and thus the lowest possible utility level for an agent is bounded from below. To

provide incentives the principle may thus be forced to leave the agents rents. In this

case inequity aversion provides the principal with the possibility to reduce the lowest

possible utility level. An agent can now not only be punished by paying out the lowest

wage level but in addition by paying other agents a higher wage. The lowest possible

utility level for an agent can thus be reduced without violating the limited liability

constraint. This in turn enables the principal to reduce the agents’ rents.

Suppose first the principal does not want to implement effort. He then offers two

flat wage contracts. Since there is never inequity, inequity aversion is irrelevant and

the principal’s profit is simply

P f
2 = 2 · P f

1 = 2 xl. (4.6)

Suppose now the principal wants to implement effort. We show that the principal’s

expected profit is not just twice the expected profit in the single agent case but P i
2 ≤

2 P i
1. As both agents are symmetric, we assume that optimal wages are symmetric

in the sense that they condition on the output realizations of both projects but not

on the identity of the agent. Denote by wij the wage of an agent with output i if

the other agent’s output is j. Define uij := u(wij) as an agent’s utility from wage

wij. As there are four possible states of the world, a contract determines four wage

levels: wll, whh, wlh, and whl, where h stands for high and l for low output. To render

the principal’s maximization problem concave with linear constraints, we rewrite the

principal’s objective function and the constraints in terms of uhh, uhl, ulh, and ull.

Recall that the maximum functions in the agents’ utility functions in (4.2) create

potential kinks. At these points, the utility functions and thus the PC and IC are not

differentiable, potentially rendering it impossible to characterize optimal contracts by

first-order conditions. However, the following lemma allows to avoid this problem.

Lemma 4.1 The optimal incentive compatible contract for two inequity averse agents

satisfies u∗hl ≥ u∗lh.
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Proof: Suppose this was not the case, that is uhl < ulh at the optimum. Then the IC

and PC are given by

(IC’) π2uhh + π(1− π)[uhl − α(ulh − uhl)]− π2ulh − π(1− π)ull − ψ ≥ 0

(PC’) π2uhh + π(1− π)[uhl − α(ulh − uhl)] + π(1− π)ulh − (1− π)2ull − ψ ≥ 0

Consider changes dulh < 0 and duhl = −dulh(1 − α)/(1 + α). This leaves (PC’)

unaffected but improves (IC’). The principal’s profit increases by

dP i
2 = 2π(1− π)

[
h′(uhl)

1− α

1 + α
− h′(ulh)

]
dulh,

which is strictly larger than zero as (1 − α)/(1 + α) ≤ 1, dulh < 0, uhl < ulh, and

h′′(u) > 0. q.e.d.

Notice that dulh < 0 has a twofold effect on (PC’). On the one hand, this decreases

the agent’s utility if his own project fails whereas the other agent’s project is successful.

On the other hand, unfavorable inequity decreases if the agent himself is successful

whereas the other agent is unfortunate. In the latter case the agent’s utility increases.

If the inequity reducing effect dominates, α > 1, the principal may decrease both uhl

and ulh while keeping (PC’) unaffected and not impairing (IC’). In either case, the

principal can increase his expected profit without violating a constraint, and uhl < ulh

cannot be optimal.

By Lemma 4.1 we can introduce an additional constraint, uhl − ulh ≥ 0, without

restricting the attainable maximum. We call this constraint the Order Constraint

(OC). The maximum functions in the agents’ utility functions are thus removed and

the principal maximizes

P i
2 = 2

[
xl + π2 [∆x− h(uhh)] + π(1− π)[∆x− h(ulh)− h(uhl)]− (1− π)2h(ull)

]

(4.7)
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with respect to uhh, uhl, ulh, and ull, where

(IC) π2uhh + π(1− π)uhl − π2[ulh − α(uhl − ulh)]− π(1− π)ull − ψ ≥ 0

(PC) π2uhh + π(1− π)uhl + π(1− π)[ulh − α(uhl − ulh)] + (1− π)2ull − ψ ≥ 0

(OC) uhl − ulh ≥ 0.

are the constraints characterizing the principal’s choice set.47

We begin by assuming that the OC is not, whereas the IC and PC are binding.

Solving the resulting first-order conditions then yields

u∗hh =
ψ

π
+

α(1− π)(1 + α(π + rψ))

rk
(4.8)

u∗hl =
ψ

π
− απ(1 + α(π + rψ))

rk
(4.9)

u∗lh =
α(1− π(1 + απ) + (1 + α)rψ)

rk
(4.10)

u∗ll = −α(π(1 + α(1 + π))− rψ)

rk
(4.11)

where k = 1+απ(2+α(1+π)). The Lagrange multipliers for the PC and IC are given

by µ = 2(1 + rψ[1 + α(1 + π) + 2πα2] + 2πα(1 + πα))/k and λ = 2(1 − π)(rψ[1 +

πα + 2πα2] + πα(1 + 2πα))/πk. Since these are strictly positive, both the PC and

IC are indeed binding as initially assumed. We also have to check whether it holds

true that the OC is slack, i.e. whether we have u∗hl ≥ u∗lh. The difference is given by

(rψ + απ(rπ − 1))/rπk. Thus, the OC is indeed slack and the solutions (4.8) - (4.11)

are valid if and only if either rψ ≥ 1 or rψ < 1 and α < α̃ where

α̃ := rψ/(π(1− rψ)). (4.12)

47We do not consider dominant strategy implementation in this paper, i.e. we only look at contracts
such that the constraints are satisfied for one agent given that the other agent behaves as expected.
Even though both agents participating and exerting effort then forms a Nash equilibrium it is possibly
not unique.
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Finally, since h(u) is defined for u ≥ −1/r only, we have to verify that this always

holds. Algebraic manipulations show that u∗lh ≥ u∗ll. The solution is thus valid if

u∗ll ≥ −1/r, or ru∗ll ≥ −1. This condition holds with equality if r = r̃ = −(1+απ)/(αψ).

Differentiating ru∗ll with respect to r yields αψ/k ≥ 0. Hence, ru∗ll rises in r. Since we

must have r > 0, r always exceeds r̃, and u∗ll never falls short of −1/r.

Suppose now that all the constraints PC, IC, and OC are binding. The binding OC

forces the principal to set ulh = uhl. This restriction on the contract design eliminates

inequity but comes at a cost. Solving the corresponding first-order conditions we get

u∗hh =
ψ

π
+

(1− π)ψ

π
(4.13)

u∗hl = u∗lh =
ψ

π
− ψ =

(1− π)ψ

π
(4.14)

u∗ll = −ψ. (4.15)

The Lagrange multipliers of the PC and IC are µ = 2rψ + 2 and λ = 4rψ(1 − π)/π.

Since both are strictly positive, the PC and IC are indeed binding as initially assumed.

As h(u) is defined for u ≥ −1/r only, the above solution is valid only if rψ < 1.

The overall optimal solution depends on whether the OC is binding or not, which

in turn depends on r,ψ and α. This is summarized in the following proposition.

Proposition 4.1 (Optimal Contracts For Inequity-Averse Agents)

i) Suppose rψ ≥ 1. The optimal incentive compatible contract for two inequity

averse agents is given by (4.8) - (4.11).

ii) Suppose rψ < 1. If α < α̃, the optimal incentive compatible contract for two

inequity averse agents is given by (4.8) - (4.11). If α ≥ α̃, it is given by (4.13) -

(4.15).

Proof: There are two cases. First, suppose rψ ≥ 1. Then solution (4.13) - (4.15) is

not valid as u∗ll < −1/r, whereas solution (4.8) - (4.11) is valid for all α as we always
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get (rψ + απ(rπ − 1))/rπk > 0. Second, suppose rψ < 1. Then for all α < α̃ both

extreme points are candidates for the overall solution, but (4.8) - (4.11) dominates as

the maximum is not restricted by the OC. For all α ≥ α̃, only solution (4.13) - (4.15)

is valid. q.e.d.

4.4 Results

4.4.1 Inequity Aversion Renders Team Contracts Optimal

Since we assume output to be uncorrelated an agent’s output realization does not

contain information about the other agent’s effort choice. According to the classic re-

sult by Holmström (1979) optimal wages should only condition on sufficient statistics

for effort choices. In our model wages should thus only condition on the own output

realization. Nonetheless, since agents compare the utility levels from their wages opti-

mal contracts also condition on the other agent’s output realization in order to reduce

inequity. Therefore, the sufficient statistics result does not apply.48 Define a team

contract as a compensation scheme such that an agent’s wage depends positively on

the other agent’s success. Thus, in a team contract we have whh > whl and wlh > wll.

As summarized in the following proposition inequity aversion renders team contracts

optimal.

Proposition 4.2 (Team Contracts)

The sufficient statistics result does not apply: Inequity aversion renders team contracts

optimal even if output is uncorrelated.

Proof: Comparison of the relevant utility levels in Proposition 4.1 yields u∗hh − u∗hl =

α(1 + α(π + rψ))/rk ≥ 0 and u∗lh − u∗ll = α(1 + α(π + rψ))/rk ≥ 0. q.e.d.

Since output is stochastic, agents obtain different output realizations with positive

probability even though both agents exert high effort. The unfortunate agent then

48In the context of interdependent preferences this result naturally arises. It was first shown in
Englmaier and Wambach (2003).
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suffers from obtaining a lower wage than the fortunate agent. The optimal contract

accounts for this effect and adjusts wage levels accordingly.

4.4.2 Inequity Aversion Causes Additional Agency Costs

In the benchmark case of a single agent inequity aversion is irrelevant and does not

influence the principal’s profit. This is also the case with flat wage contracts for two

agents as there is never inequity. However, with incentive contracts for two inequity

averse agents additional agency costs arise. Suppose rψ ≥ 1 or rψ < 1 but α < α̃

such that the optimal contract is characterized by (4.8) - (4.11). Substituting optimal

utility levels, the principal’s maximum profit is then given by

P i
2 = 2 P i

1 − IAC, (4.16)

where

IAC :=
α(1− π)(2rψ + πα(rψ − 1) + αr2ψ2)

rk
. (4.17)

denotes the ‘inequity agency costs’, the additional agency cost due to inequity aversion.

Inequity aversion has a negative effect on the principal’s maximum profit as the above

solution is only valid if either rψ ≥ 1 or α ≤ α̃ holds, and this ensures that IAC are

positive. Equivalently, suppose rψ < 1 and α < α̃ such that the optimal contract

is characterized by (4.13) - (4.15). Substituting optimal utility levels, the principal’s

maximum profit is then given by

P i
2 = 2 P i

1 − IAC, (4.18)

where

IAC :=
rψ2(1− π)

π
(4.19)

denotes the ‘inequity agency costs’ in this case. Again, the principal’s profit with two

hard working agents is strictly less than twice the profit with only one hard working
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agent as the IAC are always positive. Note that in the latter case the IAC do not depend

on α as the above solution is subject to the OC binding and inequity is completely

eliminated. However, inequity aversion reduces the principal’s profit as it forces him

to set u∗hl = u∗lh via the binding OC. We can now derive the following result.

Proposition 4.3 (Additional Agency Costs)

Inequity aversion among agents causes additional agency costs of implementing effort.

These agency costs weakly increase and converge as the level of inequity aversion rises.

Proof: Suppose rψ ≥ 1. The IAC are then given by (4.17) and rψ ≥ 1 ensures

(4.17) > 0. Differentiating (4.17) with respect to α yields

∂ IAC

∂α
=

2(1− π)(1 + α(rψ + π))(rψ(1 + απ)− απ)

rk2
, (4.20)

which is strictly positive as rψ ≥ 1. The limit of IAC is given by

lim
α→∞

IAC =
1− π

1 + π

[
rψ(2π + rψ)− 1

]
, (4.21)

where rψ ≥ 1 again ensures the expression to be positive. Suppose now rψ < 1. In

case α ≤ α̃ the above arguments on sign of IAC and their derivative w.r.t. α apply. In

case α > α̃ the IAC are given by (4.19) which is positive as we have r > 0, ψ > 0, and

π ∈]0, 1[, does not change in α, and is thus equal to the limit as α →∞. q.e.d.

Proposition 4.3 proves that the negative effect of inequity aversion on the PC always

dominates the positive effect on the IC. The negative effect of inequity is however

bounded because the principal can always equate whl and wlh if α becomes too large.

The optimal contract then remains unchanged as α further increases. The intuition for

the dominance of the effect on the PC can best be seen when approaching the problem

from a different angle. Inequity aversion effects a utility loss in certain states of the

world. If the resulting reduced utility level were second-best optimal, then they could

be realized without inequity aversion as well – simply by lowering wage payments.

As lower utility levels are not second-best optimal without inequity aversion, they
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cannot be optimal now. In the appendix we show that this intuition straightforwardly

generalizes to less restrictive settings.

As an alternative intuition for the result consider the following. Suppose the OC

is binding. To eliminate suffering from inequity aversion utility levels in case of di-

verging output realizations are equated. This clearly impairs incentives to exert effort.

Hence, in cases with identical output realizations wage payments must become more

extreme. Agents then have to bear more risk for which they must be compensated. The

same reasoning holds true if the OC is not binding. In addition to the increased risk,

agents then also have to be compensated for the inequity they bear despite the wage

compression in case output realizations diverge. This leads to the next proposition.

Proposition 4.4 (Complementarity)

The more risk averse the agents, the higher the additional agency costs due to inequity

aversion.

Proof: In case the OC does not bind the IAC are given by (4.17). Differentiating

(4.17) with respect to r yields

∂ IAC

∂r
=

(1− π)α2(π + r2ψ2)

rk2
(4.22)

which is unambiguously positive. In case the OC binds and the IAC are given by (4.19)

the respective partial derivative is clearly positive. q.e.d.

Since contracts that account for inequity aversion lead to more risk bearing, the

higher the degree of risk aversion, the higher the additional agency costs caused by

inequity aversion. Risk aversion and inequity aversion thus have complementary effects.

Consider the extreme case of risk neutral agents, i.e. u(w) = w. The principal’s ex-

pected incentive compatible wage payment per agent is then ψ +π(1−π)(α+β)(whl−
wlh), the sum of the first-best costs of implementing effort and compensation for in-

equity bearing. Notice that in the context of this model a limited liability constraint

will never bind as we have normalized the success probability when shirking to zero.

There is thus no rent that has to be given to the agent, i.e. the PC is binding. Since
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inequity aversion has an unambiguously negative effect on the PC, any amount of in-

equity decreases the principal’s expected profit. A possible positive effect of inequity

aversion on incentive provision cannot be realized since incentives can be provided at

first-best costs already. With risk neutral agents (and no limited liability constraint

binding) a large set of optimal contracts can implement efficient effort choices at first-

best costs. With inequity aversion only a subset of these optimal contracts remains

optimal, namely those contracts with whl = wlh. The remaining subset of optimal

contracts is however non-empty. For example, the contract with whh = ψ/π2 and

whl = wlh = wll = 0 is always possible. It provides incentives at first-best costs and

eliminates all inequity. We summarize our findings in the following proposition.

Proposition 4.5 (Risk Neutrality)

With risk-neutral agents and no limited liability constraint binding, inequity aversion

reduces the set of optimal contracts but does not impact the equilibrium outcome.

Itoh (2003) also analyzes a moral hazard setting with risk-neutral agents but assumes

limited liability constraints to bind. In this case agents receive a rent. Inequity aversion

provides the principal with the possibility to reduce an agent’s utility below the level

that arises from paying the lowest possible wage level, simply by paying other agents

more. Inequity aversion can thus reduce the principal’s rent payments in case of effort

implementation, and inequity aversion can then have an impact on the equilibrium

outcome.

4.4.3 Inequity Aversion and Efficiency

In this section we derive the conditions under which inequity aversion causes an effi-

ciency loss similar to the efficiency loss that arises if risk aversion renders flat wage

contracts optimal. There are however two qualitative differences between risk agency

costs, RAC, and inequity agency costs, IAC. First, the RAC are unbounded. There-

fore, an efficiency loss due to underprovision of effort always occurs if only risk aversion

is sufficiently large. In contrast, the IAC are bounded. It can be that no inefficiency

arises even if the degree of inequity aversion goes to infinity. The reason is that the
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principal can always equate wage levels in case of diverging output realizations, thereby

eliminating inequity while still providing incentives. It is however not possible to pro-

vide incentives and eliminate agents’ risk. Second, if the RAC are large the principal

can only offer flat wage contracts to avoid the agents’ risk exposure. In contrast, there

are two means by which inequity can be avoided. As with risk aversion, the principal

can either offer flat wage contracts – thereby forgoing profits from effort implementa-

tion. We call this case ‘underprovision of effort’. Or he can employ a single agent only.

Then there is no reference group and thus no social comparisons and no suffering from

inequity. The principal will then provide incentives to a single agent – thereby forgoing

the profit from employing the second agent. We call this the ‘reference group effect’.

In the following we identify the conditions under which either case arises.

Underprovision of Effort

Two conditions have to be met such that inequity aversion renders flat wage contracts

more profitable than incentive contracts. First, the expected profit from two flat wage

contracts must exceed expected profits from a single incentive contract. This condition

ensures that offering two flat wage contracts is the best alternative to offering two

incentive contracts. Second, for sufficiently high levels of α the IAC must exceed the

difference in expected profits from two incentive contracts (without inequity aversion)

and two flat wage contracts. With flat wage contracts wages never diverge and inequity

aversion is irrelevant. This is summarized in the following proposition.

Proposition 4.6 (Underprovision of Effort)

If and only if xl ≥ B and 2 B < limα→∞ IAC, there exists a threshold level of inequity

aversion α̂ such that for all α ≥ α̂ flat wage contracts maximize the principal’s expected

profit, even though incentive contracts are profit maximizing with selfish or unrelated

agents.

Proof: The first condition ensures that expected profit from two flat wage contracts

exceed expected profits from a single incentive contract. Formally, P f
2 = 2xl ≥ xl+B =

P i
1 ⇔ xl ≥ B. Consider now the second condition. P i

2 denotes the principal’s expected
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profit when offering two incentive contracts. If α = 0 we have P i
2(α = 0) = 2 P i

1.

By assumption, 2 P i
1 − P f

2 = 2 B > 0. Without inequity aversion the principal thus

employs both agents and implements high effort. By Proposition 4.3, P i
2 decreases in

α and converges to

lim
α→∞

P i
2(α) = 2 P i

1 − lim
α→∞

IAC. (4.23)

We thus have P f
2 > limα→∞ P i

2 if and only if

2 B < lim
α→∞

IAC. (4.24)

From (4.17) and (4.19) we know that limα→∞ IAC > 0. The parameter space for

which (4.24) holds is thus non-empty. If 2 B, the gain of providing incentives to two

agents, falls short of limα→∞ IAC, the limit of the inequity agency costs of providing

incentives, there exists a unique threshold level of inequity aversion α̂ such that for

α < α̂ two incentive contracts, and for α ≥ α̂ two flat wage contracts maximize the

principal’s expected profit. Existence and uniqueness of threshold α̂ is ensured since

P i
2 is continuous and strictly decreasing in α. q.e.d.

The left panel of Figure 4.1 provides an illustration of Proposition 4.6. Without

inequity aversion, α = 0, expected profits from two incentive contracts exceed expected

profits from both two flat wage contracts and a single incentive contract. Condition

xl ≥ B ensures that the principal’s best alternative to offering two incentive contracts

is offering two flat wage contracts. As α increases, the IAC increase and reduce the

principal’s expected profit from two incentive contracts. At α̂ the IAC equal the

difference in expected profits between two incentive and two flat wage contracts, 2B.

Therefore, for levels of inequity aversion exceeding α̂, two flat wage contracts maximize

the principal’s expected profit.

Proposition 4.6 is the central finding our this paper: inequity aversion can render flat

wage contracts optimal even though incentive contracts are optimal with selfish agents.

We interpret this as an explanation for the observed ‘low powered’ incentives within
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Figure 4.1: Underprovision of Effort and the Reference Group Effect.
Left Panel: Expected profit levels for B < xl. In this case expected profits from two flat
wage contracts exceed profits from one incentive contract. If the additional agency costs due
to inequity aversion, IAC, exceed the difference in expected profits between flat wage and
incentive contracts, 2B, as α increases, then there exists a threshold level α̂ such that two
flat wage contracts maximize the principal’s expected profit for α ≥ α̂.
Right Panel: Expected profit levels for xl < B. In this case expected profits from one
incentive contract exceed profits from two flat wage contracts. If the additional agency costs
due to inequity aversion, IAC, exceed the expected profit from an additional incentive contract
absent inequity aversion, B + xl, as α increases, then there exists a threshold level ᾱ such
that a single incentive contract maximizes the principal’s expected profit for α ≥ ᾱ.

firms – as compared to ‘high powered’ incentives in the market. This interpretation

hinges upon the assumption that agents compare their wage payments within firms but

not within the market. Although the determinants of an agents reference group will

ultimately be an empirical question, co-workers within a firm are a natural candidate

for a reference group. However, crucial to our analysis is that there are two agents who

compare their wages and dislike inequity. Our results – though not our interpretation

– would hold if we assumed two principals, each of them offering an incentive contract

to a single agent, and these two agents comparing wages.

The Reference Group Effect

Suppose now that the principal can influence an agent’s reference group. Two con-

ditions have to be met such that inequity aversion renders it more profitable for the

principal to offer an incentive contract to a single agent than offering incentive con-
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tracts to two agents. When two inequity averse agents work for the principal they

compare their wage levels and suffer from inequity. In contrast, with a single agent no

comparisons take place, and thus no IAC arise. In Section 4.5 we further explore this

‘reference group’ or ‘firm size effect’ in a slightly enriched setting; for completeness we

now derive the conditions that have to be met in this basic set-up. First, the expected

profit from a single incentive contract must exceed expected profits from two flat wage

contracts. This condition ensures that offering a single incentive contract is the best

alternative to offering two incentive contracts. In contrast to the previous section,

here it must hold that xl < B. Second, for sufficiently high levels of α the IAC must

exceed the difference in expected profits from offering two incentive contracts (without

inequity aversion) and expected profits from offering a single incentive contract. With

a single incentive contract inequity aversion is irrelevant as there is no reference group.

This is summarized in the following proposition.

Proposition 4.7 (Reference Group Effect)

If and only if xl < B and B + xl < limα→∞ IAC, there exists a threshold level of

inequity aversion ᾱ such that for α > ᾱ the principal employs a single agents only to

avoid social comparisons, even though employing both agents maximizes the principal’s

expected profit without inequity aversion.

Proof: As before, P i
2(α = 0) = 2 P i

1 such that without inequity aversion it maximizes

the principal’s expected profit to employ both agents and implement high effort. How-

ever, P i
2 decreases as α rises, and it may eventually fall short of P i

1. As P i
1 = P f

1 + B

and P f
1 = xl, it holds that limα→∞ P i

2 < P i
1 if and only if

B + xl < lim
α→∞

IAC. (4.25)

From (4.17) and (4.19) we know that limα→∞ IAC > 0, so the parameter space for

which (4.25) holds true is non-empty. Whenever the base output, xl, and the benefit

from giving incentives, B, are sufficiently small, there exists a unique level of inequity

aversion ᾱ such that for α < ᾱ two incentive contracts, whereas for α ≥ ᾱ a single
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incentive contract maximizes the principal’s expected profit. Existence and uniqueness

of threshold ᾱ is ensured since P i
2 is continuous and strictly decreasing in α. q.e.d.

The right panel of Figure 4.1 provides an illustration of Proposition 4.7. Without

inequity aversion, α = 0, expected profits from two incentive contracts exceed expected

profits from both two flat wage contracts and a single incentive contract. Condition

xl < B ensures that the principal’s best alternative to offering two incentive contracts

is offering a single incentive contract. As α increases, the IAC increase and reduce

the principal’s expected profit from two incentive contracts – but not the expected

profit from a single incentive contract as in this case no social comparisons take place.

At ᾱ the IAC equal the expected profit from an additional incentive contract without

inequity aversion, xl+B. Therefore, for levels of inequity aversion exceeding ᾱ, a single

incentive contract maximizes the principal’s expected profit.

In case neither xl ≥ B and 2 B < limα→∞ IAC, the conditions stated in Proposition

4.6, nor xl < B and B + xl < limα→∞ IAC, the conditions stated in Proposition 4.7,

there is no inefficiency caused by the additional agency cost due to inequity aversion

– even if the degree of inequity aversion goes to infinity. The principal is nevertheless

harmed by inequity aversion since his expected profit is reduced by the amount of the

IAC. In contrast, the RAC will always lead to an inefficiency if only the degree of risk

aversion becomes sufficiently large.

The effect of inequity aversion in the case with ‘underprovision of effort’ is qual-

itatively similar to the effect of risk aversion. Providing incentives becomes more

expensive as either aversion becomes more pronounced, and this may render flat wage

contracts optimal for the principal. However, the ‘firm size effect’ is qualitatively differ-

ent from the inefficiency that can arise due to risk aversion. The principal can respond

to risk aversion only by adopting an agent’s contract, whereas with inequity aversion

– or more generally with social preferences – he has an additional instrument at hand

as he can control the agents’ reference groups. Incorporating this finding into richer

models with, for example, heterogeneous agents with respect to the degree of inequity

aversion or productivity, or allowing for multi-tasking will yield deeper insights into
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the determinants of real world wage contracts, the optimal design of institutions, and

the boundary of the firm. In the following section, while keeping the assumption of

homogeneous agents, we enrich the model by allowing the principal to separate the

agents into different firm at a fixed cost. We will argue that the interaction between

inequity aversion and moral hazard can contribute to the old question of the nature

and size of the firm.

4.5 The Nature and Size of the Firm

The ‘property rights approach’ of the theory of the firm – pioneered by Grossman

and Hart (1986) and Hart and Moore (1990) – defines a firm as the physical assets

it consists of. In contrast to the ‘transaction cost approach’ of the theory of the firm

(Coase (1937), Williamson (1975, 1985)), the property rights approach can explain

both, advantages and disadvantages (better incentives to invest for one, but worse

incentives for the other party) of ‘integration’ within a unified framework. An optimal

degree of integration, that is, an optimal firm size can thus be determined. In this

section, we propose a new approach. We focus on one characteristic that distinguishes

the firm from the market. The firm is seen as an economic entity within which social

comparisons matter – in contrast to the market in which they are negligible.

In this section we enrich our model by endowing the principal with the option to

separate the agents by setting up an additional firm. We assume that agents compare

payoffs only with agents that work within the same firm but not with agents that

work in distinct firms.49 Additional agency costs due to inequity aversion can thus be

avoided by separating agents into different firms. If agents can be separated, that is,

if social comparisons can be prevented at not cost, the purpose of this paper dissolves.

The principal would then always separate the agents. However, we further assume

that setting up a firm involves the expense of fixed costs, denoted by F . These fixed

costs are taken to be sufficiently low such that the principal realizes positive profits

when offering an incentive contract to a single agent, that is F < P i
1. Alternatively,

49See, again, Bewley (1999) for supporting evidence.
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complementarities in production could be assumed such that, absent inequity aversion,

it is advantageous to have agents work together.

The principal now faces a trade off. On the one hand, employing two agents within

a single firm economizes on fixed costs (or enables the principal to realize complemen-

tarities in production). On the other hand, integrating the agents within a single firm

provokes social comparisons that increase agency costs of providing incentives. The

solution to this trade-off thus defines the optimal size of the firm, whether there is

‘integration’ of both agents within a single firm or ‘separation’ of the agents into two

distinct firms. If the firm is integrated, we can have both, incentive and flat wage con-

tracts. In case of separation, the principal will always offer incentive contracts. The

following proposition identifies the conditions under which either regime is optimal.

Proposition 4.8 (Optimal Firm Size)

i) If and only if F ≤ min[limα→∞ IAC, 2B] then there exists a threshold level of

inequity aversion ˆ̂α such that for α ≥ ˆ̂α separation is optimal: The principal

bears fixed costs F twice to set up two distinct firms, and she offers in each firm

a single incentive contract. For α < ˆ̂α integration is optimal: The principal sets

up a single firm and offers two incentive contracts.

ii) If F > 2B then there is always integration, irrespective of the degree of inequity

aversion α. If, in addition, limα→∞ IAC ≤ 2B then integration with incentive

contracts is optimal for all α. If, in addition, limα→∞ IAC > 2B then there exists

a threshold level of inequity aversion ¯̄α such that for α ≥ ¯̄α integration with flat

wage contracts is optimal, whereas for α < ¯̄α integration with incentive contracts

is optimal.

Proof: i) If F ≤ 2B then it is always better to offer incentive contracts in two separated

firms than to offer two flat wage contracts within a singe firm. Recall that the gain of

providing incentives is given by B per agent, while the cost of setting up a second firm

is F . Notice that in both cases the degree of inequity aversion is irrelevant. The best

alternative to offering two incentive contracts within a single firm is thus separating
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the agents in two firms but still offering incentive contracts. Integrating two agents

with incentive contracts saves on fixed costs but provokes social comparisons, that is

additional agency costs IAC. If the latter exceed the first, F ≤ IAC, then separation

becomes optimal. From Proposition 4.3 we know that the IAC rise with the degree of

inequity aversion α; at α = 0 we have IAC = 0. If F ≤ limα→∞ IAC there must thus

exist a threshold level ˆ̂α such that for α < ˆ̂α we have F > IAC, i.e. integration, and

for α ≥ ˆ̂α we have F ≤ IAC, i.e. separation.

ii) If F > 2B then, by the above arguing, the best alternative to offering two incen-

tive contracts within a single firm is offering two flat wage contracts within a single firm.

Notice that it is never optimal to offer flat wage contracts and to separate the agents.

Even if the IAC become very large there is thus never separation. Absent inequity aver-

sion the profit difference between the two regimes is 2B. If limα→∞ IAC ≤ 2B there

will thus always be integration with incentive contracts. If however limα→∞ IAC > 2B

then, by the above arguing, there exists a threshold ¯̄α such that for α < ¯̄α integra-

tion with incentive contracts is still optimal but for α ≥ ¯̄α integration with flat wage

contracts becomes optimal. q.e.d.

Figure 4.2 offers an illustration of Proposition 4.8. In all cases, at α = 0 the

expected profits from two integrated incentive contracts exceeds the expected profit

either from offering separated incentive contracts or offering two integrated flat wage

contracts. Notice that separated flat wage contracts can never be optimal. The left

panel of Figure 4.2 shows expected profit levels in case F < 2B. This condition

ensures that expected profits from two separated incentive contracts exceed profits

from two integrated flat wage contracts. If the additional agency costs due to inequity

aversion, IAC, exceed the cost of separation, F , as α goes to infinity, then there exists

a threshold level ˆ̂α such that expected profits from two separated incentive contracts

exceed expected profits from two integrated incentive contracts for α ≥ ˆ̂α.

The right panel of Figure 4.2 shows expected profit levels in case F > 2B. This

condition ensures that expected profits from two integrated flat wage contracts exceed

profits from two separated incentive contracts. If the IAC exceed the expected profit
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Figure 4.2: The Optimal Firm Size.
Left Panel: Expected profit levels with F < 2B. In this case expected profits from two
separated incentive contracts exceed profits from two integrated flat wage contracts. If the
additional agency costs due to inequity aversion, IAC, exceed the cost of separation, F , as α

increases, then there exists a threshold level ˆ̂α such that separated incentive contracts become
optimal for α ≥ ˆ̂α.
Right Panel: Expected profit levels with F > 2B. In this case expected profits from
two integrated flat wage contracts exceed profits from two separated incentive contracts. If
the IAC exceed the expected profit difference between integrated incentive contracts absent
inequity aversion and integrated flat wage contracts, 2B, as α increases, then there exists a
threshold level ¯̄α such that integrated flat wage contracts become optimal for α ≥ ¯̄α.

difference between two integrated incentive contracts absent inequity aversion and two

integrated flat wage contracts, 2B, as α goes to infinity, then there exists a thresh-

old level ¯̄α such that expected profits with two integrated flat wage contracts exceed

expected profits with two integrated incentive contracts for α ≥ ¯̄α.

In this section we have argued that social comparisons can contribute to the old

question of the the optimal degree of integration. We do not claim that social com-

parisons can fully explain the size of the firm nor do we claim that they are the main

determinant. However, many situation are imaginable where an employer – being in-

different otherwise – wants to separate employees to prevent social comparisons. Even

though throughout the paper we did not model heterogeneity in agents’ productivity,

consider the observation that many firms outsource activities very often (but certainly

not exclusively) at the extreme ends of the productivity scale. There are often external

consultants that are, in comparison to customary wage levels within the firm, relatively
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well payed. By the same token, employees of external cleaning companies earn rela-

tively little. Outsourcing of these activities may thus – at least partly – be explained

by the intent to maintain a balanced wage structure within the ‘core of the firm.’

An employer may not necessarily separate employees into different firms but, in case

this sufficiently cuts down social comparisons, into different, say, departments of a firm.

In this case our model can contribute to the literature on the internal organization of

the firm. Consistent with our arguing is also the observation that within firms (or any

other organization) there are often many small rungs in the job ladder, all distinguished

by differentiated job titles (junior analyst, senior analyst, junior consultant, senior

consultant, etc.). If employees tend to compare only to other employees on same rung

of the job ladder and accept that, for example, employees ‘above them’ may earn

more, then ‘separating’ agents into different ‘job categories’ may be explained by the

employer’s intent to cut down social comparisons. The determinants of employees’

relevant reference groups – be it a firm, a department, a job category, or some other

attribute – will ultimately be an empirical question. However, we claim that co-workers

within the same firm are a natural candidate.

4.6 Secrecy of Salaries

The central result of the paper states that inequity aversion among agents increases

agency costs. At first sight our results could serve as an explanation for the fact that

many labor contracts impose a clause that prohibits employees from communicating

their salaries to their colleagues. If – by way of secret salaries – social comparisons can

be prevented, the increase in agency costs can be prevented as well. In this section we

show that this is not necessarily the case.

Suppose agents can be separated such that the other agent’s output realization is

not observable. Suppose further that wages do not get communicated because labor

contracts prohibit this but that the contracts themselves are common knowledge. We

maintain the assumption that the agents’ reference group is the respective other agent

that is employed with the same principal. (If agents can be separated in a way such
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that they do not compare themselves any longer the IAC can trivially be avoided.) We

now derive the optimal incentive contract for both agents. Even though the agents

cannot observe each other’s project outcome and wages, they know that their wages

differ in certain states of the world because an incentive contract must condition wages

on project realizations. In order not to transfer information about the other agent’s

project outcome, each agent’s wage can only depend on his own output realization.

Thus, there are two wage levels only. The principal therefore maximizes

P s
2 = 2xl + 2π2[∆x− h(uh)] + 2π(1− π)[∆x− h(uh)− h(ul)]− 2(1− π)2h(ul) (4.26)

with respect to uh, ul, and under the incentive and participation constraint

(IC”) π(1 + απ)(uh − ul)− ψ ≥ 0

(PC”) πuh + (1− π)(ul − πα(uh − ul))− ψ ≥ 0

Superscript s stands for ‘secrecy contract’. Solving the resulting first-order conditions

yields

u∗h =
ψ

π
and u∗l =

αψ

1 + απ
. (4.27)

At α = 0 wages and profit equal (twice) the single agent solution. With α increasing

the low wage increases in order to reduce inequity, and the principal’s expected profit

falls. Differentiating P s
2 with respect to α yields

∂P s
2

∂α
= −2(1− π)ψ(1 + α(π + rψ))

(1 + απ)3
(4.28)

which is unambiguously negative. We can establish the following proposition.

Proposition 4.9 (Secrecy of Salaries)

Separating the agents such that project outcomes and wages are unobservable ampli-

fies the negative effect of inequity aversion if the agents reference group remains the

respective other agent and contracts are common knowledge.
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Proof: Comparing (4.28) to (4.20) it can be seen that the ‘secrecy profit’ falls faster in

α than the profit in the two agents case. Subtracting (4.28) from (4.20) yields (2(1 −
π)απ(1+α(π+rψ))(1+α(π(π(3+απ(3+απ)))+(2+απ(4+α(1+2π)))rψ))/(rk2(1+

απ)3) which is always positive. q.e.d.

The ‘secrecy contract’ is therefore never optimal. Covering up the respective other

agent’s output realization and wage payments with intent to avoid social comparisons

does not mitigate but amplifies the principal’s problem. In the ‘secrecy contract’ wage

payments cannot depend on both agent’s output realizations since this would reveal

the respective other agent’s outcome realization and thus wage payment. In states with

diverging output realizations wages can therefore not be compressed as it was found

optimal in the previous sections. This restriction on the contract design renders the

‘secrecy contract’ too costly.

4.7 Discussion

4.7.1 Rent Comparison

Suppose now that agents compare rents, that is they explicitly account for effort cost

in their inequity term. Notice first that in equilibrium both agents exert effort such

that effort terms cancel out in the PC. We must, however, reconsider the IC because

an agent now has to account for the difference in effort costs in the inequity term when

considering to shirk. The IC can now be written as

(ICψ) π2uhh + π(1− π)uhl − π2ulh − π(1− π)α(uhl − ulh)

+πα max [uhl − ψ − ulh, 0]− π(1− π)ull − ψ ≥ 0.

Subtracting the l.h.s. of (ICψ) from the l.h.s. of (IC), the IC if effort costs are not

considered in the inequity term, yields

πα((2− π)(uhl − ulh)−max [uhl − ψ − ulh, 0]) (4.29)
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which is always positive. Hence, considering effort costs in the inequity term can only

increase agency costs thereby reinforcing our results. The intuition is straightforward.

The expected utility when shirking increases because suffering from being behind is

now lower. The difference in utility from wages is reduced by the amount of effort

costs, if not cancelled. The incentive to exert effort is thus reduced.

4.7.2 Disutility from Being Better Off

In their original formulation of inequity aversion Fehr and Schmidt (1999) assume that

inequity averse individuals dislike both unfavorable and favorable inequity. In this

section we discuss the implications if suffering from being better off is incorporated in

our model. It now makes a crucial difference whether effort costs enter the comparison

or not.

Consider first the case in which agents compare utility from wages only. Instead

of the simplified version of inequity aversion assumed in the previous sections, agents’

utility function is now given by

vi(wi, wj) = u(wi)− ψ − α ·max[u(wj)− u(wi), 0]− β ·max[u(wi)− u(wj), 0].(4.30)

If β > 0, agents suffer from receiving a higher wage than the respective other agent.

Suppose the principal offers incentive contracts to both agents. Incorporating disu-

tility from being better off into our model has two effects. First, the agents’ PCs

are tightened. If agents are paid different wages in case their project outcomes differ,

an agent now also suffers from inequity whenever he is fortunate whereas the other

agent is not. As this happens with positive probability agents have to be compensated.

Second, incentive provision is impaired because suffering from being better off clearly

reduces the incentive to exert effort. Recall that the results in our model are driven by

the observation that the overall impact of inequity aversion on the principal’s profit is

negative – even when neglecting the utility loss from being better off. Incorporating

this disutility adds an unambiguously negative effect and would thus only reinforce our

results.
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Consider now the case in which effort costs enter the inequity term. Again, the

PC is tightened if β > 0. In equilibrium both agents exert effort and effort costs thus

cancel in the inequity term. However, effort cost enter the IC and suffering from being

better off may now facilitate incentive provision. To see this, assume the most extreme

case, which is ψ > uhl − ulh. A shirking agent that saves on effort costs is then always

better off than the other agent (who works) even if the other agent receives the higher

wage in case of diverging output realizations. The IC can then be written as

(ICβ) π2uhh + π(1− π)uhl − π2ulh − π(1− π)ull − ψ

−π(1− π)α(uhl − ulh) + β [ψ − π(2− π)(uhl − ulh)] ≥ 0.

The positive effect of β on the ICβ may be very strong. As long as ∆x is sufficiently

large to ensure B ≥ 0, ψ can become very large without violating our assumption that

incentive contracts are optimal without inequity aversion. Intuitively, if an agent shirks

he saves on effort costs and may thus be better off than the other agent who exerts

effort. If agents suffer from being better off incentives to exert effort are increased. This

effect could, in principle, be so strong that agency costs are lowered in comparison to

the case without inequity aversion.50

4.7.3 Status Seeking

In the previous section we have discussed the possibility that agents suffer from being

better off than others. In contrast, suppose now that agents are status seekers, that

is they receive additional utility from being better off than others. In the context, of

this model this translates into β < 0. Incorporating status seeking into our model

has two effects. First, the agents’ participation constraints are relaxed. Whenever

diverging project outcomes realize the successful agent receives additional utility from

being better off than the unsuccessful agent. Second, there is an positive effect on

incentives because on top of a high wage an agent receives ‘status utility’ whenever he

is successful whereas the other agent is not. In summary, the unambiguously positive

50This effect is analyzed in Bartling and von Siemens (2004).
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effect of status seeking on the principal’s profit opposes the negative effect of inequity

aversion that we have identified in this paper. Since there is no natural lower bound

on β agency costs could, in principle, be reduced without bounds. Carrying this effect

to the extremes, status seeking would eventually result in contracts in which agents

actually pay the principal in order to be employed and sometimes receive ‘status utility’.

This is only reinforced if effort costs are considered in the inequity terms. However,

in this paper we focus on the more natural and more interesting case in which other-

regarding preferences provoke a trade-off between the positive effect on the incentive

and the negative effect on the participation constraint.

4.8 Conclusion

Recent insights from experimental economics have shown that many people are not

fully selfish but have some kind of social preferences. This, in turn, raises the question

of how other-regarding behavior interacts with incentive provision. In a moral hazard

model with risk averse agents we have shown that inequity aversion among agents

unambiguously increases agency costs unless agents compare rents and suffer from

being better off. As a result, optimal contracts for inequity averse agents may be ‘low

powered’, equitable flat wage contracts even when ‘high powered’ incentive contracts

are optimal with selfish agents. Accounting for inequity aversion may thus offer an

explanation for the scarcity of incentive contracts many real world situation – in which

verifiable performance measures would be available but are not contracted upon.

More specifically, assuming that social comparison are pronounced within firms

but less so in the market, we have argued that inequity aversion helps to understand

Williamson’s (1985) observation that incentives offered to employees within firms are

generally low powered as compared to ‘high powered’ incentive in markets.

Furthermore, we have argued that inequity aversion among agents and the resulting

increased agency costs contribute to the old question of the boundary of the firm. In an

enriched setting of the basic model, the principal could set up a second firm to separate

the agents with intent to avoid social comparisons. If this involves costs, the principal
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faces the trade-off to either bear increased agency costs or the cost of operating the

second firm. The solution to this trade-off defines an optimal size of the firm.

Incorporating our findings into richer models with, for example, heterogeneous

agents with respect to the degree of inequity aversion or productivity, or allowing

for multi-tasking promises to yield further insights into the determinants of real world

wage contracts, the optimal design of institutions, and the boundary of the firm.

4.9 Appendix

Throughout the paper we have assumed an explicit utility function in order to obtain

simple closed form solutions. As in Fehr and Schmidt (1999) we also assumed a linear

inequity term. In this appendix we show that our results hold true for any concave

utility function and irrespective of the functional form the inequity term. To show

and illustrate the basic reasoning we, firstly, maintain the assumption that there are

only two possible output realizations. Later we will drop this restriction and allow for

arbitrary numbers of possible output realizations.

As benchmark, consider the single agent case. With only two possible outcome

realizations, wage levels are well-defined by the incentive and participation constraints.

Recall that the utility level arising from the wage payment in case of a high output

realization is given by uh, in analogy we defined ul. From

( ˜IC) πuh + (1− π)ul − ψ ≥ π′uh + (1− π′)ul

(P̃C) πuh + (1− π)ul − ψ ≥ 0

we thus get

u∗h =
(1− π′)ψ

π − π′
and u∗l = − π′ψ

π − π′
. (4.31)

If now a second agent is introduced and wages are contingent on the respective other

agent’s output realization, each agent faces an additional lottery. Suppose an agent’s

outcome realization is high. If the other agent works, he will also receive a high output

realization with probability π, and a low output realization with probability 1 − π.
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Recall that uij was defined as an agent’s utility from wage wij, if the agent’s output is

i and the other agent’s output is j. Absent inequity aversion we must have

πuhh + (1− π)uhl = u∗h and πulh + (1− π)ull = u∗l (4.32)

The inverse function h = u−1 specifies the wage payment that is necessary to generate

a certain utility level. The principal minimizes wage payments h(uhh) and h(uhl), and

h(ulh) and h(ull) such that (4.32) holds. From the first-order condition

πh′(uhh) + (1− π)h′(uhl)(−π)/(1− π) = 0 (4.33)

and convexity of h(·) it follows that u∗hh = u∗hl = u∗h and, equivalently, u∗lh = u∗ll = u∗l .

The intuition is straightforward. The second-best utility levels that induce the agent

to exert effort are given buy u∗h and u∗l . If an agent’s wages depend on the other agent’s

output realization, in expectation he should nevertheless receive u∗h and u∗l . Incentives

are thus not affected but contingent wages introduce an additional lottery, and agents

must be compensated for the associated risk. Absent inequity aversion, wages will thus

be independent of the other agent’s output realization.

Consider now inequity averse agents. The second-best optimal utility levels in case

of high and low output realizations are still given by u∗h and u∗l , respectively. However,

in case of diverging output realizations there is now a utility loss arising from the

inequity. In analogy to (4.32) wage levels must now be such that

πuhh + (1− π)(uhl − α max[ulh − uhl, 0]) = u∗h, and (4.34)

π(ulh − α max[uhl − ulh, 0]) + (1− π)ull = u∗l . (4.35)

It can be seen that the cost of providing the second-best optimal utility level are weakly

increasing in the level of inequity aversion α. Consider the following reasoning.

1. Fix uhl at some level.

2. Consider the set of (ulh, ull) such that an agent with a low output realization
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Figure 4.3: Inequity aversion increases agency costs.
The negatively sloped, parallel lines depict the constraints subject to which the principal
minimizes wages. Without inequity aversion, the lowest iso-cost curves that satisfy the re-
strictions are tangent where uhh = uhl and ulh = ull. With inequity aversion, the constraints
become weakly more restrictive, depicted by the dashed lines. Utility combinations that
satisfy the constraints cannot lie on lower iso-cost curves.

receives an expected utility level of u∗l .

3. Given any ulh, the level of ull to yield u∗l is given by

ull =
u∗l − πulh + πα max[uhl − ulh, 0]

1− π
(4.36)

4. Hence, the cost to implement u∗l weakly increases in α.

The reasoning for u∗h is analogous.

Figure 4.3 illustrates the above reasoning and shows how inequity aversion tightens

the constraints subject to which the principal minimizes costs. The decreasing, parallel

lines depict combinations of uhh and uhl, and ulh and ull that lead to expected utility

levels of u∗h and u∗l , respectively. The total differential of (4.32) at constant utility levels

yields their slope with −(1 − π)/π. The iso-cost curves in the case without inequity

aversion are tangent at u∗hh = u∗hl = u∗h, and u∗lh = u∗ll = u∗h, as argued above. Consider
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now the case with inequity aversion. Algebraically, the combinations of uhh and uhl,

and ulh and ull that lead to expected utility levels of u∗h and u∗l are now given by (4.34)

and (4.35), respectively. The total differential of (4.34) while setting duh = 0 yields

duhh

duhl

= −(1− π)(1 + α)

π
, (4.37)

if we have ulh > uhl. For ulh ≤ uhl we get −(1 − π)/π. Graphically, with inequity

aversion, the dashed line depicting the combinations of uhh and uhl such that the agents

receives an expected utility level of u∗h is steeper for ulh > uhl and has the same slope

otherwise. Equivalently, the total differential of (4.35) while setting dul = 0 yields

dulh

dull

= − (1− π)

π(1 + α)
, (4.38)

if we have ulh < uhl, and −(1−π)/π otherwise. The dashed line depicting the combina-

tions of ulh and ull such that the agents receives an expected utility level of u∗l is flatter

for ulh < uhl and has the same slope otherwise. Hence, the constraints subject to which

the principals minimizes wage payments thus become (weakly) more restrictive.

The above reasoning generalizes straightforwardly to the case where one agent has

N and the other agent has M possible output realizations. Now, the solution to the

principal’s profit maximization problem is not determined by IC and PC alone any

longer. The principal first derives the contract that implements each action at the

least cost. She then implements the action that maximizes her profit. Incentive and

participation constraint for agent i in case the principal wants to implement ah can

now be written as

( ˆIC)
N∑

n=1

M∑
m=1

Ui(xn, xm)f(xn, xm | ah, ah)− ψ ≥ 0

(P̂C)
N∑

n=1

M∑
m=1

Ui(xn, xm)[f(xn, xm | ah, ah)− f(xn, xm | al, ah)]− ψ ≥ 0

where f(·) denotes the conditional joint density function over output realizations, and



INEQUITY AVERSION AND MORAL HAZARD 158

Ui(xn, xm) is given by

Ui(xn, xm) = ui(xn, xm)− α max[ui(xn, xm)− ui(xn, xm), 0]. (4.39)

ui(xn, xm) denotes the utility that arises from the wage payment in case the own output

realization is xn and the other agent’s output realization is xm. Ui(xn, xm) denotes

the utility level in this case net of a possible utility loss due to suffering from inequity

aversion. Equivalently for agent j. Denote by U the set of all Ui(xn, xm) and Uj(xn, xm)

such that ( ˆIC) and (P̂C) are binding,

U := {Ui(·), Ui(·) | ( ˆIC) and (P̂C) binding}. (4.40)

The principal chooses those Ui(xn, xm) and Uj(xn, xm) from U that minimize her cost.

The wage cost w(·) of providing the respective utility levels is given by

w(Ui(xn, xm)) = h(ui(xn, xm)) = wn m. (4.41)

Recall that h(·) = u−1. As can be seen from equation (4.39), for any strictly positive

level of α, the utility from wage to attain any fixed level of ‘net utility’ U must be

higher whenever uj(xn, xm) > ui(xn, xm). Since h′(·) ≥ 0, the wage payment wn m

must be higher. Hence, if the principal wants to implement the high effort choice ah

her costs are weakly increased by inequity aversion. If the principal want to implement

al, she will pay a fixed wage and inequity aversion is thus irrelevant. With additional

expenses on notation, this reasoning generalizes to the cases with any finite number of

possible effort levels and more than two agents.
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ohne fremde Hilfe verfasst habe. Die aus fremden Quellen direkt oder indirekt über-

nommenen Gedanken sowie mir gegebene Anregungen sind als solche kenntlich gemacht.
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