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1 Introductory summary 

 

It is now necessary to turn away from arranging illness in orderly well-defined groups, 

and to set ourselves the undoubtedly higher and more satisfying goal of understanding 

their essential structure. 

̶    EMIL KRAEPELIN 

 

1.1 Context of the study 

 

Psychiatric disorders like major depression, schizophrenia, and bipolar disorder affect a 

significant proportion of the global population, accounting for a third of disability worldwide 

(World Health Organization, 2008). The enormous personal, societal and economic burden of 

these disorders demands a better understanding of their etiology (Collins et al., 2011). Since the 

start of the 20th century, psychiatric nosology has been defined by clinical observations of 

categorical syndromes based on signs and symptoms. However, despite the clinical utility of 

current classification systems, our understanding of mental disorders through observable 

behaviors and self-reported feelings and thoughts alone has reached its limits (Clark, Cuthbert, 

Lewis-Fernandez, Narrow, & Reed, 2017). 

 

With little evidence to support natural boundaries of many mental disorders, the validity of the 

current Diagnostic and Statistical Manual of Mental Disorders (DSM) and International 

Classification of Diseases (ICD), is undoubtedly limited (Jablensky, 2016). This is especially true 

given the arbitrary thresholds used to define psychopathology versus normality, ambiguous 

boundaries between distinct diagnoses and excessive comorbidity between putatively independent 

disorders, together with heterogeneity within and instability of psychiatric diagnoses (Clark et al., 

2017; Hengartner & Lehmann, 2017; Van Os, 2015). Moreover, the genetic architecture of most 

common psychiatric disorders does not support diagnostic categories as discrete entities, 

especially considering their cross-disorder heritability (Lee et al., 2013; Smoller et al., 2019). 

Needless to say, the current diagnostic system lacks etiological and pathophysiological 

justification for these clinically and genetically heterogenous disorders. 

 

With hopes of circumventing these caveats, efforts continue to be made towards a psychiatric 

nosology informed by disease mechanisms. Unprecedented progress in psychiatric genetics has 

been made in the last decade with the help of improved molecular technologies and cooperation 
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among psychiatric researchers (Sullivan, Daly, & O'Donovan, 2012). Genome-wide association 

studies (GWAS) alongside innovative disciplines like systems biology and functional genomics 

have begun reporting robust and replicable findings (Howard et al., 2019; Pardiñas et al., 2018; 

Stahl et al., 2019; Sullivan et al., 2012) which hold potential towards converting these disorders 

into pathophysiologically-defined diseases. Additionally, new research frameworks using 

dimensional models of psychopathology have emerged with hopes of better understanding the 

nature of psychopathology. The Hierarchical Taxonomy of Psychopathology (HiTOP) (Kotov et 

al., 2017) and Research Domain Criteria (RDoC) (Insel et al., 2010) are just two examples. 

 

Moving forward, continued optimization of existing methodologies in psychiatric genetics and 

complementary fields like epigenetics have potential to inform disease mechanisms and provide 

clues to the complex etiology of psychiatric disease. As first recognized by the pivotal work of 

Emil Kreapelin more than a century ago, longitudinal measures are a key element of psychiatric 

investigations and should continue to be paired with other approaches (Kraepelin, 1921; McInnis 

& Greden, 2016). Detailed accounts of environment and longitudinal moderators of disease 

course are particularly important to better understand the complex relationship between 

environmental influences and biology (Craddock et al., 2009). Such findings could supplement 

clinical ratings to form biologically-valid diagnostic criteria and lead to improved diagnostic, 

personalized therapeutic, and preventative measures. This thesis presents two approaches in 

alignment with these efforts. 

 

1.2 An introduction to psychiatric genetics 

 

Following the success of linkage studies for the identification of Mendelian disorders, early 

studies of common psychiatric disorders hoped to discover single genetic variants with large 

effects (Moreno-De-Luca, Ross, & Ross, 2018). Yet, despite early family and twin studies 

supporting their strong genetic basis and high heritability (Shih, Belmonte, & Zandi, 2004), 

empirical data did not support this monogenic theory proving candidate gene studies to be 

insufficient (Schulze, Fangerau, & Propping, 2004). Rather, it became evident that the genetic 

structure of these disorders was more likely polygenic (involving many genetic loci) and 

heterogenous (affected individuals do not all share the same combination of risk alleles) (Fullerton 

& Nurnberger, 2019). At the turn of the millennium, GWAS became possible for the identification 

of common single nucleotide polymorphisms (SNPs) on a genome-wide scale, moving the field 

away from unsuccessful candidate gene studies. With initial GWAS bearing little fruit as a result 

of their limited sample sizes, it was quickly realized that due to the very small effect sizes of 
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individual common SNPs and inherent multiple testing burden of GWAS, huge studies and mega 

analyses were required. This paradigm shift encouraged the formation of large consortia like the 

international Psychiatric Genomics Consortium (PGC; https://www.med.unc.edu/pgc/) and the 

Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH; 

https://ipsych.dk/en/) with hopes of leveraging data from thousands of individuals to perform 

powerful analyses. Today, microarrays and array-based technologies along with rapid expansion 

in methodological approaches have supported this effort. Through unprecedented technological 

advancements in the last decade, we are now able to genotype millions of SNPs across the genome 

in large samples at a quick pace and affordable price. Thereby, the complex polygenic and 

genetically heterogenous architecture of major psychiatric disorders have been uncovered. 

Accordingly, new methodologies continue to be developed to analyze the vast amounts of data 

coming from GWAS, especially towards a better understanding of the complex interplay between 

genetic variants.  

1.3 A look at genome-wide polygenic scores 

While evidence supports the substantial contribution of common SNPs towards risk for disease, 

overall these variants account for only a fraction of genetic risk and a remarkable part of 

heritability has yet to be explained. While GWAS have identified robustly associated genome-

wide significant variants for bipolar disorder (30 loci) (Stahl et al., 2019), schizophrenia (145 loci) 

(Pardiñas et al., 2018) and major depression (102 loci) (Howard et al., 2019), alone they explain 

only a small fraction of liability and hold little predictive accuracy. For example, the genome-

wide significant loci for schizophrenia explain just 1.1% of variance on the liability scale 

(Pardiñas et al., 2018). Much debate has revolved around the reason for this missing heritability, 

with hypotheses pointing towards unaccounted for small effect variants, gene-gene interactions, 

as well as rare copy number variants (CNVs), de novo mutations, and epigenetic variations 

(Avramopoulos, 2010; Maher, 2008; Manolio et al., 2009; McCarthy & Hirschhorn, 2008).  

In 2007 and 2009, two seminal papers demonstrated that a substantial polygenic component of 

psychiatric disorders is not found in the strongly associated loci, but rather in the thousands of 

common alleles that individually do not achieve genome-wide significance (Purcell et al., 2009; 

Wray, Goddard, & Visscher, 2007). Accordingly, they introduced an approach to capture the 

cumulative effects of these genetic loci as a single quantitative metric and thus introduced 

polygenic risk scores (PRSs) to psychiatric genetics. PRSs are calculated as the sum of risk alleles 

carried by an individual weighted by corresponding genotype effect sizes, derived from summary 
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statistics from an independent GWAS. These scores are calculated across many p-value thresholds 

to determine, for example, the optimal threshold for case discrimination, i.e., the threshold with 

greatest predictive power (Fullerton & Nurnberger, 2019). PRSs have already shown success in 

real-world health care settings, with a recent study using a schizophrenia PRS to detect risk for 

schizophrenia and psychosis using health record data (Zheutlin et al., 2019). 

 

In the last years, PRSs have been widely used for a range of applications including the 

investigation of pleiotropic effects, i.e., the genetic overlap between disorders, evaluating the 

predictive power of genetic data, differentiation of cases and controls, and to perform experiments 

comparing individuals at extremes of the PRS distribution (Wray et al., 2014). Another use of 

PRSs proving to be valuable is their application to the genetics of endophenotypes, also known 

as intermediate or proxy phenotypes. Endophenotypes, as introduced to psychiatry by Gottesman 

and Shields, are measurable constructs that lie on the path between phenotypic expression and 

genes (Gottesman & Shields, 1972; Walters & Owen, 2007). This concept assumes that variation 

in an endophenotype will be associated with a simpler genetic architecture than the complex 

disorder as a whole. By definition, endophenotypes are associated with illness in the population, 

heritable, primarily state-independent, co-segregate with the illness within families, and are found 

in unaffected relatives at higher rates than in the general population (Gottesman & Gould, 2003). 

One broadly studied presumed endophenotype is cognitive deficits in patients with severe mental 

illness (Bora, Yucel, & Pantelis, 2009; Burdick, Goldberg, Harrow, Faull, & Malhotra, 2006; 

Ivleva et al., 2012).  

 

1.4 An application of PRSs: Introduction to Original Article 1 

 

Comes, A.L., Senner, F., Budde, M., […], Falkai, P., Schulze, T.G., Papiol, S. (2019). The genetic 
relationship between educational attainment and cognitive performance in major 
psychiatric disorders. Transl Psychiatry, 9(1), 210. doi:0.1038/s41398-019-0547-x. 

 

Individuals with severe mental illness experience broad cognitive deficits that are often treatment 

resistant and persistent throughout the lifetime (Sheffield, Karcher, & Barch, 2018). The onset 

and severity of these cognitive symptoms are highly predictive of patients’ long-term prognoses 

(Bowie & Harvey, 2006; Green, 1996). Given that cognitive deficits are a core feature of severe 

mental illness, understanding these impairments could have major implications for offering better 

insight into the psychiatric disorder itself and for targeting effective therapies. Given the 

characteristics of these deficits, i.e., heritability, presence in unaffected first-degree relatives and 
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in affected individuals even during periods of remission, they have been named a noteworthy 

endophenotype for psychotic disorders (Bora et al., 2009; Snitz, Macdonald, & Carter, 2006). 

 

While GWAS for social-science genetics is often limited, proxy-phenotypes can be used to test 

for associations with well-measured endophenotypes such as cognitive functioning. Educational 

attainment is strongly correlated with cognition both phenotypically (0.50) and genetically (0.65) 

(Rietveld et al., 2014). In 2018, a GWAS on educational attainment was conducted in 1.1 million 

individuals from the general population (Lee et al., 2018). Using these summary statistics, the 

authors were able to conduct a multi-phenotype analysis generating polygenic scores that 

explained up to 10% of variance in cognitive performance.  

 

The aim of Original Article 1 was to explore this association across several cognitive domains in 

a subset of patients from the longitudinal PsyCourse study (Budde et al., 2019). Considering the 

positive genetic correlations between education and risk for both schizophrenia and bipolar 

disorder (Hill et al., 2018), we also investigated the association of cognitive performance and 

PRSs for both disorders. Overall, we hoped this work would allow us to gain insight into the 

genetic underpinnings of distinct cognitive domains in patients with severe mental illness. 

 

In our sample of patients with known cognitive deficits, educational attainment polygenic scores 

explained up to 2% of variance in cognitive domains related to learning and working memory. 

Specifically, the educational attainment polygenic score could explain variance in the number of 

correctly recalled words of the Verbal Learning and Memory Test (Helmstaedter, Lendt, & Lux, 

2001), the backwards task of the Verbal Digit Span (Aster, Neubauer, & Horn, 2006), and 

crystallized intelligence measured with the Mehrfachwahl-Wortschatz-Intelligenztest (Lehrl, 

2005). These findings were particularly interesting considering these cognitive domains are 

among the most impaired in patients with severe mental illness (Barbosa et al., 2018).  Post hoc 

analyses showed these findings were robust to the effects of diagnosis and current medications. 

Considering rather inconsistent findings in the literature, it was not completely surprising that no 

significant effects were observed when investigating the associations between disorder specific 

PRSs and cognitive outcomes (Schaupp, Schulze, & Budde, 2018). To some extent, these findings 

support the notion that genetic determinants of cognitive variation within these disorders are at 

least partly independent from those common SNPs that predispose an individual to a 

schizophrenia or bipolar diagnosis, however, more evidence is needed. 
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Findings such as these could have important implications for identifying subgroups of patients 

with higher risk for a more burdened course of disease and could contribute towards predictive 

models for more personalized interventions. Further investigation of these associations 

longitudinally could help identify critical periods of genetic influence on cognitive abilities 

(Mistry, Harrison, Smith, Escott-Price, & Zammit, 2018). Furthermore, future studies could 

optimize the polygenic scores used to further reveal the genetic architecture of these deficits, for 

example, by taking into consideration intricate pleiotropic effects or using hypothesis-based 

polygenic scores (Lam et al., 2019). Lastly, this study supports the continued investigation of 

quantitative endophenotypes given their potential to inform the biological pathways lying 

between genetic variants and fuzzy, qualitative diagnoses. Given the prevalence of 

endophenotype deficits across many heritable domains, studies aimed at a better understanding 

of their nature are in alignment with efforts like RDoC with hopes to ‘bridge genomic complexity 

and disorder heterogeneity’ (Braff & Tamminga, 2016; Insel & Cuthbert, 2009). 

 

1.5 Beyond traditional genetic data: The role of epigenetics 

 

The fact that current PRS estimates explain only a small percentage of risk for psychiatric 

disorders, e.g., up to 5% in schizophrenia using the optimal p-value threshold of 0.05 (Pardiñas 

et al., 2018), is not unexpected given the major proportion of risk that environmental factors 

contribute to psychiatric disorders. Not only do distinct psychiatric disorders share some genetic 

risk factors, they also share environmental risks with factors like early life adversities playing a 

major role in risk for multiple psychiatric syndromes (Green et al., 2010; Kessler et al., 2010). 

Gene-by-environment (G × E) interaction studies have therefore been an integral component to 

understanding complex psychiatric disorders. Such studies examine the effects of environmental 

and genetic determinants on a phenotype and further explore their joint effects. Traditionally, the 

Diathesis-Stress Model has been the guiding conceptual framework for G × E studies (Monroe & 

Simons, 1991), which assumes that one’s genetic predisposition makes them vulnerable to the 

development of a psychiatric disorder when exposed to a certain environmental adversity (Assary, 

Vincent, Keers, & Pluess, 2018). An opposing view, the Differential Susceptibility Theory (DST), 

however, proposes individuals vary more generally in their developmental plasticity thus in their 

susceptibility to both positive and negative environmental influences (Belsky, Bakermans-

Kranenburg, & van Ijzendoorn, 2007; Belsky & Pluess, 2009; Ellis, Boyce, Belsky, Bakermans-

Kranenburg, & Van IJzendoorn, 2011). Despite their value, G × E studies have faced many 

limitations such as poor replication rates and high false discovery rates, therefore complementary 
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approaches have been suggested to further uncover the underlying biological mechanisms of these 

interactions (Halldorsdottir & Binder, 2017). 

 

One approach to explain more variability in psychiatric phenotypes is to investigate the potential 

molecular mechanisms underlying G × E interactions, for example, through the study of 

epigenetics (Heim & Binder, 2012). Coined by Conrad Waddington in the early 40’s, the term 

‘epigenetics’ was first used to describe the involvement of gene-environment interaction during 

development. The literal meaning of epigenetics is ‘on top of the genes’ and refers to stable and 

heritable changes in gene activity or expression without change in the DNA sequence (Jiang, 

Bressler, & Beaudet, 2004). Epigenetic modifications, acquired throughout the lifetime, include 

DNA methylation and hydroxymethylation of cytosines, post-translational histone modifications, 

and expression of non-coding RNAs (Jaenisch & Bird, 2003; Ptak & Petronis, 2010). The 

epigenotype encompasses the signature of these epigenetic marks across the genome. DNA 

methylation, that is the addition of a methyl group to a cytosine primarily at a cytosine-phosphate-

guanine (CpG) dinucleotide, is thus far the most accessible and widely studied epigenotype (Liu, 

Faraone, & Glatt, 2019). In general, DNA methylation disrupts binding of transcription factors 

and leads to transcriptional repression (Murgatroyd, Wu, Bockmuhl, & Spengler, 2010). 

 

In the last decade, different approaches have been used to explore DNA methylation in relation 

to environmental exposures in patients with severe mental illness through global methylation, 

candidate gene, and epigenome-wide studies (Pishva et al., 2014). These studies have supported 

the role of DNA methylation as an adaptive mechanism by which environment, especially early 

life adversities, can become “embedded” in the genome and have lasting effects that can become 

maladaptive and lead to psychopathology in adulthood (Matosin, Cruceanu, & Binder, 2017; 

Nöthling, Malan-Müller, Abrahams, Hemmings, & Seedat, 2019; Szyf, 2011; Szyf & Bick, 2013; 

Vinkers et al., 2015). However, considering the high cost of epigenotyping, limited studies have 

conducted hypothesis-free, epigenome-wide investigations, and few have investigated 

methylation signatures longitudinally. Moreover, few studies have focused specifically on DNA 

methylation signatures in individuals with bipolar disorder, especially in relation to non-traumatic 

stressful life events. Considering that epigenetic modifications are sensitive to environment, 

stable, and reversible, they hold promise to better understand and treat psychiatric disorders 

(Kular & Kular, 2018).  
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1.6 Exploring DNA methylation in the course of bipolar disorder: 

Introduction to Original Article 2 

 

Comes, A.L., Czamara, D., Adorjan, K., […], Falkai, P., Schulze, T.G., Heilbronner, U. (2020). The 
role of environmental stress and DNA methylation in the longitudinal course of bipolar 
disorder. Int J Bipolar Disord, 8(1), 9. doi:10.1186/s40345-019-0176-6. 

 

Evidence indicates an important association between stressful life events and age of onset and the 

clinical course of affective disorders (Aldinger & Schulze, 2017). However, there is still much to 

be understood regarding the underlying mechanisms associated with these consequences. While 

studies have focused on DNA methylation as a trait and state marker of bipolar disorder, as 

previously reviewed in detail (Ludwig & Dwivedi, 2016), little has been done to investigate the 

effects of environment on methylation in bipolar individuals (Perroud et al., 2016). 

 

The aim of Original Article 2 was to explore DNA methylation in association with self-reported 

stressful life events in a sample of bipolar patients from the PsyCourse study (Budde et al., 2019). 

Specifically, we determined the associations between DNA methylation and childhood trauma 

according to the Childhood Trauma Screener (Bernstein, Ahluvalia, Pogge, & Handelsman, 1997; 

Bernstein et al., 2003; Grabe et al., 2012), and impact ratings of positive and negative life events 

experienced in the last 6 months according to the Life Events Questionnaire (Norbeck, 1984; 

Sarason, Johnson, & Siegel, 1978). Whole blood samples from two time-points (1 year apart) 

were used to measure DNA methylation using the Infinium MethylationEPIC BeadChips from 

Illumina. First, we conducted a targeted analysis by interrogating CpG sites in the vicinity of 

candidate genes with established roles in the stress response, namely BDNF, OXTR, IL6, SLC6A4, 

and FKBP5. We then conducted an exploratory epigenome-wide association study (EWAS), 

taking into consideration the limited sample size of our study and therefore reducing our analyses 

to only the most variable CpG sites across the genome. Lastly, we explored epigenetic age-related 

measures (Horvath, 2013) in association with change in stress and symptom measures over time. 

 

To the best of our knowledge, our study was the first to describe epigenome-wide methylation 

signatures of bipolar patients over time and in association with non-traumatic stress. Although 

not a single locus withstood correction for multiple testing, methylation at a single CpG site was 

suggestively associated with stressful life events. This CpG falls in proximity to the POU6F2 

gene, which has been associated with several psychiatric traits (Anney et al., 2010; Goes et al., 

2015; Koshimizu et al., 2019; Nagel, Watanabe, Stringer, Posthuma, & van der Sluis, 2018) as 

well as educational attainment (Lee et al., 2018; Okbay et al., 2016), and intelligence (Davies et 
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al., 2018; Hill et al., 2018). The overlap in these findings highlights the importance of integrating 

and exploring data transdiagnostically to potentially uncover trends and perhaps shared 

mechanisms across different phenotypes. Additionally, DNA methylation in blood at this CpG 

site is correlated with methylation in the brain, and POU6F2 is highly expressed in brain tissue. 

At the current sample size, however, our study provided limited evidence of the role of DNA 

methylation in the course of bipolar disorder. Larger, longitudinal studies of well-characterized 

bipolar patients are warranted to better understand the role of epigenetics in the course of mood 

disorders. 

 

1.7 Where do we go from here? 

 

Our work took advantage of the unique longitudinal features of the PsyCourse cohort 

(www.PsyCourse.de) to explore the role of genetics, epigenetics, and environment in the course 

of severe mental illness. 

 

Our findings from Original Article 1 support the use of educational attainment polygenic scores 

to identify individuals who might be at greater risk of more severe cognitive impairments and 

consequently lower levels of functioning. Such information could one day be used to target earlier 

and perhaps more effective care for these individuals. This work also supports transdiagnostic 

approaches, showing that the genetic determinants of cognitive functioning were at least partially 

independent of disorder-specific risks. 

 

As samples continue to grow and become more diverse with the help of large collaborations like 

the PGC, PRSs will continue to be optimized allowing for more comprehensive genomic risk 

prediction profiles. Moreover, continued discovery of common SNPs with smaller effects will 

allow for PRSs that explain greater variance with increased precision (Liu et al., 2019). Future 

PRSs could also consider weighting and calibration, for example, incorporating linkage 

disequilibrium (LD) structure, and inclusion of other contributing factors like low-frequency and 

high-penetrance genetic variants, rare CNVs, epigenetics, and epistatic relationships between 

variants. Efforts are already being made towards improved PRSs (Ge, Chen, Ni, Feng, & Smoller, 

2019). With continued refinement of PRSs, they have potential to become a powerful tool with 

considerable clinical utility. Especially when paired with other data they could be used to assess 

the long-term prognosis of patients, subtype disease, and inform treatment response (Fullerton & 

Nurnberger, 2019). PRSs have already shown clinical utility in multimodal prediction models. 

For example, in the case of coronary heart disease, the addition of a PRS has been shown to 
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improve risk prediction relative to clinical risk predictors (Abraham et al., 2016). Furthermore, 

they have also proved to be useful for prediction in the case of type 1 diabetes, where a PRS could 

predict progression to type 1 diabetes in children with a family history of the disease (Redondo et 

al., 2018). Lastly, future studies should continue exploring endophenotypes with PRSs to uncover 

the level and functional significance of the genetic contributions of psychiatric disorders (Braff 

& Tamminga, 2016). 

 

Considering the important role of environment in risk for severe mental illness, epigenetic 

mechanisms are likely to be an important puzzle piece towards precision psychiatry. In Original 

Article 2, we conducted the first, longitudinal epigenome-wide profiling of DNA methylation in 

patients with bipolar disorder. Despite the clear limitation of sample size, our study took into 

consideration critical confounding factors like methylation-based smoking estimates that are often 

unaccounted for and lead to spurious findings in methylation studies. To gain power, beyond 

increasing sample size, future studies should reduce the noise of confounding factors, for example, 

by taking into consideration the disorder-specific, sex, age and genotype-dependent, and tissue-

specific nature of DNA methylation (Boks et al., 2015; Marzi et al., 2018; Mehta et al., 2017; 

Smith et al., 2011; Uddin et al., 2010; Vinkers et al., 2015). 

 

In the future, molecular phenotypes like epigenetics will continue to contribute to our 

understanding of disease mechanisms, especially when paired with other laboratory and clinical 

endpoints. In particular, functional research should be paired with epigenetic studies to better 

understand the role of epigenetic modifications in psychiatric disorders (Mill & Heijmans, 2013). 

Integrating -omics data like genomics, epigenomics, transcriptomics, and proteomics could lead 

to the “identification of novel ‘multidimensional’ markers and [to] reveal novel insight in the 

classification of complex diseases” (Comes et al., 2018).  

 

1.8 Conclusion 

 

Translational studies which integrate multiple levels of data, for example into biopsychosocial 

models, have potential to reveal novel insight into the etiology and inheritance of severe mental 

illness. Moreover, such studies have potential to eventually lead to a more valid diagnostic 

framework of psychiatric disease which could ultimately improve patient prognosis, diagnosis, 

and treatment. This thesis used approaches to identify mechanisms related to a worse course of 

disease within patients with severe mental illness. In doing so, we showed a genome-wide 

polygenic score for educational attainment could be used to explain variance within some of the 
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most impaired cognitive domains associated with psychiatric illness. We also reported 

longitudinal, epigenome-wide measures of methylation related to stressful life events in bipolar 

patients, which, to the best of our knowledge, is the first study of its kind. With improved 

methodology and the integration of data from genetic, epigenetic, and environmental studies, we 

will continue to pave the way towards precision medicine. Taking advantage of unique resources 

like the transdiagnostic, longitudinal, PsyCourse study will continue to be invaluable towards this 

cause. 
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Abstract
Cognitive deficits are a core feature of psychiatric disorders like schizophrenia and bipolar disorder. Evidence supports
a genome-wide polygenic score (GPS) for educational attainment (GPSEDU) can be used to explain variability in
cognitive performance. We aimed to identify different cognitive domains associated with GPSEDU in a transdiagnostic
clinical cohort of chronic psychiatric patients with known cognitive deficits. Bipolar and schizophrenia patients from
the PsyCourse cohort (N= 730; 43% female) were used. Likewise, we tested whether GPSs for schizophrenia (GPSSZ)
and bipolar disorder (GPSBD) were associated with cognitive outcomes. GPSEDU explained 1.5% of variance in the
backward verbal digit span, 1.9% in the number of correctly recalled words of the Verbal Learning and Memory Test,
and 1.1% in crystallized intelligence. These effects were robust to the influences of treatment and diagnosis. No
significant associations between GPSSZ or GPSBD with cognitive outcomes were found. Furthermore, these risk scores
did not confound the effect of GPSEDU on cognitive outcomes. GPSEDU explains a small fraction of cognitive
performance in adults with psychiatric disorders, specifically for domains related to linguistic learning and working
memory. Investigating such a proxy-phenotype longitudinally, could give intriguing insight into the disease course,
highlighting at what time genes play a more influential role on cognitive performance. Better understanding the
origin of these deficits might help identify those patients at risk for lower levels of functioning and poor social
outcomes. Polygenic estimates may in the future be part of predictive models for more personalized interventions.

Introduction
Cognitive deficits are a core and robust feature of psy-

chiatric disorders like bipolar disorder and schizophrenia,
present even during periods of remission1–3. These defi-
cits are key predictors of long-term functional and social
outcomes and are difficult to treat with current pharma-
ceutical options or behavioral interventions4–6.
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Considering the associated psychosocial burden and high
prevalence of these deficits among patients, psychiatric
researchers have put considerable effort towards under-
standing their underlying mechanisms. Thus far, genome-
wide association studies (GWAS) have provided evidence
supporting the polygenic architecture and remarkable
heritability of cognitive performance in population-based
cohorts7–10. Furthermore, evidence supports the pheno-
typic and genetic stability of individual cognitive differ-
ences across the lifetime in domains including executive
functioning, attention, and verbal memory11–14. As stu-
dies have shown evidence of impairments even in unaf-
fected first-degree relatives of individuals with psychiatric
disorders, cognitive deficits have been hypothesized as a
valuable endophenotype of interest for better under-
standing the genetic risk factors of psychiatric dis-
orders15–17.
Intelligence, encompassing cognition, is highly heritable

and an imperative predictor of occupational and health
outcomes18. Despite high heritability estimates of intelli-
gence, indicated to be up to 80% in adulthood19, unra-
veling the underlying genetic contribution of intelligence
differences using GWAS has been challenging and thus
far little of the observed heritability has been
explained11,20. To date, studies on intelligence have been
limited by insufficient sample sizes and further compli-
cated by the challenge of precise and reliable measure-
ments for this complex phenotype7–10,20. The latest
GWAS on intelligence identified 205 genomic loci
implicating up to 1016 genes, which explained approxi-
mately five percent of the variance in intelligence21.
Another large study reported a genome-wide polygenic
score (GPS) that could explain 4.3% of variance in general
cognitive function11.
Educational attainment is moderately heritable and has

been obtained as a demographic item in countless medical
datasets and for cohorts of which genetic data is avail-
able22. In the last decade, educational attainment has been
proposed as a proxy-phenotype for cognition, as it is
highly associated with intelligence both on a phenotypic
(0.50) and genetic level (0.65)18,20,23–26. Notably, GPS
based on GWAS summary statistics for years of education
predict more variance in intelligence than the phenotype
years of education per se18,25, reflecting the substantial
genetic correlation between both phenotypes. The largest
GWAS of educational attainment published to date, based
on 1.1 million individuals, identified 1271 lead single
nucleotide polymorphisms (SNPs)22. Through a multi-
phenotype analysis of educational attainment and three
cognitive phenotypes, the authors were able to generate a
GPS which explained 7–10% of variance in cognitive
performance in the general population. The SNPs iden-
tified implicated genes involved in neurodevelopmental
processes and neuron-to-neuron communication22. The

authors showed that the use of educational attainment as
a proxy-phenotype could uncover genetic variants to be
used as a set of “empirically-based candidate genes” for
future studies, for example testing associations with
important endophenotypes like cognition27.
Studies have already demonstrated an important asso-

ciation of educational attainment GPS (GPSEDU) with
cognitive performance, showing that, in a general popu-
lation, a higher GPS is associated with higher performance
on neurocognitive tests28. However, limited evidence
exists supporting this association in patients with known
cognitive deficits29,30, and there remains a need to inves-
tigate this association across different cognitive domains.
Here we analyzed whether GPSEDU could be used to
explain variability in different cognitive domains in
chronic patients with schizophrenia and bipolar disorder
from the PsyCourse cohort31. This transdiagnostic
approach aligns with the growing evidence for dimen-
sional models that cut across diagnostic categories in
psychiatry and is supported by the large cognitive, clinical
and genetic overlaps between both disorders32,33. Parti-
cularly, the genetic overlap between both disorders has
been firmly established by heritability estimates derived
from population-based multi-generation registers34 and
by recent molecular studies that have reported an out-
standing genetic correlation (rg= 0.70 ± 0.02)35.
Considering the positive genetic correlations reported

between education and both schizophrenia (rg= 0.10) and
bipolar risk (rg= 0.28)36, we further assessed how GPSs
for both schizophrenia (GPSSZ) and bipolar disorder
(GPSBD) were associated with cognitive performance in
our sample.

Materials & methods
Participants
Data were used from the multicenter, PsyCourse study

in Germany and Austria, consisting of participants of
European ancestry (www.PsyCourse.de)31. Participants
were phenotyped using a comprehensive battery including
data on socio-demographics, psychopathology, cognition,
and functioning assessed at each of four visits (6-month
intervals). Recruitment strategies and characterization of
all participants has been previously described in detail31.
The sample selected for this project comprised a total of
730 participants with a DSM-IV37 diagnosis of schizo-
phrenia, schizoaffective disorder, or bipolar disorder (type
I or II). Additionally, cognitive data available from 320
nonclinical (control) participants was used to give an
orientation to the range of phenotypic data available in
the PsyCourse cohort and to confirm general, well-
replicated findings of lower cognitive performance in
patients with psychiatric disorders compared to healthy
controls. The study was approved by the local ethics
committee for each study center and was carried out
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following the rules of the Declaration of Helsinki. All
individuals provided written informed consent as pre-
viously described31.

Psychopathology psychometric instrument
The Positive and Negative Syndrome Scale (PANSS) is a

clinical instrument used to measure symptom severity in
schizophrenia and routinely used to assess a variety of
disorders including bipolar disorder38. A continuous, total
score of the three subscales, i.e., positive (e.g., hallucina-
tions and delusions), negative (e.g., emotional withdrawal
and blunted affect), and general symptoms (e.g., somatic
concern and poor attention) was used as an indication of
disease severity at the time of testing.

Cognitive performance psychometric instruments
Cognitive tests were administered at each study visit.

The Verbal Learning and Memory Test (VLMT) was
introduced at visit 2. For all other cognitive measures,
scores from visit 1 were used for analyses.

Crystallized intelligence
The MWT–B (Mehrfachwahl–Wortschatz–Intelligenz

test) was used to measure crystallized intelligence39,40. In
this test, subjects were presented with 37 sets of five
words arranged according to the level of difficulty. Four
words of each set were fictitious constructions of known
vernacular (i.e., they do not exist in the German lan-
guage), while one word really exists. Subjects were asked
to cross out the word they know to exist. The total
number of correctly marked lines was used as a score40.

Trail-Making-Test (TMT)
The TMT is a measure of visual attention and task

switching and is one of several executive functioning
measures. The test consists of two parts, part A assesses
psychomotor speed of the participant, and part B assesses
switching between two automated tasks (counting and
reciting the alphabet). The time taken to complete each
part of the test was measured and the difference in time
needed (part B-part A) was used, as it is considered a
more accurate measure of the divided attention and
alternating sequencing tasks tested in part B41–43. In this
case, a higher score meant worse cognitive performance.

Verbal digit span
The verbal digit span, from the Wechsler Adult Intel-

ligence Scale, assesses short-term (forward digit-span) and
working memory capacity (backward digit-span). Briefly,
participants were asked to recall verbally a sequence of
digits, with increasingly longer sequences in each trial. For
each correctly recalled string of digits, one point was
given. The test was ended when the participant was
unable to correctly repeat two presented strings of the

same length. The difference between the forward and
backward task is that the latter involves mental manip-
ulation as the participant is required to repeat the digits in
backward order44. A score for each task was considered.

Digit-Symbol-Test (DST)
The DST is a subset of the Wechsler Adult Intelligence

Scale45 and measures processing speed, working memory,
visuospatial processing and attention. In this test, the
participant was asked to use a key of numbers 1–9 with
coinciding symbols to draw the appropriate symbol that
matched the number given. The participant was given
120 s to fill in as many corresponding symbols as possible.
In the end, the correct number of symbols drawn was
totaled to get an overall score.

Verbal Learning and Memory Test (VLMT)
The VLMT is the German version of the Auditory

Verbal Learning Test46. This word-list learning paradigm
assesses several memory parameters through serial list
learning with subsequent distraction, retrieval after dis-
traction and half-hour time delay, and through a recog-
nition task. The test consists of two different word lists
which are each 15 independent words and a recognition
list which includes 30 words from the two lists and
20 similar distractor words. Four VLMT scores were
rated, the first for the number of correctly recalled words
from the first list, a second score for the number of words
lost after distraction, a third score of words lost after a
time interval, and a fourth score of correctly recalled
words from the recognition list47.

Biological samples
Peripheral blood samples were used for DNA extraction

using standard techniques. DNA samples were then used
to genotype patients for calculation of GPSs. Genotype
data for controls was not available at the time of this
investigation and they have not been used for GPS
analyses.

GPS estimation
DNA samples were genotyped using the Infinium Psy-

chArray Beadchip (Psychip, Illumina, San Diego, CA,
USA). Following standard quality control procedures,
imputation was performed using the 1000 Genomes Phase
3 reference panel as previously described in detail31,48.
GPSs were calculated for all individuals using PLINK
1.90b5.349. Summary statistics for educational attainment
were obtained from the Social Science Genetic Associa-
tion Consortium (https://www.thessgac.org/data)22.
These summary stats are derived from analyses excluding
23andMe samples. Summary statistics from the most
recent Psychiatric Genomics Consortium GWASs for
schizophrenia50 and bipolar disorder51 were used. All
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GPSs were calculated based on summary statistics from
the discovery datasets, excluding low quality imputed
variants (info score < 80%) in the test dataset, rare SNPs
(minor allele frequency < 0.05), and ambiguous markers
(A/T and C/G). Following the methodology of previous
studies52, SNPs in the extended major histocompatibility
complex region (chromosome 6: 25–34Mbp) were com-
pletely excluded for the calculation of GPSEDU while only
the top-associated SNP in this region was included for the
calculations of GPSSZ and GPSBD. Data was clumped in
windows of 500 kbp, discarding variants in LD (R2 > .1)
with another more significantly associated marker.
GPSs were then calculated by multiplying the imputa-

tion dosage for each risk allele by the log(OR) of each
genetic variant. The resulting values were summed to
obtain an individual estimate of the genetic burden in
each individual across different SNP p-value thresholds
(pT). Scores for GPSSZ and GPSBD were calculated based
on best discrimination thresholds according to previous
findings, i.e., pT < 0.05

50 and pT < 0.01
51, respectively.

GPSEDU was calculated at four different p-value thresh-
olds, from including only genome-wide significant SNPs
to inclusion of all SNPs: pT < 5 × 10−8, 0.05, 0.1, and 1. All
GPSs were approximately normally distributed and stan-
dardized via z-score transformation.

Statistical analyses
Sample characteristics
As proof of concept, the effect of case status on cog-

nitive performance was investigated using participants
from the PsyCourse cohort. Visual inspection of boxplots
comparing case versus control scores was performed and
the effect of case status on cognitive domains was further
determined through linear regression models, adjusting
for age and sex. Socio-demographic and clinical char-
acteristics were tested for between-group differences
using the independent sample t-test for continuous data
and Pearson’s chi-squared tests for categorical variables.
As an additional validation analysis, we investigated the
relationship between GPSEDU and educational attainment
in our sample using ordinal logistic regression, adjusting
for age, sex, the interaction between age and sex, and the
first 10 PCs, according to previous work22. All analyses
were performed using R statistical software version
3.4.053. An initial examination of the distributions of raw
cognitive scores was performed to identify and exclude
outliers based on Tukey’s definition (removal of values
beyond 3× the interquartile range)54.

GPS analyses of cognitive performance
The effect of GPSEDU on cognitive performance of cases

was explored. Blockwise linear regression models were
used to estimate the amount of variation in cognitive
performance explained by the z-standardized GPSEDU at

the four thresholds previously described. For each cog-
nitive outcome, all base models were adjusted for con-
founding variables measured at the time of testing, i.e.,
age, age2, sex, in/outpatient status, study center, and
PANSS sum scores. Although our participants are chronic
patients, duration of illness was considered an important
covariate which could confound our results. However, as
duration of illness proved to be well correlated with age
(r= 0.53), ultimately only age was kept in the models. To
guard against population stratification, the first 20
ancestry principal components (PCs) were included in our
models and selected for each cognitive outcome tested
using backward model selection (p < 0.05)55. The sig-
nificant PCs were as follows: PCs 12 and 17 for the Verbal
digit span (forward task); PC 7 for the DST; PCs 1 and 18
for the MWT-B; PCs 1 and 5 for the VLMT- loss of words
after time; and PC 16 for the VLMT- correctly recognized
words. No significant PCs were found for the other cog-
nitive outcomes. For each cognitive outcome of interest,
we measured the incremental adjusted-R2, that is the gain
in the coefficient of determination when the GPSEDU was
added as covariate to the regression model for each
phenotype (cognition score) on a set of baseline covari-
ates. Multiple testing was corrected for using the False
Discovery Rate (FDR) method correcting for the polygenic
profiles at all four thresholds and for all phenotypes
investigated. Visual inspection of the residuals for each
model was performed to be sure the requirement of
normally distributed model residuals had been fulfilled.

GPS analyses of schizophrenia and bipolar disorder
Using blockwise linear regression models as described

above, we tested whether polygenic scores for schizo-
phrenia and bipolar disorder influenced cognitive out-
comes. This was tested for both the GPSSZ and GPSBD
separately. We then determined how the genetic risk for
schizophrenia and bipolar disorder influenced the effect of
GPSEDU on cognitive outcomes. Both scores were inclu-
ded (separately) in those models in which GPSEDU was
significantly associated with the cognitive outcome tested.

Additional analyses
Post hoc analyses were performed to determine the

robustness of our findings when correcting for diagnosis
(bipolar-I disorder, bipolar-II disorder, schizophrenia, or
schizoaffective disorder) and medication (number of
antipsychotics, antidepressants, mood stabilizers, and
tranquilizers at time of assessment). Furthermore, taking
into consideration the significant correlation between
memory and crystallized intelligence56, we performed a
mediation analysis introducing the DST and VLMT
(number of correctly recalled words) as covariates in our
model testing the association between GPSEDU (pT < 1)
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and crystallized intelligence. Multicollinearity diagnostics
were performed.

Results
A description of socio-demographic variables for par-

ticipants is presented in Table 1. Seven-hundred and
thirty patients with schizophrenia and bipolar disorder
were used for analyses. The mean age of these participants
was 43.19 years, the majority of which were male. The
majority of cases (46.2%) were diagnosed with schizo-
phrenia, 10.0% were schizoaffective, 35.1% were bipolar-I
patients and 8.7% were bipolar-II patients. During base-
line visits, 47.7% of patients were being treated as day/
inpatients.

The correlations between cognitive domains were
assessed (Supplementary Fig. 1). Boxplots depicting case
versus control performance across all cognitive domains
are shown in Supplementary Fig. 2. Investigation of linear
models to test the effect of case status on cognitive per-
formance, after adjusting for age and sex, showed a sig-
nificant effect in the direction expected, i.e., a decreased
performance for cases (Supplementary Table 1). Educa-
tional attainment was significantly associated with GPSEDU
in the direction expected (Supplementary Table 2).
Our investigation of the effect of GPSEDU (pT < 1) on

cognitive performance in patients resulted in a significant
increase in Nagelkerke’s R2 of 1.5% for the verbal digit
span (backward; Fig. 1a), 1.9% for the VLMT number of

Table 1 Sample characteristics

Cases (n= 730)b Controls (n= 320)b Test statistic Degrees of freedom (df) p-value

Age at baseline 43.19 (13.01) 37.53 (15.83) 5.62 516.11 <0.001

Sex 24.22 1 <0.001

Male 414 (56.7) 128 (40.0)

Diagnosis N/A N/A N/A N/A

Schizophrenia 337 (46.2)

Schizoaffective 73 (10.0)

Bipolar-I disorder 256 (35.1)

Bipolar-II disorder 64 (8.7)

Educationa 154.11 6 <0.001

0 10 (1.4) 0 (0.0)

1 46 (6.3) 2 (0.6)

2 146 (20.0) 8 (2.5)

3 179 (24.5) 98 (30.6)

4 130 (17.8) 31 (9.7)

5 87 (11.9) 35 (10.9)

6 114 (15.6) 142 (44.4)

Missing 18 (2.5) 4 (1.3)

Duration of illness 12.93 (10.81) N/A N/A N/A N/A

Baseline treatment N/A N/A N/A N/A

None 23 (3.2)

Outpatient 355 (48.6)

Day patient 38 (5.2)

Inpatient 310 (42.5)

Missing 4 (0.5)

aThe PsyCourse study measures status in the German educational system in detail. In order to make the German educational system comparable to English-speaking
systems information on specialized schools, high school and professional education in Germany have been combined to form an ordinal educational scale with “6”
being the highest level of education obtained
bAge and duration of illness have been reported as mean (standard deviation), while all other categorical variables have been reported as n (%). A t-test was used for
comparison of mean age and X2-tests were used for all categorical comparisons
Socio-demographic information of participants
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correctly recalled words (Fig. 1b) and 1.1% for crystallized
intelligence (Fig. 1c). With more stringent p-value
thresholds used, i.e., the inclusion of less SNPs, the change
in adjusted-R2 decreased. For the verbal digit span
(backward) and the VLMT, the GPSEDU based on the

p-value thresholds pT < 0.05, 0.1, and <1 were significant
(FDR-adjusted p < 0.05; Supplementary Table 3). The
score was significant at all p-value thresholds for crys-
tallized intelligence (FDR-adjusted p < 0.05). The exam-
ination of model residuals via quantile–quantile (QQ)
plots did not show any extreme deviation from normality
(Supplementary Figs. 3–5). Further inspection of model
residuals against GPSEDU quartiles showed evidence of
increased performance on all three domains with
increased GPSEDU scores (Fig. 2). Our results remained
robust after correcting for medication (Supplementary
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Fig. 1 Effect of genome-wide polygenic risk scores for
educational attainment (GPSEDU) on cognitive performance
(Significant p-value thresholds were labeled with an Asterix (* p <
0.05)). a Change in adjusted-R2 after inclusion of GPSEDU in the verbal
digit span (backward) model. Baseline model: Adjusted-R2 0.109; FDR-
corrected p-values for p-value threshold pT < 5 × 10−8 to 1: 0.050,
0.021, 0.021, 0.021. b Change in adjusted-R2 after inclusion of GPSEDU
in VLMT (number of correctly recalled words) model. Baseline model:
Adjusted-R2 0.224; FDR-corrected p-values for p-value threshold pT <
5 × 10−8 to 1: 0.653, 0.045, 0.025, 0.021. c Change in adjusted-R2 after
inclusion of GPSEDU in crystallized intelligence (MWT-B) model.
Baseline model: Adjusted-R2 0.214; FDR-corrected p-values for p-value
threshold pT < 5 × 10−8 to 1: 0.030, 0.031, 0.021, 0.021

Fig. 2 Cognitive performance model residuals plotted against
quartiles of genome-wide polygenic risk score for educational
attainment (GPSEDU). a A trend is seen for increased verbal digit span
performance with increased load of GPSEDU. b A trend is seen for
increased VLMT performance with increased load of GPSEDU. c A trend
is seen for increased MWT-B performance with increased load of
GPSEDU
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Table 4) and diagnosis (Supplementary Table 5). Fur-
thermore, our mediation analysis supports a robust
association between GPSEDU and crystallized intelligence
that is not mediated by memory parameters (GPSEDU p <
0.05; change in adjusted-R2= 0.0091).
No significant associations between cognitive outcomes

and polygenic scores for schizophrenia or bipolar disorder
were observed (Supplementary Table 6). Furthermore,
neither risk score influenced the significant effects of
GPSEDU on the three cognitive domains reported above
(Supplementary Table 7). Multicollinearity diagnostics
showed no issues of collinearity in our regression analysis
(variance inflation factor <5 for all independent variables).

Discussion
Our study aimed to identify the influence of GPSEDU on

several cognitive domains in a transdiagnostic cohort of
psychiatric patients. Confirming results of previous
research, patients with bipolar disorder and schizophrenia
in the PsyCourse cohort performed worse on tests of
neurocognitive functioning in comparison to nonclinical
controls. In patients, we observed a significant improve-
ment in prediction of cognitive performance with inclu-
sion of GPSEDU for the backward verbal digit span, VLMT
(correctly recalled words), and for crystallized intelligence.
These findings confirm the ability of GPSEDU to explain
variability in linguistic cognitive performance related to
working memory and learning in patients with known
cognitive deficits. Furthermore, our findings show that
cognitive performance measured for these domains were
associated with the genetic underpinnings of GPSEDU and
not confounded by or associated with GPSSZ or GPSBD.
Previous studies have investigated the association

between cognitive performance and GPSEDU using sum-
mary statistics from an earlier GWAS on educational
attainment by Okbay et al.24. Our findings compliment
earlier evidence supporting an association between cog-
nitive performance and educational attainment, but not
schizophrenia genetic risk, in clinical patients. For
example, a study by Shafee et al. compared the effect of
GPSSZ on three cognitive phenotypes i.e. general cognitive
function, premorbid intellectual potential, and years of
education completed30. The authors found that among
healthy individuals, GPSSZ was significantly associated
with lower general cognitive functioning, however, found
no association between GPSSZ with any cognitive phe-
notype in patients with psychosis. Furthermore, the
authors found significant positive correlations between
GPSEDU and both educational attainment and premorbid
intelligence in patients with and without psychosis.
Another study by Bansal et al. showed GPSEDU could
predict 2.09% of variance in premorbid IQ in a large
schizophrenia sample29. Our findings support earlier
suggestions that different cognitive phenotypes vary in

their etiologic relationship with schizophrenia and in their
genetic overlap with educational attainment30. Further-
more, our findings are in line with evidence from the first
educational attainment GWAS of 126,559 individuals
which identified variants which implicated genes
(including BSN, GBX2, LRRN2, and PIK3C2B) linked to
processes such as learning and long-term memory27.
These findings are especially interesting given that
learning and working memory are among some of the
most impaired cognitive process for patients with psy-
chiatric disorders57.
While a polygenic score for educational attainment in

the general population explained 7–10% of variance in
cognitive performance, the score explained at most ~2%
in our transdiagnostic cohort22. It is difficult to determine
whether the smaller effect in our cohort was the result of a
different phenotype being measured, i.e., specific cognitive
domains and not a composite score, or whether this might
reflect the cognitive performance of this unique, trans-
diagnostic sample being related to other complex genetic-
environmental factors. Clearly, future investigations
looking at other measures of cognition in large cohorts
are warranted. Confounding variables such as acute
symptoms may also contribute to the lack of variability
explained in this case, although we have tried to capture
this by controlling for current in/outpatient status and
symptom severity. Furthermore, although based on big
samples, polygenic scores “may not be sufficiently pow-
erful to capture signs of disrupted neurodevelopment” in
these patients as they exclude rare copy number variations
and deleterious exonic mutations which may have
important consequences52.
On both a phenotypic and genetic level, intelligence has

been associated with psychiatric disorders. For example,
individuals with a level of intelligence one standard
deviation below the mean, have ~60% higher risk of
hospitalization for schizophrenia58. There is also evidence
supporting an association between poorer school perfor-
mance and higher risk for schizophrenia52. In addition,
several longitudinal studies have linked deficits in pre-
morbid IQ with subsequent schizophrenia development,
which was also shown for mood disorders52,59. The evi-
dence, however, linking intelligence and affective dis-
orders has been more inconsistent. For example, bipolar
disorder has been associated with higher childhood IQ
and an increased genetic risk of bipolar disorder has been
associated with creativity and higher education60–62.
However, no such associations have been reported by
studies of adolescent or adult IQ60. Nevertheless, there are
known genetic variants influencing both intelligence and
psychiatric disorders which, in part, explain the pheno-
typic link between intelligence and these disorders58.
We investigated the potential influence of GPSSZ and

GPSBD on cognitive performance. These relationships
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seem to be complex and while the genetic overlap
between schizophrenia susceptibility with cognitive per-
formance has been widely investigated in the literature
with conflicting findings, less has been done in bipolar
disorder8,63–65. The lack of an association observed
between either the GPSSZ or GPSBD with cognitive per-
formance in our study emphasizes several issues inherent
to these types of investigations. The first is that GPSEDU is
based on a much larger discovery sample than GPSSZ and
GPSBD, meaning GPSEDU had higher statistical power to
capture smaller effect sizes and more accurate estimates
for single SNPs of which the score is based on. Presuming
the most optimistic estimate for variance explained in
cognitive performance by the GPSSZ of 1.6% that has
previously been reported8, a sample of ~500 participants
would be required to drive the effect of schizophrenia
genetic risk scores on cognitive performance. However,
given a more conservative estimate of 0.3%66 variance
explained, a sample size of over 2 600 participants would
be required, suggesting that power may indeed be an issue
in our study (Supplementary Fig. 6). This is also true with
regards to GPSBD in which genetic effects are likely to be
at least as subtle. This again highlights the value of ana-
lyzing a proxy-phenotype such as educational attainment.
The second issue is in relation to the cognitive domains

that were analyzed. As studies often use different cogni-
tive tests from the wide variety that are available, it could
be that the genetic risk of schizophrenia and bipolar dis-
order are more closely linked to domains that went
unmeasured in our study. Perhaps if we had used a
composite score across all domains or different neuro-
cognitive tests in general, a significant effect would have
been observed. Unfortunately, due to the longitudinal
nature of our study which led to missing data across the
different cognitive outcomes tested, a composite score
analysis with adequate power was not feasible.
Our findings should be considered in light of a few

limitations. The first is that our patients represent a
chronic sample of heterogeneously treated patients. As
these patients have been prescribed a wide range of
medications at different dosages, correcting for the pos-
sible influence of medication is not an easy task. Not
knowing how different drugs might interact with or
influence cognition throughout the course of the disorder
is a limitation that always must be considered in psy-
chiatric research, and this problem has yet to have a
perfect solution. A second limitation of our study is
generalizability considering we investigated raw scores for
several cognitive domains. As mentioned above, one of
the major issues in the field at this time is the complexity
in measuring this phenotype and with a plethora of tests
that can be used, it is difficult to say how generalizable our
findings are to other cognitive tests within the same
cognitive domain in different cohorts. For example, while

crystallized intelligence was measured, our study failed to
consider fluid intelligence which has a higher heritability
component than crystallized intelligence67. It is also
important to note that while executive functions are
related, they are also diverse68. While the TMT used in
our study is a measure of task switching, other executive
functions like the updating process of working memory
and inhibition should be explored. Lastly, we must
acknowledge that our study has only assessed linguistic
memory and not visuospatial memory. As these are two
unique types of memory69, future investigations are war-
ranted to determine how the two might differ in asso-
ciation with GPSEDU.
Although remarkable heterogeneity of cognitive deficits

exists among individuals with psychiatric disorders, in
general these deficits are, by a moderate degree, less
severe in chronic bipolar patients in comparison to
chronic schizophrenia patients. Furthermore, the trajec-
tories of these impairments are quite different70. Often,
cognitive deficits are apparent before the onset of disease
in individuals with schizophrenia71. Approximately 70% of
bipolar patients exhibit cognitive deficits, especially rela-
ted to verbal memory and attention57, which often man-
ifest in young adults60. Despite these known differences
for bipolar disorder and schizophrenia, we did not observe
a significant effect of diagnosis on the effect of GPSEDU
related to cognitive performance. These diagnostic dif-
ferences were most likely captured by the PANSS sum
scores included in our models, which was highly sig-
nificant. Evidence also supports an increase in the heri-
table component of intelligence with age72. Considering
this knowledge, future studies, longitudinal in design,
would be highly beneficial. It would be intriguing to see
how the polygenic score for educational attainment can
explain variability in cognitive performance throughout
the course of the disorder. While our sample consisted of
chronic mid-aged patients in which cognitive perfor-
mance was rather stable across visits, it would be valuable
to investigate younger cohorts of patients, even before the
onset of disease, to determine how instability in cognitive
performance throughout the disease course might influ-
ence the association between GPSEDU and cognition. This
would help determine at which points the underlying
genetic components are most influential and help identify
at which periods environmental influences might be more
prominent in determining cognitive abilities.

Conclusions
Identifying a genetic component related to distinct

neurocognitive profiles has potential to identify a more
burdened subgroup of patients that in turn might be at
risk for lower levels of functioning and poor social out-
comes. This sort of information targets patients for more
personalized interventions73,74. Here we have explained
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only a small fraction of variance in cognitive performance
in patients with psychiatric disorders using the genetic
variants associated with educational attainment. These
findings highlight the importance of other uncaptured
environmental exposures that have major influences on
cognitive abilities and ultimately levels of functioning in
these patients. Future studies, over the course of the
disorder, would be informative to determine how this
association changes over time, and at which periods
environment may play the most influential role60. Fur-
thermore, future studies should factor in the complex
pleiotropic relationships between these traits to generate
enhanced polygenic scores to further clarify their genetic
architecture75. Moreover, hypothesis-based polygenic
scores could help uncover biological pathways related to
cognitive performance.
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Figure S1. Pairwise correlations between cognitive outcomes in cases only. Shown are Pearson 

correlation coefficients, insignificant correlations labeled with “X” (uncorrected p > 0.05). Note: 

DgtSp_bck – Verbal digit span (backwards task); DgtSp_frw – Verbal digit span (forwards task); 

DgSym – Digit symbol test; TMT – TMT reaction time difference; VLMT_corr – VLMT number of 

correctly recalled words; VLMT_lssT – VLMT loss of recalled words after time; VLMT_lssD – VLMT 

loss of recalled words after distraction; VLMT_rec – VLMT number of correctly recognized words 
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Figure S2. Boxplots depicting the distribution of cognitive performance for cases and controls 

across all cognitive domains. A. Verbal digit span, forward task score B.  Verbal digit span, 

backward task score C. Digit symbol test, number of correct symbols D. MWT-B score E. Trail-

Making-Test (TMT), difference in reaction time (TMT B-TMT A) F.  Verbal Learning and Memory 

Test (VLMT): number of correctly recalled words G. VLMT: number of words lost after time H. 

VLMT: number of words lost after distraction I.  VLMT: number of correctly recognized word
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Table S1. The effect of case status on cognitive performance 

Outcome Cases 
mean (sd) 

Controls 
mean (sd) 

Estimate Std. 
Error 

T-
value 

p-value 

Visit 1       

TMT reaction time 
difference 

47.78 (24.80) 32.10 (17.91) -12.55 1.49 -8.43 < 2.00×10-16 *** 

Digit symbol test 56.37 (15.79) 79.03 (15.91) 18.39 1.03 17.86 < 2.00×10-16 *** 

Verbal digit span 
backwards task 

5.72 (1.95) 7.25 (2.14) 1.40 0.14 9.87 < 2.00×10-16 *** 

Verbal digit span forwards 
task 

9.01 (1.94) 10.32 (2.06) 1.18 0.15 8.15 1.13×10-15 *** 

MWT-B (crystallized 
intelligence) 

28.34 (4.56) 29.63 (3.61) 1.67 0.33 5.05 5.90×10-7 *** 

Visit 2       

VLMT: correctly recalled 
words 

44.99 (11.57) 56.35 (9.24) 8.87 0.83 10.70 < 2×10-16 *** 

VLMT: loss of words after 
time 

2.21 (2.01) 1.22 (1.77) -0.80 0.16 -5.02 6.81×10-07 *** 

VLMT: loss of words after 
distraction 

2.07 (1.82) 1.26 (1.65) -0.66 0.15 -4.41  1.21×10-05 *** 

VLMT: correctly recognized 
words 

11.28 (3.46) 13.44 (2.13) 1.45   0.23   6.20 1.06×10-09 *** 

Note: Effect estimates and associated standard errors, T-values and p-values adjusted for age and sex 
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Table S2. The effect of GPSEDU quartile on level of educational attainment in cases, adjusting 

for age, sex, the interaction between age and sex, and the first 10 principle components 
 

Proportional odds ratio 95% CI p-value 

GPSEDU quartile 2 1.478 1.013 - 2.159 0.043* 

GPSEDU quartile 3 1.794 1.237 - 2.606 0.002* 

GPSEDU quartile 4 2.495 1.706 - 3.657 2.56×10-6*** 

Age (years) 0.866 0.695 - 1.078 0.200 

Sex (male) 0.728 0.555 - 0.956 0.022* 

PC1 1.138 1.002 - 1.303 0.046* 

PC2 1.137 0.995 - 1.300 0.057 

PC3 0.910 0.787 - 1.048 0.192 

PC4 1.005 0.857 - 1.174 0.952 

PC4 0.957 0.810 - 1.110 0.571 

PC6 1.101 0.960 - 1.263 0.169 

PC7 0.970 0.850 - 1.107 0.653 

PC8 0.896 0.785 - 1.022 0.102 

PC9 0.981 0.859 - 1.120 0.778 

PC10 1.003 0.882 - 1.141 0.959 

Age (years):Sex (M) 1.952 1.473 - 2.590 3.36×10-6*** 

* p < 0.05 ** p < 0.005 *** p < 0.005 
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Table S3. Effect of GPSEDU on cognitive performance models adjusted for age, age2, sex, 

in/outpatient status, center, PANSS sum scores, principle components 

Model 
GPS  
p-value
threshold

p-value
FDR 
corrected 
p-value

Base 
model 
adjusted 
R2

Adjusted R2 
after 
GPSEDU

inclusion 

Visit 1 

V1: Verbal digit span backwards task 0.109 

1 0.001 0.021 0.124 
0.1 0.002 0.021 0.122 
0.05 0.004 0.021 0.121 
5×10-8 0.015 0.050 0.117 

V1: Verbal digit span forwards task 0.066 

1 0.477 0.553 0.066 
0.1 0.313 0.470 0.066 
0.05 0.384 0.522 0.065 
5×10-8 0.435 0.553 0.065 

V1: Digit symbol test 0.292 

1 0.206 0.417 0.293 
0.1 0.241 0.429 0.293 
0.05 0.469 0.553 0.292 
5×10-8 0.765 0.787 0.291 

V1: MWT-B 0.214 

1 0.003 0.021 0.225 
0.1 0.003 0.021 0.225 
0.05 0.008 0.030 0.223 
5×10-8 0.007 0.030 0.224 

V1: TMT B-TMT A 0.091 

1 0.454 0.464 0.091 
0.1 0.611 0.417 0.090 
0.05 0.560 0.417 0.090 
5×10-8 0.391 0.417 0.091 

V2: VLMT correctly recalled words 0.224 

1 0.002 0.021 0.243 
0.1 0.005 0.025 0.239 
0.05 0.013 0.045 0.235 
5×10-8 0.617 0.652 0.222 

V2: VLMT loss of words after time 0.050 

1 0.283 0.463 0.050 
0.1 0.3075 0.522 0.049 
0.05 0.296 0.464 0.050 
5×10-8 0.193 0.417 0.052 

V2: VLMT loss of words after 
distraction 

0.015 

1 0.199 0.417 0.017 
0.1 0.220 0.417 0.017 
0.05 0.187 0.417 0.017 
5×10-8 0.035 0.104 0.025 

V2: VLMT correctly recognized words 
0.142 

1 0.199 0.417 0.144 
0.1 0.210 0.417 0.144 
0.05 0.250 0.429 0.143 
5×10-8 0.936 0.936 0.139 
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Figure S3. QQ plot for visual inspection of normality of model residuals – Visit 1 verbal digit 

span backward model 
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Figure S4. QQ plot for visual inspection of normality of residuals- Visit 2 VLMT correctly 

recalled words model 
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Figure S5. QQ plot for visual inspection of normality of residuals- Visit 1 MWT-B (crystallized 

intelligence) model 
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Table S4. Effect of GPSEDU on cognitive performance models adjusted for age, age2, sex, 

in/outpatient status, center, PANSS sum scores, principle components, and medication 

Model 
GPS 
p-value
threshold

p-value
FDR 
corrected 
p-value

Base 
model 
adjusted 
R2 

Adjusted 
R2 after 
GPSEDU 

inclusion 

V1: Verbal digit span backwards task 0.109 

1 0.001 0.010 0.124 
0.1 0.002 0.010 0.123 
0.05 0.003 0.014 0.121 
5×10-8 0.012 0.041 0.117 

V1: Verbal digit span forwards task 0.066 

1 0.387 0.478 0.066 
0.1 0.242 0.396 0.067 
0.05 0.300  0.446 0.066 
5×10-8 0.390 0.478 0.066 

V1: Digit symbol test 0.301 

1 0.184 0.346 0.302 
0.1 0.202 0.346 0.302 
0.05 0.398 0.478 0.301 
5×10-8 0.747 0.767 0.300 

V1: MWT-B 0.213 

1 0.001 0.010 0.226 
0.1 0.002 0.010 0.226 
0.05 0.004 0.015 0.224 
5×10-8 0.006 0.020 0.223 

V1: TMT B-TMT A 0.098 

1 0.526 0.592 0.097 
0.1 0.680 0.720 0.097 
0.05 0.623 0.680 0.097 
5×10-8 0.388 0.478 0.098 

V2: VLMT correctly recalled words 0.253 

1 0.001 0.010 0.276 
0.1 0.001 0.010 0.273 
0.05 0.004 0.015 0.269 
5×10-8 0.465 0.540 0.252 

V2: VLMT loss of words after time 0.046 

1 0.290 0.446 0.047 
0.1 0.391 0.478 0.046 
0.05 0.310 0.446 0.046 
5×10-8 0.141 0.338 0.050 

V2: VLMT loss of words after 
distraction 

0.014 

1 0.182 0.346 0.016 
0.1 0.196 0.346 0.016 
0.05 0.166 0.346 0.017 
5×10-8 0.022 0.066 0.027 

V2: VLMT correctly recognized words 0.148 

1 0.125 0.321 0.152 
0.1 0.125 0.321 0.152 
0.05 0.151 0.340 0.151 
5×10-8 0.859 0.859 0.146 
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Table S5. Effect of GPSEDU on cognitive performance models adjusted for age, age2, sex, 

in/outpatient status, center, PANSS sum scores, principle components, and diagnosis 

Model 
GPS  
p-value
threshold

p-
value 

FDR 
corrected 
p-value

Base 
model 
adjusted R2

Adjusted R2 
after GPSEDU

inclusion 

V1: Verbal digit span backwards task 0.106 

1 0.001 0.018 0.121 
0.1 0.002 0.018 0.119 
0.05 0.003 0.018 0.118 
5×10-8 0.015 0.050 0.114 

V1: Verbal digit span forwards task 0.071 

1 0.419 0.525 0.070 
0.1 0.262 0.450 0.071 
0.05 0.342 0.492 0.071 
5×10-8 0.365 0.506 0.071 

V1: Digit symbol test 0.302 

1 0.233 0.441 0.302 
0.1 0.290 0.474 0.302 
0.05 0.548 0.616 0.302 
5×10-8 0.725 0.746 0.302 

V1: MWT-B 0.214 

1 0.003 0.018 0.226 
0.1 0.003 0.018 0.226 
0.05 0.006 0.026 0.224 
5×10-8 0.006 0.026 0.224 

V1: TMT B-TMT A 0.102 

1 0.448 0.537 0.101 
0.1 0.603 0.638 0.100 
0.05 0.564 0.616 0.100 
5×10-8 0.409 0.525 0.101 

V2: VLMT correctly recalled words 0.226 

1 0.002 0.018 0.246 
0.1 0.004 0.019 0.242 
0.05 0.011 0.039 0.238 
5×10-8 0.559 0.616 0.224 

V2: VLMT loss of words after time 0.054 

1 0.316 0.492 0.054 
0.1 0.423 0.525 0.053 
0.05 0.331 0.492 0.054 
5×10-8 0.192 0.441 0.056 

V2: VLMT loss of words after 
distraction 

0.015 

1 0.204 0.441 0.017 
0.1 0.231 0.441 0.017 
0.05 0.216 0.441 0.017 
5×10-8 0.037 0.111 0.025 

V2: VLMT correctly recognized words 0.138 

1 0.207 0.441 0.140 
0.1 0.222 0.441 0.140 
0.05 0.261 0.450 0.139 
5×10-8 0.893 0.893 0.135 
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Table S6. Effect of GPSBD and GPSSZ on cognitive performance, adjusted for age, age2, sex, 

in/outpatient status, center, PANSS sum scores, and principle components 

Model 
Base model 
adjusted- R2 

p-value 
GPSSZ

Adjusted 
R2 after 
GPSSZ 
inclusion 

p-value 
GPSBD

Adjusted-R2 
after GPSBD 
inclusion 

V1: Verbal digit span backwards task 0.109 0.268 0.109 0.312 0.109 

V1: Verbal digit span forwards task 0.067 0.373 0.067 0.399 0.067 

V1: Digit symbol test 0.291 0.838 0.290 0.786 0.290 

V1: MWT-B 0.214 0.436 0.214 0.498 0.214 

V1: TMT B-TMT A 0.093 0.174 0.094 0.208 0.094 

V2: VLMT correctly recalled words 0.223 0.363 0.222 0.531 0.221 

V2: VLMT words lost after time 0.038 0.399 0.037 0.050 0.046 

V2: VLMT words lost after distraction 0.019 0.826 0.016 0.456 0.018 

V2: VLMT correctly recognized words 0.143 0.60 0.150 0.965 0.140 
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Table S7. Effect of GPSBD and GPSSZ on the association between GPSEDU and cognitive 

performance 

Model 
p-value GPSEDU 

after adjusting
for GPSSZ

a

Change in 
adjusted-R2 
after GPSEDU 

inclusiona 

p-value GPSEDU 

after adjusting
for GPSBD

b 

Change in 
adjusted-R2 
after GPSEDU 

inclusionb 

V1: Verbal digit 
span backwards 
task 

0.002 0.013 0.001 0.014 

V1: MWT-B 0.004 0.011 0.003 0.011 
V2: VLMT 
correctly 
recalled words 

0.002 0.020 0.002 0.019 

a Adjusting for age, age2, sex, in/outpatient status, center, PANSS sum scores, principle 
components and GPSSZ
b Base model including age, age2, sex, in/outpatient status, center, PANSS sum scores, 
principle components and GPSBD 
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Figure S6. Post-hoc power calculation using the freely available G* Power 3.1(Faul, Erdfelder, 

Buchner, & Lang, 2009; Faul, Erdfelder, Lang, & Buchner, 2007). Plot depicting sample size 

required to drive the effect of GPSSZ on cognitive performance to significance according to a 

range of effect sizes (change in adjusted R2 between a model including only covariates and a 

model including covariates and GPSSZ). Note: Alpha level 0.05, 80% power, number of tested 

predictors = 1, total number of predictors = 9.  
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Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using g* 

power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 

41(4), 1149-1160.  

Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*power 3: A flexible statistical power 

analysis program for the social, behavioral, and biomedical sciences. Behavior 
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RESEARCH

The role of environmental stress and DNA 
methylation in the longitudinal course 
of bipolar disorder
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Monika Budde1, Katrin Gade5, Maria Hake1, Janos L. Kalman1,2,4, Sergi Papiol1,4, Daniela Reich‑Erkelenz1, 
Farah Klöhn‑Saghatolislam1,4, Sabrina K. Schaupp1, Eva C. Schulte1,4, Fanny Senner1,4, Georg Juckel7, 
Max Schmauß8, Jörg Zimmermann9, Jens Reimer10, Eva Reininghaus11, Ion‑George Anghelescu12, 
Carsten Konrad13, Andreas Thiel13, Christian Figge14, Martin von Hagen15, Manfred Koller16, 
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Franziska Degenhardt23, Andreas J. Forstner23,24,25,26, Marcella Rietschel22, Markus M. Nöthen23, 
Jens Wiltfang5,27,28, Peter Falkai4, Thomas G. Schulze1,4† and Urs Heilbronner1†

Abstract 

Background: Stressful life events influence the course of affective disorders, however, the mechanisms by which 
they bring about phenotypic change are not entirely known.

Methods: We explored the role of DNA methylation in response to recent stressful life events in a cohort of bipolar 
patients from the longitudinal PsyCourse study (n = 96). Peripheral blood DNA methylomes were profiled at two time 
points for over 850,000 methylation sites. The association between impact ratings of stressful life events and DNA 
methylation was assessed, first by interrogating methylation sites in the vicinity of candidate genes previously impli‑
cated in the stress response and, second, by conducting an exploratory epigenome‑wide association analysis. Third, 
the association between epigenetic aging and change in stress and symptom measures over time was investigated.

Results: Investigation of methylation signatures over time revealed just over half of the CpG sites tested had an 
absolute difference in methylation of at least 1% over a 1‑year period. Although not a single CpG site withstood 
correction for multiple testing, methylation at one site (cg15212455) was suggestively associated with stressful life 
events (p < 1.0 × 10−5). Epigenetic aging over a 1‑year period was not associated with changes in stress or symptom 
measures.

Conclusions: To the best of our knowledge, our study is the first to investigate epigenome‑wide methylation across 
time in bipolar patients and in relation to recent, non‑traumatic stressful life events. Limited and inconclusive evi‑
dence warrants future longitudinal investigations in larger samples of well‑characterized bipolar patients to give a 
complete picture regarding the role of DNA methylation in the course of bipolar disorder.

Keywords: DNA methylation, Bipolar disorder, Stressful life events, Longitudinal, Epigenomics, Epigenetic aging
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Background
Bipolar disorder (BD) remains an interesting candidate 
for neurobiological analyses owing to its heterogenous 
presentation and both genetic and environmental risk 
factors (Ludwig and Dwivedi 2016). While genome-wide 
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association studies (GWAS) in BD have identified dozens 
of associated variants, they have explained only a small 
fraction of overall disease liability (Stahl et  al. 2019). 
Therefore, the last decade has seen a shift towards inves-
tigating the complex interplay between genetic and envi-
ronmental risk factors (Sharma et al. 2016). Advances in 
technologies have supported high-throughput investiga-
tions of biological markers representative of environmen-
tal modulation of the genome. These biomarkers hold 
promise for stratifying symptom-based phenotypes and 
assessing the prognosis of individual patients (Kobeissy 
et  al. 2012). Moreover, these biomarkers could contrib-
ute to a more accurate multi-level diagnostic framework 
which relies on biological measures to supplement clini-
cal ratings of symptoms (Meana and Mollinedo-Gajate 
2017).

BD is a chronic, disabling, and severe mental ill-
ness characterized by recurrent depressive and manic 
episodes, somatic and psychiatric comorbidities, and 
functional impairments (Goodwin and Jamison 2007). 
Considering the high global burden and lifetime preva-
lence of bipolar spectrum disorders, estimated at approx-
imately 2.4% (Rowland and Marwaha 2018), there is a 
need to better understand the factors affecting its onset 
and course. The significance of environment, especially 
childhood trauma and stressful life events on the tra-
jectories of affective disorders, including vulnerability, 
onset, relapse and occurrence, has been well established 
(Aldinger and Schulze 2017; Lex et  al. 2017; Johnson 
2005; Alloy et  al. 2005; Paykel 2003). However, little is 
known about the mechanisms involved in the conse-
quences of such life events.

Recently, emphasis has been placed on the potential 
role of epigenetic variation in the etiopathogenesis of 
BD (Li et  al. 2015). Epigenetics is an adaptive mecha-
nism which can modulate the stress response through 
subtle gene expression modifications (Aas et  al. 2016). 
In particular, DNA methylation (DNAm), the addition 
of a methyl group to DNA, primarily at cytosine-guanine 
dinucleotides (CpG), may pose a “mechanism by which 
life-experiences become ‘embedded’ in the genome” 
(Marzi et al. 2018).

Increasing evidence from both animal and human 
data supports the epigenetic programming of genes in 
response to trauma and chronic stress. Consistent find-
ings have linked prenatal (Monk et al. 2012; Weaver et al. 
2004) and early-life adversities to epigenetic modifica-
tions of genes, especially those involved in the hypotha-
lamic–pituitary–adrenal (HPA) axis (Kular and Kular 
2018; McGowan et  al. 2009; Vinkers et  al. 2015; Jawor-
ska-Andryszewska and Rybakowski 2019). While sev-
eral studies have shown methylation changes associated 
with trauma during the adult period, few studies have 

investigated non-traumatic chronic stress (Matosin 
et al. 2017) or acute stressful life events. Candidate gene 
approaches in the general population have reported dif-
ferential methylation of CpGs in the vicinity of SLC6A4 
(Alasaari et al. 2012), TH (Myaki et al. 2015), and BDNF 
(Song et  al. 2014) in association with sustained work-
related stress. One study, which examined LINE-1 as a 
proxy for global methylation, found no signification asso-
ciations with chronic lifestyle stress (Duman and Canli 
2015). To the best of our knowledge, not a single study 
has explored epigenome-wide signatures of DNAm in 
relation to acute, non-traumatic stress in humans. With 
regards to BD, studies have investigated methylation dif-
ferences as both trait and state markers of the disorder 
in several promoter regions including SLC6A4, PPIEL31, 
BDNF, HCG9, KCNQ3, 5HTR1A and GPR24 (Ludwig 
and Dwivedi 2016; Fries et  al. 2016; Pishva et  al. 2014). 
Interestingly, evidence supports altered DNAm profiles 
for high-risk affected and even unaffected offspring of 
individuals with BD in comparison to low risk controls. 
Moreover, there seems to be a unique rate of change in 
DNAm over time for high risk individuals (Duffy et  al. 
2019). However, despite findings of differential epigenetic 
profiles, results have been inconsistent and there remains 
a need for genome-wide methylation studies, especially 
ones longitudinal in design.

This study aims to gain a better understanding of the 
role of epigenetic modifications, specifically DNAm, in 
relation to stress during the course of BD. Using repeated 
measures over a 1-year period, we explored the relation-
ship between DNAm and stressful life events in chronic 
BD patients. We took a two-pronged approach, first by 
interrogating CpGs in the vicinity of candidate genes 
previously implicated in the stress response and, second, 
by conducting an exploratory epigenome-wide analysis. 
Furthermore, we determined whether changes in symp-
tom and stress measures over time were associated with a 
DNAm-based age estimate and epigenetic aging.

Methods
Study sample
The study was conducted using data from the longitudi-
nal PsyCourse cohort. PsyCourse has been described in 
detail (Budde et  al. 2019). Briefly, PsyCourse is a multi-
site, naturalistic study, based in the German and Austrian 
population. Psychopathology, pharmacological treat-
ment, childhood trauma and current stressful life events 
were among other variables assessed at each of four visits 
(6-month intervals). Likewise, peripheral blood samples 
were collected at each visit, paving the way for a detailed 
analysis of the longitudinal correlation between disease 
status and peripheral biomarkers. For the purpose of this 
study, a subset of PsyCourse participants (n = 96) was 
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selected according to a DSM-IV diagnosis (American 
Psychiatric Association 2002) of type I or II BD, avail-
ability of genotype data and biomaterial, and completed 
childhood trauma and stressful life events question-
naires. Demographic and clinical characteristics of these 
patients are reported in Table 1. The study was approved 
by the local ethics committee for each study center and 
was carried out following the rules of the Declaration 
of Helsinki. All individuals provided written informed 
consent.

Measures
Stressful life events
Current stressful life events were assessed with the Life 
Events Questionnaire (LEQ), a 79-item self-report instru-
ment that has been described in detail (Norbeck 1984; 
Sarason et  al. 1978). The LEQ covers a wide range of 
stressor exposure related to health, work, school, resi-
dence, love and marriage, family and friends, parenting, 
the personal sphere or social environment, finances, 
crime and legal matters. At each visit, participants 
reported whether they experienced any of the listed 
events in the last 6  months. When the patient experi-
enced a specific event, they rated: (1) the nature of the 

event (good/bad) and (2) the impact of the event on his/
her life (0–3). At each time point, adverse life events were 
summed to yield a stress score that reflects the impact 
ratings of all “bad” events. The same was done for the 
impact ratings of “good” events. A total score was also 
summed including impact ratings of both “bad” and 
“good” events. These three LEQ scores were used as out-
come measures in our association analyses.

Childhood trauma
The Childhood Trauma Screener (CTS) is a German, 
short version of the Childhood Trauma Questionnaire 
(Bernstein et  al. 1997, 2003; Grabe et  al. 2012). The 
screener includes five questions to assess sexual, physi-
cal and emotional abuse, as well as emotional and physi-
cal neglect. Validated threshold values (Glaesmer et  al. 
2013) were used to transform ratings for each item into 
a dichotomous scale in order to identify individuals with 
reported childhood trauma (yes/no). Details on reported 
childhood trauma and thresholds used can be found in 
Additional file 1: Table S1.

Symptom ratings
The Positive and Negative Syndrome Scale (PANSS) was 
used as a measure of psychopathology at the time of test-
ing (Kay et al. 1987). A continuous total score of the three 
subscales, i.e. positive, negative, and general symptoms 
was used. The Global Assessment of Functioning (GAF) 
score was used as a measure of psychosocial functioning 
(Luborsky 1962; Endicott et al. 1976). The Young Mania 
Rating Scale (YMRS) was used as a measure of manic 
symptoms in the last 48  h (Young et  al. 1978). Lastly, 
the Inventory of Depressive Symptomatology (IDS-C30), 
a 30-item rating scale, was used to assess the severity of 
depressive symptoms (Trivedi et al. 2004).

Analysis of DNA methylation
DNA samples
Genomic DNA was extracted from whole blood using the 
PerkinElmer Chemagen Kit (chemagic DNA Blood10k 
prefilling VD120419.che) and all samples were subse-
quently stored in a Hamilton Bios M system at − 80 °C.
DNA quality was assessed using the  QIAxcl® system. 
DNA samples from baseline and 1-year follow-up visits 
were used to obtain methylation data. Prior to down-
stream analyses, potential population stratification was 
evaluated, and an initial step to remove European popu-
lation outliers was taken (Budde et  al. 2019). Thus, our 
sample consists of an ethnically homogenous population 
of Caucasians of European descent.

Table 1 Sample demographic and clinical characteristics

a Paired sample t-test
b Wilcoxon signed rank test

Baseline
(n = 96)

1-year follow-up
(n = 95)

p-value

Sex

 Female 50 50

Age, mean ± SD 45.2 ± 12.4 46.17 ± 12.4

Duration of illness, 
mean ± SD

13.52 ± 11.8 14.66 ± 11.8

DSM‑IV diagnosis

 BD‑I 79 78

 BD‑II 17 17

Medication

 Combo therapy 81 75

 Monotherapy 14 16

 No meds 1 4

Childhood trauma (yes) 48 48

LEQ scores, mean ± SD

 Bad events 10.2 ± 13.8 6.3 ± 6.6 0.004b

 Good events 9.7 ± 10.2 8.4 ± 7.6 0.191b

 Total events 19.9 ± 18.4 14.1 ± 10.7 0.001b

Symptom ratings

GAF, mean ± SD 61.5 ± 12.6 65.8 ± 12.4 0.032a

 YMRS sum, mean ± SD 3.9 ± 5.8 2.4 ± 3.7 0.216b

IDS‑C30, mean ± SD 13.7 ± 11.0 10.6 ± 9.7 0.124b

PANSS sum, mean ± SD 42.8 ± 11.8 39.2 ± 9.6 0.063b
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Illumina EPIC chip processing
Bisulfide conversion of DNA and processing of methyla-
tion arrays was accomplished in collaboration with the 
Institute of Human Genetics, University of Bonn, Ger-
many. Whole-blood genomic DNA diluted with water 
(50  ng/μl) was treated with sodium bisulfite using the 
 EpiTect® Bisulfite Kit from  QIAGEN® following the 
manufacturer’s protocol. DNAm was assessed using the 
Illumina Infinium Human MethylationEPIC BeadChip 
array (Illumina Inc., San Diego, CA, USA) according 
to the manufacturer’s instructions. To minimize batch 
effects during DNAm measurement, an algorithm for 
sample randomization was used for positioning samples 
onto 96-well plates according to exposures of interest and 
confounding variables (see Additional file 1).

Quality control and normalization
Quality control
The Bioconductor R package minfi was used to read raw 
intensity data files (.idat files) into R and for the subse-
quent quality control and normalization of methylation 
data (Aryee et al. 2014). Concordance between methyla-
tion-predicted and reported sex was confirmed. Filtering 
of poor-performing samples and probes was performed 
(see Additional file 1: Table S2). Probes with low detec-
tion p-values (> 0.05 in > 10% of samples) were excluded. 
Using the function dropLociWithSnps(), SNPs inside 
the probe body and at the nucleotide extension were 
removed according to a minor allele frequency ≥ 5% 
based on dbSNP. To prevent a possible gender effect, X 
and Y chromosomes were removed. According to a list 
previously published (Chen et  al. 2013), non-specific 
probes i.e. probes on the EPIC array that co-hybridize 
to alternate genomic sequences, were removed. Lastly, 
probes with a bead count < 3 were removed.

Normalization
Data were normalized using functional normalization 
(FunNorm), an extension of quantile normalization. Fun-
Norm uses internal control probes present on the array to 
infer between-array technical variation, by default using 
the first two principal components of the control probes 
(Fortin et  al. 2014). Density plots were used to evaluate 
the distribution of M-values before and after functional 
normalization (see Additional file 1: Fig. S1).

Technical batch effects were then identified using lin-
ear regressions to inspect the association of principal 
components of the methylation values with possible 
technical batches. Additionally, the R package shinyM-
ethyl was used for visual inspection of principle compo-
nent analysis (PCA) plots. Identified batch effects (i.e., 
array and slide) were removed using the Empirical Bayes’ 
method ComBat (Johnson et  al. 2007). Batch corrected 

M-values after ComBat were used for downstream analy-
ses (see Additional file  1: Fig. S2). According to inspec-
tion of PCA plots, a single sample remained an outlier
after batch correction and was excluded.

Confounders
Considering cell-type composition is a confounding fac-
tor in epigenome-wide association studies (EWAS), the 
minfi function estimateCellcounts() was used to estimate 
the cell type composition for our samples. This func-
tion uses a modified version of the Houseman algorithm 
to obtain a cell counts vector for the six cell-types (i.e., 
CD4T, CD8T, NK, B cells, monocytes, and granulocytes) 
for each sample (Houseman et al. 2012).

Active smoking is another established modifier of DNA 
methylation (Lee and Pausova 2013). Methylation-based 
smoking scores were calculated based on the methyla-
tion profile of the 187 CpG sites identified in Zeilinger 
et  al. (2013). First, raw beta values were normalized 
using the Teschendorff et al. beta-mixture quantile dila-
tion (BMIQ) strategy (Teschendorff et al. 2013). Adjusted 
beta-values were then used for calculation of methyl-
ation-based smoking scores using methods previously 
described (Elliott et  al. 2014). The correlation between 
self-reported number of cigarettes smoked yearly and 
methylation-based smoking scores was assessed (Spear-
man’s ρ = 0.64; p < 0.001).

To rule out possible confounding effects of medication, 
5 samples were excluded in sensitivity analyses. These 
samples were participants who were not taking psycho-
tropic drugs at the time of testing. All other participants 
were taking at least one (monotherapy) or a combination 
(combo therapy) of the following (1) antidepressants, (2) 
antipsychotics, (3) mood stabilizers, (4) tranquilizers, or 
(5) other psychiatric medications.

Statistical analyses
All statistical analyses were performed in R version 3.4.4 
(http://www.r-proje ct.org/) (R Core Team 2014).

Change in methylation over time
The general “stability” of methylation over time was 
investigated. First, the absolute change in methylation 
β-values between baseline and 1-year follow-up vis-
its were calculated across all CpG sites. To determine 
whether differential methylation between visits remained 
significant after adjusting for known confounders, the 
package lme4 (Bates et al. 2015) was used to fit a linear 
mixed-effects model (LMM) with the dependent variable 
“M-value” and the independent variable “time”, adjusting 
for age, sex, DNAm smoking scores, and cell composition 
estimates. Patient ID was included as the random effect 
term.
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Candidate gene analysis
The association between LEQ scores and the interac-
tion between CT and total LEQ scores with DNAm 
was assessed via LMMs, adjusting for covariates as 
described above. We interrogated DNAm in the vicin-
ity of genes previously implicated in the HPA-axis (i.e. 
BDNF, FKBP5, IL6, SLC6A4, and OXTR). All probes on 
the EPIC array annotated to each of these five genes 
were identified. The number of probes per gene ranged 
from 22 to 124. We corrected for multiple testing on a 
gene-level by applying the false discovery (FDR) cor-
rection (Benjamini and Hochberg 1995) per gene, with 
FDR-corrected p-values ≤ 0.05 deemed significant.
Afterwards, Bonferroni-correction was used to correct 
overall for the number of candidate-genes tested.

Exploratory EWAS
An exploratory EWAS was conducted. As a means 
of noise reduction, the top 10% of the most variable 
CpGs of the normalized, batch corrected M-values 
were extracted according to median absolute deviation 
(MAD) scores i.e. the median of the absolute devia-
tions from the data’s median. Associations between the 
most variable sites and LEQ scores and the interaction 
between childhood trauma and total LEQ scores were 
then tested using LMMs, adjusting for covariates as 
described above.

Epigenetic aging
DNAm-based age prediction was performed using the 
Horvath age estimation algorithm (Horvath 2013) with 
a freely available online tool (https ://dnama ge.genet ics.
ucla.edu/home) which predicts DNAm-age based on 
the methylation of 353 CpGs using an elastic net penal-
ized regression model. The difference between the esti-
mated epigenetic age and chronological age (Δage) and 
a measure of epigenetic age acceleration (AA), i.e., the 
residual from regressing DNAm age on chronological 
age, were calculated. LMMs were used to determine the 
effect of LEQ scores on Δage, adjusting for chronologi-
cal age, sex, DNAm smoking scores, cell composition 
estimates, and technical batch effects (sample slide and 
array). Additionally, the difference in symptom ratings 
and stress scores between visits were calculated. The 
association between the change in symptoms and LEQ 
scores between baseline and 1-year follow-up with AA 
at 1-year follow-up was determined via linear regres-
sion models, again controlling for chronological age, 
sex, DNAm smoking scores, cell composition estimates 
and technical batch effects.

Additional analyses
Nominally significant CpGs (unadjusted p < 0.05) asso-
ciated with total LEQ scores were used for gene-based 
enrichment analysis using the GOmeth function from 
the Bioconductor package missMethyl. GOmeth maps a 
vector of CpG sites to Entrez Gene IDs, and tests for 
gene ontology (GO) term pathway enrichment using a 
hypergeometric test (Geeleher et  al. 2013). Addition-
ally, the correlation between DNAm in blood and four 
brain regions was explored for the most suggestive 
CpGs associated with total LEQ scores (see Additional 
file 1).

Results
Change in methylation over time
The mean absolute difference in methylation (β) between 
visits 1 and 3 (|Δβ|) was calculated across all samples for 
all CpG sites (Fig. 1). Over the 1-year period, |Δβ| ranged 
from < 0.001 to 0.299 with an average change of 0.014. Of 
753,251 CpG sites, only 68 had an |Δβ| of 0.10 or more, 
while 8454 sites differed by at least 0.05 between visits. 
Just over half of the sites (428,610) showed an absolute 
difference in methylation of at least 1%. Investigation 
of the functional genomic distribution of the least sta-
ble CpGs over time (|Δβ| ≥ 0.10) revealed the major-
ity of CpGs fell within Open Seas, while 12 fell within 
CpG Islands, and the remaining in CpG Shores and 
Shelves (Fig.  2). In summary, 34,776 CpG sites showed 
a nominally significant difference over time (unadjusted 
p-value < 0.05), after correcting for age, sex, smoking and
cell composition estimates. However, not a single locus
withstood correction for multiple testing (FDR-corrected
p-value < 0.05).

Fig. 1 Boxplot depicting the log10 mean change in methylation (β) 
between baseline and 1‑year follow‑up visit
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Methylation association analysis
We performed an exploratory analysis looking for associ-
ations between LEQ scores and DNAm in individual CpG 
probes in the vicinity of candidate genes previously impli-
cated in the stress response and in the most variable CpG 
sites across the epigenome. Methylation at a single CpG 
site (cg15212455; POU6F2; “POU class 6 homeobox  2”; 
chr 7) was associated with impact ratings of total LEQ 
scores with a suggestive significance of p < 1.0 × 10−5, 
although not a single locus withstood correction for mul-
tiple testing (FDR-corrected p > 0.05 for all comparisons). 
Figure 3 shows the Manhattan plot depicting all analyzed 
CpG sites with their calculated p-values for the associa-
tion between DNAm and total LEQ scores. Table 2 lists 
the top 20 loci associated at nominal significance with 
total LEQ scores. Inspection of quantile–quantile (QQ) 
plots did not show evidence for inflation or bias (Fig. 4; 
Lambda factor = 0.98). Manhattan plots and associated 
QQ plots for additional association analyses can be found 
in Additional file  1: Fig. S3–S8. The sensitivity analy-
sis, excluding subjects who did not take psychotropic 
drugs at the time of testing, did not yield signification 

associations. These results, specific to modeling the asso-
ciation between DNAm and total LEQ scores, are pre-
sented in Additional file 1: Figs. S9 and S10.

Epigenetic aging
As expected, there was a strong positive correlation 
between individuals’ DNAm age and chronological 
age (r = 0.941, p < 0.001; see Additional file  1: Fig. S11). 
According to Horvath’s estimate, the mean (SD, range) 
AA was − 0.23 years (3.71, range − 9.94 to 9.86 years) at 
baseline and 0.25 years (3.95, range − 8.12 to 9.43 years) 
at the 1-year follow-up. Between visits, the mean (SD, 
range) change in AA was 0.50 years (4.97, range − 10.72 
to 13.85  years). Overall, no statistically significant asso-
ciations between epigenetic aging and symptom or stress 
measures were detected.

Additional analyses
We included genes mapped by the top CpG sites (unad-
justed p < 0.05) associated with total LEQ scores in an 
enrichment analysis. No biological processes survived 
FDR correction (see Additional file  1: Table  S3). Blood 
brain correlation coefficients for methylation of the top 
20 loci associated with total LEQ scores (overlapping 
with the 450 K Beadchip array) are presented in Table 3. 
Eight of the top 20 most differentially methylated loci 
associated with total LEQ scores showed a significant 
correlation between methylation in the blood and meth-
ylation in at least one brain region. Methylation of the 
CpG site that was most strongly associated with total 
LEQ scores was significantly correlated with methylation 
in all four brain regions (p < 0.001; see Additional file  1: 
Fig. S12).

a

b
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Fig. 2 Functional genomic distribution for the least stable CpG sites 
over 1‑year period (|Δβ| ≥ 0.10). a Depicts the distribution of probes 
that fell within CpG Islands (12/66), Shelves (7/66), Shores (11/66) and 
the Open Sea (36/66). b Depicts the distribution of probes that fell 
within the gene body (28), 5’ UTR (11), 3’ UTR (2), 1st Exon (4), TSS 1500 
(19) and TSS 200 (6)

Fig. 3 Manhattan plot for association between DNA methylation 
and total LEQ scores. The horizontal red line represents the 
epigenome‑wide significant threshold for this study (p < 6.6 × 10−7) 
and the blue line represents a suggestive significance threshold 
(p < 1.0 × 10−5)
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Discussion
To the best of our knowledge, our study is the first to 
investigate epigenome-wide methylation changes over 
time in BD patients. Moreover, it is the first to explore 
methylation changes related to non-traumatic stress-
ful life events on an epigenome-wide scale. Although 
no locus withstood correction for multiple testing, our 
suggestive findings and secondary analyses provide lim-
ited evidence supporting a role of DNAm in association 
with non-traumatic life events in chronic BD patients.

We identified a single, suggestively significant, CpG 
site associated with total LEQ scores, mapping to 
POU6F2, which has been associated with several psy-
chiatric traits as well as intelligence and educational 
attainment. More specifically, genome-wide association 
studies have identified POU6F2 risk variants associated 
with psychological distress (Koshimizu et  al. 2019), 
feeling emotionally hurt (Nagel et  al. 2018), schizo-
phrenia (Goes et al. 2015), autism (Anney et al. 2010), 
educational attainment (Lee et  al. 2018; Okbay et  al. 
2016) and intelligence (Hill et  al. 2018; Davies et  al. 
2018). Additionally, in a longitudinal investigation of 
DNAm changes preceding adolescent psychotic expe-
riences, DNAm of the CpG site cg11604728 (POU6F2) 
measured at age 15–17 was among the top 20 CpG sites 
indicative of psychotic experiences at age 18 (Roberts 
et al. 2019). Furthermore, POU6F2 is highly expressed 
in the brain with the highest expression found in the 
frontal cortex (Additional file 1: Fig. S13) and methyla-
tion of our suggestive CpG site in blood is correlated 
with methylation in brain tissue across multiple brain 
regions. Interestingly, another of our top 20 CpG sites 
(cg26822318) falls in proximity to the FER1L6 gene, of 
which a variant (rs4870888) has been associated with 
suicide attempts in a meta-analysis of major depres-
sive disorder, schizophrenia and BD (Mullins et  al. 
2019). Furthermore, another GWAS reported a FER1L6 

Table 2 Top 20 CpG sites associated with total LEQ scores

Probe t value p-value FDR-corrected 
p-value

Chr Relation to island Annotated gene

cg15212455 − 4.87 3.56E−06 0.263 chr7 Open Sea POU6F2

cg05335886 − 4.55 1.02E−05 0.263 chr16 Island TMC5

cg09725915 4.54 1.05E−05 0.263 chr2 Island

cg24511004 4.43 1.62E−05 0.263 chr1 Open Sea

cg18110277 − 4.50 1.74E−05 0.263 chr2 Open Sea

cg21516302 − 4.24 4.58E−05 0.575 chr2 Open Sea

cg05180443 − 4.04 8.61E−05 0.927 chr17 Island CHAD; ACSF2

cg01440452 − 3.97 1.03E−04 0.946 chr5 N Shore PURA 

cg26730347 − 4.00 1.20E−04 0.946 chr22 N Shore SLC5A1

cg15869582 3.94 1.26E−04 0.946 chr6 S Shore IBTK

cg05919744 3.95 1.44E−04 0.977 chr11 S Shore SLC22A18AS;SLC22A18

cg26822318 3.86 1.61E−04 0.977 chr8 Open Sea FER1L6

cg27296293 − 3.80 1.98E−04 0.977 chr11 Island RP11‑748H22.1; TRPC6

cg06334363 3.82 2.01E−04 0.977 chr9 S Shore RP11‑235C23.5; FKTN

cg00356897 − 3.79 2.30E−04 0.977 chr1 Open Sea RP4‑594I10.2

cg24795825 3.72 2.98E−04 0.977 chr15 N Shore MORF4L1

cg17984201 3.69 3.17E−04 0.977 chr13 Open Sea

cg18002447 − 3.67 3.20E−04 0.977 chr17 Island

cg07349208 − 3.66 3.36E−04 0.977 chr4 Island RP11‑380D23.2

cg05705044 3.65 3.38E−04 0.977 chr11 S Shore RBM7

Fig. 4 QQ plot. The plot shows no evidence for inflation or bias in 
the association analysis of DNA methylation with total LEQ scores 
(Lambda = 1.04)
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variant (rs10481151) suggestively associated with cog-
nitive performance (Need et al. 2009).

At the current sample size, our study provides only 
minimal evidence supporting an association between 
methylation of individual CpGs and non-traumatic, 
recent stressful life events in BD. These findings, however, 
corroborate other reports of a limited role of DNAm with 
non-traumatic stress (Marzi et  al. 2018). Noteworthy, a 
recent study reported hypermethylation of KITLG asso-
ciated with childhood trauma in healthy controls (n = 91) 
but not in bipolar patients (n = 50) (He et  al. 2018). 
Although the mechanistic role of DNAm in the pheno-
typic expression of early life adversities is well established 
in the literature, other mechanisms may be responsible 
in adulthood and in association with subsequent events. 
This notion aligns with theories such as Post’s kindling 
hypothesis and the decay model which suggest a higher 
impact of life events on first episode than on subsequent 
episodes in BD (Aldinger and Schulze 2017; Kemner et al. 
2015; Hillegers et al. 2004). Furthermore, it must be con-
sidered whether positive epigenetic associations with life 
events could be disorder-specific, genotype-dependent, 
associated with specific trauma exposure, age groups, 
sex and/or tissues measured (Marzi et  al. 2018; Vinkers 
et al. 2015; Uddin et al. 2010; Boks et al. 2015; Smith et al. 
2011; Mehta et  al. 2017). While there is no gold stand-
ard for life stress measurements, differences in how to 
quantify stress may also have a major effect on findings 
(Johnson 2005; Bender and Alloy 2011; Monroe 2008; 
Dohrenwend 2010; Brown and Harris 2012).

The main strength of our study is its longitudinal 
design, allowing for repeated measures within individu-
als and to investigate methylation changes over time and 
in relation to symptomatology and stressful life events. 
To the best of our knowledge, this is the first study to 

collect repeated epigenome-wide methylation measures 
in bipolar patients. Furthermore, our study paid attention 
to critical confounding factors which often lead to spuri-
ous findings. For example, the use of methylation-based 
smoking scores better controls for the extent of smok-
ing throughout the lifetime than the use of self-reported 
smoking measures (Elliott et  al. 2014; Shenker et  al. 
2013). Finally, in contrast to most other studies, we have 
included an exploratory epigenome-wide approach.

Despite the strengths of our study, several limitations 
need to be addressed. First, our study was limited by 
our small sample size which makes identifying subtle 
differences in methylation difficult. Taking power into 
consideration, and as an attempt to address the inher-
ent multiple testing problem associated with EWAS, we 
limited our EWAS to only the most variable CpG sites 
according to MAD scores. While the fact that not a 
single site-specific association in DNAm survived cor-
rection for multiple testing could reflect the limited sta-
tistical power of our small sample, it may also be related 
to an overly conservative multiple testing correction 
considering the lack of variability in methylation at 
many CpGs and spatial correlation of methylation with 
nearby sites (Walker et al. 2016; Lunnon et al. 2015). A 
recent study estimated there are approximately 530,000 
independent tests in a whole blood EPIC array DNAm 
study. Accordingly, they proposed a corrected signifi-
cance threshold of 9.42 × 10−8 to be used as a standard 
threshold for future EWAS based on the EPIC array 
(Mansell et  al. 2019). Furthermore, the study intro-
duced a freely available online tool which allows users 
to perform power calculations to guide sample sizes, 
accounting for the individual properties of each DNAm 
site and using their empirically derived significance 
threshold. According to their tool, an effect size of just 

Table 3 Blood-brain methylation correlation for top differentially methylated CpGs associated with total LEQ scores

PFC prefrontal cortex, EC entorhinal cortex, STG superior temporal gyrus, CER cerebellum

Significant correlations in italics

Probe Blood-PFC p-value Blood-EC p-value Blood-STG p-value Blood-CER p-value

cg15212455 0.721 4.16E−13 0.731 4.64E−13 0.747 1.48E−14 0.631 3.71E−09

cg05335886 − 0.086 0.467 − 0.101 0.404 − 0.145 0.213 − 0.155 0.196

cg09725915 0.576 7.86E−08 0.532 1.76E−06 0.626 1.96E−09 0.489 1.49E−05

cg21516302 0.373 0.001 0.522 3.01E−06 0.507 3.46E−06 0.307 0.009

cg05180443 0.204 0.081 0.336 0.004 0.298 0.009 0.175 0.144

cg01440452 − 0.097 0.413 0.062 0.606 − 0.119 0.309 0.020 0.870

cg26730347 0.499 6.05E−06 0.568 2.33E−07 0.562 1.51E−07 0.493 1.27E−05

cg27296293 0.131 0.265 − 0.214 0.073 0.037 0.755 0.236 0.048

cg24795825 0.016 0.894 0.299 0.011 0.247 0.033 0.121 0.317

cg18002447 0.038 0.749 0.034 0.776 0.042 0.720 − 0.262 0.028

cg07349208 0.167 0.156 0.095 0.431 − 0.112 0.338 0.068 0.571
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1% difference between cases and controls would require 
a sample of 1000 participants, for only a third of meth-
ylation sites to have > 80% power. We observed an effect 
size below 5% in our study (based on median split) for 
our most significantly associated site, indicating that 
our study is nevertheless underpowered. Future stud-
ies should take advantage of this tool to assess, a priori, 
required sample sizes according to their expected effect 
sizes. Furthermore, complementary systems biology 
approaches such as weighted gene co-methylation net-
work analysis (WGCNA) could be beneficial for studies 
with limited sample sizes, providing more insight into 
the functional role of altered DNAm (Langfelder and 
Horvath 2008).

Another limitation is in relation to the fact that our 
sample represents a cohort of chronic BD patients 
which likely influenced our investigation of epigenetic 
aging related to symptom ratings over time. The chro-
nicity of patients may also confound our findings with 
regards to the heterogenous treatments patients have 
received over the years. To acknowledge this critical 
factor, we conducted a sensitivity analysis excluding 
those subjects not taking psychotropic drugs at the 
time of testing, however, this also did not lead to sig-
nificant results. One must also consider the possible 
recall and desirability biases associated with self-rating 
questionnaires like the LEQ and CTS. Lastly, little is 
known about the temporal stability of epigenetic mark-
ers (Byun et al. 2012; Talens et al. 2010). We cannot be 
sure whether the time interval of 1  year was too long 
or short to observe dramatic methylation changes or at 
what time window following exposure to stressful life 
events one might observe changed methylation profiles.

Conclusions
BD is a multifactorial psychiatric illness, and for many 
patients full interepisodic remission never occurs (Sam 
et  al. 2019). Stressful life events have been associ-
ated with a worse course of BD (Aldinger and Schulze 
2017) and there remains a need to better understand 
the mechanisms which allow these stressors to bring 
about phenotypic change. Our study provides limited 
evidence supporting an association between DNAm 
and recent, non-traumatic stressful life events in BD 
patients. As findings in clinical populations have been 
inconsistent, there is still much to be understood espe-
cially with regards to the temporal nature of environ-
mentally induced DNA modifications. Future larger 
studies of well-characterized patients, longitudinal in 
design, are warranted.
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Supplementary methods 

Batch effects. We used R version 3.4.4 to randomly draw samples from selected individuals 

stratified by groups (age, sex, and exposures of interest) and to assign them to batches (e.g. 

different microarray chips). Standard statistical tests were then used to assess if the putative 

technical batches (e.g. plates, microarray chips, chip rows/columns) were significantly 

associated with age, gender or exposure of interest. This procedure was repeated for up to 

10000 permutations and the combination of samples that produced the least significant 

associations was selected. As within-individual variability over time was explored, baseline and 

visit 3 samples for each individual were loaded onto the same chip. Post hoc tests were then run 

on the selected combination of samples to confirm no significant associations with other 

variables, namely diagnosis (Bipolar I/II) or disease severity. 

Blood-brain methylation correlation. The freely available Blood Brain DNA Methylation 

Comparison Tool (http://epigenetics.iop.kcl.ac.uk/bloodbrain/) (Hannon, Lunnon, Schalkwyk, & 

Mill, 2015) was used to determine the likely correlation between DNAm in blood with four 

different brain regions (prefrontal cortex, entorhinal cortex, superior temporal gyrus and 

cerebellum) for the most suggestive CpGs associated with total LEQ scores. 
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Table S1. Reported childhood trauma type 

Childhood trauma type n (%) 

Abuse only 22 (45.8) 

Neglect only 6 (12.5) 

Number of traumas 

1 22 (45.8) 

2 11 (22.9) 

3  8 (16.7) 

4  1 (2.1) 

5  1 (2.1) 

Missing complete CTS  5 (10.4) 

CTS single items Trauma threshold 

“. . . I had the feeling to be loved” “Seldom” or “Not at all” 19 (39.6) 

“. . . persons in my family hit me so hard that I bruised” “Sometimes” to “Very often” 16 (33.3) 

“. . . I had the feeling someone in my family hated me” “Sometimes” to “Very often” 24 (59.0) 

“. . . someone harassed me sexually” “Seldom” to “Very often” 15 (31.2) 

“. . . there was someone who took me to the doctor 
when I needed it” 

“Seldom” or “Not at all” 10 (20.8) 
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Table S2. Probe filtering 

CpGs probes EPIC 866,238 

Low detection p-values 6529 

Bead count < 3 17315 

X and Y probes 19096 

CpGs with SNPs 29310 

Cross-reactive probes 37968 

Non-specific probes 2769 

CpGs after filtering 753,251 
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Figure S1. M-Value densities before and after functional normalization. 

64



3 | Original Article 2: Supplementary material 
 

 

 

 

  

Figure S2. Inspection of batch effects through principle component analysis plots before and 

after batch correction with ComBat 
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Figure S3. Manhattan plot. The Manhattan plot depicts the association between DNA 

methylation and LEQ “good” scores (n = 191). The horizontal red line represents the epigenome-

wide significant threshold for this study (p < 6.6×10-7) and the blue line represents a suggestive 

significance threshold (p < 1.0×10-5). 

Figure S4. QQ plot. The QQ plot shows no evidence for inflation or bias in the association analysis 

of DNA methylation with “good” LEQ scores (Lambda = 1.04). 
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Figure S5. Manhattan plot. The Manhattan plot depicts the association between DNA 

methylation and “bad” LEQ scores (n = 191). The horizontal red line represents the epigenome-

wide significant threshold for this study (p < 6.6×10-7) and the blue line represents a suggestive 

significance threshold (p < 1.0×10-5). 

 

Figure S6. QQ plot. The QQ plot shows no evidence for inflation or bias in the association analysis 

of DNA methylation with “bad” LEQ scores (Lambda = 0.96). 
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Figure S7. Manhattan plot. The Manhattan plot depicts the association between DNA 

methylation and the interaction between childhood trauma and total LEQ scores (n = 191). The 

horizontal red line represents the epigenome-wide significant threshold for this study 

(p < 6.6×10-7) and the blue line represents the suggestive significance threshold (p< 1.0×10-5). 

Figure S8. QQ plot. The QQ plot shows no evidence for inflation or bias in the association analysis 

of DNA methylation with the interaction between childhood trauma and total LEQ scores 

(Lambda = 1.10). 
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Figure S9. Manhattan plot. The Manhattan plot depicts a sensitivity analysis testing the 

association between DNA methylation and total LEQ scores after removing patients not taking 

psychotropic drugs at the time of testing (n = 186). The horizontal red line represents the 

epigenome-wide significant threshold for this study (p < 6.6×10-7) and the blue line represents 

the suggestive significance threshold (p < 1.0×10-5). 

Figure S10. QQ plot. The QQ plot shows no evidence for inflation or bias in the association 

analysis of DNA methylation with total LEQ scores after removal of patients not on taking 

psychotropic drugs at the time of testing (Lambda = 1.06). 
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Figure S11. Scatterplot. The scatterplot illustrates the significant and positive correlation 

between DNA methylation age (DNAm age in years, calculated based on the Horvath algorithm) 

and chronological age (years) at baseline (Spearman’s ρ = 0.94). 
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Table S3. GOmeth enrichment analysis 

Biological process  N DE P.DE FDR 

homophilic cell adhesion via plasma membrane adhesion 
molecules 136 54 7.28E-05 1 

spindle midzone assembly  8 6 0.001 1 

cell-cell adhesion via plasma-membrane adhesion molecules  199 64 0.001 1 

leukotriene biosynthetic process  10 6 0.002 1 

exploration behavior  22 11 0.003 1 

maintenance of unfolded protein  3 3 0.003 1 

maintenance of unfolded protein involved in ERAD pathway  3 3 0.003 1 

regulation of epithelial cell migration  154 41 0.004 1 

myelination  87 26 0.004 1 

vesicle targeting, trans-Golgi to endosome  2 2 0.004 1 

regulation of endothelial cell migration  110 30 0.005 1 

negative regulation of osteoclast development  5 4 0.006 1 

ensheathment of neurons  90 26 0.006 1 

axon ensheathment  90 26 0.006 1 

positive regulation by host of viral transcription  9 5 0.007 1 

cellular response to arsenic-containing substance  12 5 0.007 1 

germinal center B cell differentiation  2 2 0.007 1 

hormone-mediated apoptotic signaling pathway  3 3 0.007 1 

positive regulation of axon extension  26 11 0.007 1 

nervous system development  1747 369 0.008 1 

Abbreviations: N – number of genes in the GO; DE – number of genes that are differentially 
methylated; P.DE – p-value for the over-representation of the GO term 
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Figure S12. Blood-brain methylation correlation. Publicly available data from Hannon et al. was 

used to assess cg15212455 DNA methylation patterns across blood, the prefrontal cortex (PFC), 

entorhinal cortex (EC), superior temporal gyrus (STG), and cerebellum (CER). 

72



3 | Original Article 2: Supplementary material 

Figure S13. Gene expression patterns of POU6F2 across multiple brain regions. The freely 

available Genotype-Tissue Expression (GTEx) Project Database portal (www.gtexportal.org) was 

used to determine the expression patterns of POU6F2 across multiple tissues. The figure shows 

expression levels across multiple brain regions, showing the highest expression of POU6F2 in the 

frontal cortex. 
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