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Summary 

Chloroplasts arose as a result of the acquisition of a cyanobacterial endosymbiont by a 

eukaryotic host. The transformation of autonomous prokaryotes into specialized 

photosynthetic organelles, tightly integrated within the context of the eukaryotic cell, has been 

accompanied by numerous structural and regulatory adaptations. Consequently, new auxiliary 

proteins evolved to ensure rapid biogenesis of the organellar complexome. In this thesis, two 

factors required for the chloroplast ATP synthase (cpATP synthase) and one factor for the 

chloroplast 70S ribosome assembly process were characterized. 

CGLD11 is a soluble protein of about 33 kD and could be localized in chloroplasts and 

mitochondria of Arabidopsis. Cgld11 mutants were growth impaired and accumulated about 

20-30% of cpATP synthase, whereas other chloroplast complexes were virtually unaffected. 

In addition, the loss of CGLD11 impaired cpATP synthase activity but did not affect 

mitochondrial ATP production. CGLD11 physically interacted with chloroplast and 

mitochondrial -subunits in yeast. Thus, a role for CGLD11 in chloroplast F1 assembly was 

suggested, whereas its function in mitochondria might not be essential.  

The membranous domain of CGL160 in Arabidopsis (AtCGL160), which shows 

sequence similarity to the bacterial FO biogenesis factor Atp1/Unc1, was previously shown to 

be required for c-ring assembly in chloroplasts. Here it could be shown that the N-terminal 

soluble domain has a distinct function in cpATP synthase biogenesis, since its deletion led to 

reduced subunit accumulation and diminished proton conductivity of the thylakoid membrane. 

AtCGL160 was associated with the cpATP synthase holo-complex and the stromal N-terminus 

specifically interacted with the membrane-proximal domain of CF1-. Therefore, a central role 

for AtCGL160 in the assembly of the chloroplast ATP synthase by facilitating c-ring formation 

and joining of CF1 to CFO was suggested.  

Compared to AtCGLD11 or AtCGL160, deletion of AtCGL20 caused a more general 

disruption in chloroplast biogenesis. Arabidopsis plants lacking AtCGL20 proteins displayed a 

virescent leaf phenotype, were severely growth-retarded under ambient, and growth-arrested 

under low temperature. Absence of AtCGL20 resulted in reduced chloroplast translational 

efficiency, impaired post-maturation processing of the 23S rRNA, and abnormal accumulation 

of 50S ribosomal proteins in the high molecular weight fraction of stromal extracts. Since 

AtCGL20 was associated to 50S particles in an RNase insensitive manner, an involvement in 

late assembly steps of the chloroplast large ribosomal subunit was proposed.  

Taken together, the factors presented in this work are examples of how the assembly 

of conserved chloroplast complexes has been adapted to the structural and regulatory 

specialization of the endosymbiont on photosynthesis and may thus help to elucidate the 

underlying mechanisms of organellar multi-subunit complex formation.   



XII 
 

Zusammenfassung 

Chloroplasten entstanden als Folge des Erwerbs eines cyanobakteriellen Endosymbionten 

durch einen eukaryotischen Wirt. Die Umwandlung von autonomen Prokaryoten in 

spezialisierte photosynthetische Organellen, die eng in den Kontext der eukaryotischen Zelle 

integriert sind, wurde von zahlreichen strukturellen und regulatorischen Anpassungen 

begleitet. Infolgedessen entstanden neue Hilfsproteine, um eine effiziente Biogenese der 

Organellen-Komplexe zu gewährleisten. Im Rahmen dieser Arbeit wurden zwei Faktoren für 

die Assemblierung der Chloroplasten-ATP-Synthase (cpATP-Synthase) und ein 

Assemblierungsfaktor für chloroplastidäre 70S-Ribosomen charakterisiert.  

CGLD11 ist ein lösliches 33 kD schweres Protein, welches in Chloroplasten und 

Mitochondrien von Arabidopsis lokalisiert werden konnte. Cgld11-Mutanten waren 

wachstumsbeeinträchtigt und akkumulierten etwa 20-30% der cpATP-Synthase-

Wildtypmenge, wohingegen andere Chloroplastenkomplexe praktisch unverändert blieben. 

Darüber hinaus beeinträchtigte der Verlust von CGLD11 die cpATP-Synthase-Aktivität, 

während die mitochondriale ATP-Generierung nicht verringert war. CGLD11 zeigte eine 

direkte Interaktion mit der chloroplastidären und mitochondrialen -Untereinheit in Hefe. Daher 

wurde eine Rolle für CGLD11 bei der Chloroplasten-F1-Assemblierung vorgeschlagen, 

während seine Funktion in Mitochondrien möglicherweise nicht essenziell ist.  

Die Membrandomäne von CGL160 in Arabidopsis (AtCGL160), die Sequenzähnlichkeit 

mit dem bakteriellen FO-Biogenesefaktor Atp1/Unc1 aufweist, wird für die Bildung von 

c-Ringen in Chloroplasten benötigt. Hier konnte gezeigt werden, dass die N-terminale lösliche 

Domäne eine spezifische Funktion in der cpATP-Synthase-Biogenese hat, da ihre 

Abwesenheit zu einer verringerten Anreicherung von Untereinheiten und zu einer 

verminderten Protonenleitfähigkeit der Thylakoidmembran führte. AtCGL160 war mit dem 

cpATP-Synthase-Holokomplex assoziiert und der stromale N-Terminus interagierte spezifisch 

mit der membran-nahen Domäne von CF1-. Daher wurde eine zentrale Rolle für AtCGL160 

in der Assemblierung der Chloroplasten-ATP-Synthase vorgeschlagen, in der AtCGl160 

sowohl die c-Ring-Bildung als auch die Zusammenführung von CF1 mit CFO unterstützt. 

Im Vergleich zu AtCGLD11 oder AtCGL160 verursachte die Deletion von AtCGL20 eine 

allgemeine Beeinträchtigung der Chloroplasten-Biogenese. Arabidopsis-Pflanzen, denen 

AtCGL20-Proteine fehlten, zeigten einen vireszenten Blattphänotyp, waren bei 

Umgebungstemperatur stark wachstumsverzögert und das Wachstum wurde bei niedrigen 

Temperaturen gestoppt. Verlust von AtCGL20 führte zu einer verminderten chloroplastidären 

Translationseffizienz, zu einer beeinträchtigten Prozessierung der 23S rRNA und zu einer 

abnormalen Anreicherung von ribosomalen 50S-Proteinen in der hochmolekularen Fraktion 

stromaler Extrakte. Da AtCGL20 in einer RNase-unempfindlichen Weise mit 50S-Partikeln 
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assoziiert war, wurde eine Beteiligung an späten Assemblierungsschritten der großen 

ribosomalen Untereinheit in Chloroplasten vorgeschlagen.  

Zusammenfassend sind die in dieser Arbeit vorgestellten Faktoren Beispiele dafür, wie 

die Biogenese konservierter Chloroplastenkomplexe an die strukturelle und regulatorische 

Spezialisierung des Endosymbionten auf die Photosynthese angepasst wurde, und können 

somit zur Aufklärung der zugrunde liegenden Mechanismen der Bildung von Multi-

Untereinheit-Komplexen in Organellen beitragen.
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1  Introduction 
 

1.1 Consequences of green endosymbiosis 

The ability to convert solar into chemical energy was one of the key inventions in the evolution 

of life (Hohmann-Marriott and Blankenship, 2011). Postulated the first time in 1905 by 

Mereschkowsky (Martin and Kowallik, 1999), it is now widely accepted that chloroplasts share 

one common ancestor with cyanobacteria that was engulfed by a eukaryotic cell more than 1 

billion years ago in a process called primary endosymbiosis (reviewed in Archibald, 2015). 

Three major lineages arose from the “Archaeplastida”: Glaucophytes, Rhodophytes and 

Chloroplastida. The latter, with over 350.000 species the most diverse group, comprises 

Chlorophytes (Green algae) and Streptophytes that gave rise to land plants (Embryophytes) 

and is also called the “green lineage” (de Vries et al., 2016). The transformation from free-

living autotrophic cells to specialized organelles was accompanied by substantial adaptations 

(Fig. 1; reviewed in Jensen and Leister, 2014). Early in the evolution of Archaeplastida, most 

of the former cyanobacterial genes were either lost or transferred to the host nucleus, 

presumably by the need for genetic control over the endosymbiont (Timmis et al., 2004). The 

majority of the ~3000 plastid-localized proteins must be imported post-translationally, with the 

help of N-terminal targeting sequences and an intricate protein import machinery (reviewed in 

Bölter and Soll, 2016). Plastids of higher plants retained around 100 protein-coding genes, 

which are mostly essential for photosynthesis or the endogenous plastid gene expression 

machinery and may represent a core set of genes that are subjected to an immediate 

regulatory redox control in response to changing environmental conditions (Allen, 2015). 

Moreover, redox control by post-translational cysteine modification plays a crucial role in the 

regulation of chloroplast function dependent on the light-driven generation of reduction 

equivalents (reviewed in Cejudo et al., 2019). Finally, chloroplasts underwent substantial 

structural adaptations, such as the loss of most respiratory complexes (Renato et al., 2015), 

the establishment of novel light harvesting antennae (reviewed in Ruban, 2014), or the 

rearrangement of the thylakoid membrane system to form grana stacks (reviewed in Pribil et 

al., 2014; Rast et al., 2015). Although the bacterial ancestry of chloroplast multi-protein 

complexes is apparent on the structural level, their biogenesis often differs markedly from that 

of bacteria because the dual genetic origin of their component requires a different mode of 

spatial and temporal orchestration of gene expression and assembly (Kleine and Leister, 

2016). Hence, identification and characterization of new auxiliary components is crucial for 

understanding how cells have adapted to ensure rapid biogenesis of their organellar 
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complexome. In this thesis, the assembly of two ubiquitous non-pigment-containing chloroplast 

complexes is investigated, the thylakoid F-type ATP synthase and the chloroplast 70S 

ribosome. 

 

 

 

 

Figure 1. Consequences of green endosymbiosis. Schematic overview of the major events that may have led 
to adaptations in chloroplast biogenesis and acquisition of novel biogenesis factors: Most of the former 
cyanobacterial genes (about 3500) were either lost or transferred to the host nucleus. The majority of the ~3000 
plastid-localized proteins are translated in the cytosol by 80S ribosomes and imported into the organelle. 
Chloroplasts of higher plants retained around 100 protein-coding genes. Structural and regulatory adaptations 
compared to cyanobacteria include the loss of most respiratory complexes, exchange of phycobilisomes by light 
harvesting complexes, acquisition of thylakoid grana stacking, and establishment of a stromal redox-regulatory 

system.  
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1.2 The chloroplast ATP synthase 

F-type ATP synthases convert electrochemical potentials across membranes into chemical 

energy in bacteria, mitochondria, and chloroplasts. Their basic architecture is conserved and 

comprised of a membrane-embedded subcomplex FO and a soluble bulky F1 head. The 

chloroplast ATP synthase (cpATP synthase) utilizes the transthylakoid proton motive force 

(pmf) generated by the light-driven reactions of photosynthesis to convert ADP and phosphate 

to ATP. As a result of its protruding head, accumulation of the cpATP synthase is restricted to 

the non-appressed thylakoid regions and grana margins (Daum et al., 2010). The cpATP 

synthase is structurally similar to its bacterial ancestor (Fig. 2). Both enzymes consist of an -

heterotrimer and a peripheral stator ab2 that are connected via the -subunit. They constitute 

the stationary part of the ATP synthase that encloses the rotary proteolipidic c-oligomer (c10-

15), which is non-covalently connected to the central stalk . Protons enter the rotor at a luminal 

a/c-interface and stay attached to the c-subunit for almost a complete rotation before they exit 

the membrane at the second a/c-interface (von Ballmoos et al., 2009; Okuno et al., 2011; Hahn 

et al., 2018). The generated torque of the -subunit against the stationary 33-head leads to 

different alternating conformations in the -subunit (open, tight, loose), resulting in the 

generation of three molecules of ATP per 360° rotation of the rotor (Boyer, 1993; Junge and 

Nelson, 2015). The chloroplast c-ring consists of 14 subunits compared to (non-

photosynthetic) bacterial c10 oligomers, shifting the theoretical ATP/translocated proton-ratio 

from ~3.33 (c10) to ~4.67 (c14). Moreover, cyanobacteria and chloroplasts possess two 

genetically distinct b-subunits (Westhoff et al., 1985). Neither b’ nor b seem to be able to 

compensate for the loss of the other in Arabidopsis, as their respective knockouts or 

knockdowns led to a dramatic loss of cpATP synthase content (Kong et al., 2013; Yap et al., 

2015). Bacterial -subunits are able to reach into the -heterotrimer (Fig. 2), thus inhibiting 

wasteful ATP hydrolysis (Kato-Yamada et al, 1999). Such a mechanism was also proposed for 

chloroplasts (Cruz et al., 1995; Shi et al., 2001; Nowak et al., 2002; Nowak and McCarty, 2004), 

but no -subunit in an auto-inhibitory conformation could be identified in recent high-resolution 

structures, suggesting a different mechanism for chloroplast ATP hydrolysis inhibition (Fig. 2; 

Hahn et al., 2018). Chloroplasts possess a conserved auto-inhibitory loop of the -subunit that 

is coupled to the redox state of the chloroplast stroma via thiol modification of a disulfide bond 

(Arana and Vallejos, 1982; Nalin and McCarty 1984; Hahn et al., 2018). This mechanism 

essentially accounts for inhibition of ATP hydrolysis during prolonged times of darkness but 

may also play a role in steady-state adjustment of ATP synthase activity in the light (Jagendorf, 

2002; Kanazawa et al., 2017). Finally, the cpATP synthase is subjected to other post-

translational modifications including phosphorylation and acetylation, which were shown to 

affect its stability and nucleotide affinity (Schmidt et al., 2013; 2017). 
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Figure 2. Comparison of bacterial and chloroplast ATP synthase structures. Cryo-EM structures of the Bacillus 

subtilis (-auto-inhibited, PDB entry: 6N2Y; Guo et al., 2019) and Spinacia oleracea (PDB entry: 6FKH; Hahn et al., 

2018) ATP synthase. F1-subunits , , , , and  are colored in shades of blue. FO-subunits a, b, and c are colored 
in shades of red. Bottom lines indicate the membrane position. Structures were obtained from the PDB homepage 
(https://www.rcsb.org/). Shading and coloration were performed with ChimeraX. 

 

1.3 Biogenesis of the chloroplast ATP synthase 

In bacteria, ATP synthase assembly occurs in a modular fashion with intermediates identified 

for the F1-head 33 (Deckers-Hebestreit, 2013), the ab2-module (Hilbers et al., 2013), and 

the c-ring (Ballhausen et al., 2009). Since the F1-module can hydrolyze ATP and FO 

intermediates are able to uncouple the pmf (Franklin et al., 2004), assembly has to be tightly 

regulated in order to prevent the accumulation of harmful precomplexes. FO assembly requires 

cotranslational insertion of b- and c-subunits via the signal recognition particle (SRP) pathway, 

the SecYEG translocon and the insertase YidC (Yi et al., 2004; van der Laan et al., 2004). 

Membrane insertion of FO-a is dependent on the presence of monomeric c and mediated by 

SecYEG and YidC (Hermolin and Fillingname, 1995; Yi et al., 2004; Kol et al., 2009). SecYEG 

could also recently be copurified with intact bacterial ATP synthases, suggesting a role also in 

later steps of assembly (Chorev et al., 2018). Oligomerization of the c-subunit involves 

Atp1/Unc1 which usually precedes the structural ATP synthase genes in bacterial operons 

(Suzuki et al., 2007; Ozaki et al., 2008). In contrast, no bacterial F1 assembly factor is known 

and F1 assembly was shown to occur independently of auxiliary proteins in vitro (Sternweis 

and Smith, 1977; Sternweis, 1978). Linkage of soluble to membranous components 
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presumably involves the generation of an 33-c-ring intermediate and is completed by -

dependent addition of the stator module ab2 (Hilbers et al., 2013). 

In analogy to bacteria and mitochondria, assembly of the cpATP synthase is assumed 

to occur in a transient modular way (reviewed in Rühle and Leister, 2015). As in mitochondria, 

biogenesis is further complicated by the dual localization of genetic information in the nuclear 

(, , b’) and organellar genomes (, , , a, b, c). Hence, stoichiometric availability of subunits 

and coordinated assembly must be tightly regulated. Indeed, several auxiliary factors were 

shown to be involved in cpATP synthase gene expression, mediating mRNA processing 

(AEF1), stability (PPR10, BFA2), and translation initiation (ATP4, TDA1) (Pfalz et al, 2009; 

Eberhard et al., 2011; Zoschke et al., 2012; Yap et al., 2015; Zhang et al., 2019). In contrast 

to bacteria and mitochondria, chloroplast FO (CFO) cannot accumulate independently of 

chloroplast F1 (CF1) (Maiwald et al., 2003) and only minor amounts of CF1 were detected in 

Chlamydomonas CFO mutants (Lemaire and Wollmann, 1989). A similar interdependency can 

also be observed in Arabidopsis mutants of assembly factors affecting either CF1 or CFO (Rühle 

et al., 2014; Zhang et al., 2018). In vitro reconstitution assays suggest that chaperonin-

dependent heterodimerization of  and  might be the first step of CF1 assembly (Fig. 3; Chen 

and Jagendorf, 1994). Whereas, the presence of chaperonin 60 (Cpn60) in stromal chaperonin 

mixtures was shown to be essential for the reconstitution of active CF1, Cpn60 alone was not 

sufficient to restore ATPase activity of purified CF1-subunits, suggesting the involvement of 

additional stromal chaperones (Chen and Jagendorf, 1994). Indeed, the assembly-chaperones 

PAB and BFA1 were proposed to be required for the subsequent assembly of CF1 by 

independently mediating the incorporation of the -subunit (Mao et al., 2015; Zhang et al., 

2018).  

CFO assembly involves the action of CGL160, which shares homology to Atp1/Unc1 

from bacteria and is required for c-subunit oligomerization in Arabidopsis (Rühle et al., 2014). 

Split-ubiquitin assays could show that the membranous Atp1/Unc1-like domain of AtCGL160 

is sufficient to interact with the CFO-b and -c-subunits, suggesting an additional function for the 

green-lineage-specific soluble domain (Rühle et al., 2014). ALB4, which shares sequence 

identity with bacterial YidC, was proposed to act in CFO-b membrane integration or ATP 

synthase stability (Benz et al., 2009). Recent studies rather suggest a general involvement of 

ALB4 in ALB3- and cpSRP-mediated thylakoid protein targeting (Trösch et al., 2015; Bédard 

et al., 2017). Considering the strict interdependency of CF1 and CFO accumulation as well as 

the importance of the cpATP synthase in regulating the pmf, joining of the submodules is 

critical in the assembly of the functional complex. However, it is not clear how this process is 

orchestrated.  
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Figure 3. Schematic assembly pathway of the cpATP synthase. Assembly intermediates are mostly inferred 
from the bacterial model. Dotted lines indicate intermediates that have not been verified in planta. CF1 assembly is 

initiated by chaperonin 60- (Cpn60) dependent heterodimerization of - and -subunits. The assembly-chaperones 

BFA1 and PAB independently assist the incorporation of the -subunit into -heterodimers. Addition of two -

heterodimers and  complete CF1 assembly. CFO assembly requires CGL160, which facilitates c-subunit 

multimerization. Joining involves the addition of the stator module and , however the exact order of intermediates 
is not clear. Structure of the spinach cpATP synthase was obtained from the PDB homepage (https://www.rcsb.org/; 
PDB entry: 6FKH; Hahn et al., 2018). Shading and coloration were performed with ChimeraX. Figure was adapted 

and modified from Rühle and Leister (2015).  
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1.4 Chloroplast ribosomes 

Ribosomes are ribonucleoprotein complexes that translate the genetic code into a polypeptide 

sequence. Phylogenetically they can be classified in two groups, archaebacterial-type 80S 

ribosomes found also in the cytosol of eukaryotes and bacterial-type 70S ribosomes that can 

be also identified in their respective endosymbiotic descendants, mitochondria and plastids. 

Chloroplast ribosomes share with their bacterial ancestors (Fig. 4) not only their mode of action 

(reviewed in Zoschke and Bock, 2018), but also the basic structural organization of a small 

30S (SSU) and large 50S (LSU) subunit. Both consist of catalytic ribosomal RNAs (rRNA), 

coated and intertwined with at least 50 ribosomal proteins (RPs). The bacterial SSU harbors a 

1491 nucleotides (nts) long 16S rRNA for mRNA decoding and around 20 ribosomal proteins. 

The LSU consists of a large 23S rRNA (2904 nts) and a small 5S rRNA (120 nts), which provide 

the active sites for the formation of peptide bonds, and about 30 RPs (reviewed in Melnikov et 

al., 2012). Sequence and total length of the catalytic rRNA is largely conserved, but the 3' end 

of the 23S rRNA is represented by a separate 4.5S (103 nts) rRNA in chloroplasts (Whitfeld et 

al., 1978; Keus et al., 1984; Leal-Klevezas et al., 2000). In addition, the higher plant 23S rRNA 

is subjected to post-maturation fragmentation into three parts, held together by intermolecular 

base pairing, thus termed hidden breaks (Kössel et al., 1985). Chloroplast ribosomal proteins 

are largely conserved with respect to bacteria but their total molecular mass increased by about 

170 kD due to N- and C-terminal extensions, shifting the protein to RNA ratio from ~1:3 in 

bacterial to ~2:3 in plant chloroplasts (Yamaguchi et al., 2000; Yamaguchi and Subramanian, 

2000; Yamaguchi and Subramanian, 2003; Zoschke and Bock, 2018). Furthermore, 

chloroplasts contain no bacterial bl25 and ul30 homologs, but five plastid-specific RPs 

(PSRPs) were shown to be associated in stoichiometric amounts with ribosomes (Yamaguchi 

et al., 2000; Yamaguchi and Subramanian, 2000; Yamaguchi and Subramanian, 2003; 

Sharma et al., 2010). Recently resolved cryo electron-microscopy (cryo-EM) structures of 

spinach chloroplast ribosomes revealed the exact positions and binding partners of the PSRPs 

(Ahmed et al., 2016; Bieri et al., 2017; Graf et al., 2017; Perez Boerema et al., 2018). Whereas 

PSRP2, PSRP3 and PSRP4 were shown to be associated with the SSU, PSRP5 and PSRP6 

are part of the LSU. However, only disruption of PSRP3, PSRP4 and PSRP5 caused significant 

defects in ribosome biogenesis and translational capacity (Tiller et al., 2012). Presumably, they 

have been acquired as an adaptation to structural changes in the rRNA (Sharma et al., 2007; 

Tiller et al., 2012; Ahmed et al., 2016; Graf et al., 2016; Bieri et al., 2017), but also a regulatory 

function has been proposed (Yamaguchi and Subramanian, 2003; Manuell et al., 2007). 

Notably, not all RPs that are essential for chloroplast ribosome function were shown to be 

essential in bacteria, and some proteins non-essential in bacteria were shown to be 

indispensable for plants (reviewed in Tiller and Bock, 2014).  
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Figure 4. Structural comparison of bacterial and chloroplast 70S ribosomes. 70S ribosomes of 
Staphylococcus aureus (PDB entry: 5LI0; Khusainov et al., 2016) and Spinacia oleracea (PDB entry: 5MMM; Bieri 
et al., 2017) were resolved by cryo-EM. rRNA- and RP-components of the large subunit (LSU) are colored in beige 
and blue, respectively. rRNA- and RP-components of the small subunit (SSU) are colored in grey and red. Positions 
of the 23S, 5S and 4.5S rRNA (LSU), and 16S rRNA (SSU) are indicated. Structures were obtained from the PDB 
homepage (https://www.rcsb.org/). Shading and coloration were performed with ChimeraX. 

 

1.5 Biogenesis of chloroplast ribosomes 

Most of our knowledge about ribosome biogenesis is based on studies with bacteria (reviewed 

in Connolly and Culver, 2009; Shajani et al., 2011; Davis et al., 2016; Davis and Williamson, 

2017). The catalytically active cores of both subunits are encoded in one rRNA operon, yielding 

a polycistronic primary transcript, but small and large subunits are assembled independently 

(Shajani et al., 2011). The secondary structure of the rRNA is mainly determined by its 

sequence, whereas its three-dimensional structure requires the action of RP components 

which shape and maintain rRNAs in their folded stage during assembly (Williamson, 2003; 

Duss et al., 2019). It could be shown that RPs bind to the nascent rRNAs already during their 

transcription (Miller et al., 1970; Gotta et al., 1991). RPs can be divided into primary binders, 

which bind independently from other ribosomal proteins, and secondary binders, whose 

binding efficiency is determined by primary binding events (Mizushima and Namura, 1970; 

Herold and Nierhaus, 1987). As demonstrated recently, RPs can also bind transiently to the 

nascent rRNA and function as folding-chaperones prior to their stable association (Duss et al., 

2019). The structural elucidation of intermediates facilitated the generation of assembly maps 

for both subunits and established that rRNA processing, RP-assisted folding, and RP 

incorporation can take place sequentially and in parallel, resulting in several alternative 

assembly pathways (Mulder et al., 2010; Chen et al., 2012; Davis et al., 2016). It is assumed 

that the flexible nature of ribosome formation provides a more robust assembly process under 
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limited RP availability or changing environmental conditions (Davis and Williamson, 2017). 

Around 100 auxiliary factors have been identified in bacteria, facilitating rRNA processing, 

folding, modification, and integration of RPs (reviewed in Shajani et al., 2011). 

Ribosome biogenesis in chloroplasts is only understood in its basic principles and no 

detailed maps of early or late assembly events (Fig. 5) are available. The chloroplast rRNA is 

encoded in the plastid genome in an rRNA operon, whereas many RPs are encoded in the 

nucleus and require post-translational import into the chloroplast. Cotranscriptional assembly 

from one rRNA-precursor as well as subsequent pre-rRNA processing were proposed to occur 

primarily in nucleoids, a subcompartment within plastids with high amounts of DNA (reviewed 

in Krupinska et al., 2013; Chai et al., 2014; Bohne, 2014). Moreover, plastid nucleoids were 

shown to contain RPs and other factors involved in pre-rRNA processing (Majeran et al., 2012; 

Bohne, 2014). This sublocalization might not only reflect the cotranslational dynamics of early 

ribosome biogenesis but may also provide beneficial spatial separation of immature and 

actively translating ribosomes (Bohne, 2014). 

The early phase of chloroplast ribosome assembly is likely to be similar to bacterial 

ribosome assembly, because rRNA sequences are highly conserved (Bieri et al., 2017; Graf 

et al., 2017; Zoschke and Bock, 2018) and many pre-rRNA processing factors possess 

orthologs in bacteria (Komatsu et al., 2010; Fristedt et al., 2014; Liu et al., 2015; Janowski et 

al., 2018). Like in prokaryotes, also plastid SSU and LSU assemble independently (Walter et 

al., 2010). However, due to the parallel nature of alternative ribosome assembly pathways and 

substantial structural differences found predominantly in surface-exposed chloroplast RPs 

(Graf et al., 2016), subsequent assembly routes may differ considerably from the bacterial 

ancestor. Likewise, chloroplast-specific hidden break processing steps of the 23S rRNA and 

cleavage of the 4.5S rRNA-precursor were proposed to occur in later stages of ribosome 

assembly (Whitfeld et al., 1978; Keus et al., 1984; Leal-Klevezas et al., 2000). Consequently, 

factors involved in these processes are not present in bacteria (Bellaoui et al., 2003; Nishimura 

et al., 2010; Paieri et al., 2018). Vice versa, not all bacterial auxiliary factors have orthologs in 

the green lineage, and only some were shown to play a role in plastid ribosome biogenesis 

(reviewed in Bohne, 2014; Liu et al., 2015; Jeon et al., 2017; Janowski et al., 2018). Despite 

the need to orchestrate the supply of RPs of dual genetic origin and significant structural 

changes in chloroplast ribosomes, only few chloroplast-specific auxiliary factors have been 

identified (reviewed in Bohne, 2014; Wang et al., 2016; Meurer et al., 2017; Paieri et al., 2018; 

Pulido et al., 2018).  
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Figure 5. Schematic representation of chloroplast 70S ribosome assembly. Biogenesis is initiated by 
transcription of the rRNA from the plastome-encoded operon (rRNA genes are depicted as grey rectangles, 23S 
rRNA hidden break sites are indicated with dotted lines). Cotranslational binding and pre-rRNA processing define 
early assembly events. SSU and LSU are assembled independently in an ambiguous series of parallel and 
sequential assembly steps (omitted for clarity). Later assembly events of the LSU are defined by chloroplast-specific 
processing events of the 4.5S rRNA and 23S rRNA (hidden break processing). All stages of plastid ribosome 
assembly are mediated by auxiliary factors. Structures were obtained from the PDB homepage 
(https://www.rcsb.org/; SSU: 5MMJ; LSU: 5MMI; Bieri et al., 2017). Shading and coloration were performed with 
ChimeraX. 
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1.6 Identification of chloroplast auxiliary components 

Identification and functional annotation of the chloroplast proteome advanced markedly in the 

last 20 years due to the increasing availability of genetic data, facilitating phylogenetic screens 

as well as forward and reverse genetic approaches (Gilchrist and Haughn, 2010; Fristedt, 

2017; Rühle et al., 2018). However, despite progress in chloroplast research, only about 15% 

of the ~3000 chloroplast localized proteins can be assigned a function (Niehaus et al., 2015). 

Whereas much is known about structural components of the chloroplast, our understanding 

about the processes that regulate and assemble those macromolecular machineries is scarce. 

Phylogenetic analysis in combination with the increasing number of large datasets available 

for the model plant Arabidopsis thaliana, such as coregulation (Obayashi et al., 2018), 

comigration (Takabayashi et al., 2017), or phenotype databases (Sakurai et al., 2005; Akiyama 

et al., 2014), greatly improved reverse genetics approaches. Moreover, extensive collections 

of Arabidopsis insertional mutant lines including the SALK (Alonso et al., 2003), SAIL 

(Sessions et al., 2002), the GABI-Kat (Kleinboelting et al., 2012), or the double mutant library 

GABI-DUPLO (Bolle et al., 2013), have enabled fast and efficient isolation of knockout or 

knockdown alleles. Finally, large scale phenotyping platforms like chlorophyll a video imaging 

allow rapid, non-invasive screening of photosynthetic defects (Rühle et al., 2018) and provide 

a good starting point for further physiological or biochemical analyses.  

One of those reverse genetic screens has been designed on the basis of the so-called 

“GreenCut2”, which describes a phylogenetic study of proteins conserved in the green lineage 

but not found in non-photosynthetic organisms (Merchant et al., 2007; Karpowizc et al., 2011). 

The GreenCut2 comprises 597 proteins, of which 311 were not functionally annotated 

(Karpowicz et al., 2011). It has been assumed that strictly conserved proteins are critical for 

chloroplast function or other plant-related processes. Indeed, GreenCut2 proteins have been 

shown to be involved in various aspects of chloroplast function (Fristedt et al., 2017), including 

protein import (Vojta et al., 2004), thylakoid biogenesis (Armbruster et al., 2013) and protein-

complex assembly (Rühle et al., 2014; Fristedt et al., 2015), corroborating that the GreenCut2 

is a valuable resource for identifying factors involved in essential chloroplast processes.  
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1.7 Aims of the thesis 

The general scope of this thesis was to contribute to the current knowledge on the biogenesis 

of chloroplasts by functional characterization of novel putative auxiliary proteins in Arabidopsis 

thaliana. 

AtCGLD11 (CONSERVED IN THE GREEN LINEAGE AND DIATOMS 11) was 

identified based on a phenotypic annotation in the GreenCut2 screen (“photochemical 

quenching affected before high light treatment”, Karpowicz et al., 2011). Initial characterization 

and assignment of a putative role in cpATP synthase biogenesis was performed in Reiter 

(2015). Aim of this thesis was to reveal its function in cpATP synthase biogenesis by in-depth 

analysis of the assembly process and the identification of interaction partners (Chapter 2, Grahl 

et al., 2016). 

CGL160 (CONSERVED ONLY IN THE GREEN LINEAGE 160) was previously 

characterized in Rühle et al., (2014). It could be shown that disruption of CGL160 in 

Arabidopsis led to drastically reduced levels of cpATP synthase and overaccumulation of 

monomeric c-subunits. AtCGL160 physically interacted with CFO-b and -c, thus a function in 

c-ring assembly was proposed. The membranous C-terminal domain of CGL160 is distantly 

related to bacterial Atp1/Unc1 proteins that were demonstrated to be required for bacterial 

c-ring assembly (Suzuki et al., 2007; Ozaki et al., 2008). The focus of the dissertation was the 

characterization of the chloroplast-specific soluble domain of AtCGL160 and the investigation 

of its influence on the cpATP synthase assembly (Chapter 3, Reiter et al., Manuscript). 

CGL20 was identified as part of the GABI-DUPLO collection (Bolle et al., 2013). 

Generation of mutant lines and initial characterization were performed by Vamvaka (2016). In 

this work, an in-depth phenotypical and biochemical characterization of CGL20 mutants in 

Arabidopsis was carried out and the putative role of CGL20 in chloroplast biogenesis was 

investigated (Chapter 4, Reiter et al., 2020). 
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2  The Arabidopsis Protein CGLD11 is Required for Chloroplast 

ATP Synthase Accumulation 
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ABSTRACT

ATP synthases in chloroplasts (cpATPase) and mitochondria (mtATPase) are responsible for ATP produc-

tion during photosynthesis and oxidative phosphorylation, respectively. Both enzymes consist of twomulti-

subunit complexes, the membrane-bound coupling factor O and the soluble coupling factor 1. During

cpATPase biosynthesis, several accessory factors facilitate subunit production and orchestrate complex

assembly. Here, we describe a new auxiliary protein inArabidopsis thaliana, which is required for cpATPase

accumulation. AtCGLD11 (CONSERVED INTHEGREENLINEAGEANDDIATOMS11) is a proteinwithout any

known functional domain and shows dual localization to chloroplasts andmitochondria. Loss ofAtCGLD11

function results in reduced levels of cpATPase and impaired photosynthetic performance with lower rates

of ATP synthesis. In yeast two-hybrid experiments, AtCGLD11 interactswith theb subunits of the cpATPase

and mtATPase. Our results suggest that AtCGLD11 functions in F1 assembly during cpATPase biogenesis,

while its role in mtATPase biosynthesis may not, or not yet, be essential.

Key words: chloroplast, mitochondria, photosynthesis, dual targeting, ATP synthase, assembly
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INTRODUCTION

ATP is synthesized by the ubiquitous F1FO-ATP synthase, which

is found in the energy-transducing membranes of bacteria, mito-

chondria and chloroplasts. The chloroplast F1FO-ATP synthase/

ATPase (or cpATPase) generates ATP from the light-driven elec-

trochemical proton gradient and has a mushroom-like structure

common to all F1FO-ATP synthases. The cpATPase can be sepa-

rated physically into two parts: a membrane-spanning subcom-

plex responsible for proton translocation (CFO, chloroplast

coupling factor O) and the soluble CF1 part (chloroplast coupling

factor 1), which is peripherally attached to the membrane sub-

complex and harbors the catalytic sites for reversible ATP synthe-

sis. CF1 is built up of the five subunits a (AtpA), b (AtpB), g (AtpC),

d (AtpD), and 3(AtpE) in a stoichiometry of a3b3gd 3(reviewed by

von Ballmoos et al., 2009). CFO consists of subunit b (also

designated as I or AtpF), b0 (II or AtpG), c (III or AtpH), and a

(IV or AtpI), which are present in a stoichiometry of abb0c14.
A central stalk made up of the 3and g subunits and a peripheral

stator containing d, b, and b0 connect CF1 to CFO. The
complete three-dimensional structure of the cpATPase is not

available yet, but those of the CF1 complex a3b3g 3(without d)

(Groth and Pohl, 2001) and the c14 ring of CFO (Vollmar et al.,

2009), isolated from spinach chloroplasts, have already been

determined at atomic resolution.

As is the case for all major thylakoid complexes, the subunits of

the cpATPase originate from two different genetic compart-

ments. The g, d, and b0 subunits are encoded in the nuclear

genome, while the remaining six cpATPase genes are generally

organized into two operons in the plastid genome in plants. The

small operon consists of atpB and atpE, and transcription is initi-

ated from three different promoters; two are located upstream of

atpB and one within the atpB coding sequence (Malik Ghulam

et al., 2012). The other four cpATPase genes atpI, atpH, atpF,

and atpA form the second operon together with rps2, which
Molecular Plant 9, 885–899, June 2016 ª The Author 2016. 885
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precedes the gene cluster and codes for the plastid ribosomal

protein S2. The large cpATPase operon is transcribed from

several promoters, giving rise to primary transcripts that are

subsequently processed into multiple poly- and monocistronic

fragments (Stahl et al., 1993; Miyagi et al., 1998; Swiatecka-

Hagenbruch et al., 2007; Pfalz et al., 2009; Malik Ghulam et al.,

2012; Zhelyazkova et al., 2012). Thus, efficient cpATPase

biogenesis depends on the orchestrated interplay of multiple

cellular processes: coordinated nuclear and chloroplast gene

expression, the import of g, d, and b0 into the plastid, post-

translational processing, insertion of thylakoid-embedded

cpATPase subunits, and their assembly in the correct stoichiom-

etry, abb0c14a3b3gd 3(reviewed by Rühle and Leister, 2015).

During cpATPase biogenesis, the function of assembly factors is

of particular importance, since intermediate complexes can

either uncouple the proton gradient or wastefully hydrolyze

ATP, and their accumulation must be avoided. The assembly of

cpATPase can be divided into three major events: (i) CF1 assem-

bly, (ii) CFO assembly, and (iii) linkage of the different modules to

each other. The current model for CF1 assembly is derived from

in vitro reconstitution studies using stromal components and pu-

rified CF1 subunits. The chaperonins Cpn60 and Cpn20, which

are related to the bacterial chaperonins GroEL and GroES,

respectively, are required for the correct folding of stromal pro-

teins (Hartl, 2002), but are also essential for CF1 assembly

(Chen and Jagendorf, 1994). Furthermore, addition of the heat-

shock proteins Hsp70 and Hsp40 to reconstitution assays im-

proves hydrolytic ATPase activity, which points to a role for

Hsp70/Hsp40 in CF1 assembly (Mao et al., 2015). Moreover,

the green-lineage-specific factor PAB was shown to interact

with folded cpATPase-g and to promote the integration of this

nucleus-encoded subunit into the catalytic CF1 core downstream

of Cpn60/Cpn20-mediated events (Mao et al., 2015). In contrast,

CFO assembly depends on CGL160 (Rühle et al., 2014), which

harbors a C-terminal membrane domain that is conserved in

bacterial Atp1/UncI proteins, which are encoded by the first

gene preceding the structural ATP synthase genes in the atp

operon. Atp1/UncI and AtCGL160 are involved in c-ring

formation, which represents the first assembled CFO module.

Subsequent CFO assembly steps are unknown but, by analogy

with the assembly process in bacteria, abb0 might represent a

second CFO module (Hilbers et al., 2013). Attachment of CF1 to

the membrane-embedded CFO module is facilitated by the Alb3

homolog Alb4 (Benz et al., 2009). The final step in cpATPase

assembly is also unknown, but in bacteria the ab2 module is

joined to the c10a3b3g 3module by binding of the F1 subunit d. In

this way, undesirable bacterial ac10 intermediates, which can

uncouple the proton-motive force (pmf) by mediating proton

translocation without ATP generation, can be avoided (Hilbers

et al., 2013).

In this study, we have identified a new auxiliary factor, AtCGLD11

(CONSERVED IN THE GREEN LINEAGE AND DIATOMS 11),

which promotes cpATPase accumulation in Arabidopsis. As a

GreenCut2 protein, AtCGLD11 is restricted to the green

lineage and is absent in (cyano)bacteria (Merchant et al., 2007;

Karpowicz et al., 2011). Remarkably, AtCGLD11 is targeted

to both chloroplasts and mitochondria. AtCGLD11 does not

contain any protein domain with a known function, but the

loss of AtCGLD11 function is associated with an overall
886 Molecular Plant 9, 885–899, June 2016 ª The Author 2016.
decrease in cpATPase activity resulted from a severe reduction

in cpATPase levels. In contrast, mtATPase activity and

abundance are not affected in AtCGLD11 knockout lines.

However, we show here that AtCGLD11 physically interacts

with both cpATPase-b and mtATPase-b in yeast, which points

to a function of AtCGLD11 in F1 assembly of chloroplasts and a

perhaps minor or emerging role in plant mitochondrial F1
assembly.
RESULTS

Characteristics of the GreenCut Protein AtCGLD11

In a search for novel photosynthesis-related proteins inArabidop-

sis thaliana, we identified AtCGLD11 (alias AT2G21385) based

on its inclusion in the GreenCut set of proteins and on the

nature of its mutant phenotype (see Supplemental Table 2 in

Karpowicz et al., 2011: Mutant Phenotype from Chloroplast

2010 dataset: photochemical quenching affected before high

light treatment).

AtCGLD11 (AT2G21385.1) codes for a protein with 330 amino

acids and contains a predicted N-terminal chloroplast transit

peptide (cTP) such that the mature protein should have a

calculated isoelectric point of 6.0 and a calculated molecular

mass of �33 kDa. Localization to the stroma of the chloroplast

has been suggested previously for AtCGLD11 and its counter-

part in Chlamydomonas reinhardtii, based on proteomics

experiments (Zybailov et al., 2008; Terashima et al., 2011), and

this is in line with the absence of predicted transmembrane

domains.

AtCGLD11 homologs are not found in bacteria, but a distantly

related gene product was identified in Thalassiosira pseudonana

(Supplemental Figure 1), which harbors a diatom-specific inser-

tion at amino acid positions 236–260. A multiple alignment

with representative homologs from algae, moss and vascular

plants revealed 26 identical (6.8%) and 64 similar (16.6%)

amino acid positions, respectively (percentages refer to an over-

all number of 385 amino acid positions in the alignment shown in

Supplemental Figure 1). AtCGLD11 shares 59/44% and 43/26%

sequence similarity/identity with its homologs in Physcomitrella

patens and C. reinhardtii, respectively. AtCGLD11 does not

contain any known conserved protein domain (http://www.ncbi.

nlm.nih.gov/Structure/cdd/wrpsb.cgi). Thus, it represents a

protein with few functionally suggestive features, which is

moderately conserved in the green lineage and diatoms, but

absent from bacteria.
AtCGLD11 Is Required for Normal Growth inArabidopsis

Two Arabidopsis T-DNA lines for AT2G21385were obtained from

the Nottingham Arabidopsis Stock Centre, and sequences flank-

ing the T-DNA insertions were amplified by PCR and sequenced.

The lines atcgld11-1 (SALK_019326) and atcgld11-2 (SALK_

006444) have insertions at position 971 bp (exon 6) and position

1074 bp (intron 6) relative to the start codon, respectively

(Figure 1A). To analyze the effect of the mutations on

AtCGLD11 transcript levels, reverse transcriptase (RT)-PCR

was performed and regions were amplified either upstream

or downstream of each insertion (Figure 1A). A product of the

30 amplicon but not for the 50 amplicon was obtained for

http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi


Figure 1. Characterization of Arabidopsis
atcgld11 Knockout Mutants.
(A) Schematic representation of the AtCGLD11

gene. Exons are numbered and depicted as white

boxes, introns as thin lines, and UTR regions

as black boxes. T-DNA positions relative to

the start codon and their orientations (left border

[LB], right border [RB]) in atcgld11-1 and atcgld11-

2 are indicated. Primer positions for amplification

of the AtCGLD11 transcript are indicated by P1

to P4.

(B) Expression analysis of AtCGLD11 by

reverse transcriptase (RT)-PCR. Positions of

primer pairs P1/P2 and P3/P4 are shown in (A).

Ubiquitin mRNA levels (UBIQUITIN) served as

controls.

(C) Total protein leaf extracts (each corresponding

to 2.5 mg of Chl) of atcgld11-1, atcgld11-2 and WT

(100%, 75%, 50%, and 25% dilutions) were size-

fractionated on SDS–PAGE, blotted and sub-

jected to AtCGLD11 immunodetection analysis.

PVDF membranes were stained with Coomassie

brilliant blue G-250 (C.B.B.) to control for equal

loading.

(D) Growth phenotypes of atcgld11 knockout

and AtCGLD11 overexpressor lines. WT (Col-0),

mutants (atcgld11-1 and atcgld11-2) and two

independent AtCGLD11 overexpressing lines

(oeAtCGLD11.1 and oeAtCGLD11.2) were grown

for 4 weeks under short-day conditions.

(E) Quantification of mean leaf area in WT (Col-0),

mutants (atcgld11-1 and atcgld11-2), and over-

expressors (oeAtCGLD11.1 and oeAtCGLD11.2) according to Leister et al. (1999). Plants were grown for 14 days under 8 h light/16 h night (8/16 h) or 16 h

light/8 h night (16/8 h) conditions. Values are means of 10 individual plants and standard deviations are provided.
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atcgld11-1, whereas plants homozygous for the atcgld11-2

mutation showed a PCR product for both the 30 and the

50 region (Figure 1B). To clarify whether the AtCGLD11 protein

accumulates in the mutant lines, an antibody was raised

against the heterologously expressed and purified AtCGLD11

(lacking the predicted cTP). Total leaf protein was isolated from

A. thaliana ecotype Col-0 (wild type [WT]), and from atcgld11-1

and atcgld11-2. Western blot analysis using the specific

a-AtCGLD11 antibody demonstrated that both alleles are com-

plete knockouts and in neither line is AtCGLD11 detectable

(Figure 1C). To analyze the effects of loss of AtCGLD11 on

growth behavior, knockout and WT plants were grown in

climate chambers providing short-day (8/16 h) and long-

day (16/8 h) exposure to a light intensity of 100 mmol photons

m�2 s�1 (Figure 1D and 1E). Leaf areas were determined

(Leister et al., 1999) at 2 weeks after germination, at which time

the mutant lines atcgld11-1 and atcgld11-2 already showed a

pronounced reduction in growth rate compared with WT plants,

in particular under long-day conditions (Figure 1E). To restore

the WT phenotype, the coding sequence of AT2G21385.1 was

cloned under the control of the constitutive 35S promoter and

transformed into atcgld11-1. Several BASTA-resistant plants

were selected and screened for AtCGLD11 overexpression,

and two lines (oeAtCGLD11.1 and oeAtCGLD11.2) with 4- to

6-fold higher AtCGLD11 levels than WT were chosen for further

analysis (Supplemental Figure 2A and 2B). As expected, plants

overexpressing AtCGLD11 had WT-like growth rates, indicating

that depletion of AtCGLD11 is responsible for the growth pheno-

type observed in the two mutant lines (Figure 1D).
Lack of the Dual-Targeted AtCGLD11 Affects
Chloroplast and Mitochondria Structure

To clarify whether cellular ultrastructure is affected by the loss of

AtCGLD11, leaves from 14-day-old A. thaliana seedlings grown

under short-day conditions were examined with the electron

microscope (Figure 2). Because the mutants atcgld11-1 and

atcgld11-2 behaved very similarly with respect to growth

phenotype and AtCGLD11 accumulation, only atcgld11-1 was

used for microscopy. Leaf sections were prepared from

tissue below the tip, which contains fully developed cells.

Overviews of cross-sections indicated that atcgld11 leaves

were thinner than WT (Col-0) leaves (Figure 2A and 2G).

Moreover, atcgld11-1 cells accumulated enlarged mitochondria

(Figure 2E, 2F, 2K, and 2L), particularly in the palisade

parenchyma (around 75% of cells affected) but also in the

sponge parenchyma (around 50%; Figure 2M). Chloroplasts

displayed more grana stacking (Supplemental Figure 3)

and stroma lamellae were slightly bloated (Figure 2E, 2F, 2K,

and 2L).

To analyze the subcellular localization of AtCGLD11, chloroplasts

and mitochondria were isolated from WT and atcgld11-1

leaves and protein extracts were subjected to western-blot

analyses. Immunodetection with antibodies specific for the

mitochondrial and chloroplast marker proteins Tom40 and

Lhcb2, respectively, confirmed the purity of each fraction

(Figure 2N). AtCGLD11 was detected in both organelles

and migrated at a position corresponding to a size of about

30 kDa. Thus, AtCGLD11 is localized to chloroplasts and
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Figure 2. Ultrastructural Analysis of
atcgld11-1 Plants Grown under Short-Day
Conditions, and Localization of AtCGLD11.
Col-0 (A–F) and atcgld11-1 (G–L) were analyzed

by light microscopy (A and G) and electron mi-

croscopy (B–F, H–L). Sections of palisade (C, E,

I, K) and sponge parenchyma (D, F, J, L) are de-

picted. Mitochondria are indicated by black ar-

rowheads. Insets show the magnification of the

thylakoid structure (E, F, K, L). Scale bars are

25 mm in (A) and (G); 10 mm in (B) and (H); 2 mm in

(C), (D), (I), and (J); and 1 mm in (E), (F), (K), and (L).

(M)Quantification of abnormal mitochondria inWT

(Col-0) and atcgld11-1. In total, 100 cells were

analyzed from five plants (20 from each plant) of

either WT (Col-0) or atcgld11-1. SD is shown.

(N) Mitochondrial and plastidial localization of

AtCGLD11. Mitochondria (Mito) and chloroplasts

(Chloro) were isolated from leaf samples taken

from either Col-0 or the atcgld11-1 mutant. Purity

was analyzed by western analyses using the

mitochondrial outer membrane protein Tom40

and the thylakoid-specific light-harvesting protein

Lhcb2.
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mitochondria, and the ultrastructure of both organelles is altered

in its absence.

AtCGLD11 Is Required for Normal Rates of ATP
Synthesis in Chloroplasts, but Not in Mitochondria

To screen for aberrant membrane complex levels in chloroplasts

and mitochondria, two-dimensional gel analysis was carried

out on organelle preparations from WT and atcgld11-1

leaves. Thylakoid membranes and total mitochondria were

solubilized in n-dodecyl b-D-maltoside (b-DM) and protein

complexes were separated by blue native (BN) PAGE, followed

by analysis of their constituent subunits by SDS–PAGE

(Figure 3A and 3B). After Coomassie blue staining of thylakoid

proteins, several spots were seen to be less prominent in

atcgld11-1 than in WT (Figure 3A). Based on their migration
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behavior on BN-PA gels and their electro-

phoretic mobility (50–60 kDa) in the second

dimension (Rühle et al., 2014), these spots

were identified as subunits a/b of the

cpATPase. However, no difference in

complex accumulation between atcgld11-1

and WT mitochondria could be discerned

(Figure 3B), and protein complexes

attributable to mitochondrial ATP synthase

accumulated to normal levels, as indicated

by the presence of equal amounts of

mtATPase-a/b in atcgld11-1 and WT

mitochondria (Figure 3B).

Because the cpATPase-a/b subunits were

less abundant in atcgld11-1 plants, we

measured rates of ATP synthesis in isolated

chloroplasts and mitochondria (Figure 3C

and 3D). Indeed, the rate of ATP

production in chloroplasts was reduced by
around 50% of the WT in atcgld11-1, but was normal in

mitochondria isolated from the same mutant. Thus, we

conclude that lack of the dual-targeted AtCGLD11 affects the

accumulation of the cpATPase, but neither the steady-state level

nor the activity of the mtATPase.

AtCGLD11 Is Specifically Required for cpATPase
Accumulation

Next, we analyzed the influence of AtCGLD11 on other major

thylakoid complexes. To this end, the accumulation of character-

istic marker proteins in atcgld11-1 and atcgld11-2wasmonitored

bywestern-blot analyses (Figure 4A). In atcgld11 knockout plants,

PSII (D2, PsbP, and CP43), cytochrome b6f (PetA), PSI (PsaB and

PsaC), as well as light-harvesting complex II (Lhcb2) and I (Lhca1)

were present to 90%–100%, 100%, 80%–90%, 70%, and 100%



Figure 3. Protein Accumulation in Chloro-
plasts and Mitochondria from atcgld11-1
Plants.
(A–D) 2D BN/SDS–PAGE separation of (A) plas-

tidial and (B)mitochondrial membrane complexes

from WT (Col-0) and atcgld11-1. Individual lanes

from BN-PA gels were analyzed on Tris-Tricine

gels (10%, 4 M urea) in the presence of SDS and

stained with colloidal Coomassie brilliant blue

G-250. CpATPase-a/b and mtATPase-a/b sub-

units are indicated by black arrowheads in (A) and

are annotated by their 2D gel position according

to previous studies (Klodmann et al., 2011;

Rühle et al., 2014). ATP synthase activity was

measured in chloroplasts (C) and mitochondria

(D) as described in the Methods. Spots of
32P-ATP were quantified using ImageQuant TL.

Experiments were performed in triplicate.
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of the WT levels, respectively (Figure 4A). However, a significant

reduction was observed for cpATPase subunits in atcgld11-1

and atcgld11-2: CF1 subunits a, b and g were reduced to

20% and CFO subunits a, b, b0 and c to 20%–30% of WT levels,

respectively (Figure 4A). In addition, solubilised thylakoid

complexes obtained from WT, AtCGLD11 knockout and

overexpressor lines were examined by BN-PAGE (Figure 4B).

Levels of pigment-binding complexes, including the NDH-PSI

supercomplex, were not affected in atcgld11-1 and atcgld11-2.

Furthermore, overexpression of AtCGLD11 had no impact on

PSII, PSI, cytochrome b6f or LHC accumulation (Figure 4B). In

agreement with our immunotitration results (Figure 4A), amounts

of the cpATPase holoenzyme (cpATPaseholo), as well as CF1
levels, were reduced in both knockouts, but were restored to

WT levels in the overexpressor lines, as indicated by Western

analyses (Figure 4B, lower panel; Supplemental Figure S2B).

From these results we conclude that AtCGLD11 specifically

affects cpATPase accumulation and that minor reductions in

other thylakoid complexes (Figure 4A) in atcgld11 mutants might

represent secondary effects.
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Loss of AtCGLD11 Function Impairs
Photosynthesis

To examine the impact of AtCGLD11

on photosynthesis, we measured chloro-

phyll a fluorescence parameters (Table 1)

and analyzed leaf pigment composition

(Table 2) in the knockouts, as well as in the

overexpressor lines. PSII functionality (Fv/

Fm) was only slightly impaired in atcgld11-1

(0.78 ± 0.02) and atcgld11-2 (0.77 ± 0.02)

compared with WT (0.8 ± 0.02), which

is in line with the normal accumulation

of PSII marker subunits revealed by

our immunotitration analyses (Figure 4).

However, effective quantum yields (fII)

measured at 100 mmol photons m�2 s�1 in

atcgld11-1 and atcgld11-2 were reduced

to 0.44 ± 0.04 and 0.42 ± 0.06 from the WT

value of 0.56 ± 0.05. A clear difference was

also observed for the non-photochemical

quenching parameter NPQ. While NPQ
values for the WT were 0.45 ± 0.06, the levels of NPQ were

more than doubled in both atcgld11-1 (0.98 ± 0.28) and

atcgld11-2 (1.23 ± 0.23) leaves, indicating increased heat dissi-

pation of absorbed light energy in the absence of AtCGLD11.

To unravel the contributions of the two quenching parameters

qE and qI to the NPQ phenotype, we analyzed the kinetics of

dark relaxation. An increase in qE normally reflects the activation

of DpH-dependent quenching, whereas an increase in qI can be

attributed to photoinhibitory quenching mechanisms. Photoinhi-

bitory quenching levels in the two mutant lines were as high as

in WT, while qE was increased by about 4-fold in atcgld11-1

(0.95 ± 0.12) and atcgld11-2 (1.08 ± 0.26) compared with WT

leaves (0.26 ± 0.05). The two overexpressor lines oeAtCGLD11.1

and oeAtCGLD11.2 again showed WT-like photosynthetic per-

formance, with normal NPQ values.

To examine the effects of a lack and a surfeit of AtCGLD11 on

pigment composition, we performed reverse-phase high-perfor-

mance liquid chromatography analyses (Table 2) on light-

adapted leaves grown under short-day conditions (80–100 mmol
85–899, June 2016 ª The Author 2016. 889



Figure 4. Immunotitration Analyses of
atcgld11 Thylakoid Proteins.
(A) Thylakoids were isolated from WT (Col-0) and

the two mutant lines atcgld11-1 and atcgld11-2.

Dilutions of Col-0 thylakoid samples were loaded

to quantify protein amounts in mutant samples.

Proteins were separated by SDS–PAGE and

analyzed by immunoblotting using antibodies

specific for the indicated subunits. The levels of

each marker subunit identified in atcgld11 mu-

tants are expressed relative to the corresponding

WT signals.

(B) Thylakoid protein complexes from WT (Col-0),

knockout lines (atcgld11-1 and atcgld11-2),

and overexpressors (oeAtCGLD11.1 and

oeAtCGLD11.2) were analyzed by BN–PAGE.

Proteins and protein complexes are labeled (up-

per panel) as follows: PSI-NAD(P)H dehydroge-

nase supercomplex (PSI-NDH), PSII/PSI super-

complexes (PSII/PSIsuper), PSI monomers and

PSII dimers (PSImono and PSIIdi), PSII monomers

and dimeric Cyt b6f (PSIImono and Cyt b6/fdi),

CP43-free PSII monomers (CP43-PSII), trimeric

LHCII (LHCIItri), and monomeric LHCII (LHCIImono).

The BN–PAGE strip was denatured, blotted, and

a specific antibody against cpATPase-b was

employed to detect CF1-containing complexes.

The cpATPase holoenzyme (cpATPaseHolo) and

coupling factor 1 (cpATPaseCF(1)) are indicated.

Molecular Plant cpATPase Accumulation Requires AtCGLD11
photons m�2 s�1). WT, knockout mutants, and overexpressor

plants exhibited comparable concentrations of lutein, carotenes,

and chlorophylls. However, antheraxanthin and zeaxanthin levels

were clearly increased in atcgld11 mutants at the expense of

violaxanthin, which is reflected in an increase in the size of the

violaxanthin + antheraxanthin + zeaxanthin pool (Col-0, 57 ±

5 pmol mg�1; atcgld11-1, 70 ± 6 pmol mg�1; atcgld11-2, 70 ±

6 pmol mg�1). Hence, the xanthophyll cycle is already activated

at moderate light intensities in atcgld11-1 and atcgld11-2 leaves,

as indicated by the increased levels of antheraxanthin and

zeaxanthin.

AtCGLD11 Associates with Chloroplast Membranes and
Is a Low-Abundance Protein

To examine whether AtCGLD11 is associated with chloroplast

membranes, we separated WT chloroplasts into membrane

and stroma fractions (Figure 5), the purity of which was

verified by the absence of RbcL from the former and Lhcb2

from the latter. Although it does not contain any predicted

membrane domain, AtCGLD11 was detected in both fractions

(Figure 5A). To clarify whether AtCGLD11 is a peripherally

attached membrane protein, thylakoids were isolated from

WT (Col-0) and extracted with standard salt solutions

(Figure 5B). Moreover, membrane-integrated (PsaA and

cpATPase-c) and peripherally attached (PsaD) proteins were

immunodetected in control experiments. Under all four condi-

tions tested, most of the AtCGLD11 remained associated

with the membrane fraction, but could be partially extracted

into the soluble fraction by exposure to NaSCN or NaOH. Since

AtCGLD11 behaved similarly to PsaD in salt-wash experiments,

we concluded that AtCGLD11 is an extrinsic membrane protein

(Figure 5B).
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We then measured the abundance of AtCGLD11 in WT plants.

Known amounts of purified His-AtCGLD11 protein and total cell

extracts from WT leaves were separated by SDS–PAGE, trans-

ferred to polyvinylidene fluoride (PVDF) membranes and probed

with our specific antibody (Figure 5C). Signal quantification

allowed us to calculate a concentration of 0.019 ± 0.0026 mmol

per mol Chl�1 for AtCGLD11. Thus, based on previous

quantification studies (Kirchhoff et al., 2002; Mao et al., 2015),

AtCGLD11 is 40–50 times less abundant than the cpATPase

complex. These results suggest AtCGLD11 is a low-abundance

protein that mainly associates with chloroplast membranes but

also is present in the soluble chloroplast fraction.

Lack of AtCGLD11 Affects Expression of Plastid Genes
for cpATPase Subunits

We next asked whether AtCGLD11 plays a role in modulating

the expression of cpATPase at the transcriptional or post-

transcriptional (e.g., processing or splicing) level. Northern-blot

analysis of size-fractionated RNAs from WT and mutant

(atcgld11-1 and atcgld11-2) plants (Figure 6A and 6C) with

atpB- and atpE-specific radiolabeled probes revealed seven

and three bands, respectively (Figure 6A). One dicistronic

transcript, which migrated in between 1.8 and 3.2 kb, was

recognized by both probes and was present in excess amounts

in the mutant lines, whereas other transcripts derived from

the small cpATPase operon were not significantly altered.

Northern-blot analyses of the large operon revealed no obvious

difference in the abundance of atpA-containing transcripts

(Figure 6C). However, levels of an atpH/F transcript (�1.4 kb)

were slightly reduced. Moreover, one normally low-abundance

atpI fragment, which migrated slightly above 3.2 kb, was absent

and the levels of three atpI transcripts (two between 1.8 and



WT atcgld11-1 atcgld11-2 oeAtCGLD11.1 oeAtCGLD11.2

Fv/Fm 0.80 ± 0.02 0.78 ± 0.02 0.77 ± 0.02 0.80 ± 0.01 0.80 ± 0.01

FII 0.56 ± 0.05 0.44 ± 0.04 0.42 ± 0.06 0.55 ± 0.02 0.59 ± 0.01

1 � qP 0.23 ± 0.04 0.29 ± 0.03 0.31 ± 0.04 0.24 ± 0.02 0.21 ± 0.02

NPQ 0.45 ± 0.06 0.98 ± 0.28 1.23 ± 0.23 0.55 ± 0.08 0.42 ± 0.10

qE 0.26 ± 0.05 0.95 ± 0.12 1.08 ± 0.26 0.41 ± 0.08 0.31 ± 0.10

qI 0.24 ± 0.04 0.23 ± 0.11 0.22 ± 0.02 0.28 ± 0.04 0.21 ± 0.02

Table 1. Chl a Fluorescence Parameters of WT (Col-0), atcgld11, and oeAtCGLD11 Plants Grown under Short-Day Conditions.
After 20 min of dark adaptation, leaves were exposed to 100 mmol photons m�2 s�1 for 15 min. The subsequent dark-relaxation phase was recorded for

10 min. Average values (n = 5) and standard deviations for the following parameters were calculated: Fv/Fm, maximum quantum yield of PSII;FII, effective

quantum yield of PSII at 100 mmol photons m�2 s�1; 1 � qP, excitation pressure; NPQ, non-photochemical Chl fluorescence quenching; qE, energy-

dependent quenching of Chl fluorescence; qI, photoinhibitory quenching.
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3.2 kb in size and one at�1.7 kb) were reduced in atcgld11-1 and

atcgld11-2 (Figure 6C).

In order to explore a possible function of AtCGLD11 in the tran-

scription of plastid genes for cpATPase subunits, we performed

run-on transcription assays (Figure 6D). Denatured DNA

fragments derived from the six plastome-encoded cpATPase

genes, as well as two controls (rbcL and psbA), were probed

with radiolabeled RNAs isolated from WT and atcgld11-1 chloro-

plasts. Signal intensities for both controls (psbA and rbcL) and all

tested cpATPase transcripts were unaltered in atcgld11-1. Thus,

de novo transcription rates of cpATPase subunits are not affected

in atcgld11-1.

Translation rates of cpATPase-a/b subunits in atcgld11 mutants

were examined by pulse-labeling experiments (Figure 7).

Because the soluble CF1 subunits can be easily washed off

thylakoid membranes (see Figure 5B), we analyzed newly

synthesized proteins in isolated chloroplasts (see Methods for

further details). In the insoluble fraction, synthesis rates for

thylakoid-integral PSII subunits (D1/D2) in atcgld11 mutants

were found to be equal to those in WT plants. Remarkably, in

the soluble fraction, the signals for labeled cpATPase-a/b protein
Pigment Col-0 atcgld11-1 atc

Nx 52 ± 3 58 ± 5 5

Vx 56 ± 2 48 ± 5 4

Ax 2 ± 0 15 ± 2 1

Zx 0 ± 0 8 ± 2

VAZ 57 ± 5 70 ± 6 7

Lut 184 ± 11 202 ± 21 20

Car 129 ± 6 139 ± 11 13

Chl a 1365 ± 72 1462 ± 109 146

Chl b 441 ± 23 487 ± 37 48

Chl a + b 1806 ± 95 1948 ± 146 194

Table 2. Pigment Analyses of WT (Col-0), atcgld11, and oeAtCGLD11
Samples were harvested from 6-week-old plants grown in a climate chamber u

extracted and quantified as described in the Methods. Average values (n = 5) a

fresh weight. Nx, neoxanthin; Vx, violaxanthin; Ax, antheraxanthin; Lut, lutein; Z

violaxanthin + antheraxanthin + zeaxanthin; Chl a + b, total chlorophyll.
levels were increased in mutant plants. This implies that, in

atcgld11 mutants, the association of cpATPase-a/b proteins

with the thylakoids is perturbed (Figure 4), but not their overall

rates of synthesis (Figure 7).

Since only the translation rates of cpATPase-a/b subunits could

be examined in our pulse-labeling experiments, we carried out

polysome-loading experiments, which permit detection of trans-

lational defects associated with low-abundance atp transcripts

(Supplemental Figure 4). To this end, we fractionated

polysomes isolated from WT and atcgld11-1 plants on sucrose

gradients, and examined the RNA patterns in the different

fractions by northern-blot analyses. Generally, transcripts

bound to high-molecular-weight polysomes migrate further into

the gradient during centrifugation and are enriched in the denser

sucrose fractions (fractions 7–12, Supplemental Figure 4),

whereas unbound transcripts are found in the upper, less

dense fractions (fractions 1–6, Supplemental Figure 4).

Therefore, translational initiation or elongation defects can be

identified by an altered RNA profile within the gradient.

Distributions of cytosolic (25S and 18S) and plastid rRNAs (23S,

16S, and 4.5S) in sucrose gradients were not significantly

altered in atcgld11-1, which indicated that overall cytosolic and
gld11-2 oeAtCGLD11.1 oeAtCGLD11.2

8 ± 4 54 ± 2 58 ± 4

9 ± 4 54 ± 3 57 ± 7

4 ± 1 5 ± 1 2 ± 0

7 ± 1 2 ± 0 0 ± 0

0 ± 6 61 ± 4 59 ± 7

2 ± 16 187 ± 9 201 ± 22

7 ± 10 130 ± 5 138 ± 11

1 ± 101 1385 ± 45 1488 ± 100

5 ± 36 448 ± 15 486 ± 35

7 ± 137 1832 ± 59 1974 ± 134

Plants.
nder short-day conditions (80–100 mmol photonsm�2 s�1). Pigments were

nd standard deviations are provided and values are given in pmol per mg

x, zeaxanthin; Chl a, chlorophyll a; Chl b, chlorophyll b; car, carotene; VAZ,
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Figure 5. AtCGLD11 Membrane Association and
Quantification.
(A) Chloroplasts were separated into soluble and insoluble fractions,

which were analyzed for the presence of Lhcb2, RbcL, and AtCGLD11.

(B) Membrane association of AtCGLD11. Thylakoid-enriched fractions of

Col-0 chloroplasts were incubated with different salt solutions (NaCl,

Na2CO3, NaSCN, and NaOH) for 30 min on ice. Then the proteins

remaining in the insoluble pellet fractions (p) and the proteins in the

supernatants (s) were subjected to SDS–PAGE and western analyses.

PsaA and cpATPase-c were immunodetected as controls for membrane-

integral subunits and PsaD as a control for a thylakoid-associated

protein. PVDF membranes were stained with Coomassie brilliant blue

G-250, and bands corresponding to LHCs and cpATPase-a/b are high-

lighted.

(C) Quantification of AtCGLD11 in total leaf extract. Known amounts of

purified His-AtCGLD11 and total leaf extracts corresponding to 2.5 mg Chl

were separated by SDS–PAGE and subjected to western analyses using

AtCGLD11-specific antibodies. The antibody also cross-reacted with a

protein (marked with an asterisk), which was also present in the negative

control atcgld11-1.
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plastid translation was unaffected. Similarly, 57% of the overall

signal (fraction 1–12) for atpB/E transcripts was detected in

fractions 7–12 of atcgld11-1 samples, compared with 53% in

the WT sample. Interestingly, the dicistronic atpB/E transcript,

which was found to overaccumulate in northern-blot analyses

of atcgld11 mutants (Figure 6A), was also enriched in the

polysome-associated fractions (Supplemental Figure 4),

possibly indicating that translation rates of cpATPase-b and

cpATPase- 3might be slightly increased. With respect to the

large operon, polysome-associated atpI (66% versus 63% in

WT) and atpH transcript levels (59% versus 54% WT) were not

dramatically changed in atcgld11-1 samples (RNA levels are ex-

pressed relative to the overall signal for that transcript in each

gradient). However, levels of one atpH, one atpF, and three atpI
892 Molecular Plant 9, 885–899, June 2016 ª The Author 2016.
transcripts weremarkedly decreased or undetectable in the poly-

some fractions of atcgld11-1 samples.

Taken together, the reduction or absence of several transcripts

encoded in the large operon (Figure 6) might be explained by

lower transcript stability, since de novo transcription of

cpATPase genes was unaffected (Figure 6D). Moreover, pulse-

labeling analyses showed that translation rates for the two CF1
subunits cpATPase-a/b (Figure 7) are not perturbed, which is in

line with the fact that atpA and atpB transcripts accumulate at

least to WT levels (Figure 6A and 6C). No defects in translation

initiation or elongation were observed for the transcripts

derived from the two cpATPase operons in atcgld11-1

(Supplemental Figure 4). However, the reduced steady-state

levels of some processed transcripts are reflected in reduced as-

sociation of atpI, atpH, and atpF with polysomes (Supplemental

Figure 4), which would be expected to affect accumulation of

the three chloroplast-encoded CFO subunits cpATPase-a, -b,

and -c.
AtCGLD11 Interacts with the b Subunits of cpATPase
and mtATPase

To probe whether AtCGLD11 is involved in cpATPase assembly,

we examined the formation of intermediate assembly complexes

by 2D gel electrophoresis and immunodetection analyses of iso-

lated WT (Col-0) and atcgld11-1 thylakoid membranes (Figure 8).

CF1 intermediates were visualized by immunodetection of

cpATPase-a/b and g, and CFO subcomplexes with antibodies

against cpATPase-a, b, b0, and c, respectively (Figure 8A).

Subunits in the free, intermediate, and fully assembled

cpATPase fractions were reduced to 20%–40% of WT in

atcgld11-1 (Figure 8B), which is in line with the results from our

immunotitration analyses (Figure 4). However, no enrichment of

a specific thylakoid-associated cpATPase intermediate, and

thus no indication of any disruption in the membrane-

associated assembly process, was observed.

Since some AtCGLD11 proteins are attached to chloroplast

membranes (Figure 5A and 5B), we asked whether AtCGLD11

might be stably associated with a high-molecular-mass

complex. The chloroplasts from WT (Col-0), atcgld11-1, and

oeAtCGLD11.1 plants were isolated, solubilized, and subjected

to 2D gel and immunoblot analyses (Figure 9A). A faint signal

was seen in the free protein fraction of the WT sample, which

was absent in atcgld11-1 and was more pronounced in the

overexpressor line. This indicates that AtCGLD11 is not an

integral part of the cpATPase, nor does it stably associate with

any of its membrane-linked assembly intermediates.

To look for transient interactions of AtCGLD11 with CFO and CF1
subunits, we performed split-ubiquitin and yeast two-hybrid as-

says, respectively. However, fusion constructs of AtCGLD11 in

split-ubiquitin assays were not expressed in yeast and are for

that reason not presented here. Yeast cells expressing the

binding-domain fusion protein BD-AtCGLD11 were transformed

with constructs coding for CF1 subunits fused to the activation

domain and plated on selective medium (lacking Leu, Trp, His,

and Ade) (Figure 9B). Only cotransformants of BD-AtCGLD11

and AD-CF1-b were able to grow, indicating that AtCGLD11

interacts transiently with cpATPase-b. Since AtCGLD11 is a



Figure 6. Transcript Analyses.
(A–C) RNA samples from WT (Col-0) and the

mutant lines atcgld11-1 and atcgld11-2 were size-

fractionated by denaturing gel electrophoresis

and blotted onto nylon membranes. Positions of

rRNAs, which serve as molecular mass standards,

are indicated (note that the two 23S rRNA break-

down products with sizes of 1.2 and 1.0 kb are

depicted as 23S#). Probes specific for transcripts

encoded in the (A) small (atpB and atpE) and (C)

large (rps2, atpI, atpH, atpF and atpA) operons,

respectively, are depicted as black bars in (B).

Markedly altered transcript levels compared with

the WT control are highlighted by black triangles.

(D) Run-on transcription assays with intact, iso-

lated WT, and atcgld11-1 chloroplasts were car-

ried out according to Zoschke et al. (2007). Newly

synthesized RNA was labeled with 32P-UTP,

isolated, and hybridized to denatured DNA

fragments immobilized on PVDF membranes. All

plastid-encoded genes for cpATPase subunits,

as well as two control genes (psbA and rbcL), were

examined in three technical replicates.
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dual-targeted protein (Figure 2C), we also tested AtCGLD11

interactions with mtATPase-a and -b (Figure 9C). Remarkably,

yeast cells carrying BD-AtCGLD11/AD-MF1-b were also able

to grow on selective medium. However, growth rates were

lower than those of yeast cells expressing BD-AtCGLD11/AD-

CF1-b, as became clear when cotransformants were plated in

serial dilutions on selective medium (Figure 9C). Therefore,

AtCGLD11 can interact with both CF1-b and, albeit apparently

less strongly, with MF1-b.
DISCUSSION

Plants Lacking AtCGLD11 Exhibit a Characteristic
cpATPase Deficiency Phenotype

AtCGLD11 is localized to chloroplasts and mitochondria and

its loss affects the ultrastructure of both organelles (Figure 2).

The changes in grana shape and stroma lamellae in

atcgld11-1 chloroplasts can be attributed to reduced cpATPase

accumulation and the accompanying physiological effects. In

fact, similar changes have been observed in mutants lacking

the CF1 assembly factor Alb4 (Benz et al., 2009) and to a

greater degree in the chloroplasts of cpATPase-g mutants,

which showed swelling of the lumenal space (Dal Bosco et al.,
Molecular Plant 9,
2004). A more pronounced effect of

the atcgld11-1 mutation was observed on

the morphology of mitochondria, which

were significantly enlarged (Figure 2M).

Several studies have shown that

decreased accumulation of the mtATPase

or the respiratory complex I/complex III

supercomplexes cause similar effects

(Lapaille et al., 2010; Pineau et al., 2013),

but our analyses suggest that respiratory

complexes (Figure 3B) and mtATPase

activity (Figure 3D) are not altered in

atcgld11-1. Hence, the swelling of atcgld11
mitochondria might either be a secondary effect of the

chloroplast defect or reflect a more subtle impact of the

depletion of AtCGLD11 in mitochondria, which we have not yet

identified.

Previous studies have demonstrated that plants with diminished

levels of cpATPase are impaired in photosynthetic electron

transport and trigger non-photochemical quenching mecha-

nisms (Maiwald et al., 2003; Dal Bosco et al., 2004; Rott

et al., 2011; Rühle et al., 2014). Our results corroborate these

observations. In fact, the cpATPase deficiency phenotype of

the atcgld11 mutants presented here is very similar to that of

the Arabidopsis CFO assembly mutant atcgl160 (Rühle et al.,

2014). Residual cpATPase amounts (20%–30% of WT levels;

Figure 4) lead to an overacidification of the lumen (indicated

by the qE phenotype, Table 1). This in turn activates the

xanthophyll cycle (indicated by increased antheraxanthin and

zeaxanthin concentrations; Table 2) and induces non-

photochemical quenching within light-harvesting proteins

(reviewed by Jahns and Holzwarth, 2012). Consequently,

electron transport rates are decreased (indicated by the lower

fII; Table 1), but efficient PSII photoprotective mechanisms

are induced in atcgld11 mutants (indicated by normal qI and

Fv/Fm values; Table 1).
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Figure 7. Rates of Translation of cpATPase-a/b.
Pulse-labeling analyses were carried out with isolated chloroplasts from

WT and the knockout line atcgld11-1. Proteins from the soluble (s) and the

insoluble fractions (p) were subjected to SDS–PAGE and signals were

detected by X-ray film exposure. Positions of D1/D2, cpATPase-a,

cpATPase-b, and RbcL, which are inferred from electrophoretic mobility

patterns described in previous studies (Armbruster et al., 2010; Rühle

et al., 2014), are highlighted.
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Molecular Function of AtCGLD11 in cpATPase
Biogenesis

Because lack of AtCGLD11 is associated with reduced accumu-

lation of an active cpATPase (Figures 3C and 9), AtCGLD11 can

be classified as an auxiliary, non-essential factor in cpATPase

biogenesis. Other photosynthetic complexes are not markedly

altered when AtCGLD11 is absent (Figure 4), implying that

AtCGLD11’s role is specific for cpATPase. Because steady-

state levels of several RNAs encoding subunits of CFO are

specifically decreased (Figure 6A and 6C; Supplemental

Figure 4) and de novo transcription rates of the six plastid-

encoded cpATPase subunits are not affected in atcgld11mutants

(Figure 6D), AtCGLD11 might possibly function in CFO transcript

stabilization. However, several of our findings argue against a

direct role for AtCGLD11 in plastid gene expression: (i) the

AtCGLD11 protein lacks a classical RNA-binding motif (e.g.,
immunodetection assays. Chemiluminescence signals were quantified as des

(expressed in %). Values are averages of three biological replicates and error
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a PPR domain) (Supplemental Figure 1); (ii) unlike RNA-

binding proteins such as CSP41 (Qi et al., 2012), AtCGLD11

could not be detected in a high-molecular-mass complex

(Figure 9A); (iii) we failed to pull down any atp transcripts in

RNA immunoprecipitation analyses (data not shown); (iv)

Chlamydomonas possesses a CGLD11 homolog (Supplemental

Figure 1), but its atp gene organization differs significantly to

that of embryophytes (Woessner et al., 1987; Maul et al., 2002).

Thus, the diminished accumulation of CFO transcripts observed

in atcgld11 mutants either represents a secondary effect of

the drop in ATP synthesis or is the result of a regulatory

loop that coordinates the expression of CFO and CF1 subunit

genes, downregulating CFO expression when CF1 assembly is

perturbed. Furthermore, the fact that some CFO RNA species

were not efficiently assembled into polysomes in atcgld11-1

(Supplemental Figure 4) might constitute another regulatory

response resulting from a CF1 assembly defect. In this context,

it is interesting to note that, in contrast to CFO subunit

expression, atpB/atpE expression levels are increased in

atcgld11 mutants (Figure 6). This is similar to the situation

observed in the c-ring assembly mutant atcgl160-1, which

showed higher atpH (codes for cpATPase-c) expression levels

(Rühle et al., 2014; Fristedt et al., 2015). Therefore, the up-

regulation of CF1-b transcript in atcgld11might represent an anal-

ogousmechanism to compensate for a defect in CF1 assembly or

instability of b in the absence of interaction with CGLD11.

Several results argue in favor of a post-translational function of

AtCGLD11 in CF1 assembly: (i) AtCGLD11 is co-regulated with

the CF1 assembly factor PAB (Mao et al., 2015) (AT4G34090;

http://atted.jp), (ii) in the absence of AtCGLD11, CF1-a and

CF1-b accumulate in the soluble chloroplast fraction (Figure 7),

but their association with thylakoids is disturbed (Figures 4

and 8), and (iii) AtCGLD11 interacts with CF1-b in yeast two-

hybrid assays (Figure 9B). Interestingly, the mitochondrial F1
assembly factors Atp12p (Wang et al., 2000) and Atp11p (Wang

and Ackerman, 2000), which are known to interact with MF1-a

and MF1-b in yeast, respectively, have not been identified in

chloroplasts. In yeast, the absence of either of these F1
chaperones leads to the formation of high-molecular-mass

aggregates containing MF1-a and MF1-b (Ackerman and

Tzagoloff, 1990), which are found in the form of inclusion

bodies in the mitochondrial matrix (Lefebvre-Legendre et al.,

2005). Based on such observations, it has been proposed that

Atp11p and Atp12p act as decoys to prevent unfavorable a-a
Figure 8. cpATPase Assembly Analyses.
(A) BN/SDS–PAGE and western analyses of

thylakoid-associated cpATPase intermediates.

Antibodies specific for individual cpATPase sub-

units were employed to identify CF1- and CFO-

specific intermediates. The positions of the fully

assembled cpATPase (holo), cpATPase in-

termediates (int), the cpATPase-c ring (c-ring), and

free proteins (f.p.) are indicated.

(B) Quantification of fully assembled cpATPase

(holo), cpATPase assembly intermediates (int), the

c-ring, and free proteins (f.p.) was based on

cpATPase-a/b, cpATPase-g, and cpATPase-c

cribed in the Methods, and are depicted as ratios of atcgld11-1 to Col-0

bars represent SDs.

http://atted.jp


Figure 9. AtCGLD11 Comigration Analyses
and Interaction Studies with ATPase Sub-
units in Yeast Two-Hybrid Assays.
(A) Thylakoid samples isolated from Col-0,

atcgld11-1, and oeAtCGLD11.1 were solubilized

and subjected to 2D gel analyses. After blotting,

PVDF membranes were probed with an

AtCGLD11-specific antibody. The BN–PAGE

pattern of solubilized WT thylakoid complexes is

provided as a reference.

(B) Yeast cells carrying the BD-AtCGLD11 were

transformed with constructs coding for fusions of

CF1 subunits to the activation domain AD. Control

assays were carried out with cotransformed yeast

cells carrying the empty vector pGADT7 (coding

for the activation domain AD only) and the BD-

AtCGLD11 vector or the empty vector pGBKT7

(coding for the binding domain BD only) and the

AD-CF1-b vector.

(C) Interaction of MF1-a and -b with CGLD11 was

tested by cotransformation of BD-AtCGLD11 and

AD-MF1-a or AD-MF1-b constructs. As control,

the AD-MF1-b construct was transformed into

yeast cells carrying the empty vector pGBKT7.

Successful transformation was checked by plating

on permissive medium lacking Leu and Trp (-LT).

Interactions were then tested on selective medium

(-Leu/-Trp/-His/-Ade) by plating equal numbers of

yeast cells in serial dilutions (100, 10�1, and 10�2).
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or b-b dimerization. Although AtCGLD11 does not show any

sequence similarity to Atp11p, it might have acquired a similar

role in chloroplasts by convergent evolution, namely the

integration of cpATPase-b into a functional complex during

early CF1 assembly steps.

AtCGLD11, a Green-Lineage-Specific ATPase
Biogenesis Factor Shared between Plastids and
Mitochondria?

The fact that AtCGLD11 is required for efficient cpATPase accu-

mulation and is also targeted to mitochondria raises the question

whether AtCGLD11 is also involved in mtATPase biogenesis.

However, mtATPase accumulation and activity were not impaired

in the mutant (Figure 3), even though AtCGLD11 physically

interacts with mtATPase-b (Figure 9C), which is highly similar to

cpATPase-b. Based on these data, AtCGLD11 function seems

to be less critical for MF1 biosynthesis. Indeed, this is

corroborated by the weaker interaction of AtCGLD11 with

mtATPase-b identified in yeast two-hybrid assays (Figure 9C).

Moreover, Atp11p and/or Atp12p homologs that are present

in plant mitochondria (Pı́cková et al., 2005), or other unknown

MF1 auxiliary factors, might compensate for a functional

defect in AtCGLD11. Thus, AtCGLD11 represents an invention

of the green lineage, which localizes to chloroplasts and

mitochondria, interacts with the same subunit of the ATP

synthase complexes in both organelles, and clearly has a

function in ATP synthase assembly in chloroplasts. Its

innocuous mutant phenotype with regard to mtATPase

assembly might be attributable to functional redundancy,

because mitochondria contain additional assembly factors not

found in chloroplasts. Alternatively, the mitochondrial targeting

of AtCGLD11 might be a relatively new evolutionary invention,
such that its function in mtATPase assembly is in the process

of being fully established.

METHODS

Plant Material and Growth Conditions

The atcgld11-1 (SALK_019326C) and atcgld11-2 (SALK_006444C) T-DNA

lines, both in the Col-0 background, were obtained from the SALK collec-

tion (Alonso et al., 2003). Arabidopsis thaliana plants were grown under

controlled greenhouse conditions (70–90 mmol photons m�2 s�1, 16/8 h

light/dark cycles) as described in Rühle et al. (2014). For biochemical

and physiological analyses, plants were grown in climate chambers

under short-day (8/16 h light/dark) or long-day (16/8 h) conditions. For

complementation experiments, theAtCGLD11 coding region (genemodel

AT2G21385.1 according to TAIR) was cloned into the binary Gateway

destination vector pB2GW7 (Karimi et al., 2002), placing the gene under

the control of the 35S promoter derived from the Cauliflower Mosaic

Virus. Construct transformation into atcgld11-1 plants and BASTA

selection were carried out as described in Rühle et al. (2014). Levels of

AtCGLD11 were determined from western blots, and complementation

of the atcgld11-1 mutant phenotype was assessed by measuring leaf

surface areas from 14-day-old plants grown under short-day or long-

day conditions (Figure 2) and by NPQ analysis (Supplemental Figure 2A).

Ultrastructural Analysis of atcgld11-1

A. thaliana seedlings for transmission electron microscopy studies were

grown on soil (14 days) under short-day conditions. Plants were harvested

in the dark and immediately prefixed in 2.5% (w/v) glutaraldehyde in

75mMcacodylate buffer (pH 7.0). Five independent plants were analyzed.

Distal pieces (approximately 1 mm2 segments, standardized area) of pre-

fixed vegetative leaf 2 were then rinsed in cacodylate buffer and fixed in

1% (w/v) osmium tetroxide in the same buffer for 2.5 h at room tempera-

ture. The specimens were stained en bloc with 1% (w/v) uranyl acetate in

20% acetone, dehydrated in a graded acetone series and embedded

in Spurr’s low-viscosity epoxy resin (Spurr, 1969). Semi-thin sections
Molecular Plant 9, 885–899, June 2016 ª The Author 2016. 895
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(500 nm thick) for overviews (4003) were analyzed by light microscopy.

Ultrathin sections (40–55 nm thick) were cut with a diamond knife on an

Ultramicrotome Leica EM UC6, and post-stained with lead citrate

(Reynolds, 1963). Micrographs were taken at 18003 (overviews) and

71003, 22 0003 and 44 0003 (details) at 80 kV on a Fei Morgagni 268

electron microscope.

ATPase Synthase Activity Measurements

Mitochondria and chloroplasts were isolated from 14-day-old plants

grown on soil as described previously (Lister et al., 2007; Benz et al.,

2009). Photophosphorylation assays using radiolabeled inorganic

phosphate (32P) and 5 mg of either mitochondrial or plastidial protein

were performed according to Benz et al. (2009), and stopped by

addition of EDTA after 1, 2, 5, or 10 min. After centrifugation, 0.5-ml

aliquots of the supernatant were spotted onto a PEI Cellulose thin-layer

chromatography plate (Merck, Germany), which was developed in 1 M

KH2PO4. Radioactivity was recorded on X-ray film and spots were quan-

tified using ImageQuant TL (GE Healthcare, USA).

Chl a Fluorescence Measurements

Chl a fluorescence measurements on single leaves and whole plants were

carried out with the Dual-PAM 101/103 fluorometer (Walz, Effeltrich, Ger-

many) and an imaging Chl a fluorometer (Walz Imaging PAM; Walz),

respectively, as described in Rühle et al. (2014). Non-photochemical Chl

fluorescence quenching of whole plants (NPQ/4 = (Fm � Fm0)/Fm0/4)
was calculated as described in Bilger and Björkman (1990).

Nucleic Acid Analyses

Genomic DNA was isolated from Arabidopsis rosette leaves as described

in Ihnatowicz et al. (2004). T-DNA insertion sites for atcgld11-1 and

atcgld11-2 were identified by PCR using gene-specific and insertion-

specific primer combinations (see Supplemental Table 1). Total RNA

was isolated from fresh leaves using TRIzol reagent (Invitrogen,

Karlsruhe, Germany). Reverse transcription was carried out with

Superscript III reverse transcriptase (Invitrogen) according to the

manufacturer’s instructions. AtCGLD11 transcripts were quantified by

PCR using primer sets flanking the up- or downstream regions of the

T-DNA insertion sites (for primer information, see Supplemental Table 1).

Northern analyses and polysome analyses were done as described previ-

ously (Rühle et al., 2014). The primer sequences used for probe generation

are listed in Supplemental Table 1. DNA fragments amplified from cDNA

were labeled with radioactive [a-32P]dCTP and signals were detected

with the Typhoon Phosphor Imager System (GE Healthcare).

Run-on assays were performed according to Zoschke et al. (2007). Intact

chloroplasts were isolated from 10-g samples of leaves in a Percoll

gradient (40/70%) according to Gruissem et al. (1986). For in vitro

transcription, 3 3 107 chloroplasts were used for each genotype. The

reaction was performed at 25�C for 15 min in 50 mM 2-amino-2-(hydrox-

ymethyl)-1,3-propane diol (TRIS)-HCl (pH 8.0), 10 mM MgCl2, 10 mM

b-mercaptoethanol, 40 U RNase inhibitor, 0.2 mM ATP, GTP, CTP, and

10 mCi/ml [a-32P]UTP. Transcription was terminated by adding 5%

sodium-lauroylsarcosine, 50 mM (TRIS)-HCl (pH 8.0) and 25 mM EDTA.

The radiolabeled RNAs were isolated, and hybridized to 1-mg samples

of DNA fragments which were spotted on a nylon membrane in triplicate.

The signals were detected with the Typhoon Phosphor Imager System

(GE Healthcare).

Leaf Pigment Analysis

Leaves from plants grown under short-day conditions (6 weeks) were har-

vested 4 h after the onset of the light phase and ground in liquid nitrogen.

After treating leaf material with 100% acetone, cell debris were eliminated

by centrifugation (16,000 g, 20 min at 4�C) and pigments in the superna-

tants were analyzed as described in Färber et al. (1997).
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Thylakoid Membrane Isolation, Immunotitrations, and
BN/SDS–PAGE

Thylakoid membrane isolation, immunotitrations and BN/SDS–PAGE ana-

lyses were carried out with leaves from 6-week-old plants grown under

short-day conditions as described previously in Rühle et al. (2014). For

BN–PAGE of solubilized mitochondria, samples (50 mg protein) were

treated with solubilization buffer (1% (w/v) b-D-maltoside (b-DM), 20%

(w/v) glycerol, 25 mM BisTris pH 7.0) for 10 min on ice. After

centrifugation (16 000 g, 20 min, 4�C), supernatants were supplemented

with 1/10 volume of BN sample buffer (100 mM BisTris/HCl [pH 7.0],

750 mM 3-aminocaproic acid, 5% (w/v) Coomassie G-250). BN–PAGE

gels (4–16%) were cast according to Schägger et al. (1994). Solubilized

thylakoid and mitochondria samples corresponding to 20 mg Chl or 50 mg

protein, respectively, were loaded per lane and complexes were

separated at 4�C overnight. Chlorophyll and protein concentrations were

determined according to Porra et al. (1989) and with the Bradford method

(Bio-Rad), respectively. BN–PAGE strips were incubated in denaturing

buffer (0.5 M Na2CO3, 2% [w/v] SDS, 0.7% [v/v] b-mercaptoethanol) for

30 min at room temperature, and complexes were either transferred

directly onto PVDF membranes or separated into their subunits on

denaturing PAGE gels. To this end, BN strips were loaded onto Tricine-

SDS-PA gels (10% gels supplementedwith 4M urea), which were cast ac-

cording to Schägger (2006). After electrophoresis, gels were stained with

colloidal Coomassie blue (Dyballa and Metzger, 2009) or subjected to

immunoblot analysis as described below.

Chloroplast Isolation and Salt-Wash Treatment of Thylakoids

Chloroplast isolation was performed according to Kunst (1998) and is

described in detail in Rühle et al. (2014). Salt-wash treatments were per-

formed as described by Karnauchov et al. (1997). In brief, isolated WT

thylakoid membranes were incubated with either 2 M NaCl, 0.1 M

Na2CO3, 2 M NaSCN, or 0.1 M NaOH for 30 min on ice. Then insoluble

and soluble membrane proteins were separated by centrifugation at

16 000 g for 10 min at 4�C. Pelleted proteins, and soluble proteins that

had been acetone-extracted from the supernatants, were solubilized,

fractionated on Tricine-SDS–PAGE gels (10%), and subjected to immuno-

blot analysis using antibodies specific for PsaA (Agrisera; Vännäs, Swe-

den), PsaD (Agrisera), cpATPase-c (Agrisera) and AtCGLD11.

Immunoblot Analyses

Proteins fractionated by gel electrophoresis were blotted onto PVDF

membranes (Immobilon-P; Millipore, Eschborn, Germany) using a semi-

dry blotting apparatus (Bio-Rad) as described in the manufacturers’ in-

structions. After blocking with TBST (10 mM Tris [pH 8.0], 150 mM NaCl,

and 0.1% Tween-20) supplemented with 3% milk, the membranes were

incubated with antibodies directed against subunits of PSII (Agrisera),

PSI (Agrisera), Cytb6/f (Agrisera), cpATPase subunits (Agrisera or obtained

from JörgMeurer, University ofMunich), or against AtCGLD11 at 4�Cover-

night. An antibody against Tom40was provided by Chris Carrie (University

of Munich). Rabbit antibodies were generated against AtCGLD11, which

had been heterologously expressed in Escherichia coli, and purified. To

this end, AtCGLD1179-330 was cloned into the pET51b(+) vector (Novagen)

using SalI and NotI restriction sites, yielding an N-terminal fusion with

a Strep-tag and a C-terminal fusion with a His10-tag. The Strep-

AtCGLD1179-330-His10 proteinwaspurified usingNi-NTAAgarose (Qiagen)

followed by purification with Strep-Tactin Sepharose (iba-lifescience,

Göttingen, Germany) according to the manufacturer’s instructions. The

protein was injected into rabbits for antibody production (Pineda, Berlin,

Germany), and antiserum was employed at a dilution of 1:1000. Signals

were detected by enhanced chemiluminescence (ECL kit, Amersham

Bioscience) using an ECL reader system (Fusion FX7; PeqLab, Erlangen,

Germany) and quantified with Bioprofile software (PeqLab).

In Vivo Translation in Chloroplasts

Plants were grown on 0.53Murashige and Skoogmedium in the presence

of 1% (w/v) sucrose for 14 days under long-day conditions. Chloroplasts
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were isolated according to Benz et al. (2009). Protein concentration was

measured (Lowry et al., 1951) and chloroplasts corresponding to a

protein content of 100 mg were employed for in vivo translation assays.

Translation was performed in translation buffer (50 mM HEPES-

KOH [pH 8.0], 2 mM ATP, 0.2 mM GTP, 8 mMMg-acetate, 118 mM K-ac-

etate, 10 mM DTT, 100 mM amino acid mix without methionine) and

[35S]methionine for 15 min at room temperature and a light intensity of

500 mmol photons m�2 s�1. A chase was performed for 30 min in transla-

tion buffer and 10 mM methionine. Chloroplasts were pelleted and sub-

jected to lysis buffer (50 mM Tris [pH 7.5], 5 mMMgCl2, 10 mMDTT). After

incubation on ice for 10 min, soluble and insoluble fractions were sepa-

rated by centrifugation (13 000 g, 10 min, 4�C). Proteins were analyzed

by SDS–PAGE and X-ray films.

Yeast Two-Hybrid Assay

Yeast two-hybrid assays were carried out using the Matchmaker Two-

Hybrid System Kit (Clontech). The AT2G21385.1 CDS without the signal

peptide coding sequence (see Supplemental Table 1 for primer

information) was cloned into the bait vector pGBKT7 (named BD-

AtCGLD11), whereas the coding sequences of CF1-a, -b, -g, -d, - 3, as

well as MF1-a and -b, were cloned into the prey vector pGADT7

(named AD-CF1-a, -b, -g, -d, - 3, and AD-MF1-b). As in the case of

AtCGLD11, signal peptide sequences were omitted from the nucleus-

encoded subunits CF1-g, CF1-d, and MF1-b. Bait and prey vectors

were cotransformed into the AH109 yeast strain (Clontech) following

the manufacturer’s instructions. As controls, yeast cells carrying the

empty vector pGADT7 were transformed with BD-AtCGLD11, and

yeast cells bearing the empty vector pGBKT7 with AD-CF1-b and

AD-MF1-b, respectively. Cotransformants were selected on synthetic

dropout (SD) medium (Clontech) lacking leucine and tryptophan

(�LT). In order to identify protein interactions, double transformants

were grown on SD medium lacking leucine, tryptophan, histidine, and

adenine (�LTHA).

Bioinformatics Sources

Gene and protein sequences were obtained from the National Center for

Biotechnology Information server (NCBI; http://www.ncbi.nlm.nih.gov/),

the Arabidopsis Information Resource server (TAIR; http://www.

Arabidopsis.org), and Phytozome (http://phytozome.jgi.doe.gov). Protein

sequences were aligned using the Vector NTI software (Invitrogen). Chlo-

roplast transit peptides were predicted by ChloroP (http://www.cbs.dtu.

dk/services/ChloroP/). Alignments were formatted using Boxshade

(http://www.ch.embnet.org/software/BOX_form.html).
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Abstract 

ATP synthases couple the generation of chemical energy to a transmembrane electro-

chemical potential in bacteria, mitochondria, and chloroplasts. The chloroplast ATP synthase 

(cpATP synthase) consists of two multi-subunit complexes, the membrane-bound coupling 

factor O (CFO) and the soluble coupling factor 1 (CF1). During cpATP synthase biogenesis, 

several auxiliary factors facilitate complex assembly. Previously, it could be shown that the 

Arabidopsis thylakoid-integral protein CONSERVED ONLY IN THE GREEN LINEAGE 160 

(AtCGL160) mediates the formation of the proton-translocating c-ring. However, the function 

of its chloroplast-specific soluble N-terminal domain (AtCGL160N) remained unclear. In this 

study we show that plants lacking AtCGL160N exhibited a cpATP synthase deficiency 

phenotype demonstrated by a decreased proton conductivity of the thylakoid membrane, 

elevated proton motive force and increased non-photochemical quenching parameters. C-ring 

formation was not disturbed, but cpATP synthase complexes accumulated only to ~65% of 

wild-type levels. CFO-, as well as CF1-subunits, coimmunoprecipitated with AtCGL160, which 

could also be crosslinked to the cpATP synthase holo-complex. The interaction-site of 

AtCGL160N and CF1 was narrowed down to the membrane-proximal domain of subunit  in 

yeast two-hybrid experiments. Thus, AtCGL160 is also involved in late cpATP synthase 

assembly and facilitates the connection of the CF1 and CFO modules in an AtCGL160N-

dependent manner. 

 

Keywords: chloroplast, photosynthesis, ATP synthase, thylakoid complex, assembly, CF1-

CFO 
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Introduction 

F-type ATP synthases of bacteria, mitochondria, and chloroplasts utilize chemiosmotic 

membrane potentials to generate ATP. They share an overall conserved structure and consist 

of a soluble F1 and a membranous FO moiety. (Cyano)bacterial and chloroplast ATP synthases 

(cpATP synthases) are more closely related with respect to size and subunit composition 

(Groth and Pohl, 2001; Vollmar et al., 2009; Hahn et al., 2018) and, in contrast to the 

occurrence of dimeric mitochondrial ATP synthases, are only present as monomers (Daum et 

al., 2010). In higher plant chloroplasts, cpATP synthases reside exclusively in stroma lamellae 

and grana end membranes, because the ~16 nm stromal extension of chloroplast F1 (CF1) 

prevents migration into the tightly packed grana stacks (Daum et al., 2010).  

During photophosphorylation, cpATP synthases couple the light-driven generation of the trans-

thylakoid proton motive force (pmf) to ADP phosphorylation. The membrane-embedded 

proteolipidic c14-ring together with the non-covalently bound central stalk  form the motor unit 

and drive rotary catalysis of CF1. The peripheral stator consists of a, b and b’ and is connected 

to the -heterotrimer by the -subunit, which acts as a flexible hinge between CF1 and 

chloroplast FO (CFO) (Murphy et al., 2019). Protons are translocated from the luminal to the 

stromal side through two aqueous channels in the a-subunit. During translocation, each proton 

enters the access-channel and binds to a conserved glutamate residue in subunit c. The c14-

motor fulfills almost a complete rotation before it releases the proton into the stroma through 

the exit-channel (Hahn et al., 2018). The counterclockwise rotation of the central stalk in the 

vicinity of the hexamer triggers alternating nucleotide binding affinities in the -subunits that 

ultimately drive ATP generation (reviewed in Von Ballmoos et al., 2009; Junge and Nelson, 

2015).  

As a result of extensive organellar gene transfer during plant evolution, three cpATP synthase 

subunits (b’, , ) are encoded in the nuclear genome, whereas the remaining cpATP synthase 

genes are organized in two plastid operons. Consequently, two different expression 

apparatuses and the chloroplast protein import machinery have to be tightly coordinated for 

efficient cpATP synthase biogenesis. Several cpATP synthase auxiliary factors involved in 

plastid gene expression have been identified, including mRNA processing (AEF1), mRNA 

stabilization (PPR10, BFA2), or translation initiation (ATP4, TDA1) (Pfalz et al, 2009; Eberhard 

et al., 2011; Zoschke et al., 2012; Yap et al., 2015; Zhang et al., 2019). Moreover, cpATP 

synthase assembly factors ensure a correct complex stoichiometry, but also the avoidance of 

dead-end products or harmful intermediates that could lead to wasteful ATP hydrolysis or pmf 

dissipation. 
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As derived from the bacterial assembly model, cpATP synthases are constructed from different 

intermediates or modules (reviewed in Rühle and Leister, 2015). CF1 assembly was first 

examined in in vitro reconstitution assays and was shown to be initiated by /-dimerization in 

a chaperone-assisted process (Chen and Jagendorf, 1994). Known mitochondrial F1 assembly 

factors such as Atp11 or Atp12 could not be identified in chloroplasts, but CF1 formation 

depends on the green-lineage-specific factor CGLD11/BFA3 (Grahl et al., 2016, Zhang et al., 

2016). CGDL11/BFA3 interacts with the hydrophobic catalytic site of the -subunit (Zhang et 

al., 2016) and might prevent aggregation or formation of unfavorable homodimers. Moreover, 

PAB (Mao et al., 2015) and BFA1 (Zhang et al., 2018) were proposed to be required for efficient 

incorporation of the -subunit into CF1. 

In contrast to CF1 formation, less is known about CFO assembly and only the assembly factor 

CONSERVED ONLY IN THE GREEN LINEAGE 160 (CGL160) has been identified so far 

(Rühle et al., 2014). CGL160 was defined as a green-lineage-specific protein (Karpowicz et 

al., 2011), but protein sequence alignments revealed a moderate similarity between its 

membrane domain and Atp1/UncI (Rühle et al., 2014), which is encoded by the first gene in 

the bacterial operon atp1. The absence of CGL160 in Arabidopsis thaliana (AtCGL160) led to 

a significant reduction of cpATP synthase levels (10-30% wild-type levels) and c-subunits 

accumulated as monomers in atcgl160. Moreover, split-ubiquitin assays provided evidence 

that AtCGL160 interacts with CFO-c and CFO-b. We concluded that CGL160 is required for 

efficient formation of the c-ring in chloroplasts and shares the same function with its distantly 

related bacterial counterpart Atp1/UncI (Suzuki et al., 2007; Ozaki et al., 2008). 

In this study, the function of the N-terminal domain conserved in all CGL160 proteins from the 

green lineage was investigated in Arabidopsis. The results demonstrated that AtCGL160N 

mediates the connection of CF1 and CFO modules via interaction of the N-terminal domain of 

AtCGL160 and subunit . Thus, CGL160 emerges as a key auxiliary factor that not only 

promotes CFO formation but is also involved in late cpATP synthase assembly steps. 
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Results  

 

Deletion of AtCGL160N affects cpATP synthase activity 

To investigate CGL160N-specific protein properties, N-terminal sequences of green algae, 

bryophytes and higher plant homologs were compared in a multiple alignment (Supplemental 

Fig. S1). CGL160N sequences across the green lineage comprise about 150-200 amino acids 

(aa) and contain no predicted functional or conserved protein domain. However, AtCGL160N 

was found to be phosphorylatable (Reiland et al., 2009) and two putative phosphorylation sites 

are conserved throughout all sequences (Supplemental Fig. S1).  

To dissect the function of the soluble domain in higher plants, coding sequences of 

AtCGL1601-350 (oeAtCGL160), AtCGL1601-206 (oeAtCGL160N) or the membranous C-terminus 

AtCGL160207-350 fused to the manually annotated transit peptide of 46 aa (oeAtCGL160C) were 

overexpressed in the atcgl160 knockout background (Fig. 1A). The mutant phenotype could 

be completely rescued by overexpression of the full-length AtCGL160 cDNA, as wild-type 

(WT)-like growth rates under short-day conditions and a normal leaf phenotype were observed 

(Fig. 1B, C). In contrast, overexpression of AtCGL160N in the atcgl160 background could not 

restore the WT phenotype, since AtCGL160N was only detectable on the transcriptional, but 

not on the protein level (Supplemental Fig. 2A, B). Overexpression of AtCGL160C led to a 

significant increase in leaf area compared to atcgl160. However, oeAtCGL160C plants were 

slightly growth retarded relative to the WT and displayed a variegated leaf phenotype, which 

was observed for atcgl160 but not for the CF1 assembly mutant atcgld11 (Fig. 1B, C).  
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Figure 1. Impact of AtCGL160 truncations on leaf phenotype and plant growth. A, Atcgl160 plants were 
transformed with constructs coding for the full-length sequence (oeAtCGL160), the soluble N-terminal domain 
(oeAtCGL160N), or the membranous C-terminus (oeAtCGL160C), which were all placed under transcriptional 
control of the 35S CaMV promoter. B, Leaf sections of Col-0, atcgl160, atcgld11, oeAtCGL160, oeAtCGL160N and 
oeAtCGL160C plants. White bar indicates ~2 mm. C, Leaf area measurements of the genotypes grown under short-
day conditions for 4 weeks. Means and standard deviations were calculated from 6 individual plants per genotype. 
Asterisks indicate p-values (*<0.05, **<0.01, ***<0.001) according to two-sided Student’s t-test.  
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Impairment of the cpATP synthase affects the dynamics of the thylakoid proton motive force 

(pmf), as it is the major contributor to the proton efflux from the luminal to the stromal side 

(Armbruster et al., 2017). Perturbations of the cpATP synthase can be investigated by 

measurements of the reversible energy-dependent quenching parameter qE, which is the 

major component of non-photochemical quenching (NPQ) and sensitive to changes in luminal 

proton concentration under moderate light intensities (Rott et al., 2011; Carrillo et al., 2016). 

To test whether disruption of AtCGL160N leads to increased luminal acidification, steady-state 

transient NPQ was determined for Col-0, atcgl160, oeAtCGL160, oeAtCGL160N, and 

oeAtCGL160C plants under moderate light intensities (Fig. 2A, B). As expected, NPQ values 

of atcgl160 and oeAtCGL160N were increased (Fig. 3A). Interestingly, also oeAtCGL160C 

showed a significant increase in transient NPQ compared to WT or oeAtCGL160 but were 

lowered compared to atcgl160 or oeAtCGL160N plants. 

Whereas NPQ parameters only indirectly reflect the pmf status, electrochromic shift (ECS) 

measurements are a more direct way to determine proton fluxes across the thylakoid 

membrane (reviewed in Baker et al., 2007). Measuring of dark induced relaxation kinetics 

(DIRK) of the ECS signal, allows estimations of the pmf during steady-state photosynthesis 

(Cruz et al., 2001; Kramer et al., 2003). In line with the increased NPQ levels, also the total 

change in ECS signal (ECSt) was increased significantly in oeAtCGL160C relative to WT and 

oeAtCGL160 plants, but decreased compared to atcgl160, atcgld11, and oeAtCGL160N (Fig. 

2C). 

When ECSt is resolved in the millisecond range, estimations on the activity of the cpATP 

synthase can be made, as the rate of signal decrease is reciprocally proportional to the efflux 

of protons from the lumen to the stroma, or proton conductivity (gH+) (Cruz et al., 2001; 

Kanazawa and Kramer, 2002). Remarkably, also gH+ was decreased significantly in 

oeAtCGL160C plants, compared to WT and oeAtCGL160, indicating that the increase in pmf 

and the subsequent higher quenching of excitation energy is caused by decreased ATP 

synthase activity (Fig. 2D). Taken together, disruption of AtCGL160N led to decreased proton 

conductivity of the thylakoid membrane, increased pmf and NPQ parameters, as well as 

reduced plant growth compared to WT or oeAtCGL160. We thus concluded that the 

chloroplast-specific soluble N-terminus impacts cpATP synthase activity. 
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Figure 2. Analysis of pmf and cpATP synthase activity. A, Chlorophyll a video imaging of steady-state NPQ 
values of Col-0, atcgl160, oeAtCGL160, oeAtCGL160N, and oeAtCGL160C grown under short-day conditions were 
measured under moderate light intensity (145 µmol photons m-2 s-1). NPQ values ranging from 0 to 1 are displayed 
in false colors. B, Quantification of NPQ values from measurements shown in A. Means and standard deviations 
were calculated from 5 leaf areas. C, Dark interval relaxation kinetics (DIRK) after 10 minutes of illumination. The 
total amplitude of the P515 differential absorption signal (ECSt) was normalized to a single turnover flash. Means 
and standard deviations were calculated from 6 individual plants grown under short-day conditions. D, Proton 
conductivity of the thylakoid membrane. The rate of ECS signal relaxation was measured in ms resolution and fitted 
to a first-order decay function. Means and standard deviations were calculated from 6 individual plants grown under 
short-day conditions. Asterisks indicate p-values (*<0.05, **<0.01, ***<0.001) according to two-sided Student’s 

t-test. 
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Disruption of AtCGL160N affects cpATP synthase assembly but not c-ring 

formation 

To assess whether the decreased thylakoid proton conductivity of oeAtCGL160C plants could 

be attributed to reduced cpATP synthase amounts, we analyzed steady-state levels of CF1- 

and CFO-subunits in the WT, atcgl160, atcgld11, and the overexpression lines (Fig. 3A, B). 

Indeed, the marker proteins CF1-, - as well as CFO-b and -c were reduced to about 60-65 % 

in oeAtCGL160C thylakoid preparations compared to WT and oeAtCGL160.  

To investigate the influence of AtCGL160N on cpATP synthase assembly, we performed Blue 

Native (BN)/ SDS-PAGE analysis with isolated thylakoids of oeAtCGL160 and oeAtCGL160C 

plants grown under short-day conditions. Consistent with the accumulation of steady-state 

cpATP synthase levels, signals of CF1-, CFO-b, and CFO-c were reduced in oeAtCGL160C 

compared to plants overexpressing the full-length cDNA (Fig. 3C). Furthermore, no 

accumulation of precomplexes could be observed, since signals for free proteins, the c-ring, 

CF1, and the holo-complex were all reduced to a similar extent. Moreover, CFO-c subunits did 

not overaccumulate in their monomeric form, as has been shown previously for atcgl160 

mutant plants (Rühle et al., 2014). To study the assembly status of the c-ring in more detail, 

we performed BN/SDS-PAGE with higher amounts of atcgl160 and oeAtCGL160C thylakoids 

(Fig. 3D). Remarkably, the c-ring levels were clearly increased in oeAtCGL160C compared to 

atcgl160. We concluded that introduction of the membranous Atp1/Unc1-like domain of 

AtCGL160 restored efficient c-ring formation, but not overall cpATP synthase levels. 
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Figure 3. Assembly of the cpATP synthase. A, Steady-state levels of cpATP synthase marker subunits in 
thylakoids of Col-0, atcgl160, oeAtCGL160, oeAtCGL160N, oeAtCGL160C, and atcgld11. Samples were separated 

by SDS-PAGE and blotted onto polyvinylidene difluoride (PVDF) membranes, which were decorated with antibodies 

against CF1-, CF1-, CFO-b, and CFO-c. Coomassie brilliant blue (C.B.B.) staining is shown as loading control. B, 
Quantification of signals shown in A. Values were normalized to Col-0 (1). Means and standard deviations were 
calculated from 4 technical replicates. C, Steady-state levels of cpATP synthase intermediates. Solubilized thylakoid 
complexes of oeAtCGL160 and oeAtCGL160C were separated by BN/SDS-PAGE and blotted onto PVDF 

membranes. Immunoblots were decorated with antibodies against CF1-, CFO-b, and CFO-c. Positions of the cpATP 
synthase holo-complex (CF1-CFO) and the c-ring are indicated. C.B.B. staining is shown as loading control. D, C-
ring assembly in atcgl160 and oeAtCGL160C. Increased amounts of atcgl160 and oeAtCGL160C thylakoids were 
separated by BN/SDS-PAGE. Blots were probed with a CFO-c antibody. Positions of free c-monomers and the 
assembled c-ring are indicated. 
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AtCGL160 is associated to the cpATP synthase holo-complex 

In a previous study, AtCGL160 could be immunodetected in CF1-containing fractions in the 

presence of the crosslinker dithiobis(succinimidyl propionate) (DSP) (Fristedt et al., 2015). 

However, the antibody (Agrisera AS12 1853) used in that study cross-reacts with CF1- 

(Supplemental Fig. S2B) and was therefore unsuitable for one-dimensional comigration or 

coimmunoprecipitation experiments. Thus, a new antibody against AtCGL160N was generated 

(see Materials and Methods for details), which detects specifically AtCGL160 without any 

cross-reactions in immunodetection assays with isolated thylakoids (Supplemental Fig. S2B).  

To identify new AtCGL160 interaction partners, the generated antibody was employed for 

coimmunoprecipitation (coIP) coupled to LC-MS/MS analysis with NP40 solubilized thylakoids 

of oeAtCGL160 and oeAtCGL160C plants grown under short-day conditions (Fig. 4A, 

Supplemental Fig. S3, Supplemental Table S1). Strikingly, besides AtCGL160 (log2 FC ~6.5), 

peptides of all subunits of the cpATP synthase were significantly enriched (log2 FC >2.8) in the 

IP fraction of oeAtCGL160 compared to oeAtCGL160C (Fig. 4A). No specific enrichment of 

either CFO- or CF1-subunits was observed. Moreover, when the IP fractions of oeAtCGL160 

and oeAtCGL160C were separated on SDS-PAGE, CF1- and CF1- were only detectable in 

oeAtCGL160 samples (Supplemental Fig. S3). Other known cpATP synthase assembly factors 

could not be identified in the coIP fractions (Supplemental Table S1).  

To confirm the coIP results, BN/SDS-PAGE analysis with isolated thylakoids of the WT, treated 

with the crosslinking agent DSP, were compared to untreated thylakoids and blots were 

decorated with AtCGL160- and CFO-b-specific antibodies (Fig. 4B). In untreated samples, the 

AtCGL160 signal was predominantly present in the monomer fraction. After crosslinking with 

DSP, a large portion of the AtCGL160 signal shifted to the higher molecular weight fraction 

(>520 kD) and comigrated with the cpATP synthase holo-complex (Fig. 4B). Taken together, 

these results indicated that AtCGL160 might be associated to late assembly stages or with 

holo-complexes of the cpATP synthase. 
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Figure 4. Association studies of AtCGL160 with the cpATP synthase. A, Volcano-plot of differentially enriched 
proteins in coimmunoprecipitation fractions of oeAtCGL160 versus oeAtCGL160C lines using the AtCGL160N 
antibody. Y-axis: negative log10 p-value (Benjamini-Hochberg corrected) of three biological replicates. Dashed line 
represents a -log10 p-value-threshold of 1.5. X-axis: log2 fold change (FC) of peptide abundance in oeAtCGL160 
versus oeAtCGL160C. Blue dot marks peptides of AtCGL160. Red dots mark signals of cpATP synthase subunits. 
B, Schematic representation of enriched cpATP synthase subunits of A. Color scheme of log2-FC of oeAtCGL160 
versus oeAtCGL160C ranges from beige (log2 FC < 2) to dark red (log2 FC > 6). C, Comigration of AtCGL160 with 
the cpATP synthase holo-complex. Untreated thylakoid extracts of the WT (Col-0) were compared to extracts 
crosslinked with DSP on BN/SDS-PAGE analysis. Blots of the second dimension were decorated with antibodies 
against AtCGL160 and CFO-b. Positions of the cpATP synthase holo-complex (CF1-CFO), the CF1-intermediate, 

and the free protein fraction are indicated based on the signals of CF1-/ and - on the C.B.B. staining. 
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The stroma-exposed N-terminus specifically interacts with CF1- 

It could already be demonstrated that AtCGL160 is an integral thylakoid membrane protein 

(Rühle et al., 2014; Fristedt et al., 2015). To investigate whether the N-terminal domain is 

exposed to either the stromal or luminal side of the thylakoid membrane, isolated WT 

thylakoids were mildly treated with trypsin, such that only stroma-exposed peptides were 

accessible for the protease. Samples were separated by SDS-PAGE, blotted, and 

immunodetections were carried out with antibodies against AtCGL160, the lumen-facing PSII 

subunit PsbO, and the stroma-exposed PsaD (Fig. 5A).  As expected, the luminal PsbO was 

unaffected by trypsin digestion, whereas PsaD was susceptible to the proteolytic treatment. 

AtCGL160N was efficiently digested without leaving any detectable proteolytic cleavage 

product, indicating that the N-terminal domain is exposed to the chloroplast stroma.  

The association of AtCGL160 to CF1-containing complexes and the stromal-exposed topology 

of the N-terminus suggested that the soluble domain of AtCGL160 might physically interact 

with soluble parts of the cpATP synthase. Thus, yeast two-hybrid (Y2H) experiments were 

carried out with AtCGL160N (aa 29-206) fused to the binding domain (BD) and all CF1-subunits 

(,,,,), the soluble parts of the stator (b, b'), AtCGL160N, as well as the CF1 assembly 

factor AtCGLD11 fused to the activation domain (AD). Only yeast cells carrying AD-CF1- 

together with BD-AtCGL160N were able to grow on restrictive medium, lacking histidine and 

adenine (Fig. 5B), suggesting that the soluble domain of AtCGL160 physically interacts with 

CF1- in yeast. Moreover, neither homodimerization nor an interaction with AtCGLD11 could 

be detected for AtCGL160N. 
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Figure 5. AtCGL160N topology and its physical interaction with the peripheral stator or CF1 module. A, 
Immunoblot analyses of trypsin-treated (0, 1, 2, 5, and 10 min) WT (Col-0) thylakoids. After SDS-PAGE and transfer 
to PVDF membranes, blots were decorated with antibodies against PsbO, PsaD and AtCGL160. Possible 
membrane orientations of AtCGL160 are depicted schematically. B, Interaction of AtCGL160N with itself, CF1-
subunits, membrane domain-truncated b/b’-subunits and the CF1 assembly factor AtCGLD11. Interactions were 
tested by cotransformation of a construct coding for an AtCGL160N fusion to the GAL4 binding domain (BD-
AtCGL160N) and constructs coding for fusions with the GAL4 activation domain (AD). Successful cotransformations 
were verified by plating yeast cells on permissive medium lacking Leu and Trp (-LT). Interactions were tested on 
restrictive medium lacking Leu, Trp, His and Ade (-LTHA) by plating equal numbers of yeast cells in serial dilutions 
(100, 10−1, and 10−2). 

 

 

The CF1--subunit can be subdivided into three structural domains (Groth and Pohl, 2001). 

Domain I comprises the membrane-distal beta-barrel structure, domain II includes the 

nucleotide binding pockets, and the membrane-proximal domain III is organized by 

alpha-helical structures (Fig. 6A). To test whether the interaction with AtCGL160N can be 

assigned to a structural domain of CF1-, the three domains were cloned into the AD vector 

and tested for interaction with BD-AtCGL160N (Fig. 6A). Only cells carrying constructs for AD-

CF1- III together with BD-AtCGL160N showed growth on restrictive medium, whereas yeast 

cells transformed with constructs for AD-CF1- II, or AD-CF1- I grew slowly or not at all. In a 

reciprocal approach, coding sequences of the CGL160 N-terminus (aa 29-74, aa 75-105, aa 

106-134,aa 135-160, and aa 161-206) were omitted from the BD-AtCGL160N vector and the 

resulting truncated N-termini were tested for interaction with AD-CF1- in yeast (Fig. 6B). 

Remarkably, only the N-terminal amino acids 29-105 were necessary for the interaction, since 

their deletion led to abolished growth on restrictive medium, whereas strains carrying 

BD-AtCGL160N vectors with deleted amino acids 106-206 were still able to grow (Fig. 6B). 

Taken together, AtCGL160N is exposed to the stromal side of the thylakoid membrane and its 

N-terminal region interacts with the membrane-proximal domain of CF1- in yeast.  
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Figure 6. Mapping of AtCGL160N and CF1- interaction sites. A, Interaction of AtCGL160N with structural 

domains of CF1-. Yeast cells were cotransformed with constructs coding for AD-CF1- I, AD-CF1- II, AD-CF1- III 
and BD-AtCGL160N and plated on permissive (-LT) and restrictive (-LTHA) growth medium. Structural domains of 

the CF1- are colored in red (Domain I), beige (Domain II), and blue (Domain III). Structural data were obtained 
from the PDB database (ID: 1FX0; Groth and Pohl, 2001). B, Mapping of AtCGL160N interaction domains. Several 

deletion constructs (grey boxes) of the soluble AtCGL160N were tested in cotransformation assays with AD-CF1- 
in yeast. 
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Discussion 

 

AtCGL160N promotes ATP synthase assembly 

Atp1/Unc1 are small transmembrane proteins that are usually encoded by the first gene of the 

large bacterial ATP synthase operon and assist in the formation of the proteolipidic c-ring 

(Suzuki et al., 2007; Ozaki et al., 2008). The membranous C-terminal part of the green-lineage-

specific CGL160 is distantly related to Atp1/Unc1, but eukaryotic CGL160 proteins additionally 

harbor an N-terminal soluble domain (CGL160N). Arabidopsis plants lacking CGL160 were 

growth retarded and contained only about 10-30% of cpATP synthase, whereas monomeric 

c-subunits overaccumulated compared to WT (Rühle et al., 2014). Since the membranous 

domain physically interacted with CFO-b and -c, we concluded that CGL160 is required for 

c-ring assembly in chloroplasts. However, the mild effects of Atp1/Unc1 disruption on ATP 

synthase function in bacteria (Gay, 1984; Liu et al., 2013) raised the question whether the N-

terminal chloroplast-specific domain could have acquired an additional role in cpATP synthase 

assembly in the green lineage. Indeed, reintroduction of the membranous domain into the 

atcgl160 mutant background (oeAtCGL160C) restored efficient formation of the c-ring but 

failed to fully reconstitute cpATP synthase amounts to WT levels (Fig. 3), resulting in reduced 

cpATP synthase activity (Fig. 2D). Consequently, oeAtCGL160C-lines exhibited a typical 

cpATP synthase deficiency phenotype (Maiwald et al., 2003; Dal Bosco et al., 2004), 

observable by elevated pmf and NPQ values (Fig. 2). Hence, disruption of c-ring formation, 

observed in mutants of eukaryotic CGL160, might not fully account for the strong reduction of 

cpATP synthase amounts compared to bacteria, suggesting a separate function of the 

chloroplast-specific soluble domain in promoting cpATP synthase assembly.  

AtCGL160 is involved in later stages of assembly 

Fristedt et al. (2015) proposed that AtCGL160 might predominantly interact with the CF1-

subcomplex, based on the observation that AtCGL160 comigrated with CF1 in BN-PAGE 

analysis and crosslinking SDS-PAGE. Since the antibody used in the study additionally 

recognizes CF1- (Supplemental Fig. S2B), it is not possible to unambiguously assess an 

association of AtCGL160 to CF1 in immunoblots of one-dimensional gel electrophoresis. The 

AtCGL160 signal was also shown to comigrate with CF1 in two-dimensional BN/SDS-PAGE 

analysis (Fristedt et al., 2015). However, we failed to reproduce an association of AtCGL160 

with CF1 subcomplexes in BN/SDS-PAGE analysis, as we found the AtCGL160 signal mostly 

in the monomeric fraction in untreated thylakoid preparations (Rühle et al., 2014; Fig. 4B). Only 

when thylakoids were crosslinked with DSP, the AtCGL160 signal comigrated with the cpATP 

synthase holo-complex and complexes of higher MW (>520 kD), but it was absent in the CF1 
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fraction (Fig. 4B). Moreover, when we conducted coIP experiments with an antibody that solely 

recognized AtCGL160 in thylakoid extracts (Supplemental Fig. S2B), all subunits of the cpATP 

synthase were enriched significantly in the IP fraction (Fig. 4A). This is in contrast to other 

cpATP synthase assembly factors, where coIP was mostly restricted to the primary target or 

assembly intermediate (Mao et al., 2015; Zhang et al., 2016; 2018), and interaction partners 

were only pulled-down after chemical crosslinking (Zhang et al., 2016; 2018). Whereas 

CGLD11/BFA3 could be identified in coIP fractions of BFA1 (Zhang et al., 2018), no other 

known assembly factors were present in the oeAtCGL160 IP-fraction (Supplemental Table S1). 

AtCGL160 has already been shown to be present sub-stoichiometrically and thus does not 

qualify as a bona fide component of the cpATP synthase (Rühle et al., 2014). Hence, whereas 

AtCGL160 might not predominantly be associated to a CF1-intermediate, comigration with the 

cpATP synthase holo-complex and coimmunoprecipitation of all subunits, suggest an 

association to a CFO-CF1 containing intermediate. The absence of other known (CF1) assembly 

factors further support that AtCGL160 might be involved in later stages of assembly. 

ALB4, which shares sequence similarity with bacterial YidC and mitochondrial Oxa1p was 

proposed to be involved joining of the ATP synthase submodules, based on the observation 

that ALB4 physically interacted with CFO-b and associated to CF1- (Benz et al., 2009). 

Moreover, mutant plants lacking ALB4 accumulated reduced amounts of cpATP synthase 

subunits. However, studies with its closest homolog in Arabidopsis, the well characterized 

membrane insertase ALB3 (reviewed in Wang and Dalbey, 2011), revealed that ALB3 and 

ALB4 physically interact and showed significant functional overlap in the membrane insertion 

of Cytochrome b6f complex subunits (Trösch et al., 2015). Moreover, ALB4 and STIC2 were 

shown to act together in thylakoid protein targeting in a common pathway that also involves 

cpSRP54 and cpFtsY (Bédard et al., 2017). Finally, we could not identify ALB4 among the 

proteins that were enriched in coIP experiments with AtCGL160 (Supplemental Table S1), 

suggesting that ALB4 and AtCGL160 do not act concertedly in late stages of cpATP synthase 

assembly.  

AtCGL160N might have evolved to regulate the joining of the subcomplexes 

Joining of CFO to CF1 is a critical step in the biogenesis of the bacterial ATP synthase, since 

incorrect or premature formation of the proton-conducting channel between the c-ring and the 

a-subunit leads to uncontrolled dissipation of the transmembrane pmf (Birkenhäger et al., 

1999; Franklin et al., 2004). Likewise, in mitochondria, joining of subcomplexes is considered 

critical and tightly regulated in order to prevent uncoupled dissipation of the pmf (reviewed in 

Song et al., 2018). In yeast, the INA complex (INAC) physically interacts with the c-ring (ATP9) 

and a preformed F1-Stator module (Naumenko et al., 2017). In later stages of assembly, INAC 
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connects both modules and promotes the formation of the proton-translocating unit between 

ATP6 (a-subunit) and ATP9. Similar to INAC, AtCGL160 interacted with subunits of the c-ring 

as well as the peripheral stator (Rühle et al., 2014) and has acquired a stroma-exposed soluble 

domain that interacted with CF1- in yeast (Fig. 5). Whereas the CF1 assembly factors 

AtCGLD11/BFA3 and BFA1 were both shown to interact with the catalytic site containing 

hydrophobic domain II (Grahl et al., 2016; Zhang et al., 2016; 2018), AtCGL160 preferably 

interacted with the membrane-proximal domain III of CF1- (Fig. 6A). Domain III is organized 

alpha-helical and contains the conserved “DELSEED” motif, required for the CF1-/-

dependent regulation of the CF1 ATP-hydrolysis function and ATP synthase activity (Kanazawa 

et al., 2017; Hahn et al., 2018). In-depth characterization of the soluble AtCGL160 domain in 

yeast two-hybrid experiments revealed that only the first 29-105 aa were required for the 

interaction with CF1- (Fig. 6B). Our results thus further support the notion that AtCGL160 

might interact with components of CF1 and CFO simultaneously and, like INAC in yeast, 

physically connects FO and F1 during later stages of the assembly process.  

In contrast to bacteria, the chemiosmotic potential across the chloroplast thylakoid membrane 

regulates photosynthetic electron transport in response to the redox poise of the stroma 

(reviewed in Takagi et al., 2017). Conceivably, this increased regulatory importance of the pmf 

selected for a more tightly orchestrated assembly of the thylakoid-bound ATP synthase. 

Indeed, whereas precomplexes have been identified in bacteria, accumulation of CFO was 

found to be strictly dependent on CF1 in plants (Lemaire and Wollman, 1989), indicating that 

joining of the subcomplexes might be crucial. CGL160 may have evolved from a sole CFO 

assembly factor to a central mediator of cpATP synthase assembly as a response to the 

increased significance of maintaining control over the pmf. Moreover, CGL160 itself could be 

target for regulatory modulation, since the green-lineage-specific domain contains conserved 

phosphorylation sites adjacent to the proposed interaction domain (Supplemental Fig. S1), 

which were identified to be phosphorylated in Arabidopsis (Reiland et al., 2009). However, 

further genetic and biochemical studies must be conducted in order to dissect a possible 

regulatory role for CGL160. 
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Materials and methods 

 

Bioinformatics sources 

Protein and gene sequences were downloaded from the Arabidopsis Information Resource 

server (TAIR; http://www.arabidopsis.org), Phytozome 

(https://phytozome.jgi.doe.gov/pz/portal.html), and the National Center for Biotechnology 

Information server (NCBI; http://www.ncbi.nlm.nih.gov/). Transit peptides were predicted by 

ChloroP (http://www.cbs.dtu.dk/services/ChloroP/). Structural data were obtained from the 

PDB homepage (https://www.rcsb.org/). 

Plant material and growth conditions 

T-DNA lines for atcgl160 (SALK_057229, Col-0 background) and atcgld11 (SALK_019326C, 

Col-0 background) were obtained from the SALK collection (Alonso et al., 2003). Plants were 

grown on potting soil (A210, Stender) under controlled greenhouse conditions (70-90 µmol 

photons m-2 s-1, 16/8 h light/dark cycles), or for biochemical and physiological analyses in 

climate chambers using an 8h light/16h dark cycle (short-day). Fertilizer was added to plants 

grown under greenhouse conditions according to the manufacturer’s recommendations 

(Osmocote Plus; 15% nitrogen [w/v], 11% [w/v] P2O5, 13% [w/v] K2O, and 2% [w/v] MgO; Scotts 

Deutschland). For domain-specific complementation assays, either the complete coding region 

of AtCGL160 (oeAtCGL160) or parts of the CDS corresponding to aa 1-206 (oeAtCGL160N) 

and aa 1-46 fused to aa 207-350 (oeATCGL160C) were cloned into the binary Gateway vector 

pB2GW7 (Karimi et al., 2002), placing the genes under control of the 35S CaMV promoter (see 

Supplemental Table S2 for primer information). The constructs were first transformed into 

Agrobacterium tumefaciens strain GV3101 and then into atcgl160-1 plants by the floral-dip 

method (Clough and Bent, 1998). T1 plants were selected by screening for glufosinate (Basta, 

Bayer Crop Science) resistance. Basta-resistant plants were screened by RNA gel-blot 

hybridization for equal amounts of AtCGL160 transcript as described below. Growth 

parameters of WT and mutant lines were analyzed on the basis of leaf area, which was 

determined from photographs taken at 4 weeks after germination in short-day conditions and 

quantified using the ImageJ software (Schneider et al., 2012). 
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Chlorophyll a fluorescence measurement 

In vivo Chlorophyll a fluorescence of whole plants was measured using an imaging Chl 

fluorometer (Imaging PAM; Walz). Plants were dark-adapted for 20 minutes and exposed to a 

pulsed, blue measuring beam (4 Hz, intensity 3, gain 3, damping 2; F0) and a saturating light 

flash (intensity 10) to calculate FV/FM. Transient NPQ induction was measured at 155 s after 

the switch from dark to illumination with 145 µmol photons m-2 s-1. 

ECS measurements 

ECS measurements were performed using the Dual-PAM-100 equipped with a P515/535 

emitter-detector module (Walz; Schreiber and Klughammer, 2008). The measurement was 

carried out at 23°C under ambient CO2 conditions. Plants grown in short-day conditions for 

four weeks were light-adapted, and detached leaves were illuminated for at least 10 min with 

129 µmol photons m-2 s-1 red light. After illumination, dark interval relaxation kinetics (DIRK) 

were measured in the ms to s range. Briefly, the total amplitude of the inverse electrochromic 

band-shift kinetic (ECSt) was measured and normalized to a single saturating P515 pulse, 

applied after 4 minutes of dark incubation. For proton conductivity (gH+), electrochromic band-

shift kinetics were recorded in the millisecond-range for 2 seconds for 5 consecutive times with 

light intervals of 30 seconds, respectively. The combined signals were fitted to a first order 

exponential decay function and the reciprocal value of the lifetime was used to estimate the 

proton conductivity (Kanazawa and Kramer, 2002). ECSt, and gH+ were calculated as 

described in Cruz et al. (2001). Values and standard deviations were calculated from 6 

biological replicates.  

Nucleic acid analysis 

Total RNA from snap-frozen leaves was extracted with the RNeasy Plant Mini Kit (Qiagen) 

according to the supplier’s instructions. Samples equivalent to 20 µg total RNA were 

fractionated by electrophoresis in formaldehyde-containing agarose gels (1.2% [w/v]), blotted 

onto nylon membranes (Hybond-N+, Amersham Bioscience) and fixed by UV radiation 

(Stratalinker® UV Crosslinker 1800). To control equal loading, abundant RNAs on nylon 

membranes were stained with methylene blue solution (0.02% [w/v] methylene blue, 0.3 M 

sodium acetate pH 5.5). To detect gene-specific transcripts, amplified DNA fragments from 

cDNA were labeled with radioactive [α-32P]dCTP and subsequently used as probes in 

hybridization experiments (see Supplemental Table S2 for primer information). Signals were 

detected with the Typhoon Phosphor Imager System (GE Healthcare).  
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Protein analysis 

Leaves from four-week-old plants grown under short-day conditions were harvested shortly 

after the onset of the light period and thylakoid membrane-enriched samples were isolated 

according to Rühle et al. (2014). Crosslinking of thylakoid proteins was performed by 

incubation with 2.5 mM dithiobis(succinimidyl propionate) (DSP, Thermo Scientific). After 

incubation for 20 min on ice, crosslinking was quenched with 60 mM Tris/HCl (pH 7.5). Chl 

concentrations were determined as described in Porra et al. (1989). For immunotitrations, 

thylakoid membrane pellets were resuspended in loading buffer (100 mM Tris-HCl pH 6.8, 50 

mM DTT, 8% [w/v] SDS, 24% [w/v] glycerol and 0.02% [w/v] bromophenol blue). Denaturation 

for 5 min at 70°C and protein fractionation on Tricine-SDS-PAGE gels (10% [w/v] acrylamide 

gels supplemented with 4M urea) was carried out according to Schägger (2006). 

Immunodetections were performed as described below. Sample preparation for BN-PAGE was 

performed as described in Peng et al. (2008) with freshly prepared thylakoids. First, 

membranes were washed two times in washing buffer (20% [w/v] glycerol, 25 mM BisTris/HCl 

pH 7.0). Then, samples were treated with wash buffer including 1% (w/v) n-dodecyl -D-

maltoside and adjusted to 1 mg ml-1 Chl for 10 min on ice. After centrifugation (16,000 g, 20 

min, 4°C), supernatants were supplemented with 1/10 volume of BN sample buffer (100 mM 

BisTris/HCl pH 7.0, 750 mM ε-aminocaproic acid, 5% (w/v) Coomassie G-250). BN-PAGE gels 

(4-12% gradient) were prepared as described in Schägger et al. (1994). Solubilized samples 

corresponding to 60 µg Chl were loaded per lane and gels were run at 4°C overnight. To 

separate complexes into their subunits, BN-PAGE strips were treated with denaturing buffer 

(0.2 M Na2CO3, 5% [w/v] SDS, 50 mM DTT) for 30 min at room temperature and loaded on 

Tricine-SDS-PAGE gels. Gels were subsequently subjected to immunoblot analysis with 

antibodies against cpATP synthase subunits and AtCGL160 as described below. 

Immunoblot analysis 

Proteins fractionated by gel electrophoresis were transferred to polyvinylidene difluoride 

membranes (PVDF) (Immobilon®-P, Millipore) using a semi-dry blotting system (Biorad) as 

described in the supplier’s instructions. After blocking with TBST (10 mM Tris pH 8.0, 150 mM 

NaCl and 0.1% [w/v] Tween-20) supplemented with 3% milk, the membranes were incubated 

with antibodies at 4°C overnight. Signals were detected by enhanced chemiluminescence 

(Pierce™ ECL Western Blotting Substrate, Thermo Scientific) using an ECL reader system 

(Fusion FX7; PeqLab, Erlangen, Germany). Antibodies used in this study were obtained from 

Agrisera (CF1-: AS05 085, 1:5000; CF1-: AS08 312, 1:5000; CFO-b: AS10 1604, 1:5000; 

CFO-c: AS09 591, 1:3000; and AtCGL160: AS12 1853, 1:1000). 
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AtCGL160N antibody generation 

The coding sequence of AtCGL160N (aa 29-206) was cloned into the pMal-c5x vector (NEB) 

and purification was carried out with amylose columns (NEB) according to manufacturer’s 

instructions. The protein was injected into rabbits for antibody production (Pineda, Berlin, 

Germany). To reduce epitope cross-reactions, the antiserum was purified on columns 

crosslinked with heterologously expressed AtCGL160N (aa 29-206), fused to the glutathion s-

transferase tag (pDest15, Invitrogen). Purified antibody was employed in a dilution of 1:1000.  

Yeast two-hybrid experiments 

Yeast two-hybrid assays were carried out using the Matchmaker Two-Hybrid Kit (Clontech). 

The AtCGL160 CDS without the cTP (see Supplemental Table S2 for primer information) was 

cloned into the bait vector pGBKT7 (BD-AtCGL160), whereas the coding sequences of CF1-, 

-, -, -, -, as well as the soluble parts of CFO-b and -b', AtCGL160 and the CF1 assembly 

factor AtCGLD11/BFA3 were cloned into the prey vector pGADT7 (named AD-CF1-, -, -, -

, -; -CFO-b,-b'; -AtCGL160, -AtCGLD11). As in the case of AtCGL160, cTP sequences were 

omitted from the nucleus-encoded subunits CF1-, CF1-, CFO-b' and AtCGLD11. For the 

binding domain analysis of CF1-, the respective CDS was sub-divided into three parts (I: aa 

1-96, II: aa 97-377, III: aa 378-498), according to Zhang et al. (2016) and cloned into pGADT7. 

In the case of the binding-site analysis of AtCGL160N, nucleotides coding for aa 29-74, aa 75-

105, aa 106-134, aa 135-160, and aa 161-206 were deleted from the BD-AtCGL160 vector 

using the Q5 site-directed mutagenesis kit (NEB) and primers listed in Supplemental Table S2. 

Bait and prey vectors were cotransformed into the AH109 yeast strain (Clontech) following the 

manufacturer’s instructions. Cotransformants were selected on synthetic dropout (SD) medium 

(Clontech) lacking leucine and tryptophan (-LT). In order to identify protein interactions, double 

transformants were grown on SD medium lacking leucine, tryptophan, histidine, and adenine 

(-LTHA). 

Coimmunoprecipitation 

Freshly extracted thylakoids corresponding to ~5 mg chlorophyll were resuspended in 500 µL 

extraction buffer (50 mM Tris/HCl pH 7.5, 150 mM NaCl, 1mM MgCl2, 5% [w/v] glycerol, 

1% [v/v] Nonidet P40, 0.2 mM PMSF) and solubilized for 30 min on ice. After centrifugation at 

35,000 g for 30 min and 4°C, the supernatant was added to 20 µL DynabeadsTM (Thermo 

Scientific), equilibrated with (50 mM Tris/HCl pH 7.5, 150 mM NaCl, 5% [w/v] glycerol, 

0.05% [v/v] Nonidet P40), and labeled with AtCGL160 antibody according to manufacturer's 

instructions. The suspension was incubated with rotation for 3 hours at 4° C, washed three 

times with equilibration buffer including, and two times with buffer excluding NP40. Proteins 
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were eluted with 100 µL 0.1 M Glycine pH 2.0 for 10 minutes and neutralized with 100 µL 0.1 M 

ammonium bicarbonate. After treatment with 10µL 45 mM DTT and 10 µl of 0.1 M 

iodoacetamide, samples were digested with 1.5 µg trypsin at 37°C over-night. Peptides were 

desalted on home-made C18 stage tips (Rappsilber et al., 2003), vacuum dried to near dryness, 

and stored at –80°C. LC-MS/MS run and data analysis was performed as described in Reiter 

et al. (2020). 
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Biogenesis of plastid ribosomes is facilitated by auxiliary factors that process and modify ribosomal RNAs (rRNAs) or are
involved in ribosome assembly. In comparison with their bacterial and mitochondrial counterparts, the biogenesis of plastid
ribosomes is less well understood, and few auxiliary factors have been described so far. In this study, we report the functional
characterization of CONSERVED ONLY IN THE GREEN LINEAGE20 (CGL20) in Arabidopsis (Arabidopsis thaliana; AtCGL20),
which is a Pro-rich, ;10-kD protein that is targeted to mitochondria and chloroplasts. In Arabidopsis, CGL20 is encoded by
segmentally duplicated genes of high sequence similarity (AtCGL20A and AtCGL20B). Inactivation of these genes in the atcgl20ab
mutant led to a visible virescent phenotype and growth arrest at low temperature. The chloroplast proteome, pigment
composition, and photosynthetic performance were significantly affected in atcgl20ab mutants. Loss of AtCGL20 impaired
plastid translation, perturbing the formation of a hidden break in the 23S rRNA and causing abnormal accumulation of 50S
ribosomal subunits in the high-molecular-mass fraction of chloroplast stromal extracts. Moreover, AtCGL20A-eGFP fusion
proteins comigrated with 50S ribosomal subunits in Suc density gradients, even after RNase treatment of stromal extracts.
Therefore, we propose that AtCGL20 participates in the late stages of the biogenesis of 50S ribosomal subunits in plastids, a role
that presumably evolved in the green lineage as a consequence of structural divergence of plastid ribosomes.

The vast majority of the ;3,000 chloroplast proteins
are encoded in the nuclear genome, and only ;120
genes have been retained in a small, ;150-kb plastid
genome of cyanobacterial origin (Leister, 2003). Plastid
genes are either transcribed by a plastid-encoded,
bacteria-type or a nucleus-encoded, phage-type RNA
polymerase (for review, see Pfannschmidt et al., 2015).
Several plastid genes are organized in operons, and
polycistronic transcripts undergo a variety of process-
ing steps, including splicing, editing, and endonucleo-
lytic cleavage (for review, see Germain et al., 2013).
Despite the complexity of posttranscriptional RNA

metabolism in the organelle, plastid gene expression is
considered to be controlled mainly at the translational
level (Sun and Zerges, 2015; Zoschke and Bock, 2018)
and therefore depends on the activity of plastid ribo-
somes. Like those of their bacterial ancestors, plastid
ribosomes are made up of a small 30S (SSU) and a large
50S (LSU) subunit and contain catalytic ribosomal
RNAs (rRNA) as well as at least 50 ribosomal proteins
(RPs). The overall length of the unprocessed chloroplast
rRNA corresponds approximately to that of rRNAs
found in bacteria; however, the 39 end of the 23S plastid
rRNA is further processed to yield a 4.5S fragment after
LSU maturation (Keus et al., 1984; Leal-Klevezas et al.,
2000). In higher plants, the 23S rRNA is additionally
subjected to postmaturation processing resulting in
three fragments, separated by so-called hidden breaks
(Kössel et al., 1985). In comparison with bacterial ribo-
somes, chloroplast ribosomes show differences in RP
composition, and some harbor additional extensions,
leading to an overall increase in molecular mass of
about 170 kD (Yamaguchi et al., 2000; Yamaguchi and
Subramanian, 2000, 2003). No homologs of the bac-
terial subunits bl25 and ul30 have been identified in
chloroplasts, but five plastid-specific ribosomal pro-
teins (PSRPs) are associated with chloroplast ribo-
somes in stoichiometric amounts (Yamaguchi et al., 2000;
Yamaguchi and Subramanian, 2000, 2003; Sharma et al.,
2010).
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Recently, structures of chloroplast ribosomes from
spinach (Spinacia oleracea) have been determined at high
resolution (Ahmed et al., 2016; Bieri et al., 2017; Graf
et al., 2017; Perez Boerema et al., 2018), revealing the
exact positions and binding partners of PSRPs. PSRP2,
PSRP3, and PSRP4 form part of the SSU, whereas
PSRP5 and PSRP6 associate with the LSU. Moreover,
only the loss of PSRP3, PSRP4, or PSRP5 significantly
disrupts ribosome biogenesis and translation (Tiller
et al., 2012). Hence, as in bacteria, not all RPs are es-
sential for chloroplast ribosome function or biogenesis,
whereas some nonessential proteins in bacteria have
been shown to be indispensable for plants (for review,
see Tiller and Bock, 2014).
Biogenesis of bacterial ribosomes has been studied

extensively (for review, see Shajani et al., 2011; Davis
and Williamson, 2017), but the corresponding process
in chloroplasts is less well understood. The rRNAs
are encoded in a single plastid operon, whereas the
majority of RPs are encoded in the nucleus and
imported posttranslationally into the chloroplast. As
expected from the bacterial model, chloroplast ribo-
some biogenesis is initiated by rRNA transcription and
cotranscriptional binding of RPs (Miller et al., 1970).
Subsequent rRNA processing and RP-assisted folding
result in the independent assembly of the SSU and LSU
(Davis and Williamson, 2017). In bacteria, approxi-
mately 100 auxiliary factors that are involved in rRNA
processing and the integration of RPs have been iden-
tified (Shajani et al., 2011). Some of these have been
shown to mediate similar functions in chloroplasts (for
review, see Bohne, 2014; Liu et al., 2015; Jeon et al., 2017;
Janowski et al., 2018). Despite the dual genetic origin of
plastid RPs, which necessitates spatiotemporal orches-
tration of RP assembly, and significant structural dif-
ferences with respect to bacterial ribosomes, few
chloroplast-specific ribosome biogenesis factors have
been identified to date (Bohne, 2014; Wang et al., 2016;
Meurer et al., 2017; Paieri et al., 2018; Pulido et al., 2018).
Here, we report the functional characterization of

CONSERVED ONLY IN THE GREEN LINEAGE20
(CGL20) in Arabidopsis (Arabidopsis thaliana; AtCGL20).
CGL20s are small, Pro-rich proteins that are conserved
in photosynthetic eukaryotes. Their loss is associated
with a general reduction in chloroplast protein content,
which leads to a virescent growth phenotype. Our
analyses of mutant lines strongly support the notion
that AtCGL20 proteins are required for efficient ribo-
somal biogenesis in plastids.

RESULTS

The GreenCut Protein CGL20 Is a Small Pro- and
Glu-Rich Protein

In a search for previously uncharacterized factors
required for chloroplast biogenesis, proteins were
considered as candidates if they (1) are shared by
photosynthetic eukaryotes from the green lineage but

are not found in nonphotosynthetic eukaryotes (the
so-called GreenCut proteins; Merchant et al., 2007;
Grossman et al., 2010) and (2) were identified as re-
cently segmentally duplicated genes in Arabidopsis
(Bolle et al., 2013). One of these gene pairs comprises
At2G17240 and At3G24506 (the Arabidopsis equiva-
lents of the Chlamydomonas reinhardtii gene CGL20;
Karpowicz et al., 2011); hence, At2G17240 and
At3G24506 are designated hereafter as AtCGL20A
and AtCGL20B, respectively. These genes code for
proteins of 140 (AtCGL20A) and 149 (AtCGL20B)
amino acids (Fig. 1), and each contains a predicted
N-terminal chloroplast transit peptide, such that the
mature proteins have a calculated molecular mass of
;10 kD and a calculated pI of 4.3. All of the CGL20
proteins examined in the green lineage contained Pro-
rich N-terminal sequences, whereas the C-terminal re-
gions were characterized by a high proportion of acidic
amino acids (Fig. 1; Supplemental Table S1).

Lack of AtCGL20 Affects Plant Growth, Pigment
Composition, and Photosynthesis

Arabidopsis T-DNA insertion lines for AtCGL20A
and AtCGL20B were identified (atcgl20a and atcgl20b)
and crossed to generate the double mutant line atc-
gl20ab (Fig. 2). To analyze transcript abundance in
atcgl20mutants, reverse transcription quantitative PCR
analyses were carried out (Fig. 2B). In the wild-type
Columbia-0 (Col-0) ecotype, AtCGL20A transcripts
were found to be fourfold more abundant than their
AtCGL20B counterparts. As expected, AtCGL20A and
AtCGL20B transcripts failed to accumulate in the re-
spective single mutant lines and in the double mutant
atcgl20ab. No obvious growth phenotype was observed
for atcgl20b, but atcgl20a had slightly paler leaves than
the wild type (Fig. 2C). However, growth rate and leaf
pigmentation of the double mutant atcgl20ab differed
clearly from those of wild-type plants (Fig. 2, C and D;
Supplemental Table S2), producing a virescent pheno-
type. Growth rates of atcgl20 mutants were also inves-
tigated at low temperature (Supplemental Fig. S1A). All
mutants germinated at 4°C, but atcgl20ab stopped
growing during the seedling stage and failed to as-
semble functional PSII complexes, as indicated by the
lack of any detectable maximal quantum yield of PSII
(Fv/Fm) signal.
To test whether the disruption of AtCGL20A and

AtCGL20B affects photosynthetic performance, chlo-
rophyll a fluorescence and P700 parameters were de-
termined (Table 1) using the Dual-PAM-100 system
(Walz). The double mutant exhibited only a moderate
decrease in PSII functionality (Fv/Fm 5 0.76 6 0.01)
but showed remarkably lower nonphotochemical
quenching (NPQ) values (0.27 6 0.05) than wild-type
plants (0.90 6 0.13). Interestingly, a significant but less
pronounced decline in NPQ was detected in atcgl20a
plants (0.66 6 0.13). Moreover, Y(ND) values were in-
creased in atcgl20ab plants, which reflects a donor-side
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limitation of PSI in photosynthetic electron transport.
We also tested for NAD(P)H dehydrogenase-like
(NDH) complex activity in atcgl20 mutant lines as de-
scribed by Armbruster et al. (2013). The typical fluo-
rescence rise after a light-dark switch, which can be
mainly attributed to NDH-dependent cyclic electron
transport, was observed in Col-0, atcgl20a, and atcgl20b
but not in atcgl20ab (Supplemental Fig. S1C).

To confirm that the atcgl20ab phenotype resulted
from the double knockout, the AtCGL20A or AtCGL20B

gene was fused to the eGFP-encoding reporter gene,
placed under the control of the cauliflower mosaic
virus 35S promoter, and transformed into the atcgl20ab
background (Supplemental Fig. S1B). Each GFP fusion
construct was able to complement the double mutant
phenotype, indicating that AtCGL20A and AtCGL20B
have redundant functions.

In summary, atcgl20ab has a pgr (proton gradient
regulation) phenotype similar to that of the Arabidopsis
mutant line pgr1, which is deficient in the cytochrome

Figure 1. Sequence alignment of Arabidopsis CGL20A (AtCGL20A), CGL20B (AtCGL20B), and homologs from other species in
the green lineage. Predicted chloroplast transit peptides are not included in the alignment. Stretches of sequence similarity/
identity conserved in the Pro-rich N-terminal region in at least 80% of the proteins are highlighted by gray/black shading. At the
C-terminal end, acidic (E and D) and basic (K and R) amino acids are marked in red and blue, respectively. Sequence identifiers
and further features of these proteins are listed in Supplemental Table S1.

Figure 2. Characterization of Arabi-
dopsis atcgl20ab knockout mutants. A,
Structures and T-DNA insertion sites in
the AtCGL20A and AtCGL20B genes.
Left (LB) and right (RB) T-DNA borders
are indicated. Exons are numbered and
shown as white rectangles, untrans-
lated regions as black rectangles. B,
Quantification of At2G127240 and
At3G24506 transcripts by real-time
PCR analyses using transcripts of the
actin-encoding gene ACT8 (At1G49240)
as a reference. Means 6 SD were cal-
culated from three technical replicates.
C, Growth phenotypes of the genotypes
analyzed. Plants were grown for
5 weeks under a 12/12-h light/dark re-
gime. D, Leaf-areameasurements of the
genotypes shown in C. Means 6 SD

were calculated from data for 12 leaf
areas per genotype.
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(Cyt) b6f complex (Munekage et al., 2001), and this
phenotype is present in a milder form in the single
mutant atcgl20a. However, atcgl20ab shows additional
defects in photosynthesis, such as a lower level of PSII
functionality, lack of detectable NDH activity, and
substantially altered chloroplast pigment composition
even under normal growth conditions.

AtCGL20A and AtCGL20B Are Targeted to Chloroplasts
and Mitochondria

In previous studies, AtCGL20A, AtCGL20B, and
their C. reinhardtii homolog were identified as chloro-
plast proteins (Bayer et al., 2011; Narsai et al., 2011;
Terashima et al., 2011). To confirm protein localization,
protoplasts of oeAtCGL20A-enhanced GFP (eGFP)
and oeAtCGL20B-eGFP plants were isolated and ex-
amined by confocal laser scanning microscopy
(Fig. 3A). In both cases, strong eGFP signals were ex-
clusively detectable in chloroplasts. We also examined
the subcellular localization of CGL20 homologs in the
green lineage using TargetP (Supplemental Table S1).
Chloroplast localization could be predicted for 41
CGL20 homologs, whereas a mitochondrial or an am-
biguous localization was predicted for four homologs
from Chlorophyta (CGL20 of C. reinhardtii, Volvox car-
teri, Chlorella variabilis, andOstreococcus lucimarinus). To
identify even small amounts of AtCGL20, which might
be targeted to mitochondria and are below the eGFP
detection threshold of fluorescence microscopy, we
performed cell fractionation and immunodetection
assays (Fig. 3B). To this end, an antibody was raised
against a synthetic peptide found in both AtCGL20
proteins (see “Materials and Methods” for details). We
were able to detect AtCGL20A- and AtCGL20B-eGFP
fusion proteins in whole-leaf extracts of overexpression
plants. Thus, chloroplasts and mitochondria were iso-
lated from oeAtCGL20A-eGFP and oeAtCGL20B-eGFP
plants and subjected to SDS-PAGE and immunode-
tection assays of marker proteins (Fig. 3B). Both fusion
proteins could be detected in mitochondria and were

present in both the soluble and insoluble chloroplast
fractions.
Since both eGFP fusion proteins showed the same

pattern of localization and atcgl20ab plants over-
expressing either AtCGL20A-eGFP or AtCGL20B-eGFP
complemented thewild-type phenotype (Supplemental
Fig. S1B), subsequent biochemical experiments were
carried out exclusively with atcgl20ab plants over-
expressing AtCGL20A-eGFP. Next, the association of
AtCGL20A-eGFP with high-molecular-mass (HMM)
complexes in the chloroplast stroma was analyzed
(Fig. 3C). Most of AtCGL20A-eGFP was found in the
free protein fraction in Suc step-gradient experiments.
However, a significant portionwas located in theHMM
fraction, together with the ribosomal subunits Rpl2 and
Rps1. The fact that neither Rubisco nor the stromal
chaperonin Cpn60 was significantly enriched in the
HMM fraction indicated that AtCGL20A-eGFP associ-
ates with a stromal complex that is larger than the
Cpn60 complex (;800 kD). Thus, AtCGL20 proteins are
found in mitochondria but predominantly in chloro-
plasts, where they are part of a stromal complex with a
molecular mass greater than 800 kD.

Loss of AtCGL20 Function Alters the Composition of the
Chloroplast Proteome and Thylakoid
Membrane Complexes

The dual localization of AtCGL20A and AtCGL20B
and multiple alterations in chloroplast function
prompted us to investigate changes at the tran-
scriptomic and proteomic levels in atcgl20ab (Fig. 4;
Supplemental Fig. S2; Supplemental Tables S3–S7).
RNA sequencing analysis revealed that 1,254 genes
were significantly differentially expressed (adjusted
P, 0.05) in atcgl20ab relative to the wild type. Of these,
880 gene transcripts were down-regulated (log2 fold
change [FC] , 20.59) and 374 were up-regulated
(log2 FC . 0.59; Supplemental Table S3). In addition,
the relative abundance of 1,920 protein groups was
quantified in atcgl20ab with respect to the wild-type

Table 1. Chlorophyll a fluorescence and P700 parameters of wild-type (Col-0), atcgl20a, atcgl20b, atcgl20ab, oeAtCGL20A-eGFP, and
oeAtCGL20B-eGFP plants

Leaves were exposed to 130 mE m22 s21 for 15 min. The dark-relaxation phase lasted 10 min. Mean values (n5 5)6 SD are provided. FII, Effective
quantum yield of PSII at 100 mE m22 s21; 1-qP, excitation pressure; qE, energy-dependent quenching of chlorophyll fluorescence; qI, photoinhibitory
quenching; Y(I), photochemical quantum yield of PSI; Y(ND), nonphotochemical quantum yield of PSI, donor-side limited; Y(NA) nonphotochemical
quantum yield of PSI, acceptor-side limited.

Parameter Col-0 atcgl20a atcgl20b atcgl20ab oeAtCGL20A-eGFP oeAtCGL20B-eGFP

Fv/Fm 0.80 6 0.00 0.80 6 0.01 0.81 6 0.00 0.76 6 0.01 0.81 6 0.00 0.81 6 0.00
FII 0.41 6 0.04 0.43 6 0.03 0.39 6 0.04 0.45 6 0.04 0.40 6 0.02 0.38 6 0.04
1-qP 0.41 6 0.06 0.39 6 0.04 0.43 6 0.05 0.37 6 0.05 0.42 6 0.03 0.44 6 0.06
NPQ 0.90 6 0.13 0.66 6 0.13 0.92 6 0.11 0.27 6 0.05 0.97 6 0.07 1.00 6 0.10
qE 0.75 6 0.13 0.50 6 0.11 0.76 6 0.10 0.15 6 0.05 0.81 6 0.07 0.84 6 0.10
qI 0.35 6 0.04 0.33 6 0.05 0.39 6 0.04 0.26 6 0.01 0.40 6 0.02 0.41 6 0.03
Y(I) 0.70 6 0.03 0.69 6 0.03 0.71 6 0.03 0.65 6 0.04 0.70 6 0.02 0.69 6 0.04
Y(ND) 0.19 6 0.04 0.21 6 0.04 0.21 6 0.04 0.29 6 0.03 0.21 6 0.03 0.23 6 0.05
Y(NA) 0.10 6 0.02 0.10 6 0.02 0.08 6 0.01 0.07 6 0.01 0.09 6 0.02 0.08 6 0.01
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control. Of these, 208 and 216 proteins showed a log2
FC , 20.59 (adjusted P , 0.05) and a log2 FC . 0.59
(adjusted P , 0.05), respectively (Supplemental Table
S4). We further addressed the question of whether any
particular cellular compartment is specifically affected
in atcgl20ab by examining the subcellular targeting of
proteins with altered gene expression or abundance
(Fig. 4B). Indeed, plastid components were overrepre-
sented among those affected at the transcript and pro-
tein levels. For instance, 27% and 6% of the up- and
down-regulated transcripts encode plastid proteins,
respectively. At the protein level, the effect was even
more obvious: 30% of proteins with significantly higher
and 72% with significantly lower abundances in atc-
gl20ab are localized to the plastid. By contrast, only a
small number of mitochondrion-targeted proteins
showed significant alterations at the transcript or pro-
tein level in atcgl20ab.

In light of the pronounced photosynthetic defects in
atcgl20ab (Table 1; Supplemental Table S2), we investi-
gated transcript and subunit levels of thylakoid protein

complexes in more detail (Fig. 4C; Supplemental Table
S5). Overall, only minor changes in the amounts of
transcripts coding for thylakoid complex subunits were
detected in atcgl20ab. By contrast, PSII and PSI subunit
levels were clearly reduced in atcgl20ab. Remarkably,
NDH and Cyt b6f complexes exhibited the most pro-
nounced reductions, together with subunit D1 of PSII
(encoded by psbA), which is known to exhibit a high
turnover rate (Sundby et al., 1993).

To verify the outcome of the proteome analysis, we
compared membrane complex integrity and subunit
abundance in mitochondria (Supplemental Fig. S3A)
and thylakoid membranes isolated from wild-type and
atcgl20ab plants (Supplemental Fig. S3, B and C) by 2D
blue native (BN)/SDS-PAGE analysis. In line with the
proteome data (Supplemental Table S4), no obvious
differences in respiratory complex abundance could be
detected. Moreover, the analysis of thylakoid com-
plexes confirmed the specific impact of atcgl20ab mu-
tations on NDH-PSI and Cyt b6f (Supplemental Fig.
S3B). Since the NDH-PSI and the Cyt b6f complexes are

Figure 3. Subcellular localization of AtCGL20A and AtCGL20B. A, Chlorophyll autofluorescence (Auto), MitoTracker, and eGFP
fluorescence emission (eGFP) of protoplasts isolated from oeAtCGL20A-eGFP and oeAtCGL20B-eGFP plants. Protoplasts were
analyzed by confocal laser scanning microscopy and overlaid in a single image (Merged). Bar 5 5 mm. B, Immunodetection of
AtCGL20A-eGFP and AtCGL20B-eGFP in cell fractionation experiments. Mitochondria (Mito) and chloroplasts (Chloro) were
isolated from oeAtCGL20A-eGFP and oeAtCGL20B-eGFP plants, and chloroplasts were further separated into insoluble (Insol)
and soluble (Sol) fractions. The purity of the mitochondrial fraction was examined by immunodetection of CoxII, whereas Lhcb3
and Csp41b served as marker proteins for the insoluble and soluble chloroplast fractions, respectively. To control for loading,
polyvinylidene difluoride (PVDF) membranes were stained with Coomassie Brilliant Blue G-250 (C.B.B.). C, Accumulation of
AtCGL20A-eGFP in the HMM fraction isolated by Suc step-gradient centrifugation from stroma extracts of oeAtCGL20A-eGFP
chloroplasts. Fractionswere characterized by SDS-PAGE. Cpn60a1, Rps1, and Rpl2were immunodetected asmarker subunits for
the stromal protein complex chaperonin 60 and the SSU and LSU of chloroplast ribosomes, respectively. Coomassie Brilliant Blue
staining is shown as a loading control. The position of the large Rubisco subunit RbcL is highlighted.
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less abundant than other thylakoid complexes on
Coomassie blue-stained 2D gels, these reductions were
verified by immunodetection assays (Supplemental
Fig. S3, B and C). We also examined the integrity of
thylakoid membrane complexes in the single mutants
atcgl20a and atcgl20b. Interestingly, NDH-PSI and Cyt
b6f complex formation was clearly affected in atcgl20a
but not in atcgl20b (Supplemental Fig. S3B), as was
confirmed by immunodetection of marker subunits for
the different thylakoid complexes (Supplemental Fig.
S3D). Thus, the pgr phenotype (Table 1) and the lack of
the postillumination fluorescence rise in atcgl20ab
plants (Supplemental Fig. S1C) can be attributed to
substantially reduced levels of Cyt b6f and NDH-PSI
complexes, respectively. In spite of the fact that AtC-
GL20A and AtCGL20B are also localized to mitochon-
dria (Fig. 3B), their absence appears to have no
measurable effect on protein complex abundances in
these organelles (Supplemental Fig. S3A).

Loss of AtCGL20 Function Affects the Chloroplast
Translational Machinery

AtCGL20A and AtCGL20B are coexpressed with
genes involved in plastid gene expression, in particular
with genes coding for chloroplast RPs (Supplemental
Table S8). Given that atcgl20ab shows a virescent phe-
notype (Fig. 2C), which is often associated with dis-
ruptions in chloroplast protein homeostasis (Koussevitzky
et al., 2007) and reductions in chloroplast protein level
(Fig. 4B) and thylakoid complex amounts (Fig. 4C),

we investigated perturbations in chloroplast gene ex-
pression in more detail. To this end, we compared
plastome-encoded transcript and protein levels of
31 RNA-protein pairs between atcgl20ab and the
wild-type control (Fig. 5A). Only moderate changes
were observed at the transcript level; 11 transcripts
were significantly (adjusted P , 0.05) up-regulated
(log2 FC . 0.59), but only two were down-regulated
(log2 FC , 0.59). Remarkably, at the protein level, the
opposite trend was apparent: the abundances of
10 plastid-encoded proteins derived from different
plastid operons were reduced (log2 FC. 0.59), whereas
only three proteins were increased in amount (Rpl20,
Rpl22, and Ycf3).
To test plastid translation in atcgl20ab, we investi-

gated in vivo incorporation of [35S]Met into de novo
plastid proteins of wild-type and atcgl20ab plants
grown either under 22°C or shifted to 4°C (Fig. 5B).
Mutant plants grown under moderate temperature
showed ;50% labeling efficiency, whereas atcgl20ab
plants subjected to 4°C incorporated only;25% of [35S]
Met compared with wild-type plants. To further de-
termine whether atcgl20ab is defective in chloroplast
translation initiation or termination, we examined the
association of several plastid-encoded RNAs with
chloroplast ribosomes. To this end, polysome-enriched
samples were isolated from wild-type and atcgl20ab
leaves under polysome-preserving conditions (Barkan,
1993) and further fractionated by Suc density-gradient
centrifugation (Fig. 5C). Subsequently, total RNAswere
isolated from 12 fractions and subjected to denaturing
gel electrophoresis and RNA gel-blot analyses using

Figure 4. Comparative transcriptomic
and proteomic analyses of Col-0 and
atcgl20ab. A, Venn diagram of up-
regulated (log2 FC . 0.59) and down-
regulated (log2 FC,20.59) transcripts
and proteins in atcgl20ab compared
with the wild type. B, Subcellular
distribution of the proteins that are
up-regulated (log2 FC. 0.59) or down-
regulated (log2 FC , 20.59) in atc-
gl20ab at the transcriptional (mRNA) or
protein (protein) level. C, Impact of
AtCGL20 disruption on the transcrip-
tional and protein-level expression of
thylakoid complex subunits. Asterisks
indicate the following values: *, P ,
0.05; **, P, 0.01; and ***, P, 0.001.
Colors, which represent down- or up-
regulated components in atcgl20ab,
range from dark blue (log2 FC,22) to
dark red (log2 FC . 2). WT, Wild type.
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selected plastid transcript probes. Transcripts of
psaA, psbA, rbcL, ndhH, and petB did not show a shift
to lower or higher density fractions, indicating that
plastid translation initiation or termination is not
perturbed in atcgl20ab. Similarly, the distribution of
plastid rRNAs (rrn5, rrn16, and rrn23) was un-
changed. However, we detected nonprocessed 23S
rRNAs of the LSU in fractions 4 to 11, implying that,
in the double mutant, both free and actively trans-
lating chloroplast ribosomes contain unprocessed
23S rRNAs.

Relative amounts of rRNAs are sensitive indicators of
plastid SSU and LSU abundances, since their steady-
state levels largely depend on their efficient associa-
tion with ribosomal subunits. In addition, rRNA
quantification allows the assignment of a biogenesis
defect either to the SSU or LSU, as the subunits are as-
sembled independently and only form an SSU/LSU
complex during translation (Walter et al., 2010; Tiller
et al., 2012; Fristedt et al., 2014). Thus, we monitored
the accumulation of the SSUs and LSUs of cytosolic
and chloroplast ribosomes by quantifying their rRNA

Figure 5. Chloroplast gene expression and polysome loading in AtCGL20 loss-of-function mutants. A, Relative abundances of
selected plastome-encodedmRNAs and proteins in atcgl20ab comparedwith the wild type (WT). Asterisks indicate the following
values: *, P, 0.05; **, P, 0.01; and ***, P, 0.001. Colors, which represent down- or up-regulated components in atcgl20ab,
range fromdark blue (log2 FC,22) to dark red (log2 FC. 2). B, Pulse-labeling analysis of de novo synthesized plastid proteins in
20-d-old seedlings of Col-0 and atcgl20ab grown under 22°C or shifted for 7 d to 4°C prior to the experiment. Labeling was
performed with [35S]Met for 40 min under moderate light intensity in the presence of cycloheximide. Whole leaf extracts cor-
responding to equal amounts of fresh weight were separated by SDS-PAGE, stained with Coomassie Brilliant Blue (C.B.B.), and
subjected to autoradiography. Abundant signals were identified as RbcL, CP43/CP47, and D1/D2 according to Rühle et al. (2014)
and Pulido et al. (2018). C, RNA gel-blot hybridization of fractions obtained following Suc density-gradient centrifugation under
polysome-preserving conditions. Free ribosomes (monosomes) are found in fractions 2 to 6, whereas fractions 7 to 12 contain
mRNA-polysome complexes. Membranes were hybridized with probes specific for psaA, rbcL, psbA, ndhH, petB, rrn5, rrn16,
and rrn23. Methylene Blue (M.B.) staining is shown as a loading control. D, Microfluidics-based quantification of rRNA abun-
dance in atcgl20ab compared with the wild-type control (Col-0). Means 6 SD were calculated from three biological replicates.
Relative amounts of large cytosolic (25S), small cytosolic (18S), small chloroplast (16S), and the 1.3-kb hidden-break product of
the 23S species (23S HB1) in Col-0 were compared with the values for atcgl20ab.
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species using a microfluidics-based approach (Fig. 5D).
The ratios of cytosolic LSU to cytosolic SSU (25S/18S),
cytosolic SSU to chloroplast SSU (18S/16S), cytosolic
SSU to chloroplast LSU (18S/23SHB1), and chloroplast
SSU to chloroplast LSU (16S/23SHB1)were determined
from wild-type and atcgl20ab plants (Fig. 5D). In con-
trast to the 25S/18S and 18S/16S ratios, which were
only slightly altered in atcgl20ab, the 18S/23SHB1 and
16S/23SHB1 ratios were twofold higher in atcgl20ab
plants than in the wild type.
From these results, we deduced that lack of AtC-

GL20A and AtCGL20B alters chloroplast LSU biogen-
esis. However, the defect seems not to interfere with
translation initiation or termination (Fig. 5C) but affects
the elongation step (Fig. 5B), leading to lower accu-
mulation of plastome-encoded proteins in atcgl20ab
(Fig. 5A). The fact that the ratio of free to RNA-
associated ribosomes is unchanged in atcgl20ab is
also consistent with previous studies, which revealed
that defects in plastid ribosome biogenesis do not

necessarily lead to significant changes in polysome
loading patterns (Pesaresi et al., 2001; Nishimura et al.,
2010; Chi et al., 2012).

AtCGL20 Is Required for LSU Biogenesis in Chloroplasts

To investigate the influence of AtCGL20 on chloro-
plast rRNA maturation, RNA gel-blot experiments
were carried out with probes specific for 16S, 4.5S, 5S,
and 23S rRNAs, which were hybridized to size-
fractionated RNA samples isolated from wild-type,
atcgl20a, atcgl20b, and atcgl20ab plants (Fig. 6A). In
contrast to the wild-type-like levels of 16S, 4.5S, and 5S
rRNAs, hybridization experiments with probes specific
for 23S rRNAs detected clear changes in the single
mutant atcgl20a, which were even more pronounced
in the doublemutant atcgl20ab. Unprocessed precursors
of 2.9 and 2.4 kb accumulated to significant levels,
whereas processed products of the 23S rRNA with

Figure 6. RNA gel-blot hybridization of plastid rRNAs and quantification of ribosomal proteins in the HMM fraction of atcgl20ab
stroma. A, Total RNA isolated from 20-d-oldwild-type (WT), atcgl20a (a), atcgl20b (b), and atcgl20ab (ab) plants was fractionated
by denaturing agarose gel electrophoresis and blotted onto nylon membranes. Membranes were hybridized with probes specific
for the 16S rRNA (rrn16), hidden-break fragments of 0.5 kb (rrn23.1), 1.3 kb and 1.1 kb (rrn23.2), and 1.1 kb (rrn23.3) of the
23S rRNA, as well as the 4.5S (rrn4.5) and 5S rRNA (rrn5). M.B., Methylene Blue. B, Quantification of 23S hidden-break (HB)
products. RNA gel-blot hybridization signals for atcgl20ab and wild-type (Col-0) samples were quantified (Supplemental Table
S9). Means6 SD were calculated from three technical replicates. Probes for rrn23S used in A are depicted in gray, and subspecies
of processed 23S rRNA are colored according to their abundance in atcgl20ab as per a scale extending from dark blue (log2 FC,
22) to dark red (log2 FC. 2). C, SSU and LSU protein abundance in theHMM fraction isolated from atcgl20ab chloroplast stroma
(Supplemental Table S10). Asterisks indicate the following values: *, P , 0.05; **, P , 0.01; and ***, P , 0.001.
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lower molecular masses (1.8, 1.3, and 1.1 kb) were
markedly reduced (Fig. 6B; Supplemental Table S9).
Notably, levels of the smallest hidden-break product
(0.5 kb) of the mature 23S rRNA were not affected in
atcgl20ab.

In light of our observations that a portion of
AtCGL20A-eGFP comigrates with ribosomal subunits
in the HMM fraction (.800 kD) in Suc step-gradient
experiments (Fig. 3C) and that chloroplast LSU bio-
genesis is impaired in atcgl20ab (Figs. 5, C and D, and
6A), we performed a comparative proteomic study of
the HMM fractions isolated from wild-type and atc-
gl20ab stromal extracts (Fig. 6C; Supplemental Table
S10). A MapMan analysis of the data (Supplemental
Table S11) showed that the levels of chloroplast
LSU proteins (Bin 29.2.1.1.1.2) were significantly
changed in atcgl20ab (P 5 2.8 1024). Thus, an in-depth
comparison of SSU and LSU protein amounts between
wild-type and atcgl20ab HMM stromal fractions was
carried out (Fig. 6C). No significant reduction in the
amounts of any chloroplast RP could be identified
in atcgl20ab. Although several chloroplast SSU pro-
teins were slightly more abundant in atcgl20ab than
in the wild-type control, the most pronounced in-
creases (log2 FC . 2) in the double mutant were

observed for the LSU subunits Rpl32, Rpl4, Rpl28,
and Rpl3 (Fig. 6C).

Taken together, these data confirm that absence of
AtCGL20 has a specific impact on chloroplast LSU bi-
ogenesis, whereas chloroplast SSU biogenesis is unaf-
fected. This conclusion is corroborated by the finding
that only 23S rRNA maturation is clearly altered in
atcgl20ab (Fig. 6, A and B). In addition, several chloro-
plast LSU proteins aremore prominently represented in
the stromal HMM fraction (.800 kD) from atcgl20ab
than are constituents of the SSU (Fig. 6C).

AtCGL20A-eGFP Comigrates with Chloroplast Ribosomes

Several factors involved in rRNA processing have
been shown to be physically associated with ribosomes
or ribosomal precursor complexes (Chi et al., 2012;
Meurer et al., 2017; Paieri et al., 2018). Since a portion of
AtCGL20A-eGFP had been found in the HMM fraction
in Suc step-gradient experiments (Fig. 3C), we extended
our comigration analysis by performing Suc density-
gradient centrifugation of stromal fractions isolated
under conditions in which SSU and LSU were partially
dissociated from each other (Fig. 7A). Rps1, a marker

Figure 7. Comigration studies of AtCGL20A-eGFP. A, Suc density-gradient centrifugation of stromal extracts containing
AtCGL20A-eGFP. Stromal extracts of AtCGL20A-eGFP plants were prepared with reduced amounts Mg21 and subjected to Suc
density-gradient centrifugation. Suc fractions were collected, and proteins were separated by SDS-PAGE. After protein transfer,
PVDF membranes were decorated with antibodies specific for Rps1, Rpl2, AtCGL20, and GFP. Coomassie Brilliant Blue (C.B.B.)
staining is shown as a loading control, and the position of the large Rubisco subunit RbcL is indicated. B, BN/SDS-PAGE analysis
of stromal extracts isolated fromAtCGL20A-eGFP plants. Stromawas either treatedwith RNase A or an RNase inhibitor as amock
control (RNasin; Promega) and subjected to BN/SDS-PAGE analyses. After protein transfer, PVDF membranes were probed with
antibodies specific for AtCGL20 and Rpl2. Coomassie Brilliant Blue staining is shown as a loading control. Positions of Rubisco
(;520 kD) and RNase A are indicated.
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subunit for the chloroplast SSU, was immunodetected
in fractions 22 to 35, with two distinct peaks in fractions
26/27 and 31/32 (Fig. 7A). By contrast, the marker
subunit Rpl2 for the LSUwas detected in fractions 27 to
38 and predominantly in fractions 29 to 33. These re-
sults indicated that the SSU could be partially dissoci-
ated from the LSU and was enriched in fractions 26 and
27, whereas a mixture of dissociated LSU and fully as-
sembled ribosomes was found in fractions 28 to 35. The
fusion protein AtCGL20A-eGFP was found in fractions
22 to 25, 29 to 36, and 38 but did not appear in fractions
26 to 28. Consequently, AtCGL20A-eGFP does not
comigrate with the dissociated SSU but together with
either the detached chloroplast LSU or as part of fully
assembled ribosomes (Fig. 7A).
A specific characteristic of rRNAs in ribosomal pre-

complexes is their susceptibility to RNase treatments,
whereas rRNAs in fully assembled ribosomes are
tightly packed with RPs and are protected from deg-
radation (Williams and Barkan, 2003; Meurer et al.,
2017). As a consequence, biogenesis factors that inter-
act with ribosomal precomplexes tend to lose their as-
sociation with rRNAs when treated with RNase
(Meurer et al., 2017; Paieri et al., 2018). To investigate an
association of AtCGL20A-eGFP with ribosomal pre-
complexes, isolated stromal extracts of oeAtCGL20A-
eGFP overexpression lines were either treated with
RNase A or an RNase inhibitor (control) and subse-
quently subjected to 2D BN/SDS-PAGE analysis
(Fig. 7B). After protein transfer, PVDFmembranes were
probed with AtCGL20- and Rpl2-specific antibodies.
Althoughmost of the AtCGL20A-eGFP fusion and Rpl2
were detected in the free protein fraction, a significant
portion of both proteins comigrated with the HMM
fraction (.800 kD) in the control, which was previously
shown to contain ribosomal subunits (Bučinská et al.,
2018). Strikingly, Rpl2 and AtCGL20A-eGFP signals
increased in the HMM fraction after RNase treatment.
Therefore, we conclude that AtCGL20 is involved in
late steps in the biogenesis of the chloroplast LSU, since
AtCGL20A-eGFP comigrates with LSU complexes
(Fig. 7A) that are resistant to RNase treatment (Fig. 7B).

DISCUSSION

CGL20 Function Emerged in the Green Lineage

Although the core structures and functions of bacte-
rial and chloroplast ribosomes are conserved, consid-
erable changes have occurred over the course of
chloroplast ribosome evolution. These include differ-
ences in rRNA processing and the addition of five new
subunits (PSRP2–PSRP6) as well as several structural
features unique to chloroplast ribosomes (Bieri et al.,
2017), which might have evolved as a consequence of
the need to translate a substantially reduced number of
chloroplast-encoded proteins (Tiller and Bock, 2014;
Sun and Zerges, 2015; Graf et al., 2017). Furthermore,
the massive transfer of genes to the nuclear genome has

increased the complexity of organellar ribosome bio-
genesis, as both auxiliary factors and RPs have to be
imported into chloroplasts and correctly assembled
with plastome-encoded rRNAs and RPs. It is there-
fore evident that, owing to the relocation of genetic
information to the nucleus, additional auxiliary factors
became necessary in order to maintain efficient ribo-
some biogenesis. Indeed, several factors required for
chloroplast LSU biogenesis, such as DCL, RH39, RH22,
or RH50, have no orthologs in bacteria (Bellaoui et al.,
2003; Nishimura et al., 2010; Chi et al., 2012; Paieri et al.,
2018) and, like CGL20, first emerged in the green
lineage.

Plants That Lack AtCGL20 Show a Characteristic
Perturbation in Chloroplast Biogenesis

A large number of virescent Arabidopsis mutants
with impaired chloroplast biogenesis have been de-
scribed in the literature (Pesaresi et al., 2001; Sugimoto
et al., 2004; Koussevitzky et al., 2007; Tillich et al., 2009;
Chi et al., 2012; Janowski et al., 2018). Their defects are
often associated with perturbations in chloroplast pro-
tein homeostasis (Sugimoto et al., 2004; Koussevitzky
et al., 2007; Yu et al., 2008; Chi et al., 2012). Since pro-
nounced pleiotropic effects usually accompany their
disruption, the precise molecular functions of chloro-
plast biogenesis factors are often difficult to derive from
analyses of mutant lines. Moreover, this study was
complicated by the low abundance of AtCGL20 pro-
teins and the absence of a clear domain prediction
(Fig. 1). For these reasons, we turned to large-scale
transcriptome and proteome analyses to compare atc-
gl20ab plants with their wild-type counterpart (Fig. 4).
In line with observations made with other virescent
Arabidopsis mutants (Kim et al., 2009; Janowski et al.,
2018), atcgl20ab exhibited a general reduction in chlo-
roplast protein content (Fig. 4B) as well as diminished
abundance of thylakoid membrane complexes
(Fig. 4C). Remarkably, Cyt b6f and NDH complexes
were those most affected in atcgl20ab (Fig. 4C;
Supplemental Fig. S3B), which were reduced to ;30%
and ;10% of wild-type levels, respectively. This find-
ing effectively accounts for the combined pgr and
chlororespiratory reduction phenotype of atcgl20ab
(Table 1; Supplemental Fig. S2). A similar photosyn-
thetic phenotype has been reported for the Arabidopsis
mutant pgr3-1, which is disrupted in a chloroplast
pentatricopeptide-repeat protein required for post-
transcriptional steps in organellar gene expression
(Yamazaki et al., 2004). However, selective disruption
of Cyt b6f and NDH complexes in pgr3-1 mutants did
not result in any significant changes in PSII and PSI
levels or photosynthetic growth rates under moderate
light intensities. Accordingly, we can exclude a specific
role for AtCGL20 in Cyt b6f or NDH complex biogen-
esis, and we therefore interpret their low levels as an
indirect consequence of impaired chloroplast transla-
tion in the double mutant (Fig. 5).
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Despite the dual localization (Fig. 3), transcript and
protein levels of mitochondrial components (Fig. 4B)
and respiratory complexes (Supplemental Fig. S3) were
essentially unaffected in atcgl20ab. Notably, about 500
proteins with ambiguous transit peptides are predicted
in Arabidopsis to be dual targeted to mitochondria and
chloroplasts (Mitschke et al., 2009). However, a func-
tion in both organelles could only be attributed to some
of them (Kmiec et al., 2014; Mazzoleni et al., 2015) and
seems unlikely for others (Rödiger et al., 2011; Baudisch
et al., 2014). It is therefore assumed that a certain degree
of mistargeting is tolerated and might be the conse-
quence of the evolution of the plastid import machinery
(Sharma et al., 2018). On the other hand, a large group
of proteins that were experimentally shown to be dual
targeted are involved in organellar gene expression and
in particular in translation (for review, see Carrie and
Small, 2013). We therefore conclude that AtCGL20 is
critical for chloroplast processes, although we cannot
exclude the possibility that AtCGL20 might mediate
mitochondrial functions in other developmental stages,
plant organs, or specific growth conditions.

AtCGL20 Functions in Chloroplast LSU Biogenesis

Our current knowledge of chloroplast ribosome bi-
ogenesis is scant and mostly inferred from bacterial ri-
bosome biogenesis, in which the two subunits are
assembled independently in a dynamic process
through coordinated folding of rRNAs and association
of sets of RPs (Davis and Williamson, 2017). The order
of bacterial RP binding is highly flexible, and several
parallel assembly pathways have been identified
(Mulder et al., 2010; Davis et al., 2016). However, LSU
assembly is more complex, owing to a more intricate
rRNA folding pathway, a larger number of RPs, and
the need to form a functional peptidyl transfer center
as well as the polypeptide tunnel exit. Chloroplast
SSUs and LSUs are assembled independently, as has
been demonstrated in studies of mutants altered in
chloroplast LSU and SSU structure (Nishimura et al.,
2010; Chi et al., 2012; Tiller et al., 2012; Janowski
et al., 2018). In addition, several auxiliary chloroplast
ribosome biogenesis factors have been identified,
a significant number of which are DEAD-box RNA
helicases, GTPases, or rRNA methylases (for review,
see Bohne, 2014). Recent proteome (Majeran et al., 2012)
and several GFP-fusion-based localization studies
have shown that many of these factors are enriched in
plastid nucleoids, which supports the assumption
that ribosome assembly takes place in this intra-
organellar subcompartment (Bohne, 2014). By con-
trast, protoplast studies (Fig. 3) showed that
AtCGL20A- and AtCGL20B-eGFP did not display
typical nucleoid localizations (Meurer et al., 2017).
The uniform distribution of eGFP signals in the chlo-
roplast might be explained by the overaccumulation of
fusion proteins in the free stromal fraction (Figs. 3C
and 7B), masking nucleoid-associated AtCGL20A- and

AtCGL20B-eGFP signals. Furthermore, it cannot be
excluded that the large eGFP tag might interfere with
nucleoid association.

Our study provides four lines of evidence that
AtCGL20 is involved in late steps in the assembly of the
chloroplast LSU: (1) 23S rRNA maturation is specifi-
cally impaired in atcgl20abmutants, whereas 16S rRNA
processing is not affected (Fig. 6); (2) several of the
protein constituents of the chloroplast LSU over-
accumulate in the stromal HMM fraction of atcgl20ab;
(3) AtCGL20A-eGFP comigrates with LSU complexes
(Fig. 7A); and (4) a subfraction of AtCGL20A-eGFP
associates with an RNase-insensitive stromal HMM
complex (Fig. 7B). Specific impairment of the LSU was
reported also by Chi et al. (2012), and other defects in
plastid protein homeostasis or chloroplast gene ex-
pression can lead to disturbances in 23S rRNA pro-
cessing (Koussevitzky et al., 2007; Yu et al., 2008).
However, the lack of AtCGL20 resulted in a distinct
alteration in the 23S rRNA processing pattern (Fig. 6, A
and B), which has also been observed in nara1-2 and dcl-
1 mutants (Bellaoui et al., 2003; Nishimura et al., 2010).
The absence of RH39 in nara1-2mutants led to a specific
disruption in the processing of the second hidden-break
site in 23S rRNAs. As a consequence, nara1-2 plants
showed normal levels of the 0.5-kb hidden-break pro-
duct, whereas 1.1- and 1.3-kb fragments were markedly
reduced (Fig. 6B). RH39 was proposed to be directly
involved in introducing the hidden break by binding to
the 23S rRNA close to an exposed stem-loop structure.
This suggestion was further supported by structural
analysis, which confirmed the accessibility of the pu-
tative RH39-binding site (Bieri et al., 2017). However, a
function as an RNA chaperone or a direct involvement
of AtCGL20 in hidden-break processing is unlikely,
since the protein does not contain a canonical RNA-
binding domain (Fig. 1). Intriguingly, the mutant line
dcl-1, which is disrupted in the chloroplast ribosome
biogenesis factor DCL, displayed an altered 23S rRNA
processing pattern similar to that seen in atcgl20ab
(Bellaoui et al., 2003). DCL does not possess obvious
RNA-binding capacity either, but it was suggested to
enable 4.5S cleavage after binding to the assembled
LSU. Likewise, AtCGL20might be involved in late LSU
assembly steps and promote efficient RH39-mediated
23S processing.

Notably, AtCGL20 function seems to be essential
for the formation of translationally active chloroplast
ribosomes after germination under cold stress, since
atcgl20ab plants failed to synthesize chlorophyll or
PSII complexes at 4°C and soon stopped growing
(Supplemental Fig. S1A). In addition, chloroplast
translation is more severely affected in mutant plants
shifted to low temperature (Fig. 5B). Pronounced effects
at low temperature have also been observed in several
other Arabidopsis mutants that are impaired in chlo-
roplast protein synthesis (Sugimoto et al., 2004; Paieri
et al., 2018; Pulido et al., 2018) as well as in bacterial
strains with defects in ribosome biogenesis (Davis and
Williamson, 2017). Thus, alternative LSU assembly
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pathways might exist that bypass AtCGL20 function.
However, its presence becomes crucial under cold
stress, and LSU intermediates might be blocked in ki-
netic traps, leading to the growth arrest of atcgl20ab
plants.
Besides specific alterations in 23S rRNA processing, a

significant accumulation of several LSU subunits could
be observed in the stromal HMM fraction (.800 kD) of
atcgl20ab plants, which might be due to the accumula-
tion of chloroplast LSU precomplexes (Fig. 6C). On
the other hand, no detailed RP compositions of chlo-
roplast ribosome assembly intermediates have yet been
described. Reasons for this are technical difficulties in
resolving assembly intermediates over their entire
molecular mass range and in detecting low-abundance,
short-living ribosomal precomplexes. Moreover, in
analogy to the bacterial assembly process, several
chloroplast ribosome assembly pathways might exist
that run in parallel or are dynamically regulated during
different plant developmental stages. Future work us-
ing a combination of Suc gradient experiments, mass
spectrometry, and cryo-electron microscopy-based
technologies (Davis et al., 2016) may provide a deeper
understanding about the structure of chloroplast ribo-
some intermediates and the precise function of
AtCGL20 in LSU assembly.

MATERIALS AND METHODS

Bioinformatics Sources

Arabidopsis (Arabidopsis thaliana) protein and gene sequences were down-
loaded from TAIR (http://www.arabidopsis.org), Phytozome (https://
phytozome.jgi.doe.gov/pz/portal.html), and the National Center for Biotech-
nology Information (http://www.ncbi.nlm.nih.gov/). Protein sequence
alignments were performed using the Vector NTI software (Invitrogen).
Chloroplast transit peptides were predicted by ChloroP (http://www.cbs.dtu.
dk/services/ChloroP/) and TargetP (http://www.cbs.dtu.dk/services/Tar-
getP/). Information about sequences used in the alignment (Fig. 1) is listed in
Supplemental Table S1. Alignments were formatted with Boxshade (http://
www.ch.embnet.org/software/BOX_form.html). Coexpression analysis was
carried out with the ATTED-II web server (http://atted.jp/; Obayashi et al.,
2018). Enrichment analyses of differentially expressed genes and of proteins
with altered abundance were carried out with MapMan (Thimm et al., 2004).

Plant Material and Growth Conditions

T-DNA insertion lines for AT2G17240 (atcgl20a; SALK_133989) and
AT3G24506 (atcgl20b; SAIL_71_A01) were obtained from the SALK (Alonso
et al., 2003) and SAIL (Sessions et al., 2002) collections, respectively. The dou-
ble mutant atcgl20abwas generated by crossing the single mutant lines atcgl20a
and atcgl20b. Plants were grown on potting soil (A210; Stender) under con-
trolled greenhouse conditions (70–90 mE m22 s21, 16/8-h light/dark cycles) or
on a 12-h-light/12-h-dark cycle in climate chambers for biochemical and
physiological analyses. Fertilizer was added to plants grown under greenhouse
conditions in accordance with the supplier’s recommendations (Osmocote
Plus: 15% [w/v] nitrogen, 11% [w/v] P2O5, 13% [w/v] K2O, and 2% [w/v]
MgO; Scotts Deutschland). Growth kinetics were analyzed on the basis of
leaf area, which was determined from photographs taken at different times
after germination (7–27 d) and quantified using the ImageJ software (Schneider
et al., 2012). For cold-stress treatment, surface-sterilized mutant and wild-type
seeds were plated on Murashige and Skoog (1962) medium (pH 5.8) supple-
mented with 0.7% (w/v) plant agar (Duchefa). Seeds were allowed to germi-
nate at 4°C under long-day conditions (16 h of light/8 h of dark) in low light

(30mEm22 s21) for 6weeks. Control plates were grown at 22°C undermoderate
light levels (100 mE m22 s21).

To restore the wild-type phenotype, AtCGL20A and AtCGL20B coding re-
gions were cloned into the binary Gateway vector pB7FWG2.0 (Karimi et al.,
2002), placing the genes under the control of the 35S promoter and fused to the
59 end of the EGFP gene to generate AtCGL20A-eGFP and AtCGL20B-eGFP
fusions. Both constructs were first transformed into Agrobacterium tumefaciens
strain GV3101 and then into atcgl20ab plants by the floral dip method (Clough
and Bent, 1998). T1 plants were selected using a stereomicroscope (Lumar.V12;
Zeiss) based on a wild-type-like growth phenotype and high eGFP signals.
After selection of homozygous progeny (annotated as oeAtCGL20A-eGFP and
oeAtCGL20B-eGFP), complementation of the atcgl20ab mutant phenotype was
verified by Dual-PAM analyses.

Leaf Pigment Analysis

Leaveswere harvested from5-week-old plants grown in climate chambers at
4 h after onset of the light period and homogenized in liquid nitrogen. The
samples were extracted with 100% (v/v) acetone and centrifuged (16,000g) for
20 min at 4°C. Pigment compositions in the supernatants were analyzed as
described by Färber et al. (1997).

Chlorophyll a Fluorescence and P700 Measurements

Chlorophyll a fluorescence and P700 measurements were performed using
the DUAL-PAM-100 system (Walz) in the dual-channel measuring mode. After
5-week-old plants had been dark adapted for 20 min, single leaves were ex-
posed to probe light to measure minimal chlorophyll fluorescence (F0) and then
to a saturating light pulse (10,000 mE m22 s21, 800 ms) for determination of
maximal chlorophyll fluorescence (Fm). After steady-state fluorescence yields
(Fs) had been measured during a 10-min exposure to actinic red light (126 mE
m22 s21), a saturating light pulse (10,000 mE m22 s21, 800 ms) was applied to
determine the maximal fluorescence yield in the light (Fm9). Fm99 and F099 were
measured by applying a saturating light pulse (10,000 mEm22 s21, 800 ms) after
a dark relaxation phase of 10 min. Parameters were calculated as described by
Rühle et al. (2014). P700 measurements were carried out using the default set-
tings of the DUAL-PAM software (version 1.19). The parameters Y(I), Y(ND),
and Y(NA) were calculated as described in the DUAL-PAM manual.

In vivo chlorophyll a fluorescence of whole plants was measured using an
imaging chlorophyll fluorometer (Imaging PAM; Walz). Plants were dark
adapted for 20 min and exposed to a pulsed, blue probe beam and a saturating
light flash to calculate Fv/Fm. The postillumination rise in fluorescence was
determined as previously described by Shikanai et al. (1998). A saturating light
pulse was applied to determine Fm, which was followed by a 5-min exposure to
actinic light (80 mE m22 s21) and a dark incubation for 5 min to analyze the
postillumination chlorophyll a fluorescence rise.

Confocal Laser Scanning Microscopy and
Organelle Isolation

Protoplasts were isolated as described by Rühle et al. (2014) from 20-d-old
oeAtCGL20A-eGFP and oeAtCGL20B-eGFP plants. Mitochondria were stained
with MitoTracker Red (Thermo Scientific) according to the supplier’s instruc-
tions. eGFP signals, MitoTracker, and chlorophyll autofluorescence were
detected simultaneously with a Leica SP8 confocal microscope. Maximum
projections of Z stacks were processed using the Lightning adaptive decon-
volution approach. Chloroplast isolation was performed according to Kunst
(1998). Intact chloroplasts were ruptured in a buffer containing 20 mM

HEPES, pH 7.5 (KOH), and 10 mM EDTA for 30 min on ice. Soluble proteins
were separated from the insoluble fraction by centrifugation (35,000g) for
30 min at 4°C. Mitochondria were isolated according to Escobar et al. (2006).

AtCGL20 Antibody Generation

Rabbit antibodies were raised against a synthesized peptide sequence (73-
PLDFPIEWERPKPG-86) that is conserved in both AtCGL20 proteins. Peptide
synthesis, immunization, and affinity purification were performed by Bio-
Genes. Antiserum was employed in dilutions of 1:200 to 1:1,000.
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Suc Step-Gradient Centrifugation

Suc step-gradient centrifugation was performed according to Rivera et al.
(2015). Crude stroma was prepared from leaves of 20-d-old seedlings grown
under climate-controlled chamber conditions. Plant material was first homog-
enized in chloroplast isolation buffer (330 mM D-sorbitol, 20 mM Tricine/NaOH,
pH 7.6, 10 mM NaHCO3, 0.1% [w/v] bovine serum albumin, and 0.03% [w/v]
ascorbate). The homogenate was then filtered through two layers of Miracloth
(Calbiochem) and centrifuged (2,000g) for 5 min at 4°C. The pellet was resus-
pended in chloroplast lysis buffer (10 mM Tris-HCl, pH 7.5, 10 mM MgOAc,
50 mM KCl, and 6 mM b-mercaptoethanol). After centrifugation (35,000g) for
30 min at 4°C, 500 mL of the supernatant (;1.5 mg total protein content) was
layered onto 3 mL of a high-salt Suc solution (10 mM Tris-HCl, pH 7.5, 10 mM

MgOAc, 150 mM KCl, 6 mM b-mercaptoethanol, and 1 M Suc). Samples were
centrifuged for 12 h (55,000g) in a TL100.3 fixed-angle rotor. Seven fractions
were recovered from the top, and the pellet was resuspended in 100 mL of the
residual volume. Samples (20 mL) of each fraction were fractionated by Tricine-
SDS-PAGE (Schägger, 2006) containing 10% (w/v) acrylamide, blotted, and
probedwith antibodies against AtCGL20, Rps1, Rpl2, and Cpn60a as described
below (see Supplemental Table S13 for information on the latter antibodies).

Transcriptome Analysis

Total RNA was extracted from 4-week-old wild-type and 5-week-old atc-
gl20ab plants, grown under climate-controlled chamber conditions, using the
RNeasy Mini Kit (Qiagen). RNA quality was tested by agarose gel electro-
phoresis. Additional quality checks, RNA sequencing library preparation, and
long noncoding RNA sequencing were performed at Novogene Biotech using
standard Illumina protocols. The RNA sequencing libraries were sequenced on
an Illumina HiSeq 2500 system using the paired-end mode. Three biological
replicates were used for each analysis. RNA sequencing readswere analyzed on
the Galaxy platform (https://usegalaxy.org/). After grooming FASTQ files,
adaptors were removed with Trimmomatic (Bolger et al., 2014) and sequencing
quality was assessed with FastQC (http://www.bioinformatics.babraham.ac.
uk/projects/fastqc/). Reads were mapped to the Arabidopsis genome
(TAIR10) with the gapped-read mapper TopHat 2.1.1 (Kim et al., 2013) set for
Forward Read unstranded libraries and adjusting the maximum intron length
to 5,000 bp. Reads were counted with featureCounts (Liao et al., 2014) with the
help of the gene annotation in Araport11 (www.araport.org/data/araport11).
Differentially expressed genes were obtained with DESeq2 (Love et al., 2014)
runningwith the fit type set to parametric and applying a 1.5-fold change cutoff
and an adjusted P, 0.05. Sequencing data have been deposited in the National
Center for Biotechnology Information’s Gene ExpressionOmnibus (Edgar et al.,
2002) and are accessible through GEO Series accession number GSE134415.

Proteome Analysis

Label-free shotgun proteomics was performed with the same plant material
as was used for transcriptome analysis. Leaf samples (100 mg, five biological
replicates per genotype) were snap frozen in liquid nitrogen and ground into
fine powder. The powder was resuspended in 1mL of extraction buffer (100mM

HEPES, pH 7.5, 150 mM NaCl, 10 mM dithiothreitol [DTT], 1% [w/v] SDS, and
13 Roche cOmplete Protease Inhibitor Cocktail), and samples were disrupted
by sonication (three 10-s on/off cycles) with a Branson Sonifier B-12 (Branson
Ultrasonics). After removing cell debris by centrifugation at 10,000g for 30 min,
proteins were precipitated in chloroform-methanol (Wessel and Flügge, 1984)
and solubilized in 6 M guanidine hydrochloride. Protein concentration was
determined by the bicinchoninic assay (Thermo Fisher Scientific). Proteome
aliquots (100 mg) were reduced in 10 mM DTT for 30 min at 37°C and alkylated
with 50 mM iodoacetamide for 30 min at room temperature in the dark. After
purification by chloroform-methanol precipitation, samples were digested with
trypsin (proteome:enzyme ratio of 100:1 [w/w]) at 37°C overnight. Peptides
were desalted with homemade C18 stage tips (Rappsilber et al., 2003), vacuum
dried until nearly dry, and stored at 280°C.

Thepeptidemixturewas fractionatedonanano-liquid chromatography (LC)
system (Ultimate 3000 RSLC; Thermo Fisher Scientific) equipped with an Ac-
claim Pepmap nano-trap column (C18, 100 Å, 100 mm 3 2 cm; Thermo Fisher
Scientific) and an Acclaim Pepmap RSLC analytical column (C18, 100 Å, 75 mm
3 50 cm; Thermo Fisher Scientific). Chromatographic separation was carried
out using a 150-min linear gradient of 5% to 45% acetonitrile at a flow rate of 250
nL min21. The column temperature was set to 50°C. An Impact II high-
resolution quadrupole time-of-flight device (Bruker Daltonics) was directly

coupled to the LC device using a CaptiveSpray nano-electrospray ionization
source (Bruker Daltonics). MS1 spectra were acquired at 3Hzwith amass range
from mass-to-charge ratio 200 to 2,000, with the 18 most intense peaks being
selected for tandem mass spectrometry (MS/MS) analysis using an intensity-
dependent spectrum acquisition time of between 4 and 16 Hz. The dynamic
exclusion duration was set to 0.5 min.

The MaxQuant software (version 1.6.1.0; Cox and Mann, 2008) was used to
process the raw MS files. The built-in Andromeda search engine (Cox et al.,
2011) was employed to search MS/MS spectra against the Arabidopsis UniProt
database (version February 2017). Enzyme specificity was set to trypsin,
allowing up to two missed cleavages. Cys carbamidomethylation was set as
static modification, and N-terminal acetylation and Met oxidation were set as
variable modifications. During the search, sequences of 248 common contam-
inant proteins and decoy sequences were automatically added. A false dis-
covery rate of 1% was applied at the peptide and protein levels. Proteins were
quantified across samples using the label-free quantification algorithm (Cox
et al., 2014) with default settings. Downstream bioinformatics and statistical
analyses were performed using Perseus (version 1.6.1.1; Tyanova et al., 2016)
and R (version 3.5.0; R Core Team, 2018). Potential contaminants, reverse hits,
and proteins identified only by site modification were excluded from further
analysis. Protein groups were retained if they had been quantified in at least
three of the five total replicates in at least one genotype. Protein label-free
quantification intensities were log2 transformed, and missing values were im-
puted from a normal distribution within Perseus. The resulting matrix was
exported, and data were quantile normalized using the R/Bioconductor
package Process (Bolstad, 2018). Protein groups with statistically significant
differential abundances were determined employing the R/Bioconductor
package limma (Ritchie et al., 2015), with P values that were adjusted for
multiple comparisons according to the approach of Benjamini and Hochberg
(1995). Proteins with a log2(ratio) relative to the wild-type (Col-0) larger than
0.59 and with false discovery rate-adjusted P , 0.05 were considered to be
significantly changed. The MS proteomics data have been deposited with the
ProteomeXchange consortium via the PRIDE partner repository (Vizcaíno et al.,
2014) with the data set identifier PXD014514 and can be accessed during
reviewing at www.ebi.ac.uk/pride/ with the following username and
password: reviewer25980@ebi.ac.uk and kWOerjc7.

Nucleic Acid Analysis

Arabidopsis DNA was isolated from 3-week-old leaves as described by
Ihnatowicz et al. (2004). The T-DNA insertion sites in atcgl20a and atcgl20bwere
determined by PCR using combinations of insertion- and gene-specific primers
(Supplemental Table S12), which were also employed for screening of homo-
zygous double mutants.

Total RNA was extracted from snap-frozen leaves with the TRIzol reagent
(Invitrogen) according to the supplier’s instructions. RNA for reverse tran-
scription quantitative PCR analysis was isolated using the RNeasy Mini Kit
(Qiagen). Arabidopsis cDNA was synthesized with the iScript cDNA synthesis
kit (Bio-Rad). The reaction mixtures contained iQ SYBR Green Supermix (Bio-
Rad), cDNA as template, and gene-specific primers. Levels of the ACT8 actin
gene (AT1G49240) transcript served as a reference. DNA amplification was
monitored on the basis of the SYBR Green fluorescence signal in an IQ5 Mul-
ticolor Real Time PCR Detection system (Bio-Rad). Levels of gene expression
were calculated using the standard-curve method implemented in the IQ5
Optical System software.

RNA gel-blot hybridizations were performed under stringent conditions
according to standard protocols (Sambrook and Russell, 2001). Samples
equivalent to 1 to 5 mg of total RNA were fractionated by electrophoresis on
formaldehyde-containing agarose gels (1.2% [w/v]), blotted onto nylon mem-
branes (Hybond-N1; Amersham Bioscience), and fixed by UV irradiation
(Stratalinker UV Crosslinker 1800). To control for equal loading, abundant
RNAs on nylon membranes were stained with Methylene Blue solution (0.02%
[w/v] Methylene Blue and 0.3 M sodium acetate, pH 5.5). To detect gene- and
rRNA-specific transcripts, amplified DNA fragments from cDNA templates
were labeled with radioactive [a-32P]dCTP and subsequently used as probes in
hybridization experiments (see Supplemental Table S12 for primer informa-
tion). Signals were detected with the Typhoon Phosphor Imager System (GE
Healthcare). Polysome-associated mRNAs were isolated as described before
(Barkan, 1993).

Microfluidics-based quantification of rRNA species was carried out in initial
quality-control experiments for RNA sequencing at Novogene Biotech using an
Agilent 2100 Bioanalyzer (Agilent) system. Ratios of rRNA species were
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calculated from three biological replicates of Col-0 and atcgl20ab as described
previously (Walter et al., 2010; Tiller et al., 2012).

In Vivo Translation Assay

In vivo incorporation of [35S]Met was performed according to Meurer et al.
(2017). Col-0 and atcgl20ab were either grown under climate-controlled cham-
ber conditions for 20 d or shifted to 4°C conditions for 7 d prior to the experi-
ment. Plant material (200 mg) was incubated for 30min in labeling buffer (1 mM

KH2PO4/K2HPO4, pH 6.3, 20 mg mL21 cycloheximide, and 0.1% [w/v] Tween
20). [35S]Met was added and plants were vacuum infiltrated. Samples were
exposed to 50mmol photonsm22 s21 for 40min at room temperature. Plantswere
washed three times in labeling buffer and snap frozen.Whole-protein extract was
isolated from ground tissue by resuspension in loading buffer (see below). Sam-
ples were adjusted according to equal fresh weight and subjected to Tricine-SDS-
PAGE. Gels were stainedwith Coomassie Brilliant Blue G-250, and signals were
detected with the Typhoon Phosphor Imager System (GE Healthcare).

Protein Analysis

Leaves from 5-week-old plants grown under climate-controlled chamber
conditions were harvested 4 h after the onset of the light period and directly
homogenized in loading buffer (100 mM Tris-HCl, pH 6.8, 50 mM DTT, 8% [w/
v] SDS, 24% [w/v] glycerol, and 0.02% [w/v] Bromophenol Blue). Denaturation
for 5 min at 70°C and protein fractionation on Tricine-SDS-PAGE gels (10%
gels) were carried out according to Schägger (2006).

Sample preparation for BN-PAGEwas performed as described by Peng et al.
(2008) using freshly prepared thylakoids. BN-PAGE gels (4%–12% gradient)
were prepared as described by Schägger et al. (1994). Solubilized samples
corresponding to 80 mg of chlorophyll were loaded per lane, and gels were run
at 4°C overnight. To separate complexes into their subunits, strips of the
BN-polyacrylamide gel were treated with denaturing buffer (0.2 M Na2CO3, 5%
[w/v] SDS, and 50 mM DTT) for 30 min at room temperature and layered on
10%Tricine-SDS-PAGE gels. In the case of stromal extract analyses, chloroplast-
enriched pellets were resuspended directly in BN washing buffer (25 mM

Bis-Tris-HCl, pH 7, and 20% [w/v] glycerol) and passed 20 times through a
0.45-mm syringe to mechanically disrupt intact chloroplasts. The supernatant
was separated from the membranous pellet by centrifugation at 35,000g. Pro-
tein concentration was determined using the Bradford Protein Assay (Bio-Rad).
RNase A (Qiagen) was added (one-tenth of total protein content) to isolated
stroma and incubated for 15 min at room temperature. BN sample buffer (one-
tenth of sample volume, 100 mM Bis-Tris-HCl, pH 7, 750 mM aminocaproic acid,
and 5% [w/v] Coomassie Brilliant Blue G-250) was added to the supernatant,
and samples (150 mg of total protein content) were separated on 4% to 12% BN
gradient gels (Schägger et al., 1994). Isolated mitochondria equivalent to 150 mg
of total protein content were solubilized in BN washing buffer containing 1.5%
(w/v) n-dodecyl-b-maltoside. After centrifugation (35,000g for 30 min at 4°C),
BN sample buffer (one-tenth of sample volume) was added and mitochondrial
complexes were separated on 5% to 12% BN gradient gels. Second-dimension
electrophoresis was performed as described earlier.

Proteins fractionated by gel electrophoresis were transferred to PVDF
membranes (Immobilon-P; Millipore) using a semidry blotting system (Bio-
Rad) as described in the supplier’s instructions. After blocking with 10 mM Tris-
HCl, pH 8, 150 mM NaCl, and 0.1% [v/v] Tween 20 supplemented with 3%
(w/v) skim milk powder, the membranes were first incubated with primary
antibodies at 4°C overnight and then with secondary antibodies for 2 to 3 h.
Signals were detected by enhanced chemiluminescence (Pierce, Thermo Sci-
entific) using an enhanced chemiluminescence reader system (Fusion FX7;
PeqLab). Antibodies used in this study are listed in Supplemental Table S13.

Proteome Analysis of the HMM Fraction in the
Chloroplast Stroma

Stroma fractions of three biological replicates of Col-0 and atcgl20ab plants
were isolated from 20-d-old plants as described earlier and subjected to Suc
step-gradient centrifugation with 50mMKCl (instead of 150 mM) in the cushion.
The protein concentration of the last fraction was appropriately adjusted with
chloroplast lysis buffer. Aliquots (30 mg) of protein were reduced, alkylated,
and digested with trypsin (0.4 mg) as described above. Peptides were desalted
with homemade C18 stage tips, vacuum dried to near dryness, and stored at2
80°C. LC-MS/MS and data analysis were performed as described above.

Suc Density-Gradient Centrifugation

Crude stromal extracts were prepared as described above. Chloroplast-
enriched pellets were resuspended in chloroplast lysis buffer (10 mM Tris-
HCl, pH 7.5, 50 mM KCl, 1 mM MgOAc, and 6 mM b-mercaptoethanol). After
centrifugation (35,000g) for 30 min at 4°C, 500 mL of the supernatant (;2 mg of
total protein content) was layered onto a continuous (10%–40%) Suc gradient
(2 mL) prepared in lysis buffer. The gradients were centrifuged at 45,000 rpm
(;273,000g) in an SW60 Ti rotor (BeckmanCoulter) for 3 h at 4°C. Samples were
separated into 38 fractions, subjected to 10% Tricine-SDS-PAGE, blotted, and
probed with antibodies against AtCGL20, Rps1, Rpl2, and GFP.

Accession Numbers

Sequence data from this article can be found in the GenBank/EMBL data
libraries under the accession numbers listed in Supplemental Table S1.
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Supplemental Figure S1. Cold treatment, complementation, and NDH
activity analyses of atcgl20 mutants.

Supplemental Figure S2. Graphical illustration of MapMan enrichment
analyses.

Supplemental Figure S3. BN/SDS-PAGE analysis of mitochondrial and
thylakoid complexes.

Supplemental Table S1. CGL20 homologs in the green lineage.

Supplemental Table S2. Pigment analysis.

Supplemental Table S3. Transcriptomic analysis (RNA sequencing) of
wild-type and atcgl20ab plants.

Supplemental Table S4. Shotgun proteome analysis of wild-type and atc-
gl20ab plants.

Supplemental Table S5. Combined proteome and transcriptome data.

Supplemental Table S6. MapMan pathway analysis of the atcgl20ab
transcriptome.

Supplemental Table S7. MapMan pathway analysis of the atcgl20ab
proteome.
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Supplemental Table S10. Proteome analysis of the HMM fraction in the
chloroplast stroma of the wild type and atcgl20ab.
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Chlorophyll Fluorescence Video
Imaging: A Versatile Tool
for Identifying Factors Related
to Photosynthesis
Thilo Rühle* , Bennet Reiter and Dario Leister

Plant Molecular Biology, Department of Biology, Ludwig Maximilian University of Munich, Munich, Germany

Measurements of chlorophyll fluorescence provide an elegant and non-invasive means
of probing the dynamics of photosynthesis. Advances in video imaging of chlorophyll
fluorescence have now made it possible to study photosynthesis at all levels from
individual cells to entire crop populations. Since the technology delivers quantitative
data, is easily scaled up and can be readily combined with other approaches, it
has become a powerful phenotyping tool for the identification of factors relevant
to photosynthesis. Here, we review genetic chlorophyll fluorescence-based screens
of libraries of Arabidopsis and Chlamydomonas mutants, discuss its application to
high-throughput phenotyping in quantitative genetics and highlight potential future
developments.

Keywords: photosynthesis, Arabidopsis, Chlamydomonas, chloroplast, screening, chlorophyll fluorescence,
forward genetic screen, reverse genetic screen

INTRODUCTION

Since the discovery of the rapid fluorescence transient associated with the initial exposure of
dark-adapted leaves to light (the Kautsky effect) in 1931, chlorophyll (Chl) fluorescence has
emerged as an indispensable probe in photosynthesis research. There are several reasons for this
remarkable development: (i) measurements of Chl fluorescence dynamics can be carried out on
intact plants or algal cell cultures in an essentially non-invasive manner, (ii) multiple quantitative
photosynthetic parameters can be extracted in short measuring times, (iii) Chl fluorescence
measurements can be easily combined with other analytical tools, (iv) instrumentation capable of
automated quantification and analysis of Chl fluorescence is now commercially available to a broad
range of plant scientists and the technique is no longer restricted to a small group of experts, (v)
technical advances achieved in recent decades now permit investigations from the single-cell level
(Oxborough and Baker, 1997; Küpper et al., 2000; Tseng and Chu, 2017) to crop plants in the field
(Virlet et al., 2017), and open up numerous applications, such as the use of Chl fluorescence-derived
parameters as indicators of abiotic (Baker, 2008; Rungrat et al., 2016) or biotic stress (reviewed
in: Chaerle et al., 2009). A particularly important technological breakthrough in this field was
the development of video imaging systems (Omasa et al., 1987; Fenton and Crofts, 1990), which
not only paved the way for the examination of the spatial heterogeneity within a sample, but also
made it possible to assess large numbers of samples (e.g., individual plants or cell colonies) in a
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single experimental run. Thus, Chl fluorescence video imaging
(CFVI) can be regarded as an ideal phenotyping technology for
the identification of mutants affected in photosynthesis.

In the following, we will give an overview of CFVI-based
screens which have been carried out on plant and green algal
mutant libraries in the past, discuss recent progress and consider
how the technology may be further developed in the future.
Technical and theoretical aspects of Chl fluorescence imaging
have been described in detail in Nedbal and Whitmarsh (2004),
as well as in Oxborough (2004). The interested reader is also
referred to several excellent review articles for introductions
to the biophysical basis and biochemical implications of Chl
fluorescence-derived photosynthetic parameters (Maxwell and
Johnson, 2000; Roháček, 2002; Baker, 2008; Kalaji et al.,
2017).

In brief, a typical state-of-the-art CFVI analysis is based on
the application of pulse-amplitude-modulated (PAM), measuring
light (ML), which is generated by a powerful array of LEDs
placed in a defined working distance to the sample. Those
LEDs can also serve for the generation of short saturation
pulses (SPs) and for actinic illumination (AL) of the samples to
drive photosynthesis. Emitted red Chl fluorescence is detected
by a computer-connected charge-coupled device (CCD) video
camera which is protected from excitation light or near-infrared
radiation by appropriate color glass filters. Custom software
allows the conversion of Chl fluorescence signals into false
color images, calculation of different photosynthetic parameters
and quantitative analyses of the results. In general, plant or
algal samples are dark-adapted prior to the measurements to
open all PSII reaction centers. Then, samples are exposed to
ML for dark fluorescence yield (F0) determination and to a
short SP for maximum fluorescence yield (Fm) measurement,
respectively (see also Figure 1A). In this state, the PSII quantum
yield (Fv/Fm) is maximal and can be calculated according
to the equation Fv/Fm = (Fm−F0)/Fm. AL is switched on
and application of SPs provides maximum fluorescence yields
(Fm
′) of illuminated samples. Effective PSII quantum yields

(8II) are calculated by the equation 8II = (Fm
′
−F)/Fm

′

(Genty et al., 1989), whereas the fluorescence yield (F) is
recorded every time shortly before a SP and represents an
average of several current fluorescence yield (Ft) pictures.
Electron transport rates through PSII [ETR(II)] at a given
photosynthetically active radiation (PAR) can be calculated
according to Schreiber et al. (1995), using the equation
ETR(II) = 8II × PAR × 0.84 × 0.5. Maximum ETR(II)
measured at saturating light intensity provides an estimate
of the maximum photosynthesis rate (Pmax). Fm

′ values of
illuminated samples are in general lowered compared to Fm by
non-photochemical quenching (NPQ), which can be quantified
according to the equation NPQ = (Fm−Fm

′)/Fm
′ (Bilger and

Björkman, 1990). NPQ mechanisms can be further examined
in dark relaxation experiments. To this end, actinic light is
switched off after a period of actinic light exposure and minimum
fluorescence (F0

′′) and maximum fluorescence yields (Fm
′′)

are determined by application of SPs in the dark relaxation
phase (Figure 1A). The two NPQ components qE (1pH-
dependent feedback de-excitation, the major component of

NPQ), and qI (photo-inhibitory quenching) can be calculated
according to the equations qE = Fm/Fm

′
−Fm/Fm

′′ (Thiele
et al., 1997) and qI = (Fv−Fv

′′)/Fv (Björkman and Demmig,
1987).

Chl FLUORESCENCE VIDEO IMAGING IN
FORWARD GENETIC APPROACHES

Screens for Chlamydomonas
and Arabidopsis Mutants Defective
in Photochemical Quenching
The first instance of the successful use of Chl fluorescence
imaging to identify photosynthetic mutants was the detection of
a ‘high-chlorophyll-fluorescence’ (hcf ) phenotype in a population
of methyl-methane sulfonate-mutagenized Chlamydomonas
reinhardtii cells by Bennoun and Levine (1967) (Table 1).
The screen was based on the fact that severe perturbations
in photosynthetic electron transport, such as those caused by
incubating algal cells in the presence of the photosynthetic
electron transport inhibitor 3-(3,4-dichlorophenyl)-1,1-
dimethylurea (DCMU), lead to high steady-state levels of
Chl fluorescence. Following its application for screening of
Chlamydomonas mutant libraries (see for example Harris, 1989)
the concept was tested in higher plants (Miles and Daniel, 1973)
and employed for the screening of maize (Miles and Daniel,
1974; Barkan et al., 1986; Taylor et al., 1987) and Arabidopsis
mutant libraries (Dinkins et al., 1994; Meurer et al., 1996b).
Several factors involved in chloroplast biogenesis were identified
using the hcf phenotyping method, including the maize proteins
HCF106, HCF60, and HCF136 (reviewed in: Belcher et al.,
2015) and the Arabidopsis proteins HCF5 (Dinkins et al., 1997),
HCF101 (Lezhneva et al., 2004), HCF107 (Felder et al., 2001),
HCF109 (Meurer et al., 1996a), HCF145 (Lezhneva and Meurer,
2004; Manavski et al., 2015), HCF152 (Meierhoff et al., 2003) and
LPA1 (Peng et al., 2006).

Even though such hcf mutant screens can be performed
rapidly and efficiently, and have significantly enhanced
our knowledge of the molecular repertoire required for
photosynthesis and chloroplast biogenesis, only mutants with
severe defects can be unequivocally detected, and these are
often lethal under photoautotrophic conditions. However,
technological progress in Chl fluorescence analyses during the
1980s and 1990s allowed the technique to be employed for
more elaborate modes of screening, and led to the identification
of algal or plant mutants with relatively modest alterations
in photosynthetic performance. For example, Varotto et al.
(2000a,b) identified ‘photosynthesis affected mutants’ (pam)
in Arabidopsis on the basis of their lower effective quantum
yields (8II) (Genty et al., 1989) using a combination of a
pulse-amplitude-modulation fluorometer (Schreiber et al.,
1986) and an automated screening system. This set-up
facilitated the screening of large En transposon or T-DNA
mutagenized Arabidopsis populations, and pam mutants
disrupted in the nucleus-encoded photosystem I subunits
PsaE1 (pam4) (Varotto et al., 2000b) and PsaD1 (pam62)
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TABLE 1 | Chronology of Chl fluorescence phenotyping based gene discovery studies.

Phenotype/principle Organism Authors

hcf Chlamydomonas Bennoun and Levine, 1967

hcf Maize Miles and Daniel, 1974

hcf Maize Barkan et al., 1986

hcf Maize Taylor et al., 1987

hcf Arabidopsis Dinkins et al., 1994

hcf Arabidopsis Meurer et al., 1996b

Low NPQ after high light treatment Chlamydomonas Niyogi et al., 1997

Low NPQ after high light treatment Arabidopsis Niyogi et al., 1998

Deficiency in state transition Chlamydomonas Fleischmann et al., 1999

Deficiency in state transition Chlamydomonas Kruse et al., 1999

Low NPQ after high light treatment Arabidopsis Shikanai et al., 1999

Alterations in 8II Arabidopsis Varotto et al., 2000a

Lack of NDH complex activity Arabidopsis Hashimoto et al., 2003

Identification of mutants with unchanged 8II after acclimation to high light Arabidopsis Walters et al., 2003

Low NPQ after high light treatment Arabidopsis Kalituho et al., 2006

hcf Arabidopsis Peng et al., 2006

Identification of photorespiration mutants by comparison of Fv/Fm values under varying CO2

concentrations
Arabidopsis Badger et al., 2009

Identification of NDH complex mutants in a guilt-by-association approach Arabidopsis Takabayashi et al., 2009

Quantitative genetic analysis of thermal dissipation Arabidopsis Jung and Niyogi, 2009

Identification of CEF mutants with a high qE Arabidopsis Livingston et al., 2010

Affected Chl fluorescence transients Chlamydomonas Houille-Vernes et al., 2011

Affected Chl fluorescence transients Chlamydomonas Tolleter et al., 2011

Identification of hydrogenase-deficient mutants using 8II measurements under anaerobiosis Chlamydomonas Godaux et al., 2013

Suppressor screen of mutants with a high NPQ in the absence of PsbS Arabidopsis Brooks et al., 2013

Identification of mutants with altered mitochondrial respiration using Fv/Fm measurements Chlamydomonas Massoz et al., 2015

Quantitative genetic analysis of variations in 8II acclimation to irradiance changes in different natural
Arabidopsis accessions

Arabidopsis van Rooijen et al., 2015

High transient NPQ after a dark-light shift Arabidopsis Zhang et al., 2016

Identification of mutants with emergent photosynthetic phenotypes under dynamic environmental
conditions

Arabidopsis Cruz et al., 2016

Identification of mitochondrial complex I mutants in a 8II-based screening of a mutagenized pgrl1
library

Chlamydomonas Massoz et al., 2017

Identification of mutants affected in the slowly reversible photoprotective form of NPQ termed qH Arabidopsis Malnoë et al., 2017

hcf, high chlorophyll fluorescence; NPQ, non-photochemical quenching; 8II, effective quantum yield of PSII; NDH complex, NADH dehydrogenase-like complex; Fv/Fm,
maximal quantum yield of PSII; qE, energy-dependent quenching; CEF, cyclic electron flow.

(Ihnatowicz et al., 2004), the metal-ion transporter IRT1 (pam25)
(Varotto et al., 2002), and the cytoplasmic N-acetyltransferase
AtMAK3 (pam21) (Pesaresi et al., 2003), as well as the PSII
assembly factor PAM68 (pam68) (Armbruster et al., 2010),
were isolated and functionally characterized in subsequent
studies.

Screens for Chlamydomonas and
Arabidopsis Mutants Affected in
Non-Photochemical Quenching (NPQ)
Due to their sessile lifestyle, many multicellular photosynthetic
organisms have evolved various strategies to cope with light stress
(Ort, 2001). When the photosynthetic machinery is exposed to
excessively high levels of light, short- and long-term adaptive
responses are triggered at the molecular level, which allow for
the thermal dissipation of excited energy by NPQ mechanisms to
prevent over-reduction of the electron transport chain. At least

four processes contribute to NPQ: qE, qZ (zeaxanthin-dependent
quenching), qT (state-transition-dependent quenching) and
qI (reviewed in: Ruban, 2016). Several CFVI-based screens
have been performed on mutagenized Chlamydomonas and
Arabidopsis populations with the aim of dissecting the genetics
of NPQ (Table 1). Mutant identification was essentially based on
the comparison of two video images of Chl fluorescence captured
under different illumination conditions. The first picture was
taken in the dark-adapted state during a saturating light pulse
(Fm), or shortly after the onset of high-light treatment (F). The
second image was recorded after several minutes of exposure
to high light either during a saturating light pulse (Fm

′) or not
(F′). The NPQ values derived using the equation (F − F′)/F

′

or (Fm−Fm
′)/Fm

′ were then visualized as false-color images,
and several Chlamydomonas and Arabidopsis mutants affected
in NPQ of excited Chl states could be identified. Subsequent
analyses revealed three distinct groups of mutants with aberrant
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NPQ (reviewed in: Golan et al., 2004). Mutants in the first
group were impaired in the generation of a proton gradient
across the thylakoid membrane, which is a prerequisite for the
induction of qE (the 1pH-dependent quenching component
of NPQ), and were consequently defined as ‘proton gradient
regulation’ mutants (pgr). One such mutant, pgr1, was further
characterized, and shown to be defective in the photosynthetic
electron transfer C (PETC) gene, which encodes the Rieske
subunit of the cytochrome b6f complex (Munekage et al.,
2001). Another mutant line impaired in the build-up of the
proton gradient is pgr5 (Shikanai et al., 1999; Munekage et al.,
2002). It lacks a component of the antimycin A-sensitive
cyclic electron flow (CEF) pathway, which is mediated by the
ferredoxin-plastoquinone reductase PGRL1/PGR5 (Hertle et al.,
2013). The second group with aberrant NPQ comprised the
mutants npq1 and npq2, which display defects in the xanthophyll
cycle and are disrupted in the violaxanthin de-epoxidase and
zeaxanthin epoxidase, respectively (Niyogi et al., 1997). The third
type of mutant (npq4) showed normal pigment composition,
xanthophyll cycle activity and photosynthetic electron transport,
but this mutant was nevertheless specifically affected at the level
of qE (Li et al., 2000). It turned out that the npq4 mutant lacks the
PSII-associated protein S (PsbS), which is now known to be the
luminal pH sensor that triggers NPQ within the PSII antenna in
plants (Li et al., 2000). In a subsequent study, which was designed
to isolate Arabidopsis lines affected in other slowly reversible
NPQ components, CFVI was used to screen mutagenized
seedlings for suppressors of the npq4 phenotype (Brooks et al.,
2013). This screen yielded the suppressor of quenching 1 (soq1),
which has a high NPQ even in the absence of PsbS and lacks a
thylakoid membrane protein (SOQ1) that harbors a thioredoxin-
like, a β-propeller and a haloacid-dehalogenase domain. SOQ1
maintains light-harvesting efficiency and prevents formation
of a slow, reversible NPQ mechanism that is independent of
qE, qZ, and qT, but participates in a photoprotective, ‘qI-like’
mechanism termed qH (Malnoë et al., 2017). To identify factors
involved in qH, suppressors of soq1 npq4 were screened for
by CFVI and two mutants affected either in chlorophyllide a
oxygenase (CAO) or the plastid lipocalin (LCNP) showed a
reversion to the low NPQ phenotype of npq4. In-depth analyses
of both mutants provided evidence that qH operates under high-
light and cold stress, and can be localized to the peripheral
LHCII antenna of PSII and requires LCNP (Malnoë et al.,
2017).

A further step toward an understanding of the molecular
basis of NPQ was the identification of so-called ‘state transition’
(stt) mutants with alterations in qT. State transitions involve
the reversible association of the mobile pool of light-harvesting-
complex II proteins (LHCIIs) with either PSII (state 1) or PSI
(state 2) and re-establish a balanced distribution of light energy
between the photosystems. Several studies (Fleischmann et al.,
1999; Kruse et al., 1999) took advantage of the fact that the
green alga Chlamydomonas undergoes large changes in Chl
fluorescence during state transitions, which can be attributed to
its significantly higher fraction of mobile LHCIIs (about 80%,
Delosme et al., 1996) compared to land plants (15–20%) (Allen,
1992). Mutants affected in state transitions were identified by

comparing fluorescence images taken under state-1 and state-
2 conditions, and this type of differential fluorescence screen
enabled Fleischmann et al. (1999) to isolate four stt mutants
(stt2, stt3, stt5, and stt7). These mutants were characterized by
high Chl fluorescence levels at room temperature even under
state-2 conditions, indicating that they were physiologically
locked in state 1. Further analyses showed that stt7 lacks the
thylakoid serine-threonine protein kinase Stt7, which is required
for phosphorylation of LHCII in response to state-2 conditions
(Depège et al., 2003).

Screening for Chlororespiratory
Arabidopsis Mutants
In addition to the predominant linear electron flow pathway,
which results in the production of both NADPH and ATP, two
CEF routes around PSI have been described that are important
for balancing the ATP/NADPH budget of photosynthesis, as well
as for protecting the photosystems from photodamage in plants
(reviewed in: Yamori and Shikanai, 2016). One of these pathways
is mediated by the NADH-like dehydrogenase (NDH) complex,
which is also responsible for chlororespiration in the dark. To
identify ‘chlororespiratory reduction’ mutants (crr) which are
disrupted in NDH function, Hashimoto et al. (2003) established
a CFVI-based screening system, in which the post-illumination
rise of Chl fluorescence (PIF) after a low-light treatment was
monitored in an Arabidopsis mutant population. Under such
conditions, the fluorescence signal is almost proportional to the
reduction state of the plastoquinone pool (Krause and Weis,
1991), so that the chlororespiratory activity of the NDH complex
can be derived from the degree to which the PIF is depressed
in mutants with a dysfunctional NDH complex (Shikanai et al.,
1998). Screening of over 50,000 M2 seedlings for aberrant PIFs
led to the identification of 17 crr mutants in Arabidopsis. These
could be assigned to at least 11 loci, and further analyses revealed
the existence of novel NDH subunits and allowed the functional
characterization of factors required for efficient NDH complex
biogenesis (reviewed in: Peng et al., 2011).

Screening for Arabidopsis Mutants
Affected in Acclimation of
Photosynthesis to the Environment
Plants and algae can undergo photosynthetic acclimation
processes which take place over periods of hours or days and
entail substantial changes in plastid and nuclear gene expression,
as well as adjustments of the photosynthetic apparatus. For
instance, the long-term response to high light levels has been
thoroughly studied and, instead of reducing the demands on
light harvesting, it actually enhances the capacity for electron
transport and carbon dioxide fixation. To investigate the
molecular mechanisms behind the signal cascades that activate
the acclimation response to high light, Walters et al. (2003)
screened an Arabidopsis mutant population for alterations
in ‘acclimation of photosynthesis to the environment’ (ape).
Their CFVI screen was based on the observation that in
wild-type Arabidopsis plants a 3-day exposure to high light
raises effective quantum yields (8II), and its goal was to
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identify mutants that were unable to increase Pmax under these
conditions. Among the three ape mutants obtained, which
showed distinct acclimation-defective phenotypes, ape2 exhibited
a lower Pmax under all light regimes, and was disrupted in the
chloroplast envelope triose-phosphate/phosphate translocator
(TPT). Subsequent studies using Arabidopsis double and triple
mutants altered in the day and night modes of photoassimilate
export from the chloroplast provided evidence that carbohydrates
act as chloroplast-to-nucleus retrograde signals and modulate the
acclimation response to high light (Schmitz et al., 2012, 2014).

Screening for Arabidopsis Mutants
Affected in Photorespiration
Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO)
not only fixes atmospheric CO2 but also oxygen. The
phosphoglycolate generated by the latter reaction must
be degraded via a complex mechanism which is known
as photorespiration, because CO2 is released during the
process. The photorespiratory pathway is distributed between
four compartments (chloroplasts, cytosol, peroxisomes and
mitochondria) and requires the action of several transporters and
enzymes. Most of the early mutants affected in photorespiration
were identified by their ability to grow normally in a high
concentration (1%) of CO2, while becoming chlorotic when
shifted to ambient air (Somerville, 1986). Recently, it was shown
that mutations in components involved in the photorespiratory
pathway also impair photosynthetic light reactions, as revealed
by the observation that photorespiratory mutants transferred
from high to ambient CO2 concentrations showed a decline
in PSII functionality (Takahashi et al., 2007). Thus, Badger
et al. (2009) set up a CFVI screen designed to detect mutants
with more subtle photorespiratory phenotypes. To this end,
levels of PSII function in mutagenized Arabidopsis seedlings
grown under high concentrations of CO2, and in its absence,
were compared. Two major mutant phenotype classes could
be distinguished. One group comprised ‘photorespiration-like’
mutants, which were characterized by Fv/Fm values that were
close to those of wild-type plants under high CO2 concentrations,
but significantly lower than normal in the absence of CO2. The
second group consisted of lines in which Fv/Fm values were
depressed even under high concentrations of CO2. Remarkably,
some members of the second group were able to partially recover
PSII functionality after exposure to zero CO2 concentrations,
and were therefore named for this ‘reverse photorespiration’
phenotype (Badger et al., 2009).

Screening for Chlamydomonas Mutants
Impaired in Hydrogenase Activity
As aquatic organisms, many unicellular green algae are
characterized by a remarkably flexible metabolism, and can
acclimate rapidly to anaerobic conditions (Terashima et al.,
2010; Grossman et al., 2011). As part of an extensive response
to anaerobiosis, expression and synthesis of oxygen-labile [Fe–
Fe] hydrogenases are induced in C. reinhardtii and hydrogen
production is linked to photosynthesis by ferredoxin-mediated
electron supply. Several factors required for expression,

maturation and activity of [Fe–Fe] hydrogenases have been
identified, most of them through a H2-sensing, chemochromic
screening system that can discriminate Chlamydomonas
mutants with aberrant H2 production capacities (reviewed in:
Hemschemeier et al., 2009). An alternative, less time-consuming
approach has been demonstrated by Godaux et al. (2013), and
takes advantage of the observation that mutants with defects
in [Fe–Fe] hydrogenase activity exhibit low effective PSII
quantum yields shortly after a shift from dark anaerobiosis to
saturating light conditions. As a proof of concept, screening
of a small Chlamydomonas population of about 3000 strains
generated by insertional mutagenesis yielded five mutants with
a Chl fluorescence signature similar to that of the [Fe–Fe]
hydrogenase-deficient control strain, and one of them turned
out to be defective in the previously characterized [Fe–Fe]
hydrogenase assembly factor G (HydG) (Posewitz et al., 2004).
Moreover, in various mutants affected in anaerobic energy
metabolism, the effective quantum yield of PSII was shown to
be correlated with the level of [Fe–Fe] hydrogenase activity.
Thus, the screening system represents a time-saving, alternative
approach to the chemochromic method, and is capable of
detecting mutants impaired in [Fe–Fe] hydrogenase biogenesis,
regulation or activity.

Screening for Chlamydomonas Mutants
Altered in Mitochondrial Respiration
Although respiration and photosynthesis take place in different
organelles in photosynthetic eukaryotes, the energy metabolisms
of mitochondria and chloroplasts are intertwined at multiple
levels. Not only do these organelles share over 100 dual-
targeted proteins (reviewed in: Carrie and Small, 2013), provide
both ATP and contribute to photorespiration, chloroplasts
can shuttle reducing power to mitochondria via the malate
valve (reviewed in: Scheibe, 2004; Kramer and Evans, 2011).
Functional cooperation between mitochondria and chloroplasts
in balancing the cellular ATP/NADPH ratio becomes even
more obvious when compensatory acclimation processes are
studied in mutants affected in photosynthesis or respiration.
For instance, in Chlamydomonas mutants defective in different
complexes of the respiratory electron transport chain, the
resulting ATP deficiency is counterbalanced by increased non-
photochemical reduction of the plastoquinone pool mediated
by the chlororespiratory pathway, LHCII protein association
to PSI and cyclic photophosphorylation (Cardol et al., 2003).
Furthermore, the Chlamydomonas strain pgrl1 disrupted in
the proton regulation 5 like 1 protein (PGRL1), which was
identified as a CEF mutant in CFVI-based screen (Tolleter
et al., 2011), compensates for ATP deficiency by increasing
oxygen photoreduction downstream of PSI and shows higher
susceptibility to mitochondrial inhibitors (Dang et al., 2014).
These results are consistent with the finding that overall
fitness and yields of photosynthesis were only significantly
reduced when state transitions and mitochondrial respiration
were concomitantly impaired in the Chlamydomonas double
mutant stt7-9 dum22 (Cardol et al., 2009). Thus, increased
cyclic electron transport rates induced by state 2 transitions can
supply extra ATP when respiratory ATP production becomes
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limiting and, conversely, mitochondrial cooperation is increased
when CEF is downregulated in Chlamydomonas. One important
conclusion that could be drawn from these studies was that
PSII efficiencies were reduced in respiratory mutants and was
explained by enhanced rates of non-photochemical reduction
of plastoquinone mediated by the chlororespiratory pathway
and preferential association of LHCII proteins with PSI (Cardol
et al., 2003). Massoz et al. (2015) therefore used Fv/Fm values as
an initial criterion to select mutants affected in mitochondrial
respiration. Several mutants disrupted in subunits of the
respiratory complex I or the isocitrate lyase were isolated from
a collection of about 2900 insertional mutants generated in
either a wild-type or a state transition-defective strain (stt7-9).
A later refinement of the screening procedure used the CEF
mutant pgrl1 as the starting strain with a view to isolating
mutants impaired in mitochondrial complex I (Massoz et al.,
2017). As proof of concept, the double mutant pgrl11nd4,
which is deficient in both CEF and complex 1, was generated
and shown to exhibit a lower PSII efficiency than either
of the single mutants. Subsequent screening of about 3000
insertional mutants created in the pgrl1 background resulted
in 46 mutants with reduced PSII efficiency, of which three
were complex I mutants. Further analyses revealed that one of
these was disrupted in NADH dehydrogenase [ubiquinone] 1
alpha subcomplex assembly factor 3 (NDUFAF3), a complex
I assembly factor also conserved in humans (Massoz et al.,
2017).

Chl FLUORESCENCE VIDEO IMAGING IN
REVERSE GENETIC APPROACHES

Forward genetic approaches still dominated mutant searches
in the late 1990s and early 2000s (Lloyd and Meinke, 2012),
but thanks to advances in genome sequencing technologies, the
establishment of large mutant libraries and the development
of new genetic tools such as RNA silencing techniques (Mohr
et al., 2014), and more recently genome editing tools (Yin et al.,
2017), reverse genetics has since come to the fore. Indeed, in
conjunction with the tremendous rise in the availability of myriad
‘omics’ datasets, reverse genetic strategies have become the
more practicable choice, since laborious screens of large mutant
libraries are circumvented and the underlying genetic defects are
already known. Relative to classical forward genetic approaches,
reverse genetic screens start with a significantly reduced number
of lines or strains, which are generally disrupted in genes
with poorly characterized or unknown functions. Depending
on the stringency of preselection criteria (e.g., coregulation or
phylogenomic studies), ‘the starting material’ can be narrowed
down to a reasonable number of candidates which is compatible
with the complexity of the required screening procedure. One
example for the power of such ‘guilt-by-association’ approaches
is the identification of three subunits of the NDH complex –
NDF1, NDF2, and NDF4 (Takabayashi et al., 2009) now called
photosynthetic NDH subcomplex B subunit PnsB1, PnsB2, and
PnsB3 (Ifuku et al., 2011). In that study, genes of unknown
function were selected on the basis of their co-expression with

nucleus-encoded NDH subunits L, N, and O (NDHL, NDHN,
and NDHO). In addition, Arabidopsis genes (of unknown
function) were considered together with homologs found in
cyanobacteria but not in green algae, since C. reinhardtii lacks
a plant-type NDH complex. Insertion lines were identified for
21 of the 36 genes pre-selected by means of the bioinformatics
screen, and these were tested for NDH activity. Remarkably,
four of them (nearly 20%) failed to exhibit the post-illumination
rise in fluorescence. Further studies provided evidence that
the respective genes indeed code for the NDH subunits NDF1
(PnsB1), NDF2 (PnsB2), and NDF4 (PnsB3), whereas NDF3
corresponds to the chlororespiratory reduction protein 6 (CRR6),
which is involved in NDH subcomplex A assembly (Munshi et al.,
2006).

Chl Fluorescence Image Analyses in
Combined Screening Protocols
Since Chl fluorescence-based phenotyping is no longer as
time-consuming as it once was, and manageable numbers
of candidates can be examined in reverse genetics projects,
contemporary screening approaches can be extended to more
elaborate protocols in which subtle or multiple photosynthetic
phenotypes can be detected in a single, albeit longer, experimental
run. Commercial Chl video imaging systems now make it possible
to set up automated measuring routines composed of several
analytical blocks that can last for days. One example of such a
combined screening protocol is shown in Figure 1, which we use
routinely for initial phenotyping of selected Arabidopsis mutant
lines.

In principle, the approach comprises six phases, in which
most of the previously described Chl fluorescence signatures
of photosynthetic mutants can be identified (Figure 1A). In
the first block, the Fv/Fm measurement allows one to assess
PSII functionality and pinpoint mutants with an hcf phenotype,
such as the Arabidopsis PSII subunit O (PsbO) knockdown
mutant psbO1 psbO2 (Figure 1B) (Steinberger et al., 2015).
The second analytical block was designed to identify mutant
lines with a crr phenotype, and detects NDH activity by means
of a PIF measurement (Figure 1C). Block 3 implements a
standard slow induction experiment, which is carried out under
moderate actinic light intensities. Several informative parameters
can be extracted in block 3 which reveal aspects of the transient
dynamics of photosynthesis upon a dark-light shift. For instance,
pgr mutants can be already identified at this stage by their low
transient NPQ phenotype (DalCorso et al., 2008). Conversely,
mutants affected in chloroplast F1F0-ATP synthase activity can
be identified on the basis of their high NPQ (Figure 1D)
(Rühle et al., 2014; Grahl et al., 2016; Zhang et al., 2016).
The increased NPQ in such mutants can be attributed to a
high operating qE, which is established as a result of proton
accumulation in the thylakoid lumen already under moderate
light intensities. Parameters determined at the end of block
3 reflect photosynthetic performance in the steady state, and
an analysis of effective quantum yields (8II) uncovers pam
mutants (Figure 1E). Samples in block 4 are shifted back into
the dark and NPQ relaxation kinetics provide values of qI
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FIGURE 1 | Example of a combined screening protocol based on Chl fluorescence video imaging which is able to identify hcf, crr, npq, pam and PSII repair mutants.
(A) Chl fluorescence was monitored using an Imaging PAM system (Walz R©) and the indicated sequence of actinic light conditions was executed in series to
determine, in a single experimental run, the various photosynthetic parameters listed at the top. Plants were dark-adapted for 20 min and acclimated to measuring
light for 5 min prior to the analysis. For further explanations, see the main text. Fv/Fm, maximum quantum yield of PSII; NPQ, non-photochemical quenching; qL,
fraction of open PSII centers; qP, photochemical quenching coefficient; qN non-photochemical quenching coefficient; 8II, effective quantum yield of PSII; qE,
energy-dependent quenching; qI, photo-inhibitory quenching. (B) Example of an hcf mutant phenotype, which can be detected in measurement block 1. F0 and
Fv/Fm images of wild-type and psbO1 psbO2 (Steinberger et al., 2015) Arabidopsis plants. (C) Identification of a crr mutant phenotype in block 2. Detail of the
post-illumination fluorescence rise (PIF) analysis of pam68L (Armbruster et al., 2013), which is disrupted in NDH complex assembly. (D) Detection of a high NPQ
phenotype in block 3. Fm

′ values were recorded every minute by applying saturating light pulses after a dark-light transition (100 µE m−2 s−1) and calculated NPQ
values of the chloroplast ATP synthase-deficient mutant cgl160 (Rühle et al., 2014) were compared to a wild-type control. (E) Example of a pam mutant phenotype,
which can be distinguished at the end of block 3. 8II values of the PSII assembly mutant pam68 (Armbruster et al., 2010) were compared to a wild-type control.
(F) Detection of an npq phenotype in measurement block 5. NPQ analyses were carried out with the CEF mutant pgrl1ab (DalCorso et al., 2008) and compared to a
wild-type control. False-color images for F0, Fv/Fm, NPQ/4, and 8II depicted at the time points highlighted by a black arrow represent values on a rainbow scale
from 0 to 1 shown below (B). Note that NPQ parameters in (D,F) are displayed in NPQ/4 to fit the standard color code ranging from 0 to 1. Chl fluorescence signals
were normalized to Fm and are shown in gray on a scale from 0 to 1 in (D–F).

and qE, which was recently determined in an initial screening
step to identify ‘high cyclic electron flow around PSI’ (hcef)
mutants with altered CEF (Livingston et al., 2010). Block 5 also
implements a dark-light shift experiment, but using excessive
light intensities (1200 µE m−2 s−1) and longer exposure times

(20 min), which allow the detection of npq mutants due to their
aberrant NPQ induction patterns under high light (Niyogi et al.,
1998). After the photodamage-inducing high-light treatment in
block 5, the protocol ends with a recovery phase from high
light (block 6) under low light intensities (10 µE m−2 s−1) and
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was designed to pick up mutants that are defective in the PSII
repair mechanism (Schroda et al., 1999; Malnoe et al., 2014).
Overall, the CFVI protocol outlined above can already uncover
a wide range of phenotypes, but can be further expanded to
cover a larger collection of photosynthetic parameters, such as the
determination of Pmax from light saturation curves (van Rooijen
et al., 2015) and measurements of qT in state transitions (Pribil
et al., 2010) or effective quantum yields/NPQ parameters under
fluctuating light conditions (Cruz et al., 2016).

Chl Fluorescence Image Phenotyping
under Simulated Environmental
Conditions
The photosynthetic lifestyle of plants and algae requires a
high degree of flexibility and the ability to adapt to rapidly
fluctuating environments. However, for reasons of scalability
and reproducibility most of the screening studies referred to
here were conducted with small Arabidopsis plants or algae
grown in stable, standardized laboratory settings and would
have been impossible with fully developed crops under field
conditions. Furthermore, phenotyping of mutant collections
involved measurements of only one or a few photosynthetic
parameters, which were determined at one or more time points,
thus providing a rather static picture of the highly dynamic
process of photosynthesis. It is therefore obvious that many
factors that contribute to the fine tuning of photosynthesis
in response to dynamic environmental changes will have not
been identified by previous screening procedures (Cruz et al.,
2016). This assertion is also supported by the observation that
plant lines lacking PsbS (Külheim et al., 2002), the LHCII
serine/threonine-protein kinase STN7 (Grieco et al., 2012) or
PGR5 (Suorsa et al., 2012) showed higher levels of photodamage
and notable reductions in their growth rates (or lethality) only
under fluctuating light conditions that were not observed under
unchanging conditions. One logical and straightforward way
to bypass this limitation would be to carry out phenotyping
of mutant collections in the field, and suitable large-scale Chl
fluorescence image analyzers are now available for this task
(e.g., Field Scanalyzer) (Virlet et al., 2017). However, besides
the fact that in several countries the cultivation of genetically
modified plants in the field is either prohibited or subject to
legal restrictions, such studies are complicated by a multitude
of overlapping, unpredictable abiotic and biotic stress factors,
and statistical evaluation of the results become particularly
challenging. For these reasons, the dynamic environmental
photosynthesis imager (DEPI) platform was developed for
replication of natural, fluctuating growth conditions in the
laboratory (Cruz et al., 2016). Several parameters can be
controlled (light intensity, CO2 concentration, humidity and
temperature) in the growth chamber, and rapid responses as
well as long-term acclimation processes of photosynthesis can
be assessed in situ by the integrated CFVI system in more than
two hundred plants simultaneously. As a proof of concept, a
library of over 300 T-DNA Arabidopsis lines disrupted in nuclear
genes coding for chloroplast-targeted proteins (Ajjawi et al.,
2010) was exposed to a 5-day regime of fluctuating light levels

and screened for alterations in photosynthetic performance.
As a result, psb33 plants lacking PSII protein 33 (PSB33)
(Fristedt et al., 2015) and several other conditional mutant
lines showed transient, spatiotemporal-dependent phenotypes
which could not be detected or were not reliably expressed
under standard growth conditions. PSB33 is a green-lineage-
specific protein (Merchant et al., 2007) predominantly found
in non-appressed thylakoids of Arabidopsis chloroplasts and
sustains D1 of PSII under fluctuating light conditions (Fristedt
et al., 2017). Thus, the DEPI system can reveal new, complex
and previously unseen phenotypes, and provides a versatile
experimental platform with which to identify factors required
for remodeling and regulation of photosynthesis under dynamic
environmental conditions.

Chl FLUORESCENCE VIDEO IMAGING IN
QUANTITATIVE GENETIC APPROACHES

Forward and reverse genetics are efficient strategies for
elucidating the functions of a single gene or of small gene
families, but these approaches reach their limits when the genetic
architecture of a quantitative trait and its interaction with
the environment needs to be determined. Most agronomically
important traits (e.g., grain yield, grain size, ripening or flowering
time) are controlled by multiple genes which have to be
analyzed by quantitative genetic approaches, such as classical
linkage mapping or genome-wide association studies (GWAS)
(reviewed in: Bazakos et al., 2017). Natural variation also
exists for photosynthetic traits and can be roughly divided
into morphological and physiological variations, which have
been investigated in several studies with different plant species
(reviewed in: Flood et al., 2011). For instance, Jung and Niyogi
(2009) examined natural NPQ variation in different Arabidopsis
accessions and provided evidence that thermal dissipation is
a quantitative trait that depends on multiple, nucleus-encoded
genetic factors. Two high-NPQ QTLs (HQE1 and HQE2) were
identified in a quantitative trait locus (QTL) analysis which was
performed with a F2 mapping population generated from a
cross between a low-NPQ and a high-NPQ Arabidopsis accession
(Jung and Niyogi, 2009). Remarkably, HQE1 and HQE2 were
not mapped to previously characterized factors identified in
forward genetic approaches, indicating that quantitative genetics
can serve as a complementary strategy to dissect the genetic
architecture of thermal dissipation.

Even though quantitative genetic approaches have a long
history in plant science, their potential for photosynthesis
research has not yet been fully explored. This may simply reflect
the high complexity of the genetic architecture of photosynthesis,
which not only comprises the several hundred genes directly
involved in biogenesis processes, regulation or acclimation of
photosynthesis, but also involves two quite distinct genetic
systems (plastid and nuclear genome) with different inheritance
modes. Moreover, successful quantitative genetic approaches
in photosynthesis research require reproducible, non-invasive,
high-throughput phenotyping pipelines that were not available
until recently. However, several platforms have been developed
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in recent years. Examples include FluorImager (Barbagallo
et al., 2003), GROWSCREEN FLUORO (Jansen et al., 2009),
PlantScreen (Humplík et al., 2015), Phenovator (Flood et al.,
2016), the DEPI system (Cruz et al., 2016) or the crop population
growth information detection system (Wang et al., 2017), which
now integrate CFVI analyses into their phenotyping facilities.
As an example for the combination of a GWAS and a high-
throughput Chl fluorescence phenotyping approach, van Rooijen
et al. (2015) have explored the natural genetic variation for
acclimation of photosynthetic light use efficiency (8II) in 344
Arabidopsis accessions. Of 63 newly identified gene candidates,
13 encode chloroplast-localized proteins, most of which are
either associated with abiotic stress responses or have unknown
functions.

GENE DISCOVERY THROUGH
CHLOROPHYLL FLUORESCENCE VIDEO
IMAGING – A BRIEF OUTLOOK

Due to the advances in imaging and data acquisition technologies
in the last two decades, Chl fluorescence-based analyses have
entered the ‘phenomics’ field and promise to increase our
knowledge of photosynthesis substantially. Modern phenotyping
systems are highly flexible and will allow the identification of new
genotype-phenotype-environment relationships and accelerate
gene discovery studies significantly.

The next obvious step will be to determine photosynthetic
parameters of large-scale, indexed mutant collections like
the Arabidopsis unimutant (O’Malley and Ecker, 2010), the
Arabidopsis Chloroplast 2010 Project (Ajjawi et al., 2010) and the
GABI-DUPLO double mutant (Bolle et al., 2013) collections, or
the recently generated Chlamydomonas mutant collection CLiP
(Li et al., 2016). Consequently, with the exception of screening
approaches under highly specialized conditions, tedious forward
genetic screening procedures, which were carried out by single
researchers or research groups in the past, will become obsolete.
A major task in the future will lie in the processing, handling,
quality control, maintenance, storage, analysis and sharing of
the vast amount of data collected by CFVI-based phenotyping
studies, which will become even more challenging when such
screens are combined with other non-invasive phenotyping
technologies (Walter et al., 2015; Tardieu et al., 2017). But
computational techniques for assessing the quality of phenotypic
data (Xu et al., 2015) and analyzing massive amounts of data in
order to reveal dynamic relationships between phenotypes and
environment (Yang et al., 2017) have already been developed, and
these will eventually replace manual evaluation methods.

Chl fluorescence video imaging also has the potential to be
an important technological driver in crop science, since it offers
an efficient screening technology for rapid evaluation of plant
performance under stress conditions such as drought, salinity,
freezing, chilling, high temperature or nutrient deficiency
(reviewed in: Baker and Rosenqvist, 2004). CFVI is of particular
interest in plant breeding programs, since low-cost and precise
high-throughput phenotyping technologies have been regarded
as one of the major bottleneck in the postgenomic era of

plant breeding (reviewed in: Araus and Cairns, 2014). A further
challenge is the difficulty to extrapolate results gained under
a strictly controlled environment (such as a growth chamber
or greenhouse) to field conditions. It is therefore inevitable
to establish high throughput phenotyping technologies under
heterogeneous field conditions to analyze quantitative traits and
to elucidate their underlying genetic architecture for future
breeding efforts. Significant progress in non-invasive sensor
and imaging technology has been made (reviewed in: White
et al., 2012; Fiorani and Schurr, 2013) and the Field Scanalyzer
system installed at Rothamsted Research (United Kingdom)
by LemnaTec GmbH (Germany) is one example, which
now employs Chl fluorescence based measurements for high-
throughput phenotyping in the field (Virlet et al., 2017).

While recent work has mainly focused on scaling up CFVI
screening systems for simultaneous evaluation of large sample
collections, a future direction might be to explore the potential
of screening single cells by exploiting their Chl fluorescence
fingerprints. Flow cytometry technologies are well established
for unicellular microalgae in environmental and toxicological
studies (reviewed in: Hyka et al., 2013) and several flow cytometry
studies with plant protoplasts have been reported (Harkins
et al., 1990; Galbraith, 2007; Berendzen et al., 2012; You et al.,
2015). Flow cytometry is generally coupled to fluorescence-
activated cell sorting, which permits the isolation of a desired
cell population with specific physiological properties. Recently,
this technique has been successfully employed to screen high-
lipid Chlamydomonas mutants that were stained with the
lipid-sensitive dye Nile Red prior to screening (Xie et al.,
2014; Terashima et al., 2015) or to identify protein-protein
interactions in plant protoplasts by combining bimolecular
fluorescence complementation with flow cytometry (Berendzen
et al., 2012). Moreover, Chl autofluorescence has been used
in flow cytometry studies as an endogenous probe to sort
tobacco mesophyll protoplasts (Harkins et al., 1990) and
to discriminate between different phytoplankton species by
cytometric approaches (Hildebrand et al., 2016). Although
implementation will be challenging, the combination of flow
cytometry and Chl fluorescence kinetics-based cell sorting can
provide a fast means of screening mutagenized cell populations
for specific Chl fluorescence phenotypes.
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6 Discussion 

6.1 Identification of auxiliary biogenesis factors 

In the evolution of the photosynthetic eukaryotic cell, numerous light-dependent mechanisms 

for the regulation of chloroplast functions have emerged. Most of such mechanisms are 

coupled to the stromal redox poise, which is directly linked to photosynthetic electron transport 

rates (reviewed in Cejudo et al., 2019). In contrast to most bacterial plasma and mitochondrial 

respiratory membranes, which store energy predominantly as transmembrane electric field 

(), the pmf of the chloroplast thylakoid membrane additionally consists of a proton 

concentration gradient (pH) component (Davis and Kramer, 2020). Elevated pH triggers 

several protective mechanisms in photosynthesis, such as downregulation of the electron 

transport chain at the level of the Cytochrome (Cyt) b6f complex, the action of the photosystem 

II (PSII) subunit PsbS, and the activation of the xanthophyll cycle, leading to heat-dissipation 

of excitation energy (reviewed in Ruban, 2016; Armbruster et al., 2017). Monitoring of 

chlorophyll fluorescence parameters can not only be employed to probe for defects in the 

electron transport chain itself (Chapter 5), but also allows measuring of NPQ parameters, thus 

enabling the dissection of complex photosynthetic phenotypes (Chapter 4). Especially when 

combined with video imaging techniques that permit non-invasive high-throughput screening 

of young plants, measuring of chlorophyll fluorescence can be a powerful tool in identifying 

factors required for the functioning of the photosynthetic machinery.  

Compared to mutants of other photosynthetic complexes, perturbations in the assembly 

of the cpATP synthase are easily overlooked, since most auxiliary factors are non-essential 

(Chapters 2 and 3; Benz et al., 2009; Rühle et al., 2014; Zhang et al., 2016; 2018) and only 

reductions of steady-state levels below a certain threshold lead to visible growth reductions 

under controlled conditions (Rott et al., 2011). Due to its specialized role in the thylakoid 

membrane, harvesting the trans-thylakoid proton gradient generated by the light-driven 

reactions of photosynthesis, perturbations in the activity of the cpATP synthase lead to an 

accumulation of protons in the lumen, thus triggering NPQ mechanisms (Maiwald et al., 2003; 

Dal Bosco et al., 2004). CpATP synthase activity is coupled to the redox status of the stroma 

through a chloroplast-specific regulatory loop in the -subunit, rapidly activating the enzyme in 

the light and deactivating it in the dark (reviewed in Hisabori et al., 2013). Recent evidence 

suggests that the -subunit may also play a crucial role in fine tuning ATP synthase activity in 

the light and participates in the regulation of electron transport rates in response to the 

availability of electron acceptors downstream of photosystem I (PSI) (Carrillo et al., 2016; 

Kanazawa et al., 2017; Takagi et al., 2017). Especially under low light intensities, NADPH 

thioredoxin reductase C (NTRC), plays a role in the activation of the cpATP synthase (Carrillo 

et al., 2016). Thus, monitoring NPQ parameters at lower light intensities is not only a powerful 
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tool for the identification of new factors (Chapter 2), but also allows the functional dissection of 

phenotypes generated by mutations that cause only mild disturbances in the accumulation of 

cpATP synthase (Chapter 3). 

6.2 Assembly of organellar ATP synthases 

The bacterial origin of organellar ATP synthase structure is apparent. Whereas the 

mitochondrial ATP synthase acquired several additional subunits, which also increased the 

complexity of its biogenesis process (reviewed in Rühle and Leister, 2015), the cpATP 

synthase is still remarkably similar to its bacterial ancestors, especially compared to 

cyanobacteria (Hahn et al., 2018). Nevertheless, emerging evidence suggests that also the 

assembly of chloroplast ATP synthases might be different from its bacterial counterpart 

(Chapters 2 and 3; Mao et al., 2015; Zhang et al., 2016; 2018).  

6.2.1  CGLD11 is required for early CF1 assembly 

Assembly of bacterial F1 could be achieved in vitro from purified components (Sternweis and 

Smith, 1977; Sternweis 1978) and no specialized auxiliary factor is known to assist in the 

assembly of non-photosynthetic bacterial F1 (Rühle and Leister, 2015). In contrast, 

mitochondrial F1 assembly is dependent on the chaperones Atp11p/Atp12p that bind to 

hydrophobic patches of the - and -subunits, respectively and prevent aggregation or 

unfavorable homodimerization (Wang et al., 2000; Wang and Ackermann 2000). CF1 assembly 

has been shown to be dependent on the stromal chaperonin Cpn60 (Chen and Jagendorf, 

1994). However, since Cpn60 alone was not sufficient to reconstitute CF1 from denatured 

subunits the existence of additional chaperones was proposed. Whereas this was already 

shown to be true for the -subunit (Mao et al., 2015), corresponding  chaperones were still 

missing. Based on our results we concluded that CGLD11 (also known as BFA3) might exert 

a similar function as Atp11p, since it physically interacted with CF1- and its disruption led to 

reduced levels of cpATP synthase (Chapter 2). Consistently, Zhang et al. (2016) could 

demonstrate that CGLD11/BFA3, similar to Atp11p in mitochondria, binds close to the catalytic 

site, which harbors hydrophobic amino acids and shows the tendency to aggregate (Wang and 

Ackerman, 2000; Ackerman 2002). Moreover, they found that the amino acid residues required 

for binding of CGLD11/BFA3 were already present prior to its emergence in Chloroplastida 

and proposed that they might have evolved to confer an increased affinity for binding of 

inhibitory Mg+ADP to the catalytic site. Since -heterodimers already possess ATPase activity 

(Du and Gromet-Elhanan, 1999), increased binding affinity for inhibiting Mg+ADP might play a 

role in the assembly process to prevent wasteful ATP hydrolysis by assembly intermediates. 

Due to the diurnal fluctuation of the chloroplast ATP supply, this might be especially important 

during the night when the ATP pool is low (Rühle and Leister, 2015).  
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It is intriguing to speculate about why chloroplast and mitochondrial F1- had to develop 

such a special protective mechanism independently of each other. Indeed, increased 

regulatory importance of Mg+ADP in inhibiting the ATP hydrolysis function of the F1 part was 

proposed for both organellar ATP synthases (Fitin et al., 1979; Bar-Zvi et al., 1982). Moreover, 

-subunits of chloroplasts and mitochondria are remarkably conserved (67% sequence 

identity) and the nucleotide binding sites are identical (Hahn et al., 2018). Interestingly, we 

found CGLD11 able to interact also with the (plant) mitochondrial -subunit, in yeast two-hybrid 

experiments, suggesting that the site of interaction may be conserved across organelles 

(Chapter 2, Fig. 9). Since Atp11p is absent in chloroplasts, CGLD11 could carry out a similar 

function by masking the hydrophobic catalytic site and promoting the incorporation of the -

subunit into the CF1 module.  

Remarkably, we found CGLD11 also localized to mitochondria in organelle fractionation 

and subsequent immunodetection experiments (Chapter 2, Fig. 2), raising the question 

whether CGLD11 might act as a -subunit chaperone in both organelles. However, subunit 

accumulation and ATP production of the mitochondrial ATP synthase were not impaired in 

atcgld11 mutant plants (Chapter 2, Fig. 3), which renders an involvement of CGLD11 in the 

formation of the mitochondrial ATP synthase assembly questionable. Conversely, Arabidopsis 

Atp11p fused to a chloroplast transit peptide was not able to complement the CGLD11/BFA3 

mutant phenotype, further contradicting an inter-organellar interchangeability of the 

chaperones (Zhang et al., 2016).  

6.2.2  CGL160 acquired a central role in the assembly of CFO and linkage to CF1 

It is generally accepted that the assembly of CFO and subsequent joining to CF1 is a critical 

step in the biogenesis of bacterial and organellar ATP synthases, since incorrect or premature 

formation of the proton translocating channel between the c-ring and the a-subunit (subunit 9 

and 6 in mitochondria, respectively) leads to uncontrolled dissipation of the transmembrane 

pmf (Birkenhäger et al., 1999; Franklin et al., 2004). Whereas the final steps of bacterial ATP 

synthase assembly are not fully understood, they have been elegantly resolved in both yeast 

and human mitochondria (reviewed in Song et al., 2018). A key intermediate in human ATP 

synthase assembly consists of the ATP9-ring, F1 and the peripheral stator (He et al., 2018), 

whereas in yeast the INA complex (INAC) was shown to assist in the addition of the ATP9-ring 

to an intermediate containing F1, the peripheral stator, as well as the subunits ATP6 and ATP8 

(Naumenko et al., 2017). Although their exact assembly pathway and the order of addition of 

the subunits differ, the formation of the proton-translocating unit is the final step in the assembly 

of both the yeast and the human ATP synthase (Song et al., 2018). Given the crucial role of 

the cpATP synthase, not only in utilization, but also in the regulation of the pmf, it is conceivable 

that formation of the proton-conducting channel in chloroplasts might be tightly regulated. 
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Several lines of evidence support the notion that CGL160 might play a role in this process: (i) 

The membranous Atp1/Unc1-like domain and the soluble chloroplast-specific N-terminus 

separately accounted for the severe reduction of cpATP synthase amounts in mutants of 

AtCGL160 (Chapter 3, Fig. 3), (ii) AtCGL160 was associated to later cpATP synthase 

assembly stages (Chapter 3, Fig. 4), and (iii) AtCGL160 physically interacted with subunits of 

the c-ring and the peripheral stator (Rühle et al., 2014), as well as CF1 (Chapter 3, Figs. 5 and 

6).  

Several auxiliary factors were shown to assist in the membrane insertion of bacterial 

CFO components (Rühle and Leister, 2015). However, it is not clear how the final steps of ATP 

synthase assembly are mediated, since stable assembly intermediates, lacking the respective 

subunit, could be identified for both  and a mutants (Ono et al., 2004; Kuruma et al., 2012; 

Brockmann et al., 2013; Hilbers et al., 2013). Whereas FO intermediates were observed in 

bacteria and mitochondria, accumulation of CFO is strictly dependent on the presence of CF1 

(Chapter 2; Lemaire and Wollman, 1989; Mao et al., 2015; Zhang et al., 2016; 2018). 

Conversely, the presence of the c-ring was shown to be an essential prerequisite for 

accumulation of CF1 in Chlamydomonas (Lemaire and Wollman, 1989). However, knockouts 

of CFO-a and -b led to the accumulation of residual amounts of CF1, suggesting that their 

presence is not strictly required for the membrane association of CF1. In addition, in the 

Arabidopsis mutant deficient of AEF1, a PPR protein required for splicing and editing of the 

plastome-encoded atpF (CFO-b), b-subunits were present sub-stoichiometrically, whereas 

CF1- seems to be strictly required for accumulation of ATP synthase subunits (Maiwald et al., 

2003). Intriguingly, CFO-a was not enriched to the same extent (log2FC ~2.8) as the other ATP 

synthase subunits (log2FC > ~4.4), including CF1- in oeAtCGL160 coIP fractions (Chapter 3, 

Fig. 4A, Supplemental Table S1), implying that AtCGL160 might be associated to an 

intermediate lacking CFO-a. Analogous to the proposed model for human mitochondria (He et 

al., 2018), addition of subunit a and formation of the proton-translocating unit could be the last 

step of cpATP synthase assembly. In summary, a central role for CGL160 in the assembly of 

the cpATP synthase by mediating c-ring assembly and facilitating the joining of CF1 to CFO is 

proposed in Figure 6. Like INAC in yeast mitochondria, CGL160 could act as a “placeholder” 

by interacting with CFO-c, CFO-b and CF1-, thus preventing the premature formation of the 

proton-translocating unit (Fig. 6).  
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Figure 6. Model of CGL160-mediated cpATP synthase assembly. CF1 assembly is omitted for clarity. The 
membranous Atp1/Unc1-like domain of CGL160 initially interacts with CFO-c and facilitates c-ring assembly. Stator 
subunits b and b’ might already be associated by CGL160/CFO-b mediated interaction. The chloroplast-specific 

soluble domain recruits CF1 by interaction with the membrane-proximal domain of CF1-. Establishment of the 
proton-translocating unit through addition of CFO-a and dissociation of CGL160 might be the final step of assembly. 
Figure was adapted and modified from Rühle and Leister (2015).  

 

6.2.3  ATP synthase regulation by night 

The oxidation of the -subunit and subsequent inactivation of the cpATP synthase upon 

prolonged dark incubation (e.g. by night) was proposed to prevent futile depletion of the ATP 

pool by the hydrolysis function of the enzyme (Ort and Oxborough, 1992). However, analysis 

of the constitutively redox-activated -subunit mutant gamera revealed increased stability of 

photosynthetic complexes upon prolonged darkness, suggesting that a certain degree of 

ATPase activity may be beneficial during the night to maintain a baseline pmf, which might be 

needed to support proton gradient-dependent import and repair mechanisms (Kohzuma et al., 

2017). The proposed central role of CGL160 in the assembly of the ATP synthase might thus 

also be important during the night to prevent uncoupled proton efflux by assembly 

intermediates and preserving the pmf in darkness. Remarkably, atcgl160 mutants exhibited a 

variegated leaf phenotype when grown under short-day conditions, whereas mutant plants 

grown in conditions with a shortened night-period did not display variegation (Fristedt et al., 

2015). This phenotype could not be observed in atcgld11 mutants, although cpATP synthase 

accumulation is reduced comparably (Chapter 2, Fig. 1; Chapter 3, Figs. 1, 3), indicating that 

this might not be a general phenotype of mutants defective in cpATP synthase assembly.  

Variegation is defined as the presence of chlorotic sections with abnormally developed 

chloroplasts in otherwise normal green tissue (reviewed in Aluru et al., 2006). The two best 

characterized mutants with a variegated leaf phenotype are immutans, defective in the plastid 

terminal oxidase (PTOX) and var2 a knockout of the thylakoid FtsH2 protease (reviewed in 
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Putarjunan et al., 2013). PTOX is a homologue of the mitochondrial alternative oxidase (AOX) 

and transfers electron form plastoquinol to stromal oxygen, creating water and plastoquinone 

(reviewed in Foudree et al., 2012). PTOX was therefore proposed to act as an electron “safety 

valve” by relieving excitation pressure from the plastoquinone pool and protecting 

photosynthetic complexes from overreduction. Whereas the primary cause for the white 

sectors in immutans might be the impairment of the plastoquinone-dependent phytoene 

desaturase and consequently lack of photoprotective pigments, overaccumulation of phytoene 

was not observed in var2 (Liu et al. 2010). The FtsH2 protease is predominantly involved in 

the repair cycle of PSII by degrading photooxidatively damaged D1 proteins, but has also other 

targets in the thylakoid membrane (Liu et al. 2010). As both immutans and var2 variegation 

increased with higher light intensities, it has been proposed that variegation in general might 

be caused by mutations that predispose chloroplasts to photooxidation under high excitation 

pressure (Putarjunan et al., 2013). Considering that variegation in atcgl160 only emerges 

during prolonged night, the underlying mechanism causing chlorotic lesions might be 

independent of photosynthetic excitation pressure. Interestingly, overexpression of the 

membranous part of CGL160 in oeAtCGL160C lines could not rescue variegation of the mutant 

background (Chapter 3, Fig. 1B), indicating that the function of the soluble chloroplast-specific 

domain may play a role in this process. Nevertheless, further genetic and biochemical studies, 

such as monitoring of phytoene desaturase activity and targeted second-site suppressor 

analysis, are required to dissect the mechanism of variegation caused by disruption of 

CGL160.  

Besides the already mentioned light-dependent thiol modification of the -subunit, the 

cpATP synthase is subjected to other posttranslational modifications, including acetylation and 

phosphorylation (Kanekatsu et al., 1998; Schmidt et al., 2013; 2017). Schmidt et al. (2013) 

could show that phosphorylation affects the stability and nucleotide affinity of the complex. 

Given the very slow turnover rate of the cpATP synthase compared to other thylakoid 

complexes (reviewed in Schöttler et al., 2015), posttranslational modifications may thus 

provide an elegant mechanism to control the accumulation of the enzyme in response to 

environmental stimuli. Indeed, differential phosphorylation of the -subunit by the chloroplast 

calmodulin kinase II during the night was shown in a phosphoproteomics screen (Reiland et 

al., 2009). Interestingly, also peptides of the soluble domain of AtCGL160 could be identified 

as targets for phosphorylation by Reiland et al. (2009). Adjacent to the identified serine, 

CGL160 harbors several additional putative phosphorylation sites, including two sites that are 

strictly conserved throughout the green lineage (Chapter 3, Supplemental Fig. S1). Since 

CGL160 might be target for regulatory modulation, it is tempting to speculate that also the 

assembly of the ATP synthase could be regulated in response to diurnal fluctuations. Genetic 

approaches, such as the exchange of putative phosphorylation sites by phospho-ablative/-
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mimetic amino acids combined with targeted phospho-proteomics under different conditions 

(e. g. day vs. night) might help to elucidate a possible regulatory role for CGL160. 

6.3 Assembly of chloroplast ribosomes 

6.3.1  Consequences of chloroplast-to-nucleus gene transfer 

Early in the evolution from endosymbiont to organelle, most of the former (cyano)bacterial 

genes were transferred to the host nucleus, leaving the chloroplast with a highly conserved 

gene-set of around 100 protein coding genes (reviewed in Timmis et al., 2004). Due to the 

massive reduction of the chloroplast genome, the translational diversity of plastid ribosomes 

changed from roughly 4000 different proteins to a small set of mostly membrane-targeted 

components of the photosynthetic machinery (Tiller and Bock, 2014; Sun and Zerges, 2015). 

Since biogenesis of the translation machinery in bacteria markedly limits cell division rates, it 

was proposed that prokaryotic ribosomes are optimized to translate their own proteinaceous 

components (Reuveni et al., 2017). However, most chloroplast ribosomal proteins (cpRPs) are 

encoded in the nucleus and translated on cytosolic ribosomes, reducing the need for extensive 

autocatalytic specialization (Zoschke and Bock, 2018). Conceivably, this shift in translational 

specialization might be one reason for the structural changes that occurred during evolution of 

chloroplast ribosomes, including differences in rRNA processing, addition of protein 

extensions, loss of RPs and acquisition of novel RPs (Ahmed et al., 2016; Graf et al., 2016; 

Bieri et al., 2017; Perez-Boerema et al., 2018).  

Most structural changes in cpRP content occurred in the peripheral regions of the LSU 

(Ahmed et al., 2016; Graf et al., 2016; Bieri et al., 2017). Especially the later stages of higher 

plant 50S biogenesis diverge from E. coli, mostly due to changes in rRNA processing, like 

cleavage of the former 3’ end of the 23S rRNA to yield a 4.5S rRNA (Whitfeld et al., 1978; 

Keus et al., 1984; Leal-Klevezas et al., 2000). Moreover, processing of the 23S rRNA at two 

sites, so called “hidden breaks” occurs after maturation of the 23S rRNA (Kössel et al., 1985). 

Consequently, new auxiliary components had to be acquired to sustain efficient plastid 

ribosome biogenesis. Indeed, several factors, required for 50S biogenesis do not possess 

clear bacterial orthologs (Bellaoui et al., 2003; Nishimura et al., 2010; Paieri et al., 2018). 
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6.3.2  CGL20 is required for late assembly steps of chloroplast LSU 

The structural defects identified in atcgl20ab in 23S rRNA processing and RP composition of 

the LSU provide evidence that CGL20 could also have been recruited in the green lineage to 

support later stages of 50S biogenesis (Chapter 4). Due to the highly dynamic character of 

ribosome biogenesis, it is not possible to define an exact sequence of late 50S assembly. 

However, based on rRNA processing patterns of identified auxiliary factors, a rough hierarchy 

of rRNA processing events is proposed in Figure 7.  

Defects in the formation of hidden breaks, observed in mutants of factors required for 

early 23S and 4.5S rRNA processing events like DCL, RHON1, RH22, SOT1, or RH50, 

suggest that it might occur prior to the cleavage of the 23S rRNA (Bellaoui et al., 2003; Stoppel 

et al., 2012; Chi et al., 2012; Wu et al., 2016; Paieri et al., 2018). Conversely, the 4.5S rRNA 

was processed efficiently in mutants of factors involved in the formation of hidden breaks 

(Beligni and Mayfield 2008; Nishimura et al., 2010). Likewise, 4.5S rRNA processing was not 

perturbed in atcgl20ab, implying that it may act in later steps (Chapter 4, Fig. 6). 

Post-maturation processing of the 23S rRNA occurs at two sites, yielding fragments of 

0.5 kb (5’ fragment), 1.3 kb (middle fragment), and 1.1 kb (3’ fragment) (Fig. 7). CSP41 and 

RH39 were proposed to be required for formation of hidden breaks close to the 5’ and 3’ ends 

of the 23S rRNA, respectively (Beligni and Mayfield, 2008; Nishimura et al., 2010). Based on 

the observation that 5’ and 3’ specific hidden break products as well as their respective 

precursors (1.8 kb and 2.4 kb) accumulated independently in mutants of CSP41 and RH39, it 

was suggested that both processing events occur autonomously (Nishimura et al., 2010). This 

is consistent with the 23S rRNA pattern of dcl, which showed normal accumulation of the 5’ 

fragment, but reduced abundance of 1.3 and 1.1 hidden break products (Bellaoui et al., 2003). 

Likewise, only the 1.3 and 1.1 hidden break products were reduced in atcgl20ab, whereas the 

0.5 kb product accumulated normally (Chapter 4, Fig. 6). Taken together, our results provide 

evidence that the presence of CGL20 is not required for 4.5S processing or 5’ hidden break 

processing, but promotes RH39-mediated 3’ cleavage, corroborating the independence of the 

processing events (Fig. 7).  
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Figure 7. Assembly of the chloroplast 50S ribosomal subunit. LSU assembly is initiated by cotranscriptional 
binding of ribosomal proteins (blue) to the rRNA (colored in cyan for 5S, amber for 4.5S, and shades of grey for 
23S rRNA). In the early phase, RH50 (Paieri et al., 2018), RH22 (Chi et al., 2012), DCL (Bellaoui et al., 2003), 
RHON1 (Stoppel et al., 2012), and SOT1 (Wu et al., 2016) are involved in various stages of 4.5S and 23S rRNA 
preprocessing. CSP41 (Beligni and Mayfield, 2008) and RH39 (Nishimura et al., 2010) carry out independent 
processing of the 5’ and 3’ hidden break site, respectively. CGL20 (green) promotes RH39 mediated processing of 
the 3’ hidden break site. 

 

6.3.3  Adaptations to membrane targeting 

Post-maturation processing of the LSU rRNA is common in nature and was found to occur in 

multiple biological groups, including (cyano)bacteria (reviewed in Evguenieva-Hackenberg, 

2005), fungi, insects, and mammals (Winnebeck et al., 2010; Azpurua et al., 2013; Navarro-

Ródenas et al., 2018). Since post-maturation rRNA processing seems to be absent in the SSU, 

proposed functions of hidden-break induced structural changes of the LSU include the 

promotion of translational fidelity in naked mole rat (Azpurua et al., 2013), but also regulation 

of translational elongation in response to light in the cyanobacterium Synechococcus 

elongatus (Doolittle, 1973). Accordingly, the exact purpose of hidden break processing in 

higher plant chloroplasts is not clear. However, the severe phenotype of the RH39 knockout in 

Arabidopsis indicates that the post-maturation separation of the 23S rRNA might be required 

for efficient chloroplast translation in higher plants (Nishimura et al., 2010).  

The absence of 3’ post-maturation processing of the 23S rRNA in Chlamydomonas 

chloroplasts (Turmel et al., 1993) as well as the lack of a canonical RNA binding domain 

suggest that CGL20 is not directly involved in introducing the hidden break (Chapter 4). Due 

to their RNA binding properties, ribosomal proteins often contain positively charged stretches, 

making them susceptible for aggregation (Jäkel et al., 2002). Studies in yeast could establish 

that ribosomal proteins are therefore often associated to dedicated chaperones that can bind 

newly synthesized RPs cotranslationally (reviewed in Pillet et al., 2017). These specialized 
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chaperones harbour structurally distinct domains (for example negatively charged), enabling 

them to bind and protect aggregation-prone regions on ribosomal proteins (Pausch et al., 

2015). Remarkably, the C-terminus of AtCGL20 is predominantly negatively charged, a 

feature, which is conserved throughout the green lineage (Chapter 4, Fig. 1), potentially 

enabling CGL20 to mask positively charged, aggregation-prone patches on ribosomal proteins.  

Due to N- and C-terminal extensions and the acquisition of novel ribosomal proteins, 

the protein-to-RNA ratio changed from ~1:3 in bacteria to ~2:3 in chloroplasts (Yamaguchi and 

Subramanian, 2000; Yamaguchi et al., 2000), thus following the general trend of replacing 

RNA in chloroplast ribonucleoproteins by proteinaceous components (Barbrook et al., 2006). 

As mentioned earlier, cpRP extensions in general were mainly acquired in the LSU (Graf et 

al., 2016). Consistent with the highly conserved rRNA core, containing the peptidyl transfer 

centre, most changes can be observed in the peripheral regions of LSU (Graf et al., 2016; Bieri 

et al., 2017). A remarkable architectural alteration is the – as compared to bacteria – narrowed 

polypeptide exit-tunnel of the chloroplast LSU, which is due to extensions of several cpRPs 

(Ahmed et al., 2016; Graf et al., 2016; Bieri et al., 2017). Moreover, a conglomerate of cpRP 

extensions adjacent to the polypeptide exit-tunnel could be identified (Graf et al., 2016). These 

structural adaptations were proposed to have coevolved with the considerably changed 

cotranslational membrane targeting mechanism of chloroplasts as compared to bacteria (Graf 

et al., 2016; Bieri et al., 2017). CpSRP54, a chloroplast-specific component of the targeting 

machinery has recently been shown to bind to uL4, which is not directly adjacent to the tunnel-

exit (Hristou et al., 2019). Nevertheless, it is conceivable that the structural changes of the 

chloroplast LSU periphery enable ribosomes to bind to the thylakoid membrane or other 

components of the targeting and membrane insertion machinery, such as SecY/E and ALB3 

(Graf et al., 2016; Hristou et al., 2019).  

Intriguingly, although the abundance of the soluble chloroplast-encoded RuBisCO large 

subunit (RbcL) was drastically reduced in nara12 (Necessary for the Achievement of RuBisCO 

Accumulation 12, RH39), it was not among the proteins that were reduced significantly in 

atcgl20ab shotgun proteomics (Chapter 4, Fig. 5A). In contrast, the steady-state accumulation 

of chloroplast-encoded membrane components of PSII (psbA/B) and the Cyt b6f complex 

(petB/D) were reduced significantly. Moreover, de novo synthesis of RbcL was drastically 

reduced in nara12 compared to that of D1, whereas this difference could not be observed in 

newly synthesized RbcL and D1 of atcgl20ab (Chapter 4, Fig. 5B). Finally, the specific 

reduction of the Cyt b6f and NDH complexes observed in atcgl20ab was not described in other 

mutants impaired in ribosome assembly. It is tempting to speculate that CGL20 may function 

in the integration of divergent LSU cpRPs that were acquired as an adaptation to 

cotranslational membrane targeting. Further experiments should therefore not only focus on 
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finding the exact binding partner of CGL20, but also investigate if membrane association of 

ribosome footprints, as observed in Hristou et al. (2019), might be disturbed in atcgl20ab. 

6.4  Conclusion and future perspectives 

Identification and characterization of auxiliary proteins is crucial in understanding the principles 

of protein complex biogenesis. As demonstrated in this thesis, large scale phylogenetic 

classifications such as the GreenCut2 can provide a valuable basis for the identification of 

factors involved in the biogenesis of chloroplast complexes. The recent advances in genome 

editing allow for rapid and targeted manipulation and can thus be a powerful tool in the 

identification of new factors, especially when combined with high throughput phenotyping 

techniques like chlorophyll fluorescence video imaging.  

We were able to identify two new components of chloroplast-specific ATP synthase 

assembly: CGLD11/BFA3 is a CF1- chaperon presumably involved in very early steps of CF1 

assembly by shielding the hydrophobic catalytic site of the -subunit and preventing 

aggregation, comparable to mitochondrial Atp11p. CGL160, additionally to its conserved role 

in facilitating c-ring assembly, acquired a central role in late steps of ATP synthase assembly, 

mediating joining of the submodules. Both factors may have evolved in the green lineage as a 

response to an increased regulatory control of ATP synthase activity depending on 

environmental cues. It has become evident that assembly and regulation are tightly 

interconnected, thus both aspects must be considered in order to elucidate the biogenesis of 

the thylakoid-bound rotary machine.  

Biogenesis of thylakoid complexes like the ATP synthase is strictly dependent on the 

chloroplast gene expression machinery. Structural data revealed that chloroplast ribosome 

architecture, particularly the periphery of the LSU may have adapted as consequence of 

translational specialization to mostly membrane-targeted proteins of the photosynthetic 

machinery. The proposed role of CGL20 in late 50S assembly steps may thus have been 

selected for to ensure rapid biogenesis of a structural divergent LSU. The remarkable 

exactness of structural data provided by recent advances in cryo-EM combined with mutant 

analysis may help to further elucidate the mechanisms of how ribosomes are built in the 

chloroplast.  

The general mechanisms of tightly coordinated assembly of the ATP synthase to 

prevent harmful intermediates and the dynamic biogenesis of ribosomes in both sequential 

and parallel steps remained largely unchanged. However, both pathways adapted to the 

structural and regulatory rearrangements following the specialization of the endosymbiont on 

photosynthesis. The factors presented in this thesis are examples of how those adaptations 

may have been achieved in the green lineage. 
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Supplemental information – Chapter 2 

 
The following section contains Supplemental Figures S1 – 4 and Supplemental Table S1. 



1 
 

Supplemental Information 

 

Supplemental Figure S1. Sequence alignment of AtCGLD11 (At2g21385.1) with its 

homologues from other eukaryotic species.  

The sequence of AtCGLD11 was compared with those from grape (Vitis vinifera), rice 

(Oryza sativa), maize (Zea mays), Picea sitchensis, Selaginella moellendorffii, 

Physcomitrella patens, Chlamydomonas reinhardtii and Thalassiosira pseudonana. 

Transit peptides predicted by ChloroP are indicated in lowercase letters. Sequence 

similarity/identity is highlighted by grey/black shading. Similarity/identity scores relative 

to AtCGLD11 are given (in %) at the end of each protein sequence. 
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Supplemental Figure S2. Complementation analyses.  

(A) Two independent overexpressor lines (oeAtCGLD11.1 and oeAtCGLD11.2), WT 

(Col-0) and atcgld11-1 plants were subjected to imaging PAM analyses, and NPQ/4 

values were recorded in a false colour mode after a 15-min exposure to a flux of 100 

µmol photons m-2 s-1. Leaf areas exhibiting increased heat dissipation are visualized in 

red, with an NPQ/4 cut-off value of 0.4.  

(B) Quantification of AtCGLD11 overexpression in oeAtCGLD11.1 and 

oeAtCGLD11.2. Serial dilutions of total WT leaf extract and extracts from the two 

knockout mutants atcgld11-1 and atcgld11-2 served as the reference and negative 

controls, respectively. Total leaf extracts from the two overexpressor lines were loaded 

in two different concentrations (25% and 100%). Chloroplast ATPase levels were 

examined in the two overexpressor lines by immunodetection of cpATPase-α/β and 

cpTPase-c. PVDF membranes were stained with Coomassie Brilliant Blue G-250 

(C.B.B.). 
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Supplemental Figure S3. Quantification of thylakoid layers in grana stacks of Col-0 

(n=21) and atcgld11-1 (n=18) chloroplasts.  



4 
 

(A) Each lane represents the analysis of a single chloroplast. The number of grana 

stacks is plotted against the thylakoid layers per grana stack. The total number of grana 

stacks per chloroplast is 37.8±9.6 for Col-0 and 32.9±10.6 for atcgld11-1. The weighted 

means of number of thylakoid layers are 5.29±0.74 (Col-0) and 6.28±1.03 (atcgld11-

1), respectively. 

(B) The relative number of grana stacks (referred to the overall number of grana stacks 

in each chloroplast in %) versus the number of thylakoid layers per grana stack is 

shown for Col-0 and atcgld11-1 samples.  

(A, B) Note that variations in the calculated average and standard deviation values are 

also due to variations in sectional planes. 
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Supplemental Figure S4. Polysome association of cpATPase transcripts. 
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Polysome/RNA complexes were fractionated on sucrose gradients (0.44 to 1.66 M, 

fractions 1 to 12) and total RNA was isolated from each fraction, subjected to 

denaturing gel electrophoresis and blotted onto nylon membranes. Abundant rRNAs 

were visualised by staining with methylene blue (MB.) and used as molecular mass 

standards. Polysome loading of transcripts was examined by hybridizing radio-labelled 

probes (atpB, rps2, atpI, atpH, atpF and atpA) to size-fractionated, total RNAs. Non-

associated (fraction 1-6) and polysome-associated transcripts (fraction 7-12) were 

quantified and corresponding percentages (relative to the total signal for fractions 1-

12) are given below the corresponding lanes. 
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Supplemental Table S1. Primers used in this study. 

Forward and reverse primer sequences (5’ to 3’), the target gene and the application 

of each amplicon are listed. Sequence regions necessary for cloning are underlined. 
Gene Forward primer Reverse primer Application 
atcgld11-1 (T-
DNA junction) 

TTTTGCCTGAAAACAATCGTC TTGATTGCAATCTTTTGGGTC genotyping 

 
atcgld11-2 (T-
DNA junction) 

TCCGCTAATGCTTTGAATACG TACAGTTCGAATCAGTGTGCG genotyping 

AtCGLD11 TCTCATCATCATCATCAACA GCAAGGATATTTTCAACAAC RT-PCR, Amplicon 1 (P1/P2) 

AtCGLD11 AACCAGGGTTATTGGCTATG CTTCAGTTCGAATCAGTGTG RT-PCR, Amplicon 2 (P3/P4) 

Ubiquitin CTGTTCACGGAACCC AATTC GGAAAAAGGTCTGACCGACA RT-PCR 

AtCGLD11 GGGGACAAGTTTGTACAAAAAAGCAG
GCTCAATGGCGGCAATATCCCCTGTT
CAATG 

GGGGACCACTTTGTACAAGAAAGCT
GGGTTTAACCCTGGAGTAATTTCA 

AtCGLD11 cloning  for 
complementation (Gateway 
cloning) 

AtCGLD11 CACCTCTTCGAGTCTATGGAAGCT TTAACCCTGGAGTAATTTCA AtCGLD11 TOPO cloning 
(pET151) for overexpression in 
E. coli 

AtCGLD11 ATATGTCGACATGATTGATGCTCTTA
GAGATGCA 

ATATTGCGGCCGCACCCTGGAGTAAT
TTCATAATTTC 

AtCGLD11 into pET51b(+) for 
overexpression in E. coli 

rps2 AGATATTGGAACATCGATTTGG TAACATAATGACACCGAGCC Northern probe 

atpA GACAGACAGACCGGTAAAAC AAACATCTCCTGACTGGGTC Northern probe 

atpB TTAGGTCCTGTCGATACTCG CCAATAAGGCGGATACCT Northern probe 

atpE GTGTACTGACTCCGAATCGA TATTGAGAGCCTCGACTCGT Northern probe 

atpF TCGTTTACTTGGGTCACTGG TTGTTGGAAAACCCGTTCGC Northern probe 

atpH GAATCCACTGGTTTCTGCTG AGCGCTAATGCTACAACCAG Northern probe 

atpI TATCCAGTTACCTCAAGGGGAGTTA TTAATGATGACCTTCCATAGACTCA Northern probe 

atpA ACAGATGGACAAATATTCTTATCCG CAGCGGTTAATGTCTTGGTA Run-on assay 

atpB GCTCTGGTGGTTAAGGGTCGAG GCAGGTGCGGGGTCAGT Run-on assay 

atpE GTGTACTGACTCCGAATCGA TATTGAGAGCCTCGACTCGT Run-on assay 

atpF TCGTTTACTTGGGTCACTGG TTGTTGGAAAACCCGTTCGC Run-on assay 

atpH GAATCCACTGGTTTCTGCTG AGCGCTAATGCTACAACCAG Run-on assay 

atpI TATCCAGTTACCTCAAGGGGAGTTA TTAATGATGACCTTCCATAGACTCA Run-on assay 

rbcL GATCTGCGAATCCCTCCTGC CAGAGCTACTCGGTTGGCTACG Run-on assay 

psbA CATTCATTGCTGCTCCTCCAGTA GAGCCTCAACAGCAGCTAGGTCT Run-on assay 

AtCGLD11 GGTGGTCATATGTCTTCGAGTCTATG
GAAGCT 

GGTCCTGAATTCTTAACCCTGGAGTA
ATTTCA 

yeast-two hybrid, pGBKT7 
vector cloning 

atpA 
(cpATPase) 

GGTGGTCATATGGTAACCATTAGAGC
CGACGA 

GGTCCTGAATTCTTATACTTTCTCCTG
AAGTA 

yeast-two hybrid, pGADT7 
vector cloning 

atpB 
(cpATPase) 

GGTGGTCATATGAGAACAAATCCTAC
TACTTC 

GGTCCTGAATTCTCATTTCTTCAATTT
ACTCT 

yeast-two hybrid, pGADT7 
vector cloning 

ATPC GGTGGTCATATGGCTTCCTCTGTTTC
ACCACT 

GGTCCTGAATTCTCAAACCTGTGCAT
TAGCTC 

yeast-two hybrid, pGADT7 
vector cloning 

ATPD GGTGGTCATATGGCCACCGCAGCAT
CAAGCTA 

GGTCCTGAATTCTCAAGTAGCTAATT
GAATCT 

yeast-two hybrid, pGADT7 
vector cloning 

atpE GGTGGTCATATGACCTTAAATCTTTG
TGTACTGACTC 

GGTCCTGAATTCTCAAATCGTATTGA
GAGCCT 

yeast-two hybrid, pGADT7 
vector cloning 

atpA 
(mtATPase) 

GGTGGTCATATGGAATTATCTCCTAG
AGC 

GGTGGTGAATTCCTAAATTAAAGCTA
AAGCTC 

yeast-two hybrid, pGADT7 
vector cloning 

 GGTGGTCATATGGCGTCTCGGAGAG
TCTTAT 

GGTGGTGAATTCTTAAGCTGCTGACT
CTTTAG 

yeast-two hybrid, pGADT7 
vector cloning 
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Supplemental information – Chapter 3 

 
The following section contains Supplemental Figures S1 – 3 and Supplemental Tables S1 

and S2. 

 

 

 

Supplemental Figure S1. Multiple alignment of CGL160N sequences identified in the green lineage. 
Predicted chloroplast transit peptides are written in lower case. Grey/black shadings highlight stretches of sequence 
similarity/identity conserved in at least 90% of the proteins. Enriched phosphopeptides, reported in Reiland et al. 
(2009), are indicated and the identified phosphorylated serine is colored red. Putative phosphorylation sites that are 
conserved across all shown species are highlighted in yellow. 
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Supplemental Figure S2. AtCGL160 RNA and protein levels in oeAtCGL160, oeAtCGL160N and oeCGL160C 
plants. A, RNA-gel blot analysis of AtCGL160 domain-specific complementation constructs. Total RNA (20 µg) of 
4-week-old Col-0, atcgl160, oeAtCGL160, oeAtCGL160C and oeAtCGL160N plants was separated on a denaturing 
formaldehyde gel and blotted on nylon membranes. Membranes were hybridized with radioactive probes specific 
for the AtCGL160 cTP region. Methylene blue staining is shown as loading control. B, Comparison of the AtCGL160 
antibody, generated in Fristedt et al. (2015) (AS12 1853), with the antibody generated in this study. Thylakoids of 
indicated genotypes were separated by denaturing SDS-PAGE and blotted onto PVDF membranes. Membranes 

were first probed with antibodies against AtCGL160N and then with antibodies against CF1-. Coomassie brilliant 
blue staining (C.B.B.) is shown as loading control. 
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Supplemental Figure S3. Immunoblot analysis of AtCGL160 coimmunoprecipitation. A, 
Coimmunoprecipitation with NP40 solubilized thylakoids of oeAtCGL160 and oeAtCGL160C was repeated using 
reduced amounts of the AtCGL160 antibody. Protein A coupled magnetic beads (DynabeadsTM, Thermo) with 
AtCGL160 antibody and coimmunoprecipated proteins (IP) were boiled in SDS loading buffer, separated by 
denaturing SDS-PAGE, and blotted onto PVDF membranes. Samples before (Input) and after (Flow) incubation 
with AtCGL160 antibody were loaded as control. Membranes were probed with antibodies against AtCGL160N and 

CF1-/CF1-, separately. Positions of the large chain of the AtCGL160 antibody are indicated (IGG). Coomassie 

brilliant blue staining (C.B.B.) is shown as loading control. Positions of CF1-/ are highlighted in the C.B.B. staining. 
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Supplemental Table S1. AtCGL160 coimmunoprecipitation experiments. Differential enriched proteins in 
oeAtCGL160 versus oeAtCGL160C sorted by log2 fold change (-log10 p-value > 1.5). Nuclear genes are written in 
capital letters.  

Protein IDs Gene names log2 FC -Log10 p-value  

O82279 AtCGL160 6.495 4.644 

P09468 atpE 6.380 2.301 

Q42139 ATPG 5.231 4.747 

P56760 atpH 4.886 3.176 

Q9SSS9 ATPD 4.672 4.523 

P19366 atpB 4.437 4.459 

P56759 atpF 4.399 5.913 

P56757 atpA 4.235 6.410 

Q01908 ATPC1 4.156 4.772 

Q2HIU0 At3g15110 3.333 3.508 

P56758 atpI 2.799 4.104 

O49445 LECRK72 2.346 3.115 

Q67XC4 TBL40 2.268 2.402 

Q8LCQ4 LHCA6 2.082 3.710 

A0A1P8B288; Q39099 XTH4 1.983 4.126 

Q41963 TIP1-2 1.907 2.821 

O22957 At2g34040 1.632 2.829 

Q9SRL2; Q9M9X0;  
F4J8G2; Q9SRL7; Q9S9U3 

RLP32; RLP33; RLP34; 
RLP35; RLP53 

1.564 3.162 

P38418; A0A1I9LPH1 LOX2 1.544 2.047 

Q8LBV4 At1g78140 1.515 2.171 

F4IUJ0; F4IUI9 At2g26340 1.451 3.021 

Q9SF53; A0A1I9LSB4; Q9M3D2 RPL35A; RPL35C 1.254 2.619 

A0A1P8B6D0; Q9SUI4 PSAL 1.193 2.938 

Q9FFW9; F4KBJ3 At5g38520 1.136 3.084 

Q96242 CYP74A 1.078 2.371 

Q9SYW8; F4K8I1 Lhca2 0.941 2.356 

Q9SR92 STR10 0.839 2.913 

P56777 psbB 0.807 2.072 

Q9LHA6 At3g28220 0.731 2.315 

Q9S7N7 PSAG 0.575 2.157 
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Supplemental Table S2. Primers used in this study.  

 

Primer name Primer sequence 5' to 3' Comment 

oeAtCGL160_s GGGGACAAGTTTGTACAAAAAAGCA 
GGCTCA ATGGCGATTCTTAGTTACAT 

Gateway 
primer 

oeAtCGL160_as GGGGACCACTTTGTACAAGAAAGCTG 
GGTTTAATCACTGGCCTGTGTGT 

Gateway 
primer 

oeAtCGL160C_s GGGGACAAGTTTGTACAAAAAAGCAG 
GCTCAATGGAACAATATTTTAAGCTGAAAA 

Gateway 
primer 

TP-AtCGL160C_fus_s GGTCCACCGGAGTTGCTCCCGAACAAT 
ATTTTAAGCTGAA 

Fusion PCR 

TP-AtCGL160C_fus_as TTCAGCTTAAAATATTGTTCGGGAGCAA 
CTCCGGTGGACC 

Fusion PCR 

AtCGL160N_fusion_as CCGTTGCAACCGGTAAAAGTCAGCCCTG 
TCTTTAGCAGCTTGTA 

Fusion PCR 

AtCGL160-MBP_s AAAATCATTCTACCCAATAA MBP cloning 
primer 

AtCGL160N-MBP_as GGTCCTGAATTCTTACCTGTCTTTAGCAG 
CTTGTA 

MBP cloning 
primer 

GST-AtCGL160N-s GGGGACAAGTTTGTACAAAAAAGCAGGC 
TCAAAAATCATTCTACCCAATAAGAAACCTGA 

Gateway 
primer (GST) 

GST-AtCGL160N-as GGGGACCACTTTGTACAAGAAAGCTGGG 
TCTTACCTGTCTTTAGCAGCTTGTAC 

Gateway 
primer (GST) 

AtCGL160cTP_probe_s ATGGCGATTAGTTACATCTCAGC Northern-
probe 

AtCGL160cTP_probe_as GGGAGCAACTCCGGTG Northern-
probe 

pGBKT7-AtCGL160N_s GGTGGTCATATGAAAATCATTCTACCCAAT 
AAGA 

Y2H cloning 
primer 

pGBKT7-AtCGL160N_as GGTCCTGAATTCTTACCTGTCTTTAGCAGCT 
TGTA 

Y2H cloning 
primer 

pGADT7-alpha_s GGTGGTCATATGGTAACCATTAGAGCCGA 
CGA 

Y2H cloning 
primer 

pGADT7-alpha_as GGTCCTGAATTCTTATACTTTCTCCTGAAGTA Y2H cloning 
primer 

pGADT7-beta_s GGTGGTCATATGAGAACAAATCCTACTACTTC Y2H cloning 
primer 

pGADT7-beta_as GGTCCTGAATTCTCATTTCTTCAATTTACTCT Y2H cloning 
primer 

pGADT7-gamma_s GGTGGTCATATGGCTTCCTCTGTTTCACCACT Y2H cloning 
primer 

pGADT7-gamma_as GGTCCTGAATTCTCAAACCTGTGCATTAG 
CTC 

Y2H cloning 
primer 

pGADT7-delta_s GGTGGTCATATGGCCACCGCAGCATCAAG 
CTA 

Y2H cloning 
primer 

pGADT7-delta_as GGTCCTGAATTCTCAAGTAGCTAATTGAATCT Y2H cloning 
primer 

pGADT7-epsilon_s GGTGGTCATATGACCTTAAATCTTTGTGTAC 
TGACTC 

Y2H cloning 
primer 
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pGADT7-epsilon_as GGTCCTGAATTCTCAAATCGTATTGAGAGCCT Y2H cloning 
primer 

pGADT7-atpFsoluble_s GGTGGTCATATGTACTTTTTAAATT Y2H cloning 
primer 

pGADT7-atpFsoluble_as GGTCCTGAATTCAATTAGTCA Y2H cloning 
primer 

pGADT7-atpGsoluble_s GGTGGTCATATGCGCTACCTC Y2H cloning 
primer 

pGADT7-atpGsoluble_as GGTCCTGAATTCAATTCTTCCTTCTTGGA Y2H cloning 
primer 

pGADT7_AtpBI-AD_s CGCGAATTCATGAGAACAAATCCTAC Y2H cloning 
primer 

pGADT7_AtpBI-AD_as ACTCTCGAGTCAATTTCCCATATCAACCAC Y2H cloning 
primer 

pGADT7_AtpBII-AD_s ATGGAATTCCCTCTAAGTGTTCCAG Y2H cloning 
primer 

pGADT7_AtpBII-AD_as AACCTCGAGTCAAGGTTGTAGCATAGTTG Y2H cloning 
primer 

pGADT7_AtpBIII-AD_s CTAGAATTCCGAATCGTTGGCGAG Y2H cloning 
primer 

pGADT7_AtpBIII-AD_as GCGCTCGAGTCATTTCTTCAATTTACTC Y2H cloning 
primer 

pGBKT7_AtCGL160N_del29_74_s GACTTAATCTGGAACAGAGATTTTATGG Y2H cloning 
primer 

pGBKT7_AtCGL160N_del29_74_as CATATGCAGGTCCTCCTCT Y2H cloning 
primer 

pGBKT7_AtCGL160N_del75_105_s GTCTTCTGGGTTTCTGAG Y2H cloning 
primer 

pGBKT7_AtCGL160N_del75_105_as GTGGAAGTAATGGGATCTTC Y2H cloning 
primer 

pGBKT7_AtCGL160N_del106_134_s CGTTGTGAAAAATCGTCTTGACAC Y2H cloning 
primer 

pGBKT7_AtCGL160N_del106_134_as GACTTTTCCTTTGAAGGAGATGG Y2H cloning 
primer 

pGBKT7_AtCGL160N_del135_160_s GAAGCTGGCACCTACACG Y2H cloning 
primer 

pGBKT7_AtCGL160N_del135_160_as CATTTAGAAGACGATGCAAGCTCTTTAC 
TTAAATC 

Y2H cloning 
primer 

pGBKT7_AtCGL160N_del161_206_s GAATTCCCGGGGATCCG Y2H cloning 
primer 

pGBKT7_AtCGL160N_del161_206_as CTATTTAGGAGACACAATAGCCTTACTC 
ATTTG 

Y2H cloning 
primer 
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Supplemental information – Chapter 4 

 
The following section contains Supplemental Figures S1 – 3 and Supplemental Tables S2, S9, 

S12, and S13. 

Supplemental Tables S1, S3 – 8, and S10 – 11 are available online: 

DOI: https://doi.org/10.1104/pp.19.01502  
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Supplemental Figure S1. Cold treatment, complementation and NDH activity analyses of 
atcgl20 mutants. A, Growth and photosynthetic capacity of cold treated atcgl20 mutant plants. 
Plants were germinated on Murashige and Skoog medium under ambient temperature (22 °C) 
and cold treatment (4 °C). Photosystem II functionality (Fv/Fm) was measured by Imaging-PAM 
(Walz). B, WT, atcgl20ab and complemented lines grown for six weeks under controlled 
climate chamber conditions. Atcgl20ab mutant plants were complemented with coding 
sequences of AtCGL20A and AtCGL20B which were fused to the 5’ end of eGFP and under 
control of the constitutive 35S cauliflower mosaic virus promoter (CaMV). Two independent 
lines complementing the wild-type phenotype are shown. C, Analysis of the post illumination 
fluorescence rise of Col-0, atcgl20a, atcgl20b and atcgl20ab. Measuring light (ML), saturating 
pulse (SP), actinic light (AL). 

   



 

Supplemental Figure S2. Graphical illustration of MapMan enrichment analyses. A, MapMan 
analysis of transcriptome data (atcgl20ab vs. WT). B, MapMan analysis of proteome data 
(atcgl20ab vs. WT). Each colored square represents the abundance of a single transcript (in A) 
or of a single protein (in B) on a log2 FC scale. Only functional groups (bins) with significantly 
differently expressed terms (p-adj < 0.05) are displayed (see Supplemental Table 5 and 6). 

  



 

Supplemental Figure S3. BN/SDS-PAGE analysis of mitochondria and thylakoid complexes. 
A, Coomassie brilliant blue (C.B.B.) staining of BN/SDS-PAGEs loaded with isolated 

mitochondria of Col-0 and atcgl20ab plants which were solubilized with -DM. Respiratory 
complexes and RuBisCO contamination are indicated according to the reference map of 
Arabidopsis mitochondria (www.gelmap.de/arabidopsis/). Sizes of the protein marker are 



shown on the left. B, Immunoblot analysis of thylakoid membrane complexes separated on BN-
PAGEs. Thylakoid membranes of Col-0, atcgl20a, atcgl20b and atcgl20ab were solubilized 

with -DM, separated on BN-PAGEs and blotted directly on PVDF membranes, which were 
decorated with antibodies against PetB and NdhH. C, Immunoblot analyses of thylakoid 
membrane complexes separated by BN/SDS-PAGEs. After blotting, PVDF membranes were 
decorated with antibodies against PetB and NdhH. C.B.B. staining is shown as loading control. 
D, Immunoblots of selected chloroplast marker proteins. Leaf protein extracts of Col-0, 
atcgl20a, atcgl20b and atcgl20ab were separated by SDS-PAGE and blotted onto PVDF 
membranes. Blots were decorated with antibodies against PSII (Cp43), PSI (PsaA, PsaC), Cyt 
b6f (PetA, PetB), NDH complex (NdhH, NdhL), the chloroplast ATP-synthase (AtpF) and 
RuBisCO (RbcL). C.B.B. staining is shown as loading control. Samples were adjusted to fresh 
weight. The bands detected in B and C were assigned to specific thylakoid protein complexes 
according to Armbruster et al. (2010) and Rühle et al. (2014): PSI-NAD(P)H dehydrogenase-
like supercomplex (PSI-NDH = 1), PSII and PSI supercomplexes (PSII/PSIsuper = 2), PSI 
monomers and PSII dimers (PSImono/PSIIdi = 3), dimeric Cyt b6f and PSII monomers (Cyt 
b6/fdi/PSIImono = 4), multimeric LHCII (LHCIImult = 5), CP43-free PSII monomers (CP43-PSII 
= 6), trimeric LHCII (LHCIItri = 7), and monomeric LHCII (LHCIImono = 8). 

  



Supplemental Table S2. Pigment analyses of WT (Col-0), atcgl20a, atcgl20b and atcgl20ab 
leaves. Samples were harvested 4 h after beginning of the light phase (100 µE m-2 s-1) from 
five-week-old plants grown under 12/12h dark/light conditions in a climate chamber. Pigments 
were extracted and quantified as described in Materials and Methods. Average values (n=5) and 
standard deviations were calculated, and values are given in pmol per mg fresh weight. VAZ, 
violaxanthin + antheraxanthin + zeaxanthin; n.d., not determined. 

Pigment Col-0 atcgl20a atcgl20b atcgl20ab cgl20ab/Col-0 (%) 

Neoxanthin 28 ± 6 23 ± 4 29 ± 5 11 ± 1 39 

Violaxanthin 25 ± 5 24 ± 5 26 ± 4 21 ± 1 84 

Antheraxanthin 1 ± 0 1 ± 0 1 ± 0 1 ± 0 100 

Zeaxanthin 0 ± 0 0 ± 0 0 ± 0 0 ± 0 n.d. 

VAZ 26 ± 6 25 ± 6 27 ± 5 22 ± 2 85 

Lutein 91 ± 21 83 ± 18 96 ± 19 50 ± 4 55 

β-Carotene 71 ± 15 63 ± 9 74 ± 11 31 ± 2 44 

Chl a 693 ± 162 604 ± 11 706 ± 124 318 ± 24 46 

Chl b 218 ± 53 185 ± 34 226 ± 38 92 ± 7 42 

Chl a+b 911 ± 215 789 ± 146 932 ± 162 410 ± 30 45 

Chl a/b 3.19 ± 0.07 3.26 ± 0.03 3.13 ± 0.02 3.44 ± 0.04 108 
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Supplemental Table S12. Primers used in this study. 

Primer name Primer sequence 5' to 3' Comment 

atcgl20a_for GAAGGTTCGAATTTCGAAAGG Genotyping primer 

atcgl20a_rev ACTATCAAAACGCAAACGCAG Genotyping primer 

LBb1.3 ATTTTGCCGATTTCGGAAC SALK boarder primer 

atcgl20b_for TAGGAACCATCGAAGAACACG Genotyping primer 

atcgl20b_rev AGCTTCCACTAAAGCGCTTTC Genotyping primer 

LB3 TAGCATCTGAATTTCATAACCAATCTCGATACAC SAIL boarder primer 

atcgl20a_GW_for GGGGACAAGTTTGTACAAAAAAGCAGGCTCAATGGCGTCGCTT
TGCTCTG 

Gateway primer 

atcgl20a_GW_rev GGGGACCACTTTGTACAAGAAAGCTGGGTCTTGCTGCTTCTCGG
GTTGTT 

Gateway primer 

atcgl20a_stop_GW
_rev 

GGGGACCACTTTGTACAAGAAAGCTGGGTCTATTGCTGCTTCTC
GGGTTGTT 

Gateway primer + stop codon 

atcgl20b_GW_for GGGGACAAGTTTGTACAAAAAAGCAGGCTCAATGACGCCGCTT
TCTATATC 

Gateway primer 

atcgl20b_GW_rev GGGGACCACTTTGTACAAGAAAGCTGGGTTCGACCGGTTATCG
GGTTG 

Gateway primer 

atcgl20b_stop_GW
_rev 

GGGGACCACTTTGTACAAGAAAGCTGGGTTTACGACCGGTTATC
GGGTTG 

Gateway primer + stop codon 

atcgl20a_qRT_for GAATCAGCTGCAAGTTGTGTCT qRT PCR primer 

atcgl20a_qRT_rev GGTTTAGGTCTTTCCCACTCAA qRT PCR primer 

atcgl20b_qRT_for GCAATCCTCTCGATTTCCCTA qRT PCR primer 

atcgl20b_qRT_rev GCAACGGTGACTTCATAGGAC qRT PCR primer 

Actin_8_for GCAGCATGAAGATTAAGGTCGTG qRT PCR primer 

Actin_8_rev TGTGGACAATGCCTGGACCTGCT qRT PCR primer 

probe_rrn16_for AGTCATCATGCCCCTTATGC Gel blot hybridization probe primer 

probe_rrn16_rev CAGTCACTAGCCCTGCCTTC Gel blot hybridization probe primer 

probe_rrn5_for TATTCTGGTGTCCTAGGCGTAG Gel blot hybridization probe primer 

probe_rrn5_rev ATCCTGGCGTCGAGCTATTTTTCC Gel blot hybridization probe primer 

probe_rrn23.1_for GGAAAGGCTTACGGTGGATAC Gel blot hybridization probe primer 

probe_rrn23.1_rev CTAAGATGTTTCAGTTCGCCAGG Gel blot hybridization probe primer 

probe_rrn23.2_for GTTCGAGTACCAGGCGCTAC Gel blot hybridization probe primer 

probe_rrn23.2_rev CGGAGACCTGTGTTTTTGGT Gel blot hybridization probe primer 

probe_rrn23.3_for GGGCTGTTCGCCCATTAAAG Gel blot hybridization probe primer 

probe_rrn23.3_rev CTCATCTTGGGGTGGGCTTAC Gel blot hybridization probe primer 

probe_rrn4.5_for GAAGGTCACGGCGAGACGAGCC Gel blot hybridization probe primer 

probe_rrn4.5_rev GTTCAAGTCTACCGGTCTGTTAGG Gel blot hybridization probe primer 

probe_psaA_for ACTCACATTGGACCTAGTGC Gel blot hybridization probe primer 

probe_psaA_rev AAACTGTGGAAGCCTAGAAATATACA Gel blot hybridization probe primer 

probe_rbcL_for CGTTGGAGAGACCGTTTCTT  Gel blot hybridization probe primer 

probe_rbcL_rev CAAAGCCCAAAGTTGACTCC Gel blot hybridization probe primer 

probe_psbA_for CATTCATTGCTGCTCCTCCAGTA Gel blot hybridization probe primer 

probe_psbA_rev GAGCCTCAACAGCAGCTAGGTCT Gel blot hybridization probe primer 

probe_ndhH_for GAGGATGTTGTTGACTGTGAACCCA Gel blot hybridization probe primer 

probe_ndhH_rev TAAAACCCGGTGGTCGTATTTTCC Gel blot hybridization probe primer 

probe_petB_for TCGATGGTCGGCAAGTATGATGG Gel blot hybridization probe primer 

probe_petB_rev GTGGATTGTCCAACACTAGCAC Gel blot hybridization probe primer 

 

  



Supplemental Table S13. Antibodies used in this study. 

Name Identifier Supplier Dilution Product No./comment 

α-AtCGL20 At2g17240/At3g24506 Biogenes 1:250-1:1000 generated in this study 

α-Lhcb3 At5g54270 Agrisera 1:2000 AS01 002 

α-Cp43 AtCg00280 Agrisera 1:3000 AS11 1787 

α-PsaA AtCg00350 Agrisera 1:1000 AS06 172  

α-PsaC AtCg01060 Agrisera 1:5000 AS10 939 

α-PetB AtCg00720 Agrisera 1:5000 AS18 4169 

α-NdhH AtCg01110 Toshiharu Shikanai 1:1000   

α-NdhL At1g70760 Toshiharu Shikanai 1:1000   

α-AtpF AtCg00130 Jörg Meurer 1:2000   

α-Csp41b At1g09340 Rob Sharwood, David 
Stern 

1:2000   

α-RbcL AtCg00490 Agrisera 1:5000 AS01 017 

α-Rps1 At5g30510 Agrisera 1:2000 AS15 2875  

α-Rpl2 AtCg01310 Agrisera 1:2000 AS15 2876 

α-CoxII AtMg00160 Agrisera 1:1000 AS04 053A 

α-Cpn60α1 At2g28000 Agrisera 1:1000 AS122613 

α-GFP   Thermo Fisher 1:5000 A-6455 
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