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Einleitung: Lungenkrebs ist weltweit die häufigste Ursache für krebsbedingte Todesfälle. 
Cisplatin bleibt trotz klinischer Fortschritte in der Medizin die Behandlung der Wahl. Die 
Resistenz gegen diese Arzneimittel schränkt jedoch ihre klinische Wirksamkeit ein. 
Verschiedene Tumorzellen haben verschiedene Mechanismen der Arzneimittelresistenz und 
unterschiedliche Überlebenswege, was es schwierig macht, die zugrunde liegenden Ursachen der 
Resistenz zu bestimmen. 
 
Zweck: Identifizieren Sie molekulare Veränderungen, die durch Cisplatinresistenz in den EGFR-
Signalwegen und im intrazellulären Calcium ausgelöst werden, um potenzielle Ziele für 
neuartige Kombinationstherapien zu identifizieren, die das Überleben des Patienten verbessern 
könnten. 
 
Experimentelles Design und Methoden: Ein isogenes klinisches Modell wurde verwendet, um 
einen Cisplatin-resistenten Phänotyp (CRP) in nicht-kleinzelligen Lungenkrebszellen mit 
mutiertem EGFR (H838, HCC827, H1975 und H1650) und kleinzelligen Lungenkrebszellen 
(H1339) zu erzeugen. Die Wirkung von Cisplatin auf das Überleben, die Proliferation, die 
Koloniebildung und die Apoptose der Zellen wurde in CRP-Zellen und altersangepassten naiven 
Zellen charakterisiert. Die EGFR-Phosphorylierung und -Signalisierung wurden unter 
Verwendung eines EGFR-Signalantikörperarrays analysiert. Wir haben die Wirksamkeit von 
EGFR-Tyrosinkinase-Inhibitoren der dritten Generation (Erlotinib, Gefitinib, Afatinib und 
Rociletinib) bei klinischen Konzentrationen gemessen. 
 
Ergebnisse: Cisplatin verringerte die Proliferation, erhöhte die Resistenz gegen Zelltod und 
verbesserte das klonogene Überleben von CRP-Zellen. Die Cisplatinresistenz veränderte die 
EGFR-Expression, die EGFR-Phosphorylierung und die nachgeschalteten EGFR-
Signalmoleküle in CRP-Zellen, dies variierte jedoch zwischen den Zelllinien. Die Wirkung von 
EGFR-TKIs war in CRP-Zellen und ihren Vorläufern ähnlich. Es gibt keinen signifikanten 
Unterschied in den Calciumspiegeln zwischen Cisplatin-resistenten und naiven Zellen. 
 
Schlussfolgerung: Die EGFR-Signalübertragung war in CRP-Lungenkrebszellen verändert, und 
diese Effekte waren zellspezifisch. Darüber hinaus induzierte die Cisplatinresistenz eine 
Chemosensibilisierung gegen Erlotinib, jedoch nicht gegen andere TKIs in EGFR-Wildtyp-
Zellen. Diese Ergebnisse liefern ein tieferes Verständnis der nachgeschalteten zellulären 
Ereignisse von EGFR, die an der Cisplatinresistenz beteiligt sind. Die Cisplatinresistenz 
veränderte die intrazellulären Calciumspiegel nicht. 
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Introduction: Lung cancer is the most common cause of cancer-related death worldwide. 
Cisplatin remains the treatment of choice, despite clinical advances in medicine. However, 
resistance to these drugs limits their clinical efficacy. Different tumour cells have various 
mechanisms of drug resistance and different survival pathways, which makes it difficult to 
determine the underlying causes of resistance.  

 
Purpose: Identify molecular changes triggered by cisplatin resistance in the EGFR signalling 
pathways and intracellular calcium to identify potential targets for novel combination 
therapies that could improve patient survival. 

 
Experimental design and methods: An isogenic clinical model was used to generate a 
cisplatin-resistant phenotype (CRP) in mutant-EGFR non-small-cell lung cancer cells (H838, 
HCC827, H1975, and H1650) and small-cell lung cancer cells (H1339). The effect of cisplatin 
on cell survival, proliferation, colony formation, and apoptosis was characterised in CRP cells 
and age-matched naïve cells. EGFR phosphorylation and signalling were analysed using an 
EGFR signalling antibody array. We measured the efficacy of third-generation EGFR tyrosine 
kinase inhibitors (erlotinib, gefitinib, afatinib, and rociletinib) at clinical concentrations.  

 
Results: Cisplatin decreased proliferation, increased resistance to cell death, and enhanced 
the clonogenic survival of CRP cells. Cisplatin resistance altered EGFR expression, EGFR 
phosphorylation, and EGFR downstream signalling molecules in CRP cells, but this varied 
between cell lines. The effect of EGFR TKIs was similar in CRP cells and their precursors. 
There no significant difference in calcium levels between cisplatin resistant and naïve cells. 

 
Conclusion: EGFR signalling was altered in CRP lung cancer cells, and these effects were 
cell-specific. In addition, cisplatin resistance induced chemosensitisation to erlotinib but not 
to other TKIs in EGFR-wild-type cells. These results provide a deeper understanding of the 
EGFR downstream cellular events involved in cisplatin resistance. Cisplatin resistance did not 
change intracellular calcium levels.  
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1. Introduction 

Cancer is caused by accumulated epigenetic changes and mutations that alter normal cell growth 

and survival [1]. The hallmarks of a malignant phenotype are rapid proliferation, reduced 

differentiation, and apoptosis [2]. Cancer is accountable for one in three premature deaths 

worldwide, and cases are expected to rise to over 20 million per year by 2030 [3-11]. 

 

1.1.  Lung cancer 

Lung cancer is the leading cause of cancer-related death worldwide [4, 12-19]. Cigarette smoking 

is a critical risk factor for developing lung cancer, and other risks include exposure to passive 

smoke, radon, asbestosis, and radiation, which increase susceptibility to inherited genetic 

changes [4-6]. Lung cancer is classified according to its histology and the primary forms are non-

small-cell lung cancer (NSCLC), small-cell lung cancer (SCLC), and rare tumours. NSCLC can 

be further divided into squamous cell carcinoma (~40%) and non-squamous cell carcinoma 

(~50%). Non-squamous cell carcinomas include adenocarcinomas and large-cell carcinomas [5, 

6, 20, 21]. Adenocarcinomas arise in distal airways, often have glandular histology, and express 

specific biomarkers. Squamous cell carcinomas arise in more proximal airways and are strongly 

associated with smoking and chronic inflammation. Large-cell carcinomas are characterised by 

exclusion of a glandular or squamous shape or expression of specific biomarkers [7]. 

 

1.2.  Non-small-cell lung cancer (NSCLC) 

NSCLC is the most common type of lung cancer (85% of lung cancers) and has a predicted 5-

year survival rate of 15.9% [7]. NSCLC is often diagnosed in advanced stage, and the prognosis 

is worst and the life expectancy of most patients is very low (median overall survival is 10–12 

months) [22]. Until now, chemotherapy has been the treatment of choice for advanced NSCLC 
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and other advanced solid tumours [6].  Patients often develop resistance to chemotherapy, even 

in early stages of the disease, which limits therapeutic efficacy and causes relapse and mortality. 

To complicate matters further, NSCLC tumours are biologically distinct and respond differently 

to systemic treatments [6, 7, 9, 23]. In NSCLC, genomic aberrations occur in components of 

various signalling pathways [7, 9, 24].  More than 60% of NSCLC overexpress EGFR and 10% 

have EGFR mutations. Chemotherapy also modulates the immune response by controlling or 

enhancing antitumor immune activity, so is a good co-treatment to immunotherapy [25, 26]. 

 

1.3. Small-cell lung cancer (SCLC) 

SCLC is a neuroendocrine tumour that represents 15–20% of lung cancer cases and characterised 

by rapid tumour growth and early metastasis [27]. SCLC often originates in the central airways, 

and 70% of patients have distant vital organ metastasis at the time of diagnosis and if untreated, 

the median survival is 2–4 months [28]. SCLC is distinguishable from NSCLC by its small cells 

(only twice the size of lymphocytes), which are round or oval and appear bluish when observed 

under a light microscope [28]. Alterations in tumour-suppressor genes are common and probably 

play a vital role in the pathogenesis of SCLC. SCLC tumours are highly sensitive to 

chemotherapy and radiotherapy, and combined therapy is more effective than sequential therapy 

[7, 28, 29]. 

 

1.4.  Diagnosis and treatment 

Up to 75% of lung cancer patients have symptoms such as a cough, chest pain, haemoptysis, 

weight loss, and dyspnoea. Diagnosis involves locating the tumour, taking biopsies, sputum 

cytology, establishing the metastatic status, and molecular testing to identify targeted therapies 

[4, 5]. Histology and marker expression are the basis of clinical tumour diagnosis and the tumour 

genotype can predict the response to therapy. Each tumour is unique, and identifying the specific 
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histological subtype is critical [4, 24]. There are five ways to manage NSCLC: localised 

treatments (surgery and radiotherapy) and systemic therapy (chemotherapy, targeted therapy, and 

immunotherapy).  

I. Chemotherapy: Cytotoxic chemotherapy is the most common class of antineoplastic drugs 

for treating malignant diseases. Agents in current clinical use include alkylating agents (cisplatin 

and carboplatin), antimetabolites (pemetrexed and gemcitabine), anti-microtubule agents 

(vinorelbine and taxanes), topoisomerase inhibitors (camptothecin, topotecan, and etoposide), 

and cytotoxic antibiotics (bleomycin and doxorubicin) [4, 7, 30].  

II. Targeted therapy: Genomically targeted therapies are used to treat advanced-stage disease, 

when surgery and radiation therapy are no longer indicated. These drugs have shown promising 

results in cancers with specific genetic mutations. Current clinically approved treatment targets 

include EGFR, ALK, ROS1, B-Raf, and MET [28].  

III. Immunotherapy: NSCLC can be treated by targeting immune checkpoint proteins, which 

are expressed on the surface of immune cells and regulate immune function. Cancer cells use 

immune checkpoint proteins to suppress tumour-specific T-cells and blocking these proteins with 

immune checkpoint inhibitors can overcome immune evasion by cancer cells. Inhibitors have 

been developed against cytotoxic T-lymphocyte–associated antigen 4 (CTLA-4), programmed 

death-1 (PD-1), and programmed death-ligand 1 (PD-L1) [5, 31, 32]. 

 

1.5.  Cisplatin and resistance 

Cisplatin, the most active and widely used cytotoxic anti-cancer drug [33]. In clinical settings, 

cisplatin is the primary treatment for advanced-stage NSCLC and stage II–IIIA NSCLC 

following or preceding surgical resection. Combination treatments with platinum agents have 

overall response rates of 25–35%, a median progression-free survival of 4–6 months, and a 

median overall survival of approximately 8–10 months [34]. 
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Mechanism of action: Cisplatin is activated by the substitution of one or both cis -chloro groups 

for water molecules in the cytoplasm and generates highly reactive mono- and bi-aquated 

cisplatin forms. These molecules interact with cytoplasmic nucleophiles and removes reducing 

agents to alter the redox balance and induce oxidative stress in the cell, causing DNA damage 

response and mitochondrial apoptosis [30, 35]. Although effective at first, cancer cells develop 

resistance to cisplatin, which limits the therapeutic efficacy [36, 37]. Surviving cancer cells can 

also divide to rejuvenate tumours between chemotherapy cycles, which is one of the main reasons 

for treatment failure [38]. 

Resistance mechanisms: Various mechanisms underpin the drug resistance in tumour cells and 

leads to treatment failure.  Furthermore, augmented drug metabolism, inadequate drug exposure, 

secondary mutations in the drug target, or activation of alternative or parallel cell survival 

pathways all promote resistance to cancer treatment [5, 39]. The four known mechanisms of 

cisplatin resistance are: 

I. Pre-target resistance (cisplatin binding to DNA):  Increased or decreased expression of 

copper transporter 1, ATP7A/ATP7B, multidrug resistance protein 2 (ATP-dependent cellular 

efflux of cisplatin), ATP-binding cassette family, GSH/g-GCS/GST (cisplatin extrusion), and 

metallothionein (detoxification of metal ions) is involved in this process [30].  

II. On-target resistance (DNA–cisplatin adducts formation): Cisplatin-mediated inter- and 

intra-strand DNA adducts induce apoptosis. However, cisplatin-resistant cancer cells either 

repair these adducts or tolerate unrepaired DNA lesions. The factors influencing this process are 

BRCA1/BRCA2 (nucleotide excision repair), MLH1 and MSH2 genes (DNA mismatch repair), 

POLH (DNA polymerase eta), and REV3/REV7 genes (cisplatin sensitivity in tumour cells), and 

cisplatin-binding proteins [30, 40].  

III. Post-target resistance (signalling activated by cisplatin-mediated DNA damage): Cisplatin 

disrupts apoptosis in response to DNA damage. Non-repairable cisplatin-induced DNA damage 
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activates a pro-apoptotic signalling cascade. The genetic and epigenetic alterations to signalling 

components are associated with resistance to cisplatin. The most effective mechanisms of post-

target resistance involve TP53 inactivation (DNp63 alpha expression) and pro-apoptotic signal 

transducers such as mitogen-activated protein kinase (MAPK) may also contribute to cisplatin 

resistance [30, 40].  

IV. Off-target resistance (affects molecular circuitries): Cisplatin resistance can also be 

caused by alterations in signalling pathways that are not directly linked to cisplatin-elicited 

signals but compensate for cisplatin-induced lethal signals. These include autophagy, dual-

specificity Y-phosphorylation-regulated kinase 1B, HER2 (HER-2), heat-shock proteins, and 

transmembrane protein 205 [30, 40, 41].  

Strategies to overcome the epigenetic forms of therapeutic resistance have not yet shown a 

clinical success. By understanding resistance mechanisms to cisplatin, therapies can be 

developed to overcome resistance and treatment failure. 

 

1.6. Epidermal growth factor receptor (EGFR) and clinical significance  

More than 60% of NSCLC tumours overexpress EGFR and 10% express EGFR-activating 

mutations. Mutations in the EGFR kinase domain enhance sensitivity to tyrosine kinase inhibitors 

(TKI). Initial response rates to TKIs are over 75% in patients with mutant-EGFR NSCLC 

tumours, and these drugs have been validated [25].  

EGFR protein, ligands, adaptor proteins, and phosphorylation: The EGFR protein has four 

extracellular domains, one transmembrane domain, and three intracellular domains. Ligands bind 

to the third extracellular domain, inducing receptor dimerisation and tyrosine 

autophosphorylation, which activates cell proliferation. The EGFR family of RTKs and their 

ligands are essential regulators of tumour cell proliferation, angiogenesis, and metastasis. The 
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EGFR family has four receptors, and ten different ligands bind selectively to these receptors [42, 

43]. This information is described in the table below. 

Table 1: EGFR receptor family, ligands, their phosphorylation sites 

 

EGFR mutations: The most common activating mutations are in-frame deletions in exon 19: 

in-frame deletions of amino acids 747–750 account for 45% of mutations. L858R substitutions 

in exon 21 account for 40–45% of mutations, and the remaining 10% involve exons 18 and 20. 

Partially activated mutant EGFRs can become constitutively active without ligand binding in the 

presence of other site substitutions, such as the T790M mutation in exon 20. These mutants are 

resistant to first- and second-generation EGFR TKIs [43].  

EGFR downstream signalling cascade: Under normal physiological conditions, ligand binding 

to the EGFR causes the receptor to dimerise, thereby activating the receptor complex. This 

activates signalling pathways that promote cell growth, proliferation, and survival. In cancer, 

EGFR downstream signalling is constitutively activated, which means cancer cell proliferation 

and survival are no longer controlled [43].  The EGFR signalling network is highly complex and 

Receptor Ligand Phosphorylation
Adaptor 
protein

Physiology Disease Inhibitors

EGFR

EGF

TGF

AR

HB-EGF

BTC

EPR

EPG

Tyr845, Tyr891

Tyr920, Tyr974

Tyr992, Tyr1045

Tyr1068, Tyr1086

Tyr1101, Tyr1114

Tyr1148, Tyr1173

Tyr654, Tyr669

Ser1046, Ser1047

Ser1070

Grb2, SOS

Shc

Shp1

cSrc

Gab1

PLCγ

PKC

cCbl

Control of cell growth 

& differentiation

Overexpress in 

cancer of breast, 

lung, prostate, 

pancreas, head & 

neck,

colon, ovary, and 

bladder

Afatinib

Erlotinib

Gefitinib

Her2 Not known ligands

Tyr882, Tyr 899

Tyr958, Tyr1023

Tyr1028, Tyr1139

Tyr1143, Tyr1196

Tyr1221/22, Tyr1226, 

Tyr1227

Tyr1249, Tyr1253

Grb2SOS

Shc

Essential for 

neuregulin receptor 

complex
Like EGFR1

Trastuzumab

Lapatinib

Her3
It cannot auto-
phosphorylate due to 
the impaired kinase.

Neuregulin,

Ebp1,

SH2 domain of p85

Tyr1035, Tyr1178

Tyr1180, Tyr1203/5

Tyr1241, Tyr1243

Tyr1257, Tyr1270

Tyr1309

Grb2/

7SOS

Shc

PI3K

Development of 

variety of tissues Like EGFR1 Patritumab

Her4
Neuregulin1

βcellulin

Tyr1066, Tyr1162

Tyr1066, Tyr1188

Tyr1189, Tyr1242

Tyr1258, Tyr1284

Shc

Grb2SOS

PI3K

Interacts with 

neuregulin 

(NRG2NRG3) &

HB-EGF like

growth factor

Like EGFR1 AST-1306
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interacts with downstream (MAPK, phosphoinositide-3-kinase/protein kinase B [PI3K/AKT], 

and Janus kinase /signal transducers and activators of transcription  [JAK/STAT]) cascade and 

other signalling pathways, such as phospholipase C gamma (PLCγ) and hepatocyte growth factor 

receptor (HGF/MET) pathways.  

I. MAPK pathway: The MAPKs are a highly conserved family of serine/threonine protein 

kinases that coordinate extracellular signalling pathways involved in cell growth and survival 

[44]. The MAPK family cascade members are extracellular signal-related kinases (ERK1/2), c-

JUN N-terminal kinase (JNK1/2/3), p38-MAPK, and ERK5 [45]. MEK1 or ERK2 knockout is 

lethal during embryonic development in mice, whereas MEK2 or ERK1 knockout mice are 

viable, fertile, and healthy [46]. 

II. PI3K/AKT pathway: Promotes tumour growth by regulating proliferation, migration, 

metastasis, and chemotherapy resistance [44, 47-49]. The cascade is activated by RTKs such as 

EGFR, HER2, IGF-1, VEGFR, and PDGFR [50]. PI3K signalling supports cancer development 

by promoting angiogenesis, genomic instability, and inflammatory cell recruitment [51].  

III. JAK/STAT pathway: The pathway regulates haematopoiesis, and disruption of signalling 

promotes cell growth and prevents apoptosis and are involves in many cellular events [52]. 

Aberrant JAK/STAT signalling has been reported in various human malignancies, and signalling 

is constitutively activated in cancer cell lines and tumour tissue. Activated signalling is associated 

with resistance to radiotherapy and genotoxic chemotherapy in human cancers [16]. STATs can 

be activated by many cytokines and growth factors, as well as G-protein-coupled receptor 

agonists, and this activation is cell type- and ligand specific [53].  

IV. Phospholipase C (PLC) pathway: PLC consists of six isoforms (β, γ, δ, ε, ζ, η),  and 

distinct mechanisms regulate each isoform. PLCγ is activated by RTKs (EGF, PDGF, FGF, NGF, 

and HGF), which induces PIP2 production. PLCγ consists of two isozymes, PLCγ1 and PLCγ2. 

PLCγ1 is ubiquitously expressed and regulates cell growth, migration, and differentiation [37, 
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54-56]. Pharmacological (U73122) or molecular (RNA interference) inhibition of PLCγ 

signalling reduces cell invasiveness, but not tumour cell proliferation and apoptosis [37, 55]. 

V. MET/HGF signalling: Upon ligand (HGF) binding, c-MET dimerises and 

autophosphorylates, activating MAPK, Pl3K/AKT, SRC, and STAT signalling. This triggers cell 

survival, proliferation, migration, scattering, motility, invasion, angiogenesis, tumorigenesis, and 

tumour progression [57]. Combinational treatment with c-met inhibitors and cytotoxic agents can 

be used to treat c-MET-positive tumours. c-MET inhibitors (Onartuzumab) have shown good 

clinical efficacy with a manageable toxicity profile in NSCLC patients [58]. 

 

1.7. Calcium signalling 

Calcium is a critical cofactor for cellular signalling, and multiple proteins regulate the 

concentration of cytosolic Ca2+. This regulation is essential for physiological functions, including 

cell cycle control, survival, apoptosis, migration, and gene expression [2, 59, 60]. Components 

of the calcium machinery include: Ca2+ channels, inositol-1,4,5-trisphosphate receptors, 

ryanodine receptors, transducers, RTKs, G-protein-coupled receptors, Na+/Ca2+ exchangers, 

mitochondrial channels, Ca2+-ATPases, Golgi pumps, calcium buffers, Ca2+-binding proteins, 

and calcium-sensitive enzymes [61, 62]. 

Intracellular Ca2+ concentration: Cytoplasmic calcium is maintained at low levels (~100 nM) 

by active mechanisms. Intracellular Ca2+ is stored in the mitochondria, Golgi apparatus, nucleus, 

and endoplasmic reticulum (ER), with most being stored in the ER [2, 59]. An increase in 

intracellular calcium concentration initiates multiple signalling pathways, depending on the 

pattern and subcellular localisation [63]. Upregulation of proliferation- and apoptosis-related 

pathways alters cell growth and cell death and eventually leads to cancer [60].  
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2. Hypothesis  

Cisplatin evokes different cellular responses, and cisplatin resistance is associated with the 

activation of cell survival signals [34, 64-67]. We hypothesised that cisplatin resistance alters 

EGFR phosphorylation, downstream EGFR signalling, EGFR TKI sensitisation, and intracellular 

calcium levels. To test this hypothesis, we quantified total and phosphorylated levels of HER 

family proteins and their downstream signalling components in cisplatin-resistant EGFR-mutant 

lung cancer cells. We also examined the effect of EGFR TKIs on the acquired CRP, as this is 

currently disputed in lung cancer cells. 
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3. Translational Relevance  

Resistance to oncotherapy is an inevitable scenario that leads to tumour relapse and patient 

mortality. Cisplatin is one of the treatments of choice for advanced lung cancer, and EGFR-

targeted therapy has benefited a proportion of NSCLC patients. The reasons for cisplatin 

resistance are numerous and complicated, and translational approaches are needed to overcome 

cisplatin resistance in lung cancer. Cisplatin resistance alters EGFR, and calcium signalling – a 

better understanding of these changes may aid the design of novel and less toxic combination 

therapies. Specific screening may lead to the development of personalised treatments that 

enhance the patient quality of life and overall survival. 
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4. Materials and Methods  

4.1.  Instruments and laboratory consumables  

4.1.1. Instruments 

 
 

4.1.2.  Laboratory equipment 

 
 

 

 

 

Instruments Model Source

ELISA-Reader Mithras LB 940 Multimode 

Microplate Reader

Berthold Technologies GmbH & Co. KG, 

75323 Bad Wildbad, DE

Fluorescence microscope Axiovert 200M, SIP 79800 Carl Zeiss AG, Jena, DE

Flow cytometry (FACS) BD FACSCANTO II BD Biosciences, D 69126 Heidelberg

Luminescent Image Analyzer LAS-4000 Fuji Film Europe GmbH, D-40549, Düsseldorf

ChemiDoc Touch Imaging System Bio-Rad Laboratories GmbH, Muenchen, DE

Instruments Model Source 
Cell Incubator HERA Cell 240 Thermo Scientific, Heraeus, DE 

Laminar airflow HERA Safe Thermo Scientific, Heraeus, DE

Tube/Plate-centrifuge Mutifuge X3R Thermo Scientific, Heraeus, DE

Eppendorf-centrifuge Kalte mittel R1349 Eppendorf AG, 22331 Hamburg 

Precision Balance KB240-3N Kern & Sohn GmbH 

Analytic Balance SBC21 Scaltec Instruments, Heiligenstadt

Invert Microscope Zeiss Primo Vert Zeiss GmbH, 81241, DE 

Nano drop ND-2000C Spectrophotometer Thermofisher Life Technologies GmbH, 64293

Water bath 1083 Gesellschaft fur Labortechnik GmbH, D 3006

Thermomixer Compact Eppendorf-Netheler-Hinz GmbH, Hamburg, DE

Plate Shaker KS260 Basic IkaMag RH, Janke & Kunkel IKA-Labortechnik, DE

Roller CAT, RM5.40 CAT, M. Zipperer GmbH, D79219

Shaker/ Vortex G560E VortexGene-2 Scientific Industries, USA 

Single-channel pipettes

Multi-channel pipettes

10, 100, 200 and 1000 μl

0.1-10 & 10-100 μl

30-300 μl

Eppendorf AG, 22331 Hamburg 

4661030N, Thermo scientific

64293 Darmstadt, DE
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4.1.3. Laboratory consumables 

 
 

4.2. Drugs and Chemicals 
4.2.1. Drugs 

 

Material Type Source 
Culture flasks 25, 75 & 175 cm2 and 2 μm 

vent cap

Corning Incorporated, NY, US

Greiner Bio-One GmbH, DE
Multi-well dishes 6-well and 96-well Falcon, BD Biosciences Labware, US

Cell culture dishes 35 Å~ 10 mm and 100 Å~ 20 

mm

Falcon, BD Biosciences Labware, US and  

Greiner Bio-One GmbH, DE
Centrifuge tubes 15 ml and 50 ml Sarstedt AG & Co., Nümbrecht, DE 

Cryotubes Cryo Vials Greiner Bio-One GmbH, DE
Cover slides 24 Å~ 32 mm and 18 Å~ 18 

mm

Menzel-Gläser, Mezel GmbH Braunschweig, DE

Counting chamber 0.1 Å~ 0.0025 mm2 Neubauer, Brand, DE

Cell culture pipettes 5, 10 and 25 ml Corning Incorporated, US.33

Pipette tips 10, 200 and 1000 μl, Sarstedt AG, Nümbrecht, DE
PCR 96-well plate Light Cycler 480 Multi-well 

Plate 96, white

Cat.no:04729692001, Roche Diagnostische 

GmbH

Compound Source Mechanism of action (MOA) Properties
Cisplatin Apotheke LMU 

Klinikum, 

München, DE

Formation of DNA injuries followed by

activation of the DNA damage response and

the induction of mitochondrial apoptosis.

Conventional cytotoxic, approved for the

treatment of many malignancies.

Mol.Wt.300 gm/mol 

(Soluble in saline)

Erlotinib HCl 
(OSI-776)

Cat.no: E-4007, 

LC Laboratories, 

USA

Competing with ATP and reversibly binds to

EGFR TK at the intracellular catalytic domain

through inhibiting EGFR phosphorylation and

blocking the signal transduction.

First & second-line therapy for NSCLCs

patients; Active against the del E746-A750

deletions in exon 19.

Mol.Wt.429.9 gm/mol 

(Soluble in DMSO)

Gefitinib 
(ZD-1839/ Iressa)

Cat.no: G440, 

LC laboratories, 

USA

Similar to the erlotinib MOA.

First & second-line therapy for NSCLCs

patients; Active against the L858R point

mutation in exon 21.

Mol.Wt.446.9 gm/mol 

(Soluble in DMSO)

Afatinib 
(BIBW2992/ Giotrif)

Cat.no: A-8644, 

LC Laboratories, 

USA

Irreversible ATP-competitive drugs make

covalent bonds with a cysteine residue at

position 797 in EGFR and also affects HER2

& HER4.

First-line therapy for subjects bearing

metastatic NSCLC tumours has EGFR exon 19

deletions or exon 21 (L858R) substitution

mutations.

Mol.Wt.485.9 gm/mol 

(Soluble in DMSO)

Rociletinib 
(CO-1686/ AVL-301)

Cat.no: R-3692, 

LC laboratories, 

USA

Blocks the kinase activity of EGFR carrying

the T790M mutation, and do not inhibit wild-

type EGFR significantly.

Specific to the patients have the EGFR T790M

mutation.

Mol.Wt.555.5 gm/mol 

(Soluble in DMSO)
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4.2.2. Chemicals and reagents 

 
 

4.2.3. Assay kits 

 
 

4.3. Cells lines and cell culture  
4.3.1. Tumour cell lines and characteristics  

 
 

Compound Source Category Concentration
Human Epithelial 

Growth Factor 

(hEGF)

Cat. No. 8916SE, Cell Signaling 

Technology or Cat. No. AF-100-

15-100UG Peprotech, London

EGFR and 

PLC gamma stimulator

Stock: 100 µg/ml

Final: 100ng/ml

In saline
Crystal violet

[C.I. 42555]

Cat.no: T123.1, Carl Roth GmbH Staining agent 0.5%W/V in PBS

Trypan blue Cat.no. T8154, Sigma-Aldrich Staining agent 0.4%

paraformaldehyde Cat.no: A2156,0100 AppliChem 

GmbH

Fixing agent 4%

Compound Source Purpose
Cell Titer Blue Reagent Cat.no #G8081, Promega GmbH, D-68199 Mannheim Cell Viability Assay

Annexin V-FITC apoptosis 

assay

Cat. No. 556547, BD Biosciences, San Diego, CA Cellular apoptosis 

Human EGFR 

Phosphorylation Antibody 

Array

Cat.no: AAH-PER-1-8

Ray Biotech, Inc. GA 30092

EGFR phosphorylation

PathScan EGFR Signaling 

Antibody Array

Cat.no: #12622, Cell Signaling Technology, MA EGFR downstream 

DC protein assay kits

Bio-Rad Laboratories

Protein Assay Reagent A #5000113

Protein Assay Reagent B #5000114

Protein Assay Reagent S #5000115

Protein estimation

Fura-2 AM Cat. F14185, Molecular Probes, Invitrogen, US (50 μg Å~ 20) The Intracellular calcium 

Cell lines Source Histology Characteristics Mutations 

NCI-H838 Cat. No: 
ATCC-CRL5844

AD & NSCLC
The 3B staged metastasis lymph node 
tissue of 59 years, Caucasian male, and 
a smoker.

Wild-type EGFR
KRAS, and p53

HCC827 Cat. No: 
ATCC-CRL2868

AD (BAC features) and 
NSCLC

Lung epithelium tissue of 38-years 
Caucasian female, long smoker. 

EGFR activating mutation, 
deletion in exon 19 (del E746-
A750). c-Met mutated
wt. KRAS & p53

NCI-H1975 Cat. No: 
ATCC-CRL5908

AD and NSCLC Lung epithelium tissue of female & 
Non-Smoker. 

Missense mutations in exon 21 
(L858R) and exon 20 (T790M-
20 /gatekeeper). KRAS & wt 
p53 

NCI-H1650 Cat. No: 
ATCC-CRL5883

NSCLC, Bronchi alveolar 
carcinoma

The 3B stage metastatic, pleural 
effusion of 27 Caucasian male Non-
Smoker. 

Exon19(delE746A750) & 20 
(T790M) on EGFR gene. 
del PTEN, activated Akt/PI3K 
signalling . KRAS & p53 wt. 

NCI-H1339 Cat. No: 
ATCC-CRL5979

Small Cell Lung 
Carcinoma (SCLC)

From the metastatic site: pleural 
effusion of female.

Wild-type EGFR
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4.3.2. Cell culture medium and supplements 

 
 

4.3.3. Cell culture medium composition 

A. 10% FBS medium: Heat-inactivated FBS (10% [v/v]), L-glutamine (200 mM), penicillin 

and streptomycin (50 mg/ml), and amphotericin B (Fungi zone, 2.5 μg/ml) in RPMI 1640 (90%) 

medium for H838, HCC827, H1650, and H1975 cells. 

B. 20% FBS medium: Heat-inactivated FBS (20% [v/v]), L-glutamine (200 mM), penicillin 

and streptomycin (50 mg/ml), and amphotericin B (Fungi zone, 2.5 μg/ml) in RPMI 1640 (80%) 

for H1339 cells. 

 

4.3.4. Cell culture method: H838, HCC827, H1650, H1975, and H1339 cells were cultured in 

175 cm2 culture flasks with 10–12 ml medium at 37°C and 5% CO2. Culture medium was 

changed every 2–3 days. Cells were passaged when they reached 60–70% confluency. Cells were 

detached by incubating in Trypsin-EDTA solution for 3–10 minutes at 37°C and 5% CO2. Cells 

Reagent Catalogue Source Strength
RPMI 1640 F1415

BE12-167F

Biochrom AG, Berlin

Lonza, B-4800 Verviers, Belgium

Very low Endotoxin 

L-glutamine M11-004 PAA Laboratories GmbH, Austria 200 mM

Pen strep DE17-602 Lonza, B-4800 Verviers, Belgium Penicillin & Streptomycin 

(10,000 U)
Fungi zone P11-001 PAA Laboratories GmbH, Austria Amphotericin-B, 250 μg/ml

Fetal Bovine Serum 

(FBS)

10270 Gibco, Life technologies, DE Sterile

Trypsin-EDTA L2143 Biochrom GmbH, D-12247, Berlin 0.05%/0.02% W/V in D-

PBS without Ca2+ Mg2+

Phosphate Buffered 

Saline

BE17-516F Lonza, B-4800 Verviers, Belgium without Ca2+ & Mg2+

Phosphate Buffered 

Saline 

BE17-513F Lonza, B-4800 Verviers, Belgium With Ca2+ & Mg2+

Ethanol & Methanol Apotheke, Klinikum Groß Hadern, 

Münch

100%

Dimethyl sulfoxide 

(DMSO)

D2650 Sigma-Aldrich Chemie GmbH, DE 100%



MATERIALS AND METHODS                                                                     
  

 

15 

were frozen in cell culture medium containing 20% FBS and 10% DMSO. The effect of EGFR 

TKIs was compared in cisplatin-resistant cells and naïve cells. For cisplatin treatment, cells were 

exposed to 1 µg/ml cisplatin for 3 hours, based on previous findings that plasma cisplatin 

concentrations persist for 3 hours in humans [68, 69]. 

Table 2: Pharmacokinetic and pharmacodynamics of the cisplatin and the EGFR TKIs  

 

* Cisplatin can also be given every 28 days depending on the treatment scheme and the 

combination therapy. 

In our experiments, cells were treated with established clinical concentrations of cisplatin (3.3 

μM) [68, 70], erlotinib (4.7 μM) [71, 72], gefitinib (0.4 μM) [71, 72], afatinib (62 nM) [72-75], 

and rociletinib (360 nM) [76], except in drug sensitivity and cell proliferation assays. 

 

4.4. Experimental methods and procedures 

4.4.1. Generation of cisplatin-resistant phenotype (CRP) cell lines 

Cisplatin resistance was induced in EGFR-mutated NSCLC cells (H838, HCC827, H1975, and 

H1650) and in SCLC cells (H1339). Cisplatin resistance was induced by exposing the cells to 1 

µg/ml cisplatin for 3 hours at 37°C, after which the medium was changed. Cells were exposed to 

cisplatin once a week for four weeks to induce the CRP [68, 70]. 

 

Compound Category Human Dose 
(mg)

Human Plasma 
(Cmax)

Concentrations 
used  

Cisplatin Cytotoxic
60-100 mg/m2, 
i.v/21days *

3.3 µM or 1 µg/ml
Stock (1mg/ml) 
Final (1µg/ml)

Erlotinib Reversible EGFR 
inhibitor

150-O. D/oral
4.7 µM or 2 μg/ml 
(1.26 – 2.93 µg/ml)

Stock (2mg/ml) 
Final (2µg/ml)

Gefitinib Reversible EGFR 
inhibitor

250-O. D/oral
0.4 µM or 200 ng/ml
(0.16 – 0.24 µg/ml)

Stock (0.2 mg/ml)
Final (2µg/ml)

Afatinib Irreversible EGFR 
inhibitor

40-O. D/oral 62 nM or 30 ng/ml
Stock (30 µg/ml) 
Final (30ng/ml)

Rociletinib Specific inhibitor 
(T790M mutation)

625-BID/oral 360 nM or 200 ng/ml
Stock (0.2 mg/ml) 
Final (2 µg/ml)
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4.4.2. Cell growth assay/ Cell viability assay 

To check whether cells were resistant to cisplatin and whether inhibiting EGFR signalling 

affected this resistance, cell growth and cell viability assays were performed. 

Naïve and CRP H838, HCC827, H1650, H1975, and H1339 cells were seeded separately into 25 

cm2 culture flasks and left overnight to settle. Naïve and CRP cells were treated with 0.1% DMSO 

as an assay control. CRP cells were treated with 1 μg/ml cisplatin for 3 hours. Naïve and CRP 

cells were treated with erlotinib, gefitinib, afatinib, and rociletinib (see Table 2 for 

concentrations). Briefly, after 24 hours of drug exposure, cells were trypsinised and centrifuged 

at 10,000 rpm for 5 minutes to obtain a cell pellet. The pellet was resuspended in 1 ml fresh 

culture media and diluted 1:10 in 0.4% trypan blue solution. The cell suspension was loaded into 

a cell counting chamber (0.1 Å~ 0.0025 mm2) and viable cells (i.e., unstained cells) were counted 

under a microscope. Viable cells were quantified every 24 hours for four days [68]. 

 

4.4.3. Cell proliferation assay/ drug sensitivity assay 

To see whether cisplatin resistance alters the growth inhibitory concentration (IC50), and what 

effect EGFR TKIs have on this, we performed cell proliferation and drug sensitivity assays [77].  

Naïve and CRP H838, HCC827, H1650, H1975, and H1339 cells were plated in 96-well tissue 

culture plates in a complete culture medium. H838 and H1975 cells were plated at a concentration 

of 3,000 cells per well, and HCC827, H1650, and H1339 cells were plated at a concentration of 

5,000 cells per well. Twenty-four hours after plating, cells were exposed to cisplatin (0.01 μM, 

0.1 μM, 1 μM, 10 μM, and 100 μM) for 3 hours, after which the medium was replaced with fresh 

medium containing 10% FBS. Cells were exposed to EGFR inhibitors (0.01 μM, 0.1 μM, 1 μM, 

10 μM, and 100 μM) for three days in medium containing 10% FBS. Cell viability was measured 

after 72 hours of drug incubation using the CellTiter Blue cell viability assay. In this assay, living 

cells produce a fluorescent end product, which can be quantified, and the amount of fluorescence 



MATERIALS AND METHODS                                                                     
  

 

17 

is directly proportional to the number of viable cells. Fluorescence was measured on a Mithras 

LB 940 multimode microplate reader. The IC50 was calculated using Graph Pad Prism software 

(CA, USA) according to the formula below: 

 

 

4.4.4. Clonogenic assay/Colony formation assay 

To measure the effect of cisplatin and EGFR inhibitors on colony formation in CRP and naïve 

cells, we performed colony formation assays. Naïve and CRP H838, HCC827, H1650, H1975, 

and H1339 cells were plated into six-well culture plates at a concentration of 100 cells per well 

in a complete culture medium. Twenty-four hours after plating, cells were exposed to 1 µg/ml 

cisplatin for 3 hours, after which the culture medium was replaced with fresh medium containing 

10% FBS. After 2–3 weeks, cell colonies formed, and plates were washed with cold isotonic 

PBS, then fixed and stained for 30 minutes at room temperature in a 4% paraformaldehyde and 

0.5% w/v crystal violet solution in PBS. The plates were then washed gently with water to remove 

excess stain and air-dried in the dark [78]. Colonies were counted manually under the 

microscope, and the plating efficiency and surviving fraction (SF) was calculated as follows:  

 

 
 

 

4.4.5. Apoptosis assay by FACS 

To quantify the effect of cisplatin resistance and EGFR inhibitors on cisplatin-mediated 

apoptosis, we performed apoptosis assays. We used the annexin V-FITC apoptosis kit (BD 

Biosciences, San Diego, CA) according to the manufacturer’s instructions. Naïve and CRP H838, 

M. Murphy, B. Stordal / Drug Resistance Updates 14 (2011) 177– 190 179

sensitivity to the novel EGFR inhibitor AG1478 (Hiraishi et al.,
2008). Therefore, treatment with platinum and the development
of platinum resistance may  cause EGFR dysfunction by altering
the protein expression and activity of components of the EGFR
pathway in a subpopulation of relapsed cancer patients. There-
fore, we hypothesise that EGFR-TKIs could be useful in treating
platinum pretreated and/or platinum-resistant cancers if a dys-
function in the EGFR pathway has developed as a result of first-line
platinum-based chemotherapy. Identifying this subpopulation may
yield better response rates to salvage chemotherapy with EGFR-
TKIs.

Erlotinib and gefitinib are both EGFR-TKIs, which bind the
ATP-binding site in the cytosolic EGFR tyrosine kinase-domain,
preventing autophosphorylation and activation of key signalling
pathways (Rosa et al., 2008; Yun et al., 2008). Both have been FDA-
approved for the treatment of advanced or metastatic NSCLC where
foregoing chemotherapy has failed and, therefore, are the focus
of this review in the context of their suitability as targeted sal-
vage treatment agents for NSCLC and ovarian cancers which have
recurred after treatment with platinum-based chemotherapy.

2. Methods

2.1. Data collection

Medline and EMBASE were searched systematically for preclin-
ical and clinical studies reporting outcomes of platinum-resistant
ovarian/non-small cell lung cancer cell lines and tumours treated
with either erlotinib or gefitinib. The literature searches were per-
formed by both review authors independently and last updated
early February 2011. The searches were limited to papers published
in the English language only. Conference abstracts and review arti-
cles were excluded from the analysis.

2.1.1. Preclinical
A keyword search strategy was utilised, combining relevant

words or their common synonyms for:

(1) Cancer types (cancer*, carcinom*, neoplas*, tum*, malignan*,
ovar*, NSCLC).

(2) Platinum drugs (platin*, cisplatin, oxaliplatin, carboplatin,
CDDP).

(3) EGFR-TKIs (gefitinib, Iressa, ZD1839, erlotinib, Tarceva, OSI-
774).

(4) Drug resistance status (resist*, cross resist*, toxicity, IC50).
(5) Preclinical (cells or cell line).

Resistance studies looking at a panel of cancer cell lines and the
relative resistance between them were excluded, as these studies
examine intrinsic platinum resistance and not resistance developed
from exposure to chemotherapy. Resistant cell lines resulting from
transfection were excluded.

2.1.2. Clinical
Medline and EMBASE were searched for all clinical trials using

erlotinib or gefitinib alone or in combination as treatment for
patients who had previously received cisplatin or carboplatin-
based chemotherapy.

(1) Cancer types (cancer*, carcinom*, neoplas*, tum*, malignan*,
ovar*, NSCLC).

(2) Platinum drugs (platin*, cisplatin, oxaliplatin, carboplatin,
CDDP).

(3) EGFR-TKIs (gefitinib, Iressa, ZD1839, erlotinib, Tarceva, OSI-
774).

(4) Second line therapy/drug-resistant disease (resist*, refractory,
relaps*, retreat*, re-treat*, pretreat*, pre-treat*, progress*, per-
sistent, salvage, second-line).

(5) Clinical trial (trial, phase, patient*, group*, random*, cohort,
random).

All studies of “first-line” or chemotherapy-naïve patients were
excluded. Second line studies were excluded if patients had
received no prior platinum chemotherapy. Case studies report-
ing less than 5 patients were excluded. Reports of maintenance
chemotherapy for non-relapsed/non-progressed platinum pre-
treated patients were excluded. Reports apparently relevant by
reading of abstracts were scrutinised and, where relevant infor-
mation was provided, data were extracted and tabulated. Relevant
reviews were also examined in order to identify further studies
not returned by searching of the databases. The reference lists of
included studies were also searched for relevant papers. Where
insufficient data had been presented, attempts were made to con-
tact authors for clarification.

2.2. Statistics

The Fisher’s exact test, using two tails for p values as calculated
by Graphpad Quickcalc was used to test for significant differences
between the pooled response rates in the clinical data. p values of
less than 0.05 were considered significant.

3. Results

3.1. Preclinical studies

Cell line models of acquired drug resistance are developed in
the laboratory by repeatedly exposing cancer cells in culture to
chemotherapeutic agents. Methodologies for development vary
between laboratories, some use the same dose of chemotherapy
with minimal dose escalation (Stordal et al., 2006; Locke et al.,
1999), and others gradually increase the dose of chemotherapy the
cells are exposed to over a longer time period (Akiyama et al., 1985;
Clynes et al., 1992). The surviving resistant cells are then compared
to the parental sensitive cells using a cell viability assay such as the
MTT, acid phosphatase or clonogenic assay. The sensitivity of these
paired cell lines to any particular drug is usually determined by
exposing them to a range of drug concentrations and then assess-
ing cell viability. The IC50 (drug concentration causing 50% growth
inhibition) for these paired cell lines can be used to determine the
increase in resistance known as fold resistance by the following
equation:

Fold Resistance = IC50 of Resistant Cell Line
IC50 of Parental Cell Line

The literature search for models of acquired drug resistance
which report cross-resistance data for both a platinum chemother-
apeutic and erlotinib or gefitinib identified 4 papers reporting 10
cell lines (Table 1). The definition of cross-resistance between two
chemotherapy drugs is a matter of debate in the literature. Some
studies consider two  drugs cross-resistant only if a similar level
of resistance is observed. Studies which have developed cell lines
from patients before and after chemotherapy have found that drug
resistance in the clinic typically produces resistance of 2- to 3-
fold (Kawai et al., 2002; Kuroda et al., 1991). For the purposes of
this review we  have defined cross-resistance between platinums
and EGFR-TKIs as greater than or equal to 2-fold resistance to both
drugs. This definition is therefore based on what would be clinically
observed as cross-resistance.

Dai et al. sought to investigate the relative efficacy of erlotinib
in several human cancer-derived cell lines and their drug-resistant
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HCC827, H1650, H1975, and H1339 cells were seeded into 25 cm2 culture flasks and cultured 

for 24 hours. Cells were then exposed to 1 μg/ml cisplatin for 3 hours. Cells were also treated 

with erlotinib, gefitinib, afatinib, and rociletinib (Table 2). After 24 hours of drug exposure, we 

quantified the number of apoptotic cells. First, cells were trypsinised, pelleted by centrifugation, 

and resuspended in annexin V binding buffer. Next, cells were incubated in a solution of 1 μg/ml 

FITC-conjugated annexin V and 50 μg/ml propidium iodide in the dark for 30 minutes at room 

temperature. Stained cells were analysed on a FACS CANTO II flow cytometer (Becton 

Dickinson, Mountain View, CA), and data were analysed by Flowjo 8.7 and Graph Pad Prism 

software. 

 

4.4.6. Human EGFR Phosphorylation antibody array 

To measure EGFR phosphorylation in cisplatin-resistant and naïve lung cancer cells, we 

performed EGFR phosphorylation arrays.  

Assay procedure: Cells were plated in small dishes and cultured until 70–80% confluent. Naïve 

and cisplatin-resistant cells were treated with 1 ug/ml cisplatin for 3 hours. Naïve cells were 

stimulated with hEGF (100 ng/ml for 20 minutes) as a positive control. Cells were washed in ice-

cold PBS, and 1× cell lysis buffer was added. Cells were incubated in 0.5 ml lysis buffer on ice 

for 2 minutes; then cell lysates were collected by scraping. Lysates were left to stand on ice for 

3 minutes before centrifuging at 10,000 g for 10 minutes. The supernatant was immediately 

stored at -80°C, and cell lysates were diluted to 0.2–1.0 mg/ml in diluent buffer. Protein in the 

cell lysates was quantified using the DC protein assay kit (Bio-Rad Laboratories) according to 

the manufacturer’s instructions. Membranes were blocked with 1× blocking buffer for 1 hour 

and then incubated in 1.2 ml of cell lysate supernatant (test sample) (500 ug/ml) overnight at 

4°C. Membranes were washed three times in 1× wash buffer I and then 1× wash buffer II at room 

temperature with shaking for 5 minutes per wash. Membranes were incubated in 1 ml diluted 
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biotin-conjugated anti-EGFR antibody overnight at 4°C and washed as described above. 

Membranes were incubated in 1.5 ml 1× HRP-conjugated streptavidin overnight at 4°C. After 

incubation, the membranes were washed as mentioned above. Equal portions of detection buffer 

C and detection buffer D were added to the membranes, and the membranes were imaged using 

ChemiDoc. Spot intensity was measured by ImageJ (Dot Blot Analyzer) software and data were 

analysed using Prism software. 

Normalisation of signals: One array was defined as the “reference” to which the signal 

intensities of the other arrays should be compared. Array signals were normalised based on the 

positive controls: 

Pos (1) = Reference average signal intensity of positive controls 

Pos (2) = Array 2 average signal intensity of positive controls 

X (2) = Intensity of a specific spot on array 2 

X(N2) = Normalised value for a specific spot on array 2 

X(N2) = X (2) * Pos (1)/Pos (2) 

 

4.4.7. PathScan EGFR signalling antibody array 

EGFR downstream signalling was investigated in CRP and naïve EGFR-mutant and EGFR- wild 

type lung cancer cells using the PathScan EGFR signalling antibody array. In this array, 

nitrocellulose-coated glass slides spotted with antibodies against phosphorylated EGFR, HER2, 

c-met, and other EGFR downstream signalling components are used to detect target proteins in 

the cell lysates [79, 80].  

Lysates were prepared from CRP, naïve, and positive control (naïve cells stimulated with 100 

ng/ml hEGF for 5 minutes) H838, HCC827, H1650, H1975, and H1339 cells as described in 

section 4.3.1. The array was performed as described in the manufacturer’s instructions. Briefly, 

a multi-well gasket was fixed to the glass slides, and non-specific binding sites were blocked by 
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adding blocking buffer to each well. After blocking, 75 µl diluted cell lysate was added to each 

well and left to incubate for 2 hours at room temperature. Cell lysates were removed, and the 

wells were washed for 5 minutes in 1× array wash buffer before incubating in detection antibody 

cocktail for 1 hour at room temperature. After four 5-minute washes, 75 µl 1× HRP-linked 

streptavidin was added to each well and incubated for 30 minutes. After washing, the glass slide 

was exposed to a LumiGLO/peroxide reagent, and chemiluminescent signals were detected. 

Images were captured and analysed using a LAS4000 imaging system (Fuji Photo Film). Array 

spot intensity was measured using ImageJ (Dot Blot Analyzer) software. Data were analysed 

using Graph Pad Prism software. 

 

4.4.8. Calcium quantification assay 

We measured differences in cytoplasmic calcium concentration in CRP and naïve lung cancer 

cells. We also examined the impact of EGFR inhibitors at clinical concentrations on cytoplasmic 

Ca2+ concentrations in naïve and CRP cells. 

Measurement of cytoplasmic Ca2+  

HCC827 and H1975 naïve and CRP cells were seeded in cell culture dishes. After the cells 

adhered, Fura-2 AM was added at a final concentration of 10 µM and the cells were incubated 

for 90 minutes at 37°C to stain cytoplasmic calcium. Cells were then incubated another 30 

minutes in PBS (with Ca2+ and Mg2+) to allow complete dye de-esterification before examining 

the cells under a fluorescent microscope. To capture the images, the following were used: 

microscope (Axiovert 200M, SIP 79800, Carl Zeiss AG), HBO lamp (103W/2, short Arc mercury 

lamp, Osram GmbH), objective fluor (20 × 0.75, transmission wavelength from 340 nm, Zeiss 

AG), excitation filter (wavelength 340 nm and 380 nm), emission filter (wavelength 510 nm) 

(both filters: Cat. 340 AF 15 and 380 AF 15, Laser Components GmbH), and a CCD digital 

camera (AxioCam MRm, Carl Zeiss Vision). Images of the same field were taken at excitation 
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wavelengths 340 nm and 380 nm with the image-processing program Axio Vision 4.1 (Carl 

Zeiss). ROIs were defined in the cytoplasm of each cell, and the average fluorescence of ROIs 

was measured with the image-processing program Scion Image 4.0 (Scion). [Ca2+] c was 

calculated as follows:  

 
The ratio (R) of emission intensities is calculated as the emission intensity from 340 nm 

excitation at 510 nm, divided by the emission intensity at 510 nm from 380 nm excitation (R = 

F340/F380). According to the equation above, the [Ca2+]c was obtained from the fluorescence 

emission intensity ratio [81]. 

4.5. Statistical analysis 

Data are presented as mean values ± SEM and mean values ± SD. Nonlinear fit curves were used 

to determine the inhibition concentration (IC50) using Graph Pad Prism. Paired Student’s t-test 

was used to compare groups. A p-value < 0.05 indicated statistical significance. 
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5. Results  
5.1. Generation and characterisation of cisplatin-resistant phenotype (CRP) cells 

To explore how EGFR signalling is affected by cisplatin resistance, we first generated cells with 

a cisplatin-resistant phenotype (CRP). We used a panel of EGFR-mutant lung cancer cells 

(summarised in Table 3). The peak plasma levels of cisplatin are between 0.2 and 11 μM in 

patients receiving 60–100 mg/m2 of the drug. Therefore, using higher concentrations and 

prolonged exposure in cells lines is not clinically relevant [34, 67, 82-93]. We induced cisplatin 

resistance in EGFR-mutant lung cancer cells using cisplatin concentrations of the patient plasma 

Cmax (3.3 µM [1 µg/ml] for 3 hrs every week for four weeks) to mimic the clinical condition [70].  

Table 3: Histology, mutations, and EGFR TKI sensitivity of the cell lines  

 

The EGFR-mutant human lung cancer lines (H838, HCC827, H1650, H1975, and H1339) were 

subjected to repeated cisplatin treatment in a clinical isogenic cell model to induce cisplatin 

resistance. Derived CRP cells were characterised by measuring viability, proliferation, colony 

formation, and apoptosis following treatment with 1µg/ml cisplatin. CRP cells showed weak 

sensitivity to cisplatin in viability assays (Figure 1), with higher IC50 values compared with naïve 

cells (Figure 2). Colony formation assays showed larger colony sizes for CRP cells compared 

with naïve cells following cisplatin treatment (Figure 3). Furthermore, cisplatin-induced 

apoptosis was reduced in CRP cells compared with their corresponding naïve cells (Figure 4). 

Cell lines Histology EGFR KRAS PTEN EGFR TKI sensitivity

H838 AD, 
NSCLC Wild type Wild type - Not sensitive

HCC827 AD, 
NSCLC

Exon 19 deletion  
(del E746-A750) Wild type - Very sensitive

H1975 AD, 
NSCLC

Exon 21 & 20 deletion 
(L858R, T790M) Wild type - Sensitive to 2nd & 3rd

generation EGFR TKIs

H1650 AD, 
NSCLC

Exon 19 deletion 
(delE746A750) Wild type + Not sensitive

H1339 SCLC Wild type Wild type - Not sensitive
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5.1.1. CRP cells show enhanced survival after cisplatin treatment 

Cell survival inhibition curves of H838, HCC827, H1650, H1975, and H1339 cells were assessed 

by trypan blue dye exclusion/phase-contrast microscopy and are presented in Figure 1. Viable 

cell numbers were not different in CRP cells and naïve cells treated with cisplatin (1µg/ml) on 

day one, but decreased significantly in naïve cells compared with CRP cells from the 2nd day to 

the 4th day in a time-dependent manner.  

Figure 1 

 

Figure 1A–E: Cell viability assay in EGFR-mutant lung cancer cell lines in response to cisplatin. Viable cells were 

visualised by trypan blue dye exclusion in EGFR-wild-type H838 cells; in EGFR-mutant HCC827, H1650, and 

H1975 cells; and in the SCLC H1339 cells. CRP cells were incubated with cisplatin (1 µg/ml) for three hours and 

survival was measured in a time-dependent manner for four days. CRP cells showed significantly higher survival 

compared with naïve cells. Data are expressed as mean ± SD from three independent experiments (n = 3, *P < 0.05, 

**P < 0.01, and ***P < 0.001). 
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5.1.2. Determination of cisplatin IC50 in CRP cells  

To determine the IC50 values of CRP cells and their corresponding naïve cell lines (H838, 

HCC827, H1650, H1975, and H1339), cells were treated with log concentrations of cisplatin 

ranging from 0.01 to 100 µM for 3 hours, after which the medium was replaced with fresh 

medium. Cell proliferation was measured after 72 hours of drug incubation using the CellTiter-

Blue cell viability assay. Dose-response curves were generated and IC50 concentrations (Figure 

2) and fold resistance were calculated (Table 4) for all cell lines. Cisplatin concentrations (IC50) 

varied between the tested cell lines. 

Figure 2  

 

Figure 2A–E: The inhibitory effects of cisplatin on the proliferative capacity of cisplatin -resistant EGFR-mutant 

lung cancer cells. Naïve and CRP cell lines were treated with log concentrations of cisplatin for 3 h incubation. 

Proliferation was measured after 72 h of cisplatin application using the CellTiter-Blue cell viability assay. While 

cisplatin inhibited the growth of both naïve and CRP cells, the inhibitory effect of cisplatin was greatly reduced in 

CRP cells relative to naïve cells. Data are expressed as mean ± SD from three independent experiments (n = 3, *P 

< 0.05, **P < 0.01, and ***P < 0.001). 
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Table 4: Increased cisplatin IC50 in CRP lung cancer cells 

 

Table 4: IC50 values of cisplatin in naïve and CRP EGFR-mutant lung cancer cells. The IC50 increased from 1.2-

fold to 2-fold in CRP cells compared with naïve cells 72 hours after cisplatin treatment. Data are expressed as mean 

± SD from three independent experiments (n = 3, *P < 0.05, **P < 0.01, and ***P < 0.001). Three CRP cell lines 

(H838, H1975, and H1650) showed significantly higher IC50 values compared with naïve cells. 

5.1.3. CRP lung cancer cells demonstrate enhanced clonogenic survival 

Survival of naïve and CRP EGFR-mutant lung cancer cells following treatment with cisplatin (1 

µg/ml) was assessed using the clonogenic survival assay. These assays showed that more 

colonies were formed by CRP cells than by naïve cells (Figure 3) in all cell lines. H838, HCC827, 

H1975, H1650, and H1339 naïve cells showed decreased colony formation potential after 

cisplatin treatment, but colony formation by CRP cells was not altered after cisplatin treatment. 

 

 

 

 

 

 

 

 

 

Cell line Naïve cells IC50 (µM) CRP cells IC50 (µM) Fold resistance

H838 30.9 ± 6 52.6 ± 9** 1.7

HCC827 39.3 ± 6 60.8 ± 10 1.5

H1975 33.2 ± 4 65.4± 11* 2.0

H1650 3.2 ± 1 5.9 ± 1** 1.8

H1339 40.8 ± 6 49.3± 5 1.2
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Figure 3 

 

Figure 3A–E: Clonogenic survival is higher in CRP cells than naïve cells after cisplatin treatment. Naïve and CRP 

EGFR-mutant lung cancer cells were seeded in 6-well plates at optimised seeding densities. Following treatment 

with cisplatin (1 µg/ml) for 3 hours, media was replaced, and cells were allowed to recover for 14 days. After this, 

surviving colonies were stained with crystal violet and counted under the microscope. H838, HCC827, H1975, 

H1650, and H1339 CRP cells formed significantly fewer colonies than naïve cells (A–E). CRP cells treated with 

cisplatin formed a similar number of colonies as CRP cells not treated with cisplatin. Cisplatin-treated naïve cells 

formed fewer colonies than naïve cells without treatment. Data are expressed as mean ± SD from six independent 

experiments (n = 6; *P < 0.05, **P < 0.01, and ***P < 0.001). 

5.1.4. Reduced cisplatin-induced apoptosis in CRP cells 

Apoptosis was quantified in EGFR-mutant lung cancer CRP cells by flow cytometry. Cells were 

incubated with 1 µg/ml cisplatin for 3 hours; after 24 hours of drug exposure, we quantified the 

number of apoptotic cells by flow cytometry using annexin V-FITC and PI (Figure 4). There 

were fewer apoptotic CRP cells than apoptotic naïve cells after cisplatin treatment (for H838, 

HCC827, H1650, H1975, and H1339 cell lines), indicating that CRP cells are more resistant to 

cisplatin than naïve cells are. 
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Figure 4 

 
 

Figure 4: Impact of cisplatin treatment on apoptosis in EGFR-mutant lung cancer cells. H838, HCC827, H1650, 

H1975, and H1339 cells were treated with 1 µg/ml cisplatin for 3 hours, and apoptosis was quantified after 24 hours 

of drug exposure. To measure apoptosis, the cells were treated with annexin V-FITC and PI and subjected to flow 

cytometry. The number of apoptotic CRP cells was lower than apoptotic naïve cells after cisplatin treatment, but 

there was no significant difference in apoptosis cell proportions between naïve and CRP cells without cisplatin 

treatment. Data are expressed as mean ± SD from three independent experiments (*P < 0.05, **P < 0.01, and ***P 

< 0.001). 

 

5.2. EGFR family protein expression and phosphorylation is altered in CRP cells 

Alterations in EGFR expression can transform healthy cells into cancer cells with a metastatic 

phenotype [89]. Levels of EGFR expression and phosphorylation convey essential information 

about downstream signalling in cancer [88]. An objective of this study was to investigate 

expression of EGFR family proteins and reveal phosphorylation sites that may regulate cellular 

responses to cisplatin resistance.  

To elucidate how expression of EGFR is affected by cisplatin resistance, we measured EGFR 

expression in EGFR-wild-type cell line (H838), EGFR-mutant cell lines (HCC827 and H1975), 

and a SCLC cell line (H1339). We measured the expression of EGFR1, Her2, Her3, and Her4 

and quantified total EGFR and phosphorylated EGFR (pEGFR) in cell lysates of naïve and CRP 
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(Figure 6 and Table 6) were both higher in CRP cells than naïve cells, and this difference was 

cell specific. 

5.2.1. EGFR receptor family expression in CRP lung cancer cells 

EGFR1 and Her2 are often overexpressed in cancers [94]. Cisplatin resistance did not induce 

EGFR1 expression in EGFR-mutant lung cancer cells. Her2 was overexpressed in wild-type 

EGFR cells (H838) and SCLC (H1339) cells (Figure 5A and 5D). In contrast, Her3 and Her4 

were only overexpressed in wild-type EGFR cells (H838).  

Figure 5 

 
Figure 5 A–D: Cisplatin resistance induces EGFR family receptor expression. In CRP EGFR-mutant lung cancer 

cells (H838, HCC827, H1975, and H1339), total expression of EGFR family proteins was assessed using a human 

EGFR family phosphorylation array. Dot intensities were quantified and represented as bar graphs (A–D). Naïve 

cells were stimulated with hEGF (100 ng/ml for 20 minutes) as a positive control. Data are expressed as mean ± SD. 

EGFR family receptor expression was altered in CRP lung cancer cells compared with naïve cells (A–D). (A) H838 

(wild type-EGFR) CRP cells overexpressed Her2, Her3, and Her4 receptors. (B) HCC827 (EGFR-activating 
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mutation) CRP cells had reduced EGFR1 expression and did not express Her2 and Her3 receptors. (D) H1339 (wild 

type-EGFR) SCLC cells showed elevated levels of Her2. Data are expressed as mean ± SD from technical duplicates 

of two independent experiments (*P < 0.05, **P < 0.01, and ***P < 0.001). 

Table 5: EGFR receptor family expression in CRP of lung cancer cells 

 
Note:( [↑] =Increase, [↓] =Decrease, [-] = Not expressed and [0] =similar expression). 

 

5.2.2. EGFR phosphorylation in CRP and naïve lung cancer cells 

Cisplatin induces EGFR phosphorylation at specific tyrosine residues [34, 67, 82, 84, 87, 90, 91, 

93] and phosphorylated EGFR recruits downstream signalling molecules that are involved in 

various cellular processes such as proliferation, migration, and apoptosis [95]. We measured 

EGFR phosphorylation in cisplatin-resistant EGFR-mutant lung cancer cells. Phosphorylation 

was increased at Tyr845 in wild-type EGFR and EGFR missense mutant NSCLC CRP cells. We 

found increased phosphorylation at Tyr1173 and activated MAPK and PLCγ signalling in 

cisplatin-resistant EGFR missense mutant NSCLC cells. Her3 was phosphorylated at Tyr1289 in 

cisplatin-resistant EGFR-wild type and EGFR-mutant NSCLC cells, and Her4 was 

phosphorylated at Tyr1284 in cisplatin-resistant EGFR-wild type NSCLC cells (Figure 6 and 

Table 6). 

 

Receptor Functional consequences H838
(wild type)

HCC827
(delE746-A750) 

H1975
(L858R &T790M)

H1339
(SCLC)

EGFR1

Ligand binding results in receptor dimerization, autophosphorylation,

activation and lysosomal degradation. GRB2, through SHC-RAS–RAF–

MEK–ERK: GAB1-PI3K–AKT–mTOR; c-SRC- JAK-STAT; PLCγ–PKC;

VAV- Rho family GTPase pathway; Cbl, leading to its ubiquitination and

degradation.

0 ↓ 0 0

ErbB2

ErbB2 possesses an extracellular domain that does not bind any known

ligand.. ErbB2 overexpression associated with cisplatin resistance in NSCLC

patients. ErbB2 conveys pro-survival signals via PI3K and MAPK.ErbB2

upregulation leads to cell migration and PLCγ activation.

↑ - - ↑

ErbB3

The EGFR family member with no kinase activity, and can only function in

heterodimers, with ERBB2 being its preferred heterodimerization partner.

ERBB3 conveys pro-survival signals via PI3K and MAPK.

↑ - 0 -

Erb4

ERBB2 and ERBB4, ligand-stimulated ERBB4 can either homodimerize or

form heterodimers with ERBB2 resulting in trans-auto-phosphorylation.

ERBB4 conveys pro-survival signals via PI3K and MAPK.
↑ - - -
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Figure 6 

 

Figure 6 A–D: Cisplatin resistance induces EGFR phosphorylation. In EGFR-mutant lung cancer CRP cells (H838, 

HCC827, H1975, and H1339), EGFR phosphorylation was measured using a human EGFR family phosphorylation 

array. Dot intensities were quantified and represented as bar graphs (A–D). Naïve cells were stimulated with hEGF 

(100 ng/ml for 20 minutes) as a positive control. Data are expressed as mean ± SD. EGFR phosphorylation was 

different in CRP and naïve cells at different sites (A–D). (A) In H838 (wild type-EGFR) CRP cells, cisplatin induced 

the phosphorylation of Tyr845, Tyr686, Tyr1112, Tyr1113, Tyr1289, and Tyr1284 residues. (B) HCC827 (EGFR-

activating mutation) CRP cells were phosphorylated at Tyr1289 of pHer3. (C) H1975 CRP cells were 

phosphorylated at Tyr845, Thr686, and Tyr1173 of EGFR1. (D) H1339 CRP cells showed elevated phosphorylation 

of Tyr1112 and Ser1113 residues and decreased phosphorylation at Tyr686 of Her2 compared with naïve cells. Data 

are expressed as mean ± SD from technical duplicates of two independent experiments (*P < 0.05, **P < 0.01, and 

***P < 0.001). 
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Table 6: Lung cancer CRP cells showed differential oncogenic protein expression 

 
Note:( [↑] =Increase, [↓] =Decrease, [-] = Not expressed and [0] =similar expression). 

Some EGFR phosphorylation sites were not quantified because they were not affected by cisplatin resistance or 

because they were not expressed strongly enough for quantification in certain cells, including pEGFR1: Tyr992, 

Tyr1045, Tyr1148, Ser1046/1047 and Ser1070; pHer2-Tyr1221/1222, Tyr1248. 

 

5.3. Cisplatin resistance altered the expression of EGFR downstream signalling proteins 

EGFR signalling is intertwined with MAPK, AKT, Stat, and PLCγ downstream cell survival 

pathways [96], and dysregulation of these signalling proteins is involved in tumour progression 

by promoting cell proliferation, survival, and invasiveness. Understanding how these pathways 

are connected is crucial to defining their role in cisplatin resistance [85]. The key EGFR 

downstream signalling nodes and their mutations were quantified in cisplatin-resistant EGFR-

mutant lung cancer (H838, HCC827, H1650, H1975, and H1339) cells. One of the objectives in 

this study was to provide a more comprehensive definition of EGFR downstream signalling 

networks that may regulate cellular responses to cisplatin resistance. Expression of EGFR 

downstream signalling nodes (Figure 7 and Table 7) was higher in CRP cells than naïve cells, 

and this difference was cell specific. 

MAPK signalling components promote survival or apoptosis depending on the level of 

phosphorylation, cell type, and duration of drug exposure in cisplatin-treated cells [97]. We found 

Phosphorylation Functional consequences H838
(wild type)

HCC827 
(delE746-A750)

H1975 
(L858R &T790M)

H1339
(SCLC)

EGFR Tyr845 Receptor activation; Involves in STAT5b & c-Src signaling ↑ 0 ↑ -

EGFR Tyr998 Involved in RAS-ERK signaling activation - 0 - -

EGFR Tyr1068 Biomarker for the erlotinib sensitivity in vitro & preclinical - 0 - -

EGFR Tyr1086 MAP kinase signaling activation - - - -
EGFR Tyr1173 MAP kinase activation through PLCγ - - ↑ -
ErbB2 Tyr686 Not involved in tumour cell proliferation ↑ - ↑ ↓
ErbB2 Tyr877 Regulation of ErbB2 biological activity - - - -
ErbB2 Tyr1112 MAPK/ERK kinase activation ↑ - ↓ ↑

ErbB2 Tyr1173 MAPK/ERK activation through PLCγ - ↓ ↑ -
ErbB2 Ser1113 Activation of Src family ↑ ↓ 0 ↑
ErbB3 Tyr1289 Activation of RAS-ERK signaling ↑ ↑ - -
ErbB4 Tyr1284 Activation of RAS-ERK signaling ↑ - - -
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that cisplatin resistance altered the expression of MAPK components in EGFR-mutant lung 

cancer cells in a cell-specific way. MEK was overexpressed in EGFR double-mutant NSCLC 

cells and wild type-EGFR SCLC cells. In contrast, expression was decreased in wild type-EGFR 

lung cancer cells. Phosphorylation was also affected by cisplatin resistance. MEK 

phosphorylation increased in EGFR-mutated cells and ERK phosphorylation was increased in 

wild type-EGFR and EGFR-mutated NSCLC cells. PI3K/Akt/mTOR signalling is activated in 

NSCLC [98] and can lead to chemotherapy resistance [19]. In the present study, cisplatin 

resistance enhanced pAkt activation at Ser473 in EGFR double-mutant cells. STAT3 activation 

is associated with cisplatin resistance in epithelial malignancies and STAT3 phosphorylation is 

higher in cisplatin-resistant lung cancer cells [82]. It has been shown that EGFR induces 

phosphorylation of Stat3 at Tyr705 [52, 99, 100]. In this study, we found that STAT3 

phosphorylation at Tyr705 was higher in cisplatin-resistant EGFR-mutated cells than naïve cells.  

PLCγ1 phosphorylation at Ser1248 promotes tumour cell invasiveness and migration, and 

regulates calcium signalling [55, 101, 102]. In this study, PLCγ1 protein expression and 

phosphorylation at Ser1248 were increased in cisplatin-resistant EGFR double-mutant NSCLC 

and wild-type EGFR SCLC cells. Inhibiting PLCγ1 by preventing phosphorylation of Ser1248 

has been shown to reduce migration in different cancer cells [55, 101]. c-MET expression is 

enhanced in cisplatin-resistant lung cancer cells and patient tumour tissues, which promotes cell 

migration, invasion, and tumour metastasis [83, 103]. In this study, c-Met expression was 

upregulated in cisplatin-resistant EGFR double-mutant NSCLC and wild-type EGFR SCLC 

cells. In addition, MET phosphorylation at Tyr1234/1235 was increased in cisplatin-resistant 

EGFR missense mutant cells.  

EGFR mutations associated with lung cancer include the E746–A750 deletion and del L858R 

point mutation and these are associated with sensitivity to EGFR TKIs [104]. Cisplatin resistance 

did not alter the frequency of these mutations in HCC827 cells, nor the efficacy of EGFR TKIs.  
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Figure 7 

 

Figure 7A–E: Cisplatin resistance activates EGFR signalling in EGFR-mutant lung cancer cells. Expression of 

EGFR downstream signalling nodes in EGFR-mutant lung cancer (H838, HCC827, H1975, H1650, and H1339) 

cells was assessed using a PathScan EGFR signalling antibody array. Naïve cells were stimulated with hEGF (100 

ng/ml for 20 minutes) as a positive control. Expression of EGFR downstream signalling components differed 

between CRP cells and naïve cells (Figure. 7A–E), and these differences were cell specific. (A) In H838 cells, the 

Thr202/Tyr204 residues of ERK were phosphorylated. (B) In HCC827 cells, phosphorylation was increased at 

Ser217/221 of MEK, Thr202/Tyr204 of ERK, Tyr705 of Stat3, and Ser1248 of PLCɣ1. Total Met protein expression 

was also enhanced. (C) H1975 cells showed enhanced expression of total MEK1/2 and enhanced phosphoryation of 

MEK at Ser217/221 and ERK at Thr202/Tyr204. These cells showed enhanced PLCɣ1 protein expression and 

phosphorylation at Ser1248. MET receptor expression and phosphorylation at Tyr1234/1235 was also increased in 

these cells. (D) H1650 cells showed enhanced expression of MEK1/2. The Akt pathway was also activated in these 

cells because of a PTEN gene deletion. Akt phosphorylation at Ser473 was also increased in CRP cells. H1650 cells 

showed enhanced PLCɣ1 protein expression and phosphorylation at Ser1248 and also elevated total MET receptor 

expression. (E) H1339 cells showed enhanced MEK1 and reduced MEK2 total protein expression and enhanced 

PLCɣ1 expression and phosphorylation at Ser1248. MET receptor expression was also elevated. Expression and 

phosphorylation of MEK, MET, ERK, Akt, Stat, and PLCɣ1 were altered in all CRP cells. Dot intensities were 
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quantified and presented as bar graphs. Data are expressed as mean ± SD (A–E). The EGFR Del746-A750 mutation 

was not altered in HCC827 cells (B). Data are expressed as mean ± SD from technical duplicates of two independent 

experiments (*P < 0.05, **P < 0.01, and ***P < 0.001). 

Table 7: Aberrant expression of EGFR downstream proteins in cisplatin-resistant lung 

cancer cells 

Note:( [↑] =Increase, [↓] =Decrease, [-] = Not expressed and [0] = similar expression). 
 
Some EGFR downstream signalling nodes, phosphorylation sites, and mutations were not quantified because they 

were not affected by cisplatin resistance or did not have strong enough expression for quantification. These were: 

phosphorylation sites: pEGFR (Tyr669), pHER2 (Tyr1196), Tyr1221/1222; mutations: EGFR L858R mutation; 

downstream nodes:  Akt Thr308 and PARP Asp214 cleavage. 

 

5.4. Impact of three generations EGFR TKIs on CRP cells at clinical concentrations 

Various cancer cells increase EGFR expression to promote survival in response to cytotoxic 

chemotherapeutic agents, which makes them more susceptible to EGFR inhibition by EGFR 

TKIs [90]. In this study, cisplatin-resistant EGFR-mutant lung cancer cells were treated with 

EGFR TKIs (erlotinib, gefitinib, afatinib and rociletinib) at clinical doses (i.e., at concentrations 

of human plasma Cmax; summarised in Table 2).  Cisplatin-resistant cells were less sensitive to 

EGFR TKIs except erlotinib in viability assays (Figure 8 and 9), with similar IC50 values to naïve 

Oncoproteins Functional consequences H838
(Wild type)

HCC827 
(DelE746-A750)

H1975 
(L858R T790M)

H1650 
(DelPTEN)

H1339 
(SCLC)

MEK1 total
Activated RAS/RAF/MEK/Erk kinase pathway is a significant

signalling node with a multitude of substrates and primarily

transmits growth and proliferation signals.

↓ 0 ↑ ↑ ↓
MEK2 total ↓ 0 ↑ ↑ ↑
MEK1/2 Ser221 - ↓ - - -
MEK1/2 Ser217/221 ↓ ↑ ↑ - -
ERK1/2 Thr202/204 ↑ ↑ ↑ 0 -

Akt Ser473 Akt generates anabolic growth and survival signals. - - - ↑ -

Stat3 Tyr705
Activated in response to EGFR stimulation & variety of

cytokine receptors. Stat3 is an oncogene & a T.F - ↑ - - -

PLCƔ 1 total A second messenger & activated by EGFR. This hydrolysis to

form IP3 (calcium mobilisation) and DAG (activates PKC).
↓ - ↑ ↑ ↑

PLCƔ 1 Ser1248 0 ↑ ↑ ↑ ↑

Met total Induce cell scattering, migration, and invasion (EMT).

Resistance to EGFR-therapies & contributing factor to tumour

metastasis.

0 ↑ ↑ ↑ ↑
Met Tyr1234/1235 - 0 ↑ - -

Met Tyr1349 - ↓ - - -
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cells (Table 8). Apoptosis was similar in CRP and naïve cells after treatment with EGFR TKIs 

(Figure 10). 

5.4.1. The inhibitory effects of first-generation EGFR TKIs on the survival of CRP cells 

The effect of first-generation EGFR TKIs (erlotinib and gefitinib) on cell survival of cisplatin-

resistant EGFR-mutant lung cancer cells (H838, HCC827, H1650, H1975, and H1339) is shown 

in Figure 8. Viable cell numbers did not differ between naïve and CRP cells one day after 

treatment with erlotinib and gefitinib, but there were significantly fewer viable naïve cells than 

viable CRP cells 2–3 days after treatment. Cisplatin resistance sensitised wild-type EGFR cells 

(H838 and H1339, which are insensitive to EGFR TKIs) and EGFR double-mutant cells (H1650, 

which carry a PTEN gene deletion and are resistant to first-generation EGFR TKIs) to erlotinib 

and also inhibited cell survival in HCC827 NSCLC cells carrying an EGFR-activating mutant.  

Figure 8 

 
Figure 8 A–E: Viability of cisplatin-resistant EGFR-mutant lung cancer cell lines after treatment with erlotinib and 

gefitinib. Cell viability was assessed by trypan blue staining in cisplatin resistant and naïve H838, HCC827, H1650, 

H1975, and H1339 cells. Cisplatin-resistant cells (CRP cells) were incubated with erlotinib (4.7 μM) or gefitinib 
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(0.4 μM) for 1 to 4 days and survival were measured in every 24 hours for 4 days. Compared with naïve cells, the 

number of viable CRP cells treated with erlotinib did not differ significantly on the day one, but did decrease 

significantly from day 2 to day 3. Cisplatin-resistant wild-type EGFR (H838 and H1339) and EGFR double-mutant 

(H1650) lung cancer cells were sensitised to erlotinib.  Erlotinib also inhibited cell survival in EGFR-activating 

mutant (HCC827) lung cancer cells compared with naïve cells. Data are expressed as mean ± SD from three 

independent experiments (n = 3; *P < 0.05, **P < 0.01, and ***P < 0.001). 

5.4.2. The inhibitory effects of second generation - and third generation EGFR TKIs on 

survival of cisplatin-resistant EGFR-mutant lung cancer cell survival 

We investigated the effect of second-generation (afatinib) and third generation (rociletinib) 

EGFR TKIs on cell survival in EGFR-mutant lung cancer cell lines (H838, HCC827, H1650, 

H1975, and H1339). Compared with naïve cells, the number of viable CRP cells treated with 

afatinib (62 nM) and rociletinib (360 nM) did not change (Figure 9). But afatinib reduced survival 

in cisplatin-resistant EGFR double-mutant H1975 cells (carrying a gatekeeper EGFR mutation 

and resistant to first-generation EGFR TKIs) and H1650 cells (carrying a PTEN gene deletion 

and resistant to first-generation EGFR TKIs) compared with naïve cells. 

Figure 9 
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Figure 9A–E: Survival of cisplatin-resistant EGFR-mutant lung cancer cell lines after erlotinib and gefitinib 

treatment. Viable cells were assessed by trypan blue dye exclusion in cisplatin-resistant (CRP) and naïve H838, 

HCC827, H1650, H1975, and H1339 cells. CRP cells were incubated with afatinib (62 nM) and rociletinib (360 

nM) for 1 to 4 days and survival were measured every 24 hours for 4 days. Afatinib and rociletinib did not affect 

the viability of CRP or naïve cells. Afatinib inhibited the survival of cisplatin resistant H1975 (C) and H1650 (D) 

cells but not naïve cells. Data are expressed as mean ± SD from three independent experiments (n = 3; *P < 0.05, 

**P < 0.01, and ***P < 0.001). 

5.4.3. Effect of EGFR TKIs on CRP lung cancer cell proliferation 

Cisplatin-resistant EGFR-mutant lung cancer cell lines were treated with log concentrations of 

EGFR TKIs (erlotinib, gefitinib, afatinib, and rociletinib) ranging from 0.01 to 100 µM for 72 

hours and cell proliferation was measured. Dose-response curves were generated and IC50 

concentrations were calculated. The results are summarised in Table 8. 

Table 8: The IC50 (µM) of EGFR TK inhibitors in CRP of lung cancer cells 

 
 

Table 8: The inhibitory effects of EGFR TKIs on the proliferation of cisplatin-resistant EGFR-mutant lung cancer 

cells. Naïve and CRP cell lines were treated with log concentrations of EGFR TKIs for 72 hours and cell proliferation 

was measured using the CellTiter-Blue cell viability assay. The mean growth inhibition (IC50) elicited by erlotinib, 

gefitinib, afatinib, and rociletinib was not significantly different between CRP and naïve lung cancer cells. Data are 

expressed as mean ± SD from three independent experiments (n = 3; *P < 0.05, **P < 0.01, and ***P < 0.001). 

5.4.4. Effect of EGFR TKIs on CRP cell apoptosis 

Induction of apoptosis in cisplatin-resistant EGFR-mutant lung cancer cells was examined by 

flow cytometry. Cells were incubated with EGFR TKIs (erlotinib, gefitinib, afatinib, and 

Cell line H838
(Wild type)

HCC827 
(DelE746-A750)

H1975
(L858 & T790M)

H1650 
(delPTEN)

H1339
(SCLC)

Compound Naïve CRP Naïve CRP Naïve CRP Naïve CRP Naïve CRP

Erlotinib 37 ± 12 71 ± 29 0.23 ± 0 2.3 ± 1 6.4 ± 1 7.6 ± 2 1.6 ± 1 2.3 ± 2 >100 >100

Gefitinib 23 ± 4 22 ± 6 1.8 ± 2 13.7 ± 7 22 ± 6 14 ± 2 7 ± 2 12 ± 3 33 ± 12 23 ± 8

Afatinib 3.2 ± 0.8 3.2 ± 0.9 0.4 ± 0 5.4 ± 3 2.9 ± 0.6 2.4 ± 1 4 ± 3 3 ± 1 3 ± 1 2.6 ± 1

Rociletinib 1.7 ± 0.6 2.3 ± 0.9 0.22 ± 0 0.04 ± 0 2.5 ± 0.6 0.8 ± 0.4 3 ± 2 4 ± 2 9 ± 4 8 ± 3
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rociletinib) at clinical concentrations for 24 hours. After drug exposure, apoptotic cells were 

stained and quantified (Figure 10). The number of apoptotic naïve or CRP cells did not increase 

after 24 hours of drug incubation. However, erlotinib-induced apoptosis in cisplatin-resistant 

wild-type EGFR cells (H838, normally insensitive to EGFR TKIs) and EGFR double-mutant 

H1975 cells, which carry gatekeeper EGFR mutation and resistant to first-generation EGFR 

TKIs. EGFR double mutant H1650 cells carry a PTEN gene deletion and are resistant to erlotinib, 

but gefitinib increased apoptosis in these cells. All tested EGFR TKIs enhanced apoptosis in 

cisplatin-resistant HCC827 cells, which carry an EGFR-activating mutation and are extremely 

sensitivity to EGFR TKIs. 

Figure 10 

 

Figure 10 A–E: Apoptosis in cisplatin-resistant EGFR-mutant lung cancer cell lines in response to EGFR TKIs. 

Cisplatin-resistant (CRP) and naïve H838, HCC827, H1650, H1975 and H1339 cells were incubated with erlotinib 

(4.7 μM), gefitinib (0.4 μM), afatinib (62 nM), and rociletinib (360 nM) for 24 hours. After drug exposure, apoptotic 

cells were stained with annexin V and PI and quantified by flow cytometry. Erlotinib-induced apoptosis in cisplatin-

resistant H838 and H1975 cells (A and C), and gefitinib enhanced apoptosis in H1650 cells (D). All tested TKIs 

enhanced apoptosis in HCC827 cells after 24 hours of drug incubation. Data are expressed as mean ± SD from three 

independent experiments (n = 3; *P < 0.05, **P < 0.01, and ***P < 0.001).  
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5.5. Effect of EGFR TKIs on cellular cytoplasmic calcium levels 

Calcium (Ca2+) is a universal cellular messenger and is regulated by multiple proteins in the 

cytosol [2, 61]. Intracellular calcium concentration plays a role in chemo-resistance of lung 

cancer cells [2, 59, 70, 105, 106]. In this study, we quantified calcium levels in the cytoplasm of 

cisplatin resistant HCC827 and H1975 NSCLC cells after treatment with cisplatin (1 µg/ml) for 

3 hours (Figure 11A). Cytoplasmic calcium levels did not change in cisplatin-resistant or naïve 

NSCLC cells.  

We also measured cytoplasmic calcium levels in HCC827 and H1975 NSCLC cells after 24 

hours of treatment with erlotinib (4.7 μM), gefitinib (0.4 μM), afatinib (62 nM), and rociletinib 

(360 nM). Calcium levels were not altered in cisplatin-resistant or naïve NSCLC cells after 24 

hours of drug incubation (Figure 11B and 11C).  

Figure.11 
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Figure 11 A–C: Impact of cisplatin and EGFR TKIs on cellular cytoplasmic calcium levels. (A). Intracellular 

calcium levels in NSCLC cell lines after cisplatin treatment. There no significant difference in calcium levels 

between cisplatin resistant and naïve HCC827 and H1975 cells. (B and C) Intracellular calcium levels in NSCLC 

cell lines after treatment with EGFR TKIs (erlotinib [4.7 μM], gefitinib [0.4 μM], afatinib [62 nM], and rociletinib 

[360 nM]) for 24 hours. All tested EGFR TKIs did not affect intracellular calcium levels in HCC827 and H1975 

cells. Erlotinib reduced calcium levels slightly more in cisplatin resistant HCC827 cells compared with 

corresponding naïve cells (B). Data are expressed as mean ± SD from three independent experiments (n = 3; *P < 

0.05, **P < 0.01, and ***P < 0.001). 
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6. Discussion 
Cell culture models provide ways to study the mechanisms of cisplatin resistance in EGFR-

mutant lung cancer cells and are useful for examining the effect of EGFR TKIs at clinical 

concentrations. EGFR antagonists are prescribed to patients with advanced-stage tumours 

carrying EGFR mutations, or after cisplatin treatment [89]. We used a clinically isogenic cell 

model to generate cisplatin resistance in a panel of EGFR-mutant lung cancer cells. Our findings 

indicate that cisplatin resistance activates the EGFR receptor in a ligand-independent manner, 

triggering EGFR downstream signalling. It also sensitised wild-type EGFR cells to erlotinib 

treatment. 

Cisplatin is the standard of care for lung cancer and most tumours become resistant to cisplatin, 

which limits its clinical use [107]. Cisplatin resistance manifests in different ways, even in the 

same cell type, and it is difficult to determine which of the underlying mechanisms are the most 

crucial [108, 109]. Cisplatin activates the cell survival pathway by triggering EGFR signalling in 

different cancer cells [33, 66, 67, 82, 110-112]. Chronic exposure to cisplatin induces stem cell 

marker expression and alters apoptotic signals in NSCLC cells [113, 114]. It also elevates PD-

L1 expression in head and neck squamous cell carcinoma cells [84, 115]. Ca2+ homeostasis is 

altered in cisplatin-treated and low-level cisplatin-resistant NSCLC and SCLC cells [70, 83]. Our 

study aimed to elucidate how cisplatin resistance affects EGFR-associated changes in 

downstream signalling and how EGFR TKIs affect cisplatin-resistant EGFR-mutant lung cancer 

cells at clinical doses. This information can be used to identify novel therapeutic combinations 

for patient survival. 

We induced cisplatin resistance in a panel of EGFR-mutant lung cancer cells by exposing naïve 

cell lines to the same cisplatin concentration (1 µg/ml) as the patient plasma Cmax to mimic the 

clinical condition [70]. We characterised these cells in terms of their viability, proliferation, 

apoptosis, and colony formation following treatment with 1 µg/ml cisplatin. The generated cells 
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were resistant to cisplatin in terms of their viability, proliferation, colony formation, and 

apoptosis response to cisplatin.  

6.1. EGFR activation and altered downstream signalling in cisplatin-resistant cells 

Understanding how EGFR TKIs associate with EGFR and how they influence conventional 

alkylating agent-based therapy resistance could help identify which patients would benefit most 

from TKI treatment [116]. Exogenous stimuli and cisplatin activate the EGFR via an 

autophosphorylation mechanism, which triggers downstream signalling events in a ligand-

independent way [34]. This can promote cancer initiation, tumour progression, and drug 

sensitivity [2, 25, 59, 70]. Mutation or overexpression of EGFR has been identified as an 

oncogenic driver for many tumour types, making it an attractive target for anti-cancer therapies 

[117]. EGFR was the first growth factor receptor to be introduced as a target for cancer therapy, 

and antagonists of EGFR are effective in current clinical practice [28]. 

Sequential treatments with cisplatin followed by recovery periods activate EGFR signalling. In 

this study, we measured EGFR expression, phosphorylation, and downstream signalling using a 

receptor antibody phosphorylation array. Cisplatin resistance stimulates the overexpression of 

Her2 in wild-type EGFR lung cancer cells and Her2 conveys pro-survival signals via PI3K and 

MAPK signalling cascades in NSCLC patients [30]. Cisplatin-resistant wild-type NSCLC cells 

overexpressed Her3 and Her4, and Her3 was reported to be a primary mediator of the PI3K/AKT 

cell survival signalling pathway in different cancer cells [96, 118-125]. Her4 also plays a vital 

role in HER2-dependent cell proliferation in lung and ovarian cancer cells [126-130]. 

In this study, we showed that EGFR is phosphorylated at Tyr845 in cisplatin-resistant EGFR 

wild-type and EGFR double-mutated NSCLC cells, and that this phosphorylation involves Src 

activation. In agreement with our findings, Raimbourg et al. (2017) and others have reported that 

phosphorylation of EGFR at Tyr845 in cisplatin-treated NSCLC cells requires Src kinase [84, 

131, 132], and that EGFR phosphorylation activates EGFR signalling [88]. We found increased 
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phosphorylation of Her2 at Tyr1173 and activated MAPK and PLCγ signalling in cisplatin-

resistant NSCLC cells with an EGFR missense mutation. Her-2 upregulation induces cell 

migration by modulating PLC-γ1 activation in MDA-MB-468 cells  and PLCγ promotes 

migration of tumour cells [133, 134]. Her3 is phosphorylated at Tyr1289 in cisplatin-resistant 

wild-type and mutated NSCLC cells and the HER3-PI3K-AKT cascade is involved in chemo-

resistance in ovarian cancer. Cisplatin activates Her3 in ovarian cancer cells, and this effect is 

blocked by EGFR inhibitors [118, 130]. Her4 is phosphorylated at Tyr1284 in wild-type 

cisplatin-resistant NSCLC cells, and HER4 can inhibit proliferation and promote differentiation 

in human breast cancer cells [127]. In addition, activating HER4 mutants promotes the survival 

of NIH 3T3 cells in the absence of serum [128]. 

These studies have shown that different signalling pathways downstream of EGFR are activated 

in many cancers, and that autophosphorylation of a tyrosine residue in EGFR activates specific 

downstream signalling molecules [85]. Aberrantly active EGFR promotes conventional 

downstream signalling pathways, and cisplatin resistance activates alternative cell survival 

signals and second messengers (PLCγ). 

ERK1 plays a predominant role in the cellular response to cisplatin, whereas MEK1 and MEK2 

are redundant [46, 135]. Cisplatin resistance altered the expression of MAPK components in 

EGFR-mutant lung cancer cells. MEK was overexpressed in NSCLC cells with EGFR mutations 

and in SCLC cells expressing wild-type EGFR. In contrast, MEK expression was decreased in 

wild-type EGFR lung cancer cells. MEK phosphorylation was increased in EGFR-mutated cells 

and ERK phosphorylation was increased in wild-type and mutated EGFR NSCLC cells. 

Preventing ERK1/2 activation improves sensitivity to cisplatin in both cisplatin-sensitive and 

cisplatin-resistant NSCLC cells [135]. The combined use of a MEK inhibitor and PD-L1Ab may 

have clinical relevance in cisplatin-resistant lung cancer patients [136]. The PI3K/AKT cell 

survival pathway is linked to the EGFR pathway by the docking protein GAB1, which recruits 
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PI3K in response to EGFR stimulation [137]. Cisplatin resistance enhances Akt phosphorylation 

at Ser473 in EGFR double-mutant cells. Cisplatin-induced activation of Akt contributes to 

chemo-resistance in cancer cells and AKT phosphorylation at Ser473 plays a role in PI3/Akt 

signalling and cell survival in lung cancer cells [138]. Targeting the PI3K/AKT/mTOR pathway 

may overcome drug resistance and restore sensitivity to agents that are well tolerated in NSCLC 

patients [139]. JAK/STAT activation is a critical mediator of chemotherapy resistance in NSCLC 

cells and promotes oncogenesis through enhanced proliferation, angiogenesis, and immune 

escape [16, 52]. We found that STAT3 phosphorylation at Tyr705 is increased in cisplatin-

resistant EGFR-mutated cells. This is in agreement with previous findings that cisplatin 

phosphorylates STAT3 at Tyr705 in early-stage ovarian cancer to promote cancer cell 

proliferation [99]. Inhibiting STAT3 signalling enhances cisplatin-mediated apoptosis in 

different cancer cells [16].  

PLCγ1 has pro-oncogenic and pro-metastatic properties, and these functions change depending 

on the situation. PLCγ-mediated signalling is involved in tumour cell invasiveness induced by 

growth factor receptors [37, 54-56]. The expression and phosphorylation of these growth factor 

receptors are upregulated in cisplatin-resistant cancer cells [55]. Upregulation of PLCγ1 protein 

expression and phosphorylation at Ser1248 promotes migration of cisplatin-resistant EGFR 

double-mutant NSCLC cells and wild-type EGFR SCLC cells. Phosphorylation of PLCγ1 at 

Ser1248 promotes tumour cell invasiveness and migration, and regulates calcium signalling in  

head and neck squamous cell carcinoma cells [55, 101, 102]. Inhibiting PLCγ1 with U73122 

reduces migration and inhibits phosphorylation of PLCγ1 at S1248 in head and neck squamous 

cell carcinoma cells [55, 102]. HGF/c-MET signalling plays an essential role in acquired 

resistance to cytotoxic anti-cancer agents [140]. Met is a marker for chemotherapy sensitivity, 

EGFR TKI sensitivity, and EMT properties in tumours [141]. c-Met expression was upregulated 

in cisplatin-resistant EGFR double-mutant NSCLC cells and wild-type EGFR SCLC cells. In 
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addition, phosphorylation of MET at Tyr1234/1235 was increased in cisplatin-resistant EGFR 

missense mutant cells. The amplification of c-Met expression in cancer cells is sensitive to c-Met 

inhibitors, and downregulating c-MET alters resistance to cytotoxic anti-cancer agents in NSCLC 

cells [140, 142-144]. 

6.2. Effect of EGFR TKIs on cisplatin-resistant cells 

A concern in clinical oncotherapy is how cisplatin resistance influences the responsiveness of 

cancer cells to EGFR TKIs [89]. It has been shown that overexpression and constitutive 

phosphorylation of Her2 and Her3 alters HER ligand expression and activates EGFR signalling; 

these changes might contribute to increased sensitivity to gefitinib in chemoresistant tumour cell 

lines [124]. 

Cisplatin resistance increases the sensitivity of wild-type EGFR lung cancer cells, EGFR-mutant 

lung cancer cells, and EGFR double-mutant NSCLC cancer cells to erlotinib and inhibits cell 

survival in EGFR-activating mutant NSCLC cells. Erlotinib sensitisation in cisplatin-treated wild 

type-EGFR cells may be caused by the overexpression of EGFR2–4 and phosphorylation of Erb1 

at Tyr845 [84]. Furthermore, erlotinib may reduce phosphorylation of EGFR and MET in PC-9 

and PC-9/hHGF cells, suggesting that muted EGFR trans-activates MET signalling [145]. 

Afatinib inhibited the survival of cisplatin-resistant EGFR double-mutant cells compared with 

naïve cells. Treatment with other EGFR TKIs (gefitinib, afatinib, and rocilitinib) had similar 

effects on naïve and cisplatin-resistant cells.   

In this study, cisplatin resistance did not affect the IC50 of EGFR TKIs (erlotinib, gefitinib, 

afatinib, and rocilitinib). The apoptotic potential of cisplatin-resistant cells exposed to erlotinib 

was increased in EGFR-wild-type and EGFR-mutant cells.  This is in agreement with previous 

studies reporting a similar phenomena in cisplatin-treated EGFR-wild-type NSCLC cells [84]. 

We showed that gefitinib enhances apoptosis in cisplatin-resistant EGFR-mutant cells, in 

agreement with previous findings in chemo resistant tumour cell lines [124].  In this study, all 
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tested EGFR TKIs increased apoptosis in cisplatin-resistant EGFR-mutant NSCLC cells. These 

cells are extremely sensitive to EGFR TKIs because of a mutation on exon 19 [43]. However, 

afatinib and rocilitinib did not influce apoptosis in cisplatin-resistant EGFR-mutant lung cancer 

cells. Extrapolating these cell culture findings to the clinical setting, this may indicate that 

cisplatin can shorten the duration of subsequent EGFR TKI therapy, but may not affect the 

clinical response to this treatment.  

6.3. Influence of cisplatin resistance on intracellular calcium concentration 

The dysregulation of intracellular calcium homeostasis contributes to carcinogenesis by 

increasing proliferation, decreasing apoptosis, promoting dedifferentiation, enhancing 

metastasis, and inducing chemotherapy resistance. Drug resistance is regulated by calcium 

signalling, and altered Ca2+ homeostasis in the ER of lung cancer cells correlates with drug 

resistance [2, 59]. The cytotoxic effect of a number of anti-cancer agents is coupled to cellular 

calcium overload [38]. However, only few studies have investigated the role of intracellular Ca2+ 

homeostasis in cisplatin resistance [70]. 

In this study, cisplatin resistance did not change intracellular calcium levels in NSCLC cells. 

Ca2+ homeostasis is altered in chemoresistant lung cancer cells, and  intracellular calcium is 

reduced in low-level resistant EPLC and SCLC lung cancer cells [70]. In taxol-resistant human 

lung adenocarcinoma cells, the resting [Ca2+]c was decreased [38]. In our study, EGFR TKIs did 

not influence intracellular calcium levels in cisplatin-resistant NSCLC cells compared with their 

corresponding naïve cells.  
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7. Conclusion 

We have described a cisplatin-resistant phenotype in different lung cancer cell lines. Cisplatin 

resistance affects EGFR expression and ligand phosphorylation and activates EGFR downstream 

signalling. In addition, cisplatin triggers pro-survival signalling pathways (e.g. MAPK, Akt, Stat) 

and activates the second messenger PLCγ1 in lung cancer cells. We found that cisplatin-resistant 

cells had enhanced survival, migration, and invasion potential, which indicates that they are 

prone to metastasis. Episodic cisplatin treatment sensitises wild-type EGFR NSCLC and SCLC 

cells to erlotinib. Cisplatin resistance did not alter the cell growth inhibition (IC50) of erlotinib, 

gefitinib, afatinib, and rociletinib. 

The development of chemo-resistance has not been well defined, but a better understanding of 

these processes may reveal promising strategies for combination therapy. A variety of specific 

inhibitors (e.g. for MAPK, Akt, Stat, JAK, PLC, and Met) are available, and many are being 

tested in clinical trials for the treatment of several cancers. Tumour-specific oncoprotein 

expression in individual patients should be considered when deciding upon combination 

treatment with cisplatin. This individualised therapeutic approach could reduce toxicity and 

enhance disease-free survival. Further investigations into potential combination therapies to 

improve anti-tumour responses are essential. 

Understanding the impact of cisplatin resistance on intracellular Ca2+ homeostasis in cancer cells 

may reveal novel combination therapies for cisplatin-resistant patients. In this study, cisplatin 

resistance did not change intracellular calcium levels.   
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9. Abbreviations 
 

Ag: Antigen 
AKT: Protein kinase B 
ALK: Anaplastic lymphoma kinase 
ATPase: Adenosine triphosphatase 
Bcl-2: B-cell lymphoma 2 
Bmi-1: B-cell-specific Moloney murine leukaemia virus integration site 
BSA: Bovine serum albumin 
BIRC5: Baculoviral inhibitor of apoptosis repeat-containing 5/survivin 
[Ca2+]: Calcium concentration 
[Ca2+]i: Intracellular calcium concentration 
[Ca2+]c: Cytoplasm free calcium 
[Ca2+]ER: Endoplasmic reticulum calcium concentration  
c-met: Tyrosine-protein kinase Met or hepatocyte growth factor receptor (HGFR) 
c-kit: Mast/stem cell growth factor receptor/ tyrosine-protein kinase kit or CD117 
CTLA-4: Cytotoxic T-lymphocyte-associated protein 4/CD152 
CTR1: Copper transport protein 
CRP: Cisplatin-resistant phenotype 
CO2: Carbon dioxide 
DAPP1: Dual adapter for phosphotyrosine and 3-phosphotyrosine and 3-phosphoinositide 
DDR2: Discoidin domain receptor 2 
DMSO: Dimethyl sulfoxide 
DNA: Deoxyribonucleic acid 
DYRK1B: Dual-specificity Y-phosphorylation-regulated kinase 1B 
EDTA: Ethylenediaminetetraacetic acid 
EGFR: Epithelial growth factor receptor 
ER: Endoplasmic reticulum 
Her: Epidermal growth factor receptor 
ERCC1: Excision repair cross-complementing rodent repair deficiency 
ERK: Extracellular signal-related kinases 
EZH2: Enhancer of zeste homolog 2 
FAK: Focal adhesion kinase 
FBS: Foetal bovine serum 
FDG: 18-fluorodeoxyglucose 
FER: Feline sarcoma 
FHIT: Fragile histidine triad 
FGFR: Fibroblast growth factor receptors 
FITC: Fluorescein 
GBM: Glioblastoma multiforme 
GSH: Glutathione 
GST: Glutathione S-transferase 
Grb2: Growth factor receptor-bound protein 2 
GPCR: G-protein-coupled receptor 
HER: Human epidermal growth factor receptor 
HGF: Hepatocyte growth factor 
HB-EGF: Heparin-binding EGF-like growth factor 
hMCA: Human monoclonal antibody 
ID3: DNA‑binding 3 
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IFN: Interferon 
IGF: Insulin growth factor 
IGFR: Insulin-like growth factor receptor 
IMRT: Intensity-modulated radiation technique 
ITK: Interleukin-2-inducible T-cell kinase 
JNK: c-Jun N-terminal kinase 
KEAP1: Kelch-like ECH-associated protein 1 
KRAS: Kirsten rat sarcoma 
LAG-3: Lymphocyte-activation gene 3 
LC: Lung cancer 
LCC: Large-cell carcinoma 
MAPK: Mitogen-activated protein kinase 
MEK: Mitogen-activated protein kinase 
MET/HGFR: Hepatocyte growth factor receptor 
mTOR: Mammalian target of rapamycin 
MRP2: Multidrug resistance-associated protein 2 
MMR: Mismatch repair 
MLH1: MutL homolog 1 
miR: microRNA 
NK: Natural killer 
NSCC: Non-squamous cell carcinoma 
Nrg: Neuregulin 
NSCLC: Non-small-cell lung cancer 
PARP1: Poly ADP-ribose polymerase-1 
PDGFRA: Platelet-derived growth factor receptor A 
PDL1: Programmed death-ligand 1 
P38MAPK: P38 mitogen-activated protein kinases 
PDGF: Platelet-derived growth factor 
PMCAs: Plasma membrane Ca2+-ATPases 
PI: Propidium iodide 
PBS: Phosphate buffered saline 
pEGFR: Phosphorylated epidermal growth factor receptor 
pSTAT: Phosphorylated signal transducer and activator of transcription proteins 
PD: Pharmacodynamic 
PIK3CA: Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha 
PK: Pharmacokinetic 
PM: Plasma membrane 
PTEN: Phosphatase and tensin homolog 
RB1: Retinoblastoma protein 
RNA: Ribonucleic acid 
ROS: Reactive oxygen species 
RPMI-1640: Roswell Park Memorial Institute 
SAA: Salvianolic acid A 
SAPK: Stress-activated protein kinases 
SF: Scatter factor 
SCLC: Small-cell lung cancer 
SDS-PAGE: Sodium dodecyl sulfate-polyacrylamide gel 
SERCA: Sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 
SMOCs: Second messenger-operated channels 
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SH2: Src homology 2 
STAT: Signal transducer and activator of transcription proteins 
Src: Proto-oncogene tyrosine-protein kinase Src 
SOS: Son of sevenless 
SCC: Squamous cell carcinoma 
SR: Sarcoplasmic reticulum 
TMEM205: Transmembrane protein 205 
TP53: Tumour protein 53 
VDAC: Voltage-dependent anion channel 
VEGF: Vascular endothelial growth factor 
XAF1: X-linked inhibitor of apoptosis factor 1 
5-FU: 5-Fluorouracil 
O.D: Once daily 
BID: bis in die (twice daily) 
M: Molar 
mM: Millimolar 
µM: Micromolar 
nM: Nanomolar 
pM: Picomolar 
g: Gram 
mg: Milligram 
µg: Microgram 
ng: Nanogram 
L: Litre 
ml: Millilitre 
µl: Microliter 
nl: Nanolite 
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11. Appendix-II: Raw Data 
 
11.1. Human EGFR Phosphorylation Antibody Array 
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4.2.1. PathScan EGFR Signalling Antibody Array 
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