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Summary 

Animals need to adapt their behavior to survive and be successful in a constantly 

changing environment. Behavioral adaptations can be evoked by two mechanisms: feedback 

control and internal models. A feedback controller compares current sensory state with 

desired state and generates a motor output that minimizes their difference; such simple 

controllers can produce adaptive behavior without changing their own intrinsic parameters. 

In the central nervous system, however, feedback control is limited by long temporal delays 

associated with sensory processing required to estimate current sensory state. To overcome 

this limitation, internal models learn previous sensory-motor history to update parameters of 

motor control in a predictive manner. In the present study, I use multiple perturbations in 

visual feedback to show that larval zebrafish acutely adapt their swimming behavior to these 

perturbations. These acute behavioral changes do not affect an initial stereotyped ballistic 

portion of the swimming bouts that lasts ~ 220 ms and are unaffected by a pharmaco-genetic 

ablation of Purkinje cells – the major locus of internal models, suggesting that acute 

adaptation results from a feedback control mechanism. I support this hypothesis by modelling 

a simple feedback controller that is based on temporal integration of sensory evidence. The 

controller is able to closely reproduce all observed aspects of acute adaptation. The main 

assumption of the model: existence of temporal sensory integration in the larval zebrafish 

brain is supported by whole-brain functional imaging. On the other hand, during long-term 

adaptation, larval zebrafish gradually change their behavior, including their swimming 

kinematics during the ballistic period. In contrast with the acute short-term changes, these 

behavioral alterations are cerebellum-dependent. In conclusion, adaptive locomotion in 

larval zebrafish should be understood as a feedback control system whose intrinsic 

parameters can be modified by cerebellar output. 
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Zusammenfassung 

Tiere müssen ihr Verhalten anpassen, um in einem sich verändernden Lebensraum zu 

überleben. Diese Anpassungen im Verhalten können durch zwei Mechanismen 

hervorgerufen werden: Rückkopplung und interne Modelle. Ein Regelkreis basierend auf 

sensorischer Rückkopplung vergleicht den Ist-Zustand mit dem Soll-Zustand und generiert 

dementsprechend ein Motorsignal, das die Differenz der Zustände minimiert. Solche 

einfachen Regler können ohne die Veränderung von internen Parametern adaptives Verhalten 

hervorrufen. Im zentralen Nervensystem sind jedoch diese Regelkreise limitiert durch lange 

zeitliche Verzögerungen aufgrund der Berechnung des sensorischen Ist-Zustandes. Um diese 

Einschränkungen zu umgehen, können interne Modelle verwendet werden, die mit Hilfe 

vorangegangener sensomotorischer Übersetzungen Motorparameter vorhersagen. In dieser 

Studie verwende ich mehrere Veränderungen in der visuellen Rückkopplung, um zu zeigen, 

dass Zebrafischlarven ihr Schwimmverhalten aufgrund dieser Veränderungen akut anpassen. 

Diese akuten Anpassungen im Verhalten beeinflussen allerdings nicht die stereotypen, 

ballistischen Eigenschaften einzelner Schwimm-Ereignisse („bouts“), die ca. 220 ms 

andauern. Des Weiteren sind diese beeinträchtigt durch pharmakologisch-genetische 

Ablationen von Purkinje-Zellen, welche einen Hauptort interner Modelle bilden, was darauf 

hinweist, dass akute Anpassungen von klassischen Rückkopplungsmechanismen gesteuert 

werden. Zur Unterstützung dieser Hypothese stelle ich ein Modell eines einfachen 

Rückkopplungsreglers vor, welches auf der zeitlichen Integration sensorischer Informationen 

basiert. Dieses Modell kann fast alle beobachteten Aspekte akuter Verhaltensanpassung 

reproduzieren. Die Hauptannahme des Modells, dass eine zeitliche Integration sensorischer 

Information im Gehirn von Zebrafischlarven existiert, wird durch funktionelle Bildgebung 

des gesamten Gehirns unterstützt. Dem gegenüber steht, dass Zebrafischlarven ihr Verhalten 

während einer Langzeitadaptionsstudie, inklusive der Kinematik ihres Schwimmverhaltens, 
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graduell anpassen. Im Kontrast zu akuten Verhaltensanpassungen sind diese 

Verhaltensänderungen abhängig vom Kleinhirn. Zusammenfassend kann adaptives 

Verhalten während der Fortbewegung in Zebrafischlarven als Rückkopplungssystem 

verstanden werden, dessen intrinsische Parameter durch Signale des Kleinhirns modifiziert 

werden. 
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1. Introduction 

1.1 Adaptive control and internal models 

All living organisms have to survive and be successful despite ever-changing 

conditions of their environment. If the environment were an unchanging entity, e.g. the 

temperature, pressure, humidity, wind conditions etc. were always the same, the food and 

mating partners were always around at the same place, then executing the same actions over 

and over again might have resulted in reaching the goals successfully. However, we can leave 

this fantasy world to science fiction writers and postulate that in our world, conditions 

constantly change, and organisms have to adapt to these changes. The means to achieve this 

universal goal of adaptation to the environment can be observed on different organizational 

levels: from molecular to behavioral. For example, in some prokaryotic organisms such as E. 

coli, the molecular machinery of their flagella is organized in such a way that enables the 

bacteria to modulate the rotation of the flagella to reach an attractive chemical during 

chemotaxis (Turner et al., 2000; Yuan et al., 2010). As a result, a bacterium will reach the 

attractant regardless to where it is located with respect to the bacterium, i.e. under different 

environmental conditions.  

In animals, the highly complex nervous system has evolved not only to coordinate 

activity of different parts and systems of the body, but also to ensure that behavior is adequate 

to the environmental conditions, in a sense that animals should be able to reach a desired goal 

under different conditions and within different contexts. This must involve modifying the 

behavioral output when the conditions change, a process referred to as behavioral adaptation. 

This section describes two possible mechanisms that can underlie adaptive behavior: 

feedback control and internal models. 
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1.1.1 Feedback control 

The easiest way to produce adaptive behavior under different and often unpredictable 

external conditions is to constantly monitor the current sensory state of the body and to 

produce behavior that brings it closer to the desired state. Such behavior can be generated by 

a closed-loop negative feedback controller (or, simply, a feedback controller, Figure 1.1). To 

illustrate how a typical feedback controller works, let us consider a simple control system, 

such as a thermostat, that tries to maintain a desired internal temperature despite inconstant 

external temperature. Let us assume, for simplicity, that the thermostat is instrumented only 

with a heating element because the external temperature is expected to always be lower than 

the desired temperature so that no active cooling is required to maintain the desired 

temperature. The feedback controller “knows” the desired temperature, compares it with the 

current internal temperature measured by a sensor (feedback signal), and sends a motor 

command to the heating element if the current temperature is less than desired (i.e. if there is 

a sensory error). Such control system will maintain the desired temperature under different 

environmental conditions, i.e. produce adaptive behavior. 

Thanks to their ability to reach the same goal under different conditions, feedback 

controllers are widely used in engineering. In the central nervous system (CNS), however, 

feedback-based mechanisms of motor control are limited by at least three factors. 

 

 



Adaptive control and internal models 

 

3 

 

 

Figure 1.1. Feedback controller 

A feedback controller computes the difference between the desired state (set in the 

controller) and the current state (measured by a sensor), and sends a motor command 

to the controlled object (e.g. a heating element of a thermostat). If the resulting action 

brings the current state closer to the desired state, such control system will maintain the 

desired state under different environmental conditions, i.e. produce adaptive behavior. 

Magenta color represents variables expressed in sensory coordinates (e.g. temperature) 

and green color represents variables expressed in motor coordinates (e.g. voltage). This 

color-code is used throughout the thesis. Essentially, any controller performs sensory-

motor transformation (magenta to green), whereas any controlled object performs an 

inverse process, i.e. transforms a motor command into some sensory consequences 

(green to magenta). 

The first, most important limitation is associated with long temporal delays involved 

in processing of sensory information, which is required to measure current sensory state. 

Whilst in engineered control systems feedback loops can be made fast, the CNS requires a 

substantial amount of time to detect and process sensory feedback and react accordingly. 

These time delays vary across sensory modalities. Thus, estimates of the delay involved in 

using visual feedback vary from about 100 to 300 ms (Barnett-Cowan and Harris, 2009; 

Brenner and Smeets, 2003; Desmurget and Grafton, 2000; Saunders and Knill, 2003; 

Saunders and Knill, 2005), whereas processing delays of proprioceptive information are 
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estimated as 40 – 150 ms (Flanders and Cordo, 1989; Flanders et al., 1986; Starr et al., 1981). 

If the processing of sensory information is long with respect to the duration of the motor 

action, the current sensory state will change dramatically by the time the feedback signal 

starts to influence the motor command, thus implementing an inappropriate correction based 

on out-of-date information. It is well known in engineering that feedback control with time-

delayed inputs often produces oscillatory behavior (Kakei et al., 2019). This can be nicely 

illustrated by a simple everyday-life example (modified from Shadmehr et al., 2010). Let us 

consider a person who aims to take a shower in an unfamiliar bathroom using pure feedback-

based mechanism to control the water temperature. Assuming that the original position of the 

temperature control knob corresponds to the minimal water temperature, the water will be 

too cold when the person initially turns it on. Naturally, the person will then aim to heat the 

water by adjusting the knob until it reaches the person’s favorite temperature. Since the delay 

between adjusting the knob and feeling the effects of this adjustment is notoriously long, the 

person will continue turning up the heat so that by the time the water finally reaches the 

favorite temperature, the heat adjustment will already be at a higher level. Then, when the 

water becomes too hot, the person will adjust the control knob to cool down the water. 

However, thanks to the response delay, the temperature will continue to rise for some time. 

The person will responds by turning down the temperature control even farther, and when 

the temperature finally responds, the poor person is soon freezing, and the cycle repeats. 

Thus, using feedback-based control mechanisms with long time delays results in an 

alternating scalding and freezing experience. 

The second limiting factor is that any physiological sensor inevitably has some 

inaccuracies, compound by neural noise, that lead to errors in the measurements making 

feedback detection less accurate. 

Finally, the parameters that the CNS might aim to control, such as joint angle or angular 

velocity, often cannot be measured directly due to lack of respective sensors (Miall et al., 
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2007). Thus, to estimate current joint angle, the CNS must decode it from indirect 

information provided by muscle spindles. 

1.1.2 Internal models 

To overcome the aforementioned limitations of feedback control and yield accurate 

adaptive behavior, the CNS must utilize some kind of predictive mechanisms. This becomes 

especially important when motor control has to be performed rapidly, as in capturing a fast 

and evading prey or fast reaching arm movement towards a target. Essentially, the process 

of prediction is inextricably linked to the process of modelling because in order to predict 

something, one must have some understanding of the rules underlying the process, i.e. have 

a model of this process. It was therefore proposed that the CNS contains, in one form or 

another, internal models of the motor apparatus (Kawato, 1990; Kawato et al., 1987; Wolpert 

et al., 1995). The essence of internal models is that they monitor inputs and outputs of a 

controlled system and eventually learn a transfer function of this system. Depending on 

whether internal models learn a forward or an inverse function, they can be categorized into 

two groups: forward models and inverse models. Forward models are able to predict sensory 

consequences of a motor command and can be therefore used as predictors (Flanagan and 

Wing, 1997; Flanagan et al., 2003; Shadmehr et al., 2010; Wolpert et al., 1995). In case of a 

thermostat, a trained forward model might predict, for example, that sending a certain voltage 

to a heating element will result in increasing the temperature by a certain value or at a certain 

speed, and this prediction will be available for the controller long time before the delayed 

feedback signal arrives. In turn, inverse models predict a motor command that is required to 

achieve desired sensory consequences and can be therefore used as feedforward controllers 

(Kawato, 1999; Kawato and Gomi, 1992b; Sabes, 2000; Shidara et al., 1993; Wolpert et al., 

1998). Thus, an inverse model might predict that in order to increase the temperature by a 

certain value or at a certain speed, a certain voltage must be sent to a heating element. 
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If we develop the aforementioned example of a naïve person trying to take a shower in 

an unfamiliar bathroom, one could say that after several scalding-freezing cycles caused by 

delayed feedback, the person will understand how the temperature control knob works, i.e. 

acquire an internal model of the knob. This prior knowledge, the internal model, can be used 

instead of (or in addition to) a feedback control mechanism. In this example, the person might 

acquire a forward model that encapsulates the idea that a certain position of the knob results 

in a certain water temperature. Instead of comparing her favorite temperature with the 

delayed feedback, the person might compare it with the feedback predicted by the forward 

model and adjust the knob until this prediction matches the goal. Alternatively, the person 

might acquire an inverse model and perform a feedforward adjustment of the knob to the 

position that she predicts to result in her favorite water temperature. 

Both forward and inverse internal models can be used to solve a variety of motor 

control problems, and their exact roles are largely determined by their placement within a 

control system. Two examples of such placements are demonstrated in Figure 1.2. 

In Figure 1.2a, a copy of the motor command generated by a feedback controller 

(efference copy) is sent to a forward model of the controlled object. The model learns a 

forward transfer function of the object, i.e. what sensory feedback follows different motor 

commands. Therefore, sensory feedback acts as a teaching signal that trains the forward 

model (indicated by a wavy line). A trained model is able to predict consequences of the 

current motor command. The generation of the prediction is fast because it does not depend 

on slow sensory processing and a feedback controller can use this prediction instead of the 

measured feedback signal. In this example, output of a forward model substitutes for 

measured sensory feedback, however it is important to note that prediction of a forward 

model can also supplement measured sensory state. The CNS might combine forward 

modelling with sensory observations in order to produce more accurate state estimation than 
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can be achieved using either of these mechanisms on their own in a way similar to Kalman 

filtering (Miall et al., 2007; Wolpert et al., 1995). 

 

 

Figure 1.2. Possible placements of internal models within a feedback control 

system 

a. A feedback control system with a forward model. b. A feedback control system with 

an inverse model (feedback-error-learning model [Kawato, 1990]). Wavy lines denote 

the teaching signals used by internal models to learn the transfer function. Note that the 

teaching signal is expressed in the same coordinates as the output of an internal model 

(sensory for the forward model and motor for the inverse model). See details in the text 

below. Panel b is adapted from Kawato and Gomi (1992a), with permission. 
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Inverse functions are often less intuitive than forward functions, and placement an 

inverse internal model into a control system in a reasonable way seems to be a more difficult 

task. A possible way to incorporate an inverse model into a feedback control system was 

proposed by Mitsuo Kawato (1990) and was termed a feedback-error-learning scheme 

(Figure 1.2). In this scheme, the final motor command that is fed to the controlled object is a 

linear sum of a feedback motor command produced by a feedback controller and a 

feedforward motor command produced by an inverse model. The inverse model monitors the 

relationship between the desired sensory state and a feedback motor command, and learns to 

produce a feedforward motor command that minimizes the feedback command. In this case, 

the teaching signal is a feedback motor command (indicated by a wavy line), which is only 

generated by the feedback controller if measured sensory feedback differs from the desired 

sensory state, i.e. if there is a sensory error (see Introduction section 1.1.1). Therefore, by 

learning to minimize the feedback motor command, an inverse model learns to minimize the 

sensory error, which is highlighted in the title of this scheme: feedback-error-learning. 

Eventually, a trained inverse model produces a good feedforward control, “good” in a sense 

that it leads to the desired sensory state and does not depend on long-delayed sensory 

feedback (Kawato, 1990; Kawato and Gomi, 1992a; Kawato and Gomi, 1992b). 

Originally emerged as a theoretical concept, the hypothesis that internal models exist 

in the CNS is nowadays supported by a significant body of experimental evidence, some of 

which is outlined below. 

One line of evidence comes from human psychophysical studies of grip force 

coordination during arm movements with hand-held objects (Flanagan and Tresilian, 1994; 

Flanagan and Wing, 1990; 1993; 1997; Flanagan et al., 1993). In these studies, subjects were 

asked to perform different movements with an arm while holding an object with the tips of 

the thumb and index finger. Acceleration during arm movements induces inertial load forces 

applied to the hand-held object. In one study (Flanagan and Wing, 1997), other types of load 
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forces (viscous and elastic loads) were artificially applied by force-served linear motors 

attached to the manipulandum that the subjects were holding and moving. Either way, 

fluctuations in load force require adjustments of the grip force with which the object is held 

to prevent its slipping. These studies demonstrated that the grip force is modulated in parallel 

and thus anticipates the load force, indicating that the CNS can predict the load force to adjust 

the grip force and prevent slipping of the held object. Since the load force depends on both 

the load properties and the kinematics of the moving arm, this result indicates that the CNS 

has an internal model of the object dynamics (e.g., how heavy the object is predicted to be) 

and of the loaded moving arm (e.g., by how much the load force is predicted to change during 

a given arm acceleration). 

Another example supporting existence of internal models in the CNS of a different 

model system is evident in prey interception behavior in dragonflies (Mischiati et al., 2015). 

In this study, careful analysis of dragonfly’s head and body orientation and position has 

detailed the strategy used by dragonflies during prey interception. This strategy includes 

predictive rotations of the head to continuously track the moving target and using these 

rotations to align the body orientation with the prey’s path while remaining directly below 

the prey and closing the vertical distance. These steps must rely on internal models of both 

body dynamics and moving target. For example, predictive head rotations nullify the prey-

image drift that could be caused by both own body movements and prey motion, implying 

internal models that can predict image drift from motor commands sent to the wings and from 

the target motion at a constant velocity. 

As the matter of fact, the question of whether internal models exist in the CNS can be 

viewed as a question of terminology rather than biology. If we accept that the CNS uses 

predictions for accurate motor control and that these predictions are provided by something 

termed internal models, we logically conclude that internal models exist. In his review about 

internal models of eye movements, Stephen Lisberger (2009), wrote, “the question is not 
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whether the brain operates as an internal model of the body. It must. Instead, the questions 

are whether internal models are localized at specific sites in the brain, how they are 

constructed through neural circuits, and whether specific patterns of neural discharge can be 

understood in terms of internal models.” 

1.2 Cerebellum as a neuronal substrate of internal models 

It is widely believed that one of the major neuronal sites of internal models in 

vertebrates is the cerebellum. This section describes the basic circuit architecture of this brain 

structure, discusses why this architecture is perfectly suited for acquiring and storing internal 

models, and provides direct experimental evidence of internal models in the cerebellum. 

1.2.1 Architecture of the cerebellum 

The cerebellum has attracted interest of both theoretical and experimental biologists 

for a long time due to its well-documented microanatomy combined with its prominent 

involvement in motor control. The roots of our present knowledge on cerebellar organization 

were provided by the famous anatomical studies of Ramón y Cajal in the 19th century. 

Cerebellar architecture has several characteristic features some of which were captured by 

Cajal using silver staining method whereas the others were discovered later thanks to the 

advent of new techniques (Sotelo, 2008). 

On the macroanatomical level, the cerebellum can be divided into 3 functional and 

anatomical parts based on their afferent connections and phylogenetical age (Dow, 1942). 

The most ancient part, the vestibulocerebellum, is already present in cyclostomes and 

interacts with vestibular and oculomotor systems. The spinocerebellum first appears in fish 

and is innervated mainly from the spinal cord. The phylogenetically youngest part, the 
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cerebrocerebellum, receives projections from the cerebral cortex with switching in the 

pontine nuclei. 

In most vertebrates, the cerebellum is composed of stratified cerebellar cortex 

surrounding the white matter, in which lie the deep cerebellar nuclei (DCN). The cerebellar 

cortex contains two main cell types that play the dominant role in the cerebellar circuit 

(Figure 1.3): Purkinje cells (PCs) and granule cells (GCs), as well as different types of 

interneurons. PCs are GABAergic neurons and their morphology is characterized by a large, 

nearly two-dimensional, and elaborate dendritic arbor oriented orthogonally to the 

longitudinal axis of the cerebellar cortex. PCs receive two main inputs: parallel fiber (PF) 

input and climbing fiber (CF) input. 

 

Figure 1.3. Main connections of the olivo-cerebellar system 

PCs – Purkinje cells, GCs – granule cells, PFs – parallel fibers, MF – mossy fiber, CF 

– climbing fiber, IO – inferior olive, DCN – deep cerebellar nuclei. Gray triangles 

indicate dendritic claws of GCs. See details in the text of this section. 



Introduction 

12 

 

PFs are the axons of GCs that span through the cerebellar cortex perpendicularly to the 

PCs’ dendritic trees, with each PF making contacts with multiple PCs’ along the way. GCs 

are small glutamatergic neurons that typically have four dendrites, each terminating with a 

peculiar structure called dendritic claw (indicated with gray triangles on Figure 1.3). GCs are 

the most numerous cell type in the CNS, their number in human cerebellum is estimated as 

50 billion (Llinás et al., 2004), constituting more than a half of the total neuron count in the 

human brain. Thanks to their large and highly arborized dendritic trees, each PC receives 

inputs from about 200’000 PFs, more than any other cell type in the brain (Llinás et al., 2004). 

Such unprecedented high number of GCs and level of PF inputs convergence are among the 

most peculiar features of the cerebellar architecture. GCs receive their main inputs from 

mossy fibers (MFs) that provide the cerebellar cortex with motor-related and sensory 

information of different modalities from multiple brain regions including cerebral cortex, 

vestibular nuclei, reticular formation, pontine nuclei, spinal cord, superior colliculi, locus 

coeruleus and red nucleus (Purves et al., 2004). In addition to innervating the GCs, MFs send 

collaterals to the DCN (Shinoda et al., 1992) (these collaterals are not shown in Figure 1.3 

for simplicity). 

The second main input to PCs, the CFs, is in every way different from the MF - PF 

input. It originates in a single brainstem nucleus, the inferior olivary nucleus (or, simply, 

inferior olive, IO). Functionally and anatomically, the IO is inextricably linked with the 

cerebellum, so they are often collectively called the olivo-cerebellar system. An IO axon 

branches into about 10 CFs, each innervating the cell body and proximal dendrites of a single 

PC, and each PC receives input from only one CF. However, a single CF forms about 300 

synaptic connections with its target PC (Llinás et al., 2004). As a result, a single action 

potential in a CF induces a powerful activation event in the PC, termed the complex spike 

(Eccles et al., 1966). Additionally, olivocerebellar axons send collaterals to the DCN and 

lateral vestibular nucleus, which is very similar to the DCN by the nature of its afferent and 
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efferent connections (these collaterals are not shown in Figure 1.3 for simplicity). IO receives 

afferent inputs from the spinal cord, multiple brain stem regions including the red nucleus, 

cerebral cortex, and from small inhibitory neurons of the DCN. Thus, the inhibitory feedback 

regulation of this important afferent input of the cerebellum is carried out. 

Efferent output from the cerebellar cortex is formed solely by the axons of PCs. These 

axons terminate on DCN neurons that, in turn, send their projections outside the cerebellum 

and innervate multiple brain regions including pons, vestibular nuclei, spinal cord, ventral 

thalamic nuclei, red nucleus, and reticular formation. Additionally, a distinct subpopulation 

of DCN neurons – small GABAergic neurons – project to the IO (de Zeeuw et al., 1989; 

Fredette and Mugnaini, 1991). Therefore, output from the cerebellum is formed by axons of 

DCN neurons, with an exception of a group of PCs projecting to the lateral vestibular nucleus 

directly without switching in the DCN. 

1.2.2 Internal models in the cerebellum 

Another very interesting feature of the cerebellum is that it is extremely well conserved 

throughout evolution (Llinás et al., 2004). The main cerebellar cell types, their morphology 

and connections described above are markedly similar in fish, birds and mammals 

(insignificant differences of the fish cerebellum are mentioned in Introduction section 1.3.1). 

In addition, this architecture is similar across subdivisions of the cerebellum regardless of 

which parts of the brain they interact with. Indeed, the circuitry of the cerebellar cortex 

described above is the same in the vestibulocerebellum, spinocerebellum and 

cerebrocerebellum. Together with the fact that the cerebellum contains more than a half of 

the total number of neurons in the CNS, this indicates that this brain structure carries out a 

very important function. Apparently, the circuit that first appeared in cyclostomes in the form 

of the vestibulocerebellum was preforming some computation that appeared to be very 
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advantageous, so that during evolution, the very same mechanism has extended to interact 

with many other brain regions involved in functions far beyond vestibuloocular control. 

Perhaps, one of the most accepted hypothesis of what could be the general function of 

the cerebellum is that the cerebellum acts as a neuronal substrate for some kind of internal 

models (for reviews, see, for example, Lisberger, 2009; Nowak et al., 2007; Wolpert et al., 

1998). Theoretical considerations demonstrating that the cerebellar circuitry is perfectly 

suited for storing and acquiring internal models, as well as some loss-of-function experiments 

directly supporting this hypothesis are presented in the next paragraphs. 

Any kind of internal model, no matter what process it is trying to predict, should have 

access to sensory information of different modalities as well as to efferent copies of motor 

commands, in order to learn relationships between them (a transfer function). As mentioned 

above, the cerebellum receives inputs from a variety of brain regions and therefore has a 

perfect location within the brain to satisfy this condition. 

The second crucial feature of internal models is their flexible nature, their ability to 

learn and update transfer function based on received afferent inputs. According to the theory 

of cerebellar function proposed by David Marr (1969) and James Albus (1971), the 

cerebellum can form associative memories between particular patterns of PF inputs and PCs’ 

outputs. The Marr-Albus model was based on three central ideas. 1) PF input carries 

contextual sensory-motor information from the body and environment. 2) CF input carries 

some form of error signal that informs the cerebellar cortex if the current movement pattern 

does not reach the desired goal and therefore needs to be updated. 3) CF input can modify 

synaptic weights of currently active PF-PC synapses. A decade later, using 

electrophysiological recordings from cerebella of decerebrated rabbits, Ito et al. (1982) has 

demonstrated that simultaneous stimulation of MF and CF lead to long-term depression of 

PF-PC synapses involved in this conjunctive stimulation. Subsequently, other forms of 

synaptic plasticity at multiple sites of the cerebellum have been discovered (for a review, see 
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Tabata and Kano, 2009). Cerebellar plasticity indicates that the cerebellum satisfies the 

second criteria of internal models: ability to learn.  

Finally, such a high number of GCs and PF inputs to a given PC can also make sense 

in the context of internal models. In behaving animals, a good control system must produce 

accurate and fast movements under a nearly infinite amount of possible environmental 

conditions while the motor commands required to reach a desired goal depend on these 

conditions. For example, from the point of view of required motor control, lifting an arm by 

10 cm while standing on both feet is a very different task from lifting an arm by 10 cm while 

standing on one foot. Or lifting an empty arm versus a loaded arm. Or lifting an arm after 

exhaustive exercising versus after rest. In all cases, the pattern of muscle activation, and thus 

the motor control, must be different depending on the context. High number of GCs and high 

number of PF inputs to a given PC may ensure that any possible context can be represented 

by at least one pattern of PF-PC synapses. Additionally, generation of cerebellar long-term 

depression only at currently active PF-PC synapses may ensure that only the internal model 

that is important under these particular contextual conditions is a subject to change. These 

ideas formed the basis of the hypothesis that the cerebellum contains multiple modules of 

internal models (Wolpert and Kawato, 1998). The hypothesis postulates that each small 

module receives its own unique combination of inputs and is responsible for controlling a 

small parameter (or set of parameters) of the body movements (e.g., one joint angle or length 

of one group of muscles). According to this hypothesis, if the motor action needs to be 

improved, only those internal models are updated, that are engaged in ongoing movement, 

and only those inputs of these models, that represent current context. This can explain, why 

learning a new arm movement in one context (e.g. learning how to play a guitar) does not 

affect previously learned arm movements in other contexts (e.g. playing a piano), or why 

learning an arm movement does not affect previously learned leg movements. Modular 
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organization of internal models within the cerebellum was supported by fMRI studies in 

humans (Imamizu et al., 2000; 2003). 

Perhaps, the most direct way to prove that a given brain structure is involved in a 

particular function is manipulating the activity of this structure (as an option, destroying this 

structure) and monitoring the resulting change in its putative function. Destruction of the 

cerebellum does not produce paralysis indicating that to a certain extent, motor control can 

be carried out without the cerebellum. However, cerebellar patients often generate inaccurate 

and uncoordinated behavior, suggesting that the cerebellum is required to correct and 

improve motor control, as well as to place motor sequences in the context of the total sensory-

motor state. One of the most common cerebellar symptoms is intention tremor – oscillation 

of the patient’s limbs during goal-directed movements. This oscillation is markedly similar 

to oscillation of a feedback control system with long sensory delays (see Introduction section 

1.1.1) and can therefore be understood as impaired motor performance when control relies 

solely on sensory feedback after the internal models are destroyed. 

If sensory feedback arrives at a controller after a substantial temporal delay, the 

controller would estimate the current state of the system based on out-of-date information, 

thus the estimated state would lag behind the real state. In one loss-of-function study (Miall 

et al., 2007), the authors tested whether cerebellum is involved in accurate state estimation. 

To this end, they developed an arm-reaching task, in which the performance depended on 

how correctly the subjects estimated the position of the hand before the reaching movement. 

The subjects were instructed to slowly move their right index finger to the right or left (slow 

preparation movement), and then, after they hear an auditory go-cue, to rapidly move the 

finger in order to reach a target displayed on the screen (fast reaching movement). Since the 

reaching movements were fast, they could not be efficiently corrected online using sensory 

feedback after their initiation. As a result, trajectories of the reaching movements, at least to 

some extent, had to be planned in advance during the latency period between the go-cue and 
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initiation of the movement, and the performance depended on accurate estimation of the hand 

position during this period. In some trials, the activity of the lateral cerebellum was perturbed 

during this period using transcranial magnetic stimulation (TMS), and performance errors of 

these trials were higher than during non-TMS trials. Importantly, the direction of the TMS-

induced errors was the same as the direction of the slow preparation movement: e.g., if a 

subject was slowly moving hand to the right before the go-cue, the reach-to-target movement 

was biased towards the right. This result can be interpreted if we assume that the estimation 

of the hand position results from two cooperating mechanisms: one based on sensory 

feedback from the arm, and the other based on a cerebellar forward model. Position 

estimation during TMS trials was forced to rely solely on slow sensory feedback and 

therefore lagged behind the real position. As a result, when the slow preparation movement 

was to the right, TMS stimulation resulted in estimating the hand position as being more to 

the left than it really was, and the reaching trajectory was biased to the right, thus increased 

performance error. This interpretation is further supported by the fact that TMS stimulation 

did not increase the performance error if the initial hand position before the go-cue was static, 

i.e. if there was no preparation movement. Indeed, in this case, the position of the hand can 

be accurately estimated only from sensory feedback, as there were no dynamical changes in 

the hand position to be modelled. In addition, the magnitude of TMS-induced errors and hand 

velocity during the preparation movements suggested that reach-to-target movement during 

TMS-trials was planned based on the hand’s position 138 ms before the real position, 

consistent with reported proprioceptive feedback delays (Flanders and Cordo, 1989; Flanders 

et al., 1986; Starr et al., 1981). 

In a different study (Izawa et al., 2012), the authors also asked whether cerebellum 

functions as a forward model that predicts sensory consequences of motor actions. Cerebellar 

patients and healthy control subjects were holding a robotic arm and performed rapid 

shooting movements towards a target displayed on a screen. After each movement, the 



Introduction 

18 

 

robotic arm brought the hand back to the central starting position. Direct view of the hand 

was blocked from the subjects; however, a cursor representing its position was also displayed 

on the screen in most trials. The experimental paradigm included pre-adaptation, adaptation 

and post-adaptation phases. The pre- and post-adaptation trials included the so-called 

localization trials, during which no target or cursor representing the hand position were 

displayed. The subjects were asked to perform untargeted shooting arm movements and to 

report where they think their hand crossed the circle presented on the screen, i.e. the final 

angular position of the hand. Performance during localization trials depends on how well 

subjects can estimate the movement trajectory based on motor command without any visual 

feedback. Therefore, this performance can be interpreted as a readout of the forward model 

output. During the adaptation phase, the angle between actual arm movements and the cursor 

movement was gradually increased from trial to trial, so that the subjects needed to recalibrate 

their motor commands to ensure that the cursor still reaches the target. Both cerebellar 

patients and healthy control subjects demonstrated similar performance during the adaptation 

phase, indicating that a healthy cerebellum is not required for modifying the motor command 

if sensory feedback of these commands changes. Moreover, performance during the pre-

adaptation localization trials was also indistinguishable between the groups, indicating that 

before the adaptation both cerebellar patients and healthy controls could correctly predict the 

movement trajectory from the motor command. However, performance during the post-

adaptation localization trials was different between the groups. Healthy subjects’ reported 

angular position of the hand after shooting movements was shifted with respect to the real 

hand position by the angle that the subjects learned to compensate during the adaptation. This 

indicates that changing the relationship between motor action and its sensory feedback leads 

not only to behavioral adaptation but also to changing the expectation of motor commands, 

i.e. updating the forward model. On the other hand, cerebellar patients reported the hand 

position without the shift, indicating that, unlike in healthy subjects, sensory-motor training 
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did not alter their expectation of motor commands. This result was fully reproduced in a 

similarly designed study on healthy subjects, whose cerebellar activity was perturbed using 

transcranial direct current stimulation (Yavari et al., 2016).  

Taken together, the aforementioned loss-of-function studies support the hypothesis that 

the cerebellum functions as a forward model that predicts consequences of motor commands 

and improves state estimation. 

1.3 Larval zebrafish as a model organism to study adaptive behavior 

Larval zebrafish (Danio rerio) possess a unique combination of advantageous features 

that have recently made them a powerful model in system neuroscience. On one hand, their 

small size, translucency and ability to survive immobilization for a long time opens up 

opportunity for minimally invasive optogenetic manipulation and whole-brain functional 

imaging using two-photon, light-sheet or light-field microscopy in awake and behaving 

animals. On the other hand, despite their small size and young age, larval zebrafish exhibit a 

rich behavior repertoire ranging from innate behaviors such as optomotor response 

(Neuhauss et al., 1999), optokinetic response (Easter and Nicola, 1997), visual startle 

response (Burgess and Granato, 2007; Easter and Nicola, 1997), and rheotaxis (Oteiza et al., 

2017), to more complex behaviors such as prey capture (Borla et al., 2002; McElligott and 

O’malley, 2005), adaptation of locomotion (Portugues and Engert, 2011) and associative 

learning (Aizenberg and Schuman, 2011; Hinz et al., 2013; Li, 2012). Moreover, the 

zebrafish provides easy genetic access enabling usage of multiple molecular tools in a tissue-

specific manner. 
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1.3.1 Cerebellum in larval zebrafish 

As a typical representative of vertebrates, larval zebrafish have a cerebellum, and the 

main cerebellar cell types as well their morphological organization and synaptic connections 

are similar to what was described above (Introduction section 1.2.1). The only major 

difference is that in teleost fish, the main efferent output neurons, termed eurydendroid cells 

(ECs), are not piled in DCN but rather segregated in the PC layer while exhibiting many 

features similar to DCN neurons (Ikenaga et al., 2006). As mentioned above, powerful 

molecular tools available in the larval zebrafish model enable genetic access to specific 

populations of neurons, including cells of the olivo-cerebellar system (Figure 1.4). 

 

Figure 1.4. Olivo-cerebellar cells in the larval zebrafish brain 

a. Microphotograph of a larval zebrafish expressing GCaMP6s under a pan-neuronal 

promotor. Scale bar denotes 1 mm. Gray rectangle outlines the area shown in b. b. 

Transgenic lines that specifically label different olivo-cerebellar cell types, overlaid 

with a larval zebrafish reference brain; ro – rostral direction, l – left, r – right, c – 

caudal; fb – forebrain, mb – midbrain, hb – hindbrain. Colors are the same as in Figure 

1.3. Black arrow indicates the CFs. Scale bar denotes 100 µm. For transgenic lines used 

in this panel, see Materials and methods section 2.1.2. 
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1.3.2 Adaptive behavior in larval zebrafish 

If a larval zebrafish is presented with a moving stimulus, it will turn and swim in the 

direction of perceived motion in order to stabilize its position with respect to the visual 

environment: a behavior termed optomotor response (OMR) (Neuhauss et al., 1999). At the 

larval stage, zebrafish move their tail not continuously but rather in discrete episodes called 

swimming bouts. A typical swimming bout can comprise several full tail oscillations and last 

~ 350 ms. Bouts are elicited at a frequency of ~ 1 Hz and are separated by quiescent periods 

called interbouts (Budick and O’Malley, 2000). 

Portugues and Engert (2011) developed a virtual-reality assay, in which a head-

restrained zebrafish larva performs OMR to a forward-moving black-and-white grating, and 

when it swims, the grating speed changes in a closed-loop manner. Therefore, in this assay, 

animals have some control over their visual environment, and by changing their behavior, 

they are able to change the visual feedback that they receive. Importantly, feedback does not 

only depend on behavior of the animals, but it is also under experimental control. 

Experimenters can change the rules that determine how a given behavioral output is 

converted into visual feedback. For example, one can decrease the gain of the closed 

feedback loop, thus making the animals “slower”. This allowed the authors to demonstrate 

that larval zebrafish are able to adapt their swimming behavior depending on visual feedback 

that they receive. Namely, increases and decreases in the gain of the closed feedback loop 

resulted in generalized decrease or increase of motor output, respectively. For example, when 

the gain was low (i.e. when the animals were “slow”), zebrafish larvae swam in longer and 

more frequent bouts. This adaptation was acute, in a sense that it occurred rapidly within the 

time course of individual swimming bouts, as opposed to long-term motor learning, when 

several trials are required to modify the behavior. The authors suggested that swimming 

larval zebrafish have an internal representation of visual feedback that it expects to see after 

a given motor command, and if the real feedback does not meet this expectation, the animals 
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adapt their behavior to minimize this discrepancy. This is equivalent to proposing that larval 

zebrafish use forward models for acute adaptation of the OMR. 

In a different study (Ahrens et al., 2012), whole brain calcium activity was recorded 

using two-photon functional imaging in animals performing adaptive OMR in a similar 

closed-loop assay. The olivo-cerebellar system was demonstrated to be involved in acute 

OMR adaption. Since the olivo-cerebellar system is a likely neuronal substrate for forward 

models (see Introduction section 1.2.2), this study supports the idea that internal models are 

used by larval zebrafish during acute OMR adaptation. 
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1.4 Thesis objectives 

The major goal of this study was to unravel the mechanisms underlying acute and long-

term OMR adaptation in larval zebrafish, with specific focus on the role of the cerebellum in 

these processes. In accordance with this general goal, the following specific aims were 

formulated: 

1. Characterize acute OMR adaptation by exposing zebrafish larvae to different 

perturbations in visual reafference. 

2. Test the requirement of the cerebellum in acute OMR adaptation by performing 

targeted ablation of PCs and testing PC-ablated animals in the acute adaptation 

experiment. 

3. Since the results of acute adaptation experiments suggested that this process is likely 

to be implemented by a feedback controller, the next aim was to design such 

controller that would reproduce observed acute behavioral changes. The designed 

controller was based on the process of integrating sensory evidence in time, so the 

next related aim was to test whether the larval zebrafish brain indeed performs this 

integration. To this end, whole-brain functional imaging was employed. 

4. Develop long-term OMR adaptation assay and characterize behavior of larval 

zebrafish in this assay. 

5. Test the requirement of the cerebellum in long-term OMR adaptation.  
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2. Materials and methods 

2.1 Model organism and subject details 

2.1.1 Zebrafish husbandry 

All experiments were conducted on larval zebrafish (Danio rerio) at 6 - 7 days post-

fertilization (dpf) of yet undetermined sex. All animal procedures were performed in 

accordance with approved protocols set by the Max Planck Society and the local government 

(Regierung von Oberbayern; TVA 55-2-1-54-2532-82-2016). 

Both adult animals and larvae were maintained at 28 °C on a 14/10 hour light/dark 

cycle, unless specified otherwise (Materials and methods section 2.1.3). Adult zebrafish were 

kept in a zebrafish facility system of Max Planck Institute of Neurobiology with constantly 

recirculating water with a daily 10% fresh water exchange. The zebrafish facility media was 

deionized water adjusted with synthetic salt mixture (Instant Ocean) to 600 µS conductivity, 

and the pH value adjusted to 7.2 using NaHCO3 buffer solution. The water was filtered over 

bio-, fine- and carbon filters and UV-treated during recirculation. Adult zebrafish were fed 

twice a day with a mixture of artemia and flake feed.  

To obtain larvae for experiments, 1 male and 1 female (in some cases, 3 male and 3 

female) adult zebrafish were placed in a mating box in the afternoon and kept there overnight. 

The embryos were collected in the following morning and placed in an incubator that was set 

to maintain the above light and temperature conditions (Binder, Germany). Embryos and 

larvae were kept in 94 mm Petri dishes at a density of 20 animals per dish in Danieau’s buffer 

solution (58 mM NaCl, 0.7 mM KCl, 0.4 mM MgSO4, 0.6 mM Ca(NO3)2, 5 mM HEPES 

buffer) until 1 dpf and in zebrafish facility system water from 1 dpf onwards. The water in 

the dish was changed daily. 
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2.1.2 Zebrafish strains 

For purely behavioral experiments, I used wild-type Tüpfel long-fin (TL) zebrafish 

strain. Additionally, to test the behavior of animals with impaired cerebellar function, I used 

transgenic PC:epNtr-tagRFP animals (see Materials and methods section 2.1.3 for details 

about this line and the ablation method). 

For functional imaging experiments, I used transgenic zebrafish that express GCaMP6s 

under a pan-neuronal promotor elavl3 (elavl3:GCaMP6s) (Kim et al., 2017). To enable better 

optical access to the brain, I used animals with nacre mutation. This mutation introduces a 

deficiency in mitfa gene that is involved in development of melanophores (Lister et al., 1999). 

As a result, nacre mutants (mitfa-/-) lack optically impermeable pigmented spots on the skin. 

To demonstrate different cerebellar cell populations in the larval zebrafish brain 

(Figure 1.4), I used the following gene/enhancer trap transgenic lines (published in Takeuchi 

et al., 2015) that express a modified version of Gal4-VP16 (GFF) specifically in respective 

population of neurons:  

 GCs - gSA2AzGFF152B; UAS:mCherry and hspGFFDMC90A; UAS:mCherry 

 IO and CFs - hspGFFDMC28C; UAS:GFP 

 ECs - hspzGFFgDMC156A; UAS:mCherry 

 To show PCs, I used a line that expresses gap43-mCherry directly under PC-specific 

promotor aldoca (aldoca:gap43-mCherry). 

All animals also carried homozygous nacre mutation. Several larvae from each of these 

lines were imaged under a confocal microscope (Carl Zeiss, Germany), co-registered and 

averaged together (see Materials and methods section 2.5.3 for details about anatomical 

registration). 

To present functional imaging results and expression patterns of the transgenic lines 

listed above within the context of larval zebrafish gross neuroanatomy, I registered these data 

to a common reference brain. The reference brain stack was previously obtained in the lab 
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by co-registration and averaging 23 confocal stacks of larval zebrafish brains that express 

GCaMP6f under elavl3 promotor (elavl3:GCaMP6f) (Wolf et al., 2017), homozygous for 

nacre mutation. 

Finally, to evaluate the efficiency of PC ablation, I outcrossed the PC:epNtr-tagRFP 

line with zebrafish that expressed GCaMP6s specifically in PCs’ nuclei (Fyn-

tagRFP:PC:NLS-GCaMP6s) (Knogler et al., 2019). This allowed observing the effects of the 

ablation protocol not only on the membrane morphology, but also on the morphology of cell 

nuclei (see Materials and methods section 2.1.3 for details). 

All transgenic lines used in this thesis are listed in Table 1. 
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Name of the line 

Expression 

pattern Expressed molecule Purpose of use Reference 

TL - - 
Behavioral experiments:  

wild-type control group 
- 

PC:epNtr-tagRFP 

PCs 

epNtr and 

membrane-tagged 

RFP 

Behavioral experiments: 

treatment control and PC 

ablation groups 

Markov et al. 

(submitted) 

Fyn-tagRFP:PC:NLS-

GCaMP6s 

Membrane-tagged 

RFP and nucleus-

localized GCaMP6s 

Evaluation of efficiency 

of PC ablation protocol 

Knogler et al., 

2019 

elavl3:GCaMP6s 
Pan-

neuronal 

GCaMP6s 
Functional imaging 

experiments 

Kim et al., 

2017 

elavl3:GCaMP6f GCaMP6f Reference brain 
Wolf et al., 

2017 

gSA2AzGFF152B; 

UAS:mCherry 
GCs 

mCherry 
Demonstration of 

cerebellar cell 

populations in larval 

zebrafish brain 

Takeuchi et al., 

2015 

hspGFFDMC90A; 

UAS:mCherry 

hspzGFFgDMC156A; 

UAS:mCherry 
ECs 

aldoca:gap43-mCherry PCs 

hspGFFDMC28C; 

UAS:GFP 

IO cells, 

CFs 
GFP 

Table 1. Zebrafish strains used in this thesis 
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2.1.3 Targeted pharmaco-genetic ablation of PCs 

(contribution of Andreas Kist) 

The core of this thesis is testing adaptive behaviors in animals with impaired cerebellar 

function. To this end, I employed Ntr/MTZ pharmaco-genetic approach that has been 

successfully used in zebrafish (Curado et al., 2007; Pisharath et al., 2007; Tabor et al., 2014). 

This method is based on expressing an enzyme nitroreductase (Ntr) in a cell population-to-

be-ablated and treating the animals with prodrug Metronidazole (MTZ). Ntr converts MTZ 

into a cytotoxic DNA cross-linking agent leading to death of cells that express Ntr. My fellow 

PhD student Andreas Kist generated a transgenic line that expressed enhanced Ntr (epNtr) 

(Tabor et al., 2014) under the PC-specific carbonic anhydrase 8 (ca8) enhancer element 

(Matsui et al., 2014). Andreas cloned epNtr fused to tagRFP (similar to Tabor et al., 2014) 

downstream to the ca8 and a basal promoter. He then injected this construct, abbreviated as 

PC:epNtr-tagRFP, into single-cell stage wild-type TL embryos heterozygous for nacre 

mutation, at a final concentration of 20 ng/µl together with 25 ng/µl tol2 mRNA. Larvae 

showing strong expression of tagRFP in PCs were raised to adulthood as founders and 

outcrossed to gain a stable line. 

To identify ablation-induced changes in adaptive behavior, I used the progeny of a 

single founder. The embryos obtained from PC:epNtr-tagRFP+/- strain outcrossed to a TL 

fish were screened for red fluorescence in the cerebellum at 5 dpf, and 10 positive (PC:epNtr-

tagRFP+/-) and 10 negative (PC:epNtr-tagRFP-/-) larvae were kept in the same Petri dish to 

ensure subsequent independent sampling. At 18:00, most of the water in the dish was 

replaced with 10 mM MTZ solution in zebrafish facility water, and larvae were incubated in 

this solution overnight in darkness for 15 hours. The next morning at 9:00, animals were 

allowed to recover in fresh fish water. The next day, adaptive behavior of 7 dpf MTZ-treated 

larvae was tested under respective behavioral protocol (Materials and methods section 2.3.1). 

After the experiment, the larvae were screened for red fluorescence once again to reassess 
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their genotype after mixing positive and negative larvae in one Petri dish. PC:epNtr-tagRFP-

/- and PC:epNtr-tagRFP+/- siblings constituted treatment control and PC ablation groups, 

respectively. 

The quality of PC ablation was evaluated by imaging progeny of PC:epNtr-tagRFP fish 

outcrossed to Fyn-tagRFP:PC:NLS-GCaMP6s fish under a confocal microscope (Carl Zeiss, 

Germany). 

2.2 Closed-loop experimental assay in head-restrained preparations 

Both behavioral and functional imaging experiments were conducted using closed-loop 

virtual reality assay in head-restrained preparations of 6-7 dpf zebrafish larvae, similar to 

Portugues and Engert (2011) (see also Introduction section 1.3.2). For behavioral 

experiments, each larva was embedded in 1.5 % low melting point agarose (Invitrogen, 

Thermo Fisher Scientific, USA) in a 35 mm Petri dish. For functional imaging experiments, 

larvae were embedded in 2.5 % agarose in custom-built plastic chambers, with glass 

coverslips sealed with grease on the front and right sides of the chamber, at the entry points 

of the frontal and lateral laser excitation beams, and the agarose around the head was removed 

with a scalpel to avoid scattering of the beams (see Materials and methods section 2.5.1 for 

details about functional imaging setup). After allowing the agarose to set, the dish/chamber 

was filled with zebrafish facility water and the agarose around the tail was removed to enable 

unrestrained tail movements that were subsequently used as a behavioral readout.  

A dish/chamber with an embedded larva was then placed onto the screen of the custom-

built behavioral or functional imaging rig (Figure 2.1a). In the behavioral rig, the screen with 

the dish was illuminated from below by an infrared (IR) light-emitting diode (LED) (not 

shown in Figure 2.1a). A square black-and-white grating with a spatial period of 10 mm was 

projected onto the screen by a commercial Digital Light Processing projector (ASUS, 

Taiwan). Larvae were imaged through a macro objective (Navitar, USA) and an IR-pass filter 
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with an IR-sensitive camera (Pike, Allied Vision Technology, Germany, or XIMEA, 

Germany) at 200 frames per second. The functional imaging rig was built in a similar way, 

with the two differences: 

1. IR LED illuminating the chamber was directed from above and the image was 

reflected on a hot mirror to reach a camera (XIMEA, Germany). 

2. the projector used to provide visual stimulation (Optoma, USA) was mounted with 

a red-pass filter to avoid bleed-through in the light collection optics. 

Stimulus presentation and tail tracking were controlled by the open-source, integrated 

system for stimulation, tracking and closed-loop behavioral experiments (Stytra) (Štih et al., 

2019). One trial consisted of a 15-second presentation of the grating moving in a caudal to 

rostral direction at 10 mm/s, preceded and followed by 7.5-second periods of the static 

grating (Figure 2.1c, top magenta trace). Before starting an experiment, two anchor points 

enclosing the tail were manually selected. The tail between the anchor points was divided 

into 8 equal segments, and the angle of each segment was automatically detected by Stytra 

in real time. The cumulative sum of the tail segment angles constituted the final tail trace 

(Figure 2.1c, top green trace). Sliding standard deviation of the tail trace with a time window 

of 50 ms was computed in real time, and the resulting parameter will be referred to as vigor. 

Vigor is close to zero when larvae do not move their tail and increase when they do, and can 

be therefore used to estimate the forward velocity that larvae would have reached if they were 

not head-restrained (Figure 2.1c, bottom green trace). To this end, the vigor trace was 

multiplied by a factor that was optimized so that that the median estimated speed during a 

typical bout was 20 mm/s, that corresponds to a freely swimming situation. The estimated 

velocity was subtracted from the initial grating speed to provide visual reafference to the 

behaving larvae (Figure 2.1c, bottom magenta trace). As a result, animals could experience 

the effects of their own swimming. The initial and actual grating speeds, tail trace, vigor and 
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reafference condition (see below) at each time point constituted the raw data saved after an 

experiment (Figure 2.1c). 

 

Figure 2.1. Closed-loop experimental assay and an example trial 

a. Experimental setup. A head-restrained larva is presented with a moving grating by a 

projector. Direction of the grating motion is indicated by the magenta arrows. Resulting 

tail movements (indicated by the green arrow) are imaged by a high-speed camera and 

fed back to the stimulus, thus closing the loop. Zebrafish, stimulus and the setup are 

shown not to scale for illustration purposes. b. Closed-loop experimental approach. 

When a larva moves its tail, the grating speed changes, providing visual reafference to 

the behaving larva. Scale bar denotes 1 mm. The gratings below the fish are shown not 

to scale for illustration purposes. Images of a zebrafish larva were obtained through the 

behavioral camera shown in a. c. Raw data traces from one example trial. Figure 

adapted from Markov et al. (submitted). 
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Importantly, in such closed-loop assay, experimenters have control over the rules that 

determine how estimated fish velocity translates to changes in visual reafference. In Figure 

2.1c, the rules were set so that visual reafference mimics what a freely swimming larva 

usually experiences. Changing these rules enables to study how visual reafference affects 

behavior. During experiments, I used perturbations in visual reafference that fall into three 

distinct conditions designed to test different features (Figure 2.2): 

1. The first reafference condition, that has been previously used in the literature 

(Ahrens et al., 2012; Portugues and Engert, 2011), will be referred to as gain change. 

It corresponds to changing the gain of the experimental closed loop, such that larvae 

receive more or less sensory feedback when they swim (Figure 2.2a). The gain 

values used in this study included 0, 0.33, 0.66, 1, 1.33, 1.66, and 2. Note that a gain 

of 0 corresponds to open loop and a gain of 1 to freely swimming conditions that 

will be referred to as normal reafference. 

2. The second condition was called lag, and this corresponds to introducing an artificial 

temporal delay between the behavior of the larva and the reafference it experiences 

(Figure 2.2b). In the shunted lag version of this condition, the reafference was 

automatically set to zero when the larvae stop swimming. The lag values used in 

this study included 0, 75, 150, 225, 300 ms, and infinite lag (i.e. reafference never 

arrives after the bout onset, that is equivalent to the open loop condition). The lag 

conditions test how the temporal relationship between the behavior and resulting 

reafference affects the former. 

3. The final reafference condition was originally developed by my fellow PhD student 

Andreas Kist and was termed gain drop. It corresponds to dividing the first 300 ms 

of a bout into four 75 ms segments and setting the gain during one or more of these 

segments to 0 (Figure 2.2c). For example, the gain drop profile 1100 means that the 

gain during segments 3 and 4 (i.e. from 150 ms to 300 ms after the bout onset) was 
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set to 0, and during the rest of the bout it was set to 1. Gain drop profiles used in this 

study included 1111, 0111, 0011, 0001, 0000, 1110, 1100, and 1000. The gain drop 

condition tests whether reafference changes lead to same behavioral adaptations 

regardless of when they occur within the bout. 

No combinations of reafference conditions were used, e.g. if the gain was set to 0.33, 

the lag was automatically set to zero, or if the lag was set to 225 ms, the gain was set to 1, 

and in both cases the gain drop profile was set to 1111.  

Note that reafference conditions listed above and presented in Figure 2.2 are redundant. 

For example, the gain drop profile 0011 is exactly the same as 150 ms shunted lag, or gain 0 

is exactly the same is infinite lag. Reafference conditions are presented here in a redundant 

way to highlight that infinite lag makes a logical sense at the end of the list of lag conditions, 

and gain 0 makes a logical sense in the beginning of the gain list. The exact list of reafference 

conditions (18 conditions in total) is the following: 

1. normal reafference (gain 1, 0 ms lag, and gain drop 1111) 

2. open loop (gain 0 or infinite lag) 

3. gains: 0.33, 0.66, 1.33, 1.66, 2 (0 ms lag, and gain drop 1111) 

4. lags and shunted lags: 75 ms, 150 ms, 225 ms, 300 ms (gain 1) 

5. gain drops: 1110, 1100, 1000 (0 ms lag) 
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Figure 2.2. Reafference conditions used in this thesis 

Example trials illustrating all reafference conditions used in this study. These trials 

were artificially composed for illustration purposes. Green and magenta denote tail 

traces grating speed, respectively. Dotted dashed lines denote bout onsets and offsets, 

respectively. a. Gains of the closed loop. b. Lags of the reafference; i – normal lag, ii 

– shunted lag. Note the difference between the normal and the shunted lag settings: in 

both cases there is insufficient reafference in the beginning of the bout (indicated by 

black arrowheads), whereas only in the non-shunted setting there is excessive 

reafference after the bout offset (indicated by gray arrowhead). c. Gain drop profiles. 
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2.3 Behavioral experiments 

2.3.1 Experimental protocols 

The first aim of this study was to investigate how larval zebrafish acutely adapt their 

behavior to different reafference condition. Acute adaptation experimental protocol consisted 

of 240 trials that were divided into 4 phases (see definition of a trial in Materials and methods 

section 2.2): 

1. Calibration phase (trials 1:10). During this phase, the vigor multiplication factor 

(Material and methods section 2.2) was automatically calibrated so that the median 

estimated speed during an average swimming bout was 20 mm/s. Reafference 

condition during this phase was set to normal. The calibration was implemented to 

minimize across-subject variability in the virtual speed that could potentially result 

from uncontrolled differences in manipulations during embedding larvae in agarose 

and in placement of the Petri dishes into the rigs. In addition, during this phase, 

larvae could get used to the experimental environment and bring their swimming 

behavior to a stable level. 

2. Pre-adaptation phase (trials 11:20). During this phase, reafference condition was set 

to normal. 

3. Adaptation phase (trials 21:230). During this phase, reafference condition for each 

bout was randomly selected from the list of 18 possible reafference conditions 

(Materials and methods section 2.2 and Figure 2.2). 

4. Post-adaptation phase (trials 231:240). During this phase, reafference condition was 

the same as during the pre-adaptation phase. 

Another aim was to investigate long-term motor adaptation, when the same reafference 

condition is presented consistently over a long period of time. Long-term adaptation 

experimental protocol had a general structure similar to the acute adaptation experiments 
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with the only difference that all reafference conditions during the adaptation phase were 

either normal (normal-reafference control animals), or 225 ms lag (lag-trained animals). 

Python code of behavioral experiment protocols is available at our GitHub repository: 

https://github.com/portugueslab/Markov-et-al-2019, 

2.3.2 Behavioral data analysis 

Analysis of the behavioral data was performed in MATLAB (MathWorks, USA).  

Tail trace was z-scored and interpolated together with the grating speed trace to a new 

time array with sampling period of 5 ms. For each swimming bout automatically detected by 

Stytra during the experiment, individual tail flicks were detected. One tail flick was defined 

as a section of the tail trace between two adjacent local extrema with the magnitude greater 

than 0.14 and the duration not greater than 100 ms (these thresholds were manually adjusted 

to ensure accurate bout detection). The automatically detected onsets and offsets of the bouts 

were then corrected to match the beginning of the first flick and the end of the last flick, 

respectively. 

For further analysis, I only considered bouts that occurred while the grating was 

moving (i.e. spontaneous bouts were excluded). For each bout, I computed its duration and 

duration of the subsequent interbout. If a bout was the last in a trial, its interbout duration 

was replaced with a NaN value. All bouts that were shorter than 100 ms, or had a subsequent 

or preceding interbout duration shorter than 100 ms were also excluded from the analysis. 

If the number of remaining bouts performed by a given larva was less than 540, this 

animal was excluded from the analysis. Additionally, if there was at least one block of 10 

trials with zero bouts, the animal was also excluded. The final numbers of animals included 

in the analysis are presented in Table 2. 

 

 

https://github.com/portugueslab/Markov-et-al-2019
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Experiment Experimental group Genotype Treatment N 

Acute adaptation 

Wild-type control TL - 100 

Treatment control PC:epNtr-tagRFP-/- MTZ 28 

PC ablation PC:epNtr-tagRFP+/- MTZ 39 

Long-term 

adaptation (normal 

reafference) 

Wild-type control TL - 103 

Treatment control PC:epNtr-tagRFP-/- MTZ 85 

PC ablation PC:epNtr-tagRFP+/- MTZ 83 

Long-term 

adaptation (225 ms 

lag) 

Wild-type control TL - 100 

Treatment control PC:epNtr-tagRFP-/- MTZ 85 

PC ablation PC:epNtr-tagRFP+/- MTZ 90 

Table 2. Numbers of animals tested in the behavioral experiments 

To analyze the temporal dynamics of the tail beat amplitude within individual bouts, I 

selected, for each bout, a 1.1-second long section of the tail trace, starting from 100 ms before 

the bout onset. The values of the tail trace within the section after the bout offset were 

replaced with NaN values to exclude the contamination by subsequent bouts that could occur 

during the section. The tail trace within the sections was then squared and termed the bout 

power. Based on the observed results (see Results section 3.1.4), the sections were divided 

into ballistic and reactive periods (from 0 to 220 ms after the bout onset and from 220 ms 

onward, respectively) and the areas below the bout power curves within these two periods 

were computed. 

All behavioral results in this study are presented as mean values ± standard error of 

mean (SEM) across animals, unless otherwise specified. To present the results of acute 

adaptation experiments, I computed mean bout and interbout duration, as well as the bout 

power profile and areas below the bout power curve during ballistic and reactive periods, for 

each reafference condition for each subject. To present the results of long-term adaptation 



Materials and methods 

38 

 

experiments, I measured the aforementioned parameters only for the first bout in each trial 

assuming that the first bout should not depend on putative short-term sensory-motor memory 

accumulated during the trial and should therefore reflect long-term changes in circuitry 

involved in OMR better than the subsequent bouts. To quantify the long-term adaptation 

effects, I divided all trials of the protocol into blocks of 10 and computed the mean value of 

respective parameter for blocks that correspond to pre-adaptation phase, post-adaptation 

phase, and the last 10 trials of the adaptation phase.  

Since the samples were not expected to come from populations with normal 

distributions, the nonparametric Mann-Whitney U test was used to estimate statistical 

significance of the observed differences, with significance level of 5 %. 

2.4 Modelling a feedback controller of acute adaptation 

2.4.1 Designing the model 

To test whether acute OMR adaptation can be explained by a simple feedback control 

mechanism that does not involve computation of predicted sensory feedback (i.e. forward 

models), I developed a model that does not perform these computations (Figure 3.8a). The 

model was developed and tested in MATLAB (MathWorks, USA). The input of the model 

was the grating speed and the previous state of the model nodes, and the output was binary 

motor variable: swim or no swim. For simplicity, I did not model individual tail flicks as the 

model’s output and approximated the swimming behavior of the zebrafish larvae by a binary 

motor output, that equals 1 when the fish is swimming and 0 otherwise. This was possible 

due to discrete nature of zebrafish swimming behavior at larval stage. Since in this study I 

focused only on duration of bouts and interbouts, while ignoring other motor parameters such 

as tail beat amplitude and frequency, this simplification did not limit the ability to compare 
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the model behavior with behavior of the real larvae. To design the model, I used the results 

of the acute adaptation experiment as a starting point (Results section 3.1). Thus, since larval 

zebrafish react to changes in visual stimulus with a fixed delay of 220 ms, the input of the 

model at a given time point was the grating speed 220 ms before that point. Since acute 

adaptation to different gains suggested that larval zebrafish are able to detect the direction of 

the grating motion and the adaptation depended on this direction, the first step of the model 

was splitting the input signal into positive and negative components by rectification. 

Rectification was performed by two respective model nodes: forward and reverse motion 

sensors (FMS and RMS, respectively). I then proceeded from the fact that when a larval 

zebrafish is presented with a forward moving grating, it performs a swimming bout only after 

a certain latency period, suggesting that it integrates sensory evidence in time until the level 

of integration reaches a motor command threshold. I therefore introduced a leaky sensory 

integrator (SI) that integrates inputs from the motion sensors. Since the results of the acute 

adaptation experiment suggested that forward motion of the stimulus is associated with 

increased swimming, and reverse motion with decreased swimming, the input from the FMS 

to the SI was excitatory, and from the RMS – inhibitory. The SI excited the motor output 

generator (MOG), and when activity of the latter exceeded a threshold, the motor command 

was generated and the output of the model was set to 1. To ensure that the swimming bouts 

of the model do not last forever, I added a leaky motor integrator (MI) that integrates the 

motor output and inhibits the MOG. Thus, by introducing the MI, I reproduced a self-evident 

fact that the longer a bout has been, the sooner it will stop. Finally, to ensure that the bouts 

are never infinitely short, I added a feed-forward loop to the motor output, so that it can excite 

itself. Therefore, if after a bout onset, activity of the SI and the MOG dropped below the 

motor output command threshold (due to a very high gain of the closed loop, for example), 

the bout would nonetheless continue for some time. Input and output of the model, as well 

as activity of its nodes in one example trial are presented in Figure 3.8. The mathematical 
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equations defining behavior of the model are listed below, and the MATLAB code of the 

model is available in Appendix 5.3. 

● 𝐹𝑀𝑆(𝑡) = [𝐼𝑛(𝑡 − 220 𝑚𝑠)]+ 

● 𝑅𝑀𝑆(𝑡) = −[𝐼𝑛(𝑡 − 220 𝑚𝑠)]− 

● 𝜏𝑠 ∗
𝑑𝑆𝐼(𝑡)

𝑑𝑡
 = 𝜔𝑓 ∗ 𝐹𝑀𝑆(𝑡) − 𝜔𝑟 ∗ 𝑅𝑀𝑆(𝑡) − 𝑆𝐼(𝑡 − 1) 

● 𝑆𝐼(𝑡) = 𝑚𝑖𝑛([𝑆𝐼(𝑡)]+, 1) 

● 𝑀𝑂𝐺(𝑡) = 𝑆𝐼(𝑡) − 𝜔𝑖 ∗ 𝑀𝐼(𝑡 − 1)  

● 𝑂𝑢𝑡(𝑡) = 1 𝑖𝑓 𝑀𝑂𝐺(𝑡) + 𝜔𝑠 ∗ 𝑂𝑢𝑡(𝑡 − 1) > 𝑡ℎ𝑟 𝑎𝑛𝑑 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

● 𝜏𝑚 ∗
𝑑𝑀𝐼(𝑡)

𝑑𝑡
 = 𝜔𝑚 ∗ 𝑂𝑢𝑡(𝑡) − 𝑀𝐼(𝑡 − 1) 

● 𝑀𝐼(𝑡) = 𝑚𝑖𝑛(𝑀𝐼(𝑡), 1) 

𝑡 −  𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑖𝑚𝑒 𝑝𝑜𝑖𝑛𝑡, 𝑡 − 1 − 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑡𝑖𝑚𝑒 𝑝𝑜𝑖𝑛𝑡 

𝐼𝑛 − 𝑖𝑛𝑝𝑢𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙 (𝑔𝑟𝑎𝑡𝑖𝑛𝑔 𝑠𝑝𝑒𝑒𝑑, 𝑤ℎ𝑒𝑟𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑 𝑡𝑜 

𝑚𝑜𝑡𝑖𝑜𝑛 𝑖𝑛 𝑎 𝑐𝑎𝑢𝑑𝑎𝑙 𝑡𝑜 𝑟𝑜𝑠𝑡𝑟𝑎𝑙 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛) 

𝑂𝑢𝑡 −  𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙 (𝑏𝑖𝑛𝑎𝑟𝑦 𝑠𝑤𝑖𝑚𝑚𝑖𝑛𝑔 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒) 

[𝑥]+ = 𝑚𝑎𝑥(𝑥, 0) − 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑒𝑐𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑥 

[𝑥]− = 𝑚𝑖𝑛(𝑥, 0) − 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑟𝑒𝑐𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑥 

𝑚𝑖𝑛(𝑥, 1) − 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑥 𝑎𝑡 1 

𝜔𝑓  −  𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑖𝑛𝑝𝑢𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑛𝑠𝑜𝑟𝑦 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑜𝑟 

𝜔𝑟  −  𝑟𝑒𝑣𝑒𝑟𝑠𝑒 𝑖𝑛𝑝𝑢𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑛𝑠𝑜𝑟𝑦 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑜𝑟 

𝜏𝑠  −  𝑡𝑖𝑚𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑛𝑠𝑜𝑟𝑦 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑜𝑟 

𝜔𝑖  −  𝑜𝑢𝑡𝑝𝑢𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑜𝑡𝑜𝑟 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑜𝑟 

𝜔𝑠  −  𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑓𝑒𝑒𝑑𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑠𝑒𝑙𝑓 𝑒𝑠𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 𝑛𝑜𝑑𝑒 

𝑡ℎ𝑟 −  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑜𝑡𝑜𝑟 𝑜𝑢𝑡𝑝𝑢𝑡 𝑐𝑜𝑚𝑚𝑎𝑛𝑑 

𝜔𝑚  −  𝑖𝑛𝑝𝑢𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑜𝑡𝑜𝑟 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑜𝑟 

𝜏𝑚  −  𝑡𝑖𝑚𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑜𝑡𝑜𝑟 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑜𝑟 
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2.4.2 Fitting and testing the model 

To evaluate the ability of the model to acutely adapt to changes in reafference, I tested 

its performance in a shorter version of the acute adaptation experimental protocol (Materials 

and methods section 2.3.1). The protocol was shortened to reduce computation time required 

for fitting the model parameters to the real data. One trial consisted of 300 ms of static grating 

followed by 9.7 second of the grating moving in a caudal to rostral direction at 10 mm/s. The 

reafference condition of the first bout was always normal, and the reafference condition of 

the second bout was chosen from a list of 18 reafference conditions used in the acute 

adaptation experiment (Materials and methods section 2.2). If the model initiated a third bout 

within the allowed 10 seconds of the trial, the trial was terminated, and the duration of the 

second bout and subsequent interbout duration constituted the final output of the model in 

that trial. If the model did not perform the third bout, the final output of the model in that trial 

was replaced with NaN values. One experiment consisted of 18 trials probing behavior of the 

model under each reafference condition. 

The parameters of the model were fitted to each larva that participated in the acute 

adaptation experiment using a custom-written genetic algorithm. To obtain the training 

datasets, I generated 18 arrays of bout durations and 18 arrays of interbout durations for each 

larva, each array corresponding to one reafference condition. I then randomly selected 50 % 

from each array, and computed their mean values. I will refer to the remaining 50 % as test 

datasets. 

The fitting algorithm minimized the mean absolute error (absolute difference between 

the output array of the model and a training dataset, normalized by the training dataset). The 

fitting resulted in sets of the model parameters, each optimized to fit one larva. To present 

the results, I computed the mean values and SEM of the final output arrays of models across 

all sets of parameters, and of the test datasets across all larvae. 
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2.5 Functional imaging experiments 

(contribution of Luigi Petrucco) 

2.5.1 Light sheet microscope 

To test the main assumption of the proposed feedback control model of acute 

adaptation: the existence of the sensory integration in the larval zebrafish brain, I employed 

whole-brain calcium imaging using a custom-built light-sheet microscope (Figure 2.3a). In 

the microscope, a beam coming from a 473 nm laser source (modulated laser diodes, Cobolt, 

Sweden) was split with a dichroic mirror and conveyed to two orthogonal scanning arms. 

Each scanning arm consisted of a pair of galvanometric mirrors (Sigmann Electronik, 

Germany) that allowed vertical and horizontal scanning of the beam, a line diffuser (Edmund 

Optics, USA), a scan lens (Thorlabs, USA), a paper screen to protect the fish eyes, a tube 

lens (Thorlabs, USA), and a low numerical aperture objective (Olympus, Japan). The emitted 

light was collected through a water immersion objective (Olympus, Japan) mounted on a 

piezo (Piezosystem Jena, Germany), bandpass filtered (AHF Analysentechnik, Germany), 

and focused on the camera with a tube lens (Thorlabs, USA). Images were recorded using an 

Orca Flash v4.0 camera (Hamamatsu Photonics K.K., Japan) with Camera Link. 

The piezo, galvanometric mirrors, and camera triggering were controlled by a custom-

written Python program. The light sheet was created by horizontal scanning of the laser 

beams at 800 Hz. The light sheet and the collection objective were constantly oscillating 

along the vertical axis with a saw tooth profile of frequency 1.5 Hz and amplitude of 250 µm. 

At each oscillation, 35 frames were acquired at equally spaced intervals; with an exposure 

time of 5 ms. The resulting raw volumetric videos had a voxel size of 7 x 0.6 x 0.6 µm, and 

a time sampling frequency of 1.5 Hz. 
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Figure 2.3. Light sheet setup and imaged brain area 

a. Light-sheet microscope combined with a behavioral rig used in the functional 

imaging experiments (see details in the text of this section). The closed loop 

experimental assay is the same as in Figure 2.1. b. Dorsal and lateral view of 3D-

rendered intersecting brain area that was imaged in all animals (see Materials and 

methods section 2.5.3); ro – rostral direction, d – dorsal, l – left. Transparent surface 

depicts the outline of the 3D-rendered reference brain; the length of the scale arrows is 

100 µm. c. Selected anatomical regions that exhibited experiment-related activity, 

registered from the Z-Brain atlas (Randlett et al., 2015) to the reference brain: met – 

metencephalon, di – diencephalon, fb – forebrain (prosencephalon), mb – midbrain 

(mesencephalon), hb – hindbrain (rhombencephalon), Thal – thalamus, preT – 

pretectum, OT – optic tectum, DRN – dorsal raphe nucleus, IO – inferior olive. Panels 

a and b adapted from Markov et al. (submitted). 
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2.5.2 Experimental protocol 

Functional imaging experimental protocol was similar to acute adaptation protocol 

(Materials and methods section 2.3.1). It started with 2 minutes of no stimulation to record 

spontaneous activity, followed by a calibration phase (10 trials), a pre-adaptation phase (10 

trials) and an adaptation phase (40 trials) (see definition of a trial in Materials and methods 

section 2.2). In 2 out of 4 animals, the calibration phase was omitted because behavior under 

the light-sheet setup was less consistent than under the purely behavioral rigs, and calibration 

often failed due to low number of bouts performed during the calibration phase. For these 

larvae, the vigor multiplication factor (Materials and methods section 2.2) was set manually 

to the value obtained during successful calibration in a different larva. During the adaptation 

phase, reafference condition for each bout was randomly set to either normal or open loop. 

In addition, two 350-ms pulses of reverse grating motion (rostral to caudal direction) at 10 

mm/s were presented during each static grating period (5 and 10 s after the grating stopped 

moving). These pulses were added to disambiguate motor-related activity from responses to 

reverse grating motion that accompanies closed-loop bouts. Responses to these pulses were 

not analyzed in this thesis. 

Python code of the imaging experiment protocol is available at our GitHub repository: 

(https://github.com/portugueslab/Markov-et-al-2019). 

2.5.3 Functional imaging data analysis 

Behavioral data acquired during the imaging experiments was analyzed in the same 

way as for pure behavioral experiments (see Materials and methods section 2.3.2). This 

section only describes the analysis of the functional imaging data. 

The imaging data was preprocessed in Python, similar to Kist et al. (2017). The 

preprocessing steps included aligning and segmenting the data into regions of interest (ROIs, 

https://github.com/portugueslab/Markov-et-al-2019
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see below) and were performed by my fellow PhD student Luigi Petrucco. To align the data, 

he first computed an anatomical reference volume by averaging the first 1000 frames of each 

plane. For each volume in time, the translation with respect to the reference volume was 

computed by cross-correlation using the register_translation function from the scikit-image 

Python package. Before alignment, Luigi filtered the reference volume and volumes to be 

registered with a Sobel filter after a Gaussian blur (standard deviation 3.3) to emphasize 

image edges over absolute pixel intensity. Volumes for which the computed shift was larger 

than 15 pixels (generally due to large motion artefacts caused by vigorous tail movements of 

the embedded fish) were discarded and replaced with Nan values. For subsequent registration 

of the imaging data to the common reference brain, a new anatomy stack was computed for 

each animal by averaging the first 1000 frames of the aligned planes. 

To segment the imaged volume into ROIs, Luigi computed a "correlation map", where 

each pixel value equals the correlation between the fluorescence trace of that pixel and the 

average trace of the 8 adjacent pixels on the same plane. Then, based on the correlation map, 

individual ROIs were segmented for each plane with an iterative procedure. Each ROI was 

grown starting from the pixel with the highest intensity in the correlation map among the 

ones still unassigned to ROIs, with a minimum correlation of 0.3 (seed). Adjacent pixels were 

then gradually added to the growing ROI if eligible for inclusion. To be included, adjacent 

pixels correlation with the average fluorescence of the ROI grown until that point had to be 

above a set threshold. The threshold for inclusion was 0.3 for the first iteration and then it 

increased linearly as a function of the pixel distance to the seed, up to a value of 0.35 at 3-

µm distance. Additional criteria for minimal and maximal ROI area (9-28 µm2) ensured that 

the ROIs matched approximately the size of neuron somata. After segmentation, the 

fluorescence trace of each ROI was extracted by summing fluorescence of all pixels that were 

assigned to that ROI during segmentation. 
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I performed all subsequent analysis steps in MATLAB (MathWorks, USA). To denoise 

the trace, I applied a low-pass Butterworth filter with a cutoff frequency of 0.56 Hz, that 

corresponds to the 1.8 s half-decay time of the calcium indicator GCaMP6s used in the 

experiments (Chen et al., 2013), as fluorescence oscillations at frequency higher than 0.56 

Hz were unlikely to result from biological events. To correct for potential slow baseline drift, 

I computed the trace’s baseline by applying another low-pass Butterworth filter with a cutoff 

frequency of 3.3 mHz, and subtracted the baseline from the trace. The trace was then z-scored 

for subsequent analysis. 

The subsequent analysis strategy was aimed to identify SIs within the larval zebrafish 

brain and included two main steps. 

The first step was aimed to identify ROIs that responded to the forward moving grating. 

Since this stimulus reliably triggers swimming behavior, it was important to disambiguate 

ROIs with sensory responses from ROIs with motor-related activity. To this end, I computed 

the average grating- or bout-triggered fluorescence for each trace. To do this, I selected five 

second-long sections of the trace, starting from one second before the respective trigger. To 

avoid contamination of triggered averages by activity triggered by other events, I only 

considered triggers that did not have any other triggers up to one second before, and if another 

trigger occurred within the section, all fluorescence values after this other trigger were 

replaced with NaN values. In addition, I subtracted the baseline (fluorescence before the 

trigger within the section) from each triggered activity trace. I then computed the average 

traces and SEM across corresponding sections for each trace. To identify ROIs with sensory- 

and motor-related activity, I computed the mean values of average fluorescence triggered by 

grating onsets within the time window from 0 to 4 s with respect to the grating onset, and of 

average activity triggered by bout onsets within the time window from 0 to 2 s with respect 

to the bout onsets. These values were referred to as sensory and motor scores, respectively. 

If the sensory score of an ROI was greater than 0.4, this ROI was termed sensory, and if the 
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sensory score was less than 0.1 and the motor score was greater than 0.2, the ROI was termed 

motor. 

The second step was aimed to identify sensory ROIs that integrate sensory information 

in time. To this end, I fitted a leaky integrator model to average grating-triggered 

fluorescence of sensory ROIs by iterating over a range of time constants from zero to five 

seconds, with 100 ms steps, and identifying the time constant resulting in the highest 

correlation between the model and the triggered average trace. During the fitting procedure, 

the leaky integrator trace was additionally convolved with a GCaMP6s kernel, modeled as 

an exponential function with half-decay time of 1.8 s (Chen et al., 2013). Sensory ROIs for 

which the time constant was zero were termed sensors, whereas ROIs with time constants 

greater than zero were termed integrators. 

To compare the location of ROIs assigned to the aforementioned functional groups 

between animals and to present the ROIs within the context of gross larval zebrafish 

neuroanatomy, I registered the imaging data to a common reference brain using the free 

Computational Morphometry Toolkit (Rohlfing and Maurer, 2003). To this end, affine 

volume transformations were computed to align the anatomical stacks from each larva to the 

reference brain. Aligned anatomical stacks were visually inspected, and if the registration 

failed, the larva was excluded from the analysis. This resulted in final N = 4 larvae. Computed 

transformations were applied to each ROI to identify its location in the reference space. In 

addition, the aligned anatomical stacks were used to identify the intersecting area that was 

imaged in all four animals (Figure 2.3b). ROIs outside this area were excluded from the 

analysis. To present the results, I summed registered ROI maps across fish, generated a 3D 

surface of the reference brain and rendered the ROI maps using 3D Viewer plugin for FIJI 

(Schindelin et al., 2012). Finally, to identify the anatomical regions with experiment-related 

activity, I registered the regions annotated in the Z-Brain atlas (Randlett et al., 2015) to our 

reference brain. Location of the selected anatomical regions is presented in Figure 2.3c.  
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3. Results 

3.1 Acute OMR adaptation to changes in visual reafference 

The first aim of this study was to characterize acute adaptation of the OMR to changes 

in visual reafference. By acute, I refer to changes in a bout in response to a perturbation in 

reafference during that same bout. To this end, I used a closed-loop experimental assay 

shown in Figure 2.1 (Materials and methods sections 2.2 and 2.3.1). Briefly, in this setting, 

a head-restrained larva performs swimming bouts in response to a forward moving grating. 

This behavior is captured by a high-speed camera and fed back to the stimulus so that the 

larva can experience the effects of its own swimming (i.e. receive visual reafference). The 

way in which the animal’s behavior translates to changes in the visual stimulus is under 

experimental control. Reafference conditions used in this experiment included different gain 

changes, shunted and non-shunted lags of the reafference, and different gain drops (Materials 

and methods section 2.2). The order of reafference conditions was randomized in a bout-by-

bout basis. In this section, I present mean bout duration, as well as duration of the following 

interbout, as a function of reafference condition during that bout. 

3.1.1 Acute adaptation to gain of the closed loop 

Changing the gain of the closed loop enables us to manipulate the virtual velocity with 

which a head-restrained larva progresses forward during a swimming bout (Figure 2.2a). 

Analysis of the mean bout duration as a function of this gain confirmed a previous report 

(Portugues and Engert, 2011) that lowering the gain leads to longer bouts (Figure 3.1a). This 

was particularly noticeable for the very low gains 0 and 0.33. It is interesting to note that for 

gains below 0.5, the larva’s swimming did not reverse the direction of the forward moving 
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grating (compare bout # 2 with bout # 3 in Figure 2.2a). Lowering the gain is equivalent to 

making the fish slower than normal (with respect to its visual environment), whereas 

lowering the gain to less than 0.5 makes the fish too slow to be able to progress forward at 

all. These two scenarios might have different ethological meanings for the fish, and this can 

underlie the more noticeable increase in bout duration for particularly low gains. However, 

further experiments are required to elucidate whether this fact underlies the observed trend. 

 

Figure 3.1. Acute OMR adaptation to gain of the closed loop 

Mean bout duration (a) and interbout duration (b) as a function of gain of the closed 

loop. Black circles denote the mean values across subjects, error bars denote SEM, N 

= 100 larvae. Figure adapted from Markov et al. (submitted). 

Regarding mean interbout duration, decreasing the gain from 2 to 0.66 results in shorter 

interbouts (Figure 3.1b). However, further decreases reverse this tendency to the extent that 

in the current experimental paradigm, interbouts at gain 0 were even longer than those at gain 

1, in contrast with results obtained by Portugues and Engert (2011). This can be explained 

not only by the fact that gains 0.33 and 0 are too low for the larva to be able to progress 



Results 

50 

 

forward, but also by the fact that bout duration at these gains was particularly high, and 

animals might have needed more interbout time to rest after these long bouts. 

In summary, decreasing the virtual forward velocity of the animals (i.e. experimental 

gain of the closed loop) resulted in increased motor activity expressed as longer bouts and 

shorter interbouts. Furthermore, if the velocity becomes too low making it impossible for the 

animals to reverse the direction of the grating and progress forward, bouts become 

particularly long. This suggests that larval zebrafish are able to detect and acutely adapt their 

ongoing optomotor behavior to both amount of reafference that they receive and the direction 

of the stimulus motion during swimming. 

3.1.2 Acute adaptation to lag of the reafference 

In contrast to changing the gain of the closed loop, which enabled us to investigate how 

the amount of visual reafference affects behavior, lagging the reafference with respect to the 

bout onset keeps its amount unaltered while changing only the temporal relationship between 

the behavior and its visual feedback (Figure 2.2b). Lagging the reafference resulted in 

increased mean bout duration (Figure 3.2a). Interestingly, the increase in bout duration was 

close to linear as a function of the lag and, as expected, it did not show a significant difference 

between the lag and shunted lag cases, as these two conditions only differed in whether the 

speed of the forward moving grating returned to baseline upon termination of the swimming 

bout (shunted lag) or not (lag). 

In contrast, mean interbout duration increased with longer lag only in the non-shunted 

setting, whereas if the reafference was shunted, increase of the mean interbout duration was 

not observed (Figure 3.2b). This demonstrates that the duration of a bout and a subsequent 

interbout can be influenced by the reafference independently. Namely, insufficient 

reafference in the beginning of the bout, something that is present in both non-shunted and 

shunted lag settings (black arrows in Figure 2.2b), results in increase of bout duration, 
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whereas excessive reafference after the end of a bout, something that is only present in a non-

shunted setting (gray arrow in Figure 2.2b), lengthens the subsequent interbouts. 

 

Figure 3.2. Acute OMR adaptation to lag of the reafference 

Mean bout duration (a) and interbout duration (b) as a function of lag of the reafference. 

Black circles or squares denote the mean values across animals, error bars denote SEM, 

N = 100 larvae. Figure adapted from Markov et al. (submitted). 

In summary, these results demonstrate that not only the amount of the reafference 

affects ongoing behavior (Results section 3.1.1), but also the temporal relationship between 

the behavior and its visual feedback. Furthermore, these results demonstrate that the 

reafference can influence duration of a bout and a subsequent interbout independently: 

insufficient reafference during the bout makes it longer, and excessive reafference after the 

bout prolongs the subsequent interbout. 
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3.1.3 Acute adaptation to gain drop 

To investigate how temporal relationship between the behavior and its visual feedback 

affects the former in greater detail, I zeroed the gain of the closed loop not during the whole 

bout, but only during fixed periods of the bout. I refer to this type of reafference perturbation 

as gain drop (Figure 2.2c; Materials and methods section 2.2). The generally observed 

association of increased bout duration and decreased interbout duration with insufficient 

reafference during the bout (be it a decreased gain of the closed loop or an increased lag of 

the reafference) was confirmed and expanded by the analysis of bouts and interbouts as a 

function of gain drop profile (Figure 3.3). The mean bout duration was prolonged 

differentially depending on what bout segment had a perturbed reafference. Overall, a 

segment with a gain of 0 had a larger effect on increasing bout duration the earlier it occurs 

within the bout: compare for example the cases for gain drop profiles 0111 and 1110 (gray 

arrowheads in Figure 3.3a). In contrast, interbouts were affected more when the gain was 

dropped in segments closer to the end of the bout. Taken together, these results demonstrate 

that the acute effects of the reafference on ongoing behavior dynamically change during the 

course of the bout. Thus, reafference closer to the beginning of the bout has more influence 

over duration of that bout and less influence over the subsequent interbout duration than 

reafference closer to the end of the bout. 
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Figure 3.3. Acute OMR adaptation to gain drop 

Mean bout duration (a) and interbout duration (b) as a function of gain drop setting. 

Gray arrowheads indicate two cases, when the reafference was perturbed for the same 

duration, but at different time points with respect to the bout onset. Black circles denote 

the mean values across animals, error bars denote SEM, N = 100 larvae. Figure adapted 

from Markov et al. (submitted). 

3.1.4 Reaction time delay during acute adaptation 

To identify more subtle effects of reafference on ongoing behavior, I focused on the 

temporal dynamics of the tail beat amplitude within individual bouts in the form of bout 

power (Materials and methods section 2.3.2). Comparing the mean bout power profiles across 

different reafference conditions has revealed that if the reafference was different from that of 

gain 1 from the very beginning of a bout (as in gain change, lag and shunted lag conditions), 

the mean bout power profile started to deviate only 220 ms after the bout onset (Figure 3.4a-

c). However, if the change in the reafference was introduced after the bout had already started 

(as in the gain drop condition with profiles 1000, 1100), the deviation in the respective mean 
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bout power was observed only around 220 ms after the start of the perturbation in reafference 

(see blue traces in Figure 3.4d). This analysis reveals that larval zebrafish react to changes in 

visual reafference with a 220 ms delay. 

 

Figure 3.4. Ballistic and reactive periods of swimming bouts 

Mean bout power profile as a function of gain of the closed loop (a), lag of the 

reafference (b), shunted lag of the reafference (c), and gain drop setting (d). Dotted 

lines denote bout onsets, dashed lines separate ballistic and reactive periods from each 

other. Each line represents the mean bout power profile across animals. Note that bout 

power during the ballistic period did not depend on the reafference condition. Figure 

adapted from Markov et al. (submitted). 
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This reaction delay suggests that the bouts can be divided into two well-defined 

periods: an initial stereotyped ballistic period lasting 220 ms and a subsequent reactive 

period. A change in reafference condition (regardless of whether this change occurred during 

the ballistic or the reactive period), can only affect the bout power during the reactive period 

(Figure 3.5). 

 

Figure 3.5. Acute adaptation of ballistic and reactive bout power 

Area below the bout power curve during the ballistic (a) and reactive (b) periods of the 

swimming bouts as a function a reafference condition. Note that the bout power during 

the reactive, but not ballistic, period depended on the reafference. Black circles and 

squares denote the mean values across animals, error bars denote SEM, N = 100 larvae. 

Figure adapted from Markov et al. (submitted). 
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3.1.5 Summary 

These results demonstrate that larval zebrafish can change their optomotor behavior 

within a bout depending not only on the absolute amount of reafference that they receive, but 

also on the temporal relationship between their swimming and its accompanying reafference. 

In general, the less reafference the larva received during the bout, the more motor output it 

produced. Analysis of bout power revealed that it takes zebrafish larvae 220 ms to implement 

any behavioral change, which must encompass delays in sensory processing and 

implementation of behavioral modifications. This delay suggests that acute OMR adaptation 

may result from a feedback control mechanism, since feedback controllers are accompanied 

by sensory processing delays. In addition, this observation allows us to define an initial 

ballistic period of the bout, which is stereotyped across reafference conditions and can 

therefore be used as a readout of the state of the controller that performs sensory-motor 

transformation, i.e. determines how forward motion of the grating is transformed into OMR. 

3.2 Involvement of PCs in acute OMR adaptation 

Many forms of motor adaptation and learning has been shown in both zebrafish 

(Ahrens et al., 2012; Aizenberg and Schuman, 2011; Harmon et al., 2017) and other 

vertebrates (de Zeeuw et al., 1998; Ito, 1982; Raymond et al., 1996) to involve cerebellar 

circuitry. I therefore aimed to test the involvement of the cerebellum in the acute adaptation 

of the OMR. To this end, I used a transgenic line PC:epNtr-tagRFP (contribution of Andreas 

Kist) that expresses Ntr specifically in all PCs (Materials and methods section 2.1.3). 

Treatment of PC:epNtr-tagRFP+ fish with MTZ resulted in ablation of PCs one day 

after treatment. I observed swelling and destruction of the PC nuclei and aggregation of the 

cell membranes into puncta with complete loss of the characteristic filiform structure (Figure 

3.6). 
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Figure 3.6. Targeted pharmaco-genetic ablation of PCs 

a. PC nuclei-localized GCaMP6s signal before and after PC ablation. Small inset is 

taken from Figure 1.4b to show the location of the cerebellum within the larval 

zebrafish brain. b. Membrane-tagged RFP signal before and after PC ablation. In both 

panels, each image is a maximum z-projection of 20 confocal optical slices from an 

example larva, each 1 µm thick. Scale bar denotes 100 µm. 
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I tested these PC-ablated larvae in the acute adaptation paradigm (Materials and 

methods sections 2.2, 2.3.1). After PC ablation, zebrafish larvae were still able to perform 

OMR, indicating that PCs are not crucial for detection of the forward moving grating and for 

the behavioral reaction to this stimulus. This is consistent with the fact that destruction of the 

cerebellum in other animals does not produce paralysis or sensory deficits, indicating that it 

is not a primary way station of sensory-motor transformation during motor control (Llinás et 

al., 2004). Interestingly, PC-ablated larvae displayed increased motor activity: a longer mean 

bout duration than both treatment controls and wildtypes in every single condition and shorter 

interbouts than those of the treatment control animals (Figure 3.7). This is consistent with the 

idea that the GABAergic nature of the PCs may provide a tonic inhibitory effect on premotor 

areas in the brain. In addition, increased motor activity following ablation of the PCs 

confirms the effectiveness of the ablation protocol. 

Surprisingly, ablation of the PCs did not result in any impairment of the larvae’s ability 

to adapt their behavior acutely to changes in visual reafference: all aspects of acute adaptation 

were also present in PC-ablated animals (Figure 3.7). This result demonstrates that acute 

adaptation of OMR, described in the Results section 3.1, is not PC-dependent. 
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Figure 3.7. Acute OMR adaptation after PC ablation 

Mean bout duration (top) and mean interbout duration (bottom) as a function of 

reafference condition in wild-type control animals (gray, N = 100 larvae, data repeated 

from Figure 3.1 – Figure 3.3), treatment control animals (black, N = 28 larvae) and PC-

ablated animals (orange, N = 39 larvae).  Circles denote the mean values across 

animals, error bars denote SEM. Note that mean bout duration was longer and interbout 

duration was shorter in PC-ablated animals compared to the treatment control group, 

and that PC-ablated animals can acutely adapt their behavior to changes in reafference 

despite the ablation. Figure adapted from Markov et al. (submitted). 
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3.3 Feedback control model of acute OMR adaptation 

3.3.1 Design and behavior of the model 

Given that the observed acute adaptation is only implemented after a relatively long 

initial ballistic period of 220 ms (Results section 3.1.4; Figure 3.4, Figure 3.5) and that it is 

not PC-dependent (Results section 3.2; Figure 3.7), I hypothesized that the acute adaptation 

is implemented by a feedback controller. This idea contrasts with previously proposed 

forward model-based hypothesis that suggests that larval zebrafish have an internal 

representation of expected reafference, compare this expectation with actually observed 

reafference, and adapt their behavior if there is a mismatch (Introduction section 1.3.2, also 

see discussion in Portugues and Engert, 2011). Explicitly, a feedback controller measures a 

particular variable of a system and generates an output that tries to keep this variable at a 

given value (see Introduction section 1.1.1 for further details). In the case of OMR, when fish 

swim in a closed-loop assay, the grating slows down with respect to the fish, so it is natural 

to postulate that the aim of the controller is to minimize the forward motion of the visual 

stimulus so that fish will swim as long as the grating is moving forward. I therefore defined 

such a feedback controller and tested its performance under the acute adaptation experimental 

paradigm. 

The designed feedback controller is rather simple (Figure 3.8a). It is based on the 

assumption that the motor output of larval zebrafish during OMR depends on the level of 

sensory drive, defined as forward motion of the grating integrated in time. If the grating 

moves forward, the sensory drive accumulates, and at some point reaches a motor command 

threshold resulting in initiation of a swimming bout. If the animal receives visual reafference 

(i.e. grating decelerates), the level of sensory drive goes down, and the bout stops. The core 

idea of the model is that insufficient reafference results in increased motor output not because 

it does not match the putative internal expectation, but because it is accompanied by 
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increased sensory drive (i.e. grating moves forward faster / longer during a bout with less 

reafference). More explicitly, the information flow within the model starts in a sensory part 

that instantaneously combines the forward and backward grating velocity with excitatory and 

inhibitory weights, respectively, and integrates this forward drive in time in a SI (see Figure 

3.8a for abbreviations). This sensory drive computed by the SI is then fed forward to a MOG, 

which generates a motor output command whenever its activity reaches a threshold. As larvae 

swim in discrete bouts, I added a MI that inhibits the MOG and will eventually result in the 

termination of the bout, although only after the self-excitation within the motor output is 

overcome (see Materials and methods section 2.4.1 for further details). 

With a certain combination of parameters, the model was able to produce bouts and 

interbouts with realistic duration (Figure 3.8b, green trace). It can be noted in the panel that 

bout and interbout duration differed depending on the reafference condition, similarly to 

acute adaptation in real larvae. Thus, for example, a bout performed at open loop (bout # 2) 

is longer than a closed-loop bout (bout # 1), or interbout following a bout with non-shunted 

lag of the reafference (bout # 5) is longer than that with the shunted lag (bout # 6). 

I was able to optimize parameters of the model (Materials and methods section 2.4.2) 

so that its behavior closely reproduced the main findings of the acute adaptation experiment 

(Figure 3.9). This allowed me to conclude that the observed acute adaptation of the OMR to 

changes in visual reafference may indeed be implemented by a simple feedback controller 

that relies on integration of the sensory evidence of the forward moving stimulus in time and 

does not necessarily involve internal representation of expected reafference. 
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Figure 3.8. Feedback controller of acute adaptation 

a. Schematic diagram of the model. Blue lines indicate inhibitory connections. Black 

circles depict the model nodes, small black circles inside the nodes depict schematic 

pictograms of nonlinear transformations performed by respective nodes. Italic letters 

indicate parameters of the model; ∆t denotes the sensory processing delay of 220 ms. 

b. Example trial demonstrating the behavior of the model. Dotted lines denote bout 

onsets. See further details in the text of this section, and Materials and methods section 

2.4.1. Figure adapted from Markov et al. (submitted). 
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Figure 3.9. Acute adaptation of the feedback control model 

Mean bout duration (top) and mean interbout duration (bottom) as a function of 

reafference condition in the test dataset (a subset of the data presented in Results section 

3.1, that was never used for training the models, denoted by the black color, N = 100 

larvae) and in the feedback control models, each optimized to fit one larva from the 

training dataset (denoted by the cyan color).  Circles denote the mean values across 

animals, error bars denote SEM. Figure adapted from Markov et al. (submitted). 
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3.3.2 Sensory integration in the larval zebrafish brain 

(contribution of Luigi Petrucco) 

To test the main assumption of the model: the existence of the sensory integration in 

the larval zebrafish brain, we performed whole-brain, light sheet functional imaging 

experiments in head-restrained behaving larvae (Materials and methods section 2.5). 

After segmenting the imaged brains into ROIs, I first aimed to identify ROIs with 

reliable responses to the moving grating, in order to subsequently determine whether some 

of these ROIs exhibit properties of SIs. Since trials of moving grating were often 

accompanied with the OMR, it was important to disambiguate ROIs with sensory responses 

from motor-related ROIs. To this end, I analyzed mean fluorescence triggered by grating and 

bout onsets (Materials and methods section 2.5.3). I observed ROIs that increased their 

fluorescence at the onset of the moving grating (sensory ROIs) or when the larvae were 

performing bouts (motor ROIs). Figure 3.10a demonstrates activity of two example ROIs in 

one trial, displaying sensory or motor-related activity (their location within the reference 

larval zebrafish brain is presented in Figure 3.10b). It can be noted that the sensory ROI 

increased its fluorescence in response to the stimulus onset before the first bout was initiated, 

whereas the motor ROI did not respond to the stimulus, and increased its fluorescence only 

after the larva started swimming (Figure 3.10a, c). Analysis of the mean fluorescence 

triggered by grating movement or bout onset revealed that sensory and motor ROIs accounted 

for a significant fraction of the total number of ROIs (respectively, 32 ± 3 % and 30 ± 5 %, 

mean ± SEM across animals; mean triggered activity of all sensory and motor ROIs is 

presented in Figure 3.10d). Motor ROIs were located predominantly in the hindbrain, 

whereas sensory ROIs mostly occupied hindbrain, midbrain and diencephalic regions, 

including IO, DRN, OT, preT, and Thal (Figure 3.10e, see also Figure 2.3c for anatomical 

annotation). 
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Figure 3.10. Sensory and motor ROIs in the larval zebrafish brain 

a. Example trial illustrating fluorescence traces of a sensory (magenta) and a motor 

(green) example ROIs. Dotted lines denote bout onsets. b. Location of the example 

ROIs presented in a within the reference brain; ro – rostral direction, d – dorsal, l – left; 

the length of the scale arrows is 100 µm. c. Mean grating- and bout-triggered 

fluorescence, of the example ROIs presented in a, averaged across all triggers. Shaded 

areas denote SEM. In c and d, dotted lines denote triggers (grating or bout onsets). d. 

Mean grating- and bout-triggered fluorescence of all sensory and motor ROIs pooled 

from all imaged larvae (N = 4 larvae). e. Location of all sensory and motor ROIs within 

the reference brain. Figure adapted from Markov et al. (submitted). 
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I then focused on sensory ROIs and discovered that the fluorescence rise-time after 

grating onset varied greatly across these ROIs. Figure 3.11a demonstrates activity of two 

example sensory ROIs with fast or slow fluorescence rise after the grating onset (their 

location within the reference brain is presented in Figure 3.11b). To identify whether some 

of the sensory ROIs integrate sensory evidence in time, I fitted a leaky integrator model to 

the mean grating-triggered fluorescence of each of these ROIs (two examples are presented 

in Figure 3.11c). Resulting leaky integration time constant was zero for the majority of 

sensory ROIs (73 ± 4 %, mean ± SEM.), indicating that these ROIs do not integrate sensory 

evidence and could be therefore termed sensors, as opposed to the remaining 27 ± 4 % 

sensory ROIs with non-zero time constants which were called integrators. 95 % of the 

integrators’ time constants fall between 0.1 and 0.9 seconds, with the mean value 0.31 ± 0.05 

seconds (mean ± SEM across animals; Figure 3.11f). Mean grating-triggered activity of all 

sensors and integrators is presented in Figure 3.11d, and the traces averaged across ROIs 

within each larva and then across larvae are presented in Figure 3.11e. Sensors and 

integrators occupied distinct brain regions: sensors were located predominantly in the OT 

and the IO, whereas DRN and diencephalic regions including Thal and preT were occupied 

by the integrators (Figure 3.11g, see also Figure 2.3c for anatomical annotation). 
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Figure 3.11. Sensory integration in the larval 

zebrafish brain 

a. Example trial illustrating fluorescence traces of 

two example sensory ROIs with fast (blue) and slow 

(red) fluorescence rise after the grating onset 

(denoted by dotted lines). The trial without 

swimming (green trace) was chosen to illustrate that 

fluorescence rise time is not related to behavior and rather reflects sensory processing. 

b. Location of the example ROIs presented in a within the reference brain; ro – rostral 

direction, d – dorsal, l – left; the length of the scale arrows is 100 µm. c. Mean grating-

triggered fluorescence of the example ROIs presented in a, averaged across trials. 

Shaded areas denote SEM. d. Mean grating-triggered fluorescence of all sensory ROIs, 

separated into sensors and integrators, from all imaged larvae (N = 4 larvae). e. Mean 

grating-triggered fluorescence of sensors and integrators, first averaged across ROIs 

within each animal, and then across animals. Shaded areas denote SEM across animals. 

The traces were scaled to range from 0 to 1 to illustrate different rise times. f. 

Distribution of time constants across sensory ROIs, vertical lines denote SEM across 

animals. g. Location of all sensors and integrators within the reference brain. Figure 

adapted from Markov et al. (submitted). 

Therefore, certain regions of the larval zebrafish brain (namely the DRN, preT, and 

Thal) integrate sensory evidence in time, consistent with recent findings using different 

behavioral paradigms (Dragomir et al., 2019, Bahl and Engert, 2019). This provides an 

important substrate for the feedback control mechanism of acute adaptation. 
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3.4 Long-term OMR adaptation 

After concluding that the mechanism of acute adaptation is not cerebellum-dependent 

and could presumably be implemented by a feedback controller, I aimed to test whether 

zebrafish larvae could perform long-term motor adaptation and whether this adaptation is 

cerebellum-dependent.  

To this end, zebrafish larvae were exposed to a consistent long-term perturbation in 

reafference condition, namely, to 225 ms lag (Materials and methods sections 2.2 and 2.3). 

As expected from the results of acute adaptation experiments, animals adapted to this lag by 

increasing the bout duration (Figure 3.12a). However, the first bout duration gradually 

decreased throughout the adaptation session, reached the pre-adaptation level by the end of 

the session, and became statistically indistinguishable from the control group that was never 

exposed to lagged reafference (normal-reafference control group) (Figure 3.12a, b). In 

addition, when normal reafference was reinstated after the adaptation session, the lag-trained 

animals demonstrated a significant after-effect of decreased bout duration compared to the 

normal-reafference control animals (Figure 3.12a, c). These results demonstrate that 

exposure to a perturbed reafference condition for a prolonged time leads to long-term 

recalibration of bout duration in the direction that diminishes the effects of acute adaptation. 

As reported above (Results section 3.1.4), bout power during the ballistic period does 

not depend on the reafference condition but reflects the state of the neuronal controller that 

converts the sensory information about the moving grating into OMR. Therefore, any change 

in the ballistic power would automatically reflect a change in the controller. Analysis of 

changes in first bout power profiles from trial to trial revealed that bout power during the 

ballistic period gradually increased throughout the experiment (Figure 3.13a). This increase 

did not depend on whether animals were exposed to lag or to normal reafference during the 

adaptation session (Figure 3.13b). 
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Figure 3.12. Changes in first bout duration during long-term OMR adaptation 

a. Changes of first bout duration in normal reafference control (solid line, N = 103 

larvae) and lag-trained animals (dotted line, N = 100 larvae) from trial to trial, averaged 

across animals. Shaded areas denote SEM. Vertical dashed lines separate the 4 phases 

of the long-term adaptation experimental paradigm: calibration phase, pre-adaptation 

phase, adaptation phase and post-adaptation phase (Materials and methods section 

2.3.1). b. Change of first bout duration in the last 10 adaptation trials with respect to 

the pre-adaptation trials (first averaged across 10 trials, and then across animals). Black 

circles denote the mean values across animals, vertical lines denote the SEM; n.s. - p > 

0.05, * - p < 0.05 (Mann-Whitney U test). c. Long-term adaptation after-effect 

measured as change of the first bout duration in the post-adaptation trials with respect 

to the pre-adaptation trials. Figure adapted from Markov et al. (submitted). 
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Figure 3.13. Changes in first bout power during long-term OMR adaptation 

a. Changes in first bout power of normal-reafference control (top, N = 103 larvae) and 

lag-trained animals (bottom, N = 100 larvae) from trial to trial. Each trace is first bout 

power, averaged across 10 trials and then across animals. Dotted lines denote first bout 

onsets, dashed lines separate ballistic and reactive periods from each other. Note that 

the first bout power during the ballistic period increased during the course of the 

experiment. b. Increase in first bout ballistic power in the post-adaptation phase with 

respect to the pre-adaptation phase. Ballistic power was quantified as area below the 

bout power curves within the ballistic period, first averaged across 10 trials, and then 

across animals. Black circles denote the mean values across animals, vertical lines 

denote SEM; n.s. - p > 0.05 (Mann-Whitney U test). Figure adapted from Markov et 

al. (submitted). 

Presented results suggest that larval zebrafish are able to recalibrate the parameters of 

the controller underlying the sensorimotor transformation during optomotor behavior. This 

recalibration is reflected in three ways. Firstly, there is a decrease of acute adaptation of first 

bout duration by the end of the long-term adaptation to lag (Figure 3.12a, b). Secondly, there 
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is an after-effect of decreased first bout duration during the post-adaptation phase in lag-

trained animals compared to the normal-reafference control (Figure 3.12a, c). Thirdly, there 

is an increase in first bout power during the ballistic period after the long-term adaptation in 

both lag-trained and normal-reafference control groups (Figure 3.13). 

3.5 Involvement of PCs in long-term OMR adaptation 

To test whether the recalibration of the internal OMR controller is cerebellum-

dependent, I conducted long-term adaptation experiments in PC-ablated animals (Materials 

and methods section 2.1.3), and analyzed the three parameters that reflect the recalibration 

of the controller (Results section 3.4). 

Firstly, I observed that by the end of the adaptation session, lag-trained PC-ablated 

animals did not decrease their first bout duration to the pre-adaptation level and maintained 

high motor activity throughout the whole adaptation session (Figure 3.14a). Secondly, the 

after-effect of decreased bout duration during the post-adaptation phase in lag-trained 

animals was also absent after PC-ablation. However, this effect was also diminished in the 

treatment control group, indicating that it could possibly result not only from the PC ablation 

itself but also from treatment with MTZ (Figure 3.14b). Finally, the increase in bout power 

during the ballistic period was also significantly less prominent in PC-ablated animals 

(Figure 3.14c). Taken together, these results demonstrate that long-term recalibration of the 

internal OMR controller is cerebellum-dependent. 
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Figure 3.14. Long-term OMR adaptation after PC ablation 

a. Change of first bout duration in the last 10 adaptation trials with respect to the pre-

adaptation trials (similar to Figure 3.12b). b. Long-term adaptation after-effect (similar 

to Figure 3.12c). c. Increase in first bout ballistic power in the post-adaptation phase 

with respect to the pre-adaptation phase (similar to Figure 3.14b). Gray color represents 

wild-type control animals (N = 103 and 100 larvae for normal-reafference control and 

lag-trained groups, respectively; data repeated from Figure 3.12 and Figure 3.13); black 

color represents treatment control animals (N = 85 and 85 larvae); orange color 

represents PC-ablated animals (N = 83 and 90 larvae). Circles denote the mean values 

across animals, vertical lines denote SEM; n.s. - p > 0.05, * - p < 0.05, ** - p < 0.01 

(Mann-Whitney U test). Figure adapted from Markov et al. (submitted). 
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4. Discussion 

4.1 Feedback control mechanism of acute OMR adaptation 

The present study demonstrates that larval zebrafish change their behavior within a 

swimming bout depending on the visual feedback they receive during that bout, and that these 

acute within bout changes are not cerebellum-dependent. Furthermore, by using a variety of 

sensory perturbations, I show that larvae require at least 220 ms to implement these 

behavioral changes, even if the sensory feedback was only altered during the initial 75 ms of 

the swimming bout. This delay is consistent with previously reported delays involved in 

processing of feedback visual signals and implementing resulting behavioral adjustments 

(Barnett-Cowan and Harris, 2009; Brenner and Smeets, 2003; Desmurget and Grafton, 2000; 

Saunders and Knill, 2003; Saunders and Knill, 2005). 

Previous studies proposed that larval zebrafish use forward internal models during 

acute OMR adaptation (Ahrens et al., 2012; Portugues and Engert, 2011). The forward 

models can predict expected sensory feedback based on what motor action the animal is about 

to perform. If the predicted feedback does not match the actually observed feedback, behavior 

needs to be adjusted, and an error signal can be generated to drive changes in the neuronal 

circuit underlying the OMR. Furthermore, forward modelling and computation of the error 

signal were proposed to involve the olivo-cerebellar system. 

In contrast, the feedback processing delay and cerebellar-independence of acute OMR 

adaptation observed in the present study, suggest that this phenomenon can rather be 

understood in terms of a feedback control mechanism. To support this hypothesis, I present 

a rigid and simple feedback controller that implements all experimentally observed acute 

behavioral adaptations. The controller is rigid in a sense that it can produce different motor 

outputs without changing its intrinsic parameters, and simple in a sense that it does not rely 
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on any internal modelling. However, it is important to note here that the long-term adaptation 

experiments demonstrate that under certain conditions, intrinsic parameters of the controller 

can be changed, and I show that this process relies on cerebellar output (see more details 

below). 

The sensory part of the proposed feedback controller starts with direction-selective 

sensors whose output is integrated in time by a SI, and the output of the SI drives activity in 

the motor part of the controller. Direction-selectivity can be observed in the brain already at 

the level of retinal ganglion cells in vertebrates (Barlow and Hill, 1963; Barlow et al., 1964), 

including zebrafish larvae (Gabriel et al., 2012; Nikolaou et al., 2012). Presented functional 

imaging experiments revealed that the sensory integration of the forward visual motion 

indeed takes place in several brain regions including the preT (Figure 3.11g). Consistent with 

the architecture of the proposed model, where the SI receives input from direction-selective 

sensors, the preT receives projections from the contralateral direction-selective retinal 

ganglion cells (Burrill and Easter, 1994; Gamlin, 2006; Naumann et al., 2016). 

An increasing body of evidence highlights the important role of the preT in whole-field 

visual processing and visuomotor behaviors in larval zebrafish (Kubo et al., 2014; Naumann 

et al., 2016; Portugues et al., 2014; Severi et al., 2014). Naumann et al. (2016) showed that 

preT neurons integrate monocular direction-selective inputs from the two eyes and drive 

activity in the premotor hindbrain and midbrain areas during optomotor behavior. The present 

study provides evidence that the preT is involved not only in the binocular integration of 

sensory inputs, but also in temporal integration that underlies accumulation of sensory 

evidence. Temporal integration in the preT has been recently demonstrated in two other 

studies where larval zebrafish was presented with sideward visual motion (Dragomir et al., 

2019, Bahl and Engert, 2019). In essence, I suggest that the output of the preT can be 

interpreted as the sensory drive, which is accumulated over time and is subsequently fed to 

the downstream premotor circuits. 
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4.2 Long-term cerebellar effects on the feedback controller 

Results of the long-term adaptation experiment demonstrate that when the reafference 

is perturbed consistently over a prolonged period of time, zebrafish larvae gradually adapt 

their behavior. Furthermore, in contrast with the acute OMR adaptation, these long-term 

changes are cerebellum-dependent. This suggests that the cerebellum is required to 

implement this gradual adaptation to a consistent, long-term change in reafference and may 

therefore recalibrate the parameters of the controller underlying the OMR. 

The fact that the cerebellum is required to change a motor program in the long-term is 

consistent with its role in predictive processing. In the acute bout-by-bout adaptation, the 

reafference conditions change constantly so no pattern can be learned and predicted. 

However, if the reafference condition is perturbed consistently, the cerebellum does play a 

role. This suggests that during the acute adaptation, perturbations in reafference may be 

driving the circuitry away from a stable state, and that the action of the cerebellum may be 

to stabilize this change, for example by homeostatic means (Dietrich and Straka, 2016). In 

this scenario, a change in reafference during optomotor behavior results in an increase in 

locomotor output in a cerebellum-independent way, and the cerebellum would act on this 

circuitry to bring it back to a new stable homeostatic state. 

The notion that cerebellum is not involved in online corrections of the movements in 

response to wrong sensory feedback, but is involved in learning new relations between 

movements and their feedback in the long-term, is present in other studies on cerebellar 

function. In two such studies (Izawa et al., 2012; Yavari et al., 2016, see also Introduction 

section 1.2.2 for more details), humans with impaired cerebellar function and control subjects 

were both able to update the motor program during a reaching task after the feedback of their 

movements was altered by the experimenters. However, only control subjects were able to 

update their feedback estimation after the adaptation session, indicating that the cerebellum 

is involved in acquiring and updating forward internal models. In the case of long-term OMR 
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adaptation presented in this thesis, a similar process might have taken place. During long-

term adaptation to consistently perturbed reafference, animals were observing that their 

motor commands lead to a novel visual feedback. Eventually, animals with intact cerebella 

might have recalibrated their forward models in the cerebellum to update their expectation 

thus making them adequate to the new environmental conditions. 

Supposition that the cerebellum in larval zebrafish performing adaptive OMR acts as a 

forward models helps to interpret increased overall motor activity in PC-ablated animals 

(Results section 3.2) in the context of state estimation. If we assume that larvae perform 

swimming bouts in order to reach a desired sensory state (defined as some kinematic 

parameter, such as desired position or velocity), the question naturally arises of how do the 

larvae estimate their state. State estimation can be achieved using sensory feedback 

information, predictive forward modeling, or their combination. A study in humans has 

shown that if subjects are forced to rely solely on feedback sensory information by perturbing 

their cerebellar activity, their state estimation lags behind the real state due to slow processing 

of sensory feedback (Miall et al., 2007, see also Introduction section 1.2.2 for more details). 

As a result, the motor programs of their movements are computed based on out-of-date 

sensory information, and the performance in a reaching task drops. If larval zebrafish 

estimate their position during a swimming bout using not only sensory information, but also 

predictive forward modelling in the cerebellum, disrupting the cerebellar function will lead 

to lagged state estimation, so that by the time when they reach the desired position, they 

would still not “know” it and continue swimming. As a result, the bouts in PC-ablated larvae 

will be longer, similarly to the notorious hypermetria during goal-oriented movements in 

cerebellar patients. 

Another fact that strongly suggests that the cerebellum in larval zebrafish acts as a 

forward model during OMR is that, in the present study, IO displayed sensory-related activity 

(Figure 3.11g). The highly sensory nature of PCs’ complex spikes, that directly result from 
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IO activity (Eccles et al., 1966), was also reported recently (Knogler et al., 2019). IO activity 

is believed to convey a teaching signal to the PCs (Albus, 1971; Marr, 1969), that updates 

the internal models in the cerebellum (Imamizu et al., 2003; Kawato et al., 1987) by 

modifying synaptic weights in the cerebellar circuitry (Ito et al., 1982; Tabata and Kano, 

2009). Since the teaching signal must be expressed in the same coordinates as the output of 

the internal model (Figure 1.2, Introduction section 1.1.2), sensory nature of the teaching 

signal indicates that the cerebellar internal model involved in adaptive OMR is forward. 

4.3 Concluding remarks, limitations and future directions 

In summary, this study demonstrates that acute OMR adaptation to changes in visual 

reafference can be implemented by a feedback control mechanism, whose intrinsic 

parameters can be modified by the cerebellar output during long-term adaptation (Figure 

4.1a). The proposed feedback controller relies on temporal integration of direction-selective 

sensory signals. I suggest that output of the SI should be interpreted as the sensory drive that 

is fed to the downstream premotor circuits. Furthermore, I suggest that the cerebellum in 

larval zebrafish acts as forward model that monitors efference copies of motor commands 

and the resulting sensory consequences of these commands (indicated by a wavy line in 

Figure 4.1a). Eventually, such model learns a motor-to-sensory transfer function and is able 

to predict sensory feedback from the motor commands. 
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Figure 4.1. Proposed mechanism of acute and long-term OMR adaptation 

a. Schematic diagram of the feedback controller that can implement acute OMR 

adaptation to changes in sensory reafference. Cerebellar forward model monitors the 

efference copies of motor commands and resulting sensory consequences and learns 

their transfer function. It influences the intrinsic parameters of the controller, 

presumably, of its motor part. Like in Figure 1.2, wavy line denotes the teaching signal 

used by the forward model to learn the transfer function. b. Mapping of the crucial 

functional nodes involved in OMR adaptation onto the larval zebrafish brain. See 

details in text of the Discussion. Figure adapted from Markov et al. (submitted). 

Based on the functional imaging results presented in this thesis, combined with 

anatomical and functional literature, the proposed mechanism of acute and long-term OMR 

adaptation can be mapped, to a certain extent, onto the larval zebrafish brain (Figure 4.1b). 
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Thus, the central node of the feedback controller – the SI – may correspond to the preT for 

three main reasons. Firstly, the preT receives direction-selective signals from retinal ganglion 

cells (Barlow and Hill, 1963; Barlow et al., 1964; Gabriel et al., 2012; Nikolaou et al., 2012). 

Secondly, presented functional imaging results revealed temporal integration of sensory 

information in this brain area (Figure 3.11). Finally, the preT drives activity in premotor 

circuits, and ablation of inputs to the preT impair the OMR, suggesting its crucial role in this 

behavior (Naumann et al., 2016; Severi et al., 2014). 

Regarding long-term adaptation, recent studies have revealed that the cerebellum in 

larval zebrafish receives both sensory information and efference copies of motor commands 

(Knogler et al., 2017), which is necessary for acquiring and updating an internal model. 

Furthermore, the present study together with Knogler et al. (2019) demonstrates that IO 

provides predominantly sensory teaching signals to the PCs (Figure 3.10), suggesting that 

the cerebellum acts as a forward model. Given that the zebrafish cerebellum projects to a 

wide range of brain structures, including but not limited to only premotor areas (Kunst et al., 

2019), the orange arrow from the cerebellum was drawn in Figure 4.1 to reach premotor 

circuits to highlight that its output effectively modifies the final motor output of the 

controller. It is possible that this modification is achieved through changing parameters in 

the upstream parts of the circuitry underlying the OMR and is mediated by other cerebellar 

outputs. 

It is important to note, however, that the present study has several limitations that can 

be overcome in future studies. Although I believe that the cerebellum acts as a forward model 

that predicts expected feedback based on motor commands, alternative interpretations of the 

observed results are possible. Namely, the cerebellum may generate feedforward corrections 

of feedback motor commands, i.e. act as an inverse model in a feedback-error-learning 

scheme (Kawato, 1990, see Introduction section 1.1.2 for more details). A possible 

experiment that can disambiguate between these two cases will involve recordings from PCs 
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during a long-term adaptation paradigm and comparing motor-related activity in the PCs 

before and after the adaptation. If PC activity constitutes the output of a forward model, one 

would expect less bout-related activity after the adaptation, as animals must have learnt to 

expect less feedback from a given motor command. If instead, the cerebellum learns an 

inverse transfer function, long-term adaptation to decreased reafference must elevate bout-

related PC activity, as animals must have learnt that a stronger feedforward motor command 

is required to reach the desired state. 

Another limitation is that the increase in bout kinematics during the ballistic period was 

observed not only after long-term adaptation to perturbed reafference but also in animals 

presented with normal reafference during the adaptation session (Figure 3.13). Although the 

normal reafference condition was calibrated to mimic the freely swimming condition as close 

as possible (Materials and methods sections 2.2 and 2.3.1), the visual feedback provided in 

the closed-loop assay to head-restrained larvae might still differ from what a freely swimming 

larvae normally receives. The reasons for this may include imperfectness and processing time 

of the velocity estimator and/or delays involved in updating the projected stimulus. This 

limitation is confounded by the lack of any vestibular feedback in head-restrained 

preparations. The mismatch between the natural visuo-vestibualar feedback and feedback 

provided in the closed-loop assay might underlie long-term changes in bout kinematics in 

normal reafference control animals. To test this, one could transfer the long-term adaptation 

experiments to a freely swimming condition, where sensory feedback that larvae receive is 

natural by definition. If in this case the ballistic kinematics of the swimming bouts would 

change only after long-term adaptation to perturbed visual feedback, this will prove that long-

term adaptation of this behavioral parameter is indeed driven by a novel reafference 

condition. 

Nevertheless, the present study demonstrates that the cerebellum is involved in long-

term adaptation of locomotion in larval zebrafish, but not in acute online behavioral 
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corrections in response to perturbed reafference. Given the advantages of larval zebrafish as 

a model system for experimental research, this provides an exciting opportunity for future 

investigations on cerebellar internal models and their role in adaptive behaviors. 
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5. Appendix 

5.1 List of abbreviations 

CF climbing fiber 

CNS central nervous system 

DCN deep cerebellar nuclei 

DRN dorsal raphe nucleus 

dpf days post-fertilization 

EC eurydendroid cell 

epNtr enhanced nitroreductase 

FMS forward motion sensor 

GC granule cell 

IO inferior olive 

IR infrared 

LED light emitting diode 

MF mossy fiber 

MI motor integrator 

MOG motor output generator 

 

MTZ Metronidazole 

Ntr nitroreductase 

OMR optomotor response 

OT optic tectum 

PC Purkinje cell 

PF parallel fiber 

preT pretectum 

RMS reverse motion sensor 

ROI region of interest 

SEM standard error of mean 

SI sensory integrator 

Thal thalamus 

TL wild-type Tüpfel long-fin zebrafish strain 

TMS transcranial magnetic stimulation 
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5.3 MATLAB code of the feedback control model of acute adaptation 

The model should be operated using two main functions: model_iteration and 

experiment_iteration that are iteratively called in the parent program, in which the 

experimental protocol is defined. Model_iteration function computes the output of the model 

given its previous state, current sensory stimulus and a set of model parameters. 

Experiment_iteration function adds the reafference to the sensory stimulus given the output 

of the model, exafferent stimulus and reafference condition. Example below shows an 

experimental protocol used in Figure 3.8b, in which the grating was moving forward at 10 

mm/s for 15 s, preceded and followed by 3-s periods of static grating. Reafference conditions 

were individually selected for each bout to illustrate that the output of the model depends on 

reafference in a way, similar to the real animals. The experiment_iteration and 

model_iteration functions are presented after the parent program. 

 

 

%% define timing of the protocol 

dt = 0.005; % sampling period of the modelled experiment, in seconds 

mov_dur = 15; % duration of the moving grating, in seconds 

stat_dur = 3; % duration of the static grating, in seconds 

num_frames = round((mov_dur + 2 * stat_dur) / dt); % total number of 

   frames in the protocol 

% define frame numbers, when the grating starts and stops moving: 

gr_starts = round(stat_dur / dt); 

gr_ends = round((stat_dur + mov_dur) / dt); 

% define the initial grating speed array (in mm/s): 

grspeed = zeros(1, num_frames); 
grspeed(gr_starts:gr_ends) = 10; 

% pre-allocate the output behavioral array of the modelled fish: 

swim = false(1, num_frames); 

%% define the reafference conditions used in the protocol 

% define the reafference conditions for each bout (N = 7): 

reaf = [1   0  0  0  0; ... 

  0   0  0  0  0; ... 

  0.33  0  0 0  0; ... 

  1.66  0 0 0 0; ... 

  1   0.15  0 0  0; ... 

  1   0.15  1  0  0; ... 

  1   0  0  0.15  0.3]; 
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% each row encodes reafference condition of one bout 

% each column represents one parameter of reafference condition: 

% reaf(:, 1) – gain of the closed loop 
% reaf(:, 2) – lag of the reafference, in seconds with respect to 

   the bout onset 
% reaf(:, 3) – is the lag shunted (1) or not (0)? 
% reaf(:, 4) – start of the gain drop period, in seconds with 

   respect to the bout onset 
% reaf(:, 5) - end of the gain drop period, in seconds with 

   respect to the bout onset 

% therefore, the order of reafference conditions in this example trial is 

% the same is in Figure 3.8b: normal reafference, open loop, 0.33 gain, 

% 1.66 gain, 150 ms lag, 150 ms shunted lag, gain drop 1100 

 

% define the reafference condition that will be used after the seventh  

% bout, in case they appear (let it be the normal reafference): 

reaf0 = [1 0 0 0 0]; 
 

% express the reafference parameters, that are expressed in seconds, in 

% sampling frames, by dividing them by the sampling period: 

reaf(:, 2) = round(reaf(:, 2) / dt); 

reaf(:, 4) = round(reaf(:, 4) / dt); 
reaf(:, 5) = round(reaf(:, 5) / dt); 

 

 

 

%% define the parameters of the model 

sens_delay = 0.22; % sensory processing delay, in seconds 

sens_delay = round(sens_delay / dt); % now, expressed in frames 

% set of eight parameters of the model: 
par = [0.161, 0.15, 2.8, 2.5, 0.8, 0.9, 0.5, 0.52];  

% par(1) - weight between FMS and SI 
% par(2) - weight between RMS and SI 
% par(3) – time constant of SI, in seconds 
% par(4) - weight between MI and MOG 
% par(5) - weight of feed-forward self-excitation of motor output 
% par(6) – motor command threshold 
% par(7) - weight between motor output command and MI 
% par(8) – time constant of MI, in seconds 

 

% express the time constants in sampling frames, by dividing the sampling 

% period by the time constants. This is convinient because in the 

% equasions of the leaky integrator time constants are denominators: 

par(3) = dt / par_trial(3); 
par(8) = dt / par_trial(8); 

 

% pre-allocate the state of the model (see the description below): 

model_state = zeros(5, num_frames); 
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%% run the protocol! 

bout_counter = 0; % bout counter used to determine the current 

 reafference condition 

% technical variables used to implement lags and gain drops: 

fr_since_bout_start=0; 
fr_since_bout_end=inf; 
reaf=[reaf0; reaf]; % this is done because it is convinient to take the 

                   n+1th reafference conditiom for the nth bout (see below) 
 

% run a loop frame by frame: 

for t = sens_delay + 1 : num_frames 

 

    % determine current reafference condition: 

    if bout_counter <= size(reaf, 1); 
        this_reaf = reaf(bout_counter + 1, :); 
    else 
        this_reaf = reaf0; 
    end 

 

    % update the sensory stimulus grspeed(t) given the previous model’s 

    % output swim(t - 1) and reafference condition this_reaf 

    [grspeed(t), fr_since_bout_start, fr_since_bout_end] = ... 

 experiment_iteration (grspeed(t), swim(t - 1), ... 

fr_since_bout_start, fr_since_bout_end, this_reaf); 

 

    % compute the current model’s output swim(t) and state of the model 

    % model_state(:, t) given its previous state model_state(:, t – 1) 

    % and the sensory stimulus (given the sensory processing delay): 

    [swim(t), model_state(:,t)] = model_iteration(swim(t - 1), ... 

 model_state(:, t - 1), grspeed(t - sens_delay), par); 

    % if a bout has just started, update the counter 

    if swim(t) 
        if ~swim(t - 1) 
            bout_counter = bout_counter + 1; 
        end 
    end 
end 

 

% now one just needs to plot grspeed, model_state and swim to reproduce 

% figure 3.8b 

 

 

 

 

 

 

 

 



Appendix 

87 

 

function [grspeed, fr_since_bout_start, fr_since_bout_end] = ... 

experiment_iteration (grspeed, swim, fr_since_bout_start, ... 

fr_since_bout_end, reaf) 

% 

% This function adds reafference to the exafferent stimulus grspeed given  

% the output of the model swim and reafference condition reaf. See  

% description of the input and output variables above. 

 
% if the modelled fish swims, compute the reafferent sensory stimulus  

% based on reafference condition 

if swim 
    fr_since_bout_start = fr_since_bout_start + 1; 
    fr_since_bout_end = 0; 
    if fr_since_bout_start > reaf(2) % if bout is longer than lag 
        if fr_since_bout_start < reaf(4) || ...  

  fr_since_bout_start > reaf(5) % and if gain is not dropped 
            grspeed = grspeed - reaf(1) * 20; % then provide some  

% reafference, depending on the gain. 20 is the velocity multiplication  

% factor that ensures that at gain 1, the modelled fish swims at 20 mm/s 

        end 
    end 
else 
    fr_since_bout_end = fr_since_bout_end + 1; 
    fr_since_bout_start = 0; 
    if reaf(3) == 0 % if lag is not shunted 
        if fr_since_bout_end <= reaf(2) % if bout is longer than lag 
            grspeed = grspeed - reaf(1) * 20; % then provide reafference 
        end 
    end 
end 

% In all other cases, the updated grating speed will be the same as  

% before, i.e. fish will receive no reaffernce 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix 

88 

 

function [swim, model_state] = model_iteration(swim, model_state, ... 

grspeed, par) 
 

% This function computes the output of the model together with it’s next 

% state, given the previous state, current stimulus and a set of  

% parameters 

% 
% Inputs: 
% 
% 1. swim - a binary variable that tells if the modelled fish was 

%   swimming before this iteration (1) or not (0) 
% 
% 2. model_state - previous state of the model 
%       model_state(1) - activity of the forward motion sensor (FMS) 
%       model_state(2) - activity of the reverse motion sensor (RMS) 
%       model_state(3) - activity of the sensory integrator (SI) 
%       model_state(4) - activity of the motor output generator (MOG) 
%       model_state(5) - activity of the motor integrator (MI) 
% 
% 3. grspeed - current grating speed [mm/s] 
% 
% 4. par – set of eight parameters of the model 
%       par(1) - weight between FMS and SI 
%       par(2) - weight between RMS and SI 
%       par(3) – sampling period (dt) divided by time constant of SI 
%       par(4) - weight between MI and MOG 
%       par(5) - weight of feed-forward self-excitation of motor output 
%       par(6) – motor command threshold 
%       par(7) - weight between motor output command and MI 
%       par(8) – sampling period (dt) divided by time constant of MI 
% 
% Outputs: 
% 
% 1. swim - a binary variable that tells if the modelled fish will swim 

%   after this iteration (1) or not (0) 
%  
% 2. model_state - state of the model after this iteration 
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% compute activity of FMS (positively rectified grating speed) 
model_state(1) = max(grspeed, 0); 

  
% compute activity of RMS (negatively rectified grating speed) 
model_state(2) = - min(grspeed, 0); 
 

% compute activity of SI (positively rectified leaky integrator with 

saturation at 1) 
model_state(3) = par(3) * par(1) * model_state(1) - par(3) * par(2) * ... 

   model_state(2) - (par(3) - 1) * model_state(3),1),0); 
model_state(3) = max(min(model_state(3), 1), 0); 

% compute activity of MOG (positively rectified, activated by SI and 

inhibited by MI) 
model_state(4) = model_state(3) - par(4) * model_state(5); 

model_state(4) = max(model_state(4), 0); 

  
% compute motor output (fish swims if activity of MOG + self-excitation 

is greater than the motor command threshold) 
swim = model_state(4) + par(5) * swim > par(6); 

  
% activity of MI (leaky integrator with saturation at 1) 
model_state(5) = par(8) * par(7) * swim - (par(8) - 1) * model_state(5); 

model_state(5) = min(model_state(5), 1);  
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