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ABSTRACT 

Mammalian lungs have evolved with the environment as organs with the largest 

interface to the outside world. Our lungs exist in a state of homeostasis despite their 

consistent exposition to thousands of exogenous chemicals, particles and 

microorganisms carried by the air. As previously described for the gut and the skin, a 

high diversity of microbes lives and prospers in interaction with their host on the 

pulmonary surface as well, thereby connecting us to the environment. However, 

imbalances between beneficial and pathogenic microbes in this complex biological 

system can cause acute or chronic diseases. From these empirical observations, the 

human microbiome, in its diversity, interacts actively with the host immunity.  

This project aims to investigate the effect of two classes of bacterial signaling 

molecules on the inflammation dynamics of the lung, focusing on differentiation of T 

helper (Th) cells, activation (polarization) of alveolar macrophages (AM), and wound 

healing and repair during an inflammatory response. On one hand, the quorum 

sensing (QS) molecule 3-oxo-C12-HSL (AHL), produced by the pathogenic bacterium 

Pseudomonas aeruginosa (PAO1 strain) and on the other hand the D-tryptophan (D-

Trp), amino acid secreted by probiotic lactic acid bacteria, like Lactobacillus casei, 

were studied as examples of two classes of molecules involved in having a potential 

therapeutic interaction with the host.  

First the effects of the 3-oxo-C12-HSL on murine Th cells, especially Th17 and Th2-cell 

differentiation, were investigated. 3-oxo-C12-HSL increased interleukin 17 (IL-17) 

production of Th17 cells. However, it did not influence interleukin 4 (IL-4) production 

in Th2 differentiated cells. IL-17, mainly produced from Th17 cells, is a pro-

inflammatory cytokine responsible for the chemoattraction of leukocytes to the site of 

inflammation; whereas IL-4, produced from Th2 cells and a key regulator of adaptive 

immunity, is also involved in M2-polarization of macrophages, thereby promoting the 

resolution of inflammation and wound repair. Altogether these results showed that 3-
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oxo-C12-HSL stimulation of differentiated Th17 cells supported IL-17 production and 

might thereby promote the inflammatory response. 

During a bacterial lung infection, the primary immune response is conducted by 

tissue resident, alveolar macrophages (AM). To study the effect of AHLs on alveolar 

macrophage polarization, M0-naïve AM (MH-S cell line) were polarized with 

lipopolysaccharide (LPS) towards M1-polarization and simultaneously treated with 

AHLs (60 μM). Interestingly, both the expression and secretion of the pro-

inflammatory cytokines Tumor Necrosis Factor α (TNFα) and Interleukin 1 beta (IL-

1β) rose by the cotreatment with AHLs, mostly 3-oxo-C12-HSL, suggesting that the 

development of M1 AM and thus an inflammatory response was supported. D-Trp 

treatment (10-100 μM), simultaneous applied to M1-polarization, led also to an 

increase of TNFα secretion, suggesting that D-Trp contributed to a pro-inflammatory 

modulation of the AM as well. Then again, both 3-oxo-C12-HSL and D-Trp 

treatments supported alternative, IL-4 triggered AM polarization (M2-polarization), 

characterized by increased expression of the markers Arginase 1 (Arg1) and Mannose 

Receptor C-Type 1 (Mrc1). The latter results suggest that M2-polarization could be 

enhanced by 3-oxo-C12-HSL and D-Trp, thereby eventually promoting M2 dependent 

repair pathways during the resolution phase of inflammation. In aim to test the 

influence on repair pathways, a lung epithelium coculture model, consisting of AM 

(MH-S) and alveolar epithelial cells type 2 (AECII; LA-4 and MLE-12 cell lines) was 

investigated. The coculture wound healing assays however revealed that 3-oxo-C12-

HSL, and D-Trp to a lesser extent, inhibited in vitro epithelial barrier function and 

healing independently even from a by LPS induced inflammatory response. Similarly, 

Pseudomonas aeruginosa’s culture supernatant, containing secreted AHL, greatly 

impaired epithelial wound healing. Also in vivo, in an acute lung injury (ALI) model, 

created by intratracheal LPS delivery into the lung of BALB/c mice, therapeutically 

treatment with 3-oxo-C12-HSL, at a dose of 1200 μM (corresponding to a local strong 

PAO1 infection) failed to reduce polymorphonuclear neutrophil (PMN) recruitment 

in the airspace of the lung after acute lung injury. This altogether rejects the 

hypothesis of therapeutic effects of AHL during inflammatory conditions of the lung. 
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In contrast, D-Trp treatment reduced PMN recruitment in the ALI model, 

accompanied by a trend in declined bronchoalveolar lavage (BAL) levels of the 

chemokine (C-X-C motif) ligand 1 (CXCL1), while L-Trp had no comparable effect. 

mRNA analysis of the whole lung homogenate confirmed that the expression of 

CD11b (a marker for PMNs and inflammatory macrophages) was mildly reduced 

after D-Trp instillation. These results collectively confirmed the anti-inflammatory 

effects of D-Trp in an injured lung. Since D-Trp can have transcriptional signaling 

activity via the aryl hydrocarbon receptor (AhR), whose immunological importance is 

gaining more and more attention, the involvement of this pathway was investigated 

in bone marrow derived macrophages (BMDM) from AhR-/- (AhRtm1Bra) mice. D-Trp 

treatment of BMDM caused an AhR dependent expression of the prototypic AhR 

target gene cytochrome P450-1A1 (Cyp1a1) and also indoleamine 2,3-dioxygenase 1 

(Ido1), while L-Trp had no effect. Since Ido1 metabolizes tryptophan to kynurenine, 

which in turn is sensed by AhR, this suggests a positive feedback loop. Finally, D-Trp 

but not L-Trp treatment of BMDM also reduced the expression of the LPS 

stimulated M1 markers interleukin-6 (Il-6) and Nos2, and enhanced the by IL-4 

stimulated M2 markers Arg1 and Mrc1, all in an AhR dependent manner. 

In summary, the results suggest not the investigated AHL 3-oxo-C12-HSL, but rather 

D-tryptophan as a potential target of respiratory medicine, due to its receptor specific 

immunomodulatory, anti-inflammatory role on macrophages and alveolar 

macrophages, which might be used to alleviate pulmonary inflammation or support 

its resolution. 
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ZUSAMMENFASSUNG 

Die Lungen von Säugetieren haben sich ihrer Umwelt angepasst. Dabei haben sie die 

größte Oberfläche im menschlichen Körper entwickelt, die mit der Außenwelt in 

Kontakt ist. Unsere Lunge existiert dabei in innerer Homöostase trotz ständiger 

Exposition von tausenden exogener Chemikalien, Partikeln und Mikroorganismen in 

der Atemluft. Wie bereits für den Darm und die Haut beschrieben, lebt auch auf der 

Lungenepitheloberfläche eine hohe Diversität von Mikroorgansimen in Interaktion mit 

ihrem Wirt und ist damit ein Bindeglied zwischen unserer Lunge und der Außenwelt. 

Allerdings können Ungleichgewichte zwischen gutartigen und pathogenen Mikroben 

dieses komplexe biologische System zu akuten als auch chronischen Erkrankungen 

verändern. Durch empirische Untersuchungen wurde festgestellt, dass das humane 

Mikrobiom in seiner Diversität aktiv mit dem Immunsystem des Wirts interagiert. 

Dieses Projekt hatte als Ziel, die Effekte von zwei bakteriellen Signalmolekülen auf 

die Entzündungsdynamik der Mäuselunge zu untersuchen. Dabei wurde auf folgende 

Funktionen fokussiert: die Differenzierung von T-Helfer-Zellen (Th), die 

Differenzierung von Alveolarmakrophagen, und die Wundheilung während einer 

Entzündungsantwort. Einerseits waren es Quorum sensing-Signalstoffe vom N-Acyl-

homoserinlacton (AHL)-Typ (w.z.B. 3-oxo-C12-HSL) des Gram-negativen pathogenen 

Bakteriums Pseudomonas aeruginosa (PAO1-Stamm), sowie andererseits D-

tryptophan (D-Trp), welches vom Gram-positiven probiotischen Bakterium 

Lactobacillus casei gebildet wird. Beiden werden potenziell therapeutische 

Wechselwirkungen mit dem Immunsystem des Wirts zugeschrieben. 

Zunächst wurden die Effekte verschiedener AHL-Strukturen auf die Differenzierung 

von T-Helferzellen (Th), besonders im Bezug auf die Th17- und Th2-

Zelldifferenzierung, untersucht. 3-oxo-C12-HSL induzierte eine erhöhte Interleukin 17 

(IL-17) Produktion in Th17 Zellen, während 3-oxo-C4-HSL und C12-HSL keine 

Stimulierung zeigten. Im Gegensatz konnte 3-oxo-C12-HSL die Interleukin 4 (IL-4) 

Produktion der Th2 Zellen nicht induzieren. IL-17, hauptsächlich produziert von Th-
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17 Zellen, ist ein entzündungsförderndes Zytokin, welches für die Zytokin-getriebene 

Anlockung von Immunzellen in Richtung der Entzündung verantwortlich ist. Auf der 

anderen Seite steht IL-4, welches von Th2-Zellen produziert wird, und eine 

Schlüsselfunktion in der Regulation der adaptiven Immunantwort hat. IL-4 ist 

verantwortlich für die Rekrutierung von M2-Makrophagen, welche wiederum die 

Entzündung herunterregulieren und dabei zur Wundheilung beitragen. Zusammen 

zeigen die Ergebnisse für AHL, dass 3-oxo-C12-HSL durch die erhöhte Stimulation der 

IL-17 Produktion zur Entzündungsreaktion beitragen kann. 

Die primäre Immunantwort während einer bakteriellen Entzündung wird durch 

gewebespezifische alveolare Makrophagen (AM) ausgeführt. Um den Effekt von AHL 

auf AM zu untersuchen, wurden zunächst M0-naive AM (MH-S Zelllinie) durch 

Lipopolysaccharid (LPS) zu M1-Makrophagen (M1-AM) stimuliert und simultan mit 

AHLs behandelt (60 μM). Interessanterweise wurde die Expression und Sekretion der 

Zytokine Tumornekrose-Faktor α (TNFα) und IL-1β erhöht durch vor allem 3-oxo-

C12-HSL. Dies weist darauf hin, dass AHLs eine Rolle in der Verstärkung M1-AM 

Immunantwort spielen. Zusätzlich induzierte auch D-Trp eine gesteigerte TNFα 

Sekretion; dies deutet ebenfalls auf eine Rolle von D-Trp in der Verstärkung der 

entzündlichen Immunantwort durch M1-AM hin. Auf der anderen Seite induzierten 

sowohl 3-oxo-C12-HSL als auch D-Trp die alternative AM Polarisierung (M2-

Polarisierung), welche durch die Expression der M2-Marker Arginase 1 (Arg1) und 

Mannose-Rezeptor C-Typ 1 (Mrc1) gekennzeichnet war. Diese Ergebnisse deuten 

darauf hin, dass die M2-Polarisierung durch AHL und D-Trp verstärkt wird und dass 

3-oxo-C12-HSL und D-Trp dadurch eventuell M2-abhängige Reparaturmechanismen 

während der Entzündungsauflösung vorantreiben. 

Um den Einfluss auf Reparaturmechanismen zu untersuchen, wurde ein Ko-

Kultursystem verwendet, welches aus alveolaren Typ-2 Zellen (AECII; LA-4 und 

MLE-12 Zelllinien) und AM (MH-S) bestand. Die Behandlung der Ko-Kultur aus 

AECII und AM mit AHL führte zur Reduktion von TNFα, IL1β und Nitric-Oxide 

Synthase 2 (Nos2), die als M1 Entzündungsmarker gelten. Zusätzlich wurde die 

Expression des M2-charakterisierenden Gens Arg1 erhöht. Auf der anderen Seite 
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blockierten sowohl 3-oxo-C12-HSL als auch D-Trp, obwohl letzteres zu einem 

geringeren Grad, die in vitro Wundheilung der Epithelzellen. Diese Ergebnisse waren 

unabhängig von der Stimulation durch LPS. Des Weiteren wurde ein in vivo Modell 

für akute Lungenschädigung (ALI) etabliert, bei dem die Lungen von BALB/c 

Mäusen mit LPS behandelt wurden. Die Behandlung mit AHL (1200 μM, äquivalent 

zu einer starken lokalen PAO1 Infektion) konnte die Rekrutierung/Anzahl an 

polymorphonuklearen Neutrophilen (PMN) in den Atemwegen nicht reduzieren. 

Allerdings gelang dies durch Behandlung mit D-Trp. Es konnte gezeigt werden, dass 

die Behandlung mit D-Trp die Produktion des Chemokin (C-X-C motiv) Liganden 1 

CXCL1 in der BAL reduzierte. Die Analyse der mRNA der gesamten Lunge ergab 

eine Reduktion des PMN-Markers CD11b. Diese Resultate unterstreichen die 

entzündungshemmende Wirkung von D-Trp in Lungenschädigungen. 

D-Trp ist auch bekannt als Agonist des Aryl-Hydrocarbon-Rezeptors (AhR). Die 

Bindung von D-Trp an AhR führt zur Translokation von AhR in den Zellnukleus. 

Zahlreiche Mechanismen sind beschrieben, die nach Aktivierung von AhR initiiert 

werden. Darunter befindet sich das Enzym Indoleamine 2,3-Dioxygenase 1 (IDO1), 

welches D-Trp zu Kynurenine katabolisiert, sowie das Zytochrom P4501-1A 

(CYP1A1), welches in den xenobiotischen Metabolismus involviert ist. 

Expressionsanalysen in aus Knochenmark stammenden Makrophagen (BMDM) von 

AhR+/- und AhR-/- Mäusen (AhRtm1Bra) zeigten, dass die Expression von IDO1 und 

CYP1A1 von D-Trp abhängig waren (100 μM) sowie von der Anwesenheit von AhR, 

nicht jedoch von der Anwesenheit von L-Trp. Um die Funktion von AhR in der 

Immunantwort der Lunge zu untersuchen, wurden die Expression von IL-6 und Arg1 

in AhR-/- BMDM-Mäusen untersucht. Die zuvor gezeigte entzündungshemmende 

Wirkung von D-Trp war auch in den AhR-/- Zellen präsent. Die mRNA Expression 

von AhR wurde durch D-Trp verstärkt. Dies läßt eine von D-Trp oder dessen 

Metaboliten abhängige Rückkopplungsschleife vermuten. Die gesteigerte metabolische 

Aktivität von D-Trp ist konsistent mit der Regulation der Immunantwort durch 

Entzündungs-stimulierte AM. Daher trägt D-Trp potenziell zu einer verstärkten oder 

schnelleren Auflösung der Immunantwort bei. 
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Zusammenfassend konnte in dieser Arbeit gezeigt werden, dass nicht AHL, sondern 

eher D-Trp ein potentielles Therapeutikum in der Atemwegsmedizin werden könnte. 

Durch seine rezeptorspezifischen, immunmodulatorischen und 

entzündungshemmenden Funktionen in Makrophagen sowie auch in alveolaren 

Makrophagen könnte D-Trp zu einer Verminderung der Entzündung in der Lunge 

beitragen bzw. die Auflösung der Entzündung unterstützen. 
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INTRODUCTION 

1. Breathing the world 

1.1. The lung biology and function 

Mammals and other air-breathing animals transport the oxygen of the air to their 

bloodstream and organs through the respiration of the lung. Healthy human 

individuals breathe around 10000 L of air per day. The carbon dioxide generated by 

the organisms is afterwards released from the bloodstream back to the atmosphere 

during the expiration. Several key anatomical elements are needed to operate the 

lung function and maintain its integrity. The lung carries out two main physiological 

tasks; conducting the airflow and performing the gas exchanges. 

The upper respiratory tract (nose, pharynx and larynx and trachea), down to the 

bronchi and bronchioles subdivisions, guides the air to the lower respiratory tract 

(terminal bronchioles and alveoli). Exogenous particles are retained away from the 

alveolar sac, where the gas exchange takes place. Each subunit has a different role 

and carries a different set of specialized cells to fulfill its function. The lung alveolar 

duct combined with the alveoli consists of an extraordinary surface of approximately 

75 m² [1]. 90% of the gas exchange occurs at the surface of the alveoli. 

 

1.2. The microbes, friends and foes 

The outside world is not only a vector of gases and food, but also the home of a high 

diversity of microorganisms. This study focuses on bacteria, which are ubiquitous on 

earth: from the soils to the oceans and the air. They are present everywhere and form 

complex communities adhering to surfaces in biofilm structures. More than 10000 

species have been discovered, even though the actual diversity is postulated to be 

between 5 and 10 million [2]. Bacteria can be beneficial to higher organisms as well as 

harmful or even detrimental. 

Different bacteria can be beneficial or harmful for humans. Bacteria are divided into 

two super families depending on the staining of their cell wall (Gram-staining): the 
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Gram-negative and the Gram-positive bacteria. On one hand, the Gram-positive 

bacteria (i.e. Bacillus, Listeria, Staphylococcus, Lactobacillus) have a thick 

peptidoglycan layer – containing also D-amino acids – coupled to a thin plasma 

membrane. In contrast, Gram-negative bacteria (i.e. Escherichia coli, Pseudomonas 

aeruginosa), have a more complex cell envelope consisting of a much thinner 

peptidoglycan layer coupled to a lipopolysaccharide (LPS) decorated outer 

membrane, separated by a periplasm from the plasma membrane (Figure 1). 

 

 

Figure 1. Gram-positive and -negative cell wall structure. The membrane structure 

allows the classification between these two super families. 

 

2. The immunology of the lung  

Bacteria and humans have evolved jointly to a unique symbiotic holobiont [3]. The 

skin and the gut microbiota act as a protecting living barrier for the eukaryotic 

organism against pathogenic microbes. However, the lung surface structures need to 

be cleared of microbial biofilms to allow an efficient gas exchange. Since the air 

contains aerosolized potentially harmful particles and microbes, the immune system 

must continuously undertake defense measures to keep the organisms’ homeostasis. 

Therefore, humans possess complex immune responses, which can be divided into two 

categories: the innate and the adaptive immune system. 
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2.1. Innate response 

The innate immune system consists of a variety of non-specific immune cells, 

constantly surveilling the body, ready to be activated within the first minutes after a 

tissue injury or a cell infection is detected [4]. This evolutionary defense mechanism 

relies on the recognition of pathogen-associated molecular patterns (PAMPs) or host- 

derived damage-associated molecular patterns (DAMPs) [5]. The recognition of these 

patterns will trigger a fast onset of inflammation, characterized by the recruitment of 

leucocyte through chemical mediators (cytokines), the activation of the complement 

cascade, and the identification of the pathogen leading to the antigen presentation by 

the antigen presenting cells (APCs). Most innate leukocytes are issued from the bone 

marrow [6], where after a process of maturation [7–9] they are released to the 

bloodstream [10]: the mast cells, the phagocytes (i.e. macrophages, neutrophils and 

dendritic cells), the natural killer cells and the basophils and eosinophils. In this 

study, the main focus is on the innate immune response of the lung resident 

macrophages, called alveolar macrophages (AMs). 

The innate immune system is fast and efficient, however it is not designed to retain 

any information on the pathogens, nor provide long-lasting immunity to the host [11]. 

 

2.2. Adaptive/acquired response 

The adaptive immunity is triggered after antigen presenting cells (APC) had contact 

with a given antigen. These highly specialized cells were generated during the last 

infection and will be reactivated in the aim of the pathogen containment of 

destruction. The lymphocyte B (LBs) and T (LTs) are the main effectors of this 

specific and acquired response. Like most lymphocytes after their generation, LTs and 

LBs circulate in the bloodstream in the search of an activated APC. Upon 

stimulation by the antigen, LTs and LBs will undergo a phase of maturation and 

replication. LTs will either become T helper (Th), secreting cytokines to attract 

phagocytes, or T cytotoxic (Tc), tracking and killing infected cells. Activated B cells 

differentiate into plasma cells and will in turn produce pathogen specific antibodies, 
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directed to the source of the infection. After total removal of the pathogen causing 

the infection, the antigen pattern will be conserved as part of the immune memory. 

The speed of resolution is critical, since the continuation of homeostasis is the basis of 

the organism’s healthy state. The lingering inflammation of an organ leads to scaring 

and remodeling, possibly impacting its functions. In this work, the focus is on the 

lung immune response and particularly of its epithelium; the lung’s surface and 

vulnerable barrier to the outside world. 

 

3. The lung epithelial barrier/epithelium 

The lungs structure relies on a complex assembly of cells, forming a huge interface 

with the outside world (ca. 100 m² in humans). In this study, the importance is made 

not on the primary respiratory function of the lung parenchyma but on its ability to 

respond to the continuous flow of microbes (pathogens or saprophytes) reaching its 

surface. Among all the cell types present in the lung, four are lung specific: the AEC 

(Alveolar epithelial type I and II), the club cells and the ciliated bronchiolar cells 

(Figure 2). The lung consists of three distinct regions, populated by its own set of 

cells. From the trachea to the bronchus, the cells are predominantly ciliated cells –

which motion sweeps mucus and dirt up out of the lungs – and goblet cells producing 

the protective mucus lining the organ. These cells allow the clearance of the lung 

from dust and pathogens above the size of 3 μm through its so-called mucociliary 

escalator [12]. Further down in the bronchioles, ciliated cells become scarcer and 

goblet cells are replaced by club cells, protecting the bronchiolar epithelium by its 

surfactant secretion. Finally, down in the alveoli, there is no mucus lining, nor 

ciliated cells. Small particles (< 3 μm) and pathogens have no mechanical way to be 

expectorated or eliminated and end up “sitting” in the alveoli, potentially harming the 

epithelium. As previously explained, the respiratory, alveolar surface consists of two 

types of pneumocytes. The AECI are the specialized cells responsible for the 

oxygen/carbon dioxide gas exchange considering its thickness, comprised between 0.2 

and 2.5 μm, and covering 95-98% of the lung epithelium surface [13]. The AECII are 

more versatile and contribute to the secretion of pulmonary surfactant, reducing 



INTRODUCTION 

23 

surface tension as well as the replacement of AECI cells after cell damage. 

Inflammatory cytokine sensitivity and secretion from AECII also suggest that AECII 

contribute to the inflammatory response in the lung [14,15]. If the epithelium is not 

able to fully fulfill its barrier role, lung inflammation is the consequence. 

 

 

Figure 2. Overview of the pulmonary airways. The airways harbor various cell types, 

helping the lung clearance at all levels. Adapted from [16]. 
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4. Macrophages development and origin 

Monocytes are blood circulating leukocytes until their recruitment to a tissue and 

their differentiation into macrophages. In vertebrates, they are issued and generated 

continuously during the whole lifetime by bone marrow stem cells [17,18]. As 

previously explained, the macrophages play a critical role in the host defense systems. 

Chemotaxis will guide the monocyte precursors to the site of damage, where they will 

be differentiated into specialized macrophages depending to the targeted organ. The 

macrophages will undergo a final polarization, following a specific pathway, 

subdividing them into two different populations: M1 (classical) or M2 (alternative) 

macrophages (Figure 3). 

 

Figure 3. Schematic representation of M1 (classical) and M2 (alternative) 

macrophage polarization [19]. After activation and polarization, the AM will support 

either inflammation or repair and remodeling. 
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4.1. Macrophages polarization and functions 

4.1.1. M1: The classical activation 

Blood monocytes can be activated by macrophage colony stimulating factors (M-

CSF) to induce their differentiation in mature macrophages [20]. The differentiation 

of macrophages encompasses a spectrum of regulated genes. Macrophages are 

heterogeneous and possess particular plastic cellular phenotypes, finally allowing them 

to adopt their functionality to the respective surrounding environment. With respect 

to the activation state of macrophages, the (“classical”) M1 polarization describes AM 

involved in antimicrobial function [21–23]. As a phagocyte, its role will be mainly to 

recognize, engulf and digest pathogens, dead and dying cells (Figure 4). This function 

is part of the innate immune system, meaning it is non-selective, and fast working. 

Indeed, the first macrophages are recruited on the inflammation site in a matter of 

minutes. The M1 macrophages will produce high levels of Th1 chemoattractant IFNγ, 

reinforced by its own feedback loop, involving the master cytokine TNFα, IL-6 and 

IL-12. Generally, LPS sensing through Toll-Like Receptor 4 (TLR4) results in this 

inflammatory cascade, where enhanced phagocytosis, nitric oxide synthase (NOS2) 

and interleukin 1 β (IL-1β) secretion lead to further macrophage and neutrophil 

recruitment. The M1 macrophages are also antigen presenting cells and help creating 

the bridge between innate and adaptive immunity; the display of the antigen on the 

membrane will activate Th cell which in turn will activate B cells, allowing selective 

target of the antigen by antibodies. Here, a variety of intracellular and extracellular 

markers are considered (inflammatory chemokines) as well as surface markers to 

characterize the AM polarization through several stimuli. 
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Figure 4. Overview of the phagocytosis. Bacterium are engulfed and digested by the 

macrophage via phagocytosis. Remains of the bacterium are excreted and/or presented at the 

surface of the macrophage. Adapted from [24]. 

 

4.1.2. M2(a-b-c): The alternative activation 

At the cornerstone of immunity, macrophages are extremely versatile and dynamic in 

their pathogen responses. In the same way, M1 macrophages are polarized within the 

Th1 response. M2 macrophages (or alternatively activated macrophages) participate 

in the resolution of the inflammation [23,25], where they are involved in wound 

healing, repair and remodeling, when the organism returns to its homeostasis. They 

fundamentally work to reestablish homeostasis [26] by secreting anti-inflammatory 

cytokines (i.e. IL-10) and clearing the tissues from apoptotic neutrophils. M2 

macrophages are themselves subdivided in three subtypes [27]; M2a (IL-4 and/or IL-

13 stimulated macrophages), M2b (immune complexes, LPS and IL-1β activated) or 

M2c (IL-10, transforming growth factor β (TGF-β) or glucocorticoid activated) 

(Figure 3) [7,28]. Like M1 macrophages, M2 macrophages polarization is associated 

with distinctive gene signatures. 

M2a macrophages are activated by IL-4/13, mainly produced by Th2 cells. Following 

IL-4/13 binding, a downregulation of pro-inflammatory mediators (IL-6, IL-8, and IL-

12) is observed, in addition to an upregulation of C-type membrane lectins (i.e. 

MRC1), and scavenger receptors (LDL oxidation), which in turn activate Arginase 1 

production, effectively blocking NOS2 expression. 

M2b cells, activated by opsonized complexes (Fc antibody receptor binding) and 

LPS/IL-1β through TLR4 signaling, not unlike M1 macrophages. They are 
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characterized by high IL-10 and low IL-12 production. However, M2b produce also a 

significant number of inflammatory cytokines such as TNFα, IL-1β and IL-6. 

M2c comprise cells stimulated with IL-10, TGF-β, or glucocorticoids, this subtype is 

often referred to as deactivated or anti-inflammatory helps to decrease further the 

inflammation and improve tissue repair and remodeling by producing large amounts 

of IL-10 and TGF-β. During the inflammation resolution phase, a nuclear hormone, 

the “Peroxisome Proliferator Activated Receptors γ” (PPARγ) plays a key role in 

numerous immune cells, including macrophages, lymphocytes, and dendritic cells [29] 

by inhibiting inflammatory signaling through NF-κB, favoring the alternative 

polarization of macrophages. 
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4.2. Alveolar macrophages: Guardians of the lung 

homeostasis 

Macrophages are specialized hematopoietic cells, and, in the lung, the AM represent 

more than 95% of the resident leukocytes in the alveoli of a healthy human 

individual. They migrate shortly after birth to the lungs and originate from fetal 

monocytes [30] after GM-CSF differentiation [31]. It is understood that they are not 

recruited from circulating monocytes like most tissue macrophages, generated from a 

common bone marrow progenitor [32]. The AM reside on the lung epithelium at the 

interface between the environment and the host [33,34]. Thus the AM are in the lung 

frontline during bacterial infections and the first responders during inflammation [35]. 

The AM participate in several key functions allowing the lung homeostasis, such as 

phagocytosis of pathogens, clearance of apoptotic and necrotic cells; repair and 

remodeling during the resolution phase of the inflammation; and Th cells response 

promotion [36]. Macrophages polarize into different subtypes depending on the 

stimulus and the response needed [37], each subtype being specialized in a distinct 

response function. Naive (or unpolarized) AM are recognized by distinctive markers 

on their surface, making them distinguishable from interstitial macrophages or other 

resident macrophages [34,38]. The markers CD11c, CD11b, SIGLEC-F or MRC1 are 

expressed on the AM at different levels during inflammation or quiescence of the lung 

[34,39] and can be used to discriminate the mouse pulmonary macrophages. 

 

5. Th cells: role and differentiation 

T helper (Th) CD4+ cells play an important role in the adaptive immune system. 

They help the other lymphocyte to increase or decrease their activity during the 

different phases of the immune response. Through their cytokine secretion, they 

regulate B cells maturation, cytotoxic T cells activation and macrophages 

phagocytosis. T cells acquire maturity in the thymus, prior to migrating to the body. 

Naive T cells are presenting their first antigen during an immune response by a 

professional APC. Following this encounter, and after a two steps verification, T cells 

differentiate into one of many different subsets. During this study, the focus was on 
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two Th cells “couples”: the first discovered Th1/Th2 subset [40] as well as the 

Th17/Regulatory T cells (Tregs) subset more recently highlighted [41]. The return to 

homeostasis after an immune response is guaranteed by regulation of the balance 

between the pro-inflammatory and anti-inflammatory T cells. 

 

5.1. Th1/Th2 paradigm 

The Th1/Th2 paradigm is used to explain the complementary roles of these cells. Th1 

cells are triggered and efficient in the event of a replication of intracellular pathogens, 

whereas Th2 are specified against parasites and help tissue repair. Upon antigen 

presentation, the autocrine IL-12 secretion, which is reinforced by an auto feedback 

loop, leads to the differentiation of Th0 cells into Th1 or Th2, whether a cellular or 

humoral response is needed. Th1 cell’s effector cytokines are interferon gamma 

(IFNγ) and IL-2, controlled by their key respective transcription factors T-bet and 

“Signal Transducer and Activator of Transcription 4” (STAT4) [42]. IFNγ is used by 

Th1 cells to activate macrophages’ phagocytosis, and digestion and to kill 

intracellular pathogens through NOx radical production [43]. 

On the other hand, Th2 cells are triggered by IL-4 and IL-2 through STAT6 and 

GATA3 transcription factors signaling [44]. Th2 will then secrete a variety of 

cytokines (IL-4, IL-5, IL-9, IL-10, IL-13 and IL-25). IL-4 will increase Th2 

differentiation due to its positive feedback loop, stimulating in turn B cells and IgE 

production. IL-10 secretion will reduce IL-2 and IFNγ production in other Th cells. 

5.2. Th17/Tregs paradigm 

The Th1/Th2 paradigm, first proposed by Mosmann and Coffman [45], opened the 

door to modern immunology. However, this model was incomplete [46]. Other T cells 

are also responsible for the regulation of the immune system; Th17 and Tregs are 

issued from a developmentally distinct lineage from Th1/2 cells. Th17 cells are 

associated with pathogens clearance as part of the adaptive immune system. Their 

phenotype is acquired after IL-23 stimulation and characterized by their IL-17 

cytokine production. This protein is notably involved in many inflammatory 
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responses. However, uncontrolled or persistent immune responses are difficult issues 

for the organism, causing inflammatory or autoimmune diseases. Regulatory T cells 

(Tregs) tackle this by being a crucial mediator in controlling immunity and self-

tolerance. Tregs function is regulated by the transcription factor Foxp3 [47,48] leading 

to the suppression of T cell proliferation, and the inactivation of dendritic cells (DCs) 

[49,50]. 

The immune response is tightly regulated with positive and negative feedback loops, 

allowing a tailored reaction by the organism before and long after an injury. 

 

6. Lung injury and inflammation 

The inflammation is one of the first biological manifestation of the innate immune 

system when subjected to an injury or an infection. It includes, as described 

previously, an activation of complement, as well as a leucocyte recruitment and the 

antigen presentation from the professional APCs. 

Two types of injuries are generally described; acute and chronic. Together they cover 

the inflammation spectrum. Chronic Obstructive Pulmonary Disease (COPD), 

asthma and Idiopathic Pulmonary Fibrosis (IPF) are part of the chronic lung 

diseases. A bacterial infection, or a contact with pollutants initiate an acute response 

in the form of an inflammation. The consequences of “Acute Lung Injury” (ALI) will 

be further discussed here. The speed of the organism’s response is the key, relying 

mostly on innate immunity reactions. One prominent pro-inflammatory signaling 

pathway is for example the nuclear factor kappa-light-chain-enhancer of activated B 

cells (NF-κB) cascade, which is known to be triggered by the activation of 

LPS/TLR4 and/or IFNγ receptors. Subsequently, this leads to the production and 

expression of pro-inflammatory cytokines such as TNFα, IL-1β, IL-6 and IL-12. After 

phosphorylation and translocation of the transcription factor subunits, the following 

nucleus transfer will induce DNA binding and the expression of M1 macrophages’ 

“signature genes” Nos2 and Tnf (Figure 3). 

After the inflammation response, different actors restore the homeostasis. IL-4 and 

IL-13 are binding on their receptors at M2 macrophages, which leads to the 
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expression of M2 “signature genes”, such as Arg1 and Mrc1 downstream of the 

JAK/STAT-6 axis (Figure 3 and Figure 5). 

During this whole study, the inflammation was triggered solely by LPS, a well 

described model of acute inflammation [51,52]. It allowed a fast onset, typically 

within half an hour and a fast resolution within 48-72h during in vitro as well as in 

vivo experiments. 

 

 

Figure 5. Signaling pathways of macrophage polarization [53]. Illustration of M1 and 

M2 signaling pathways interconnection, showing both the initiation and the resolution of an 

inflammation. 

NOS2: Nitric oxide synthase 2 (NOS2) catalyzes L-arginine to produce nitric oxide (NO). 

NO is one of the major resources of oxidative stress. 

Signal transducer and activator of transcription 1 (STAT1), Interferon regulatory factor 5 

(IRF5), Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and 

Activator protein 1 (AP-1), are transcription factors playing keys roles in many gene 

expressions that cause survival of the cell, viability or pathogen response. They are the 

central regulators of the inflammatory response. 

Signal transducer and activator of transcription 6 (STAT6), Interferon regulatory factor 4 

(IRF4), Peroxisome proliferator-activated receptor gamma (PPARγ ), and cAMP response 

element-binding protein (CREB) are transcription factors involved in the regulation of many 

pathologic features of inflammatory responses. They include the promotion of the 

proliferation, survival, and regulation of T and B lymphocytes as well as specific anti-

inflammatory cytokine mediated expression. 
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7. The Aryl hydrocarbon Receptor (AhR) and the immune 

system 

The “Aryl hydrocarbon Receptor” (AhR), previously known as the dioxin receptor, is 

a ligand activated transcription factor involved in the adaptive response. It binds to a 

variety of ligands, its pocket fitting environmental xenobiotics (pollutants), possessing 

polycyclic aromatic hydrocarbon or halogenated aromatic hydrocarbon structures 

[54]. 

The immunomodulatory AhR function is versatile and depends highly on the ligand 

interacting with it. Duarte et al. [55] previously showed that the binding of 2,3,7,8-

tetrachlorodibenzo-p-dioxin (TCDD) reduced IL-17 production by the inhibited 

differentiation of Th17 cells. Other agonists, such as antiallergic drugs, have been 

shown to influence Th1/Th2 balance through AhR signaling [56]. 

It is now well established that the host-microbiome mutualism is a key to the 

organism’s overall fitness [57]. This project is focused on the crosstalk effect of 

bacterial molecules with the immune system during homeostasis and inflammation. 

The immunomodulatory role of the Th1/Th2 and Th17/Tregs balances as well as their 

roles in wound healing [58] was studied to get insights into possible modulations of 

underlying mechanisms by bacterial signaling compounds. 

 

8. The lung microbiome 

Ambient air does not only carry oxygen to the body but also particles and pollutants 

as well as microbes. The smaller the exogenous body, the deeper it penetrates into 

the lung. Given the great amount of air inhaled, the cumulated concentration of the 

substances in the lung is not negligible and is suggested to worsen pulmonary 

functions, which in turn could influence other organs systemically. 

Surprisingly, the lung, as one of the gate keepers of immunity, and the interaction 

with its microbiome have been rather poorly studied. The current microbiome 

research focuses more e.g. on the gastro-intestinal tract, the skin, the urogenital 

system and the upper pulmonary system. However, recent publications have been 

showing the important role played by microbes (bacteria, fungi, viruses and phages) 



INTRODUCTION 

33 

on the dynamics of lung diseases (i.e. asthma [59], transplantations [60], cystic 

fibrosis [61]) as well as in the homeostasis of healthy individuals. The lung 

microbiome is unique to the individual; it is diverse, and varies over time [62,63]. It 

consists mostly in Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria in 

healthy individuals [64]. However, the dual role played by these commensal bacteria 

and their interaction with the host immune system remains poorly understood. A 

potential therapeutic effect of probiotic bacteria and their signaling molecules was 

hypothesized and already partly uncovered for immune diseases including chronic and 

acute lung diseases [63–68]. 

Within the biofilms formed by bacteria, cellular communication networks are created. 

The molecules involved are either N-Acyl homoserine lactones of Gram-negative 

bacteria, and e.g. D-amino acids of Gram-positive bacteria. The cross talk between 

pathogenic bacteria and the immune system via the epithelium appeared to be 

critical for patients with lung diseases [69], where quorum sensing molecules such as 

the 3-oxo-C12-HSL autoinducer seem to be key players in the severity of the disease 

by modulating various immune responses. On the other hand, the role of D-

tryptophan of probiotic Lactobacilli in beneficial interactions is just getting started to 

be understood [67]. 

 

8.1. Pseudomonas aeruginosa and the quorum sensing 

compounds N-Acyl homoserine lactones 

Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen, well known to 

worsen lung function and mortality in patients with cystic fibrosis [69]. In addition, it 

is also recognized as a relevant pathogen during acute exacerbations of “Chronic 

Obstructive Pulmonary Disease” (COPD). Its pathogenicity is controlled through the 

production of quorum sensing molecules [70] such as the “N-Acyl homoserine 

lactones” (AHL), which control transcription of specific virulence genes. The quorum 

sensing (QS) is the auto-regulation phenomenon [71] used by bacteria to enable self 

and neighbor communication. The expression of the Pseudomonas aeruginosa 3-oxo-
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C12-HSL autoinducer is controlled through two [transcriptional regulation 

protein/autoinducer enzyme] couples: [RhlR/RhlI] and [LasR/LasI] [72,73]. The AHL-

signaling compounds were shown to directly interfere with the host’s immune 

responses [74–76]. 

Understanding the crosstalk of AHL signal molecules with barrier organs and the 

immune system could enable the development of immune modulatory strategies [77] 

for treatment of inflammatory lung diseases [78]. 

 

Figure 6. N-Acyl homoserine lactones. (A) 3-oxo-C12-HSL, found in e.g. 

Pseudomonas aeruginosa, Pseudomonas putida, Yersinia enterocolitica (B) 3-oxo-C4-HSL, 

synthetic AHL possessing the 3-oxo moiety and a short alkyl chain (C) C12-HSL, found in 

the Acidithiobacillus ferrooxidans, Sinorhizobium meliloti, do not possess the 3-oxo moiety. 

 

Early studies have linked the 3-oxo-C12-HSL auto-inducer to cell apoptosis and 

cytotoxicity. Shiner et al. [79] showed that 3-oxo-C12-HSL (100 μM) induced 

apoptosis in murine fibroblasts, and in human mesenchymal stem cells [80]. Tateda et 

al. described the cytotoxicity of 3-oxo-C12-HSL towards murine bone-marine derived 

macrophages, neutrophils and monocytic cell lines [81]. Furthermore, Vikström et al. 

indicated that the 3-oxo-C12-HSL triggered the alteration of junction protein causing 

a disruption in epithelial barrier function and integrity [82,83]. 

Since more than ten years, the immunomodulatory effects of quorum sensing have 

been studied. Cytokine signaling can be altered by 3-oxo-C12-HSL. Smith et al. [84] 

discovered that 3-oxo-C12-HSL increased both IL-8 production and expression in in 

human epithelial and fibroblast cells, whereas IL-2 secretion was inhibited [74]. 
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Recruitment of immune cells (such as neutrophils and macrophages) and growth of 

cell population are also affected by 3-oxo-C12-HSL treatment [85,86]. T cell 

proliferation [74] and Th1/Th2 cells differentiation were inhibited with a 3-oxo-C12-

HSL concentration as low as 18 μM [87]. These results extend the findings of 

Zimmermann et al. [75,88], describing an increased chemotaxis and phagocytosis of 

neutrophils after 3-oxo-C12-HSL treatment. Kravchenko et al. explained the 

macrophages immunomodulation by the disruption of an TLR-independent NF-κB 

signaling [89,90]. This effect may be related to the ability of 3-oxo-C12-HSL to 

function as a PPARγ agonist [76,91]. However, the immune mechanisms involved 

after 3-oxo-C12-HSL exposition as well as the target receptor within host cells are not 

yet fully resolved. However, evidence from Maurer et al. recently suggested that 3-

oxo-C12-HSL activates the expression of the surface receptor T2R38 [92]. 

In this study, 3-oxo-C4-HSL and C12-HSL act as controls for 3-oxo-C12-HSL which is 

immunologically active. They mimic the 3-oxo moiety and the alkyl chain length of 

the 3-oxo-C12-HSL, while both possessing the lactone ring (Figure 6). Indeed, it is 

speculated that only the combination of the oxo moiety with the lactone ring enables 

an immunomodulatory function. The three lactones are degraded into biologically 

inactive opened ring structure at neutral pH or slightly alkaline solution, with a half-

life of approximately 10 hours [78]. In plants having only an innate immune system, 

AHLs interfere with several biological systems, inhibiting or promoting root growth, 

as well as priming resistance against pathogens [93,94]. 

 

8.2. The inflammatory response triggered by microbes 

Gram-negative bacteria’s outer cell wall contains to an important part LPS, 

phospholipids and proteins. The endotoxin LPS is one of the most described 

“Pathogen Associated Molecular Pattern” (PAMP): it activates several “Antigen 

Presenting Cells” APCs such as monocytes, macrophages, DCs and B cells, and is 

predominantly responsible for the inflammatory response during bacterial infection 

[95]. In mammals, pathogens are first recognized by the innate immune system 

through several mechanisms including specific recognition and signal transduction, 
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followed by the adaptive immune system. The classical pathways include different 

strategies used to fight back infection and restore homeostasis. “Toll-Like Receptors” 

(TLRs) are the most studied classes of “Pattern Recognition Receptors” (PRRs); they 

possess a ligand binding domain able to recognize a variety of pathogens, such as 

bacteria, fungi or viruses. 10 subtypes or TLRs have been described, each specializing 

in a type of PAMPs [5]. The “Retinoid Acid-Inducible Gene I (RIG-I)-Like Receptors” 

(RLRs) and “Nucleotide-Binding Oligomerization Domain (NOD)-Like Receptors” 

(NLRs) are PRRs involved in the intracellular immune activation and the recognition 

of foreign nucleotides. The activation of the PRRs drives the NF- κB dependent 

inflammatory cascade, leading to production and release of the pro-inflammatory 

master cytokines tumor necrosis factor alpha (TNFα), and interleukin 1 beta (IL-1ß) 

from the cell, effectively inducing neutrophil maturation and chemotaxis.  

The Pseudomonas aeruginosa 3-oxo-C12-HSL autoinducer has been shown among 

other effects to accelerate apoptosis in macrophages and neutrophils [81] and inhibit 

DNA binding to the PPARγ. These interferences of the immune responses result from 

the upstream activation of T2R38 receptor and inhibition of NF-κB pathways [96].  

 

8.3. Lactobacillus casei and D-tryptophan 

Kepert et al. [67], analyzed immunomodulatory effects on dendritic cell maturation in 

the supernatant of probiotic Gram-positive Lactobacillus spp., Lactobacillus 

rhamnosus GG and Lactobacillus casei W56 shared the secretion of the unusual 

amino acid D-tryptophan (D-Trp). After purification, MS- and NMR-confirmation 

analysis, D-Trp was confirmed as newly identified immunomodulatory probiotic 

substance [67]. 

Both L-tryptophan (Figure 7) and D-tryptophan (D-Trp) are amino acids of 

bacterial/fungal origin secreted by several probiotic bacterial strains [67]. 

Catabolizing enzymes (e.g. indoleamine-2,3-dioxygenase - IDO) participating in Trp 

degradation, are found in cells of the immune system. It is not clear yet, which role 

D/L-Trp metabolites play in detail [66,97]. However, evidence are in favor of either a 

suppressing effect of T-cell proliferation by these metabolites, or of a more general 
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suppression of immune cells through pro-apoptotic mechanisms [97]. Interestingly, it 

was discovered that the IDO enzyme catabolizes L-Trp as well as D-Trp [98]. 

 

Figure 7. D-tryptophan structure and similarities to other D-amino acids. 

 

9. Project outline and hypotheses 

In this project, the two aspects of the immunity were treated: 

- innate immunity by the study of macrophages activation upon AHL treatment 

- adaptive immunity and the differentiation of Th2/17, considering their 

relevance in asthma [99]. 

Specific AM polarization, upon e.g. AHL and D-Trp application, could play a key 

role in the epithelium defense and homeostasis [100,101]. D-Trp could induce immune 

tolerance, possibly driving similar modulatory effects compared to AHL [97,102,103], 

although the structures differ considerably. 

There is overwhelming evidence for the importance of the crosstalk between 

microbiome and its host. From the plants to the mammals, these important relations 

have been unevenly studied. Indeed, the mutualism of microbes with human cells in 

Imidazole ring 
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the gut is well described. However, the lung microbiome in its interaction with 

alveolar immunity remains greatly unexplored. 

This study investigated, how two types of molecules, AHL and D-tryptophan 

produced from Gram-negative and Gram-positive bacteria, respectively, interact with 

the lung structure, integrity, and immunology. Th17/Th2 differentiation, AM 

polarization, responses in wound healing, in vitro and in vivo acute lung injury, and 

the associated response pathways were examined in the alveolar compartment. 
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MATERIALS AND METHODS 

1. Materials 

1.1. Mice 

The mice used for the study on the AHL effects on Th cells (wild type Balb/c genetic 

background) were kept and bred at the Institut für Molekulare Immunologie (IMI), 

Helmholtz Zentrum München. 

The mice used in the ALI in vivo studies were wild-type C57BL/6J genetic 

background and were imported from Charles River Laboratories, and then kept at the 

institute of Lung Biology and Disease (iLBD), Helmholtz Zentrum München, 

Neuherberg, according to the national and institutional guidelines. Mice were female 

and aged from 8 to 16 weeks. After sacrifice, BALF, BAL cells, spleen and lungs were 

snap frozen and stored. 

AhR-/- and AhR-/+ (C57BL/6 Ahrtm1Bra) mice were bred and kept under the 

supervision of the Dr. Ohnmacht in the Center of Allergy and Environment (ZAUM), 

Helmholtz Zentrum München, Neuherberg. The mice used were mixed males and 

females aged from 25 to 30 weeks. 

 

1.2. Kits 

Name Company 

LightCycler® 480 SYBR Green I Master (2X conc.) Life Science 

Superscript™ II Reverse Transcriptase kit Invitrogen 

Duo set ELISA kit (CXCL1, TNFα, IL-1β, CXCL5, GM-

CSF) 
R&D Systems 

RNeasy Mini Kit Qiagen 

Giemsa and May Grünwald solutions kit Sigma-Aldrich 

RNaseOUT™ Recombinant Ribonuclease Inhibitor Invitrogen 
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dNTP Mix (10 mM each) Fermentas 

 

1.3. Chemicals 

Name Company 

3-oxo-dodecanoyle homoserine lactone Sigma-Aldrich 

3-oxo-butanoyle homoserine lactone University of Nottingham 

Dodecanoyle homoserine lactone University of Nottingham 

D-F, D-H, D-M, D-P, D-Y, D-W, L-W Sigma-Aldrich 

Acetonitrile Sigma-Aldrich 

Rosiglitazone Sigma-Aldrich 

Probenecid Sigma-Aldrich 

Dimethyl sulfoxide Sigma-Aldrich 

Entellan® mounting medium Merck Millipore 

 

1.4. Recombinant proteins and antibodies 

Name Company 

Recombinant murine IFNγ Immunotools 

Recombinant murine IL-4 IL-2, IL-6, IL-13, IL-23 Immunotools 

Lipopolysaccharides (LPS) from E. coli Sigma-Aldrich 

Anti-mouse CD3 BD Bioscience 

Anti-mouse CD28 BD Bioscience 

Anti-mouse IFNγ BD Bioscience 

Mouse TGFβ BD Bioscience 
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1.5. Buffers and solutions 

Buffer/Solution Concentration Chemical 

Wash buffer (PBS-T)  

1X 

0.05% 

PBS 

Tween 20 

PBS buffer (10X)  

137 mM 

2.7 mM 

10 mM 

2 mM 

NaCl 

KCl 

Na
2
HPO

4
 

KH2PO4 

TBE buffer (10X)  

890 mM 

890 mM 

20 mM 

Tris base 

Boric acid 

EDTA (pH=8.0) 

MH-S medium 

1X 

10% 

1% 

2 mM 

50 μM 

RPMI-1640 medium 

FBS 

Penicillin/streptomycin 

Glutamine 

β-mercaptoethanol 

LA-4 medium  

1X 

15% 

1% 

2 mM 

1% 

HAM-12 medium 

FBS 

Penicillin/streptomycin 

Glutamine 

Non-essential amino acids 

MLE-12 medium 

1X 

10% 

1% 

2 mM 

RPMI-1640 medium 

FBS 

Penicillin/streptomycin 

Glutamine 

FACS Buffer 

1X 

1% 

PBS 

BSA 
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RIPA buffer (1X)  

20 mM 

150 mM 

1 mM 

1 mM 

1% 

1% 

2.5 mM 

1 mM 

1 mM 

1μg/mL 

Tris-HCl (pH 7.5)  

NaCl  

Na
2
EDTA  

EGTA  

NP-40  

sodium deoxycholate 

sodium pyrophosphate 

β-glycerophosphate 

Na
3
VO

4 

Leupeptin 

loading buffer (2X)  

100 mM 

4% 

0.2% 

20% 

Tris pH=6.8 

SDS 

Bromophenol blue 

Glycerin 

Electrophoresis (5X 

running buffer) 

15.1 g 

94 g 

50 mL 

Tris 

Glycin 

10% SDS 

Transfer buffer(1X)  

3.02 g 

14.4 g 

200 mL 

Tris pH=8.5 

H
2
O 

Methanol 

10% PAGE (4 gels) 

Resolving 

15.9 mL 

13.3 mL 

10.0 mL 

400 μL 

400 μL 

16 μL 

H
2
O 

30% Acrylamid 

1.5 M Tris pH=8.8 

10% SDS#10% APS 

TEMED 
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10% PAGE (4 gels) 

Stacking 

13.6 mL 

3.4 mL 

2.5 mL 

200 μL 

200 μL 

20 μL 

H
2
O 

30% Acrylamid 

1 M Tris pH=6.8 

10% SDS 

10%APS 

TEMED 

Block buffer (ELISA)  

1 g 

100 mL 

BSA 

1X PBS 

Stop solution (ELISA)  0.2 M H
2
SO

4
 

RT-PCR Mix 

 

 

0.1 M 

10 mM 

1 μL 

 

0.01 mM 

RNase free H2O 

5x First Strand Buffer 

10x DTT 

20x 4dNTPmix 

RNAse inhibitor 40 U/μL 

Superscript II RT 200 

U/μL 

Random Nonamers 

 

1.6. Primer sequences 

Target 

gene 
Acc. No. Forward primer (5’-3’) Reverse primer (5’-3’) 

Actb NM_007393 TCCATCATGAAGTGTGACGT 
GAGCAATGATCTTGATCTTCA

T 

Arg1 NM_007482 GGAACCCAGAGAGAGCATGA TTTTTCCAGCAGACCAGCTT 

Ccl17 NM_011332 
TTGTGTTCGCCTGTAGTGCA

TA 

CAGGAAGTTGGTGAGCTGGTA

A 

Il6 NM_031168 GCCAGAGTCCTTCAGAGAG AGACTCTCTCCCTTCTGAGC 

Il1b NM_008361 
CAACCAACAAGTGATATTCTC

CATG 
GATCCACACTCTCCAGCTGCA 

Il12b NM_008352 GGAAGCACGGCAGCAGAATA 
AACTTGAGGGAGAAGTAGGAA

GG 
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Irf4 NM_013674 
AAAGGCAAGTTCCGAGAAGG

G 

CTCGACCAATTCCTCAAAGTC

A 

Irf5 NM_012057 GCCACCTCAGCCGTACAAG 
CTCCCAGAACGTAATCATCAG

G 

Mrc1 NM_008625 CATGAGGCTTCTCCTGCTTCT TTGCCGTCTGAACTGAGATGG 

Nfkb1 NM_008689.2 AGGAAGAAAATGGCGGAGTT GCATAAGCTTCTGGCGTTTC 

Nos2 NM_010927 CCTGTGAGACCTTTGATG CCTATATTGCTGTGGCTC 

Rela NM_009045 CTTGGCAACAGCACAGACC GAGAAGTCCATGTCCGCAAT 

Retnla NM_020509 CGAGTAAGCACAGGCAGT CCAGCTAACTATCCCTCCAC 

Tnf NM_013693 CACCACGCTCTTCTGTCT GGCTACAGGCTTGTCACTC 

Il4ra NM_001008700 TCTGCATCCCGTTGTTTTGC GCACCTGTGCATCCTGAATG 

Psmd11 NM_178616 GAATGGGCCAAATCAGAGAA TGTACTTCCACCAAAAGGGC 

Psme1 NM_011189 AGGCTTCCACACGCAGATCT ACCAGCTGCCGATAGTCACC 

Psme2 NM_001029855 CCAGATCCTCCACCCAAGGA CCGGGAGGTAGCCACACTTA 

Psme3 NM_011192 TAGCCACGATGGACTGGATG 
CACAAACACCTTGGTTCCTTG

AA 

Psma3 NM_011184.4 
TGAAGAAGGCTCCAATAAAC

GTCT 
AACGAGCATCTGCCAGCAA 

Psmb5 NM_011186.1 
TGCTCGCTAACATGGTGTAT

CAGTA 
GGCCTCTCTTATCCCAGCCA 

Psmb6 NM_008946.4 
AGACGCTGTCACTTACCAACT

TGG 
AAGAGACTGGCGGCTGTGTG 

Psmb7 NM_011187.1 
TGCCTTATGTCACCATGGGT

TC 

TTCCTCCTCCATATCTGGCCTA

A 

Psmb8 NM_010724 
TGCTTATGCTACCCACAGAG

ACAA 
TTCACTTTCACCCAACCGTC 

Psmb9 NM_013585 
GTACCGTGAGGACTTGTTAG

CGC 
GGCTGTCGAATTAGCATCCCT 

Psmb10 NM_013640 GAAGACCGGTTCCAGCCAA 
CACTCAGGATCCCTGCTGTGA

T 

Csf-2 NM_009969 GCCATCAAAGAAGCCCTG 
GCGGGTCTGCACACATGTTAA

A 

Lcn2 NM_008491 GAAGAACCAAGGAGCTGT TCAATGCATTGGTCGGTG 

Tgfb NM_001013025 
TGACGTCACTGGAGTTGTAC

G 
GGTTCATGTCATGGATGGTGC 

Ccl2 NM_011331 CTTCTGGGCCTGCTGTTCA CCAGCCTACTCATTGGGATCA 
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Cx3cl1 NM_009142 GCGACAAGATGACCTCAC CCAGGTGTCACATTGTCC 

Cxcl1 NM_203320 CCGAAGTCATAGCCACAC GTGCCATCAGAGCAGTCT 

Cxcl5 NM_002994 CCCTACGGTGGAAGTCAT CTTCACTGGGGTCAGAGT 

Cxcl2 NM_002089 TCCAGAGCTTGAGTGTGACG TCCAGGTCAGTTAGCCTTGC 

Cxcl9 NM_008599 GGAGTTCGAGGAACCCTA GGGATTTGTAGTGGATCG 

Pparg NM_001127330 GTAGAAGCCGTGCAAGAG GAGGAACTCCCTGGTCAT 

Cxcr2 NM_009909 
AGCAAACACCTCTACTACCCT

CTA 

GGGCTGCATCAATTCAAATAC

CA 

Cd36 NM_001159555 
TGGAGATTACTTTTTCAGTG

CAGAA 
TCCAGCCAATGCCTTTGC 

 

2. Methods 

2.1. Alveolar macrophages (AM) cell line culture 

Murine alveolar macrophages cell line (MH-S) is derived from Balb/c mice and was 

purchased from American Type Culture Collection. Cells were grown to confluence in 

MH-S medium (RPMI-1640 medium supplemented with 10 % fetal bovine serum 

(Biochrom) and 0.05 mM β-mercaptoethanol and 100 U/ml Penicillin and 100 μg/ml 

Streptomycin (Gibco) at 37°C and 5 % CO2). When confluence was reached, the cells 

were washed twice in pre-warmed PBS at 37°C, and then 1 mL of trypsin-EDTA 

(Sigma-Aldrich) per 25 cm2 of culture was added to the flask. Cells were incubated at 

37°C, 5% CO2 for 5 min. After complete detachment, the trypsin was inactivated by 

fresh pre-warmed MH-S medium. The cells were resuspended and collected and 

centrifuged (1200 rpm, 5 min, RT). Cells were then seeded in a new flask after a 1:5 

dilution or used directly for experiments. The cells were plated according to the table 

below. MH-S cells were split twice a week. 
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Culture plate Surface area (cm2) Cells at confluency 

6-well 9 1.2x106 

12-well 4 0.4x106 

24-well 2 0.2x106 

Table 1. Cell culture experiment preparation. Relation between well plates, and 

cell density. 

 

2.2. Alveolar epithelial cell type 2 (AECII) 

Murine pneumocytes type 2 cell line (LA-4) is derived from A/He mice lung adenoma 

and was purchased from American Type Culture Collection. The subculture 

procedure is the same as described previously, with the culture media changed to the 

LA-4 culture media. 

 

2.3. Alveolar macrophages polarization 

AM were polarized in vitro towards the M1 phenotype with LPS (1 μg/mL, Sigma) 

and/or IFNγ (20 ng/mL, Immunotool) or towards the M2 phenotype with IL-4 (20 

ng/mL, Immunotool) treatment for up to 72 h. Unpolarized AM (M0) served as 

controls. Polarization was validated via quantitative RT PCR for M1 markers (Tnf, 

Il1b, and Nos2) and M2 markers (Arg1, Cxcr2, and Il10r) [104,105]. Cell culture 

supernatants were collected for γlammatory cytokines measurement. Adherent AMs 

were washed twice with PBS and harvested for mRNA isolation (Qiagen) and 

measurement of mRNA expression levels (Light Cycler 480, Roche). 

 

2.4. N-Acyl homoserine lactones (AHL) treatment 

Bacteria produce AHL in a continuous manner to determine their neighboring 

bacterial concentration (e.g. quorum sensing). To mimic this biological process, cells 

were treated simultaneously with 3-oxo-C12-HSL, C12-HSL, 3-oxo-C4-HSL, or vehicle 

(0.6% (n=2) and 1% (n=1) DMSO) was added. The concentration of AHL used in 
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the media was 60 μM according to previous studies [78,106], which had been shown to 

be of biological relevance. Cells and supernatants were harvested after 6h (n=1), 24h 

(n=3), or 72h (n=1) of treatment. 

 

2.5. AECII/AM single well coculture 

LA-4 (or MLE-12) cells were seeded on the first day, following the density 

recommended in Table 1. After incubating overnight in the standard conditions, MH-

S were added on the top of the LA-4 monolayer respecting a final cell ratio of 

1:3 (MH­S:LA-4) in a 1:1 medium mix. After another overnight incubation, the cells 

were treated. 

 

2.6. AECII/AM/Pseudomonas aeruginosa (PAO1) 

transwell culture 

Murine cells were grown on the bottom well following the same procedure as 

explained in 2.5. PAO1 were cultivated for the last 24h in the same 1:1 media as the 

murine cells at the concentration 106 CFU/mL. 0.5x106 PAO1 were added on the 

transwell (Becton Dickinson Labware) above the AECII/AM layer. QS-molecules 

treatment was added in the transwell to allow molecular diffusion to the murine cell 

layer in the bottom well. 

 

2.7. AECII/PAO1 supernatant culture wound healing 

assay 

Murine AECII (LA-4) were plated on 24-well plates and then let at rest overnight. 

The cells were scratched, gently rinsed with PBS and covered by 1 mL of PAO1 

bacterial free supernatant/LA-4 medium (1:1). The cells were incubated 24h under 

normal conditions as previously described in 2.1. The area of the wound was 

measured by light microscopy directly after its creation and 24h after. 
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2.8. Intratracheal instillation 

2.8.1. Acute Lung Injury (ALI) 

ALI is modeled by the inhalation of a suspension of LPS particles (2 μg/mL, 50 μL) 

in the mouse trachea to create an acute inflammation of the lungs characterized by 

leucocytes infiltration, increased blood barrier permeability and massive cytokine 

release. To assess the therapeutic anti-inflammatory potential of AHL and D-Trp 

during an ALI, 8 weeks old C57BL/6J mice were anesthetized with MMF (2.5 μL/g) 

and intratracheally instilled. The lungs and BALF were harvested for analysis after 

24 or 48h after initial LPS instillation. The mice were then woken up with MMF 

antagonist (10 μL/g) and let to rest for 6 hours. 

 

2.8.2. D-Trp/AHL Treatments 

The mice were anesthetized following the same protocol as in 2.8.1 and then treated 

with 50 μL PBS, AHL (300-1200 μM dissolved in ACN and diluted in PBS) or D-Trp 

(100 μM-50 mM dissolved and diluted in PBS). The mice were then woken up with 

MMF antagonist (15 μL/g) and let to rest. 24h later, the lungs were washed to collect 

the BALF and cells, and the lungs were harvested. 

 

2.9. BAL analysis 

2.9.1. Cytospins slides generation 

BAL cells were centrifuged and resuspended in 1 mL of cold PBS. The cells 

concentration was obtained counting the cells with a Neubauer counting chamber. A 

variable volume (100-200 μL) containing 30 000 cells is then loaded on the Cytospin. 

The cells are centrifuged on the Cytospin 400rpm 6 min at 400 rpm. The slides are 

then dried at room temperature for an hour. The slides are then either frozen at 

-80°C or stained directly. 
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2.9.2. May-Grünwald-Giemsa staining 

A dilution in water 1:5 of Giemsa solution is prepared. The dried Cytospin slides are 

soaked consecutively 10 min in May-Grünwald solution, then 2 min in water, followed 

by 15 min in diluted Giemsa and finally in water for an additional 2 min. The slides 

are then dried for one hour and then covered with Entellan® and mounted with 

cover slips. The total number of cells visible on the slide is then counted with the 

help of a microscope (bright field). 

 

2.10. Enzyme-Linked Immunosorbent Assay (ELISA) 

Cell supernatant or BAL cytokine content was snap-frozen and kept at -80°C until 

analysis. Concentrations were measured via spectrophotometry (Tecan-Magellan™) 

using ELISA kits (Duoset Detection Kit; R&D Systems) according to the 

manufacturer’s instruction. The standard curve was set using dilutions of the 

recombinant protein of interest. The detection limits were comprised between 3.9 and 

60 pg/mL depending on the assay. 

 

2.11. Cell viability assay with Water Soluble Tetrazolium 

salt (WST) 

The WST-1 kit used contains a light sensitive electron-coupling reagent diluted in 

PBS. The principle of the assay is the reduction of the tetrazolium salt to formazan 

by metabolic active cells [107]. More viable cells directly translate to more activity of 

the mitochondrial succinate dehydrogenase; which leads to an increase of the dye 

formazan. The quantification of the dye is measured by light spectrometry. 

The procedure was performed in 96-well plates. The wells were plated in advance 

with a cell concentration of 250 000 cells per well. At the time of the experiment, a 

final volume of 100 μL of reagent diluted to its working dilution (1:10) is added to the 

cells and incubated 15 min at 37°C. The absorbance of the samples was measured 

against a background control as blank using a microplate reader at =450 nm. 
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2.12. RNA isolation 

The RNA isolation from cell lysate was conducted according to the RNeasy Mini Kit 

instruction manual (Qiagen). The RNA quality and concentration were controlled at 

260 nm by spectrophotometric analysis (Nanodrop 2000, Thermo Scientific). 

 

2.13. Reverse Transcription of total mRNA 

The reverse transcription was conducted using 1 μg of mRNA. The cDNA synthesis 

was performed following the Invitrogen guidelines (cf. Buffers and solutions). 10 μL of 

mRNA template and 1 μL of Nonamers were heated 5 min at 70°C then cooled on ice 

for 5 min. The RT-PCR mix was then added to the samples and incubated 1 hour at 

42°C. The enzyme was inactivated in a final step (15 min at 70°C). The samples were 

then diluted down 1:5 before -20°C storage. 

 

2.14. Transcriptome analysis – Quantitative PCR 

cDNA synthesis was conducted following the Invitrogen guidelines. mRNA 

quantification was measured by real time quantitative PCR (qPCR) (Roche, 

LightCycler®) after 45 cycles using the TaqMan SYBR green PCR master mix. The 

used primer sets are summarized in Methods 1.6. The fold change in expression of 

each target gene relative to Hypoxanthine-guanine phosphoribosyl transferase (Hprt, 

murine cells) was calculated based on the threshold cycle (Ct) where the Normalized 

Relative Quantity (NRQ) is expressed: 2-ΔCt, where ΔCt = Cttarget gene – CtHprt. 

 

2.15. Lung homogenate preparation 

After dissection, the lung lobes were snap frozen in liquid nitrogen, then powdered 

using a micro-dismembrator (Sartorius). The lung homogenate was then dissolved in 

RIPA for protein analysis or in Qiazol® for mRNA isolation. 
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2.16. Th cells isolation and differentiation 

Naive CD4+ T cells were harvested from Balb/c mice spleen (6-8 weeks, WT, 

Institute for Molecular Immunology), and isolated via CD4+ positive selection or 

negative depletion with MACS® magnetic beads technology (Miltenyi Biotec). They 

were differentiated to Th2 cells using IL-2/-4 or Th17 cells using IL-6/-23 and TGFβ1 

in a medium containing the anti-CD3/CD28/IFNγ antibodies. Differentiation was 

confirmed via qPCR (Gata3 for Th2 and Rorc for Th17). Th2 and Th17 cells were 

cultivated for 72h and 96h respectively with P. aeruginosa’s active AHL (3-oxo-C12-

HSL) or controls (3-oxo-C4-HSL, C12-HSL, and DMSO) at concentrations ranging 

from 5 to 100 μM.  

 

2.17. FACS analysis 

2.17.1. IL-4/17 

The primary Th cells previously and freshly isolated were activated with PMA 

(50 ng/mL)/Ionomycin (1 μg/mL) during 5h (37°C, 5% CO2). CD4 external receptors 

were stained first by anti-CD4 Ab and incubated 25 min at 4°C. The cells were then 

fixed with cytofix/cytoperm™ (BD Biosciences) following the manufacturer’s 

instructions. Internal IL-4/IL-17 staining was performed with IL-4/IL-17 Ab and 

PermWash™ (BD Biosciences). The cells were then incubated 30 min at 4°C. After 

centrifugation, the supernatant was discarded, and the stained cells were kept in 

FACS buffer for a maximum of one week before FACS analysis (BD FACSCanto). 

 

2.17.2. Annexin V-PI 

Isolated cells were incubated (15 min, dark, RT) with binding buffer and AB Annexin 

V-FITC. After centrifugation and supernatant removal, PI in FACS buffer was added 

to the cells immediately prior to FACS analysis. 
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RESULTS: EFFECT OF BACTERIAL METABOLITES ON 

LUNG EPITHELIUM AND IMMUNITY 

 

In this manuscript, bacterial metabolites are subdivided in two distinct categories, 

whether they consist of N-Acyl homoserine lactone compounds originating from 

Gram-negative bacteria or the amino-acid D-tryptophan originating from the Gram-

positive bacteria Lactobacillus casei. 

 

I- EFFECT OF N-ACYL HOMOSERINE LACTONE 

COMPOUNDS OF GRAM-NEGATIVE BACTERIA ON 

LUNG EPITHELIUM AND IMMUNITY 

 

1. The quorum sensing molecule AHL modulates Th cell 

differentiation 

1.1. 3-oxo-C12-HSL increased IL-17 accumulation in Th17 

cells 

T helper cells 2 and 17 essentially participate in the etiology of atopic and non-atopic 

forms of asthma [99]. This study asked whether any of the 3 AHLs affect Th cell 

function or activation, which might in turn improve host’s health. FACS analysis 

(CD4+/IL-17+) of pre-differentiated and isolated Th17 cells, treated with 3-oxo-C12-

HSL (100 μM) showed a 2.1 and 1.5-fold increase in IL-17 production after 48 and 

96h respectively (Figure 8). It is important to note that, using our protocol, Th17 

differentiation can take up to 5 days [108]. During the stimulation of naïve T cells, 

TGF-β as well as IL-21 are required for the induction and the differentiation of Th17 

cells. Furthermore, the Th17 lineage (IL-17 producing cells), was shown to exclusively 

drive TGF-β-treated T cells to become Th17 cells [109–111]. However, the 3-oxo-C12-
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HSL did not reduce Th17 cell subset differentiation as previously described [87,112], 

but instead enhanced it without contact with an antigen presenting cell. Here the 

differentiation was only driven by cytokine and antibody stimulation (Table 2). 

 

 Differentiation cocktail 

Th17 
24h-

72h 

RPMI 

Medium 

α -CD3 

(4 μ g/mL) 

α-CD28 

(30 ng/mL) 

IL-6 

(20 ng/mL) 

IL-23 

(10 ng/mL) 

TGF-β1 

(5 ng/mL) 

α-IFNγ 

(10 μ g/mL) 

Table 2. Murine Th17 cell differentiation protocol from isolated primary naïve T 

cells 

 

Among the three AHLs used, only 3-oxo-C12-HSL which contained a lactone ring, an 

oxo-group and a long alkyl chain, increased Th17 differentiation (Figure 6). The C12-

HSL lacked the oxo function and the 3-oxo-C4-HSL had a short alkyl chain. 

Therefore, all three functional groups were needed to increase the Th17 

differentiation. 
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Figure 8. 3-oxo-C12-HSL treatment increases Th17 differentiation.FACS analysis of 

wild type mouse primary spleen CD4+ Th cells, isolated with magnetic beads and 

simultaneously polarized into Th17 and treated with AHL. (A) Quantification of 3 

independent experiments were the percentage of IL-17+ cells among all cells is shown. (B) 

The dot plots (X-axis: IL-17+ and Y-axis: CD4+) and histograms (X-axis: IL-17+ and Y-axis: 

cell count) are representing the gating of Th17 cells identified as both CD4+ and IL-17+. 

FACS representative dot blot of 3 experiments. (DMSO 1%, n=3, values represent the mean 

± SEM, *: p<0.05) 
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1.2. 3-oxo-C12-HSL did not influence Th2 cells polarization 

Th2 cell differentiation was not modulated by 3-oxo-C12-HSL treatment at any 

concentration or time point investigated. However, the 3-oxo-C12-HSL alkyl analogue 

C12-HSL (50 μM) slightly reduced IL-4 production after 48h, showing that 

substitution of the alkyl chain had some role during Th2 differentiation (Figure 9). 

However, compared to the results obtained with IL-17+ cells (Figure 8), this slight 

reduction caused by C12-HSL suggests more a minor side effect and does not appear 

to be biologically relevant towards Th2 cells differentiation. 



RESULTS 

56 

 

Figure 9. C12-HSL treatment decreases Th2 differentiation. FACS analysis of wild 

type mouse primary spleen CD4+ Th cells, isolated with magnetic beads and simultaneously 

polarized into Th2 and treated with AHL. (A) Quantification of 3 independent experiments 

were the percentage of IL-4+ cells among all cells is shown. (B) The dot plots (X-axis: IL-4+ 

and Y-axis: CD4+) and histograms (X-axis: IL-4+ and Y-axis: cell count) are representing the 

gating of Th2 cells identified as both CD4+ and IL-4+. FACS representative dot blot of 3 

experiments. (DMSO 0.5%, n=3, values represent the mean ± SEM, *: p<0.05) 
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2. Bacterial AHL-compounds influence the innate inflammatory 

response 

The immunologic activity of “Alveolar Macrophages” (AM) provides the first line of 

defense against microbial invasion in the lower respiratory tract. The clearance 

capacity of AM further protects the fragile alveolar surface from deposited debris and 

inhaled particles. Therefore, the well-balanced plasticity of AMs is crucial for the 

maintenance of respiratory health. “Naïve” macrophages, M0 were polarized with 

LPS/IFNγ into pro-inflammatory M1 macrophages (classical activation) or with IL-4 

in anti-inflammatory M2 macrophages (alternative activation). M1 AMs do not only 

fight invading pathogens, but may also contribute to tissue damage when they 

become hyperresponsive, possibly leading to uncontrolled release of pro-inflammatory 

mediators that exacerbate acute tissue injury of infected airways [113]. In a similar 

manner, M2 polarized AM key functions include resolution of airway inflammation, 

pulmonary wound healing and anti-parasitic responses [114]. However, 

disproportionate M2 activity can also contribute to the pathology of chronic lung 

diseases characterized by an excessive Th2 response, as evidenced for allergic asthma 

or tissue remodeling for pulmonary fibrosis [115]. 

 

2.1. AHL reduces alveolar macrophages pro-inflammatory 

gene expression upon M1 polarization 

The polarization protocol significantly regulated the expression levels of certain M1 

and M2 markers depending on the type of stimulation. After 24h, LPS/IFNγ alone 

induced Tnf mRNA expression by 35 folds, whereas in combination with the 3-oxo-

C12-HSL, Tnf expression was reduced to 14 folds. Similarly, mRNAs for IL-1β (Il1b) 

and IL-10 (Il10) demonstrated a 1060-fold increase and a decrease to 1.65-fold after 

LPS/IFNγ treatment and a 500 and 1.10-fold decrease after AHL stimulation, 

respectively (Figure 10). Current data suggest that AHL treatment of LPS-treated 

AM limits TNFα, IL-1β and IL-10 cytokine production [78], thus modulating their 

inflammatory immune role. Interestingly, these results were in favor of a global AHL 
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response and not only from the 3-oxo-C12-HSL. Since only 3-oxo-C12-HSL is of 

biological relevance, it became clear that the genetic regulations were driven by a 

common feature; indeed, all three tested molecules share the lactone ring. 

 

Tnf

D
M

S
O

3O
C
12

-H
S
L

3O
C
4-

H
S
L

C
12

-H
S
L

0.01

0.1

1

10

N
R

Q

*
*

*

Il1b

D
M

S
O

3O
C
12

-H
S
L

3O
C
4-

H
S
L

C
12

-H
S
L

0.001

0.01

0.1

1

10

N
R

Q

*
*

**

M0

M1

 

Figure 10. AHL treatment reduces LPS/IFNγ  induced Tnf and Il1b mRNA 

expression in AM. MH-S cells were analyzed 24h after AHL (60 μM)/LPS (1 μg/mL) 

treatment for mRNA expression relative to Hprt.  

M0: no polarization; M1: LPS(+)/IFNγ(+). (1% DMSO, n=3, values represent the mean 

± SEM, *: p<0.05, **: p<0.01) 

 

 

2.2. AHL signaling increases in vitro inflammatory 

cytokine production. 

To investigate whether mRNA expression is translated to protein expression in vitro, 

cell supernatants were analyzed to detect the relevant M1 cytokines secretion after 

LPS, or AHL treatment. The protein detection was realized via a protein 

immunosorbent assay (ELISA). TNFα and IL-1β’s pathways of cytokine expression 

rely both on inflammatory transcription factors (nuclear factor kappa-light-chain-

enhancer of activated B cells) NF-κB and Activator protein 1 (AP-1) and their 

related signaling. In addition IL-1b protein maturation depends on the cleavage of the 

inactive Pro-IL-1b by Caspase 1/Interleukin-1 converting enzyme, a unique two-

signal mechanism allowing a tight regulation of the release of mature IL-1β, the pro-
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inflammatory master cytokine [116]. This additional step between transcription and 

extracellular release can also explain potential differences between mRNA regulation 

observed via qPCR and protein secretion. In a similar way, TNFα needs to be cleaved 

by the metalloprotease ADAM17/tumor necrosis factor-α-converting enzyme before 

release of the transmembrane protein expressed cytokine into the intracellular space. 

The results showed a 1.4-fold increase of TNFα in the supernatant of the AM treated 

with AHL whereas baseline levels of M0 AM were not affected. Furthermore, it is 

noticeable that the dimethyl sulfoxide (DMSO) vehicle control also led to a reduction 

of TNFα and IL-1β release by the AM. Interestingly, the data obtained do not 

confirm qPCR findings (Figure 11) where a moderate decrease of Tnf, and Il1b was 

observed. This can be explained by the fact that gene expression analysis and protein 

analysis were performed at the same time point. Protein release is downstream from 

mRNA expression and translation, and it is likely that the latter already passed its 

maximum at the time of analysis. Indeed, Tnf regulations are notoriously fast and 

can return to baseline level within a day [117]. Thus, obtaining the maximum of 

TNFα secretion and mRNA expression at the same time is not feasible. 
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Figure 11. 3-oxo-C12-HSL treatment increases LPS/IFNγ induced IL-1b and 

TNFα release. MH-S cell supernatants were analyzed 24h after AHL (60 μM)/LPS 

(1 μg/mL) treatment. ELISA assay.  

M0: no polarization; M1: LPS(+)/IFNγ(+). (1% DMSO, n=3, values represent the mean ± 

SEM, *: p<0.05) 
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2.3. In vitro AHL supports M2 polarization 

AHLs triggered the pro-inflammatory cytokine TNFα secretion, hence showing that 

they both increase M1 polarization when LPS treated. Here, in the aim of showing a 

possible anti-inflammatory potency of AHLs, M2 polarization upon AHL treatment 

was measured. To this end, the gene expression of Arginase 1 (Arg1) and Mannose 

Receptor C-Type 1 (Mrc1), previously described as classic M2 markers [118], were 

measured. 

Arg1 and to some extent also Il1b displayed significant higher levels of mRNA levels 

compared to the vehicle control (DMSO) in the M2 polarized group. A moderate 

decrease of Il10 mRNA expression was also observed in the M2 polarized group 

(Figure 12). As for the M1 polarization, the changes in gene expression were not only 

limited to the 3-oxo-C12-HSL but also concerned the cell treated with 3-oxo-C4-HSL. 

This confirms previous results obtained for the Th cells, suggesting an obligate 

involvement of the lactone ring and the presence of a 3-oxo group in the pro-

inflammatory role of AHLs in the Th cell and the AM activities. 
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Figure 12. 3-oxo-C12-HSL and 3-oxo-C4-HSL treatment increases IL-4 induced 

Arg1 and Il1b mRNA levels in AM. MH-S cells were analyzed 24h after AHL 

(60 μM)/IL-4 (20 ng/mL) treatment for mRNA expression relative to Hprt.  

M0: no polarization; M2: IL-4(+). (1 % DMSO, n=3, values represent the mean ± SEM, 

*: p<0.05) 
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2.4. Dimethyl sulfoxide influences AM polarization 

AHLs are organic molecules, and precipitate in aqueous medium even at low 

concentration, essentially because of their hydrophobic alkyl chain. AHLs need to be 

dissolved in the cell medium to further interact with them. There is no consensus, 

what is the best solvent for this group of molecules. The solvent must be non-

interacting with the molecule it transports for stability reasons and relatively inert to 

the molecule’s target. 

As previously explained, dimethyl sulfoxide (to concentration up to 1%) was 

described as a solvent of choice for its biocompatibility and low toxicity [119] in drug 

testing assays particularly when facing solubility issues, dissolving easily polar and 

non-polar molecules. Considering its high diluent power towards AHL and its relative 

innocuity towards mammalian cells, DMSO was thought at first to be the vehicle of 

choice for the AHL delivery. However, the data showed that even low concentrations 

of DMSO could alter gene and protein expression (Figure 22). Meanwhile, Elisia et al. 

demonstrated in 2016 the anti-inflammatory effects of the DMSO ex vivo; 0.5% of 

DMSO in the cell medium was sufficient to reduce TNFα secretion by a factor of 1.8 

[120]. This confirms previous results of this study. Some concerns were also raised 

concerning the toxicity of the substance for AM. The acetonitrile (ACN) showed a 

better biocompatibility than DMSO as an AHL solvent (Figure 13) and was then 

used during the following experiments. A metabolic activity assay was performed, 

assessing the viability of the AM facing a DMSO or an ACN dose response. AM 

showed a greater viability from 0.1% to 10% ACN treatment, with at least 60% cell 

viability after 24h. On the other hand, as confirmed by other recent findings [120], 

DMSO treated AM displayed a greater mortality for higher doses. The 3-oxo-C12-HSL 

(dissolved in DMSO) displayed the same viability trend as the DMSO alone on the 

cells, bringing to the conclusion that DMSO had more effect on the cell viability than 

the AHL alone. Remarkably, the viability exceeds 100%, this is explained by the high 

mitosis rate of MH-S cells. Thus, in our system, ACN (0.2%) was more tolerated than 

DMSO (1%) by the AM. Consequently, for the following experiments, ACN (0.2%) 

was confirmed as vehicle solvent. 
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Figure 13. Naive AM (M0) show a greater viability on a wide range of 

concentrations when treated with ACN. Naive MH-S cells were incubated 24h with 

DMSO or ACN treatment. WST-1 assay assessed cell viability via metabolic activity. The 

results obtained are normalized to untreated AM. (n=3) 

 

3. AHL treatment on AEC/AM coculture reduces M1 

inflammatory gene expression 

The epithelial cells are the first lining of the lung epithelium. They fulfill several 

roles, from surfactant production to cell repair, and even immune functions [121,122]. 

Alveolar epithelial cells type 2 (AECII) constitute most of the respiratory surface 

area potentially interacting with QS molecules. AM/AEC interactions are responsible 

for the epithelium integrity and immunity and might also contribute for AM 

activation. Also, it has been shown that AM/AECII crosstalk during ALI was 

promoting TNFα mediated AECII proliferation via autocrine GM-CSF secretion 

[123].
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An AM/AECII coculture model was used to investigate AHL effects on AM 

polarization (MATERIALS AND METHODS, 2.5). AECII and AM were introduced 

successively in the medium cocultured overnight. AHLs (60 μM) and polarization 

medium (20 ng/mL IL-4 or 1 μg/mL LPS) were then applied to the cells 

simultaneously. 

 

 

Figure 14. Light microscopy of murine AECII (LA-4)/AM (MH-S) coculture 48h 

after plate seeding. LA-4/MH-S were respectively seeded at a 24h interval and were 

incubated at 37°C, 5% CO2. MH-S are notably smaller and rounder than the elongated LA-4 

cells. 

 

AHL treatment on AM/AEC coculture reduced Nos2, Tnf and Il1b expression by 

more than 2 folds after 3-oxo-C12-HSL (60 μM) and LPS treatment (Figure 15), 

consistent with the previous data (Figure 10) on AM monocultures. 

Rosiglitazone (RGZ) is an anti-inflammatory drug [124] from the Thiazolidinedione 

family, particularly studied as a ligand to the PPARγ receptor and its effects on 

epithelial wound healing and lung repair [125]. It has been shown by Xu et al. that 

RGZ treatment was impairing M1 polarization and more specifically TNFα expression 

[126]. Here, RGZ was used as a positive control of wound repair, since PPARγ 

activation by RGZ impairs the NF-κB pathway, reducing the M1 overall polarization. 

A robust increase in Arg1 levels in the M2 polarized group was also observed (Figure 

15 B) as well as a 120-fold increase after IL-4 stimulation, compared to a 20-fold 

increase for the ACN vehicle control. This was a strong confirmation of the anti-

inflammatory promoting effect of RGZ and 3-oxo-C12-HSL towards M2 polarization. 

These results are consistent with previous findings on gene regulations and 
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polarization of AM culture caused by AHLS. The presence of epithelial cells rose the 

background mRNA level of TNFα, reinforcing their immune role. This confirms 

previous findings of Thorley et al. [127], describing the active role of AECII during 

the immune response consisting in the expression of TLR4 and TNF-α. In essence, 

these results agree with Pechkovsky et al. [128], showing that AECII cell lines 

promoted NOS2 expression in LPS or IFNγ treated AM. 

Interestingly, the 3-oxo-C12-HSL was the only AHL which had a significant effect on 

the inflammatory genes tested. Therefore, this suggests a more complex mechanism 

linked to this specific AHL structure. 
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Figure 15. 3-oxo-C12-HSL (60 μM) treatment reduces (A) LPS induced Tnf, 

Nos2 and Il1b mRNA expression in AM/AECII coculture as well as increases 

(B) IL-4 induced Arg1 expression. MH-S/LA-4 cells were analyzed 24h after 

AHL/polarization treatment for mRNA expression relative to Hprt.  

M0: no polarization; M1: LPS(+)/IFNγ(+); M2: IL-4(+). (ACN 0.2%, n=3, values represent 

the mean ± SEM, **: p<0.01, ***: p<0.001, ****: p<0.0001) 
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4. AHL-molecules impaired epithelial barrier function and 

wound healing is independent to LPS induced acute 

inflammatory effect 

Respiratory diseases are a global burden [129], all of them lead to a certain extend of 

destruction or modification of lung structures. The alveolar epithelium represents the 

largest surface area of our body that is continual interacting with the ambient 

environment, and frequently subject to pathogen attacks [130]. Adults lungs are 

capable of moderate self-repair [131], however, extensive damage lead to loss of lung 

function and in some cases, death. Thus, the lung epithelial barrier repair after an 

injury is vital [132]. AECII cells had been shown to play a central role during alveolar 

repair [10] and innate immunity. It was hypothesized that AM and AECII worked 

conjointly towards epithelial repair. For this purpose, a coculture wound repair assay 

was set to investigate the effect of inflammation, AHLs, and cell types on wound 

healing. The model used was simulating an acute lung injury. This translated in vitro 

to a longitudinal cut through the cell bi-layer submerged in medium (MATERIALS 

AND METHODS, 2.8.1). AECII and AM were cocultured and treated with AHL 

under pro-inflammatory or normal conditions (Table 3). 

 

# 
AECII 

(LA-4/MLE-12) 

AM 

(MH-S) 

LPS 

(1μg/mL) 

AHL 
Impact of? 

(60 μM) 

1 + - - - 
Coculture 

2 + + - - 

3 + + + - Inflammation 

4 + + - + AHL 

5 + + + + 
AHL and 

inflammation 

Table 3. Summary of coculture conditions in epithelial immunity assays. 
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To measure the rate and efficiency of wound repair [133], two types of AECII (LA-4 

and MLE-12) were monitored for 48h. LA-4 and MLE-12 are two commonly used 

murine AECII cell lines; expressing most but not all the features of primary cells 

[134]. Testing various cell lines avoids to limit the results to only one cell line 

phenotype. LA-4 cells are issued from urethan-induced mouse lung adenoma. They 

are not tumorigenic but produce and release a C-type RNA virus into the culture 

medium [135]. MLE-12 cells are distal respiratory epithelial cell lines transformed by 

the oncogene SV40 Large T Antigen [136]. The responsiveness of AECII towards LPS 

(to simulate an acute lung inflammation) is subject to controversy [121,127]. 

An acute inflammation assay was performed consisting in AHL/LPS co-stimulation 

on an AECII monolayer. The monolayer of the control group was completely repaired 

48h after the scratch (100% cell density), thus 48h was decided as the endpoint. The 

3-oxo-C12-HSL treatment resulted in optically greater mortality (i.e. greater cell 

detachment from the well) and fewer repair of the wound for both cell lines (Figure 

16 and Figure 17). These findings did not support a pro-resolving effect of the AHL 

on inflammation. A similar previous work on Caco-2 cells showed that the 3-oxo-C12-

HSL was disrupting tight junctions of the intestinal wall [83]. These results could be 

extended to other epithelial cell lines such as LA-4. Interestingly, the same results 

were observed in the presence and the absence of LPS treatment (Figure 16), 

indicating that the epithelial repair is not TLR4 dependent in our setup. The 

presence of AM in the coculture experiment did not have a beneficial effect on the 

repair (Figure 17). 

Remarkably, wound closure impairment was only observed for the cells stimulated 

with the 3-oxo-C12-HSL (Figure 17). This may be explained by the presence of a 

specific receptor for 3-oxo-C12-HSL on AECII [96]. RGZ did not increase the repair 

speed of the AECII monolayer; this could be due to its poor solubility in ACN, as 

some fine crystalline precipitate was observed in the well. 
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Figure 16. 3-oxo-C12-HSL impairs wound repair of AECII monolayer. Light 

microscopy of LA-4 cells cultivated from 0 to 48h after scratch and (A) LPS (1 mg/mL), (B) 

3-oxo-C12-HSL (60 μM)/LPS (1 mg/mL), (C) RGZ (60 μM)/LPS (1 mg/mL), (D) no 

treatment control, (E) 3-oxo-C12-HSL (60 μM), and (F) RGZ (60 μM). Wound surfaces were 

determined 0 and 24 hours after wounding. 



RESULTS 

68 

%
 w

o
u

n
d

 c
lo

s
u

re

A
C
N

3-
oxo

-C
12

-H
S
L

3-
oxo

-C
4-

H
S
L

C
12

-H
SL

R
G

Z

0

20

40

60

80

100

****

LA-4/MH-S/AHLA

ACN

3-oxo-C12-HSL

3-oxo-C4-HSL

C12-HSL

RGZ

LA-4/AHL

%
 w

o
u

n
d

 c
lo

s
u

re

A
C
N

3-
oxo

-C
12

-H
S
L

3-
oxo

-C
4-

H
S
L

C
12

-H
SL

R
G

Z

0

20

40

60

80

100

**

B
ACN

3-oxo-C12-HSL

3-oxo-C4-HSL

C12-HSL

RGZ

MLE-12/MH-S/AHL

A
C
N

3-
oxo

-C
12

-H
S
L

3-
oxo

-C
4-

H
S
L

C
12

-H
SL

R
G

Z

0

50

100

%
 w

o
u

n
d

 c
lo

s
u

re *
ACN

3-oxo-C12-HSL

3-oxo-C4-HSL

C12-HSL

RGZ

C

 

Figure 17. 3-oxo-C12-HSL selectively impairs wound closure of AECII monolayer 

and AECII/AM coculture. (A) LA-4/MH-S (B) LA-4 (C) MLE-12/MH-S cells were 

cultivated from 0 to 24h after simultaneous scratch and treatment with ACN (0.6%)/3-oxo-

C12-HSL (60 μM)/3-oxo-C4-HSL (60 μM)/C12-HSL (60 μM)/RGZ (60 μM). Wound widths 

were determined 0 and 24 hours after wounding. (n=7, values represent the mean ± SEM, *: 

p<0.05) 
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5. P. aeruginosa PAO1 supernatant impairs epithelial wound 

healing independently to 3-oxo-C12-HSL 

Initial hypotheses and results postulated the AHL as the mediator of wound repair 

impairment and mRNA pro-inflammatory gene deregulator. However, Pseudomonas 

aeruginosa signaling consists in more than just AHL-dependent virulence regulating, 

QS-systems. PAO1 QS systems are also controlled by the pqsA-E operon for the 

biosynthesis of 2-alkyl-4(1H)-quinolone (AQ) molecules [137]. AQ signaling is not part 

of the scope of this study. PAO1 consists in two AHL dependent quorum-sensing 

virulence systems (Las and Rhl); LasI being responsible for the synthesis of the 

autoinducer 3-oxo-C12-HSL, and RhlI directing the synthesis of the C4-HSL [138]. To 

investigate the selective effect of the 3-oxo-C12-HSL on the epithelium, in addition to 

the wild type strain, two PAO1 mutant strains were used; Las KO and Rhl KO, 

silencing their respective autoinducers. The mutant strains were obtained by the 

team of the Dr. Rothballer (Molecular Microbial Ecology, Helmholtz Zentrum 

München) from the construct developed by Wilder et al. [139]. The supernatant from 

the wild and mutant strains were sterile filtered and used to treat AECII/AM 

cultures ongoing a wound healing assay. Prior to the experiment, wild type PAO1 

supernatant was analyzed and a 3-oxo-C12-HSL concentration of 17 μM was 

measured. Consistently with these findings, LA-4 cells were treated with 20 μM 3-

oxo-C12-HSL in a 1:1 PAO1:LA-4 medium. 

In a previous study, Wu et al. showed that PAO1 cell-free supernatant had the same 

effect on AECII (A549 cell line) as LPS (200 ng/mL) treatment [140] which lead to 

25% of cell death. Here, as explained above, LPS did not significantly influence the 

wound repair of LA-4 or MLE-12 cells. However, all the PAO1 supernatants resulted 

in the almost complete destruction of the epithelial cell layer surrounding the wound. 

This deleterious effect on wound healing was stronger than any other 3-oxo-C12-HSL 

concentration (Figure 18). The wounded area ended being unquantifiable for both 

mutant bacterial strains. Thus, this suggested that the wound healing dynamics were 

not modified by 3-oxo-C12-HSL and depended on other factors present in WT/KO 

PAO1 supernatant of Las KO and Rhl KO mutants of PAO1.



RESULTS 

70 

Indeed, cytotoxic and degradative bacterial enzymes can survive sterile filtration and 

can cause DNA damage as well as cell death [141] Yet, the results (Figure 18) suggest 

a threshold between 20 and 60 μM where 3-oxo-C12-HSL alone actively impairs the 

epithelial repair. 
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Figure 18. PAO1 supernatant and 3-oxo-C12-HSL impairs epithelial wound 

closure of AECII monolayer. LA-4 cells were cultivated from 0 to 24h after simultaneous 

scratch and treatment with ACN (0.6%)/PAO1 Las KO supernatant/PAO1 Rhl KO 

supernatant/PAO1 WT supernatant/3-oxo-C12-HSL (20-60 μM). Wound widths were 

determined 0 and 24 hours after wounding. (n=3, values represent the mean ± SEM, 

**: p<0.01, ****: p<0.0001, n.q.: non-quantifiable due to massive cell death). NB: The 

medium used was a 1:1 mixture LA-4 medium (HAM):PAO1 medium (MOPS), this explain 

the subpar repair of the wound for the untreated group. 

 

Pseudomonas aeruginosa is a common opportunistic pathogen and is responsible for 

chronic as well as acute infections. In vivo, the bacterial contamination can lead to 

local high levels of AHL and other bacterial secretion in the supernatant, resulting in 

cell death during biofilm development [142]. However, these effects were more 

dramatic in vitro where the generally toxic bacteria-free supernatant induced the 

epithelial death. Therefore, this in vitro model is not supporting any effects of AHLs 

on wound healing. In the aim of using 3-oxo-C12-HSL therapeutically against 

inflammation, this study further pursued the underlying mechanisms of the 

modulation of the inflammation by investigating the effects of acute injuries in vivo. 

Various models of acute lung injuries exist, each with their pros and cons [143]. In the 

following animal experiment, the acute lung injury was performed via LPS 
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intratracheal instillation. This invasive method allows further observations of 

biological changes, like changes in protein secretion, as well as pathological changes, 

such as neutrophilic alveolar infiltrates. The application of a precise volume of the 

LPS solution allows a good reproducibility and a non-fibrotic repair phase [144], 

together with a measurable alveolar neutrophil recruitment. 

 

6. In vivo Acute Lung Injury (ALI) can be modulated by 

bacterial effectors 

ALI is an inflammatory model developed to recreate inflammation in vivo or in vitro 

without the risk of putting in contact live pathogens in the organism of interest 

[10,145], with a quick onset (typically less than half an hour), followed by a total 

resolution of the inflammation (at least 95%) within 72 hours [146]. In this study, 

LPS was applied intratracheally to 6-8-week-old female C57BL/6J mice, either half 

an hour prior, or six hours prior to the bacterial molecule treatment. C57BL/6J is a 

common inbred mouse strain, widely used in pulmonary studies. However, it differs 

from the other widely used strain BALB/c by its higher Th2 response in the lungs 

and overall higher cytokine release upon antigen sensitization [147].  

LPS is known to activate the NF-κB pathway through TLR4 signaling, thereby 

classically polarizing AM and driving pro-inflammatory cytokine release, which in 

turn induces inflammatory cells recruitment [100]. The inflammation in the lung can 

be quantified by various techniques [148]. Here, the main focus was on cell number 

and population, Broncho-alveolar lavage (BAL) protein concentration and mRNA 

levels of inflammatory markers in whole lung homogenates. 
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7. Application of QS-molecules failed to reduce LPS induced 

neutrophil recruitment 

AHL were instilled intratracheally and tested for pro-inflammatory or toxicity 

potency, as it would interfere with the LPS induced ALI (Figure 19). No dose 

response was observed between 300 and 1200 μM in the AHL treated mice. 24h after 

AHL treatment, BAL sampling showed no significant difference in PMN numbers 

between the PBS and AHL instilled mice (<10%). These results suggest that AHL or 

ACN alone do not trigger any acute inflammation upon treatment with doses up to 

1200 μM. 
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Figure 19. No inflammation is observed after AHL instillation up to 1200 μM. 

AHL or ACN were instilled into the lungs of mice at concentrations up to 1200 μM. This did 

not trigger BAL neutrophil recruitment (neutrophils < 10% total cells). BAL was harvested 

after 24h and cells counted manually after May-Grünwald-Giemsa staining (n=2/condition). 

 

Neutrophils migrate to the lung alveoli during an ALI. Thus, a neutrophil count is a 

robust indicator of the inflammatory state [149–151] of a lung as well as the lung 

fluid composition. To test the eventual inflammatory dynamics of AHL in vivo, mice 

were instilled a first time with LPS and 6 hours later with AHL. This protocol 

enabled us to monitor the therapeutic effect of AHL on ALI, as a reduction of 

cytokine concentration or cell number would indicate a reduced response on the 

inflammation process. The mice were treated with the highest doses of AHL and 
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ACN not triggering an inflammation to purposely hit the maximum efficiency against 

the LPS induced inflammation. However, no reduction in neutrophil numbers 

reduction was observed in the BAL upon the AHL treatment, even for doses as high 

as 1200 μM (Figure 20). These results showed that a direct effect from QS molecules 

against acute inflammation cannot be found in this experimental system. On the 

other hand, AHLs have been shown to participate to PMN recruiting [75]. Recent 

studies [67] discovered that probiotic bacteria release molecules which may allow a 

quicker resolution of the inflammation. 
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Figure 20. BAL neutrophils recruitment after LPS instillation is not affected by 

3-oxo-C12-HSL. (A) May-Grünwald-Giemsa staining of control (PBS) and (B) inflamed 

(LPS) lung. (C) 3-oxo-C12-HSL (1200 μM), ACN (4%) or control (PBS) were co-instilled 

with LPS (6h delay). BAL was harvested 24h later and cells were counted manually (n=5). 
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II- EFFECT OF D-TRP OF PROBIOTIC GRAM-POSITIVE 

BACTERIA ON LUNG EPITHELIUM AND IMMUNITY 

 

1. Probiotic bacterial molecules modulate the innate pulmonary 

response 

Following the previous results showing that the AHL structure was affecting 

macrophages polarization [78] and Th cells differentiation [112], it was hypothesized 

that other bacterial small molecules could modulate the immune response too. It has 

been shown recently by Kepert et al. [67] that supernatant from Gram-positive 

probiotic bacteria strains (e.g. Lactobacillus casei) decreased Chemokine (C-C motif) 

ligand 17 (CCL17) cytokine secretion in human Hodgkin lymphoma cell line as well 

as Th2 response in mice. The active molecule was identified as D-tryptophan (D-Trp), 

while L-Trp and other amino acids were immunologically inactive. The D-Trp 

relative innocuity [152], specificity and affordable price could lead to acute or chronic 

inflammation treatment. Here D-Trp effects were compared with the previously 

described AHL-effects on AM polarization, wound healing and inflammation 

resolution. 

 

2. In vitro D-Trp impairs M1 macrophages inflammatory 

phenotype 

Various D-amino acids were used as controls, chosen for their chemical similarities 

(i.e. acidity; aromaticity) with D-Trp: Tyr, Phe, Met, His, and Pro (Figure 7). None 

of them displayed a significant effect on AM polarization (Suppl. Fig. 6). The 

LPS/IFNγ stimulation effectively drove the M1 polarization (Figure 21). D-Trp alone 

did not induce a biologically significant expression of Tnf, Il1b or Nos2 (NRQ<0.1). 

After 24h of D-Trp/LPS treatment, Tnf and Il1b showed reduced expression, ranging 

from 3.6 to 3.8 folds respectively and Nos2 was only non-significantly reduced at 1.7-

fold (Figure 21) compared to the DMSO vehicle control (1%). Furthermore, the 
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effects on Tnf were observed for doses as low as 10 μM D-Trp. These results 

suggested that D-Trp impairs M1 polarization of AM in vitro via the downregulation 

of key inflammatory genes. It is important to notice the biological effect induced of 

DMSO alone. This biologically compatible chemical was used in numerous previous 

studies as a vehicle agent [153,154], chosen for its relative inertia towards organisms. 

Furthermore, the DMSO M0 control was cut down compared to the Non-Template-

Control (NTC, media only control) by 90 folds. After these findings were reproduced 

and confirmed, it became urgent to reflect and rely on a different vehicle control, as 

detailed in 2.4. 
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Figure 21. D-Trp effects on LPS/IFNγ induction of Tnf (A), Il1b (B) and Nos2 

(C) mRNA expression in AM. MH-S cells were analyzed 24h after AHL/LPS treatment 

for mRNA expression relative to Hprt.  

M0: no polarization; M1: LPS(+)/IFNγ(+). (n=3, values represent the mean ± SEM, 

*: p<0.05, ***: p<0.001) 
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Alike to the results observed with the AHL, the amount of protein secretion 

subsequent to the LPS/D-Trp treatment was measured. The data showed that LPS 

treatment together with a low dose of D-Trp (10 μM) increased the extracellular 

amount of TNFα by 1.5-fold (Figure 22). This effect was however lost with higher 

doses of D-Trp. As for the results obtained in Figure 11, it is likely that the reasons 

for the discrepancies observed between the gene expression and the protein secretion 

are found in the simultaneous sampling of both the genetic material and the cell 

supernatant. Indeed, gene expression and protein release do not occur at the same 

time. 
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Figure 22. D-Trp treatment increases LPS/IFNγ  induced TNFα release in M1. 

MH-S cells supernatant was analyzed 24h after D-Trp/LPS treatment. 

M0: no polarization; M1: LPS(+)/IFNγ(+). ELISA assay. (n=3, values represent the mean 

± SEM, ***: p<0.001) 

 

3. In vitro D-Trp stimulates M2 polarization 

Low doses of D-Trp triggered the pro-inflammatory cytokine TNFα secretion, hence 

showing the potency of this amino acid to increase LPS stimulated M1 polarization. 

Next, this study aimed to confirm whether not only the M1 but also the M2 

polarization could be altered by the D-Trp cotreatment. To this end, Arg1, Mrc1 and 

Il10 gene expression, previously described as classic M2 markers [118], were measured. 

Arg1 and, to some extent also Il1b, displayed significant higher levels of mRNA levels 

compared to the vehicle control in the M2 polarized group. A moderate decrease of 
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Il10 mRNA expression was also observed in the M2 polarized group (Figure 12). Arg1 

and Mrc1 displayed higher levels of mRNA expression when treated with D-Trp in 

the M2 polarized group. These findings indicate a shift towards M2 polarization after 

D-Trp treatment in vitro, illustrating a reinforced anti-inflammatory phenotype in 

the presence of both D-Trp and IL-4, at concentrations as low as 10 μM. The results 

corroborated the hypothesis that D-Trp induces an immune tolerance where the 

effects were driven towards the suppression of T cells proliferation as described in 

previous studies [102]. This could be explained by D-Trp modulating Mrc1 expression 

through the IDO enzyme [155]. 
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Figure 23. D-Trp treatment increases IL-4 induced Arg1, and Mrc1 mRNA levels 

in AM. MH-S were analyzed 24h after AHL/LPS treatment for mRNA expression relative 

to Hprt.  

M0: no polarization; M2: IL-4(+). (n=3, values represent the mean ± SEM, **: p<0.01, 

****: p<0.0001) 

 

4. High concentration of D-Trp drives M1 polarization in 

AEC/AM cocultures 

Considering the highest D-Trp concentration tested in cocultures of AM with alveolar 

cells type 2 (AECII) (100 μM), the results showed that without other stimuli, 

unpolarized AM increased their Tnf and Il1b expression by 4 and 11 folds respectively 

(Figure 24 A). This effect was not seen for AM monocultures. This suggest that 

AECII in collaboration with AM recognize high amounts of D-Trp and increase pro-

inflammatory genes expression. However, this effect is lost under low D-Trp 
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concentrations, where Tnf and Il1b level are comparable with the control after LPS 

stimulation. 

Surprisingly, no significant effect was observed on the Arg1 mRNA expression level, 

representative of the AM alternative polarization (Figure 24 B). Indeed, it has 

previously been shown during in vitro studies that consecutively to AM apoptosis and 

TNFα secretion, AECII were producing IL-6, which in turn increased M2 related gene 

expression [14,156]. 
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Figure 24. 100 μM D-Trp treatment promoted (A) Tnf and Il1b mRNA 

expression for M0 AM, and (B) did not influence IL-4 induced Arg1 level in 

AM/AECII coculture. MH-S/LA-4 cells were analyzed 24h after D-Trp/LPS treatment 

for mRNA expression relative to Hprt.  

M0: no polarization; M1: LPS(+); M2 : IL-4(+). (n=3, values represent the mean ± SEM) 
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5. Wound healing efficiency is mildly reduced by D-Trp 

treatment on AECII monolayer 

Racemic (D-/L-) Trp has been shown to help wound healing of skin related injuries 

[157,158]; however, its effect on the lung epithelium had not been studied yet. Two 

AECII cell lines (LA-4 and MLE-12) were selected to assess the possible cell 

specificity of D-Trp. The results showed that similar to the previous AHL 

experiments, D-Trp did not promote epithelial wound healing on AECII/AM 

cocultures. The data even showed a minor reduction in wound healing for both cell 

lines LA-4 and MLE-12 after 24h D-Trp treatment (100 μM and 10 μM respectively). 

In comparison to the AHL effects on wound healing, D-Trp had a rather low 

biological impact on the repair process (Figure 17 and Figure 25) with an average 

repair above 75% for all conditions. In total, D-Trp did not support AECII/AM 

repair in our model of lung epithelium physical injury. The mechanical stress 

obtained during the injury likely promoted the AM to a M1 polarization, increasing 

TNFα release and subsequently TGF-β1 production. The TNFα increase due to the 

exogenous D-Trp (Figure 22) created a cytokine rich environment, potentially 

contributing to a dysregulated epithelial wound repair [159]. 
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Figure 25. D-Trp mildly impairs wound closure of AECII monolayer and 

AECII/AM coculture. LA-4/MLE-12/MH-S cells were cultivated from 0 to 24h after 

simultaneous scratch and treatment with PBS or D-Trp (10-50-100 μM). Wound widths were 

determined 0 and 24 hours after wounding. (n=3, values represent the mean ± SEM, 

*: p<0.05)
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6. D-Trp moderately limits neutrophil (PMN) recruitment after 

acute lung injury (ALI) 

The probiotic by-product D-Trp, as presented before, displays a distinctive structure 

compared to the AHL and possesses also a mode of action independent of TLRs. In 

this study, D-Trp has been shown to induce various pro- and anti-inflammatory 

signals in vitro. To further investigate its potential anti-inflammatory effects, a 

similar protocol as used with the AHL was set. Firstly, a gradient of D-Trp was 

tested to determine the best concentration to use, aiming for a robust therapeutic 

effect, considering the limits of an intratracheal application, as well as the potential 

toxicity of D-Trp (Figure 26). No significant PMN recruitment was observed for D-

Trp concentrations up to 1 mM. The local concentration is expected to be much 

lower than 1 mM due to dilution effect in mucus [160]. 

During the course of acute lung injury (ALI), the D-Trp treatment time of instillation 

can be crucial. Since the potency of the amino acid is unknown, D-Trp can be used in 

the early onset of the inflammation, a few hours later, or during its peak. The LPS 

induced inflammation is peaking between 8 and 24h [161,162]. Hence, the treatment 

should be administered before this window. Two possible mode of actions of the D-

Trp treatment are hypothesized. On one hand, D-Trp could carry anti-inflammatory 

properties, reducing the level of inflammation at peak time (8-24h). Alternatively, D-

Trp could support a pro-resolving effect, playing a role after the inflammatory peak 

(24-48h). Analyzing BAL content before and after the peak would allow to assess the 

resolution kinetics and give evidence towards a possible mode of action. 

To cover two time points, a simultaneous as well as a 6h delayed application was 

chosen for the D-Trp treatment. Indeed, the tracheal treatment is a semi-invasive 

technique; in regard of the animals’ stress level and to minimize unwanted 

interactions, the mice should also benefit from a resting time between the anesthesia. 

After the establishment of an ALI, the 6h delay between LPS and D-Trp application 

was crucial to obtain a biologically relevant effect on PMN recruitment (Table 4). 

These results gave evidence for an anti-inflammatory mode of action. Also, the time 

course of the ALI revealed that the peak of the inflammation likely occurred before 
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24h (Figure 27). Furthermore, simultaneous treatments did not influence PMN 

numbers in the BAL, making a preventive treatment against ALI unlikely to have 

positive responses. A larger scale experiment confirmed the previous results: when D-

Trp treatment occurred 24h after ALI, the total number of BAL cells and PMN were 

significantly reduced (Figure 28). A higher cell number reflects a stronger 

inflammation, characterized by a higher vessel permeability correlated with a higher 

cytokine concentration. 
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Figure 26. Intratracheal application of D-Trp does not trigger PMN at 

concentrations up to 1 mM. Percentage of PMN in BAL 24h after D-tryptophan 

application. 0 to 1 mM (50 μl) D-Trp were applied in vivo intratracheally. BAL was 

harvested after 24h and cells were counted manually (n=4/condition). NB: The PBS control 

reaching 22% PMN can be explained by the invasive treatment method where small lesions in 

the trachea can appear during the intubation, creating a small inflammation on its own. 
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Figure 27. D-Trp reduces neutrophils recruitment when applied 6h after LPS. 

Percentage of PMN in BAL 24/48h after LPS with or without D-Trp treatment 

(simultaneous or 6h delayed). (A) 24h (B) 48h after LPS treatment. (n=3/condition) 

 

 

  

SIMULTANEOUS 6h DELAYED 

  

PBS D-Trp 1mM PBS D-Trp 1mM 

24h 
PMN (% total cells) 

93,17 90,08 91,75 79,00 

48h 72,92 72,92 66,58 54,33 

  PMN reduction 22% 19% 27% 31% (p=0.06) 

Table 4. Summary data of neutrophils presence in BAL after LPS induced ALI. 

Percentage of PMN in BAL 24/48h after LPS with or without D-Trp treatment 

(simultaneous or 6h delayed), (n=3/condition) 
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Figure 28. D-Trp, but not L-Trp treatment reduced BAL PMN numbers 24h 

after ALI. BAL cell-count 24h after D-Trp (1 mM, 6h delayed) intratracheal instillation 

(n=6-15). (*: p<0.05, ***: p<0.001, unpaired t test with Welch correction) 
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7. CCL17 concentration declines in BAL after ALI and D-Trp 

treatment 

BAL cytokine analysis and quantification were performed to assess the onset of 

inflammation and to understand at which level D-Trp interferes with the epithelium. 

Following the results showing a lower BAL cell count by D-Trp treatment, a mild 

reduction of the total BAL protein was observed (Figure 29). ELISA immunoassays 

and Bradford protein assay were then conducted to characterize the BAL constitution 

during the resolution of ALI. Protein candidates were chosen considering their 

relevance on immune cells during ALI. The chemokine (C-X-C motif) ligand 1 

(CXCL1) is a major cytokine involved in triggering PMN recruitment, mediated by 

both TNFα and NF-κB signaling [163] (Suppl. Fig. 8; CCL17 is implicated in 

effector/memory Th1 lymphocytes attraction and is elevated at several inflammatory 

conditions [164–166]). Furthermore, several D-Trp containing probiotic supernatants 

have been shown to decrease CCL17 expression (human Hodgkin lymphoma KM-H2 

cells), as well as reducing costimulatory molecules of LPS-stimulated human dendritic 

cells [67]. To extend Kepert et al. results to lung injuries, CCL17 concentration was 

measured. D-Trp treatment 6h after LPS instillation significantly reduced CCL17 

expression (5 mM) in the BAL 24h after LPS instillation, as previously described in 

vitro [67]. Also, a trend towards reduced CXCL1 expression was observed after D-Trp 

instillation (Figure 30). The 5 mM dosage was provided in order to validate the mice 

tolerance for a high dosage of D-Trp in an injured environment. Altogether these 

results confirm that D-Trp has an active role in inflammatory protein modulation. 

However, the molecular cascade leading to a faster resolution of the inflammation is 

unclear. 
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Figure 29. D-Trp treatment did only slightly influence BAL protein 

concentration after LPS treatment. BAL protein concentration 24h after D-Trp or L-

Trp (1 mM) intratracheal application. BCA assay (n=4-15). 

 

CXCL1

C
o

n
c

e
n

tr
a

ti
o

n
 (

p
g

/m
L

)

PBS PBS L-Trp 1 mM D-Trp 1 mM
0

50

100

150

LPS - + + +

CCL17

C
o

n
c

e
n

tr
a

ti
o

n
 (

p
g

/m
L

)

PBS PBS L-Trp 1 mM D-Trp 1 mM
0

200

400

600

LPS - + + +

 

Figure 30. High concentration of D-Trp (1 mM) tend to reduce the expression of 

key inflammatory cytokines in the BAL. BAL cytokine concentration 24h after LPS 

instillation. Assessed by ELISA (n=4-15). (*: p<0.05, ***: p<0.001, unpaired t test with 

Welch correction) 
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8. D-Trp reduces mRNA expression of CD11b, Alox12 and 

Fpr2 in whole lung homogenate 

In this study, the data showed that BAL cytokine concentration and PMN numbers 

were reduced after ALI and D-Trp treatment. Lower PMN numbers and a shift 

towards reduced inflammation or enhanced resolution can be highlighted by lung 

mRNA analysis. 

D-Trp metabolism is brought about by intracellular and extracellular mechanisms, 

bringing into play its biosynthesis in microbes (Suppl. Fig. 9) and its metabolism in 

pro- and eukaryotes (Suppl. Fig. 10). This study focused on the latter, considering 

that mammalians are unable to synthesize it [66]. The previous experiments indicated 

that inflammatory pathways were modulated by D-Trp treatments in vivo leading to 

reduced inflammatory response or/and enhanced resolution. Indeed, evidence of 

changed cell populations as well as in cell number, together with reduced 

inflammatory cytokine concentration showed an altered composition of the BAL. 

However, the pathways in place responsible for PMN or AM recruitment were still 

unidentified. Transcript analysis from whole lung was then analyzed to gain an 

insight on the mechanisms leading to modulated inflammation. It was hypothesized 

that PMN were majorly responsible for the release on the investigated inflammatory 

cytokines CXCL1 and CCL17, as well as resident macrophages and recruited AM, 

participating both in the first response and the injury resolution. Then, the 

expression of a small panel of genes was studied, consisting of previously described 

common PMN and AM markers, as well as D-Trp receptors involved in D-Trp 

metabolization. Integrin alpha M (CD11b) is expressed by several leucocytes, 

particularly PMN (CD11clowCD11bhigh) [167] and inflammatory activated alveolar 

macrophages [167]. Its mRNA levels were reduced by a factor of 4 in D‑Trp treated 

lungs (Figure 31), while BAL PMN numbers have been found to be reduced by 10%. 

This decrease in CD11b expression suggests that in addition to the contribution from 

a reduction in PMN numbers in the lung, persisting 24h after LPS application, also 

other cells such as CD11b+ macrophages might show reduced activation upon D-Trp 

treatment. Serum amyloid A 3 (Saa3), a well described inflammatory factor [168], 
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rapidly and powerfully induced by LPS in lung macrophages, was not regulated by D-

Trp. This argues that the initial response to LPS was not affected by D-Trp. To 

monitor the regulation of inflammation, the expression of murine 12-lipoxygenase 

(ALOX12) resolution protein, the analogue to the human 15-lipoxygenase (ALOX15) 

[169–171], was studied. In the biosynthesis of lipoxins and other pro-resolving 

mediators, ALOX15 has a pivotal role in the resolution of inflammatory responses 

[172]. Its concentration is increased in M2 macrophages after IL-13 activation due to 

its positive feedback loop. Altogether, ALOX12 participates in the resolution of the 

inflammation through the synthesis of lipoxins [173] (Suppl. Fig. 11). However, no 

significantly increased expression of Alox12 was observed, nor of the lipoxin receptor 

FPR2 [174] (Figure 31). This may be explained by the time course of the experiment: 

IL-13 activation and subsequent polarization of the macrophages requires previous T 

cell recruitment and interaction in the lung. Probably, the 24h window was too short 

to measure the responses. 
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Figure 31. (A) D-Trp effect on CD11b and Saa3 expression as well as on (B) 

macrophages inflammation markers Alox12 and Fpr2 in whole lung homogenate 

24h after LPS (t=0) and D-Trp treatment (t=6h). mRNA expression relative to Hprt 

(n=4-15). (*: p<0.05, **: p<0.01, unpaired t test with Welch correction). 
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9. IL-6 increase in AhR-/- M1 BMDM is reduced after D-Trp 

treatment. 

Following earlier results showing the direct or indirect involvement of the aryl 

hydrocarbon receptor (AhR) on lung immunity, this study aimed to discover whether 

D-Trp anti-inflammatory effect is dependent on the presence of the AhR using AhR-/- 

cells. Bone marrow macrophages from AhR-/- (Ahrtm1Bra) mice [175,176] were cultured 

for seven days, differentiated into AM, and polarized following the method described 

in MATERIALS AND METHODS (Table 5). The polarization efficiency was 

measured through the levels of robust AM mRNA markers and proteins. 

 

AhR-/- and 

AhR-/+ 
PBS 

D-Trp 

50 μM 

D-Trp 

100 μM 

L-Trp 

100 μM 

LPS 

(1 μg/mL) 
x x x x 

IL-4 

(20 ng/mL) 
x x x x 

No polarization x x x x 

Table 5. Combination matrix of experimental planning. 24h stimulation of LPS (M1 

AM), IL-4 (M2 AM) combined with D-Trp/L-Trp application). 

 

The inflammatory cytokine IL-6 was induced to higher levels in AhR-/- BMDM. 

These results confirmed previous works [177], where the aryl hydrocarbon receptor 

was described as the cornerstone of the tolerance defense pathway. The early 

response failed unless the AhR+/- was activated by D-Trp (Figure 32). Furthermore, 

relative to PBS, high dose of D-Trp (100 μM) induced IL-6 in AhR+/- BMDM but 

was repressed in AhR-/- cells. These results were confirmed to a lesser extend at 

protein level, where supernatants of D-Trp treated AhR-/- cells showed slightly lower 

concentration of IL-6 than the PBS control cells (Figure 33). M2 marker (Mrc1 and 

Arg1) were increased in D-Trp/IL-4 polarized BMDM only in the AhR+/- genotype. 

It suggests that AhR plays a role in early inflammation response helping M2 

polarization. All these results pointed towards AhR and NF-κB downstream signaling 
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leading to an increased Cytochrome P4501-1A1 (CYP1A) activity as well as 

xenobiotic metabolism through the kynurenine pathway. 
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Figure 32. mRNA expression levels of inflammation markers in response to L-

/D-Trp in AhR-/- and AhR+/- BMDM after (A) LPS and (B) IL-4 stimulation. 

AhR-/- BMDM display increased Il-6 and Mrc1 expression after LPS stimulation, reduced to 

WT level after D-Trp treatment. BMDM were incubated 24h after D-Trp or L-Trp 

treatment and polarization. The mRNA expression is relative to Hprt. (n=6, values represent 

the mean ± SEM, *: p<0.05) 
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Figure 33. IL-6 concentration after L-/D-Trp treatment in AhR+/- and AhR-/- 

mice. AhR-/- BMBM showed increased IL-6 concentration after LPS stimulation. BMDM 

were incubated 24h after D-Trp/LPS treatment. ELISA assay (n=6, values represent the 

mean ± SEM, **: p<0.01, ***: p<0.001, ****: p<0.0001). 
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10. AhR signaling mediates D-Trp activity through both the 

kynurenine and the Cyp1a1 pathway and NF-κB regulation. 

D-Trp and L-Trp are both agonists of the aryl hydrocarbon receptor (AhR) [178]. 

However, D-Trp might have a much greater affinity to the receptor (Figure 34), 

which could be explained by the configuration difference between the two amino acids 

[179]. It had been shown that AhR is involved in immune responses, and that LPS 

stimuli induced an AhR-dependent CYP1A1 increase [176] (Figure 35). The absence 

of AhR reduced mRNA expression of key proteins in the kynurenine and the NF‑κB 

pathways for both LPS and IL-4 treated BMDM was tested. Furthermore, D-Trp 

displayed a bioactivity threshold of 100 μM, from which BMDM drastically increased 

Ido1 and Cyp1a1 mRNA expression. The increased activity of AhR by D-Trp binding 

could be part of a feedback loop involving D-Trp metabolites [180]. This increased 

metabolic activity of D-Trp is consistent with the regulation of immunity observed in 

AM through inflammation, towards an increased or faster response. 
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Figure 34. AhR dependent Ido1 (A) and Cyp1a1 (B) mRNA expression in 

AhR+/- and AhR-/- BMDM. D-Trp increases mRNA expression of Ido1 and Cyp1a1 (key 

AhR downstream targets) in BMDM. BMDM were incubated 24h after LPS or IL-4 

treatment. The mRNA expression is relative to Hprt. (n=6, values represent the mean 

± SEM, **: p<0.01, ***: p<0.001) 

 

 

Figure 35. Molecular mechanism of activation of gene expression after AhR-

ligands interaction [178]. Exogenous ligands penetrate the cell through lipid interactions 

and binding to the AhR. 
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11. D-/L-Trp impairs a key enzyme of the AhR/kynurenine 

pathway  

Eukaryotes regulate the Trp-metabolization through different enzymes participating 

to the indole, kynurenine or serotonin pathway (Suppl. Fig. 10). D-/L-Trp is an 

agonist of the AhR-receptor, mediating immune tolerance and immunity following 

IDO induced D-/L-Trp catabolization through the kynurenine and AhR activation 

pathway (Figure 36) [181]. 

The focus was made on the kynurenine pathway, being downstream the recognition of 

D-Trp recognition by the AhR. Indeed, evidence suggests that the kynurenine 

pathway is participating in T-cells modulation, and more generally in mediating 

reduced immune response [102,176]. The first and limiting step of this pathway is the 

catabolization of the L-Trp and D-Trp into kynurenine by the Indoleamine 2,3-

dioxygenase 1 enzyme (IDO1) [182]. Surprisingly, Ido1 expression in the whole lung 

was reduced after D-Trp treatment which contrast with the hypothesis that a greater 

Trp intake would increase the enzyme metabolic activity (Figure 37), nor was it 

increased consequently to a TNFα inflammatory response [79], [80]. D-Trp is more 

likely to be metabolized involving other enzymes also participating to the kynurenine 

pathways such as the tryptophan 2,3-dioxygenase 1/2 (TDO1/2) or IDO2. These 

findings unraveled the AhR as a key player in D-Trp mediated immunity, especially 

in acute inflammation. 
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Figure 36. Ido1 mRNA expression in whole lung homogenate 24h after 

consecutive LPS and L-/D-Trp treatment. mRNA expression relative to Hprt 

(n=4‑15). (**: p<0.01, unpaired t test with Welch correction) 

 

 

 

Figure 37. Toll-like receptor ligands trigger transcriptional activation of STAT-1 

and NF-κB, and then induce IDO mRNA. Adapted from [181]. 
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DISCUSSION 

 

I- EFFECT OF N-ACYL HOMOSERINE LACTONE 

COMPOUNDS OF GRAM-NEGATIVE BACTERIA ON 

LUNG EPITHELIUM AND IMMUNITY 

 

1. Quorum sensing and Pseudomonas aeruginosa 

Quorum sensing (QS) signaling molecules are not necessarily limited to bacterial-

bacterial signaling [183,184] but also involved in inter-kingdom communication, for 

example with human immune cells [185]. In that context they may not exclusively be 

linked to pathogenesis either considering that QS is used in plants by several 

probiotic bacterial species; this mechanism being the reflection of their ability to 

colonize various niches [70]. For example for the bacteria Pseudomonas aeruginosa 

(PAO1), the prominent QS molecule 3-oxo-dodecanoyle homoserine lactone (3-oxo-

C12-HSL), from the acyl-homoserine lactones (AHL) family, is secreted and recognized 

by a set of two major bacterial signal components: LasI/LasR and RhlI/RhlR [186]. 

However, 3-oxo-C12-HSL can beyond bacterial interaction also modulate the 

immunity of the host [74–78,85] by activating non canonical immune pathways, 

independent from pathogen-associated molecular pattern (PAMPs) and the respective 

pattern recognition receptors (PRRs) [90]. 3-oxo-C12-HSL controls the production of 

Pseudomonas aeruginosa virulence factors [187], giving it a selective advantage in 

pathogenic interactions. Besides N-Acyl-HSL, AQ-QS system exists in P. aeruginosa, 

which is able to modulate the immune response to human bronchial epithelial cells 

[137]. 
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2. 3-oxo-C12-HSL effect on Th2/17 cells differentiation 

It has been previously shown that 3-oxo-C12-HSL inhibits Th2 differentiation [77]. 

The differentiation of the Th cells was assessed from their ability to produce their 

relevant cytokines. Interestingly, our findings suggest for the first time that C12-HSL 

(50 μM/48h) mildly impairs IL-4 production of Th2 cells (Figure 9). Furthermore, it 

has been demonstrated that IL-17 production increases rapidly after Pseudomonas 

infection [188]. In the same manner, our results illustrated an increase of IL-17 

production on the Th17 differentiated cells after 3-oxo-C12-HSL stimulation (100 

μM/48h and 100 μM/96h). 3-oxo-C12-HSL and C12-HSL possess similar molecular 

features (lactone ring and alkyl chain length). This could explain the comparable 

reactivity of the two AHL. 

The results presented in this doctoral thesis suggests a shift of Th cells differentiation 

towards Th17 as well as a reduction in Th2 differentiation. The Th immune cells upon 

AHL-application present a more inflammatory phenotype. Earlier hypotheses support 

a ubiquitous impairing role of AHL on immune cells in both innate and adaptive 

immune response. However, no significant AHL-induced anti-inflammatory effect was 

observed, despite being discussed in previous studies [78]. 

3-oxo-C12-HSL has the highest potency for IL-17 induction, while C12-HSL has the 

highest potential for IL-4 repression. These findings indicate that the actions of 

different AHLs rely on different pathways or receptors in differentiated T cells. 

Consequently, the impact of AHL on T cell cytokine production suggests a complex 

model involving possibly other immune response cells mediating the interaction. 

Indeed, T cells maturation is triggered by APC/T cell co-stimulation involving T 

cells receptors (TCR) and the major histocompatibility complex (MHC) [189]; the 

APCs consisting mostly of DCs and macrophages in a lesser extent. Newly 

differentiated Th cells will then in turn recruit macrophages via inflammatory 

cytokines (i.e. IFNγ) to the site of inflammation [190]. Thus, airborne bacteria 

encounter first AM and epithelial cells in the lungs. This may subsequently modulate 

T cell recruitment or function. Thus, in current experiments the focus was set on the 

effects of AHL on AM polarization, and epithelial barrier function. 
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3. 3-oxo-C12-HSL modulation of AM polarization and function 

In the lung, the first line of defense can be seen in the alveolar epithelium, which 

oversimplified consists of epithelial cells type I and type II (AECI and AECII) and 

alveolar macrophages (AM). AECI cells cover 98% of the alveolar surface to maintain 

the gas exchange between the alveoli and blood [191,192], and AECII cells secrete 

surfactant, maintain the fluid balance and have also been described as defender of the 

alveolus [193]. The tissue resident AM are known for their effective uptake of inhaled 

particles, to fight microbes [34], and to mediate acute lung inflammation and 

resolution in many disease conditions [194]. 

3-oxo-C12-HSL through its auto-paracrine signaling [71] has been shown to reduce the 

expression of inflammatory cytokines in AM [78]. 3-oxo-C12-HSL significantly 

inhibited the LPS-induced inflammatory response in macrophages by reducing the 

secretion of pro-inflammatory TNFα, and increasing anti-inflammatory interleukin 10 

(IL-10) [78]. It was shown in this thesis work, in a novel coculture model of AM and 

AECII cells, that 3-oxo-C12-HSL increased the polarization of M2 polarized AM 

(Figure 15). These findings suggested an anti-inflammatory activity of the AHL 

causing a M2 shifted polarization. Mechanistically, this anti-inflammatory effect can 

be explained by the fact that 3-oxo-C12-HSL impaired the activation of NF-κB 

functions which subsequently repressed the expression of inflammatory cytokines such 

as TNFα [89,195]. Other findings, in contrast, suggested that through a mechanism 

involving inflammatory signaling of protein kinase RNA-like endoplasmic reticulum 

kinase (PERK) and Eukaryotic Initiation Factor 2 alpha (eI-F2α,3-oxo-C12-HSL can 

activate PERK phosphorylation and eI-2Fα inhibition. This subsequently reduces the 

nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha 

(IκBα production and activated NF-κB p65 production [154]. This finally increases 

chemokine (C-X-C motif) ligand 1 (CXCL1) and interleukin 6 (IL-6) transcription, 

and thus selectively induces neutrophil chemotaxis [86]. 

Until 2018, in vivo immunomodulatory effects of AHL on live animals have not been 

described. In this thesis, the effects of intratracheal applied AHL on an inflamed lung 

of C57BL/6J mice were evaluated to further identify, if AHL treatment could reduce 
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lung inflammation, neutrophil recruitment, and inflammatory cytokine levels. To rule 

out any possibility of autoinflammation, a dose response was conducted. Despite the 

relatively small group size (2), dose response up to 1200 μM resulted in comparable 

cell recruitment as in the ACN control treatment (5-10% of total cells), indicating 

that the AHLs alone did not induce any obvious pro- or anti-inflammatory effect 

(Figure 19). 

An impairment of the NF-κB pathway is linked to the inhibition of the peroxisome 

proliferator-activated receptor gamma (PPARγ), an important anti-inflammatory 

antagonist of NF-κB [91]. The impairment of PPARγ results in a further decrease of 

downstream functions such as wound repair, homeostasis, and control of 

inflammatory energy [196]. Disruption of barrier integrity has been observed after 3-

oxo-C12-HSL treatment on Caco-2 epithelial cells, and could be prevented by 

inhibition of p38 p42/p44 Mitogen-activated protein kinases (MAPK) [83], reducing 

thereby macrophage phagocytosis [197]. Results presented in this thesis (Figure 16 

and Figure 17) supported in vitro impairment of wound repair by 3-oxo-C12-HSL 

application for two AECII cell lines (LA-4 and MLE-12), independently of the 

presence of LPS (1 μg/mL). 

 

4. Quorum sensing receptors 

3-oxo-C12-HSL receptors on the host cells have been partially elucidated; one target 

receptor of a variety of AHLs on epithelial cells seems to be the Ras GTPase-

activating-like protein IQGAP1 (IQGAP1) [86,96,198]. Other groups identified the 

taste receptor T2R38, present on peripheral blood neutrophils, monocytes, and 

lymphocytes, as responsible for the entry of AHLs into the cell [96]. When in contact 

with AHL, epithelial cells triggered also a cascade leading to a calcium dependent 

repression of NO production in AM [199]. Very recent publications link the 3-oxo-C12-

HSL target entry into the cell to the PPARs for human lung epithelial cells and 

murine fibroblasts [76,200]. Jahoor et al. argued that the proinflammatory effect of 3-

oxo-C12-HSL on murine fibroblasts and human lung epithelial cells could be blocked 

by the PPARγ agonist RGZ [76], suggesting a mutually antagonistic mode of action 
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of the two compounds on PPARγ. These results were corroborated in vitro, where 

RGZ pre-treatment reduced Tnf expression after 3-oxo-C12-HSL stimulation (Figure 

15 and Suppl. Fig. 1). 

Interestingly, it has been shown that the neutrophils, monocytes and macrophages 

taste receptor T2R38 [92] is activated by 3-oxo-C12-HSL and its surface expression 

[201], regulating a calcium dependent NO production [199]. This defense mechanism 

is hypothesized to help mucociliary clearance during airway bacterial infection. Our 

results showed however a decreased expression of T2R38 in M1 AM in vitro after 3-

oxo-C12-HSL treatment (Suppl. Fig. 3). This suggests that the mechanism leading to 

T2R38 over-expression do not rely solely on 3-oxo-C12-HSL. In a preliminary array 

experiment, all the analyzed taste receptors showed weak baseline expression and 

expressed no significant difference between the M1 and M2 subtypes (Suppl. Fig. 4). 

Of notice, Lee et al. [199] used a higher 3-oxo-C12-HSL concentration (100 μM vs. 

60 μM), possibly leading to the higher gene expression effect. 

 

II- EFFECT OF D-TRP OF PROBIOTIC GRAM-POSITIVE 

BACTERIA EFFECT ON LUNG EPITHELIUM AND 

IMMUNITY 

 

1. D-amino acids and probiotic microbiome 

The lung epithelial interface is constantly in contact with the outside worlds’ 

microbiome (including pathogens and probiotics). A healthy individual remains in a 

state of homeostasis thanks to the lungs immune system. Upon a greater 

inflammation, the individual’s immune system cascade fires up. As soon as 

pathogenic microorganisms and their products try to find their way infecting the 

hosts’ body, the innate response machinery is triggered. Its main line of defense 

consists in phagocytes and PMN; nonspecific leucocytes aiming in killing the infection 

before it starts to spread [5]. This primary cell activation works simultaneously with 

several biological phenomena, such as increased mucus in the lungs, swelling or 
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redness. This study focused mostly on this acute phase and its resolution. After the 

threat, a quick return to the homeostasis is vital for the organism. 

Mammals and in particular humans have evolved to exist and thrive in a quasi-

symbiosis with a multitude of microorganisms. They cover the skin on the outside, 

are present in our lungs, and the digestive tract on inside surfaces. These microbes 

are not only mostly inoffensive, but they are commensal (i.e. beneficial). As such, 

they are non-invasive, and protect the host by competing against the proliferation of 

pathogenic bacteria. 

Different kinds of bacteria shape the lung microbiome; pathogenic (Moraxella 

catarrhalis, Haemophilus influenzae, and Streptococcus pneumoniae) as well as 

commensal and even beneficial (Bacillus, Lactobacillus, Lactococcus, Staphylococcus, 

Streptococcus, and Streptomyces). The commensal Gram-positive bacteria 

Lactobacillus casei and other beneficial strains produce D-Trp, a D-amino acid 

recently discovered to be involved in various immunological processes within the 

colonized host [67]. 

L-amino acids are the most common amino acid enantiomer used by mammals [202], 

and are a necessity for the organism, and its immune response [203]. The amino acids 

are the building blocks of the immune proteins’ synthesis (cytokines, and antibodies), 

which are responsible for T cells, B cells, and macrophages activation or proliferation. 

One might not expect that a single amino acid could trigger or influence an immune 

response on its own. However, our data presents in vitro as well as in vivo strong 

immunological evidences towards lung injury resolution due to D-Trp treatment. 

The role of probiotic bacteria has been extensively studied in the gut [204,205], with 

PubMed reaching 11,990 hits as of September 2018 for the keywords “gut 

microbiome”. “Lung microbiome” however totaled 1050 hits, and “lung microbiome 

immunity” a shy 206 hits (Table 6). Only one publication focused on D-Trp and its 

effect regarding airway diseases [67], where D-Trp, and not its L-enantiomer 

successfully reduced CCL17 human Hodgkin lymphoma cell line in vitro as well as 

decreased gut Tregs numbers and Th2 response. The results from this study 

corroborate the one from Kepert et al., where other D-amino acids were found to be 
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immunologically inactive; particularly towards macrophage polarization (Suppl. Fig. 

6). 

 

‘Keywords PubMed hits 

Microbiome 46224 

Gut microbiome 11990 

Lung microbiome 1050 

Gut microbiome immunity 1400 

Lung microbiome immunity 206 

D-Trp gut 2 

D-Trp lung 10 

Table 6. Comparative table of PubMed hits in September 2018 against selected 

keywords. Although the microbiome has been fairly studied; its relation to the lung, and to 

immunity remain poorly understood. The specific role of D-Trp is a very novel topic. 

 

2. D- and L-tryptophan functions 

D-Trp is a byproduct of the peptidoglycan cell wall synthesis in Gram-positive 

bacteria which contains several D-amino acids. However, its roles in bacterial 

signaling and cross signaling are still mostly unknown. In the host, the L-Trp isomer 

is predominant and serves as a precursor for a variety of substrates, the most known 

being serotonin and kynurenine (Suppl. Fig. 10). However, Trp studies used a racemic 

mix or L-Trp only, largely ignoring the D-enantiomer. This created an abundance of 

data regarding the interplay of D-/L-Trp and immunology, scarcely considering the 

specificity of the D-enantiomer of Trp regarding inflammation [67] or microbial 

properties [206]. 
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3. D- and L- amino acids against microbes 

Most L- amino acids promote to variable extents growth and formation of biofilms 

[207]. On the contrary, D-amino acids effects on biofilm formation did not reach a 

general consensus. They have been shown on one hand to inhibit Bacillus subtilis 

biofilm formation [208] or to trigger the biofilm disassembly [209]. On the other hand 

Kao et al. [210] did not observe any inhibitory effect of D-amino acids on 

Pseudomonas aeruginosa’s moderately virulent (PAO1) and virulent (PA14) strains 

[211] biofilm formation, concluding that D-amino acids were not a viable treatment 

against Pseudomonas aeruginosa’s infections. Brandenburg et al. [157] showed that 

bacterial biofilm synthesis on wounds is inhibited by D- and L-Trp. Considering these 

results, it appears that the great diversity of bacteria seems to respond differently 

upon D-Trp supplementation or treatment. Our investigation focuses primarily on the 

effects of D-Trp on mammalian cells described by Kepert et al. [67], and particularly 

on AM and epithelial cells. 

Koseki et al. [212] studied the influence of L- and D-amino acids on bacterial growth 

in vitro. Interestingly, they showed that only D-Trp reduced significantly as an 

incompatible substrate bacterial growth of Listeria monocytogenes, Salmonella 

enterica, and Escherichia coli O157:H7. These results were in contrast with Chan et 

al. [213], who described that D-enantiomers showed less antimicrobial activity, 

although deciding racemic Trp (and Arg) as potential antimicrobial agents. D- and L- 

amino acids have also been used for fighting against pathogens, in the form of 

engineered antimicrobial peptides. Yet, Muñoz et al. [206] showed similar properties 

for the antimicrobial properties of the tryptophan-rich hexapeptide PAF26 for both 

isomers of tryptophan. In this study, alveolar macrophages (AM) Il1b, Tnf and Nos2 

gene expression were compared after exposure to LPS (1 μg/mL) and several D-

amino acids (D-Tyr, D-Phe, D-Met, D-His, D-Pro, and D-Trp). No significant effect 

of D-Tyr, D-Phe, D-Met, D-His, or D-Pro on AM polarization was found for a given 

amino acid concentration of 100 μM (Suppl. Fig. 6). However, D-Trp at 10 μM 

concentration gave a significant stimulation of Mrc1, Arg1 of M2 AM; and Il1b, Tnf 

of M1 AM. 



DISCUSSION 

104 

4. D-Trp modulates lung immunity 

Knowing that AM are the first responders in the lung [19], this study aimed to 

extend Kepert et al. [67] results to other immune cells, in particular AM. As a proof 

of concept, AM cell line MH-S were polarized (M1 vs M2) and simultaneously treated 

with D-Trp (10-100 μM). As detailed previously, M2 polarization was associated with 

the Th2 major cytokines responses (IL-4 and IL-13), involved during the resolution of 

an infection or injury. Kepert et al. highlighted that on one side oral D-Trp induced 

gut Tregs recruitment and on the other side reduced Th2 numbers and Il-4 levels in 

BALF. IL-4 measurements were not included in this study, considering that the focus 

was drawn on innate immunity. The genetic expression of M1 inflammatory as well 

as M2 resolution markers were measured, illustrating the fact that D-Trp was 

supporting IL-4 dependent M2 polarization (Figure 23) and at the same time 

inhibiting M1 polarization (Figure 21) in vitro at concentrations ranging from 10 to 

100 μM, confirming our initial hypothesis. 

Since D-Trp helped reducing the inflammatory response, it was suggested that this 

effect could be translated to a more complex model of the epithelium injury during a 

coculture model of wound healing. However, D-Trp did not improve wound healing in 

the AECII monolayer culture system. On a singular note, high concentrations of D-

Trp (100 μM) on AECII/AM coculture triggered M0 AM to express key M1 genes 

Il1b and Tnf. It could be explained as a toxic response due to high concentration of 

D-Trp. 

Existing literature is largely incomplete in the case of a lung injury in vivo. Following 

the previous in vitro analysis of D-Trp on an epithelial coculture, it was postulated 

that D-Trp could reduce PMN neutrophil recruitment in the lung after an ALI. This 

animal experiment confirmed the previous in vitro findings, where after LPS (2 

μg/mL, 50 μL) and the subsequent D-Trp inhalation by C57BL/6J mice, significantly 

reduced PMN recruitment in the BAL occurred. This indicates a topical anti-

inflammatory phenomenon, confirming in the lungs Kepert et al. results in the gut. 

Indeed, D-Trp deeply modified the lung immunological landscape, where surface 

markers associated with PMN (i.e. CD11b and Fpr2) were rapidly reduced as well as 
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Alox12 pro-resolving factor expression was impaired in lung homogenate. This is in 

accordance with the time course of the inflammation’s resolution as described by 

Kuhn et al. [172]. 

The strongest cell recruitment reduction was obtained with a D-Trp concentration of 

1 mM. The equivalent condition (1 mM) of L-Trp did not present the same reduction 

of cells recruitment (Figure 28), highlighting the D-Trp stereospecificity effect shown 

by Kepert et al. [67]. This outcome was confirmed by the CCL17 inflammatory 

protein simultaneous decrease in the BALF following ALI and 1 mM D-Trp 

treatment. This data corroborated Thanabalasuriar et al. description of CCL17 as a 

PMN chemoattractant during lung inflammation [214]. Remarkably, these results 

challenged previous finding from Chen et al., where CCL17 cytokine release was 

associated with augmented M2 polarization [215], whereas here, CCL17 secretion was 

reduced (Figure 30) despite D-Trp induced anti-inflammatory responses and M2 

markers increase (Figure 23). Curiously, the overall protein concentration in the BAL 

after LPS instillation was L-Trp and D-Trp independent (40 μg/mL). This can be 

explained by the time course of the experiment and the protein level reaching for 

homeostasis 24h after ALI. Han et al. [216] demonstrated similar results where BAL 

protein levels do not significantly change during the 24h after ALI. 

L- and D-Trp effects on the immune system are mediated via receptors, transporters 

and enzymes; some of them being isomer specific [217]. More importantly, D-Trp 

yielded a better uptake and immunomodulatory potency [218]. Moreover, Trp 

metabolites have been linked to immune modulation through the IDO/kynurenine 

pathway [102,203,217–221]. 
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5. D-Trp, metabolites and AhR signaling 

5.1. D-Trp tolerogenic effect 

Several studies agree that D-Trp and D-/L-Trp (racemic) are ligands to the ligand-

activated transcription factor AhR. Nguyen et al. described how in macrophages and 

DCs, AhR promotes an anti-inflammatory phenotype [222]. Furthermore, in AhR 

deficient mice macrophages produce more pro-inflammatory cytokines [223]. In this 

study, using BMDM cells issued from AhR deficient mice, Kimura et al. results were 

corroborated, highlighting an increase of IL-6 production in LPS stimulated AhR-/- 

macrophages. Besides, the previous findings confirmed that the anti-inflammatory 

mechanisms triggered by D-Trp were AhR dependent. Indeed, the D-Trp 

stereoisomer selectively diminished IL-6 gene expression in a dose dependent manner 

after LPS stimulation of the AhR-/- BMDM. Furthermore, IL-4 treated AhR-/- 

BMDM showed an increased Arg1 gene expression when being D-Trp treated. This is 

consistent with the greater anti-inflammatory response observed in M2 macrophages 

throughout this study. These results support the role of AhR on diminishing acute 

inflammation proposed by Wu et al. [224]. 

In extension to other immune cell studies, these results also reinforce Bruhs et al. 

results, showing that AhR activation leads to immunosuppression by DCs modulation 

[225], suggesting a common AhR dependent tolerogenic effect. 

 

5.2. AhR signaling and kynurenine pathway 

Kynurenine is a Trp metabolite and an AhR ligand, generated after deoxygenation of 

Trp by the IDO1 enzyme. Julliard et al. demonstrated that the IDO1 expression in 

DCs leads to kynurenine accumulation which is tolerogenic, inducing a Tregs increase 

[221]. These results refine a previous study by Munn et al. explaining how the 

degradation of Trp by IDO1 in macrophages leads to suppressed T cells [102].  

Zelante et al. discussed how racemic Trp in the gut [66] leads to Tregs and IL-10 

proliferation, creating an anti-inflammatory phenotype, whereas high concentration of 

Trp leads to the secretion of the inflammatory cytokine IL-22 [219]. Fallarino [220] 



DISCUSSION 

107 

and Li [226] provide evidence that the metabolites resulting from Trp catabolism are 

responsible for a local tolerogenic environment, essentially by controlling T cells 

homeostasis. 

Results of this PhD thesis reveal that Ido1 is induced in BMDM after high D-Trp 

doses (100 μM) (Figure 34, Figure 36), whether naïve, LPS, or IL-4 treated. This 

conflicts with Musso et al. findings describing that IL-4 influences Trp catabolism by 

inhibiting Ido1 gene expression in PBMC [227]. Considering the similarities between 

BMDM and PBMC, this suggests that the Trp uptake may be stereospecific and that 

Ido1 expression is independent to IL-4.  

Heath-Pagliuso et al. [228] presented that D-Trp activates through AhR signaling 

both the kynurenine and the Cyp1a1 pathways. CYP1A1 is one of the targets of AhR 

signaling (in addition to TLR2 in the gut [229]). As such, it is activated and 

regulated by a variety of hydrocarbons. In particular, it has already been shown that 

Trp and its metabolites are selective AhR modulators [230]. Nguyen et al. [231] 

showed that the D-amino acid oxidase (DAOO) endogenously help the production of 

AhR ligands through the conversion of D-Trp. Consistently, the results showed that 

high doses of D-Trp (100 μM) effectively regulate Cyp1a1 through AhR signaling 

(Figure 34). Moreover, D-Trp displayed a consistent higher potency compared to L-

Trp. This could be explained by a higher affinity of the AhR’s structure towards D-

Trp compared to L-Trp. These results are consistent with the ligand affinity values 

determined by Heath-Pagliuso et al. [228], which show a higher binding potency of D-

Trp to the AhR compared to the L-Trp. However, it is still unclear why the AhR 

favors competitively the D-Trp isomer.  

Additionally, they showed that the Trp metabolites tryptamine (TA) and indole 

acetic acid (IAA) were not only AhR agonists but were also direct Cyp1a1 ligands 

[228]. 

D-Trp reduced Ido1 gene expression (Figure 36). Consequently, it was suggested that 

Ido1 reduced expression would in turn reduce the kynurenine production as well along 

the AhR/kynurenine axis, since Ido1 is indirectly responsible for the kynurenine 

biosynthesis. Several enzymes are responsible for Trp metabolism (IDO2/TDO1/2). 



DISCUSSION 

108 

However, their stereospecificity have never been studied. Zhang et al. established that 

TDO compensates for IDO1 deficiency. With impaired IDO1, Il-17a was also 

consequently reduced [226], corroborating Li et al.’s findings that Trp catabolism 

induces local immunosuppressive environments by controlling T cells homeostasis 

[226]. 

 

III- CONCLUSIONS AND COMPARISON OF D-TRP AND 

3-OXO-C12-HSL EFFECTS 

 

1. Conclusions 

Since AHL-QS had been discovered to be the cornerstone of bacterial virulence for 

Gram-negative bacteria, various strategies have been set to disrupt QS signaling 

[232–236], along with the inherent ability of mammalian cells to degrade AHL 

through paroxonomase enzymes activity, such as the calcium dependent PON2 

enzyme [91,237]. QS inhibitors such as furanones [238] and antibiotics, impairing 

AHL-QS molecules production, or signal detection, have been proven to be an 

efficient way to selectively inhibit the virulence of Pseudomonas aeruginosa 

[233,234,239]. 

However, over time bacteria have been shown to develop resistance against the hosts’ 

defense strategies. The QS inhibitor brominated furanone C-30 was once found to 

reduce virulence as well as posing little selective pressure on the bacteria [240]. Yet, 

P. aeruginosa developed the C-30-resistant, highly pathogenic, mutant mexR after 

treatment with the inhibitor [241]. In plants, AHL can induce subsequent resistance 

to pathogens through salicylic acid pathway signaling [242]. Conventional antibiotics 

like macrolides have proven their efficiency in regulating bacteria virulence by 

inhibiting biofilm formation. [243]. Nonetheless, hypermutable P. aeruginosa strains 

persist to generate higher antibiotic resistance [244]. 

Following up these results, it was hypothesized that using the QS molecules’ role as 

inter-kingdom mediator would help to positively regulate the host immune system. 
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Indeed, the idea of employing the same mechanisms as some bacteria use to reduce 

lung inflammatory response could largely benefit individual with chronic of acute lung 

inflammatory diseases. Inter-bacterial and cross-kingdom communication represented 

by AHL-QS could lead to better therapy strategies against opportunistic pathogens. 

However, despite promising in vitro results, demonstrating the AHL ability to reduce 

innate inflammation by impairing M1 polarization and promoting M2 polarization, 

could so far not be extended in vivo. Indeed, no significant effect of AHL on 

neutrophil recruitment during ALI was observed, nor any evidence supporting wound 

repair of the epithelium after an injury. However, the model systems and the 

application modes used may have to be developed further to finally succeed in 

positive in vivo responses. 

The immunomodulation specificity of D-Trp over L-Trp, is a novel finding which 

needs further research. In this regard, this study demonstrated that the amino acid 

D-Trp, a metabolite produced by probiotic Gram-positive bacteria like Lactobacillus 

casei strain and others [67], simultaneously impaired the M1 polarization but 

promoted the M2 polarization of AM in vitro. Furthermore, murine intratracheal 

application of D-Trp after acute lung injury reduced neutrophils recruiting, PMN 

associated markers in the lung and CCL17 inflammatory cytokine production in the 

bronchoalveolar lavage (BAL). 

With the help of an AhR-/- mouse model, it was found that D-Trp, a direct agonist of 

the AhR, extinguished IL-6 overexpression in AhR-/- M1 polarized bone marrow 

derived macrophages (BMDM) cells, highlighting an AhR dependent D-Trp 

tolerogenic effect.  

Considering its anti-inflammatory properties as well as its relative low toxicity in 

vivo, the results obtained suggest that D-Trp would make a good candidate towards a 

therapeutic approach against acute and chronic lung diseases as a choice target of the 

aryl hydrocarbon receptor and the downstream regulation of the Th17/Tregs balance. 

The drug delivery method must however be improved, to allow in the future a more 

homogenous dispersion of the D-Trp in lung. D-Trp oral supplementation has to be 

further investigated since initial studies by Kepert et al. [67] showed promising 
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results. Future basic research should focus on, and strengthen the link between D-Trp 

pathway, metabolite stereochemistry and receptors affinity as well as other immune 

cells involvements. 

 

2. Comparison of D-Trp and 3-oxo-C12-HSL effects 

In this thesis, the effects of two bacterial molecules on the lung immune system were 

studied: the 3-oxo-C12-AHL, QS-molecule secreted by the Gram-negative 

Pseudomonas aeruginosa’s AHL-QS system, and the D-Trp amino acid, secreted 

(among others) by the Gram-positive, probiotic bacterium Lactobacillus casei. 

Both molecules shared in vitro a couple of key features. They demonstrated evidence 

of impaired pro-inflammatory gene expression of M1 in AM cell line culture (Figure 

10 and Figure 21). In a coculture model of alveolar epithelial cell type 2 (AECII) and 

AM (Figure 15), the 3-oxo-C12-AHL, but not D-Trp, caused a reduced expression of 

pro-inflammatory genes (Figure 15). D-Trp and 3-oxo-C12-AHL treatment increased 

key anti-inflammatory gene expression in M2 AM, thus further supporting M2 

polarization of M2 AM. 

Neither D-Trp nor 3-oxo-C12-AHL supported wound repair in an epithelium wound 

healing assay consisting in a bilayer of AECII and AM. However, the 3-oxo-C12-AHL 

notably resulted in more cytotoxicity of the epithelium.  

An in vivo model of acute lung injury was carried out. LPS was applied 

intratracheally prior to the application of D-Trp or 3-oxo-C12-AHL. The immune 

response was quantified by the amount of PMN in the inflamed bronchoalveolar 

lavage (BAL). D-Trp, but not 3-oxo-C12-AHL, displayed a reduction in PMN and 

protein concentration in the BAL (Figure 28). This result was followed in its 

downstream signaling and linked to the AhR pathway. These findings suggest D-Trp 

as a possible candidate for further studies of bacteria-host interactions in the lung. 
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SUPPLEMENTARY FIGURES 

 

Suppl. Fig. 1. Rosiglitazone (RGZ) pre-treatment on M1 cells reduced Tnf 

expression after stimulation with 3-oxo-C12-HSL. Joint RGZ/AHL effect on M1 

polarized cells was studied in a time response experiment (24h). All cells were LPS 

(1 μg/mL)/AHL (60 μM) or LPS (1 μg/mL)/RGZ (60 μM) co-stimulated for 6h and then 

stimulated with RGZ or AHL respectively. ACN: Acetonitrile solvent control (0.2%). (mRNA 

expression is relative to Hprt, n=3, values represent the mean ± SEM). 
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Suppl. Fig. 2. 3-oxo-C12-HSL selectively impairs wound closure of AECII 

monolayer and AECII/AM coculture independently of LPS. LA-4/MH-S cells were 

cultivated from 0 to 24h after simultaneous scratch and treatment with ACN (0.6%)/3-oxo-

C12-HSL (60μM)/3-oxo-C4-HSL (60μM)/C12-HSL (60μM)/RGZ (60μM)/LPS (1 μg/mL). 

Wound widths were determined 0 and 24 hours after wounding. ACN: Acetonitrile solvent 

control (0.2%). (n=3, values represent the mean ± SEM, *: p<0.05) 
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Suppl. Fig. 3. 3-oxo-C12-HSL/LPS treatment reduces Tas2r138 mRNA 

expression in AM/AECII coculture. MH-S/LA-4 cells were incubated 24h after 

AHL/LPS treatment. The mRNA expression is relative to Hprt. 

M0: no polarization; M1: LPS (1 μg/mL). (n=3, values represent the mean ± SEM) 
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Suppl. Fig. 4. Microarray analysis of gene expression of isolated and polarized 

wild type alveolar macrophages. Data shows gene expression, a value under 100 is 

considered low expression - Ingenuity software (Qiagen). 

 

Symbol 
WT_M0 

Expression 

WT_M1 

Expression 

WT_M2 

Expression 

Tas1r1 59 58 64 

Tas1r2 77 55 69 

Tas1r3 65 70 85 

Tas2r102 60 61 56 

Tas2r104 62 66 59 

Tas2r105 93 101 97 

Tas2r106 63 67 63 

Tas2r107 65 68 70 

Tas2r4 44 44 43 

Tas2r109 62 72 74 

Tas2r110 82 84 80 

Tas2r113 61 61 62 

Tas2r10 73 69 73 

Tas2r115 80 75 77 

Tas2r116 48 54 53 

Tas2r117 48 47 50 

Tas2r117 47 40 45 

Tas2r16 70 74 59 

Tas2r1 88 84 80 

Tas2r46 72 72 69 

Tas2r13 64 62 59 

Tas2r123 53 58 53 

Tas2r124 96 108 90 

Tas2r125 93 90 89 

Tas2r41 123 118 121 

Tas2r129 58 67 66 

Tas2r7 81 88 92 

Tas2r42 47 51 48 

Tas2r134 62 52 65 

Tas2r60 60 49 53 

Tas2r31 62 64 61 

Tas2r3 52 55 45 

Tas2r39 52 60 59 

Tas2r14 56 52 50 

Tas2r143 47 62 52 

Tas2r143 69 57 66 

Tas2r40 74 79 74 



SUPPLEMENTARY FIGURES 

114 

Suppl. Fig. 5. Low dose of D-Trp (<300 μM) inhibited CD36 expression when 

co-treated with RGZ before being LPS stimulated. Tnf expression is reduced in 

the same conditions. CD36 is a surface marker induced by RGZ [153]. Joint RGZ/D-Trp 

effect on M1 polarized cells was studied in a dose-time response experiment (24h). MH-S cells 

were either RGZ/D-Trp or RGZ/D-Trp/LPS stimulated for 6h and then further stimulated 

with LPS or PBS respectively. mRNA expression is relative to Hprt (n=3). Control: PBS 

solvent. (Values represent the mean ± SEM). 
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Suppl. Fig. 6. Low doses of D-Trp (10 μM) increased Il1b expression in M1 

polarized cells as well as Mrc1 and Arg1 expression in M2 polarized cells. DMSO 

1%, All D-amino acids (100μM, DMSO 1%) are used as controls. mRNA expression is relative 

to Hprt (n=3). M0: no polarization; M1: LPS (1 μg/mL); M2: IL-4 (20 ng/mL). (Values 

represent the mean ± SEM) 
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Suppl. Fig. 7. CCL17, CXCL1 and TNFα  cytokines concentrations in the BAL 

are reduced after D-Trp instillation and ALI in vivo. ELISA assay of the correlation 

between protein concentration and cell numbers 24h after D-Trp/L-Trp (1 mM) and ALI. 

BAL cells consist mostly of AM and PMN. The data points are the cumulation of ELISA 

BAL experiments (n=5-8). 

 

 

 

Suppl. Fig. 8. TNF signaling pathway. TNFα is one of the key inflammatory cytokines 

and its release is a robust indicator of classically activated macrophages. (Generated from 

www.genome.jp/kegg/). 
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Suppl. Fig. 9. Phenylalanine, Tyrosine and Tryptophan biosynthesis pathway 

map in fungi, bacteria and plants. These metabolites will then be catabolized in the food 

chain in eukaryotic mammalian species. (Generated from www.genome.jp/kegg/). 
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Suppl. Fig. 10. Tryptophan metabolism pathway map. D-Trp and L-Trp are both 

metabolized by mammalian organisms through the same enzymes of the kynurenine pathway. 

(Generated from www.genome.jp/kegg/) 
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Suppl. Fig. 11. Biosynthesis of the acute inflammation mediators leading to the 

activation of FPR2/ALXR receptors. Diagram of the acute inflammatory response. In 

blue: the onset. In red: the propagation. In green: the resolution [245]. 

 

 

 

Suppl. Fig. 12. Microbiota: commensal vs pathogenic. Diagram of the underlying 

mechanism of airway inflammation. Adapted from [246].  
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ABBREVIATIONS 

Ab Antibody 

ABP Activity-based probe 

ACN Acetonitrile 

Actb Actin, beta 

AECII Alveolar Epithelial Cells type 2 

AHL N-Acyl Homoserine Lactones 

AP-1 Activator protein 1 

ALI Acute lung injury 

AM Alveolar Macrophage 

APC Antigen presenting cell 

AQ 2-alkyl-4(1H)-quinolone 

Arg1 Arginase 1 

BAL Bronchoalveolar lavage 

BMDM Bone Marrow Derived Macrophage 

BSA Bovine serum albumin 

CCL17 Chemokine (C-C motif) ligand 17 

CCL2 Chemokine (C-C motif) ligand 2 

CD Cluster of differentiation 

cDNA Complementary DNA 

COPD Chronic obstructive pulmonary disease 

CpG CpG motifs 

CSF-2 Colony stimulating factor 2 

Ct Cycle threshold 

CXCL5 C-X-C motif chemokine 5 

DAAO D-amino acid oxidase 

DCs Dendritic cells 

DMEM Dulbecco's Modified Eagle Medium 
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DMSO Dimethyl sulfoxide 

DNA Deoxyribonucleic acid 

DTT Dithiothreitol 

D-Phe/His/Met/ 

Pro/Tyr/Trp 

D­Phenylalanine/Histidine/Methionine/Proline/Tyrosine/ 

Tryptophan 

EDTA Ethyldiaminetetraacetate 

ELISA Enzyme-linked immunosorbent assay 

FACS Fluorescence-activated cell sorting (flow cytometry) 

FBS Fetal Bovine Serum 

HDL High-density lipoprotein 

HRP Horseradish peroxidase 

HSL Homoserine Lactone 

IAA Indole acetic acid 

IDO1/2 Indoleamine 2,3-dioxygenase 1/2 

IL-12β Interleukin 12 beta 

IL-1β Interleukin-1 beta 

IL-4Rα Interleukin-4 receptor alpha chain 

IL-6 Interleukin 6 

iNOS Inducible nitric oxide synthase 

IPF Idiopathic pulmonary fibrosis 

IRF Interferon-regulatory factor 

JAK Janus Kinase 

KO, -/- Knock out 

LasI Acyl-homoserine-lactone synthase 

Lcn2 Lipocalin-2 

LPS Lipopolysaccharides 

M1 macrophage Classically activated macrophage 

M2 macrophage Alternatively activated macrophage 

M-CSF Macrophage colony-stimulating factor 
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MHC Major histocompatibility complex 

MRC1 Mannose Receptor C-Type 1 

NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells 

NRQ Normalized relative quantity 

OD Optical density 

PAO1 Pseudomonas aeruginosa strain PAO1 

P/S Penicillin/Streptomycin 

PBS Phosphate buffer saline 

PBMC Peripheral blood mononuclear cell 

PBST Phosphate buffered saline with Tween 20 

PCR Polymerase chain reaction 

PMA Phorbol 12-myristate 13-acetate 

PMN Polymorphonuclear neutrophil 

PRR Pattern recognition receptor 

qPCR Quantitative real-time polymerase chain reaction 

QS Quorum sensing 

Retnlα Resistin-like molecule alpha 

Rhl Acyl-homoserine-lactone synthase 

RIPA Radioimmunoprecipitation assay buffer 

RGZ Rosiglitazone 

RNA Ribose nucleic acid 

RT Room temperature 

RT-PCR Reverse transcription PCR 

SAA Serum amyloid A 

SEM Standard error of the mean 

STAT Signal transducer and activator of transcription 

T2R38 Taste receptor, Type 2, Member 38 

TA Tryptamine 

TCR T cell receptor 
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TDO Tryptophan 2,3-dioxygenase 

TEMED Tetramethylethylenediamine 

TGFβ Transforming growth factor beta 

Th T helper cells 

TLR Toll-like receptor 

TNFα Tumor necrosis factor α 

Treg Regulatory T cell 

WT Wild type 
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