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Zusammenfassung

In dieser Arbeit werden Modelle fiir den stark getriebenen Micromaser und den
Einatomlaser entwickelt. Die analytische Losungen dieser Probleme werden unter
Verwendung von Phasenraumtechniken erarbeitet. Es wird gezeigt, wie das Modell
des Einatomlasers fiir gleichzeitige Erzeugung der “Schrodinger Katze” Zustinde
von Atom und Feld und zur ﬂberwaehung ihrer Dekohéarenz verwendet werden
kann. Der gleiche Formalismus erlaubt in einer leichten Abwandlung eine analytische
Losung fiir das Problem der Erzeugung von maximal-verschrankten Zustanden zweier
Atome in einem optischen Resonator. Die stationdre Losung des Problems zeigt eine
Struktur, in der der gemeinsame Zustand der beiden maximal-verschrinkten Atome
mit dem Vakuum im Resonator korreliert. Als eine Folgerung hieraus wird gezeigt,
da} in Abhéngigkeit der Kopplungstirke dieser Zustand durch eine einzeln oder eine
Folge von Null-Photonen-Messungen erzeugt werden kann. Es wird die Frage nach
der Implementierung eines (Quantenspeichers behandelt, der durch die dispersive
Wechselwirkung zwischen dem kollektiven internen Grundzustand eines atomaren
Ensembles und zwei zueinander senkrechten Resonatormoden realisiert wird. Die
Fragestellung der Rekonstruktion eines quantenmechanischen Zustandes im Rahmen
der Resonator-Quantenelektrodynamik wird betrachten. Die optimale Definition der
Wignerverteilung zur Beschreibung von Resonatormoden wird herausgearbeitet: sie
basiert auf der Fresnel-Transformation der atomaren Inversion eines Abfrageatoms.
Ferner wird die allgemeine Integral-Transformation der Rekonstruktion der Wign-
erverteilung fiir ein Teilchen in einem symmetrischen Potential hergeleitet.

Abstract

The models of a strongly-driven micromaser and a one-atom laser are developed.
Their analytical solutions are obtained by means of phase space techniques. It is
shown how to exploit the model of a one-atom laser for simultaneous generation and
monitoring of the decoherence of the atom-field “Schrodinger cat” states. The sim-
ilar machinery applied to the problem of the generation of the maximally-entangled
states of two atoms placed inside an optical cavity permits its analytical solution.
The steady-state solution of the problem exhibits a structure in which the two-atom
maximally-entangled state correlates with the vacuum state of the cavity. As a con-
sequence it is demonstrated that the atomic maximally-entangled state, depending
on a coupling regime, can be produced via a single or a sequence of no-photon mea-
surements. The question of the implementation of a quantum memory device using
a dispersive interaction between the collective internal ground state of an atomic en-
semble and two orthogonal modes of a cavity is addressed. The problem of quantum
state reconstruction in the context of cavity quantum electrodynamics is considered.
The optimal operational definition of the Wigner function of a cavity field is worked
out. It is based on the Fresnel transform of the atomic invertion of a probe atom. The
general integral transformation for the Wigner function reconstruction of a particle in
an arbitrary symmetric potential is derived.
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Chapter 1

Introduction

The starting point in the history of cavity quantum electrodynamics(CQED) can be
regarded to Purcell who has suggested one of its principle ideas - the modification of
spontaneous emission rate of an atom coupled to a resonant electrical circuit. The
main reason for that is alteration of the structure of the free-space radiation modes
seen by the atom induced by the circuit or, more generally, a cavity. The next big
step forward in the field of CQED has been done when the theory of a two-level atom
interacting with a single quantized mode of the radiation field, which is at the heart
of any CQED problem , has been worked out by Jaynes and Cummings and seems
to have opened a floodgate to enormous number of theoretical articles in the field.
However the experimental advances proceeded at noticeably slower rate. The main
reason for that was a technical limitation on fabricating of the high quality resonators
which provide the strong coupling regime of the atom-field interaction. The strong
coupling regime, otherwise irrelevant for conventional lasers!, plays an important role
for the observation of coherent single-atom-field dynamics.

The break-through in manufacturing of high-Q resonators in microwave domain in
the eighties opened an avenue for the experimental studies of the atom-field systems
described by the Jaynes-Cummings model. Inspired by a conventional maser the group
of H. Walther in Garching has experimentally realized a one-atom maser or micromaser.
At about the same time the group of S. Haroche in Paris has achieved superradiance and
a vacuum-field controlled modification of the lifetime of Rydberg atoms in cavities. In
contrast to the conventional maser the micromaser operates in the regime where there
is on average only one atom interacting with the cavity at a time. This fact implies
that the atom-cavity coupling must be strong in order to reach the strong coupling
limit of matter-field interaction and consequently achieve an amplification of the cavity
field. The latter condition has been fulfilled by sending highly-excited Rydberg atoms,
possessing a large dipole moment, through the cavity. The micromaser became the
first cavity QED experiment which allowed detailed study of the Jaynes-Cummings

'In the laser each individual atom of a lasing medium couples to the cavity field in the weak
coupling regime however due to macroscopic number of atoms the generation of the cavity field is
achieved
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model. It has permitted to observe resonant single-atom-cavity energy exchange, Rabi
oscillation and collapses and revivals of atomic population, non-classical states of the
cavity field as well as entangled atom-field states.

On the other hand, experimental accomplishment of the micromaser had triggered
the achievement of the strong coupling regime in the domain of optical cavity QED.
The main advantage of cavity QED with the optical resonators over the microwave
regime is a possibility to measure the cavity field directly by means of counting of the
photons leaking through the cavity mirrors. However the price for this is noticeably
shorter lifetime of the optical photons and stronger decoherence of the cavity field when
compared to a microwave cavity. In the last decade the experiments in the domain
of optical QED became a routine mainly due to two groups of researchers, one led by
J. Kimble at Caltech and another by G. Rempe in Garching. They have reached a
trapping of an atom by the field of a cavity, realized a one-atom laser and a single pho-
ton source, demonstrated basics of quantum information processing employing atomic
qubits. At the same time the progress achieved recently, by researchers in the group
of H. Walther in Garching, in the deterministic coupling of trapped ions to an optical
cavity has allowed to realize today the most stable single photon source.

Nowadays the rapid development of the quantum information theory gave a new
impulse to both experimental and theoretical research on implementation of quantum
computation in the framework of cavity QED. It turned out that the Jaynes-Cumming
model describes a situation when a two-level atom(qubit) gets entangled with the cavity
field. By letting several atoms to interact with the same cavity field one can entangle the
atoms what can be interpreted, depending on the states of atoms, as a quantum logic
operation. Experimental advances in controlling and manipulating of atoms and cavity
fields have allowed to make proof-of-principles demonstration of two-qubits quantum
gates using the micromaser and optical resonators. Despite the achieved success there
are still challenges to overcome. One of them is to answer the question whether a
scalable quantum computation can be realized in principle by means of cavity QED.

This thesis is an attempt to look at cavity QED from the point of view of practical
realization of quantum information processing taking into account the main experi-
mental limitations and imperfections. The striking feature of this work is that we do
not stick here to a standard approach developed over years in the literature and which
can be formulated as follows. The atom-cavity interaction is described by the Jaynes-
Cumming model and is a unitary process when the atom-cavity system is perfectly
isolated from its environment. However any model, which pretends to give a realistic
description of an experiment, ought to include effects of decoherence. This leads to a
description of an entire atom-cavity system in terms of a master equation, which can
be further evaluated numerically. This approach obviously has an important draw-
back. If one wants now to describe a dynamics of a quantum register consisting out of
dozens of atoms the numerical calculations fail pretty fast giving no definite prediction
about the system. On the other hand the number of atoms in the register is still small
to use thermodynamical methods of description. Consequently, we conclude that the
standard method suitable for several atoms does not give a satisfactory analysis for the
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case of the mesoscopic systems. In contrast here we introduce two novel cavity QED
models, namely the model of the strongly-driven micromaser(SDM) and the one-atom
laser model which are indeed analytical soluble and cover the whole spectrum of current
experiments from microwave to optical.

The solubility of the models guaranties us an access to the solutions at any moment
of time at any initial conditions and allows to solve also the scaled problems. So
that for example using the model of a one-atom laser as a basis we are able to solve
analytically the model of N-atom laser. For the case of N = 2 atoms we show that each
time when the steady state output field is measured to be in vacuum state the atoms
are prepared in the maximally-entangled state. It is remarkable that this approach
allows to overcome the problem of the low detection efficiency of the conventional
schemes based on detection of a single photon. To our knowledge our scheme is the
first which completely solves the problem of low detection efficiency and makes atomic
entanglement insensitive to photon detection. Moreover our model of a one-atom laser
opens a new perspective for studies of the decoherence properties of an optical cavity
field as well as an evolution from an atom-field entangled state towards a complete
mixture. This question has been studied experimentally in the case of the micromaser,
but we are the first who propose a possible experimental scheme in the optical domain.

It is worth to notice that there are only few examples of the quantum open systems
described by solvable master equations. With this work we contribute to the matured
field of cavity QED with two new solvable models. The key point here is to add to
conventional models of the micromaser and one-atom laser a strong external classical
driving field. It seems, at the first glance, that the external driving will complicate the
dynamics even more, however, on the contrary, it makes the new models soluble.

Another important question we are concerned about in this thesis is a quantum
state reconstruction. This subject, due to its significant importance for experimental
needs, has been already extensively studied in the context of cavity QED over the
last twenty years. Here however we come out with an idea of an optimal operational
definition of the Wigner function of a cavity field in terms of the Fresnel transform of
the measured atomic inversion. It turned out that this scheme is also applicable to the
state reconstruction of a particle in an arbitrary symmetrical potential.

We are finishing the introduction by giving an overview of this thesis:

e The second chapter is an introductory overview of the phase space concept in
quantum mechanics. The P-; Q-, and Wigner quasidistributions of a quantum
state are discussed and the main mathematical phase-space tools are introduced.

e In the third chapter the well-known Jaynes-Cummings model as well as the model
of the micromaser are considered. Moreover the analytically soluble models of the
strongly-driven micromaser and a one-atom laser are presented. Their general
solutions are found by means of the phase space techniques introduced in the
second chapter.

e The questions of application of the models of the micromaser and a one-atom
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laser to the generation of nonclassical states of the radiation as well as maximally-
entangled states of two atoms are studied in the fourth chapter. The utilization
of the ground state atomic coherences for a quantum memory and also generation
of multi-atom entangled states are discussed.

The fifth chapter examines the questions of the cavity field state reconstruction.
It is shown how an optimal operational scheme for the reconstruction of the
Wigner function of a cavity field can be built using the Fresnel transform of the
atomic inversion. The generalization of this approach to the case of a particle in
an arbitrary symmetrical potential is considered.



Chapter 2

Phase space concept in quantum
theory

The concept of phase space or configurational space stems from classical mechanics.
It gives a vivid description of a dynamical behaviour of a classical system in terms of
geometrical trajectories in corresponding phase space. In contrast, quantum mechanics
describes a system by a density operator acting on Hilbert space of the system. The
Hilbert space consists of all possible dynamical states of the system. This is quite
obscure description, since we are used to deal with number and geometry rather than
with operators. Fortunately, there exist representations of quantum mechanics which
map a density operator to a quasidistribution function which is defined on correspond-
ing quantum phase space, in such a way opening an opportunity to visualize quantum
dynamics. The concept of quantum phase space as well as the first quasidistribution
function has been introduced by Wigner [1]. Later Cahill and Glauber have shown [2, 3]
that there exist a class of quasidistributions, with different mathematical properties,
defined in phase space. Nowadays, the quantum quasidistribution functions are widely
employed in different branches from nuclear physics to quantum optics. Particularly
useful in quantum optics, quasidistribution methods give a plain description of quan-
tum states of radiation and their interference in phase space [4].

In this chapter we introduce a notation of quantum phase space, define different
quantum quasidistribution functions and study their properties. We draw an analogy
between classical statistical mechanics and a phase space description of quantum me-
chanics. The formalism of characteristic functions developed in this chapter will serve
as a key ingredient for an integration of a master equations for different open quantum
systems.

2.1 Classical vs. quantum description

In classical mechanics, a dynamical state of a system with N degrees of freedom is
described by a point (¢,p) = (¢1,- -, qn, p1, - - -, pn) in 2N-dimensional space consisting
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of N generalized coordinates (¢i, - - -, gn) and N conjugated momenta (pi, - - -, py) often
called the phase space. The time evolution of the dynamical state is then given by a
trajectory (q(t),p(t)) in the phase space, where the dynamical variables ¢;(¢) and p;(t)
obey the Hamilton equations

= 1 =1, N. 2.1
dt op; | dt 94 t =5 (2.1)

Here H(q,p,t) is the Hamiltonian function of the system. In a case of N identical
particles system it has the form

N 2
P
j=1

In the last equation the first term represents an overall kinetic energy of N particles,
whereas V' (qi,---,qn) corresponds to a potential energy of the system including the
contributions from an interparticle interaction and external fields.

In order to determine the dynamical state (q(t),p(t)) of a system with a given
Hamiltonian H at any moment of time ¢, one has to integrate the equations of motion
(2.1) with given initial conditions (¢(to), p(t0)). The equivalent approach to the problem
of determination of the dynamical state is to find integrals of motion C;(p,q) of the
system. Then each trajectory of the system in the phase space is characterized by a
certain value ¢; of the integrals C;(p,¢), which constrains the subspace T'(p, ¢;¢;) of
the whole phase space of the system accessible to the trajectories. If for a N-particle
system, NN integrals of motion can be found then the system is said to be integrable.
Trivial example of an integrable mechanical system is a system of N noninteracting
particles.

Such a trajectory description is widely employed for a study of dynamical instabil-
ities in both linear and nonlinear mechanical systems. We mention it briefly here. Let
us consider two close initial conditions (¢(ty), p(t9)) and (q(to) +Aq(to), p(te) + Ap(to)).
Their distance (Ag(t), Ap(t)) can grow exponentially with time, depending on the dy-
namical properties of the system. Thus, even a small initial deviation (Aq(to), Ap(to))
can exceed a given value at a sufficient long time interval, so that the state of the
system becomes unpredictable!.

Although, the dynamical description is completely reliable in a case of systems
with few degrees of freedom, there are several reasons why it is non applicable to the
complex systems with a large number degrees of freedom. First of all, it is impossible
to determine the exact initial state of a many-body system. As a consequence, one
automatically faces a problem of integration of the equations of motion (2.1). On the
other hand, even though one can determine the initial conditions with a finite accuracy
it does not warrant that these uncertainties will not blow up exponentially with the
coarse of time leading to the dynamical chaos. The second reason follows from the

! This situation is regarded as a dynamical chaos
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first one and states that any limited accuracy solution of the Hamilton equations does
not allow one to specify a single trajectory on a long times scale. Summarizing, we
come to a conclusion that it is not possible to describe exactly the evolution of a
macroscopic system from one point to another point of the phase space, because of
the uncertainties mentioned above. In other words, we can not specify a microscopic
state of a macroscopic system in a deterministic manner, i.e. we can determine the
dynamical state of the system only with a certain probability.

The above introduced physical arguments clearly show that the probabilistic de-
scription of the dynamical processes in many-particle systems is a natural language.
Therefore, following Gibbs, instead of the given macroscopic system we consider a col-
lection of an infinitely large number of its copies, all are placed in identical external
conditions, i.e. we introduce a statistical ensemble representing the macroscopic state
of the system. Each system from the ensemble has its own trajectory in phase space.
Hence, we can associate a certain probability, that M systems from the ensemble, dur-
ing their evolution, pass through the point (¢, p), with each point (g, p) of phase space.
Consequently, the ensemble can be specified by the distribution function p(g, p, t) which
is proportional to the probability density of the distribution of systems in phase space.
The phase space distribution function has to be normalized with respect to integration
over the whole phase space. So that

/p(q,p, t)dl =1, (2.3)

where dI' denotes an infinitely small volume of the phase space I'. The quantity
p(q,p,t)dl has a meaning of the probability of finding a system of ensemble in the
volume dI" close to the phase space point (g, p) at time t.

Having at our disposal basic ideas of statistical mechanics, we can answer the
following important practical question: Given the distribution function p(q, p,t), how
to calculate a result of measurement of a physical quantity A described by a mean
value of the corresponding dynamical variable A(q,p,t)? It is assumed, in statistical
mechanics, that the observed physical quantities, which are the time averages over
the history of a single system, can be obtained from the averaging over the statistical
ensemble. This assumption is known as the ergodic hypothesis. According to it we
write the desirable quantity as

<A>= /A(q,p, t)p(q,p,t)dT. (2.4)

r

The dynamical behaviour of each single system of ensemble is given by Hamilton
equations (2.1). Hence a question arises: Which equation of motion obeys the dis-
tribution function p(q,p,t)? In order to answer this question, we formulate first the
Liouville theorem:

Suppose that at the initial moment of time ¢y a certain volume ATI'y with the center
at (o, po) was selected in phase space. Then at later time ¢ the selected points occupy
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the region AT'; with the center at (¢, p;), where ¢;, and p; are corresponding solutions
of the equations of motion (2.1). Then the following statement takes place

/mmzfmm, (2.5)

ATg ATl

i.e. the phase volume occupied by the points remains constant during the motion of
the system.

As a consequence of Liouville’s theorem the distribution function remains constant
along the phase trajectories. In other words, p(q(t), p(t),t) = p(q(t'), p(t'),t"). If times
t and t' are infinitesimally close, i.e. t' =t + dt, then

p(q(t),p(t),t) = p(q(t) + qdt, p(t) + 4dt, t + dt). (2.6)

Assuming that the function p(q, p,t) is differentiable, we arrive at

p <[0p. Op .
. 25l = 0. 2.

Taking into account the Hamilton equations (2.1), we obtain Liouville equation for the
distribution function:

dp
L _rg 2.
o {H, p}, (2-8)
where
dp OH ap oH
H, § 2.9
tH.p} = [320] dq; aq] Op; (29)

is the Poisson bracket for the Hamiltonian function H and p.

In contrast to classical description, quantum mechanics characterizes a dynamical
state of a system by a state vector |¥(t)) in a Hilbert space . The state vector is
normalized to one, i.e. its scalar product with itself (¥(¢)|¥(¢)) = 1. Depending on a
system this linear complex vector space can have different dimension. All dynamical
variables(observables), which can be measured in an experiment, are described by self-
adjoint operators acting on the Hilbert space of a system. According to the eigenvalues,
all observables can be divided into two classes: (i) Observables with discrete spectrum.
(ii) Observables with continuous spectrum. Typical representatives of the first group
are angular momentum and spin operators, whereas the second class is presented by
position and momentum operators.

Choosing in a Hilbert space of a system, a basis of orthogonal states |zq,---,zx)
defined by a complete set of compatible observables {Xi,---, X} one can represent
any state |U(¢)) of the system by a complex function, which is defined as

V(- xn,t) = (T, -, xn|V(2)). (2.10)
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The function W(xy,---,zyN,t) is called the wave function of the system in the X-
representation. Another possibility to represent a quantum state of a system is to
write it in a basis of eigenvectors of an observable A. For the sake of simplicity, we
assume that the A has a nondegenerate spectrum. Hence,

() = D Cult)la), (2.11)

a

() = /C(a,t)|a>da, (2.12)

b

where C,(t) = (a|U(t)) = C(a,t) and the first expression corresponds to a discrete
case, whereas the second one is valid for a continuous case.
The mean value of an observable A in an arbitrary state |¥(¢)) is given by

< A>= (B)ATH) = 3 al(a]B@) (2.13)
a
We note here that the quantity [{(a|¥(¢))|> = |C,(t)]* plays a role of the probability
to find the system at time ¢ in the quantum state |a). Probabilistic interpretation is
the inherent feature of quantum description. All information about possible outcomes
of a measurement on a quantum system is hidden in a quantum state description and
reveals when an appropriate measurement is performed.

The time evolution of an arbitrary quantum state |W(¢)) is governed by the
Schrodinger equation
019 (1))

ot
where H is the Hamiltonian operator of the system of interest. The standard procedure
to obtain the Hamiltonian operator is to change to quantum position and momentum
operators in the correspondent classical Hamiltonian function, except the cases when
a quantum system has no classical analog(e.g. quantum spin Hamiltonian).

The state of a quantum system is then completely defined, if it is possible to de-
termine a complete set of compatible observables and to state the results of their
measurement. In this case, it can be described by a certain state vector |¥) which is
called pure. It can also happen that our knowledge about the system is incomplete,
so that it is possible to ascribe to the system only a set of probabilities {pi,- -, pm}
for the system to be found in one of the states {|1),---,|m)}. In contrast to the pure
state, such a state is described by a positive defined hermitian density operator p with
unitary trace, and regarded as mixed state. The density operator for mixed states can

be expressed as
p:me|m><m|; mezl. (2.15)

It follows from the last equation, that the crucial difference between the pure and
mixed states is contained in the presence of quantum interference terms. Obviously, the

uh

— H|W (1)), (2.14)
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mixed state Eq.(2.15) is diagonal in {|m)} basis and does not comprise any interference,

therefore it describes a statistical mixture of quantum states with well-defined weights,

whereas a pure state |U) = > ¢,,|m), indeed, is a superposition of quantum states.
m

The corresponding density operator for the pure quantum state |¥) can be written as

p= an,m|n><m|; me,m =1. (2.16)

Unlike the density operator for a mixed state Eq.(2.15), pure state density operator
Eq.(2.16) has off-diagonal elements which contribute to quantum coherences.

Lack of knowledge about a quantum system forces us to describe it in term of
an ensemble of quantum states with a probability attached to each state from the
ensemble. We have applied a similar approach to the correspondent classical problem,
where lack of precise initial conditions in many-body problem led to the probabilistic
description by means of classical distribution function.

The description of a quantum many-body system in terms of a state vector whose
evolution is governed by the Schrodinger equation is somewhat hopeless approach.
Likewise in the classical mechanics, one faces the problem of initial conditions which
makes it impossible to solve the Schrodinger equation. Therefore, it is reasonable to
employ the density operator formalism for the solution of such problems. The equation
of motion for the density operator p can be obtained directly from the Schrédinger
equation and reads

dp i

ot h
The last equation is similar to the classical Liouville equation (2.8). However, in quan-
tum case, the classical Poisson bracket is changed to a commutator of the correspondent
quantum operators.

The outcome of a measurement of an observable A is given by a mean value of the
self-adjoint operator A and can be expressed as

[, p]. (2.17)

< A >=Tr(Ap). (2.18)

Calculating the trace in an arbitrary basis |z) = |z1,---,2y) we obtain
<A>= /A(x, p(z, o', t)dNw dV 2, (2.19)
where A(z,z') = (%1, -, zn|A|2}, -+, 2'y) and the density operator matrix represen-
tation is given by the two variables function p(z,2',t) = (z1,-- -, zn|p(t)|2], - - -, 2y).

2.2 Quantum phase space and Wigner function

As we have seen above quantum and classical descriptions are more different than
similar. However, one would like to have an analogy to classical phase space in quantum
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mechanics. The reason for that is quite simple. Our classical being is used to deal
rather with number and simple geometrical constructions than with operators and
infinite-dimensional Hilbert spaces. One of the possible way to construct the quantum
phase space of a quantum mechanical system of N particles, fully described by a set
of N position and N momentum operators?, is to introduce a 2N-dimensional space,
N axes of which correspond to the eigenvalues of N position operators and the other
N attribute eigenvalues of momentum operators. In other words, for each operator
there is an axis in the constructed space such that it contains all eigenvalues of this
operator. It seems, prima facie, that the constructed quantum phase space does not
differ from the corresponding classical one and one can again, as in classical mechanics,
introduce now quantum trajectories in order to describe dynamics of a quantum system.
Nevertheless, this is incorrect. One of the fundamental principles of quantum mechanics
- the uncertainty principle prohibits the use of the concept of a trajectory. It states
that it is impossible to measure two non-commuting observables instantaneously with
infinite precision. It is known that the position and momentum operators do not
commute and therefore for them the uncertainty relation reads AgAp > g As a
consequence, any attempt to determine a position or momentum of a particle leads to
an uncertainty in a conjugated variable.

Besides trajectories, another important object from the classical phase space is dis-
tribution function p..(p, ¢). It describes the probability to find a classical system in the
point (p, q). From the above reasoning it is clear that such a kind of joint distribution
for the coordinate and momentum cannot be introduced in the quantum case due to
the uncertainty relation. We recall that the quantum analog of the classical distribu-
tion function pe. (p, q) is the density operator p. Its matrix elements, say in coordinate
representation, (r|p|r’) = p(r,r’) describes the probability density to find a particle at
position r(diagonal elements p(r,r)) and quantum coherence(off-diagonal elements).
On the other hand, one can write the density operator in other representation. For in-
stance, in the momentum representation p(p, p) plays a role of the probability density
to find a particle with momentum p. Hence there is a principal question, whether it is
possible to find a representation of the density operator which combines both coordi-
nate and momentum representations? In other words, it should be possible to extract
density matrixes p(r,r) and p(p, p) from the desired mixed representation.

In order to answer this question, consider, at first, a system consisting of one
particle. The eigenvectors {|r)} of a position operator ¢ of the particle constitute an
orthonormal basis, i.e.

+00

) = 5(r — 1), /dr|r><r|:]l, (2.20)

—00

here ¢(r’ — r") is Dirac’s delta function. On the other hand, the eigenvectors {|p)} of

2We assume here that the particle has no internal structure. Otherwise such a description is
incomplete.
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a momentum operator p of the particle form another orthonormal basis

(p'lp") =0’ - p"), /dp|p><p| =1. (2.21)

— 00

The scalar product of any two vectors from the position and momentum representations
reads ]
— ___ pli/mpr
(r|p) N :
where V' is a normalization volume. Using a completeness relation for the coordinate
representation one can write a density operator of the system in the momentum basis
as follows

(2.22)

+00 +00
<p/|p|p”> — / dr/ / dr//<p/|r/><r/|p|r//><r//|p//>. (2.23)
By substituting scalar product Eq.(2.22) into Eq.(2.23) we arrive at
1 +00 +o0o )
i
") = / i’ / e exp {1 (B — e} ' |ole") (2.24)

Changing in the last equation to the new variables

1
r — 5(1"—{—1‘”), x=r —1"

1
p = §(p’+p”), q=p —p”’

we obtain .
1 1 1 (=i/h)qr W
(p+ 5alplp — 5a) = v | dre f(r,p), (2.25)
where
o | 1
fY(r,p) = / dxe"/MPx(p 4 §X|p|1‘ - §x> (2.26)

is the Wigner function. It was introduced by Wigner [1] to study quantum corrections
to classical statistical mechanics. The Wigner function Eq.(2.26) depends both on the
coordinate and momentum of a particle and is a desirable mixed representation of the
density operator. The generalization of the Wigner function to a case of N particles is
straightforward and gives

fW(rla"'arN;pla"'apN) =
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T T emd 1 1 1 1

—i/h Pi'X;
/dxl---/dee i=1 <r1—|—§xl---rN+§xN|p|r1—§x1---rN—QxN>. (2.27)
—0o0 —0o0

The properties of the Wigner function are:

1. The Wigner function is real, i.e. (f")* = f". This follows from the definition
Eq.(2.26) and from the hermicity of the density operator p.

2. The probability distributions of the coordinate and momentum read

w(r) = p(nr)zﬁ / dpfY (x,p). (2.28)
w(p) = p(p,p)zéfdrfw(r,p)- (2.29)

3. The Wigner function is normalized to one:

+00 +

/ dr /Oodpfw(r,p) = Tr(p) = 1. (2.30)

4. If A is an arbitrary hermitian operator and f%(p,q) is the Wigner function
corresponding to a state p, then the mean value of A in the state p reads

+00 +00
<A>=Ti(dp) = [ dr [ dparp)f"(ep), (2:31)
where A(r,p) = [ dxel"/MPx(r 4+ Ix|Alr — 1x) is a phase space representation

of the operator A.

It is instructive to compare the features of the Wigner function to the properties of the
classical distribution function. The Wigner function and classical distribution function
are both real and normalized to one. Moreover, the expression for the mean value of
a hermitian operator A Eq.(2.31) can be obtained formally, from the corresponding
classical expression Eq.(2.4) by substituting f" (p, ¢, t) instead of p(q, p, t) into it. This
shows that the constructed Wigner function representation of the quantum mechanics,
nominally, is close to classical description. However, they are not equivalent! Other-
wise, classical and quantum description would not give different predictions. Therefore,
there must be a peculiar feature of the Wigner function which makes it inherent in only
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quantum formalism. Indeed, in contrast to classical distribution function, the Wigner
function is not positive defined, i.e. it can take on negative values. Hence, even
though, the Wigner function contains an information about distribution functions of
momentum and coordinate it cannot be considered as a quantum analog of classical
distribution function. It is therefore customary to call it quasidistribution function in
quantum phase space.

The Wigner function is not only a quasidistribution which can be defined on quan-
tum phase space®. As we will see in the next section, it is certainly possible to introduce
a family of quasidistributions with different properties. Depending on a physical prob-
lem, it is convenient to use one or another phase space representation of the density
operator.

2.3 Quantum quasidistributions and their proper-
ties

Let us consider a quantum mechanical system consisting of a particle in an arbitrary
one-dimensional potential V. Tt is described by a pair of non-commuting Hermitian
observables p and ¢. Instead of dealing with the momentum and coordinate operators
we introduce a linear superposition of them

1 1

a = \/—2—h()\CI+XP), (2.32)
1 1

at = \/—2_h()\q_ 3P (2.33)

where ) is a real parameter different from zero. Operators a and a' obey [a,a'] = 1 and
therefore have the same algebraic properties as the photon creation and annihilation
operators of quantum electromagnetic field.

For each complex number « we define the following displacement operator [5]

D(a) = exp(aal — a*a), (2.34)

Which is unitary, i.e. Di(a) = D7'(a) = D(—a) and for a = %()\q' + 4p') can be
rewritten as
D(a) = D(q',p") = exp(igp" — ipq’), (2.35)

with ¢’ and p' being eigenvalues of the coordinate and momentum operators ¢ and p.
The product of two displacement operators D(«) and D(/3) reads

D(@)D(5) = D{a+ B exp(zaf — 5a°f), (2.36)

3Hereafter, we say simply phase space, unless the opposite is stated
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and therefore the displacement operators form an Abelian group with respect to mul-
tiplication. Furthermore, the displacement operator possesses the following properties

0D(a) a, o
— o = Dle)a+3)=(a—3)D(), (2.37)
a+a = D7 '(a)aD(a), (2.38)
a'+aof = D' (a)d'D(a). (2.39)

We denote an eigenstate of the operator a which corresponds to the eigenvalue
zero by |0). Hence, by definition a|0) = 0. Moreover, for each complex number a we
define the coherent state |a) [5] as |a) = D(«)|0). It is clear from the definition of the
coherent state |a) that it is an eigenstate of the operator a with an eigenvalue «, i.e.
ala) = aja). It is worth to notice that the set of coherent states {|a)} is complete. In
other words 1 [ d®a|a)(a| = 1.

Having at our disposal a set of displacement operators {D(«)} and a correspondent,
set of coherent states {|a)} we are ready to introduce the main quantum quasidistri-
bution functions. To set the stage, we define the phase space of the system as a plane
each point of which is given by a complex number a. Such a definition of the phase
space, at the first sight, is different from the definition introduced in the preceding
section, where the phase space plane has been specified by a pair of eigenvalues of the
coordinate and momentum operators - (p,q). However, taking into account that the
complex number « is defined as a linear combination of the eigenvalues p and ¢ we con-
clude that the both definition of the phase space are equivalent. It is more convenient
for our future consideration to use a description of the phase space in terms of a.

2.3.1 Wigner representation

It was shown in [2] that the displacement operators form the complete set, so that any
bounded operator®, which is a combination of coordinate and momentum operators,
can be expanded as

F== [ecsn e, (2.40)

where the weight function f(§) = Tr(FD(€)) is unique and square-integrable and the
integration is performed over the whole phase space. Thus since every density operator
is bounded, we may write an arbitrary density operator in the form

o= [ exen ), (2.41)

where the weight function x(§) = Tr(pD(&)) is the expectation value of the displace-
ment operator D(§) and is often called symmetrically ordered characteristic function

*We call an operator bounded if its Hilbert-Schmidt norm is finite, i.e. A is bounded if || A ||=
(TrAtA)? < oo



16 Phase space concept in quantum theory

or simply characteristic function. Since the displacement operator is unitary, the char-
acteristic function x (&) must be bounded. Indeed, the following conditions are satisfied
Ix(§)] < 1and x(0) = 1. Moreover, it is square-integrable and hence, we can define its
complex Fourier transform as

]. * *
W) = [ e o) (2.42)
T
which is up to a normalization factor equivalent to the definition of the Wigner function

W (r,p) in Eq.(2.26). In order to see that, one should change the variables £ — %(x +

iq) and o — %(r + ip) in Eq.(2.42) and make use of the equivalent definition of
the characteristic function x(§) = x(z,q) = [dtexp(itz)(t — &|p|t + £). Hence, by
using the inverse Fourier transform applied to Eq.(2.42) we arrive at a definition of the

characteristic function in terms of the Wigner function

™

x(€) = l/alZOze(o‘f*o‘*g)W(a). (2.43)

By substituting the expression for the characteristic function Eq.(2.43) into the
expansion for the density operator Eq.(2.41) we obtain

o= [ daw(@)r(a,0), (2.44)
where the operator T'(ev,0) = 2D(a)(—=1)**D~!(a) has been introduced. In other
words, we have shown in the last equation that the Wigner function W(«a) plays a
role of a weight function for the expansion of the density operator p in the basis of
operators T'(«, 0).

There are three important direct consequences from Eq.(2.44). First of all, it allows
us to express the Wigner function in a compact way as an expectation value of the
operator T'(a,0), so that W(a) = Tr(pT(c,0)). Secondly, since the eigenvalues of
the Hermitian operator T'(«, 0) are 2(—1)", where n is integer, the Wigner function is
naturally bounded according to the inequalities —2 < W (a) < 2. Finally, evaluating
the trace in the Fock basis we obtain that

W(a) = 2 > (=1)"(n[D "} (a)pD(a)|n). (2.45)

v
n=0

2.3.2 The P representation

As we have seen the Wigner function is a well-behaved square-integrable representation
of an arbitrary density operator. But, is the representation Eq.(2.44) unique? One
might formally write the following expansion [3]

p:/dzaP(a)T(a,—l), (2.46)
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where P(«) is a weight function and T'(«, —1) is a set of operators defined as
]. * *
T(a,s) = —/d2§D(§, 5)e® 8 5 = 1, (2.47)
m

with D(&,s) = D(£)efl*’/2. The function P(a) can be defined as in the case of the
Wigner representation, namely P(a) = 7~ 'Tr(pT(c, 1)). However, this definition is
not correct from the mathematical point of view, due to the following reason. The
eigenvalues of the Hermitian operator T'(c, s) are given by c¢,(s) = 7% (23)" and
consequently, they are all infinite for s = 1. Furthermore, the P function P(«), which
is an expectation value of the operator T'(a, 1), for certain classes of density operators,
is extremely singular. Therefore, it is better to define a P function as a limit when
s — 1, so that P(a) = 7= lim,_,; Tr(pT(a, s)).

It is worth to notice, that the operator T'(«, —1) can be alternatively presented as

a projection operator onto a coherent state |a). As the result we may write according
to Eq.(2.46)

p= / PaP(a)|a)(al. (2.48)

Then, an expectation value of an arbitrary operator A, by virtue of Eq.(2.48) can be
written as

Tr(pA) = /dQQP(a)<a|A|a>. (2.49)

The direct consequence of the last equation is a normalization condition for the P
function. Calculating an expectation value of the unity operator we obtain

Tr(pll) =1 = /dZOzP(Oz). (2.50)

Hence, the P function can be also interpreted as a quantum quasidistribution function.
Nevertheless, in contrast to the Wigner function, as we have seen above, it is not always
well-behaved. The limiting process typically leads to a generalized function that is too
singular to be used as a weight function for the P representation. For example, for
the case of pure states, the P function is always singular. This, of course, reduces its
applicability.

There is one more thing should be said about the P function. By substituting
Eq.(2.47) into a definition of P(«) one obtains

Pla) = %/d%m(f)e“f*—“*ﬁ, (2.51)

where yn(€) = limy_,; Tr(pD(E, s)) = Tr(pef® 674) is the normally ordered character-
istic function. If the inverse Fourier transform exists, i.e. if P(«) is square-integrable
then

xn(§) = /d2aP(a)e(°‘5*°‘*§). (2.52)
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The singular behaviour of the P function finds its reflection in properties of the char-
acteristic function yy(§). For instance, a growth condition for the normally ordered
characteristic function is given by the inequality |yn(€)| < e"/2 and therefore it does
not always possess a Fourier transform.

2.3.3 The Q representation

We have studied two different representations of a density operator. Both of them
were realized as an expansion of the density operator over a set of non-singular Hermi-
tian operators, namely T'(«, 0) for the Wigner representation and T'(«, —1) for the P
representation. Nevertheless, the properties of the weight functions, which play a role
of quasidistribution functions, differ drastically from the bounded, square-integrable
Wigner function to the unbounded, singular P function.

However, we would like to construct a quasidistribution function which is non-
negative, bounded, differentiable, and normalized to one. Such a quasidistribution
corresponds at most to a classical probability distribution function. Intuitively, we
anticipate that such a well-behaved weight function is not necessary accompanied a
non-singular set of operators.

To start with, we formally express a density operator as the integral

p= %/dZOzT(a,l)<a|p|a>, (2.53)

where the operator T'(«, 1) is given by Eq.(2.47) for s = 1 and the function («|p|a)
is called the Q function. We recognize immediately that the expansion (2.53) is made
over a set of singular operators®, but the question about the properties of the weight
functions (a|p|a) is still open. Inverting Eq.(2.53) we may write by analogy to the
W(«) and P(«)

(alpla) = Tr(pT(a; —1)). (2.54)

It is clear that, since the density operator p is a positive defined, bounded, Hermitian
operator, the QQ function, which is an average value of the density operator in the
coherent state |a), is non-negative and bounded according to the inequalities 0 <
(a]play < 1. Moreover, calculating a trace of the density operator in the basis of
coherent states we obtain that a normalization condition for the Q function reads

1="Tr(p) = %/d2a<a|p|a>. (2.55)

Therefore, among the introduced quasidistribution functions, the @ function has the
most classical properties.
The expectation value of an arbitrary operator A can be written using the definition

(2.53) as
Tr(pA) = % / PaTe(AT(a, 1)) Tr(oT (0, —1)), (2.56)

5 All eigenvalues of the operators T'(a, 1) are infinite
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and as in the case of the P function, it contains the singular operator T'(a,1). For
this reason averages of the bounded operators in P and Q representations do not, in
general, converge. The only representation which supports their convergence is thus
the Wigner representation.

Let us introduce, by analogy, the antinormally ordered characteristic function y 4 (€)
as the expectation value

Xa(€) = Tr(pD(€,—1)) = Tr(pe "), (2.57)

The connection between the characteristic functions xn(€), x(£) and x (&) is then
given by
X () = el 2 (€) = e xa (). (2.58)

From the last relationship we obtain a boundary condition for the antinormally ordered
characteristic function |y4(€)| < e /2. Consequently, it is bounded an possesses a
Fourier transform so that

(@) =~ [ Pafalplaye e, (2.59)

The inverse transform gives the () function as the following integral

(alpla) = - [ dexate)ens (2.60)



20

Phase space concept in quantum theory




Chapter 3

Models in Cavity QED

Article by Purcell [6] can be apparently considered as the first proposal in the field
which nowadays regarded as cavity quantum electrodynamics (CQED). In that work, it
was suggested a possibility to increase the spontaneous emission rate of an atomic radio-
frequency transition, when compared with the free space rate, by coupling an atom on
resonance to an electric circuit. Later, a rigorous CQED calculation considering the
force between an atom and a conducting plate was made by Casimir and Polder [7]. A
numerous number of theoretical papers concerning the emission rates and levels shifts
of atoms in the presence of conductors followed.

When an excited atom couples to the electromagnetic field in presence of a con-
ducting structure (hereafter we regard this structure as a cavity), the free-space field
modes distribution is modified by the cavity. In this case one can distinguish two possi-
bilities. The spontaneous decay of excited state probability can be either exponential,
as in free space, or oscillatory. However, both processes have rates different from the
free-space case. The oscillatory case takes place when an atom interacts with a high-Q
cavity, whereas the exponential case deals with low-Q cavities. Until recently the high-
Q situation was not experimentally feasible. Nevertheless, demonstrations of modified
radiation rates were done in the case of low-Q cavities in [8] (in the microwave domain)
and [9] (for the visible domain).

Discovery of microwave high-(Q) cavities has opened an avenue for studies of single
atom-cavity resonant interaction which allowed later to develop an one-atom maser,
or micromaser [10, 11]. The micromaser became a fundamental model in CQED and
allows one to prepare nonclassical field states, such as Fock states [12, 13], to test the
complementarity in quantum mechanics [14] and the quantum information process-
ing [15, 16, 17]. In the optical domain high-Q regime has been recently achieved [18]
what gave a rise to a development of single photon sources [19] as well as a development
of a one-atom laser [20]. Even more fascinating perspectives for building a quantum
networks [21] aimed at quantum information storage and processing are opened by a
possibility to trap a single atom with the help of a cavity field [22, 23].

In this chapter a basic model of an atom-cavity interaction is introduced and the
effects of an external driving field are studied. The theoretical model of the micromaser
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and its generalization to a strong-external-driving case are considered. Apart from the
micromaser we introduce a soluble model of a one-atom laser and exploit it for an
observation of the decoherence of the cavity field.

3.1 Jaynes-Cummings model

Jaynes-Cummings model [24, 25] deals with a case when a single mode of a quantized
electromagnetic field couples to a two-level system. In this section, as well as in the next
one, we confine our attention to unitary processes in such systems, leaving more general
cases, which include the nonunitary dissipation effects due to an interaction with an
environment, to the last three sections of this chapter. Any two relevant electronic
states of an atom can be considered as a physical realization of such a system. To
start with we will consider a semiclassical problem in which an atom consisted out of
one electron interacts with a classical electromagnetic field. This interaction can be
described by a minimal-coupling Hamiltonian [26]

H = i(ﬁ— cA(F 1)) + ed(F, 1) + V(r), (3.1)
where ' is a canonical momentum operator, /T(F, t) and ®(7,t) are vector and scalar
potentials of the external field and V(r) is an electrostatic atomic binding potential.
The Hamiltonian (3.1) can be derived from the principles of a gauge invariance and
in what follows we will use a gauge in which ®(7,¢) = 0 and V - A(7,¢) = 0. Let us
consider a situation when the electron is bound by the potential of a nucleus located
at 79. The entire atom will experience an action from the plane electromagnetic wave
described by the vector potential E(F + 7, t) which can be further expanded in a series

AF+75,t) = A(t)exp(ik - 7o) (1 + ik -7+ -- )
~  A(t) exp(ik - 7p) = A(r5, 1) (3.2)

Where in the last equation (3.2) the dipole approximation has been applied i.e. we
assume that k - 7 < 1 and the only non-vanishing contribution is of the zeroth order.
This supposition allows us further simplification of the Hamiltonian (3.1) so that it can
be rewritten as

H =Ho+ Hine, (3.3)
with
Hy = p_2 + V(r) (3.4)
2m
Hiy = —er E(7, 1) (3.5)

here we change the field description from the vector potential fT(F, t) to an electric
field vector E(7,t) using E = —24 Hamiltonian (3.4) describes an unperturbed atom
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considered as a quantum system whereas Hamiltonian (3.5) governs an interaction
between the atom and the classical electromagnetic field.

The next step is to replace the classical field by its quantum counterpart assuming,
however, that the coupling between the atom and quantum field remains unchanged
and therefore can be expressed in terms of the Hamiltonian (3.5). In this case the
complete Hamiltonian of the interacting quantum atom and field reads

H="Ho+Hs+ Hint, (3.6)

here H, and H; are Hamiltonians of the free atom and the free electromagnetic field
correspondingly and H;,; is the interaction Hamiltonian given by (3.5). Since we are
dealing now with the quantized field, it is convenient to present its free Hamiltonian
H; in terms of creation(annihilation) operators of a photon aj (ay) in the k-th mode of

the field as .

My =Y Twe(afa + >) (3.7)

Operators a}; and ay obey the following permutation relations

[ak, ak'] = 0; [GL GL] = 0; [ak; CLL] = Ok’ (3-8)

and act on the infinitely dimensional Hilbert space consisted of the Fock states of a

harmonic oscillator |nq, - --,ng),n; = 0,00,i = 1, k so that
ai|n17"'7ni7"'7nk> - \/n_i|n17"'7ni_17"'7nk>a (39)
allng, - ng oo mg) = Vg Lng, e ni 41,000 ng). (3.10)

The electric field operator appearing in the interaction Hamiltonian (3.5) is evaluated
in the dipole approximation at the position of the point atom and in the terms of aL
and ay reads

E = Z E’kz‘,’k(aL + ak), (311)
k

where & = \/hwy/2¢0V, € - polarization vector and V is a quantization volume.
We suppose now that the atom has discrete energy level structure i.e. H,li) = FE;|i)
where |i) is a complete set of atomic energy eigenstates. In other words the relation
> i) (i] = 1 is fulfilled. Hence the free atomic Hamiltonian in terms of its eigenstates

reads
Ha = > )i Hali) G =D Eili)l, (3.12)
ivj i
and a dipole operator e’ can be rewritten in the same manner i.e.

e = e 3 NG = Y Qi (3.13)
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where €;; = (i|]j) are the matrix elements of the electric dipole operator and we have
introduced the atomic transition operators o;; = [i)(j|. With the help of equations
(3.11) and (3.13) we obtain that the interaction between the atom with a discrete
level structure and quantized field, deduced from the equation (3.5), is given by the
interaction Hamiltonian

znt — hz Z gk Uz] ak + ak) (314)

with coupling coefficients gi/ = —;&.Ec/h. Combining equations (3.7), (3.12) and
(3.14) together we arrive finally at the explicit formulation of the Hamiltonian (3.6)

H= Z Eoi + Z hwal ay + hz Zg oy (af + ax), (3.15)

Although we have already made the dipole approximation (3.2) our consideration till
now has been pretty general and has allowed us to derive the Hamiltonian (3.15) which
describes the coupling of the many-level atom with the quantized electromagnetic field.
This, however, cannot serve as a model of a matter-light interaction due to the following
reason. Introducing a model one wants to describe some complex physical phenomenon
in terms of a relatively simple concept which could give a quantitative estimation to a
real physical process. Unfortunately, the Hamiltonian (3.15) in its present form is non
diagonalizable and, therefore, is a bad candidate to model the matter-light interaction.
In order to simplify our consideration we assume that the level structure of the atom
coupled to the quantized field consists only of two relevant levels. Let us call them |g)
for the lower energy state and |e) for the higher one. Consequently, the first and the
second terms in the Hamiltonian (3.15) can be modified using the following notations

1
Ho = EeOee +Ejo4 = §Maz,

0: = Oee — 099 = |€)(e] = ]9) (g,

or = 0 =le){gl,

o = 04 =|g)el, (3.16)
where we have defined the ground and excited states energies as E, = —(1/2)hw and

E. = (1/2)hw, with w - |g) — |e) transition frequency. So that the Hamiltonian (3.15)
for the case of a two-level atom reads

1
H =S hwo. + Xk: hwal ay + hik:gk(mr + o) (al + ay), (3.17)

here we have put g/ = g{° = gk for the sake of simplicity. We should notice here that
the operators o,, 0, and o_ obey the spin-1/2 algebra of the Pauli matrices i.e.,

oy, 0 | =0, [04,0,] = F204, (3.18)
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and therefore the two-level atom model is equivalent to the model of a spin-1/2 particle.
The Hamiltonian (3.17) could be further reduced if we select a particular mode, with
the given polarization, from a set of the field modes. In other words, we are interested
in the interaction between the selected field mode and the two-level atom. Physically,
such a selection, can be performed by using a resonator which cuts the modes which are
not relevant to our consideration in order to reduce drastically a coupling of the atom
to the other left modes of resonator by selecting a proper polarization of the mode of
interest so as to at the end the only relevant contribution to the third term in (3.17)
is given by the gy, = ¢. Finally, we obtain that the dynamics of the interaction of the
two-level atom with the single mode of the quantized field is governed by the following
Hamilton operator

1
H= §hwaz + hwpala + hg(oy +o_)(a' + a). (3.19)

The third term in the Hamiltonian (3.19) responds for the atom-field interaction and
consists of four terms o af, o_a’, 0 a and o_a. Atomic operators o_ and o, has a
transparent physical meaning, namely, o operator takes an atom in the upper state
into the lower state whereas o, does the opposite. Consequently o,al atom-field op-
erator takes an atom into the upper state and creates a photon in a field mode, on
the contrary the operator o_a takes an atom into the lower state and destroys a pho-
ton. The both processes lead to a generation(destruction) of two quanta of energy
and therefore are nonconservative. The other pair of operators o_a' and o, a con-
serves a number of quanta in the closed atom-field system and induce an oscillatory
exchange of an energy quanta between the atom and the field. Dropping the energy
nonconservative terms in the Hamiltonian (3.19) corresponds to the rotating-wave ap-
proximation(RWA). The other way to justify an applicability of the RWA is to look
at the oscillation frequencies of the conservative and nonconservative terms. Indeed,
for conservative terms they are proportional to |w; — w| whereas for nonconservative
ones they are |wy + w|. If the detuning between an atomic transition frequency and a
frequency of the field is small than we immediately conclude that the nonconservative
terms oscillate much faster(especially in a high-frequency domain) when compared to
the conservative ones and hence their contribution to the dynamics is negligible. Nev-
ertheless, that is not always the case and there are certain situations when the RWA
fails. However, in what follows, we suppose that the RWA takes place. Applying the
RWA to the Hamiltonian (3.19) we obtain

1
Hi_c = §hwaz + hwfafa + hg(ora+ a,aT). (3.20)

The Hamiltonian (3.20) is called Jaynes-Cummings Hamiltonian [24] and is the central
point of this section. It is an essential point of the Jaynes-Cummings model which one
can briefly summarize as follows:

e It is a fully quantum model which describes an interaction between a two-level
atom and a single mode of a quantized electromagnetic field by means of the
Hamiltonian (3.20).
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e [t is based on two approximations, namely, the dipole approximation and the
rotating-wave approximation.

Having at our disposal the Jaynes-Cummings Hamiltonian (3.20) we can start to
address the quantitative questions of an atom-field evolution. For the sake of simplicity
we will consider a case in which an atom couples resonantly to a single mode of a cavity
i.e. wr =w. We pass in the Hamiltonian (3.20) to the interaction picture what leads
to the following Hamilton operator

W = /Wt (o, a + o_at)e™ /WMot (3.21)

where Hy = %hwaz + hwfaTa is the free Hamiltonian of an atom and a field. After some
algebra we deduce that the Jaynes-Cummings Hamiltonian in the interaction picture
reads

W = hg(o,a+o_al). (3.22)

Calculating the unitary time-evolution operator U(t) for the Hamiltonian (3.22) we
arrive at

U(t) = e-timmwe
= cos(gtvala + 1)|e)(e| + cos(gtVala)|g) (|

sin(gtvata+ 1) )] sin(gtvVata)
—i ale)(g| — i————=
Vata+1 g Vata

Assume that initially we have an atom prepared in the upper state |e)(e| and a field is

a'lg)el. (3.23)

in the pf(0) = Z Pn,m(0)|n) (m| than the probability to detect the atom, undergoing

’I'Lm—

an interaction with the field via the interaction Hamiltonian (3.22), in the lower state
lg)(g| after time ¢ is given by

Py(t) = Te{U'(t)]e){e| @ pr(0)U(1)]g){gl}
= ann sin®(gtv/n +1). (3.24)

In the same manner one can derive an expression for the probability to detect the
initially excited atom in the excited state again

P.(t) = Te{U'(t)]e){el ® ps(0)U(t)]e){el}

= Z Pnn(0) cos?(gtv/n + 1). (3.25)

n=0
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Figure 3.1: Rabi oscillation of an atomic invertion. Vacuum Rabi oscillations (top)
and Rabi oscillations for an initial coherent state of a field (bottom) with |a| = 4.

Defining the atomic population inversion as I(t) = P.(t) — P,(t) we obtain that its
time evolution reads

I(t) = f: Pnn(0) cos(2gtv/n + 1). (3.26)

From Eq.(3.26) we immediately conclude that the time evolution of the atomic in-
version strongly depends on the initial state of the field. For example, if the field was
initially in the vacuum i.e. pf(0) = |0)(0| than the only contribution to the sum in
the equation (3.26) is for n = 0 with pgy = 1 so that I(¢) = cos(2¢t). In other words,
for such initial conditions, the atomic population inversion exhibits so-called vacuum
Rabi oscillations fig.(3.1), where €y = gt is frequently regarded as the vacuum Rabi
frequency. These oscillations are the direct consequence of the Jaynes-Cummings inter-
action (3.22) which conserves the number of excitation quanta in the entire atom-field
system and allows an oscillatory exchange of them. If the entire system is closed then
these oscillations can last infinitely long. Another interesting behaviour of the atomic
inversion can be seen when the field is initially prepared in a coherent state |a). In this
case pun(0) = (Ja|?/n!)e~1** and for large values of a atomic invertion suffers the col-
lapses and revivals fig.(3.1). This phenomenon can also be understood from Eq.(3.26).
Each term in the summation oscillates with its own Rabi frequency depending on a
value of n. Thus, an initial packet, in the course of time, becomes uncorrelated leading
to a collapse of inversion. Further time evolution restores the correlation and leads to
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a revival of inversion. This process continues and an infinite sequence of collapses and
revivals follows.

3.2 Jaynes-Cummings model in the presence of a
strong classical field

Vacuum Rabi oscillations and collapses and revivals of atomic inversion are direct
consequences of the Jaynes-Cummings atom-field evolution (3.23) enlightening the pure
quantum nature of atom-field interaction. In this section we analyze an influence
of external classical field on the Jaynes-Cummings dynamics studied in the previous
section.

The model considered in this section consists of a two-level atom interacting with
a single mode of electromagnetic field via the resonant Jaynes-Cummings interaction
(3.20) in the presents of a strong classical driving field [27, 28]. We assume that the
classical driving field couples only to the atom and a cavity-driving-field interaction
is negligible. Practically, this can be achieved by applying a driving field which is
transversal with respect to the cavity field. Coupling of a two-level atom to a classical
field can be described in terms of the Hamiltonian (3.5) and leads to

H = hQ(e“o, +e rlg), (3.27)

where wy, is a frequency of the driving field, €2 is a coupling constant of the atom-driving-
field interaction and o, o are the atomic transition operators defined in Eq.(3.16).
Hence, combining the Hamilton operators (3.20) and (3.27) together we arrive at a
Hamilton operator for our model, that is

1 . :
H= ihwaz + hwa'a + hig(oa + o_a') + Qe o, + e wrlg ), (3.28)

likewise in the preceding section, here @ and a! are annihilation and creation operators
of the quantized cavity field. For the sake of simplicity we set w; = w hereafter and
proceed to transform the Hamiltonian (3.28) into a frame rotating with the external
field frequency wy, so that the result of the transformation reads

7_‘1 — 6ith(02+aTa){hg(a+a + O',CLT) + hQ(eitho_+ + eiithO',)}eiith(Uz+aTa)
= hg(opa+o_al) + iQ(oy +0.). (3.29)

Finally, passing in the Hamiltonian 7{; into the interaction picture with respect to
fiQ)(o4 + o_) we arrive at the following expression

H, = eiQt(U++tr_)hg (O'+CL +o_ af)efiQt(tr.,.thr_)

= %(|+><+I = [N+ P = =) (et he, (3.30)
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here we have introduced the so-call dressed states |[+) = (|g) & |e))/V/2 - eigenstates of
a 0, = 0, +0_ operator with eigenvalues +1 respectively. We notice immediately that
the model Hamiltonian (3.28), in contrast to the pure Jaynes-Cummings model Hamil-
tonian (3.22), has an explicit time dependence in the interaction picture. However, in
the limiting situation when the atom-driving-field interaction goes to zero i.e. when
2 — 0 we recover in the Hamiltonian (3.30) the time independent Jaynes-Cummings
Hamiltonian (3.22). In order to avoid any explicit time dependence in the Hamilto-
nian (3.30) for non-zero values of ) we can suppose that a coupling strength of the
atom-driving field interaction - €2 is much larger than the one of the atom-cavity -
g. In this case, terms which contain the time explicitly i.e. eZ%|—)(+|, e 2|4+ )(—|
and hermitian conjugated oscillate with much higher frequency when compared with
the rest and therefore the RWA can be applied and time dependent terms in (3.30)
omitted. So that the Hamiltonian (3.30) after the RWA reads

#, = ()~ D +a)

= %(a +o)(a+a') = %am(a—i—af). (3.31)
Hamiltonian (3.31) is an interaction picture expression for the starting model Hamilto-
nian (3.28) and combines simultaneously both Jaynes-Cummings term o_af + o a and
anti-Jaynes-Cummings term o_a + oaf. Therefore it does not conserve a number of
excitations in an atom-cavity-field system. This can be explained by a presence of an
external field which is an additional source of energy when compared to the standard
Jaynes-Cummings model. Hence the external driving preserves the energy nonconser-
vative terms which in the standard Jaynes-Cummings model are neglected due to the
RWA and leads to the Hamiltonian (3.31) instead of one given by equation (3.22).
Corresponding unitary atom-cavity-external-driving dynamics in the limit of strong
driving field(©2 > ¢) is given by

U(t) — e—(z’/h)H’Qt

_ e—(igt/Q)(a+aT)|+><+| + e(z’gt/2)(a+aT)|_><_|

= D)+ + D(=OI-) (-], (3.32)

where D(€) = ef'¢"@ is a displacement operator acting on a cavity field, £ = —igt/2 is
a displacement parameter and we have used a completeness property of the eigenstates
of o, operator i.e. |[+){+|+ |—-){(—| = 1. We remember that D(«a) is unitary operator
and its action on a vacuum state of a field leads to a displacement of the field into the
coherent state |a). In other words, D(+a)|0) = | + «).

Suppose that an atom was initially prepared in the lower state |g) and a cavity field
in vacuum |0), so that the initial atom-field state is |¢;,) = |¢g) ® |0). When the initial
state |1);,) is subjected to the unitary evolution (3.32) it transforms with the course of
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Figure 3.2: Atomic inversion as a function of time in the case of a two-level atom
interacting with a cavity mode and strong external field for the vacuum initial state of
the cavity (top) and coherent initial state |«| = 4 (bottom).

time into the following atom-field state
1
V2

that is, into the atom-field entangled state which is frequently regarded as the
Schrodinger cat state. Thus, an external driving leads to the interaction which gener-
ates mesoscopic-microscopic superposition states of the form (3.33) in a fast resonant
manner as compared with the conventional methods based on an atom-field disper-
sive interaction [29]. Such a behaviour differs noticeably from those we have noticed
while we have been considering the Jaynes-Cummings model. Indeed, an external driv-
ing cancels the familiar concept of the oscillatory energy exchange between an atom
and cavity field inherent in the Jaynes-Cummings model and provides us with logic
of atomic state dependent displacements of cavity field. In order to illustrate this, we
compute a time dependence of atomic population inversion for a case of the initial
atom-field state p;, = |¢) (9] ® [0)(0]. According to Eq.(3.26) atomic inversion reads

I(t) = Te{U'(#)|g) (gl [0)(OU (t)(|e){el — lg) (gD}
— —Re{Tr{|0)(0|D(26)}} = —e~%I*/2 = _=(s)°/2, (3.34)

(1) = U)[im) = —=(O+) + | = &)1=)), (3.33)

It follows immediately from Eq.(3.34) that in contrast to the vacuum Rabi oscillations
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in the case of the Jaynes-Cummings model presence of external field leads to an expo-
nential decay of initial atomic inversion to the zero value fig.(3.2) i.e. starting from any
initial distribution of the upper and lower atomic states populations we always arrive
at a final distribution with the population of the both atomic states equal to %

In the same manner, if a cavity field was prepared initially in the coherent state
|a) and an atom in the lower state |g) we obtain that the time evolution of the atomic
inversion reads

I(t) = Te{U'(t)lg){g] @ ) {alU(t)(le)(el — [g)(g])}
= —Re{Tr{|a){(a|D(2¢)}}
= —cos(2Im{2¢a*})e 1P6F/2 = — cos(2gtRe{a})e W/2, (3.35)

Hence we notice in Eq.(3.35) an explicit exponential factor which leads to a decay of
the atomic inversion to zero despite an oscillatory behaviour due to the initial coherent
state fig.(3.2). Such a dynamics of atomic inversion is opposite to the collapses and
revivals of the Jaynes-Cummings model and emphasizes a striving of external driving
to populate equally both upper and lower states.

3.3 Micromaser

Enormous progress in fabrication of high-Q superconductive microwave resonators in
the last decades has allowed to study experimentally an interaction of a single cavity
mode with a two-level atom considered theoretically in the section 3.1. Experimental
realization of a single-atom maser or a micromaser [10, 11, 30] - a device in which a
single mode of a cavity field interacts with a stream of two-level atoms in such a way
that only one atom is inside the cavity at any time - has improved our understanding
of light-matter interaction. The micromaser experimental setup can be schematically
presented consisting of three main parts:

1. Atomic beam preparation stage. Here a collimated beam of neutral alkaline atoms
coming from an oven are subjected to a velocity selection, in order to have all
atoms with the same atom-cavity interaction time, and are excited to the upper
level of the atomic masing transition. Practically, this masing transition is se-
lected to be between two highly-excited Rydberg states of an atom. The reasons
to choose the Rydberg states are the following:

e Rydberg states are atomic states with big principal quantum numbers(n >
50) and transitions between them are in the convenient microwave range
where the ultrahigh-Q resonators are available.

e Atoms in the Rydberg states are atoms with one highly excited electron
and therefore they possess an enormous dipole moment which leads to the
very strong interaction with a cavity field, so that the masing transition is
saturated with only one photon.
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e Rydberg states are extremely resistant to the spontaneous emission. As a
consequence, spontaneous emission has no relevant influence for micromaser
since an operation time is smaller than the Rydberg levels lifetime.

2. Atom-field interaction region. Here an atom, passed through the preparation
stage, enters a high-Q microwave cavity! and undergoes the resonant Jaynes-
Cummings interaction with a single mode of the cavity for time 7. The interaction
time 7 is a well controlled parameter and can be varied in a wide range of values
by changing the atomic velocity. Since the atom was initially prepared in the
upper level of a masing transition, it can deposit a quantum of excitation in
the cavity mode and leave the cavity in the lower state as the conservation law
requires. The next atom enters the cavity again in the excited state and can leave
one more excitation quantum in it. Thus the cavity field can be built up as a
tradeoff between atomic pumping process and dissipation of the cavity field due
to the finite quality of the resonator.

3. Detection of atomic states. Here a level statistics of atom, left the cavity is
measured by means of the state-selective detection. This, of course, is a projective
measurement, since we determine in which state the atom has left the cavity and
therefore projects the cavity field state as well. Such a procedure destroys a
quantum interference and leads to the final mixed state of the cavity field.

In this section we discuss the theory of the micromaser, statistical properties of a
micromaser field and the ways of generation of non-classical field states using the
micromaser.

3.3.1 Model of the Micromaser

In order to build a theoretical model which closest fits the real micromaser experiment,
we assume the following:

e One-atom events. The standard experimental situation, if no special manipula-
tion with the atomic beam is made, is when all atoms are uncorrelated i.e. they
arrive at random times. Therefore, the probability to have one atom interact-
ing with a cavity at any time is exp(—2r7), where r is the rate at which atoms
arrive and 7 is the atom-cavity interaction time. Thus, for typical experimental
parameters r = 100 and 7 = 50us this probability is around 99%. Hence, in
what follows we can suppose that at any time there is only one atom undergoes
an interaction with a cavity.

e Leakage of the cavity field. Since the photon lifetime in a cavity is of the order of
a fraction of a second and a cavity passage time of an atom is typically less than

LQuality factor is about 10'°(photon lifetime is of a fraction of a second) in the current experiments
of group in Garching
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100us we can neglect, for all practical proposes, a dissipation of a cavity field
during the atom-field interaction. Indeed, we assume that the field decays only
in the time interval between two successive atom-field interactions when there is
no atom inside a cavity.

o Atom-field interaction. The coupling g between an atom an a cavity mode
switches on when the atom enters the cavity and follows the sinusoidal mode
profile inside the cavity. Hence the coupling g = ¢g(7) is a function of interaction
time. However, for simplicity sake, we suppose that the atom-field coupling is

T

constant at the average value of g = £ [ dtg(t) during the atomic transit through
0

a cavity.

Taking into account the assumptions introduced above we are ready to formulate
the model of micromaser [31, 32]:

Micromaser is a system aimed at building up a cavity field via its resonant inter-
action with a beam of two-levels atoms entering the cavity in the upper state. The
resulting cavity field is a tradeoff between the gaining process due to the resonant
Jaynes-Cummings interaction for the time 7 with the coupling rate g between an each
atom from a pumping beam and a cavity and the loss process due to the coupling of
the cavity mode to a thermal bath when no atom is in the cavity.

3.3.2 Dynamics of the Micromaser

Having at our disposal a qualitative description of the micromaser, given by the model
introduced in preceding subsection, we would like to have now a quantitative one. For
this we take into consideration that the dynamics of cavity field can be considered con-
sisting of two terms, namely, one corresponding to the gains and another corresponding
to the losses, so that the time evolution of the density operator of cavity field p reads

o = (3

We compute the contribution from the gains term, to start with. We employ the

standard master equation approach i.e. we consider the changes of the cavity field on

a coarse grain time scale. In other words this means that we ignore any changes in the

field on the short time scale - the time scale of the order of the atom-field interaction

time and we interested only in changes on the time scale of several interaction times.
The changes in the cavity state per atom is given by

o0p = p(to + 1) — p(to), (3.37)

(3.36)

Since the only source of gains in our model is the unitary resonant Jaynes-Cummings
interaction we can express p(to + 7) as

plto+7) = Tra{UN(T)parss(to)U()}



34 Models in Cavity QED

= cos(grvata+ 1)p(to) cos(grvata+ 1) +

isin(g7vala +1) sin(grvata + 1)
a a,
Vata+1 Vata+1

where the Jaynes-Cummings unitary evolution operator U(7) is given by Eq.(3.23) and
we assume that all atoms enter a cavity in the upper state so that an initial atom-field
state paif(to) = p(to) @ le)(e|. We have traced the atomic degrees of freedom, in
order to obtain in the Eq.(3.38) an expression for the time evolution of the cavity field.
Hence, the overall change of the cavity field due to the interaction with the atomic
beam reads

plto) (3.38)

Ap =rAtop = rAt(p(to +7) — p(to))- (3.39)

Consequently, from the Eq.(3.39) we conclude that the gain term in the master equation
Eq.(3.36) in the coarse-grain approximation can be explicitly written as follows

dp Ap

(E)gain = A%EO At = T(-A + B — 1)Pa (3-40)

where 7 is the atom-field interaction time, r is a number of atoms per second - beam
rate, and

Ap = cos(grvata+1)pcos(grvafa+1) (3.41)

wsin(grvala + 1) sin(grvala + 1)
a a.
Vata+1 g Vata+1

Our model of micromaser dynamics assumes the losses of cavity field when no atom
couples to it. In order to model a decay of cavity field we suppose that it happens
due to an interaction between the single cavity mode of interest and a thermal bath
consisting of infinitely many modes of the environment. This model has a standard
description by means of the following master equation [33]

dp B
(E)loss - Ep

Bp =

(3.42)

I
=~ 5 + 1)(a'ap — 2apa’ + pala) -

1
§7ﬁth(aTap — 2apa’ + pa'a), (3.43)

. . _ hw 1 -
where 7 is a cavity decay constant, 7y, = (ek7 — 1)~' is an average number of thermal
photons in the cavity at the temperature T for the frequency w.

By substituting Eq.(3.40) and Eq.(3.43) into Eq.(3.36) we arrive at the micromaser
master equation

% =r(A+B-1+L)p. (3.44)
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Master equation Eq.(3.44) describes an open quantum driven system and can not be
solved analytically for any moment of time. However, in the steady-state regime of
the micromaser dynamics when the gains are equal to the losses i.e. when % =0it
possesses an analytical steady-state solution. In order to show this, let us rewrite the

micromaser steady-state master equation in the Fock basis
0 = (nr(A+B—-1+L)pln)
= r(sin?(g7v/n) pr1n1 — sin®(g7v/n + 1) pun) —
V(20 + 1) (nppn — (0 + 1) potinta), (3.45)

for n = 0, 00. After some algebra in the Eq.(3.45) we arrive at the following recursion
relations

r r

——sin? \% 1 nn- 1 n+ln+1-

(3.46)
From the latest we immediately obtain that the steady state solution p;° reads

i 2
————— SIn TNN)Pn—1n—1—"NPnn =
7(2ﬁth + 1) (g \/_)p 1 1 p

n _ . 92
o r/vy sin?(grVk)
55— s _ T+ = , 3.47
P Poo kl;[l B+ 1 gy + 1 2 ( )
where pij is the normalization constant and can be deduced from the normalization

condition Tr[p] = Z pnn = 1. The steady-state solution Eq.(3.47) of the micromaser

=0
master equation Eq (3.44) is the central result of the micromaser theory and allows one
to calculate all statistical properties of the micromaser field. For example, the mean
photon number of the steady-state micromaser field is given by

< n>=<ala >=Tr[p**ala) ka (3.48)

As it is depicted on fig.(3.3) the values of < n > vary strongly in the interval from
several till hundreds of photons depending on the micromaser operating parameters
Nep = % and so-called “pump parameter” 6 = g¢g7./r/v opening an avenue for a
generation of the field states on demand. The next statistical parameter, which shows
how close(far) is the given field state to a correspondent “classical” state, is the Fano-
Mandel Q parameter defined as

<(a'a)? > —<ala>? <n?>—<n>?
< ata > B <n> '

Q=

(3.49)

In other words, the Fano-Mandel Q parameter shows how much differs the given field
state from a state obeying the Poissonian field statistics i.e. the state for which
<n>2— <n?>=<n>and Q = 1 respectively. For instance, the coherent state
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Figure 3.3: Steady-state mean photon number of the micromaser field as a function of
f and N,, for the mean thermal photon number 7y, = 0.01.

|o > satisfies the Poissonian statistics and is the “classical” quantum state. States for
which @ < 1(Q > 1) are frequently regarded as the states with sub-Poissonian(super-
Poissonian) statistics and called “nonclassical” (“classical”) states of radiation field.
Typical example of the “nonclassical” states are Fock states, whereas a thermal field
state is called “classical”. It follows from the fig.(3.4) that the micromaser field, depend-
ing on the operating parameters, can exhibit both sub-Poissonian and super-Poissonian
behaviour and therefore the micromaser is an ideal generating device of the nonclassical
field states.

3.4 Strongly-driven micromaser

In this section we discuss a theory of a micromaser where the pumping atoms are
strongly driven by a resonant classical field during their transit through the cavity
mode. We formulate a master equation for the cavity field density operator of this
strongly-driven micromaser (SDM [34]), where the gain originates in the coherent in-
teraction of the field with two-level atoms which are strongly driven by an external
driving while they are inside the cavity [27]. The losses in the master equation stem
from the interaction of the cavity field with a thermal bath. The additional strong
driving acting on the atoms changes drastically the SDM dynamics as compared with
the conventional micromaser.
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25

Figure 3.4: Fano-Mandel Q parameter of the stationary micromaser field as a function
of 8 and N,, for the mean thermal photon number 72;, = 0.01.

We show that the SDM master equation can be solved analytically by means of
phase-space methods, providing an unusual integrable model of an open quantum sys-
tem under realistic conditions. In this way we are able to trace the temporal evolution
of the SDM field from an arbitrary initial state to the final steady-state, which hap-
pens to be superpoissonian. We derive closed expressions for the main quantities which
characterize the statistics of the cavity photons and the detected atoms. We find that,
despite the classicality of the SDM field steady-state, the atomic correlations exhibit
stronger nonclassical features when compared with the conventional micromaser. The
description of system dynamics is illustrated also by numerical results which support
and complement the analytical ones.

3.4.1 Hamiltonian and coherent dynamics

As it was already shown in section 3.2 the effective coupling between an atom and a
single cavity mode is drastically modified in the presence of a strong external driving
field. Under the resonant conditions among the atomic transition, the cavity mode
and the external field, it is possible to engineer a resonant Jaynes-Cummings and anti-
Jaynes-Cummings interaction simultaneously. The latter is usually negligible in CQED,
whereas they can be of importance in other systems, like ion traps [35]. In this case, the
usual atom-field Rabi oscillations do not rule anymore, leaving their place to conditional
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field displacements depending on the atomic internal states: “Schrodinger cat states.”
In fact, this opens an avenue to the entanglement generation and measurement, which
is a very active field in CQED with diverse implications in fundamental and applied
quantum physics [17, 15].

Before studying a general SDM dynamics, it is useful to consider a coherent dy-
namics of an atom-cavity-driving interaction in more details, since the later governs
amplification processes of the cavity field. In this connection, an influence of a mea-
surement of the atomic levels on the resulting cavity field is of great importance. We
show that the situation when atoms are measured after their interaction with a cavity
field markedly differs from the one when they are unobserved and leads to a building
up of a superposition states of the cavity field. However, such superposition states are
only possible when the dissipation processes are not considered. Indeed, in the next
subsections we see that the cavity field superposition states are ruled out in the SDM
as a consequence of decoherence.

To start with, we consider a coherent dynamics of the fully resonant interaction
between one mode of a high-Q cavity and a two-level atom strongly driven by a classical
external field. It is described by the Hamiltonian (3.31) and reads

= %(O—T +0)(a" +a), (3.50)
where g is the atom-cavity mode coupling constant, a (a') the field annihilation (cre-
ation) operator, and o = |g){e| (o7 = |e){g|) the atomic lowering (raising) operator.

It is worth to note that the Hamiltonian (3.50) is already written in the interaction
picture, and was derived in section 3.2 under the strong driving condition €2 > ¢, where
Q2 is the Rabi frequency associated with the external field. There, it was assumed that
the external field interacts only with the atom and not with the cavity. This theoretical
consideration can be achieved experimentally in different ways depending on the chosen
setup. In the case of open cavities [15], the external field can be driven transversally
to the axis of the pumping atoms by means of microwave guides, without feeding the
cavity at any moment. In the case of closed cavities [36, 37], it is enough that the
external field has a polarization orthogonal to the cavity mode of interest.

The unitary evolution operator U = exp (—(i/h)HT) associated with the Hamilto-
nian (3.50), where 7 is the interaction time between the atom and the cavity, has been
introduced in the Eq.(3.32) and reads

U(§) = D)) (+| + D(=)|=)(~|- (3.51)

Here, the parameter £ = —ig7/2 is proportional to the interaction time 7 and D(«) =
exp (aa’ — a*a) is a unitary displacement operator, where a is a complex number
determining the displacement produced in the associated phase space.

Starting from an initial state with the cavity field in a state ppo and one atom
injected in the excited state,

po = pro @ le)el, (3.52)
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the density operator evolves to the state

p1=U(§pU(=E). (3.53)

We consider two cases, one in which the atoms are not observed when they leave the
cavity and the other in which they are detected in the upper or lower level.

Atoms are not observed. If we are interested in the cavity field after the atomic
transit without measuring the state of the outgoing atom, the cavity field density
operator is

prs = Teaps = ¢ [D©)proD(~€) + D(~E)praD(E)] 3:5)

where Tr, is the partial trace over the atomic degrees of freedom, and we used
Egs. (3.51-3.53). If the cavity is initially in the vacuum state, ppo = |0)(0], its state
turns into

pra = 5 (1E)4€1+1 — (=€), (3.55)

which is a statistical mixture of two coherent states with the same amplitude and
opposite phases.

It is of interest for what follows to describe the time evolution of the cavity field
in phase space. While for the vacuum state the Wigner function is the Gaussian
Wo(a) = 2 exp (—2|a|?), for the state of Eq. (3.55) we have

Wi(a) = 2exp [—2(|a]? + |£]*)] cosh(4[¢]Im o) . (3.56)

This last expression shows that the interaction with a driven atom can affect the
rotational symmetry of the initial vacuum state. The section of W («) along the real
axis remains a Gaussian with the initial minimum uncertainty, while the section along
the imaginary axis is broadened, showing a two-peaked structure that results from the
superposition of two Gaussians centered at o = +£. The two peaks are well resolved
if || > 1/2, which requires that the system is operated in the strong-coupling regime
ie. (gr > 1).

If the cavity mode, initially in the vacuum state, interacts with 1,2, ..., m strongly
driven atoms, all assumed to pass through the cavity (one by one) with the same
interaction time 7 and to leave it unobserved, the final field state is given by the
density operator

] — m
prn =52 D () om — 20)€) (o — 200 (357

which describes a statistical mixture of m+1 coherent states. This state is represented
in phase space by the Wigner function

m

Win(a) = 2m11 3 ( " ) exp [~2|a — (m — 2n)¢[’] . (3.58)

n=0
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Figure 3.5: Wigner distributions W1 («) and Wy () of the cavity field, see Eq. (3.58), in
the case of one and two crossing atoms, respectively, provided that no attempt is made
to determine the final internal state of the atoms. Here, as well as in all the following
figures, |£| = m, the cavity field is initially in the vacuum state, and the atoms are in
the excited state.

Hence, in the strong coupling regime and with negligible dissipation effects, multi-
peaked cavity field distributions can be generated in phase-space, where the number of
peaks increases with the number of driven atoms injected in the cavity. The subsequent
generation of such cavity field states is illustrated in Fig.(3.5), where we show the
Wigner functions Wi («), Wa(ar) calculated from Eq. (3.58). After the transit of m
atoms the function W;,(«) exhibits m + 1 peaks, all centered on the imaginary axis
and with a center-to-center distance of 2|¢| = g7. If m is even, the peaks are centered
at Rea = 0 and Ima = 0, £2|¢|, ..., where the central peak in the origin is the highest
one. If m is odd, the centers are at Reaw = 0 and Ima = +|¢|, £3[¢], .. ., the highest
peaks being at o = +£.
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Atoms are detected Now we consider the cavity field in the case in which the
strongly driven atoms are detected when they leave the cavity, e.g. their state is de-
termined by selective field ionization, where for simplicity we assume perfect detector
efficiency. We are again interested in the cavity field properties after interaction. Pro-
ceeding again from the initial condition of Eq. (3.52), and using Eqs. (3.51-3.53), the

cavity field density operators after detecting an atom in the excited state pgs)l or in the

ground state p%‘{)l are

) [D(&) + D(=E)] pro [D(€) + D(—€)]
Fil 2 [Rex(2€) + 1] ’

o — D) = DOl pro[DE) — D(=€)]
N 2 [Rex(2¢) — 1] ’

(3.59)

where x(8) = Trp{proD(F)} is the characteristic function for symmetrical ordering
of the field operators and Trz is the partial trace over the field variables. If the cavity
is initially in the vacuum state, then

S0 )€+ | = (=€l + 16) (=€ + | = E)(¢]
1 2 [1 + exp(—2[¢]?)] ’

P9 )&+ | = (= = [O) (€] = | = (]
Fl 2[1 — exp(—2[£]2)] ’

which are pure states of the cavity field instead of the statistical mixtures of Eq. (3.55).
Actually, the cavity field state vectors are g, )9 o (|€) £ (| =€), that is the super-
position of two coherent states of the kind generated and monitored in the dispersive
regime of cavity QED in [29]. More elaborated superposition states were investigated

in Ref. [27], where also many-atom states were considered. The mean photon number
of the field states of Eq. (3.60) are

(3.60)

() _ (2L Fexp(=2(¢])
<N1> Y= |§|21 + exp(_2|§|2) ’ (361)

whereas (N;) = [£]? in the case of an unmeasured atom Eq.(3.55).
The corresponding Wigner functions representing the states of Eq. (3.60) are

W9 () = 2e721F [¢=2” cosh (4]¢|Tm ) + cos(4]€|Re )] /(1 +e72E) . (3.62)

Beyond the two-peaked structure, present in Eq. (3.56) for an unmeasured atom (see
also Fig. 3.5), the presence of the sinusoidal interference term implies that the Wigner
functions in Eq. (3.62) can exhibit strong oscillations with period 7/2|¢|. They can
even take negative values (see Fig. 3.6), which is a signature of the quantum nature
of the cavity field states of Eq. (3.60). In particular, in the origin of phase space,
WM (0) = +2.
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Figure 3.6: Wigner distribution of the cavity field for the case of one crossing atom de-
tected (a) in the excited state, Wl(e)(a); (b) in the ground state, Wl(g)(a); see Eq. (3.62).

If the second atom crosses the cavity and is also detected in the upper or lower
state soon after, the cavity field is projected onto one of the following states,

s = [126)(2€] + 4]0y (0] + | — 26)(—2¢| + |26)(~2¢]
+| — 26)(2€] + 2(|2€)(0] + |0} (2€] + [0)(—2¢]

+ = 26)(0)] / 12(3 + 42" 4 e8]
Py = oY = 112602 + | — 26)(—2¢]

—[26)(~2¢] - | - 26)(2¢[] /120 — )]
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P2 = [126)(2€] + 4]0) (0] + | — 26)(—2¢€] + |26)(—2¢]
+] — 26)(2€] — 2(|2€)(0] + |0} (2€] + [0)(—2¢]

= 26)(0])] / [2(3 — de e 4 e=16)] (3.63)

where, for instance, (eg) means that the first atom is detected in the upper state and
the second one in the lower state. The expressions of Eq. (3.63) should be compared
with the statistical mixture of Eq. (3.57) in the case of two unobserved atoms (m = 2).
The density operators in Eq. (3.63) describe mesoscopic Schrodinger-cat-like states of
the cavity field, the corresponding state vectors being

Wr) ) oc (126) + 2(0) + | — 26)),
o) o (126) - 2(0) + | — 26)),
o) = [ra)) o (|26) — | —26)). (3.64)

The Wigner functions which represent the above states in phase space, whose behavior
is depicted in Fig. 3.7, can be written as

Wia) = 222 + e 8K cosh(8|¢[Im a)
+4e~ 2 cosh (4] Im o) cos(4]€|Re )
+ cos(8|¢[Re a)]/(?) e 2P 4 pBlely
Wi (a) = W (a) = 2¢2[— cos(8|¢|Re )
te SIEP cosh(8|§|1ma)]/(1 — e SIEy
Wi () = 2e 22 4 ¢ 3P cosh(8]¢]|Im )
—4e™ 2 cosh(4]¢[Ima) cos(4]¢|Re )
+cos(8J¢[Re )] /(3 — 4e72€" 4 ¢S, (3.65)
We consider now the atomic statistics at the exit of the cavity independent of the

cavity field state. If an atom is injected in the cavity, so that the initial state is
pr ® le){e|, the atomic state after the interaction will be

pa = Tep{U(&)pr @ |e)(e|lU(=£)}

= %1A+Rex(2§)(|€>(€|—|9><g|)+i1mx(2§)(|g>(€|—|€>(9|) - (3.66)
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Figure 3.7: Wigner distribution of the cavity field for the case of two crossing atoms
detected (a) both in the excited state, WQee)(a); (b) one in the excited state and
the other in the ground state, Wi (a); (c) both in the ground state, Wi’ (a); see
Eq. (3.65).
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Here, Trp is the partial trace over the cavity mode degrees of freedom. In the derivation
of Eq. (3.66) we used also Egs. (3.51) and (3.52) as well as the property x(5) = x(—5)*.
Finally, we can calculate the probability p, , for atomic detection in the upper or lower
state as

Peg = {e.glpale,0) = 51+ Rex(26)]. (3.61)

3.4.2 SDM master equation and analytical solutions

The model of SDM is based on the model of the conventional micromaser introduced
in the section 3.3 and absorbs its main features and approximations. Therefore, it can
be briefly summarized as follows:

e We consider a beam of two-level Rydberg atoms, satisfying the poissonian ar-
rival time statistics, with pumping rate r, interacting with a single mode of a
microwave high-Q cavity.

e We study a regime where at most one atom is present inside the cavity at a time,
that is, 7 < r!, 7 being atom-cavity interaction time, and where the decay of
atomic Rydberg levels is negligible.

e While the atoms are inside the cavity, during an interaction time 7, they are
strongly driven by an additional strong classical field, the whole system being in
resonance.

e Between two successive atoms, the cavity field decays due to its interaction with
a thermal bath.

Hence, even though the present SDM model looks quite similar to the conventional
micromaser, there is a crucial difference in the pumping dynamics. In the case of SDM
an atom-cavity interaction is described in terms of the interaction Hamiltonian (3.50)
instead of the Jaynes-Cummings Hamiltonian (3.22) for the micromaser. It has been
already discussed in the preceding subsection, that the Rabi oscillations do not rule any
more the unitary atom-field interaction. Their role is taken over by field displacements
conditioned on the atomic internal states.

The dynamics of the SDM field is governed by an interplay between the amplifica-
tion process, due to the interaction with the driven atoms, and the dissipation process,
occurring when no atom crosses the cavity. The gain rate of the cavity mode of SDM
can be obtained using a coarse-grained description in a similar manner as it has been
already done in the case of conventional micromaser(see Eq.(3.37-3.40)). However,
now one should make use of the unitary evolution operator Eq.(3.51) instead of the
one corresponding to the Jaynes-Cummings model, so that the gains of the SDM field
read

Gﬂ

ot | . g[D(f)/’FD(_f) + D(=&)prD(§) — 2pr] .- (3.68)

gain
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The loss rate, due to the interaction of the cavity field with a thermal bath [33], is
given by a standard expression

P yn + 1
Oor| Mt D)t dupral + peata
loss
n
_72th [aanF N QGTPFG + pFaaT] = LpF, (3'69)

where v is the cavity photon decay rate and 74, is the mean thermal photon number.
Bringing Eqgs. (3.68) and (3.69) together we arrive at the master equation of SDM

8pp r

¢ = 5 P©prD(=) + D(=E)prD(&) = 2pr] + Lor . (3.70)
At variance with the conventional micromaser, whose master equation Eq.(3.44) has
an analytical solution only in a steady-state [31, 32|, the SDM master equation (3.70)
is completely integrable for any time. In order to demonstrate that, we perform a
transformation from the equation of motion (3.70) for the density operator into the
corresponding partial differential equation for its symmetrically ordered characteristic
function (/). We employ a one-to-one correspondence between x(3) and a related
field density operator, which is given by

R /X(B)D‘l(ﬁ) &5 (3.71)

We note here that the Wigner function, W («), is the 2D Fourier transform of the
characteristic function x(5).

Thus, using known operator techniques [38], we map both parts of the operator
equation (3.70) into the following complex functions:

Opr
ot

D(&)prD(=€) — 77 (8,5",1),

0
aX(ﬁaﬁ*at)a

0 0
Loe =~ |@na+ DIBP + 055+ 5 5

so that correspondent partial differential equation for x (3, 5*,t) reads

[xs.80, 372

SxB.050 =[S 1T o)~ Lo 4 )IFP]x(5. %0
V(g0 | 4 0 "
5 (#55 + 055 ) x(8.5%0). (3.73)

We transform Eq. (3.73) to cartesian coordinates by setting £*5 = [£|(x + iy), which
gives

a ’}/ a a / ! _
(a‘Fg[«T%—f‘ya—y—FZL’G (:C)+yF (y)])x(x,y,t) _07 (374)
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where
2n 1
G(z) = Mﬁ,
2
y
4N,, sin? 2n 1)z2
Fly) = / sin(|€|z) + (204, + 1)z " (3.75)
z
0
and N, = /7. The solution of Eq. (3.74) reads
(ss) 14 ot
Xy, t) = X (x’y)xo(xf I ) (3.76)
(ss) - L
X&) (ze™ 2 ye™ )
Here,
X9 (z,y) = ¢ 0@ (3.77)

is the steady-state solution of Eq. (3.74) that is reached for ¢ — oo, and xo =
Trr[pr(0)D] is the characteristic function corresponding to the initial field state pg(0).
By substituting the expressions of Eq. (3.75) into Eq. (3.77), we arrive at the steady-
state characteristic function

(@, ) = exp (7 + 1)(@* + 1?) + AN — In(2l¢]y) + Ci(2AE]y)]) ,  (3.78)
where 7, is Euler’s constant and Ci(2|¢|y) is the Cosine Integral defined as

2|¢ly

Ci2lely) = + m2lely) + [

0

cosz) =1, (3.79)

Note that starting from a real initial function, the time-dependent solution in Eq. (3.76)
will always produce a real characteristic function. This follows from the invariance of
the time evolution equation in Eq. (3.73) under the transformation 5 — —f, and from
the property x(8) = x(—03)*. Accordingly, the solution of Eq. (3.76) depends only on
the modulus of the (imaginary) parameter &, which is in agreement with the invariance
of the master equation (3.70) under the transformation & — —¢.

3.4.3 SDM field statistics

It is clear that from the general solution of the characteristic function, Eq. (3.76), we
can calculate the field density operator pg(t), following Eq. (3.71), and have access
to the field statistics. However, this information can be directly extracted from the
characteristic function itself, since the expectation value of any symmetrically ordered
product of the operators a and a' is given by

_omx(8,87)

((a®)™a™)sym = DG |5 (3.80)
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For example, we have

(a(t)) = (a(0))e™",
(a'(Da(t)) = (a'(0)a(0))e™" + (Neol¢[* + 7en) (1 — e77")

(@®(t)) = (a®(0))e " + Nep&2(1 —e™ ). (3.81)

From the expressions in Eq. (3.81) and their complex conjugates, we derive the steady-
state expectation values of the field amplitude, photon number, and quadrature vari-
ances (A 5)?%, with z; = (1/2)(a' + a) and x5 = (i/2)(a’ — a),

(@) =0,
<aTa>(ss) = Nem|§|2+ﬁa
(Az, ™) = L(1+427),

(Azs®) = L1427+ 4N [€P). (3.82)

We see that in the steady state the expectation value of the SDM field is zero, whereas
the mean photon number is a quadratic function of the modulus of the single atom
displacement parameter . Also, for vanishing cavity temperature (7, — 0), the
variance of the quadrature operator z; remains at the minimum value 1/4, whereas
the variance of the orthogonal quadrature x,, the one that is being driven by the
system, is broadened by a factor equal to (afa)®.

Another important quantity describing the photon statistics is the Fano-Mandel
parameter Q = [(AN)% — (N)]/(N), where N = (afa). For the SDM at steady-state
we obtain
Neol€]"'(New + 5)

Nem|§|2 + N,
which describes a persistent super-Poissonian behavior (@ > 0). This result is at vari-
ance with the conventional micromaser steady-state [31](see Fig.(3.4)), which alternates
between super-Poissonian and sub-Poissonian statistics.

Q = Neo|€]” + p + (3.83)

3.4.4 Atomic correlations

Just as it is the case for the micromaser, in the SDM we are not able to measure the
cavity field directly. Therefore, we use the atoms not only for pumping the cavity mode
but also as a source of information about the SDM field. The theory of the detector
clicks statistics as well as the connection between the statistics of the detected atoms
and the cavity field was developed for the conventional micromaser in [39]. According
to this approach, the detection of the exiting atom, initially prepared in the upper
state, in the ground state is described by an operator A whose action on the field
density operator pg is given by
1

App = {ID(=€)prD(€) + D(€)prD(—€) — D(=€)prD(~€) = D(E)prD(€)]. (3.89



3.4 Strongly-driven micromaser 49

Likewise, the click operator B for detection in the excited state acts as follows

1

Bpr = 7ID(=€)prD(€) + D()prD(=€) + D(=)prD(=€) + D(€)prD(E)] . (3.85)

Note that the above expressions have the same structure as the field state operators
of Egs. (3.59). The probability to detect the atom in the ground (excited) state p,
(pe) can be calculated as Trp[Apr] (Trp[Bpr]), giving the results of Eq. (3.67), which
can be further simplified after the derivation of a real expression for the characteristic
function Y, so that .

Peyg = 51 £ x(28)]. (3.86)
The latest is in agreement with the expression Eq.(3.67). The introduction of the above
click operators enables us to describe the atomic correlation functions, or conditional
probabilities for two consecutive detector clicks. For instance, the correlation function
for a detection of the second atom in the excited state after a detection of the first
atom in the ground state separated by a time interval ¢ is given by

_ Trp[BefotAp)] 14 x(26,0)
- Tep[Bpl)] Tep[Ap9] 14 x69)(2€)

where Lo = L+ r(A+ B — 1), x® is the steady-state characteristic function(3.78)
which reads

Gae(1)

(3.87)

2x9) (2831 — 1 — X (4ge )
2 — 2x(9) (26e™3")

7(26,1) = xexp(— (i + HRER(L-e7H)) , (3.88)
and 100% detection efficiency has been assumed. In other words, we suppose that no
atom escapes detection.

The two-click correlation function in Eq. (3.87) is the ratio between the conditional
probability to have a second e-click at time t after a first g-click occurred at time
0, and the probability for an e-click when the cavity field is in the steady-state. All
other correlation functions for click pairs G.., G4 and G.,4 are given by the following
expressions

Trp[Ae“' Ap™] 1 —x(26,1)
(Trp[ApE9])® 1 —xE9(26)°

Trp[Ae©!Bpd]  1—x(2¢,t)
Trp[Ap|Tep[Bpe)] — 1 — x(9)(2¢) 7

_ TrpBe®'Bp™)] 1+ x(2€,1)
Geelt) = T B T2 (3.89)

where
29 (287 2) + 1 + x5 (4€e2t)
2+ 2x(9) (28e"2")

X(26,1) = xexp(— (1 + 1) 26 (1 —e7H)) . (3.90)
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Figure 3.8: Atomic correlations G, with parameters N, = 50, iy, = 0.03. The figures
are plotted for time intervals ¢ = 0 (top) and ¢ = 0.01 (bottom) between detection
clicks.

However, as in the case of the conventional micromaser, the two-click correlation
functions of Eqgs. (3.87) and (3.89) for the SDM reflect the statistics of all possible con-
secutive two-click events separated by a time ¢. In order to judge about the correlations
between two truly successive atoms, one should take the limit ¢ — 0 in Eqs. (3.87) and
(3.89). In this limit 2, two consecutive atoms interact with the cavity field and there
is no time for decoherence to take place in between. Therefore, one expects stronger
atomic correlations as a consequence of the discussion done in Sec. 3.4.1 .

In Fig. 3.8, we show the correlation function G, as a function of the displacement
parameter £. We see that G4 exhibits stronger correlations, when compared with the
conventional micromaser, despite the complete classicality of the SDM steady-state.
This is a counter intuitive result coming from the belief that stronger correlations
should appear only when non-classical steady-states are involved. The stronger atomic
correlations present in the SDM originate in the different nature of the unitary process.
In the SDM, we rely on an interaction (see subsection 3.4.1) that naturally produces
mesoscopic entangled atom-field states (“Schrodinger cat states”), while the conven-
tional micromaser uses the Jaynes-Cummings interaction, producing Rabi oscillations

2We recall that the master equation of Eq. (3.70) was derived in the standard coarse-grained
approximation, where the interaction time of each atom is considered as differential compared to the
time scale of the global field dynamics. In this context, the limit ¢ — 0 in the two-atom correlations
means that the first atom leaves the cavity in the moment in which the second one is entering. In
consequence, no decoherence can happen between these two consecutive events.
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inside well defined atom-field subspaces, and essentially exchanging a single photon per
cycle.

3.4.5 Numerical simulations

In order to describe the SDM dynamics we have at our disposal the analytical expression
of the symmetrically ordered characteristic function x(8,5* t), Eq.(3.76). We can
as well describe the time evolution of the Wigner function W(a, a*,t), that is the
Fourier transform of x(3, 8%, t), which gives a picture in the phase space associated
to the cavity mode. We can further consider the time behavior of the density matrix
(pF)mn(t) = (m|pp(t)|n), derived from the master equation in Eq. (3.70) when the field
density operator is represented in the Fock basis. In this case, we can use quantum
jumps techniques [40], already applied successfully in several problems in the domain
of micromaser physics [41, 42] and CQED.

All these intertwined tools allow a consistent description of SDM dynamics which
complements the analytical results and unveils additional features. As an example,
in Fig. 3.9 we show the transient behavior of the Wigner distribution W («) of the
SDM field. Starting from the Gaussian function of the vacuum state (Fig. 3.9a), after
a time interval v¢ = 0.1 (Fig. 3.9b) we see the presence of two additional peaks,
symmetrically placed along the imaginary axis. Here, we have chosen || = 7, a large
enough value to see a peaked structure. At later times in the transition, Fig. 3.9(c), we
see the onset of other peak pairs symmetrically placed on the imaginary axis, while the
distribution lowers and broadens along that axis. The underlying physical mechanism
for the generation of this dynamics was described in subsection 3.4.1.

At later times decoherence destroys such structures, and when the steady-state
is reached (Fig. 3.10) the distribution looks like the envelope of the multiply-peaked
structure along the imaginary axis, while it preserves its initial minimum width along
the real axis. Figure 3.11 shows the density matrix of the steady-state SDM field. The
diagonal elements provide the photon statistics, and their wide distribution confirms
the predicted super-poissonian behavior. Furthermore, we note the presence of off-
diagonal density matrix elements or coherences, which rule the phase and spectral
properties of the field.

Initially they are not excited in the cavity field, hence they are induced by the inter-
action with the strongly driven atoms. In order to investigate this effect, in Fig. 3.12,
we show the steady-state Pegg-Barnett [43] phase distribution

P() = (2m)™" > pplseltmml (3.91)
m,n=0

The SDM phase distribution shows a particular feature, i.e., a narrow two-peaked
structure centered on the values § = +7/2, which is already present in the transient
regime. This feature is explained by the SDM gain dynamics, Eq. (3.68), which shows
that the resonant interaction of the cavity field with strongly driven atoms implies an
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Figure 3.9: Generation of multi-peaked distributions in the transient SDM field dy-
namics: W(a,t) - Wigner distributions at ¢ = 0 (top) and ¢ = 0.1,0.5 (proceeding
downward), obtained from the master equation (3.70).
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Figure 3.10: Steady-state cavity field after the transient evolution of Fig. 3.9: Wigner
Figure 3.11: Density matrix of the steady-state cavity field.

function W («) for ¢ = 20.
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Figure 3.12: Pegg-Barnett phase distribution of the steady-state cavity field.

equal displacement of the field by the imaginary quantities ££. In turn, this effect is
quite consistent with the narrow elongated form of the steady-state distribution along
the imaginary axis in phase space, as well as with the vanishing of the steady-state
field expectation value.

3.5 One-atom laser

We have already considered an important CQED model - model of the micromaser and
its generalization to a case of driven micromaser. Both of them have a distinguishing
feature, namely a cavity field is built up as a result of an interaction between a cavity
mode with a large, in a limit with an infinite, sequence of atoms. The conventional
macroscopic laser systems are built on a same principle. An output cavity field of
a laser is generated as an interplay between losses of the field due to spontaneous
incoherent emission of intracavity atoms and an amplified coherent stimulated emission
of them. Whereas the micromaser can operate in a regime with only a few intracavity
photons, lasers deal with a huge number of the field photons and as a consequence can
be treated semi-classically [44] without taking into account an impact from a single
quanta. However, a situation is modified drastically when a generating intracavity
medium is reduced to a single atom. This leads to an interesting theoretical and
experimental problem to study lasing properties of an atom pumped by a possibly
coherent or incoherent radiation. Many theoretical works were devoted to studies of a
one-atom laser [45, 46, 47, 48] and have shown that it can exhibit features which are
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Figure 3.13: Atomic energy levels structure and the applied fields. A and A’ denote
the frequency detunings and g, ), ), Q are corresponding coupling strengths.

not inherent in macroscopic lasers such as thresholdless generation and sub-poissonian
field statistics. Recent advances in fabricating of high-Q optical cavities as well as a
trapping and cooling [49, 22] of neutral atoms in an optical cavity have promoted an
experimental realization of a one-atom laser [20]. In this section we present a theoretical
integrable model of a one-atom laser and show how to use it for a monitoring of a cavity
field decoherence.

3.5.1 Model

We consider an atom(ion) in a three level A-configuration trapped inside an optical
cavity fig.(3.13) interacting off-resonantly with a single mode of a cavity field on a
transition |¢) <> |e) and with a classical coherent pumping field of an amplitude Q)
on a transition |¢) <> |g). We assume that the transition |e) <> |g) is quadrupole
and hence metastable states |g) and |e) cannot be coupled directly but through a level
lc) by two effective far off-resonant interactions, one stemming from a laser field Q)
and the cavity mode g and the other from two additional laser fields €2, and €. The
later two fields are auxiliary and mediate a resonant interaction of |e) <> |g) transition
to the cavity mode and pumping field €. The level |¢) is corrupted by spontaneous
emission and therefore in order to avoid its population and as a result decay due to
spontaneous emission, as well as to transfer adiabatically an atomic population between
lg) and |e) we apply the external lasers and the cavity field detuned with respect to
the corresponding transition frequencies. Moreover, the different frequency detunings,
A and A, of these A-processes prevent the system from undesired transitions.

We assume that both the cavity mode coupling strength g, and other coupling
strengths {2, Q],Q,} are real. Then, the Hamiltonian for the entire system can be
written as

H = hwele)e| + hw.|c){c| + hwfaTa + hig(a'|e)(c| + alc)(e])

+hQe @B (g] 4 hee.) 4+ hQY (e @emwem A0 6) (| + h.c.)



56 Models in Cavity QED

+RQY (e~ @AY ) (g] + h.c.). (3.92)

Here, w, and w, are the Bohr frequencies associated with the transitions |¢) <> |g) and
le) <+ |g), respectively, while w; is the frequency of the cavity mode and a (a') the
associated annihilation (creation) operator. To eliminate level |c) adiabatically, so as
to discard spontaneous emission from our model, we use a standard approach [50] and
require

22y (3.93)

Taking into account conditions (3.93) we rewrite the Hamiltonian (3.92) as

H o= ﬁ(A+A’)IC><C|—ﬁﬂ(@*leﬂm+h-0-)+2h%2(|0><0|—Ig><g|)

A
R ) g 4 he) + 20t cos((A' — A))(Je)el — o) ()
1 (6) (g4 ) + B2 (0 S 4 D)) el = el
2 (o) el — €} el) + 220 (e) el — ) g]) — B (afe =g + hc)
+hg£(aaf|c><c| +alale)(e]) (3.94)

The Hamiltonian (3.94), in contrast to (3.92), does not couple the level |c¢) to the levels
le) and |g). Moreover, it performs an effective dynamics involving only the transition
le) <+ |g). However, it still contains the AC Stark shift terms as well as terms with an
explicit time dependence. The presence of the latter can be neglected by implying the
following rotating-wave-approximation (RWA) inequalities

0, QN Qg g

A-A'> { AN AN A }7 (395)
turning Eq. (3.94) into the effective Hamiltonian
Hegr = —hgeg(a’ol + ao) — BQeg (0! + 0), (3.96)

where gz = Qg/A and Qg = QL /A’ of = |e)(g| and o = |g)(e| and the AC Stark
shifts are assumed to be corrected by retuning the laser frequencies [51].

Thus, we have shown that the initial model described by the Hamiltonian (3.92) can
be reduced by virtue of the conditions (3.93) and (3.95) to the effective Hamiltonian
(3.96) exhibiting an effective coupling of metastable states |¢g) and |e) with the cavity
mode according to the anti-Jaynes-Cummings model and with a classical external driv-
ing. Consequently, we have effectively discarded the spontaneous emission processes
from the model.
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We now consider a strong-driving regime, i.e. when Qgg > geg. Then we may apply
to the Hamiltonian (3.96) the same reasoning as in the section 3.2. In this way, and
going to interaction picture with respect to the (effective) external driving term, the
Hamiltonian of Eq. (3.96) can be written as

HE = —hg%ﬂ(aT +a)(o + o), (3.97)

what is analogous to the Hamiltonian (3.31).

So far we have considered the only one possible source of dissipations in our model,
namely, spontaneous emission of the upper level |¢) which action was neglected using
an adiabatic elimination procedure. However, to keep the discussion realistic enough
one should take into account dissipation processes connected to the cavity field. Even
though, that the modern optical cavities operate in a high quality factor regime, a
leakage of the photons out of the cavity has a noticeable impact on an atom-field
dynamics. Therefore, the most realistic description of the atom-field dynamics is given
by the following master equation

. i in
Pat—f = _7_1[ ef;a pat*f] + Lpat-—y, (3.98)

where the dissipative term is the standard Liouvillean for a damping harmonic oscillator
and reads

K
Lpg—f = —§(aTapat_f — 2apqi_fa’ + par_sa'a). (3.99)

We show in the next subsection how to integrate the master equation (3.98) and to
employ its solution for a determination of a decoherence rate of the cavity field.

3.5.2 Monitoring the cavity field decoherence using a one-
atom laser

We start by reminding that the unitary dynamics governed by the Hamiltonian (3.96)
leads to entanglement of an atom and a cavity field. According to equation (3.33) a
resulting atom-field state is a typical representative of the so-called “Schrodinger cat”
states. The size of generated coherent states is proportional to an atom-field interaction
time 7, so that if the interaction lasts long enough for coherent states |«) and | — ) to
become orthogonal, the atom-field state gets a face of EPR state involving two parties,
namely, the atom and the field.

However, in a more realistic consideration the dissipation effects should be taken
into account. Hence, the atom-field state is given by a density operator which is a
solution of the master equation (3.98). Since the dynamics of the atom-field system is
ruled by an interplay between the unitary process, leading alone to a coherent superpo-
sition state (3.33), and nonunitary leakage of the cavity photons, the density operator
of the entire system does not contain, most probably, quantum interference terms and
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as a consequence is a statistical mixture. The later happens due to a high sensitivity
of the interference terms to the dissipation processes, which, in turn, can be exploit for
a monitoring of environmental decoherence.

In order to give a quantitative analysis of the problem we concentrate on an inte-
gration of the master equation (3.98). We assume that the atom-field density operator
Pat—f can be expanded in a dressed atomic basis as

par—f = [N {H @ prp + [ © por + [F) (=] ® pag + [=)(+] © pss (3.100)

where |£) = (|g) +|e))/v/2 and pyf, pas, pas, pas are the weight operators corresponding
to the cavity field. The density operators of the field or atom alone can be obtained
from p,—s by tracing out corresponding degrees of freedom. For instance, the field
density operator pf = Tru(pat—f) = 17+ pay, so that the operators pf and pos specify
completely the cavity field. In contrast, psy and pss are responsible for atom-field
entanglement and as a result are sensitive to tracing.

Instead of dealing with the master equation for the atom-field density operator
Eq.(3.98) we use an equivalent approach and derive the equations of motion for the
weight operators p;f, i = 1,2, 3,4. They read

: hge

o= 5 (lal pugl + o pug) + Lony, (3.101)
: hige

Py = — ;([aT,pzf]+[a,p2f])+£p2f, (3.102)
: hge

psp = ({a, pss} + {a, pss}) + Lpsy, (3.103)
: hge

pap = 23({af,p4f}+{a,p4f})+£p4f. (3.104)

The crucial point here, as well as it was in the case of strongly-driven micromaser,
is to map the set of operational equations (3.101-3.104) onto an equivalent system of
uncoupled differential equation via introducing an operator-function one-to-one corre-
spondence x(3); = Tr(pirD(B)), i = 1,2,3,4. However, unlike in the case of section
(3.3), the functions x(/); cannot be interpreted as characteristic functions of the field.
The main reason why it is not possible is that the operators p;; do not possess the whole
properties of a density operator. As a consequence, x(f); fulfill only few conditions
for a characteristic function. Nevertheless, they are continuous and square-integrable
what is enough for our consideration.

Rewriting the equations (3.101-3.104) in terms of x-functions we arrive at four
linear differential equations:

a e — —
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X3 0 0 K

o = geff(aﬁ a5*)><3——IBI X3——(6%+5 aﬁ*m, (3.107)
Ox« _ . ,0 0 Kie K., 0
5 = deff(aﬁ 85*)X4 |5| X4 (586 + B 86*) (3.108)

Since the equations (3.105-3.108) are uncoupled, we proceed by solving them one by
one right from the first one. In order to do so, we alter in the equation (3.105) to
Cartesian coordinates, i.e. instead of § and * we introduce new coordinates x and y
which are connected to the old ones via simple transformations § = = + iy, 5* = x —iy.
Hence we obtain

0x1 K, 0 K, 0
a_ i = E(yF Z 1
where G'(z) = x — (2igesr/k) and F'(y) = y. The last equation possesses a simple

solution in the following form

ss init —(kt/2) —(kt/2)
Xl(l‘, n t) — Xl ( y)Xl ( yye ),
Xi (ze=(54/2) e (kt/2))

(3.110)

here xi*(z,y) is a steady-state solution(in the limit of ¢ — o0) of Eq.(3.109) and
X" (z,y) is an initial x-function.

We assume that initially the atom and the field were disentangled. Moreover, the
cavity field was in vacuum state. Therefore, we may write the initial weight operators

as

1
p1£(0) = p2;(0) = p37(0) = pas(0) = 5|0)0]. (3.111)
Hence, the initial function xi"(x,y) reads
ini 1 - IQ 2
X0z, y) = Tr(piy (0)D(B, B7)) = e FF/D) = Ze (7002, (3.112)

The steady-state solution of Eq.(3.109) can be expressed in terms of functions
G(z) = (2%/2) — (2iges/x)x and F(y) = y*/2 as
X (z,y) = e CG@)—Fy) — o~ (@+y?)/2 2igew/r (3.113)

Taking into account expressions (3.112) and (3.113) we rewrite the general solution
of Eq.(3.109) explicitly as

1 22+ y?  2igegT i
Xl(x,y,t)ziexp{— 2y + g/j (1—e t/Q)}. (3.114)

It is continuous and square-integrable and consequently possesses a Fourier transform
which can be interpreted as the effective Wigner function correspondent to the operator
p1s. Performing Fourier transformation on the function x4 (x,y,t) we obtain

W(z,y,t) = exp {—2:62 —2(y + ge?ﬁ(l - e‘“tﬂ))?} . (3.115)
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The function W (z,y,t) is Gaussian centered at (z = 0,y = —2E(1 — ¢~"/2)) and
assigns the coherent state |(t)), where a(t) = —i%E (1 — e=*!/2). Therefore, by virtue

of the p;s <+ x; correspondence we may claim that the solution of the equation (3.101)
takes form pi;(t) = 5|a(t))(a(?)]-

Having at our disposal the solution p;¢(t) of Eq.(3.101) we can deduce immediately
a solution of the equation (3.102). We notice that the equations (3.101) and (3.102)
differ from each other only by a sign of the effective coupling constant g.q. Hence, the
solution paf(t) of the equation (3.102) can be obtained from p;;(¢) by inverting the

sign of ges. Consequently, we obtain

poslt) = 51— ) —a@)l; a() = —2T1 e (3116)

Recalling that the density operator of the cavity field is completely determined, at any
moment of time, by a sum of the operators p;;(t) and pys(t) we conclude that the
cavity field is given by a mixture of two coherent field states with opposite phases. In
other words, it reads

p1() = pis(0) + pos(8) = Sl (a(1)] + 5] — o)) (~a(r)]. (3117)

It is instructive to study a time dependence of the cavity field density operator ps(?).
According to Eq.(3.117) for t = 0 ps(0) = |0)(0] what agrees with the initial conditions.
In the course of time, a mixture of coherent states, which move apart from each other
towards their steady state position in phase space, is built. The maximal size of
coherent states is reached in the steady-state regime when ¢ — oo and is given by a
ration between the effective coupling g.¢ and cavity decay rate k.

So far, we have solved the equations of motion for so to say “diagonal elements”
of the atom-field density matrix (3.100), namely, for p;¢(¢) and pos(t). They describe
perfectly a behaviour of the cavity field alone, however, since our main goal is to study
the decoherence in a microscopic-mesoscopic entangled systems we require a knowledge
about ps(t) and psr(t) - terms which contain the full information about atom-field
entanglement. Their dynamics is described by a pair of operator equations (3.103,3.104)
or alternatively by equations (3.107,3.108) for corresponding map functions x3(3, 5*,t)
and x4(B, %, t). In order to solve the equation (3.107) we write it first in a more
convenient form:

aXS K 2igeff 8X3 K * 2igeff 8X3 K 2
=+ =4+ | p - =—— : 11
5 T3 <5+ p ) 95 +35 |8 . ) o5 2IBI X3 (3.118)

The latter is equivalent to the following system of the linear differential equations of

the first order
dﬁ _ K 2igeff
dat 2 (5 T ) ’

LI 5 (5* - 2i9€ﬁ> , (3.119)

dt K
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dxs K59
W —§|5| X35
with the initial conditions
for 1=0: B(0) = fii B0) = fot xa(B(0). 8°(0).0) = L esp(~12) (3.120)

which are in agreement with conditions on the cavity field Eq.(3.111).
The system (3.119) together with the initial conditions (3.120) possesses general
solution of the form

2 - 2 2
Ys(B, 5, 8) = = exp (—ﬂ 1 (g gy (1 — o) — 2y 2y ))

2 2 K K K?
(3.121)
Before going into details of an analysis of this solution we notice that a solution of the
equation (3.108) can be obtained from Eq.(3.121) by inverting a sign of geg so that it
reads
2 2 2
8,870 = goww (120 - B g gy - o) - 2 Mngg o
(3.122)
The most striking feature of the solutions g3.121) and (3.122) is their explicit ex-

ponential time dependence, namely, factor e*QgTth which is not present in the solutions
for x; and x,. This factor leads to a vanishing of the x5 and x4 for sufficient long times
t. Therefore, the final atom-field state in the limit of ¢ — oo is fully characterized by
a mixed state of the following form

s s s 1 ss ss 1 ss ss
Pat—r = [ty + =) (=lp2y = 1) (H[a™) o + S| =) (=[] = o) (=a”], (3.123)

where a** = —i%T i.e. it is given by a ratio between coherent pumping and incoherent
decay of the cavity field and depending on a mode of operation can be greater or less
then one. Hence, as it was expected, the steady-state solution of the master equation
(3.98) is a mixed state given by Eq.(3.123) and does not contain terms responsible for
atom-field entanglement.

Nevertheless, the atom-field interference terms which are indeed described by y3
and x4 are present in an intermediate regime. In order to illustrate their behaviour we
consider a complex Fourier transform of y3 and x4 :

/e . 4g2 t 5
Wilu,v,t) = exp (—2(u + e o)) — 902 4 el % - ef)>(3.124)
K K
Z.geff _Et\\9 2 4925 Kt _ kKt
Wi(u,v,t) = exp|—2(u— (I—e2))" —20" + —~(1 - 5 e )](3.125)
K K

where £ = u +iv and the complex Fourier transform is defined as

W3,4(§7 6*7 t) = W3,4(U, v, t) = % /d25€§6*5*6><3,4(5, 5*7 t) (3126)
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In spite of the complexity of the functions Ws3(u, v,t) and Wy(u,v,t) their sum is real
and reads

2 K 4 K
Ws(u,v,t) + Wy(u,v,t) = 2exp (—2(u2 +v? — i‘:—f(l —e 7)) + ﬁ(l — e‘?t)>

24> K
X exp (—ﬂt> cos (4£(1 — e’Tt)u> : (3.127)
K K

This sum represents a cosine-like oscillations along the real axis in phase space with a
time-dependent frequency w(t) = 42(1 — e’%t) and exponentially decaying amplitude.

We point out here that according to equations (3.121) and (3.122) functions x3(t)
and y4(t) for short evolution times xt < 1 assign the following field states

Z.gefft

pas(t) = @) (=al s puy(t) = | — @)@l sa = ———. (3.128)

On the other hand, according to (3.116) the operators p;s(t) and pof(t) on the same
time scale take form
~ ~ Z.gefft

pis(t) = l@)al s per(t) = [ - a)(-al sa = ——~. (3.129)

As a consequence, on the short time scale the atom-field density matrix represents a
pure “Schrodinger cat” like state:
P (t) = [W)(V] ; [¥) = %(I+>|O~é> + =)= a)). (3.130)
2
However, at a later time, decay of the cavity field transforms this pure state to a
mixture. This happens because ps;(t) and pss(t) do not evolve under decoherence as
la(t))(—a(t)] and | — a(t))(a(t)| but in a slightly different manner what leads at the
end to their vanishing on the large time scale. This decoherence induced pure-mixed-
state transition has been both theoretically and experimentally studied in the case of
high-Q microwave cavities [29]. There are several objective advantages for utilizing a
microwave CQED setup for these proposes. First of all, a lifetime of a photon in a
microwave resonator is significantly higher then in an optical one. Hence, since most
of the schemes for generation of the atom-field “Schrodinger cat” states are multi-step,
they can only be implemented in the microwave regime. Nevertheless, there is a serious
drawback, it is not possible to measure a microwave cavity field directly. Hence, one
uses atoms passing through a cavity in order to determine a state of a cavity field.
Here we present a scheme which combines simultaneously generation of superposi-
tion states(see Eq.(3.130)) and monitoring of their decoherence resulting is the state
Eq.(3.123). It operates in optical domain and has an important advantage of a single
step generation of a required state. Moreover, the information about a cavity field
now can be obtained from two channels: 1. from a photodetector measuring an output
cavity field 2. from a fluorescence signal of an atom placed inside a cavity playing a



3.5 One-atom laser 63

role of a generating medium. The only obstacle which we still need to remove on a way
towards direct observation of the cavity field decoherence is expressed by Eq.(3.117).
In other words, the “off-diagonal” terms of the atom-field density matrix, namely ps(t)
and p4f(t) do not directly contribute to a density matrix of the cavity field ps(t). As a
consequence, no direct measurement performed on the field can reveal their behaviour.
To overcome this difficulty we present the following approach.

Let us consider a situation when an atom and initial vacuum field are subjected to
the dynamics governed by the master equation (3.98). After a time 7 the atom-field
density operator reads

Pat—(T) = [ (@1 (T)+| =~ |@p2s (T)+ |+ )~ |@p37 (T) +| =) {(+|@pas (1), (3.131)

where p;¢(7),i = 1,4 are the solutions of the system (3.101-3.104). Imagine that at
time 7 we perform a fast rotation of atomic state by an angle # so that

+) — UY0)|+) =sinf|+) + cos 0] —)
=) — U'(0)]—) = cosf|+) — sinf|—-).

Then the rotated atom-field density operator pf,_(7) = UT(6)par—(7)U(6) rewritten
in the original atomic basis reads

Pa—r(T) = )+ ® (pi7(7) 8in* 0 + pos (1) cos® § + (pas () + pag (7)) cos f'sin 0)
+ [} @ (pr7(7) cos® 0 + payg () sin® O — (p3y(7) + pays (7)) cos O sin )

) (=1 ® ((pr(T) = pas (7)) cos O sin ) — py; () sin® @ + pag(7) cos™ )

+ =)+ @ ((prs(T) — pas(7)) cosOsin O + pss(1) cos® @ — pys(7) sin?6).

(3.132)

We deduce from Eq.(3.132) that the “diagonal”terms of the rotated density oper-
ator p?, ;(7) in the original [+) basis now contain an information about atom-field
coherences p3s and pss. Therefore, we may develop two strategies how to extract this
information experimentally.

The first strategy consists of a measurement of an atomic population in either |+)
or |—) state immediately after the performed rotation. Practically, this is equivalent
to a measurement of a fluorescence signal from the atom. The probability for, say,
detection of the |[+) atomic state reads

Py (1) = Tr(|+)(+|pat—s (7))
= Tr(pis(7))sin? 0 + Tr(pas (7)) cos® @ + Tr(ps () + pag(7)) cos § sin &

QgZ

1 442 _KT
= S(L+sin(g)e 7 S—em )y (3.133)
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where we have employed the following property of the y-functions: Tr(p;r(7)) =
xi(0,0,7),i = 1,4. Thus, measuring P 1y4 for different evolution times 7 and dif-
ferent rotation angles # we obtain directly the decoherence rate of the pure atom-field
state in an optical cavity.

The second strategy is to perform a joint measurement on an atom and field after
the rotation of atomic states. Experimentally this means that we measure, say, a
fluorescence signal from the atom and at the same time count the photons leaking
out of the cavity. Such an approach, however, does not bring much new information
about the intracavity processes, nevertheless, it may help to check a consistency of the
measurement itself. The outcome of the joint measurement reads

Py (r) = Te(|+)(+|a'apu—s(7))
= Tr(a'apis)sin® @ + Tr(a'apys) cos® @ + Tr(a'a(pss + pay)) cosfsin @

92ff KT \9
& _ kT
+?(1_6 2)

DN |

KT
KT -9

1 1 2 2 g 42
o sin(20) (= — L (] o= F )2y Rt (e

), 3.134
5 2 ( )

The crucial step in the last equation is to use a familiar connection between the x-
functions and moments of the field then we may write

8 7 ) *’
Tr(a'apis(r)) = %/ﬁ sr=0
—B*=0

i=T1,4. (3.135)



Chapter 4

Quantum state engineering in
Cavity QED

Quantum state engineering is basically deterministic control over the coherent dynam-
ics of suitable quantum mechanical systems, has become a fascinating perspective of
modern physics. Its basic concepts, developed in atomic and molecular physics, has
been adopted and further evolved in the light of the perspectives of their applications
in the field of quantum computation and communication. For this purpose a number
of individual two-state quantum systems (qubits) should be addressed and coupled in a
controlled way. Several physical realizations of qubits such as trapped ions, NMR, and
quantum optical systems have been considered. In this chapter we discuss the ques-
tions of implementation of cavity QED models, introduced in the preceding chapter,
for instance, micromaser and one-atom laser in the controlled production of nonclassi-
cal states of radiation field as well as atomic qubits. Generation of nonclassical light
typically involves active devices and nonlinear optical media, which couple two or more
modes of the field through the nonlinear susceptibility of the matter. Since the non-
linear susceptibilities are small, the effective implementation of nonlinear interactions
is experimentally challenging, and the resulting processes are generally characterized
by a low efficiency. Here, we show how to exploit the micromaser in order to produce
high purity Fock states with high efficiency. Moreover, we introduce a scheme for gen-
eration of the maximally-entangled states of two atomic qubits in an optical resonator
using a no-photon measurement of the cavity field. Finally, we show how the dispersive
interaction between an ensemble of atoms, prepared in a ground state, and a cavity
field gives a realization of a robust quantum memory.

4.1 Generation of Fock states using the micromaser

We have already mentioned in the preceding chapter that the micromaser offers an
unique opportunity for a generation of the cavity field states including pure Fock states
and their mixtures with the properties on demand. Since the Fock states are pure quan-
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tum feature of a radiation, they are of very importance for a testing the fundamentals
of quantum theory, as well as for applications in quantum cryptography and quan-
tum computation [52]. In this section we introduce two elegant schemes suitable for a
generation of the pure Fock states, and present the results of their experimental real-
ization. We analyze the latter in the next chapter by applying a novel quantum state
tomography technique developed there.

Let us take a closer look at the micromaser field steady-state solution Eq.(3.47).
Consider a situation, when the number of thermal photons n;, — 0 i.e. when the
environment is cooled down to zero temperature. As a consequence, the micromaser
steady-state solution (3.47) takes a simpler form

pis, = ois TV T [sw or v/ (41)

n!
k=1

Hence, if for some n = N, sin?(g7v/N) = 0 then according to Eq.(4.1) pg5, = 0 for any
n > N. In this case, we say that the steady-state photon number is “trapped ” below
n = N. Corresponding cavity field state is a statistical mixture of the Fock states up
to n = N with different weights.

One of the remarkable trapped states is the trapped vacuum state(N = 1) which
takes place if g7 is an integer multiple of 7. Physically, the trapped vacuum state means
that the atoms perform one or more full Rabi cycles while their passage through the
cavity and leave it in the upper state again without contributing to the cavity field, so
that the field remains in the initially prepared vacuum state. In order to illustrate that
we have plotted on Fig.(4.1) the mean photon number of the steady-state micromaser
field as a function of the Rabi angle gr. Here dips at g7 = 7 and g7 = 27 indicate
trapped vacuum states. Experimentally, states with trapped number up to three have
been observed by group in Garching [53].

Despite a theoretical beauty of the idea to generate the Fock states using the trap-
ping conditions one meets a conceptual problem of contaminations of the Fock states
built with the trapped numbers N higher than 1. Therefore, a method which allows
to design a pure Fock state on demand is desirable. We recall that in the usual micro-
maser operation atoms enter a cavity in the upper state of the maser transition and
undergo the Jaynes-Cummings interaction with the maser field. The interaction of an
atom with a field in the state |n) leads to an entangled atom-field state which is a
superposition of states |e)|n) and |g)|n + 1) with coefficients depending on the inter-
action time 7 and the value of n. Consequently, by measuring an atom in the lower
state |g) after the interaction we reduce the field state to [n+1) i.e. we produce a Fock
state whose purity can reach unity depending on the parameters. If we do not measure
an atom, then, taking into account dissipation processes, the field state represents a
statistical mixture of the Fock states |n) and |n + 1). Theoretically, starting from an
initial vacuum micromaser field, one can build a pure Fock state |n) using n atoms.
However a question arises: How to justify that we have prepared a pure Fock state?
Since the micromaser field can not be measured directly by means of photodetectors,
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Figure 4.1: Mean photon number of the micromaser steady-state field at zero temper-
ature for (r/v) = 10.

the only way to determine it is to measure a levels statistics of a probe atom. Detailed
treatment of this problem is given in the next chapter. Here we only mention that the
inversion of a probe atom as a function of the interaction time allows one to determine,
unambiguously, a state of the cavity field [54, 55, 56]. The above described Fock states
generation technique has been successfully realized in experiments [12, 13]. The exper-
imental results from the work of B.Varcoe et al.[13] are depicted on the figure (4.2).
According to them, highly pure vacuum and one photon states have been produced.

4.2 (Generation of maximally-entangled atomic
states in optical cavities

Entanglement, first considered by Schrodinger [57], is recognized nowadays as a corner-
stone in the fundamentals of quantum physics and as a source of diverse applications in
quantum information and computation [52]. In particular, entangled states of discrete
systems, such as two or more qubits, play an important role in testing fundamental
properties of quantum theory. They allow one, for instance, to prove the nonlocal char-
acter of quantum mechanics versus local hidden-variable theories. Maximally-entangled
states of two-qubit systems, which are a prerequisite for a two qubit logic operations,
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Figure 4.2: Rabi oscillation of the atomic inversion of a probe atom for the Fock states
of a cavity field with n = 0(A), n = 1(B), n = 2(C) and corresponding photon
distributions of the cavity field (a), (b), (c).

have already been produced experimentally in photonic systems [58] and in the inter-
nal degrees of freedom of atoms interacting with a microwave cavity [17, 59]. Never-
theless, neither photonic polarization qubits nor flying atomic qubits in a microwave
domain are optimal candidates for a scalable quantum information processing. In the
case of trapped ions [60, 61], maximally entangled states have been created through
the manipulation of their collective motion, but cavity QED devices are needed for
transferring the stored information. Therefore, an optimal realization of a scalable
quantum network [62] combines optical cavities with atoms inside playing a role of
quantum information processors and photons connecting different nodes of the net-
work [63, 64, 65, 66, 67]. The important step towards practical implementation of such
a networking is an ability to generate a maximally-entangled state of two qubits in
a node. Despite the diverse and recent theoretical proposals [68, 69, 70] generation
of maximally-entangled states of two atoms inside an optical cavity has not yet been
accomplished in the lab.

Here, we introduce a scheme [71] that addresses most of the problems of a realistic
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model for entangling two atoms inside an optical cavity: dissipative processes, atomic
localization, detection efficiency and purity of the generated entangled state. The pro-
posed protocol allows not only to generate but also to purify the maximally-entangled
states of two atoms. The protocol is of a quantum-non-demolition kind, where suc-
cessive no-photon detection of the cavity field projects and purifies sequentially the
desired atomic state. In contrast to recent proposals, our scheme produces atomic Bell
states as a steady state of the two-atom-field interaction in correlation with the vacuum
field state, which makes our method robust to cavity field decoherence. It combines
a reasonably high success probability (~ 1/2) with very high fidelity (~ 1) for a wide
range of parameters. The proposed scheme does not rely on a high detection efficiency
as long as it is based on discrimination, through projection, between a vacuum field
state (zero detector clicks) and orthogonal coherent states (necessarily more than one
detector click).

The presented scheme essentially relies on the model of a one-atom laser consid-
ered in the section 3.5. It has been shown there that a properly selected external
lasers configuration allows to achieve an effective atom-cavity interaction given by the
Hamiltonian (3.97) and to monitor a transition from the atom-field entangled state
(3.130) to the mixed state (3.123). As a consequence of that consideration, a natural
question arises: How much changes the atom-field dynamics if we place simultaneously
N identical atoms(N > 1) inside the cavity? We assume at first that all atoms have
the same coupling strengths!, the same internal structure and fields applied, depicted
on fig.(3.13). Hence, we may write the atom-field Hamiltonian as

N

N
Ho= hwed les)les] +hwe ) lej) (el + hwsata

+hg( TZ|e] c]|+a2|c] ej]) + hQ(etwe Z|c] (gj| + h.c.) (4.2)
7=1 7=1

N N
R (e e AN ey (o] + hue) + B (e 7T N " eV gy + he).

Here, as it was in the section 3.5, w. and w, are the Bohr frequencies associated with the
transitions |c;) <+ |g;) and |e;) <+ |g;), 7 = 1, N, respectively, while w; is the frequency
of the cavity mode and a (a') the associated annihilation (creation) operator. As we
have mentioned above, we suppose all atoms to couple to the cavity mode with similar
strength g, taken as real as all other coupling strengths {Q, Q,Q,} for the sake of
simplicity.

We assume here, just as like in the section 3.5 that the atomic level |¢;),j = 1N
is corrupted by spontaneous emission, whereas the levels |e;) and |g;) are metastable,

'We will consider later a more realistic situation when the couplings are different.
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so that to discard spontaneous emission from our model, as well as to avoid unde-
sired atomic transitions we require again the conditions Eqs.(3.93,3.95) to be fulfilled.
Furthermore, we consider the strong-(external)driving regime, where Qeg > geg. In
this way, by analogy to a one-atom case we may finally write the effective interaction
Hamiltonian between N atoms and the cavity in the interaction picture as
g N
i il
i = —he 4 a) Y (o) +0), (4.3)

J=1

where g = Qg/A, JJT- = |e;){(g;| and o; = |g;) (e,

A similar Hamiltonian was obtained in [27] for the case of N two-level Rydberg
atoms interacting with a microwave cavity and a strong external field, yielding a wide
family of multipartite entangled N-atom-cavity states. Here, we have shown that a
similar effective Hamiltonian can be realized in the optical domain but, in contrast to
the microwave regime, no atom-field entanglement is expected to survive long enough
for practical purposes due to the comparatively lower achievable ratios geg/k (k being
the cavity decay rate). Nevertheless, it is possible to design strategies for using this
faster dissipation process to produce entanglement in the atomic degrees of freedom.

Since from the beginning we have claimed an interest to the generation of the
maximally-entangled states of two atoms we proceed our consideration for the case
when N = 2. Let us assume that at the time £ = 0 both atoms where prepared in the
ground state |gg) and the cavity field in the vacuum |0), so that the initial atom-field
state is |gg)|0) = |g1) ® |g2) ® |0). The resulting atom-field state at ¢ = 7 is then a
subject of the unitary evolution given by the Hamiltonian (4.3) and reads

¥(7) = 51+ Hl2a(r) + 5= =20+ SSEN0). (44)

where
44 = )] = sl +len) x (1) + ea),

B 1 1
=) = [=0l=2 = Z5en = len) > Z5(1g2) = fez)),

such that the maximally-entangled atomic state |¥*) reads
1
V2

and the amplitude of the coherent states generated is

W) = —=(I=0) [+2) + [+1)|—2)), (4.5)

alr) = @'ge;”. (4.6)
We observe that the atomic states | —; +2) and |+, —2) of Eq. (4.5) are eigenstates of the

collective operator o, = 0,14+0,9 = 25:1(0j+0j) with eigenvalues equal to zero. This
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fact explains, following Eqs. (4.3) and (4.4), the persistent correlation of the vacuum
field state with the atomic state |¥*) through the whole unitary evolution. These
states are called dark states [21]. Note that the size of the coherent state, estimated
by the amplitude « in Eq. (4.6), is proportional to the time 7 of the unitary process
described by the effective Hamiltonian of Eq. (4.3). If |a] is large enough (|la] > 2),
such that we can consider the states | — a), |0) and |«) as mutually orthogonal, then a
measurement of the vacuum field in the atom-field state of Eq. (4.4) projects the atomic
state onto |¥*) with probability 1/2. In consequence, measuring a zero-photon state
leaking the cavity mode, would be enough for producing an atomic |¥U*) state with
high fidelity. However, one would require (unavailable) detectors with high efficiency
and the (already available) strong-coupling regime of optical cavities [23, 22].

The next step is to extend our method to less demanding regimes and more re-
alistic conditions, involving field damping, weak-coupling regime and finite efficiency
detection, without increasing the complexity of the experimental requirements. The
first complication on the way of the realistic treatment of the problem is to incorporate
a cavity field decay into our model. This may be done by writing down the following
master equation describing the atom-field dynamics

. ! in
Pat—f = _7_1[ efftapatff]_kﬁpat*f’ (4.7)

where the (field) dissipative term is described by

K
‘Cpat—f = _§(aTapat—f - 2apat—fa]L + pat—faT )

The master equation (4.7) has a similar to a one-atom laser case structure and therefore

can be solved analytically using the same techniques introduced in the section 3.5. Here,

we will only sketch a solution method. First of all one should expand the atom-field

density operator p,_¢ in the |£) basis of both atoms. Then substituting pg—s in

Eq.(4.7) one obtains a system of 16 operator equations to solve. This system can be

solved using a map on y-functions as it was done in the case of a one-atom laser.
Finally, the steady-state solution of the master equation reads

EE] 1 ~ Y 1 v 2
Pa—r = I+ N+ +@R&OEA+ | =)= —[®] - 2a)(-24]

TN @ 0y, (4.9

with & = ¢®T. In contrast to the pure state of Eq. (4.4), the steady state of the
atom-cavity system is a mixed state with no quantum correlation between the atoms
and the field. The remarkable feature of the state in Eq. (4.8) is that the atomic state
|U) is still correlated with the vacuum of the cavity field. Henceforth, if one performs
a first no-photon measurement of the cavity field in the steady state, the projected
(normalized) atomic density operator is

e~ 126 1

I+ ++ === D+ (TN (49)

SS —
Pat = 1"—6

1+ e 28
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When |&| > 1, in the strong-coupling regime [23, 22|, the condition |2&]*> > 1 is
automatically fulfilled and Eq. (4.9) reduces to the maximally entangled atomic state

o = U, (4.10)

with unity fidelity and success probability 1/2.

If |&| < 1, in the weak-coupling regime, the desired atomic state of Eq.(4.10) will
be contaminated by other contributions as shown in Eq. (4.9). In this case, we are
still able to develop a protocol which purifies the atomic state |¥*) via a successive
application of the same scheme. We repeat our procedure second time, shining a similar
laser system on our new initial atom-cavity state

Pat-f = Pai @ [0)(0] (4.11)

until it reaches a new steady state, followed by a measure of a no-photon event with
a certain finite probability. By repeating this sequence of steps N times, we arrive at
the projected atomic density operator

B <12
e N|2a|
1 + 2eNPa?

1
- +
+1 + 26—N\2&\2 |\I]

Par(N) = (I+H++[+1=={==1)

(T (4.12)

For a given |&/, even in the weak-coupling regime, we can always choose a number of
repetitions N such that e~N124° =0, warranting a highly pure atomic state |U*t). In
this case, the fidelity of the state |U*) is given by

SS 1
FN) = (V)W) = — e (113)
with success probability
N
1 1 1
Pue = 5777 1"_[2 T (4.14)

Note that even for || ~ 1, and N =1 or 2, the fidelity F(N) ~ 1.

The no-photon detection, in competition with the less likely detection of the coher-
ent states |+ &), assures a minor sensitivity to the low efficiency of the detectors. This
is a natural consequence of the fact that if one photon is emitted (but not detected),
there is a finite probability of a second photon being emitted, as long as it is one of
the two possible coherent states that were selected in the measurement process [72].

So far we have assumed that the atom-field coupling strengths are the same for
both atoms. However, in a real experiment a control over a position of the atoms in
the cavity is not complete. Therefore, we can not guaranty the equivalence of both
couplings. Hence, it is important to estimate the influence of atomic localization on the
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0.75

Figure 4.3: Violation of the Bell inequality.

generation of entanglement, as long as our method relies strongly on the production of
dark states [21]. The fidelity of the purified dark state in Eq. (4.10) follows F = 1/1+¢2.
Here, ¢ = 0¢g/k, where dg is the differential variation of the atom-field coupling due to
the differential variation in the localization of the two atoms. The parameter ¢ changes
very slowly with possible errors in the atomic locations, due to their intrinsic cosine
dependence. For realistic parameters, see [73], a maximal localization error of 10% of
an optical wavelength yields € ~ 0.1. This implies a fidelity F' > 0.99, showing the
robustness of the proposed scheme.

It was both theoretically [74] and experimentally [75] shown that a family of mixed
states, similar to that of Eq. (4.12),

p = %(|++><++|+|——><——|)+A|\If+><\1'+l, (4.15)

violates the Bell inequality if and only if A > % In our case A is a function of

two parameters, |&| and N. In fig.(4.3), we plot the surface A(|@|, N) cut by a plane
corresponding to the boundary value % There, we can clearly see that it is possible to

cross the threshold parameter A = 1/ V2 by increasing the number N of repetitions and
the amplitude & in the proposed scheme. This transition shows a local parameterized
evolution from a mixture (with classical correlations) to a maximally-entangled atomic
state (with quantum correlations), as was discussed in [74, 75].

Finally, we illustrate our protocol with a variant for direct generation of another
maximally-entangled state of the Bell kind. We assume that in the previous scheme,
see fig.(3.13), the coupling strength is = 0 and the detuning frequencies are A; =
As = A. Suppose now that the atoms couple differently to the cavity mode in such a
way that the coupling strengths have the same absolute values but the opposite phases
(91 = lgl, 92 = —|g|). In this case, the adiabatic elimination conditions of Eq. (3.93)
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reduce to L
0 Q) |9|

A A A
Therefore, the effective Hamiltonian in the interaction picture, after imposing the
strong-(external)driving regime Qeg < |glg|, With ¢glg = Q1g/A, reads

<L (4.16)

’ 2
r7in Je j
it — M§W+@§(4y@+qy (4.17)

Jj=1

The Hamiltonian of Eq. (4.17) is slightly different from the Hamiltonian of Eq. (4.3)
and, when substituted in Eq. (4.7), yields the atom-field steady state

1 1
Py = 1= P =18 2B)BI+ 41+ —X— + | ®] - 26)(~25]

+5le@ 210)(0, (1.15)

where |#) and | — ) are coherent states with amplitude |3| = g:ef and

5%) = (k) + =)=
is another maximally-entangled Bell state. Purification of the state |®*), out of the
steady state in Eq. (4.18), can be done by following steps similar to the ones before.
From a practical point of view, the coupling of the atoms to the cavity mode, with
a similar or an opposite phase, is a task that could be achieved by using of an ion trap
(fixed atoms) or by implementing an optical collimator (falling atoms).

4.3 Multipartite entanglement using atomic coher-
ences

In the preceding section we have studied a problem of generation of entanglement of
two qubits represented by two two-level atoms. As we have seen this problem is of
great importance for the quantum information processing applications. However, it is
also of great experimental complexity to achieve a coupling of two atoms(ions) to a
cavity. Nevertheless, experiments involving macroscopic atomic ensembles coupled to
optical cavities have became a routine [76, 77, 78]. The atomic ensembles, on one hand,
due to a lack of precise experimental control over them, can not be used as quantum
processing devices but, on the other hand, they are ideal for an implementation of the
quantum memory devices [79, 80] and quantum repeaters [81] recognized as a necessary
ingredient for quantum information communication [82].

The question of storage and retrieval of light pulses has been extensively studied
both theoretically and experimentally [83, 79, 80, 84, 78, 85, 86, 87, 88, 77]. The light
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pulses can be stored in atomic coherences and later the atomic coherence can be con-
verted back into the original light pulses [83, 88]. The original work has been extended
to storage of pulses of moderate powers [89, 90]. Hence, a natural question arises: can
one store and retrieve the quantum state of the field? This is the question to be ad-
dressed in this section. It is shown how coherently prepared atomic systems interacting
with far-detuned elliptical fields can serve the purpose. It is also demonstrated how the
atomic coherences can be used for generating a variety of nonclassical states, including
multiatom entangled states.

4.3.1 Model

The model consists of N identical two-level atoms, with hyperfine structure splitting as
depicted in fig.(4.4), coupled to two mutually orthogonal modes of a quantized electro-
magnetic field described by creation (annihilation)operators a' ,al (a_,a;) with the
ground and excited-state coupling strengths €2, and €2, respectively. The Hamiltonian
for the atom-field system reads

N
w W
= RS e~ oo+ B2 e e — 9o,
]:1 7=1
N
+hwy(akay +ala) Z )9+ + hec.)
N
+ W(Qap Y leg){g-; + hec), (4.19)

j=1
where w; and wy are the frequencies of the transitions |g,) <> |e_) and |g_) <> |ey),
respectively, and wy is the field frequency.

We consider a case when the cavity modes frequency wy is far detuned from a
resonance with atomic transition frequencies w; and wy. In other words we require
that the conditions w; — wy = wy —wy = A > {|Q4],[Q_|} are fulfilled. Using a
standard adiabatic elimination technique [50] we expand the Hamiltonian Eq.(4.19) up
to the second order in [, |/A and |Q_|/A obtaining the following effective Hamiltonian

M = MR el sy
LN

MQ; e} el — lo-)o-I);

b 200 P Yl e i+ 190D e e ), (1.20)
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The effective Hamiltonian Eq.(4.20), in contrast to the original Eq.(4.19), does not
couple ground atomic states {|g_);, |g+);},7 = 1, N to the excited ones. Therefore, if
one starts from the initial atomic ground state, the only relevant contribution to the
atom-field dynamics from the Hamiltonian Eq.(4.20) is

H = _hMaEaZ(@Q(gH)j—

A 2. A+|2a1a+ ; (lg-Yg ;- (4.21)

Let us analyze the Hamiltonian Eq.(4.21) in more details. We can rewrite it in
more transparent way by introducing the collective atomic operator

= 32 g osl~ g )a D) (4.22)

N N
As a consequence, one can express the operators Y (|g4+)(g+]); and > (|g-)(g-]); in
7=1 7=1

terms of RZ as follows:

Z |92){g1);- (4.23)

l\.’)l»—t

For the sake of simplicity hereafter we suppose that the two field modes have identical
coupling strengths, i.e. || = |Q_| = Q. Finally, the effective Hamiltonian Eq.(4.21)
will read

hQ? .

H = TRz(aLaJr—aT,a_). (4.24)

Apart from the R, operator, we construct the lowering R_ and raising I%+ operators,

N

Ro =) (l9-)g+);, (4.25)

j=1
N
Ry = Z |9:)(9-1);- (4.26)

The operators I%i and I%Z fulfill the following commutation relations:

[R_,R,] = —2R,,[R.,Ry] = +R., (4.27)
and therefore describe an effective spin J = % system, where /V is the number of atoms
in the sample. As next step we define the eigenvectors of the z component of the total
spin operator R, as follows:

R.|m) = hm|m), J =

N
om= =S+ L T =L (4.28)
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Figure 4.4: Internal atomic structure

Action of the lowering (raising) operators R_ (Ry) on the eigenvectors of R, can be
calculated in a straightforward manner:

R_Im) = h/(TJ+m)(J—m+1)m—1), (4.29)
Rylm) = h/(J—m)(J+m+1)|m+1). (4.30)
The set of eigenvectors |m), m = —.J, J of the operator R, is trivial connected to the
previously introduced set {|g_);, |g+);},7 = 1, N, which denotes the hyperfine structure
of the ground states of atoms. For example | — J) = []_, |g_)&, and consequently we

will call the state | — .J) the ground state.
Returning back to the Hamiltonian (4.24) we introduce, following Schwinger, a set
of field operators

N_=day,Ny=dla_,N,=alay, —a'a_ (4.31)
and compare the algebraic properties of the two sets of operators, NZ,N N+ and
RZ, R_ R+ Operators NZ, N_ and N+ satisfy the same commutation relations as in
Eq.(4.27), i o o X

[N_,N,] = —2N,,[N,, Ny] = +£N.. (4.32)

Therefore, coming back to the Hamiltonian Eq.(4.24), one can say that there is
effectively a spin-spin interaction along the z-axis, where one of the spins is the collective
spin of the atomic sample and the other one is some effective spin which corresponds
to two orthogonally polarized modes of the cavity field. As a result, the Hamiltonian
Eq.(4.24) is very suitable for spin quantum nondemolition measurement (QND) as well
as being a good candidate for the generation of spin-squeezed atomic samples [91, 81,
76, 92].

4.3.2 Mesoscopic superposition of atomic states

Having at our disposal the effective atom-field interaction Hamiltonian (4.24) we
demonstrate how to create mesoscopic superposition of atomic states [57] employing
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atomic coherent states. Let us define an atomic coherent state |0, ¢) as [93]

8,8) = Roy| — J) :ZI: ( Ji‘]mf [cos (g)] o [sin (g) e—i¢] o (4,39

m=—J

Here Ry 4 is the rotation operator which rotates the initial ground state | — .J) by an
angle § around an axis m = (sin(¢), — cos(¢),0). From the practical point of view the
coherent atomic state in Eq.(4.33) can be prepared in a number of ways; for example,
by applying a homogeneous magnetic field along the m axis to the ground state of the
atomic sample |—.J). The other interesting and popular possibility is to use short pulses
and Raman transitions, a technique that has been extensively used by, for example,
Wineland and co-workers [94].

We consider interaction of the coherently prepared atomic sample with an ellipti-
cally polarized photon which we represent by the state |¢b;) = all,,0_) + 5|04, 1_),
(Ja|? + |B]? = 1). Note that o = 0 or 8 = 0 corresponds to a circularly polarized field.
A calculation by means of the interaction Hamiltonian Eq.(4.24) leads to the following
atom-field state

|\Ijat7f> = eXp(_Z¢0thRz)|97 ¢>|¢f>
= alf, ¢+ got)|1,0 )e + 3|0, ¢ — dot) |04, 1 Ye "N (4.34)

Here ¢p = Q*/A and ¢ is the interaction time. The atom-field state Eq.(4.34) describes
a situation when atoms and the cavity field get entangled. Detection of the field
polarization in the direction of, say, x leads to an atomic state

|\Il>cat - aei¢0tJ|97 ¢ + ¢0t> + Beiigbon]w; ¢ - ¢Ut> (435)

This corresponds to a mesoscopic superposition of coherent states for the atomic sys-
tem. This is the case as long as the two coherent states in the above equation are not
orthogonal, i.e.

(0,0 + dot|0, d — pot) = exp(2iJgot)[cos(pot) — icos(0) Sin(¢0t)]2j- (4.36)

is not zero. From Eq.(4.36) follows that for a particular choice of parameters (for
example, ¢ot = 7 and 0 = 7, V¢) the overlap between coherent atomic states is zero
and hence, the atom-field state in Eq.(4.34) becomes a mixed state. From the practical
point of view the hyperfine splitting states are extremely robust to decoherence. We
have thus shown how the dispersive interactions on ground-state atoms can produce
long-lived mesoscopic superpositions. It is worth mentioning that dispersive interaction
has been already considered in the context of two-level atoms to produce both atomic
and field cat states [95, 29, 96, 97, 98]. Moreover it has been experimentally realized
by Haroche and co-workers [29] for a case of one two-level Rydberg atom interacting

with a microwave cavity field. Here we use ground-state coherence to demonstrate the
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same result. Consider, for example, a single atom J = 1/2 interacting with a field in
coherent state |a, 3). Obviously, the state of the combined system at time ¢ will be

[0(t) = exp(—igotN.R.)|a, 5)|6, )
7 , . . 0 . :
= cosg g ) |cvei®0t/2 Bei0t/2y 4 o= gin 3 |94 ) [ove 9012 | geidot/2y (4.37)

Clearly, measurement of the atomic population in a state different from |g.) produces
a “Schrodinger cat” state of the radiation field.

There is another one important consequence from Eq.(4.34). It is clear from
Eq.(4.34) that the probability of detecting the field state unchanged after the coupling
to atoms strongly depends on the atom-field interaction time. If we choose ¢ot = 7
and make the number of atoms in the sample N even, the cavity field after interac-
tion is in the same state as the initial cavity field. This is reminiscent of the trapping
states in a micromaser [53] where for certain field states the atoms leave the cavity in
the original states. To verify the above statement we consider the evolution operator
exp(—iﬂNZRZ) for ¢t = m. Since N, has the eigenvalues +1 and for even N, R, has an
integer eigenvalue and the above evolution operator is the same for the two eigenvalues
of N,. Thus the field would revert to the original state. For odd N, the eigenvalues

of (% + I%Z> are integers and then the two evolution operators exp(FimR,) will differ
by an overall phase factor 7 (e2™"/2). In this case the state of the output field will be

CY|]'-l-7 0—> o B|0+7 ]-—>
4.3.3 Generation of the multiatom entangled states

We return now back to the question announced at the beginning of this section, namely,
how to create a multiatom entangled state using the interaction (4.24) and atomic
coherences (4.33).

Let us have a closer look at the atomic coherent state of Eq.(4.33). We notice that
it can be written as a product of single atom coherent states over all atoms, i.e.

N
0,0) = 1]]16.0);
j=1

0.6); = sin(0/2)e™?|g.); + cos(6/2)]g-);, (4.38)

and hence the mesoscopic superposition Eq.(4.35) can be expressed as
N N
e = ae® TT10.6+ ot); + Be " ] 10,6 — dot);. (4.39)
7j=1 7j=1

The latter is a multi-atom entangled state involving N parties. We further note that
individual coherent states |0, ¢ + ¢ot),; and |0, » — ¢ot); become orthogonal, i.e. (6, ¢ —
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dot|0, o+ pot) = 0 if ¢t = w/2, 6 = w/2. In this case Eq.(4.39) becomes an example of
GHZ states [99]. Therefore, depending on the choice of the atom-field interaction time
one can switch from an entangled atomic state Eq.(4.39) to the maximally-entangled
atomic GHZ state.

It is only left to demonstrate how our system can be used to store the quantum
state of the field via atomic coherence. This is the quantum counterpart of holography
in which the object information is stored in a hologram using a reference field. The
hologram when irradiated by a coherent field, recovers the information on the object.
Clearly Eq.(4.34) already shows how the information about the field state is stored in
atomic ground-state coherence. Note that this is long-lived storage since we use the
ground states of the atomic systems. It is now shown how this quantum hologram
can be read to retrieve the information on the field. One possibility is to measure
the atomic population in the state |g_). This is easily done by applying a laser pulse
polarized appropriately so as to move the population from |¢g_) (and not from |g,)) to
an excited state and to measure the subsequent fluorescence. This measurement will
project the state Eq.(4.34) on to a state of the field given by

o\ 2 _ _
vy = (COS 5) (a|ly,0-)e % + Bl0,, 1_)e %) . (4.40)

Thus the stored state of the field is recovered apart from a relative phase factor 2.J¢gt.
Note that this phase factor is known a priori from the preparation process of the
hologram.



Chapter 5

Quantum state reconstruction in
Cavity QED

To produce a required quantum state is only half the work. It is equally important to
justify whether the correct state has been prepared. This problem can be formulated
even more generally. Given a particular quantum mechanical system, how to determine
its state? On the other hand, in the chapter 2, it has been shown that any quantum
state can be equivalently described in terms of a quasidistribution function in associated
quantum phase space. Hence, a suitable question can be asked: is it possible to measure
experimentally a quasidistribution function of a given quantum state? In principle, we
are free to use any of quasidistribution functions however, from the mathematical point
of view, only the Wigner function is a well-behaved mathematical object. The Q- and P-
quasidistributions, in general, can not express an arbitrary state in terms of continuous
function. Furthermore, following the approach advocated by Lamb [100], we would like
to have an operational definition of the Wigner function, that is, definition which is
based on an experimental setup [101, 102, 103, 104, 105]. In other words, we ought
to know, at least in principle, which apparatus is necessary for the task of a direct
measurement of the Wigner function of a quantum system.

In this chapter we address the question of the operational definition of the Wigner
function for a simple, but rather instructive quantum system, namely, a particle in an
arbitrary symmetrical potential. Depending on the form of the potential this system
may model a wide spectrum of quantum problems ranging from a hydrogen atom to
the Jaynes-Cummings model. At first, we give an introduction to the pioneer results in
the field of operational definition of the Wigner function. Then we discuss a question
of the reconstruction of the Wigner function of a micromaser field and introduce its
novel operational definition in terms of the Fresnel transform of an atomic inversion.
Finally, we consider general integral transform for the definition of the Wigner function
of a particle in a symmetrical potential.
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5.1 Operational definition of the quantum quasidis-
tribution functions

This section is aimed at introducing a procedure of determination of the Wigner func-
tion which would correspond to a realistic physical measurement. As a model quantum
system, the Wigner function of which we want to specify, we take a free particle in
one dimension. This is of course the simplest case, nevertheless, it allows to present
an operational definition of the Wigner function pioneered by Wédkiewicz [106] and
Royer [107].

We start by reminding the original definition of the Wigner function Eq.(2.26)
introduced in the chapter 2 for a case of a pure state of the free particle, i.e. when

p=16)(0l:

+o0
W(g,p) = / dxe™MPT* (g + %x)dﬁ(q —~ %x)- (5.1)

On the other hand, following Wédkiewicz, we would like to measure the probability
of finding our particle in a well defined state |¢). This probability is equal to Tr(pP),
where p is the density operator of the particle and P = |¢)(¢]| is a projection operator
on the state ). The state of the particle p is unknown, however, varying the state
|1)) we, in principle, can determine it by recording the probabilities Tr(p|i)(1)]). At
the same time, to vary the state |¢)) means to displace it in a controlled manner
simultaneously in a coordinate and momentum and as the result to explore the whole
space, determining a position and momentum of the particle. The mathematical notion
of the displacement operator D(p,q) in the coordinate ¢ and momentum p has been
introduced in Eq.(2.35). Therefore, we can write the probability to measure the state
of the particle in D™ (p, q)|¢){(x)|D(p, q) as

P(q,p) = Tr(pD ™' (p, q)|[¥) (v'| D(p, ). (5.2)

Assuming that the particle has been initially prepared in the pure state, say, p = |¢)(¢|
and evaluating the trace in the coordinate representation we obtain

Pla.p) = | [ doe (o + (o) (5.3)
The latter can be further rewritten as
P(q,p) = /dx/dp’Ww(q + z,p+ ") Wy(z,p'), (5.4)

where according to Eq.(5.1) we have defined the Wigner function for the displaced
state |¢)) as Wy, and the Wigner function for the original state of the particle |¢) as
W.

Hence, we can interpret Eq.(5.4) as an operational definition of the Wigner function
of the unknown pure state p in terms of probability distribution function P(q,p).
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On the other hand, the P(g,p) itself is an overlap between the detected(IV,;) and
“filtering” (W,,) Wigner functions. The notion of necessity of a filtering device for a
direct measurement of the Wigner function was emphasized in [106]. It has been also
shown there that the projector P = [¢)(1| can be interpreted as such a filter.

One of the possible physical realization of this operational scheme relies on a mea-
surement of the coordinate and momentum of the free particle. One can, in principle,
measure them by applying an interaction potential centered at the position ¢ of the
kind U,(z). By changing the ¢ and measuring the amplitude of the scattered wave
packet of the particle one gets the probability distribution P(q,p) which defines the
original Wigner function of the particle.

Theoretically, the presented operational definition can be generalized to a case of
a particle(particles) in an arbitrary potential(potentials). However, in practice, there
are cases when a system of interest cannot be accessed for a direct measurement. For
instance, a single mode of the microwave cavity does not allow any direct observation.
In this situation an interaction with a well-accessible supplementary system should be
employed in order to deduced an information on the system of interest. As a conse-
quence, an optimal operational definition based on the information from the ancilla is
required. Such a definition will of course depend on the type of system-ancilla interac-
tion which in its turn must satisfy possible theoretical and experimental requirements.
For example, it should be relatively fast in order to avoid possible effects of decoher-
ence due to a weak coupling with the environment. This is the case of the next section
where we derive an operational definition of the Wigner function of harmonic oscillator,
which models a single mode of a micromaser field as well as a motion of an ion in an
ion trap, is optimized with respect to decoherence and based on a Fresnel transform of
the population of a two-level ancilla atom.

5.2 Fresnel representation of the Wigner function

Many methods to reconstruct the Wigner function [4] of a cavity field or the motional
state of a harmonic oscillator have been proposed [106, 107, 108, 109]. In particular,
the Wigner function of a cavity field can be expressed in terms of the measured atomic
inversion [55, 54]. This operational scheme [110] lives off the dispersive interaction
between the atom and the field. Since this scheme requires long interaction times, and
as a result it is less robust to decoherence, an operational definition of the Wigner
function based on a resonant interaction is desirable. The method of nonlinear homo-
dyning [111] and quantum state endoscopy [112] fulfill this need, but require rather
complicated reconstruction schemes.

In contrast, the Fresnel representation proposed here is rather elementary. It is
based on the resonant interaction of an atom with a single mode of the electromagnetic
field and unlike the earlier works it is the atomic dynamics that performs the major
part of the reconstruction. It expresses the value of the Wigner function at a phase
space point « as a weighted time integral of the measured atomic dynamics caused by
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the state displaced by a. The weight function is the Fresnel phase factor. Since this
method can be applied to a cavity field as well as a trapped ion [113] we use a harmonic
oscillator as a model system. However, we will show that this approach can easily be
generalized to non-harmonic oscillators.

Our definition relies on controlled displacements [113, 114] of the quantum state of
interest and the observation of Rabi oscillations of a two-level atom (ancilla) interacting
resonantly with this field. The measurement scheme can be sketched as follows:

1. The two-level atom(ancilla) is prepared in the upper state |e). The state of
interest is displaced into the fixed point a of phase space.

2. The ancilla interacts resonantly with the displaced cavity field for the time 7.
The interaction is described by the Jaynes-Cummings model Eq.(3.20).

3. The state of the ancilla is recorded immediately after the interaction.

According to Eq.(3.24),
P(ria) = - 1§: (vt 1r) (5.5)
a)=—-—= ) cos (2v/n :
y(10) =5 —3 2 T

is the probability [115, 116] of finding the atom in the ground state |g) as a function
of dimensionless interaction time 7 and complex-valued displacement «. Here P, («) =
(n|D(a)p DY (a)|n) denotes the occupation statistics of the state p displaced by the
displacement operator D(a).

On the other hand, the Wigner function W («) of the original state p is deter-
mined [2] by the alternating sum Eq.(2.45)

o0

W(a) = %Z(—l)”Pn(—a) (5.6)

of the probabilities P,. Hence, we can find the Wigner function from the atomic
dynamics when we measure the probabilities P, for different interaction times and
solve Eq. (5.5) for the occupation probability P,(«). However, this method has two
important disadvantages. First of all it relies on the invertion of a system of linear
equation where one must invert the matrix built of cos (2y/n + 17) which in general is
not numerically stable since its determinant is close to zero. This numerical problem
can be overcome by implementing the singular value decomposition method rather then
a direct invertion scheme. Secondly, it operates with quite big arrays of data which
require high operational time.

However, there is no need to evaluate the probabilities P, explicitly. In the spirit
of Wodkiewicz, we can obtain the Wigner function directly from the atomic dynamics
P, without ever calculating P,, making use of the integral relation

2 > -2 — (_1\n
— /0 dr exp (72 /) cos(2/nr) = (—1)™. (5.7)
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Figure 5.1: Fresnel representation of Wigner function illustrated by the first excited
energy eigenstate of a harmonic oscillator. The atomic dynamics P,(7; «), Eq. (5.5), as
a function of interaction time 7 and real-valued displacement « (top) serves as input to
the truncated Fresnel representation, Eq. (5.9). For a finite measurement time 7,, the
so-obtained function W («; 7,,) is complex-valued. The real part of W (a;7,,) (bottom)
approaches the correct Wigner function, W)y, already for moderate measurement times.

When we multiply P, — 1/2 from Eq. (5.5) by 2/(7V/i) exp [i7? /7] and integrate over
7, Eq. (5.7) yields

2 e ir?/mw . 1 — 1 S n
7/0 dre'™ /™ | P)(1; —a) — = —52(—1) n(—a). (5.8)

We recall the connection, Eq. (5.6), between W («) and P,(«) and find the Wigner
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Figure 5.2: Asymptotic approach of the truncated Fresnel representation for the first
excited state. Real part (black line) and imaginary part (gray line) of W(a = 0;7,,)
oscillate around their asymptotic values —2 and 0, respectively, with slowly decreasing
amplitudes. The asymptotic values emerge already after a measurement time of the
order of 27.

function W(a) = lim W(a;7,) in terms of the truncated Fresnel transform '
Tm —> 00

1

W(as ) = 4 / 2T i {pg(T; —a) - 5} (5.9)

0o TTV1

of the Rabi oscillations.

Hence, the Wigner function at the phase space point « is determined by a weighted
time integral of the atomic dynamics due to the initial state displaced by —a. The
weight function is the Fresnel phase factor exp(it?/).

It is instructive to compare the Fresnel representation, Eq. (5.9), to the Fourier
method used in [113]. The latter relies on the analysis of the Fourier transform of the
Rabi oscillations P, and thus needs the full functional dependence on frequency. In
contrast, the Fresnel representation gives the Wigner function as a single integral of P,
without the need to analyze an intermediate function.

At the first glance, the Fresnel representation seems to suffer from three disadvan-
tages:

1. Tt contains the complete time evolution of P,, that is, from 7 = 0 to 7 = oo.
However, any experiment can only record the dynamics for a finite measurement
time 7,,.

2. It can take on complex values. However, the Wigner function is always real.

3. It relies on a continuous time evolution. However, the experiment can only pro-
vide a discrete sampling.

!The usual notation for the Fresnel transform Fs[f] of a function f(t) is Fs[f](¢) = fooo dtexpli(¢—
t)2]f(t). Hence, the Wigner function is the Fresnel transform of the Rabi oscillations at one single
point ¢ = 0.
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Figure 5.3: Wigner function at the origin of phase space obtained from experimental
Rabi oscillations (top) of a stored ion [117] using the truncated Fresnel representation,
Eq. (5.9): Approach (bottom) of real (black line) and imaginary parts (gray line)
of W(a = 0;7,) towards their asymptotic values (dashed line) yielding W (0) =
1.75+1¢0.05. The ion was prepared initially in the atomic and vibrational ground state.

We address each of these problems separately and first demonstrate that the phase
factor exp(i7?/m) makes the integral insensitive to the long time behavior of P,. For
this purpose we show in Fig.(5.1) the Fresnel reconstruction for the first excited energy
eigenstate of a harmonic oscillator. The corresponding Wigner function [4] W)y (a) =
—2 (1 — 4]a]?) exp(—2||?) is rotationally symmetric. Therefore, it is sufficient to depict
W)y along the real axis.

The top of Fig.(5.1) displays the atomic dynamics P, as a function of interaction
time 7 and real-valued displacement «. Sinusoidal Rabi oscillations appear along oo = 0.
Moreover, for appropriately large displacements we find collapses and revivals. In the
bottom part we present the real part of W(a;7,,). The time axis corresponds to the
upper limit 7,,, of the truncated Fresnel representation, that is the measurement time.
For very short times the function has no similarity with the correct Wigner function,
W1y. However, for longer measurement times the curves approach the exact Wigner
function.

In order to study the asymptotic behavior in more detail we show in Fig. 5.2 a cut
of the truncated Fresnel representation along o = 0. Here we depict both, real and
imaginary part of W(a;7,,). We note that after 7,,, ~ 27 the real part, indicated by
the black line, begins to oscillate around the correct value Wy (v = 0) = —2 with
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decreasing amplitude. In a similar way, the imaginary part, denoted by the gray line,
approaches its asymptotic value zero. Unfortunately, this convergence is slow. This
feature is a consequence of the familiar Cornu spiral [4], also used by R. P. Feynman
and J. A. Wheeler to add up scattered waves — a precursor of the path integral [118].
Despite the slow asymptotic the knowledge of the Rabi oscillations up to a measurement
time of a least 7,, = 27 is sufficient to obtain the asymptotic Wigner function.

The upper part of Fig.(5.3) shows measured Rabi oscillations of an ion due to its
center-of-mass motion® [117]. Due to the high sampling frequency we can directly
interpolate the measured data to evaluate the Wigner function. In the bottom part we
display the approaches of the real part (black line) and imaginary part (gray line) of the
truncated Fresnel integral towards their asymptotic values (dashed lines). For the ion
in the motional ground state with Wigner function [4] Wp () = 2 exp(—2|r|?) we find
the asymptotic value W) (0) = +1.75 4 ¢ 0.05 whereas the ideal value is Wp(0) = 2.
The presence of an imaginary part in the estimated Wigner function does not represent
a fundamental drawback, as long as it comes from a complex integral of realistic data
that ideally should produce a real value.

It is quite remarkable that the method works so well considering the fact that in the
particular experiment [117] the atomic dynamics is governed by the non-linear Jaynes-
Cummings model [119]. In this case the relation between the atomic population and
the photon statistics is not of the form of Eq. (5.5). However, for low excitations the
deviations from the familiar Jaynes-Cummings model are small as shown in Fig. 1(b)
of Ref. [117]. Therefore, superpositions of low excitations can be successfully recon-
structed.

The inset of Fig.(5.4) shows Rabi oscillations of an atom due to a cavity field [13].
Since in this case only a few data points are available we have to employ a discrete ver-
sion of the Fresnel representation. The data [13] consist of a finite set of M interaction
times 7; and measured probabilities P;(7;; —a). We now choose kernel coefficients f;
such that

ZCOS(Q\/n +17) fj = (=)™, (5.10)

multiply Eq. (5.5) evaluated at discrete times 7; by f;, and sum over j. With the help
of Eq. (5.10) we then arrive at the discrete representation

W(a) = 4§;fj [Pg(n; —a) - ;] (5.11)

of the Wigner function.
Since the photon number n runs from zero to infinity, Eq. (5.10) describes a system
of infinitely many equations for M unknown coefficients f;. When we consider the

truncated system of N > M equations we find the solutions f;N) of this overdetermined

2For the anti-Jaynes-Cummings model [117], the minus sign in Eq. (5.5) is replaced by a plus sign
and the Fresnel representation, Eq. (5.9) assumes an overall minus sign.
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Figure 5.4: Dependence of the Wigner function W) (a = 0) at the origin of phase
space on the cutoff N of the overdetermined system, Eq. (5.10). The values scatter
around Wj;y(0) = —1.4. The Rabi oscillations [13] (inset) result from a cavity field
prepared in a one-photon number state.

system by mlnlmlzlng the sum of quadratic deviations. Substitution of the so-calculated
coefficients f ) into Eq. (5.11) results in the Wigner function W) (a).

Figure (5.4) displays the dependence of W(¥)(a = 0) on the cutoff N. The values
scatter around W;y(0) = —1.4 indicated by the dashed line. We recall that the ideal
value of the Wigner function corresponding to a one-photon number state is W;y(0) =
—2. For N = M = 10 the method is extremely sensitive to uncertainties in the
measured data resulting in a large deviation from -1.4.

1/2
The error bars 6P; translate into a standard deviation éWW = 4 [Z] ffépf] of

the Wigner function. According to Eq. (5.10) the coefficients f; are solely determined
by the set of 7; and can take almost any values. Obviously large values give rise to
a large error in the Wigner function, unless the corresponding uncertainties 6 F; are
small and compensate this effect.

For the experiment of Ref. [13] performed for a different purpose and therefore not
taking advantage of this feature, we find )W = 4.3. However, a future experiment
can either choose the interaction times 7; such as to minimize the f; or increase the
accuracy of the measurement of P, at times where f; is large.

Finally, let us consider a more general situation. Imagine that instead of the Fresnel
factor exp(:72/7) in Eq.(5.7) one uses the modified factor, say, exp((i —¢)37?%) where &
is a positive real, i.e. € > 0 and § = (1/7m), m is rational. Then the integral relation
Eq.(5.7) with the new kernel reads

\/m/ drexp((i — €)1 /mm) cos(2v/nT) = exp(—iﬂfZ), (5.12)

If we impose the condition 77 =1+ 0i then the integral transform Eq.(5.12) recov-

ers (—1)™ in the left hand side and consequently becomes equivalent to the Fresnel
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transform Eq.(5.7). However the transformation Eq.(5.12) is richer then the Fresnel
transform since in has two parameters to vary. So far we did not specify the parameter
. Let us consider a case when ¢ is small, i.e. we assume that 2 = 0. This implies
that Eq.(5.12) can be rewritten as

\/m / dr exp((i — £)7% /m) cos(2v/n7) = exp(—imnm(1 — ig)).  (5.13)

In order to understand the importance of the latter transformation we differentiate
both parts of the Eq.(5.13) with respect to € in the vicinity of ¢ = 0. The result reads

dT \ﬁ - \/T ) exp(ir2/mm) cos(2/n7) = —mnmexp(—irnm).  (5.14)

The next step is to apply the integral kernel (\/% — /= mﬂ)exp(zrz/mw) from

Eq.(5.14) to the both parts of Eq.(5.5) and integrate them from 0 to co. Fixing the
second free parameter m by setting it to be an even integer we arrive at

/OoodT(\/%_\/%T;—jr)exp(h?/mﬂ)COS(QﬁT)Pg(T;—Oé) = _”mnio%npn(_

= —mm(n). (5.15)

Hence we have obtained an operational definition of the mean value of the number of
excitations of the harmonic oscillator. The value of higher moments, i.e. (n?) and so
on, can be obtained again from the P,(7; —a) by integrating Eq.(5.5) with the kernel
stemming from the second and so on derivative of the integral relation Eq.(5.13) at the
point € = 0. Therefore we have obtained a powerful tool for studying the statistics of
the system of interest without ever inverting the equation (5.5).

It is needless to say that all remarks concerning the Fresnel representation of the
Wigner function are also valid for the integral representation Eq.(5.15). There is how-
ever an important difference between them. In contrast to the Fresnel kernel the
integral kernel of the representation (5.15) contains the square of the integration pa-
rameter 7 what influences of course the convergence of the integral in Eq.(5.15). As
a consequence, one requires longer integration times, when compared with the Fresnel
transform, in order to reach its asymptotic value.

5.3 Integral representation of the Wigner function:
General case
The Fresnel representation, Eq. (5.9), of the Wigner function as well as the discrete

version, Eq. (5.11), rely on the resonant Jaynes-Cummings model. However, the tech-
nique to obtain the Wigner function directly by an appropriate integral transform of the
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time dependence of a measurable quantity is much more general. Indeed, our method
even allows us to obtain the Wigner function of a wave packet |¢(0)) = > 1n|dn)
consisting of a superposition of energy eigenstates |¢,) with energy E, = hw, of a
potential V' = V(7). Here, we do not restrict ourselves to a harmonic oscillator poten-
tial. Our only assumption is that V' is symmetric with respect to the origin. In this
case, the representation Eq. (5.6) of the Wigner function still holds true. Moreover,
we recall that the autocorrelation function C(¢t) = (¢(0)|¢(¢)) = 3, |¥n|? exp(—iw,t)
is measured routinely in wave packet experiments, e.g. [120, 121].

When we apply the displacement D to the initial state p = [1(0))()(0)|, the
autocorrelation function C(t;a) = Y, P,(c)exp(—iw,t) is similar to Eq. (5.5) with
P, () = (¢n|D()pD' (a)|pp). We multiply both sides of the equation for C by

£) = - / " o 6 cosfn(w)r] (5.16)

:% .

and integrate over ¢t. Here n(w) is an arbitrary and continuous function such that
n(wy,) = n.

When we make use of the symmetry relations f(—t) = f*(t) and C(—t) = C*(t), we
find the Wigner representation

W(a) = 4 Re UOOO dtf(C(: —a)} (5.17)

of the initial wave packet in terms of the measured autocorrelation function C and the
integral kernel f.

Equation (5.17) is the generalization of the Fresnel representation, Eq. (5.9), to a
quantum system with arbitrary discrete spectrum. For wave packets in a harmonic
oscillator or in a box with energy spectra w,, = 27n/T,; or w, = 27n?/T,, respectively,
the integral kernels from Eq. (5.16) are delta functions at half of the classical period
T,;, or half of the revival time T,.. For these potentials, the time evolution itself creates
the function (—1)", that is the parity operator. For a spectrum w, = /n + 120,
Eq. (5.16) predicts a quadratic Fresnel-like phase.

Complications arise for spectra with degeneracies, such as the hydrogen atom. Nev-
ertheless, we can reconstruct Rydberg wave packets measuring the autocorrelation
function at half of the revival time.
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Chapter 6

Outlook

The ongoing research in the field of cavity QED is traditionally based on the exploiting
of the Jaynes-Cummings model in a combination with various effects of decoherence
of an atom and a field. This leads to rather complicated master equations describing
an entire atom-field system which can only be treated numerically. In contrast in
this thesis we have demonstrated that the adding of a classical strong-driving field
to the standard Jaynes-Cummings based approach surprisingly allows to solve the
correspondent master equations analytically. With this we have entered a new soluble
regime of cavity QED.

There are however several open questions for further investigations. The model of
SDM as well as the model of a one-atom laser are derived in such a way that the effects
of atomic spontaneous emission are either irrelevant due to physical reasons(SDM)
or eliminated(one-atom laser). Taking into account spontaneous emission in the case
of SDM will lead to a soluble model of the strongly-driven micromaser operating in
optical domain(strongly-driven microlaser [122]). On the other hand consideration of
the effects of spontaneous emission in the model of N-atom laser will not change a
solubility property of the model but at the same time will simplify the proposed setup
for its implementation.

The traditional models of a one-atom laser are aimed at describing the generation
properties of a single atom placed inside an optical cavity and pumped by a coherent
field. Their main concern is the state of a generated output cavity field which in contrast
to the macroscopic lasers can be purely nonclassical. As distinct, in this work we have
presented the model of a one-atom laser which do not possess a nonclassical output
field state but nevertheless generates a mesoscopic atom-field superposition state which
unfortunately due to its high sensitivity to the decoherence effects evaluates to a mixed
atom-field steady state. We have briefly suggested how to use this distinct feature of
our model in order to measure a decoherence rate. This questions deserves a more
careful study since it has never been investigated in past neither in an experiment with
the optical cavities nor in theory.

Following the modern quantum information trends in cavity QED we have studied
the questions of the generation of maximally-entangled states of two atomic qubits.
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We have chosen as a basis the model of two-atom laser. Having at our disposal its
steady-state analytical solution we have shown that the maximally-entangled state of
two atoms is always correlated to the vacuum cavity field and therefore a no-photon
measurement of the cavity field leads to the generation of a maximally-entangled atomic
state. Since this approach neglects the effects of a low single photon detection efficiency
of the standard schemes it allows generation of maximally-entangled states of high
fidelity even in the low coupling limit of the atom-field interaction. However there is
still a question to answer whether it is possible to employ the model of N-atom laser for
the production of multipartite atomic entangled states. On the other hand, we have
demonstrated how the dispersive interaction between atoms prepared in the ground
state and two orthogonal modes of a cavity can serve this propose.

The last but not least topic addressed in this thesis is the quantum state recon-
struction in cavity QED. Despite the extensive research over the last two decades the
question of optimal operational schemes for the reconstruction of the Wigner function
of a given state is pertinent. Here we have been able to introduce a simple scheme for
the reconstruction of the micromaser field using the Fresnel transform of the atomic
invertion of a probe atom. It turned out that such an integral transform based scheme
can reconstruct the Wigner function of a particle in an arbitrary symmetric potential.
Therefore this scheme in principle can be used for the Wigner function reconstruction
of a wave packet or even for cold atoms placed inside an optical lattice.
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