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Summary 

 

Idiopathic pulmonary fibrosis (IPF) is a severe and fatal Interstitial Lung disease (ILD) characterized 

by a progressive scarring of the lung. Many questions regarding the etiology and pathogenesis of this 

disease still remain unsolved. The current inflammatory theory suggests a deregulated communication 

between the mesenchymal and epithelial components due to lung injury which finally advances to an 

irreversible process of fibrosis and tissue remodeling. Inflammatory mediators, such as TGFβ1, trigger 

the activation of fibroblasts which then migrate into the intra-alveolar space, proliferate, and 

subsequently as myofibroblasts massively deposit extracellular matrix (ECM). Ultimately, this results 

in impairment of gas exchange and death by asphyxiation. Hence, the dynamic process of tissue 

remodeling depends on an activated, versatile invasive fibroblast phenotype.  

 

Secreted frizzled-related protein 1 (SFRP1), a Wnt signaling pathway inhibitor was identified as a 

negative regulator of fibroblast invasion (Oehrle et al., 2015). SFRP1 expression was elevated in the 

course of fibrosis in the bleomycin-induced (Bleo) mouse model (Schiller et al., 2015). Here, the role 

of SFRP1 was investigated in the first chapter with particular focus on the regulation and cellular 

molecular function of SFRP1 in lung fibrosis. First, the expression of SFRP1 was analyzed in fibrotic 

mouse (Bleomycin-induced fibrosis model) and IPF patient tissue resections. Additionally, ex vivo 

fibrosis-mimicking mouse and human PCLS systems were employed to investigate SFRP1 expression 

in fibrotic conditions. The data provided in the thesis revealed that SFRP1 was expressed in the early 

phase of fibrosis and strongly upregulated in the fibrogenesis process. Next, the molecular function of 

SFRP1 was assessed in specific lung fibroblast populations. The in-depth investigation revealed a cross-

talk between SFRP1 and the pro-fibrotic regulator TGFβ1, where TGFβ1-activated (myo) fibroblasts 

indicated significantly reduced expression of SFRP1. Moreover, contrary to numerous observations in 

cancer cells, classical epigenetic mechanisms were demonstrated to be uninvolved in the regulation of 

SFRP1 in lung fibroblasts. Finally, three subtypes of lung fibroblast population were identified based 

on their characteristic SFRP1 expression: SFRP1low, SFRP1high and SFRP1med (medium expression). 

Among them, SFRP1low fibroblasts that were shown to be highly invading also demonstrated significant 

reduction in RhoA expression and activation. Interestingly, SFRP1high fibroblasts were indicated to be 

highly distinct from αSMAhigh myofibroblasts in fibrotic and healthy mouse and human cells and 

tissues. 

 

The second topic of the thesis marked the development of an injury and/or early fibrosis-mimicking ex 

vivo tool to pre-clinically test compounds with antifibrotic activity. Precision cut lung slices (PCLS) 

present a sophisticated system that can bridge the gap between in vitro and pre-clinical in vivo studies. 
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Hence, utilizing this ex vivo tool, mouse PCLS were stimulated with a pro-fibrotic cocktail to mimic 

early fibrosis conditions. After treatment with the pro-fibrotic cocktail, specific fibrosis related 

biomarkers, including SFRP1, were found upregulated in this 3D model. Finally, by applying the anti-

inflammatory and anti-fibrotic drug Tranilast, I could demonstrate that the upregulation of the before 

mentioned fibrosis related markers was inhibited. 

 

The final topic of my thesis analyzed the functional interplay between the extracellular matrix niche 

and the embedded cells. A 3D cell culture ECM model was developed using decellularized lung tissue 

scaffolds from healthy and diseased mouse lungs of 300µm thickness. The engrafted primary human 

and mouse lung fibroblasts revealed interesting morphological plasticity based on distinct ECM niches. 

Furthermore, it was demonstrated that attachment of the fibroblasts to decellularized ex vivo lung 

scaffolds was deployed via focal adhesions. Additionally, the repopulated fibroblasts demonstrated 

differential migratory behavior based on their surrounding ECM niche along with deregulated 

expression of certain migration-related markers.  

 

In summary, the results obtained in the thesis revealed SFRP1 as a potential early biomarker for lung 

fibrosis. SFRP1low and SFRP1high fibroblast populations regulated by lung injury and/or TGFβ1 

stimulation were demonstrated to substantially affect lung fibroblast invasion, RhoA protein expression 

and activation and extent cell morphology. In fibrotic lung tissues of human and murine origin, an 

overall increase in SFRP1 expression was observed, which could be attributed to certain fibroblast 

subpopulations by scRNAseq technology, as well as confirmative stainings. Besides, innovative ex vivo 

tools were developed that could aid in extending the current knowledge in drug discovery as well as 

understanding chronic lung disease pathogenesis. 
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1. Introduction 

 

1.1. Anatomy and physiology of the lung 

The lungs are a pair of elastic, porous organs located on each side of the thorax which is responsible for 

gaseous exchange between the circulatory system and the environment. The lungs when fully expanded 

contain approximately 6 L of air [1]. The pleural membrane divides the lungs on the right and left with 

upper, middle and lower lobes and with upper and lower lobes respectively. When the air is taken in, it 

passes through the upper airways consisting of nasal cavity, pharynx and larynx and then subsequently 

passes to the lower airways encompassing the trachea, primary bronchi and the bronchial tree. From there 

onwards, the air travels into the small bronchioles and alveoli within the lung tissues. The conducting zone 

comprises of the airway regions that begin with the trachea and do not undergo any gaseous exchange. 

The trachea bifurcates into the two main bronchi which segregate into an array of bronchial and 

bronchiolar airways [1]. The peripheral airways are trailed by the respiratory bronchioles which is a 

transitional region and displays both alveolar and bronchial features (Fig.1.1). The alveoli are the 

functional units for gas exchange and are present in the terminal parts of the bronchi. The airway wall in 

the terminal end is comprised of alveoli which are referred to as alveolar ducts. These ducts are lined with 

alveoli which are called alveolar sacs. There are roughly 300 million alveoli present within the lungs 

within a total surface area of approximately 90 m2 [1].  
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Fig 1.1: Conducting and respiratory zone of the human respiratory system 

The conducting zone is composed of the trachea, bronchi and terminal bronchioles. Gaseous exchange does not take place in this 

region. The respiratory zone comprises of respiratory bronchioles, the alveolar ducts and alveolar sacs. This is the region for 

gaseous exchange between the lung and capillaries. Upto 23 generations of airway branching can occur (BéruBé et al., 2010). 

 

 

The boundary that separates the pulmonary capillaries from air in the alveoli is composed of endothelial 

cells, a constricted interstitial space and epithelial cells. There are two types of alveolar epithelial cells 

present in the lung namely alveolar type I (AT I) type II (AT II) cells. The AT I cells are responsible for 

gas exchange in the alveolus and the AT II cells are the progenitor cells that synthesize and secrete the 

components required for the pulmonary surfactant [3]. 

 

1.2. Interstitial Lung Diseases (ILD) 

Interstitial lung disease (ILD) is an umbrella term which comprises of chronic pulmonary disorders 

characterized by diffuse infiltrates, scarring of alveolar structures and finally loss of functional gas 

exchange units. The term “interstitial” is however a misnomer, as these disorders are not just confined to 

the alveolar Interstitium [4].   The alveolar region surrounded by the alveolar epithelial cells on one side 

and endothelial basement membranes on the other is called the interstitium. It is composed of several 

connective tissue components, mesenchymal cells, inflammatory cells and immune effector cells [5]. The 

term ILD entails more than 150 different sub-groups having the same pathological, physiological and 

clinical manifestations but different underlying etiologies. ILDs are classified according to their to their 

causes like inhaled inorganic or organic substances, radiation exposure, drug induced, certain connective 

tissue disorders, certain infections or idiopathic [6]. 

 

1.3. Idiopathic Pulmonary Fibrosis (IPF) 

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive and devastating lung disease of unknown 

etiology where patients have a median survival rate of 3-5 years from the time of diagnosis. IPF is the 

most prevalent form of ILD that affects almost 1.25 – 23.4 people per 100,000 population in Europe with 

a higher frequency in men than women [7]. The incidence rate rises dramatically with age as evidenced in 

the United Stated where surprisingly 0.2% of the population older than 75 years is already affected with 

IPF [8]. Although the cause of IPF is unknown, a correlation with the environmental triggers like cigarette 

smoke, exposure to wood or metal dust, radiation exposure has been reported. In addition, several 

comorbid conditions like obesity, diabetes mellitus, gastroesophageal reflux, pulmonary hypertension, 

obstructive sleep apnoea, coronary artery disease and emphysema have yet undefined effects on the 

clinical course of IPF [9]. 
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1.3.1. Diagnosis and treatment strategies of IPF 

Experts from multiple disciplines like pulmonology, radiology and pathology have to come together for 

diagnosing IPF. A pattern indicative of any usual or idiopathic interstitial pneumonia with known 

occupational or environmental triggers or any other systemic disease related needs to be excluded [9]. 

There currently exists four diagnostic criteria according to the high-resolution tomography (HRCT) studies 

of the lung: usual interstitial pattern (UIP), intermediate pattern, probable UIP pattern and an alternate 

diagnosis [10]. However, biomarkers from blood samples or Broncho alveolar lavage (BAL) for efficient 

diagnosis and outcome prediction are poorly defined. A rapid decline of forced vital capacity (FVC), which 

is the maximal volume of gas that can be forcefully exhaled after a full inhalation, has been shown to be 

associated with the poor prognosis in IPF [11]. The origin and progression of the disease varies greatly 

among the individual patients and cannot be foreseen during diagnosis. Some individuals present a slow 

progression and manifestation rate where others display chronic exacerbations comparably early from the 

time of diagnosis (Fig.1.2) [9]. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.2: Schematic demonstration of potential progression and clinical development of IPF 

The natural history pattern in IPF patients is very heterogeneous in nature. Majority of the patients experience a relatively slow 

disease progression along with slow lung function decline after diagnosis. However around 10% of the patients present rapid 

disease progression and displays acute clinical lung deterioration comparably early from the time of diagnosis [9]. 

 

 

Despite the strong research efforts over the past few decades, no efficient pharmaceutical therapy has 

been discovered till date. Diagnosis for IPF is generally hard as the symptoms resemble other lung 

diseases. The treatment for IPF are divided into pharmacological and non-pharmacological strategies. 

Although the ATS-ERS committee guidelines in the year 2011 accepted oxygen therapy for long-term 

care and lung transplantation, only a few patients qualify for lung transplantation [12]. The non-

pharmacological treatments available for IPF patients are non-invasive ventilation (NIV) along with 

oxygen therapy where the patients benefit from less breathlessness, fatigue and improved quality of life. 

Pulmonary rehabilitation and symptom management are undertaken by doctors to improve the overall 
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quality of life, whereas lung transplantation is a major procedure that will significantly improve the life 

expectancy of the IPF patients. But due to the shortage of donor lungs and the rigid criteria of the 

transplant centers, most people living with the disease do not get to receive a transplant [13]. All the 

important non-pharmacological treatment options for IPF are summarized in Table 1.1.  

 

Table 1.1: Non-pharmacological treatments for IPF 

 

Treatment Description 

 

Non-invasive ventilation and Oxygen 

therapy 

IPF causes levels of oxygen to fall in the blood and when they drop below 

88%, high-flow oxygen through nasal cannula and noninvasive ventilation 

(NIV) are potential options then. 

 

ECMO 
  

Patients are supported by extracorporeal membrane oxygenation (ECMO), 

while waiting for a lung transplant. 

 

Pulmonary rehabilitation 
 

It includes, breathing exercises, managing anxiety, stress and depression along 

with nutritional counseling.  

 

Symptom management 
 

The patients are treated for specific symptoms like coughing, gastro-

esophageal reflux, breathlessness and anxiety. 

 

Lung transplant 
The restoration of one or both the lungs from a donor is termed as lung 

transplantation.  
 

Modified from [13] and [14]. 

 

 

Although, anti-inflammatory agents like prednisolone and azathioprine was recommended for standard 

use by the ATS-ERS guidelines in the year 2020, the side-effects of these compounds could not be 

pacified. Table 1.2 shows some important medicinal and biological agents currently in use for the 

treatment of IPF. The efficacy of these established management strategies is largely untested and hence 

mortality rate continues to be high. Newer strategies which targets inflammatory mediators, pro-

fibrogenic mediators, fibroblast proliferation and activation, and autoimmunity needs to be examined and 

alternative safe approaches has to be established. 
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Table 1.2: Pharmacological treatments for IPF 

 

Agents Mode of action 

Pirfenidone Inhibitor of TGFβ, anti-inflammatory and antioxidant 

Nintedanib (BIBF1120)  Multiple tyrosine kinase inhibitor 

Corticosteroids (prednisone) Anti-inflammatory and immunosuppressant 

Mycophenolate (mofetil) Anti-inflammatory and immunosuppressant 

Azathioprine  Anti-inflammatory and immunosuppressant  

Carlumab CCL2 inhibitor  

Ethanercept Receptor antagonist of TNF 

Imatinib Tyrosine kinase inhibitor 

Pamrevlumab Monoclonal antibody against CTGF 

Thalidomide Inhibitor of TGFβ1 signaling and VEGF expression 

GS-6624 Anti-LOXL2 antibody 

Doxycycline MMP inhibitor 

GC1008 Anti-TGFβ1-3 antibody 

 

Modified from [13], [15] and [16]. 

 

 

Currently there are two prescribed anti-fibrotic drugs: Pirfenidone and Nintedanib that have been 

approved by the European Medicines Agency (EMA, 2011/2014) and the US Food and Drug 

Administration (FDA, 2015/2014).  Although they slow down development of scar tissue and IPF 

progression, however they are not able to halt or reverse the lung damage. Thus, the only successful 

intervention for IPF until today is lung transplantation [17]. 

 

 

1.3.2. Histopathological features of IPF 

The ATS consensus report in the year 2011 reported IPF to be associated with the pathological features 

of UIP [12]. UIP represents a spatial and temporal heterogeneity where the lung upon injury displays a 
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different pattern in the periphery from that of the center of the pulmonary lobule. The sub-pleural or 

paraseptal regions are affected by scarring and microscopic honeycombing and they intersect abruptly 

within normal lung tissue. Honeycombs are huge airspaces that are lined with bronchiolar epithelium that 

are filled with mucous and inflammatory cells such as macrophages and neutrophils [18]. The glossary 

from Fleischner society defined honeycombing as fibrotic lung tissues that contained several cystic 

airspaces along with thick walls and basically represented the end stage of various chronic lung diseases 

[19]. 

One of the important hallmarks of UIP   are fibroblastic foci characterized by the accumulation of hyper 

proliferative, activated fibroblasts and myofibroblasts covered by hyperplastic alveolar and bronchial 

epithelial cells. These fibrotic lesions are histopathologically detected by their expression of alpha smooth 

muscle actin (αSMA) (Fig.1.2). These small and distinct fibroblastic foci are located between alveolar 

and interstitial regions of the lung and their formation is connected to the lung injury sites. The number 

of fibroblastic foci is associated with increased disease activity and progression. 

 

 

 

 

 

 

 

 
 

 

Figure 1.3: Histopathological appearance of UIP  

Immunohistochemical staining for alpha smooth muscle actin (αSMA) of tissue sections from a normal donor lung (left panel) 

and a lung with usual interstitial pneumonia (UIP) pattern (right panel). The αSMA-staining in brown is indicated with red arrows. 

Intense signal for αSMA (red arrow) is seen in the fibroblastic foci of the UIP lung (modified from Eickelberg and Laurent 2010). 

 

 

1.3.3. IPF pathogenesis 

According to current perception, IPF results from impaired and non-resolved wound healing coupled with 

excessive extracellular matrix (ECM) deposition and accumulation, decreased (myo) fibroblasts apoptosis 

and chaotic epithelial cell repair [20]. The main driver for fibrogenesis is inflammation and there is 

increasing evidence for strong contribution of the inflammatory cells in tissue injury and repair [21]. 

However, with failures of anti-inflammatory therapeutic approaches, people started to consider IPF more 

strongly driven by an aberrant wound healing process instead [11].  The pathophysiology of IPF can be 

subdivided into three stages: predisposition, initiation and progression (Fig 1.4). 

Donor UIP 
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Figure 1.4: Pathophysiological stages of IPF 

IPF pathogenesis can be categorized into three distinct stages. The first pre-disposition stage comprises environmental triggers 

(normal or occupational), gene mutations and aging which is able to influence a person to develop lung fibrosis. The next initiation 

phase involves pro-fibrotic events, such as activation of TGF-β, resident fibroblast recruitment, epithelial-to-mesenchymal 

transition (EMT), and initiation of the unfolded protein response (UPR). Finally, the progression phase includes molecular events 

which leads directly to fibrosis, like fibroblast activation and transdifferentiation, dysregulated matrix deposition and remodeling, 

increased matrix stiffness, and other pro-fibrotic epigenetic changes. [8] 

 

 

Despite an extensive understanding of IPF, the exact causative mechanisms of the disease yet remain 

elusive. According to the current concept, persistent micro-injuries to the lung epithelium along with a 

combination of environmental stressors, viral or age-related disorders or a genetic predisposition triggers 

the onset of IPF [22]. In another large genome wide-associated study in 2011, a significant alteration was 

found with the SNP rs35705950, which is located upstream of the mucin 5B (MUC5B) gene on 

chromosome 11. This alteration was found in 34% of the IPF patients and led to 37.4 folds higher 

expression of MUC5B in the IPF lungs. However, the molecular consequences related to dysregulated 

MUC5B expression is yet to be known [23]. Other common genetic variants are listed in Table 1.3. 

Additional recent studies have uncovered several rare genetic variants as well in at least 11 loci in IPF 

which are summarized in Table 1.4.  

 

Table 1.3: Common gene variants in IPF 

  

Risk allele(s) Gene Gene function References 

rs408392, rs419598, 

rs2637988 
IL1RN Inhibitor of pro-inflammatory effect of IL-1alpha 

and IL-1beta 
[24] 

rs4073, rs2227307 IL8 Pro-inflammatory cytokine [25] 
[26] 

rs2609255 FAM13A Signal transduction [27] 

rs2736100 TERT Maintains telomere length [24] 

rs35705950 MUC5B Airway defense by mucus production and 

mucociliary transport 
[24] 

rs7934606 MUC2 Mucin production [27] 
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rs111521887, 

rs5743894, rs2743890 
TOLLIP Moderator of innate immune responses mediated 

by toll-like receptor and the transforming growth 

factor β signaling pathway 

[26] 

rs2076295 DSP Tightly links adjacent cells [27] 

Modified from [28]. 

 

 

Table 1.4: Rare gene variants in IPF  

 

Gene Gene function Pathological consequences References 

SFTPC Component of surfactant 

fluid 

Altered trafficking with disrupted 

proteostasis and increased ER 

stress 

[24] 

[29] 

SFTPA2 Modulates innate and 

adaptive immunity 

Increased ER stress [30] 

[31] 

ABCA3 Transport lipids across 

plasma membrane 

Retention of lipids in the ER, ER 

stress, and apoptotic signaling 

[32] 

TERT Enzyme in telomerase 

complex 

Telomere shortening [24] 

[33] 

TERC Template in telomerase 

complex 

Telomere shortening [24] 

[33] 

DKC1 Stabilizes the template in 

telomerase complex 

Telomere shortening [34] 

[24] 

TINF2 Telomere maintenance Telomere shortening [35] 

[36] 

RTELI DNA helicase Telomere shortening [35] 

[37] 

PARN mRNA stability Telomere shortening [38] 

[35] 

 

Modified from [28]. 

 

Furthermore, epigenetic changes like DNA methylation [39] and microRNA expression changes are also 

considered to contribute to disease progression. Several factors that contributes to dysregulated 

fibrinolysis include matrix metalloproteinases (MMPs), tissue inhibitor of metalloproteinases (TIMPs), 

oxidative stress and imbalance of different pro-fibrotic cytokines or chemokines along with accumulation 

of activated fibroblasts, leading to a perpetuating alveolar collapse which contributes significantly to the 

disease progression [40]. Although a detailed mechanism of the progressive character of IPF is not yet 

unearthed, the aberrantly remodeled ECM along with excessive fibroblast proliferation, invasion, 

activation, differentiation and matrix deposition are the most consistent features of IPF [41; 42]. 
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1.3.4. Aberrant Wnt signaling in IPF 

The classical Wingless/integrase-1 (Wnt) signalling pathway, conserved throughout evolution is 

responsible for the development of various organs. Wnt ligands are secreted glycoproteins which guide 

the pulmonary cells to embrace a particular fate all through the lung developmental phase as well as during 

tissue homeostasis in adults. 19 distinct Wnt ligands are present in humans, which are categorized 

according to their amino acid sequences. Classically, Wnt signaling is classified into canonical and non-

canonical signaling pathways. The canonical Wnt signaling depends on the activation of β-catenin (Fig 

1.5) and the Wnt ligand activated pathways independent of the β-catenin are termed as non-canonical Wnt 

signaling [43]. 

In the canonical pathway, the Wnt ligands bind with the frizzled (Fz) receptors and co-receptor lipoprotein 

receptor-related protein (LRP) 5/6 forming a 'signalosome' which results in a build-up of β-catenin. β-

catenin is then translocated to the nucleus where it modulates gene transcription. When Wnt ligands are 

absent, β-catenin gets bound to the destruction complex and finally degraded. Secreted Wnt pathway 

antagonists like secreted Frizzled related protein (SFRP), Dickkopf (Dkk) and Wnt inhibitory factor 

(WIF) block the interaction of the Wnt ligands with the Frizzled receptors thereby arresting Wnt signaling. 

The non-canonical Wnt signaling comprises the planar cell polarity pathway (PCP), which involves Jun 

N-terminal kinase (JNK) and the Wnt/Ca2+ pathway [44] (Fig.1.5). 

The PCP signaling is transmitted through the Frizzled receptors independent of the co-receptor LRP5/6 

and activates Dvl. Dvl subsequently mediates the activation of Rho via Daam1 which thereby activates 

Rho kinase (ROCK). Dvl also activates JNK via Rac. ROCK and JNK pathway in a unified way regulate 

cytoskeletal and morphological changes in the cell along with changes in cell migration and polarization. 

The Wnt-Ca2+ pathway activates the G proteins cascade to mediate activation of Dvl via the Frizzled 

receptors. Dishevelled then activates the phosphodiesterase (PDE) which in turn inhibits protein kinase G 

(PKG) and which then inhibits Ca2+ release. Dvl activates inositol triphosphate (IP3) via phospholipase C 

(PLC), which leads to release of intracellular Ca2+. This Ca2+ release activates calmodulin kinase (CaMK) 

and calcineurin. CaMK inhibit β-catenin/TCF function to negatively regulate dorsal axis formation and 

mediate tissue separation and cell movements (Fig.1.5). 
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Figure 1.5: Schematic representation of canonical (left) and non-canonical (right) WNT signaling pathway  

Modified from (Tw.sinobiological.com, 2019) 

 

The last decade has witnessed extensive research regarding the role of Wnt signaling pathways in chronic 

lung diseases. The idea of alterations in developmentally active pathways (like Wnt, Sonic Hedgehog, 

Notch) have already been established based on the gene expression profiling from IPF lungs of human 

and other animal models. The appearance of a “Wnt signature” from the gene expression analysis within 

the IPF lungs implicate that this developmental signaling pathway is reactivated following injury in the 

adult IPF lungs [45, 46, 47]. 

The canonical Wnt/β-catenin signalling is found to be active in various cell types in human and 

experimental IPF animal models [47]. Inhibition of the Wnt/β-catenin pathway also showed an attenuation 

in an experimental mice fibrosis model [48]. Specifically, the gene expression of Wnt-1, Wnt-10B, Wnt-

7B, FZD2, FZD3, CTNNB1 (β-catenin) and LEF1 was found to be increased in the IPF lung tissues 

compared to healthy donors [46]. The Wnt inhibitor DKK1 was also found to have an increased expression 

in the hyperplastic alveolar epithelial cells of human IPF lungs compared to the donor lungs [49]. Another 

clinical study in 2014 revealed elevated expression levels of co-receptors LRP5/6 in peripheral blood 

mononuclear cells (PBMCs) of IPF patients. The study shows that the LRP5/6 transcript levels were 

directly correlated with IPF progression and negatively related to clinical parameters such as lung 

diffusion capacity for carbon monoxide (DLco) and composite physical index (CPI) [50]. Although LRP5 

deficiency was shown experimentally to regulate alveolar macrophage differentiation, immune cell-ECM 

remodeling as well as to inhibit bleomycin-induced fibrosis, LRP5 deficiency in mice failed to protect 

them from fibrosis induced by TGFβ [50] and asbestos [51]. Increased expression of Wnt target genes 

Canonical  Non-canonical  
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like Wnt-inducible signaling protein-1 (WISP1) has also been demonstrated, which implies an enhanced 

Wnt/β-catenin signaling in IPF lung tissues [47]. 

The β-Catenin–independent or non-canonical Wnt signaling pathway in lung fibrosis is much less studied. 

The Wnt5A is largely known to exert its effect independent of β-Catenin and has been found to be 

upregulated in IPF fibroblasts [52]. A study in 2018 has shown that increased extracellular vesicles (EVs) 

especially exosomes in the BAL fluid (BALF) of IPF patients acted as carriers for Wnt5A and thus 

contributed to disease pathogenesis [53]. A recent study demonstrated that inhibiting the Rho-associated 

protein kinase (ROCK) signaling which is a known downstream effector of RhoA decreases fibrosis in a 

mouse model of IPF [54, 55, 56]. Another report states that TGFβ and mechanical stress in IPF regulate 

through a RhoA dependent pathway mediated via Rho Family GTPase 3 (Rnd3) and p190RhoGAP (a 

Rnd3 effector) to promote the fibrotic phenotype in fibroblasts [57]. Thus, reactivation of Wnt signaling 

in IPF represents an “attempted regeneration” signal and present a promising area to develop therapeutic 

strategies.  

 

1.3.5. Secreted Frizzled Related Proteins (SFRPs) in IPF 

Secreted frizzled related proteins (SFRPs) are secreted Wnt antagonists having eight known family 

members. The family members are classified according to sequence homology where, SFRP1, SFRP2 

and SFRP5 forms one subgroup, SFRP3 and SFRP4 forms another and lastly Sizzled, Sizzled2 and 

Crescent forms the third subgroup [58]. SFRPs has a cysteine rich domain (CRD) that shares 30-50% 

homology to the Frizzled receptors and hence can directly bind to the Wnt ligands altering their ability to 

form the Wnt-receptor complex [59]. Interestingly, CRD of SFRP1 can interact with itself and with that 

of Frizzled receptors [60]. Gene expression profiling from lung biopsies has shown increased SFRP2 

levels in IPF patients compared to donors [61]. Another transcriptional signature study has reported an 

increase in SFRP1 expression in IPF patient lungs [62]. Another recent study in 2019 has found that 

changes in promoter hypermethylation downregulates SFRP1 and SFRP4 in different stages of bleomycin 

induced pulmonary fibrosis in mice [63].  Although SFRP proteins play an important role in modulating 

IPF, their role in the disease is still not known clearly. 

 

1.3.6. IPF disease models 

Experimental models using animals have been widely developed to understand the fibrotic responses and 

perform initial pre-clinical testing for various anti-fibrotic drugs. Among them, the bleomycin-induced 

pulmonary fibrosis model in mouse and rat have been most widely used since the 1970’s as the most 

standard animal model. The bleomycin antibiotic was originally isolated from Streptomyces verticillatus. 

A single or booster dose of intratracheal bleomycin instillation causes huge inflammatory and fibrotic 
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reactions with symptoms peaking at day 14 [64]. However, one major drawback of this transient model 

is the inability to mimic the chronic nature of the disease as seen in human. Fluorescein isothiocyanate 

(FITC) model of pulmonary fibrosis was also extensively studied [65]. Although fibrosis in the FITC 

model is sustained for a period of 6 months compared to 28 days in the bleomycin model, the FITC model 

is not considered clinically relevant because of the huge variation in fibrotic responses from human [64]. 

Additional agents that have been used to induce fibrosis in rodents are irradiation [66], chemical Paraquat 

herbicide [67], minerals like silica [68] and asbestos [69, 70]. In addition, there are established cytokine 

overexpression animal models using either gene-transfer or transgenic approaches or both which results 

in lung fibrosis. The cytokines in use are TGF-β [71 and 72], TGF-α [73], IL-13 [74], TNF-α [75] and IL-

1β [76].  

 

The primary limiting factor for using animal 

models is the artificially triggered fibrosis along 

with the physiological and anatomical 

differences between human and rodent lungs. 

Although animal models are incapable of 

mimicking all the features of IPF, they are still 

widely used to carry out the initial investigation 

of fibrotic signaling pathways and different lung 

cell or cell-ECM interactions [77].    

                                                                                     

A wide variety of different compounds showed a different mode of action in the animal models and in 

pulmonary fibrosis patients. Hence, the compound targets, efficacies or side effects are validated in 

different established in vitro (2D, 2.5D and 3D) and ex vivo tissue model systems of IPF before they are 

used in human pre-clinical trials (Fig.1.6). Two-dimensional (2D) cellular models of fibrosis are critical 

in understanding the disease mechanism as they enable study of cell responses to soluble cues, matrix 

mechanics and other secreted extracellular matrix molecules in a controlled environment setting. While 

the primary lung cells mimic the in vivo lung phenotype much better, they are limited by donor or patient-

based variabilities and the Hayflick limit, which is the maximum number of times the cells can divide 

before senescence. On the other hand, immortal cell lines present a much more robust platform to conduct 

reproducible high throughput studies. Although the 2.5D and 3D in vitro culture systems provide a much 

more complex in vivo mimicking environment for the cells, the 2D setup still provides a robust platform 

for in vitro investigation, due to the relative ease of imaging and profiling cells for gene and protein 

expression [78]. Sandwich culture systems and use of ECM coated plates have both been termed as 2.5D 

and enable better study of complex cell-cell and cell-ECM interactions. Commercially available Transwell 

2.5D systems for lung fibrosis have been used for air-liquid interface (ALI) induced epithelial maturation, 

Figure 1.6:  Pre-clinical drug target validation prior to 

human clinical trials. (Sundarakrishnan et al., 2018) 
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surfactant and mucin production in airway epithelial cells [79]. In addition, airway epithelial and 

microvascular endothelial cells have been cultured on reconstituted basement membrane called Matrigel 

producing complex structures showing acini and tubule formation from the respective cells [80, 81]. As, 

neither Transwell nor basement membrane culture systems are able to support fibroblast integrin 

adhesions in all 3 dimensions, sandwich cultures have been recently established to study migration and 

chemotaxis similar to the 3D models. Mostly fibroblasts or other cells are sandwiched between two layers 

of mechanically tunable materials like polyacrylamide to support integrin adhesion in all planes [82]. 

Although 2.5D culture systems present better cell-cell and cell-ECM interactions compared to 2D setups, 

three dimensional (3D) in vitro models replicate the native lung tissue microenvironment with a greater 

accuracy. Since the ECM pivotally influences behavior of the cells residing in a native three-dimensional 

environment, it has led to the conclusion that mesenchymal cells should be studied in such an environment 

that closely mimics the structure and dimensionality of the ECM [83, 84]. Collagen type I hydrogels have 

been extensively used to study fibroblast-mediated collagen contraction due to soluble or matrix cues. A 

study in 1999 showed that this degree of collagen gel compliance by the fibroblasts had a direct 

relationship with the level of alpha smooth muscle actin (αSMA) expression [85]. In addition to collagen, 

other natural hydrogels include fibrin, laminin and elastin [86, 87].  In comparison to artificially 

synthesized biopolymers like polyacrylamide [88, 89] and polyethylene glycol [90], natural biopolymers 

resemble the physiological ECM architecture more closely.  Precision cut tissue slices have presented a 

practical solution to overcome these limitations. Precision-cut lung slices (PCLS) provide a valuable tool 

for investigating multiple regions of the lung simultaneously.  Human PCLS stimulated with a pro-fibrotic 

cocktail can mimic early fibrosis conditions as in IPF [91]. Additionally, acellular lung scaffolds are used 

to study cell-ECM interactions and for developing novel cell culture systems [41]. Taken together, 3D 

cell culture models exhibit both advantages and disadvantages and the choice of use for a study highly 

depends on the specific research question in context.  

 

1.4. Lung fibroblasts 

Fibroblasts are derived from mesenchymal cells and are the “workhorses” of the most abundant tissue type 

in the body: connective tissues [92]. In general, fibroblasts can be identified by their classical, elongated 

spindle-shape morphology [93]. As fibroblasts are one of the central mediators of lung fibrosis, a lot of 

the current IPF treatments now target fibroblast biology [92]. 

 

1.4.1. Fibroblasts in wound healing 

Fibroblasts play a critical role in wound healing processes such as degrading fibrin clots, producing new 

ECM material and collagen structures [94, 95]. Fibroblasts are known to be chemotactic, which means 

that they can migrate and accumulate in different tissue areas in response to secreted growth factors and 
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chemokines. Therefore, in the initial stages of tissue injury, fibroblasts migrate towards the wound and 

then subsequently transdifferentiate into highly contractile myofibroblasts. The myofibroblasts produce 

increased amounts of ECM proteins like elastin, fibronectin and collagens. In this process, a temporary 

ECM scaffold is produced that helps in wound closure and after the wound is sealed, the scaffold dissolves 

and myofibroblasts undergo apoptosis [96]. Although the precise mechanism for myofibroblast cell death 

is still unknown, this process is crucial for maintaining normal tissue homeostasis after a wound or injury 

[97]. 

 

1.4.2. Activated fibroblasts in IPF 

Fibroblast are a heterogeneous cell population, as different subtypes display varying capacities of ECM 

and collagen production. Especially, skin and lung fibroblast populations have been investigated in detail. 

[98, 99]. As, fibroblasts are not a terminally differentiated cells, they can be activated and transdifferentiate 

into other cell types. Generally, myofibroblasts are not found in healthy tissue and originate after an injury 

as a wound-healing response [100]. Various pre-cursor cells such as fibroblasts [101], epithelial cells 

[102], endothelial cells [103], smooth muscle cells [104], fibrocytes [105], pericytes [106] and 

mesenchymal cells [107] are said to transform into myofibroblasts under certain stress conditions. The 

TGF-β1 cytokine is produced from injured lung tissues and is the main inducer for myofibroblast 

differentiation. Any stress in the ECM leads to the proteolytic cleavage and subsequent release of the TGF-

β1 dimer, which then binds to the TGFβ1 RI-TGFβ1-RII complex inducing myofibroblast maturation 

[108]. A particular isoform of fibronectin, called the ED-A isoform along with TGFβ1 can activate α-

smooth muscle actin (αSMA) expression and its subsequent incorporation within stress fibers and serves 

as a hallmark for differentiating myofibroblasts. In contrast, proto-myofibroblasts contain stress fibers 

composed of β- and γ-actins. Normally, after the tissue repair process, the myofibroblasts undergo 

apoptosis, but in lung fibrosis they survive, which then subsequently leads to aberrant tissue fibrosis and 

remodeling processes [109]. 
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Figure 1.7: The origin of myofibroblasts 

Pre-cursor cells such as fibroblasts, epithelial cells, endothelial cells, smooth muscle cells, fibrocytes, pericytes and mesenchymal 

cells give rise to a proto-myofibroblast phenotype that under the effect of growth factors and mechanical stress undergo 

transformation to myofibroblast phenotype. 

 

 

A spectrum of pro and anti-fibrotic factors acts upon the fibroblasts either in a paracrine or/and autocrine 

fashion which drives the activation of these fibroblasts in fibrosis [8, 110]. Platelet-derived growth factor 

(PDGF) and transforming growth factor-beta (TGFβ) are the most comprehensively studied pro-fibrotic 

growth factors which are known to regulate fibroblast to myofibroblast transdifferentiation in IPF [108, 

111]. On the other hand, fibroblast growth factor 2 (FGF2) secreted by adipose tissue derived stromal 

cells can act as an anti-fibrotic growth factor that aids de-differentiation of myofibroblasts to fibroblasts 

[112, 113]. 

Additionally, Wnt/β-catenin signalling components in epithelial cells were reported to direct pro-fibrotic 

responses to fibroblasts in IPF [47]. Recently, epithelial cells have been demonstrated to communicate 

with fibroblasts along the CXCL12-CXCR4 chemokine axis in IPF [114]. Moreover, inflammatory 

mediators like Prostaglandin E2 (PGE2) were shown to mediate anti-fibrotic signals between epithelial 

cells and fibroblasts and limit fibroblast migration, proliferation and collagen secretion [115, 116]. 

Furthermore, a study in 2017 have indicated transformation of the lipofibroblasts to myofibroblasts during 

fibrogenesis and vice versa during fibrosis resolution [117]. Taken together, the different fibrotic signaling 
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components acting upon the fibroblasts play a multitude of roles in the transdifferentiation process to 

myofibroblasts.  

 

Figure 1.8: Schematic overview of the pro-fibrotic stimuli directing myofibroblast transformation in IPF 

The pro-fibrotic factors drive transdifferentiation of fibroblasts into myofibroblasts. Activated myofibroblasts can also release 

pro-fibrotic cytokines in an autocrine manner which contribute to inflammation and ongoing fibrosis. [92] 

 

 

 

1.4.3. Transforming Growth Factor-beta (TGFβ) signaling 

A large spectrum of pro-fibrotic mediators synthesized by various cell types are known to promote 

fibroblast proliferation, migration, and transdifferentiation along with increased ECM synthesis. TGFβ1 

is the most potent mediator which acts as the central player in several diseases [118]. TGFβ1 is a member 

of the TGF-β superfamily and of all three mammalian isoforms (TGFβ 1, 2 and 3), TGFβ1 is ubiquitously 

expressed. The expression of TGFβ1 is highly induced in fibrotic tissues in rodent disease models [119] 

as well as in IPF patients [120]. Overexpression of active TGFβ1 leads to persistent lung fibrosis whereas 

blocking TGFβ1 signaling ameliorates pulmonary fibrosis [121]. TGF-β1, synthesized as a small latent 

complex consists of a non-covalently associated active TGF-β1 with latency associated peptide (LAP). 

The synthesis of this latent TGFβ1 is increased by inflammatory mediators such as TNF-α. Although, it 

is secreted as an inactive molecule, it needs to be activated to perform any biological function [122]. 

Several Proteases [123], integrins [124], pH extremities [125] and reactive oxygen species [126] are some 

of the well-known factors that activate TGF-β1. Activated TGFβ1 mediates the pro-fibrotic effects of 

mesenchymal cells, aids in transdifferentiation of fibroblasts into myofibroblasts, causes EMT and 

excessive ECM generation [127]. 
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TGFβ downstream signaling is transmitted via Smad-dependent (called canonical) pathway and Smad-

independent (called non-canonical) pathway [128] (Fig. 1.9). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.9: Canonical (Smad-dependent) and non-canonical (Smad-independent) TGF-β signaling pathways 

TGFβ binds its receptors and forms an activated-receptor complex. The activated complex mediates the canonical signaling 

through SMADs via phosphorylation. Finally, the SMADs form a trimeric complex which translocates to the cell nucleus and 

regulates downstream gene expression. TGFβ mediates the non-SMAD pathway to regulate biological responses via NF-kB, 

p13k/Akt, RhoGTPases, JNK and MAPK pathway. [129] 

 

Although there is a lot of uncertainty regarding the precise etiology of IPF, it is generally accepted that 

aberrant wound healing processes and epithelial-mesenchymal crosstalk are major contributors for 

pathogenesis in fibrosis. In response to cytokines like TGFβ1, the alveolar type II epithelial cells are hyper 

proliferative and immediate recruitment of fibroblasts advances into the development of fibroblastic foci 

with disease progression. Given the central role of TGFβ1 in fibrosis, anti-fibrotic drugs are being 

developed which target the TGFβ1 signaling pathway components [133]. Hence, it might be of particular 

interest to identify molecular interactors of the TGFβ1 pathway in lung fibrosis to gain further insight into 

the pathogenesis of the disease. 
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1.5. Extracellular matrix (ECM) 

Extracellular matrix (ECM) can broadly be defined as a scaffold supporting all the tissues and organs of 

the body [130]. The cells residing within the complex environment of the ECM respond to changes in the 

environment (injury/disease) by secreting growth factors, cytokines and other signaling molecules, which 

then stimulates cellular processes such as proliferation, migration or apoptosis. In mammals, the 

extracellular matrix comprises of an interstitial matrix with basement membranes [131]. The basement 

membranes are sheet-like structures of ECM on which various cells rest. The ECM components are 

produced intracellularly by resident cells and are then secreted via exocytosis. 

 

Figure 1.10: Molecular components of ECM 

 

 

 

The ECM formation is essential for important physiological processes like growth, wound healing, and 

maintaining tissue homeostasis [132]. A total understanding of structure and composition of the ECM 

could help in discerning the complex dynamics of cell invasion. . The ECM stiffness has important 

implications for cellular migration, gene expression, and further differentiation [134]. Cells are able to 

sense ECM rigidity and then migrate preferably towards stiffer regions and this phenomenon is called as 

durotaxis [135]. Cells can adhere to the ECM components either via focal adhesions (connect ECM with 

actin filaments) or via hemidesmosomes (connect ECM to intermediate filaments). Specific cell adhesion 

molecules called integrins regulate the attachment of the cells to ECM components like fibronectin and 

laminin [136]. There is a plethora of cell types that contribute to the development of ECM. Among them, 

fibroblasts secrete most of the precursor ECM components, resulting in a structural framework for other 

cell types. Interestingly, fibroblasts have been reported to react to instructive cues from their surrounding 

ECM microenvironment [137]. Hence, understanding the interplay between cells and the ECM in the 

context of chronic lung diseases can provide further information regarding disease pathogenesis. 
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1.5.1. Aberrant ECM remodeling in IPF 

The dynamic remodeling of the ECM is part of maintaining normal organ homeostasis and wound healing, 

but pathological conditions develop when ECM remodeling becomes uncontrolled and aberrant. 

Therefore, in a diseased condition the dysregulation of this finely balanced process leads to devastating 

tissue damage along with uncontrolled ECM deposition. Fibroblasts express an array of matrix 

components which drives matrix deposition and regulate expression of proteases that moderate matrix 

degradation. The extensive secretion of ECM is one of the major phenotypic response of activated 

fibroblasts in IPF. One single fibroblast when activated by growth factors or mechanical stimuli produces 

up to 5,000 molecules of procollagen per minute [138]. Mediators involved in the dynamic process of 

collagen degradation are usually local polypeptide growth factors like platelet-derived growth factor 

(PDGF), epidermal growth factor (EGF), fibroblast growth factor (FGF), cytokines such as TGFβ1, 

interleukins and several other cellular enzymes [139]. 

The extensive amounts of ECM deposition in IPF is not only consequence of aberrantly increased ECM 

component secretion by the activated fibroblasts, but also might be due to the malfunction of effective 

degradation of the ECM material especially by the MMPs [45]. Another important aspect of the fibrotic 

ECM is its significantly altered framework and biochemical and biomechanical composition. A study in 

an experimental fibrosis model with atomic force microscopy has demonstrated increased ECM stiffness 

within the lung parenchyma [140]. Therefore, ECM reciprocate information with the fibroblasts 

influencing a feed forward loop. Taking this inter-dependence of the ECM and the mesenchymal cells, it 

seems likely that fibroblast behavior studies be performed in 3D matrices or in vivo mimicking 3D 

scaffolds [141]. 
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2. Objectives 

 

Idiopathic pulmonary fibrosis remains a challenging and progressive disease with no established 

effective therapy until today. The lack of proven therapeutic strategies for IPF stems partially from the 

lack of complete understanding of the underlying pathomechanism and partially from the more or less 

greater limitations of effective translatable animal models to successfully test potential drug targets and 

their efficacy [142]. Over time, progressive fibrosis like IPF worsens, destroys the tissue architecture, 

leads to organ failure and finally to death. The two established drugs Nintedanib and Pirfenidone help 

to slow down the rate of IPF progression, but cannot reverse or stop the scarring in the lungs [143]. 

Hence, there is an urgent medical need to identify novel druggable targets acting in the early phase of 

fibrosis, as well as relevant animal models and tools that can effectively mimic the ongoing fibrosis. 

The present study aimed to identify and establish SFRP1 as a novel fibrosis associated marker and to 

develop ex vivo tools to help to extend the current knowledge in lung fibrosis. The specific aims were 

as follows: 

 

1. Characterization of SFRP1 as a novel regulator and/or biomarker of lung fibrosis.  

Preliminary studies showed that SFRP1, an inhibitor of the Wnt signaling pathway was strongly 

downregulated on transcript and protein levels in invasive fibroblasts [144]. Contrarily, a time 

series tissue proteome profiling (Mass spec/Orbitrap) of fibrotic mouse lungs (bleomycin induced 

lung injury mouse model) demonstrated increased SFRP1 expression in the extracellular matrix 

fraction [145] at day 14, the peak of fibrosis in the mouse. Additionally, a published whole 

genome mRNA microarray analysis reported a 2.5-fold upregulation of SFRP1 gene expression 

in an IPF patient cohort (n=197) when compared to healthy donor controls [39]. However, very 

little is known about the molecular and tissue-specific function of SFRP1 in healthy and fibrotic 

lung fibroblasts and tissues. Therefore, the aim of the first study was to decipher the role of 

SFRP1 in lung fibrosis. In the first part of this project, the expression level of SFRP1 was 

investigated in fibrotic mouse and IPF tissues as well as in ex vivo fibrosis models. Next, I wanted 

to examine the influence of loss-of-gain functions of SFRP1 on cellular behavior(s) in lung 

fibroblasts. Moreover, the regulation of SFRP1 expression via pro-fibrotic growth factors and 

epigenetic mechanisms were further investigated in primary human and mouse lung fibroblasts. 

The final goals were to identify the cell types (or subtypes) in the lung that express SFRP1 in 

healthy and fibrotic conditions and further characterize them. 
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2. Development and validation of a pre-clinical ex vivo tool for validating novel therapeutics in 

IPF. Precision-cut lung slices (PCLS) have presented a potential ex vivo solution for bridging the 

gap between the in vitro cell culture experiments and pre-clinical in vivo studies [146]. Although 

a lot of studies have been recently performed with a focus on human PCLS [147, 91], mouse 

models generally still represent an important tool due to their easy availability and genetic 

manipulations. Here, the second objective of the study was to develop and further implement an 

ex vivo fibrosis-mimicking model using mouse PCLS. To address this, mouse PCLS were 

stimulated with a pro-fibrotic cocktail and fibrosis-associated biomarkers, including SFRP1, 

were verified on transcript and protein levels.  

 

 

3. Physiological cues from the ECM instruct fibroblast functions in 3D-LTCs.                      

          Bioengineering and regenerative medicine fields have stated an extensive use of acellular 

biological tissue scaffolds as the key to mitigate the shortage of donor lungs for transplantation 

in the future [148, 149]. Therefore, it has become crucial to understand the interaction of resident 

cells with their surrounding ECM niche on cellular and molecular levels. To address this, mouse 

and human fibroblasts were reseeded on decellularized lung tissue slices (PCLS), as they 

represent the primary effector cell types in lung fibrosis [150]. Following engraftment of the 

fibroblasts in various healthy and diseased decellularized lung scaffolds, the altered cellular 

behavior of these cells due to instructive cues from the ECM were investigated. 
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3. Materials and Methods 

 

3.1. Materials 

 

 

3.1.1. Antibodies 

3.1.1.1. Primary antibodies 

Antigen Product number Host Type Application Dilution Manufacturer 

CTNND1 610133 mouse monoclonal WB 1:1000 BD Sciences 

Desmin sc-271677 mouse monoclonal WB 1:500 Santa Cruz 

E-cadherin 610181 mouse monoclonal WB 1:2500 BD Sciences 

Paxillin 610619 mouse monoclonal WB 1:500 BD Sciences 

Src 2110 mouse monoclonal WB 1:1000 CST 

Talin T3287 mouse monoclonal WB 

IF 

1:1000 

1:100 

Sigma 

Tropomyosin T 2780 mouse monoclonal WB 1:1000 Sigma 

αActinin1 sc-135819 mouse monoclonal WB 1:1000 Santa Cruz 

αSMA A5228 mouse monoclonal WB 

IF 

1:2000 

1:200 

Sigma 

β-actin-HRP A3854 mouse monoclonal WB 1:40000 Sigma 

Caldesmon ab32330 rabbit polyclonal WB 1:1000 Abcam 

Calponin h1 NB110-55650 rabbit monoclonal WB 1:1000 Novus Biologicals 

Caveolin 1 13267 rabbit monoclonal WB 1:1000 CST 

CDC42 2466 rabbit monoclonal WB 1:500 CST 

Collagen 1 600-401-103-0.1 rabbit polyclonal WB 

IF 

1:1000 

1:100 

Rockland 

Fibronectin sc.9068 rabbit polyclonal IF 1:100 Santa Cruz 

GAPDH-

HRP 

3683 rabbit monoclonal WB 1:1000 CST 

Ki-67 RBK027 rabbit monoclonal IF 1:100 Zytomed 

Laminin A/C 2032 rabbit polyclonal WB 1:1000 CST 

p44/42 Mapk 9101 rabbit polyclonal WB 1:1000 CST 

pPaxillin ab32115 rabbit monoclonal WB 1:500 Abcam 

pSMAD3 ab52903 rabbit monoclonal WB 1:2000 Abcam 

pZyxin ab11518 rabbit polyclonal WB 1:500 Abcam 

Rac 2465 rabbit polyclonal WB 1:500 CST 
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RhoA 2117 rabbit monoclonal WB 1:500 CST 

Rock1 NB100-624 rabbit polyclonal WB 1:1000 Novus Biologicals 

SFRP1 ab126613 rabbit monoclonal WB 

IF 

1:500 

1:100 

Abcam 

SMAD3 9523 rabbit monoclonal WB 1:1000 CST 

TenascinC ab108930 rabbit monoclonal WB 1:1000 Abcam 

Tensin sc-28542 rabbit polyclonal WB 1:1000 Santa Cruz 

TGFβ1 ab9758 rabbit polyclonal WB 1:1000 Abcam 

Vimentin sc-7557 rabbit polyclonal WB 1:500 Santa Cruz 

YAP 4912 rabbit polyclonal WB 1:1000 CST 

Zyxin ab11518 rabbit polyclonal WB 1:1000 Abcam 

β-tubulin 2146 rabbit polyclonal WB 1:1000 CST 

 

3.1.1.2.  Secondary antibodies 

Antigen Product number Host Application Dilution Manufacturer 

Anti-rabbit IgG HRP-linked NA934V donkey WB 1:40000 GE Healthcare 

Alexa Fluor 488 donkey anti-

mouse IgG  

R37114 donkey IF 1:200 Invitrogen 

Alexa Fluor 568 donkey anti-

rabbit IgG  

A10042 donkey IF 1:200 Invitrogen 

Anti-mouse IgG HRP-linked NA931V sheep WB 1:40000 GE Healthcare 

 

3.1.2. Primers 

Primers for quantitative real time polymerase chain reaction (qRT-PCR) were purchased from Eurofins, 

Luxembourg. 

Gene Species  Sequence 5’-3’ 

ACTA2 human Fw 

Rev 

CAGGGCTGTTTTCCCATCCATTGT 

TCAGGGTCAGGATTCCTCTTTTGC 

GAPDH human Fw 

Rev 

TGACCTCAACTACATGGTTTACATG 

TTGATTTTGGAGGGATCTCG 

HPRT human Fw 

Rev 

AAGGACCCCACGAAGTGTTG 

GGCTTTGTATTTTGCTTTTCCA 

RHOA human Fw 

Rev 

GGAAAGCAGGTAGAGTTGGCT 

GGCTGTCGATGGAAAAACACA 
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SFRP1 human Fw 

Rev 

GGA CCG GCC CAT CTA CCC GT 

ACA CCG TTG TGC CTT GGG GC 

SFRP2 human Fw 

Rev 

TCTTCCTCTTTGGCCAGCCC 

TCACATCAATTTGGAGCTTC 

SFRP3 human Fw 

Rev 

TCTGCACCATTGACTTCCAG 

TTAGAATCTCCTTCACCTCC 

SFRP4 human Fw 

Rev 

TCCTGGCCATCGAGCAGTAC 

GATGAGGACTTGAAGATCTC 

SFRP5 human Fw 

Rev 

ACTCGGATACGCAGGTCTTC 

TTCTTGTCCCAGCGGTAGAC 

TGFβ1 human Fw 

Rev 

GTGGGTTTCCACCATTAGCAC 

GGCCAGATCCTGTCCAAGC 

ACTA2 mouse Fw 

Rev 

GCTGGTGATGATGCTCCCA 

GCCCATTCCAACCATTACTCC 

COL1A1 mouse Fw 

Rev 

CCAAGAAGACATCCCTGAAGTCA 

TGCACGTCATCGCACACA 

CTGF mouse Fw 

Rev 

CTGCACCCGGCCTGCTATGG 

GAGGCCCTTGTGTGGGTCGC 

FN mouse Fw 

Rev 

GTGTAGCACAACTTCCAATTACGAA 

GGAATTTCCGCCTCGAGTCT 

GAPDH mouse Fw 

Rev 

TGTGTCCGTCGTGGATCTGA 

CCTGCTTCACCACCTTCTTGA 

HPRT mouse Fw 

Rev 

ATAGTGATAGATCCATTCCTATGACTG 

TTCAACAATCAAGACATTCTTTCCA 

PAI1 mouse Fw 

Rev 

AAGACTC CCTTCCCCGACTC 

GGGCGTGGTGAACTCAGTATAG 

SFRP1 mouse Fw 

Rev 

GTGCGAGCCGGTCATGCAGT 

CACACGGTTGTACCTTGGGGC 

TGFβ1 mouse Fw 

Rev 

GTGGACCGCAACAACGCC 

TGGGGGTCAGCAGCCGGT 

 

 

3.1.3. Small interfering RNA (siRNA) 

siRNA Manufacturer Product Number 

Scrambled Silencer® Negative control No. 1 Ambion, Life Technologies; USA AM4611 

Scrambled Silencer® Negative control No. 5 Ambion, Life Technologies; USA AM4642 
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Silencer™ Select Negative Control No. 1 siRNA Ambion, Life Technologies; USA 4390843 

Silencer® Select SFRP1 siRNA 1 Ambion, Life Technologies; USA s12713 

Silencer® Select SFRP1 siRNA 2 Ambion, Life Technologies; USA s12714 

Silencer® Select SFRP1 siRNA 3 Ambion, Life Technologies; USA s12715 

 

3.1.4. Cell lines  

Cell line Origin Manufacturer 

CCL206 (MLFb) Murine newborn lung fibroblasts ATCC-Nr. CCL-206 

 

3.1.5. Human cells and tissues 

Lung tissues from healthy and IPF tissue resections were kindly provided by Universities of Giessen and 

Marburg Lung Center (UGMLC), Gießen, Germany and from the Asklepios Clinic, Gauting, Germany. 

All tissue samples were approved with ethical consent according to national and international guidelines. 

 

Primary human fibroblasts  Origin Manufacturer 

P1-P4 Non-carcinogenic lung tissue resection 

from patient with lung metastasis 

Asklepios Clinic; Munich, Germany 

 

3.1.6. Cell culture media 

Cell type Cell culture medium Product Number Manufacturer 

MLFbs DMEM F-12 

10 % FBS 

100 U/mL Penicillin/Streptomycin 

11320033 

P30-3702 

15140122 

ThermoFischer Scientific 

Pan Biotech 

Gibco, Life Technologies 

phFbs DMEM F-12 

20 % FBS 

100 U/mL Penicillin/Streptomycin 

11320033 

P30-3702 

15140122 

ThermoFischer Scientific 

Pan Biotech 

Gibco, Life Technologies 

pmFbs DMEM F-12 

20 % FBS 

100 U/mL Penicillin/Streptomycin 

11320033 

P30-3702 

15140122 

ThermoFischer Scientific 

Pan Biotech 

Gibco, Life Technologies 

 

 



Materials and Methods 
 

 
28 

 

 

3.1.7. Reagents and chemicals 

Product Manufacturer 

Nintedanib (BIBF 1120), Selleckchem, Munich, Germany 

Sfrp1-inhibitor sc-222310  (CHEMBL473916) Santa Cruz, Dallas, USA 

Recombinant human SFRP1 5396-SF, R&D Systems, Minneapolis, USA 

Low gelling point agarose A9414,Sigma, Germany 

Bleomycin sulfate Almirall, Barcelona, Spain 

Ammonium peroxodisulfate  AppliChem Darmstadt, Germany 

Chloroform AppliChem AppliChem, Darmstadt, Germany 

Dithiothreitol (DTT)  AppliChem, Darmstadt, Germany 

DNase I AppliChem AppliChem, Darmstadt, Germany 

Ethanol  AppliChem, Darmstadt, Germany 

Isopropanol AppliChem, Darmstadt, Germany 

Methanol AppliChem, Darmstadt, Germany 

Non-fat dried milk powder  AppliChem, Darmstadt, Germany 

Nonidet P-40  AppliChem, Darmstadt, Germany 

Random hexamers Applied Biosystems, Life Technologies, Carlsbad, 

USA 

Ketamine  Beta Pharma, Princeton, USA 

Collagenase I  Biochrom, Berlin, Germany 

Coomassie Brilliant Blue R-250  BioRad, Hercules, USA 

Dimethyl sulfoxide (DMSO)  Carl Roth, Karlsruhe, Germany 

Xylazinhydrochloride Cp Pharma, Burgdorf, Germany 

Fluorescence mounting medium  Dako, Hamburg, Deutschland 

Desoxyribonucleotides mix (dNTPs)  Fermentas, Thermo Fisher Scientific, Germany 

DMEM (high glucose, 4.5g/l) PAA GE Healthcare, Cölbe, Germany 

DMEM/HAM’s F12 PAA,  GE Healthcare, Cölbe, Germany 

Penicillin-Streptomycin (10,000 U/ml)  Gibco, Life Technologies, Carlsbad, USA 

HEPES solution H0887, Sigma-Aldrich, Taufkirchen, Germany 

Masson-Trichrome HT15-1KT, Sigma, Germany 

Lipofectamine 2000 Invitrogen, Life Technologies, Carlsbad, USA 

Lipofectamine RnaiMax Invitrogen, Life Technologies, Carlsbad, USA 

Lipofectamine2000  Invitrogen, Life Technologies, Carlsbad, USA 

Phalloidin  Invitrogen, Life Technologies, Carlsbad, USA 

RNase inhibitor 20U/μl  Invitrogen, Life Technologies, Carlsbad, USA 

Trichostatin A Med-ChemExpress, NJ, USA 

Collagen G from bovine calf skin Merck Millipore, Berlin, Germany 

Fetal bovine serum (FBS, Sera Plus)  PAA, GE Healthcare 
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ECL Plus Western Blotting Substrate  Pierce, Thermo Fisher Scientific, Schwerte, Germany 

Hoechst 33342  Pierce, Thermo Fisher Scientific, Schwerte, Germany 

QIAzol Lysis Reagent (79306) Qiagen, Hilden, Germany 

Recombinant human TGFβ1  R&D Systems, Minneapolis, USA 

Complete® Mini without EDTA (Protease-

inhibitor)  

Roche Diagnostics, Mannheim, Germany 

Light Cycler 480 SybrGreen l Master Mix  Roche Diagnostics, Mannheim, Germany 

Elastase Sigma, Taufkirchen, Germany 

0.2% Trypsin - EDTA solution  Sigma-Aldrich, Taufkirchen, Germany 

Bovine serum albumin (BSA)  Sigma-Aldrich, Taufkirchen, Germany 

DAPI (4',6-diamidino-2-phenylindole)  Sigma-Aldrich, Taufkirchen, Germany 

Decitabine (A3656) Sigma-Aldrich, Taufkirchen, Germany 

Ponceau S solution  Sigma-Aldrich, Taufkirchen, Germany 

Restore Plus Western Blot Stripping  Thermo Fisher Scientific, Schwerte, Germany 

SB431542 Tocris Bioscience, Bristol, U.K. 

Sis3 Tocris Bioscience, Bristol, U.K. 

UO126 Tocris Bioscience, Bristol, U.K. 

Eosin Y solution X883, Roth, Karlsruhe, Germany 

 

3.1.8. Buffer formulations 

Buffer Reagents 

Laemmli loading buffer (6x) SDS 12% (w/v) 

Glycerol (87%) 60% (v/v) 

Bromophenol blue 0.06% (w/v) 

Tris/HCl, pH 6.8 375 mM 

DTT 600 mM 

RIPA (radio-immunoprecipitation assay) 

buffer 

Tris-Cl pH 7.4 50 mM 

NaCl 150 mM 

NP40 1% (v/v) 

Na-deoxycholate 0.25% (v/v) 

Transfer buffer (10x) Tris/HCl 250 mM 

Glycine 1.92 M 

TBS (Tris-buffered saline) (10x) Tris/HCl pH 7.4 10 mM 

NaCl 150 mM 

TBS-T (TBS with TWEEN®20) TBS (10x) 10% (v/v) 

Tween®20 0.1% (v/v) 

Millipore-H2O 89.99% (v/v) 
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SDS-PAGE Separation Gel (10%) Millipore-H2O-3.7 ml 

1.5 M Tris/HCl pH 8.8-2.25 ml 

SDS 20%-45 μl 

Acrylamide-3 ml 

APS 10%-30 μl 

TEMED-6 μl 

SDS-PAGE Stacking Gel (4%) Millipore-H2O 1.8 ml 

0.5 M Tris/HCl pH 6.8 750 μl 

SDS 20% 15 μl 

Acrylamide 400 μl 

APS 10% 15 μl 

TEMED 3 μl 

PBST washing buffer NaCl 137 mM 

KCl 2.7 mM 

Na2HPO4 10 mM 

KH2PO4 2 mM 

Tween-20 1 % (v/v) 

1X BSA (Bovine Serum Albumin) Bovine serum albumin-5g 

20% Triton X-100-2.5ml 

10X PBS-50ml 

5% Milk Blocking Solution 5 gm Skim Milk powder/100ml 

1X TBS-T 

SDS (sodium dodecyl sulphate) solution 

(20%) (w/v) 

SDS 200 g 

Millipore-H2O 1 L 

PBS (Phosphatate buffered saline) pH 7.4 NaCl 1.37 M 

KCl 27 mM 

Na2HPO4 100 mM 

KH2PO4 20 mM 

NaCl 1.37 M 

 

3.1.9. Consumables 

Consumable Manufacturer 

35-mm Cell-View cell culture dish  Greiner Bio-One, Kremsmünster, Austria 

96-well imaging plates, Falcon®  Corning, Thermo Fisher Scientific, Schwerte, 

Germany  

96-well imaging plates, Falcon®  Corning, Thermo Fisher Scientific, Schwerte, 

Germany  
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Amicon Ultra 3K-0.5 mL centrifugal filters  Merck Millipore, Darmstadt, Germany  

Amicon Ultra 3K-0.5 mL centrifugal filters  Merck Millipore, Darmstadt, Germany  

Cell culture dishes  Corning, Thermo Fisher Scientific, Schwerte, 

Germany  

Cell culture dishes  Corning, Thermo Fisher Scientific, Schwerte, 

Germany  

Cell culture multi-well plates  TPP Techno Plastic Producers, Trasadingen, 

Switzerland  

Cell culture multi-well plates  TPP Techno Plastic Producers, Trasadingen, 

Switzerland  

Combitips advanced®  Eppendorf , Hamburg, Germany  

Cryovials 1.5 ml  Greiner Bio- One, Frickenhausen, Germany  

Falcon Tube (15 ml, 50 ml)  BD Bioscience, Heidelberg, Germany  

Filter Tips  Biozym Scientific, Hessisch Oldendorf, Germany  

Glas Pasteur pipettes  VWR International, Darmstadt, Germany  

Hyperfilm ECL Film  Amersham, GE Healthcare, Freiburg, Germany  

Measuring pipettes, sterile, single use (5 ml, 10 ml, 25 

ml, 50 ml)  

VWR International, Darmstadt, Germany  

Microscope slides  Thermo Fisher Scientific, Darmstadt, Germany  

Nalgene cryogenic tubes Thermo Fischer Scientific, Waltham, MA 

Nylon filters, pore size 70 μm  BD Bioscience, Heidelberg, Germany  

PCR plates, 96-well plate  Kisker Biotech, Steinfurt, Germany  

Protein LoBind Tubes (1.5 ml)  Eppendorf, Hamburg, Germany  

PVDF membrane  Merck Millipore, Darmstadt, Germany  

Reaction tubes (0.5 ml, 1.5 ml, 2 ml)  Eppendorf, Hamburg, Germany  

Reagent reservoirs, 50 mL  Corning, New York, USA  

Sealing foils for PCR plates  Kisker Biotech, Steinfurt, Germany  

Sterican cannulas BD Biosciences, Heidelberg, Germany 

Syringes Neolab, Heidelberg, Germany 

ThincertTM 6-well cell culture inserts (pore Ø 8μm)  Greiner Bio- One, Frickenhausen, Germany 

Tips  Eppendorf, Hamburg, Germany  

white 96-well microplates  Berthold Technologies, Bad Wildbad, Germany  

white 96-well microplates  Berthold Technologies, Bad Wildbad, Germany  

μ-Plate 24 Well  Ibidi, Planegg/Martinsried, Germany  
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3.1.10. Laboratory equipment and software 

Laboratory equipment Manufacturer 

-20°C freezer MediLine LGex 410  Liebherr, Biberach, Germany  

2100 Antigen Retriever  Aptum Biologics, Southamptom, U.K.  

-80°C freezer U570 HEF  New Brunswick, Hamburg, Germany  

Aerosolizer, micro sprayer IA-1C, Penn-Century, Wyndmoor, PA 

Analytical scale XS20S Dual Range  Mettler Toledo, Gießen, Germany  

Autoclave DX-45  Systec, Wettenberg, Germany  

Autoclave VX-120  Systec, Wettenberg, Germany  

Axiovert 40C microscope  Zeiss, Jena, Germany  

Cell culture work bench Herasafe KS180  Thermo Fisher Scientific, Darmstadt, Germany  

Centrifuge MiniSpin plus  Eppendorf, Hamburg, Germany  

Centrifuge Rotina 420R  Hettich, Tuttlingen, Germany  

Centrifuge with cooling, Micro200R  Hettich, Tuttlingen, Germany  

CO2 cell Incubator BBD6620  Thermo Fisher Scientific, Darmstadt, Germany  

Confocal microscope LSM 710  Zeiss, Jena, Germany  

Corning® LSE™ Mini Microcentrifuge, 120V  Corning, Wiesbaden, Germany  

Demineralized water  Thermo Fisher Scientific, Darmstadt, Germany  

Dry ice container Forma 8600 Series, 8701  Thermo Fisher Scientific, Darmstadt, Germany  

Electronic pipet filler  Eppendorf, Hamburg, Germany  

Film developer Curix 60  AGFA, Morsel, Belgium  

Fisher Science Education™ 4-Way Microtube Racks  Thermo Fisher Scientific, Darmstadt, Germany  

Fridge MediLine LKv 3912  Liebherr, Biberach, Germany  

Gel imagine system ChemiDoc XRS+  Biorad, Hercules, USA  

Ice machine ZBE 110-35  Ziegra, Hannover, Germany  

Light Cycler LC480II  Roche Diagnostic, Mannheim, Germany  

Liquid nitrogen cell tank BioSafe 420SC  Cryotherm, Kirchen/Sieg, Germany  

LSM 710 Zeiss, Jena, Germany 

Magnetic stirrer KMO 2 basic  IKA, Staufen, Germany  

Mastercycler Nexus  Eppendorf, Hamburg, Germany  

Microdismembrator Sartorius, Göttingen, Germany 

Microm HMS740 Robot-Stainer  Thermo Fisher Scientific, Darmstadt, Germany  

Multipette stream  Eppendorf, Hamburg, Germany  

Nalgene® Freezing Container (Mr. Frosty)  Omnilab, Munich, Germany  

NanoDrop 1000  PeqLab, Erlangen, Germany  

pH meter InoLab pH 720  WTW, Weilheim, Germany  

Pipettes Research Plus  Eppendorf, Hamburg, Germany  

Plate centrifuge 5430  Eppendorf, Hamburg, Germany  
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Plate reader Sunrise  Tecan, Crailsheim, Germany  

Plate reader TriStar LB941  Berthold Technologies, Bad Wildbach, Germany  

Power Supply Power Pac HC  Biorad, Hercules, USA  

Roll mixer  VWR International, Darmstadt, Germany  

Scale XS400 2S  Mettler Toledo, Gießen, Germany  

Shaker Duomax 1030  Heidolph, Schwabach, Germany  

Syringe pump  AL-1000, World precision instruments, USA 

Thermomixer compact  Eppendorf, Hamburg, Germany  

Ultra-pure water supply MilliQ Advantage A10  Merck Millipore, Darmstadt, Germany  

Vibratome Hyrax V55, Zeiss, Jena, Germany 

Vortex Mixer  IKA, Staufen, Germany  

VWR® Tube Rotator and Rotisseries  VWR International, Darmstadt, Germany  

Water bath Aqua Line AL 12  Lauda, Lauda-Königshofen, Germany  

 

 

Software Manufacturer 

Adobe Illustrator  Adobe Systems, San Jose, USA 

Axio Vision  Zeiss, Jena, Germany 

GraphPad Prism 5  GraphPad Software, La Jolla, USA  

Image J NIH, Wisconsin, USA 

Image Lab Software, Version 5.2.1  Biorad, Hercules, USA  

Imaris 9.0 software  Bitplane, Zurich, Switzerland  

LightCycler® 480 SW 1.5  Roche Diagnostics, Mannheim, Germany  

Magelan Software  Tecan, Crailsheim, Germany  

Microsoft Office Professional Plus 2016 Microsoft, Redmond, USA 

Tristar MicroWin 2000  Berthold Technologies, Bad Wildbach, Germany  

Zen digital Imaging for Light microscopy Software  Zeiss, Oberkochen, German  

 

 

3.1.11. Standards and kits 

Standards Manufacturer 

1 kb DNA ladder Peqlab, Erlangen, Germany 

100 bp DNA ladder  Peqlab, Erlangen, Germany 

Protein marker V  Peqlab, Erlangen, Germany 

Ultra low range DNA ladder I  Peqlab, Erlangen, Germany 
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3.2. Methods 

 

3.2.1. Cell biological methods 

 

3.2.1.1. Isolation and culture of primary human lung fibroblast  

Primary human lung fibroblasts (phFbs) were harvested from the lung tissues derived from tumor-free 

area of lung resections or lung explants provided by the CPC-M Bio archive, Munich, Germany. For this, 

the lung tissue explants were taken in a 10cm cell culture dish with pre-warmed DMEM F-12 

supplemented with 20% FBS and 100 U/ml of penicillin and streptomycin. The tissues were then minced 

into 1-2 mm2 pieces via sterile scissors or scalpel and thereafter transferred to a 50ml falcon tube. 5 mg 

of Collagenase I (Biochrom) was added into the falcon with diced lung tissue pieces in medium and 

digested at 37°C for 1 hour. Thereafter the filtrates containing the cells were passed through 70 µm nylon 

filters (BD Falcon) and washed twice with sterile 1X PBS for 5 mins each at 450g at 4°C. The supernatant 

was carefully discarded and the pellet resuspended in supplemented DMEM F-12 medium and 

subsequently cultured in 10 cm cell culture dishes under standard conditions at 37°C and 5%CO2. Medium 

was changed 3 times a week and cells were grown until 80-90% confluency and then split. Cells were 

washed once with 1X PBS and 0.25% of Trypsin-EDTA (Sigma) were then added and the plate kept for 

5 mins at 37°C. Cell suspension was then transferred to a 50 ml falcon and centrifuged for 5 mins at 500g. 

Next, media containing trypsin was aspirated out and the cell pellet was immediately suspended in fresh 

FBS and antibiotic supplemented DMEM F-12 media. All experiments were performed with phFbs from 

passage 3-8.  

 

3.2.1.2. Cryopreservation of mammalian cells 

Cryopreservation was achieved by freezing cells in liquid nitrogen. First the cells were washed with 1X 

PBS, trypsinized with pre-warmed trypsin-EDTA solution for 5 mins at 37°C in complete medium. Cell 

Kits Manufacturer 

BCA Protein Assay kit  Biochrom, Berlin, Germany 

LightCycler 480 SYBR Green I Master Roche Diagnostics, Mannheim, Germany 

PeqGold RNA kit  Peqlab, Erlangen, Germany 

RhoA G-LISA kit  Cytoskeleton Inc., Denver, USA 

Roti Quick Kit Carl Roth, Karlsruhe, Germany 
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suspension was then transferred to a 50ml falcon and rotated for 5 mins at 500g. Next, the trypsin 

containing media was aspirated out and the pellet suspended in freezing medium (90% FBS supplemented 

with 10% DMSO). Subsequently the cell suspensions (in approx. 1-2x106 cells/ml concentration) were 

transferred to cryovials and frozen in a Mister Frosty (Omnilab) overnight at -80°C and then kept in liquid 

nitrogen at -195°C for long-term storage. 

 

3.2.1.3. Thawing frozen cells  

The frozen cell suspension in cryovials were placed in the water bath at 37°C for approximately 2-3 mins 

or until the suspension was defrosted. Next, the cell suspension was immediately diluted with 1 ml pre-

warmed DMEM F-12 media supplemented with 20% FBS and 100 U/ml of penicillin/streptomycin and 

promptly transferred to a 50 ml falcon with an additional 8 ml of the FBS supplemented DMEM media. 

Cells were then centrifuged at 500g for 5 mins and the supernatant was carefully discarded. The cell pellet 

was resuspended in fresh 20%FBS and antibiotic containing DMEM F12 media and subsequently 

transferred to a 10 cm sterile cell culture dish and cultured under standard cell culture conditions at 37°C 

and 5%CO2.  

 

3.2.1.4. MTT cell viability assay 

Metabolic activity of the cells was determined by the MTT assay which measured the reduction of the 

soluble MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) to the insoluble purple 

colored formazan via NAD(P)H dependent process [151]. Firstly, 5 mg/ml of MTT solution was prepared 

by dissolving the soluble MTT (Sigma) in 1X PBS, then vortexed, filter sterilized and stored in -20°C in 

the dark. Then the MTT solvent was prepared mixing 0.1% Triton-X-100 (Aplichem) in isopropanol. 

Cells were cultured in 96 well plates. Next, 20µl of MTT solution was added per well of the plate and 

incubated at 37°C for 1 hr. Wells containing 0.1% DMSO along with medium served as negative control 

and well containing only media served as a blank control. Medium was then aspirated out gently and the 

formazan crystals formed were dissolved in 100 µl of the MTT solvent prepared earlier. The absorbance 

of the plate was then measured at 570 nm using a Sunrise TM plate (Tecan). 

 

3.2.1.5. Liposome based cell transfection 

Human siRNAs used in all the studies here were purchased from Thermo Fischer Scientific (Table 3.1.2) 

as lyophilized products and were diluted in Nuclease free water. Briefly, the lyophilized vial was 

centrifuged and the siRNA was suspended in nuclease free water at a final concentration of 100 µM. The 

siRNA stock solutions were further diluted in nuclease-free water in order to obtain a working 

concentration of 2 µM which can be stored at -80°C for long term without degradation. The transfection 

mix was prepared by formulation of solution A and B as follows: 
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 Table 3.2.1: Transfection-mix for 1 well (6-well format): 

 

 

At first, solutions A and B were prepared separately and incubated for 5 mins at room temperature inside 

the cell culture hood. Then, both solutions were pooled together in one eppendorf and incubated for 20 

mins at room temperature in order to form the siRNA-lipofectamine complexes. In parallel, 2.5x104 cells 

were seeded in 2 ml media (DMEM, 20%FBS without penicillin/streptomycin) per well of a 6-well plate. 

Subsequently, 250 µl of the transfection mix was added to each well along with antibiotics-free cell 

culture medium and mixed with the 2ml of cell suspension. For untreated condition, 250 µl of the Opti-

Mem media was added in the cell suspension. For the experiment testing siRNA efficiency and stability 

across 6 days, phFbs were transfected for 48 hrs and then replenished with fresh media without siRNA 

and kept for additional 24, 48 and 96 hrs. Protein isolations (3.2.8.1) were carried out from each time-

points. 

To assess the stability of the knockdown, a time-resolved study for the siRNA treatment was performed 

with a phFb cell line. After 48 hrs of siRNA incubation with the cells, the siRNA containing medium was 

aspirated out and the cells were washed with sterile 1X PBS. Subsequently, the cells were further cultured 

in fresh medium with antibiotics for additional 96 hours. Protein extraction for immunoblotting was 

performed every 2 days. 

 

3.2.1.6. Cell culture treatments 

Primary human fibroblasts (phFbs) and moue lung fibroblasts (CCL206; mLFbs) were seeded in a 24-

well (1.0 x105 cells/ well) or 6-well (2.5x105 cells/ well) plates in 20 % FBS and 100 U/ml of 

penicillin/streptomycin supplemented DMEM-F12 media. Cells were synchronized in serum starved 

media (DMEM-F12, 1% FBS and 100 U/ml penicillin/streptomycin) next day for 24 hrs prior to treatment 

with growth factors and inhibitors. Subsequently, the cells were stimulated with 1 ng/ml of human 

recombinant TGFβ1 in starvation media for 48 hrs. Additionally, phFbs and mLFbs were also stimulated 

with 10 ng/ml of EGF, 10 ng/ml of FGF2, 10 ng/ml of PDGF BB, 10 ng/ml of TNFα, 1 µg/ml of LPS, 

100ng/ml of Wnt3A and 10ng/ml of Wnt5A.  

Solution Reagent Volume (µl) 

Solution A OptiMem Media 114 

siRNA 15 

Solution B OptiMem Media 114 

Lipofectamine RNai Max ® 7 
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For inhibitor treatments, cells were serum starved for 24 hrs as described above prior to treatments and 

then subsequently stimulated with individual inhibitors for 24 to 48 hrs. phFbs were stimulated with 10 

µM of SB431542, 6 µM of Sis3, 10 µM of U0126, 2 µM of BIBF-1120 (Nintedanib), 10 µM of SP600125, 

150 µM of Tranilast, 10-30 µM of commercially available SFRP1 Inhibitor (Sigma, CAS915754-88-0) 

and 0.5-1 µg/ml of Rho inhibitor (CT04).  

Relating to epigenetic regulation studies, phFbs were seeded in 6-well (2.5x105 cells/ well) culture dishes 

in 20 % FBS and 100 U/ml of penicillin/streptomycin supplemented DMEM-F12 media. Subsequently, 

the cells were stimulated with 0.05-5 µM of 5-aza-2'-deoxycytidine (DAC), 30-3000 nM of Trichostatin 

A (TSA) for 48 and 72 hrs. DMSO as a vehicle control was directly added to the unstimulated cells.  

3.2.1.7. Preparation of cells for morphology analysis 

Cells were plated in a density of 5x102 cells/well in 96-well plates in DMEM-F12 media supplemented 

with 20%FBS and 100 U/ml penicillin-streptomycin. The cells were kept in the incubator for 24 hrs to 

allow cell attachment and growth under standard cell culture conditions of 37°C and 5% CO2. 

Subsequently, the cells were fixed next day with 4% PFA for 30 minutes at RT. The fixed cells were next 

stained with DAPI (nuclear dye) and Phalloidin (label F-actin) diluted in 1X PBS and incubated overnight 

at 4°C. The next day, cells were washed twice with 1X PBS and stored in fresh PBS until imaging.  

 

3.2.2. 3D cell culture models 

 

3.2.2.1. Preparation of collagen matrix 

Matrices from Collagen G gel (Biochrom AG, produced from calf skin) was first prepared. Briefly, 

solution A containing 1:1 0.7(M) NaOH and sterile filtered 1(M) HEPES was mixed 1:1 with 20% FBS 

in 10X PBS resulting in solution B. Next, a third solution C was prepared by gently mixing solution B 

and Collagen G in 1:4 ratio (Table 3.2). All reactions were kept on ice, as Collagen G solidifies at RT.  

 

 Table 3.2.2: Preparation of collagen matrices 

  

For the invasion assay in a 96-well plate, 50µl of the collagen solution was pipetted per well and 500µl 

per ThinCert cell culture insert for the 6-well plate.  An electronic Multipette (Eppendorf) was used to 

 Ratio Ingredients 

Solution A 1:1 0.7(M) NaOH + 1(M) HEPES 

Solution B 1:1 Solution A + 20% FBS in 10X PBS 

Solution C 1:4 Solution B + Collagen G 
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carefully dispense the viscous collagen solution in the cell culture dishes to avoid bubbles and to have 

reproducible results. The final collagen G solution was incubated at 37°C for 4-6 hrs to allow 

polymerization of the gel. 

3.2.2.2. 3D collagen-based invasion assays  

For the invasion assay using Thin-Certs in a 6-well plate, 2.5x105 cells were seeded on top of the 

polyethylene terephthalate (PET) capillary 8 µm pore membrane after gelation of the collagen matrix. 

DMEM-F12, 20% FBS and 100 U/ml penicillin-streptomycin media was used to culture these phFbs in 

the Thin-Certs. The cells were left to invade the collagen matrix for 96 hrs under standard cell culture 

conditions of 37°C and 5% CO2. The collagen matrix on the bottom of the Thin-Certs have the invaded 

fibroblast population and the PET capillary membrane contained the non-invading fibroblasts attached. 

After 4 days, the culture insert was washed twice with ice cold PBS and the collagen matrix was separated 

from the membrane gently using a pair of tweezers. Protein and RNA were subsequently isolated from 

the two fractions as described in sections 3.2.8.3 and 3.2.9.2 respectively.  

After gelation in the 96-well plate, 2x104 cells/well were seeded on top of the polymerized collagen 

matrix. Cells were again similarly left to invade the collagen matrix for 96 hrs under standard cell culture 

conditions of 37°C and 5% CO2. Thereafter, the wells were washed with 1X PBS and fixed with 4% PFA 

for 30mins at RT and then subsequently stained with DAPI (1:1000) overnight at 4°C. For a separate 

study, cells were permeabilized with Triton-X-100 after fixation for 15 mins at RT and stained with DAPI 

(1:1000), phalloidin (1:300) and anti-αSMA antibody (1:2000) overnight at 4°C. Staining with phalloidin 

was carried out to visually assess the integrity of single cells and αSMA staining to identify 

myofibroblasts. Each well containing the 3D collagen matrix embedded cells were imaged using a LSM 

710 confocal microscope. Quantification of invasion capacity was accomplished according to 3.2.10.2. 

 

 

Figure 3.1: Schematic representation of 6-well and 96-well invasion assays  
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3.2.3. Animal experiments 

Animal experiments were carried out according to the German protection law and were then approved by 

an external review committee for animal care. C57BL/6 mice were obtained from Charles River 

Laboratories and kept in Helmholtz Zentrum München. The mice were kept in rooms maintained at 

constant temperature and humidity and provided with food and water ad libitum. All animal experiments 

were carried out with 8-12 weeks old C57BL/6 mice. 

 

 

3.2.3.1. Isolation of murine fibroblasts 

Experimental mice were weighed first and the amount of ketamine/Xylazine were calculated accordingly 

(100 µl/10 g weight). The mice were anesthetized using injections with 1:1 ratio of the ketamine/Xylazine 

and waited until they were sleeping. After flushing the lungs (until almost white) with 1X PBS via the 

right ventricle, the thorax was cleaned and the lungs were removed. The lung lobes were dissected and 

placed in a 6-well plate in ice cold 1X PBS. The whole lung was cut into 1-2 mm pieces using a scalpel. 

Afterwards the lung pieces along with the medium was transferred to a 50 ml falcon and collagenase I (5 

mg/50 µl) was added to it. Subsequently the solution was digested with collagenase I for 37°C at 400 rpm 

for 1 hour and then transferred into a filter on a fresh falcon tube. A syringe piston was used to scratch 

the digested lung solution and then rinsed with sterile 1X PBS. The solution obtained was centrifuged for 

5 mins at 400 rpm at 4°C. Finally, after the supernatant was discarded, the pellet was resuspended in fresh 

medium and cultured under standard cell culture conditions. 

 

3.2.3.2. Bleomycin instillation in mice 

Bleomycin treatment in mice were performed by Maximillian Strunz (Helmholtz Zentrum Munich). 

Briefly, pathogen‐free female C57BL/6J mice were acquired from Charles River (Germany) and kept at 

suitable humidity and temperature and in a biosafety lab. Lung fibrosis was induced by a single dose of 

Bleomycin (Sigma, Germany). Bleomycin was dissolved in sterile 1X PBS and 2units/kg (For 

oropharyngeal instillation) and 3units/kg (for intratracheal instillation) of their respective body weight 

were given. For the control group, 1X sterile PBS was instilled in a similar process as the test group. 

Meanwhile the test animals were kept under strict inspection for any weight loss or other phenotypic 

changes. Afterwards, the mice were sacrificed at the respective time-points after Bleomycin instillation.  

 

3.2.3.3. Tissue homogenization 

Bead beating was used for tissue homogenization. It was accomplished by rapidly agitating the pre-snap 

frozen tissue samples with beads or metal balls in a tissue homogenizer (a device that shakes the 
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homogenization vessel). The beads are either made of glass (silica), steel or ceramic. Samples were then 

prepared with buffer at either cryogenic temperatures. Samples were kept in liquid nitrogen in small 

cryotubes with a metal ball inside. Then the tubes were inserted in the homogenisator and operated at 

3000 RPM for 30-60 seconds until the tissue was successfully ground to a powder consistency. Care was 

taken that the cryotubes were properly sealed during the homogenization process. The powdered samples 

were finally stored at -80˚C. 

 

3.2.3.4. Preparation of mouse Precision Cut Lung Slices  

Mouse precision cut lung slices were generated as previously described [152]. Mouse lungs were first 

filled with pre-warmed 2% (w/v) low-melting point agarose (Sigma Aldrich, A9414) via tracheal cannula 

utilizing a syringe pump to control the flow rate. The agarose was diluted with DMEM F-12 medium 

including 100 U/ml penicillin-streptomycin, and 2.5 μg/ml of amphotericin B (Sigma Aldrich, A2942). 

Subsequently, the lungs were carefully taken out and immediately put in culture medium and transferred 

on ice. Approximately, 10-15 mins are given for the gelling of agarose in ice. Afterwards, each mouse 

lung lobes were dissected and sliced in a Vibratome (Hyrax V55; Zeiss, Jena, Germany) to obtain 300 

µm thick sections. For immunofluorescence, the PCLS were immediately fixed using ice-cold methanol 

for 5-10 mins and for RNA or protein isolation, the slices were snap frozen.  

 

3.2.3.5.  Preparation of human Precision Cut Lung Slices  

Human precision cut lung slices were generated as previously described [147]. Briefly, the resected tissue 

was inspected and selected for slicing when the tissue score index was above 72. Any ventilating bronchus 

of 0.5-3 mm in diameter was closed by clamping a cannula. Afterwards, a peripheral venous catheter was 

prepared by removing the obturator and attached with a syringe containing low melting point agarose. 

The ventilating end of the bronchus or any other large airways were sealed with a surgical clamp. Then 

the agarose was poured via the syringe at a rate of 0.3 mL/sec. Then the tissue was incubated at 4 °C for 

30 min to assure agarose solidification. Block tissue regions of 1-1.5 cm3 were excised, where one side 

was covered with pleura. Finally, the lung tissue block was sliced using the Vibratome with the settings: 

thickness of 500 µm, frequency of 100 Hz, amplitude of 1.2 mm, forward speed (of the blade) at 3-12 

µm/s. The resulting human PCLS were stored in a 12-well plate with cultivation medium. 

 

3.2.4. Cultivation of 3D ex vivo PCLS 

The mouse and human PCLS obtained were cultured in 12- well culture dishes with DMEM F-12 medium 

supplemented with 0.1 % FBS and 100 U/ml of penicillin and streptomycin and 2.5 µg/ml of 

Amphotericin B under standard conditions at 37°C and 5%CO2. 
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3.2.5. Decellularization of mPCLS 

The mPCLS were decellularized according to the protocol established in Burgstaller et al., 2018. Briefly, 

the 300µm thick mPCLS were washed thrice with sterile deionized water for 5mins and subsequent 

incubation in 50ml deionized water in a falcon tube on a roller at 4°C for 16 hours.  Afterwards, the slices 

were kept in a 50ml falcon containing 0.1% SDS for 4 hours at room temperature. Following it, the slices 

were washed twice with deionized water for 10 mins each. Subsequently, the slices were kept in 1 (M) 

NaCl for 16-18 hours on a roller at 4°C. The LTCs were again washed two times with deionized water 

for 10 mins each and the incubated in 1X PBS containing 5mM of MgCl2 and 30 g/ml DNase for 3 hrs 

at 37°C. At last, the slices after washing for another 3 times were stored in cell culture plates in sterile 1X 

PBS with penicillin-streptomycin (Sigma). 

 

3.2.6. Recellularization of mPCLS 

The recellularization protocol followed was according to Burgstaller et al., 2018. Briefly, the 

decellularized lung slices were repopulated with a suspension of (3 x 106 cells/ml) primary mouse or 

human fibroblasts. The decellularized lung slices along with the cells were put in 15 ml falcons together 

in DMEM F-12 medium containing 10% FBS. The tubes were sealed with parafilm to allow gas exchange 

and placed on a tube roller (10-15 rpm) at standard cell culture conditions of 5% CO2 and 37°C. Followed 

by 16 hours of incubation, the decellularized lung slices with the engrafted fibroblasts were cultured in 

24 well plates in DMEM F-12 with 10%FBS for 2-9 days under standard cell culture conditions. 

 

3.2.7. Ex vivo fibrosis-mimicking PCLS models 

The mouse and human PCLS obtained were cultivated in 12 well culture dishes. Freshly cut slices were 

treated with the fibrotic cocktail (FC) and control cocktail (CC) for 5 days. The FC was prepared in 

medium supplemented with 5 ng/ml recombinant human transforming growth factor-β (TGF-β) (R&D 

Systems), 5 μM of platelet-derived growth factor-AB (PDGF-AB) (GIBCO), 10 ng/ml tumor necrosis 

factor-α (TNF-α) (R&D Systems), and  with 5 μM lysophosphatidic acid (LPA) (Cayman Chemical). The 

CC was prepared in parallel with all the diluents of the factors used in the FC. 

 

3.2.8. Protein analysis 

3.2.8.1. Protein isolation from fibroblasts in 2D cell culture 

Cells cultured in standard cell culture dishes were washed twice with sterile 1X PBS and then scraped 

with a cell scratcher in 200 μl of lysis buffer containing RIPA buffer enriched with 1x Roche complete 

mini protease inhibitor cocktail and Phospho-Stop phosphatase inhibitor (per well in a 6-well dish). The 
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collected cell lysates were then transferred to an eppendorf placed on ice and subsequently mixed in a 

rotor at 4°C for about 1 hour. Following the incubation, the lysates were centrifuged at 15,000 RPM for 

15 min at 4°C to separate the supernatant (total protein) and the pellet (cell debris). Lastly, cell 

supernatants and pellets were stored at -80°C for long term storage. 

 

3.2.8.2. Concentration of protein from cell supernatants 

Supernatants collected from cells in culture conditions were at first thawed in room temperature. 

Centrifugal Filter tubes (Amicon Ultra-0.5, Millipore) were used to concentrate the cell supernatants and 

was performed according to the manufacturer's instruction. Shortly, 500 μl per sample was added into a 

filter tube inserted into a second microcentrifuge tube. Samples were subsequently centrifuged for 20-30 

min at 14,000 RPM at 4°C. To retrieve the concentrated proteins, the filter tubes were inverted and placed 

in a fresh microcentrifuge tube and centrifuged for 2 min at 1000 RPM at 4°C. Lastly, the concentrated 

filtrate was stored at -80°C for further analysis. 

 

3.2.8.3. Protein isolation from fibroblasts in 3D cell culture 

For protein isolation from 3D cell cultures, collagen gel and membrane were separated as mentioned in 

section 3.2.2.2. Two gels were pooled into one 2 ml Eppendorf tube and 80 μl (2120 U) of collagenase 

type1 (Biochrom) was added to it. The tube was incubated in a thermal shaker at 37°C for around 1 hour 

until the collagen gel is completely degraded, followed by centrifugation for 2 minutes at 500 RPM at 

4°C. The resulting pellet was washed two times with sterile cold 1X PBS and lysed with 50 µl of lysis 

buffer containing RIPA buffer with 1x Roche complete mini protease inhibitor cocktail and Phospho-

Stop phosphatase inhibitor. For the non-invading cells, the membranes from the transwell inserts were 

cut out using a scalpel. Cells were scratched off from two membranes into 1 vial of 200 µl ice cold RIPA 

buffer with 1x Roche complete mini protease inhibitor cocktail and Phospho-Stop phosphatase inhibitor. 

The samples were then incubated in ice for around 30 mins followed by centrifugation at 14,000 RPM at 

4°C for 15 minutes. The cell debris was discarded and the supernatant was stored at -80°C for further 

analysis. 

 

3.2.8.4. Protein isolation from PCLS 

For protein isolation from the mouse and human PCLS, 500 µl of lysis buffer containing RIPA buffer 

enriched with 1x Roche complete mini protease inhibitor cocktail and Phospho-Stop phosphatase 

inhibitor were added to each vial (4 mPCLS pooled per vial, 2 huPCLS pooled per vial).  The eppendorfs 

with the tissue lysates were placed in a rotor at 4°C for 5-6 hours and subsequently centrifuged for 15 min 
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at 15,000 RPM at 4°C. Tissue lysates were then stored at -80°C and protein concentration was later 

determined using the Pierce BCA Protein Assay Kit. 

 

3.2.8.5. Protein isolation from lung tissues  

The efficient disruption and homogenization of tissues as described in section 3.2.3.3 ensures a high yield 

of proteins. 500 μl of a lysis buffer containing RIPA buffer supplemented with 1x Roche complete mini 

protease inhibitor cocktail and Phospho-Stop phosphatase inhibitor were added per cryo-vial of lung 

tissue homogenate. The eppendorfs with the cell lysates were placed in a rotor at 4°C for 1 hour and 

afterwards transferred to a new microcentrifuge tube without the metal ball and subsequently, the tissue 

lysates were centrifuged for 15 min at 15,000 RPM at 4°C. Tissue lysates were then stored at -80°C and 

protein concentration was later determined using the Pierce BCA Protein Assay Kit. 

 

3.2.8.6. Bicinchoninic acid (BCA) assay  

Protein abundance of cell lysates from cells and tissues were assessed via the bicinchoninic acid assay 

(BCA assay). A bovine serum albumin (BSA) titration curve with a concentration range of 0-2 μg/μl 

diluted in PBS served as a standard to determine protein concentrations. At first, cell lysates were mixed 

with nuclease-free water in a 1:10 ratio in a 96-well plate. Wells containing only lysis buffer with no cells 

served as controls. 10 µl of BSA standards were pipetted in the same plate. 200 μl of the BCA reagent 

according to the manufacturer’s protocol (Thermo Fisher Scientific) was added per well. Following 

incubation at 37 °C for 30 min, the absorbance recorded at 562 nm using a Sunrise TM plate reader 

(TECAN) for estimation of protein concentrations. 

 

3.2.8.7. SDS-PAGE and immunoblotting 

Protein samples were mixed with 6x lämli loading buffer (final concentration 1x) and proteins were 

separated using standard SDS (10%) PAGE (20 - 30 mA per gel). For immunoblotting, proteins were 

transferred to methanol activated PVDF (Millipore) membranes (350 mA for 60 minutes). Subsequently, 

membranes were then blocked with 5% milk in 1xTBST (0.1% Tween®20 in TBS) and incubated with 

primary, followed by HRP-conjugated secondary antibodies at 4°C overnight and at room temperature 

for 2 hours, respectively. Upon antibody incubation, the PVDF membranes were washed thrice with 1X 

TBST for 10 min each and proteins were finally visualized by using western blot chemiluminescent 

substrates (SuperSignal®, Thermo Fisher). The membranes were either visualized by developing an X-

Ray film using a Western Blot developer machine (AGFA) or the protein signal was detected with the 

Chemidoc XRS+ system (Bio-Rad). 



Materials and Methods 
 

 
44 

 

 

3.2.8.8. RhoA G-LISA assay 

The RhoA G-LISA assay (Cytoskeleton Inc.) was performed according to the manufacturer’s protocol. 

Briefly, at first the cell lysates were prepared for the assay. Then the lysates were snap frozen in liquid 

nitrogen and thawed on the day of the activation assay. As, equal protein concentrations were required 

for the assay, concentration of the lysates were quantified using 10µl of the lysate with 290µl of Precision 

RedTM Advanced Protein Assay Reagent. The absorbance was subsequently assessed by a plate reader at 

600 nm. Lysate concentration between 0.4-2.0 mg/ml was used. The lysates having the same 

concentration were then transferred to the coated wells and bound to the wells by the binding buffer. After 

a series of washing steps, anti-RhoA and subsequently secondary HRP labelled antibody were used to 

detect the bound active RhoA-GTP cell lysates. The degree of RhoA activation was finally quantified by 

measuring absorbance at 490 nm using a microplate spectrophotometer. 

 

3.2.8.9. Proteomic screening 

Proteomic analysis by LC-MS/MS as described was performed by Dr. J. Merl-Pham (HMGU). Briefly, 

10 μg concentration of protein from whole cell lysate were subjected to tryptic digest using a modified 

FASP procedure [153]. Following subsequent proteolyzing steps, LC-MS/MS was performed with the 

peptides collected on a Q-Exactive HF mass spectrometer (Thermo Scientific). Quantification of the 

acquired spectra was done with the Proteome discoverer 2.2. 

 

 

3.2.8.10. Immunofluorescence staining of primary human lung fibroblast 

phFbs were seeded in black 96 well imaging plates (Corning) in a density of 5x102 cells/ well. Cells were 

cultured in DMEM F-12 medium supplemented with 1% FBS and Pen-Strep overnight. Subsequently, 

the next day the cells were fixed in 4% PFA in PBS at 37°C for 30 minutes at room temperature and then 

permeabilized with 0.5% Triton-X in 4% PFA for 15 minutes. Phalloidin (Thermo Fischer) (1:300) and 

DAPI (1:1000) were mixed in 1% bovine serum albumin (BSA, Sigma) in PBS and added to the samples 

and incubated at 4°C for 18 hours. Afterwards, samples were washed three times with PBS for 10 minutes 

each. Images were acquired with a LSM 710 as z-stacks and a LD C-Apochomat 406/1.1 NA water 

objective lens (Carl Zeiss). 

For the phFbs seeded on a collagen gel, the cells were fixed with 4% paraformaldehyde (PFA) diluted in 

1X PBS at room temperature for 30 mins after the invasion period (as discussed in section 3.2.2.2). 

Hoechst (Pierce) was diluted in 1% BSA in PBS and incubated at 4°C overnight. The next day cells were 

subsequently washed off by rinsing three times with 1X PBS. Cells were finally imaged in PBS with a 

LSM 710 as z-stacks. 
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3.2.8.11. Immunofluorescence staining of paraffin-embedded tissue sections 

Formalin-fixed paraffin-embedded (FFPE) lung tissue sections from PBS and Bleo mouse lungs and from 

healthy donors and IPF patients were first placed in an incubator at 60°C for an hour followed by tissue 

deparaffinization process. Using a Microm HMS 740 Robot-Stainer (Thermo Fisher Scientific), the slides 

containing the tissue sections were automatically incubated with several chemicals as described here: 

 

Table 3.2.3: Deparaffinization protocol 

 

 

  

Description Reagents Cycles Time 

Deparaffinization step Xylene 2x 5 min 

 

 

Hydration step 

100% ethanol 2x 2 min 

90% ethanol 1x 1 min 

80% ethanol 1x 1 min 

70% ethanol 1x 1 min 

 dH2O 1x 30 sec 

 

Next, the tissue section containing slides were placed in R-Universal buffer (Aptum Biologics) followed 

by transfer to an antigen retrieval buffer containing pressure chamber (2100 Retrieval, Aptum Biologics) 

After 30 mins inside the pressure chamber, the slides were washed once in 1X Tris buffer for 10 min and 

then incubated in 5% BSA in PBS for 40 mins at room temperature. Subsequently the tissues sections 

were stained with primary antibodies overnight at 4°C under humid conditions. Next day, the slides were 

washed twice in 1X PBS for 10 min, and further incubated with fluorescently-labeled secondary 

antibodies for 2 hours at room temperature under humid conditions. Following two additional washes, 

slides were then counterstained with DAPI for 1 hour at room temperature, washed again two times with 

1X PBS for 10 min and subsequently dried at room temperature. Finally, using fluorescent mounting 

medium (Dako), the tissue slides were mounted and kept in the dark at 4°C until further analysis.  

 

3.2.8.12. Immunofluorescence staining of PCLS 

The mouse and human PCLS were cultivated in 12-well plates in DMEM F-12 supplemented with 0.1% 

FBS and Pen-strep as discussed in section 3.2.4. Subsequently, the slices were fixed with ice cold 

methanol for 5 mins at -20°C. Afterwards the slices were permeabilized using 0.25% Triton-X-100 at 

room temperature for 15 mins. Subsequently, the slices were washed twice with 1X PBS for 10 mins each 

and then incubated with the primary antibodies diluted in 1% BSA in PBS and incubated overnight at 

4°C. Next day, the slices were washed twice in 1X PBS for 10 min, and further incubated with 
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fluorescently-labeled secondary antibodies for 2 hours at room temperature. Following two additional 

washes, the PCLS were taken individually in 35 mm dishes and visualized using LSM 710 microscope. 

 

 

3.2.9. RNA analysis 

3.2.9.1. mRNA isolation from primary fibroblasts 

From standard 2D cell culture, mRNA isolation was accomplished using the PeqGold RNA kit (Peqlab) 

according to the manufacturer’s instruction. Subsequently, the concentration of the harvested mRNA was 

determined spectrophotometrically at a wavelength of 260 nm using the Nano Drop 1000. 

 

3.2.9.2. mRNA isolation from 3D cell culture 

For mRNA isolation, the gel and membrane were separated as discussed in section 3.2.2.2. Two gels were 

pooled and 1 ml of QIAzol Lysis Reagent (Qiagen) was added and incubated at room temperature for 10-

15 minutes. The solution was gently mixed until complete disintegration. For membrane samples, a 

minimum of two membranes were pooled into one well of a 6-well plate and then incubated in 1 ml of 

QIAzol Lysis Reagent for 10 minutes. The samples were subsequently transferred to fresh 1.5 ml 

Eppendorf tubes and 200 μl chloroform was added to them. After vortex, the samples were centrifuged at 

12000 g at 4°C for 15 minutes to separate the phases. The upper aqueous phase was then transferred into 

a fresh tube and RNA was further purified using the RNeasy Mini Kit (Qiagen) according to the 

manufacturer’s protocol. The concentration of the isolated RNA was noted spectrophotometrically at a 

wavelength of 260 nm with the Nano-Drop 1000. 

 

3.2.9.3. mRNA isolation from PCLS 

At first, the mouse or human PCLS were washed twice with sterile 1X PBS and then immediately snap-

frozen using liquid nitrogen. The frozen slices were then powdered in a microdismembrator S (Thermo 

Fisher Scientific, Germany). Subsequently, 3-4 mPCLS or 1-2 huPCLS were randomly pooled per vial 

and mRNA was isolated according the manufacturer instructions for the PeqGold RNA kit (Peqlab). 

Lastly, the RNA concentration was assessed using a Nano-drop spectrophotometer (Thermo Fisher 

Scientific). 
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3.2.9.4. cDNA synthesis by Reverse Transcription 

To perform cDNA synthesis, 1 µg of the isolated mRNA was calculated and diluted with sterile nuclease-

free water to a total volume of 20 µl. Subsequently, this mixture was denatured in a Master cycler, using 

the following settings: 

Lid: 45°C 

70°C for 10 mins 

Hold: at 4°C 

Next, a master-mix was prepared using the following reagents at the indicated concentrations (Table 

3.2.4) 

 

Table3.2.4: Master Mix for cDNA synthesis 

 

  

Reagent Stock concentration Final concentration Final volume (µl) 

10x PCR Buffer II  10x 1x 4 

MgCl2 solution  25 mM 5 mM 8 

PCR Nucleotide Mix 

(dNTP)  

10 mM 1 mM 4 

Random Hexamers  50 μM 2.5 μM 2 

RNase Inhibitor  20 u/μl 1 u/μl 2 

MuLV Reverse 

Transcriptase  

50 u/μl 2.5 u/μl 2 

Denatured RNA  - - 18 

Total volume of the master mix 40 

 

Lastly, an eppendorf Master-cycler was used to carry out the reverse transcription process. The following 

settings were used:  

Lid: 105°C,  

20°C for 10 min 

42°C for 60 min 

99°C for 5 min.  

At last, the cDNA was diluted to a total volume of 200 µl with nuclease-free water and stored at – 80°C 

for further analysis. 
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3.2.9.5. Quantitative Real Time Polymerase Chain Reaction (qRT-PCR)  

Quantitative real-time RT-PCR was performed using a SYBR Green LC480 system (Roche). The master 

mix was prepared according to: 

Table 3.2.5: qPCR reaction mix per one assay 

 

 

 

Reagent Stock concentration Final concentration Final volume (µl) 

DNase/RNase-free H2O - - 1 

SYBR green I Master Mix 2x 1x 5 

Forward/Reverse Primer Mix 10 µM each 0.5 µM each 2 

cDNA 6.25 ng/µl 12.5 ng/µl 2 

Total 10 

 

The master mix (Roche) was pipetted per well in a 96-well plate. Samples were always added in duplicates 

and then the plates were centrifuged for 2 min at 1000 rpm prior to starting measurement. The standard 

program of the Light Cycler 480II (Roche): 95°C for 5 mins followed by 45 cycles of 95°C for 5 sec 

(denaturation), 59°C for 5 sec (annealing), 72°C for 20 sec (elongation), 60 – 95°C for 1 min with 

continuous acquisition (melting curve). Gene expression of the different samples was normalized to 

housekeeping genes Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and hypoxanthine guanine 

phosphoribosyl transferase (HPRT). Relative gene expression was determined using the ΔΔCT method.  

 

3.2.9.6. Microarray 

Microarray analysis was performed by Dr. Martin Irmler (HMGU). Briefly, total RNA harvested as 

described earlier (3.2.9.1) were checked for their purity using the Agilent 2100 Bioanalyzer system. Pure 

high-quality RNA having RNA integrity number at least more than 8 was utilized for further analysis. 

Then, 150 ng of the total RNA was amplified using the Affymetrix® GeneChip® WT Terminal Labeling 

Kit and Ambion® WT Expression Kit. The resulting amplified cDNA was hybridized on Affymetrix 

Mouse Gene 1.0 ST arrays. For human fibroblasts, the amplified cDNA was hybridized on Human 

Clariom S arrays. Subsequent staining and scanning was done according to the Affymetrix protocol.  

 

3.2.10. In silico analysis 

3.2.10.1. Analysis of cell morphology 

For analysis of cell morphology, phFbs were cultured as described in section 3.2.1.8 and imaged according 

to section 2.3.2.7. Confocal fluorescent z-stacks were volume rendered with Imaris 7.4.0 software 

(Bitplane). Subsequently, the cell shape parameters were further quantified using Cell Profiler.  
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3.2.10.2. Quantification of 3D cellular invasion 

The acquired imaging data sets, as described in section 3.2.2.2, were imported into Imaris 8.4.0 software 

(Bitplane) and cropped in 3D. Using their spot-detection algorithm, one spot was assigned for each 

fluorescent nucleus. Then, the total number of spots was filtered based on their z-position, where a 

threshold was fixed at the lowest point of the collagen gel. Next from the statistics tool, the number of 

spots or cells invading into the collagen gel can be obtained along with the total number of spots. Thus, 

from there the number of non-invading cells and thereby the percentage of invasion can be calculated. 

The percentage for relative invading fraction (Rel.Inv.fraction) was calculated as: 

 

 

 

                   %Rel.Inv.fraction =  

 

 

 

3.2.10.3. Bioinformatical analysis 

For the statistical transcriptome analysis, expression console (Affymetrix) was used for quality control 

and to obtain annotated normalized robust multiarray average approach (RMA) gene-level data (standard 

settings including sketch-quantile normalization). Heatmaps were generated with CARMAweb (Rainer, 

Sanchez-Cabo et al. 2006) and cluster dendrograms with the R script hclust. Analysis of single cell data 

obtained from Droplet based sequencing was kindly performed by Maximilian Strunz and Christoph Mayr. 

To lessen the technical bias introduced by ambient RNA, SoupX (Young, & Behjati, 2018) was applied 

and the pCut parameter was set to 0.3. Data analysis of the cells that passed the quality controls were 

represented in a t-distributed Stochastic Neighbor Embedding (t-SNE) plot or Uniform Manifold 

Approximation and Projection (UMAP) plot showing distinct gene expression profiles.  

 

3.2.10.4. Statistical analysis 

Statistical analysis was performed using GraphPad Prism v8.0 (GraphPad Software). Data were presented 

as mean ± standard deviation (SD). Statistical analysis was performed using unpaired and paired t-tests 

(two-tailed) or One-way ANOVA with Dunnett’s multiple comparison test. For microarray experiments 

statistical analyses were performed by utilizing the statistical programming environment R (R 

Development Core Team Ref1). Genewise testing for differential expression was done employing limma 

t-test and Benjamini. 

Total number of invading cells 

(Beyond threshold) 

Total number of cells 

(Invading + Non-invading) 
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4. Chapter A: Characterization of SFRP1 as a novel regulator of lung 

fibrosis 

 

 
4.1. Introduction 

The remodeling of extracellular matrix (ECM) during tissue repair in lung fibrosis is a complex and 

dynamic process. The lung is constantly being exposed to harmful environmental substances, viral or 

bacterial infections and even autoimmune reactions. Subsequent lung regeneration is intervened by 

reactivated developmental pathways and programs [137]. This eventually leads to an altered ECM 

secreted by the mesenchymal cells. To comprehensively characterize aberrant ECM deposition in fibrosis 

and discover potential regulators for remodeling mechanisms, a quantitative detergent solubility profiling 

(QDSP) along with a systematic comparative analysis of the transcriptomic profiles were performed with 

unbiased measurement of the interactions between the mediators and the ECM. In this study [145] the 

authors identified and validated novel constituents of the provisional extracellular repair matrix, like 

Emilin-2 and Collagen-28, in the bleomycin-induced fibrotic mouse model. Data mining in this 

proteomics dataset revealed Secreted frizzled related protein1 (SFRP1) amongst the highest upregulated 

proteins in the insoluble ECM fraction at day 14 after bleomycin treatment. Reportedly, SFRP1 binds to 

the soluble Wnt ligands and thereby antagonizes their interaction with the frizzled receptors. A 

dysregulated activation of the Wnt signaling plays a key role in the pathogenesis of various diseases [43]. 

Several transcriptomic analyses have confirmed enrichment of various Wnt-related genes specifically 

SFRP1 in the IPF lungs [45, 154]. Moreover, several studies have reported epigenetic regulation of SFRP1 

in various types of metastatic cancers. A pan-cancer analysis has shown that SFRP1 was the only one 

among its isoforms to associate persistently with tumor suppressive functions [155]. Given the importance 

of active Wnt signaling in lung regeneration, it is conceivable that SFRP1 as one of the major antagonists 

of this pathway plays an important role in lung diseases and repair. However, surprisingly very little is 

known about the role of SFRP1 in non-cancer diseases relating to the adult lung.  

To understand the role of SFRP1 with regards to lung fibrosis, lung tissues from IPF patients and 

bleomycin-induced mice were analyzed together with various ex vivo models. Additionally, the 

modulatory function of SFRP1 in general was assessed in specific healthy and fibrotic lung fibroblast 

populations. 
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4.2. Results 

 

4.2.1. Part I: Role of SFRP1 in lung fibrosis 

 

 

4.2.1.1. Upregulation of SFRP1 in a mouse fibrosis model 

The use of animal models reproducing key features of IPF has become indispensable in investigating the 

underlying pathologies of fibrosis. The bleomycin model is the most extensively used and best 

characterized among different animal models of pulmonary fibrosis [156]. The intratracheal instillation 

of bleomycin (Bleo) results in bronchiocentric accentuated fibrosis and scarring which is very similar to 

human pulmonary fibrotic diseases. The “switch” between the inflammatory phase and fibrotic stage 

occur around day 9 after Bleo treatment and the fibrosis symptoms peak at around day 14 [157]. IPF is 

characterized by scarring of pulmonary parenchyma due to the accumulation of α- smooth muscle actin 

(αSMA) positive myofibroblasts in the fibrotic foci sites [158]. Therefore, SFRP1 expression in fibrotic 

areas of the mouse lungs were visualized with immunofluorescence co-staining of SFRP1 and αSMA on 

3-5 µm thick FFPE sections of Bleo day 14 and healthy PBS mouse lungs. As depicted, SFRP1 expression 

was found to be increased in fibrotic lung sections at day 14 compared to PBS lung sections (Fig. 4.1 A). 

To evaluate the expression of SFRP1 in the fibrotic Bleo mouse model, total lungs from 3 healthy (PBS 

instilled) and 3 Bleo induced (day 14) mice were harvested and homogenized to asses protein levels. 

SFRP1 protein expression normalized with β-actin levels confirmed a 1.37-fold increase in bulk SFRP1 

expression in the Bleo day 14 mouse lungs compared to healthy PBS instilled control lungs (Fig. 4.1 B-

C). Furthermore, by using a quantitative detergent solubility protein profiling method, specific fractions 

from the total mouse lung homogenates were extracted. Total protein abundance study from all the 

fractions revealed increased SFRP1 expression (p-value: 2.976e-04) in the Bleo-induced mouse lungs 

compared to PBS-instilled control mouse lungs [145] (Fig. 4.1 D). 
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Figure 4.1: Increased SFRP1 expression in fibrotic mouse lungs  

Immunofluorescence co-staining of FFPE sections of control and fibrotic mouse lungs immunofluorescently stained for DAPI 

(blue), SFRP1 (red) and αSMA (green) Scale bar: 150 µm(A). SFRP1 expression is significantly increased in fibrotic mouse 

lungs at day 14 as revealed by immunoblot analysis of whole lung lysates from PBS and Bleo day 14 (B) and quantitative 

densitometry graph normalized with β-actin values. Data are shown as mean ± SEM. Statistical analysis: Paired two-tailed t-test. 

***p-value < 0.001, *p-value < 0.05 (C). The total protein abundance of SFRP1 from MS analysis shown here (PBS n=3 and 

Bleo n=3). Data are shown as mean ± SEM. Statistical analysis: One-way ANNOVA (D).  

 

 

Next, SFRP1 protein expression changes in fibrotic mouse lungs after Bleo induced injury were 

investigated in a time series. Classical hallmark time-points in Bleo-mediated lung injury were associated 

with inflammation (~ day 3), fibrogenesis (~ day 14), remodeling (~ day 28) and finally resolution (~ day 

54) (Schiller et al., 2015). Here, total lungs from 2-3 mice at different time-points throughout the Bleo 
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treatment were homogenized (Fig. 4.2 A).  Early expression of SFRP1 was observed from day 3 onwards 

in the fibrotic mouse lungs followed by a progressive increase in expression with peaks at day 7 and day 

14 during the fibrogenic phase. SFRP1 expression was found to decline rapidly with the onset of the 

resolution stage from day 28 on (Fig.4.2 B- C). 

 

 

 

 

Figure 4.2: Dynamics of SFRP1 expression in the fibrotic mouse model  

Time-resolved fibrogenesis in the IPF mouse model after bleomycin injury (A). Representative western blots (n=2, 3) for SFRP1 

protein expression at different time-points during fibrogenesis (B). Quantification of SFRP1 expression by densitometric analysis 

demonstrating significant alterations of SFRP1 expression levels during the time-course. Data are shown as mean ± SEM. 

Statistical analysis: Paired two-tailed t-test. ***p-value < 0.001, *p-value < 0.05 (C). 

 

 

 

4.2.1.2.  SFRP1 is heterogeneously expressed in IPF patients  

Prominent features of IPF include its irreversible and progressive nature which are not fully recapitulated 

by the available murine models [159]. There has been significant progress in the recent years to 

understand the abnormal molecular mechanisms causing the IPF. The data revealed SFRP1 among the 

upregulated genes with a 1.127-fold upregulation in IPF patients related to healthy controls or other 

interstitial diseases. A more recent study performed an unbiased mRNA profiling on 194 human tissue 

samples including 84 healthy control and 110 IPF patient lung samples [39]. The study found a significant 

2.7-fold upregulation of SFRP1 in the IPF cohort compared with the healthy human lung tissues (Fig. 4.3 

A). Another study in 2012 reanalyzed previously published microarray datasets on chronic interstitial 

lung disorders and performed global mappings of the functional motifs to differentiate IPF from other 

interstitial lung diseases [45].  

We obtained samples from two separate patient cohorts which contained lung resections from healthy 

donors and IPF patients. One cohort belonged to the Munich Lung Tissue (MLT) bio-archive obtained 

from the Asklepios Clinic and another to Gießen, Germany. The lung tissues obtained from MLT 

comprised of 6 healthy (H) and 6 IPF (P) (Fig. 4.3 B) and the Gießen cohort encompassed 7 healthy and 
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7 IPF tissue samples (Fig. 4.3 D). The human tissue samples were found to be very heterogeneous with 

respect to SFRP1 expression. SFRP1 protein expression as calculated by densitometric analyses from 

both MLT (Fig. 4.3 B-C) and Gießen (Fig. 4.3 B-C) cohort demonstrated insignificant changes between 

healthy and IPF tissues. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Expression of SFRP1 in healthy human controls and IPF patients 

Transcriptomic profile of 84 healthy controls and 110 IPF patient lung samples display increased SFRP1 expression within the 

IPF cohort (data taken from [39]) (A). SFRP1 protein expression in healthy (H) and IPF (P) samples from an MLT cohort 

observed by immunoblotting (B) with non-significant changes between the two conditions (p value of 0.6528 as calculated by 

densitometric analysis (C). A similar SFRP1 expression pattern was found in healthy (H) and IPF (P) samples from a Gießen 

cohort by immunoblotting (D) demonstrating non-significant changes between controls and disease states (p value of 0.8048 as 

calculated using densitometric analysis) (E).  

 

 

 

Next, localization of SFRP1 protein expression in the IPF lung tissue sections were investigated. For that, 

FFPE lung sections from healthy controls and IPF patients were obtained and co-stained with αSMA to 

locate fibrotic foci regions. Increased SFRP1 expression in the IPF fixed tissue sections compared to 

healthy controls were noted. Moreover, as expected increased fibrotic lesions marked with increased 

αSMA staining were found in the IPF FFPE sections. Interestingly, αSMA-positive myofibroblasts 

located within fibroblastic foci (shown in white arrows) showed mostly a mutual exclusion with SFRP1 

(shown in yellow arrows) positively stained cells. 
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Figure 4.4: In IPF tissue sections SFRP1 and αSMA expression are mostly mutual exclusive 

Representative immunofluorescence staining of healthy control and IPF lung FFPE sections co-stained for DAPI (in blue), 

SFRP1 (in red) and αSMA (in green). Images were acquired by confocal microscopy (A). The lower panel shows a different IPF 

patient sample immunofluorescently stained for SFRP, aSMA and DAPI.  SFRP1 positive cells were indicated by yellow arrows 

and αSMA positive cells were indicated with white arrows (B). Scale bar. 50 µm. 
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4.2.1.3.  Ex vivo lung injury models demonstrate an enhanced SFRP1 

expression 

To further investigate our findings in a complex 3D cell culture system that mimics fibrosis ex vivo, a 

murine precision-cut lung slice (PCLS) injury system was utilized. PCLS spatially retain much of the 

cellular diversity as found in the in vivo native lung and overcome the limitations associated with 2D and 

3D cellular models. A recent study in 2017 showed that early fibrosis symptoms could be mimicked in 

human PCLS treated with pro-fibrotic growth factors [91].  In line with this study, SFRP1 expression was 

investigated in healthy and “fibrotic” PCLS conditions. First, 300 µm thick PCLS from wild type 

C5BL6/7 mice were tested. A study by Hesse and colleagues demonstrated earlier that genes related to 

ECM remodeling pathways were upregulated in the bleomycin induced rat PCLS and human PCLS when 

treated with TGFβ1 [160]. Hence, we treated healthy mouse PCLS (mPCLS) with TGFβ1 (5 ng/ml) for 

3 days (72 hrs).  Following treatment, the slices were harvested for protein and immunoblotting was 

performed. Increased SFRP1 expression in the TGFβ1 treated mPCLS compared to untreated PCLS were 

observed (Fig. 4.5 C). Moreover, immunofluorescence co-stainings of TGFβ1 treated slices demonstrated 

elevated SFRP1 expression, similar to FFPE sections from fibrotic mouse lungs in the bleomycin model. 

Additionally, we observed an increased αSMA staining of cells similar to myofibroblast in the TGFβ1 

treated PCLS. Again, αSMA and SFRP1 expressing cells appeared to be mutually exclusive (Fig. 4.5 B). 

These findings underline that PCLS treated with TGF can mimic as a 3D tissue culture model ex vivo 

fibrosis related observations similar to the mouse bleomycin fibrosis model.   

 

Next, healthy mouse slices were treated with a fibrotic cocktail (FC) containing pro-fibrotic growth 

factors (TGFβ1, TNFα, PDGF AB and LPA) for 5 days (120 hrs). For vehicle control, control cocktail 

(CC) were used to treat the slices for the same duration (5 days). Furthermore, to investigate the effects 

of culturing conditions, controls from day 0 (= uncultured samples directly taken after slicing) were used. 

Immunoblotting from samples taken from four independent mouse experiments (n=4) exhibited a clear 

increase in SFRP1 protein expression in the FC treated mPCLS compared to day 0 controls. Surprisingly, 

at CC treated mPCLS demonstrated an increase of SFRP1 protein expression after 5 days in culture which 

was similar to that observed with the FC treatment in comparison to day 0 untreated samples (Fig. 4.5 D). 

Densitometric quantification was used for the four biological replicates and a paired two-tailed t-test was 

performed to analyze statistical significance (Fig. 4.5 E). 
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Figure 4.5: Ex vivo mouse lung injury model displays an increase in SFRP1 expression 

Schematic representation of the workflow to obtain lung slices from mice and treating them with growth factors like TGFβ1 or 

fibrotic cocktail and downstream analyses (A). Immunofluorescent staining of the nuclei (with DAPI, in blue), SFRP1 (in red) 

and αSMA (in green) of PBS lung slice treated with 5 ng/ml of TGFβ1 for 72 hrs. Scale bar 50 µm (B). The mPCLS obtained 

from healthy PBS instilled mouse were treated with TGFβ1 (5 ng/ml) for 72 hrs and the total protein lysates harvested from the 

slices were used for immunoblotting (C). Mouse lung slices untreated at day 0, or treated with control cocktail (CC) and fibrotic 

cocktail (FC) for 5 days were lysed for protein samples. One representative western blot out of four independent biological 

experiments (n=4) is shown (D) and densitometric quantifications are shown as mean ± SEM (E) Statistical analysis: Paired two-

tailed t-test. ***p-value < 0.001, *p-value < 0.05. 
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Furthermore, to validate results in a human ex vivo fibrosis model, human PCLS (huPCLS) were used. 

Healthy lung tissue from tumor resections were filled with low melting agarose and precisely cut to obtain 

500 µm thick slices. The huPCLS were treated with FC and CC for 5 days (120 hrs) and proteins were 

extracted. Increased SFRP1 expression was depicted from three patient samples treated with FC (Fig. 4.6 

A). Densitometric analysis was performed with SFRP1 protein expression normalized with β-actin levels 

(Fig. 4.6 B). SFRP1 protein expression was found to be strongly upregulated in the huPCLS treated with 

FC for 5 days in culture compared to the slices treated with CC (p-value: 0.094). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Ex vivo human lung injury model shows an increase in SFRP1 expression 

Immunoblotting performed with proteins harvested from huPCLS treated with CC and FC for 5 days. Representative western 

blot from human lung tissue is show increase in SFRP1 expression in FC treated huPCLS compared to CC treated slices (A) and 

densitometric quantification (n=3; p value: 0.0948) thereof (B).  Data are shown as mean ± SEM. 

 

 

Taken together, my data strongly indicate a pivotal role of SFRP1 in fibrogenesis as exhibited in the 

mouse lung fibrosis model, in IPF patient samples as well as in ex vivo injury models using various mouse 

and human lung tissues.   

 

4.2.2. Part II: Functional characterization of SFRP1 in lung fibroblasts 

 

4.2.2.1. Molecular signature of the invasome in lung fibroblasts 

Fibroblast invasion represents one key pathomechanism in lung fibrosis and invading fibroblasts have 

been demonstrated as the effector cells that massively contribute to fibrogenesis. Hence, it was crucial to 

understand the invading fibroblast phenotype which plays a pivotal role in tissue repair and regeneration 

in fibrogenesis [144]. To comprehensively characterize the invading fibroblast population on a molecular 

level, a 3D collagen-based invasion assay was utilized (as described in section 3.2.2.2). Invading (inv.) 

and non-invading (non-inv.) mouse lung fibroblast populations were obtained after 72 hrs and 96 hrs of 

invasion from the assay. In this signature 1086 genes had >1.5 times fold change after 72 hrs of invasion 

and 163 genes had an expression ratio more than 2-fold. The 2 main clusters were separated as invading 
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and non-invading fibroblasts [144]. SFRP1 was found in this study as a significantly downregulated gene 

(fold change: 2.7) in the invading fibroblasts at 72 hrs (as marked with a red square) (Fig. 4.7 B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: Heatmap displaying the invasome of fibroblasts 

Schematic representation of the assay workflow (Invading and non-invading fibroblasts were separated after 72 hrs of invasion. 

The following heatmaps reveal the top >2 fold differentially regulated genes found from the microarray analysis (Affymetrix 

Mouse Gene 1.0 ST array). The targets that are highly expressed in the invading fibroblasts compared with the non-invading 

fractions were illustrated in red and the low expressed genes in blue. Each column represented one independent experiment. P-

values were plotted against fold change values in a log-scale (B). (Published in [144]). Note: Transcriptomic analysis performed 

by Dr. Martin Irmler and Bettina Oehrle (Helmholtz Zentrum Munchen). 
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Interestingly, TGFβ1 was also found to be upregulated in the invading fibroblasts with 2.4-fold after 72 

hrs (Fig.4.8 A) and 3.3-fold after 96 hrs (Fig. 4.8 B) of invasion [144]. To validate this finding further, 

protein and RNA from invading (inv.) and non-invading (ninv.) mouse fibroblasts were harvested (as 

discussed in sections 3.2.8.3 and 3.2.9.2 respectively). As expected, TGFβ1 protein expression was 

significantly elevated in invading mouse fibroblasts (Fig 4.8 C). Consistent with the transcriptomic data, 

validating qPCR results displayed a significant upregulation of TGFβ1 (fold change: 1.8-fold) in the 

invading mouse fibroblasts (Bettina Oehrle, Ph.D. thesis, 2015) (Fig. 4.8D). Moreover, significant 

upregulation of TGFβ1 transcript levels by 19.6-fold were observed with c and verified in three different 

primary human fibroblast lines from different patients (P1, P2 and P3) (Fig. 4.8 E). To investigate whether 

TGFβ1 stimulation in the human fibroblasts increased their invasive capacity, invasion assay with 

primary human fibroblasts in a 96- well format (as discussed in section 3.2.2.2.) were performed. Indeed, 

TGFβ1-stimulated (1 ng/ml) phFbs displayed a significant increase in their invasive capacity compared 

to untreated controls. (Fig. 4.8 F). 
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Figure 4.8: TGFβ1 increases fibroblast invasion 

Volcano plot depict >1.5-fold gene expression of invasion signatures after 72 hrs (A) and 96 hrs (B). TGFβ1 upregulated in 

invading fibroblasts is marked in red. Mouse invading and non-invading fibroblast lysates were probed for TGFβ1 (C) (A-C; 

Oehrle, Burgstaller et al., 2015). QRT-PCR analysis revealed a significant increase of TGF1 mRNA expression in invading    

mouse lung fibroblasts (mLFbs) (n=4). GAPDH was used as a housekeeper gene (D). QRT-PCR analysis of normalized TGFβ1 

gene expression from 3 different phFb patient lines. GAPDH was used as a housekeeper gene. Data are depicted as mean ± SEM 

from three independent experiments (n=3) (E). 96-well plate invasion assay from 3 different fibroblast patient lines (P1, P2 and 

P3) and percentage of invasion quantified from 10 technical replicate wells for each condition. Statistical analysis: Paired two-

tailed t-test. ***p-value < 0.001, *p-value < 0.05. Note: Sections A-C has been published in Oehrle, Burgstaller et al., 2015. 

 

 

4.2.2.2. Invading fibroblasts show reduced SFRP1 expression in primary 

human fibroblasts 

SFRP1 was identified by microarray analysis as consistently down-regulated in both 72 and 96 hrs 

invading mouse fibroblast populations [144]. Reduced SFRP1 expression was at first verified in invading 

mLFbs on protein and mRNA level. SFRP1 mRNA expression showed significant reduction (2.35 folds) 

in invading mouse fibroblasts (Fig. 4.9 A; Bettina Oehrle, Ph.D. thesis, 2015). On protein level, 

immunoblot analysis demonstrated a strong decrease in SFRP1 expression upon mouse fibroblast 

invasion (Fig. 4.9 B; Bettina Oehrle, Ph.D. thesis, 2015).Next, to investigate whether a similar regulation 

exists in primary human lung fibroblasts, SFRP1 protein and mRNA expression were analyzed in 

invading and non-invading human fibroblasts in different patient fibroblast cell lines. Indeed, SFRP1 

mRNA expression was found to be significantly reduced (2.7 folds) in the invading fibroblast fraction, as 

quantified from eight different patient cell lines (Fig. 4.9 C; Bettina Oehrle, Ph.D. thesis, 2015). 

Additionally, protein expression of SFRP1 was verified in three different patient fibroblast cell lines (P1, 

P2 and P3) and was noted to be significantly increased in invading fibroblasts (Fig 4.9 D-E). 
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Figure 4.9: SFRP1 expression is increased in invading mouse and primary human lung fibroblasts 

qRT-PCR analysis in four independent experiments from mLFbs showed a decreased SFRP1 gene expression in invading 

compared to non-invading fibroblasts. GAPDH was used as the normalizing housekeeping gene (A).  Protein isolated from 

invading and non-invading mLFbs was used in western blotting and probed for SFRP1 and β-actin as loading control (B). qRT-

PCR analysis in eight different patient cell lines showed increased SFRP1 mRNA expression and GAPDH was used as a 

housekeeper gene (C). Western blots from three different phFbs probed for SFRP1 and β-actin as loading control (D). 

Densitometric quantification of SFRP1 expression normalized with β-actin expression from the three patient phFbs were shown 

(E). Statistical analysis: Paired two-tailed t-test. ***p-value < 0.001, **p-value < 0.01 and *p-value <0.05. Note: Sections A and 

B taken from Bettina Oehrle, Ph.D. thesis, 2014. 

 

 

4.2.2.3. TGFβ1 downregulates SFRP1 expression in fibroblasts  

SFRP1 transcripts were strongly reduced in TGFβ1-mediated fibroblast invasion signature (Fig 4.10 A, 

gene expression data not shown here; published in Oehrle, Burgstaller et al., 2015), hence this could 

suggest that TGFβ1 potentially influenced SFRP1 expression which might be critical for aberrant 

fibroblast invasion. Therefore, the authors investigated further the kinetics of SFRP1 regulation in 

response to TGFβ1. In that respect, TGFβ1 (1 ng/ml; 48 hrs) stimulated mouse fibroblasts displayed 

reduced SFRP1 protein expression compared to untreated controls. Moreover, TGFβ1 activated cultured 

fibroblasts displayed elevated αSMA protein expression, which served as a positive control for the TGFβ1 

treatment [161] (Fig. 4.10 B). Next, the dynamics of TGFβ1 stimulated mouse lung fibroblasts on 2D 

culture dishes were observed over a period of 24 hrs starting at 4 hrs. A gradual downregulation of SFRP1 

mRNA expression were observed upon TGFβ1 stimulation from over the period of 24 hrs (ddCt value of 

-1.8) (Fig. 4.10 C; Bettina Oehrle, Ph.D. Thesis, 2015). To find a similar regulation in primary human 

fibroblasts, dynamics of SFRP1 protein and mRNA expression were studied in these cells following 

TGFβ1 stimulation. With that, I observed a similar strong repression of SFRP1 protein expression in 

TGFβ1 (1 ng/ml; 48 hrs) activated primary human fibroblasts along with an increased αSMA expression 

confirming a proper TGFβ1 activation in the experiments (Fig. 4.10 D). Densitometric analysis was used 

to quantify the western blot data from three different independent experiments using patient cell lines (P1, 

P2 and P3) (Fig. 4.10 E). In line with the mouse studies, SFRP1 mRNA expression was substantially 

diminished in TGFβ1 (1 ng/ml; 48 hrs) stimulated primary human fibroblasts (ddCt value of -2.6) (Fig. 

4.10 F).  
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Figure 4.10: SFRP1 expression is decreased in TGFβ1 treated mouse and human fibroblasts 

Volcano plot showing >1.5-fold gene expression of TGFβ1 treated fibroblast invasion signature, SFRP1 expression marked in 

blue (published in Oehrle, Burgstaller et al., 2015) (A). Cell lysates from mLFbs treated with TGFβ1 for 48 hrs and untreated 

controls were used for immunoblotting and probed for SFRP1 and β-actin (B). mRNA isolated from mLFbs treated with TGFβ1 

over a period of 24 hrs were used for qRT-PCR analysis and SFRP1 transcript expression was normalized with GAPDH 

expression values (C). Cell lysates from patient derived primary human lung fibroblasts treated with TGFβ1 and untreated 

controls were used for immunoblotting and probed for SFRP1 and β-actin loading control. One of the representative blots out of 

three independent experiments (n=3) are shown here (D). Densitometric analysis graph showing quantitative data (n=3) from 

three different patient lines (P1-P3) (E). qRT-PCR analysis of SFRP1 transcript expression normalized with GAPDH values 

from (n=3) patient fibroblasts (F). Statistical analysis: Paired two-tailed t-test. **p-value < 0.01, *p-value < 0.05. 

 

 

To identify other pro-fibrotic factors that affect SFRP1 expression, phFbs and mLFbs were stimulated 

with EGF, FGF2, PDGF BB, Wnt3A, Wnt5A and LPA along with TGFβ1 for 48 hrs (as discussed in 

section 3.2.1.7). The protein harvested from the total cell lysates were subjected to Western blotting and 

subsequent densitometric analyses (n=3). The results demonstrated significantly reduced expression of 

SFRP1 in phFbs stimulated with TGFβ1 and TNFα (Fig. 4.11 A-B). In the mLFbs, SFRP1 expression 

was observed to be strongly decreased in TGFβ1-treated fibroblasts (p-value: 0.078), but TNFα treatment 

in mLFbs did not show any effect unlike in phFbs (Fig. 4.11 C-D). Hence apart from TGFβ1, none of the 

other treatments had a consistent effect on SFRP1 expression in both mouse and human fibroblasts.  
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Figure 4.11: SFRP1 protein expression in fibroblasts stimulated with various growth factors 

Representative western blot (n=3) for SFRP1 protein expression in phFbs (A) and mLFbs (C) stimulated with TGFβ1, EGF, 

FGF2, PDGF BB, Wnt3A, Wnt5A and LPA(B). Quantification of SFRP1 expression by densitometric analysis demonstrate 

significant reduction of SFRP1 expression level in phFbs treated with TGFβ1 and TNFα (B) and strong decrease in SFRP1 

expression in TGFβ1 treated mLFbs (D). Data are shown as mean ± SEM. Statistical analysis: One-way ANOVA with Dunnett’s 

multiple comparison test. **p-value < 0.01. 

 

 

Subsequently, in order to get a first mechanistic insight into the regulation of SFRP1 expression in 

connection with TGF1 signaling in phFbs, I tested various known inhibitors of TGF1 signaling. Firstly, 

phFbs were tested with inhibitors of the canonical TGFβ pathway. Inhibitors considered for this study 

were SB431542, which is a specific inhibitor targeting TGF-β type I receptor/Alk5 receptor and Sis3, 

which is a specific inhibitor of Smad3 phosphorylation. The inhibitors were applied alone and together 

with TGFβ1 (1 ng/ml) for 48 hrs in phFbs. SFRP1 protein expression changes along with possible 

alterations in Smad3 phosphorylation levels were monitored by immunoblotting. Next, phFbs were 

treated with the non-canonical TGFβ pathway inhibitors like U0126, an inhibitor targeting pErk1/2 and 

SP60 (SP600125), an inhibitor of JNK1/2/3 in parallel with TGFβ1 stimulation for 48 hrs. In addition, 

two most commonly used TGFβ function inhibiting anti-fibrotic drugs namely Nintedanib and Tranilast 

were included in this study. Conclusively, the inhibitors and drugs along with TGFβ1 stimulation failed 

influence SFRP1 protein expression (n=1) (Fig. 4.12). This might indicate that TGFβ1 regulates SFRP1 

expression via unknown different mechanism. 
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Figure 4.12: TGFβ1 downregulates SFRP1 expression via a yet unknown mechanism. A phFb cell line (n=1) was incubated 

with 1 ng/ml of TGFβ1 along with specific inhibitors targeting canonical or non-canonical TGFβ signaling pathway reactions. 

The whole protein lysates were used for immunoblotting for SFRP1, pSmad3, (total) Smad3 and β-actin for loading control. 

Untreated cells were treated with DMSO as vehicle control. 

 

 

 

4.2.2.4. SFRP1 expression in lung fibroblast is not regulated epigenetically 

Accumulating evidence from a pan-cancer study with 8000 tumor and healthy samples noted that the 

consistent loss of SFRP1 in 29 different types of cancer resulted by gene promoter methylation [155]. 

Apart from cancer, other diseases like systemic sclerosis [162], and keloids [163] also reported that loss 

of SFRP1 expression was due to promoter hypermethylation in the diseased condition. Here, I wanted to 

find evidence whether the regulation of SFRP1’s expression in fibroblasts in connection with IPF is also 

due to epigenetic mechanisms (Fig. 4.13 A). To investigate this, patient-derived primary lung fibroblasts 

were treated with different concentrations of 5-aza-2'-deoxycytidine or Decitabine (DAC) which is an 

analogue of cytosine and is known to inhibit DNA methyltransferases. Cellular metabolic activity of the 

fibroblasts after 72 hrs was determined by MTT assay. The concentration of 1 µM of DAC was noted as 

the effective concentration causing no toxicity in the probed phFbs (Fig 4.13 B). DAC treated and 

untreated control phFbs displayed similar protein expression levels of SFRP1 (Fig. 4.13 C). Densitometric 

quantification showed that SFRP1 protein levels were not affected by DAC treatment in phFbs at 48 and 

72 hrs (Fig. 4.13 D-E).  Likewise, SFRP1 mRNA expression did not display any significant changes 

compared to untreated fibroblasts (Fig. 4.14 A).  
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Figure 4.13: Decitabine treatment in human fibroblasts does not affect SFRP1 expression 

Deduction of a common theme for epigenetic regulation of SFRP1 in diseases as collected from different published datasets (A). 

PhFbs viability after 72 hrs of DAC treatment (0-5 µM; in red) normalized to DMSO controls (in blue) assessed by MTT assay. 

Optimal concentration is highlighted in orange (B). Representative immunoblot of one patient cell line (out of 3; n=3) treated 

with DAC (1 µM) for 48 and 72 hrs and probed for SFRP1 and β-actin as loading control is shown here(C). Densitometric 

analysis for 48 hrs (D) and 72 hrs (E). DAC (1 µM) treatments were performed with three different phFb cell lines (n=3; P1-P3) 

for the aforementioned time-points Statistical analysis: Paired two-tailed t-test. ***p-value < 0.001, *p-value < 0.05, ns = not 

significant. 

 

To ensure proper functioning of DAC at the used concentration and time-points, further positive control 

experiments were performed. The restoration of SFRP1 gene expression in breast cancer cell lines like 

MCF-7 and MDA-MB-231 were reported on treatment with 1-2 µM of DAC for 72 hrs [164]. Hence to 

correlate, MCF-7 and MDA-MB-231 cells were treated with 1 µM of DAC for 72 hrs and SFRP1 gene 

expression was quantified by qPCR. SFRP1 was found to be upregulated by 148.75 folds in the MCF-7 

cells and by 22.91 folds in the MDA-MB-231 cells (Fig. 4.14 A-B). In addition, Keratin 8 (KRT8) was 

noted to be upregulated and Cyclin A (CCNA2) was found to be downregulated in a LD419 fibroblast 

cell line treated with 1 µM of DAC for 72 hrs [165]. Therefore, I treated phFbs with 1 µM of DAC for 3 

days and subsequent qRT-PCR analysis revealed significant increase in KRT8 gene expression (p-value: 

0.045) and significant decrease of CCNA2 levels (0.019) in the DAC treated phFbs (Fig. 4.14 C-D). 
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Figure 4.14: Positive control for DAC treatment 

QRT-PCR analyses show fold change of SFRP1 gene expression in DAC (1 µM) treated MCF-7 (p-value: 0.1807) (A) and 

MDA-MB-231(p-value: 0.224) (B) cells (n=3 ;) normalized to untreated vehicle controls. GAPDH was used as a housekeeper 

gene. KRT8 (fold change: 2.6; p-value: 0.045) and CCNA2 (fold change: 0.46; p-value: 0.019) gene expression was 

quantitatively assessed via qRT-PCR from three independent phFb cell lines (P1-P3). Data are shown as mean ± SEM. Statistical 

analysis: Paired two-tailed t-test: *p-value < 0.05. 

 

Next, we combined DAC and TGFβ1 stimulation in phFbs. Western blot analysis at two different time-

points (48 and 72 hrs) displayed a significant TGFβ1 mediated downregulation of SFRP1 expression, as 

shown before (compare also section 4.2.2.3). However, no alterations in SFRP1 protein expression by 

simultaneous stimulation with DAC and TGFβ1 were observed (Fig- 4.15 B-C). From these data I 

conclude that hypermethylation and thus epigenetics might not play a role in the expression regulation of 

SFRP1 in human lung fibroblasts. 
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Figure 4.15: Combined Decitabine and TGFβ1 treatment in human fibroblasts does not affect SFRP1 expression  

QRT-PCR analysis showing fold change of SFRP1 gene expression in DAC (1 µM) treated phFbs (n=3; P1-P3) normalized to 

untreated vehicle controls. GAPDH was used as a housekeeper gene (A). Representative western blot displaying SFRP1 and β-

actin protein expression in patient fibroblasts (for n=3; P1-P3) treated with DAC (1 µM) along with TGFβ1 (1 ng/ml) for 48 and 

72 hrs (B). Quantitative densitometric analysis (n=3; P1-P3) exhibiting normalized band intensity of SFRP1/β-actin in untreated 

(UT) vehicle control, TGFβ1 treated (+TGFβ1), DAC alone treated (+DAC) and DAC and TGFβ1 combined treated 

(DAC+TGFβ1) phFbs (C). Statistical analysis: One-way ANOVA with Dunnett’s multiple comparison test *p<0.05, **p<0.01, 

***p<0.001, ns = not significant. 

 

Apart from methylation, acetylation or deacetylation of nonhistone proteins has been demonstrated as 

another major regulatory event in epigenetics. To check acetylation related regulatory mechanisms, phFbs 

were treated with Trichostatin A (TSA) which modifies the balance between histone acetyltransferase 

and histone deacetylase activities. Cellular metabolic activity via MTT assay was reported in the range of 

100-200 nM TSA for fibroblasts treated for 72 hrs (Fig. 4.16 A). Fold change values of SFRP1 mRNA 

expression after 72 hrs did not display any significant changes following TSA (100-200 nM) treatment 

(Fig. 4.16 B). Also, SFRP1 protein levels assessed by western blotting and quantified with densitometric 

analysis at 48 and 72 hrs after TSA treatment failed to depict any significant differences compared to 

untreated vehicle controls (Fig. 4.16C-E).   

Overall and in conclusion, regulation of SFRP1’s expression in phFbs might not be moderated neither by 

acetylation, nor by promoter hypermethylation processes, and epigenetics in general.  
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Figure 4.16: Trichostatin A treatment in human fibroblasts does not affect SFRP1 expression 

Cell viability of phFbs treated with TSA (0-3000 nM; in red) for 72 hrs was checked with an MTT assay normalized to DMSO 

controls (in blue). Optimal viability concentration is indicated by a box (A). qRT-PCR analysis displaying normalized SFRP1 

mRNA expression in untreated vehicle control and TSA (100-200 nM) treated phFbs (n=3; P1-P3). GAPDH was used as a 

housekeeper gene (B). Protein lysates from phFbs treated with TSA (0-200 NM) were used for immunoblotting at two time-

points (48 and 72 hrs) and probed for SFRP1 and β-actin expression (C). Densitometric quantification of SFRP1/β-actin ratios 

for 48 hrs (D) and 72 hrs (E) TSA treatments are recorded as mean ± SEM. Statistical analysis: One-way ANOVA with Dunnett’s 

multiple comparison test *p<0.05, **p<0.01, ***p<0.001, ns = not significant. 

 

 

 

4.2.2.5. SFRP1 is a negative regulator of fibroblast invasion 

Microarray analysis of invading mouse lung fibroblasts versus non-invading fibroblasts (as discussed in 

section 4.2.2.1) identified SFRP1 to be one of the most significantly deregulated genes. Therefore, it was 

of interest if SFRP1 also plays a crucial functional role the invasion of primary human lung fibroblasts. 
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siRNA knockdown of SFRP1 human fibroblasts was utilized in the invasion assay setting. TGFβ1 

activated fibroblasts were used as a positive control for invasion, as TGF1 treatment augmented 

fibroblast invasion (as discussed in section 4.2.2.1). Three different siRNAs targeting different exon parts 

of SFRP1 were used (si1-3) along with two negative scrambled control (Sc1-2) as well as untreated 

transfection buffer controls (UT). Strikingly, SFRP1 depleted phFbs displayed a significant increase in 

their invasive potential similar to TGFβ1 treatment (Fig. 4.17 A-B). 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.17: SFRP1 depleted phFbs have increased invasion capacity 

Schematic representation of the analysis of fibroblast invasion by Imaris software (Bitplane AG). Relative invading fraction 

percentage (Rel. Inv. fraction %) was quantified from the formula shown in (A). The percentage of Rel. Inv. fraction were 

calculated as mean ± SEM from four independent experiments (n=4; P1-P4). The conditions used in the 96- well invasion assay, 

were  untreated phFbs with transfection buffer only (UT), phFbs treated with TGFβ1 (1ng/ml; +TGFβ1), scramble negative 

control 1 (Sc1), scramble negative control 2 (Sc2), SFRP1 specific siRNA 1 (si1), SFRP1 specific siRNA 2 (si2) and SFRP1 

specific siRNA 3 (si3). Statistical analysis: One-way ANOVA with Dunnett’s multiple comparison test *p<0.05, **p<0.01, 

***p<0.001, ns = not significant. 

 

 

The stability of the siRNA knockdown was assessed by using a time-course of SFRP1 silencing during 

the invasion assay period. The siRNA treatment of the phFbs was carried out for 48 hrs on 2D plastic 

dishes and then the cells were transferred onto the collagen gel for an additional 96 hrs (similar as 

discussed in methods section 3.2.2.2).  Additionally, the SFRP1 knockdown efficiency was checked on 

culture dishes during the same time-period. Proteins were harvested from phFbs as indicated in Fig.4.16 

after every 48 hrs and subsequently western blots were performed (as discussed in section 3.2.1.6). The 
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immunoblotting results confirmed a robust and stable knockdown of SFRP1 throughout the invasion 

assay period (Fig. 4.18). 

 

 
Figure 4.18: Stability of SFRP1 knockdown (kd) during invasion  

Protein levels of SFRP1 was analyzed after every 48 hrs of siRNA treatment until day 6 via western blotting. β-actin was used 

as loading control. Various conditions were tested in this experiment:  untreated phFbs with transfection buffer only (UT), 

scramble negative control 1 (Sc1), scramble negative control 2 (Sc2), SFRP1 specific siRNA 1 (si1), SFRP1 specific siRNA 2 

(si2) and SFRP1 specific siRNA 3 (si3) treated phFbs. 

 

 

SFRP1 knockdown phFbs demonstrated increased invasion (Fig.4.17). To confirm this observation 

further, a different experiment using a commercial SFRP1 inhibitor (Santa CruZ, CAS915754) was 

performed. The SFRP1 Inhibitor (Inh) is a diphenylsulfone-sulfonamide compound that antagonize 

SFRP1 function by a yet unknown mechanism [167]. First, the activity of the inhibitor was checked by a 

TOP/FOP assay. TOP FLASH or FOP FLASH reporter plasmid transfected mLFbs were treated with 

recombinant Wnt3A (100 ng/ml), a recombinant SFRP1 (R&D) and the SFRP1 inhibitor (10 µM and 30 

µM). Then, luciferase activity was measured from the luminescence read-out. SFRP1inhibitor co-

stimulation counteracted the Wnt3A activity and the highest inhibitory effects were seen at a 

concentration of 30µM (Fig. 4.19 A; Bettina Oehrle, Ph.D. thesis, 2015). Consequently, the SFRP1 

inhibitor was used in a concentration of 30 µM for the following experiments. In the invasion assay, the 

SFRP1 inhibitor-treated phFbs exhibited a significant increase in their invasion capacity compared to 

vehicle control cells (UT) (Fig. 4.19 B). From this finding, I conclude that SFRP1 depleted phFbs are 

highly invasive cells. 

 

 

 

 



Chapter A: Characterization of SFRP1 as a novel regulator of lung fibrosis 

 

 
72 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.19: SFRP1 Inhibitor (Inh) treated phFbs showed an increased invasion capacity  

MLFbs transfected with the TOP/FOP FLASH reporter constructs were treated with Wnt3a (100 ng/ml) as a positive control, rh-

Sfrp1 (1 μg/ml) and/or Sfrp1 Inh (10 μM, 30 μM). The Luminescence was measured by a plate reader and the relative luciferase 

activity was subsequently determined by the ratio of the luminescence in the TOP reporter transfected cells and the FOP-

transfected cells from the respective conditions. Statistical analysis used: One-way ANOVA with Dunnett’s multiple comparison 

test. *p<0.05, **p<0.01, ***p<0.001 (Bettina Oehrle, Ph.D. thesis, 2015) (A). Untreated cells along with TGFβ1 (1 ng/ml) 

treated and SFRP1 inhibitor (CAS 915754; 30µM) treated phFbs (n=3; P1-P3) were used in the invasion assay. The Rel. Inv. 

fraction % was calculated as mean ± SEM from the three independent experiments. Statistical analysis: Paired two-tailed t-test. 

***p-value < 0.001, **p<0.01, *p-value < 0.05 (B).  

 

 

4.2.2.6. SFRP1 regulates distinct genes and proteins related to the actin 

cytoskeleton  

Given our findings on the role of SFRP1 in fibroblast invasion, it seemed likely that low levels of SFRP1 

in fibroblasts are indicative for a special subpopulation or for a special mechanistic regulation of specific 

cellular functions and/or biological processes. To investigate this further, I applied multi-omics in siRNA 

depleted phFbs.  
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Knockdown of SFRP1 efficiently reduced its mRNA levels (fold change: 0.03 and p-value: 0.0003 

compared to untreated transfection controls) as shown in Fig. 4.22 A. Regulation of gene expression after 

48 hrs of siRNA-mediated transient silencing of SFRP1 was determined by microarray analysis kindly 

provided by Dr. Martin Irmler (from Institute of Experimental Genetics, HMGU). Genes that were 

regulated with a fold change >1.5 and FDR <10% compared to controls were taken into consideration. 

Detection of p-values were used to exclude background signals and significant genes were filtered with 

p<0.05. 119 overlapping genes were found to be deregulated in both siSFRP1 v/s UT and siSFRP1 v/s Sc 

having p<0.05 (paired t-test) and fold change (Fc)>1.5x (Fig. 4.20 A). Of interest, RhoA, is a member of 

the non-canonical Wnt pathway which is involved actively in the actin cytoskeleton reorganization along 

with regulation of cell morphology, attachment, and migration. RhoA here was found to be significantly 

downregulated (Fc: 1.5x) in the SFRP1low fibroblasts (Fig. 4.20 B-C).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.20: Transcriptomic signature of SFRP1-ve human lung fibroblasts 
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Venn diagram showing the number of deregulated genes identified with Fc >1.5x and p-value<0.05 in siSFRP1 vs UT and 

siSFRP1 vs Sc analysis and 119 genes were found to overlap in both conditions (A). Genewise testing for differential expression 

was performed by the paired limma t-test and Benjamini-Hochberg multiple testing correction (FDR < 10%). RhoA expression 

pattern is highlighted in red (B). Scatter plot of global gene expression overlap between UT and Sc vs siSFRP1 is shown, where 

upregulated genes are shown in red dots and downregulated genes indicated by green dots. RhoA expression in the plot is 

indicated in blue text and arrow (C). Note: Transcriptomic analysis performed by Dr. Martin Irmler, Helmholtz Zentrum Munich. 

 

 

Next, proteomic analyses of SFRP1 depleted phFbs were performed. Alterations in protein expression 

patterns after 48 hrs of siRNA-mediated transient silencing of SFRP1 were determined by the Q Exactive 

™ RF Hybrid Quadrupole Orbitrap ™ Mass Spectrometer kindly performed by Dr. Juliane Merl-Pham 

(Helmholtz Zentrum Munich). After applying 1% protein FDR filtering, 2400 proteins were quantified 

within the samples. Among them, 140 proteins were differentially abundant in both siSFRP1 v/s UT and 

siSFRP1 v/s Sc having p<0.05 (paired t-test) and fold change (Fc)>1.4x (Fig 4.21 A). Using the PSEA-

Quant tool (Pseaquant.scripps.edu, 2019), several GO (Gene Ontology) protein sets were identified that 

were differentially expressed between the two data sets. This enrichment analysis tool identified the GO 

terms that were over-represented using annotations for that particular gene set. Different GO aspects like 

Molecular Function (MF), Biological Process (BP), Cellular Component (CC) and Reactome Pathways 

(RP) were chosen for this analysis. These data indicated an enrichment in the TGFβ regulated pathways 

in the SFRP1low phFbs (as discussed in section 4.2.2.3). Although the SFRP1low fibroblasts did not 

demonstrate a significant deregulation of RhoA protein expression, they did display an interesting over-

representation of the Rho GTPase effector proteins which is confirmative to our findings from the 

transcriptomic screen. Additionally, some components of the actin cytoskeleton as well displayed an 

interesting enrichment in SFRP1neg phFbs (Fig. 4.21 B). 

Subsequently, I wanted to validate some of the interesting proteins found amongst the 140 differentially 

regulated ones identified in the proteomic analysis. Decreased SFRP1 protein expression levels by siRNA 

mediated silencing in the phFbs acted as a positive control for the experiment. The same samples that 

were used for the proteomics study, were used to validate the targets by Western blotting. The abundance 

ratios of these selected proteins are displayed as a heatmap in Fig 4.21 C. Immunoblotting and further 

densitometric quantifications thereof demonstrated substantial upregulation for the proteins Catenin Delta 

1 (CTNND1), Talin1 (TLN), Mapk1, Zyxin (ZYX) and Tenascin C (TNS), all of which were not 

statistically significant in my experiments. 
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Figure 4.21: Proteomic signature of SFRP1low human lung fibroblasts 

Venn diagram show here the number of deregulated proteins identified with Fc >1.4x and p-value<0.05 in siSFRP1 vs UT and 

siSFRP1 vs Sc analysis and 140 proteins were found to overlap in both conditions (A). Statistical testing for differential 

expression were performed by employing a paired t-test and Benjamini-Hochberg multiple testing correction (FDR < 10%). 

Normalized enrichment scores (ES) indicate the distribution of Gene Ontology categories. A selection of the top enriched GO 

pathways is displayed in the graph and RhoA related components are highlighted by red squares (B). Heatmap depicting the 

chosen proteins found in the proteomic analyzes for validation. High and low abundant proteins are illustrated in the heatmap in 

blue and white, respectively. Each column represents the average of the abundance ratios from three different biological 

experiments (n=3). (C). Alterations in protein expression of SFRP1, CTNND1, Talin, Mapk1, Zyxin and TnsC in total cell lysates 

were validated via immunoblot. Shown is one representative immunoblot from three independent biological experiments in 

phFbs (n=3; P1-P3) (D). Densitometric quantifications from (C) are presented as mean ± SEM. Statistical analysis: paired t-tests 

(E). Note: Mass spectrometry performed by Dr. Juliane Merl-Pham, Helmholtz Zentrum Munich. 
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4.2.2.7. Lack of SFRP1 alters RhoA expression and activity in fibroblasts 

Data from the microarray and proteomic analysis both hinted at a deregulation of the RhoA/Rock1 

signaling pathway, therefore the RhoA expression was further validated in SFRP1 depleted phFbs. As a 

control, depletion of SFRP1 in phFbs displayed a significant downregulation of SFRP1 transcript levels 

(fold change: 0.03) demonstrating knockdown efficiency (Fig. 4.22 A). Strikingly, RhoA mRNA 

expression in SFRP1low phFbs was significantly reduced (fold change: 0.24) compared to untreated 

controls (Fig. 4.22 B) which is in also in line with the microarray data. Moreover, and quite surprising, 

treatment of phFbs with the specific SFRP1 inhibitor at 30 µM produced also a down-regulation in RhoA 

expression (Fig. 4.22 C).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.22: SFRP1 depletion and inhibition in phFbs downregulates RhoA mRNA expression 

mRNA expression of SFRP1 (A) and RhoA (B) was measured in SFRP1 siRNA transfected (si), negative siRNA control (Sc) 

and transfection buffer control (UT) phFbs (P1-P3). mRNA expression of RhoA was further measured in SFRP1 inhibitor (CAS 

915754; 30µM) treated phFbs (C). GAPDH served as a housekeeping gene. Bars indicate the mRNA levels normalized to control 

cells (UT) and represented as mean ± SEM from the three independent experiments (P1-P3). Statistical analysis: Paired two-

tailed t-test. ***p-value < 0.001, **p<0.01, *p-value < 0.05. 

 

 

RhoA, as a member of the non-canonical Wnt pathway, is primarily involved in signaling of the actin 

reorganization, actomyosin contractility, cell adhesion and cellular morphological polarization. 

Activation of RhoA is majorly regulated via phosphorylation by guanine nucleotide exchange factors 

(GEFs). Hence, RhoA shuttles between the alternate active GTP-bound state and inactive GDP-bound 

state, which is conducted simultaneously via GEFs and GTPase activating factors (GAPs) [168]. To 
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investigate how SFRP1 depletion could affect the activated RhoA pool within phFbs, a G-LISA RhoA 

activation assays (Cytoskeleton, Inc.) was utilized. RhoA activity was measured in SFRP1 siRNA 

(siSFRP1) treated phFbs and normalized to control scramble (Sc) treated cells. The activity of RhoA was 

found to be significantly diminished (almost 40% downregulation; p-value- 0.0003) in the SFRP1 

silenced phFbs (Fig. 4.23 A). To confirm this finding further, RhoA activity in the SFRP1 inhibitor treated 

(30 µM) phFbs was measured. Likewise, RhoA activity was significantly reduced (almost 37% 

downregulation; p-value- 0.0022) in the SFRP1 inhibitor (30 µM) treated cells (Fig. 4.23 B). In summary, 

significant reduction of RhoA gene expression and activity was demonstrated in the SFRP1low phFbs 

(both by knockdown and using SFRP1 inhibitor). 

 

 

 

 

 

 

 

 

Figure 4.23: Diminished RhoA activity is found in SFRP1low phFbs 

The active form of RhoA was luminometrically detected using a G-LISA RhoA activation assay. RhoA activity was measured 

in siSFRP1 treated phFbs, normalized to Sc treated cells (A) and in SFRP1 inhibitor (30µM) treated phFbs normalized to 

untreated vehicle control cells (B). Absorbance was measured at 490 nm and the medium for the cells was taken as a blank 

control. Data are represented as mean ± SEM from four patient cell lines (P1-P4). Statistical analysis: Paired two-tailed t-test. 

***p-value < 0.001, **p<0.01. 

 

 

4.2.2.8. SFRP1 depleted human lung fibroblasts display morphological changes 

in vitro 

Proteomics of SFRP1 silenced phFbs displayed an enrichment of proteins relating to the GO term cellular 

components (CC) of stress fibers and actin cytoskeleton and an overall enrichment in cell adhesion 

proteins (as discussed in section 4.2.2.6). In addition, a significant reduction in RhoA activity and 

expression was observed in SFRP1 depleted phFbs. RhoA reportedly is a key player for stress fiber 

formation as well as for cell morphology changes. Given all the data collected before, I next intended to 

investigate the morphology of phFbs following depletion of SFRP1 after siRNA knock-down. For this 

experiment, phFbs were grown on standard 2D plastic culture dishes and stained for DAPI (a nuclear dye) 

and Phalloidin (ThermoFischer, stains F-actin). Surprisingly, from the pilot study with 3 phFbs (2 

technical replicates per condition) prominent alterations in cell shape were observed in the siSFRP1 
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treated phFbs compared with the Sc treated cells. The SFRP1low phFbs, as observed were somewhat 

smaller than the untreated and scramble control treated cells and displayed elongated body shape with 

reduced cytoplasmic branching.  (Fig. 4.24). 

 

 

Figure 4.24: SFRP1 silenced phFbs display differences in cell shape and stress fibers 

Control scramble treated (Sc) and SFRP1 siRNA (siSFRP1) treated phFbs were grown in standard cell culture dishes. The cells 

are stained with DAPI in blue and Phalloidin in red. One of the representative images out of three independent experiments with 

patient cells (n=3) are shown. Scale bar is 50 µm. 

 

 

 

To verify the changes in cell shape parameters, a large-scale experiment with the same three phFb cell 

lines was performed. Approximately 1000 cells per condition per cell line were analyzed. The 

morphology of the different fibroblast cell lines was quantified by means of surface rendering of acquired 

confocal fluorescent z-stacks. Next, in silico analysis of the microscopy data using Cell Profiler (Broad 

Institute) software was performed. Morphological parameters like cell aspect ratio and area shape extent 

were independently assessed. The area shape extent indicates the extent to which the cell shape can 

change and is computed by dividing the area of a cell by the area of the smallest hypothetical bounding 

box possible for that particular cell. A high area extent will therefore represent circular or elliptical cells. 

Utilizing a cell masking algorithm, the cell nuclei and the cell body were differentially identified by a 

python-based script. The area shape extent was calculated from the area/volume of the cell body divided 

by the area/volume of the hypothetical bounding box around it. Additionally, cell aspect ratios were 

obtained by the ratio of the minimum and maximum feret diameter. The feret diameter is defined as 

“distance between two parallel lines tangent on either side of the object” (Cell Profiler, manual, v3.0.0) 

[169], hence the maximum and minimum ferret diameters represent the largest and smallest diameter 

possible respectively. Thus, I could quantitatively show that SFRP1 silenced phFbs (si) had a reduced 

area shape extent compared to untreated and scramble control cells (Fig. 4.25 B). Moreover, the SFRP1 
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depleted phFbs presented an increased aspect ratio (Fig. 4.25 C) compared to the untreated and negative 

siRNA controls. These data highlight that SFRP1 depleted fibroblasts display a switch towards slender 

and more spindle-shaped cell morphologies.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.25: SFRP1 depleted fibroblasts showed significant morphological changes 

Representative confocal images of human lung fibroblasts cultured in 2D (top). Morphological evaluation of approximately 1000 

cells per condition Data shown represent mean values (±SD) of randomly selected fibroblasts (n = 100). Scale bar, 50 μm, a.u. 

= arbitrary units (A). Geometric parameters of area shape extent (B) and aspect ratio (C) were assessed from surface rendering 

of acquired confocal fluorescent z-stacks in Cell Profiler. Statistical analysis: unpaired t-test. *p<0.05. 

 

 

 

Collectively, my data advocates a novel molecular mechanism of SFRP1 in the framework of RhoA 

signaling with consequences for cell shape as well as cellular invasion. 

 

4.2.3. Part III: SFRP1 expression in distinct fibroblast sub-populations 

 

4.2.3.1. In the lung mostly fibroblasts exclusively express SFRP1  

 An upregulation of SFRP1 during lung fibrosis was reported in several studies before, like in [45] and 

[39]. But, the specific cell-type exceedingly expressing SFRP1 still remains elusive. To further investigate 

this, first online-based datamining in lung databases was applied. Recent advances in single-cell gene 

expression analysis allowed us to have an enhanced view on cell identification and classification. A group 

led by Xiaoping Han established a “mouse cell atlas” using Microwell sequencing data covering 800 major 

cell types and more than 1000 subtypes [170]. In this web-based atlas, SFRP1 was found to be mainly 
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expressed in stromal cell populations in healthy mice (Fig. 4.26 A). As, lung fibrosis is an age-related 

disease, SFRP1 expression was next checked in the recently published “Lung Aging Atlas” [171]. This 

database clearly depicted SFRP1 expression limited to interstitial fibroblasts, lipofibroblasts and 

mesothelial cells in the aged mouse (Fig. 4.26 B). To further confirm these results within a human dataset, 

the Genevestigator software tool encompassing different types of curated expression datasets was used. 

The whole human genome expression array was investigated which covered 411 anatomical parts. Overall, 

lung fibroblasts were found as the primary cell type in the lung that expressed SFRP1 (Fig. 4.26 C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.26: SFRP1 is primarily expressed by fibroblasts 

Screenshot of different cell clusters of healthy mouse lungs showing mean expression levels of SFRP1 

(http://bis.zju.edu.cn/MCA/) (A). Dot plot visualization of each cell type in the aging lung single-cell data [171]. The size of the 

dots encodes the percentage of cells within a cell type, and the color encodes the average expression levels 

(http://146.107.176.18:3838/MLAA_backup/) (B). Visualization of SFRP1 anatomical expression across different lung cell types 

(Genevestigator tool: https://genevestigator.com/gv/). The plot is sorted from highest to lowest expression (C).  
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The recently established IPF cell atlas (ipfcellatlas.com), provided a database profile of 312,928 cells 

from 32 IPF, 29 healthy control and 18 chronic obstructive pulmonary disease (COPD) lungs (TS Adams 

et al., 2019). Among the stromal cell populations, fibroblasts were found to express SFRP1 the most. 

(Fig.4.27 A-B). 

 

 

 

Figure 4.27: Identification of SFRP1 enriched cell population in lungs 

UMAP analysis of various stromal cell populations: fibroblasts, myofibroblasts, lymphatic, smooth muscle, pericytes, VE 

arterial, VE venous, VE peribronchial, VE capillary A and B, labelled according to cell type. High to low expression of SFRP1 

in the UMAP is indicated by yellow and purple respectively (A). Boxplot representing in percent the distribution of SFRP1 

among all the different cell types in the lung. Fibroblasts (marked with a red box) showed the highest SFRP1 expression (B). 

Note: Data obtained from IPFcellatlas.com. 
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Sfrp1 belongs to a family of secreted frizzled-related proteins that consist of five isoforms namely Sfrp1, 

Sfrp2, Frzb (Sfrp3), Sfrp4, and Sfrp5. To validate the in-silico results described before and to investigate 

the specificity of Sfrp1 expression in fibroblasts, total mRNA harvested from primary human fibroblasts 

(phFbs), primary mouse fibroblasts (pmFbs) and mouse lung fibroblast cell line (mLFbs; CCL206™, 

ATCC) were analyzed by qPCR. The results clearly indicated that SFRP1 was the most expressed among 

all isoforms in mouse and human lung fibroblasts (Fig. 4.28 A-C), demonstrating SFRP1’s unique and 

exclusive expression in fibroblasts.  

 

 

 

Figure 4.28: Transcript levels of SFRP isoforms in lung fibroblasts 

qRT-PCR analyses displaying normalized mRNA expression of SFRP1, SFRP2, SFRP3, SFRP4 and SFRP5 in phFbs (A), pmFbs 

(B) and mLFbs (C). GAPDH served as a housekeeping gene. Bars are represented as mean ± SEM from three independent 

biological experiments. 

 

 

 

4.2.3.2. Single cell clones derived from healthy primary human fibroblasts can 

be classified according to their SFRP1 expression 

Fibroblast clonal heterogeneity previously was reported for protein synthesis and growth [172]. Single-

cell clone isolation has recently gained increasing attention as a tool to study clonal functional 

heterogeneity. Single cell clones (SCCs) of phFbs were isolated using serial dilutions and then expanded 

under hypoxic culture conditions (Fig. 4.29 A). As, a pure clonal isolation from a single progenitor cell is 

of utmost importance, hence monoclonality was visually confirmed by fluorescence microscopy (data not 

shown). After expansion in low oxygen culture, fibroblast populations derived from one single cell were 

further passaged and expanded. Strikingly, fibroblasts derived from single cells of the same primary cell 

line revealed a differential protein expression of αSMA and SFRP1 as revealed by western blotting. 

Interestingly, three different phFb subtypes were observed from the immunoblot: SFRP1highαSMAlow, 

SFRP1low αSMAhigh and SFRP1medαSMAmed (med: medium expression) (Fig. 4.29 B). Next, a correlation 

study of SFRP1 and αSMA protein expression with 33 monoclonal samples of fibroblast clones (from 4 

phFb cell lines) was performed. Yet, statistical analysis revealed no significant association between 

SFRP1 and αSMA protein levels in phFb SCCs (Fig. 4.29 C). In summary, existence of three distinct lung 

fibroblast subtypes based on their characteristic SFRP1 expression was revealed here. 
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Figure 4.29: Single-cell clones (SCCs) from phFbs show differential expression of SFRP1 and αSMA  

Experimental workflow for single cell clone isolation (A). Representative western blot from one phFb cell line (n=4) out of four 

independent biological experiments are shown. Total cell lysates obtained from different clones of the same cell line have been 

used for immunoblotting and probed for SFRP1 and αSMA. The differential relationship between SFRP1 and αSMA protein 

expression within SCCs in the Western blot is highlighted with red boxes. (B). SCCs from 33 individual monoclonal populations 

were analyzed for SFRP1 and αSMA expression. Statistical analysis: linear regression; r-value = 0.2093; p-value = 0.2423; R2 = 

0.0438. Dashed lines represent a confidence interval of 95%. Note: Single-cell cloning performed by M.Gerckens, Helmholtz 

Zentrum Munich. 

 

 

 

 

4.2.3.3. Single cell RNA sequencing validates SFRP1 expression in αSMA 

negative fibroblast subtypes in the diseased lung 

In recent years, a rapid progress in the development of single cell methodology allowed researchers to 

uncover rare cell populations, new cell types and discover novel regulatory relationships among different 

genes. A “single cell atlas” of pulmonary fibrosis recently reported differential expression of genes 

between healthy and IPF lung biopsies and identified a novel senescent cell population emerging during 

fibrosis [173]. Due to our analysis of single fibroblast clones, we identified different subtypes such as 

SFRP1highαSMAlow, SFRP1lowαSMAhigh and SFRP1medαSMAmed.  To further investigate these fibroblast 

subtypes in the context of fibrosis, single cell droplet-based RNA sequencing (Dropseq) of lung resections 

obtained from healthy tumor-free lung tissue sections and IPF diagnosed patients was performed. Using 

Dropseq technology [174], single cells were sequenced and analyzed in the context of cell heterogeneity 

and disease-specific aspects as compared to control tissue. After alignment of sequencing reads and data 
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normalization following the Dropseq pipeline v2 (McCarroll Lab, 2019), data was represented in the 

uniform manifold approximation projection (UMAP) embedding (Fig. 4.30 A-D). Each dot in the plot 

represented a single cell. Different cell populations were clustered together and were represented in two 

different colors - either healthy (red) or diseased (blue). Batch corrections between the subjects were not 

performed. Gene expression overlaid to the UMAP embedding suggested that SFRP1 expressing cell 

populations were ACTA2 (αSMA) negative (Fig. 4.30 B-C) but positive for COL1A2 (collagen 1a2) 

confirming a relation to fibroblasts (Fig. 4.30 D). 

 

Figure 4.30: Single cell sequencing confirmed SFRP1 expression by a distinct human (fibrotic) fibroblast sub-population 

UMAP plot is shown with colored cell clusters as red and blue to indicate cells from healthy and IPF lung biopsies respectively 

(A).  SFRP1high (B), ACTA2high (C) and COL1A2high (D) expressing cells are indicated by red dots encircled with red boundaries 

in the UMAP projections. Values are shown as log2 (density). Note: Single-cell RNA sequencing performed by Dr. M. Strunz 

and Dr. H.B. Schiller, Helmholtz Zentrum Munich. 

 

 

Likewise, to identify similar SFRP1 related cell populations in the fibrotic mouse lungs, Dropseq of whole 

fibrotic and healthy mouse lungs were performed. After enzymatic and mechanical disruption of whole 

lung tissue, dead cells were removed and samples subjected to Dropseq. Transcript abundance is indicated 

in red, whereas each dot represents one analyzed cell. Concomitantly, SFRP1high IPF fibroblasts were 

found to be mostly ACTA2low. Our results with mouse and human tissues further corroborates the 

existence of the distinct fibroblast subtypes observed in single cell clones like:  SFRP1highαSMAlow, 
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SFRP1low αSMAhigh and SFRP1medαSMAmed and firmly advocate their presence during fibrosis. (Fig. 4.31 

B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.31: Single cell sequencing show mutual exclusion of SFRP1 and ACTA2 expression.  

Schematic workflow of the study (A). t-SNE projection of the dataset showing ACTA2 and SFRP1 expression. Magnified view 

of the myofibroblast cluster for ACTA2 and SFRP1 expressing cells are shown on the right (B). Note: Single-cell RNA 

sequencing performed by Dr. M. Strunz and Dr. H.B. Schiller, Helmholtz Zentrum Munich. 

 

Although here only a limited number of cells were obtained from these early scRNAseq experiments, 

there was a clear indication that SFRP1 and αSMA expressing cells were largely mutual exclusive. For in 

situ validation of the presented single cell data, protein staining by immunofluorescence in fibrotic mouse 

lung tissue sections from day 14 after bleomycin injury were performed. The confocal z stack images 

obtained were represented as maximum intensity projections. Subsequently, regions of high density 

αSMA positive myofibroblasts were encircled with white dotted lines. Density of SFRP1 positive cells 

were observed to be very low within these encircled αSMAhigh regions. Therefore, similar to the 

scRNAseq data, SFRP1 and αSMA protein expression were found to be largely mutually exclusive in 

fibrotic (day 14 Bleo) mouse lung tissues (Fig. 4.32). 
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Figure 4.32: SFRP1 and αSMA show mutually exclusive staining in fibrotic mouse lung tissues 

Representative immunofluorescent staining of fibrotic mouse lung tissue (day 14) double stained for αSMA (in green) and SFRP1 

(in red). Cell nuclei were counterstained with DAPI (in blue). Scale bar: 20 µm. 

 

 

 

4.3. Discussion 

Fibroblasts are characterized as the primary effector cells in IPF and fibrosis. Inflammatory mediators, 

such as TGFβ1, trigger the activation of fibroblasts and their trans-differentiation into myofibroblasts. 

Due to this activation, fibroblasts migrate into the intra-alveolar space, proliferate and subsequently 

deposit massive amounts of extracellular matrix (ECM) which ultimately results in impairment of gas 

exchange and death by asphyxiation. Hence, activation and invasion of fibroblasts are key 

pathomechanism in fibrosis progression. In an unbiased transcriptome analysis of the invading mouse 

lung fibroblasts, our lab previously identified SFRP1, an important regulator of the Wnt pathway to be 

significantly reduced in invading fibroblasts [144]. Additionally, SFRP1 is reported to be upregulated in 

IPF [154] and in bleomycin induced fibrotic mouse lungs at fibrosis day 14 [145]. However, given its 

importance, the function of SFRP1 in regards to fibrosis has not been characterized yet. Here, SFRP1 
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specific mechanisms in lung fibroblasts and their role in the context of lung fibrosis was analyzed for the 

first time. 

Here, upregulation of SFRP1 was confirmed from IPF lung tissue as well as in fibrotic mouse lungs. 

Additionally, I performed experiments which demonstrated increased SFRP1 protein expression in ex vivo 

mouse and human injury and fibrosis models for the first time. Furthermore, a potential crosstalk between 

SFRP1 and TGFβ1 in lung fibroblasts could be disclosed. Pathway inhibition studies revealed that TGFβ1 

reduced SFRP1 expression via an unknown Smad-independent pathway. Moreover, contrary to popular 

studies in different types of cancer, the expression of SFRP1 not regulated epigenetically in lung 

fibroblasts. Additionally, transcriptomics and proteomics of SFRP1 depleted human lung fibroblasts 

displayed a deregulation of RhoA and in it signaling network. Importantly, SFRP1 depleted fibroblasts 

displayed decreased RhoA expression as well as a decreased GTPase activity, which could advocate a 

novel and until now unknown molecular function of SFRP1. Consequently, SFRP1 depleted fibroblasts 

exhibited morphological changes towards a more elongated cell-type which could be a direct consequence 

of reduced RhoA expression and activity. 

SFRP1 was largely expressed by fibroblasts in the lung. Furthermore, lung fibroblasts’ clonal 

heterogeneity was studied by the isolation of single-cell clonal populations. SFRP1high, SFRP1low and 

SFRP1med fibroblast populations were identified for the first time in distinct fibroblast populations. These 

data delineate for the first time a comprehensive characterization of SFRP1 in healthy and fibrotic lung 

conditions, and delineate a pivotal role of SFRP1 in specific fibroblast subpopulation during fibrogenesis.   

 

4.3.1. Regulation of SFRP1 in fibrosis models 

The high need for novel IPF biomarkers and the lack of reproducibility and validation of established 

markers pose a constant challenge in the field [175]. Ongoing studies have identified various genes that 

are specifically associated with IPF. A study in 2007 characterized for the first-time variations in gene 

expression in different stages of IPF compared to healthy lungs [176]. Therefore, understanding drivers 

of fibrogenesis that are capable of discriminating between intermediate stages of fibrosis is crucial. 

Secreted and surface proteins represent easily accessible targets for various pharmacological compounds 

compared to intracellular molecules [96]. SFRP1 is a secreted antagonist of the Wnt signaling pathway 

and   was identified in a couple of gene expression studies with IPF patient samples [45, 154]. Recently 

a group reported increased SFRP1 gene expression in bleomycin-induced fibrotic mouse lungs. The 

authors showed increased SFRP1 mRNA levels at day 7, day 14 and day 21 Bleo induced mouse lungs. 

However, the authors did not confirm this upregulation of SFRP1 observed in the bleomycin-induced 

mouse fibrosis model in human fibrosis [177]. Another study utilizing quantitative detergent solubility 

profiling (QDSP) and systemic analysis of the transcriptomic profiles identified SFRP1 as a novel 

constituent of the provisional extracellular repair matrix in the Bleo-induced fibrotic mouse model at day 
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14 [145]. But despite these findings, there has been no exclusive study characterizing SFRP1 in the 

context of lung fibrosis in detail. Here, protein expression of SFRP1 was investigated at various time-

points in the course of Bleo injury in mice. For the first time, an early upregulation of SFRP1 was noted 

from day 3 (inflammatory phase) onwards peaking at day 7 and 14 (fibrogenic phase) and gradual 

reduction of expression was observed with the resolution of the disease. In addition, the IPF cohorts from 

Munich and Gießen showed a trend of SFRP1 upregulation compared to healthy controls. However, the 

coherence to mouse studies could not be verified probably due to the low power of the study. The observed 

heterogeneity of SFRP1 expression among different patient samples might stem from the fact that the 

lung resections were collected from different areas within the lungs. Also, the tissue sections were from 

patients at different stages of the disease, although I did not have direct insight into clinical data.  In 

general, smaller clinical cohorts display greater variation depending upon sex, age, ethnicity and 

environmental effects [178]. Hence, in order to normalize the heterogeneity and to obtain a better 

understanding of SFRP1 expression in IPF, a larger cohort study will be required.  

Our ex vivo mouse and human fibrosis-mimicking models indicated increased SFRP1 protein expression 

under pro-fibrotic perturbation conditions. Precision-cut lung slices (PCLS) add an additional 

dimensionality compared to 2D tissue culture models, and provide a unique platform for disease 

modeling. Ex vivo PCLS models largely retain the native cellular environment and cell-cell and cell-

matrix interactions, as well as mechanobiological conditions which all closely resemble the in situ/in vivo 

situation [147]. Recently, the potential therapeutic compounds for IPF were validated in a human PCLS 

fibrosis model. The authors reported a similar expression of certain fibrotic markers in the PCLS on 

stimulation with a pro-fibrotic cocktail (same composition as used in our study) as reported in vivo. In a 

follow-up experiment, the group recruited Nintedanib and Pirfenidone for their study, which are the only 

2 drugs approved for IPF clinical treatment. They showed that Nintedanib and Pirfenidone effectively 

recapitulated their anti-fibrotic effects confirmed by suppressing pro-fibrotic Wisp1 expression, reduced 

collagen deposition and increased pro-SPC secretion in the PCLS treated with the fibrotic cocktail [179]. 

Therefore, the PCLS platform opens up new areas for multitude drug testing and thereby highlight the 

potential importance of validating gene or protein expression in such disease-mimicking scaffolds. In 

light of this, SFRP1 could also act as a novel and attractive biomarker for these models indicating ongoing 

fibrosis, and, due to the fact that it is a secreted factor, furthermore could be tested as an early biomarker 

for fibrosis in the clinics.    

 

4.3.2. SFRP1 as a modulator of fibroblast invasion 

Parenchymal invasion of activated fibroblasts represents a critical pathomechanism in fibrosis [150].  

Invasion of fibroblasts into three-dimensional matrices has recently garnered a lot of attention. A three-

dimensional collagen-based invasion assay was established previously in our lab. The assay allowed 
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extensive profiling of invading and non-invading fibroblast fractions [180]. Utilizing this tool, the 

invading fibroblasts embedded in the gel and the non-invading fibroblast fractions were isolated and 

subjected to a whole transcriptome analysis. A strong reduction of SFRP1 gene expression was seen in 

the invasome of fibroblasts detected by microarray analyses.  

A study with cervical cancer cells reported that overexpression of SFRP1 along with SFRP2 suppressed 

invasive capacity of these cells in a Matrigel-based Transwell assay [181]. Another group presented that 

overexpression of SFRP1 suppressed migration and invasion, whereas knockdown of SFRP1 resulted in 

enhanced migration and invasion of the colorectal cancer cells [182]. Additionally, restoration of SFRP1 

expression in the otherwise low SFRP1 expressing nasopharyngeal carcinoma cells subdued their invasive 

capacity [183]. Of note, not much is known about SFRP1 expression in fibroblasts, fibrosis and its relation 

to fibrotic diseases. Hence, to get some mechanistic and functional insight, loss-of-function studies were 

accomplished by siRNA knock-down of SFRP1 in phFbs. Indeed, and in line with the cancer studies, a 

substantially increased invasive capacity of SFRP1 depleted fibroblasts was demonstrated.  

Interestingly, the matrix metallo-proteinases (MMPs), MMP13, MMP3, MMP14 and MMP10 were found 

to be up-regulated in the invading cellular subpopulation in the before mentioned microarray analyzes 

(Bettina Oehrle, Ph.D. thesis). In the context of lung fibrosis, MMP13 along with MMP1 and MMP7 were 

upregulated in IPF lung tissue homogenates [184, 185]. Increased MMP14 protein levels is reported in 

experimental models of fibrosis and is a major proteolytic effector for invasion by degrading collagen 

fibers and matrices [186, 187]. Furthermore, MMP13 expression in cancer associated fibroblasts was 

shown to induce also the invasion of other neighboring carcinoma cells [188, 189]. In addition, MMP3 

was found to be upregulated in both IPF lungs and fibrotic mouse lungs. Moreover, MMP3 expressed 

from fibroblasts play a crucial role in the pathogenesis of IPF by inducing epithelial-mesenchymal 

transition (EMT) [190]. Thus, our group previously performed Ingenuity pathway analysis (IPA) from the 

microarray dataset (discussed in section 4.2.2.1) and predicted a causal network of the invasome which 

included SFRP1 and MMPs. Interestingly, the pathway analysis predicted that the downregulation of 

SFRP1 could contribute to higher expression of MMP3 and MMP9 (Bettina Oehrle, Ph.D. thesis, 2015). 

Based on this conjecture, it might be promising to investigate further crosstalk and regulation of MMPs 

with SFRP1 in the context of fibroblast invasion.  

TGFβ1 was found differentially regulated in the invading fibroblasts. Considering TGFβ1 as the master 

regulator in fibrosis, the upregulation of this growth factor in the invasome might be of particular interest. 

TGFβ1 might potentially induce a forward loop of fibroblast activation. Conversely, one member of the 

TGFβ-superfamily, bone morphogenic protein 4 (BMP4) was found to be one of the most downregulated 

genes in invading fibroblasts. BMP4 has been associated mainly with cartilage and bone formation [191, 

192] so far. Additionally, BMP4 was recently noted to reduce TGFβ1 mediated extracellular matrix 

production in human lung fibroblasts [193]. Reports have established a cross talk between TGFβ1-BMP4 
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and Wnt signaling via the Smad/β-catenin/Lef protein complex in the nucleus [194]. Moreover, BMP4 

induces trans-differentiation of hepatic stellate cells increasing αSMA expression in vitro and 

subsequently exert a pro-fibrotic role in liver fibrosis [195]. Based on this collective data, TGFβ1 might 

crosstalk with BMP4 and SFRP1 in the regulation of fibroblast invasion and thereby serve as an interesting 

candidate to investigate further. 

In conclusion, data from my thesis and from others strongly support that SFRP1 acts as a negative 

regulator of fibroblast invasion.  

 

4.3.3. Epigenetic regulation of SFRP1 expression in lung fibroblasts 

Epigenetic alterations via DNA methylation and histone modifications play an important role in the 

regulation of gene expression. Interestingly, SFRP1 is considered as one of the promising candidates for 

epigenetic therapy in several forms of cancer. Vincent and Postovit in 2017 have shown a consistent loss 

of SFRP1 in a pan-study with 29 different types of cancer cells [155]. In situ hybridization studies have 

confirmed a striking correlation between decreased SFRP1 mRNA levels and SFRP1 promoter 

hypermethylation in several cancer cell lines [164, 196, 197]. Apart from cancer, IPF patient samples as 

well demonstrated higher DNA methyltransferase expression and various genes with altered methylation 

status in a genome-wide DNA methylation study [198]. Moreover, IPF fibroblasts in comparison to 

healthy fibroblasts demonstrated global-wide differences in DNA methylation patterns which might as 

well contribute to fibrogenesis [199]. However, epigenetic regulation of SFRP1 in lung fibroblasts have 

not been investigated so far. 5-aza-2'-deoxycytidine or decitabine has been shown to restore SFRP1 

expression in numerous cancer cell studies [197, 200]. Hence, decitabine was employed in my studies to 

repress DNA methyl transferase (DNMTs) activities in phFbs. Interestingly and quite surprisingly, 

contrary to numerous cancer studies, decitabine treated lung fibroblasts did not demonstrate any changes 

in SFRP1 expression compared with untreated vehicle controls. A recent study in 2015 indicated that 

decitabine treatment in lung fibroblasts attenuated TGFβ1 induced Collagen1a1 and αSMA gene and 

protein expression [201]. Subsequently, in line with this study, phFbs used in my experiments were 

concomitantly stimulated with TGFβ1 and decitabine. However, our data did not indicate any alterations 

in TGFβ1 induced SFRP1 expression following decitabine treatment in phFbs.  

Next to methylation, acetylation of histones presents another classical epigenetic mechanism in gene 

expression regulation [203]. The dynamic acetylation and deacetylation cycles are regulated by the 

activity of histone acetylation transferases (HAT) and histone deacetylases (HDAC) respectively [202]. 

Importantly, histone acetylation has been demonstrated as an important regulator of gene expression in 

pulmonary fibrosis. Also, an involvement of histone deacetylation via HDAC4 during the early 

inflammatory phase and histone acetylation via HDAC2 during the late repair phase in lung fibrosis is 

discussed [204]. Interestingly, inhibition of histone deacetylation subdued TGFβ1-mediated αSMA and 
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Collagen 1 mRNA induction and thereby confirmed that lung fibroblast to myofibroblast differentiation 

might be HDAC dependent [205]. In line with this study, I applied the pan-HDAC Inhibitor Trichostatin 

A (TSA) in my experiments. Although previous studies have reported an important role of histone 

deacetylation for the regulation of SFRP1 expression [206, 207], my experiments in phFbs brought forth 

contrary results. Neither protein nor mRNA levels of SFRP1 were affected in TSA stimulated primary 

human fibroblast. Although our studies could not demonstrate any significant regulation of SFRP1’s 

expression by investigating two major epigenetic regulatory mechanisms, there still might exist rare 

chromatin remodeling or histone post-translational modifications. Thus, apart from histone 

acetylation/deacetylation, histone lysine methylation has also been reported to occur infrequently in cancer 

via histone lysine demethylases and histone lysine methyl-transferases [208]. Dynamic chromatin 

structure remodeling along with their interaction with various transcription factors might also be of 

particular interest here [209]. Hence further investigations are required to fully get a clear mechanistic 

insight into SFRP1 regulation by epigenetic modifications in primary human fibroblasts. 

 

4.3.4. TGFβ1-induced regulation of SFRP1 expression 

The SFRPs are the largest family of antagonists known to inhibit the binding of Wnt ligands with their 

respective Frizzled receptors and thereby antagonize the signaling pathway during development [210]. 

Recent studies have indicated that SFRP1 is not merely a specific Wnt binding protein, but can interact 

with different receptors and matrix molecules [211]. A cross-regulation of Wnt and TGFβ1 pathways have 

been reported several times. This cross-talk activates a complex regulatory network that finally 

orchestrates fibrotic reactions at cellular and organ level [212]. Moreover, the TGFβ1 molecule has been 

ascribed as the central mediator of fibrogenesis and hence termed as the “master regulator of fibrosis”. 

Studies also provided evidence for TGFβ1 upregulation in various organ fibrosis and their role in 

regulating fibroblast function and trans-differentiation into myofibroblasts [213]. 

Very little information exists about the regulation of SFRP1 expression in fibrotic diseases. Our group has 

previously observed a reduced SFRP1 gene expression in the TGFβ1-activated invading fibroblast 

transcriptome signature (Bettina Oehrle, Ph.D. thesis, 2015) and hinted a potential crosstalk between the 

master regulator TGFβ1 and SFRP1. This was further confirmed in my thesis with in vitro TGFβ1-

activated mouse and human fibroblasts displaying reduced SFRP1 gene and protein expression (Fig. 4.10). 

Gauger et al., and colleagues reported that silencing of SFRP1 resulted in an increased TGFβ1- mediated 

activity including its downstream transcriptional targets in breast cancer cells in vitro [214]. Furthermore, 

SFRP1 has been found to inhibit epithelial-mesenchymal transition (EMT) in TGFβ1- activated A549 

lung cancer cell line. The authors further presented a downregulation of SFRP1 protein expression on 

upon TGFβ1 stimulation and simultaneous inactivation of GSK3β and increased β-catenin expression 

including its downstream effectors c-myc and Cyclin D1 [215]. Of note, all of these existing studies were 
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performed with cancer cells. Hence, for the first time a downregulation of SFRP1’s gene and protein 

expression levels in TGFβ1-stimulated mouse and human primary lung fibroblasts was demonstrated.   

In general, the “differentiated myofibroblast” phenotype is characterized by de novo expression of α-

smooth muscle actin (α-SMA) [96]. Here, I produced evidence that lack of SFRP1 expression might be a 

valid marker during fibroblast transdifferentiation. This observation accords well with a previous study 

by Matsuyama et al., where the authors reported increased αSMA expression in SFRP1-/- mice which was 

shown to exacerbate progression of renal fibrosis [216]. TGFβ1 exert its downstream cellular functions 

via the classical Smad-dependent signaling pathway, or via several non-canonical SMAD-independent 

signaling, which includes the Ras-Erk-MAPK, JNK/p38, and PI3K/Akt pathways [217, 218, 219]. In my 

experiments, TGFβ1 was shown to regulate SFRP1 expression in phFbs neither via canonical nor via non-

Smad3, or MAPK or JNK pathway, but potentially reduced SFRP1 levels via some unknown mechanism. 

In recent years several components of the ubiquitin–proteasome system (UPS) have been shown to act 

upon different factors of the TGFβ pathway. Ubiquitin-specific protease 15 (USP15) binds with Smad7-

SMURF2 (Smad specific E3 ubiquitin protein ligase 2) complex and stabilizes type 1 TGFβ receptor 

thereby amplifying TGFβ activity [220]. In the same context, U-box E3 ubiquitin ligases either directly 

or via adaptors promote R-Smad phosphorylation to enhance TGFβ signaling [221].  In total, these 

ubiquitin enzymes undergo post translational modifications that affects their catalytic activity, which 

ultimately influences the TGFβ pathway [222]. Furthermore, knockdown of UHRF1 (RING-finger type 

E3 ubiquitin ligase) leads to demethylation at the SFRP1 loci [223].  Thereby, TGFβ1 mediated regulation 

of SFRP1 might potentially be a proteasome-dependent mechanism 

Over the past years, transcription factors (TFs) have been identified to act together with Smads or 

independently to regulate expression of target genes of the TGFβ pathway [224]. Using the TRANSFAC® 

database containing eukaryotic transcription factors and their genomic DNA binding sites, the potential 

TF binding sites within the promoter region of SFRP1 were excavated (Fig. 4.33 A). Among them, Sp1 is 

a key transcription factor that is known to regulate the expression of numerous fibrotic genes. Chen et al., 

in 2012 has shown that the Inhibition of Sp1 by decoy oligonucleotides halted progression of liver fibrosis 

[225]. The inflammation-associated TFs NFB1 (nuclear factor kappa-light-chain-enhancer of activated 

B cells), RELA (nuclear factor NF-kappa-B p65 subunit), STAT1 (Signal transducer and activator of 

transcription 1) and STAT3 (Signal transducer and activator of transcription 3) were found among the top 

15 predicted TFs. RELA and NFB1 are involved in the NFB heterodimer formation and are part of the 

NFB superfamily [226].  NFB pathway can cross-regulate with the Wnt signaling pathway by inhibiting 

β-catenin which thereby influences progression of inflammation [227]. Hence, NFB is considered as a 

central link between injury and fibrosis. Moreover MYC, one of the predicted TFs in the list shown in 

Fig. 4.33A is a central mediator of (cancer) cell proliferation and is reported to regulate TGFβ1 induced 

invasion of SFRP1 expressing breast cancer cells [228]. Thus, in future experiments the investigation of 
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the above mentioned and predicted TFs could shed some light on the yet unknown mechanism of SFRP1’s 

expression driven by TGF1 in primary human lung fibroblasts.  

MicroRNAs or miRNAs are small 22 nucleotides long regulatory RNAs that are important downstream 

components of the TGFβ pathway [229]. In addition, the IPA from the microarray dataset (discussed in 

section 4.2.2.1) found a cluster of miRNA precursors like miR130, miR143, miR10, miR181 let7, and 

miR145 that were downregulated in the fibroblast invasion signature (Bettina Oehrle, Ph.D. thesis, 2015). 

Hence, utilizing a genome-wide miRNA target prediction tool named as miRDB (http://www.mirdb.org/) 

based on an integrated machine learning framework, over 1260 and 1059 miRNA binding sites were 

identified respectively in human and mouse SFRP1 gene. To narrow down important miRNAs, common 

binding sites in mouse and human obtained from the prediction tool were matched for experimental 

validation in published scientific literature and five miRNAs were identified in this process (Fig. 4.33 B). 

The miR328 was shown to directly target and inhibit SFRP1, activated Wnt pathway which contributed 

to an invasive glioma cell phenotype in the early stages of glioma progression [230]. Additionally, miR-

27a-3p was reported to promote proliferation and invasion of colon cancer cells and squamous carcinoma 

stem cells by targeting SFRP1 and modulating Wnt signaling [231]. Interestingly, miR-27a-3p was also 

found significantly upregulated after TGFβ1 stimulation in a miRNA-targetome study with primary 

human lung fibroblasts [232] and thereby could potentially regulate the expression of SFRP1. 

Therefore, the downregulation of SFRP1 gene and protein expression upon TGFβ1 stimulation in 

fibroblasts was presumably caused by either differential expression of ubiquitin enzymes, transcription 

factors, miRNAs or by a complex combination of these situations. Hence, this important mechanistic 

regulation has to be investigated further in order to delineate a detailed crosstalk between SFRP1 and 

TGFβ1 pathway. 
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Figure 4.33: Transcription factor and miRNA target prediction analysis in SFRP1 gene 

The TRANSFAC® database provides a positional weight matrix that displays the frequency of each transcription factor binding 

site occurrence in a gene. The top 15 transcription factor binding sites enriched in the SFRP1 gene are shown here (A). Venn 

diagram representing the number of miRNA binding sites in human and mouse SFRP1 gene predicted by the miRDB database 

and combined with those listed in published literature (B). 

 

 

4.3.5. Potential role of RhoA activation in regulation of cellular morphology and 

invasion of SFRP1 depleted fibroblasts 

Mechanical stimuli and TGFβ1 stimulation are known to activate RhoA in fibroblasts [233, 234]. In an 

extension, a detailed study in 2014 reported that inhibition of RhoA signaling subdued matrix stiffness as 

well as TGFβ1-induced fibrosis in human colonic activated fibroblasts via an SRF (serum response factor) 

– MRTF-A (myocardin-related transcription factor A) pathway [235]. Increased RhoA - ROCK (Rho-

associated, coiled-coil–containing protein kinase) activity has been reported in experimental models of 

fibrosis and in IPF patients [54]. Importantly, inhibition of RhoA-ROCK signaling demonstrated a 

noticeable amelioration of lung fibrosis within the mouse fibrosis model [55, 56] thereby suggesting the 

importance of RhoA in the regulation of IPF. Initially, our unbiased transcriptomic and proteomic screens, 

by using SFRP1 loss-of-function experiments, pointed towards a RhoA mediated regulation of SFRP1 in 

lung fibroblasts. RhoA mRNA expression was validated and found to be significantly reduced in SFRP1 

depleted phFbs. Reduced RhoA expression has been reported to correlate with reduced FN (fibronectin), 

collagen and αSMA levels, while restoration of RhoA expression was demonstrated to revive the IPF 

phenotype in lung fibroblasts [57].  
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As Rho GTPase act as molecular switches that alternate between a GTP-bound active state and a GDP-

bound inactive conformation. Here, the activity of RhoA was quantified by using a RhoA G-LISA assay. 

RhoGTPase activity was demonstrated to be significantly lowered in SFRP1 depleted phFbs compared to 

scramble and untreated controls. RhoA expression and activation has been reported to maintain the 

phenotype of various cells. RhoA expression and activation has been reported to maintain the phenotype 

of various cells and have been frequently linked to organization of actin cytoskeleton of the cells with 

direct impact on cellular morphology changes [236, 237]. Therefore, RhoA might be one of the important 

potential regulators for the morphological switch that we have observed in the SFRP1low phFbs. In 

connection, the smaller, spindle-shape of the SFRP1low fibroblasts having potentially reduced expression 

of several MMPs might presumably facilitate their invasive phenotype.  This observation goes in line with 

a previous study, where reduced RhoA activity was shown to correlate with increased invasion of breast 

cancer cells in a 3D Matrigel assay. The authors further reported an imminent role of β1 integrin which 

modulated the FAK (focal adhesion kinase)-RhoA-actomyosin signaling axis for the regulation of cell 

invasion in complex physiologically relevant 3D environments [238]. Since β-integrins are highly 

expressed in invasive tumor cells [239], these could be of particular interest for further research concerning 

fibroblast invasion in relation to SFRP1.  

Numerous studies have associated RhoA small GTPase family as key mediators for cytoskeletal dynamics 

[240, 241, 242]. Therefore, to further delineate the crosstalk between RhoA and SFRP1 and investigate 

potential cytoskeletal changes, SFRP1 depleted phFbs were utilized to assess changes associated with cell 

shape. SFRP1 knockdown in phFbs produced elongated cell bodies with a possible reduced number of 

actin stress fibers.  Therefore, reduced RhoA expression and activity in the SFRP1 silenced fibroblasts 

might act as the potential reason behind the associated morphological changes. This is in agreement to 

previous studies where RhoA expression was found highest in round mesenchymal cells and significantly 

declined in elongated cells [240. 243]. Moreover, RhoA gene knockout in foreskin fibroblasts has 

demonstrated reduced stress fibers and loss of αSMA expression [244] which is also in line with our 

observations.  

The Rho associated kinases specifically ROCK1 and ROCK2 are the major downstream effectors of RhoA 

[245]. The ROCKs have been reported to be involved in stress fiber formation, cell contractility as well 

as regulation of cell size [247], which points towards an alternative downstream regulation mechanism 

for RhoA in the SFRP1 depleted fibroblasts. Although ROCKs are known downstream effectors of RhoA, 

they are not the only ones. A study in 1997 first identified formin mDia1 as a downstream effector of Rho 

[246]. The active formin family members were demonstrated to polymerize actin filaments and moderate 

cytoskeletal rearrangements. Apart from formin mDia1, the multifaceted formin family encompasses 

various mDia like proteins such as the Dishevelled-associated activator of morphogenesis 1 (Daam1) and 

the “Formin-like” (FMNL) protein 1-3 [248] that might be of particular interest in this context. Hence and 
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in a future study, alternative downstream effectors of RhoA need to be further investigated to delineate 

the influence of SFRP1 on RhoA and vice versa. 

 

4.3.6. SFRP1 expression in distinct fibroblast sub-populations 

Cellular heterogeneity has been well documented over the years both theoretically [249] and 

experimentally [250]. Cell to cell differences always existed in different cell populations and hence the 

overall collective behavior of the cell population does not truly represent the nature of an individual cell. 

Therefore, interpretation of cellular heterogeneity became essential for accurate identification of cell-

based modulations of a gene. Fibroblasts have been reported to exhibit clonal heterogeneity for growth 

and protein synthesis [172]. In my experiments, a pure clonal population was generated from a single cell 

isolated from a multiclonal population by serial dilution. The single cell clones isolated from patient lung 

fibroblasts presented differential expression of SFRP1 and αSMA. On careful investigation of numerous 

single cell clones, three different fibroblast subtypes were recognized: SFRP1highαSMAlow, 

SFRP1lowαSMAhigh and SFRP1medαSMAmed. This exciting finding was further examined in the context 

of lung fibrosis. In recent years, rapid progress and development in the field have allowed researchers to 

perform single cell RNA (Dropseq) sequencing from tissue resections. Tissue explants were harvested 

from healthy tumor-free lung resections and IPF patients. The SFRP1high expressing cells in IPF tissues 

were interestingly found to be mostly αSMAlow, possibly indicating an activated fibroblast subtype which 

is substantially different from the myofibroblast genotype and phenotype.  In accordance with the human 

lung tissues, the whole lung tissues isolated from Bleo and PBS mice displayed a similar enrichment of 

the SFRP1highαSMAlow fibroblast populations in the fibrotic conditions (as discussed in section 4.2.3.3). 

The myofibroblast signature gene αSMA has been reported to be highly expressed during fibrogenesis 

[251]. Moreover, the αSMAlow expressing collagen1high expressing cells have been defined as the matrix 

fibroblast subtype. This subtype was reported to increase from ~30% in healthy population to ~50% in 

fibrotic mesenchymal cell population [252]. This goes in line with our observation from human and mouse 

single cell RNA sequencing results. One could speculate that the SFRP1highCol1high matrix fibroblast 

subtypes are potentially enriched in early fibrosis, representing an activated fibroblast subtype. Such an 

activated SFRP1high subtype could be a valid progenitor of myofibroblasts, which gets transdifferentiated 

by TGF1 treatment. Furthermore, lipofibroblasts have also been reported as a source for activated 

myofibroblasts in lung fibrosis [117] Moreover, knockdown of SFRP1 in the cancer cells have reported 

to enhance invasion of these cells [182]. This goes in line with our observations where SFRP1low phFbs 

was demonstrated to invade the collagen gel significantly more than untreated or negative control cells.  

Additionally, the SFRP1low fibroblasts have been shown to acquire a smaller and slender phenotype which 

might be consequential of the reduced RhoA expression and activation within these cells. Although, a 

functional role for the SFRP1med expressing fibroblasts could not be deduced here, it might be still worth 
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to further characterize the novel SFRP1high, SFRP1low and SFRP1med expressing fibroblast populations in 

the background of pulmonary fibrosis. 

In summary, three new fibroblast sub-populations determined by SFRP1 expression were identified in my 

thesis. It can be speculated that the quiescent or resident fibroblasts in the lung, upon injury differentiated 

into SFRP1lowαSMAlow invading cells and SFRP1highαSMAlow non-invading, probably matrix producing, 

(synthetic) cells. TGFβ1 derived from an autocrine/paracrine loop is required to inhibit the SFRP1 

expression in the activated fibroblast subtype and thereby potentially moderate a trans-differentiation to 

SFRP1negαSMAhigh myofibroblast (like) cells. The trans-differentiation process into myofibroblasts is 

concerted by pro-fibrotic growth factors like TGFβ1 and/or matrix stiffness (Fig. 4.34). 

 

 

Figure 4.34: Schematic illustration of fibroblast subtypes expressing distinct levels of SFRP1 

Resident fibroblasts upon lung injury trans-differentiated into SFRP1highαSMAlow and SFRP1lowαSMAhigh fibroblast subtypes. 

The SFRP1lowαSMAhigh subtype can transform into myofibroblast (like) phenotype upon stimulation with pro-fibrotic mediators 

like TGFβ1 and stiff matrices. 
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5. Chapter B: Validation of a pre-clinical ex vivo tool to confirm novel 

targets in IPF 
 

5.1. Introduction 

According to the world health organization (WHO), chronic respiratory diseases such as chronic 

obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and asthma are major 

causes of death globally [253]. One of the primary reasons behind the limited success in identifying 

successful drug therapies is the lack of translatable disease models which could efficiently predict and 

test drug targets and efficacies [142]. While, in vitro model systems have been largely used to mimic 

respiratory diseases by stimulation in culture or isolation, their analysis is mostly limited to one or two 

cell populations in two-dimensional cell culture systems. Additionally, due to the complexity of 

representing an in vivo like fibrosis, in vitro 2D and 3D assays could only depict single processes within 

fibrosis such as fibroblast migration or invasion, collagen deposition or myofibroblast differentiation. 

Although micro-physiological model systems and microfluidics have stretched the boundaries of in vitro 

assay design capabilities, the reliance on artificial scaffolds still presents a notable drawback [146, 254, 

255]. Yet apart from the use of animal models, there is the need for relevant human disease models that 

could depict the complex nature of the cells and tissues in their 3D native microenvironment and still 

allow a straightforward investigation. To address this issue, tissue slices of various thicknesses have 

presented a potential solution for mechanistic understanding of disease-associated complexities and also 

reduce the number of animal use for experimentation. Such a 3D tissue-culture system allows for the 

analysis and visualization of potential therapeutic strategies in a spatio-temporal resolution within the 

native three-dimensional lung microenvironment. 

In this chapter, I demonstrate the implementation of a ex vivo fibrosis-mimicking model using mouse 

PCLS (mPCLS). 

 

5.2.Results 

 
5.2.1. Enrichment of fibrosis-related markers in mPCLS injury model 

Recapitulation of a number of developmental pathways have been established to cause the maladaptive 

repair processes in IPF [9]. To account for the activation of different signalling pathways, the mPCLS 

harvested from healthy C5BL6/7 mouse lungs were stimulated with a combination of pro-fibrotic and 

pro-inflammatory signalling molecules such as TGFβ1, tumor necrosis factor alpha (TNFα), platelet 

derived growth factor AB (PDGF-AB) and lysophosphatidic acid (LPA). This mixture was named 

“fibrotic cocktail” (FC) [91]. The combination of the control vehicles for the following signaling factors 

was termed “control cocktail” (CC). Fibrotic cocktail treatment for 5 days in the mPCLS induced protein 

expression levels of the well-established factors for (myo)fibroblast transdifferentiation in IPF namely 
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αSMA, vimentin, SFRP1, tenascin C and calponin 1 (Fig. 5.1). Interestingly, SFRP1, tenascin C and 

vimentin protein expression were upregulated in the mPCLS treated with CC at day 5 compared to 

samples taken immediately after slicing (day 0), which speaks for an induction of stress induced by the 

injury caused from slicing or culturing conditions. Thus, even unstimulated mPCLS might act as a valid 

injury model upregulating pro-fibrotic marker proteins.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Elevated expression of fibrosis-associated proteins in fibrotic cocktail treated mPCLS 

Immunoblot analysis of αSMA, SFRP1, vimentin, and calponin1 from whole protein lysates of mPCLS immediately after 

slicing: day 0 controls and after 5 days of treatment with control cocktail (CC) and fibrotic cocktail (FC). One of the 

representative blots out of four independent biological experiments is shown (n=4) here. Densitometric quantification of all 

targets normalized with β-actin ratio is shown as mean ± SEM. Statistical analysis: Paired two-tailed t-test. ***p-value < 0.001, 

**p-value <0.01, *p-value < 0.05. 

 

Furthermore, gene expression of fibrosis-associated genes was quantified and validated in mPCLS. The 

mPCLS were treated with CC and FC for 5 days and compared to day 0 freshly sliced mPCLS as 

controls. qRT-PCR analysis showed elevated gene expression levels, although all observed changes 

were found to be statistically non-significant: fibulin 1 (fold change: 2.9), connective tissue growth 

factor (CTGF) (fold change: 16.6), SFRP1 (fold change: 6.1), αSMA (fold change: 3.3), fibronectin (FN) 
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(fold change: 11.9), collagen1a1 (Col1a1) (fold change: 7.6), vimentin (fold change: 4.3) and 

plasminogen activator inhibitor type 1 (Pai1) (fold change: 28.8) in the mPCLS treated with FC 

compared to day 0 controls (Fig. 5.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: Fibrotic cocktail treatment in mPCLS induce enhanced expression of fibrosis-related genes  

qRT-PCR analysis of fibulin1, CTGF, SFRP1, αSMA, FN, col1a1, vimentin and Pai1 gene expression from mPCLS untreated 

at day 0 and treated with the CC and FC for 5 days. GAPDH was used as a housekeeping gene. Data are depicted as mean ± 

SEM from three independent biological experiments. Statistical analysis: Paired two-tailed t test. 

One of the classical hallmarks of IPF is the accumulation of αSMA expressing myofibroblasts in clusters 

termed fibrotic foci which are indicative of fibrosis progression and degree of tissue remodeling process 

p = 0.1208 p = 0.1724 

p = 0.3986 
p = 0.3675 

p = 0.1290 
p = 0.2306 

p = 0.2064 p = 0.2987 
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[45]. Hence, mPCLS treated with CC and FC were examined for αSMA protein expression via 

immunofluorescence stainings. On treatment with FC healthy mPCLS showed an increased expression 

of αSMA positive myofibroblasts compared to the day 0 and day 5 control mPCLS (Fig. 5.3 A-B). 

Interestingly, the culture conditions or the control cocktail might have provoked some kind of stress in 

the mPCLS, as noted from the significant increase in αSMA positive IF-staining at day 5 CC treated 

mPCLS compared to day 0 conditions (Fig. 5.3 A). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: Immunofluorescent stainings show an increased expression of αSMA in fibrotic cocktail treated mPCLS  

Representative (n=3) maximum intensity projections of confocal immunofluorescence microscopy images of mPCLS: day O 

untreated (UT), day 5 control cocktail (CC) treated and day 5 fibrotic cocktail (FC). αSMA expression is shown in green and 

DAPI in blue. Scale bar 20 μm. αSMA and DAPI staining were quantified in the Zen software. Expression of αSMA were 

normalized with DAPI to obtain relative expression of αSMA. Data are represented as mean ± SEM from three independent 

biological experiments (n=3). Statistical analysis: Paired two-tailed t-test with reference to day 0 UT. *p-value < 0.05. 

 In summary, these data indicate that by injury due to cutting as well as by treatment with a pro-fibrotic 

cocktail, fibrosis-like processes can be triggered in mPCLS. Thus, this ex vivo model might be useful as 
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an injury model investigating fibrogenesis in general, as well as being used for testing anti-fibrotic 

compounds in drug discovery and development. 

 

5.2.2. Analysis of an anti-fibrotic drug in the mPCLS injury model  

Nintedanib and Pirfenidone have both been reported to reduce fibrotic gene expressions in human PCLS 

stimulated with the fibrotic cocktail [179]. Tranilast has been well established as an anti-fibrotic and 

anti-inflammatory drug [256, 257]. Tranilast have been additionally reported to suppress TGFβ-

mediated ECM production and thereby reduce pulmonary fibrosis in mice [258]. Hence, in our study, 

the mPCLS were treated with Tranilast for 5 days, whereas DMSO treated slices were used as controls. 

The gene expression analysis found reduced αSMA (fold change: 0.02; p-value: <0.0001) and CTGF 

(fold change: 0.10; p-value:  <0.0001) levels after 5 days in culture with Tranilast. Interestingly, αSMA 

(fold change: 0.04) and CTGF transcripts (fold change: 0.27) were decreased in DMSO controls after 5 

days in culture (Fig. 5.4 A-B), which might hint at several stress factors acting alongside in culture 

conditions.  

In the next step, protein expression of fibrosis-associated markers was analyzed from the mPCLS treated 

with Tranilast. Although, the protein levels for αSMA (fold change: 0.58; p-value: 0.0018) remained 

unchanged on treatment with Tranilast compared to controls, but, Tranilast somehow inhibited the stress-

induced protein expression of vimentin (fold change: 0.01; p-value: 0.010) and tenascin C (fold change: 

0.01; p-value: 0.115) in day 5 treated mPCLS (Fig. 5.4 C-F). 
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Figure 5.4: Tranilast treatment in FC-unstimulated mPCLS leads to differential gene and protein expression of pro-

fibrotic markers 

qRT-PCR analysis (n=1-2) of αSMA (A) and CTGF (B) gene expression from mPCLS untreated at day 0 and treated with 

DMSO, Tranilast for 5 days. GAPDH was used as a housekeeping gene. Immunoblot analysis performed with whole protein 

lysates from mPCLS immediately after slicing at day 0 and after 5 days of treatment with DMSO and Tranilast and probed for 

αSMA, vimentin and tenascin C. One representative blot out of two independent biological experiments is shown (n=2) here. 

Data are depicted as mean ± SEM. N=1-2. 

 

In summary, mPCLS as an ex vivo 3D-tissue culture tool provides a new valid and complex platform to 

test and analyze anti-fibrotic compounds in drug discovery and development procedures.  

 

5.3. Discussion 

Slicing of tissues for studying organ metabolism came to existence in the early 1920s. Initially liver 

tissues were sliced manually with varied thickness and limited viability and reproducibility [259]. From 

there onwards, the 1950s saw the development of tissue slices cut with a microtome equipped with a 

razor blade [260]. Enhanced versions of the microtome have been able to completely reduce variability 

among thickness of the slices and these tissue slices have come to be known as precision cut slices 
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(PCS).  These ex vivo precision cut tissue slices should connect laboratory in vitro models closely to the 

pre-clinical in vivo models (Fig. 5.5). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: Ex vivo PCLS as bridging the gap between in vitro cell culture and pre-clinical in vivo animal models 

The schematic representation demonstrates the ex vivo PCS model as a translational tool which can efficiently connect the 

research performed in in vitro cell culture models with those applied to pre-clinical in vivo studies.  

 

 

Precision-cut lung slices (PCLS) have been extensively studies with respect to IPF. PCLS production 

from IPF tissue explants have been shown to be possible [261]. However, IPF tissue explants are very 

rare and typically represent the end stage of the disease. For this, Alsafadi in 2018 have reported a novel 

model to study early changes of fibrosis in human PCLS stimulated with the fibrotic cocktail [91]. But 

importantly, several pulmonologists still rely on mouse models as they are more readily available than 

human tissues. Additionally, gene targeting in mice with resultant knockin, knockout and transgenic 

models have been reported to provide diverse information about the events occurring in human diseases 

[262].  

Taken together, it was important to develop an early fibrosis mimicking and/or injury model using mouse 

PCLS. For the first time, substantial deregulations in fibrosis-associated markers on protein and gene 

expression levels were demonstrated upon stimulation with a fibrotic cocktail in mPCLS. In addition, 

immunofluorescence stainings in mPCLS were quantified to obtain statistically relevant data. 

Interestingly, tenascin C, SFRP1, αSMA and vimentin were found to be higher expressed in mPCLS day 

5 controls when compared to d0 controls (= tissue immediately lysed after slicing). It was revealed 

previously that cells in culture conditions can experience a variety of stress factors including oxidation, 

heat, chemical reactions or some unknown contaminations [263, 264]. Furthermore, αSMA expression 

has been frequently associated with mechanical stress [265]. Increased levels of vimentin have been 
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indicated in cells bared to oxidative, biochemical and mechanical stress [266, 267]. Also, Tenascin C 

was found to be a marker for mechanical stress [268]. In addition, hypoxia and reactive oxygen species 

were demonstrated to induce Tenascin C expression in cells [269]. Hence, the increase of stress markers 

at day 5 CC treated mPCLS might hint at a couple of possible stress factors within the PCLS culture 

conditions. Biomarkers for oxidative, redox and mechanical stress should be further analyzed in the 

cultured PCLS to get a clearer idea about this model. In a preliminary study, the basal effects of an anti-

inflammatory and anti-fibrotic drug Tranilast was tested in mouse PCLS under standard culture 

conditions. Although Tranilast treated mPCLS were demonstrated to withstand the stress-associated by 

culturing conditions.  

Tranilast was reported in a previous study to attenuate expression of oxidative stress indicators like 4-

hydroxynonenal (4-HNE)–modified proteins and thiobarbituric acid-reactive substances in liver fibrosis 

[270]. Moreover, recently Tranilast was noted to alleviate mechanical stress with regards to tumor blood 

vessel compression and accumulation of ECM components like collagen and hyaluron in solid tumors 

in vivo [271]. But none of these studies was performed by applying ex vivo lung slices. Therefore, for 

the first time Tranilast was demonstrated to actively reduce upregulation of stress-associated markers in 

mouse PCLS. However, further studies combining fibrotic cocktail treatment needs to be done to further 

confirm the anti-fibrotic potential of Tranilast in mouse PCLS. 

In conclusion, the ex vivo mouse PCLS model presented here prospectively will provide an important 

pre-clinical platform to successfully test anti-fibrotic compounds in a straightforward manner.  
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6. Chapter C: Studying instructiveness of ECM in 3D-LTCs 

 
Parts of this chapter have previously been published as: Burgstaller, G., Sengupta, A., Vierkotten, S., 

Preissler, G., Lindner, M., Behr, J., Königshoff, M. and Eickelberg, O. (2018). Distinct niches within the 

extracellular matrix dictate fibroblast function in (cell free) 3D lung tissue cultures. American Journal of 

Physiology-Lung Cellular and Molecular Physiology, 314(5), pp.L708-L723 [278]. 

 
 

6.1. Introduction 

Extracellular matrix has been defined as the “non-cellular portion of a tissue” consisting of a meshwork 

of extracellular macromolecules to provide structural and biochemical support to the cells [272]. The 

ECM is ubiquitously present in all tissues and undergoes dynamic remodeling to control homeostasis. A 

wide range of tissue defects and embryonic lethality have been observed in cases of mutation of the genes 

encoding ECM components [273], which speaks for a functional importance of the ECM. Two types of 

ECM have been classified based on their composition and location. One is the interstitial connective 

tissue matrix which surrounds cells and provides a scaffolding platform for the tissues and, secondly, 

basement membranes which are specialized ECM that separates the epithelium from the neighboring 

stroma [274]. Excessive deposition of extracellular collagen especially type I and III have been reported 

from patients diagnosed with IPF and adult respiratory distress syndrome (ARDS) [275]. Given its 

functional importance in disease pathogenesis, a better understanding of ECM regulation and remodeling 

is required. Hynes and colleagues have comprehensively defined the “core matrisome” comprising of 

around 300 proteins (~ 43 collagen subunits, ~ 36 proteoglycans and ~ 200 complex glycoproteins) [276]. 

The ECM for long has been considered as a mere support system for the cells and tissues, but recent 

studies have uncovered additional functional roles. ECM related signals have been indicated to instruct 

cellular behaviors like adhesion, differentiation, survival, proliferation and migration [277].  

Artificial two-dimensional (2D) culture conditions lead to abnormal cellular behaviors with altered cell 

morphology, migration, polarization and/or differentiation. Although three-dimensional (3D) cell culture 

platforms provide better biochemical and biomechanical properties, they still fail to recapitulate the 

molecular composition, structure and topology of the native ECM. In recent times, precision cut lung 

slices (PCLS) as 3D lung tissue cultures (3D-LTCs) have emerged as a powerful ex vivo tool to study 

cells and matrix in their native environment. Reports in bioengineering and regenerative medicine have 

stated the use of acellular biological tissue scaffolds as the key to mitigate the shortage of donor lungs for 

transplantation [148, 149].  Hence an improved understanding of the resident cells and their interaction 

with the ECM has become crucial. Fibroblasts are the primary effector cells and play a key role in wound 

healing and inflammation in the context of lung fibrosis [150]. Thus, we have investigated here the altered 

functional behavior of the engrafted mouse and human fibroblasts in decellularized 3D-LTCs (d3D-

LTCs).  
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6.2. Results 

 

6.2.1. Validating effective decellularization of ex vivo mouse 3D-Lung tissue 

cultures (LTCs) 

Efficient decellularization of PCLS are required to obtain acellular scaffolds. Since, any remaining cells 

in the lung slices might cause a negative impact and hinder our analysis of the repopulated cells, control 

experiments were performed to demonstrate the effective removal of cellular material. To extract all 

nuclear and cellular components, the native 3D-LTCs were sequentially incubated in sterile deionized 

water (for 16 hours), 0.1% SDS solution (for 4 hours), 1M NaCl (for 16 hours) and DNase (for 3 hours) 

with washing steps in between. Initially, Hematoxylin-Eosin (HE) and Masson Trichrome (MT) 

histological stainings were performed with paraffin-embedded d3D-LTCs. Fibrotic lung tissues were 

obtained from bleomycin treated mice and emphysematous tissues from elastase treated mice. Lung 

tissues obtained from PBS treated control mice were termed “normal”. The stainings notably revealed an 

intact ECM lung architecture with complete alveoli and alveolar ducts (Fig. 6.1). This initial study 

demonstrated complete extraction of all cells from the normal and diseased PCLS. 

 

 

 

Figure 6.1: Immunostaining of mouse native and decellularized PCLS 

Hematoxylin-Eosin (HE) and Masson Trichrome (MT) staining demonstrate effective decellularization (dec) of 3D-LTCs 

derived from normal, fibrotic and emphysematous mouse lung tissues in compared to native (nat) control 3D-LTCs. Scale bar = 

100 µm. [278] 

 

 

To further verify the removal of total cellular components on a molecular level, the overall amount of 

soluble proteins was quantified by BCA assay and the amount of cell-specific proteins from western blots. 

The total amount of soluble proteins was strongly reduced by almost 90% in the PCLS (Fig. 6.2 A). In 

addition, the cell-specific proteins (E-cadherin, Lamin A/C, Vimentin, β-Tubulin, β-Actin, αSMA, 
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GAPDH and Caveolin 1) from native healthy and diseased (fibrotic and emphysematous) PCLS displayed 

noticeable signal at their respective molecular weights (kDa), but were undetectable from d3D-LTCs (Fig. 

6.2 B).  

 

 

Figure 6.2: Reduced cell-specific protein levels in d3D-LTCs confirms effective decellularization 

Total protein quantification by BCA assay confirming a reduced protein amount in d3D-LTCs (dec) compared to native (nat) 

3D-LTCs (A).  Western blot analysis exhibiting lack of cell-specific proteins after decellularization (dec) of 3D-LTCs derived 

from PBS (normal), Bleomycin (fibrotic) and Elastase (emphysematous) treated mice, compared to native (nat) control 3D-

LTCs. [278] 

 

 

In summary, we have demonstrated here an effective decellularization of mouse PCLS by a specific 

decellularization protocol. 

 

 

6.2.2. Fibroblasts engrafted into decellularized ECM show a different protein 

expression profile  

Next, the proliferation capacity of engrafted fibroblasts in the d3D-LTCs were investigated. Various ECM 

niches in the decellularized PCLS from alveolar (Alv), fibrotic (Fibr), emphysematous (Emph), 

airway/vessel (A/V) and mesothelium (MT) demonstrated structural and compositional differences. 

Hence, our hypothesis suggested that the different ECM niches might distinctly affect the proliferative 

capacity of the engrafted fibroblasts. To investigate this hypothesis, Ki-67 immunofluorescence stainings 

were performed. Quantification of the Ki-67 positive fibroblasts presented significantly decreased 

proliferative capacity when compared to the fibroblasts cultured on 2D plastic dishes (2D). However, 

among the different ECM niches in 3D-LTCs, proliferation was not statistically significant (Fig. 6.3 A-

B).  
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Figure 6.3: Fibroblasts engrafted in the 3D-LTCs show reduced proliferative capacity compared to 2D plastic dishes 

Immunofluorescent staining with Ki-67 (in red) in mouse lung fibroblasts demonstrates lower proliferation when cultured in 3D-

LTCs than normal 2D- plastic dishes. ECM protein FN was stained in green and cell nuclei stained by DAPI in blue. Scale bars: 

100µm (A). Confocal high-resolution images from three technical replicates (n=3) were quantified using Imaris software. 

Statistics used: One-way ANOVA with Bonferroni’s multiple comparison test (B). 

 

The previous study implicated that initial attachment of the fibroblasts might potentially differ in 

accordance with the type of ECM found in special niches. Next, we wanted to investigate if protein 

expression of in 3D-LTCs engrafted fibroblasts was substantially different from fibroblasts cultured on 

2D cell culture dishes. For this experiment, ECM proteins like fibronectin (FN), collagen 1 (Col1) along 

with established mechanotransducers like yes-associated protein 1 (YAP) and tropomyosin (TM), cellular 

markers for (myo) fibroblast trans-differentiation like αSMA, calponin h1 (Cph1) and desmin (Des) and 

markers involved in cell contractility like calponin h1 and caldesmon (Cald) were chosen. Immunoblotting 

along with subsequent densitometric analyses revealed substantial decrease in the protein expression of 

YAP, TM and FN in the 3D-LTC engrafted human fibroblasts compared to the cells grown in 2D plastic 

dishes. The remaining cellular markers demonstrated insignificant protein expression changes compared 

to 2D cell culture dishes (Fig. 6.4 A-B). 
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Figure 6.4: Differential protein expression of cellular markers in phFbs engrafted in 3D-LTCs 

Protein lysates were harvested from human fibroblasts reseeded in 3D-LTCs. Immunoblots were probed for YAP, Calponin h1, 

tropomyosin, αSMA, desmin, caldesmon, fibronectin and collagen 1. β-actin was used as a loading control. Two representative 

blots out of four independent experiments are shown here (A). Densitometric quantification of the markers normalized to β-actin 

levels from four experiments were performed. Data are represented as ± SEM. Statistics: Two-tailed paired t tests, ***p<0.001, 

**p<0.01 and *p<0.05. [278] 

 

 

In summary, the results indicated an interesting reduction in the proliferation of fibroblasts engrafted in 

d3D-LTCs compared to the ones cultured in plastic dishes. Moreover, distinct protein expression for 

cellular markers like YAP, TM and FN was demonstrated in phFbs reseeded in d3D-LTCs compared to 

cells in 2D. 

 

6.2.3. Repopulated fibroblasts adhere to d3D-LTCs by forming focal adhesion 

contacts 

 

Focal adhesions (FAs) are multi-protein complexes connecting cells with the ECM matrix. FAs contain 

integrin clusters that directly bind to components of the ECM [279]. Recently, it was reported that 

fibroblasts externally added to native, meaning non-decellularized 3D-LTCs, integrated and adhered with 

the ECM by formation of FAs [137]. Hence, attachment of the engrafted fibroblasts to d3D-LTCs via 

focal adhesions was investigated in more detail. For that purpose, mouse lung fibroblasts were transfected 

with a construct ectopically expressing a marker for FAs, namely α-actinin1 which additionally is 

involved in cross-linking of actin filaments within stress fibers. Time-lapse microscopy pointed out to 

streak like structures reminiscent of FAs (highlighted with yellow arrows; Fig. 6.5 A).  
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Next, 3D-LTCs were repopulated with phFbs for 3 days and immunostained for the FA factor talin and 

ECM protein fibronectin. Talin positive streak like structures of FAs partially colocalized with fibronectin 

fibers (Fig.6.5 B). Confirmatively, talin and fibronectin staining in native 3D-LTCs likewise showed a 

partial overlap of the fibers (Fig 6.5 C). To investigate further which components of FAs are differentially 

regulated in the engrafted phFbs, immunoblotting and subsequent densitometric analyses were performed. 

Talin, paxillin and zyxin were found to be significantly reduced when the phFbs were engrafted in 3D-

LTCs. Interestingly, phosphorylation of paxillin was significantly deregulated as well. On the other hand, 

tensin protein levels were upregulated in the reseeded phFbs (Fig 6.5 D). 
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Figure 6.5: Fibroblast attachment to 3D-LTCs mediated by focal adhesions (FA)  

Confocal live cell imaging of mouse lung fibroblasts that ectopically expressed EGFP-α-actinin1 reseeded in d3D-LTCs. Four 

different time frames (0, 19, 39 and 59 mins) as maximum intensity projections are shown here. Yellow arrows point to band 

like structures reminiscent of FAs (A). Immunofluorescent staining was performed with fixed d3D-LTCs repopulated with phFbs 

for 3 days. The fibroblasts were stained for talin (green) and fibronectin (red) and the cell nuclei were stained with DAPI (blue). 

Magnified view of the interior cell region within the white rectangle box is presented in the bottom panel. The confocal z stack 

images are shown as maximum intensity projections (B). Confocal immunofluorescent staining of native 3D-LTCs. Yellow 

arrows point to talin positive FA fibers and blue arrows to fibronectin fibers. The confocal z stack images are shown as maximum 

intensity projections. All scale bars: 10µm (C). Two representative immunoblots out of four independent experiments (n=4) are 

shown here.  Densitometric analyses demonstrate significant changes in specific FA protein expression. α-Act, α-actinin 1; Tal, 

Talin; Tns, Tensin; pPax, pPaxillin Y118; Pax, Paxillin: pZyx, pZyxinS142/143; Zyx, Zyxin. Data are represented as ± SEM. 

Statistics: Two-tailed paired t tests, ***p<0.001, **p<0.01 and *p<0.05 (D). [278] 

 

Taken together, the engrafted fibroblasts were reported to form focal adhesion contacts while adhering to 

the ECM d3D-LTCs. Moreover, a differential regulation of the focal adhesion proteins was demonstrated 

for fibroblasts reseeded in d3D-LTCs compared to the 2D plastic dishes. 

 

6.2.4. Specific niches within the microenvironment of 3D-LTCs modulate the 

morphology of repopulated fibroblasts  

Alterations in the three-dimensional ECM microenvironment have been reported to substantially affect 

fibroblast signaling [141]. Therefore, alterations in cellular morphology induced by various ECM niches 

were investigated next.  EGFP expressing mLFbs were engrafted in 2D culture dishes as well as healthy 

or diseased d3D-LTCs. Subsequently, confocal live-cell imaging along with software (Imaris)-based 

isosurface rendering was performed. Surprisingly, the mLFbs were observed to display various distinct 

morphologies by apparently adopting to their surrounding ECM microenvironment. Fibroblasts in the 

mesothelium presented a flat surface with an overall smaller cell body. Correspondingly, the ECM niche 

of the airway/vessels (A/V) induced elongated, bipolar and bulbous looking fibroblast morphologies. In 

contrary, within the emphysematous regions, the fibroblasts were flat, multipolar along with huge cellular 

bodies unlike the done-shaped phenotype demonstrated within Alv regions. Fibroblasts cultured in 2D 

plastic dishes gave rise to flat multipolar elliptical cellular shape, similar to those found in the 

emphysematous niche. Lastly, fibrotic ECM niches persuaded an elongated, bipolar and spindle-shaped 

fibroblast morphology (Fig. 6.6). 
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Figure 6.6: EMC engrafted mLFbs adopt their morphology according to ECM niches 

The different ECM microenvironments; 2D plastic dish (2D), alveolar 1 and 2 regions (Alv1 / Alv2), fibrotic (Fibr), 

emphysematous (Emph), airway/vessel (A/V), and mesothelium (MT) alter the mLFb morphology. The EGFP-mLFbs were 

imaged by confocal 3D live-cell imaging. The subsequent z stacks produced were isosurface rendered and shown from xy and 

xz angles. Scale bar: 10 µm.[278] 

 

To summarize, mLFbs populating distinct niches within the d3D-LTCs displayed morphological 

flexibility, meaning that the cells adopted to their specific surrounding ECM microenvironment. 

 

6.2.5. Engrafted fibroblasts demonstrate altered 3D migration in distinct ECM 

niches 

Next, the role of the ECM microenvironment regarding fibroblast migration was investigated. For that, 

mLFbs were repopulated in decellularized healthy (PBS), fibrotic (bleomycin) and emphysematous 

(elastase) lung scaffolds. Fibroblasts were stained with Hoechst and was investigated by 4D confocal 

live-cell imaging for 24 hours to check for their migration. The measured migration speed was then 

plotted against the track straightness. Different migration patterns were observed in the engrafted mLFbs. 

Surprisingly, fibroblasts in the alveolar and fibrotic regions were mostly non-migratory. However, 

fibroblasts within emphysematous ECM regions showed a diverse migration pattern similar to fibroblasts 

cultured on 2D plastic dishes. Interestingly, fibroblasts in the A/V and mesothelium migrated in parallel 

or anti-parallel manner (Fig. 6.7 A-B). Generally, fibroblasts in 3D-LTCs demonstrated all together a 

significantly slower migration speed of 0.07 µm/min compared to the cells seeded in 2D plastic dishes 

(0.4 µm/min). Even when engrafted into distinct ECM niches of 3D-LTCSs, like for instance A/V or MT, 

fibroblasts demonstrated a significantly higher migration rate in comparison to alveolar or fibrotic areas 

(Fig. 6.7 C).  Interestingly, immunoblotting with subsequent densitometric analyses have indicated a 

significant deregulation of the protein expression of migratory regulators like RhoA, Rac1,2,3, Cdc42, 

Rock1 and Src kinase (Fig.6.7 D-E) in phFbs engrafted within d3D-LTCs when compared to 2D cultured 

control cells. 



Chapter C: Studying instructiveness of ECM in 3D-LTCs 

 

 

 
115 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7: Lung fibroblasts in various ECM niches of d3D-LTCs show a different migration behaviour  

The migration of Hoechst stained mLFbs engrafted on d3D-LTCs was assessed by 4D confocal live-cell imaging. The different 

ECM niches chosen were 2D plastic dish (2D), alveolar (Alv), fibrotic (Fibr), emphysematous (Emph), airway/vessel (A/V), and 

mesothelium (MT). Parts of the fibrotic, A/V and MT are encircled by red-dashed line (A). The migration speed plotted against 

the track straightness demonstrated different migration modes. The red rectangles indicate stationary or slow migrating cells 

whereas the red arrows illustrate the overall direction of migration of the fibroblasts. Scale bar: 100 µm (B). Quantification of 

the migration speed of the fibroblasts in different ECM niches reported an overall reduction in cell migration compared to plastic 

dishes. Statistics. One-way ANOVA with Bonferroni’s multiple-comparison test; n=3 (biological replicates) (C). Two of the 

representative blots (out of 4; n=4) are shown here. Protein lysates were harvested from reseeded phFbs in 3D-LTCs (D). The 

protein expression of the migration regulators were normalized with the β-actin expression. Statistics: Two-tailed paired t-tests; 

***p<0.001, **p<0.01 and *p<0.05. [278] 
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In conclusion, phFbs reseeded in different healthy and diseased d3D-LTCs demonstrated significantly 

reduced migration speed compared to the phFbs cultured in 2D plastics dishes. Moreover, among distinct 

lung scaffolds, phFbs within alveolar and fibrotic regions were mostly non-migratory, whereas phFbs in 

A/V and MT displayed higher migration speed in comparison. Consistently, differential protein 

expression of migration-related cellular markers like RhoA, Rac1,2,3, CDC42 and Src kinase were 

revealed in phFbs in 3D-LTCs compared to the cells in plastic dishes. 

 

 

6.3. Discussion  

Our understanding of the interaction between cells and their ECM microenvironment has grown 

considerably within the last decade. ECM consist of an intricate network of macromolecules with varying 

bio-chemical and physiological properties that represent the non-cellular facet of the tissues in our body 

[280]. The synergy of cells and ECM underlay the basic foundation for various critical cellular functions 

such as growth, differentiation, adhesion, gene expression, morphogenesis and essentially survival [281]. 

The ever-growing regenerative medicine field have been working towards renovation of the impaired 

tissues and organs with natural bio-mimicking materials. For this, decellularized tissue scaffolds with its 

intact lung architecture and preserved ECM components have been highly investigated [282]. Although, 

functional studies have been reported previously which portray the precise nature of the cell-ECM 

communication processes [283, 284], but none of the earlier reports characterized an overall comparison 

of the instructive cues produced from the ECM of healthy and diseased 3D-LTCs compared to cells 

cultured on 2D plastic dishes. This bi-directional signalling interplay between the cells and their 

surrounding ECM microenvironment were studied in detail here in this chapter. To recapitulate the ECM 

in its “native” molecular composition, architecture, topology, and mechanobiology, ex vivo 3D-LTCs 

were utilized. Firstly, healthy and diseased decellularized mouse lung 3D-LTCs were utilized and mouse 

and human lung fibroblasts from various sources were reseeded in them. Importantly morphology, 

migration and protein expression in the engrafted fibroblasts were comprehensively investigated. Most 

cell types in the body have been reported to interact with their surrounding ECM which was reported to 

have direct repercussions in cellular behaviors [285]. With this hypothesis in mind, mLFbs and phFbs 

were engrafted in decellularized PCLS as harvested from healthy (PBS instilled) and diseased (elastase 

and bleomycin instilled) mouse lungs. Preceding the central experimental studies, sufficient 

decellularization of the tissue was validated at first by immunohistological stainings and quantification 

of total soluble proteins from the decellularized 3D-LTCs. This initial examination demonstrated 

successful clearance of the cellular components from the 3D-LTCs as evidenced from the HE and MT 

stainings and protein analyses by immunoblots.  

Recent investigations have reported fibroblast-derived extracellular matrices to affect attachment, 

proliferation, migration and differentiation of the adipose tissue derive mesenchymal cells in vitro [286]. 

Moreover, informative signals from bone-derived extracellular matrix has been noted to stimulate 
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osteogenic differentiation of the embedded embryonic stem cells [287]. In line with these studies, the 

differential cellular behaviors of the engrafted lung fibroblasts were investigated in discrete healthy and 

diseased ECM niches including cell culture plastic dishes. The results indicated reduced proliferation of 

the fibroblasts when embedded in 3D-LTCs compared to when cultured in 2D plastic dishes. This goes 

in line with previous studies showing slower breast cancer proliferation within 3D synthetic scaffolds 

compared to 2D dishes [288] which confirm strongly that the ECM niche controls the proliferation of 

seeded cells. Moreover, divergent protein expression, especially substantial reduction of the mechano-

transduction and ECM-related markers in fibroblasts within 3D-LTCs, verified our findings. The reduced 

expression of mechanotransducers like YAP and TM was predictive, as 2D plastic dishes have higher 

stiffness than the d3D-LTCs (~3GPa). Interestingly, fibroblast proliferation as detected by the Ki-67 

positive cells did not reveal any statistical significance for the stiffer fibrotic regions and the maximal 

proliferation was observed only within the mesothelium. Therefore, along with stiffness, other factors 

like adhesion of the fibroblasts within the distinct ECM niches might also affect the rate of cell 

proliferation.  

FAs have been reported to relay important information from the surrounding extracellular environment 

to the cytoskeleton of the cell, thus acting like a “mechanical link” between them [289]. Although, the 

turnover rate of FAs and in general their overall existence in 3D matrices have been highly controversial 

[289, 290], our group has previously demonstrated the definite existence of FAs in 3D lung scaffolds and 

have subsequently reported their involvement in the dynamic interaction of fibroblasts with their native 

ECM [137]. Moreover, the size of FAs has been directly linked to cellular migration capacity previously 

[291]. Therefore, the size and number along with the turnover rate of FAs in the fibroblasts engrafted 

within different 2D and 3D-LTCs might be an interest for further related studies.  

Fibroblasts in general have been defined as elongated, spindle-shaped cells [93]. However, changes in 

their surrounding ECM microenvironment have been demonstrated to alter their cellular behaviors 

including morphology [141]. Surprisingly, fibroblasts reseeded in different ECM niches were found to 

adopt distinct shapes that might account for the altered migration pattern of these cells. Highest migration 

speeds were found for fibroblasts cultured in 2D plastic dishes compared to the 3D-LTCs. Recently, the 

ability of the cancer cells to migrate, along with their migration speed and net distance was shown to 

correlate in 2D and 3D cell culture systems [292], but it will be important to understand here the 

differences between the use of standard 3D hydrogel-based culture systems and in vivo-like tissue 

scaffolds. Although the differential migration of alveolar epithelial cells at different stages of 

alveogenesis was demonstrated in mPCLS [293], none of the previous studies have precisely compared 

cellular migration between 2D plastic dishes and lung tissue scaffolds. Interestingly, protein expression 

of cytoskeletal proteins, as well as migration and cytoskeletal regulatory proteins, was demonstrated to 

be significantly deregulated in fibroblasts in 3D-LTCs compared to 2D plastic dishes.  
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In conclusion, prominent changes in lung fibroblast migration speed and pattern along with eminent 

protein expression changes of migration-related cellular markers were successfully demonstrated here. 

Moreover, for the first-time lung fibroblasts were shown to adopt different cellular morphology based on 

their distinct occupied ECM niche. Also, lung fibroblasts were noted to have reduced proliferative 

capacity in 3D-LTCs compared to 2D plastic dishes with differential protein expression of 

mechanotransduction-related and ECM cell markers. Therefore, the protrusive changes in cellular 

behaviors have been demonstrated as a repercussion for the dynamic ever-changing instructiveness of the 

surrounding ECM. 
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7. Conclusion and future directions 

In the presented thesis, the functional role of SFRP1 was assessed in healthy and fibrotic lungs with 

particular focus on providing mechanistic evidence during fibrogenesis. Besides, a 3D-lung tissue injury 

model was developed and validated by using precision cut lung slices (PCLS) with the intention to 

utilize it for the ex-vivo 3D tissue validation of novel compounds in drug discovery and development. 

Three fibroblast subtypes, determined by their characteristic SFRP1 expression emerged from the first 

chapter of the study. Using single cell clones and single cell RNA seq, the existence of at least three 

distinct SFRP1low, SFRP1med and SFRP1high fibroblast populations were confirmed. In addition, strong 

evidence was provided to establish the SFRP1low fibroblast subtype as an invading cell population. 

Transcriptomic screening, followed by gene expression analysis and activation assays revealed 

significantly reduced RhoA expression and activation in the SFRP1low fibroblasts, which might have 

consequential effect for the observed morphology changes and increased invasiveness of these cells. 

Furthermore, upregulation of SFRP1 expression in mouse and human fibrotic tissues was successfully 

confirmed which provided evidence for involvement of SFRP1 in lung fibrosis. Interestingly, the 

expression of SFRP1 was shown to be upregulated in the early phase of the bleomycin-induced lung 

fibrosis in mice which could be a hint for SFRP1’s role during fibrogenesis rather than for the resolution 

phase. As, fibrosis can aggressively progress ending in organ failure it is crucial to find early biomarkers 

of fibrosis.    

In the second chapter, regulation of fibrosis-related cellular markers was investigated in response to a 

pro-fibrotic cocktail in mPCLS. Here, a strong effect of the markers were demonstrated on both protein 

and gene level. This is an exciting finding as upregulation of the pro-fibrotic genes and proteins 

including SFRP1 was demonstrated in the healthy mPCLS without inducing lung fibrosis. Moreover, 

the anti-inflammatory and anti-fibrotic drug Tranilast was also tested in the setup. A strong reduction 

of the investigated fibrotic markers such as αSMA, CTGF, Vimentin and Tenascin C were observed 

following Tranilast treatment. This establishes the mPCLS system as an important pre-clinical tool for 

validating potential therapeutics, especially as the availability of human tissue for the production of 

huPCLS can be a limiting factor.  

The third chapter revealed that cultured mouse and human lung fibroblasts engrafted on native d3D-

LTCs led to altered cellular behaviors especially in their proliferation rate, morphology, migration and 

expression of specific proteins, altogether apparently directed by the ECM’s instructive cues. 

Furthermore, for the first time the repopulated fibroblasts were demonstrated to attach to decellularized 

lung scaffold ECM via FAs, as confirmed by positive Talin expression. This exciting finding sheds new 

light on the controversial existence of focal adhesions in 3D matrices (Fraley et al., 2010; Doyle and 

Yamada, 2016). 
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In conclusion, the results obtained in my thesis advocate SFRP1 as a possible early biomarker for lung 

fibrosis. Moreover, novel crosstalk pathways between SFRP1 and TGFβ1 and RhoA were revealed that 

could provide further evidence for altered signaling mechanisms in fibrotic conditions. Importantly, the 

SFRP1 expression-based fibroblast populations discovered in this study could play an important during 

fibrogenesis and might be a target for therapeutic intervention in the future. Even the secreted SFRP1 

itself might be a promising drug target. Lastly, ex vivo culture tools developed and validated in this 

current study might bring the basic research analyses a little closer to pre-clinical applications (Fig. 

7.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1: Schematic overview of laboratory to clinic anti-fibrotic drug development pipeline 

Step 1: Search for a novel biomarker or a drug-target which starts in the basic research and development area. Step2: Validation 

of the biomarker/drug target in in vitro, ex vivo and in vivo studies until confirmed with a strong biological effect. Step 3: 

Clinical phase studies in patients and final commercial production.  

 

Although the present studies have contributed to a better understanding of the role of SFRP1 in lung 

biology, there still remains some open questions. One important question arises to the fate and trajectory 

of the SFRP1high and SFRP1low fibroblasts during fibrosis. For this, a SFRP1 reporter mouse could be 

potentially used to trace the expression of SFRP1 after bleomycin-induced injury. In particular, 

characterization of the SFRP1 expressing fibroblast population via single cell RNA sequencing might 

provide a better understanding about the function of these distinct subtypes. Additionally, huPCLS 

stimulated with FC could also provide a supplementary platform to investigate the nature of the SFRP1 
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expressing fibroblasts. Furthermore, functional in vivo studies testing the lung function in fibrotic 

SFRP1 knockout mice could also provide substantial evidence for the involvement of SFRP1. 

Furthermore, an ex vivo invasion assay could as well be utilized to investigate the invading SFRP1low 

fibroblasts and compare the results with that obtained from the 3D collagen gel (section 4.2.2.5). On a 

molecular level, signaling crosstalk between the SFRP1high fibroblasts and the epithelial cells during 

injury and the consequential impact on the Wnt activity of the epithelial cells could be of particular 

interest and could provide evidence for specific function of this fibroblast population. In addition, the 

precise regulatory mechanism for TGFβ1-mediated downregulation of SFRP1 needs to be examined 

which might potentially occur via transcription factors or miRNAs. Furthermore, as SFRP1 depletion 

in the fibroblasts did not affect the canonical Wnt pathway, but surprisingly altered the RhoA mediated 

non-canonical signaling, it remains an intriguing question about which RhoA downstream components 

are deregulated further.  

The ex vivo mouse PCLS tool, although in the preliminary stages, have already provided substantial 

proof that it can effectively mimic fibrotic conditions as seen in vivo. But there are still open questions 

regarding the nature of the stress experienced by the mPCLS in culture which needs to be studied in 

detail before deducing further conclusions from the model. On the other hand, decellularized mouse 

scaffolds provide a more open ended, user-oriented approach to solve lung biology related questions. 

Although, more robust than the mPCLS fibrosis model, some questions remain still unanswered with 

this 3D ECM model. It could be interesting to understand which properties of the ECM whether micro-

topographical differences, stiffness or other ECM factors are responsible for the directional migration 

patterns observed in the reseeded fibroblasts within the A/V and mesothelium regions. Furthermore, as 

specific niches of the ECM were demonstrated to alter fibroblast behaviors, one could speculate that 

the secretome of the fibroblasts could also be altered. A further proteomic investigation of the altered 

fibroblast secretome in response to differential ECM cues could provide novel evidence for cell-ECM 

interactions. 
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ANOVA Analysis of variance 

APS Ammonium peroxodisulfate 

AT I / II Alveolar type I / II  

ATS American thoracic society 

αSMA Alpha Smooth Muscle Actin 
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BAL Bronchoalveolar lavage 

Bleo Bleomycin 

BMP4 Bone morphogenic protein 4 

BSA Bovine serum albumin  
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°C Degrees Celsius 

CDC42 Cell division cycle 42 protein 

cDNA Complementary DNA 

CRD Cysteine-rich domain 
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D Dimensional 

DAPI 4',6-diamidino-2-phenylindole 

ddCt Delta-delta- cycle threshold value 

DMEM Dulbecco's Modified Eagle's Medium 

dNTP Deoxy-nucleotide-tri-phosphate 

 

E 

ECM Extracellular matrix 

EDTA Ethylenediaminetetraacetic acid 

EGF Epidermal growth factor 

EMT Epithelial-Mesenchymal transition 

ERS European Respiratory society 
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FBS Fetal Bovine Serum 

FGF Fibroblast growth factor 
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IL1β Interleukin 1 β 

ILD Interstitial Lung Disease 

inv Invading 

IPF  Idiopathic Pulmonary Fibrosis 
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L Liter 

LTC Lung tissue culture 
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Min(s) Minutes 

mL Milliliter 

MMP Matrix metalloproteinase 

mRNA Messenger RNA 
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μ  Micro 
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neg 

ninv 

Negative 

Non-invading 

NIV Non-invasive 
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PBS Phosphate buffered saline 

PAGE Polyacrylamide gel electrophoresis 

PDGF Platelet-derived growth factor 

PF Pulmonary Fibrosis 
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QDSP Quantitative detergent solubility profiling  
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RIPA Radio-Immunoprecipitation Assay  

ROCK Rho-associated, coiled-coil-containing protein kinase 1 
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sec Seconds 

SFRP1 Secreted Frizzled Related Protein 1 

 

T 

TBS Tris-buffered saline 

TBS-T Tris-buffered saline with TWEEN®20 
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TGFβ1 Transforming growth factor, beta 1 

TNFα Tumor necrosis factor alpha 

TRIS  Tris(hydroxymethyl)-aminomethane 
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Wnt Wingless/integrase-1 
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