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SUMMARY 
 

Centrioles possess a unique dual function within the cell, where they are required for 

centrosome and cilia formation. The non-membrane-bound organelles recruit pericentriolar 

material (PCM) and serve as the major microtubule-organizing centers during cell division. In 

non-mitotic cells, centrioles can dock to the cell membrane and template cilia outgrowth. The 

nematode C. elegans has emerged as an important model organism in the field of centrosome 

biology. Due to a relatively small set of centrosomal proteins, it plays a vital role in 

elucidating the assembly pathways of the structure. The core centriole assembly pathway was 

initially identified in the worm. Further, studies of the nematode PCM assembly factors give 

valuable insights into the principle mechanisms of PCM formation. However, factors that link 

centriole and PCM assembly have not been identified in C. elegans to date. 

In the first part of this study, I characterize the newly identified protein pericentriolar 

matrix deficient 1 (PCMD-1), which is required for bipolar spindle formation in the C. 

elegans one-cell embryo. I provide evidence, that PCMD-1 links microtubule nucleation 

activity to the centrosome, and fills in the gap between centriole and PCM assembly in 

worms. PCMD-1 targets the C. elegans centrosome matrix spindle-defective protein 5 (SPD-

5) to non-mitotic centrosomes. The spindle-defective protein 2 (SPD-2) was previously found 

to recruit the PLK-1 kinase to mitotic centrosomes. This study shows that SPD-2 also targets 

PLK-1 to centrosomes in non-mitotic cells. Together PCMD-1 and SPD-2 implement PCM 

core formation in non-mitotic cells and ensure robust PCM expansion upon mitosis. PCMD-1, 

SPD-5, SPD-2, and PLK-1 form a centrosome module that is conserved across species.  

Sensory neurons are the only cell type that possesses cilia and, thus, require centrioles 

postmitotically in C. elegans. Ciliary transition zones were found to mediate dendrite tip 

attachment in phasmid and amphid neurons. In these neurons, dendritic tip attachment to an 

extracellular matrix is required for successful dendrite elongation in a process termed 

retrograde dendrite extension.  

In the second part of this study, I show that also the inner labial 1 (IL1) neurons form 

their dendrites by retrograde extension. Unexpectedly, dendrite tip attachment occurs before 

the asymmetric division of the IL1 neuroblast into the IL1 neuron and its dying sister cell. In 

mammalian cell culture, older mother centrosomes are more competent to form primary cilia. 

If this finding applies to C. elegans, the older mother centrosome might be inherited by the 

IL1 neuron during IL1 neuroblast division. To date, it is not possible to distinguish the older 

mother from the younger daughter centrosome in C. elegans, since specific markers are 
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unknown. I established an assay that allows tracking age-related centrosome inheritance in C. 

elegans. Further, the partitioning-defective protein 6 (PAR-6) is required for C. elegans 

amphid dendrite attachment. Whether the partitioning-defective protein 3 (PAR-3) and 6 play 

a role in centriole positioning during dendritic tip attachment remains to be examined. 
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GRAPHICAL SUMMARY 

 

 

Graphical summary: (A) PCMD-1 facilitates PCM core formation and subsequent mitotic 

PCM expansion in C. elegans. The protein specifically links the centrosome matrix to 

centrioles. (B) Centrosomes have an inherent age difference and are inherited non-

randomly, correlating with cell fate decisions, in several model systems. Centrosome age 

might play a role in successful dendrite tip attachment during retrograde dendrite 

elongation of C. elegans sensory neurons. This graphical summary was partially created 

using bioRENDER (https://biorender.com/). 

 

 

 



GRAPHICAL SUMMARY 
 

6 

 

 

 

 

 

 

 

 

 

 

  



ZUSAMMENFASSUNG 
 

7 

ZUSAMMENFASSUNG 
 

 Zentriolen besitzen eine einzigartige Doppelfunktion in der Zelle, wo sie für die 

Bildung von Zentrosomen und Zilien benötigt werden. Die Organellen, die nicht durch eine 

Membran begrenzt sind, rekrutieren perizentrioläres Material (PZM) und organisieren 

während der Zellteilung die Mikrotubuli. In nicht-mitotischen Zellen können Zentriolen an 

die Zellmembran andocken und initiieren als Basalkörper die Zilienbildung. Aufgrund einer 

relativ kleinen Anzahl von zentrosomalen Proteinen, hat sich C. elegans zu einem wichtigen 

Modellorganismus im Gebiet der Zentrosomenbiologie entwickelt. Der Signalweg für den 

Aufbau von Zentriolen wurde als erstes im Wurm beschrieben. Darüber hinaus liefern 

Untersuchungen der PZM-Proteine in Nematoden wertvolle Einblicke in Aufbau und 

Function der PZM. In C. elegans ist bisher jedoch nicht klar, welche Faktoren die PZM an das 

Zentriol binden. 

 Im ersten Teil dieser Studie charakterisiere ich das neu identifizierte Protein 

Pericentriolar matrix deficient 1 (PCMD-1), das in C. elegans für die Bildung einer bipolaren 

Spindel im einzelligen Embryo erforderlich ist. Ich zeige auf, dass PCMD-1 die 

Mikrotubulibildung am Zentrosom vermittelt und damit die Lücke zwischen Zentriol- und 

PZM-Assemblierung in Würmern schließt. PCMD-1 rekrutiert das C. elegans 

Zentrosommatrixprotein Spindle-defective 5 (SPD-5) zu Zentrosomen. Es wurde bereits 

beschrieben, dass das Spindle-defective protein 2 (SPD-2) die Polo-like-Kinase 1 (PLK-1) zu 

mitotischen Zentrosomen rekrutiert. In dieser Studie zeige ich, dass SPD-2 PLK-1 auch zu 

Zentrosomen in nicht mitotischen Zellen lokalisiert. Damit initiieren PCMD-1 und SPD-2 

gemeinsam die Bildung der PZM-Matrix in nicht mitotischen Zellen und gewährleisten eine 

robuste Expansion der PZM während der Mitose. PCMD-1, SPD-5, SPD-2 und PLK-1 sind 

zusammen Teil eines evolutionär konservierten Moduls, das dem Aufbau der Zentrosom 

Matrix dient. 

 In C. elegans sind sensorische Neuronen der einzige Zelltyp, der Zilien besitzt und 

daher Zentriolen auch postmitotisch benötigt. Es wurde beschrieben, dass die ziliare 

Übergangszone die Verankerung der Dendritenspitzen in Phasmid- und Amphid-Neuronen 

gewährleistet. Für ein erfolgreiches Auswachsen der Dendriten, welches hier durch retrograde 

Verlängerung geschieht, ist die Verankerung der Dendritenspitzen an eine extrazelluläre 

Matrix erforderlich. 
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 Im zweiten Teil dieser Studie zeige ich, dass auch die Inner labial 1 (IL1)-Neuronen 

ihre Dendriten retrograd verlängern. Ungewöhnlicherweise kommt es bereits vor der 

asymmetrischen Teilung des IL1-Neuroblasten, in das IL1-Neuron und seine apoptotische 

Schwesterzelle, zur Verankerung der Dendritenspitzen. In Zellekultur wurde gezeigt, dass 

Zellen mit älteren Zentrosomen früher primäre Zilien formen können, als die Schwesterzellen 

mit jüngeren Zentrosomen. Wenn dieser Befund auch auf C. elegans zutrifft, könnte das ältere 

Zentrosom während der Teilung des IL1-Neuroblasten an das IL1-Neuron vererbt werden. In 

C. elegans ist es bisher nicht möglich, das ältere von dem jüngeren Zentrosom zu 

unterscheiden, da spezifische Marker nicht beschrieben sind. Ich habe eine Methode etabliert, 

die ermöglicht die Vererbung des älteren Zentrosoms zu verfolgen. Ferner ist das Protein 

Partitioning-defective 6 (PAR-6) für die Bildung von Amphid-Dendriten in C. elegans 

erforderlich. Ob die Proteine Partitioning-defective 3 (PAR-3) und -6 eine Rolle bei der 

Positionierung von Zentrosomen in Dendriten spielen, muss noch untersucht werden. 
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INTRODUCTION 
 

1.1. The centrosome and its cellular function      
 

1.1.1. The evolution of the centrosomal structure and its biological relevance 

 

Centrosomes are non-membrane-bound organelles that serve as the major microtubule-

organizing centers (MTOCs) in metazoans and various other eukaryotic lineages (Carvalho-

Santos et al., 2011; Azimzadeh, 2014; Loncarek and Bettencourt-Dias, 2018). The structure is 

built of a pair of barrel-shaped, microtubule-based centrioles, each displaying a nine-fold 

symmetry, which is embedded in the pericentriolar material (PCM), a proteinaceous matrix 

and its downstream factors that are required for microtubule nucleation and regulation (Figure 

1B). The organelle is highly dynamic throughout the cell cycle (Figure 1A). Moreover, the 

dynamics of the centrosome are strictly coupled to the progression of the cell cycle. For 

example, centrosomes duplicate when the replication of the DNA takes place (with some rare 

exceptions). PCM levels are highest during mitosis, were centrosome function is required to 

organize the bipolar spindle for the separation of the genetic material and cell content (Figure 

1A; Nigg and Stearns, 2014). Furthermore, centrioles possess a unique dual function and are, 

in addition to their role in organizing centrosome assembly, required to template the 

outgrowth of cilia and flagella, which usually are resorbed before mitotic entry (Figure 1A; 

Plotnikova, Pugacheva and Golemis, 2009; Hu et al., 2015).  

Phylogenetic studies suggest that centriole comprising centrosomes were present in the 

last common ancestor of eukaryotes, which is substantiated through the exceptionally 

conserved structure of the organelle (Carvalho-Santos et al., 2011; Gräf, 2018). Cilia and 

flagella originally evolved as important structures for locomotion, and have further been 

shown to exhibit sensory function (Bloodgood, 2010; Carvalho-Santos et al., 2011). In some 

early sessile or amoeboid eukaryotes, centrioles were most likely nonessential, and thus the 

structure was lost in the course of evolution (Carvalho-Santos et al., 2011; Gräf, 2018). 

Higher plants, most fungi, and amoebas lack centrosomal structures (Loncarek and 

Bettencourt-Dias, 2018). Curiously enough, one of the earliest reports of centrosomes dates 

back to 1894, where the Japanese botanist Sakugoro Hirase described 'attractive spheres' in 

the pollen of Ginkgo biloba (Hirase, 1894). During late spermatogenesis centrioles arise de 

novo in lower plants with motile gametes, such as ginkgo (Vaughn and Harper, 1998; 

Renzaglia and Garbary, 2001; Vaughn and Renzaglia, 2006; Loncarek and Bettencourt-Dias, 
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2018), emphasizing the ancestral character of the centriole and the theory that centrioles 

originally developed to template locomotive cilia and flagella (Carvalho-Santos et al., 2011; 

Gräf, 2018). Consequently, centriolar function as part of the MTOC evolved most likely 

secondarily in some eukaryote lineages (Carvalho-Santos et al., 2011). In recent years 

increasing evidence suggests that centrosomes act as signaling centers, allowing proteins to 

interact at high concentrations to coordinate multiple cellular functions (Arquint, 

Gabryjonczyk and Nigg, 2014; Conduit, Wainman and Raff, 2015).  

 

 

 
 

Figure 1: Centrosome formation and duplication. (A) Centrosome duplication is tightly 

linked to the cell cycle. After cell division, each daughter cell inherits one centriole pair. The 

more mature centriole can dock to the cell membrane and form a cilium in Gap 1 (G1) phase. 

Towards the synthesis (S) phase, the centriolar pair disengages. During S phase, one daughter 

centriole starts to assemble on each of the parental centrioles. Centrosomes move apart once 

they accumulate PCM in Gap 2 (G2) phase. The fully matured centrosomes disengage as the 

cell enters the mitotic (M) phase and organize the bipolar spindle for the next cell division. 

(B) New centrioles always form at the proximal site of a mature parental centriole. Thus, the 

centrioles of one centrosome have an intrinsic age difference. They are referred to as mother 

and daughter centrioles. The centrosomes recruit PCM for microtubule nucleation and bipolar 

spindle formation. 
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1.1.2. Centrosomes in cell division and development

Over a century ago, the centrosome was described independently by Edouard Van 

Beneden and Theodor Boveri (VanBeneden, 1887; Boveri, 1887; reviewed in: Scheer, 2014).

The authors recognized the centrosome as a permanent organelle of the cell, which self-

replicates and is passed on to the next generation of cells (VanBeneden, 1887; Boveri, 1887;

reviewed in: Scheer, 2014). At that time, Boveri already concluded that the centrosome 

mediates the nuclear and cellular division (Boveri, 1887). He further found that an excess of 

centrosomes led to spindles with multiple poles and proposed that tumor formation is linked 

to the presence of supernumerary centrosomes (Boveri, 1914; reviewed in: Scheer, 2014).

Centrosome aberrations and malfunctions have been linked to genome instability, 

cancer, microcephaly and primordial dwarfism (Lingle et al., 1998, 2001; Pihan et al., 1998; 

Basto et al., 2008; Castellanos and Dominguez, 2008; Thornton and Woods, 2009; Megraw, 

Sharkey and Nowakowski, 2011; Vitre and Cleveland, 2012; Barbelanne and Tsang, 2014; 

Chavali et al., 2014). Overduplication of centrosomes is common in cancer cells, which may 

lead to multipolar spindles and thus, errors in cell division that cause genomic instability. The 

same holds true for cytokinesis failure, which can entail multipolar spindle formation in the 

following cell cycle if centrosomes undergo regular duplication (Figure 2A). The affected cell 

polarity and migration can result in cancer metastasis (Godinho and Pellman, 2014).

Multipolar spindle formation can, however, also be caused by premature centriole 

disengagement or PCM fragmentation (Maiato and Logarinho, 2014). In the case of

premature centriole disengagement, multiple poles can be formed by centrosomes containing 

only a single centriole (Figure 2B). When it comes to PCM fragmentation, acentriolar PCM 

accumulations form due to the loss of PCM integrity (Figure 2C). Further, mutations in PCM 

proteins are linked to primordial dwarfism and microcephaly (Chavali et al., 2014). However, 

it is not clear why aberrations in PCM formation lead to these growth defects. For example,

primordial dwarfism is caused by a decrease in cell numbers in affected individuals. This

could be the result of an increased number of cells undergoing cell death or a reduction in cell 

proliferation. Impaired PCM expansion might lead to mitotic catastrophe and cell-death (Fry 

et al., 2017). Alternatively, cell cycle progression might be compromised as a result of cell 

cycle checkpoint activation caused by PCM aberrations (Klingseisen and Jackson, 2011; 

Arquint, Gabryjonczyk and Nigg, 2014; Fry et al., 2017). In microcephaly patients, growth 

defects are restricted to the brain. As described for primordial dwarfism, this could be due to 

increased cell death or a reduction in cell proliferation. However, neuronal progenitor cells are 
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specifically affected, leading to the exhaustion of the progenitor pool (O’Neill et al., 2018).

The centrosome is a complex organelle, and its assembly and function have to be tightly 

regulated. Even though centrosomes were discovered more than a century ago and substantial 

progress in understanding the structure was made in the last decades, many open questions 

remain (Bornens and Gönczy, 2014).

Figure 2: Multipolar spindle formation during mitosis. (A) Overduplication of centrosomes 

and incomplete cytokinesis can cause multipolar spindle formation in the next cell cycle. (B)

Single centrioles can recruit PCM and form centrosomes. Thus, if centrioles separate 

prematurely, multiple centrosomes can form and give rise to a multipolar spindle during 

mitosis. (C) Instable PCM formation can lead to PCM fragmentation and the assembly of a 

multipolar spindle.

1.1.3. Asymmetric centrosome inheritance and cilia formation

Antoni van Leeuwenhoek, a Dutch scientist, and father of microbiology, was the first 

one to describe cilia when he discovered protozoa and their locomotive cilia under a self-

made microscope in 1674 (Van Leeuwenhoek, 1677). Most vertebrate cells possess cilia.

Abnormal formation or function of cilia can lead to severe illnesses, such as retinal 

degradation, kidney or congenital fibrocystic liver disease, encephalic anomalies, dwarfism,

diabetes and obesity (Waters and Beales, 2011). Illnesses deriving from ciliary defects are 

also referred to as ciliopathies and can be caused by defective core centriole proteins that lead 

to aberrations in cilia formation. As mentioned previously, centrioles are required to template 

cilia outgrowth. The centrosomal pair of centrioles always contains an older mother and a 
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younger daughter centriole due to the intrinsic asymmetry during their duplication: The 

daughter or pro-centriole always assembles at the proximal site of a parental centriole (Figure 

1). Mother versus daughter centrioles are compositionally and structurally distinct, meaning 

that specific proteins are exclusively associated with the mature mother centriole, whereas 

others are daughter centriole specific (Dormoy, Tormanen and Sütterlin, 2013; Tormanen and 

Su, 2013; Loncarek and Bettencourt-Dias, 2018). Further, particular structures associated only 

with the mother centriole, namely the distal appendages, mediate membrane docking of the 

mother centriole as an initial step of cilia formation. Thus, cilia always emanate from the 

mother centriole. When the centriolar pair splits after entering a next cell cycle and a new 

round of duplication starts, the resulting centrosomes contain mother centrioles of different 

ages (Figure 1A). The centrosome that contains the older (grand-)mother centriole is referred 

to as mother centrosome. The centrosome with the younger mother centriole is the daughter 

centrosome. In 2001, Pereira et al. found that in budding yeast, Saccharomyces cerevisiae, the 

newly emerged daughter cell inherits the older of the two spindle pole bodies (the yeast 

functional equivalents to centrosomes) (Pereira et al., 2001). Similar mechanisms have been 

found in animals, linking centrosome asymmetry and cell fate: In Drosophila melanogaster 

(D. melanogaster) male germline stem cells, the older centrosome remains in the self-

renewing stem cell. The younger centrosome is inherited by the differentiating daughter cell 

(Yamashita et al., 2007). Also, D. melanogaster larval neuroblasts undergo asymmetric cell 

division and produce one renewed neuroblast, as well as one ganglion mother cell, which 

divides again before terminal differentiation. However, in this system, it is the younger 

daughter centrosome which is inherited by the neuroblast, whereas the older centrosome is 

passed on to the ganglion mother cell (Conduit et al., 2010; Januschke et al., 2011). 

Interestingly, Anderson et al., 2009 discovered that in symmetrically dividing stable cell lines, 

the cell inheriting the older mother centrosome could grow a primary cilium first, and further, 

responds to Sonic hedgehog signaling earlier than the sister cell that inherited the younger 

centrosome (Anderson and Stearns, 2009). Cultures of mouse neuroepithelial cells show the 

same asymmetry in cilia growth and their response to sonic hedgehog signaling (Piotrowska-

Nitsche and Caspary, 2012). Taken together, these findings suggest that in asymmetrically 

dividing cells the inherent asymmetry of centrosomes can be exploited to support the 

determination of daughter cell fates.   
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1.2. C. elegans as a model organism to study centrosome biology  

 
1.2.1. The model organism C. elegans 

 

In the late 1950s, Dougherty and Calhoun proposed that nematodes could be of great 

value in genetic research due to their eutely (Dougherty and Grant Calhoun, 1948). Each 

individual of a eutelic species undergoes the same differentiation process, resulting in an 

invariant cell lineage between animals. Sydney Brenner proposed Caenorhabditis elegans (C. 

elegans) as a model system in 1963 and aimed to establish its complete cell lineage. A decade 

later, Brenner presented his results (Brenner, 1974). Since then, C. elegans developed into a 

widely used model system. Sulston et al. eventually published the entire cell lineage of C. 

elegans in 1983 (Sulston and Schierenberg, 1983). The worms are microscopic (~ 1mm) and 

easy to culture in Petri dishes filled with agar and spread with a bacterial lawn of E. coli as a 

food source. They reproduce quickly, and at 20 °C, it takes only three days for the worms to 

develop from egg to the fully mature adult. There are two sexes, hermaphrodites (XX) and 

males (Xo). Hermaphrodites can self-reproduce. Typically, there is only a very low frequency 

of males occurring in a wild-type population with about 1 male in 500 (Hodgkin, Horvitz and 

Brenner, 1979; Zarkower, 2006). Due to limited production of sperm, self-inseminated 

hermaphrodites lay up to 300 fertilized eggs, whereas male inseminated hermaphrodites can 

produce up to 1400 fertilized eggs (reviewed in: Singson, 2001). The worms are transparent 

throughout their life cycle. Accordingly, microscopy can be performed easily at all life stages. 

Moreover, the eggs are large in size (~50 μm length x 30 μm diameter), and their mitotic 

divisions are highly stereotypic (Oegema, 2006). Thus, their development can be followed 

and investigated using differential interference contrast (DIC) microscopy. C. elegans 

hermaphrodites and males possess 959 and 1031 somatic cells, respectively, with about a third 

of the cells developing into neurons (WormAtlas, Altun et al., 2002-2019). The complete C. 

elegans genome was published in 1998 and was the first complete metazoan genome available 

at the time (Equence et al., 1998). It comprises ~100 million base pairs (103 022 290 bp, 

WBcel235 wormbase) with 20,222 coding genes and 61,109 gene transcripts. The haploid C. 

elegans genome includes six chromosomes, chromosome I-V, and one sex chromosome X, 

plus the mitochondrial genome (wormbase). Judged by their genomic sequences, 38 % of the 

C. elegans genes are predicted to have orthologues in mammals (Shaye and Greenwald, 

2011). Other resources report that 60 to 80 % of the human genes have on orthologue in C. 

elegans (Lai et al., 2000; Kaletta and Hengartner, 2006). 
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 1.2.2. The C. elegans life cycle 

 

At 20 °C, it will take approximately 11 hours from fertilization until hatching of the 

eggs (Figure 3). The worm enters the L1 larval stage, followed by the three larval stages L2-

L4. The larvae remain in the L1 stage for about 16 hours. The remaining larval stages are each 

about 12 hours long. The transition from one to another larval stage is marked by a short 

period of a lethargy or sleep-like state, referred to as lethargus, which is followed by a 

molting (Raizen et al., 2008). If environmental conditions are unfavorable, worms can enter a 

dormancy stage after the L2 larval stage. This stage is also referred to as the dauer larval stage 

and allows the worms to survive for up to 4 months without food or at high temperatures 

(Golden and Riddle, 1984). If the shortcomings are remedied, the larva in dauer stage can 

enter L4 stage and continue their development. At 20 °C, the worms live for about two weeks, 

and the reproductive phase lasts for six days (Figure 3; Klass, 1977). Importantly, 

developmental timing and cell cycle progression of C. elegans vary depending on the 

temperature (Byerly, Cassada and Russel, 1976; Begasse et al., 2015). Standard maintenance 

temperatures of C. elegans in the laboratory range from 12 °C to 25 °C (Corsi, Wightman and 

Chalfie, 2015). 

 

 

 
Figure 3: The C. elegans life cycle. Eggs are laid when they reach the gastrula stage and 

develop ex utero until they hatch. They undergo four larval stages until they reach adulthood. 
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Worms can enter the so-called dauer larval stage if environmental conditions are unfavorable. 

Adapted from WormAtlas (https://www.wormatlas.org/hermaphrodite/introduction/mainframe 

.htm). 

 

 

 1.2.3. C. elegans as a model to study cell division 

 

  1.2.3.1. The C. elegans one-cell embryo 

 

The C. elegans one-cell embryo was studied extensively as a model for cell division. 

The invariant nature of C. elegans cell divisions enables us to analyze precisely the 

phenotypes of molecular aberrations. Due to silencing of the DNA damage response in early 

C. elegans embryos and the poor spindle assembly checkpoint response, embryo development 

progresses even in animals with severe spindle formation, chromosome segregation and 

centrosome assembly errors (Encalada et al., 2005; Holway et al., 2006; Oegema, 2006; Galli 

et al., 2016). Before fertilization takes place, oocytes remain arrested in the meiotic prophase. 

Oocytes lack centrioles, which are actively removed from the oocyte during oogenesis 

(Mikeladze-dvali et al., 2012). Upon fertilization, the sperm introduces a pair of centrioles 

and defines the posterior side of the embryo (Figure 4A; Rose and Gönczy, 2014). After that, 

the two female meiotic divisions are completed by an acentriolar spindle, located at the 

anterior side of the embryo, which leads to the extrusion of two polar bodies (Figure 4A; 

Albertson and Thomson, 1993). The sperm-derived centrioles, which are associated with the 

male pronucleus, duplicate immediately after fertilization. They start accumulating PCM and, 

while microtubule nucleation activity and pulling forces increase, centrosomes separate 

(Figure 4B; Gönczy et al., 1999; Cabral et al., 2013). The microtubules, emanating from the 

centrosomes, associate with the paternal pronucleus and capture the female pronucleus. 

Subsequently, the opposing parental nuclei start to migrate towards each other. The process is 

termed pronuclear migration (PNMi, Figure 4B). During the pronuclear meeting (PNM), 

centrosomes are positioned at each side of the contact area of the nuclei. Nuclei and 

centrosomes are then moving to the approximate center of the embryo, and, as the mitotic 

spindle is forming, it aligns with the anterior-posterior axis of the embryo (Figure 4C). 

Pronuclear envelope breakdown (PNEB) occurs (Figure 4D) and chromosomes align in the 

metaphase plate as centrosomes form the mitotic spindle (Figure 4E). In late anaphase 

chromosomes are progressively pulled towards the opposite poles of the mitotic spindle. The 
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individual centrioles of a centrosome disengage at this stage and are distinguishable in

confocal micrographs (Figure 4F).

The first division of the C. elegans zygote is asymmetric, giving rise to a bigger 

anterior cell, the AB cell, and a smaller posterior cell referred to as P1 cell (Figure 4G; Sulston 

and Schierenberg, 1983). The partitioning defective (PAR) proteins are required for 

establishing the anterior-posterior (AP) polarity in the one-cell embryo and ensure robust 

cytokinesis during the asymmetric cell division (Kemphues et al., 1988; Rose and Kemphues, 

1998; Jordan et al., 2016). The PDZ domain containing proteins PAR-3ASIP, Bazooka and PAR-

6hsPAR6, Par-6 are found in complex with the atypical protein kinase C (PKC-3aPKCλ/ζ, aPKC)

(Tabuse et al., 1998; Hung and Kemphues, 1999). The protein complex is referred to as 

anterior PAR complex and is present throughout the cortex after fertilization, but gets 

restricted to the anterior half of the embryo shortly after the centrosome is juxtaposed to the 

cortex (Cuenca et al., 2003; Munro, Nance and Priess, 2004). The Ring-finger protein PAR-2

and the kinase PAR-1hsPar1, Par-1 occupy the posterior half of the embryo. The redistribution of 

the anterior and posterior PAR complexes was shown to be concomitant with the contraction 

of the actomyosin network in the zygote shortly after fertilization (Munro, Nance and Priess, 

2004). The kinase PAR-4LKB1, dLKB1 and the 14-3-3 protein PAR-514-3-3β, 14-3-3ε are present at 

the cortex and in the cytoplasm (Watts et al., 2000; Morton et al., 2002). Aberrations in PAR 

protein function can lead to altered symmetry and fate of daughter cells, misorientation of the 

mitotic spindle, and failure of cell cycle progression (Kemphues et al., 1988). Furthermore, 

PAR proteins undertake various other functional roles later in development, such as 

gastrulation associated apicobasal asymmetry establishment, apical centrosome localization in 

the intestine or neuronal dendrite extension in C. elegans (Nance, Munro and Priess, 2003; 

Feldman and Priess, 2012; Fan et al., 2019). In other species, PAR proteins have also been 

linked to primary cilium assembly and centrosome orientation during asymmetric cell division 

(Sfakianos et al., 2007; Inaba, Venkei and Yamashita, 2015).
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Figure 4: Developmental stages of the C. elegans one-cell embryo. Adapted from 

Greenstein (2005). (A) Upon fertilization, the sperm introduces the paternal DNA and a 

centrosome to the zygote. The entry side of the sperm determines the posterior of the embryo 

(here on the right). In worms, both meiotic divisions are completed after fertilization. Two 

polar bodies are extruded at the anterior side of the embryo (here on the left). Fertilization 

occurs ~750 sec* before the pronuclear envelope breaks down (PNEB). (B) The duplicated 

centrosomes nucleate microtubules, which capture the female pronucleus and facilitate 

pronuclear migration (PNMi). The pseudocleavage furrow occurs. PNMi occurs ~470 sec* 

before PNEB. (C) Pronuclear meeting (PNM) occurs ~120 sec* before PNEB. (D) PNEB is 

used as the relative reference point and is set as time point 0 sec*. (E) Chromosome alignment 

in metaphase I occurs ~160 sec* after PNEB. (F) In late anaphase, the two centrioles of a 

centrosome disengage and are distinguishable in confocal micrographs. Anaphase occurs 

~240 sec* after PNEB. (G) The anterior cell is slightly ahead of the posterior cell in its 

progression through the cell cycle. *Developmental timing at 20 °C. 
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  1.2.3.2. C. elegans sensory neurons as a model for asymmetric cell division 

 

In vertebrates, the majority of cells possess cilia. On the contrary, sensory neurons are 

the only ciliated cell type in C. elegans (Ward et al., 1975; Perkins et al., 1986). There are 60 

sensory neurons in the adult hermaphrodite, implicated in various processes such as chemo-, 

osmo-, machano- and thermosensation, as well as dauer stage transition and regulation of 

longevity (Inglis et al., 2007). Males have 52 additional sensory neurons, which are mainly 

located in their tail rays and are required for male mating (Sulston, Albertson and Thomson, 

1980; Peden and Barr, 2005). Thus, sensory neurons are the only cell type in the worm that 

require centrioles post mitotically to form cilia. Many sensory neurons are derived from 

asymmetric divisions by size and by fate. In these lineages sister cells of neurons either 

undergo programmed cell death or acquire a fate, which does not require cilium formation 

(Sulston and Schierenberg, 1983). Thus, asymmetric cell divisions, which give rise to a 

ciliated neuron and a cell of different fate, are particularly attractive to study the inherent 

differences between mother and daughter centrosomes and their inheritance. One example is 

the inner labial sensilla 1 (IL1) neuron lineage, where the IL1 neuroblast gives rise to the 

ciliated mechanosensory IL1 neuron and its dying sister cell. Aberrations in IL1 neuron 

function disrupts the aversive head-withdrawal reflex of worms touched on the dorsal or 

ventral sides of their nose (J. Kaplan and H.R. Horvitz, unpubl., WormAtlas). 
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1.3. Centrosome and cilia formation

1.3.1. Centrosome regulation throughout the cell cycle

The somatic cell cycle typically consists of the Gap1 (G1) phase for cell growth, the

synthesis (S) phase for DNA replication, the Gap2 (G2) phase as preparation for mitosis, and 

the mitotic (M) phase, in which the cell divides into the two daughter cells (Figure 1A). After 

fertilization, zygotes undergo a series of rapid cleavages, without increasing the overall cell 

mass of the embryo. These early cell cycles generally lack the G1 and G2 phases. The cyclin-

dependent kinase (Cdk)/cyclin complexes and other kinases, including the Polo and Aurora 

kinases, were identified as important regulators of the cell cycle. In mice, Cdk1CDK1, Cdk-1, CDK-1

and its regulatory subunits cyclin Acyclin A, cyclin A, CYA-1/2 and cyclin Bcyclin B, cyclin B, CYB-1/3 are the 

only Cdk/cyclins required for viability (Murphy et al., 1997; Geng et al., 2003; Kozar et al.,

2004; Santamaría et al., 2007; Kalaszczynska et al., 2009). In addition, Cdk2hsCDK2, CDK-

2/cyclin Ecyclin E, CYE-1 are essential in flies (Lehner and O’Farrell, 1990; Knoblich and Lehner, 

1993; Knoblich et al., 1994). Furthermore, Cdk4hsCDK4, CDK-3/cyclin Dcyclin D, CYD-1 are required 

for cell growth in flies (Emmerich et al., 2004). In C. elegans, the CDK-1CDK1, Cdk-1/CYB-1/3
cyclin B, cyclin B, CDK-2hsCDK2, Cdk-2/CYE-1cyclin E, cyclin E, and the CDK-4hsCDK4, Cdk-4/CYD-1cyclin D, 

cyclin D complexes are all required for survival (Boxem, Srinivasan and Van Den Heuvel, 1999; 

Cowan and Hyman, 2006).

Moreover, the polo-like kinases (PLKs) are important for mitotic progression. All 

PLKs carry a Polo-box domain (PBD) at their carboxy-terminal end (N-terminus). The 

domain serves as a binding pocket for phosphorylated sites in the target substrates (Elia et al.,

2003). The phosphorylation at these sites is often mediated by CDKs, which thereby govern 

the specific and targeted recruitment of the PLKs. The PLK1 kinase in mammals, and its 

homologues Polo and PLK-1 in D. melanogaster and C. elegans, respectively, are critical 

regulators of mitosis and cytokinesis (Kumagai and Dunphy, 1996; Watanabe et al., 2004; 

Inoue and Sagata, 2005). The Aurora AAurora A, AIR-1 and BAurora B, AIR-2 kinases phosphorylate 

PLK1Plk-1, PLK-1 to activate the kinase (Archambault and Glover, 2009). Centrosome 

duplication is strictly coupled to the cell cycle (Figure 1A), and the kinases CDK1Cdk-1, CDK-1,

PLK1Polo, PLK-1, PLK4Plk-4, ZYG-1, and Aurora A Aurora A, AIR-1 were found to be important 

regulators of centrosome duplication and function. When the tight connection of the centriolar 

pair is released at the mitotic exit, the centrioles stay in close proximity. In vertebrates,

PLK1Polo, PLK-1 and the cysteine protease SeparaseSSE, SEP-1 were found to play an important 
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role in regulating centriole disengagement (Tsou et al., 2009). In human cells, the PCM 

protein pericentrinPlp is cleaved by SeparaseSSE, SEP-1 and, subsequently, it is downregulated at 

centrosomes in late mitosis. Furthermore, this cleavage of pericentrinPlp is regulated by PLK1 

(Kim et al., 2015). In C. elegans, depletion of SEP-1Separase, SSE impairs separation of sperm-

derived centrioles after fertilization, and duplication is impaired (Cabral et al. 2013). 

However, centrioles disengage normally in the following cell cycles. In worms, SEP-1Separase, 

SSE might specifically regulate disengagement in a context where PCM levels at centrioles are 

low, and thus, cytoskeletal forces and pericentriolar material disassembly cannot drive 

centriole separation (Cabral et al. 2013).  

In S phase, a procentriole is assembled at the proximal side of the parental centriole. 

The cartwheel structure of the younger centriole is removed in a CDK1Cdk-1, CDK-1 dependent 

manner, further unlocking the block of reduplication (Arquint and Nigg, 2016; Kim et al., 

2016). Centriole duplication is governed by Polo-like kinase 4 (PLK4/Plk-4) activity in 

human and D. melanogaster and its homologue Zygote-defective 1 (ZYG-1) in C. elegans 

(Bettencourt-Dias et al., 2005; Habedanck et al., 2005; O’Connell et al., 2001; see below for 

more details).  

Next, the centrosomes fully disengage as the cell enters mitosis to organize the bipolar 

spindle (Figure 1A, Nigg and Stearns, 2014). The centrosome associated amount of PCM 

changes over the cell cycle. Whereas in interphase, especially S phase, PCM association is 

minor, the centrosomes undergo a maturation process towards mitosis by recruiting PCM, and 

thus, increase microtubule nucleation capacity for bipolar spindle assembly (Figure 1). This 

spacial and functional expansion of the PCM is regulated by the PLK1Polo, PLK-1, and Aurora 

AAurora A, AIR-1 kinases (V Joukov, Walter and De Nicolo, 2014). A conserved set of scaffolding 

proteins, namely Pericentrin/Pericentrin-like protein (Plp) and centrosomal protein of 152 kDa 

(Cep152)/Asterless (Asl) in human and flies, as well as Cep192/Spindle-defective protein 2 

(Spd-2)/SPD-2 and CDK5 regulatory subunit associated protein 2 (CDK5RAP2)/D-

Centrosomin (Cnn)/SPD-5 in human, flies and worms, have been identified as components of 

the so-called centromatrix, a scaffolding structure onto which downstream regulators of 

centrosome function are loaded (For more details see below; Gosti-Testu et al., 1986; Doxsey 

et al., 1994; Bonaccorsi, Giansanti and Gatti, 1998; Vaizel-Ohayon and Schejter, 1999; 

Hamill et al., 2002; Andersen, Wilkinson and Mayor, 2003; Pelletier et al., 2004; Varmark et 

al., 2007). Moreover, the ability of a daughter centriole to recruit PCM is further required for 

centriole duplication in the next cell cycle (Izquierdo et al., 2014; Fu et al., 2016; Tsuchiya et 

al., 2016). This process is called centriole to centrosome conversion and was shown to be 
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regulated by CDK1Cdk-1, CDK-1 and PLK1Polo, PLK-1 (Wang et al., 2011; Novak et al., 2016). 

Furthermore, the younger centrosome has to undergo mitosis to acquire its competence for 

ciliogenesis. Thereby, the younger mother centriole acquires appendage structures at its distal 

end, which are needed for basal body function and to template ciliary growth. The process is 

regulated in a Plk-1Polo, PLK-1 dependent manner (Kong et al., 2014).  

As cells exit mitosis, also PCM levels decline (Figure 1A). Work in C. elegans has 

shown that two independent mechanisms ensure regulated PCM disassembly: The Protein 

phosphatase 2A (PP2A) and its regulatory subunit Suppressor of activated let-60 Ras (SUR-6) 

have been shown to dephosphorylate the centrosome matrix protein SPD-5CDK5RAP2, Cnn and 

potentially also other PCM components (Enos et al., 2018). This ultimately leads to the 

disassembly of the PCM. Additionally, microtubule pulling forces, directed towards the 

cortex, help to dissipate the PCM (Enos et al., 2018). 

 

 

 1.3.2. The centriole assembly pathway 

 

Centrioles are barrel-shaped structures that are arranged in a pairwise manner 

perpendicular to one another (Figure 1B). Their underlying architecture shows a nine-fold 

symmetry of singlet, doublet, or triplet microtubule arrays (Gönczy, 2012). In humans, triplet 

microtubules are arranged around a central cartwheel in a nine-fold manner. Centrioles are 

450 nm long and 250 nm wide (Gönczy, 2012). On their distal end, they carry distal and 

subdistal appendages, which are essential for membrane docking and microtubule anchorage, 

respectively (reviewed in Hoyer-Fender, 2010). In C. elegans centrioles consist of a central 

tube. Only recently, this central tube was found to resemble the cartwheel structure described 

in other organisms, including humans (Sugioka et al., 2017). The cartwheel structure is 

surrounded by nine singlet microtubules in worms (Gönczy, 2012). They are 150 nm long and 

100 nm in diameter (Toole et al., 2003; Pelletier et al., 2006). In human and D. melanogaster, 

the primary regulator of centriole duplication is the PLK4/Plk-4ZYG-1 kinase (Bettencourt-Dias 

et al., 2005; Habedanck et al., 2005). In humans, PLK4Plk-4, ZYG-1 is recruited to centrosomes 

through Cep152Asl and Cep192Spd-2, SPD-2 (Kim et al., 2013; Sonnen et al., 2013). The kinase is 

activated through binding to the SCL/TAL1 interrupting locus protein (STILAna2, SAS-5) 

(Arquint et al., 2015; Moyer et al., 2015). STILAna2, SAS-5 is then phosphorylated by PLK4Plk-4, 

ZYG-1, and Spindle assembly abnormal protein 6 (hsSAS6Sas-6, SAS-6) is recruited for cartwheel 

assembly (Kratz et al., 2015; Moyer et al., 2015). PLK4Plk-4, ZYG-1, STILAna2, SAS-5, and human 
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hsSAS6Sas-6, SAS-6 get restricted to the region where daughter centrioles form via an unknown 

mechanism (Sonnen et al., 2012; Kim et al., 2013; Ohta et al., 2014). Cep135Cep135 then links 

hsSAS6Sas-6, SAS-6 to the Centrosomal p4.1-associated protein (CPAPSas-4, SAS-4) and the 

microtubules of the microtubule triplets (Lin et al., 2013). CPAPSas-4, SAS-4 further regulates 

the elongation of the microtubules (Tang et al., 2009; Sharma et al., 2016; Zheng et al., 

2016). This core centriole duplication pathway was first discovered in C. elegans (Figure 5). 

The homologue of Cep192 in worms, namely SPD-2Cep192, Spd-2, acts most upstream of the 

centriole duplication pathway and recruits the kinase ZYG-1PLK4, Plk-4 to initiate centriole 

duplication in C. elegans (O’Connell et al., 2001; Kemp et al., 2004; Pelletier et al., 2004). 

The coiled-coil protein SAS-6hsSAS6, Sas-6 directly interacts with ZYG-1PLK4, Plk-4, and is 

phosphorylated by the kinase (Kitagawa et al., 2009; Lettman et al., 2013). The SAS-5STIL, 

Ana2/SAS-6hsSAS6, Sas-6 complex is thereby targeted to the centrosome (Lettman et al., 2013), 

where it is required for central tube formation (Dammermann et al., 2004; Delattre et al., 

2004; Leidel et al., 2005). Next, the coiled-coil protein SAS-4CPAP, Sas-4 is stably incorporated 

into the centriole wall and is required for the assembly of the singlet microtubules onto the 

newly forming centriole (Kirkham et al., 2003; Leidel and Gönczy, 2003). SAS-7, a recently 

identified coiled-coil protein, is essential for the formation of the so-called paddle wheel 

structures at C. elegans centrioles (Chang et al., 2016; Saurya et al., 2016; Sugioka et al., 

2017). SAS-7 is a potential homologue of CEP295/Anastral spindle 1 (Ana1), which are 

required for centriole elongation in human and D. melanogaster, respectively. The protein 

recruits what will be referred to as the centriolar fraction of SPD-2Cep192, Spd-2. SPD-2 Cep192, Spd-

2 has a dual function in centriole and PCM assembly (Sugioka et al., 2017).  

 

 

 
 

Figure 5: The C. elegans centriole assembly pathway. In C. elegans SPD-2 Cep192, Spd-2, 

ZYG-1 PLK4, Plk-4, SAS-5STIL, Ana2 and SAS-6hsSAS6, Sas-6 are required for cartwheel formation. 

Nine singlet microtubules are then arranged symmetrically around the cartwheel in a SAS-

4CPAP, Sas-4 dependent manner. SAS-7Cep295, Ana1 is needed for paddlewheel assembly and the 

capability to template the formation of a new daughter centriole (O’Connell et al., 2001; 

Kirkham et al., 2003; Leidel and Gönczy, 2003; Delattre et al., 2004; Kemp et al., 2004; 

Pelletier et al., 2004; Leidel et al., 2005; Sugioka et al., 2017). 
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1.3.3. Pericentriolar material (PCM) formation 

 

            The PCM facilitates the microtubule nucleation capacity of the centrosome. In 

interphase cells, a thin layer of PCM, from now on referred to as PCM core, assembles around 

centrioles. In flies, Plp organizes around centrioles in a nine-fold symmetry, and with its 

carboxy-terminus located at the outer centriole wall, it stretches outwards, spanning the 

interphase PCM core (Mennella et al., 2012). Similar observations were made for its human 

homologue pericentrin (Lawo et al., 2012). Moreover, PlpPericentrin is required for the 

localization of several interphase PCM proteins in fly cells (Mennella et al., 2012). To date, 

no worm homologue of pericentrinPlp has been identified. As mentioned previously, 

centrosome maturation is regulated by the PLK1Polo, PLK-1 and Aurora AAurora A, AIR-1 kinases (V 

Joukov, Walter and De Nicolo, 2014). PLK1Polo, PLK-1 phosphorylates pericentrinPlp in 

vertebrate cells, driving the recruitment of downstream PCM proteins (Lee and Rhee, 2011). 

Together with CDK5RAP2Cnn, SPD-5, pericentrinPlp facilitates the recruitment of the γ-tubulin 

ring complexes (γ-TuRCs), which are required for the outgrowth of centrosomal microtubules 

(Zimmerman et al., 2004; Fong et al., 2008). Further, PLK1Polo, PLK-1 phosphorylates the 

NIMA related kinase 9 (NEK9), which itself phosphorylates Neural precursor cell expressed 

developmentally down-regulated 1 (NEDD-1) (Sdelci et al., 2012). The NEDD-1 mitotic 

phosphorylation is modulated by Cep192Spd-2, SPD-2, and required for γ -TuRC recruitment 

(Gomez-Ferreria et al., 2012). Cep192Spd-2, SPD-2, CDK5RAP2Cnn, SPD-5, and PericentrinPlp can 

interact with the PLK1Polo, PLK-1 or Aurora AAurora A, AIR-1 kinases, or both (Haren, Stearns and 

Lüders, 2009; Lee and Rhee, 2011; Vladimir Joukov, Walter and De Nicolo, 2014). 

Moreover, Cep192Spd-2, SPD-2 activates Aurora AAurora A, AIR-1 kinase, thereby regulating the 

reciprocal activation of Aurora AAurora A, AIR-1 and PLK1Polo, PLK-1 (Meng et al., 2015).  

            In addition to the microtubule nucleation activity, PCM also functions to prevent 

premature splitting of centrioles. PericentrinPlp and CDK5RAP2Cnn, SPD-5 were shown to play 

an important role in centriole engagement and centrosome cohesion (Graser, Stierhof and 

Nigg, 2007; Barrera et al., 2010; Lee and Rhee, 2012; Pagan et al., 2015).  

            In C. elegans the conserved centrosome module, consisting of SPD-5CDK5RAP2, Cnn, 

SPD-2Cep192, Spd-2 (the PCM fraction), and PLK-1PLK1, Polo, is required to form the PCM matrix 

(Figure 6, Hamill et al., 2002; Kemp et al., 2004; Pelletier et al., 2004; Decker et al., 2011; 

Woodruff et al., 2014). SPD-5CDK5RAP2, Cnn is the main centrosome matrix protein in worms 

and has the potential to self-assemble into matrix-like structures in vitro (Woodruff et al., 

2015). The Polo kinase PLK-1PLK1, Polo phosphorylates SPD-5CDK5RAP2, Cnn upon mitotic entry 
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to trigger PCM expansion in vivo (Wueseke et al., 2016). Moreover, the centrosomal protein 

SPD-2Cep192, Spd-2 is needed for SPD-5CDK5RAP2, Cnn matrix expansion, and further, determines 

centrosome size (Kemp et al., 2004; Pelletier et al., 2004; Decker et al., 2011). While SPD-

5CDK5RAP2, Cnn was reported to not display cytoplasmic exchange in metaphase arrested 

embryos, as it is expected for a scaffold protein, SPD-2Cep192, Spd-2 exchanges with the 

cytoplasmic pool, suggesting a more regulatory role of the protein (Laos, Cabral and 

Dammermann, 2015). In vitro, PLK-1PLK1, Polo and SPD-2Cep192, Spd-2 accelerate SPD-5CDK5RAP2, 

Cnn self-assembly (Woodruff et al., 2015). Examples for downstream PCM factors include the 

Aurora A kinase homologue Aurora/Ipl1 Related kinase (AIR-1), which localizes to the PCM 

and microtubules and is required for centrosome maturation and spindle assembly 

(Schumacher et al., 1998; Hannak et al., 2001), or the C. elegans γ-tubulin homologue tubulin 

gamma chain 1 (TBG-1). The gamma-tubulin interacting protein 1 and 2 (CeGrip-1/2GCP3/2, 

Grip91/84) are needed interdependently for the recruitment of TBG-1TUBG1, Tub37C to centrosomes 

(Hannak et al., 2002). In TBG-1TUBG1, Tub37C and AIR-1Aurora A, Aurora A deficient embryos 

spindle formation is disrupted. The two asters of the spindle collapse after nuclear envelope 

breakdown (NEBD), leading to the formation of a monopolar spindle (Bobinnec, Fukuda and 

Nishida, 2000; Strome et al., 2001; Hannak et al., 2002). TBG-1TUBG1, Tub37C and AIR-1Aurora A, 

Aurora A can localize independently to centrosomes and play distinct roles in astral microtubule 

assembly. If both factors are downregulated simultaneously, astral microtubules are not 

forming. However, some microtubules are still nucleated at the center of the cell and in the 

cytoplasm (Motegi et al., 2006). A similar phenotype is observed in SPD-5CDK5RAP2, Cnn 

deficient C. elegans embryos, where TBG-1TUBG1, Tub37C and AIR-1Aurora A, Aurora A fail to 

localize to centrosomes (Hamill et al., 2002; Motegi et al., 2006). TPX2-like protein 1 

(TPXL-1), the homologue of Targeting Protein for Xenopus Klp2 (TPX2), localizes AIR-

1Aurora A, Aurora A to spindle microtubules and also activates the kinase (Özlü et al., 2005; 

Mangal et al., 2018). This facilitates AIR-1Aurora A, Aurora A dependent phosphorylation of 

downstream substrates required for microtubule stability, since the mitotic spindle collapses 

in TPXL-1TPX2, Tpx-2 deficient embryos, similar to the phenotype observed in the absence of 

AIR-1Aurora A, Aurora A (Özlü et al., 2005). Target of AIR-1Aurora A, Aurora A phosphorylation might 

be the transforming acid coiled-coil-containing protein 1 (TAC-1), a homologue of the human 

and D. melanogaster TACC proteins. TAC-1TACC1/2/3, TACC forms a complex with the Xenopus 

microtubule-associated protein of 215 kDa (XMAP215) homologue Zygote-defective protein 

9 (ZYG-9). The factors are interdependent for their localization and require TBG-1TUBG1, 

Tub37C and AIR-1Aurora A, Aurora A for their recruitment to the centrosome. The TAC-1TACC1/2/3, 
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TACC and ZYG-9XMAP215, Msps complex is required for microtubule stabilization (Matthews et 

al., 1998; Bot et al., 2003; Srayko et al., 2003; Bellanger et al., 2007). Upstream of TPXL-

1TPX2, Tpx-2, the regulator of spindle assembly (RSA) protein phosphatase complex, which 

comprises RSA-1PPP2R3C, CG4733 and RSA-2, is specifically required for microtubule outgrowth 

from centrosomes and spindle microtubule stability during mitosis. The RSA2 protein 

physically interacts with SPD-5CDK5RAP2, Cnn (Schlaitz et al., 2007; Boxem et al., 2008). The 

RSA complex facilitates proper targeting of TPXL-1TPX2, Tpx-2 to centrosomes, and 

downregulates microtubule depolymerase Kinesin-like protein 7 (KLP-7KIF2C, Klp10A) (Schlaitz 

et al., 2007). Mutations in either of the two subunits lead to reduced microtubule nucleation 

and the collapse of centrosomes into chromatin after NEBD in C. elegans one-cell embryos 

(Schlaitz et al., 2007).  

            However, microtubule nucleation activity is not necessarily restricted to centrosomes. 

For example, during female meiosis, the meiotic spindle formation protein 1 and 2 (MEI-

1KATNA1/L1/MEI-2) katanin complex assembles acentrosomal spindles (Clark-Maguire and 

Mains, 1994; Srayko et al., 2000). Microtubules can nucleate from non-centrosomal MTOCs, 

including chromatin. However, in a mitotic environment, the chromatin-based pathways of 

microtubule nucleation are not effective enough to organize a robust bipolar spindle (Heald et 

al., 1996; Hamill et al., 2002; Srayko et al., 2005; Hayward and Wakefield, 2014). 

 

 

 
 

Figure 6: The PCM assembly module in C. elegans. A conserved module is required for 

centrosome assembly across species. In C. elegans SPD-5CDK5RAP2, Cnn and SPD-2Cep192, Spd-2 

have been reported to be interdependent for their localization to the PCM. SPD-5CDK5RAP2, Cnn 

is the PCM matrix protein, which is phosphorylated by PLK-1PLK1, Polo for PCM matrix 

expansion upon mitotic entry. Following PCM matrix establishment, downstream factors for 

microtubule nucleation and stabilization are recruited to the PCM (Hamill et al., 2002; 

Pelletier et al., 2004; Decker et al., 2011; Wueseke et al., 2016). 
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1.3.4. Cilia formation 

 

Two subtypes of cilia exist - motile and immotile, or primary cilia. A cilium generally 

nucleates from a basal body, a centriole-derived structure. Cilia function comprises motility, 

generation of fluid flow, the sensation of environmental cues, and developmental signaling. 

As previously mentioned, sensory neurons are the only cell type with cilia in worms. In C. 

elegans, centrioles possess singlet microtubules in the early embryo. However, basal bodies 

display doublet microtubules in a subset of cells developing into sensory neurons by the time 

the embryo reaches the embryonic comma stage (Nechipurenko and Sengupta, 2017; Serwas 

et al., 2017). Cilia are segmented in the ciliary base, the transition zone, the proximal, and the 

distal segment (Figure 7). As described for other organisms, the C. elegans transition zone is 

linked to the ciliary membrane by typical y-shaped microtubule-cilia membrane connectors 

(y-links) and also contains a central cylinder (Perkins et al., 1986; Schouteden et al., 2015; 

Serwas et al., 2017). Moreover, there are outer doublet microtubules arranged in a nine-fold 

symmetry, which are the extended basal body microtubules, and inner singlet microtubules 

that vary in number. These microtubules elongate into the axoneme (Serwas et al., 2017). In 

C. elegans, centrioles are required to initiate cilia outgrowth, but the structure degenerates 

rapidly thereafter (Serwas et al., 2017). In the two-fold stage, basal bodies of amphid neurons 

have docked to the cell membrane at the side where the future cilium grows out. Transition 

zone structures start forming, and intraflagellar transport (IFT) proteins are recruited for the 

elongation of the cilium. At this time, the centriolar cartwheel is lost from the basal body 

(Serwas et al., 2017). In these neurons, the transition zone is fully formed in the L1 larval 

stage, and basal bodies are fully degenerated (Serwas et al., 2017). When the worm reaches 

the L4 larval stage, the elongation of the axoneme is completed (Serwas et al., 2017). The 

cilia of C. elegans are considered as primary or sensory cilia according to their 9+0 structure 

and immobility (Bae and Barr, 2008). C. elegans is thus a valuable model system to study 

ciliopathies. 
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Figure 7: Cilia formation in C. elegans amphid neurons. Figure adapted from Serwas et al. 

(2017). In the early embryo, centrioles organize the mitotic spindle. Here, singlet 

microtubules are attached to centrioles in a 9-fold manner. In embryonic comma stage, in 

preparation for basal body conversion, centrioles can possess doublet microtubules. In ciliated 

neurons, basal bodies have docked to the cell membrane, and transition zone formation is 

initiated at the embryonic 2-fold stage. At this time, cartwheels are lost from the structure. In 

L1 larvae the transition zone is fully formed, and centrioles degenerated. By the L4 larval 

stage, also the axoneme is fully developed.  
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1.4. Aims of the study          

 

The centrosome was discovered more than a hundred years ago. However, only in the 

late 20th century, when molecular studies became applicable, research lead to a deeper 

understanding of the function of the structure and its importance in human health and disease. 

Similarly, cilia, which were first described even earlier, in the 17th century, are now linked to 

several human conditions, referred to as ciliopathies. Despite the importance of the structures 

and significant discoveries in the field, many open questions remain.  

C. elegans has proven itself as a powerful model system for the discovery of novel 

proteins and the dissection of their function. A limited set of factors, required for centriole and 

centrosome assembly, were identified in the worm. The t3421 mutant allele was isolated in a 

genetic screen for temperature-sensitive embryonic mutants, conducted in the laboratory of R. 

Schnabel. At restrictive temperature, the allele shows defects that suggest aberrations in 

centrosome function. In this study, I aim to determine which gene is affected in the t3421 

mutant and to unveil its molecular function. 

Centrosomes within a cell are of inherently different ages. In several systems, 

centrosomes can be inherited non-randomly in an age-dependent manner. Research suggests 

that this bias can have functional relevance, especially in the maintenance of a stem cell 

progenitor pool. The invariant cell lineage of C. elegans provides an excellent basis to study 

asymmetric centrosome inheritance. I aim to establish the IL1 sensory neuron lineage as a 

model to study asymmetric centrosome inheritance and its functional relevance. Therefore, I 

aim to develop a system in the worm to distinguish age-related centrosome function. 
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MATERIAL AND METHODS

2.1. Worm maintenance and experimental protocols

All C. elegans strains were maintained on OP50 Escherichia coli (E. coli) seeded 

nematode growth media (NGM) plates at 15 or 20 °C as described by Brenner, 1974

(Brenner, 1974). The alleles used in this study are listed in Table 1. As wild-type strain, the

N2 C. elegans wild isolate from Bristol was used. The pcmd-1(t3421) mutant strain, a kind 

gift from the laboratory of Professor Ralph Schnabel, was backcrossed into the wild-type. All 

strains homozygous for pcmd-1(t3421) were maintained at 15 °C. Unless stated otherwise, L4 

stage homozygous mutant worms and appropriate controls were shifted to restrictive 

temperature (25 °C) for 16-20 h for experiments.

Table 1: Alleles used in this study are listed. Alleles are divided into (a) mutation alleles used 

in this study, (b) single copy insertion alleles generated for this study, (c) transgenes and 

extrachromosomal arrays used in this study.

(a)

Allele affected gene LG Reference

t3421 pcmd-1(c17d12.7) I

syb975 pcmd-1(c17d12.7) I

or293 spd-2 I

or213 spd-5 I

e907 dpy-5 I

n566 lin-11 I

m1 unc-101 I

ed3 unc-119 III

e1489 him-8 IV

q71 fog-2 V

this study 

this study (SunyBiotech, http://

www.sunybiotech.com/)

O’Rourke ., 2011

Hamill ., 2002 

Thacker ., 2006 

Ferguson and Horvitz, 1985 

Lee ., 1994 

Davis ., 2009 

Phillips ., 2005 

Katju ., 2008
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(b)

Allele Transgene LG Plasmid Reference

mikSi1 psas-4:dendra2::sas-4:sas-4 II TMD29 this study

mikSi6 pmai-2:gfp::pcmd-1:mai-2 II TMD49 this study

mikSi7 pmai-2:gfp::pcmd-1(t3421):mai-2 II TMD51 this study

mikSi8 pmai-2:pcmd-1(t3421)::gfp:mai-2 II TMD52 this study

mikSi9 pmai-2:pcmd-1::gfp:mai-2 II TMD50 this study

mikSi3 pagr-1:mkate2:unc-54 IV TMD41 this study

mikSi4 pmex-5:mkate2::tac-1:unc54 IV TMD34 this study

mikSi5 pmex-5:mkate2::pcmd-1(c17d12.7):tbb2IV TMD48 this study

mikSi10 psas-4:mkate2::sas-4:sas-4 IV TMD74 this study

syb370 gfp::pcmd-1 I PHX370 this study

(SunyBiotech)

(c)

Allele Transgene LG Reference

transgenes

itSi202 pspd-2::gfp::spd-5+ unc-119(+) II A. Dammermann

it18 [plk-1::sgfp]::loxp III CGC, artino t l.,

ttTi5605 Mos transposon insertion 

oxTi177 pCFJ687 unc-18(+)

bcSi1 pmex-5:gfp::tac-1

vieSiIs18 psas-4:gfp::sas-4:sas-4

itIs44 ppie-1:mcherry::ph

itIs69 ppie-1:mcherry-TEV-Stag::spd-2

II Frøkjær-Jensen ., 2008

IV Frøkjær-Jensen ., 2014

II       Chakraborty ., 2015

II A. Dammermann

V CGC

IV A. Dammermann 

xnIs312 ppar-6::par-6::mcherry + unc-119(+) --

estSi121 Pmex-5:tpxl-1::mNeonGreen:tbb-2 III

kdIs66 agr-1:gfp --

xnIs3 ppar-6:par-6::gfp + unc-119(+) --

itIs38 ppie-1:gfp::ph(plc1delta1) + unc-119(+) --

zuIs20 pjn271:par-3::par-3::zf1::gfp+unc-119(+) --

Armenti . 2014

Mangal ., 2018 

Hrus ., 2007 

CGC

CGC

gift from J. Nance 
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xnIs96 pJN455(hmr-1p::hmr-1::GFP::unc-54 3'UTR) + unc-119(+) -- CGC, Achilleos
,

itIs64 ppie-1:mcherry-TEV-Stag::sas-4 -- A. Dammermann

itIs37 ppie-1:mcherry::h2b:pie-1 + unc119(+) IV CGC

extrachromosomal arrays

sEx15005 prCesY111B2A.8:gfp + pCeh361 -- McKay et al., 2003
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2.2. Cloning and allele generation        
 

All clonings were performed using the sequence and ligation independent cloning 

(SLIC) method (Jeong et al., 2012). Plasmids were integrated into the genome as single-

copies by employing the universal MosSCI integration method (Frøkjær-Jensen et al., 2014) 

using germline microinjection as described by Mello et al. (1991) (Mello and Kramer, 1991). 

 

 

2.2.1. Cloning and single-copy integration of the photo-convertible dendra::sas-4  

                      construct 

 

To generate the TMD23 plasmid, the sas-4 endogenous protein sequence was 

amplified from genomic DNA and cloned into the linearised standard pBluescript II KS(+) 

(pBSK II KS(+)) cloning vector using the TM168 and TM169 primers. The Dendra2 

fluorophore coding sequence was then cloned into the plasmid in frame upstream of the sas-4 

coding sequence using the TM316, TM317, TM180, and TM178 primers to generate the 

TMD23b plasmid. The dendra::sas-4 sequence was then subcloned into the pCFJ350 MosSCI 

vector containing the sas-4 regulatory regions amplified from the DAM170 vector (a kind gift 

from A. Dammermann). The TM169, TM179, TM356, TM357 primers were used for this 

cloning step, generating the TMD29 plasmid. Subsequently, a single copy of the TMD29 

plasmid was integrated into the C. elegans genome. The EG6699 [ttTi5605; unc-119(ed3)] 

strain was injected for targeted MosSCI integration on linkage group II (LGII) to create the 

mikSi1 allele.  

 

 

2.2.2. Cloning and single-copy integration of the pcmd-1 constructs fused to gfp 

 

The pBC1483 plasmid (a kind gift from B. Conradt) comprises the gfp::h2b coding 

sequence, flanked by the mai-2 regulatory regions. The h2b coding region was deleted using 

the TM549 and TM550 primers, generating the TMD53 plasmid (Table 2, Table 3). The 

pcmd-1 cDNA was then cloned into the TMD53 plasmid to create either an N-terminal 

(TMD49) or C-terminal (TMD50) gfp fusion construct by using the TM555-TM558 or the 

TM551-TM554 primers, respectively (Table 2, Table 3). With the TM559 and TM560 

primers, the pcmd-1(t3421) single nucleotide exchange was introduced into the pcmd-1 
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coding region to generate the TMD51 and TMD52 constructs (Table 2, Table 3). Single-

copies of the TMD49-TMD52 plasmids were integrated into the C. elegans genome. The 

EG6699 [ttTi5605; unc-119(ed3)] strain was injected for targeted MosSCI integration on 

LGII to create the mikSi6, mikSi9, mikSi7 and mikSi8 alleles (Table 1). 

 

 

2.2.3. Cloning and single-copy integration of the pcmd-1 construct fused to mkate2 

           fluorophore 

 

The mkate2 fluorophore sequence (a kind gift from E. Zanin) and the pcmd-1 cDNA 

coding sequence were cloned into the TMD19 plasmid, thereby deleting the dendra::sas-4 

sequence in TMD19, to generate the TMD47 plasmid (Table 2). The fluorophore and the 

pcmd-1 coding region are separated by a small linker sequence. The EZ629, EZ632 (a kind 

gift of E. Zanin) and TM455-458 primers were used for the cloning step (Table 3). The fused 

mkate2::pcmd-1 cDNA coding sequence, flanked by the mex-5 5’- and tbb-2 3’-UTRs was 

then sub-cloned into the pCFJ350 plasmid to generate the TMD48 plasmid. A single copy of 

the TMD48 plasmid was integrated into the C. elegans genome. The EG8081 [unc-119(ed3); 

oxTi177] strain was injected for targeted MosSCI integration on LGIV to create the mikSi5 

allele. 

 

 

2.2.4. Single-copy insertions of the mkate::h2b and mkate::tac-1 constructs 

 

A single-copy insertion of the TMD34 plasmid was integrated into the C. elegans 

genome (Table 2). The EG8081 [unc-119(ed3); oxTi177] strain was injected for targeted 

MosSCI integration on LGIV to create the mikSi4 allele (Table 1). 

 

 

2.2.5. Cloning and single-copy insertion of the mkate::sas-4 construct 

 

The mkate fluorophore and the reencoded sas-4 coding sequences amplified from the 

DAM170 plasmid (gift from A. Dammermann) were cloned into the pBSK II KS(+) vector to 

generate the TMD55 plasmid (Table 2). The TM169, TM378-381, and TM512 primers were 

used for this cloning (Table 3). The mkate and sas-4reenc coding sequences are separated by a 
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liker sequence also present in the DAM170 plasmid. The mkate and part of the sas-4reenc

coding sequence was subcloned into the DAM170 plasmid, thereby exchanging the GFP 

fluorophore, to create the TMD74 plasmid (Table 2). The TM172, TM173, TM362 and 

TM363 primers were used for this cloning step (Table 3). A single copy of the TMD74 

plasmid was integrated into the C. elegans genome. The EG6699 [ttTi5605; unc-119(ed3)]

strain was injected for targeted MosSCI integration on LGII to create the mikSi10 allele

(Table 1).

2.2.6. Cloning and single-copy integration of the pagr-1:mkate2 construct

The agr-1 promoter was amplified from wild-type genomic DNA and cloned, together 

with the mkate2 fluorophore coding sequence and the unc54 3’-UTR, into the pCFJ350

vector. The TM322, TM323, TM350, TM351, TM354, TM355, TM366 and TM367 primers

were used for this 4-piece assembly cloning step, generating the TMD28 plasmid (Table2, 

Table 3). A single-copy of the TMD28 plasmid was integrated into the C. elegans genome. 

The EG8081 [unc-119(ed3); oxTi177] strain was injected for targeted MosSCI integration on 

LGIV to create the mikSi3 allele (Table 1).

Table 2: Plasmids used in this study are listed. (a) TMD plasmids generated for this study. (b) 

other TMD plasmids. (c) External plasmids.

Name Description Backbone Map

(a)

TMD23 sas-4endog pBSK II KS(+)

TMD23b dendra2:: sas-4endog pBSK II KS(+)

TMD28 pagr-1:mkate2 pCFJ350 pm28

TMD29 psas-4:dendra2::sas-4endog.:sas-4 pCFJ350 pm29

TMD47 mkate2::linker::pcmd-1 pBSK II KS(+)

TMD48* pmex-5:mkate2::linker::pcmd-1:tbb2 pCFJ350 pm48

TMD49 pmai-2:gfp::pcmd-1:mai-2 pCFJ350 pm49

TMD50 pmai-2:pcmd-1::gfp:mai-2 pCFJ350 pm50
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TMD51 pmai-2:gfp::pcmd-1(t3421):mai-2 pCFJ350 pm51

TMD52 pmai-2:pcmd-1(t3421)::gfp:mai-2 pCFJ350 pm52

TMD53 pmai-2:gfp:mai-2 pCFJ350

TMD55 mkate2::link::sas-4reenc pBSK II KS(+)

* plasmid TMD48 was cloned together with Robert Wiesheu.

(b)

TMD19§ mex-5:dendra2::sas-4cDNA:: tbb2

TMD34$ pmex-5:mkate2::tac-1:tbb2 pm34

TMD74& psas-4:mkate2::linker::sas-4reenc:sas-4

pBSK II KS(+)

pCFJ350

pCFJ350 pm74

§ Cloned by Tsotne Chitiashvili, $ cloned by Eman Abu Khmail, & cloned by Lisa Stenzel and Mariam
Museridze

(c)

DAM170 psas-4:gfp::sas-4reenc:sas-4 pCFJ151

pBC1483 pmai-2:gfp::h2b:mai-2 pCFJ350

Table 3: Primers used for the clonings are listed. Primers are divided into (a) designed for 

this study and (b) received from external resources.

Name Primer sequence

(a)

TM168 CCTTCAGATGGCTTCCGATGAAAATATCGG

TM169 GGGGTTGGAATTTCTCATTTTTTCCACTGG

TM172 CATTTTTATACTTTAAAGCATCATCAGACAA

TM173 GATGCTTTAAAGTATAAAAATGCAGCTGCCG

TM178 GTCAAGCATGGATGGCTTCCGATGAAAATAT

TM179 AAAAATGAGAAATTCCAACCCCTTTATTTTAACTTGTGG

TM180 TCGGAAGCCATCCATGCTTGACTTGGTAGAG

TM316 GTGGCCTTCAGATGAACCTTATTAAGGAAGA

TM317 ATAAGGTTCATCTGAAGGCCACTAGTTCTAG

TM322 CCGTACGTCTCCTTAAGAAGATACCGTTTTT
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TM323  ATCTTCTTAAGGAGACGTACGGTGCGCGCGA 

TM350  TGAGACTTCACATGTCCGAGCTCATCAAGGA 

TM351  AGCTCGGACATGTGAAGTCTCATGTCGACAT 

TM_354  ATAACTGTTTGGAGGAATTCCTGCAGGATAT 

TM_355  AGGAATTCCTCCAAACAGTTATGTTTGGTAT 

TM_356  TCAGCCTTCAGATGAACCTTATTAAGGAAGA 

TM_357  ATAAGGTTCATCTGAAGGCTGAAAAGGTTTT 

TM362  TCAGCCTTCAGATGTCCGAGCTCATCAAGGAG 

TM363  AGCTCGGACATCTGAAGGCTGAAAAGGTTTT 

TM366  TCGGACACCGTTAGCTGTATGTTTCGAATGATAC 

TM367  GAAACATACAGCTAACGGTGTCCGAGCTTGGATG 

TM378  GTGGCCTTCAGATGTCCGAGCTCATCAAGGA 

TM379  AGCTCGGACATCTGAAGGCCACTAGTTCTAG 

TM380  TCCCCCGGGCAACGGTGTCCGAGCTTGGATG 

TM381  TCGGACACCGTTGCCCGGGGGATCGGTGGAG 

TM455  GTGGAGGTACTGAGGTGGAATACGACGAGGGA 

TM456  GGATCTTGCATTTAGTCTTTAAAAAGTGCAT 

TM457  TTAAAGACTAAATGCAAGATCCTTTCAAGCA 

TM458  TATTCCACCTCAGTACCTCCACCTCCACGGT 

TM512  GGAAAAAATGAGAAATTCCAACCCCATCAAG 

TM549  AACTATACAAATAATTTGCAGTACAAGAACGCG 

TM550  ACTGCAAATTATTTGTATAGTTCATCCATGCC 

TM551  CAATTTTCAGAATGGAGGTGGAATACGACGAG 

TM552  TCCACCTCCATTCTGAAAATTGAGTGAATTAG 

TM553  AAAGACGGAGGTGGAGGTACTAGTAAAGGAGAAGAACTTTTCACTGG 

TM554  TTTACTAGTACCTCCACCTCCGTCTTTAAAAAGTGCATTATGAATAA 

TM555  AAAGGAGGTGGAGGTACTGAGGTGGAATACGACGAGGG 

TM556  CTCAGTACCTCCACCTCCTTTGTATAGTTCATCCATGCC 

TM557  CTTTTTAAAGACTAATTTGCAGTACAAGAACGCG 

TM558  ACTGCAAATTAGTCTTTAAAAAGTGCATTATGAAT 

TM559  ATTTATGTTAGATTTCGCCGAAAAAGAGCGA 
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TM560  TTCGGCGAAATCTAACATAAATCCAGTCTTTG 

 (b) 

EZ629  TCAGACAGAGAATGTCCGAGCTCATCAAGGAG 

EZ632  AGCTCGGACATTCTCTGTCTGAAACATTCAATTG 
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2.3. Mapping, rescue experiments, and homology analysis

2.3.1. Mapping the t3421 allele

To identify the mutation underlying the t3421 mutant phenotype, the strain, originally 

received from the laboratory of Professor Ralph Schnabel, was backcrossed to the N2 wild-

type strain twice and sent to the C. elegans Knockout Facility in Vancouver B.C. Canada for 

whole-genome sequencing (WGS). Subsequently, SNP mapping was performed as described 

in (Wicks ., 2001). The CB4856 C. elegans wild isolate from Hawaii was used for further 

backcrossing of the pcmd-1(t3421) mutant in the course of SNP mapping. Further, a strain 

carrying the visual markers lin-11(n566) and unc-101(m1) was generated to define a narrow 

mapping region carrying contemplable mutations (Figure 10A). The SNP mapping was 

performed by M. Osepashvili and T. Mikeladze-Dvali. The lin-11(n566) and unc-101(m1)

visual markers were crossed to the pcmd-1(t3421) mutant with T. Mikeladze-Dvali. 

2.3.2. Rescue experiments

To determine whether the t3421 mutant phenotype is caused by a mutation in a protein 

coding gene within the mapped region between the lin-11(n566) and unc-101(m1) visual

markers, rescue experiments of embryonic lethality were performed. Since the pcmd-1

(c17d12.7) gene was the most promising candidate, the mikSi5 [pmex-5:mkate2::pcmd-

1:tbb2] allele was generated. Details on the cloning and strain generation are described above.

The resulting strain was crossed to the pcmd-1(t3421) mutant. The strain, homozygous for the 

pcmd-1(t3421) mutation and homozygous for mikSi5 [pmex-5:mkate2::pcmd-1:tbb2], was 

tested for embryonic lethality at restrictive temperature (25 °C, parental animals shifted at L4 

stage). Furthermore, additional alleles, mikSi6 [pmai-2:gfp::pcmd-1:mai-2], mikSi7 [pmai-

2:gfp::pcmd-1(t3421):mai-2], mikSi9 [pmai-2:pcmd-1::gfp:mai-2] and mikSi8 [pmai-

2:pcmd-1(t3421)::gfp:mai-2], were cloned and integrated into the genome as described 

above. The resulting strains were crossed to the pcmd-1(t3421) mutant. The strains,

homozygous for the pcmd-1(t3421) mutation and homozygous for mikSi6 [pmai-2:gfp::pcmd-

1:mai-2], mikSi7 [pmai-2:gfp::pcmd-1(t3421):mai-2], mikSi9 [pmai-2:pcmd-1::gfp:mai-2] or 

mikSi8 [pmai-2:pcmd-1(t3421)::gfp:mai-2] allele, were tested for embryonic lethality at 

restrictive temperature (25 °C, parental animals shifted at L4 stage).
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 2.3.3. PCMD-1 homology analysis across species 

 

To determine homologous proteins in other species, a sequence similarity search was 

performed using the NCBI BLAST alignment tool (Table 9). The default parameters were 

applied. The protein sequences for the homologous proteins found in C. japonica 

(CJA08956), C. brenneri (CBN02262), C. briggsae (CBG15805) and C. remanei 

(CRE04201) were downloaded from WormBase (WS268) and aligned against the C. elegans 

(PCMD-1/C17D12.7) protein sequence using the multiple sequence alignment tool MUSCLE 

(Table 9). The default parameters were applied. 
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2.4. RNA mediated interference (RNAi)       
 

2.4.1. RNAi protocol by feeding 

 

For RNAi against spd-5 or spd-2, parental worms were fed with bacteria containing 

the respective RNAi clones at the L4 stage (Table 4, Table 5). Worms were allowed to feed 

for 16 to 20 hours at 25 °C. Progeny was scored when the desired age was reached. 

For mild RNAi against plk-1, parental worms were fed with bacteria containing the respective 

RNAi clone at the L4 stage (Table 4, Table 5). Worms were allowed to feed for 24 hours at 20 

°C. 

 

 

Table 4: RNAi experimental protocols 

Gene  Age Temperature  Duration Comments    

spd-5  L4 25 °C   16-20 h 

spd-2  L4 25 °C   16-20 h 

plk-1  L4 20 °C   24 h  mild plk-1(RNAi) phenotype 
 

 

Table 5: RNAi clones used in this study are listed. 
             
Gene  RNAi clone   Reference      
 

mock  L4440    (Kamath and Ahringer, 2003) 

spd-5  I-4O08    (Kamath and Ahringer, 2003) 

spd-2  I-2G08    (Kamath and Ahringer, 2003) 

plk-1  III-4E08   (Kamath and Ahringer, 2003) 
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2.5. Worm dissection, preparation for immunostainings and life-cell 

imaging 
 

L4 larvae were grown at 25 °C overnight to adulthood. The next day, worms were 

dissected to collect embryos shortly after fertilization in H2O on a coverslip (Carl Roth 

GmbH; 18 x 18 mm, #1 thickness; Cat. no. 0657.2). Embryos were reversely mounted on a 4 

% agarose pad on a microscope slide. If embryos were imaged live at later developmental 

stages, one-cell embryos were mouth pipetted onto 4 % agar pads and covered with 

coverslips. The slides were then kept in a petri-dish in a 20 °C incubator until the 

developmental stage was reached. The duration of this incubation was previously determined 

by lineaging (see below). 
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2.6. Fluorescence immunostainings, microscopy and biochemical analysis 

 
 2.6.1. Fluorescence immunostainings 

 

Microscope slides were coated with poly-D-lysine (1 mg/ml) and allowed to 

polymerize on a hot heating plate. 10 - 20 worms were dissected as previously described and 

the cooled poly-D-lysine coated slide was placed upside-down onto the glass coverslip, 

thereby enclosing the embryos. The slide was immediately put onto a metal block, pre-cooled 

on dry ice, for at least 2 min. By using a sharp razor blade, the coverslips were flicked off the 

microscopy slide to crack open the eggshells. Slides were then immediately fixed in -20°C 

methanol (100%) for 2-20 min. Slides were then washed two times in PBS for 5 min. Slides 

were blocked in 2% BSA for 15 - 20 min followed by a 5 min wash in PBT and 5 min in PBS. 

Slides were removed one after the other to remove access PBS using tissue. A ~18 mm2 

square of PBS was left where embryos were located. 50 μl of the primary antibody solution 

was pipetted onto the embryos. The slides were placed into a humid chamber and incubated at 

4 °C overnight. 

The next day slides were washed again for 5 min in PBT and 5 min in PBS. Access PBS was 

removed as previously described. 50 μl of the secondary antibody dilution, also containing 

Hoechst (1 mg/ml, Hoechst 33258, Sigma) to visualize DNA, were pipetted onto the embryos. 

The slides were incubated for 90 min at room temperature. Subsequently, the slides were 

washed in PBT for 5 min and PBS for at least 5 min. Slides were then removed separately 

from PBS to remove access PBS as previously described. 6 μl of mounting medium was 

placed on an 18 mm2 coverslip, and the microscope slide was placed upside-down onto the 

glass coverslip enclosing the embryos. After 10-20 min of drying, transparent nail polish was 

used for sealing the gap between microscope slide and coverslip. Microscopy slides were kept 

in a microscope slide box at 4 °C until imaging. The dilutions used for primary and secondary 

antibodies and further information can be found in Table 6 and Table 7. 
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 2.6.2. Microscopy 

 

2.6.2.1. 4D microscopy 

 

Embryos were dissected as previously described. For the images in Figure 9A and B, 

Figure 11A-E, Figure 12C, Figure 18A and B, and Figure 19A and B embryos were imaged 

shortly after fertilization until completion of the first or second cell cycle. For the images in 

Figure 11B, C, E and H, and Figure 22A and B, adult worms were picked and imaged. To 

determine the temporal development of the IL1 neuron lineage, embryos were imaged from 

shortly after fertilization or the first cell division on and allowed to develop overnight until 

hatching. For the images in Figure 26B and C, embryos were allowed to grow until reaching 

the stage of interest. In the meanwhile, DIC images were taken. Fluorescent images were only 

taken after photo-conversion using UV light. Images were taken using a Zeiss Axio 

Imager.M2 equipped with epifluorescence and the Time to Live software from Caenotec. DIC 

Z-stacks were taken every 35 sec at 20 °C or 25 °C unless indicated otherwise. Fluorescent 

scans were taken as required. The Simi BioCell software was used for the lineage analysis 

(Simi Reality Motion Systems GmbH; http://www.simi.com). 

 

 

2.6.2.2. Confocal microscopy 

 

For the images in Figure 27A, C, D and E embryos were dissected as previously 

described, and embryos in the stage of interest were imaged subsequently. For the images in 

Figure 14A-D, Figure 25 and Figure 27F embryos were immunostained as described 

previously and embryos in the stage of interest were imaged subsequently. Embryos were 

imaged using a laser scanning confocal TCS SP5 microscope (Leica) with a 63× 1.4-NA 

Plan-Apochromat oil immersion objective and 405, 488 and 594 nm lasers. The microscope 

was controlled by the Leica Application Suite Software 2.7.2.  

 

 

2.6.2.3. Spinning disc confocal microscopy 

 

For the images in Figure 11G, Figure 12A, Figure 13A and B, Figure 15A-D, Figure 

16A, Figure 17A-D and Figure 20A-F embryos were imaged shortly after fertilization until 
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completion of the first or second cell cycle using an eclipse Ti spinning disk confocal 

(Nikon), controlled by the NIS Elements 4.51 program and equipped with a 100x 1.45-NA

Plan-Apochromat oil immersion objective and an Andor DU-888 X-11056 camera (1024 x 

1024 pixels). Z-stack were taken every 30 sec at 25 °C. For the images in Figure 24B and D,

and Figure 27B, the embryos were allowed to develop at 20 °C for a lineage-specific time 

frame (previously determined by lineaging) until shortly before the cells of interest were born. 

The embryos were imaged subsequently at an UltraVIEW VoX spinning disk confocal 

microscope (Perki- nElmer), which is controlled by Volocity 6.1.1. software (PerkinElmer) 

and attached to an Axio Observer D1 stand (Zeiss) that was equipped with a 63× 1.4-NA

Plan-Apochromat oil immersion objective (Zeiss), EMC CD C9100-50 camera (Hamamatsu), 

and 488- and 561-nm lasers.

2.6.3. Fluorescence intensity measurements

The Fiji-implemented tool TrackMate was used to measure centrosome and centriole 

fluorescence intensity in Figure 12B, Figure 15B and C, and Figure 21B (Tinevez et al.,

2017). 3D volumes of centrioles and centrosomes were measured in acquired Z-stacks using a 

1.001 (PCMD-1), 1.021 (PLK-1) or 2.491 (SPD-5) μm radius. Two background 

measurements were taken for each, the embryo (embryo background, EB) and the

surrounding embryo area (background, B). When low fluorescence intensity prevented 

automatic recognition of the structures, and for background measurements, manual tracking 

was applied. The mean background (B) total intensity values were subtracted from the mean 

embryo background (EB) total values, as well as the individual (anterior (Ca) and posterior 

(Cp)) total intensity values of the centrioles/centrosomes (C). The resulting mean embryo 

background (EB-B) was then subtracted from the resulting centriole/centrosome values (C - 

B). The measurements were summed up to total measurement for each embryo per time point 

and plotted using Prism. Formula: ((Ca - B) - (EB - B)) + ((C - B) - (EB - B)). Also 

see Figure 16B.
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2.6.4. Western blot analysis

For western blots, a 0.75 mm or 1 mm thick resolving gel containing 7.5 % to 15 % 

acrylamide was poured. After polymerization, the stacking gel was added. Gels were kept at 4 

°C overnight to polymerize fully. The next day the western blot system was mounted, and a 

PVDF membrane was activated in Ethanol (100 %). Worm lysate samples were allowed to 

migrate for ~1 hour in running buffer containing 0.1 % SDS. After migration, the membranes 

were washed in TBST (TBS+0.1 % tween 20) two times for 10 min. Membranes were 

blocked with TBST containing 5 % milk for 1 hour at 4 °C. After that, the primary antibody, 

appropriately diluted in TBST containing 5 % milk, was added and incubated overnight at 4 

°C (Table 8). The day after the membrane was washed with TBST three times for 10 min at 

room temperature. The secondary antibody, appropriately diluted in TBST containing 5 % 

milk, was applied and incubated for 45 min at room temperature (Table 8). The membranes 

were then washed in TBST three times for 10 min and once in TBS for 10 min at room 

temperature. For developing the western blot, the Amersham ECL Prime Western Blotting 

Detection Reagent (GE Healthcare) kit was used. A ChemiDoc XRS+ imaging system from 

Bio-Rad was used for detection.

2.6.5. Antibodies

Table 6: Primary antibodies; Antigen, source, catalogue numbers, manufacturers, and 

working dilutions are listed.

Antigen Cat# Obtained from/provided by Derived from Dilution

SAS-4 sc-98949 Santa Cruz Biotechnology rabbit 1:500

SPD-5 -- gift from B. Bowerman rabbit 1:5000

(Hamill et al., 2002)

GFP ab290 Abcam rabbit 1:500

PCMD-1 -- this study rabbit 1:50

GFP 11814460001 Roche mouse 1:500

α-tub T6199 (DM1a) Sigma mouse 1:500

IFA -- gift from P. Gönczy mouse 1:50

(Leung, Hermann and Priess, 1999)
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PAR-3 P4A1 mouse 1:500DSHB

(Nance ., 2003)

Table 7: Secondary antibodies; Antigen, source, catalogue numbers, manufacturers, and 

working dilutions are listed.

Antigen/derived from cat# obtained from dilution

goat anti-mouse Alexa 488 A110011 Invitrogen 1:500

goat anti- rabbit Alexa 568 A11011 Invitrogen 1:500

Table 8: Western blot antibodies; Antigen, catalogue numbers, manufacturers, source, and 

working dilutions are listed. Antibodies are divided in (a) primary and (b) secondary 

antibodies

Antigen Cat# Obtained from/provided by Derived from Dilution

(a)

α-Tub T6199 Sigma-Aldrich mouse 1:7500

GFP 11814460001 Sigma-Aldrich mouse 1:500

(b)

anti-mouse
HRP-conj. 1706516 Bio-Rad Laboratories goat 1:7500

2.6.5.1. PCMD-1 antibody generation

The PCMD-1 antibody was generated by the injection of the peptides 

DEGFDSSSLKNNPASLQRD and EKSEIRSEKHKNKCKSADLDA into a rabbit by 

standard protocols of Davids Biotechnologie GmbH (Germany).
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2.7. Statistics

Details about the statistical analyses can be found in the text of the results part and the 

figure legends. Briefly, n represents the number of embryos imaged to determine phenotypes 

of wild-type and mutant embryos in the first and second cell cycle (Figures 9C-E), the total 

number of embryos counted for survival assays (Figures 8A and B, Figure 10D, Table 10, 

Table 11 and Table 13), the number of centrioles used to determine GFP::PCMD-1 and 

GFP::SAS-4 intensity at centrosomes (Figures 12B), the number of embryos used to 

determine TPXL-1::mNG at centrosomes (Figure 13B), the number of embryos imaged to

determine centriole number per embryo using SAS-4 as a readout (Figure 14E), the number of 

SAS-4 foci used to determine microtubule nucleation capacity (Figure 14F), the number of 

microtubule asters associated with SAS-4 foci (Figure 14G), the number of embryos 

measured to determine GFP::SPD-5 intensities at centrosomes (Figures 15E and F), the 

number of embryos used to categorize variability of SPD-5 recruitment to centrosomes in 

pcmd-1(t3421) mutants (Figure 16C), the number of embryos used to determine the presence 

of SPD-5 at centrosomes (Figures 17E, Figure 18C), the number of embryos used to

determine the presence of PLK-1::sGFP at centrosomes (Figure 21A), the number of embryos 

used to determine PLK-1::sGFP intensities at centrosomes (Figure 21B). In quantifications the 

mean values ± the standard deviations (SD) (Figures 8B, 15E, and Table 11) or mean values ± 

standard error (SEM) (Figures 8A, 10D, 12B, 15F, 21B, Table 10 and Table 13) are stated. 

An unpaired t-test with Welch’s correction was performed to determine significant differences 

in centrosomal GFP::SPD-5 intensities at metaphase between control and pcmd-1(t3421)

mutant embryos (Figure 12B, 15F). To test whether the data met the assumptions of our 

statistical approach an F-test was performed to compare variances. A one-way ANOVA and 

Sidak’s multiple comparisons test were performed to determine significant differences in 

centrosomal PLK-1::sGFP intensity levels (Figure 21B). To test whether the data met the 

assumptions of our statistical approach a Shapiro-Wilk test of normality and BrownForsythe 

test for homogeneity of variances were performed. Differences are reported as significant 

when the p-value is < 0.05. Significance levels: ≥ 0.05 = not significant (ns); 0.01 to 0.05 = 

significant (*); 0.001 to 0.01 = very significant (***); < 0.0001 = very significant (****).
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2.8. Software

Table 9: Software used in this study

Software Website Reference
Fiji https://fiji.sc/ Schindelin et al. 2012

TrackMate https://imagej.net/TrackMate Tinevez et al., 2017

Prism 7.04 https://www.graphpad.com/scientific-software/prism/

MUSCLE https://www.ebi.ac.uk/Tools/msa/muscle/ Chojnacki et al., 2017

NCBI BLAST https://www.ebi.ac.uk/Tools/sss/ncbiblast/ Johnson et al., 2008

SMART http://smart.embl-heidelberg.de/ Schultz et al., 2000



MATERIAL AND METHODS 
 

52 

 

 

 

 

 

 



RESULTS 
 

53 

 

 

 

 

 

 

 

RESULTS          
 

 

 

 

 

 

 

 

 

 

 

 

 

 



RESULTS 
 

54 

RESULTS 
 

3.1. The previously uncharacterized protein PCMD-1 is required for PCM 

matrix formation in C. elegans 
 

 C. elegans is a powerful model system for genetic screenings and the characterization 

of protein function. The present study describes the molecular function of a previously 

uncharacterized protein, PCMD-1 (C17D12.7), which is required for bipolar spindle 

formation. The protein was discovered through the isolation of the t3421 allele in an EMS 

mutagenesis screen for temperature-sensitive embryonic lethal mutations (Memar, N. and 

Schnabel, R., unpublished data). The t3421 allele was chosen for characterization due to its 

interesting phenotype, forming a monopolar and tripolar spindle in the first and second cell 

cycle, respectively. The aberrations in spindle formation suggested potential deregulation of 

centrosome assembly, or function, or both.  

 

 

 3.1.1. PCMD-1 is required for bipolar spindle formation in C. elegans 

 

 Worms homozygous for the t3421 mutant allele can survive and reproduce at a 

permissive temperature of 15 °C (38 % survival, Figure 8A, Table 10; experiment by M. 

Osepashvili, Erpf et al., 2019). However, mutants develop into sterile adults when shifted to a 

restrictive temperature of 25 °C at early developmental stages (L1-L2 stage, personal 

communication with T. Mikeladze-Dvali). Similarly, in RNAi experiments against pcmd-1, 

~50 % of the worms are sterile if exposed to RNAi by feeding for two generations (data not 

shown). RNAi by injection reduced embryonic viability to 17 % after 39 h at 25 °C 

(experiment by Lisa Stenzel, Erpf et al., 2019). When t3421 mutant worms are shifted to 

restrictive temperature in a later developmental stage (L4 stage) they can produce eggs. 

However, 100 % of the offspring is embryonic lethal (0 % survival, Figure 8A, Table 10; 

experiment by M. Osepashvili, Erpf et al., 2019). The F1 generation, derived from parental 

worms heterozygous for the t3421 allele, displays ~25 % embryonic lethality at 25 °C, 

suggesting that t3421 is a recessive allele (data not shown). 
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To determine whether the t3421 mutant effect is maternally or paternally contributed, 

mating experiments were performed, and embryonic survival of the F1 generation was 

monitored. Parental worms were maintained at restrictive temperature before mating. Plg-

1(e2001) males leave a gelatinous blob over the vulva after copulation, which allows the 

identification of mated hermaphrodites (Hodgkin and Doniach, 1997). The plg-1(e2001) 

males were used in crosses testing the maternal contribution of the t3421 allele. Fog-2(q71) 

hermaphrodites display feminization of the germline and cannot self-reproduce (Batista et al., 

2008). The fog-2(e2001) allele was used in crosses testing the paternal contribution of the 

t3421 allele. Control matings produced viable offspring with a regular survival rate of 96 % 

for wild-type hermaphrodites crossed to plg-1(e2001) males (n=240, Figure 8B, Table 11) and 

91 % for fog-2(q71) females crossed to fog-2(q71) males (n=359, Figure 8B, Table 11). To 

test for maternal contribution, homozygous t3421 mutant hermaphrodites were mated with 

plg-1(e2001) males. The F1 generation displayed only 2 % embryonic viability (n=777, 

Figure 8B, Table 11). Matings of fog-2(e2001) hermaphrodites to t3421 mutant males, which 

were performed to test for paternal contribution, showed a less severe impact on viability with 

73 % embryonic survival of the F1 generation (n=627, Figure 8B, Table 11). The results 

suggest a predominantly maternal contribution to the t3421 mutant phenotype (Mating 

experiments were performed together with T. Mikeladze-Dvali, Erpf et al., 2019). 

 

 

 
 

Figure 8: Temperature sensitivity and parental contribution of the t3421 mutant allele. 

Embryonic viability of wild-type and t3421 mutant offspring. (A) Embryonic viability of 

wild-type and pcmd-1(t3421) mutant embryos at permissive (15 °C) and restrictive (25 °C) 

temperature. The graph shows the mean embryonic survival rates ± SEM per worm in 

percent. The number of n states embryos counted in total. This experiment was performed by 

M. Osepashvili, Erpf et al., 2019; See also Table 10. (B) Maternal and paternal contribution 

experiments. Embryonic viability of offspring deriving from control matings, pcmd-1(t3421) 

hermaphrodite and plg-1(e2001) male mating and pcmd-1(t3421) male and fog-2(q71) female 
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mating at restrictive (25 °C) temperature. The number of n’s states embryos counted in total. 

This experiment was performed together with T. Mikeladze-Dvali; See also Table 11. 

 

 

Table 10: Embryonic viability of wild-type, pcmd-1(t3421), and pcmd-1(syb975) mutant 

embryos at permissive (15 °C) and restrictive (25 °C) temperature. The number of n states 

embryos counted in total. This experiment was performed by M. Osepashvili, Erpf et al., 

2019. 

Genotype Temperature Embryonic viability       
(in % ± SEM) 

wild type 15°C 96.1 ± 1.1    (n=3057) 

pcmd-1(t3421) 15°C 38.0 ± 1.9    (n=3078) 

pcmd-1(syb975) 15°C 23.9 ± 1.7 (n=3150) 

wild type 25°C 95.9 ± 1.8    (n=  936) 

pcmd-1(t3421) 25°C   0.0 ± 0.2      (n=1389) 

pcmd-1(syb975) 25°C   0.0 ± 0.0 (n=5560) 

 
 
 
Table 11: Maternal and paternal contribution to the compromised viability in t3421 

mutants determined by control, pcmd-1(t3421) hermaphrodite/plg-1(e2001) male and pcmd-

1(t3421) male/fog-2(q71) female matings at restrictive (25 °C) temperature. The number of n 

states embryos counted in total. This experiment was performed together with T. Mikeladze-

Dvali. 

Genotype Temperature Embryonic viability         
(in % ± SD) 

wild-type hermaphrodite/plg-1(e2001) males 25°C 96.2 ± 4.3      (n=  240) 

pcmd-1(t3421) female/plg-1(e2001) males 25°C   1.9 ± 2.9      (n=  777) 

fog-2(q71)/wild-type male 25°C 91.5 ± 8.9      (n=  359) 

fog-2(q71)/pcmd-1(t3421) male 25°C 73.2 ± 18.5    (n=  627) 

 

 

In wild-type embryos, the centrioles are associated with the male pronucleus after 

fertilization. After their separation, they nucleate microtubules that capture the female 

pronucleus, and the parental pronuclei start migrating towards each other (Gönczy et al., 

1999). In wild-type embryos, the pronuclei meet shortly before the pronuclear envelope 
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breaks down (PNEB) (n=10, Figure 9A, PNEB, Figure 9C). However, in 50 % of the t3421 

mutant embryos the pronuclei do not meet before PNEB (n=12, Figure 9B, PNEB, Figure 

9C).  

After PNEB, a bipolar spindle is formed in the wild type (n=10, Figure 9A, metaphase 

I, Figure 9D). Invariantly between embryos, the following asymmetric cell division then gives 

rise to a larger anterior and a smaller posterior cell. At restrictive temperature, t3421 mutants 

frequently develop a monopolar spindle during metaphase of the first cell division (Figure 9B, 

metaphase I). The failure of bipolar spindle formation was monitored in 58 % of the embryos 

(n=12, Figure 9D). The remaining 42 % of the embryos do form bipolar spindles to some 

degree (Figure 9D). However, in these embryos, the asymmetry of the first cell division, 

which is typically seen in C. elegans wild-type embryos, was lost.  

During the second cell division of wild-type embryos the spindles of the anterior and 

posterior cells are bipolar and oriented perpendicular to one another in metaphase (n=10, 

Figure 9A, metaphase II; note here that the posterior cell of wild-type C. elegans embryos 

reaches metaphase later than the anterior cell). In t3421 mutant embryos, 16.7 % of embryos 

formed a bipolar spindle, 16.7 % a tripolar spindle, and 16.7 % a quadripolar polar spindle 

(n=12, Figure 9B, metaphase II - tripolar spindle formation, Figure 9E). Each of these 

embryos underwent monopolar spindle formation in the first cell cycle. Embryos that 

underwent bipolar cell division in the first cell cycle formed various other phenotypes in the 

second cell cycle that are not explained here in detail (Figure 9E). 
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Figure 9: Abnormal spindle formation in t3421 mutant embryos. (A-B) DIC recordings 

and the corresponding sketches of wild-type and pcmd-1(t3421) mutant one- and two-cell 

embryos. Images were taken at a 4D microscope. Stages: pronuclear envelope breakdown 



RESULTS 
 

59 

(PNEB), metaphase I and metaphase II. The anterior side of the embryo is to the left, and the 

posterior side is to the right. Scale bar: 5 μm. (A) Wild-type C. elegans one-cell embryo. At 

PNEB maternal and paternal pronuclei have met and a bipolar spindle starts to form. At 

metaphase I a bipolar spindle is visible. In the second cell cycle the anterior cell (AB) is 

dividing first, and a bipolar spindle is visible at metaphase II. The posterior cell (P1) is 

dividing later, and PNEB just took place. (B) Pcmd-1(t3421) mutant C. elegans one-cell 

embryo. At PNEB maternal and paternal pronuclei have not met and a small monopolar 

spindle starts to form. At metaphase I a monopolar spindle is forming (Note: Microtubules 

might nucleate from DNA). In the second cell cycle, after cell division failed in the first cell 

cycle, a tripolar spindle forms. (C-E) Analysis of phenotypes seen in wild-type and pcmd-

1(t3421) mutant one- and two-cell embryos. (C) PNM success in wild-type and pcmd-

1(t3421) mutant embryos at PNEB. The number of n states embryos counted in total. (D) 

Spindle formation in wild-type and pcmd-1(t3421) mutant one-cell embryos. The number of n 

states embryos counted in total. (E) Spindle formation in wild-type and pcmd-1(t3421) mutant 

two-cell embryos. The number of n states embryos counted in total.  

 

 

To identify the affected gene underlying the t3421 mutant phenotype, whole-genome 

sequencing was performed in combination with single-nucleotide polymorphism (SNP) 

mapping (C. elegans Knockout Facility, Vancouver, B.C., Canada). The mutation was 

mapped to the right arm of chromosome I between the visual markers lin-11(n566) and unc-

101(m1) (Figure 10A, Table 1, Table 12; experiments were done by M. Osepashvili and T. 

Mikeladze-Dvali, Erpf et al., 2019). C17d12.7 was one of the genes carrying an SNP within 

its coding region (Figure 10A and B). The gene contains a sequence coding for a coiled-coil 

domain close to the N-terminus of the translated protein (Figure 10 B). Coiled-coil domains 

are known to be present in many centrosomal proteins (Salisbury, 2003; Kuhn, Hyman and 

Beyer, 2014). Thus, c17d12.7 was considered as the most promising of the candidate genes. 

To determine whether a functional copy of the c17d12.7 gene can rescue the t3421 mutant 

phenotype, I created the single-copy integration allele mikSi5, encoding the c17d12.7 cDNA 

fused to the mkate2 fluorophore sequence (Figure 10C, Table 1). The expression of the 

construct is driven by the mex-5 promoter, and the protein is visually detectable only in the 

germline. The strain was crossed to the t3421 mutant flanked by the lin-11(n566) and unc-

101(m1) visual markers. The resulting strain was assayed for embryonic viability (Figure 

10D, Table 13). Progeny deriving from wild-type hermaphrodites showed viability of 98 % at 
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25 °C (Figure 10D, Table 13). The t3421 mutant allele displayed 0 % viability (Figure 10D, 

Table 13). Control strains, carrying the lin-11(n556) or unc-101(m1) visual markers, 

displayed 94 % and 62 % embryonic viability, respectively (Figure 10D, Table 13; note here 

that the strain carrying the lin-11(n556) visual marker also has the unc-75(e950) visual marker 

in the background, which is not present in the lin-11(n556) pcmd-1(t3421) unc-101(m1); 

mikSi5[pmex-5:mkate2::pcmd-1(c17d12.7):tbb2] strain (Figure 10A, Table 13). However, 

since the viability of the strain was not further compromised as the viability of the unc-

101(m1) allele alone, outcrossing the unc-75(m1) allele was not attempted, and possible 

synergistic effects were ignored at this point). The t3421 mutant allele, which also carries the 

lin-11(n556) and unc-101(m1) visual markers, shows 0 % viability. The mikSi5[pmex-

5:mkate2::pcmd-1(c17d12.7):tbb2] allele in control genomic background displayed 90 % 

viability (Figure 10D, Table 13; note here that animals carrying the mikSi5 allele are not 

staying on the bacterial lawn most likely due to a cilia defect. This might increase escape rates 

from Petri dishes). The mikSi5[pmex-5:mkate2::pcmd-1(c17d12.7):tbb2] allele was able to 

restore embryonic viability to 54 % in t3421 mutant background, a comparable viability rate 

to what was seen for the unc-101(m1) control strain, suggesting that unc-101(m1) is 

responsible for compromised viability in the rescue strain (Figure 10D, Table 13). To avoid 

this problem, I constructed a transgenic allele mikSi6, a single-copy integration of the 

c17d12.7 cDNA fused to GFP and flanked by the mai-2 regulatory elements (Sherrard et al., 

2017, Figure 10C, Table 1). This construct is expressed ubiquitously throughout development 

and in the adult worm. The allele mikSi6[pmai-2:gfp::pcmd-1:mai-2] was crossed to the 

t3421 mutant stain and scored for embryonic viability (note here that this strain does not carry 

the lin-11 or unc-101 visual markers as genetic background, and therefore, the presence of the 

mutation was verified by sequencing, Figure 10D). The mikSi6[pmai-2:gfp::pcmd-1:mai-2] 

allele showed 98 % viability in control genomic background and was able to restore 

embryonic viability to 98 % in t3421 mutants at restrictive temperature (n=850 and n=855, 

respectively, Figure 10D, Table 13).  

In the t3421 mutant, the c17d12.7 gene carries a single nucleotide mutation at the N-

terminus, which is located before the coiled-coil domain. The mutation exchanges a Cytosine 

(C) to Thymidine (T) at nucleotide position 160 (Table 12). On the protein level, the t3421 

mutation leads to the termination of transcription since an early STOP codon is introduced at 

amino acid position Glutamine 54 (Q54) (Figure 10B). To further validate pcmd-1 as the 

candidate gene, I introduced the very same mutation into the cDNA sequence of the c17d12.7 

gene and constructed an allele mikSi7, carrying the c17d12.7(t3421) cDNA fused to the gfp 
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coding sequence (Figure 10C, Table 1). The strain carrying the mutant construct shows 98 % 

viability in otherwise control genomic background. Importantly, the mikSi7[pmai-

2:gfp::pcmd-1(t3421):mai-2] allele was not able to restore embryonic viability in t3421 

mutant background at restrictive temperature (0 % viability, n=662, Figure 10D, Table 13).  

Further, a CRISPR deletion allele syb975 was generated to verify the t3421 mutant 

phenotype by an independent allele (Figure 10B, Table 1). A 1201 base pair deletion was 

introduced, deleting the start codon, the coiled-coil domain and the unstructured regions of the 

gene (Figure 10B). The strain shows 24 % embryonic viability at 15 °C and 0 % embryonic 

viability at 25 °C (Figure 10D, Table 13; embryonic viability test was performed by T. 

Mikeladze-Dvali, Erpf et al., 2019). Similar to the t3421 mutant allele, the syb975 allele 

shows monopolar spindle formation in metaphase of the first cell cycle, as well as tri- and 

quadripolar spindle formation in the second metaphase (DIC movies recorded by T. 

Mikeladze-Dvali, Erpf et al., 2019). An existing deletion allele tm8972, which lacks 1135 bp 

spanning part of exon 9 and the 3’UTR of c17d12.7, is homozygous viable (National 

BioResource Project (NBRP), tested by T. Mikeladze-Dvali, Erpf et al., 2019, Figure 10B, 

Table 1, Table 12). The result indicates that the C-terminal part of the protein, which is 

lacking in the tm8972 mutant, does not contain any elements required for protein function.  

The experiments verify c17d12.7 as the candidate gene that causes the t3421 mutant 

phenotype when functionally compromised. The c17d12.7 gene was named pericentriolar 

matrix deficient 1 (pcmd-1) for reasons specified in the text below. 
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Figure 10: The c17d12.7 (pcmd-1) mutation underlies the t3421 mutant phenotype. (A) 

The illustration shows the genes carrying a mutation in the t3421 mutant within the mapped 

region between the visual markers lin-11(566) and unc-101(m1) (cyan) on chromosome I 
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(also see Table 10). The mutation in the c17d12.7 gene (magenta) was identified to underlie 

the t3421 mutant phenotype. (B) The c17d12.7 gene has nine exons and encodes a 630 amino 

acids (AA) long protein (70.8 kDa), containing a coiled-coil domain (cyan; position (AA): 94-

117) and four unstructured regions (purple; positions (AA): 55-75, 132-142, 152-163, 188-

199) (predicted by SMART, http://smart.embl-heidelberg.de/). The mutation present in the 

t3421 mutant exchanges the Guanine at position 159 to an Adenine. On the protein level, this 

leads to the introduction of a STOP codon (*) at amino acid position Glutamine 54 (Q54) 

(blue). The syb975 allele carries a 1201 bp long N-terminal deletion (grey), including the 

START codon of the gene. The existing C-terminal deletion allele tm8972 deletes 1135 bp, 

spanning the C-terminus and part of the 3’UTR of the gene (grey). Also see Table 12. (C) 

Illustration of different single-copy insertion pcmd-1, and pcmd-1(t3421) constructs fused to 

either mkate2 or gfp fluorophore coding sequences. (D) Rescue experiments. Top: Rescue of 

pcmd-1(t3421) embryonic lethality. The mikSi5[pmex-5:mkate2::pcmd-1(c17d12.7):tbb2] 

allele can partially restore embryonic survival in pcmd-1(t3421) mutants. The strain carries 

different visual markers which likely cause compromised embryonic viability of the rescue 

strain. Bottom: Rescue of pcmd-1(t3421) embryonic lethality. The mikSi6[pmai-2:gfp::pcmd-

1:mai-2] allele can restore embryonic survival in pcmd-1(t3421) mutants to control-like levels 

(note here that this strain does not carry visual markers). On the contrary, the mikSi7[pmai-

2:gfp::pcmd-1(t3421):mai-2] allele cannot restore embryonic survival. The number of n states 

embryos counted in total. Data are represented as mean ± SEM. Also see Table 13. 

 

 

Table 12: Gene positions and visual markers. Displayed are the positions of genes that 

carry mutations in the t3421 mutant and the visual markers that were used for narrowing 

down the mapping region. Positions retrieved from wormbase (version WS269). 

gene Genomic position visual marker 

dao-5 I:10187515..10190896 -- 

lin-11 I:10248256..10255327 lin-11(566) 

b0511.12 I:10654298..10666933 -- 

fkb-7 I:10667808..10671301 -- 

c34b2.6 I:10676922..10682374 -- 

c35e7.11 I:10844772..10845922 -- 

unc-75 I:11592302..11602095 unc-75(e950) 

clec-101 I:11560637..11564387 -- 
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c17d12.7(pcmd-1) I:11604027..11611314 -- 

mutation t3421 in c17d12.7(pcmd-1) I:11611155 -- 

deletion in syb975 (pcmd-1) I: 11610114..11611314 -- 

deletion in tm8972(pcmd-1) I:11603963..11605097 -- 

unc-101 I:12508299..12513419 unc-101(m1) 

flp-33 I:12624235..12625238 -- 

uba-2 I:12741588..12749318 -- 

 

 

Table 13: Rescue of pcmd-1(t3421) embryonic lethality. Different fluorescent fusion 

constructs of pcmd-1 cDNA can restore embryonic survival in pcmd-1(t3421) mutants. 

However, a construct carrying the point mutation present in the pcmd-1(t3421) mutant cannot 

restore embryonic survival. The number of n states embryos counted in total. Data are 

represented as mean ± SEM. 

Genotype Temp. Embryonic viability         
(in % ± SEM) 

lin-11(n556), unc-75(e950) 25°C 93.5 ±   4.7      (n=  276) 

unc-101(m1) 25°C 61.7 ±   8.2    (n=  280) 

lin-11(n556), pcmd-1(t3421), unc-101(m1) 25°C   0.0 ±   0.0 (n=  312) 

mkate2::pcmd-1 25°C 90.3 ± 14.4 (n=  256) 

lin-11(n556), pcmd-1(t3421), unc-101(m1); 

mkate2::pcmd-1 

 

25°C 

 

54.4 ±   6.6 

 

(n=  335) 

    

wild type 25°C 98.0 ±   0.6      (n=  827) 

pcmd-1(t3421) 25°C   0.0 ±   0.0      (n=  825) 

gfp::pcmd-1 25°C 97.5 ±   0.6 (n=  850) 

gfp::pcmd-1(t3421) 25°C 97.9 ±   0.7 (n=  684) 

pcmd-1(t3421); gfp::pcmd-1 25°C 97.2 ±   0.8 (n=  910) 

pcmd-1(t3421); gfp::pcmd-1(t3421) 25°C   0.0 ±   0.0 (n=  662) 

pcmd-1::gfp 25°C 98.3 ±   2.8 (n=    97) 

pcmd-1(t3421)::gfp 25°C 95.1 ±   4.0 (n=    98) 
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3.1.2. PCMD-1 is a centrosomal protein 

 

 To analyze the subcellular localization of the PCMD-1 protein, I performed 

fluorescent live-cell imaging. The previously described mikSi6[pmai-2:gfp::pcmd-1:mai-2] 

allele (Figure 10C) is ubiquitously expressed and the GFP signal was detected throughout 

embryo development, in all larval stages, as well as in the adult animal, where it is detectable 

in the gonads, at the ciliary base and the sperm (Figure 11A-C, and data not shown).  

To analyze the endogenous expression pattern of PCMD-1, the allele 

syb370[gfp::pcmd-1], carrying a GFP inserted upstream of the pcmd-1 genomic locus, was 

generated (Figure 11F, Table 1). GFP::PCMD-1syb370 shows the same sub-cellular localization 

pattern as GFP::PCMD-1mikSi6 and is also expressed in all analyzed tissues throughout 

development up to adulthood (Figure 11D and E). The GFP::PCMD-1syb370 signal at the sperm 

appeared weaker compared to the strain expressing GFP::PCMD-1mikSi6 (data not shown). 

However, this can be an artifact due to the mai-2 promoter activity in GFP::PCMD-1mikSi6 and 

was therefore not further analyzed or quantified. 

The sub-cellular localization of GFP::PCMD-1 resembles that of known centriolar 

proteins. Thus, a strain, carrying the mikSi6[pmai-2:gfp::pcmd-1:mai-2] and the itIs64[ppie-

1:mcherry-TEV-Stag::sas-4] alleles, was crossed, to verify that PCMD-1 localizes to 

centrioles (Table 1). GFP::PCMD-1 co-localizes with mCherry::SAS-4 at centrioles (Figure 

11G). Similarly, in a strain, carrying the mikSi5[pmex-5:mkate2::pcmd-1(c17d12.7):tbb2] and 

vieSiIs[psas-4:gfp::sas-4:sas-4] alleles, mKate2::PCMD-1 localizes at centrioles, as it co-

localizes with GFP::SAS-4 in the germline (Figure 11H). 

In some images taken at the 4D microscope, GFP::PCMD-1mikSi6 appeared as a faint 

halo around centrioles, which suggests a weak association of the protein with the PCM 

(Figure 11A). TAC-1 is a centrosomal protein that is only recruited to the mitotic PCM. Thus, 

a strain, carrying the mikSi5[pmex-5:mkate2::pcmd-1(c17d12.7):tbb2] and the bcSi1[pmex-

5:gfp::tac-1] alleles, was crossed and analyzed for PCM recruitment of mKate2::PCMD-1 at 

the confocal microscope. In the mitotic part of the germline mKate2::PCMD-1 did not expand 

but remained localized in the center of the PCM (data not shown). However, since the 

expression of mKate2::PCMD-1, regulated by pmex-5, is not as strong as the expression of 

GFP::PCMD-1, regulated by pmai-2, I generated the mikSi4[pmex-5:mkate2::tac-1:unc54] 

allele (vector cloning performed by E. Abu Khmail), which was crossed to the GFP::PCMD-1 

marker (cross by A. Kirgis). Also, with this strain PCM localization could not be verified 

satisfactorily (data not shown). Hence, super-resolution images of GFP::PCMD-1mikSi6 
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embryos, stained against GFP and the PCM protein SPD-5, were taken. Indeed, the super-

resolution micrographs confirmed the assumption that GFP::PCMD-1 is weakly associated 

with the PCM (Figure 11I, stainings and imaging by T. Mikeladze Dvali and A. Maiser, Erpf 

et al., 2019). 

Together these findings suggest that PCMD-1 localizes to centrosomes, most likely to 

centrioles or the PCM core and the expandable PCM. However, with the current optical 

resolution, we cannot discriminate between localization to centrioles or localization to the 

PCM core. Further, PCMD-1 is present at centrosomes and basal bodies in all life stages of 

the worm. 
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Figure 11: PCMD-1 localizes to centrosomal structures. DIC and fluorescence images of 

(A) a C. elegans one-cell embryo, (B) the gonad and (C) the mouth region. GFP::PCMD-

1mikSi6 localizes to the center of spindle poles, is visible in the gonads and the mouth region. 

The localization pattern strongly resembles that of known centriolar proteins. Further, in the 

embryo, the signal seems to be weakly associated with the PCM. Scale bars: 5 μm for 
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embryo, gonad and mouth region. 2 μm for blow-ups. (D-E) DIC and fluorescence images of 

(D) a C. elegans one-cell embryo and (E) the mouth region. (D) GFP::PCMD-1syb370 localizes 

to a punctate structure in the one-cell embryo, resembling the localization of known centriolar 

proteins. (E) In the mouth region PCMD-1 is expressed and localizes in a pattern that 

resembles that of known ciliary proteins (see Figure 10, Table 1). PCM association of the 

protein is not detectable, presumably due to a lower protein abundance than in the 

GFP::PCMD-1mikSi6 strain. Scale bars: 5 μm for embryo and mouth region. 3 μm for blow-

ups. (F) Illustration of the endogenously CRISPR GFP-tagged pcmd-1 locus, pcmd-1(syb370) 

allele (Table 1). (G) GFP::PCMD-1mikSi6 co-localizes with mCherry::SAS-4 in the one-cell 

embryo, verifying that PCMD-1 localizes to centrioles. Images were taken at a spinning disc 

microscope. Scale bars: 5 μm for embryo. 2μm for blow-ups. (H) mKate2::PCMD-1 co-

localizes with GFP::SAS-4 in the gonad, verifying that PCMD-1 localizes to centrioles. Scale 

bars: 5 μm for gonad. 3 μm for blow-ups. (I) Super-resolution micrographs of wild-type C. 

elegans one-cell embryo expressing GFP::PCMD-1mikSi6 (also see Figure 10, Table 1). 

Embryos were stained against GFP to visualize PCMD-1 localization and against SPD-5 to 

visualize pericentriolar material (PCM). Images were taken at a 3D SIM OMX microscope. 

Stage: Prometaphase II. The anterior side of the embryo is on the left, and the posterior side is 

on the right. Scale bar: 5 μm for embryo. 2 μm for blow-ups. The GFP::PCMD-1mikSi6 protein 

colocalizes with the PCM protein SPD-5. A bright GFP::PCMD-1mikSi6 dot is visible within 

the broader area of the SPD-5 PCM staining, which represents the centriolar associated 

fraction of PCMD-1. A faint signal of PCMD-1mikSi6 staining is further detectable overlapping 

with the broader area of the SPD-5 PCM staining, verifying PCM association of PCMD-1.  

 

 

To analyze dynamic changes of PCMD-1 over the cell cycle, GFP::PCMD-1mikSi6 

signal intensities were acquired by spinning disc confocal microscopy over time. 

Interestingly, the GFP::PCMD-1mikSi6 signal appears to decrease at centrosomes around 

metaphase (Figure 12A). The GFP signal intensity was measured at single centrioles over 

time and compared to GFP::SAS-4 intensity levels at centrioles (Figure 12B). GFP::PCMD-

1mikSi6 intensity values drop towards metaphase (lowest average intensity at 210 sec after 

PNEB, Figure 12B). The signal intensity at centrioles undergoes a total recovery thereafter (at 

420 sec after PNEB, Figure 12B). On the contrary, such a signal decrease around metaphase 

was not seen for the intensity measurements of GFP::SAS-4 (at 210 sec after PNEB, Figure 

12B). Due to time restrictions, only a few embryos were recorded, and statistical analysis 
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shows no significant difference between GFP::SAS-4 and GFP::PCMD-1mikSi6 measurements. 

Moreover, the embryos with a drop of the GFP signal intensities at centrioles below the 

detection limit were not considered for analysis since no suitable centriolar reference marker 

is available to determine the centriole position in the complete absence of GFP::PCMD-1mikSi6. 

Thus, the changes in signal intensity of GFP::PCMD-1mikSi6 at centrioles are likely 

underestimated. Further analysis is required to test whether PCMD-1 is down-regulated at 

centrosomes during metaphase (Figure 12B). Also, the possibility of a bleaching artifact has 

to be excluded. 

A truncated N-terminal part of the protein could still be functional and might be 

detectable at centrosomes or other cellular structures. To determine whether the PCMD-

1(t3421) mutant protein has residual activity, the strain carrying the mikSi7[pmai-

2:gfp::pcmd-1(t3421):mai-2] allele was analyzed over time. No GFP signal was detected at 

any cellular structure at 15 or 25 °C (data not shown), suggesting that a functional N-terminal 

part of the protein is not present in detectable amounts in the pcmd-1(t3421) mutant. Further, 

downstream of the t3421 mutation are several in-frame alternative start codons that might be 

used and could potentially give rise to a functional truncated C-terminal part of the PCMD-1 

protein (Table 14). Thus, also the mikSi9[pmai-2:pcmd-1::gfp:mai-2] and mikSi8[pmai-

2:pcmd-1(t3421)::gfp:mai-2] alleles were analyzed and compared for their protein 

localization (Figure 10C). Both proteins, PCMD-1::GFP and PCMD-1(t3421)::GFP, behave 

as their N-terminal fusion counterparts at 15 or 25 °C. PCMD-1(t3421)::GFP cannot be 

detected at centrosomes or any other cellular structure (Figure 12C). The result suggests that a 

truncated C-terminal part of the protein is not present in detectable amounts in the pcmd-

1(t3421) mutant. 

The protein abundance of the N- and C-terminal GFP-PCMD-1 fusion proteins was 

further checked by western blot analysis. The N- and C- terminal PCMD-1 fusion proteins 

were visible on the blot at the expected size of 97.95 kDa (Table 15, Figure 12D). The N-

terminal strain shows two additional bands at ~28 kDa, which might be cleaved GFP (Figure 

12D).  On the contrary, no bands were detected for GFP::PCMD-1(t3421), with an expected 

size of 33,31 kDa, or PCMD-1(t3421)::GFP, with an expected size of 85,79 kDa (Table 14 

and 15, Figure 12D). In summary, the western blot analysis supports the conjecture that 

truncated version of PCMD-1 is not present in detectable amounts in pcmd-1(t3421) mutants. 

However, the analysis cannot exclude the possibility that low amounts of truncated PCMD-1, 

below the detection limit, are generated.  
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Figure 12: Analysis of PCMD-1 and PCMD-1(t3421) GFP fusion proteins. (A) 

GFP::PCMD-1mikSi6 temporal recordings. An embryo carrying the mikSi6[pmai-2:gfp::pcmd-

1:mai-2] allele is displayed. Images were taken at a spinning disc microscope. The anterior 

side of the embryo is on the left and the posterior side is on the right. Timestamps in seconds 

relative to PNEB. Scale bars: 5 μm for the embryo, 3 μm for the blow-ups. Less 

GFP::PCMD-1mikSi6 appears to be localized at centrosomes at meta- and anaphase. (B) GFP 

intensity measurements of single centrosomes of GFP::PCMD-1mikSi6 and GFP::SAS-4 in 

embryos, starting from shortly after fertilization until completion of the first cell division. The 

images measured correspond to Figure 12A. The radius of measured volume: 1.001 μm. 

GFP::PCMD-1mikSi6 intensity drops around meta- and anaphase and recovers after that. 

Control GFP::SAS-4 measurements do not show this drop of intensity during metaphase. 



RESULTS 
 

71 

Note here that only embryos with a residual signal at centrioles in meta- and anaphase were 

measured to ensure measurements of the right area. Intensities are not significantly different 

at 180 s after PNEB (nGFP::SAS-4 = 6, nGFP::PCMD-1 = 10; p = 0,0772; data not shown). The 

number of n states single centrioles measured. Intensity measurements were performed using 

TrackMate (Jaqaman et al., 2008) (C) Subcellular localization of C-terminally GFP-tagged 

PCMD-1 and PCMD-1(t3421) fusion proteins at 25 °C (Also see Figure 10C and Table 1). 

DIC and fluorescent images of one-cell embryos at PNM recorded at a spinning disc confocal 

microscope. The anterior side of the embryo is on the left and the posterior side is on the 

right. Scale bars: 5 μm for the embryo, 3 μm for the blow-ups. PCMD-1::GFP localizes to 

centrioles as previously described for GFP::PCMD-1 constructs (mikSi6[pmai-2:gfp::pcmd-

1:mai-2] single-copy integration and syp370[[gfp::pcmd-1]::loxp] CRISPR alleles). In 

contrast, PCMD-1(t3421)::GFP does neither localize to the centrosome nor any other 

subcellular structure. (D) Western blot analysis of N- and C-terminally GFP-tagged PCMD-1 

and PCMD-1(t3421) fusion proteins. An anti-GFP antibody was used for protein detection 

(Table 6). No bands were detected for control worm lysates. GFP::PCMD-1 shows a band 

with the expected size of 97.95 kDa (Table 15). Additionally, two bands are detected at 

around 28 kDa. For GFP::PCMD-1(t3421) no band was detected. Expected size for a 

truncated GFP::PCMD-1(t3421) protein would have been 33.31 kDa (Table 15). The C-

terminally GFP-tagged PCMD-1 protein shows one band at the expected size of 97.95 kDa. 

Also the C-terminally tagged PCMD-1(t3421) is not detectable (Table 15). In case of the use 

of the earliest possible alternative START codon after the t3421 mutation, a protein of 85.78 

kDa in size would have been expected (Table 15, also see Table 14). 

 

 

Table 14: Alternative in-frame START codons that occur after the t3421 mutation in the 

pcmd-1 gene. These codons could potentially be used to initiate transcription in the pcmd-

1(t3421) mutant and lead to the production of a truncated protein at the permissive 

temperature. The use of an alternative start codon could explain the temperature-sensitive 

nature of the pcmd-1(t3421) and pcmd-1(syb975) alleles. * Alternative start codons eliminated 

in the pcmd-1(syb975) deletion allele. 

In-frame START codon  
downstream of t3421 mutation 

Genomic position bp after original START 

Alternative START codon 1 I: 11610944   371* 

Alternative START codon 2 I: 11610891   424* 

Alternative START codon 3 I: 11610244 1071* 
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Alternative START codon 4 I: 11610181 1134* 

Alternative START codon 5 I: 11610178 1137* 

Alternative START codon 6 I: 11610175 1140* 

Alternative START codon 7 I: 11607930 3385 

Alternative START codon 8 I: 11607690 3625 

Alternative START codon 9 I: 11606980 4335 

Alternative START codon 10 I: 11606611 4704 

Alternative START codon 11 I: 11604938 6377 

Alternative START codon 12 I: 11604899 6416 

   

 

Table 15: Expected molecular weights of GFP fusion proteins. 

Fusion protein Expected molecular weight (kDa) 

GFP::PCMD-1 97.95 

PCMD-1::GFP 97.95 

GFP::PCMD-1(t3421) 33.31 

PCMD-1(t3421)::GFP 85.78 

 

 

 

3.1.3. A centriole duplication defect cannot account for the pcmd-1(t3421) 

mutant phenotype 

 

 To better understand the aberrations present in pcmd-1(t3421) mutant embryos, a 

mutant strain carrying the estSi121[pmex-5:tpxl-1WT::mNeonGreen:tbb-2] allele was crossed 

(Mangal et al., 2018). In the control, TPXL-1::mNG localizes to the centrosome shortly after 

fertilization. As the PCM expands, TPXL-1 accumulates at the centrosome. It further localizes 

to microtubules (n = 5; Figure 13A; Özlü et al., 2005; Mangal et al., 2018). Strikingly, in 

pcmd-1(t3421) mutants TPXL-1::mNG is not detectable at centrosomes in 44 % of embryos at 

PNMi (n = 9, Figure 13B and C). In those forming monopolar spindles in metaphase, TPXL-

1::mNG is accumulating in the center of the spindle and localizes to the microtubules 

emerging from there (Figure 13B). Failed bipolar spindle formation in the first cell cycle can 

be explained by a centriole duplication or maintenance defect of paternally derived centrioles. 
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Also a defect in centriole maturation that causes aberrant PCM formation can lead to 

monopolar spindle formation in early embryos.  

 

 

 
 

Figure 13: TPXL-1::mNG in control and pcmd-1(t3421) mutant embryos. (A-B) Images 

were taken at a spinning disc microscope. The anterior side of the embryo is on the left and 

the posterior side is on the right. Scale bar: 5 μm. (A) Control embryos show TPXL-1::mNG 

localization to centrosomes shortly after fertilization. At metaphase TPXL-1::mNG localizes 

to centrosomes and microtubules. (B) In pcmd-1(t3421) mutant embryos GFP does not 

localize to centrosomes after fertilization. At metaphase the embryo forms a monopolar 

spindle and TPXL-1::mNG accumulates at the center and localizes to the emanating 

microtubules. (C) Analysis of TPXL-1::mNG centrosome recruitment in control and pcmd-

1(t3421) mutant embryos at PNMi. The number of n states embryos counted in total. Embryos 

were categorized according to their potential to accumulate TPXL-1::mNG during PNMi. 

 

 

To determine if centriole duplication, maintenance or maturation are impaired in 

pcmd-1(t3421) mutant embryos, immunostainings were performed with antibodies against 

SAS-4, to analyze centriole number, and α-tubulin, to infer from the microtubule nucleation 

activity of the centrosomes, whether centrosome function is compromised downstream of 

centriole formation (Figure 14A-D). Shortly after fertilization centrioles start recruiting PCM 
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and microtubules start to nucleate. Microtubule mediated pulling forces act on the 

centrosomes, thereby separating them (Cabral et al., 2013). In wild-type embryos, 50 % of the 

embryos showed one SAS-4 focus during pronuclear migration (PNMi), whereas the rest of 

the embryos already carried two separated SAS-4 foci. In contrast, 76 % of the pcmd-1(t3421) 

mutant embryos show a single SAS-4 focus during PNMi. Only 24 % have two SAS-4 foci at 

that stage (Figure 14E). Interestingly, microtubule nucleation activity was also affected in 

pcmd-1(t3421) mutant embryos during PNMi, with 77 % of the mutant embryos not 

nucleating microtubules (Figure 14F). In metaphase of the first cell cycle, in 85 % of the wild-

type embryos, two SAS-4 foci were detected. Only a small fraction carried three to four SAS-

4 foci. These represent embryos, which have started to enter anaphase and centrioles 

disengaged (n = 20; 2 SAS-4 foci = 5 %, 3 SAS-4 foci = 10%, Figure 14E). 5 % of the pcmd-

1(t3421) mutants carry only one SAS-4 focus. However, the majority of 69 % of embryos 

show two SAS-4 foci, while the rest of the embryos have three to four foci (n = 39; 3 SAS-4 

foci = 21 %, 4 SAS-4 foci = 5%, Figure 14E). The findings can be explained by either a mild 

centriole duplication defect or a centriole separation defect, where centrioles in close 

proximity appear as one SAS-4 focus. Judged from the presence of multiple SAS-4 foci, 95 % 

of the embryos carry a sufficient number of centrioles to form a bipolar spindle (Figure 14B-

D and E). Thus, a centriole duplication or maintenance phenotype cannot explain the 

formation of monopolar spindles during the first cell cycle (Figure 14B and D). Further 

supporting this assumption, also in metaphase of the second cell cycle all embryos carry at 

least 3 SAS-4 foci (29 %) or more (4 SAS-4 foci = 57 % and 5 SAS-4 foci = 14 %, Figure 

14E). In mitosis I, 10 % of the centrioles are not associated with microtubules and thus are not 

contributing to spindle formation (Figure 14F). Strikingly, 27 % of microtubule asters are not 

emanating from SAS-4 foci (Figure 14G).  

Overall, these findings indicate that monopolar spindle formation in one-cell pcmd-

1(t3421) mutant embryos might be caused by a defect in PCM recruitment to centrioles, rather 

than a defect in centriole duplication. 
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Figure 14: Centriole duplication in wild-type and pcmd-1(t3421) mutant embryos. 

Centriole duplication defects cannot account for the pcmd-1(t3421) mutant phenotype. (A-D) 

Immunofluorescent images of wild-type and pcmd-1(t3421) C. elegans one-cell embryos and 

corresponding blow-ups. Embryos were stained against α-Tubulin, to visualize microtubules, 

and SAS-4, to visualize centrioles. Hoechst staining was used to visualize DNA. Images were 

taken at a confocal microscope. The anterior side of the embryos is on the left and the 

posterior side in on the right. Scale bars: 5 μm for the embryos, 3 μ for the blow-ups. (A) In 
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wild-type embryos, two SAS-4 foci are present at metaphase. At this cell cycle stage, the two 

SAS-4 foci represent two centriolar pairs, so that in total, four centrioles are present in the 

embryo. (B) This pcmd-1(t3421) mutant embryo forms a monopolar spindle. At the center of 

the spindle the two centrosomes both harbor two SAS-4 foci. (C) An abnormal bipolar spindle 

is formed in this pcmd-1(t3421) mutant embryo. Two SAS-4 foci are present in the embryo. 

However, they are both in the center of the anterior spindle pole. The posterior spindle pole 

does not contain any SAS-4 foci. (D) The embryo forms a monopolar spindle. Two SAS-4 

foci are present. They are in close proximity, and only one of the centrosomes shows 

microtubule nucleation activity. (E) Centriole duplication analysis in wild-type and pcmd-

1(t3421) mutant embryos at PNMi, in mitosis I and mitosis II. The number of n states the 

embryos counted in total. SAS-4 foci were counted per embryo. (F) Analysis of the 

microtubule nucleation capacity of centrosomes in wild-type and pcmd-1(t3421) mutant 

embryos at PNMi and in mitosis I. The number of n states the SAS-4 foci counted in total. (G) 

Analysis of the microtubule aster formation and their association with SAS-4 foci in wild-type 

and pcmd-1(t3421) mutant embryos in mitosis I. The number of n states the microtubule 

asters counted in total. 

 

 

3.1.4. PCMD-1, a long-missing link between centrioles and PCM formation in C. 

elegans 

 

 In C. elegans it is unknown which component connects the PCM to centrioles. The 

most upstream known factor that is required for PCM recruitment is the centrosome matrix 

protein SPD-5. At mitotic entry, SPD-5 gets phosphorylated by PLK-1 and changes its 

conformation into an assembly competent state (Wueseke et al., 2016). SPD-5 then forms the 

PCM matrix to recruit downstream factors to the centrosome. Thus, to determine whether 

PCM recruitment is compromised in pcmd-1(t3421) mutants, the itSi202[pspd-2::gfp::spd-5] 

allele was crossed into the mutant to monitor the matrix protein over time (Table 1). In control 

C. elegans embryos, GFP::SPD-5 localizes to centrosomes shortly after fertilization and 

accumulates until metaphase, reaching peak intensity in early anaphase, ~180s after NEBD (n 

= 10, Figure 15A and E). Pcmd-1(t3421) mutant embryos show a very severe but diverse 

defect in PCM recruitment. In 42 % of the embryos, no GFP signal is detected after 

fertilization until PNEB (n = 12, Figure 15D), consistent with what was seen in mutant 

embryos expressing TPXL-1::mNG. In 25 % of the embryos, GFP::SPD-5 starts 
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accumulating within the embryo after PNEB and around metaphase only (Figure 15C). The 

remaining mutant embryos (25 %, n = 12) show early GFP::SPD-5 accumulation after 

fertilization. However, in all pcmd-1(t3421) mutant embryos, overall PCM formation was 

strongly perturbed, and the PCM appeared unstable and fragmented (Figure 15B). To 

compare GFP::SPD-5 recruitment efficiencies in control and pcmd-1(t3421) mutants, 

intensity measurements were performed through Z-stacks using TrackMate (Figure 16, 

Tinevez et al., 2017). The intensity measurements of GFP::SPD-5 in control and mutant 

embryos show a significant difference of GFP::SPD-5 accumulation at centrosomes over time 

(control: n = 10, pcmd-1(t3421): n = 4, Figure 15E). Note here that intensity measurements 

were only performed for mutant embryos, which accumulated PCM shortly after fertilization. 

Ideally, a counter marker for centrioles should have been used to determine the centrosome 

position and to measure intensities in all embryos. However, an existing strain ItIs64[ppie-

1:mcherry-TEV-Stage::sas-4] and a newly generated strain mikSi10[psas-4:mKate2::sas-

4:sas-4] bleached too fast during recordings, and are therefore not suitable for long term 

imaging. Thus, the measurements underestimate the GFP::SPD-5 accumulation phenotype. 

Especially at metaphase, GFP::SPD-5 showed a strongly significant difference between GFP 

intensity in control and pcmd-1(t3421) mutant embryos (control: n = 10, pcmd-1(t3421): n = 

7, p < 0.0001; Figure 15C). Embryos were categorized according to their signal intensity 

(Figure 16A, C). Note here that only GFP levels in mutant embryos of the categories II-IV 

with a GFP signal at metaphase were measured (16A, C). 

The results suggest that PCMD-1 is required for effective SPD-5 localization to non-

mitotic centrosomes. Further, in pcmd-1(t3421) mutants, mitotic SPD-5 accumulations appear 

fragmented and unstable. Similar observations were made for other PCM proteins such as 

SPD-2 and TAC-1 (data not shown), suggesting an additional PCM stabilizing role of PCMD-

1. This phenotype has not been described previously in C. elegans. 
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Figure 15: Aberrant PCM formation in pcmd-1(t3421) mutant embryos. Analysis of the 

SPD-5 centrosome matrix formation in control and pcmd-1(t3421) mutant embryos. SPD-5 

accumulates non-spherically in pcmd-1(t3421) mutant embryos. (A-D) Fluorescence images 

of control and pcmd-1(t3421) mutant one-cell embryos expressing GFP::SPD-5. Images were 

taken at a spinning disc confocal microscope. Stages: PNM, prometaphase I and metaphase I. 

The anterior side of the embryo is on the left and the posterior side is on the right. Maximum 

projections of z-stacks through the embryo. Scale bars: 5 μm for the embryos, 3 μm for the 

blow-up in (C). (A) Control one-cell embryo. GFP::SPD-5 accumulates spherically at 

centrosomes shortly after fertilization. The signal at centrosomes increases at mitotic entry. 

(B) Pcmd-1(t3421) mutant one-cell embryo. Embryo showing high levels of GFP::SPD-5. 

The centrosome matrix appears highly fragmented. This phenotype was detected in 16.7% of 

the analyzed embryos. (C) Pcmd-1(t3421) mutant one-cell embryo. Embryo showing low 

levels of GFP::SPD-5. Also here, a fragmentation of the matrix was observed. This phenotype 

was detected in 41,6% of the analyzed embryos. Magnification of GFP::SPD-5 accumulation: 

Z-stack of 3 planes. (D) Pcmd-1(t3421) mutant one-cell embryo. Embryo showing no 

GFP::SPD-5 at any cell cycle stage. This phenotype was detected in 41,7% of the analyzed 

embryos. (E) Intensity quantifications of GFP::SPD-5 accumulations in control and pcmd-

1(t3421) mutant embryos over time (shortly after fertilization until end of cell cycle I; control: 

n = 10, pcmd-1(t3421): n = 4). The number of n states the embryos measured in total. The 

radius of measured volume: 2.491 μm. Intensity measurements were performed using 

TrackMate (Jaqaman, Loerke and Mettlen, 2008). (F) Intensity quantifications of GFP::SPD-5 

accumulation in control and pcmd-1(t3421) mutant embryos at metaphase I. The difference in 

intensity between control and pcmd-1(t3421) embryos is significant. (control: n = 10, pcmd-

1(t3421): n = 7, p-value: < 0.0001). The number of n states the embryos measured in total. 

The radius of measured volume: 2.491 μm. Intensity measurements were performed using 

TrackMate (Jaqaman, Loerke and Mettlen, 2008). 
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Figure 16: Aberrant PCM formation in pcmd-1(t3421) mutants in mitosis. GFP::SPD-5 

measurements in control and pcmd-1(t3421) mutant embryos. The pcmd-1(t3421) centrosome 

matrix fragmentation phenotype is diverse. (A) Fluorescence images of GFP::SPD-5 

accumulations in control and pcmd-1(t3421) mutant one-cell embryos expressing GFP::SPD-

5. Images were taken at a spinning disc confocal microscope. Single z-planes through 

GFP::SPD-5 accumulations are shown. Stages: Metaphase I. Scale bar: 3 μm. (B) Scheme of 

GFP::SPD-5 signal quantifications. GFP intensities were measured through z-stacks using 

track mate. Radius: 2.491 μm. Measurements of the image background (B1 and 2), embryo 

background (EB1 and 2), and GFP::SPD-5 accumulations (C1 and 2) were taken. (C) Table 

showing the frequencies of GFP::SPD-5 phenotypes in pcmd-1(t3421) mutants (n = 12). The 

number of n states the embryos counted in total. Frequencies are shown in percentages. Data 

were taken from fluorescence recordings taken at a spinning disc confocal as shown in Figure 

16B. Intensity cut-off values: I: >35%, II: >10%, III: >9.1%, IV: >8% (or still detectable by 

eye), V: ≤8 (or not detectable by eye). 
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3.1.5. PCMD-1 cooperates with key centrosomal components and ensures 

structured centrosome matrix formation in the C. elegans one-cell embryo 

 

 As known from other organisms, CDK5RAP2SPD-5 is part of a conserved module, 

which ensures efficient PCM formation in mitosis (Conduit et al., 2014). CDK5RAP2SPD-5 

forms this module together with pericentrin, the kinase PLK1PLK-1, and Cep192SPD-2. It was 

shown in C. elegans that SPD-5 could undergo a conformational change and thereby 

transition into a self-assembly competent state. The protein can then form micrometer-sized 

porous networks in vitro (Woodruff et al., 2015). Moreover, phosphorylation by PLK-1, 

beginning with the mitotic entry in vivo, strongly accelerates the self-assembly rate of SPD-5 

(Woodruff et al., 2015; Wueseke et al., 2016). Further, the centrosomal protein SPD-2 is 

required for centrosome matrix expansion upon mitotic entry (Kemp et al., 2004; Pelletier et 

al., 2004; Decker et al., 2011). SPD-2 was shown to also accelerate SPD-5 self-assembly into 

networks in vitro (Woodruff et al., 2015).  

As described above, GFP::SPD-5 is absent from non-mitotic centrosomes in pcmd-

1(t3421) mutant embryos, suggesting that PCMD-1 is required for the PCM core formation. 

However, in metaphase, more than half of the pcmd-1(t3421) mutants accumulate some PCM 

on at least one of the centrosomes (n = 7 of 12). Since SPD-2 and PLK-1 have been 

previously shown to be required for efficient SPD-5 self-assembly, I examined their role in 

establishing the remaining GFP::SPD-5 formations in the pcmd-1(t3421) mutant. To test 

whether SPD-2 and PCMD-1 genetically interact or work in parallel to organize PCM 

recruitment, GFP::SPD-5 localization to the centrosome was monitored in pcmd-1(t3421) 

mutants exposed to spd-2 RNAi (RNAi experiments performed by M. Antoniolli, live 

imaging performed together with M. Antoniolli). In control embryos, treated with control 

mock RNAi, GFP::SPD-5 is recruited to centrosomes after fertilization and PCM expansion 

takes place normally (n = 10, Figure 17A and E). Further, control pcmd-1(t3421) mutant 

embryos show the anticipated phenotype, with most embryos (83 %) not recruiting 

GFP::SPD-5 to centrosomes after fertilization, and a severely reduced and fragmented PCM 

phenotype during mitosis (n = 6, Figure 17B and E). As previously reported, in spd-2 RNAi 

treated control embryos, GFP::SPD-5 still localized to centrioles, but mitotic PCM expansion 

is not taking place (n = 10, Figure 17C and E; Kemp et al., 2004; Pelletier et al., 2004). 

GFP::SPD-5 is completely absent in pcmd-1(t3421) mutant embryos treated with spd-2 RNAi, 

indicating an additive role of PCMD-1 and SPD-2 in GFP::SPD-5 recruitment (n = 10, Figure 

17D and E). Due to the complete lack of detectable GFP::SPD-5 signal in spd-2 RNAi treated 
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pcmd-1(t3421) embryos, intensity measurements were not performed. Overall the results 

suggest a collaborative role of PCMD-1 and SPD-2 in mitotic PCM expansion.  
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Figure 17: PCMD-1 and SPD-2 collaborate for mitotic PCM formation. Analysis of the 

SPD-5 centrosome matrix formation in control and pcmd-1(t3421) mutant embryos treated by 

mock and spd-2 RNAi. Downregulation of SPD-2 eliminates residual GFP::SPD-5 

accumulation in pcmd-1(t3421) mutant embryos. (A-D) Fluorescence images of control and 

pcmd-1(t3421) mutant one-cell embryos expressing GFP::SPD-5 treated by RNAi. Images 

were taken at a spinning disc confocal microscope. Stages: PNM, prometaphase I and 

metaphase I. The anterior side of the embryo is on the left and the posterior side is on the 

right. Maximum projections of z-stacks of 29 planes through the embryo. Scale bars: 5 μm for 

the embryos. (A) Control one-cell embryo treated with mock RNAi. GFP::SPD-5 accumulates 

spherically at centrosomes shortly after fertilization, as previously described for embryos not 

treated with RNAi. The signal at centrosomes increases at mitotic entry. (B) Pcmd-1(t3421) 

mutant one-cell embryos treated with mock RNAi. GFP::SPD-5 accumulates only around 

metaphase and appears fragmented, as previously described for embryos not treated by RNAi. 

(C) Control one-cell embryo treated with spd-2 RNAi. GFP::SPD-5 localizes to centrosomes 

shortly after fertilization. If SPD-2 is downregulated, the PCM does not expand upon mitotic 

entry. (D) Pcmd-1(t3421) mutant one-cell embryos treated with spd-2 RNAi. GFP::SPD-5 

does not accumulate at any structure at any cell cycle stage. (E) Analysis of GFP::SPD-5 

centrosome matrix protein accumulations in control and pcmd-1(t3421) mutant embryos 

treated by mock and spd-2 RNAi. Embryos were categorized according to their potential to 

accumulate GFP::SPD-5 during PNM and metaphase I. Since no GFP::SPD-5 signal is 

detectable in pcmd-1(t3421) mutant embryos treated by spd-2 RNAi, no intensity 

measurement were performed. The number of n states embryos counted in total. 

 

 

Next, I analyzed the role of PLK-1 in the formation of residual GFP::SPD-5 

accumulations in pcmd-1(t3421) mutant embryos. As mentioned earlier, PLK-1 

phosphorylates SPD-5 to initiate mitotic centrosome expansion. Thus, PLK-1 might facilitate 

the residual SPD-5 accumulations similar to SPD-2. I used RNAi to downregulate PLK-1. 

However, since strongly penetrant plk-1 RNAi conditions (25 °C for 16 h) lead to embryonic 

arrest as single cells (Chase et al., 2000), I employed a milder RNAi treatment at 20 °C for 24 

h. Control embryos exposed to mock RNAi did phenotypically not differ from untreated wild-

type embryos (Figure 18A and B). The temperature-sensitive pcmd-1(t3421) mutants exposed 

to a semi-permissive temperature of 20 °C, and treated by mock RNAi, can recruit GFP::SPD-

5 to centrosomes before mitotic entry (Figure 18A and B). In metaphase I, these embryos do 
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form bipolar spindles. However, under these conditions, the PCM does appear highly 

fragmented and instable (Figure 18A and B). Control embryos exposed to the mild plk-1 

RNAi do localize GFP::SPD-5 at centrosomes, but mitotic expansion of the PCM is 

compromised (Figures 17A and B, note here that the PNEB does not take place in plk-1 RNAi 

treated embryos (Chase et al., 2000; Rahman et al., 2015). Since, at 20 °C, mock RNAi 

treated pcmd-1(t3421) mutant embryos still localize GFP::SPD-5 to the centrosome before 

mitotic entry (before mitotic onset of SPD-5 phosphorylation by PLK-1), and since the mild 

plk-1 RNAi alone is only compromising PCM expansion, I would expect that pcmd-1(t3421) 

mutant embryos, exposed to mild plk-1 RNAi, are still accumulating reduced levels of 

GFP::SPD-5 at centrosomes prior to mitotic onset. Further, I would expect that the expansion 

of the PCM does not take place, as expected for an additive effect of the PCMD-1 and PLK-1 

compromised functions. Importantly, not any GFP signal was detectable in 83 % of the 

embryos (n=24, Figures 18A and B). The embryos appeared extremely sick and arrested in 

development as single cells (Figures 18A and B). This experiment suggests that the partial 

downregulation of the two proteins has a synergistic effect, indicating a genetic interaction of 

PCMD-1 and PLK-1 that remains to be investigated. 
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Figure 18: PCMD-1 and PLK-1 facilitate SPD-5 centrosome matrix formation. Analysis 

of the SPD-5 centrosome matrix formation in control and pcmd-1(t3421) mutant embryos 

treated by mock and plk-1 RNAi. Downregulation of PLK-1 eliminates residual GFP::SPD-5 

accumulation in pcmd-1(t3421) mutant embryos. (A) Fluorescence images of control and 

pcmd-1(t3421) mutant one-cell embryos expressing GFP::SPD-5 treated by RNAi. Images 

were taken at a 4D microscope. Stages: metaphase I. The anterior side of the embryo is on the 

left, and the posterior side is on the right. Scale bars: 5 μm. Control embryos treated by mock 

RNAi show normal GFP::SPD-5 accumulation at centrosomes. Pcmd-1(t3421) mutant 

embryos treated with mock RNAi show fragmented GFP::SPD-5 accumulations. Control 

embryos treated with plk-1 RNAi show reduced GFP::SPD-5 PCM expansion at metaphase. 

Pcmd-1(t3421) mutant embryos treated with control plk-1 RNAi lack detectable GFP::SPD-5 

accumulations. Only 17% of the embryos have residual GFP::SPD-5 signal (n = 24). (B) 

Analysis of GFP::SPD-5 accumulations in control and pcmd-1(t3421) mutant embryos treated 

by mock and plk-1 RNAi. Embryos were categorized according to their potential to 
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accumulate GFP::SPD-5 at metaphase I. Since no GFP::SPD-5 signal is detectable in pcmd-

1(t3421) mutant embryos treated by plk-1 RNAi, no intensity measurements were performed. 

The number of n states embryos counted in total. 

 

 

Subsequently, I investigated how SPD-2 is regulated at the centrosome in pcmd-

1(t3421) mutant embryos. To analyze SPD-2 recruitment to centrosomes, the ItIs69[ppie-

1:mcherry::spd-2] allele was crossed into the pcmd-1(t3421) mutant. In the control embryo, 

mCherry::SPD-2 localizes to centrosomes (Figure 19A, n=1). It was previously shown that a 

centriolar and a PCM pool of SPD-2 exist (Kemp et al., 2004; Pelletier et al., 2004). The 

PCM levels were diminished in recordings of mCherry::SPD-2 expressing pcmd-1(t3421) 

mutant embryos, similarly to what I previously described for GFP::SPD-5 in pcmd-1(t3421) 

mutants. However, at the center of a spindle, SPD-2 was still present in those embryos (Figure 

19B, n=2). In the gonad of mCherry::SPD-2 expressing mutant embryos, the protein still 

localized to centrioles (n=4, control: n=4; data not shown). The data suggest that only the 

PCM pool of SPD-2 is recruited to the centrosome downstream of PCMD-1.  

 

 

 
 

Figure 19: SPD-2 is present at centrioles in pcmd-1(t3421) mutant embryos. Analysis of 

the SPD-2 centrosome matrix formation in control and pcmd-1(t3421) mutant embryos. 

Fluorescence images of control and pcmd-1(t3421) mutant one-cell embryos expressing 

mCherry::SPD-2. Images were taken at a 4D microscope. Stages: metaphase I. The anterior 

side of the embryo is on the left, and the posterior side is on the right. Scale bars: 5 μm. (A) 

Control embryos show mCherry::SPD-2 localizing to the expanded PCM. (B) In pcmd-
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1(t3421) mutant embryos mCherry::SPD-2 does not expand. A weak fluorescent signal is still 

visible at the center of the monopolar spindle. 

 

 

As mentioned above, PLK-1 is the kinase that phosphorylates the centrosome matrix 

protein SPD-5 upon mitotic entry for SPD-5 transition into a self-assembly competent state, 

and thus, triggers PCM expansion (Wueseke et al., 2016). PLK-1 was shown to localize to 

centrosomes and kinetochores in C. elegans (Chase et al., 2000). To test for abnormalities of 

PLK-1 dynamics in pcmd-1(t3421) mutant embryos, a strain, carrying the it18[[plk-

1::sgfp]::loxp] single-insertion and pcmd-1(t3421) mutant alleles, was generated. Control 

embryos showed robust PLK-1::sGFP accumulation at centrosomes shortly after fertilization, 

and an increase of intensity at centrosomes until metaphase as the cell cycle progresses (data 

not shown, Wang et al., 2017). PLK-1::sGFP also localizes to kinetochores upon nuclear 

envelope breakdown (data not shown, Wang et al., 2017). In contrast, the PLK-1::sGFP signal 

is barely detectable at centrosomes in pcmd-1(t3421) mutant embryos. Moreover, the PLK-

1::sGFP signal does not expand in mutants upon mitotic entry (data not shown).  

The residual PLK-1::sGFP at centrosomes might be recruited by the other components 

of the conserved centrosome module, namely SPD-5 or SPD-2. To distinguish the cell cycle 

stages more easily, the itIs37[ppie-1:mcherry::h2b:pie-1] allele was crossed into the strains 

that carry the it18[[plk-1::sgfp]::loxp] allele in either control or pcmd-1(t3421) mutant 

background (Table 1, cross done by M. Museridze). SPD-5 is not or barely detectable at 

centrosomes in 67% of pcmd-1(t3421) mutants (Figure 15 C and D, Figure 16A and C, 

phenotype IV and V). Thus, SPD-5 is unlikely responsible for residual PLK-1::sGFP 

recruitment to centrosomes in the mutants. To proof this, spd-5 RNAi was employed to 

downregulate the protein in control and pcmd-1(t3421) mutant embryos. As expected, in 

control embryos exposed to mock RNAi, PLK-1::sGFP localizes to centrosomes and 

kinetochores (n = 9; Figure 20A, Figure 21A). In pcmd-1(t3421) mutants treated with mock 

RNAi, signal intensity is strongly reduced, but a small fraction of PLK-1::sGFP is still 

detectable at centrosomes (n = 8; Figure 20B, Figure 21A). When control embryos were 

exposed to spd-5 RNAi, PLK-1::sGFP does still localize to centrosomes. However, the signal 

intensity does not increase towards metaphase (n = 8; Figure 20C, Figure 21A). As expected, 

in spd-5 RNAi treated pcmd-1(t3421) mutant embryos, PLK-1::sGFP is still present at 

centrosomes, and only PCM expansion is compromised as seen for control embryos (n = 7; 

Figure 20D, Figure 21A). To determine PLK-1 recruitment efficiency to centrosomes, PLK-
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1::sGFP intensities were measured in control and mutant background. Measurements were 

taken before PNEB, to ensure that the kinetochore PLK-1::sGFP protein pool accumulating 

upon mitosis was not mistaken for the centrosomal fraction of the protein (Figure 21B). The 

overall signal intensity of PLK-1::sGFP at centrosomes is drastically reduced in pcmd-

1(t3421) mutant embryos exposed to mock RNAi, and the residual signal is barely detectable 

by eye. In control embryos exposed to spd-5 RNAi, PLK-1::sGFP is reduced at centrosomes. 

However, the signal is not significantly different from pcmd-1(t3421) mutant embryos treated 

with control RNAi. Further, in pcmd-1(t3421) embryos treated with spd-5 RNAi, PLK-

1::sGFP levels are reduced. The signal intensity is not significantly different from pcmd-

1(t3421) mutant embryos treated with control RNAi, and PLK-1::sGFP is still detectable at 

centrosomes. Taken together, the results show that PCMD-1 is critical for efficient PLK-1 

recruitment to centrosomes and that SPD-5 does not recruit residual PLK-1::sGFP to 

centrosomes in pcmd-1(t3421) mutant embryos. On the other hand, SPD-2 is still present at 

centrioles in pcmd-1(t3421) mutant embryos (Figure 19). Further, SPD-2 was shown to be 

required for PLK-1 recruitment to the PCM (Decker et al., 2011), and thus might recruit the 

residual PLK-1::sGFP to centrosomes in pcmd-1(t3421) mutant embryos. To test this 

possibility, spd-2 RNAi was used to downregulate the protein in control and mutant embryos. 

Importantly, PLK-1::sGFP was not detectable at centrosomes in spd-2 RNAi treated control 

embryos (n = 9; Figure 20E, Figure 21A). As expected, none of the spd-2 RNAi treated pcmd-

1(t3421) mutant embryos recruit PLK-1::sGFP to centrosomes (n = 10; Figure 20F, Figure 

21A). Since PLK-1::sGFP is not detectable in spd-2 RNAi treated embryos, no GFP intensity 

measurements were performed. Taken together the results suggest that the centriolar PLK-1 

pool is recruited to centrosomes by SPD-2 in C. elegans.  
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Figure 20: PLK-1 localization to centrosomes depends on SPD-2. Analysis of the PLK-1 

recruitment to the PCM in control and pcmd-1(t3421) mutant embryos treated by mock, spd-5, 

and spd-2 RNAi. Fluorescence images of control and pcmd-1(t3421) mutant one-cell embryos 

expressing PLK-1::sGFP treated by RNAi. Images were taken at a spinning disc confocal 

microscope. Stages: PNMi, prometaphase I, and metaphase I. The anterior side of the embryo 

is on the left, and the posterior side is on the right. Maximum projections of z-stacks through 

the embryo. Scale bars: 5 μm for the embryos. (A) Control one-cell embryo treated with mock 

RNAi. PLK-1::sGFP normally accumulates at centrosomes shortly after fertilization. The 

signal at centrosomes normally increases at mitotic entry, and upon nuclear envelope 

breakdown, PLK-1::sGFP localizes to the DNA. (B) Pcmd-1(t3421) mutant embryos treated 

with mock RNAi. PLK-1::sGFP is strongly reduced but still detectable in these embryos. (C-

D) Control and pcmd-1(t3421) mutant embryos treated with spd-5 RNAi. PLK-1::sGFP is 

strongly reduced but still detectable in these embryos. (E-F) In spd-2 RNAi treated control 

and pcmd-1(t3421) mutant embryos, PLK-1::sGFP is not detectable. 

 

 

 
 

Figure 21: Analysis of PLK-1::sGFP centrosome recruitment in control and pcmd-1(t3421) 

mutant embryos treated by mock, spd-5, and spd-2 RNAi (Figure 20). (A) Embryos were 

categorized according to their potential to accumulate PLK-1::sGFP before PNEB. The 

number of n states embryos counted in total. (B) Intensity measurements of PLK-1::sGFP at 

centrosomes in control and pcmd-1(t3421) mutant embryos treated with mock and spd-5 

RNAi. The radius of measured volume: 1.021 μm. Note here that negative intensity values 
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can occur if the measured background levels are higher than measured values in an area that 

contains very low residual PLK-1::sGFP signal. Since no PLK-1::sGFP signal is detectable in 

pcmd-1(t3421) mutant embryos treated by spd-2 RNAi, no intensity measurement was 

performed for these embryos. Intensity measurements were performed using TrackMate 

(Jaqaman, Loerke and Mettlen, 2008). The number of n states embryos measured in total. 

 

 

PCMD-1 appears to be part of the conserved centrosome module. Thus, the 

centrosomal localization of PCMD-1 itself might be regulated by the components of the 

centrosome module, namely SPD-5, SPD-2 or PLK-1. Therefore, the spd-2(or298) and spd-

5(or213) mutants were each crossed to the mikSi5[pmex-5:mkate2::pcmd-1(c17d12.7):tbb2] 

allele to monitor PCMD-1 recruitment in the spd-2 and spd-5 mutant backgrounds (Table 1). 

In spd-2(or298) and spd-5(or213) mutants, mKate2::PCMD-1 is still present at centrioles in 

the gonad at restrictive temperature of 25 ºC (data not shown, and Figure 22A and B, 

respectively). The result was further validated in embryos by monitoring GFP::PCMD-1syb486 

in spd-5(or213) and spd-2(or293) embryos (experiment done by T. Mikeladze-Dvali, Erpf et 

al., 2019). Thus, PCMD-1 localization to centrosomes is independent of SPD-2 and SPD-5. 

These conclusions can only be made for a fraction of PCMD-1 localizing to the centriole 

since the PCM fraction of PCMD-1 is not detectable with conventional confocal microscopy. 

Similarly, in embryos depleted of PLK-1 by plk-1 RNAi, GFP::PCMD-1 is still present at 

centrioles (experiment by Tamara Mikeladze-Dvali, Erpf et al., 2019). Again, this can only be 

inferred for the centriolar fraction of PCMD-1.  
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Figure 22: PCMD-1 localization to centrosomes does not depend on SPD-5. 

MKate2::PCMD-1 still localizes to centrosomes in spd-5(or213) mutant embryos at the 

restrictive temperature. DIC (single planes) and fluorescence images (maximum intensity 

projections of 6 planes through part of gonad) of control and pcmd-1(t3421) mutant gonads 

expressing mKate2::PCMD-1. Images were taken at a 4D microscope. Stages: adult. Scale 

bars: 5 μm. (A) Control embryos show mKate2::PCMD-1 localizing to centrioles. (B) In spd-

5(or213) mutant embryos mKate2::PCMD-1 does still localize to centrioles. 

 

 

Taken together, PCMD-1 interacts with the conserved SPD-5/SPD-2/PLK-1 

centrosome module in C. elegans. The interaction suggests that it might be the homologue of 

pericentrin. However, a BLAST search (NCBI BLAST) for homologues only shows 

conservation of the protein among nematodes (Figure 23, Table 9). Thus, similar to other 

centrosomal proteins such as SPD-5 or ZYG-1, PCMD-1 could represent a functional 

homologue of human pericentrin (Tsou et al., 2009; Kim, Lee and Rhee, 2015). 

 

 

 
 

Figure 23: Homology analysis for the PCMD-1 protein across nematode species. 

Homology tree generated from protein sequence comparisons between PCMD-1 and 

homologues found in other nematode species by BLAST search (https://www.ebi. 

ac.uk/Tools/sss/ncbiblast/).  

  

 

 

 

 

 

 



RESULTS 
 

94 

3.2. Establishing the IL1 neuron lineage to study asymmetric centrosome 

inheritance in C. elegans 
 

 Based on the invariant cell lineage of C. elegans and the transparency of the worm, the 

fate of individual cell lineages can be followed by conventional DIC microscopy throughout 

embryo development. In the IL1 neuron lineage, the IL1 neuroblast divides asymmetrically 

and generates two daughters adopting different fates, the ciliated IL1 sensory neuron and its 

sister cell, which undergoes apoptosis. Thus, this cell lineage gives rise to one daughter that 

requires centrioles/basal bodies post-mitotically for cilia formation. I established the IL1 

lineage as a model system to study asymmetric centrosome inheritance in C. elegans.   

 

 

3.2.1. IL1 neurons elongate their dendrites via retrograde extension during C. 

elegans development 

To monitor the IL1nb division, different promoters were considered. Based on their 

expression pattern, transgenic animals carrying the kdIs66[agr-1:gfp] were analyzed. Under 

the agrin-1 promoter, GFP is strongly expressed in the dorsal and ventral IL1 neurons 

(IL1DL, IL1DR, IL1VL, IL1VR) throughout all larval stages and in the adult. Further, GFP is 

weakly expressed in the lateral IL1 neurons (IL1L and IL1R) until the L1 larval stage. Also, 

the buccal epithelial cells are labeled (Hrus et al., 2007). To define when the agrin-1 promoter 

starts to be expressed in the IL neuron lineage, I characterized the expression in the lineage at 

a 4D microscope and by confocal microscopy in the C. elegans embryo. The agrin-1 

promoter drives the expression of GFP in the IL neuron lineage from 320 min after the first 

embryonic cell division (Figure 24A). Thus GFP expression starts before the IL1nb division 

takes place, allowing me to monitor early events in this lineage (Figure 24A; Sulston and 

Schierenberg, 1983; WormAtlas 1.0). During my analysis, I noticed that the IL1 neurons form 

a dendrite by retrograde extension. While the dendritic tip stays anchored in place, the cell 

body of these neurons migrates backward, and the dendrite is formed (Figure 24B and C). 

Heiman et al. (2009) were the first to describe the mechanism of retrograde dendrite extension 

for the amphid neurons (Heiman and Shaham, 2009). It was later shown that the ciliary 

transition zone is required for dendrite anchoring of these neurons (Schouteden et al., 2015).  

However, what seems somewhat surprising is that the IL1nb appears to be highly polarized, 

with a dendrite anchored and forming, before the division into the IL1 neuron and its dying 

sister cell takes place: In the bean stage embryo, the dendrite tip is already anchored, and a 
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projection is forming (Figure 24B and C). The IL1nb division occurs in the comma stage 

embryo around 400 min after the first embryonic cell division, and approximately 80 min 

after retrograde extension initiated (Figure 24A and D). The IL1 neuron and its sister cell are 

clearly distinguishable when the IL1sc starts rounding up towards undergoing cell death in the 

late embryonic 1.5-fold stage (Figure 24D). This result was completely unexpected and 

requires further investigation. A strain, carrying the itIs37[ppie-1:mcherry::h2b:pie-1] and 

the kdIs66[agr-1:gfp] alleles, was constructed, to examine the IL1nb division in more detail, 

and to determine the exact time point of the division (Table 1). Detailed recordings remain to 

be taken, and further analysis should be performed. 

 



RESULTS 
 

96 

 

 



RESULTS 
 

97 

Figure 24: IL1 neuron development. (A) Cell lineages of the IL1 neurons. Lineages are 

displayed after the 5th cell division after fertilization. Vertical lines correspond to the time that 

passed after the last division. Horizontal lines indicate a cell division, which goes to the left if 

the anterior cell continues in the lineage, or to the right if it is the posterior cell. Timeline of 

the pagrin-1 driven GFP expression in the IL neuron lineage is indicated on the left. At 20 °C, 

the ILnb is born about 210 min after the first cell division takes place (red bar). The IL1nb 

divides into the IL1 neuron, and its dying sister cell about 400 min after the first cell division 

takes place (purple bar). The cell death of the IL1sc takes place about 430 min after the first 

embryonic cell division (blue bar). Illustration partially adapted from Sulston and 

Schierenberg (1983), and WormAtlas 0.1. (B) IL1 neuron anchorage and retrograde dendrite 

extension. Fluorescence images of embryos with pagrin-1 driven GFP expression between 

embryonic bean and comma stages. Images were taken at a spinning disc confocal 

microscope. The anterior side of the embryo is on the top and the posterior side is on the 

bottom. Maximum projections of z-stacks through the embryo. Scale bars: 5 μm. (C) 

Illustration of the retrograde dendrite extension in C. elegans. The dendritic tip attaches to an 

extracellular matrix, and the cell body migrates backward (adapted from Hrus et al., 2007). 

(D) IL1nb division and IL1sc death. Fluorescence images of embryos with pagrin-1 driven 

GFP expression in the embryonic comma and 1.5-fold stage. Images were taken at a spinning 

disc confocal microscope. The anterior side of the embryo is on the top and the posterior side 

is on the bottom. Maximum projections of z-stacks through the embryo. Scale bars: 5 μm for 

the embryo and 3 μm for the blow-ups. The IL1 neuron divides in embryonic comma stage, 

while the neuron is already highly polarised. The IL1sc undergoes cell death in embryonic 

1.5-fold stage. 

 

3.2.2. Centrioles/basal bodies are localizing at dendritic tips in prospective mouth 

region in C. elegans 

Heiman et al. (2009) illustrate that dendrite anchorage, and subsequent elongation of 

the dendrite requires an extracellular matrix for successful attachment, namely the secreted 

abnormal dye filling 7 (DYF-7), and dendrite extension defective 1 (DEX-1) proteins 

(Heiman and Shaham, 2009). A more recent publication of Schouteden et al. (2015) reports a 

function of the ciliary transition zone in mediating dendrite attachment through interactions 

with this extracellular matrix (Schouteden et al., 2015). The role of the ciliary transition zone 

in mediating adhesion of dendritic tips requires the anchorage of the basal body to the cell 
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membrane to serve as a template for cilium formation. In consistence with these findings, I 

found that in live recordings of 1.5-fold C. elegans embryos, carrying the vieSiIs18[psas-

4:gfp::sas-4:sas-4], and itIs44[ppie-1:mcherry::ph] alleles, GFP::SAS-4 foci are detectable 

in a ring like structure at the prospective mouth region, where dendrites are anchoring (Figure 

25). However, despite visualization of cell boundaries by mCherry::PH, it is difficult to 

determine whether those centrioles are localizing at dendritic tips of neurons, specifically of 

the IL1 neurons. To further investigate this question, an allele mikSi10[psas-4:mkate2::sas-

4:sas-4] was made, to mark centrioles in red. The allele can be used in combination with the 

kdIs66[agr-1:gfp] allele, labeling the IL1 neurons, to determine centriole localization at the 

dendritic tips of IL1 neurons at different stages of dendrite formation in the embryo. Further, 

for a similar readout, an allele mikSi3[pagr-1:mkate2:unc-54], driving the red mKate2 

fluorophore expression cytoplasmically in IL1 neurons, was generated, and can be used in 

combination with the vieSiIs18[psas-4:gfp::sas-4:sas-4] allele, to mark centrioles (Table 1). 

However, both, the mikSi10[psas-4:mkate2::sas-4:sas-4] and mikSi3[pagr-1:mkate2:unc-54] 

alleles, are photo-bleaching fast and are therefore not well suitable for long term recordings. 

In summary, the results show that SAS-4 localizes in the region where dendrites anchor at the 

time of dendrite elongation. However, for the subsequent analysis, it is important to establish 

an imaging setup that allows to distinguish between dendrites and the correct assignment of 

the SAS-4 foci.  

 

 

 

Figure 25: Centriole localization at presumptive dendrite anchorage sites. Centrioles 

localize in a ring-like structure at the mouth region of C. elegans 1.5-fold stage embryos. 
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Fluorescence image of the mouth region of a 1.5-fold stage embryo expressing GFP::SAS-4 

to label centrioles and mCherry::PH to mark cell boundaries. Images were taken at a confocal. 

The anterior side of the embryo is on the top and the posterior side is on the bottom. 

Displayed is a single z-plane through the mouth region on the anterior of the embryo. Scale 

bars: 5 μm.  

 

3.2.3. Analyzing the inherent age difference of mother-centrosomes and their 

biological function in C. elegans 

In mammalian cell culture, it has been shown that the inherent age difference of 

mother-centrosomes inherited by two daughter cells entails a functional difference. The cell 

receiving the older mother-centrosome usually forms a primary cilium first (Anderson and 

Stearns, 2009). For C. elegans ciliated sensory neurons that form their dendrites via 

retrograde extension, it might be of biological relevance, which daughter cell inherits the 

centrosome with the older mother-centrosome. Which daughter inherits the older centrosome 

might be relevant since Heiman et al. (2009) report a critical initiation phase for the anchoring 

process of the dendritic tip (Heiman and Shaham, 2009). The authors report that if the 

dendrite is not anchored within the specific time window, dendrites do not elongate, and cilia 

are detected at the cell body (Heiman and Shaham, 2009). In the IL1 neuron lineage, the cell 

receiving the older centrosome might be competent to grow a projection soon enough to 

anchor within this critical initiation phase. Therefore, the older centrosome might be inherited 

by the IL1 neuron during the asymmetric cell division of the IL1nb. In C. elegans, to date, no 

protein was identified that associates specifically with mother- or daughter-centrioles. Hence, 

it is not possible to discriminate their inheritance by selectively labeling one or the other 

centriole specifically. To overcome this limitation, I generated the mikSi1[psas-

4:dendra2::sas-4:sas-4] allele (Table 1; Kirkham et al., 2003). Photo-conversion of the 

photo-switchable Dendra2 fluorophore coupled to the centriole protein SAS-4 allows to 

distinguish centrosome age two cell divisions after photo-conversion (Figure 26A). As a proof 

of principle, I tested the system in other, easier accessible embryonic lineages than the IL1 

neuron lineage. The divisions of the ABprpppaa and the ABprpppap cells occur ~150 min 

post the four-cell stage at 25 °C. At this developmental stage, cell divisions can be monitored 

more easily than in a later division, such as the division of the IL1 neuroblast. Dendra2::SAS-

4 was photo-converted in the grandmother cell (ABprppp) shortly after the cell was born. In 

the division of the ABprpppaa cell, the anterior daughter inherited the red Dendra2::SAS-4 
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focus in 57 % of the cases (n=7). For the division of the ABprpppap cell, the red 

Dendra2::SAS-4 focus partitioned into the anterior cell in 80 % of the divisions (n=5). The 

experiment shows, that photo-conversion of the Dendra2::SAS-4 construct works efficiently 

and enables to monitor mother-centrosome inheritance in C. elegans (Figure 26B and C). In 

the analyzed lineages, centrosomes are inherited randomly. However, whether centrosomes 

are inherited age dependently may differ between lineages and may be crucial in sensory 

neuron lineages that require centrosomes postmitotically.  

To simplify the photo-conversion protocol in late divisions, and to circumvent possible 

errors during lineaging, lineage-specific promoters that are specifically expressed in the target 

cell are beneficial. Unfortunately, no promoter is available that drives expression specifically 

in the ILnb, the grandmother cell of the IL1 neuron. Thus, it is not possible to use an IL 

neuron lineage-specific marker to determine the time point for the Dendra2::SAS-4 photo-

conversion in this lineage. However, since the C. elegans cell lineage is highly invariant, and 

because cell divisions occur at specific time points if embryos are raised at the same constant 

temperature, photo-conversion of centrioles ~210 min after the first cell division and 

subsequent imaging at the time the IL1 neurons are born, would allow to monitor the 

inheritance of centrosomes in the IL1 neuron lineage (Figure 24A, Figure 26A). Alternatively, 

if promoters in other lineages turn on at the time of the IL neuroblast division, they could be 

used as an indirect measure to determine the timing for the photo-conversion. A strain, 

carrying the mikSi1[psas-4:dendra2::sas-4:sas-4] and the kdIs66[pagr-1:gfp] alleles, was 

constructed and can be used to determine whether older mother centrosomes are inherited by 

the IL1 neuron as presumed. Moreover, centrosome size can differ between mother and 

daughter centrosomes in C. elegans (Chakraborty et al., 2015). The Dendra2::SAS-4 construct 

could be used to analyze whether the inherent age difference between centrosomes in 

metaphase correlates with differences in centrosome size, determined for example by using 

GFP::TAC-1 (bcSi1[pmex-5:gfp::tac-1]) as a readout. If centrosome age correlates with 

centrosome size, the latter can be used as a readout for age-dependent centrosome inheritance. 

For a size-dependent readout, a strain was constructed, which carries the mikSi4[pmex-

5:mkate2::tac-1:unc54] allele, to determine the centrosome size, and the kdIs66[agr-1:gfp] 

allele, to monitor the IL1nb division. If TAC-1 levels at centrosomes depend on centrosome 

age in C. elegans, mKate2::TAC-1 levels can be used as an indirect readout for mother-

centrosome inheritance in the IL1 neuron lineage. In summary, the Dendra2::SAS-4 construct 

works efficiently and allows tracking the mother-centrosome inheritance in C. elegans. 
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Further, several tools are available that can help to overcome the difficulties specific to 

tracking mother-centriole inheritance in the late divisions of the IL neuron lineages. 

 

 

 

Figure 26: Determining centrosome age by coupling a photo-convertible fluorophore to the 

stably incorporated centriolar protein SAS-4. (A) Illustration of Dendra2::SAS-4 inheritance 

in the IL1R neuron lineage. Photo-conversion has to take place before the centrosome 

duplicates in the ILnb (the grandmother cell of the IL1 neuron), for the newly forming 

daughter centrioles to incorporate unconverted Dendra2::SAS-4 (green). The ILnb will inherit 

a centrosome with one converted centriole (magenta) and one unconverted centriole (green) to 

each daughter cell. Thus, centrosome age is not distinguishable between the IL1nb and its 

sister cell. However, when the IL1nb divides into the IL1 neuron and the dying IL1sc, only 

the oldest centrosome will hold one converted centriole (magenta). Thus, only one of the 

sister cells will inherit a centrosome with one converted centriole (magenta), and centrosome 

age will be distinguishable between the two sister cells. (B) DIC and fluorescence images of a 

C. elegans embryo expressing Dendra2::SAS-4 to distinguish centriole age. The anterior side 

of the embryo is on the top and the posterior side is on the bottom. The blow-ups show a 

single cell that holds a centrosome with one unconverted daughter (cyan) and one converted 

mother (magenta) centriole. Images were taken at a 4D microscope. Stages: ~110 min after 

the first cell division. Scale bars: 5 μm for the embryo and 2 μm for the blow-ups. (C) In the 

second generation after photo-conversion, centrosome age is distinguishable in sister cells. 

Fluorescence images of a C. elegans embryo expressing Dendra2::SAS-4, to follow 

centrosome inheritance, and GFP::PH, to mark cell boundaries. The anterior side of the 

embryo is on the top and the posterior side is on the bottom. The blow-up shows two sister 

cells. Photo-conversion took place in their grandmother cell. Only the anterior sister cell holds 
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a converted centriole (magenta) and thus inherited the older mother centrosome. Images were 

taken at a 4D microscope. Stages: ~110 min after the first cell division. Scale bars: 5 μm for 

the embryo and blow-up.

3.2.4. Polarity factors PAR-3 and PAR-6 are enriched at dendrite anchorage sites

E-cadherin is required for centrosome anchoring in D. melanogaster male germline

stem cells (GSCs) (Inaba, Venkei and Yamashita, 2015). HMR-1, the sole homologue of E-

cadherin in C. elegans (Costa et al., 199 ), might play a similar role in basal body positioning

in C. elegans sensory neurons. A strain, carrying the xnIs96[phmr-1:hmr-1::gfp:unc-54] allele, 

was monitored (Table 1; Achilleos , 2010). As determined by confocal imaging of 1.5-

fold stage embryos, HMR-1::GFP is detected at distinct regions at the prospective mouth 

region, where dendrites are anchoring, at adherens junctions within the pharynx and the

intestine, as well as the tip of the tail (Figure 27A). Further, the polarity protein BazookaPAR-3

was shown to be required for the docking of the centrosome in the D. melanogaster GSCs. As 

known from studies in mammalian cell culture, D. melanogaster, and C. elegans, the polarity 

proteins ASIP/Bazooka/PAR-3 and hsPAR6α/β/γ/Par-6/PAR-6 are found in a complex along 

with the atypical protein kinase C, aPKCλ/ζ/aPKC/PKC-3, which is referred to as the anterior 

PAR complex (Tabuse et al., 1998; Hung and Kemphues, 1999). The xnIs312[ppar-6::par-

6::mcherry] and zuIs20[pjn271:par-3::par-3::zf1::gfp+unc-119(+)] alleles were examined 

for PAR-6 and PAR-3 protein localization (Table 1; Nance, Munro and Priess, 2003; Armenti, 

Chan and Nance, 2014). Both, PAR-6 and PAR-3, show a similar localization pattern to

HMR-1 in C. elegans 1.5-fold embryos (Figure 27B and not shown, respectively). Of 

particular interest for this study is the localization at the prospective mouth region of the 

worm, where dendrites are attaching. Time-lapse spinning disk confocal recordings of PAR-

6::mCherry show that the protein is distributed in small punctate accumulations in bean stage 

embryos (Figure 27B). Over time these punctate spots move towards the prospective mouth 

where they accumulate in 1.5-fold stage (Figure 27B). The lateral sides of the embryo each 

show one very prominent PAR-6 spot, which supposedly corresponds to the anchorage site of 

the amphid neurons (Figure 27B). This finding was confirmed recently by Fan et al. (Fan et 

al., 2019). The authors show that the amphid neurons form rosettes together with their sheath 

and socket glial cells. The rosettes are easily detectable in images of bean stage embryos that 

express PAR-6::mCherry and a cell boundary marker GFP::PH (Figure 27C, Fan et al., 2019).

As previously described, the dendritic tips of the amphid neurons are attached to an 
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extracellular matrix and the anteriorly migrating epidermis, while the cell body migrates 

backward, and retrograde dendrite elongation takes place (Heiman and Shaham, 2009; Fan et 

al., 2019). The adhesion molecules DYF-7, sensory axon guidance 7 (SAX-7), hammerhead 

embryonic lethal 1 (HMR-1), and drosophila disc large homolog 1 (DLG-1) are required for 

dendritic tip attachment to the migrating epidermis (Fan et al., 2019). As presumed from my 

PAR-6::mCherry time-lapse recordings, the authors show, that PAR-6 is located at the site of 

amphid dendrite tip anchorage and is required for DYF-7 localization, dendrite tip attachment,

and dendrite extension (Fan et al., 2019). Other, smaller PAR-6::mCherry punctate 

accumulations, which migrate towards the prospective mouth region of the worm, might 

represent the anchorage sites of other neurons, including the IL1 neurons (Figure 27B). A 

strain, carrying the xnIs312[ppar-6:par-6::mcherry] and the kdIs66[pagr-1:gfp] alleles, was 

crossed, to monitor PAR-6 accumulation at the dendritic tips of the IL1 neurons (Table 1). It 

remains to be determined whether PAR proteins play a role in localizing centrosomes in C. 

elegans sensory neuron lineages, mechanistically similar to what was previously described in

the D. melanogaster male germline (Inaba et al., 2015). Live recordings of 1.5-fold stage 

embryos, carrying the xnIs312[ppar-6:par-6::mcherry] and vieSiIs18[psas-4:gfp::sas-4:sas-

4] alleles, show that centrioles nicely arrange at PAR-6::mCherry accumulation sites in the

mouth region of the worm (Figure 27D, Table 1). Within migrating amphid neuron associated 

PAR-6::mCherry accumulations in the comma stage embryo, multiple centrioles are 

detectable (Figure 27E). SAS-4 foci accumulate at the dendrite anchorage site of the amphid 

neurons together with PAR-6 (Figure 27E). At least 10 SAS-4 foci can be distinguished by 

eye in the lateral PAR-6 spots. Further, 1.5-fold stage embryo stainings against PAR-3 and 

SAS-4 show that SAS-4 foci localize to PAR-3 in the prospective mouth region, similar to 

what was observed for PAR-6 (Figure 27F). Taken together, the results suggest that the 

anterior PAR complex might be involved in centrosome positioning in sensory neurons.

However, a molecular mechanism remains to be determined.
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Figure 27: Polarity markers and centriole positioning. (A) Fluorescence image of a 1.5-

fold stage embryo expressing HMR-1::GFP. The image was taken at a confocal microscope. 

In C. elegans 1.5-fold embryos, HMR-1::GFP is enriched at the prospective mouth region, the 

intestine, and the tail tip. (B) Fluorescence images of a PAR-6::mCherry expression embryo 

from bean to 1.5-fold stage. The image was taken at a spinning disc confocal microscope. The 

PAR-6::mCherry punctate accumulations at the prospective mouth region migrate towards the 

forming nose tip where dendrites are attached. (C) Fluorescent image of a PAR-6::mCherry 

and GFP::PH expressing bean stage embryo. The image was taken at a confocal microscope. 
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The amphid neuron rosette formation is visible. The corresponding cartoon illustrates rosette 

formation. (D-F) Centrioles localize to PAR punctate accumulations. (D) In PAR-6::mCherry 

and GFP::SAS-4 expressing embryos, SAS-4 foci are organized around the prospective mouth 

region where PAR-6 is localizing. The image was taken at a confocal microscope. The 

corresponding cartoon illustrates how the SAS-4 foci arrange at PAR-6 accumulations. (E) 

Fluorescent image of a PAR-6::mCherry accumulation corresponding to the amphid neuron 

anchorage site in a PAR-6::mCherry and GFP::SAS-4 expressing bean stage embryo. The 

image was taken at a confocal microscope. Blow-ups of single planes of a z-stack through the 

tip anchorage site of an amphid neuron is shown. Scale bar: 3 μm. Multiple SAS-4 foci are 

visible within the PAR-6 punctate accumulation. (F) Fluorescent image of a 1.5-fold stage 

embryo stained against PAR-3 and SAS-4 is shown. The image was taken at a confocal 

microscope. PAR-3 shows the same localization pattern as PAR-6. (A-D, F) The anterior side 

of the embryo is on the top, and the posterior side is on the bottom. Maximum projection of z-

stack through part of the embryo. Scale bar: 5 μm. 
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DISCUSSION

4.1. PCMD-1 is a coiled-coil protein required for the formation of the

centrosome matrix in C. elegans one-cell embryos

In this study, I demonstrate that the coiled-coil protein PCMD-1 plays an essential role 

in centrosome formation in the early C. elegans embryo. PCMD-1 is recruiting the 

centrosome matrix protein SPD-5CDK5RAP2, Cnn to the centrosome for PCM core formation.

Further, the protein ensures stable PCM expansion upon mitosis. To date, in C. elegans, no

protein with a similar function has been described. PCMD-1 is most likely a functional 

homologue of pericentrinPlp, a protein required for anchoring other centrosomal proteins in 

humans and has been associated with human diseases, such as primordial dwarfism, 

ciliopathies, and cancer (Nigg and Raff, 2009; Waters and Beales, 2011).

4.1.1. PCMD-1 localization to centrosomes

By analyzing the localization pattern of PCMD-1, I found that the protein is present at 

centrioles throughout development and in the adult worm (Figure 11). However, it is not yet 

clear whether PCMD-1 is part of the centriole or the PCM core. Conventional confocal 

microscopy cannot resolve the exact positioning of the protein at centrosomes. Also, the 3D 

SIM super-resolution micrographs taken of one-cell C. elegans embryos do not have 

sufficient resolution to determine whether PCMD-1 is part of the centriolar structure or the 

surrounding PCM core. If PCMD-1 is a centriolar protein and can be preserved at 

centrosomes in electron microscopy experiments, correlative fluorescence electron 

microscopy can be applied to determine PCMD-1 localization (Watanabe ., 2011). 

Moreover, super-resolution techniques optimized for thick samples can be used to clarify 

where the protein is localized at the centrosome. A small amount of PCMD-1 was found to

localize to the expandable PCM (Figure 11A). A similar localization pattern was reported for 

the proteins SPD-2Cep192, Spd-2 and SAS-4CPAP, Sas-4 in C. elegans (Kirkham et al., 2003; Leidel 

and Gönczy, 2003; Dammermann et al., 2004; Kemp et al., 2004; Pelletier et al., 2004). 

Nevertheless, PCMD-1 displays functional differences to SPD-2Cep192, Spd-2, and SAS-4CPAP,

Sas-4, as it does not seem to be required for centriole duplication. 
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4.1.2. The regulation of the PCMD-1 protein at centrosomes 

 

In recordings of GFP::PCMD-1mikSi6 over time, the protein appears to be 

downregulated at centrosomes upon mitotic exit (Figure 12A and B). A similar phenotype has 

been reported for pericentrinPlp, the presumable human orthologue of PCMD-1 (see discussion 

below: PCMD-1 homologues). PericentrinPlp is cleaved by separaseSSE, SEP-1 at mitotic exit for 

effective PCM disassembly (Kim, Lee and Rhee, 2015). The cleavage requires 

phosphorylation of pericentrinPlp by PLK1Polo, PLK-1 (Kim, Lee and Rhee, 2015). In the analysis 

of the GFP::PCMD-1mikSi6 recordings, only a small subset of the recorded embryos was 

quantifiable, and signal intensities were not significantly different to control embryos (Figure 

12B). Thus, it remains to be validated whether PCMD-1 is indeed downregulated at 

centrosomes. For further analysis, the endogenously tagged PCMD-1 should preferably be 

used. If the protein is downregulated at centrosomes, a similar mechanism as reported for 

pericentrinPlp regulation by PLK1Polo, PLK-1 might apply and can be tested. Upon identification 

of PLK-1PLK1, Polo phosphorylation sites, phosphodeficient, and phosphomimetic mutant 

alleles can be generated. With a phosphodeficient variant of the protein, fused to GFP, one 

could test whether the protein remains present at centrosomes throughout mitosis. Intensity 

measurements of the phosphodeficient and the wild-type PCMD-1 variants could be analysed 

and compared. Moreover, if PLK-1PLK1, Polo is required for PCMD-1 cleavage and 

downregulation at the centrosome, an allele carrying the phosphomimetic mutations would 

presumably give rise to a PCMD-1 protein that is repeatedly removed from centrosomes 

throughout the cell cycle, or is not loaded onto the centrosome in the first place. Thus, a strain 

carrying the phosphomimetic allele of pcmd-1 as a GFP fusion might not be detectable at 

centrosomes throughout the cell cycle. Moreover, the mutant allele might have a similar 

phenotype to the pcmd-1(t3421) mutant. A strain carrying the phosphomimetic allele, might 

not be able to rescue the pcmd-1(t3421) or pcmd-1(syb975) mutant phenotypes. The 

experiment would prove that the site is required for the removal of PCMD-1 from 

centrosomes if phosphorylated.  

PCMD-1 has further been shown to interact with the F-box domain containing protein 

FBXA-171 in a yeast two-hybrid screen (Simonis et al., 2009). Thus, PCMD-1 might be 

subject to ubiquitinylation by the Skp, Cullin, F-box containing (SCF) complex, and 

subsequent degradation (Kipreos and Pagano, 2000). Interestingly, the Cep68 protein in 

humans was shown to be targeted for degradation by the Skp1-Cul1-F-box protein 

(SCFβTrCP) ubiquitin ligase complex upon PLK-1 phosphorylation on Ser332. The 
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degradation of the protein is, together with the separaseSSE, SEP-1 mediated cleavage of 

pericentrinPlp, required for effective CDK5RAP2Cnn, SPD-5 removal from centrosomes (Pagan et 

al., 2015). A similar regulatory mechanism might apply for PCMD-1.

4.1.3. A centriole duplication defect cannot account for the pcmd-1(t3421) mutant 

phenotype

As mentioned above, PCMD-1 does not seem to be implicated in centriole duplication. 

By immunofluorescence stainings against the most downstream centriolar protein SAS-4CPAP,

Sas-4, I was able to show that enough centrioles are present during the first cell cycle in pcmd-

1(t3421) mutants to form a bipolar spindle (Figure 14). Further, centrioles are duplicating in 

the second cell cycle, even if cell division failed in cell cycle one (Figure 14E). However, not

all centrioles in pcmd-1(t3421) mutants seem to have microtubule nucleation activity or are

capable of recruiting the PCM (Figure 14C, D and F, Figure 15C and D), which explains the 

frequently monitored formation of monopolar spindles during the first cell cycle (Figure 9).

Nevertheless, to validate that centriole formation or duplication is not affected in the absence 

of PCMD-1, mutant embryos could be analyzed by electron microscopy.

4.1.4. PCMD-1, a long-missing link

The most conspicuous phenotype apparent in pcmd-1(t3421) mutant embryos is that 

SPD-5CDK5RAP2, Cnn is not detectable at non-mitotic centrosomes. SPD-5 is a critical

centrosomal protein that, together with SPD-2Cep192, Spd-2, forms a scaffold to recruit other 

PCM components. For a long time, the PCM was thought to be an amorphous accumulation 

of proteins around centrioles. In recent years, by availing super-resolution microscopy in D. 

melanogaster and human cells, primarily the interphase PCM was found to be highly 

organized instead (Fu and Glover, 2012; Lawo et al., 2012; Mennella et al., 2012; Sonnen et 

al., 2012). This inner PCM core was shown to underlie mitotic PCM expansion (Mennella et 

al., 2012). As observed in pcmd-1(t3421) mutant embryos, impaired PCM core formation also 

leads to severe problems with mitotic PCM assembly in C. elegans, entailing aberrations in 

embryo development (Figure 9, 15). However, PCM formation defects in pcmd-1(t3421)

mutants are phenotypically diverse. In 42 % of GFP::SPD-5 expressing embryos, PCM is 
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absent from centrosomes, or only minimal amounts of PCM are visible during mitosis (33 %).

Relatively robust accumulations can be observed in 25 % of the embryos (Figure 15, Figure 

16). The SPD-5CDK5RAP2, Cnn centrosome matrix accumulations in mutant embryos are unusual

insofar, as they appear fragmented and less dense in comparison to the wild-type. Importantly, 

no such phenotype has been previously reported. The rather flared nature of GFP::SPD-5

assemblies in mutants somewhat resembles SPD-5CDK5RAP2, Cnn networks forming under 

certain conditions in in vitro experiments conducted by Woodruff et al. (Woodruff et al.,

2015). These in vitro assays revealed that SPD-5CDK5RAP2, Cnn can polymerize into networks in 

a density and time-dependent manner (Woodruff et al., 2015). In this context, network 

assembly was accelerated in the presence of PLK-1PLK1, Polo, and SPD-2Cep192, Spd-2. However,

only SPD-5CDK5RAP2, Cnn assembled into networks that were able to recruit downstream PCM 

factors (Woodruff et al., 2015). Moreover, Woodruff et al. (2017) observed that SPD-

5CDK5RAP2, Cnn assembles into more dense structures in a crowded environment in vitro,

resembling the spherical structure of centrosomes in vivo (Woodruff et al., 2017). Since SPD-

5CDK5RAP2, Cnn accumulations in pcmd-1(t3421) mutant embryos resemble the SPD-5CDK5RAP2, 

Cnn assemblies observed in low-density environments in vitro, PCMD-1 might act to favor a

specific conformational change of the SPD-5CDK5RAP2, Cnn protein. PCMD-1 could contribute 

to SPD-5CDK5RAP2, Cnn assembly in vivo by decreasing the threshold for SPD-5CDK5RAP2, Cnn

density-dependent accumulation, thereby providing a dose-dependent regulatory mechanism 

to centrosome matrix formation at non-mitotic and mitotic centrosomes.

Importantly, it was previously not possible in C. elegans to strip centrosomes from 

their innermost PCM core. Thus, pcmd-1 mutants offer a unique opportunity to study the 

implications of PCM core formation in the worm.

4.1.5. PCMD-1 homologues

The sequence homology analysis across species was not conclusive. Apart from 

identifying homologues in closely related species of the genus Caenorhabditis, no sequence 

homology to proteins of other species was found (Figure 23). However, functionally PCMD-1

resembles the role of Asl/Cep152 or D-Plp/pericentrin in centrosome assembly. In D. 

melanogaster, loss of AslCep152 strongly impacts the stabilization of PCM around centrioles 

(Varmark et al., 2007). Conduit et al. (2014) report that in D. melanogaster syncytial embryos 

CnnCDK5RAP2, SPD-5, and Spd-2Cep192, SPD-2 are incorporated into the PCM in close proximity to 
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the mother-centriole and spread outwards to form the scaffold structure. Asl initiates this 

process by recruiting Spd-2Cep192, SPD-2, which in turn helps to recruit CnnCDK5RAP2, SPD-5 for 

scaffold formation (Conduit et al., 2014). In C. elegans SPD-5CDK5RAP2, Cnn recruitment to 

centrosomes occurs throughout the PCM and not at specific nucleation sites at centrioles as 

reported for its fly homolog CnnCDK5RAP2, SPD-5 (Conduit et al., 2014; Laos, Cabral and 

Dammermann, 2015). However, PCMD-1 function is comparable to that of AslCep152, as it is 

required for the initiation of efficient PCM assembly in embryos. On the other hand, Asl is 

implicated in the process of centriole duplication, similar to its human homologue Cep152 

(Blachon et al., 2008; Dzhindzhev et al., 2010). In contrast, no significant implication for 

centriole duplication was observed in pcmd-1 mutants (Figure 14A-D and E). Moreover, other 

than PCMD-1, AslCep152 is only found at centrioles but not the PCM (Varmark et al., 2007). 

Thus, despite their functional overlap in PCM recruitment, the differences in localization and 

their role in centriole duplication argue against Asl and Cep152 being the PCMD-1 D. 

melanogaster and human homologues, respectively.  

The Drosophila Plppericentrin protein was shown to be implicated in interphase PCM 

core organization in cultured D. melanogaster cells by forming fibrils stretching away from 

the centriole wall to the outer PCM matrix (Lawo et al., 2012; Mennella et al., 2012). 

Plppericentrin fibrils are further required for proper assembly of the mitotic PCM (Mennella et 

al., 2012), similar to what is seen in pcmd-1(t3421) mutants. Rough et al. 2018 report that 

mitosis is not severely compromised in D. melanogaster Plppericentrin mutants. However, 

centrioles separate prematurely in this mutant background (Roque et al., 2018). Likewise, 

centrioles were observed to disengage shortly after fertilization in pcmd-1(t3421) mutant 

embryos (observation by A. Kirgis and M. Antoniolli). In mice, PCM integrity has been 

shown to contribute to centriole engagement (Barrera et al., 2010). PCM levels are low in 

early C. elegans embryos but might be strong enough to hold together the centriolar pair. 

Thus, in the absence of the PCMD-1 dependent PCM core, centrioles might fall apart. 

Another possibility is that PCMD-1 plays a direct role in centriole engagement, independent 

of its role in PCM core assembly. SEP-1Separase, SSE is required for centriole disengagement 

specifically at the meiosis-mitosis transition in the one-cell embryo (Cabral et al., 2013). 

PCMD-1 might be a substrate of SEP-1separase, SSE, and removed from the centrosome by 

cleavage. It was mentioned earlier, that the human protein pericentrinPlp is downregulated at 

centrosomes upon mitotic exit in a separaseSSE, SEP-1 dependant manner in humans (Kim, Lee 

and Rhee, 2015). Further, the pericentrinPlp protein controls the localization of 

CDK5RAP2Cnn, SPD-5 to centrosomes in interphase and mitosis (Haren, Stearns and Lüders, 
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2009; Lee and Rhee, 2011; Lawo et al., 2012; Mennella et al., 2012; Sonnen et al., 2012; 

Conduit et al., 2014; Kim and Rhee, 2014). Similar to PCMD-1, pericentrinPlp is found at 

centrioles and in the PCM (Flory et al., 2002; Lawo et al., 2012). In human cells, depletion of 

pericentrinPlp causes the reduction of PCM recruitment to centrosomes and monopolar spindle 

formation (Zimmerman et al., 2004). In summary, the reports of pericentrin/Plp function and 

regulation are in stark resemblance to the observations made for PCMD-1. Therefore, PCMD-

1 is most likely the functional homologue of the human pericentrin and the D. melanogaster 

Plp proteins in C. elegans.   

 

 

4.1.6. PCMD-1 cooperates with key centrosomal components and ensures 

structured centrosome matrix formation in the C. elegans one-cell embryo 

 

As previously mentioned, the PCM core organization depends on Plp in D. 

melanogaster (Mennella et al., 2012). The same holds true for the human and mouse 

homologues pericentrin and Pcnt (Lawo et al., 2012; Chen et al., 2014). As discussed above, 

PCMD-1 is most likely the functional homologue of pericentrin and Plp in C. elegans. 

Pericentrin/Plp are present in an evolutionary conserved module, comprising Cep215/CnnSPD-

5, Cep192/Spd-2SPD-2 and PLK1/PoloPLK-1, to regulate mitotic PCM expansion in human and 

D. melanogaster (Haren, Stearns and Lüders, 2009; Lee and Rhee, 2011; Lawo et al., 2012; 

Mennella et al., 2012; Sonnen et al., 2012; Conduit et al., 2014; Kim and Rhee, 2014). In C. 

elegans SPD-2Cep192, Spd-2 and SPD-5CDK5RAP2, Cnn have been reported to be interdependent for 

their localization to the mitotic PCM (Kemp et al., 2004; Pelletier et al., 2004). Thus, the 

inefficient recruitment of SPD-5CDK5RAP2, Cnn to centrosomes in pcmd-1(t3421) mutants can 

explain why also SPD-2Cep192, Spd-2 is not efficiently recruited to the PCM in mutants (Figure 

19B). It was recently shown in C. elegans that a centriolar fraction of SPD-2Cep192, Spd-2 is 

recruited to the centrosome by SAS-7Cep295, Ana1 (Sugioka et al., 2017). Thus, it is most likely 

the SAS-7Cep295, Ana1 dependent centriolar fraction of SPD-2Cep192, Spd-2 that remains at 

centrosomes in pcmd-1(t3421) mutants. SPD-2Cep192, Spd-2 was shown to physically interact 

with PLK-1 (Boxem et al., 2008) and to be required for mitotic recruitment of the kinase in 

worms (Decker et al., 2011). In pcmd-1(t3421) mutants, the small fraction of PLK-1PLK1, Polo 

that remains around centrioles, was shown to depend on the residual centriolar fraction of 

SPD-2Cep192, Spd-2 (Figure 20E and F, Figure 21A). This observation was previously made in 

mammalian tissue culture, where PLK-1 is absent from the centrosome in CEP192Spd-2, SPD-2 
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siRNA treated HeLa cells (Joukov, Walter and De Nicolo, 2014). Moreover, pcmd-1(t3421) 

mutants treated by spd-2 RNAi show that GFP::SPD-5 accumulation is completely abolished 

(Figure 17D and E). If SPD-2Cep192, Spd-2 is downregulated at the centrosome, PLK-1PLK1, Polo 

recruitment to centrosomes is further diminished, and consequently also the phosphorylation 

of SPD-5CDK5RAP2, Cnn by PLK-1PLK1, Polo. Thus, the shift towards a self-assembly state of SPD-

5CDK5RAP2, Cnn is lessened. Taken together these results suggest that PCMD-1 is part of the 

evolutionarily conserved centrosome module in C. elegans and functions to bring SPD-

5CDK5RAP2, Cnn into close proximity of SPD-2Cep192, Spd-2 recruited PLK-1PLK1, Polo before mitotic 

centrosome activation (Figure 29).  

The seeding function of PCMD-1 seems to be required for efficient PCM expansion. 

However, it is also needed to link the PCM to centrioles reliably. Thereby, the determination 

of the centrosome as the dominant nucleator of microtubules in the cell is secured, since in 

pcmd-1(t3421) mutants, PCM detaches from centrioles and microtubules can nucleate in 

ectopic places, potentially the chromatin (Figure 14C, 15B, 18A and 28).  

Strikingly, in plk-1 RNAi (mild) treated pcmd-1(t3421) mutants, GFP::SPD-5 is not 

only absent from centrosomes, but there seems to be a strong genetic interaction between the 

factors (Figure 18A and B). These embryos do not progress beyond the first cell cycle in their 

development. Since PLK-1PLK1, Polo is only partially downregulated and pcmd-1(t3421) 

mutants treated by control RNAi form bipolar spindles and also progress through the first cell 

cycle under the given conditions, it was completely unexpected to observe such a severe 

phenotype when the factors are downregulated simultaneously. The phenotype resembles a 

strong PLK-1PLK1, Polo loss of function phenotype (Chase et al., 2000). The outcome cannot 

solely be explained by the absence of PLK-1PLK1, Polo from centrosomes, as this is also the case 

for spd-2 RNAi treated embryos (Figure 20E). Thus, the interaction of PLK-1PLK1, Polo and 

PCMD-1 is of particular interest and requires further analysis. 

 

 

4.1.7. Temperature dependence and high variability of the pcmd-1 mutant 

phenotype 

 

The PCMD-1 mutants, pcmd-1(t3421) and pcmd-1(syb975), are temperature-sensitive 

mutants. Both alleles can be maintained at low temperature (15 °C) and exhibit embryonic 

lethality when exposed to high temperature (25 °C). Since gene function is disrupted in pcmd-

1(t3421) mutants by a single nucleotide exchange, which introduces a premature STOP codon 
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early in the coding sequence, it is unlikely that functional protein is made by transcription 

from the original START site. However, several alternative in-frame start codons exist 

downstream of the point mutation in pcmd-1(t3421) mutants, which could explain the residual 

activity of the pcmd-1 gene (Table 13). In case the first available alternative START codon is 

used in pcmd-1(t3421) mutants, a truncated protein would still carry three of the four in silico 

predicted unstructured domains. The in silico predicted coiled-coil domain would be deleted. 

Further, also downstream of the 1201 bp deletion in pcmd-1(syb975) mutants, in-frame start 

codons exist (Table 13). In pcmd-1(syb975) mutants, the predicted coiled-coil and the four 

unstructured domains are deleted. The increased lethality of pcmd-1(syb975) compared to the 

pcmd-1(t3421) mutant might arise from differences between the residual proteins made in the 

mutants. Moreover, the temperature sensitivity of the mutants could be explained by 

differences in residual protein stability or efficacy of transcription initiation at alternative 

START sites. In the case that alternative START codons are used in pcmd-1(t3421) and 

pcmd-1(syb975) mutants, the alleles would be hypomorphic. In western blot analysis against 

the C-terminally GFP tagged PCMD-1 protein, and immunofluorescence stainings, no 

residual protein was detected (Figure 12). However, if protein is made by the use of an 

alternative start codon, the amount of protein might be below the detection limits of western 

blot analyses and fluorescence imaging. Only small quantities of the PCMD-1 protein might 

be required in the embryo. If an alternative start codon is used, enough truncated protein 

might be generated in a subset of the embryos, which can make it through development. 

Ideally, a full deletion allele of the pcmd-1 gene should be generated.  

The variability of the pcmd-1 mutant phenotype can alternatively be explained by 

differences in SPD-5CDK5RAP2, Cnn protein folding kinetics at different temperatures. SPD-

5CDK5RAP2, Cnn can transition into a self-assembly competent state in vitro (Woodruff et al., 

2015). The SPD-5CDK5RAP2, Cnn self-assembly rate could be determined in an in vitro assay as 

performed by Woodruff et al. (2015) and analyzed for variability at different temperatures, 

and whether the addition of PCMD-1 changes the rate of SPD-5CDK5RAP2, Cnn self-assembly. 

Also, at lower temperatures embryonic development is slower in C. elegans embryos, and cell 

cycles are prolonged (Begasse et al., 2015). SPD-5CDK5RAP2, Cnn might have more time to self-

assemble under these conditions.  
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4.1.8. A model of PCMD-1 function 

 

Only a limited number of proteins required for PCM formation were discovered in C. 

elegans through large-scale RNAi screens and genetic analyses, namely SPD-5CDK5RAP2, Cnn 

(Hamill et al., 2002), SPD-2Cep192, Spd-2 (Kemp et al., 2004; Pelletier et al., 2004) and PLK-

1PLK1, Polo (Decker et al., 2011), which together form an evolutionary conserved PCM module. 

In other organisms, this conserved module comprises another factor, Plp in D. melanogaster 

or pericentrin in humans. For a long time, the C. elegans PCM matrix protein SPD-5CDK5RAP2, 

Cnn was thought to comprise pericentrin and CDK5RAP2 function (Hamill et al., 2002; 

Zimmerman et al., 2004; Conduit et al., 2010). In this study, I identified PCMD-1 as the C. 

elegans functional homologue of pericentrin. PCMD-1 is necessary for PCM recruitment to 

non-mitotic centrosomes in worms. The protein is further needed for the efficient and orderly 

expansion of PCM upon mitotic entry. PCMD-1 recruits the centrosome matrix protein SPD-

5CDK5RAP2, Cnn to centrosomes to establish an inner PCM core. Moreover, SPD-2Cep192, Spd-2 was 

found to recruit PLK-1PLK1, Polo to centrioles. Together, PCMD-1 and SPD-2Cep192, Spd-2 form a 

platform for initial seeding of the core PCM factors before mitosis. Thus, upon mitotic entry 

SPD-5CDK5RAP2, Cnn can effectively be phosphorylated by PLK-1PLK1, Polo for centrosome matrix 

expansion. In vitro, SPD-5CDK5RAP2, Cnn can assemble into micrometer-sized porous networks, 

and the polymerization of the network accelerates in the presence of PLK-1PLK1, Polo and SPD-

2Cep192, Spd-2 (Woodruff et al., 2015). In vivo, most likely SPD-2Cep192, Spd-2, which is recruited 

to the mitotic PCM by SPD-5CDK5RAP2, Cnn, recruits PLK-1PLK1, Polo to secure subsequent 

mitotic phosphorylation of SPD-5CDK5RAP2, Cnn. It is generally assumed that SPD-2Cep192, Spd-2 

and SPD-5CDK5RAP2, Cnn are interdependent for their localization to the centrosome (Kemp et 

al., 2004; Pelletier et al., 2004). However, the proteins might, together with PLK-1PLK1, Polo, 

instead act in a feed-back loop for PCM assembly (Figure 29). This hypothesis is reconcilable 

with the previous findings that only SPD-5CDK5RAP2, Cnn can self-assemble into network-like 

structures in vitro, and that SPD-2Cep192, Spd-2 is regulating centrosome size in vivo (Decker et 

al., 2011; Woodruff et al., 2015). 
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Figure 28: Aberrations of PCM formation in pcmd-1(t3421) one-cell mutant embryos. 

PCMD-1 is required for PCM core formation in the wild type. Thereafter, PCM can stably 

expand during mitosis. In pcmd-1(t3421) mutant embryos, PCM core formation, and mitotic 

PCM expansion are compromised at 15 °C. However, 38 % of the mutant embryos grow into 

adults. Whereas, at 25 °C, PCM core formation and mitotic PCM expansion are severely 

compromised, leading to 100 % embryonic lethality. 
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Figure 29: Model of PCM recruitment in C. elegans. Shown is the schematic of a mitotic 

centrosome (Note that the recruitment of centriole and PCM core factors takes place before 

the centrosome enters mitosis). (C) A SAS-7Cep195, Ana1 dependent centriolar pool of SPD-

2Cep192, Spd-2 recruits PLK-1PLK1, Polo to centrioles. (PC) Further, PCMD-1 recruits SPD-

5CDK5RAP2, Cnn to centrosomes to form the PCM core. Through SPD-5CDK5RAP2, Cnn also more 

SPD-2Cep192, Spd-2 is recruited to the PCM core, which in turn increases the amount of PLK-

1PLK1, Polo at the PCM core. Note that it is unclear whether PCMD-1 is part of the centriole or 

the PCM core. (EP) Upon mitosis, PLK-1PLK1, Polo phosphorylates SPD-5CDK5RAP2, Cnn for PCM 

matrix expansion. In a feedback loop, SPD-5CDK5RAP2, Cnn recruits SPD-2Cep192, Spd-2, which 

accumulates more PLK-1PLK1, Polo at centrosomes for further SPD-5CDK5RAP2, Cnn 

phosphorylation. At mitotic centrosomes, PCMD-1 might lead to increased stabilization of the 

SPD-5CDK5RAP2, Cnn self-assembly state. 
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4.2. Centrosome inheritance and development of the IL1 neuron lineage  

 

4.2.1. IL1 neuron dendrite growth by retrograde extension and centrosome 

inheritance 

In C. elegans, sensory neurons are the only cell type that forms cilia and thus require 

centrioles as basal bodies post mitotically. I established a system to analyze centrosome 

inheritance in the IL1 neuron lineage. The IL1nb gives rise to the IL1 ciliated sensory neuron 

and the IL1 dying sister cell, of which the latter does not require centrioles post-mitotically. In 

cell culture it was shown that cells with older mother centrosomes grow cilia earlier than the 

ones that received younger mother centrosomes after cell division (Anderson and Stearns, 

2009). The potential of a cell to grow out a cilium earlier than its sister cell might be 

biologically relevant in some systems. As previously described for amphid and phasmid 

neurons (Heiman and Shaham, 2009; Schouteden et al., 2015), I found that also IL1 neurons 

grow their dendrites via retrograde extension (Figure 24B and C). Interestingly, amphid 

neurons are known to require their ciliary transition zone to anchor their dendrites for 

successful dendrite elongation (Schouteden et al., 2015). Further, amphid dendrite anchorage 

has to take place in a confined time window during development (Heiman and Shaham, 

2009). Thus, the timely outgrowth of a cilium might be essential for successful dendrite 

anchorage. During the IL1nb division, it might be necessary that the future IL1 neuron 

inherits the older mother centrosome to be competent to grow a cilium early enough. 

Centrioles localize in the prospective mouth region where dendrites anchor (Figure 25). By 

using the photo-convertible centriole protein I generated, which comprises the green-to-red 

switchable fluorescent protein Dandra2 fused to SAS-4CPAP, Sas-4 (Figure 26), it will now be 

possible to determine whether the older or the younger centrosome is inherited by the dendrite 

forming neuron. The photo-conversion of the Dendra2 fluorophore at centrioles has to take 

place in the grandmother cell, which is the ILnb in the case of the IL1 neuron and its dying 

sister cell (Figure 26A). Unfortunately, to my knowledge, no promoter is described that marks 

explicitly the ILnb and the ILnb descendants. However, there are several possibilities to 

overcome this limitation: 1. To lineage each embryo live until the ILnb is born and 

subsequently photo-convert. 2. To photo-convert blindly around the time the ILnb is born. 3. 

Applying an indirect approach by using centrosome size as a readout for centrosome age. The 

first approach is the most precise. However, the ILnb division takes place very late in 

development, at about 210 min after fertilization at a maintenance temperature of 20 °C. 
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Thus, the lineaging approach is labor-intensive and challenging. By contrast, blind photo-

conversion might be easy to establish, since C. elegans development is highly invariant. A 

strain carrying the mikSi1[psas-4:dendra2::sas-4:sas-4] and kdIs66[pagr-1:gfp] allele was 

generated and can be used to establish the assay for centrosome inheritance in IL1 neurons 

(Table 1). Since the agrin-1 promoter is expressed in more cells than the IL1 neurons, an 

additional verification step is required. The aakg-1(y111b2a.8) promoter drives expression 

specifically in IL1 neurons in larvae (WormAtlas, Altun et al., 2002-2019). An allele paakg-

1:gfp or paakg-1:mKate2 would drive expression late enough in development to not interfere 

with the readout of centrosome inheritance in IL1 neurons after Dendra2::SAS-4 photo-

conversion. The allele could be used to prove IL1 neuron identity in retrospect. Alternatively, 

it can be tested whether older mother centrosomes accumulate more PCM at the centrosome 

in C. elegans. It was previously shown that TAC-1TACC1/2/3, D-TACC levels differ at centrosomes 

in metaphase in some cell divisions (Chakraborty et al., 2015). Using the Dendra2::SAS-4 

tool it can now be determined whether these differences are dependent on centrosome age. 

TAC-1TACC1/2/3, D-TACC levels could then be used as a readout for centrosome age in the IL1nb 

division. 

 

4.2.2. The IL1nb is already highly polarized 

Unexpectedly, the IL1nb appears to be already highly polarized, with its dendrite 

already anchored and forming, before the division into the IL1 neuron and its dying sister cell 

takes place (Figure 24D, Figure 30). In the monitored comma stage embryos, a projection 

formed and anchored already before the IL1nb division. In the 1.5-fold embryo, the division 

occurred, and the IL1 neuron and its sister cell are distinguishable, as the IL1sc starts 

rounding up to prepare for its cell death in the 2-fold stage. This result was completely 

unexpected and raised new questions concerning the behavior of the centrosome and basal 

body in this division. It has to be clarified how centrosome and basal body function can be 

carried out simultaneously in this system since centrosome function is required for cell 

division, but also basal body function to template the cilium. Both functions are mediated by 

centrioles. A strain carrying the kdIs66[pagr-1:gfp] allele, to determine IL1 neuron identity, 

and the itIs37[ppie-1:mcherry::h2b:pie-1 + unc119(+)] allele, to visualize DNA, was 

generated and can be analyzed to determine the exact time point of IL1nb division (Table 1).  
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4.2.3. PAR protein requirement for cilium formation and dendrite attachment in 

C. elegans

As previously described, IL1 neurons elongate their dendrites by retrograde extension. 

The dendritic tip stays anchored in place, while the cell body of these neurons migrates 

backward, and the dendrite is formed (Figure 24B). Heiman et al. (2009) were the first to

describe this mechanism and identified the tectorin-related proteins DEX-1SNED1, Ndg, and 

DYF-7 to be involved in this process. These proteins are thought to be secreted and form an 

extracellular matrix necessary for anchoring the amphid neurons (Heiman and Shaham, 2009). 

Most interestingly, Schouteden et al. (2015) have found that the anchoring process is

mediated by the transition zone of the cilium, which required basal body anchorage to the cell 

membrane (Schouteden et al., 2015). In a recent publication, Fan et al. (2019) show that 

PAR-6 proteins localize in the region where dendritic tips of amphid neurons are anchoring, 

which I can confirm by my experiments (Figure 27; Fan  2019). Further, PAR-6 is 

required for DYF-7 localization and dendrite tip attachment (Fan et al., 2019). Thus, in 

dendrites elongating by retrograde extension, basal body attachment might be compromised. 

As previously mentioned, PAR-3ASIP, Bazooka, and PAR-6hsPAR6α/β/γ, Par-6 form a complex together 

with PKC-3aPKCλ/ζ, aPKC (Tabuse et al., 1998; Hung and Kemphues, 1999). Analysis of the role 

of this complex in dendrite attachment and basal body positioning in retrograde extending 

neurons might give valuable insights about PAR function apart of their role in cell polarity. 

Fan et al. (2004) and Sfakianos et al. (2007) found that PAR3 localizes to the primary cilium 

in mammalian cell culture and is required for cilium elongation (Fan et al., 2004; Sfakianos et

al., 2007). PAR-3ASIP, Bazooka might play a similar role in cilium formation in C. elegans.

Sfakianos et al. (2007) report that the C-terminus of PAR3 is required for cilium formation in 

Madin-Darby canine kidney (MDCK) cells, and more specifically, the kinesin family member 
3A (KIF3A) binding domain (Sfakianos et al., 2007). KIF3Aklp64D, KLP-11 is a subunit of 

Kinesin II and is required in primary cilium formation, centriole cohesion and subdistal 

appendage organization (Kodani et al., 2013). It would be interesting to test whether one of the 

PAR-3ASIP, Bazooka splice variants, or a specific binding domain of the protein is required for 

cilium formation in worms. Different GFP fusion constructs, mimicking the PAR-3ASIP, Bazooka

splice variants, or consisting of individual binding domains, could be tested for their 
localization to cilia to determine which part of C. elegans PAR-3ASIP, Bazooka is responsible for 

targeting the protein to the cilium. More importantly, in combination with par-3 RNAi, the 

PAR-3ASIP, Bazooka splice variants could be tested for their embryonic rescue potential and 

analyzed for aberrations specifically in cilium formation (Li et al., 2010). 
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Similarly, embryos expressing GFP::PAR-3 constructs, which carry deletions of individual

domains, could be used to determine which domains might be necessary for ciliogenesis. 

Embryos, surviving RNAi mediated silencing of the endogenous PAR-3ASIP, Bazooka protein, 

could be analyzed for aberrations in ciliogenesis. Alternatively, a degradation system to

conditionally perturb protein function exists in C. elegans, and strains for PAR-3ASIP, Bazooka/-

6hsPAR6α/β/γ, Par-6 degradation in late embryonic development are available (Armenti et al.,

2014). IL1, amphid, and phasmid neurons could be analyzed in those mutants to determine the 

role of the PAR-3ASIP, Bazooka/-6hsPAR6α/β/γ, Par-6 proteins in centrosome positioning. 

4.2.4. Observations are conflicting with the current model for retrograde 

dendrite extension 

Since centrioles are required for cell division but also cilia formation, the observation 

that IL1nbs divide, when the cell is already highly polarized with a dendrite attached and 

elongating, is challenging the current view that the ciliary transition zone is required for 

dendrite tip attachment to an extracellular matrix. Further, in amphid neurons, transition zone 

formation is reported to take place in the 2-fold stage (Serwas et al., 2017). Thus, transition 

zone formation occurs much later than dendrite attachment and rosette formation, which take

place in bean to comma stage embryos (Fan et al., 2019). However, I find centrioles to be 

present within PAR-6hsPAR6α/β/γ, Par-6 accumulations at dendritic tips of sensory neurons, which 

corroborates the theory that cilia are forming. Nevertheless, cilia should be retracted before

cell division. Hence, how IL1 neurons divide, with their dendrites anchored at the same time,

is obscure. Further analysis of centrioles/basal bodies in dendrite attachment during retrograde 

extension and the IL1nb division is required.
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Figure 30: Contradicting observations during the IL1nb division. The IL1nb divides after 

dendrites attached, and retrograde extension is ongoing. Dendrite attachment during 

retrograde extension was reported to be mediated by the ciliary transition zone (Schouteden et 

al., 2015). In amphids neurons, dendrite attachment takes place already in bean stage embryos

(Heiman and Shaham, 2009; Fan et al., 2019). Whereas, the transition zone is only formed in 

the 2-fold embryonic stage in these neurons (Serwas et al., 2017). Centrioles were observed at 

presumptive dendritic tips in bean stage embryos (Figure 27). However, the IL1nb divides

later in development, ~400 min after the first embryonic division, which corresponds to the 

embryonic comma stage. How dendrites of IL1 neurons attach and how they divide remains to 

be determined.
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