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Zusammenfassung

Die vorliegende Arbeit befasst sich mit der Rolle von Dualitäten und nichtgeometrischen
Hintergründen in der Stringtheorie. Dualitäten definieren nichttriviale Abbildungen, an-
hand derer scheinbar unterschiedliche Theorien als alternative Beschreibungen derselben
physikalischen Gegebenheiten identifiziert werden können. Ihre Existenz deutet oftmals
darauf hin, dass den Modellen fundamentale Strukturen zugrunde liegen, welche durch
den verwendeten Formalismus nicht vollständig erfasst werden.

In der Stringtheorie diente das Geflecht aus Dualitäten zwischen den fünf konsisten-
ten Superstringtheorien als Motivation, die Existenz einer übergeordneten M-Theorie zu
postulieren. Später zeigte sich jedoch, dass dabei gewisse Hintergrundflüsse auf Objekte
abgebildet werden, welche in der konventionellen Differentialgeometrie nicht wohldefiniert
sind. Derartige nichtgeometrische Hintergründe spielen eine zentrale Rolle im Bereich der
Stringphänomenologie.

Die erste Hälfte dieser Arbeit befasst sich mit der Anwendung erweiterter Feldthe-
orien zur Beschreibung von Stringtheorien auf verallgemeinerten Hintergründen. Im
Fokus des Interesses liegen dabei dimensionale Reduktionen der sogenannten Typ-II-
Doppelfeldtheorie, welche eine lokale Beschreibung von Typ-II-Supergravitationen mit ge-
ometrischen und nichtgeometrischen Flüssen ermöglicht. Wir zeigen anhand der Beispiele
von Calabi-Yau-Mannigfaltigkeiten und K3 × T 2 explizit, dass die effektive vierdimen-
sionale Physik derartiger Modelle durch geeichte Supergravitationen beschrieben wird,
in welcher alle vorkommenden Moduli stabilisiert sind. Die Rolle der Flüsse im Bezug
auf die Struktur der effektiven Wirkung sowie die Relation zu anderen Formalismen der
Flusskompaktifizierung werden dabei im Detail diskutiert.

Das Kernthema der zweiten Hälfte stellt die statistische Analyse von Stringvakua
in Orientifold-Kompaktifizierungen mit Flüssen dar. Dabei wird insbesondere auf das
Zusammenspiel von Dualitäten und der sogenannten Tadpole-Wegkürzungsbedingung
eingegangen. Anhand des Beispiels T 6/Z2 × Z2 wird demonstriert, dass sich nur ein
geringer Anteil der berechneten Vakua in einem Bereich befindet, in welchem sowohl
eine perturbative Betrachtung als auch eine Probenapproximierung von D-Branen zu-
verlässig ist. Wir zeigen zudem, dass sich die physikalischen Vakua oftmals auf Un-
termannigfaltigkeiten des Moduliraums anhäufen und gewisse Hohlräume existieren, in
denen unter den gegebenen Annahmen keine stabilisierten Werte auftreten. Die Prob-
lematiken der Modulistabilisierung und Modellgestaltung sind somit eng miteinander
verknüpft, und eine einheitliche Betrachtungung könnte entscheidende Einblicke in die
Struktur der Stringlandschaft ermöglichen.
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Abstract

This thesis is concerned with the role of dualities and nongeometric backgrounds in string
theory. Dualities define nontrivial mappings by which seemingly distinct theories can be
identified as alternative descriptions of the same physical reality. Their presence often
suggests that the dual models are built upon more fundamental structures which cannot
be fully captured by the applied formalisms.

In string theory the web of dualities between the five consistent superstring theories
served as a motivation to postulate the existence of an underlying M-theory. However, it
was later observed that certain background fluxes are thereby mapped to objects which
are ill-defined in conventional differential geometry. Such nongeometric backgrounds play
an essential role in the field of string phenomenology.

The first half of this work focuses on the application of extended field theories to
describe string theories on generalized backgrounds. An emphasis is thereby placed on
dimensional reductions of type II double field theory, which allows for a local description
of type II supergravities with geometric and nongeometric fluxes. We show explicitly by
the examples of Calabi-Yau manifolds and K3 × T 2 that the effective four-dimensional
action of such models is described by gauged supergravities in which all appearing moduli
are stabilized. The role of the fluxes in respect of the structure of the effective action and
the relation to other approaches to flux compactifications are discussed in detail.

The second half of this thesis is built around the statistical analysis of string vacua in
orientifold compactifications with fluxes. A major focus is thereby set on the interplay
between dualities and the so-called tadpole-cancellation condition. We demonstrate at
the example of T 6/Z2×Z2 that only a small fraction of the computed vacua is located in
a region for which both a perturbative approach and a probe approximation for D-branes
are reliable. In addition, we show that the vacua often accumulate on submanifolds of
the full moduli space and that there exist certain voids in which no values are stabilized
under the given assumptions. The issues of moduli stabilization and model building are
therefore closely intertwined, and a unified treatment might provide valuable insights into
the structure of the string landscape.
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Chapter 1

Introduction

1.1 Historical Overview

The quest for unification has been a driving force for the development of physics ever
since the antiquity. While this long happened on a more subtle level in foundational fields
such as classical mechanics and thermodynamics, the systematic search for a unified de-
scription of previously independent theories under a general framework is now a common
task in various branches of physics. On many occasions, this led to valuable new insights
and a deeper understanding of phenomena that had previously been inaccessible by exist-
ing theories. Before delving deeper into the main topic of this thesis, let us briefly review
how this ongoing process of unification has eventually led to the development of string
theory as a promising approach to a consistent framework describing all fundamental
interactions of our universe.

1.1.1 The Role of Unification in Physics

Commonly seen as a first major milestone is Maxwell’s unification of electricity and
magnetism in the years 1862 to 1864 [1]. Building upon previous observations of Ørsted
and Faraday, Maxwell elaborated a set of equations which later become known as the
famous Maxwell equations and was the first to predict the existence of electromagnetic
waves traveling a finite speed c. This brought the theory of classical electromagnetism to
its final form and serves as an important foundation for modern particle physics.

Inspired by Maxwell’s ideas, Lorentz, Poincaré and Einstein started their efforts to
unify the concepts of space and time in the years 1904 and 1905. A first landmark was the
formulation of special relativity [2], which introduced a fundamentally different view of our
universe by abandoning the idea of absolute space and time and assigning a new meaning
to the concept of mass. After implementing Newtonian gravity into the framework,
Einstein eventually formulated his theory of general relativity [3] in 1916. Unlike classical
field theory, general relativity describes the force of gravity as as an intrinsic geometric
property of four-dimensional spacetime itself, giving rise to the prediction of various
now-confirmed phenomena such as black holes, gravitational redshift or gravitational
waves. The strong reliance on the formalism of differential geometry furthermore led to
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a reunification of physics and the mostly isolated field of pure mathematics. As of today,
general relativity is considered the most accurate description of gravity.

Initially postulated by Planck in 1900 and later refined by Heisenberg, Schrödinger
and others, the ideas quantum mechanics started to play a crucial role in the process
of unification after Dirac formulated a relativistic description of the electron in 1927 [4].
Following further work on the concept of renormalization by Feynman, Dyson, Schwinger
and Tomonaga, this eventually led to the development of quantum electrodynamics as
the first quantum field theory. In the 1960s, Glashow [5], Weinberg [6] and Salam [7]
combined the electromagnetic and weak force into an electroweak force with gauge group
SU (2)× U (1)Y , which is spontaneously broken to the gauge group U (1)em of quantum
electrodynamics by the Higgs mechanism [8–12] at low energies. This model was in turn
used to embed the electroweak and strong force into the larger gauge group SU (3) ×
SU (2) × U (1)Y , which builds the base for the standard model of particle physics in its
modern form.

1.1.2 Physics beyond the Standard Model

As of today, the standard model of particle physics and Einstein’s theory of general
relativity serve as the foundation to describe the four fundamental interactions of our
universe. While this approach has proven outstandingly successful in many aspects,
there exist several open problems which motivate the search for new physics at higher
energy scales. Frequently discussed issues include but are not limited to the following:

� The standard model does not include gravity and is therefore regarded an effective
rather than a fundamental theory. On the other hand, general relativity is a classical
theory and might not be valid at small length scales. Naive approaches to formulate
a quantum theory of gravity based on general relativity typically lead to nonrenor-
malizable models suffering from ultraviolet divergences, rendering straightforward
implementation into the standard model difficult.

� The current theories fall short of explaining several cosmological observations such
as galaxy rotation curves or the accelerated expansion of the universe. Only about
5% of the energy content in our universe can be described by the standard model.
Approximately 25% are presumed to manifest in the form of dark matter, the
remaining 70% as dark energy arising from a positive cosmological constant. The
standard model does neither provide a viable candidate for dark matter nor an
explanation for the small value of the cosmological constant.

� Naively, one would expect quantum corrections to make the renormalized mass of
the Higgs boson very large. In order to correctly reproduce the comparatively low
mass of the Higgs boson, its bare mass has to be fine-tuned to a high degree. This
is commonly called the hierarchy problem. While not posing an inconsistency of
the theory, the necessity for such fine tuning as well as the large number of free
parameters of the standard model are often considered unnatural.
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Considering how the unification of existing frameworks lead to new insights and a better
understanding of the theories themselves in the past, it is hoped that a unified descrip-
tion of all fundamental forces will help to resolve these issues as well. However, as the
underlying theories got more complex in nature, the process of unification turned out to
do so as well.

1.1.3 Towards a Theory of Everything

A first natural approach to continue to process of unification was to embed the standard
model into a larger gauge group such as SU (5) [13] or SO (10) [14]. Such models are
commonly referred to as Grand Unified Theories (GUTs). One interesting property
is that their high degree of symmetry allows them to automatically predict seemingly
arbitrary phenomena like the relative strength of the interactions or the quantization of
the U (1)Y charge. While certainly a viable first step, GUTs are strongly constrained by
experimental observations such as the minimum lifetime of protons, which have ruled out
many of the simpler models.

Another important building block of many modern theories in high energy physics is
the idea of Supersymmetry (SUSY ) [15–17]. Supersymmetric models base on a unique ex-
tension of the Poincaré algebra, the so-called super-Poincaré algebra, which introduces ad-
ditional fermionic generators giving rise to a new symmetry between bosons and fermions.
Most notably, the Minimally Supersymmetric Standard Model (MSSM) was long consid-
ered a promising candidate to remedy some of the standard model’s shortcomings. In
this model, the existence of a superpartner to each particle leads to the cancellation of
first-order contributions to the Higgs mass, thereby avoiding the necessity for fine tuning.
This comes, however, at the high price that the number of free parameters increases to
over 100, and several other ad-hoc mechanisms are required to circumvent problems such
as the proton decay.

Following the ideas of GUTs and supersymmetry, several more elaborate theories
were constructed. A final major step towards the development of modern string theory
is based on the idea that the four fundamental interactions might arise from an under-
lying higher-dimensional Supergravity theory compactified to four dimensions [18–22].
While suffering from similar shortcomings as previous approaches to quantum gravity
and grand unification, it was the idea to interpret supergravities as low-energy limits of a
corresponding string theory which eventually led to the development of Superstring and
M-Theory as promising candidates for a true Theory of Everything.

1.1.4 A brief Overview of String Theory

As of today, there exist several approaches to address the issues of quantum gravity
and unification. Some promising candidates include the frameworks of of Loop Quan-
tum Gravity [23–32] (see also [33, 34] for an introduction to the topic), Noncommutative
Geometry [35,36] and String Theory, the last of which will be in the focus of this thesis.
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Bosonic String Theory

The origins of string theory reach back to the late 1960, at which time it was developed
as a model for the strong nuclear force [37–42]. Despite the inital idea becoming obsolete
after the advent of quantum chromodynamics, the interest in string theory rekindled
after a massless spin-2 excitation encountered in vibrating closed strings was found to
match with the properties of the graviton, the hypothetical messenger particle of the
gravitational interaction [43, 44]. This eventually led to the development of Bosonic
String Theory formulated in terms of the Polyakov Action

SPolyakov =
1

2πα′

∫
Σ

d2σ
√
hhαβgmn∂αx

m∂βx
n (1.1.1)

describing the two-dimensional surface of the worldsheet Σ swept out by a string moving
through some D-dimensional target space M . Here, hαβ = hαβ (σ0, σ1) defines the world-
sheet metric, gmn = gmn

(
x0, . . . , xD−1

)
the target space metric, and the slope parameter

α′ is related to the fundamental string length scale ls by ls = 2π
√
α′. The worldsheet

coordinates σα = (τ, σ) contain one time- and one space-like direction. The target-space
coordinates xm, m = 0, . . . D− 1 can be interpreted as bosonic fields living on the world-
sheet and are therefore eponymous for bosonic string theory. In the quantized theory,
the Fourier modes of the xm operators take the role of vibration modes of the string
and carry quantum numbers of the D-dimensional Poincaré group. Heuristically, one can
thus interpret particles in string theory as manifestations of different excitations of the
string.

A peculiar feature of this framework is that preservation of symmetry under Weyl-
rescalings hαβ (σ) → e2Λ(σ)hαβ (σ) at the quantum level forces strong constraints on the
target space. More precisely, cancellation of the Weyl anomaly for bosonic strings requires
the dimension of M to take the value D = 26. Since higher-dimensional spacetimes are
in clear contradiction to experimental observations, a common task in string theory is
to find viable methods to compactify extra dimensions in such a way that they become
unobservable at low energies. This will also be one of the main issues of this thesis.

Before delving deeper into the details, let us, however, briefly summarize the strengths
of bosonic string theory:

� As mentioned in the beginning of the paragraph, the closed string spectrum always
contains a massless spin-2 particle which can be identified with the graviton. This
raised hopes that string theory is a viable candidate for a quantum theory of gravity.

� By generalizing the Polyakov action (1.1.1) to contain additional background fields,
cancellation of the Weyl anomaly forces certain constraints on the target-space
metric. At low energies, these conditions reduce to Einstein’s equations, showing
that the bosonic string can reproduce general relativity. The theory furthermore
predicts corrections to Einstein gravity at high energies.

� In replacing point-like fundamental objects by finitely-sized strings, some of the
major issues related to field theories can be avoided. This in particular includes
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the occurrence of ultraviolet divergences and spacetime singularities, both of which
had plagued field-theoretical approaches to quantum gravity for a long time.

While these properties qualify the framework as a viable starting point, it also suffers
from shortcomings. Most notably, two major problems eventually led to bosonic string
theory being replaced by more sophisticated approaches.

� The spectrum of bosonic string theory always contains a state with negative squared
mass. Excitations of such states are called tachyons and cause the ground state to
become unstable if no further modifications of the theory are included.

� The spectrum does not contain fermionic excitations of the target space. The theory
is therefore incapable of describing the matter content of our universe.

These issues were eventually addressed by including fermionic degrees of freedom and
supersymmetry into the framework, which led to the development of modern Superstring
Theories.

Superstring Theory

After the GSO-projection [45] enabled string theorists to define a first family of (tachyon-
free) consistent Superstring Theories, interest in the subject eventually surged in 1984
and 1985 with the development of the Green-Schwarz mechanism [46] and the discovery
of Heterotic String Theories [47]. This era is today commonly referred to as the First
Superstring Revolution and marks the beginning of string theory being widely considered
one of the most promising candidates for a theory of everything. Similar to bosonic string
theory, it was found that cancellation of the Weyl anomaly constrains the target space
dimension to the value D = 10. By 1985, five stable and consistent supersymmetric
extensions to string theory had been constructed:

� Type I Superstring Theory describes open and closed unoriented superstrings
with N = (1, 0) supersymmetry. It is thus a chiral theory. Its low-energy descrip-
tion is given by type I supergravity coupled to an N = 1 supersymmetric SO (32)
Yang-Mills theory.

� Type II Superstring Theories describe oriented closed strings. Type IIA Su-
perstring Theory is a non-chiral theory with N = (1, 1) supersymmetry, Type IIB
Superstring Theory its chiral counterpart with N = (2, 0) supersymmetry. Their
respective low-energy limits are described by type IIA and IIB supergravity.

� Heterotic String Theories utilize an oriented closed hybrid of the type I su-
perstring and the bosonic string with N = (1, 0) supersymmetry. There exist two
subtypes, HE and HO, differing in their ten-dimensional gauge groups E8×E8 and
Spin (32) /Z2, respectively. Their low-energy limits are described by corresponding
N = 1 supersymmetric Yang-Mills theories coupled to type I supergravity.
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Dualities and M-theory

While the known consistent string theories themselves are promising candidates to provide
a unified description of all elementary particles and their interactions, the fact that there
exist five distinct ones of them might raise doubts whether they are truly the right
approach to construct a theory of everything. This issue was eventually settled by a
range of discoveries made in the early 1990s, a period which later became known as the
Second Superstring Revolution.

A first major finding of this era was that the five seemingly distinct super- and het-
erotic string theories are in fact related by various highly non-trivial transformations,
called dualities. This not only raised hopes that string theory might indeed provide
a unique description of all fundamental forces, but also revealed that an appropriate
description of string theory requires a new understanding of some of the most basic prin-
ciples particle physicists had relied on for decades. Most notably, some manifestations
T-duality (also referred to as “target-space-duality”) [48,49] gave rise to an equivalence
between large and small geometries, while S-duality (“strong-weak-duality”) [50, 51] re-
lates regimes of strong and weak coupling. These insights had a major impact on the
mathematical framework of string theory and raised numerous new questions related to
it, some of which will be among the core issues of this thesis.

Following the discovery of T- and S-duality, it was later shown that their correspond-
ing transformations can be embedded into a more general form called U-duality (“unified
duality”). This finding sparked the idea that all five super- and heterotic string theories
might be realizations of a more fundamental theory [52–54], today commonly known as
M-theory (see also figure 1.1 for an illustration). Since the ten-dimensional supergravi-
ties which describe the low-energy limits of the consistent string theories are known to
descend from a unique eleven-dimensional supergravity, a natural assumption is that the
latter should be reproduced as the low-energy limit of M-theory. Interestingly, it could be
concluded from earlier findings [20, 55] that – rather than on strings – M-theory is most
likely based on supermembranes, -fivebranes and maybe further objects. As of today, the
problem of finding a complete quantum mechanical description of M-theory still remains
open.

I HO HE IIA IIB

M-Theory

S
S

T T

strong-coupling
limit

Figure 1.1: M-theory and the Web of Dualities. “S” and “T” indicate the respective
duality transformation between different models.
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Further Developments and Open Problems

Despite the search for M-theory still going on, large progress has been made in other
directions throughout the last three decades. Among the most important findings was
Polchinski’s description of D-branes [56], which today play an important role in model
engineering and string cosmology. Furthermore, Maldacena’s conjectured AdS/CFT cor-
respondence [57] had implications far beyond the field of string theory and is now applied
to areas reaching from cosmology to as far as solid state physics. Similarly, Mirror Sym-
metry (see [58–60] for detailed reviews on the topic), which is conjectured to be a highly
complex manifestation of T-duality [61], has had a great influence on various fields of
pure mathematics such as enumerative geometry.

On the other hand, there are a number of open questions which are still subject to
research today. Three particular such topics which will be in the focus of this thesis are
the issue of moduli stabilization, the landscape problem and the role of nongeometry in
string theory.

The term moduli stabilization describes a phenomenological issue encountered when
trying to relate ten-dimensional string theories to four-dimensional physics. It was found
in the 1980s that, in order to obtain N = 1 or N = 2 supersymmetric theories in four
dimensions, the six extra dimensions of string theory commonly have to be compactified
on a Calabi-Yau manifold [62]. While this poses strong constraints on the theory, there
is no mechanism which fixes the choice to one specific such Calabi-manifold, and there
can exist infinitesimal deformations of a manifold under which the Calabi-Yau property
is preserved. Such deformations manifest as massless scalar fields – so-called moduli –
in the effective four-dimensional theory and pose a severe contradiction to experimental
observations. The development of viable methods to get rid of these undesired scalar
fields is still an active field of research in string phenomenology.

One approach to achieve this goal are flux compactifications. Such models base on
the simple idea to relax some of the conditions proposed in conventional Calabi-Yau
compactifications and allow for the presence of background fields on the internal manifold.
The flux of these fields through the homological cycles of the manifold then gives rise
to an additional scalar potential which can fix parts of the moduli [63–68] (see also
[69] for a detailed review on the topic). But while these results can be considered an
important step, they also raised new questions: As it turns out, the duality relations
between different string theories imply the existence of new objects arising as duals to
the background fluxes, which seem to play an essential role in acquiring full moduli
stabilization. However, these objects elude a description in terms of the commonly used
framework of differential geometry and were therefore assigned the name nongeometric
fluxes [70–72]. The phenomenon of nongeometry in string theory later became a subject
research itself (see also [73] for a detailed review on the topic), and major parts of this
thesis will be devoted to newly-developed frameworks enabling a unified mathematical
description of geometric and nongeometric fluxes.

Finally, another issue arising in the context of string compactification is the so-called
landscape problem. Due to neither a specific compactification manifold nor a correspond-
ing configuration of background fluxes being fixed or preferred, the number of string
vacua is thought to be extremely large, with famous estimates reaching from 10500 [74] or
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101500 [75] to as high as 10272000 [76]. This of course has strong implications regarding how
much fine tuning is required to construct a theory of everything based on the framework
of string theory. As a consequence, one of the main challenges in string phenomenology is
to analyze the statistical and mathematical structure of the string landscape in order to
resolve the question whether and how realistic solutions can be constructed. This topic
will be another major focus of this thesis.

1.2 Outline of Topics

The purpose of this work is twofold. One the one hand, a major aim is to study the
physical and mathematical nature of dualities and their potential application to open
problems of string theory and beyond. On the other hand, we also want to build upon
recent developments in the areas of nongeometry and extended field theories to address
new questions arising from the very presence of dualities. The thesis is structured as
follows:

� Chapter 2 provides a brief overview of the elementary concepts and technical tools
which build the foundation for the remaining parts of the work. We begin by
outlining the idea of higher-dimensional theories and their compactification to four
dimensions. Based on instructive examples, we demonstrate how the issue of moduli
stabilization poses a major challenge to the construction of phenomenologically
accurate models and how it can be addressed by introducing background fluxes
in the compact dimensions. Following a short discussion of dualities in field and
string theory, we then present a first instance of a nongeometric background arising
naturally from T-duality transformations of such fluxes. The topics are dealt with
on a basic level, with the focus being set on heuristic explanations to provide the
reader an intuitive understanding of the methods used throughout the following
chapters. The overview is concluded by a short summary and a discussion of open
problems.

� In chapter 3 we delve deeper into the phenomenology of type II superstring theories.
We start with a brief discussion of their low-energy spectra before elaborating on
the role of Calabi-Yau geometry in string compactifications. The concepts are then
applied to relate the type IIA and IIB actions to that of four-dimensional N = 2
supergravity. The chapter is concluded by a brief discussion of Mirror Symmetry
and open problems of naive Calabi-Yau compactifications.

� Chapter 4 introduces the framework of double field theory as a T-duality covari-
ant extension of conventional field theory. We discuss the structure of T-duality
transformations in more detail and demonstrate how the notions of differential ge-
ometry can be generalized such that dualities become a manifest symmetry of a
given theory. Topics of particular importance include generalized diffeomorphisms
and Lie derivatives, generalized fields and consistency constraints of the formalism.
The concepts are then applied to formulate an Einstein-Hilbert-like action for dou-
ble field theory and to derive its (projected) equations of motion. The chapter is
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concluded by a brief outlook on U-duality covariant exceptional field theories and
a summary of the presented topics.

� In chapter 5 the framework of double field theory is applied to explicitly perform
dimensional reductions of type II theories with all geometric and nongeometric
fluxes of the T-duality chain turned on and all moduli stabilized. The elaborations
are mainly based on [77]. We first show how the flux formulation of double field
theory provides a natural interpretation of fluxes as local operators acting on fields.
Building upon previous works [78, 79], the type IIA and IIB scalar potentials are
then reduced on Calabi-Yau three-folds and K3× T 2, thereby generalizing various
concepts and introducing an additional set of generalized dilaton fluxes giving rise
to non-unimodular gaugings in four dimensions. Following this, we extend our
discussion of Calabi-Yau three-folds to the kinetic terms and derive the full four-
dimensional action of N = 2 gauged supergravity. The chapter is concluded by a
short discussion of related work and an outlook on future developments in the field.

� Chapter 6 focuses on the role of dualities and consistency constraints in type IIB
orientifold compactifications and is mainly based on [80]. We start with a brief
discussion of orientifold projections as a viable way to obtain phenomenologically
favorable D = 4 N = 1 supergravities from type IIB theory. We then delve deeper
into the mathematical structures and show how an important constraint called
the tadpole cancellation condition, along with various dualities, greatly reduces the
number of physically-distinct and trustable vacua obtained from type IIB theory
compactified on the orientifold T 6/Z2 × Z2. We discuss three settings with in-
creasing degree of generality and perform an in-depth analysis of the mathematical
structures underlying their space of solutions as well as the statistical distributions
of their vacua. The reliability of solutions in light of commonly used approxima-
tions and phenomenological implications are discussed in detail. The chapter is
again concluded by a short summary of results and an outlook on future directions
of research.

� Chapter 7 concludes the thesis and provides an outlook on future developments.

This thesis covers a wide variety of topics in and related to string theory. While
the structure is kept self-contained as much as possible, some familiarity with the basic
notions of differential geometry and algebraic topology is highly favorable in order to ob-
tain a deeper understanding of the discussed topics. The most important definitions and
conventions used throughout this work are provided in appendix A. We will furthermore
employ natural units and set the string slope parameter α′ to 1 for the remainder of this
work.

1.3 Publications

Several publications have grown out of the research conducted for the completion of this
thesis. Chapters 5 and 6 are based on and in large part identical to the works
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� P. Betzler and E.Plauschinn, “Dimensional reductions of DFT and mirror
symmetry for Calabi-Yau three-folds and K3× T 2”, Nucl. Phys. B933 (2018)
384-432, 1712.08382.

� P. Betzler and E.Plauschinn, “Type IIB flux vacua and tadpole cancellation”,
Fortschr. Phys. 67 (2019), no. 11 1900065, 1905.08823.

In addition, further results which are only loosely connected to the topic of this thesis
are presented in

� P. Betzler and S. Krippendorf, “Connecting dualities and machine learning”, Fortschr.
Phys. 68 (2020), no. 5 2000022, 2002.05169.
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Conceptual Preliminaries





Chapter 2

(Flux) Compactifications and
Dualities

Before delving into the details of current research topics, this chapter shall provide an
instructive overview on the mathematical framework which builds the foundation of this
thesis. Although often highly technical in nature, many of the ideas encountered in the
following chapters can be traced back to concepts introduced in the following sections.

2.1 Kaluza-Klein and Flux Compactifications

While studied most thoroughly in the context of string theory, the idea of constructing
physical theories based on compactified higher-dimensional spacetimes originated in the
1920s. In their pioneering works [81–83], Kaluza and Klein elaborated a unified model of
gravity and electromagnetism based on a curved five-dimensional spacetime compactified
on a circle. The theory showed several strong points, such at its capability to reproduce
the four-dimensional Einstein and Maxwell equations and to provide a natural explana-
tion for the quantization of the electric charge. On the other hand, it also came with
various flaws such as the prediction of an unidentified scalar field and was therefore
discarded shortly after its inital development.

Nevertheless, many of the technical tools used by Kaluza and Klein as well as the
conceptual issues of the theory carry over to string compactifications in a more or less
straightforward way, rendering it an ideal toy model for the topic.

2.1.1 Massless Scalar Field in Flat Five-Dimensional Spacetime

A well-suited example to get familiar with the idea is the case of a massless scalar field
φ̂(xm) = φ̂ (xµ, y) living in a flat five-dimensional spacetime with one direction y ∼
y+ 2πR compactified on a circle of radius R [84]. The action then takes the simple form

S =
1

2

∫
d4x dy ∂mφ̂∂

mφ̂, (2.1.1)
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giving rise to the equations of motion

�φ̂ = 0 ⇔ ∂µ∂
µφ̂+ ∂2

y φ̂ = 0. (2.1.2)

By periodicity along the y-direction, φ̂ can be expanded as a Fourier series

φ̂ (xµ, y) =
∞∑

k=−∞

φk (xµ) e
iky
R , (2.1.3)

which enables us to reformulate the equations of motion (2.1.2) as

∂µ∂
µφk −

k2

R2
φk = 0. (2.1.4)

These relations can alternatively be obtained from the four-dimensional action

S =
1

2

∞∑
k=−∞

∫
d4x ∂µφk∂

µφk +
k2

R2
φkφk . (2.1.5)

In four dimensions, the model thus describes one massless scalar field φ0 and an infinite
tower of massive scalar fields {φk}k 6=0 with masses m2 = k2

R2 .
The idea of describing a higher-dimensional theory from a lower-dimensional view-

point is what is known by the term compactification in the narrower sense. Since exper-
imental constraints require the extra dimensions to be unobservable in four dimensions,
the radius R needs to be chosen sufficiently large such that the masses k2

R2 of the fields
{φk}k 6=0 lie, at least, beyond currently accessible energy scales. Taking this limit is com-
monly referred to as dimensional reduction of a theory.

The modus operandi of this simple example can be readily generalized to settings
encountered in string theory. To get an idea of this, notice that the normalized expressions

1√
2πR

e
iky
R are precisely the orthonormalized eigenfunctions of the Laplace operator ∂2

y

on the circle. On a more general level, the Laplace operator 4D of a D = (d+N)-
dimensional manifold M splits into its external and internal components as

4D = 4d +4N , (2.1.6)

and the massless components of a scalar or p-form gauge field in d dimensions are encoded
by the zero modes of the internal Laplacian 4N . In the language of differential geom-
etry, the corresponding differential-forms are called harmonic, and their space Hp (M)
is isomorphic to the pth de Rham cohomology group Hp (M) of M . The standard way
of performing dimensional reductions in superstring theory is therefore to expand the
ten-dimensional fields in terms of the cohomology bases of the compactification mani-
fold, thereby automatically taking into account only those fields which remain massless
in four dimensions. A remarkable feature of this approach is that one can study di-
mensional reductions on manifolds based mainly on their topological properties. This
shortcut proves highly valuable in string compactifications, where the metric of the com-
pactification space is rarely known explicitly.
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2.1.2 Pure Gravity on R1,3 × S1

Having the basic tools of dimensional reduction at hand, we are now ready to discuss
Kaluza and Klein’s theory of five-dimensional gravity. As will become clear soon, this
model nicely exemplifies the issue of moduli stabilization, which will be one of the major
topics of this thesis. The following discussion mainly follows the lines of [85], with some
additional information taken from the original works [81–83].

We once more consider a five-dimensional spacetime manifold with one periodic di-
rection y ∼ y + 2πR and metric ĝmn parameterized as

ĝmn = ϕ−
1
3

(
gµν + ϕAµAν ϕAµ

ϕAν ϕ

)
, (2.1.7)

where gµν (xµ, y) denotes the metric of the four-dimensional external space, ϕ (xµ, y) is
a scalar and Aµ (xµ, y) a U (1) gauge field. Following the ideas of general relativity, we
now split the metric into a ground state and small fluctuations,

ĝmn = 〈ĝmn〉+ δĝmn, (2.1.8)

the former of which we assume to describe the product R1,3 × S1 of four-dimensional
Minkowski spacetime and a circle,

〈ĝmn〉 =

(
ηµν 0
0 1

)
. (2.1.9)

The action

S =
1

2π

∫
d4x dy

√
−ĝ(5)R̂(5), (2.1.10)

is defined analogously to standard general relativity and depends only on the determinant
ĝ(5) of the metric ĝmn and the five-dimensional Ricci scalar R̂(5). Similar to the four-
dimensional case, the equations of motion,

R̂(5)
mn = 0, (2.1.11)

imply Ricci-flatness of the spacetime. Starting from this, we can now follow the familiar
recipe for dimensional reduction and expand the five-dimensional fields in terms of their
Fourier modes,

gµν (xµ, y) =
∞∑

k=−∞

gµν k (xµ) e
iky
R ,

ϕ (xµ, y) =
∞∑

k=−∞

ϕk (xµ) e
iky
R ,

Aµ (xµ, y) =
∞∑

k=−∞

Aµ k (xµ) e
iky
R .

(2.1.12)

The groundstate (2.1.9) is then reproduced by

g̊µν 0 = ηµν , ϕ̊0 = 1, Åµ 0 = 0, (2.1.13)



18 2. (Flux) Compactifications and Dualities

with all other modes vanishing. Truncating out all massive modes and integrating over
the internal space, the action (2.1.10) eventually reduces to [86]

S =
1

2

∫
d4x

√
−g(4)

0

[
R(4)

0 −
1

4
ϕ0Fµν 0F

µν
0 −

1

6ϕ2
0

∂µϕ0∂
µϕ0

]
. (2.1.14)

Here, Fµν 0 = ∂µAν 0−∂νAµ 0 denotes the field strength tensor of Aµ 0, and all expressions
are to be understood with respect to the fluctuations about the groundstate (2.1.13).
As can be seen, this model slightly missed the target of unifying gravity and electro-
magnetism into a single higher-dimensional theory as it contains an additional massless
scalar field ϕ0 descending from ϕ. The appearance of such undesired moduli is not iso-
lated to this particular setting and remains an important issue in modern approaches to
dimensional reduction.

Taking again a more general point of view, the problem not only carries over but
often worsens as the mathematical structure of the theory gets more intricate. As we
will see later, Calabi-Yau manifolds used in conventional string compactifications exhibit
various permissible deformations of their shape and volume, all of which preserve the
important Calabi-Yau property. This manifests in the appearance of a large number of
massless scalar particles in four dimensions, posing a severe contradiction to experimental
observations. Over the last decades, much effort has been devoted to the search for
mechanisms to get rid of the vacuum degeneracy and fix the moduli. One of the most
promising approaches to achieve this is known under the term flux compactifications.

2.1.3 Flux Compactifications

Conventional approaches to string compactification rely on the simplifying assumption
that there do not exist any background fields in the higher-dimensional spacetime. While
the presence of such background fields on the external component is indeed prohibited by
requiring Poincaré invariance, extending this assumption to the internal component lacks
physical justification. As it turns out, relaxing the constraint provides not only valuable
insights into the mathematics of string theory, but also important tools to address the
problem of moduli stabilization.

For a qualitative picture, consider some p-form field Cp with field strength Fp+1 living
on an arbitrary manifold M with non-trivial (p+ 1) th homology group Hp+1 (M) [87].
One can then define the flux of Fp+1 through a non-trivial element Γ of Hp+1 (M) by∫

Γ

Fp+1 = n, (2.1.15)

where n denotes a coefficient contained in some field, commonly Z or multiples thereof.
This can be considered a generalization of the magnetic flux through a surface surrounding
a corresponding monopole charge, with Cp being sourced by a higher-dimensional Dp-
brane. It is, however, important to bear in mind that the mathematical concept extends
beyond this heuristic picture, and abstract fluxes can be defined without the pictorial
device of charged sources.
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Denoting the basis of Hp+1 (M) by
(
σ1, . . . σb

p+1
)

, a particular field configuration of

Fp+1 can be uniquely described by a corresponding vector
(
n1, . . . nbp+1

)
, where∫

σi

Fp+1 = ni. (2.1.16)

Now, similarly to Maxwell’s theory of electromagnetism, turning on such field strengths
comes with an energetic cost

V =

∫
M

Fp+1 ∧ ?Fp+1 (2.1.17)

depending on the metric of the internal manifold. The presence of Fp+1 therefore creates
a scalar potential term V , possibly fixing certain geometric properties of M when V is
minimized.

Again, this abstract example only illustrates the basic concepts of flux compactifica-
tions. More details as well as concrete settings of flux compactifications in string theory
will be addressed in chapters 5 and 6. Comprehensive reviews on the topic can be found
in [69, 87, 88]. It is also important to stress that a naive approach to flux compactifica-
tions can only fix parts of the moduli appearing in string compactifications. There exist
several methods to construct models with all moduli stabilized. The approach utilized
in this thesis builds upon the phenomena of dualities and nongeometry, which shall be
discussed next.

2.2 Dualities and Nongeometry

The phenomenon of dualities is encountered in many branches of physics and has been
known long before the development of string theory. Heuristically, dualities describe
nontrivial one-to-one mappings between seemingly distinct physical theories, effectively
rendering them different descriptions of the same physical reality. The consequences
are twofold: On the one hand, dualities can map complicated or infeasible tasks in one
theory to a simpler task in another theory, thus serving as a valuable tool to facilitate the
analysis of existing models. On the other hand, the existence of more than one equivalent
description of the same physical situation implies that there is still an essential aspect
of the theories which is not yet completely understood. In some instances, the very
presence of dualities calls into question some of the most fundamental concepts such
as the notions of “large” and “small” geometries in string theory or “hot” and “cold”
systems in statistical physics. We will next discuss some of the simplest manifestations of
dualities in field and string theory before delving deeper into their mathematical structure
in chapter 4.

2.2.1 Electromagnetic and S-Duality

A very simple example of a (self-)duality in classical physics is that of Maxwell’s theory of
electromagnetism [89]. To get familiar with the concept, consider the Maxwell equations
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∇ ~E = %, ∇× ~E +
∂ ~B

∂t
= 0,

∇ ~B = 0, ∇× ~B − ∂ ~E

∂t
= ~j.

(2.2.1)

Assuming for the moment that the theory discribes fields in a vacuum, we can set the
source terms %,~j to zero, in which case it is easy to check that the complete set of
equations remains invariant under the transformations

~E → ~B, ~B → − ~E. (2.2.2)

In this particular setting, electric and magnetic fields are thus treated on equal footing,
and the assigment of names is pure convention. This characteristic feature of electromag-
netic waves raised speculations whether there should also exist magnetic source terms
σ,~k. The Maxwell equations could then be modified to take the forms

∇ ~E = %, ∇× ~E +
∂ ~B

∂t
= −~k,

∇ ~B = σ, ∇× ~B − ∂ ~E

∂t
= ~j,

(2.2.3)

and self-duality could be restored by extending the mappings (2.2.2) to

~E → ~B, ~B → − ~E,

%→ σ, σ → −%,
~j → ~k, ~k → −~j.

(2.2.4)

While a naive implementation of magnetic source terms is in clear contradiction to Gauss’
law, there have been shown to exist several structures such as the Dirac string [90] or
’tHooft-Polyakov monopoles [91,92] which can effectively realize magnetic monopoles at
least on the mathematical level. A particular feature of the former is that the existence
of such monopoles requires the electric and magnetic elementary charges e, g to satisfy
the condition [93]

eg = 2πn ∈ Z, (2.2.5)

thereby automatically requiring quantization of the elementary charges. Since the du-
ality transformations (2.2.4) exchange the roles of the electric and magnetic fields, the
respective elementary charges effectively get inverted. The electromagnetic duality thus
maps between strong and weak coupling regimes and can be considered a simple example
of a strong-weak duality.

Delving a bit deeper into the details, the Dirac string should be considered with
caution since it defines a singular solution to Maxwell’s equations. This flaw can, however,
be remedied by considering certain grand unified theories, where structures such as the
’tHooft-Polyakov monopole arise as topological solitons without any singularities. A
characteristic feature of such solutions is that they are often finitely-sized objects and
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behave like particles only asymptotically. It is another common property of strong-weak-
type dualities to contain mappings between such topological solitons and point particles.

It was precisely the presence of solitonic monopoles in the spectrum of the Georgi-
Glashow model [13] which prompted Montonen and Olive to conjecture the existence of a
similar type of electromagnetic duality for grand unified theories [50]. The idea was then
refined by Witten [94], which eventually led to the discovery of a more general duality
group SL (2,Z) in N = 4 supersymmetric Yang-Mills theories. In this setting, the gauge
coupling constant e and the theta-angle θ can be combined to form a complex coupling

τ =
θ

2π
+ i

4π

e2
, (2.2.6)

on which the SL (2,Z) duality group acts as(
a b
c d

)
· τ :=

aτ + b

cτ + d
,

(
a b
c d

)
∈ SL (2,Z) . (2.2.7)

A similar type of transformation was later found to relate various types of superstring
theories [51], at which time it was assigned the name S-duality. Notice also that the
above mappings reduce to the familiar electromagnetic duality e→ −4π

e
when θ = 0 and

a = 0, b = −1, c = 1, d = 0.

2.2.2 T-Duality and Mirror Symmetry

In addition to S-duality, string theory contains new types of dualities which originate
purely from the extended nature of strings. Among the most important ones is a class
of highly non-trivial relations between different target space geometries, known by the
name T-duality.

Circular Compactifications of the Bosonic String

To illustrate the idea, we begin by considering a closed bosonic string in D = 26 dimen-
sions, with one direction X25 compactified on a circle of radius R [95]. While sharing
many similarities with the settings discussed in section 2.1, a particular property of this
model is that closed strings can wind around the internal direction. Such different wind-
ing states can be uniquely described by a so-called winding number p̃ (see also figure 2.1),
which, due to the topology of the circle, is invariant under continuous transformations.
They thus define a conserved charge and are an inherent property of the theory. Depend-
ing on the number of windings around the circle, a closed string has to satisfy different
boundary conditions

X25 (τ, σ + 2π) = X25 (τ, σ) + 2πp̃R (2.2.8)

ensuring periodicity along internal direction. From here, one can proceed by splitting the
bosonic fields into linear combinations of left- and right-movers,

XM (τ, σ) = XM
L (τ + σ)±XM

R (τ − σ) , M ∈ {0, 1, . . . , 25} , (2.2.9)
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and perform mode expansions analogously to the previously discussed settings. After tak-
ing into account the boundary condition (2.2.8) and a somewhat lengthy calculation [95],
one eventually arrives at the mass formula

m2 =
( p
R

)2

+

(
p̃R

α′

)2

+
2

α′

(
N + Ñ − 2

)
(2.2.10)

and the level-matching condition

N − Ñ = pp̃ (2.2.11)

ensuring worldsheet reparameterization invariance under constant shifts of σ. Here, p
denotes the (quantized) total momentum of the string along the internal direction, N

and Ñ describe the left- respectively right-moving oscillation modes of the string, and
we included the slope parameter α′ = 1 explicitly for pedagogical reasons. Taking a
closer look at (2.2.10), one can see that the mass spectrum contains contributions of a
zero-point energy term, the internal momentum, the winding number and the left- and
right-moving oscillation modes.

Figure 2.1: Various topologically distinct configurations of a string winding around a
two-dimensional cylinder. From top to bottom: p̃ = −1, 0, 1, 2.

At this point, one might notice that the contributions originating from the internal
momentum p and the winding number p̃ show a very similar structure, the only difference
being their inverse scaling behavior with respect to the radius R. This analogy extends
so far that the two equations get mapped onto themselves when exchanging the roles of
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p and p̃ while at the same time inverting the radius,

p↔ p̃, R↔ α′

R
. (2.2.12)

A remarkable feature of this result is that the inversion of the radius renders small and
large compactification spaces physically equivalent. In particular, there exists a self-dual
radius R = α′, which defines a lower bound for all physically-distinct values of R. This
is a simple example of a T-duality transformation and nicely demonstrates how some of
the most fundamental concepts of geometry can break down in string theory.

Buscher Rules

Circular compactifications describe only one particular instance of T-duality in string
theory, and there exist various approaches to generalize the idea. One concept which
will be of essential importance for the upcoming sections and chapters are the so-called
Buscher rules [96, 97]. To illustrate the idea, we follow the lines of [98] and consider a
slightly generalized version of the Polyakov action (1.1.1) with a possibly non-vanishing
Kalb-Ramond two-form field B. Employing conformal gauge hαβ = diag(−1, 1) and
complex worldsheet coordinates, the action takes the form

S =
1

2π

∫
Σ

d2z (gmn +Bmn) ∂xm∂̄xn, (2.2.13)

where the bosonic fields xm can again be interpreted as coordinates of the D-dimensional
target space M . Assume now that there exists an Abelian 2π-periodic isometry for g,
generated by a corresponding Killing vector field k with Lkg = 0. Furthermore, let
LkB = dω for some one-form ω on M . One can then show that the transformation given
by δxm = εkm is a symmetry of the action.

Using diffeomorphism-invariance, the coordinates can be chosen in a way that the
isometry k acts as translation in one particular direction xr. Similarly, the B-field can
be brought to a form satisfying LkB = ∂

∂r
B = 0 via spacetime gauge transformations

B 7→ B + dχ with χ ∈ Ω1 (M), such that both fields g and B do not depend on the
isometric direction. Under these assumptions, the original action (2.2.13) can be obtained
from another sigma-model where the isometry appears as a gauge symmetry1. More
precisely, consider the “master action”

SMaster =
1

2π

∫
Σ

d2z
[
grrAĀ+ (grp +Brp)A∂̄x

p + (gpr +Bpr) ∂x
pĀ+

+ (gpq +Bpq) ∂x
p∂̄xq + θ

(
∂Ā− ∂̄A

)]
,

(2.2.14)

with some gauge field A = A (z) dz + Ā (z̄) dz̄, a Lagrange multiplier θ and the indices
p, q running over all values except for r. Now there are two routes to follow. Integrating
out θ yields the equations of motion

∂Ā− ∂̄A = 0, (2.2.15)

1This method is referred to as “gauging the isometry” in most literature.
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which in topologically trivial worldsheets Σ can be solved by letting the fields A and Ā
become pure gauge,

A = ∂θ , Ā = ∂̄θ . (2.2.16)

Inserting these relations into (2.2.14) restores the original action (2.2.13), with θ taking
the role of the coordinate xr. On the other hand, integrating out the gauge field A gives
rise to the equations of motion

(grp +Brp) ∂̄x
p + grrĀ = 0,

(gpr +Bpr) ∂x
p + grrA = 0,

(2.2.17)

and their solutions

Ā = −grp +Brp

grr
∂̄xp − 1

grr
∂̄θ,

A = −gpr +Bpr

grr
∂xp +

1

grr
∂θ.

(2.2.18)

Substituting these expressions back into the master action (2.2.14) leads to a dual action

S̃ =
1

2π

∫
Σ

d2z (g̃mn + B̃mn)∂xm∂̄xn, (2.2.19)

where the newly-introduced fields g̃ and B̃ are related to g and B by the Buscher rules

g̃rr =
1

grr
, g̃rq =

Brq

grr
, g̃pq = gpq −

gprgrq +BprBrq

grr
,

B̃rq =
grq
grr

, B̃pq = Bpq −
gprBrq +Bprgrq

grr
.

(2.2.20)

Using a more involved approach, the above transformations can be generalized to sigma-
models with non-trivial dilaton background. Computing the Buscher rules for such set-
tings commonly requires consideration of path integrals at one loop, for which one obtains
the transformation behaviour [96,97]

φ = φ− 1

2
ln grr . (2.2.21)

Taking up the previous example of circular compactifications, the isometric direction is
given by the azimutal angle ϕ, and the above transformations correctly reproduce the T-
duality mappings (2.2.12) we encountered earlier. In the case of D-dimensional tori, the
T-duality transformations along the D different directions span the group O (D,D;Z),
which builds the basis for the construction of double field theory. This will be discussed
in more detail in chapter 4.

We should at this point remark that we kept our discussion of the Buscher roles on a
somewhat superficial level, and there exist several subtleties that have to be taken into
account to show that the dual models are truly equivalent as conformal field theories.
This was addressed in more detail in [98]. A generalization of the above approach to
non-Abealian isometries can furthermore be found in [99].
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Mirror Symmetry

While usually more intricate in nature, it is a common property of target-space du-
alities to draw connections between geometries that, at first glance, seem completely
unrelated or even antithetic. A particularly important example for this is Mirror Sym-
metry [100,58], which relates the complex and Kähler structures of Calabi-Yau manifolds
and is extensively studied various fields of pure mathematics [58–60]. Interestingly, this
highly complex duality could be traced back to simple T-duality transformations by
using standard string-theoretic methods. This postulated equivalence is known as the
SYZ-conjecture [61].

As we will see in the following sections, T-duality not only unifies different concepts
geometry, but also gives rise to new structures which cannot be described in terms of the
widely used frameworks. Much of this thesis is devoted to studying recently-developed ex-
tensions of field theory and geometry which allow for an integration of such nongeometric
phenomena.

2.2.3 Nongeometric Fluxes

In this subsection we consider a simple example of a generalized flux background with
nongeometric structures. The concept of nongeometry was first introduced in [70] and
elaborated further in [71, 72], which also serve as the main references for our review of
the topic. Some additional details and explanations are furthermore adopted from [73].

Three-Torus and H-Flux

Taking up our discussion in section 2.1.3, recall that there can exist non-trivial back-
ground fluxes through homological cycles of a compactification manifold. Considering
the case of a three-dimensional torus T 3 with coordinates x, y, z and line element

ds2 = dx2 + dy2 + dz2 , (2.2.22)

we allow for a non-trivial three-form flux H = Hxyz dx ∧ dy ∧ dz with∫
T 3

H = n , (2.2.23)

which can be realized by choosing

H = dB, B = nz dx ∧ dy. (2.2.24)

In order to model the topological properties of a torus, we furthermore assume the three
directions to be “rolled up” by identifying

(x, y, z) ∼ (x+ 1, y, z) ∼ (x, y + 1, z) ∼ (x, y, z + 1) . (2.2.25)

Since no component of the metric or B depends on the coordinates x or y, the setting
involves two isometries along the x- and y-directions.
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Twisted Torus and geometric F -Flux

As discussed in the previous subsection, T-duality transformations in isometric spaces
are described by the Buscher rules (2.2.20), which can be readily applied to the isometric
x- and y-directions in this case [70–72]. Doing so for the former will map the line element
and the B-field to

ds2 = (dx− F x
yz z dy)2 + dy2 + dz2 , B = 0 (2.2.26)

with F x
yz = n. This still shows some resemblance of the original structure, but with the

flux-quantum n now appearing in the line element. A particular consequence of this is
that the metric becomes globally ill-defined when naively identifying z ∼ z+1. This can,
however, be compensated for by introducing an additional shift of x by F x

yz y, leading
to the modified identifications

(x, y, z) ∼ (x+ 1, y, z) ∼ (x, y + 1, z) ∼ (x+ F x
yz y, y, z + 1) . (2.2.27)

Heuristically, this structure can be interpreted as a two-torus along the directions (x, y),
which gets twisted as one moves around a circle parameterized by z. It thus defines a T 2

fibration over S1, which is topologically distinct from T 3 and called a twisted torus. Since
the metric is still globally well-defined, the object F x

yz is often referred to as a geometric
flux.

T-fold and nongeometric Q-Flux

When performing an additional T-duality transformation along y, the line element and
B-field are mapped to

ds2 =
1

1 + (Qz
xy z)2

(dx2 + dy2) + dz2 , B =
Qz

xy z

1 + (Qz
xy z)2

dx ∧ dy , (2.2.28)

with Qz
xy = n. Unlike the previous settings, there now does not exist any diffeomorphism

which can relate the line element at z and z+1, and hence the metric is not globally well-
defined (see also [73] for a detailed discussion). For this reason, the obtained structure
is called a (globally) nongeometric background, and the object Q is accordingly classi-
fied as a nongeometric flux. Interestingly, the background can still be described in a
manifold-like way by additionally allowing for T-duality transformations as transition
functions between coordinate patches. Such structures were therefore assigned the name
T-folds [101].

Nongeometric R-space

While only the x- and y-directions define isometries in our considered setting, the authors
of the original works [70–72] suggested that another nongeometric object Rxyz might be
created by performing an additional T-duality transformation along the z-direction. Such
backgrounds are still poorly understood, and various arguments hint at structures which
lack even a local geometric description and are related to nonassociative structures [102,
103]. They are therefore often refered to as locally nongeometric backgrounds.
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T-duality Chain and Discussion

The subsequent creation of new fluxes and simultaneous modification of background
(non-)geometries on a torus can be summarized in a T-duality chain [70–72],

Hxyz
Tx←→ F x

yz
Ty←→ Qz

xy Tz←→ Rxyz

3-form flux twisted torus T-fold non-associative
background structures.

(2.2.29)
We should at this point remark that the above example is supposed to serve only as a toy
model, and there are various subtleties which require a more rigorous treatment. In par-
ticular, any results obtained from T-duality transformations of the present setting need
to be treated with caution since the considered background does not solve the string-
theoretical equations of motion. One the other hand, there exist numerous arguments
supporting the assertion that the structures encountered in this example are indeed rele-
vant for string theory. We will come back to this issue in the later chapters of this thesis.
An extensive review of the topic can furthermore be found in [73].

2.3 Summary

Having discussed the basic concepts of string compactifications and the challenges arising
from the presence of dualities, let us briefly summarize the most important aspects which
will play a major role for the remainder of this thesis:

� Naive approaches to dimensional reduction of field or string theories often come
with undesired massless scalar particles in four dimensions and are therefore insuf-
ficient to construct physically realistic models. This is called the problem of moduli
stabilization.

� One way to address the problem of moduli stabilization is to allow for the presence
of nontrivial background fields on the compactification space. The flux of such fields
through homological cycles can give rise to an additional scalar potential term in
the action which fixes parts of the moduli.

� Dualities connect different physical models or regimes which might seem unrelated
at first glance. This can be useful to make settings accessible which would otherwise
be hard to study.

� Despite their benefits, dualities also raise new questions regarding underlying struc-
tures of dual theories. In particular, their presence in string theory implies the ex-
istence of nongeometric fluxes which elude a description in the standard framework
of differential geometry.

The following chapters will focus on both the utilization of dualities to address open
problems in physics as well as the development of new frameworks to grasp their mathe-
matical nature. We will next discuss dimensional reductions of type II string theories in
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more detail, before applying the newly-developed formalism of double field theory (DFT )
to study a concrete example of a nongeometric flux compactification with all moduli sta-
bilized. Following this, it will be shown how the physical equivalance of theories induced
by dualities can be utilized to address the landscape problem and to estimate the proper
number of physically-distinct vacua of so-called type IIB orientifold compactifications.



Chapter 3

Calabi-Yau Compactification and
Type II Superstrings

We conclude this introductory part by delving deeper into the details of Calabi-Yau
compactifications and type II superstring theories. The presented setting will serve as
the starting point for our discussion of modern frameworks and recent developments in
the following chapters.

3.1 Type II Supergravities

The first important building block for our upcoming analysis are the ten-dimensional low-
energy limits of type IIA and IIB superstring theories. Since the focus of this work lies on
the topic of dimensional reduction, we will go straight to the corresponding supergravity
theories and refer the interested reader to the standard works [104,95,105] for a detailed
discussion of supersymmetric worldsheet theories. Throughout this thesis, we will fur-
thermore adopt the common convention and restrict our discussion to the bosonic part
of the spectra, while the fermionic part is assumed to be accessible by supersymmetry.

3.1.1 Type IIA Supergravity

The bosonic field content of type IIA supergravity can be split into its so-called Neveau-
Schwarz-Neveau-Schwarz (NS-NS) and Ramond-Ramond (R-R) sectors, which are named
after the corresponding worldsheet boundary conditions they originate from. The former
contains the ten-dimensional graviton ĝmn, the dilaton φ̂ and an antisymmetric rank-two-
tensor B̂mn called Kalb-Ramond field. The latter consists of a one-form field Ĉ1 and a
three-form field Ĉ3. In the string frame, the action takes the form [106]

S(IIA) =

∫
e−2φ̂

(
−1

2
R̂(10) ? 1(10) + 2dφ̂ ∧ ?dφ̂− 1

4
Ĥ3 ∧ ?Ĥ3

)
−1

2

(
F̂2 ∧ ?F̂2 +

ˆ̃
F 4 ∧ ?

ˆ̃
F 4

)
+ LCS,

(3.1.1)
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where R̂(10) denotes the ten-dimensional Ricci scalar and ?1 =
√
−ĝ(10) d10x is the ten-

dimensional volume form. The differential form field strengths of same degree are sum-
marized as

F̂2 = dĈ1, Ĥ3 = dB̂2,
ˆ̃
F 4 = dĈ3 − B̂2 ∧ dĈ1, (3.1.2)

and the topological Chern-Simons term is given by

LCS = −1

2

[
B̂2 ∧ dĈ3 ∧ dĈ3 −

(
B̂2

)2

∧ dĈ3 ∧ dĈ1 +
1

3

(
B̂2

)3

∧ dĈ1 ∧ dĈ1

]
. (3.1.3)

3.1.2 Type IIB Supergravity

Analogously to the type IIA case, the bosonic spectrum of type IIB supergravity splits
into its NS-NS and R-R sectors, with the former being identical to its IIA analogue and
the latter containing three even-degree differential form fields Ĉ0, Ĉ2, Ĉ4. The action in
the string frame reads [106]

S(IIB) =

∫
e−2φ̂

(
−1

2
R̂(10) ? 1(10) + 2dφ̂ ∧ ?dφ̂− 1

4
Ĥ3 ∧ ?Ĥ3

)
−1

2

(
F̂1 ∧ ?F̂1 +

ˆ̃
F 3 ∧ ?

ˆ̃
F 3 +

1

2
ˆ̃
F 5 ∧ ?

ˆ̃
F 5

)
+ LCS,

(3.1.4)

where

Ĥ3 = dB̂2,
ˆ̃
F 3 = dĈ2 − Ĉ0dB̂2,

ˆ̃
F 5 = dĈ4 −

1

2
Ĉ2 ∧ dB̂2 +

1

2
B̂2 ∧ dĈ2 (3.1.5)

and

LCS = −1

2
Ĉ4 ∧ Ĥ3 ∧ dĈ2. (3.1.6)

Unlike its type IIA counterpart, this action has to be supplemented by a self-duality

constraint
ˆ̃
F 5 = ?

ˆ̃
F 5. Taking this condition into account is a nontrivial task since a naive

implementation into the action (3.1.4) would lead to a vanishing kinetic term of F̃5 [107].
While there do exist more sophisticated ways to circumvent this problem [108], we here
follow the common approach and impose the constraint by hand at a later point in our
discussion.

Some further insights into the structure of type IIB theory can be obtained by trans-
forming this action to the Einstein frame. Rearranging the fields into complex quantities

τ̂ = Ĉ0 + ie−φ̂ and
ˆ̃
G3 = dĈ2 + τĤ3, the action can be brought to the form [109]

S(IIB) =

∫
1

2

−R̂(10) ? 1(10) − dτ̂ ∧ ?dˆ̄τ

2 (Imτ̂)2 −
1

2

ˆ̃
G3 ∧ ?

ˆ̄̃
G3

Imτ̂
− 1

2
ˆ̃
F 5 ∧ ?

ˆ̃
F 5


−1

8

Ĉ4 ∧
ˆ̃
G3 ∧

ˆ̄̃
G3

Imτ̂
.

(3.1.7)
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This formulation reveals a hidden symmetry of the action under under simultaneous
transformations

τ̂ → aτ̂ + b

cτ̂ + d
,

ˆ̃
G3 →

ˆ̃
G3

cτ̂ + d
, (3.1.8)

with ad− bc = 1. This corresponds to a SL (2,R) analogue of the Montonen-Olive-type
duality we encountered earlier in section 2.2.1 and reduces to SL (2,Z) after taking into
account quantum mechanical effects. The symmetry therefore reflects the self-duality of
type IIB superstring theory under S-duality as depicted in figure 1.1.

3.2 Calabi-Yau Compactifications

As we have seen in section 2.1, the properties of an effective four-dimensional theory
depend strongly on the geometry and topology of the chosen compactification manifold.
An essential question arising in superstring compactifications is therefore whether the
six extra dimensions have to be constrained in a certain way in order to obtain realistic
four-dimensional models.

Beside obvious tasks like obtaining the correct particle content of the effective theory,
a minimal requirement to achieve this goal is that some degree of supersymmetry is
preserved at string scale. It was found in [62] that preservation of at least minimal
supersymmetry can be ensured by restricting the choice of compactification manifolds
to a very specific class called Calabi-Yau manifolds. This type of manifolds had been
well-studied long before their relevance for string theory became known, and the fields of
complex and Kähler geometry provided a whole toolbox which could be readily applied to
string compactifications. We will devote the rest of this section to introducing the basic
notions of Calabi-Yau geometry, which will eventually enable us to apply the concepts to
type II superstring theories and generalize the ideas to nongeometric settings.

3.2.1 Calabi-Yau Manifolds

Due to the heavy mathematical content, we will here follow a top-down approach and
start right on an abstract level before discussing the most important notions of Calabi-
Yau geometry. For the remainder of this thesis, we adopt the following definition of a
Calabi-Yau manifold:

Definition. A Calabi-Yau manifold of complex dimension N (or Calabi-Yau N -
fold) CYN is a compact Kähler manifold of complex dimension N satisfying one of
the following equivalent conditions:

� CYN admits a Kähler metric with global holonomy group Hol (CYN) =
SU (N).

� CYN admits a unique, globally defined, nowhere vanishing and covariantly
constant holomorphic (N, 0)-form Ω.

� The canonical bundle of CYN is trivial.
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There exist several alternative definitions in literature. These include the two condi-
tions of Ricci-flatness and vanishing first Chern class, which are, however, weaker than
the above. It is furthermore common to relax the restriction of the holonomy group
to Hol (CYN) ⊆ SU (N), thus allowing for any compactification which preserves some
degree of supersymmetry rather than only those which break exactly three quarters of
the supersymmetry in ten dimensions. We will here restrict our discussion to the latter,
but it will become clear in the following chapters how most of the concepts can be gen-
eralized to proper subgroups of SU (N). For practical reasons, we furthermore assume
all Calabi-Yau N -folds CYN to be connected in the following sections and chapters.

One hardship faced in Calabi-Yau geometry is that there exist only few nontrivial cases
for which the form of the metric is known explicitly. However, many of the important
physical properties of Calabi-Yau compactifications can be studied by utilizing only their
topological structure and basic tools of complex and Kähler geometry. The following
elaborations will heavily rely on these frameworks, and a brief overview is provided in
appendix A.

Topology of Calabi-Yau Three-Folds

We learned in section 2.1.1 that the massless spectrum of a compactified theory can be
obtained by studying the fields corresponding to zero modes of the internal Laplacian
operator. A convenient way to perform dimensional reductions on a Calabi-Yau three-
fold CY3 is therefore to expand the ten-dimensional differential-form fields in terms of
the de Rham cohomology bases of CY3 and integrate the action over the internal space1.
The Calabi-Yau property thereby forces strong constraints on the topology of a manifold
and allows only for very specific combinations of Hodge numbers.

To begin, notice that complex conjugation and Hodge duality imply that the Hodge
diamond of CY3 has to be symmetric along its horizontal and vertical axes, giving rise to
the conditions

hp,q = hq,p ,

hp,q = h3−p,3−q ,
(3.2.1)

and fixing 10 of the 16 parameters. The dimension h0,0 of the zeroth de Rham cohomology
group can be trivially determined to equal one, fixing

h0,0 = h3,3 = 1, (3.2.2)

and, by uniqueness of the holomorphic three-form Ω ∈ Ω3,0 (CY3) one obtains

h3,0 = h0,3 = 1. (3.2.3)

Finally, a slightly more involved argument (see also [84] for a pedagogical discussion)
shows that SU (3) holonomy requires

h1,0 = h0,1 = 0, (3.2.4)

1We should remark at this point that the true golden standard way of performing dimensional re-
ductions is to integrate the ten-dimensional equations of motion over the internal space. While this is
not necessarily equivalent to doing so for the action, we will nevertheless follow the latter method as it
does lead to the correct results in the settings discussed in this chapter and is most commonly used in
literature.
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leaving a total of two free parameters, which can be arranged in a corresponding Hodge
diamond

1
0 0

0 h1,1 0
1 h2,1 h2,1 1 .

0 h1,1 0
0 0

1

(3.2.5)

3.2.2 Moduli Space of Calabi-Yau Manifolds

Proceeding with phenomenological considerations, recall that in our second example of a
dimensional reduction discussed in section 2.1.2, we found that the freedom to infinites-
imally change the geometry of the compactification manifold gave rise to the presence
of an undesired scalar particle in four dimensions. The problem of free moduli not only
persists but actually worsens in naive Calabi-Yau compactifications. In order to acquire
a deeper understanding of the issue, we next want to analyze the moduli space of Calabi-
Yau manifolds. A detailed discussion of the topic can be found, e.g., in [110,106,84].

Heuristically, moduli in string compactifications can be interpreted as deformations
that do not change the underlying structure of the compactification manifold in a “rele-
vant” manner. Similar to small changes in the radius of a circle, there exist infinitesimal
deformations of Calabi-Yau manifolds which do not spoil the Calabi-Yau property and
therefore manifest as massless scalars unless stabilized by fluxes or other mechanisms.

We start our analysis by considering a ten-dimensional metric ĝmn whose vacuum
expectation value,

〈ĝmn〉 =

(
ηµν 0

0
◦
gij

)
, (3.2.6)

we assume to describe a spacetime manifold R1,3×CY3. Notice that this is indeed a valid
ansatz as 〈ĝmn〉 satisfies the vacuum Einstein equations by Ricci-flatness of ηµν and

◦
gij.

We now proceed analogously to section 2.1.2 and consider small fluctuations δĝmn about
the vacuum. Here, the purely external components δgµν give rise to the four-dimensional
graviton and are not relevant to our discussion. Furthermore, components δgµj with
mixed external and internal indices correspond to one-forms on CY3 and therefore become
massive in four dimensions. The physically important information on the moduli space
is therefore encoded in the purely internal components δgij, and the moduli correspond
precisely to physically admissible deformations which preserve the Calabi-Yau property
of CY3. A minimal requirement for this is that the deformed metric

◦
gij+δgij still satisfies

the vacuum Einstein equations,

Rij = 0. (3.2.7)

Fixing diffeomorphism invariance and expanding up to linear order in δgij, this condition
can be brought to the the Lichnerowicz equation

∇CY3k∇k
CY3

δgij + 2Rikjlδg
kl = 0, (3.2.8)
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where the covariant derivative ∇CY3 and the raising of indices is to be understood with

respect to the non-perturbed metric
◦
gij. Now, the Kähler property of CY3 implies that

all components of the Riemann tensor except for those with precisely one holomorphic
and one antiholomorphic index in each antisymmetric pair of indices vanish. We thus
find that the equations arising for variations with mixed and purely (anti-)holomorphic
indices decouple, and the moduli space as a whole splits into two components,

MCY3 = MKC ×MCS, (3.2.9)

called the Kähler-class and the complex-structure moduli spaces. Here, the name of the
former is due to the (1, 1) variations δgab corresponding to deformations of the Kähler
form J = igab̄dz

a∧dz̄b̄, for which the Lichnerowicz equation (3.2.8) reduces to the simple
form

4CY3δgab̄ = 0. (3.2.10)

Employing a basis {ωi} of the (1, 1)-Dolbeault cohomology group ofH1,1(CY3), the moduli
can thus be expanded as

δgab̄ = vi (ωi)ab̄ , i = 1, . . . h1,1, (3.2.11)

where the coefficients vi manifest as massless real scalar fields in four dimensions and
are called Kähler-class moduli. It is common to slightly abuse notation and simply
write J = viωi rather than denoting the variation explicitly. The exact meaning of such
expressions is, however, commonly clear from the context.

An analysis of the complex-structure moduli space is less straightforward and shall
only be summarized here, while the interested reader is referred to [84] for a short discus-
sion and [111,112] for technical details. The essential insight is that the complex-structure
moduli allow for a similar expansion

δgab =
i

‖Ω‖2U
a

(χa)acd Ωcd
b, (3.2.12)

where {χa} denotes a basis of harmonic (2, 1)-forms, Ω is the holomorphic three-form of

CY3 and ‖Ω‖2 = 1
3!

ΩabcΩ
abc

. The expansion coefficients U a are massless complex scalar
fields in four dimensions and are called complex-structure moduli. The origin of their
name lies in a subtlety in the above transformations: Since any change in the purely
(anti-)holomorphic components of the metric away from zero would spoil the Kähler
property of CY3, such transformations have to be compensated for by a non-holomorphic
transformation. This will, however, alter the complex structure of the manifold, giving
rise to the name complex-structure moduli. Such changes in the complex structure are
closely tied to the holomorphic three-form Ω of CY3, thus assigning it a similar role as
J in the Kähler-class case. This analogy will be discussed more thoroughly in the next
subsection.

3.2.3 Special Geometry of Moduli Spaces

An important tool to handle the intricate structure of Calabi-Yau compactifications is
the framework of special geometry. We will next briefly review how the moduli spaces of
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type II theories give rise to special Kähler structures that can be utilized to facilitate the
procedure of dimensional reduction.

Kähler Class Moduli Space

The first step in performing dimensional reductions of supergravities is to expand the
ten-dimensional fields in terms of the cohomology bases of the internal space. Due to
symmetry considerations that will become clear soon, it is convenient to split the co-
homology groups into even and odd degrees. For the former, we define the bases by{

1(6)
}
∈ H0,0 (CY3) ,{

ωi

}
∈ H1,1 (CY3) ,

with i = 1, . . . h1,1{
ω̃i
}
∈ H2,2 (CY3) ,{

1
K ? 1(6)

}
∈ H3,3 (CY3) ,

(3.2.13)

where ?1(6) =
√
gCY3 dx6 denotes the volume form and

K =
1

3!

∫
CY3

J3 (3.2.14)

the total volume of CY3. These can be further summarized by setting ω0 := 1(6) and
ω̃0 := 1

K ? 1(6) and using the collective notation

ωI =
(
ω0, ωi

)
,

with I = 0, . . . h1,1

ω̃I =
(
ω̃0, ω̃i

)
.

(3.2.15)

The bases are furthermore chosen to satisfy the normalization relations∫
CY3

ωI ∧ ω̃J = δI
J. (3.2.16)

In the context of string compactifications, it is now common to combine the Kähler
moduli vi and the expansion coefficients bi of the internal Kalb-Ramond field to define a
complexified Kähler form

J =
(
bi + ivi

)
ωi =: tiωi. (3.2.17)

Notice that, in a sense, this symmetrizes the treatment of the Kähler class and complex-
structure moduli spaces by assigning complex degrees of freedom to each of them. The
complexified Kähler moduli can now be arranged in a (h2,1 + 1)-dimensional vector

X I =
(
1, ti
)
, (3.2.18)

which in turn can be used to define a holomorphic prepotential

F = − 1

3!

KijkX
iX jXk

X0
. (3.2.19)
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Here, the objects

Kijk =

∫
CY3

ωi ∧ ωj ∧ ωk (3.2.20)

are called the triple intersection numbers of CY3. Employing the shorthand notation
FI = ∂

∂X IF, the prepotential F and the holomorphic coordinates X I uniquely define the
Kähler potential KKC by

e−KKC = −i
(
X IFI −X

I
FI

)
= 8K. (3.2.21)

Finally, KKC gives rise to the metric

gij :=
1

4K

∫
CY3

ωi ∧ ?ωj = ∂i∂̄̄jKKC (3.2.22)

for the complexified Kähler cone spanned by the moduli ti. This characteristic is a
defining property of special Kähler manifolds, which are well-established structures used
to describe N = 2 supersymmetric theories in four dimensions. We will only utilize the
very basic notions of special geometry in our upcoming analysis, but would like to refer
the interested reader to the works [113–115] for a detailed discussion of the topic.

Complex Structure Moduli Space

A notable feature of Calabi-Yau compactifications is that, despite their distinctive fea-
tures, the very same structures used for the Kähler-class moduli space can also be applied
to describe its complex-structure counterpart. We once more start by defining a collective
basis {

αA, β
A
}
∈ H3 (CY3) with A = 0, . . . h1,2, (3.2.23)

satisfying ∫
CY3

αA ∧ βB = δA
B, (3.2.24)

this time spanning all nontrivial odd Dolbeault cohomology groupsH3,0 (CY3), H2,1 (CY3),
H1,2 (CY3) and H0,3 (CY3) of CY3. Denoting the so-called periods of CY3 by XA and FA

the holomorphic three-form Ω can be expanded as

Ω = XAαA − FAβ
A. (3.2.25)

The periods are not independent, but can be obtained from a holomorphic prepotential
similarly to the Kähler class case [110],

FA =
∂

∂XA
F . (3.2.26)

The coordinates XA are related to the complex-structure moduli (3.2.12) via U a = Xa

X0 ,
and one can choose

XA = (1, U a) . (3.2.27)
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The Kähler potential then takes the simple form

e−KCS = −i
(
XAFA −X

A
FA

)
= i

∫
CY3

Ω ∧ Ω, (3.2.28)

thus allowing to write the moduli metric gab as

gab := − i∫
CY3

Ω ∧ Ω

∫
CY3

χa ∧ χ̄b = ∂a∂̄bKCS. (3.2.29)

3.2.4 Dimensional Reduction of Type II Theories

With the necessary tools of special geometry at hand, we now continue with a brief dis-
cussion of conventional Calabi-Yau compactifications of type IIA and IIB supergravities.
As we will see in chapter 5, the setting considered here arises as a special case in the dou-
ble field theory framework we will use for generalized flux backgrounds. We will therefore
spare most of the technical steps and only sketch the key principles at this point. The
computations of this subsection were first presented in [116–118], but we will keep the
structure of our discussion close to the review provided in [69]. A more detailed analysis
of type II compactifications and their technical details can be found, e.g., in the series of
works [119–123] on the topic.

Throughout this section we will assume that the supergravity theories live on a ten-
dimensional spacetime manifold M1,3 × CY3 which decomposes into an external four-
dimensional spacetime M1,3 and an internal Calabi-Yau three-fold CY3.

NS-NS Sector

The field content of the NS-NS sector is identical for both theories and consists of the ten-
dimensional metric ĝmn, the Kalb-Ramond field B̂mn and the dilaton φ̂. The contribution
of the former is thereby encoded by the ten-dimensional Ricci scalar R̂(10) and the volume
form ?1 =

√
−ĝ(10) d10x. Dimensional reduction of the gravitational sector essentially

leads to kinetic terms of the four-dimensional metric and the moduli,

ĝmn →
(
gµν , v

i, U a
)
, (3.2.30)

but requires careful treatment due to additional contributions arising from Weyl-rescalings
[116,117]. The Kalb-Ramond field can be expanded in terms of the cohomology bases of
CY3 as

B̂2 = B2 + biωi ,

where B2 and biωi denote the purely external respectively internal components, the lat-
ter of which combine with the vi to build the complexified Kähler moduli ti = bi + ivi.
To obtain the standard form of four-dimensional N = 2 supergravity, it is common to
describe the external two-form field B2 in terms of an axion a after integrating over CY3.
More generally, Poincaré duality implies that the physical contribution of any massless
differential form field ωp in D dimensions with p ≤ D − 2 can be formulated in terms of
a dual (D − p− 2)-form ω̃D−p−2. This is due to the relation between their physical fields
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Fp+1 and F̃D−p−1 via the Hodge-star operator,

ωp −−−−−−−−→ ω̃D−p−2

d

y d

y
Fp+1

?−−−−−−−−→ F̃D−p−1.

(3.2.31)

For type IIA theory, the reformulated action can be obtained by adding a Lagrange
multiplier dB2 ∧ da and integrating out the field B2. In the type IIB setting, B2 is first
dualized to a scalar s1 which combines with some of the R-R fields to define an axion
a. We will not elaborate this explicitly here, but a detailed discussion of the integration
over CY3 as well as the dualization of undesired four-dimensional fields can be found in
the previously mentioned works [119–123].

Finally, the remaining dilaton φ̂ takes the role of a ten-dimensional scalar field, and in-
tegration over CY3 is straightforward. We accordingly define the four-dimensional dilaton
φ by the relation

e−2φ =

∫
CY3

e−2φ̂ = Ke−2φ̂ . (3.2.32)

R-R Sector – Type IIA

The type IIA R-R sector consists of a one-form field Ĉ1 and a three-form field Ĉ3. By
triviality of the first de Rham cohomology group of CY3, one only has to take care of
those components with precisely zero, two or three internal indices. One can therefore
expand2

Ĉ1 = A0
1ω0 ,

Ĉ3 = A0
3ω0 + Ai

1 ∧ ωi + AA
0αA − A0Aβ

A.
(3.2.33)

Here, A0
1 and Ai

1 denote one-forms and A0
3 a three-form in four-dimensions. AA

0 and A0A

correspond to the purely internal components of Ĉ3 and manifest as scalar fields in four
dimensions. It will turn out convenient at a later point of this discussion to employ the
notation ξA := AA

0 and ξ̃A := A0A.
In respect of the standard formulation of four-dimensional N = 2 supergravity, the

theory contains another undesired degree of freedom A3 0 after integration over CY3. It
can be dualized in a similar way as the external component B2 of the Kalb-Ramond field,
with the dual scalar contributing to the cosmological constant. It was found in [119]
that this scalar is related to a particular R-R flux, which is commonly set to zero in
conventional Calabi-Yau compactifications. Performing the dualization explicitly, it can

2We here employ a somewhat unusual notation to prevent confusion with similar expressions appearing
in a different context later in chapter 5.
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then be shown that the latter condition in fact requires the complete covariant expression
dA0

3 − dA1 0 ∧ B2 to vanish. The overall bosonic field content can then be arranged in
various multiplets, which for the type IIA setting are given by

� one gravitational multiplet (gµν , A
0
1),

� one tensor multiplet (B2, φ, ξ
0, ξ̃0),

� h1,1 vector multiplets (Ai
1, t

i),

� h1,2 hypermultiplets (U a, ξa, ξ̃a).

Effective Action – Type IIA

Putting the previous steps together and switching to Einstein frame via Weyl-rescaling,
one eventually arrives at the effective four-dimensional action

S(IIA) =

∫
M1,3

−1

2
R(4) ? 1(4) − gijdti ∧ ?dt̄j − huvdqu ∧ ?dqv

+
1

2
ReNIJF

I
2 ∧ F J

2 +
1

2
ImNIJF

I
2 ∧ ?F J

2 ,

(3.2.34)

where F I
2 = dAI

1,

huvdq
u ∧ ?dqv = dφ ∧ ?dφ+ gabdU

a ∧ ?dUb

+
e4φ

4

[
da−

(
ξ̃AdξA − ξAdξ̃A

)]
∧ ?
[
da−

(
ξ̃AdξA − ξAdξ̃A

)]
−e

2φ

2

[
ImM−1

]AB (
dξ̃A −MACdξC

)
∧ ?
(

dξ̃B −MBDdξD
)
.

(3.2.35)

and the objects gij and gab denote the metrics of the Kähler class respectively the complex-
structure moduli space discussed in section 3.2.3. This resembles the standard formula-
tion of four-dimensional N = 2 supergravity, where the fields qu can be interpreted as
coordinates spanning a quaternionic manifold with metric huv [124]. The objects NIJ and
MAB take the role of gauge coupling matrices and can be written in terms of the Kähler
prepotentials (3.2.19) and (3.2.26) as

NIJ = FIJ + 2i
Im (FIK)XKIm (FJL)XL

XMIm (FMN)XN

MAB = FAB + 2i
Im (FAC)XCIm (FBD)XD

XEIm (FEF)XF
.

(3.2.36)

Similarly to our discussion in section 2.1.2, the free moduli of the model once more mani-
fest as various massless scalar fields in four dimensions. In addition to phenomenological
consequences, their structure has further implications reaching beyond string theory. To
elaborate on this, we next consider the type IIB setting.
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R-R Sector – Type IIB

The R-R sector of type IIB supergravity contains three even-degree differential form fields
Ĉ0, Ĉ2, Ĉ4. Similar to the type IIA setting, these can be expanded as

Ĉ0 = A0
0ω0 ,

Ĉ2 = A0
2ω0 + Ai

0ωi ,

Ĉ4 = Ai
2 ∧ ωi + AA

1 ∧ αA − A1A ∧ βA + A0 iω̃
i.

(3.2.37)

where the first subscript indices on the right-hand side once more indicate the degree
of the corresponding differential form in four dimensions. Notice that we intentionally
dropped the purely external component A0

4 of Ĉ4 because its four-dimensional exterior
derivative dA0

4 vanishes. The fields can again be arranged in various multiplets, given by

� one gravitational multiplet (gµν , A
0
1),

� one double-tensor multiplet (B2, A
0
2, φ, A

0
0),

� h1,2 vector multiplets (Aa
1, U

a),

� h1,1 hypermultiplets (vi, bi, Ai
0, A0 i).

Similar to the previous cases, the type IIB R-R sector contains several fields after dimen-
sional reduction which do not appear in the standard formulation of four-dimensioanl
N = 2 supergravity. Half of the degrees of freedom arising from Ĉ4 are eliminated by the

self-duality constraint
ˆ̃
F 5 = ?

ˆ̃
F 5 mentioned in section 3.1.2, which in particular allows

us to keep only the fields AA
1 and A0 i as physical degrees of freedom. The remaining

two-form field A0
2 can be dualized to a scalar s2, and implementing the redefinitions

a = s1 + A0
0s2 + 2A0 i

(
Ai

0 − A0
0b

i
)
,

ξ0 = A0
0, ξi = A0

0b
i − Ai

0,

ξ̃0 = s2 +
A0

0

6
Kijkb

ibjbk − 1

2
Kijkb

ibjAk
0, ξ̃i = −2A0 i −

A0
0

2
Kijkb

jbk +Kijkb
jAk

0

(3.2.38)

eventually brings us to a field content structure similar to the type IIA case.

Effective Action – Type IIB

Once more integrating over CY3 and performing a Weyl-rescaling, the final form of the
reduced type IIB action reads

S(IIB) =

∫
M1,3

−1

2
R(4) ? 1(4) − gabdU a ∧ ?dUb − huvdqu ∧ ?dqv

+
1

2
ReMABF

A
2 ∧ FB

2 +
1

2
ImMABF

A
2 ∧ ?FB

2 ,

(3.2.39)
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where FA
2 = dAA

1 , and the quaternionic term is given by

huvdq
u ∧ ?dqv = dφ ∧ ?dφ+ gijdt

i ∧ ?dt̄j

+
e4φ

4

[
da−

(
ξ̃Idξ

I − ξIdξ̃I
)]
∧ ?
[
da−

(
ξ̃Idξ

I − ξIdξ̃I
)]

−e
2φ

2

[
ImN−1

]IJ (
dξ̃I −NIKdξK

)
∧ ?
(

dξ̃J − N̄JLdξL
)
.

(3.2.40)

The gauge coupling matrices NIJ and MAB take the same form as in (3.2.36).

3.2.5 Mirror Symmetry

Since both effective four-dimensional actions (3.2.34) and (3.2.39) are written in the
standard quaternionic formulation of N = 2 supergravity, is is not surprising that they
share a similar structure. Yet, it is somewhat remarkable that their content looks almost
identical, up to swapped numbers of vector and hypermultiplets and an exchange of
roles between the Kähler-class and complex-structure moduli. As we have learned in the
course of our discussion in section 2.2, such analogies often imply that two theories are
in fact physically equivalent. And indeed, assuming that the type IIA and IIB models
are compactified on two Calabi-Yau manifolds CY3 and C̃Y3 satisfying

h1,1 = h̃2,1 ,

h2,1 = h̃1,1 ,
(3.2.41)

the effective actions (3.2.34) and (3.2.39) can be mapped onto each other by the trans-
formations

U a ↔ ti ,

gab ↔ gij ,

NIJ ↔ MAB.

(3.2.42)

Using the definitions of the gauge coupling matrices (3.2.19) and (3.2.26), one can show
that this mapping extends to the corresponding prepotentials and holomorphic coordi-
nates. This in turn implies that the Kähler potentials and, thus, the moduli spaces as a
whole are exchanged.

This kind of highly nontrivial duality is also encountered in in heterotic string theories.
It was assigned the name Mirror Symmetry due to the conditions (3.2.41) indicating that

the Hodge diamonds CY3 and C̃Y3 are related by a reflection along their diagonal axes
(see figure 3.1 for an illustration). It is today extensively studied in both theoretical
physics and pure mathematics and enjoys fields of applications ranging from quantum
field theory [125,60] and topological string theory [126] to as far as enumerative geometry
[127,128].

As discussed in the context of the SYZ-conjecture [61], there exist certain limits in
which a Calabi-Yau three-fold can be written as a toroidal fibration over some base
manifold. In such cases, the mirror transformations (3.2.42) can be traced back to a
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Figure 3.1: Effects of various symmetry and duality transformations on a Calabi-Yau
Hodge diamond.

simple application of T-duality transformations on the T 3 fibers. The relation we derived
here can thus be considered a more convoluted manifestation of the well-known T-duality
relation between type IIA and IIB as well as HE and HO string theories.

3.3 Summary and Discussion

We again conclude the chapter with a summary of the most important results and a brief
outlook on their relation to the upcoming parts of this thesis. The main insights of this
chapter are the following:

� The low-energy limits of type IIA and IIB superstring theory are described by their
corresponding supergravity theories (3.1.1) and (3.1.4). These commonly serve as
the starting point for dimensional reductions of superstring theories.

� Phenomenological considerations force strong constraints on the structure of the
compactification manifolds used in dimensional reductions of superstring theories.
An important class of eligible internal spaces are Calabi-Yau manifolds, however,
several relaxations of their defining conditions and more sophisticated constructions
are possible.

� While the metric of Calabi-Yau manifolds is usually not known explicitly, dimen-
sional reductions can be performed by utilizing mainly their topological properties.
In addition, their moduli spaces are well-understood and can be described in the
language of special Kähler geometry.

� The effective action of type IIA and IIB supergravity compactified on a Calabi-Yau
three-fold takes the form (3.2.34) respectively (3.2.39) of four-dimensional N = 2
supergravity. In this action, the complexified Kähler-class and complex-structure
moduli give rise to h1,1 respectively h2,1 massless complex scalar fields.
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� Mirror Symmetry defines a duality transformation between the effective four-dimen-
sional theories arising from dimensional reductions of type IIA and IIB supergravity
on Calabi-Yau three-folds with exchanged Hodge numbers h1,1 and h2,1. It is implied
by the SYZ-conjecture [61] that this takes the role of a Calabi-Yau analogue of
IIA ↔ IIB T-duality known from toroidal compactifications.

While all these results mark important steps towards a better phenomenological under-
standing of string theory, many questions are still left open at this point. The pres-
ence of h1,1 + h2,1 massless scalar fields (which can be as many as hundreds) in the
four-dimensional theory is in contradiction to experiments and necessitates additional
mechanisms to stabilize the moduli. Some progress in this context has been made by
turning on background NS-NS and R-R fluxes [64, 65], which was worked out explicitly
in [129,119–121] for various settings. It was found that the presence of fluxes gives rise to
an additional scalar potential term in the four-dimensional action which fixes parts of the
moduli. In some cases this comes, however, at the cost of breaking IIA ↔ IIB Mirror
Symmetry, while at the same time neither setting is sufficient to stabilize all moduli.

An additional hint at the existence of yet-unknown structures comes from the four-
dimensional viewpoint. It was found that there exists a more general class of gauged su-
pergravities [130–132], which incorporates the known (ungauged) supergravities as special
cases. Unlike the latter, there was however no known higher-dimensional origin of such
gauged supergravities (see also figure 3.2 for a schematic illustration). While this not nec-
essarily constitutes a flaw of the theory from a phenomenological perspective, the presence
of missing links in the otherwise well-structured web of supergravities seemed, at least,
unnatural. Interestingly, the effective four-dimensional theories found in [129, 119–121]
showed characteristic features of gauged supergravities, thereby hinting a at a relation
between flux backgrounds in ten dimensions and gaugings in four-dimensions. The con-
structed theories did, however, not take the most general form of gauged supergravities,
once more implying that more general backgrounds need to be considered.

Type II SUGRA?

    = 2 gauged 
SUGRA     = 2 SUGRA

dimensional 
reduction

dimensional 
reduction

?

gauging
NN

Figure 3.2: Schematic illustration of the relation between ten-dimensional and (gauged)
four-dimensional supergravities. Conventional Calabi-Yau compactifications do not pro-
vide a ten-dimensional origin for gaugings in four dimensions.
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A promising approach to restore the Web of Dualities, fix the remaining moduli and
integrate gauged supergravities into string theory is the introduction of nongeometric
backgrounds. As already addressed in section 2.2.3, T-duality transformations of back-
ground fluxes can give rise to structures which cannot be described in the language of
differential geometry but still seem to constitute an inherent part of string theory [70–72].
We will next discuss how the framework of double field theory (DFT ) can be utilized to
implement T-duality naturally into the framework of field theory and allow for a math-
ematical treatment of nongeometric fluxes. This will eventually enable us to perform
dimensional reductions of type IIA and IIB theory on generalized flux backgrounds ex-
plicitly in chapter 5.
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Chapter 4

Double Field Theory

In this chapter we introduce a T-duality covariant extension of conventional field theory,
known by the name double field theory (DFT ). It will be demonstrated how the notions of
differential geometry can be generalized to incorporate T-duality as a manifest symmetry,
thus unifying previously distinct T-dual theories in a single model. This will eventually
enable us to formulate type II supergravities with nongeometric fluxes in a geometry-like
way and perform dimensional reductions with all moduli stabilized.

The following discussion will provide a brief overview on the properties of double
field theory and essentially summarizes the construction established in [133–137]. Some
additional insights and explanations can furthermore be found in the reviews [138–142] as
well as a more recent series of works [143–146] focusing on the structure and interpretation
of solutions to extended field theories.

Throughout the chapter, we consider double field theory on a D-dimensional manifold
M with Euclidean signature and do not employ any splitting into external and internal
components. The concepts can be straightforwardly adjusted to ten-dimensional product
spacetimes M10 = M1,3 × M6 by replacing the corresponding symmetry groups and
adjusting signs to Lorentzian backgrounds.

4.1 Doubled Space and Geometry

We begin by briefly outlining the ideas of double field theory from a heuristic viewpoint
before providing an overview on the concept of extended geometries, which builds the
foundation of duality covariant frameworks.

4.1.1 Motivation and Basics

Doubled Coordinates and Generalized Tangent Bundle

In section 2.2.2 we saw that simple manifestations of T-duality commonly involve an
exchange of roles or mixings between a string’s momenta pm and its winding numbers
p̃m along the compact directions. In order to integrate T-duality as a manifest symmetry
into the framework of field theory, this property has to be accounted for by enhancing the
fundamental point particles with “stringy” properties in a way that both quantities pm
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and p̃m are treated on equal footing. In double field theory this is realized by introducing
additional winding coordinates x̃m arranged in doubled coordinates

XM = (xm, x̃m) , PM = (pm, p̃
m) with m = 1, . . . D and M = 1, . . . 2D, (4.1.1)

while at the same time forcing certain consistency constraints on the model to retrieve the
correct number of physical degrees of freedom. As implied by the notation, the winding
coordinates x̃m are to be interpreted as variables conjugate to the corresponding winding
numbers p̃m, which is in complete analogy to the relation between the normal coordinates
xm and the momenta pm.

From a differential-geometric perspective, momenta on a spacetime manifold M are
locally described by its tangent bundle TM , while the winding numbers are encoded in
its cotangent bundle T ∗M . In double field theory, the manifold M is therefore equipped
with a generalized tangent bundle

E = TM ⊕ T ∗M, (4.1.2)

defined as the direct sum of TM and T ∗M . This object also builds the foundation for
the formalism of generalized geometry [147,148], which shares many of its mathematical
structures with double field theory. The essential difference between the two frameworks
is that double field theory additionally incorporates doubled versions of the dual objects
themselves, thus allowing to explicitly formulate a T-duality covariant action.

Generalized Metric and Dilaton

Very similar to its effect on coordinates, T-duality also involves mixings between fields
that were previously considered independent objects. This is nicely reflected in the
Buscher rules (2.2.20) and (2.2.21), which serve as the motivation to arrange the type II
NS-NS fields in a generalized metric

HMN =

(
gmn −Bmpg

pqBqn Bmpg
pn

−gmpBpn gmn

)
, (4.1.3)

and a generalized dilaton

d = φ− 1

4
ln g. (4.1.4)

The former is an element of the group O (D,D), while the latter defines an O (D,D)
scalar. Notice that O (D,D) := O (D,D;R) here denotes the continuous extension of
the T-duality group O (D,D;Z) encountered in toroidal compactifications with internal
dimension D. It will be clarified in section 4.1.4 how such special cases of isometric T-
dualities emerge naturally in this framework. The unification of g and B is also closely
related to the generalized tangent bundle (4.1.2) in the sense that diffeomorphisms and
(one-form) gauge transformations of B are unified in a single structure.
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O (D,D) Doubled Geometry

Our next aim is to utilize the above structures to define a T-duality covariant action for
the type II NS-NS fields. For this purpose, we first need to introduce additional objects
to generalize the framework of differential geometry. An important component is the
O (D,D) invariant structure

ηMN =

(
0 δm

n

δmn 0

)
, ηMN =

(
0 δmn
δm

n 0

)
, (4.1.5)

which is used to raise and lower doubled indices. The generalized metric (4.1.3) satisfies
the relations

HMN = ηMPHPQη
QN , HMPHPN = δM

N , HMPη
PQHQN = ηMN , (4.1.6)

and one can define a generalized vielbein EAM via

HMN = EAMEBNSAB. (4.1.7)

Employing a frame formalism, we then distinguish between curved spacetime indices
M,N, . . . and flat tangent space indices A,B, . . . . We will later consider the so-called
flux formulation of double field theory [149,150], for which one chooses the flat generalized
metric

SAB =

(
δmn 0
0 δmn

)
. (4.1.8)

The generalized vielbein EAM can then be parameterized in terms of the vielbein eam of
the spacetime metric gmn as

EAM =

(
eam 0

−eakBkm ea
m

)
. (4.1.9)

Notice that the matrix SAB is invariant under action of the maximal (pseudo-)compact
subgroup O (D) × O (D) of O (D,D). This implies that the generalized metric HMN

is invariant under local O (D) × O (D) transformations and therefore parameterizes the
symmetric coset space O (D,D) /O (D)×O (D). This is in complete analogy to general
relativity, where global reparameterization invariance and local Lorentz invariance give
rise to the corresponding coset space GL (1, D − 1) /SO (1, D − 1).

Implementing T-duality

To integrate T-duality as a manifest symmetry into the framework, the doubled coordi-
nates are organized in the fundamental representation of O (D,D) transforming as

XM → hMNX
N , h ∈ O (D,D) . (4.1.10)

The generalized metricHMN defines an element of O (D,D), while the generalized dilaton
d is an O (D,D) scalar. One therefore obtains the transformation rules

HMN (X)→ hM
PhN

QHPQ (hX) , d (X)→ d (hX) , h ∈ O (D,D) (4.1.11)
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under O (D,D) rotations. As mentioned in [139], these transformations correctly reduce
to the Buscher rules (2.2.20, 2.2.21) when h corresponds to T-duality transformations
along an isometric direction. A major advantage of double field theory is that it addi-
tionally provides a natural description of T-duality along non-isometric directions, which
can map between configurations depending on the normal coordinates and such depend-
ing on (parts of) the dual coordinates [151–155, 101]. This is in stark contrast to the
approach we presented earlier, which breaks down in such instances. The reason for this
will become clear in light of the previously mentioned consistency constraints, which will
be discussed next.

4.1.2 Generalized Diffeomorphisms and Lie Derivative

In the previous subsection, we built the foundation of double field theory by arranging the
fields and the coordinates in representations of the group O (D,D). Similar to general
relativity, the global O (D,D) symmetry of double field theory extends to a local one
under generalized diffeomorphisms. The next step is therefore to adjust the basic notions
of differential geometry to construct a suitable O (D,D)-based framework of doubled
geometry. This will eventually allow us to derive consistency constraints for double field
theory which help to retrieve the correct number of physical degrees of freedom. The
following discussion will mainly expand on the review provided in [141].

Diffeomorphisms and Lie Derivative in Differential Geometry

We start by briefly reviewing the notions of diffeomorphisms and Lie derivatives in con-
ventional differential geometry, which will then be generalized to the O (D,D) setting.
Let U define a vector living in D-dimensional spacetime. The transformation of an ar-
bitrary tensor T under infinitesimal diffeomorphisms generated by U is described by the
Lie derivative L. As a tensor derivation, L is uniquely defined by its action on scalars S
and vectors V , and the transformation laws for all remaining tensors are determined by
the Leibniz rule. Its action on scalars is given by the transport term

LUS = Um∂mS (4.1.12)

and the action on vectors by the commutator

LUV
m = [U, V ]m = Un∂nV

m − V n∂nU
m, (4.1.13)

where the first term again describes a transportation and the second term defines a
GL (D) transformation of the components V n. As can be shown by direct computation,
the algebra of diffeomorphisms closes,

[LU , LV ] = L[U,V ] . (4.1.14)

This property in particular ensures that two successive gauge transformations acting on
a given field produce a new gauge transformation of the same field [139]. It is therefore
crucial to ensure consistency of a physical model built on top of the framework.
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Generalized Diffeomorphisms and Lie Derivative in Doubled Geometry

The essential idea of doubled geometry is to extend the concepts of general relativity
such that the global and local symmetry groups can be readily replaced by their double
field theory counterparts. This motivates the definition of a generalized Lie derivative L
with [133,134,156]

LUV M = UN∂NV
M −

(
V N∂NU

M − ηMPηNQV
N∂PU

Q
)

+ λ (V ) ∂NU
NV M , (4.1.15)

to encode the gauge algebra of double field theory. Here, the first term again describes
the transport term, and the expression in the brackets is the O (D,D) counterpart of
the second term in (4.1.13). The definition also includes an additional weight term for
the sake of generality, but we will mainly consider settings with vanishing weights in this
chapter. Similarly to vectors, the generalized Lie derivative for scalars S reads

LUS = UM∂MS + λ (S) ∂NU
NS. (4.1.16)

Analogously to differential geometry, the definition of the generalized Lie derivative is
uniquely determined by its action on vectors and scalars and naturally extends to arbi-
trary tensors by requiring satisfaction of the Leibniz rule [136]

LU
(
A N1...
M1...

B Q1...
P1...

)
=
(
LUA N1...

M1...

)
B Q1...
P1...

+ A N1...
M1...

(
LUB Q1...

P1...

)
. (4.1.17)

One can then check that LU also preserves the O (D,D) invariant structure,

LUηMN = 0, (4.1.18)

as desired.

4.1.3 Algebra of Generalized Diffeomorphisms and Consistency
Constraints

A minimal requirement for O (D,D) geometry to define a consistent theory is that the
generalized Lie derivative gives rise to a closed algebra. Unlike its differential-geometric
counterpart (4.1.14), this condition is not satisfied in the generic case. Considering the
common case of vectors with vanishing weight, the commutator of two generalized Lie
derivatives generated by U and V takes the form [141]

[LU ,LV ]WM = L[[U,V ]]C
WM + ηRSηPQ

[
(∂RU

P∂SV
M − ∂RUM∂SV

P )WQ

+
1

2
(UQ∂SV

P − V Q∂SU
P )∂RW

M

]
.

(4.1.19)

where the C-bracket [[·, ·]]C of two generalized vectors appearing on the right-hand side is
defined by

[[U, V ]]MC := UN∂NV
M − V N∂NU

M − 1

2
ηMNηPQ

(
UP∂NV

Q − V P∂NU
Q
)
. (4.1.20)
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In order to restore closure of the algebra, further constraints need to be introduced. The
best-studied approach to do so is by imposing the so-called section condition

ηMN∂M ⊗ ∂N = 0 , (4.1.21)

where the differential operators can act on any field, gauge parameter or product of such.
Since each extra term in (4.3.7) involves two derivatives ∂R, ∂S contracted with ηRS, this
condition causes the undesired contribution to vanish, and the relation (4.3.7) reduces to
a closed algebra

[LU ,LV ] = L[[U,V ]]C
(4.1.22)

governed by the C-bracket. Notice that this operator does not generically satisfy the
Jacobi identity, but has a non-vanishing Jacobiator

J (U, V,W )C = [[[[U, V ]]C ,W ]]C + [[[[V,W ]]C , U ]]C + [[[[W,U ]]C , V ]]C , (4.1.23)

for which one finds

J (U, V,W )MC = ηMN∂N

[
ηPQ

(
[[U, V ]]PC W

Q + [[V,W ]]PC U
Q + [[W,U ]]PC V

Q
)]

. (4.1.24)

Such terms of the form

ŨM = ηMN∂NS (4.1.25)

with some arbitrary scalar S generate only trivial gauge transformations if the section
condition (4.1.21) is assumed to hold. They are therefore often referred to as trivial
gauge parameters in literature. In the present context, the presence of this structure
in particular ensures that the additional term (4.1.24) preventing the C-bracket from
satisfying the Jacobi generates zero transformations [140].

Another important structure encountered in doubled geometry is the so-called D-
bracket [136],

[[U, V ]]MD := LUV M = [[U, V ]]MC +
1

2
ηMN∂N

(
ηPQUPVQ

)
, (4.1.26)

which takes the role of a doubled-geometry analogue of the standard Lie-bracket. Un-
like the C-bracket, this operator satisfies the Jacobi identity, but is not antisymmetric.
However, the second term in (4.1.26) again defines a trivial gauge parameter, and the
properies of the Lie-bracket are effectively restored under the section condition. In this
case, the C− and D-bracket generate the same generalized Lie derivative, and the oper-
ators reduce to the Courant bracket [157] respectively the Dorfman bracket [158] known
from generalized geometry.

4.1.4 Interpretation of Consistency Constraints

To better understand the structure of doubled spacetime, it is helpful to elaborate further
on the yet abstract section condition (4.1.21), which in fact incorporates two distinct
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constraints. Assuming that Φ and Ψ can denote any field or gauge parameter, one
distinguishes between the weak constraint

ηMN∂M∂NΦ = 0 (4.1.27)

and the strong constraint

ηMN∂MΦ∂NΨ = 0, (4.1.28)

In literature, the latter is often equated with the term section condition in the narrower
sense, but we here adopt the conventions of [140, 143] and make a distinction between
both terms in the following discussion.

The essential statement of the weak and strong constraint is that fields and gauge
parameters are only allowed to depend on either the original coordinate xm or the dual
coordinate x̃m for any given m, but not on both. The section condition is therefore
often interpreted heuristically as choosing a D-dimensional “section” through the 2D-
dimensional spacetime to form the physical spacetime, and different solutions can be
thought of as different T-duality frames which are rotated into each other by O (D,D)-
transformations [151]. In many instances, choosing a physical section is equivalent to
solving the strong constraint (4.1.28) in a particular way, but there exist settings in
which this analogy does not hold. This was first elaborated in more detail in [143], and
we will as well distinguish between the section condition and the strong constraint in this
thesis.

To get some intuition, let us note that one obvious solution to the section condition is
a model which depends only on the normal coordinates xm. This leads to a supergravity
formulation in terms of Hitchin’s generalized geometry [147], in which only the tangent
space remains doubled [159–161]. Similarly, a T-dual model can be obtained by choosing
the dual coordinates x̃m as physical degrees of freedom, and numerous intermediate cases
arise from dependencies on subsets of both coordinates.

Section Condition, Strong Constraint and Isometric T-Duality

An interesting insight which can be obtained from the separate treatment of the strong
constraint and the section condition is how isometric T-duality arises naturally in the
framework of double field theory [143]. Solving the strong constraint effectively requires
picking one of each dual pair of coordinates and rendering the complete content of the
theory independent of the respective other coordinate. If there are no isometries present,
this is done in a canonical way by choosing D of the 2D coordinates as physical degrees of
freedom, and the strong constraint becomes equivalent to the section condition. However,
if there are isometries present, the field content may automatically depend on fewer
coordinates than required by the strong constraint. In such cases, different choices of
sections can lead to the same overall coordinate dependence, and there is an ambiguity
in which D of the 2D coordinates are identified as physical. In the supergravity picture,
these different sections can be precisely identified as different frames related by isometric
T-duality. This has been elaborated explicitly for several examples, and the interested
reader is referred to the works [143–145] for more details on the topic.
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Weak Constraint

The weak constraint is generally less understood, and finding a physical interpretation is
not as straightforward. Nevertheless, some interesting insights can be gained by consider-
ing the weak constraint from a string-theoretical perspective. Due to the relation between
the doubled coordinates and their conjugate momenta or winding numbers (4.1.1), the
weak constraint (4.1.27) essentially encodes the statement

pmp̃
m = 0, (4.1.29)

which is precisely the level matching condition (2.2.11) for closed strings with equal
number of left- and right-moving oscillator modes. It is indeed often stated that the weak
constraint has its origins in the level-matching condition, but some caution is needed
when making this relation explicit as there exist several subtleties which have to be
properly taken into account. More details on this issue are discussed in [139]. Some more
recent developments in weakly-constrained double field theory are furthermore presented
in [162].

Relaxations

The section condition provides valuable insights into the structure of double field theory,
but is only of limited use as the resulting theories do not countain any additional physi-
cal content beyond conventional supergravities. Several works have therefore focused on
possible relaxations of the section condition. In [149, 150, 163–166] a so-called Scherk-
Schwarz ansatz is used to construct solutions depending on both the normal and the
winding coordinates. Compactifications of such models lead to lower-dimensional gauged
supergravities. Double field theory thereby provides a purely geometric origin for gaug-
ings which would arise from nongeometric fluxes in the conventional approach. Chapter 5
of this thesis will in large part build upon a similar approach, with the major aim being
to explicitly perform dimensional reductions of double-field-theoretic extensions of type
II supergravities.

4.2 Action and Equations of Motion

Having discussed the basic notions of O (D,D) geometry, we are now able to formulate a
doubled analogue of supergravity theories in which T-duality is incorporated as a manifest
symmetry. We will here do this for the bosonic NS-NS sector of type II theories and
elaborate on the R-R sector later throughout our discussion in chapter5. The following
review is mainly based on the analysis of [144].

4.2.1 Action

The doubled NS-NS sector action is commonly written in an Einstein-Hilbert-like form [136,
164]

S =

∫
d2DX e−2dR. (4.2.1)
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Here, d denotes the generalized dilaton defined in (4.1.4), and the generalized Ricci scalar
R is given by

R =
1

8
HMN∂MHPQ∂NHPQ −

1

2
HMN∂MHPQ∂PHNQ

+4HMN∂M∂Nd− ∂M∂NHMN − 4HMN∂Md∂Nd+ 4∂MHMN∂Nd

+
1

2
ηMNηPQ∂MEAP∂NEBQSAB, (4.2.2)

where we used the generalized metric (4.1.3) as well as the generalized vielbein from
(4.1.7 - 4.1.9). As pointed out in [144], R only transforms as an O (D,D) scalar if the
section condition is imposed. This formulation is a slight generalization of the original
double field theory action [133], where the third line in (4.2.2) is not included and R
becomes a proper O (D,D) scalar. The presence of the extra term is, however, crucial to
obtain the correct gauged supergravity actions from Scherk-Schwarz reductions of double
field theory [149,150,163–166].

As a consistency check, one can consider a solution to the strong constraint in which
the complete content of the theory is independent of the winding coordinates. In this
setting, the action (4.2.1) reduces to

S
∂̃=0−→

∫
dDx
√
ge−2φ

(
R + 4∂mφ∂

mφ− 1

12
H2

)
, (4.2.3)

where R denotes the Ricci scalar of D-dimensional Riemannian geometry, φ is the dilaton
and H = dB is the field strength of the Kalb-Ramond field. This precisely reproduces
the NS-NS sector of type II supergravities, and analogous structures can be obtained
from different solutions to the strong constraint. Notice that the positive sign in front of
the determinant g is due to the Euclidean signature of the metric.

4.2.2 Equations of Motion

The equations of motion in double field theory can be derived in a similar way as in
conventional field theories, but some additional attention needs to by paid to its O (D,D)-
based structure. Varying the action with respect to the generalized dilaton d yields [136]

δS =

∫
d2DX e−2d [(−2R) + (total derivatives)] δd. (4.2.4)

This expression has to vanish for all δd, and one obtains the equation of motion

R = 0. (4.2.5)

For the generalized metric, caution is needed. One might be tempted to take the same
route and vary the action with respect to the generalized metric HMN , obtaining [136,
164,144]

δS =

∫
d2DX e−2dKMNδHMN , (4.2.6)



56 4. Double Field Theory

with

KMN =
1

8
∂MHPQ∂NHPQ + 2∂M∂Nd

+

(
∂Q − 2∂Qd

)[
HPQ

(
∂(MHN)P −

1

4
∂PHMN

)]
+

1

4

(
HPQHRS − 2HPSHQR

)
∂PHMR∂QHNS

− ηPQηRS
(
∂Pd∂QEA R −

1

2
∂P∂QEA R

)
H(NTET AHM)S.

(4.2.7)

Naively, the equations of motion could then be obtained by settingKMN to zero. However,
there is a pitfall here: The generalized metricHMN is parameterized by theD-dimensional
spacetime metric gmn and Kalb-Ramond field Bmn, which encode only 1

2
D (D + 1) +

1
2
D (D − 1) = D2 degrees of freedom. On the contrary, setting the symmetric objectKMN

to zero gives rise to 2D2 +D equations of motion. This contradiction occurs because the
generalized metricHMN is constrained to parameterize the coset space O (D,D) /O (D)×
O (D), and not all of the considered variations δHMN can be realized this way.

In the original work [136], this problem was resolved by imposing the condition (4.1.6)
by hand to ensure that variations of HMN do not alter its O (D,D) structure. We will
here follow a different approach presented in [144], which is easier to generalize to other
duality groups. In this ansatz, the generalized metric HMN is separately varied with
respect to the spacetime metric gmn and the Kalb-Ramond field Bmn, and O (D,D)
covariance is restored at the end of the computation. The first step then yields

δS =

∫
d2DX e−2dKMN

(
δHMN

δgpq
δgpq +

δHMN

δBpq

δBpq

)
. (4.2.8)

Using the relations

δgmn
δgpq

= δ
(p
mδ

q)
n ,

δgmn

δgpq
= −gm(pgq)n,

δBmn

δBpq

= δ
[p
mδ

q]
n , (4.2.9)

this can be written out as

δS =

∫
d2DX e−2d

{[
−Kmng

m(pgq)n + 2Km
ngm(pgq)rBrn

+Kmn
(
δ

(p
mδ

q)
n +Bmrg

r(pgq)sBsn

)]
δgpq

+
[
−2Km

ngmrδ
[p
r δ

q]
n − 2KmnBmrg

rsδ
[p
s δ

q]
n

]
δBpq

}
.

(4.2.10)

Inserting the definition (4.1.3) of the generalized metric and expanding the antisym-
metrizing brackets, this can be reformulated as

δS =

∫
d2DX e−2d

{[
−KmnHmpHqn + 2Km

nHmpHq
n +Kmn

(
δpmδ

q
n −Hm

pHq
n

)]
δgpq

−
(
Km

nHmr +KmnHm
r
)(

δprδ
q
n − δqrδpn

)
δBpq

}
.

(4.2.11)
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One can now utilize of the O (D,D) invariant structure ηMN defined in (4.1.5) to revert
to doubled indices and obtain

δS =

∫
d2DX e−2d

{
KPQ

(
ηPpηqQ −HPpHqQ

)
δgpq

−KPQ

(
HPRηRMη

QN −HPRδNR δ
Q
M

)
ηMpδqNδBpq

}
.

(4.2.12)

The result can be written in a form similar to the original approach (4.2.6). Rearranging
the terms as

δS =

∫
d2DX e−2d

{
KPQ

(
δPMδ

Q
N −H

PRηRMηNSHSQ
)
ηMpηqNδgpq

−KPQ

(
HPRηRMη

QSHST −HPRδSRδ
Q
MHST

)
HTNηMpδqNδBpq

}
(4.2.13)

and defining the projector PMN
PQ

PMN
PQ =

1

2

(
δ

(P
M δ

Q)

N −HMRη
R(PηNSHQ)S

)
, (4.2.14)

one obtains

δS =

∫
d2DX e−2d 2PMN

PQKPQ

(
ηMpηqNδgpq + ηMpHqNδBpq

)
. (4.2.15)

Since the variation of the action must vanish for any δgpq and δBpq independently, the
prefactor has to vanish identically, leading to the projected equations of motion [144]

PMN
PQKPQ = 0. (4.2.16)

Heuristically, the purpose of the operator PMN
PQ is to project out all components which

violate the constraint (4.1.6) and ensure that the coset structure of the generalized metric
is preserved. It can also be shown that the kernel of PMN

PQ has dimension D2+D, leaving
D2 nontrivial equations of motion as expected.

4.3 Outlook on Exceptional Field Theory

We conclude this chapter with a brief outlook on U-duality covariant exceptional field
theories (EFTs) [167–170,138]. Most of the upcoming discussion describes a direct gen-
eralization of double field theory and can be applied to a wider variety of duality groups.
On a more abstract level, both frameworks are therefore often summarized under the
term extended field theories (ExFTs) and extended geometries in modern literature. This
section mainly follows the lines of [140].



58 4. Double Field Theory

4.3.1 Extended Spaces

Heuristically, exceptional field theories can be thought of as an M-theory-based ana-
logue of double field theory. Similarly to a string winding around a compact direction,
M-theory incorporates higher-dimensional M-branes and monopole structures which can
carry wrapping numbers or charges that affect the physical properties of a model. In
exceptional field theories, these additional degrees of freedom are encoded in extended
coordinates, and the content of the theory is arranged in representations of the corre-
sponding U-duality groups.

An important difference to T-duality is that the structure of these groups depends
strongly on the dimension of the compactification space. There thus exist different ex-
ceptional field theories, each based on a corresponding exceptional algebra ED(D)(Z)
spanning the U-duality symmetry of eleven-dimensional supergravity compactified on a
D-dimensional torus [171, 172]. The notation ED(D)(Z) for D ≤ 5 thereby refers to the
algebra obtained by cutting off further nodes from the Dynkin diagram of E6 (see also
table 4.1). For a particular D, the eleven-dimensional spacetime manifold is split into its
external and internal directions as

M11 =

external︷ ︸︸ ︷
M11−D ×

internal︷︸︸︷
MD . (4.3.1)

The latter is extended by additional coordinates to linearly realize the (continuous) ex-
ceptional symmetry ED(D) := ED(D)(R), where the dimension of the extended space is
determined by the relevant representation R1 of the corresponding U-duality group. The
complete spacetime manifold then takes the form

M11−D+dimR1 = M11−D ×MdimR1 . (4.3.2)

Analogously to double field theory, the extended space MdimR1 is equipped with an ex-
ceptional generalized metric, which parameterizes the coset space G/H of the global
symmetry group G = ED(D) and its maximal compact subgroup H. Finally, the sec-
tion condition is realized by requiring the projection of two derivatives onto a particular
representation R2 of G to vanish [140],

∂ ⊗ ∂ |R2 = 0 . (4.3.3)

A full list of relevant groups and representations of known exceptional field theories is
provided in table 4.1. The respective models were first elaborated, in ascending order, in
[173–179]. More recently, first steps towards a generalization to the (infinite-dimensional)
Kac-Moody algebra E9(9) have been made in [180].

At this point, let us remark that a distinction between external and internal coor-
dinates is mostly exclusive to exceptional field theories. Although T- and U-duality
transformations likewise act only on the compact directions, most formulations of double
field theory in modern literature utilize a fully doubled spacetime. Due to the dimen-
sional dependence of the U-duality group, this is not as straightforward to realize in
exceptional field theory. It is assumed that all exceptional field theories for D ≤ 10 can
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D G H R1 R2

D O (D,D) O (D)×O (D) 2D D

2 SL (2)× R+ SO (2) (2,1) (1,1)

3 SL (3)× SL (2) SO (3)× SO (2) (3,2) (3̄,1)

4 SL (5) SO (5) 10 5̄

5 SO (5, 5) SO (5)× SO (5) 16 10

6 E6 USp (8) 27 27

7 E7 SU (8) 56 133

8 E8 SO (16) 248 1⊕ 3875

Table 4.1: Duality groups G, their maximal compact subgroups H, extended coordinate
representations R1 and section condition representations R2 for D = 2, 3, . . . 8 [140].

be embedded into a unique E11(11)-based framework. In this case, all directions are set
to be internal, and a splitting of coordinates can be avoided. The role of this algebra has
been extensively studied in the long-running E11 program [181–187].

4.3.2 Exceptional Extended Geometry

Let us now see how the notions of doubled geometry can be generalized to define (ex-
ceptional) extended geometries. Similarly to double field theory, many of the following
structures are closely related to the framework of exceptional generalized geometry, which
describes the corresponding ED(D) extensions of generalized geometry.

Generalizing Double Field Theory to Extended Field Theory

A first step is to define the so-called Y -tensor, which can be thought of as a measure for the
departure of an extended geometry from conventional differential geometry. Generally,
this object is built from the invariant tensors of the considered duality group. In the case
of double field theory, it takes the form

Y MN
PQ = ηMNηPQ. (4.3.4)

This enables a more compact notation of the generalized Lie derivative (4.1.15) as

LUV M = LUV
M + Y MN

PQ∂NU
PV Q + λ (V ) ∂NU

NV M , (4.3.5)

where the first term is the ordinary Lie derivative and the second term describes the
deviation from standard GL (D) geometry. The third term again defines a weight-term
and is included for generality. Similarly, one obtains for the C-bracket (4.1.20)

[[U, V ]]MC := [U, V ]M − 1

2
Y MN

PQ

(
UP∂NV

Q − V P∂NU
Q
)

(4.3.6)
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and for the algebra of generalized diffeomorphisms

[LU ,LV ]WM = L[[U,V ]]C
WM + Y RS

PQ

[
(∂RU

P∂SV
M − ∂RUM∂SV

P )WQ

+
1

2
(UQ∂SV

P − V Q∂SU
P )∂RW

M

]
.

(4.3.7)

The physical section condition (4.1.21) is equivalent to

Y MN
PQ∂M ⊗ ∂N = 0, (4.3.8)

and similar relations can be formulated for the D-bracket (4.1.26) and the Jacobiator
(4.1.24). Using this notation, it is mostly straightforward to check that the algebra of
generalized diffeomorphisms indeed closes under the section condition, and the complete
framework reduces to conventional differential geometry when setting Y MN

PQ = 0.

Constructing Exceptional Field Theories

To formulate a particular exceptional field theory in the above framework, the O (D,D)-
specific structures have to be replaced by their U-duality counterparts. The Y -tensor
Y MN

PQ is thereby constructed from the invariant structure of a corresponding duality
group. One can then define the E-bracket [[·, ·]]E as an analogue to the C-bracket from
(4.3.6) and follow a similar pattern to derive consistency constraints for the algebra of
exceptional generalized diffeomorphisms as done in section 4.1.3. A list of Y -tensors for
ED(D) exceptional field theories with D = 2, 3, . . . 8 is provided in table 4.2. A more
detailed discussion of their structure can furthermore be found in [156,140].

4.4 Summary

In this chapter we reviewed the fundamental concepts of extended field theories. We
thereby discussed how conventional field theories can be enhanced with string- or M-
theoretic properties such that duality transformations become a manifest symmetry. The
following key insights will be essential for our upcoming discussion:

� In double field theory the normal spacetime coordinates are to extended by addi-
tional winding coordinates x̃m and arranged in doubled coordinates XM = (xm, x̃m)
to form the fundamental representation of O (D,D). The spacetime manifold M is
furthermore equipped with a generalized tangent bundle E = TM ⊕ T ∗M , which
essentially reflects a unification of diffeomorphisms and one-form gauge transfor-
mations into a single structure.

� The NS-NS fields mixing under T-duality transformations are organized in a gen-
eralized metric (4.1.3) and a generalized dilaton (4.1.4). The former defines an
element of O (D,D), the latter transforms as an O (D,D) scalar.
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D G Y

D O (D,D) Y MN
PQ = ηMNηPQ

2 SL (2)× R+ Y αs
βs = δα β

3 SL (3)× SL (2) Y iα,jβ
kγ,lδ = 4δij klδ

αβ
γδ

4 SL (5) Y MN
PQ = εaMNεaPQ

5 SO (5, 5) Y MN
PQ =

1

2
(γu)MN (γu)PQ

6 E6(6) Y MN
PQ = 10cMNRcPQR

7 E7(7) Y MN
PQ = 12c̃MN

PQ + δ(M
P δ

N)
Q +

1

2
ΩMNΩPQ

Table 4.2: Y -tensors of double field theory and exceptional field theories for internal
dimension D = 2, 3, . . . 7 [156, 140, 173]. εaMN denotes the alternating tensor of SL(5).
(γu)MN define the 16×16 Majorana-Weyl representation of the SO (5, 5) Clifford algebra.
cMNR is the symmetric invariant tensor of E6(6). c̃MN and ΩPQ denote the symmetric
invariant tensor of E7(7) and the symplectic invariant tensor of its representation 56.
For the U-duality groups with product structure, s denotes a singlet index, α, β, . . . are
SL (2) indices, and i, j, . . . SL (3) indices.

� The geometry of double field theory is described by the framework O (D,D) doubled
geometry. Its gauge structure is governed by the generalized Lie derivative (4.1.15)
and the algebra of generalized diffeomorphisms (4.3.7). Requiring closure of the
latter gives rise consistency constraints such as the section condition (4.1.21).

� The term section condition can be further refined to distinguish between a weak
constraint (4.1.27) and a strong constraint (4.1.28). Standard supergravities and
their duals arise as simple solutions to the strong constraint and can be interpreted
as physical sections through the doubled spacetime which are rotated into each
other by T-duality transformations.

� The action of double field theory can be written in an Einstein-Hilbert-like formu-
lation (4.2.1) and reduces to that of the standard type II NS-NS sector under the
strong constraint. Its dynamics are encoded in the (projected) equations of motion
(4.2.5) and (4.2.16).

Our discussion so far focused mostly on the fundamental structures and the physical
interpretation of double field theory. We will next show how the framework can provide
a natural description for the geometric and nongeometric fluxes related by the T-duality
chain (2.2.29). This will eventually enable us to perform dimensional reductions of type
II theories with all appearing moduli stabilized.
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Chapter 5

Dimensional Reductions of Double
Field Theory

In this chapter we will build upon the previous discussion to demonstrate how the frame-
work of double field theory can be utilized to explicitly perform dimensional reductions
of type II theories with geometric and nongeometric background fluxes. The following
elaborations are based on and in large part identical to the author’s publication [77],
which in turn is a direct extension of the two previous works [78,79] on the topic. Due to
slight overlappings in the beginning of the discussion, it will be clarified in the respective
sections which of the presented results are exclusive to [77] and this thesis.

5.1 Introduction

Before delving into the technical details, let us briefly recapitulate the relevant aspects
of string phenomenology discussed in the previous chapters. We learned in section 2.1
that naive approaches to compactify higher-dimensional theories to four dimensions often
come with undesired massless scalar particles, called moduli, which are in contradiction
with experimental observations. In section 3.2 and onward, we saw that this in particu-
lar applies to conventional Calabi-Yau compactifications of type II superstring theories,
where the moduli can parameterize a huge vacuum degeneracy arising from infinitesimal
deformations of the Calabi-Yau’s complex and Kähler structures.

One way to address this issue is to introduce non-vanishing background fluxes on the
compactification manifold (see section 2.1.3). At string tree-level, this creates a scalar
potential that stabilizes parts of the moduli. It was later found that successive appli-
cation of T-duality transformations to flux backgrounds gives rise to geometrically ill-
defined objects which play an essential role in obtaining full moduli stabilization [70–72].
Constructing phenomenologically realistic models from flux compactifications therefore
requires suitable frameworks to enable a mathematical description of such nongeometric
backgrounds.

In chapter 4 we introduced the formalism of double field theory (DFT ) and demon-
strated how it can be utilized to formulate a type II NS-NS action in which T-duality
becomes a manifest symmetry. Our upcoming discussion will build upon this idea and
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focus on its application to generalized flux backgrounds. We will in particular show that
there exists an alternative flux formulation of double field theory [149, 150], in which all
fluxes of the T-duality chain 2.2.29 arise naturally as constituents of the action. In this
framework, nongeometric fluxes are no longer ill-defined, but can be locally described
as operators living in the doubled spacetime. This will eventually enable us to perform
dimensional reductions of type II theories with all appearing moduli stabilized.

5.1.1 Background and previous Work

This chapter and its main reference [77] build upon a variety of works that have arisen out
of long-running efforts to address the issue of moduli stabilization. Some contributions
which are of particular importance for our upcoming discussion shall be briefly reviewed
in this subsection.

Generalized Geometry and SU(3)×SU(3) Structure Manifolds

One well-known approach to moduli stabilization are compactifications on manifolds with
SU(3)-structure. These models have been found to arise as Mirror Symmetry duals of
Calabi-Yau backgrounds with NS-NS fluxes [119–121] and commonly come with parts of
the moduli stabilized. In type II theories, the concept can be further generalized to a
larger class of SU(3)×SU(3) structure manifolds by defining a separate non-vanishing
spinor for each of the two ten-dimensional supercharges. Such structures show a natural
connection to Hitchin’s generalized geometry [147, 188], where SU(3)×SU(3) appears
as the structure group of the generalized tangent bundle TM6 ⊕ T ∗M6 of the internal
manifold M6. Both SU(3) and SU(3)×SU(3) structures arise from relaxations of the
Calabi-Yau conditions and are therefore often summarized under the term generalized
Calabi-Yau structures. This framework has been extensively studied in the works [119–
121,189–198].

Compactifications on generalized Calabi-Yau structures can give rise to four-dimensio-
nal models with parts or all of the moduli stabilized (see [199] for a discussion of the type
II case). A particular strength of the double field theory approach is its capability to
additionally provide a natural description of the background fluxes in ten dimensions,
while their manifestation as (non-)geometric charges is more indirect in the former. Un-
surprisingly, both frameworks are nevertheless closely related, and we will highlight their
analogies thoughout our discussion in this chapter.

Double Field Theory and Gauged Supergravities

More research on the connection between double field theory and four-dimensional physics
was conducted after the target-space formulation became widely applied in the early
2010s. It was found in [149, 150, 164] that compactifications and Scherk-Schwarz re-
ductions of double field theory yield the scalar potential of electrically gauged N = 4
supergravity in four dimensions. Using a corresponding SL(2) extension of double field
theory [200], the construction could be generalized to electric/magnetic gaugings (see
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also [201] for an exceptional field theory analysis). A connection between Calabi-Yau com-
pactifications of double field theory and the scalar potential of four-dimensional N = 2
gauged supergravity was derived explicitly in [78].

This chapter will add to the picture by generalizing the considered setting of [78, 79]
to a wider class of compactification manifolds and non-vanishing dilaton fluxes. We
furthermore extend the formalism to dimensional reductions of the full double field theory
action by including the kinetic terms. This will eventually enable us to show how in
double field theory IIA↔ IIB Mirror Symmetry is restored by the simultaneous presence
of geometric and nongeometric fluxes.

5.1.2 Overview

We will discuss the technical details of our computation in some length and therefore
want to briefly summarize the main results of our analysis. The chapter is organized as
follows:

� In section 5.2 we provide a brief review on the flux formulation of double field theory
and discuss the mathematical structures which will be important for the upcoming
discussion.

� In section 5.3 we compactify the purely internal part of the type IIA and IIB
double field theory action on a Calabi-Yau three-fold. We mainly build upon the
elaborations of [78, 79], thereby generalizing the approach to make it applicable to
a wider class of compactification manifolds. Both results are related to the scalar
potential of four-dimensional N = 2 gauged supergravity constructed in [202], and
a first manifestation of Mirror Symmetry is discussed.

� In section 5.4 the discussion of section 5.3 is repeated for the compactification man-
ifold K3×T 2, where an additional contribution of dilaton fluxes becomes relevant.
The necessary steps to generalize the Calabi-Yau setting are highlighted, and the
special-geometric properties of K3×T 2 are discussed in detail. The resulting four-
dimensional scalar potential is related to the framework of [202], and a set of mirror
mappings is constructed. A double field theory origin of the N = 4 gauged super-
gravity scalar potential has already been elaborated in the previous works [149,150]
using Scherk-Schwarz reductions. We here follow a different approach by employ-
ing the formalism of generalized Calabi-Yau geometry [147] and generalized K3
surfaces [203], which give rise to a scalar potential formulated in the language of
N = 2 gauged supergravity. While the result involves characteristic structures of
N = 4 supergravity, its relation to the results of [149, 150] seems to be nontrivial
and will not be covered in this thesis.

� In section 5.5 we extend the Calabi-Yau setting of section 5.3 by including the
kinetic terms. We thereby employ a generalized Kaluza-Klein ansatz [149, 150,
204] and treat the NS-NS and R-R sectors separately. For the former, we will
mostly rely on the results of section 5.3 and on the standard literature on Calabi-
Yau compactifications of type II theories. The latter is more involved and gives
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rise to democratic type II supergravities with all NS-NS fluxes and R-R fluxes of
the T-duality chain turned on. We first reduce the ten-dimensional equations of
motion, following a similar pattern as done in [199] for manifolds with SU(3)×SU(3)
structure. The resulting four-dimensional equations of motion can then be shown to
originate from the four-dimensional N = 2 gauged supergravity action constructed
in [202], where a subset of the axions appearing in the standard formulation is
dualized to two-forms in order to account for both electric and magnetic charges.
This will finally enable us to once more read off a set of mirror mappings between
the full reduced type IIA and IIB actions.

� Section 5.6 concludes the discussion by summarizing the results and giving an
outlook on open questions and possible future developments.

Throughout this chapter we consider a doubled extension of the spacetime manifold
M10 = M1,3 × M6, where M1,3 denotes a four-dimensional Lorentzian manifold and
M6 is an arbitrary Calabi-Yau three-fold or K3 × T 2. We will furthermore apply the
framework of special geometry to describe the complex-structure and Kähler-class moduli
spaces of M6. Due to the large number of distinct indices used in this chapter, we
provide an overview of our indexing system in appendix A. Several important identities
and conventions which will be used throughout the upcoming calculations are discussed
in appendix B.

5.2 Flux Formulation of Double Field Theory

In the course of our discussion in chapter 4, we learned how the basic notions of geometry
can be generalized to define a T-duality covariant extension of conventional field theories.
This eventually allowed us to formulate an Einstein-Hilbert-like action (4.2.1) which
strongly resembles the NS-NS sector of type II supergravities, but does not yet show a
direct relation to the background fluxes.

For the analysis presented in this chapter, we will make use of an alternative formu-
lation of double field theory which is physically equivalent to (4.2.1). This framework
is known as the flux formulation of double field theory [149, 150] and allows a natural
(local) description of geometric as well as nongeometric background fluxes.

5.2.1 Action

This subsection will provide a brief overview on the flux formulation of double field theory
and show how it can be extended to also incorporate the R-R sector of type II theories.
We will furthermore show how geometric and nongeometric fluxes can be treated on equal
footing by interpreting fluxes as simple operators acting on differential form fields.
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NS-NS Sector

As starting point for the NS-NS sector, we consider the action [137,149,150]

SNS-NS =
1

2

∫
d20Xe−2d̂

[
F̂MNP F̂M ′N ′P ′

(
1

4
ĤMM ′ηNN

′
ηPP

′ − 1

12
ĤMM ′ĤNN ′ĤPP ′

−1

6
ηMM ′ηNN̂

′
ηPP

′
)

+F̂M F̂M ′
(
ηMM ′ − ĤMM ′

)]
,

(5.2.1)
which was found the be physically equivalent to (4.2.1) under the strong constraint.
Employing flat coordinates and using the generalized Weizenböck connection

Ω̂ABC = ÊAM
(
∂I ÊBM

)
ÊCM (5.2.2)

the generalized fluxes F̂A and F̂ABC can be written as

F̂A = Ω̂B
BA + 2ÊAI∂I d̂ and F̂ABC = 3Ω̂[ABC], (5.2.3)

where the squared brackets denote the antisymmetrization operator defined in appendix A.
It will be explained in subsection 5.2.2 how these are related to the generalized fluxes
with curved indices.

When performing dimensional reductions, a first step is to rewrite the action in terms
of objects representing four-dimensional fields and assume all fields with external legs
to be independent of the internal coordinates. We will do this by applying a general-
ized Kaluza-Klein ansatz for double field theory [149, 150, 204], for which we split the
coordinates into external and internal parts

XM =
(
xµ, x̃µ, Y

I
)
, XA =

(
xε, x̃ε, Y

E
)
, (5.2.4)

where we used the collective notation Y I = (yi, ỹi) and Y E = (ye, ỹe) for the latter. In
order to preserve rigid O(6, 6) symmetry, we impose the strong constraint only on the
external coordinates. More precisely, we assume all fields and gauge parameters to be
independent of the dual external coordinates x̃µ, while leaving the dependence of purely
internal fields on the doubled coordinates Y I , Y A untouched for now.

For the ten-dimensional metric and Kalb-Ramond field, we employ the splitting [149]

ĝmn =

 gµν + gklA
k
µA

l
ν Akµgkj

gikA
k
ν gij

 , B̂mn =

 Bµν −Bµj

Biν Bij

 (5.2.5)

and arrange the parts with mixed external and internal indices in a generalized Kaluza-
Klein vector

AIµ =
(
−Aiµ, Biµ

)
. (5.2.6)
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Inserting this ansatz into (5.2.1), the NS-NS contribution to the action can be reformu-
lated as [149,150,204]

SNS-NS =
1

2

∫
d4x d12Y

√
−g(4)

√
g(6)e−2φ̂

[
R(4) + 4gµνDµφDνφ−

1

4
gµνgρσHIJF̃ IµρF̃Jνσ

− 1

12
gµνgρσgτλH̃µρτH̃νσλ + gµν

1

8
DµHIJDνHIJ

+FIJKFI′J ′K′
(
− 1

12
HII′HJJ ′HKK′ +

1

4
HII′ηJJ

′
ηKK

′ − 1

6
ηII

′
ηJJ

′
ηKK

′
)

+FIFI′
(
ηII

′ −HII′
)]

(5.2.7)
where we defined the field strengths

F̃ Iµν = 2∂[µA
I
ν] −F IJKAJµAKν + 2FJAJ [µAIν] − 2F IBµν ,

H̃µνρ = 3∂[µBνρ] − 3∂[µAKνAρ]K − 6FKAK [µBνρ] −FIJKAIµAJνAKρ
(5.2.8)

and the covariant derivatives

DµHIJ = ∂µHIJ +AKµFKILHJL +AKµFKJLHIL

−AµIHJKFK −AµJHIKFK + FIHJKAKµ + FJHIKAKµ,

Dµφ = ∂µφ−FKAKµ.

(5.2.9)

R-R Sector

An extension of double field theory incorporating the R-R sector of type II theories
was first developed in [205–209]. The fields transform in the spinor representation of
O (10, 10), and one can expand

Ĝ =
∑
n

1

n!
Ĝ(n)
m1...mn

ea1

m1 . . . ean
mnΓa1...an |0〉 , (5.2.10)

where Γa1...an denotes the totally antisymmetrized product of n gamma-matrices. The
R-R gauge potentials can be combined into a spinor

Ĉ =

{∑4
n=0 Ĉ2n+1 for type IIA theory∑4
n=0 Ĉ2n for type IIB theory,

(5.2.11)

which can be used to write

Ĝ =

{
G0 + /∇Ĉ for type IIA theory

/∇Ĉ for type IIB theory,
(5.2.12)
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with the generalized fluxed Dirac operator

/∇ = ΓAÊAM∂M −
1

2
ΓAF̂A −

1

6
ΓABCF̂ABC . (5.2.13)

Notice that the zero-form R-R flux G0 in the type IIA case arises as dual to the back-
ground field strength of Ĉ9. A pseudo-action for the R-R sector can be obtained by
summing over all relevant components,

SR-R =
1

2

∫
d4x d12Y

(
−1

2
Ĝ ∧ ?Ĝ

)
. (5.2.14)

Since all fields Ĉn of a certain theory appear explicitly, this has to be supplemented by
duality constraints. Denoting the ten-dimensional n-form contributions by Ĝn, these take
the form [210]

Ĝn = (−1)b
n
2 c ? Ĝn, (5.2.15)

where the floor operator b·c gives as output the greatest integer less than or equal to the
argument.

5.2.2 Fluxes in Doubled Geometry

This section will focus on the scalar potential component of (5.2.7) and introduce a
double field theory interpretation of the NS-NS fluxes. This was first investigated in [78]
and later in [79]. Much of the following elaborations as well as section 5.3 will build
upon these works, but we here slightly generalize the approach and resolve some of the
questions which were left open at the end of the original discussion.

Fluxes as Fluctuations about the Calabi-Yau Background

The main idea is to treat the generalized fluxes (5.2.3) as manifestations of small devi-
ations from the Calabi-Yau background, arising from perturbations of the internal viel-
beins [78]

EAI =
◦

EAI + EAI +O
(
E2
)
. (5.2.16)

Here,
◦

EA
I

describes the Calabi-Yau background and EA
I

the fluctuations. Inserting this
expansion into the generalized fluxes (5.2.3), we can write

FA =
◦

FA + FA +O
(
E2
)
, FABC =

◦

FABC + FABC +O
(
E2
)
. (5.2.17)

As the notation implies,
◦

FA and
◦

FABC depend only on
◦

EAI and do not contribute to

the scalar potential since
◦

EAI satisfies the double field theory equations of motion. By
contrast, FA and FABC depend linearly on the fluctuations EAI and therefore have to be
taken into account.

In the following, we will use the background component
◦

EAI of the vielbein to switch

between flat and curved indices (defining, e.g. F IJK =
◦

EAI
◦

EBJ
◦

ECKFABC). For the case
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of constant expectation values, the three-indexed object F IJK has been shown to encode
the known geometric and nongeometric NS-NS fluxes by

F ijk = Hijk, F ijk = F i
jk, F ijk = Qi

jk, F ijk = Rijk. (5.2.18)

Similarly, we define for the trace-terms and generalized dilaton fluxes (cf. the first relation
of (5.2.3))

F i = 2Yi + Fm
mi, F i = 2Zi +Qm

mi. (5.2.19)

As discussed in [211], writing out the generalized metric H in terms of the internal metric
and Kalb-Ramond field gives rise to certain combinations of the latter with the fluxes,
for which it is convenient to use the shorthand notation

Hijk = Hijk + 3Fm
[ijBmk] + 3Q[i

mnBmjBnk] +RmnpBm[iBnjBpk],

Fijk = F i
jk + 2Q[j

miBm]k +RmniBm[jBnk],

Qk
ij = Qk

ij +RmijBmk,

Rijk = Rijk,

Yi = Yi + ZmBmi,

Zi = Zi.

(5.2.20)

Operator Interpretation of Fluxes

Throughout our upcoming discussion, it will be useful to interpret the geometric and
nongeometric fluxes as operators acting on differential forms. Employing a local basis
(dx1, . . . dx6) and the contractions (ι1, . . . ι6) satisfying ιidx

j = δi
j, we define [212, 213,

71,78,79]

H∧ : Ωp (CY3) −→ Ωp+3 (CY3)

ωp 7→ 1

3!
Hijk dxi ∧ dxj ∧ dxk ∧ ωp,

F◦ : Ωp (CY3) −→ Ωp+1 (CY3)

ωp 7→ 1

2!
F k

ij dxi ∧ dxj ∧ ιk ∧ ωp,

Q• : Ωp (CY3) −→ Ωp−1 (CY3)

ωp 7→ 1

2!
Qi

jk dxi ∧ ιj ∧ ιk ∧ ωp,

Rx: Ωp (CY3) −→ Ωp−3 (CY3)

ωp 7→ 1

3!
Rijk ιi ∧ ιj ∧ ιk ∧ ωp,

Y ∧ : Ωp (CY3) −→ Ωp+1 (CY3)

ωp 7→ Yi dxi ∧ ωp,

ZH : Ωp (CY3) −→ Ωp−1 (CY3)

ωp 7→ Zi ιi ∧ ωp,

(5.2.21)
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the last two of which denote the newly-introduced generalized dilaton fluxes first con-
sidered in a different context in [214, 215] (see also [216, 217] for a generalized-geometry
perspective). These operators can be combined with the exterior derivative d̂ to define
the twisted differential

D̂ = d̂−H ∧ −F ◦ −Q • −Rx−Y ∧ −ZH. (5.2.22)

Notice that the exterior derivative is that of the full ten-dimensional spacetime manifold.
In the following, we will often distinguish between internal and external components, for
which it makes sense to split the exterior derivative as

d̂ = d + dCY3 (5.2.23)

and define a purely internal twisted differential D with respect to dCY3 . For later con-
venience, we can furthermore define analogous operators for the Fraktur fluxes (5.2.20),
including the Fraktur twisted differential D̂. As shown in [78, 79], requiring nilpotency
D̂2 = 0 of the twisted differential (and similarly for D̂) gives rise to the Bianchi identities

0 = Hm[ijF
m
kl] −

2

3
∂[iHjkl],

0 = Fm
[jkF

l
i]m +Hm[ijQk]

ml + ∂[kF
l
ij],

0 = Fm
[ij]Qm

[kl] − 4F [k
m[iQj]

l]m +HmijR
mkl − 2∂[iQj]

kl,

0 = Qm
[jkQl

i]m +Rm[ijF k]
ml −

1

3
∂lR

ijk,

0 = Rm[ijQm
kl],

0 = Rmn[iF j]
mn −Rm[ij]Ym − ZmQm

[ij],

0 = RimnHjmn − F i
mnQj

mn − 2Qj
miYm + 2ZmF i

mj − 2∂jZ
i,

0 = Q[i
mnHj]mn − Fm

[ij]Ym − ZmHm[ij] + 2∂[iYj],

0 = 6RmnpHmnp + ZmYm,

(5.2.24)

where the derivative terms vanish in the discussed setting and were included only for the
sake of completeness. This form of the Bianchi identities generalizes the result of [78]
and matches with the relations presented earlier in [165] when taking into account the
definitions (5.2.19) and assuming independence of the dual coordinates.

Another central role will be played by the generalized primitivity constraints

Hiaāg
aā = 0, F i

aāg
aā = 0, Qi

aāgaā = 0, Riaāgaā = 0, (5.2.25)

which extend the corresponding condition for H arising from supersymmetry consid-
erations in traditional approaches to flux compactifications. Here, the first condition
is equivalent to requiring the interior product HyJ of H and the Kähler form J to
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vanish. Analogous formulations are possible for the remaining fluxes by taking the in-
terior product with Fy to be with respect to the subscript indices and defining similar
contraction-like operators Qq, Rq for the superscript indices of the nongeometric fluxes.
The primitivity constraints can then be recast in the coordinate-independent forms

HyJ = 0, FyJ = 0, QqJ = 0, RqJ = 0. (5.2.26)

Notice that the interior product of nongeometric fluxes looks very similar to the corre-
sponding operators defined in (5.2.21), but contracts only as many indices as there are
in the differential form it acts on. This structure is motivated by that of the Hodge-star
operator (A.2.6), and the relations (5.2.26) describe a generalization of the corresponding
constraints used in [78, 79]. As we will see in the next section, this slight relaxation is
necessary in order to make the framework applicable to more general settings of flux
compactifications.

Geometric Tools

To conclude this section, let us briefly introduce several geometric structures which will
become important in the following discussion. A useful tool to handle the flux operators
is the so-called the Mukai-pairing of two differential forms η and ρ. It is defined by

〈η, ρ〉 = [η ∧ λ (ρ)]6 , (5.2.27)

where [·]6 picks the six-form-component and the involution λ acts on an n-form ρ as

λ (ρ) = (−1)d
n
2 e ρ. (5.2.28)

The operator d·e denotes the ceiling function, giving as output the least integer greater
than or equal to the argument. Furthermore, we denote the purely external and internal
components of Kalb-Ramond field B̂ by

B =
1

2!
Bµν dxµ ∧ dxν and b =

1

2!
Bij dxi ∧ dxj, (5.2.29)

respectively. This allows us to define a b-twisted Hodge-star operator ?b as [218–220]

?bη = eb ∧ ?λ
(
e−bη

)
, (5.2.30)

which enables a natural extension of the framework to the Fraktur fluxes (5.2.20).

5.3 The Scalar Potential on a Calabi-Yau Three-Fold

We start our discussion of dimensional reductions by separately considering the purely
internal parts of (5.2.7) and (5.2.14) on a Calabi-Yau three-fold CY3. This was first done
in [78] for the type IIB setting and later extended to the type IIA setting in [79]. We
here generalize this analysis in order to prepare for our discussion in section 5.4. The
aim of this section is to show that both the type IIA and IIB case correctly give rise
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to the scalar potential of four-dimensional N = 2 gauged supergravity. We furthermore
illustrate how the simultaneous presence of geometric and nongeometric fluxes ensures
preservation of IIA↔ IIB Mirror Symmetry in double field theory.

Due to a shortage of free letters, we will slightly abuse notation in this section and at
some points utilize the letters m,n, p to extend our range of indices i, j, k, . . . for internal
legs. These are not to be confused with ten-dimensional indices commonly associated
with the same letters in this thesis. Notice, however, that this subsection focuses on the
purely internal part of the action, and the role of each index will always be clear from
the context.

Throughout our discussion, we impose the strong constraint on the underlying Calabi-
Yau background, assuming independence of the dual coordinates ỹi for the metric gij and
b. The latter is furthermore taken to satisfy the relation dCY3b = 0. We do not impose the
strong constraint for the fluxes, but only apply the weaker (quadratic) Bianchi identities
(5.2.24). This is to ensure that the theory is capable of describing electric and magnetic
gaugings and does not merely reduce to ordinary type II supergravities.

5.3.1 NS-NS Sector

When substituting the expansions (5.2.17) into the purely internal terms of (5.2.7), those

terms involving only the objects
◦

F I and
◦

F IJK describe the Calabi-Yau background and do

not contribute to the scalar potential since
◦

EAI satisfies the double field theory equations
of motion. Furthermore, mixings between background values and fluctuations describe
first order terms in the expansion about the minimum of the scalar potential and can be
neglected as well. Considering the action up to second order in the deviations, we are
then left with

SNS-NS, scalar =
1

2

∫
d4x d12Y

√
−g(4)

√
gCY3e

−2φ

[
F IJKF I′J ′K′

(
− 1

12
HII′HJJ ′HKK′

+
1

4
HII′ηJJ

′
ηKK

′ − 1

6
ηII

′
ηJJ

′
ηKK

′
)

+ F IF I′
(
ηII

′ −HII′
)]

.

(5.3.1)
Inserting the relations (5.2.18) and (5.2.19), this can be rewritten in terms of the geo-
metric and nongeometric fluxes as [78, 79]

SNS-NS, scalar =
1

2

∫
d4x d12Y

√
−g(4)

√
gCY3e

−2φ

[
− 1

12

(
HijkHi′j′k′g

ii′gjj
′
gkk

′
+ 3FijkF

i′
j′k′gii′g

jj′gkk
′

+3Qi
jkQi′

j′k′gii
′
gjj′gkk′ + RijkRi′j′k′gii′gjj′gkk′

)
−1

2

(
FmniF

n
mi′g

ii′ + Qm
niQn

mi′gii′−HmniQi′
mngii

′ − FimnR
mni′gii′

)
−
(
Fmmi + 2Yi

)(
Fm

′
m′i′ + 2Yi′

)
gii
′
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−
(
Qm

mi + 2Zi
)(

Qm′
m′i′ + 2Zi

′
)
gii′

]
,

(5.3.2)
where the topological terms involving only the O (6, 6) invariant structure ηII

′
cancel

by the Bianchi identities (5.2.24). Now a key issue of this action is that the (generally
unknown) metric gij of CY3 appears explicitly. In conventional Calabi-Yau compactifi-
cations, this can be remedied by applying differential form notation and expanding the
fields in terms of the cohomology bases. While this framework is not readily applicable to
the considered setting, we can resolve this problem in a similar way by employing the op-
erator interpretation (5.2.21) to build a bridge to the special geometry of the Calabi-Yau
moduli spaces. To keep the calculation as general as possible, we will include cohomolog-
ically trivial terms for the first part of this section and set them to zero only right before
performing the dimensional reduction.

Single-Flux Settings

As already demonstrated in [78], it is convenient to first assume vanishing internal B-field
components and consider only one flux turned on at a time. It is then straightforward to
show that the constructed reformulation is still applicable in more general settings.

Pure H-Flux

Due to its differential form nature, the discussion of the pure H -flux setting is particularly
simple and requires only the tools of standard differential geometry. The corresponding
Lagrangian of (5.3.2) takes the form

LNS-NS, scalar, H =
e−2φ

4
HijkHi′j′k′g

ii′gjj
′
gkk

′
. (5.3.3)

This can be written as

?LNS-NS, scalar, H = −e
−2φ

2
H ∧ ?H, (5.3.4)

where the three-form H is related to the first operator of (5.2.21) by formally defining
H := H ∧ 1CY3 .

Pure F -Flux

The NS-NS scalar potential Lagrangian in the pure F -flux scenario reads

LNS-NS, scalar, F = −e
−2φ

4

(
F i

jkF
i′
j′k′gii′g

jj′gkk
′
+ 2Fm

niF
n
mi′g

ii′ + 4Fm
miF

m
mi′g

ii′
)
.

(5.3.5)
While the three-form interpretation of H does not apply to F , we can construct a similar
object by letting the operator F◦ act on the Kähler form J of CY3. We then obtain

−1

2

(
F ◦ J

)
∧ ?
(
F ◦ J

)
=

[
1

4
Fm

ijF
m′
i′j′gmm′g

ii′gjj
′ − 1

2
Fm

ijF
m′
i′j′I

j′
mI

j
m′g

ii′
]
? 1CY3

(5.3.6)
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and find that only the first terms of (5.3.5) and (5.3.6) match, while the second term

−1

2
Fm

ijF
m′
i′j′I

j′
mI

j
m′g

ii′

=

(
F c

abF
b
āc + F c̄

ab̄F
b̄
āc̄ − F c̄

abF
b
āc̄ − F c

ab̄F
b̄
āc

)
gaā

(5.3.7)

comes with reversed signs for the last two components. To see how this can be compen-
sated for, notice that appropriate contraction of indices in the second Bianchi identity of
(5.2.24) yields (for vanishing Q-flux) the relation

F k
ab̄F

b̄
āk + F k

b̄āF
b̄
ak + F k

aaF
b̄
b̄k = 0. (5.3.8)

Multiplying this by gaā, we find after taking into account the corresponding primitivity
constraint of (5.2.25)

F c
ab̄F

b̄
ācg

aā = F c̄
abF

b
āc̄g

aā (5.3.9)

Using this, adding the expression

1

2

(
Ω ∧ F ◦ J

)
∧ ?
(

Ω ∧ F ◦ J
)

= −2
[
F c̄

abF
c
āb̄gcc̄g

aāgbb̄ − 2F c̄
abF

b
āc̄g

aā
]
? 1CY3

(5.3.10)

involving the holomorphic three-form Ω of CY3 gives the correct second term of (5.3.6),
but also comes with an additional contribution that has to be cancelled. We once more
resolve this by adding

−1

2

(
F ◦ Ω

)
∧ ?
(
F ◦ Ω

)
=

[
2F c̄

abF
c
āb̄gcc̄g

aāgbb̄ +
1

2
Fm

miF
m
mi′g

ii′
]
? 1CY3 . (5.3.11)

Finally, the missing trace-term can be obtained by substituting the primitivity constraint
(cf. (5.2.25)) into the only remaining non-trivial expression related the Calabi-Yau struc-
ture forms,

−1

2

(
F ◦ 1

2
J2

)
∧ ?
(
F ◦ 1

2
J2

)
=

[
1

2
Fm

miF
m
mi′g

ii′
]
? 1CY3 , (5.3.12)

and we find in total

?LNS-NS, scalar, F = −e
−2φ

2

[(
F ◦ J

)
∧ ?
(
F ◦ J

)
+

(
F ◦ 1

2
J2

)
∧ ?
(
F ◦ 1

2
J2

)
+

(
F ◦ Ω

)
∧ ?
(
F ◦ Ω

)
−
(

Ω ∧ F ◦ J
)
∧ ?
(

Ω ∧ F ◦ J
)]
.

(5.3.13)
Notice that this is a slight generalization of the corresponding expression found in [78,79]
due to the presence of additional trace-terms of F . In particular, the reformulation works
only when employing the relaxed primitivity constraints (5.2.25).
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Pure Q-Flux

The analysis of the pure Q-flux setting follows a very similar pattern as for the F -flux,
and we will only sketch the basic idea here. By proceeding completely analogously to the
F -flux case, one can show that the Lagrangian can be reformulated as

? LNS-NS, scalar, Q = −e
−2φ

2

[(
Q • 1

2
J2

)
∧ ?
(
Q • 1

2
J2

)
+

(
Q • 1

3!
J3

)
∧ ?
(
Q • 1

3!
J3

)
+

(
Q • Ω

)
∧ ?
(
Q • Ω

)
−
(

Ω ∧Q • 1

2
J2

)
∧ ?
(

Ω ∧Q • 1

2
J2

)]
.

(5.3.14)

The only non-straightforward step in this computation is to take into account the relation

Qk
ab̄Qb̄

āk +Qk
b̄āQb̄

ak +Qk
āaQb̄

b̄k = 0 (5.3.15)

obtained by appropriately contracting the fourth Bianchi identity of (5.2.24), which can
eventually be recast in the form

gaāQb̄
acQc

āb̄ = gaāQb
ac̄Qc̄

āb (5.3.16)

and used to identify certain contributions arising from the first and third term of (5.3.14).
Again, the result describes a slight generalization of the one found in [78,79], and matching
for the trace-terms requires using the primitivity constraints (5.2.25).

Pure R-Flux

Similarly to the symmetry between the pure F - and Q-flux settings, the reformulation of
pure R-flux case shows a strong resemblance of the pure H-flux setting, and it is natural
to consider the term Rx 1

3!
J3. This expression can be handled best by exploiting the

relation
1

3!
J3 = ?1CY3 =

√
gCY3

6!
εi1...i6dxi1 ∧ . . . ∧ dxi6 , (5.3.17)

to show that

Rx

(
1

3!
J3

)
= −
√
gCY3

3!3!
Rijkεijklmndxl ∧ dxm ∧ dxn. (5.3.18)

Inserting line two of (A.2.2) for D = 3 and p = 3, we then find

?LNS-NS, scalar, R = −e
2φ

2

(
Rx

1

3!
J3

)
∧ ?
(
Rx

1

3!
J3

)
. (5.3.19)

Pure Y - and Z-Flux

While the nature of the generalized dilaton fluxes Y and Z differs from that of their (three-
indexed) geometric and nongeometric counterparts, including them into the framework
presented here requires only minor modifications. The idea is again to consider dif-
ferent combinations of flux operators with the holomorphic three-form Ω or powers of
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the Kähler-form J . Direct computation then shows that the Lagrangian (5.3.2) for the
(combined) pure Y - and Z-flux settings can be rewritten as

?LNS-NS, scalar, Y = −e
−2φ

2

[(
Y ∧ 1CY3

)
∧ ?
(
Y ∧ 1CY3

)
+

(
Y ∧ J

)
∧ ?
(
Y ∧ J

)
+

(
Y ∧ 1

2
J2

)
∧ ?
(
Y ∧ 1

2
J2

)
+

(
Y ∧ Ω

)
∧ ?
(
Y ∧ Ω

)]
(5.3.20)

and

? LNS-NS, scalar, Z = −e
−2φ

2

[(
ZHJ

)
∧ ?
(
ZHJ

)
+

(
ZH

1

2
J2

)
∧ ?
(
ZH

1

2
J2

)
+

(
ZH ?

1

3!
J3

)
∧ ?
(
ZH ?

1

3!
J3

)
+

(
Y ∧ Ω

)
∧ ?
(
Y ∧ Ω

)]
,

(5.3.21)

respectively. Notice that, although not all corresponding expressions are trivial, we did
not include any mixings between J and Ω. The reason for this discrepancy will become
clear when considering more general settings in the next subsection.

Generalization

H-,F -,Q- and R-Fluxes

Before turning to the most general setting, it makes sense to first consider the case of
all three-indexed fluxes H,F,Q,R being turned on, while still assuming vanishing one-
indexed fluxes Y and Z. It was shown in [78] that the Lagrangian (5.3.2) can then be
written as

? LNS-NS, scalar, HFQR = −e−2φ

[
1

2
χ ∧ ?χ+

1

2
Ψ ∧ ?Ψ

−1

4

(
Ω ∧ χ

)
∧ ?
(
Ω ∧ χ

)
− 1

4

(
Ω ∧ χ

)
∧ ?
(
Ω ∧ χ

)]
,

(5.3.22)

where
χ = DeiJ , Ψ = DΩ , (5.3.23)

and the twisted differentialD is defined in (5.2.22) (with vanishing Y - and Z-components).
Notice that this formulation gives rise to various extra terms when trying to reproduce
the single-flux settings, which will however either cancel or vanish due to the generalized
primitivity constraints (5.2.25). For the generic case, a minimal requirement for matching
with the original Lagrangian (5.3.2) is that all mixings between different fluxes except
for the HQ- and FR-combinations vanish. Since the only nontrivial contributions of
(5.3.22) to the integral over CY3 are the ones proportional to its volume form ?1CY3 , the
relevant combinations of differential forms to check are those where both constituents
share the same degree. This in particular excludes all components of the poly-form Ψ.
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Furthermore, terms arising from quadratic combinations of χ which involve precisely one
even and one odd power of iJ cancel due to the complex conjugation operator reversing
the signs only for imaginary differential forms. A somewhat lengthy computation then
shows that the remaining terms of (5.3.22) are the desired HQ- and FR-combinations,
which read [78]

THQ =−H ∧ ?
(
Q • 1

2
J2

)
+ Re

(
Ω ∧H

)
∧ ?
(

Ω ∧Q • 1

2
J2

)
,

TFR =−F ◦ J ∧ ?
(
Rx

1

3!
J3

)
+ Re

(
Ω ∧ F ◦ J

)
∧ ?
(

Ω ∧Rx 1

3!
J3

)
.

(5.3.24)

To show that these correctly reproduce the mixing terms of (5.3.2), one can again follow a
similar pattern as in the single-flux settings [78]. The most important step here is to once
more make use of the second and fourth Bianchi identities of (5.2.24) in order to relate
the above expressions to the original action, which will in particular offset additional
contributions arising from modifications of the relations (5.3.8) and (5.3.15) we used in
the pure F - and Q-flux settings.

Including the Y - and Z-Fluxes

When trying to incorporate the generalized dilaton fluxes Y and Z into the framework,
one immediate problem is that the relation (5.3.22) does not even hold for the single-
flux settings. This is due to the appearance of additional mixings between eiJ and Ω
arising from the expressions in the second line, which cancel half of the desired terms
and leave an overall mismatch by a factor of 1

2
[79]. We resolve this by slightly modifying

the expression in such a way that only the Y - and Z- terms are affected. Using the
Mukai-pairing defined in (5.2.27), we find the more general form of the Lagrangian

? LNS-NS, scalar = −e−2φ

[
1

2
χ ∧ ?χ+

1

2
Ψ ∧ ?Ψ

−1

4
〈Ω, χ〉 ∧ ?〈Ω, χ〉 − 1

4
〈Ω, χ〉 ∧ ?〈Ω, χ〉

]
,

(5.3.25)

where χ and Ψ are defined as in (5.3.23) and the twisted differential now takes its general
form (5.2.22). Of the newly appearing mixing terms, the non-vanishing ones are precisely
the FY - and QZ-combinations, which correctly give rise to the trace-dilaton-mixings
found in the last two lines of (5.3.2).

Notice that this formulation of the scalar potential shows a stronger resemblance
of its generalized-geometry counterpart found in [199] for compactifications of type II
supergravities on manifolds with SU(3)×SU(3) structure.

Including the Kalb-Ramond Field

In a final step, the above results are once more generalized to the setting of a non-
vanishing internal Kalb-Ramond field b. As can be inferred from the structure of the
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Lagrangian (5.3.2), this can be achieved by replacing

H → H, F → F, Q→ Q, R→ R, Y → Y, Z → Z (5.3.26)

and, thus, for the twisted differential

D → D = d− H ∧ −F ◦ −Q • −Rx−Y ∧ −ZH. (5.3.27)

Similarly, the Kähler and complex structures of Calabi-Yau manifolds with non-vanishing
b-field are described by the modified poly-forms

eiJ → eb+iJ , Ω→ ebΩ. (5.3.28)

At a later point, it will be convenient to absorb the factor eb into the twisted differential.
We therefore consider the relation [78]

D = e−bDeb − 1

2

(
Qi

mnBmndxi + RimnBmnιi
)
, (5.3.29)

which can be derived by direct computation and using closure of b. Imposing primitivity
constraints analogous to (5.2.25) for the Fraktur fluxes and the modified Calabi-Yau
structure forms (5.3.28),

QqJ = 0, RqJ = 0, (5.3.30)

we furthermore obtain the relations

Qi
mnBmn + iRmnpBimJnp +RmnpBimBnp = 0,

RmnpBnp + iRmnpJnp = 0,
(5.3.31)

causing the terms in the brackets of (5.3.29) to vanish.We thus find for the NS-NS scalar
potential in the most general setting

? LNS-NS, scalar = −e−2φ

[
1

2
χ ∧ ?χ+

1

2
Ψ ∧ ?Ψ

−1

4
〈Ω, χ〉 ∧ ?〈Ω, χ〉 − 1

4
〈Ω, χ〉 ∧ ?〈Ω, χ〉

]
,

(5.3.32)

where
χ = e−bDeb+iJ , Ψ = e−bD

(
ebΩ
)
, (5.3.33)

This formulation is again a slight generalization of the result obtained in [78, 79]. The
expression invariant under exchangings between the poly-forms eiJ and Ω, and the twisted
differential D could as well be chosen to act on the latter in the last two terms. This will
be important for our discussion of Mirror Symmetry at a later point in this section.

5.3.2 R-R Sector

Reformulating the scalar-potential contribution of the R-R action (5.2.14) is more straight-
forward since only differential form terms are encountered. An instrutive example of how
the appearing expressions can be evaluated is provided, for example, in in section 4
of [211]. We will here follow a similar strategy while proceeding separately for the type
IIA and IIB cases.
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Type IIA Theory

Starting from the purely internal component of (5.2.14) and inserting the definitions
(5.2.12) and (5.2.11), we find for the internal components of the poly-form Ĝ(IIA) [79]

G(IIA)

0 = G0 −Q • C1 −RxC3 − ZHC1,

G(IIA)

2 = G2 − b ∧G0 − F ◦ C1 −Q • C3 −RxC5 −Y ∧ C1 − ZHC3,

G(IIA)

4 = G4 − b ∧G2 +
1

2
b2 ∧G0 − H ∧ C1 − F ◦ C3 −Q • C5−Y ∧ C3 − ZHC5,

G(IIA)

6 = G6 − b ∧G4 +
1

2
b2 ∧G2 −

1

3!
b3 ∧G0 − H ∧ C3 − F ◦ C5 −Y ∧ C5,

(5.3.34)
and the Lagrangian takes the form

?L(IIA)

R-R = −1

2
G(IIA) ∧ ?G(IIA). (5.3.35)

Here, G(IIA) denotes the purely internal part of Ĝ(IIA) given by

G(IIA) = e−bG(IIA) + e−bD
(
ebC(IIA)

)
, (5.3.36)

with
C(IIA) = C1 + C3 + C5 + C7 + C9,

G(IIA) = G0 +G2 +G4 +G6

(5.3.37)

comprising the purely internal components of the C2n+1-fields1 and the background R-R
fluxes G2n. The former are to be understood as fluctuations C2n+1 about the vacuum

expectation values
◦

C2n+1 , and one can equivalently write (5.3.36) as G(IIA) = G0 +

e−bD
[
eb
( ◦
C(IIA) + C(IIA)

)]
. The above formulation will, however, be more convenient since

it allows us to treat all R-R fluxes on equal footing and obtain the same structure for the
type IIA und IIB settings.

Type IIB Theory

The analysis of the type IIB setting is completely analogous to the type IIA case, and
one eventually arrives at [78,79]

?L(IIB)

R-R = −1

2
G(IIB) ∧ ?G(IIB) (5.3.38)

with
G(IIB) = e−bG(IIB) + e−bD

(
ebC(IIB)

)
(5.3.39)

and
G(IIB) = G1 +G3 +G5,

C(IIB) = C0 + C2 + C4 + C6 + C8.
(5.3.40)

1Notice that this expression intentionally includes trivial components and those which become massive
in the process of compactification to highlight the symmetry between the type IIA and IIB settings.
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5.3.3 Dimensional Reduction

The reformulated scalar potential described in (5.3.32), (5.3.35) and (5.3.38) depends only
on the Kähler form and the holomorphic three-form of CY3 and can thus be evaluated
by utilizing the framework of special geometry for the Calabi-Yau moduli spaces.

Special Geometry of Calabi-Yau Three-Folds

Since we are interested only in those fields which do not acquire mass in the course of the
compactification, we can follow the standard procedure of Calabi-Yau compactifications
and expand the appearing fields in terms of the cohomology bases of CY3. In the setting
discussed here, this additionally requires a way to describe the action of the flux operators
(5.2.21) on the field expansions.

Much of this can be achieved by applying the tools of special geometry introduced
earlier in chapter 3. To make this chapter more self-contained, we will here provide
another concise overview on the relevant structures encountered thoughout our previous
discussion, before generalizing the concepts to make them readily applicable to the present
setting.

Even Cohomology

The nontrivial even cohomology groups are Hn,n (CY3) with n = 0, 1, 2, 3. We denote the
corresponding bases by{

1(6)
}
∈ H0,0 (CY3) ,{

ωi

}
∈ H1,1 (CY3) ,

with i = 1, . . . h1,1{
ω̃i
}
∈ H2,2 (CY3) ,{

1
K ? 1(6)

}
∈ H3,3 (CY3) ,

(5.3.41)

where ?1(6) is the volume form and K the total volume of CY3. For later convenience, it
makes sense to set ω0 := 1

K ?1(6) and ω̃0 := 1(6), allowing us to use the collective notation

ωI =
(
ω0, ωi

)
,

with I = 0, . . . h1,1

ω̃I =
(
ω̃0, ω̃i

)
.

(5.3.42)

Notice that this convention differs slightly from the one used in (3.2.15). This structure
enables a more straightforward implementation of the involution operator (5.2.28) into
the framework but does not affect the overall result. We again choose the two bases such
that the normalization condition ∫

CY3

ωI ∧ ω̃J = δI
J (5.3.43)

holds. For the Kähler form J of CY3 and the Kalb-Ramond field B̂, we use the expansions

J = viωi and B̂ = B + b = B + biωi, (5.3.44)
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where B denotes the external component of B̂ living in M1,3 and b its internal part. The
internal expansion coefficients bi can be combined with the Kähler moduli vi to define
the complexified Kähler form

J =
(
bi + ivi

)
ωi =: tiωi. (5.3.45)

We furthermore introduce the shorthand notation

Kijk =

∫
CY3

ωi ∧ ωj ∧ ωk,

Kij =

∫
CY3

ωi ∧ ωj ∧ J =Kijkv
k,

Ki =

∫
CY3

ωi ∧ J ∧ J =Kijkv
jvk,

K =
1

3!

∫
CY3

J ∧ J ∧ J =
1

6
Kijkv

ivjvk,

(5.3.46)

where the Kijk, Kij and Ki are called intersection numbers. Using this, one can expand
the first poly-form of (5.3.33) in terms of the complexified Kähler moduli as

eB+iJ = eJ = ω̃0 + tiωi +
1

2!

(
Kijkt

itj
)
ω̃k +

1

3!

(
Kijkt

itjtk
)
ω0, (5.3.47)

where all powers of order ≥ 4 vanish on CY3.

Odd Cohomology

The nontrivial odd cohomology groups are given by H3,0 (CY3), H2,1 (CY3),H1,2 (CY3)
and H0,3 (CY3). For these we introduce a collective basis{

αA, β
A
}
∈ H3 (CY3) with A = 0, . . . h1,2, (5.3.48)

which can be normalized to satisfy∫
CY3

αA ∧ βB = δA
B. (5.3.49)

The complex-structure moduli are encoded by the holomorphic three-form Ω of CY3,
which we expand in terms of the periods XA and FA as

Ω = XAαA − FAβ
A. (5.3.50)

Notice that there is a minus sign in front of the βA. Throughout this chapter we will
apply this convention to all odd cohomology expansions of fields, while the signs are
exchanged for field strengths. The periods FA are functions of XA and can be determined
from a holomorphic prepotential F by FA = ∂F

∂XA . Defining FAB = ∂FA

∂XB , one can write the
period matrix MAB as

MAB = FAB + 2i
Im (FAC)XCIm (FBD)XD

XEIm (FEF)XF
, (5.3.51)
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which is related to the cohomology bases (5.3.48) by∫
CY3

αA ∧ ?αB = −
[
(ImM) + (ReM) (ImM)−1 (ReM)

]
AB
,∫

CY3

αA ∧ ?βB = −
[
(ReM) (ImM)−1]

A
B,∫

CY3

βA ∧ ?βB = −
[
ImM−1

]AB
.

(5.3.52)

Gauge Coupling Matrices

Denoting some arbitrary poly-form field A which can be expanded in terms of the non-
trivial cohomology bases of CY3 by

A = AIωI + AIω̃
I + AAαA − AAβ

A, (5.3.53)

one can define a collective notation by

AI =
(
AI, AI

)
and AA =

(
AA, −AA

)
. (5.3.54)

Similarly, we define the collective cohomology bases

ΣI =
(
ωI, ω̃I

)
and ΞA =

(
αA, βA

)
(5.3.55)

and the matrix

MAB =

∫
CY3

 −
〈
αA, ?bαB

〉 〈
αA, ?bβ

B
〉

〈
βA, ?bαB

〉
−
〈
βA, ?bβ

B
〉
, (5.3.56)

which can be expressed in terms of the period matrix (5.3.52) as

M =

(
1 −ReM
0 1

)(
ImM 0

0 ImM−1

)(
1 0

−ReM 1

)
. (5.3.57)

For consistency of notation, we parameterize the even-cohomology analogue

NIJ =

∫
CY3

 〈
ωI, ?bωJ

〉 〈
ωI, ?bω̃

J
〉

〈
ω̃I, ?bωJ

〉 〈
ω̃I, ?bω̃

J
〉
 (5.3.58)

as

N =

(
1 −ReN
0 1

)(
ImN 0

0 ImN−1

)(
1 0

−ReN 1

)
, (5.3.59)

whereNIJ denotes the corresponding period matrix of the special Kähler manifold spanned
by the complexified Kähler-class moduli. A detailed discussion of its structure can be
found e.g. in [69].
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Using the notation (5.3.42), one can also see that the Mukai-pairing (5.2.27) induces
a symplectic structure by∫

CY3

〈ΣI,ΣJ〉 = (Seven)IJ =

(
0 1

−1 0

)
∈ Sp

(
2h1,1 + 2,R

)
(5.3.60)

and ∫
CY3

〈ΞA,ΞB〉 = (Sodd)AB =

(
0 1

−1 0

)
∈ Sp

(
2h1,2 + 2,R

)
. (5.3.61)

For simplicity, we will omit the subscripts “even” and “odd” from now on. The dimension
can, however, easily be inferred from the context or read off from the indices when using
component notation.

Fluxes and Cohomology Bases

In the previous subsections, we treated the fluxes as operators in a local coordinate
basis. For our subsequent analysis, we need to relate these operators to actions on
the cohomology basis elements (5.3.41) and (5.3.48). In toroidal compactifications, this
transition from the coordinate basis to the cohomology is straightforward to derive, but
for more general manifolds this remains an open problem. However, as in [198], we can
propose an action of the fluxes on the cohomology and check whether it leads to the
expected results. For the three-index fluxes in the present context this has been done
in [78]. For the Y - and Z-fluxes, the existence of such expansions is questionable as
there do not exist any homological one- or five-cycles on a Calabi-Yau three-fold. We will
therefore stick to the common convention and set Y and Z to zero for the remainder of
this discussion, but come back to their role when we consider K3× T 2 compactifications
in section 5.4.

To get familiar with the idea, notice that the H-flux can be expanded in the basis
(5.3.48) as

H = −hAαA + hAβ
A . (5.3.62)

This particular example defines a differential form by itself, however, it can be alterna-
tively interpreted as an operator acting on other differential forms as a wedge product
with a three-form. With regard to the cohmology of the Calabi-Yau three-fold, it therefore
defines a mapping between the zeroth and third as well as the third and sixth cohomology
groups. In a similar way, the remaining fluxes can also be described by their effect on
the cohomology basis elements. Following [198], we consider the action of the twisted
differential D on the cohomology of the Calabi-Yau three-fold,

DαA = OA
IωI + OAIω̃

I, DβA = P̃AIωI + P̃A
Iω̃

I,

DωI = −P̃A
IαA + OAIβ

A, Dω̃I = P̃AIαA − OA
IβA,

(5.3.63)

where the components
OAi = fAi, P̃A

i = fA
i,

OA
i = qA

i, P̃Ai = qAi
(5.3.64)



5.3 The Scalar Potential on a Calabi-Yau Three-Fold 85

encode the action of the F - and Q-fluxes and we used the convention (5.3.42) to set

OA0 = rA, P̃A
0 = rA,

OA
0 = hA, P̃A0 = hA.

(5.3.65)

Similarly to the previous sections, one can arrange the flux coefficients in a collective
notation that will greatly simplify calculations at a later point. We define the matrices

OA
I =

(
−P̃A

I P̃AI

OAI −OA
I

)
, ÕI

A =

(
(OT )IA (P̃ T )IA

(OT )IA (P̃ T )I
A

)
, (5.3.66)

which are related by
Õ = −S−1OTS. (5.3.67)

This can be used to express the action of the twisted differential on the cohomology bases
in the shorthand notation

D(ΣT )I = (OT )I
A(ΞT )A, D(ΞT )A = (ÕT )A

I(ΣT )I. (5.3.68)

Nilpotency of the twisted differential then implies that the relations

D2(ΣT )I = 0 and D2(ΞT )A = 0 (5.3.69)

have to be satisfied, giving rise to the constraints

ÕI
AOA

J = 0, OA
IÕI

B = 0, (5.3.70)

which take the role of a cohomology version of (5.2.24) and will be important in section
5.5.

Integrating over the Internal Space – NS-NS Sector

Proceeding in the same manner as for ordinary type II supergravity theories, we now
expand the fields of the scalar potential in the cohomology bases (5.3.42) and (5.3.48) in
order to filter out those terms which become massive in four dimensions. For the NS-NS
poly-forms, we utilize the expansions (5.3.47) and (5.3.50) and arrange the coefficients in
vectors

V I =

(
1

3!
Kijkt

itjtk, ti, 1,
1

2!
Kijkt

itj
)

WA =

(
XA, −FA

) (5.3.71)

of dimension (2h1,1 + 2) respectively (2h1,2 + 2), enabling us to use the shorthand nota-
tion

eb+iJ = ΣIV
I, Ω = ΞAW

A. (5.3.72)

Using the flux matrices (5.3.66) and the relations (5.3.68), the poly-forms χ and Ψ can
now be expressed as

χ = e−bΞAOA
IV

I,

Ψ = e−bΣIÕI
AW

A.
(5.3.73)
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When integrating the NS-NS action (5.3.32) over CY3, the first two terms of (5.3.73)
combine to the matrices (5.3.56) and (5.3.58), and one eventually obtains for the scalar
potential [78]

Vscalar, NS-NS =
e−2φ

2

[
V I(OT )I

AMABOB
JV

J +WA(ÕT )A
INIJÕJ

BW
B

− 1

2K
WASABOB

I

(
V IV

J
+ V

I
V J
)

(OT )J
C(ST )CDW

D
]
.

(5.3.74)

Integrating over the Internal Space - R-R Sector

Following a similar pattern for the R-R sector, we start by discarding the cohomologically
trivial C-fields and expand

ebC(IIA) = C(3)AαA − C(3)
Aβ

A,

ebC(IIB) = C(0)
0ω̃

0 + C(2)IωI + C(4)
Iω̃

I + C(6)0ω0.
(5.3.75)

The expansion coefficients are again arranged in vectors

CA
0 =

(
C(3)A, C(3)

A

)
(type IIA theory),

CI
0 =

(
C(6)0, C(2)I, C(0)

0, C
(4)

I

)
(type IIB theory),

(5.3.76)

where the subscript index “0” denotes the number of external components and is intro-
duced for consistency with section 5.5. Similarly, we write for the non-trivial R-R fluxes

G(IIA) = G(0)
0ω̃

0 +G(2)IωI +G(4)
Iω̃

I +G(6)0ω0,

G(IIB) = −G(3)AαA +G(3)
Aβ

A,
(5.3.77)

and
GI

flux =
(
G(6)0, G(2)I, G(0)

0, G
(4)

I

)
(type IIA theory),

GA
flux =

(
G(3)A, G(3)

A

)
(type IIB theory),

(5.3.78)

enabling us to reformulate the poly-forms (5.3.36) and (5.3.39) as

G(IIA) = e−bΣI

(
GI

flux + ÕI
AC

A
0

)
,

G(IIB) = e−bΞA

(
GA

flux +OA
IC

I
0

)
.

(5.3.79)

Integrating (5.3.35) and (5.3.38) over CY3 and once more utilizing the relations (5.3.56)
and (5.3.58), we eventually arrive at [78,79]

V (IIA)

scalar, R-R =
1

2

(
GI

flux + CA
0 (ÕT )A

I
)
NIJ

(
GJ

flux + ÕJ
BC

B
0

)
,

V (IIB)

scalar, R-R =
1

2

(
GA

flux + CI
0(OT )I

A
)
MAB

(
GB

flux +OB
JC

J
0

)
.

(5.3.80)
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Mirror Symmetry

In purely geometric flux compactifications, Mirror Symmetry between type IIA and IIB
supergravities is not preserved for the generic case. In light of the conjectured equivalence
of Mirror Symmetry and T-duality [61], this is not surprising as the latter is well-known
to map parts of the fluxes to nongeometric backgrounds. Since double field theory in-
corporates all fluxes of the T-duality chain (2.2.29), it is to be hoped that IIA ↔ IIB
Mirror Symmetry is restored in this setting. And indeed, comparing the results (5.3.80)
for the type IIA and IIB cases, it is straightforward to verify that the theories are related
to each other by the mappings [79]

MAB ↔ NIJ, h1,1 ↔ h1,2,

V I ↔ WA, SIJ ↔ SAB,

CI
0 ↔ CA

0 , GI
flux ↔ GA

flux,

OA
I ↔ ÕI

A.

(5.3.81)

These transformations strongly resemble the mirror mappings of conventional Calabi-
Yau compactifications we encountered earlier in section 3.2.5. The first two lines again
describe an exchange of roles between the Kähler-class and complex-structure moduli
spaces, which is complemented by a simple replacement of the theory-specific R-R fields in
line three. The last line encodes various mappings between the fluxes, which in particular
contain exchanges between the geometric and nongeometric expansion coefficients. Taken
as a whole, this relation implies that type IIA double field theory compactified on a
Calabi-Yau three-fold CY3 is physically equivalent to its type IIB analogue compactified
on a mirror Calabi-Yau three-fold C̃Y 3, with the Hodge-diamonds of the two manifolds
being related by a reflection along their diagonal axes.

The relations involving the expansion coefficients can be lifted to ten dimensions,
allowing for a more compact notation

eiJ ↔ Ω, G(IIA) ↔ G(IIB) (5.3.82)

of the mirror mappings as an exchange of the poly-forms (5.3.33), (5.3.36) and (5.3.39) we
used to reformulate the double field theory action. Similarly to the component notation,
this again describes an exchange of the terms encoding the complexified Kähler-class and
complex-structure moduli and a mapping between the IIA and IIB R-R fields.

5.4 The Scalar Potential on K3× T 2

We next repeat the process of dimensional reduction for double field theory on K3× T 2

and show how the framework can be straightforwardly generalized to other ompactifica-
tion manifolds. Much of the following discussion is completely analogous to the Calabi-
Yau setting, and we will therefore focus on the specific features of K3 × T 2. We will
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furthermore simplify computations by setting cohomologically trivial terms to zero right
at the beginning of the calculation from now on.

In order to distinguish between K3 and T 2 indices, we split the internal indices into
I, J, . . . labeling K3 coordinates and R, S . . . labeling T 2 coordinates. Their complex-
geometric (undoubled) analogues are denoted by a, ā, b, b̄ and g, ḡ, h, h̄, respectively. For
convenience, we accordingly split the flux operators (5.2.21) into their distinct cohomo-
logically nontrivial components,

H∧ : Ωp (K3× T 2) −→ Ωp+3 (K3× T 2)

ωp 7→ 1

2!
Hijr dxi ∧ dxj ∧ dxr ∧ ωp,

F◦ : Ωp (K3× T 2) −→ Ωp+1 (K3× T 2)

ωp 7→
(

1

2!
F r

ij dxi ∧ dxj ∧ ιr + F j
ir dxi ∧ dxr ∧ ιj

)
∧ ωp,

Q• : Ωp (K3× T 2) −→ Ωp−1 (K3× T 2)

ωp 7→
(

1

2!
Qr

ij dxr ∧ ιi ∧ ιj +Qi
jr dxi ∧ ιj ∧ ιr

)
∧ ωp,

Rx: Ωp (K3× T 2) −→ Ωp−3 (K3× T 2)

ωp 7→ 1

3!
Rijr ιi ∧ ιj ∧ ιr ∧ ωp,

Y ∧ : Ωp (K3× T 2) −→ Ωp+1 (K3× T 2)

ωp 7→ Yr dxr ∧ ωp,

ZH : Ωp (K3× T 2) −→ Ωp−1 (K3× T 2)

ωp 7→ Zr ιr ∧ ωp.
(5.4.1)

Finally, we again impose the strong constraint for the background and the field fluctua-
tions, but assume only the less restrictive the Bianchi identities (5.2.24) to hold for the
fluxes.

5.4.1 Reformulating the Action

The toolbox we used to reformulate the internal NS-NS action on CY3 builds upon on
the mathematical framework of generalized Calabi-Yau structures [147]. For the manifold
K3 × T 2, this problem can be approached in a similar way by utilizing the notions of
generalized K3 surfaces [203] and formally treating T 2 as a complex torus. We start by
exploiting the product structure of K3× T 2 and consider the Kähler class and complex-
structure forms

eb+iJ = ebK3+iJK3 ∧ ebT2+iJT2 , eb ∧ Ω =
(
ebK3 ∧ ΩK3

)
∧
(
ebT2 ∧ ΩT 2

)
, (5.4.2)
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respectively. The reformulation of the scalar potential part of the NS-NS sector (5.2.7)
then follows a very similar pattern as in the Calabi-Yau case. As an instructive example,
one can easily check that the only non-trivial contribution of the pure H-flux setting is
given by

?LNS-NS, scalar, H =
e−2φ

4
HijrHi′j′r′g

ii′gjj
′
grr
′
? 1K3×T 2 , (5.4.3)

which can again be written as

?LNS-NS, scalar, H = −e
−2φ

2
H ∧ ?H, (5.4.4)

with H now defined as in (5.4.1). The F -flux allows for different nontrivial components
and is therefore slightly more involved. From the initial action (5.2.7), we obtain

LNS-NS, scalar, F = −e
−2φ

4

(
F r

ijF
r′
i′j′g

ii′gjj
′
grr′ + 2F i

jrF
i′
j′r′gii′g

jj′grr
′
+ 2Fm

nrF
n
mr′g

rr′

+4Fm
mrF

m′
m′r′g

rr′ + 4F r
miF

m
ri′g

ii′
)
,

(5.4.5)

Denoting the first and second component of F◦ by F1◦ respectively F2◦ (based on the split
employed in (5.4.1)), the first term can be rewritten similarly to the H-flux contribution
as

−e
−2φ

4
F r

ijF
r′
i′j′g

ii′gjj
′
grr′ ? 1K3×T 2 = −e

−2φ

2

[
F1 ◦ (1K3 ∧ iJT 2)

]
∧ ?
[
F1 ◦ (1K3 ∧ iJT 2)

]
.

(5.4.6)
A similar structure as in (5.3.13) can be obtained by formally adding corresponding
expressions for F1 ◦

(
ΩK3 ∧ ΩT 2

)
and

(
ΩK3 ∧ ΩT 2

)
∧ F1 ◦ (iJK3 ∧ 1T 2), but their contri-

butions cancel in this particular case. Proceeding analogously to the pure F -flux case in
the Calabi-Yau setting, one finds for the next three terms

−e
−2φ

4

(
2F i

jrF
i′
j′r′gii′g

jj′grr
′
+ 2Fm

nrF
n
mr′g

rr′ + 4Fm
mrF

m′
m′r′g

rr′
)
? 1K3×T 2

= −e
−2φ

2

{[
F2 ◦

(
iJK3 ∧ 1T 2

)]
∧ ?
[
F2 ◦

(
iJK3 ∧ 1T 2

)]
+
[
F2 ◦

(
? 1K3 ∧ 1T 2

)]
∧ ?
[
F2 ◦

(
? 1K3 ∧ 1T 2

)]
+
[
F2 ◦

(
ΩK3 ∧ ΩT 2

)]
∧ ?
[
F2 ◦

(
ΩK3 ∧ ΩT 2

)]
−
[ (

ΩK3 ∧ ΩT 2

)
∧ F2 ◦ (iJK3 ∧ 1T 2)

]
∧ ?
[ (

ΩK3 ∧ ΩT 2

)
F2 ◦ (iJK3 ∧ 1T 2)

]}
.

(5.4.7)
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The final term can be reformulated as

−e−2φF r
miF

m
ri′g

ii′ ? 1K3×T 2

= −e−2φ

{[
F1 ◦ (1K3 ∧ iJT 2)

]
∧ ?
[
F2 ◦ (iJK3 ∧ 1T 2)

]
−
[

(ΩK3 ∧ ΩT 2) ∧ F1 ◦ (1K3 ∧ iJT 2)
]
∧ ?
[

(ΩK3 ∧ ΩT 2) ∧ F2 ◦ (iJK3 ∧ 1T 2)
]}
,

(5.4.8)
showing that the F -contribution to the scalar potential takes the form (5.3.13) already
known from the Calabi-Yau setting. The discussion of the nongeometric and generalized
dilaton fluxes as well as the R-R sector is analogous. For the most general setting, we
then eventually arrive at the familiar expressions (5.3.32), (5.3.35) and (5.3.38), with the
fluxes adjusted according to (5.4.1) and eiJ and Ω as in (5.4.2).

5.4.2 Dimensional Reduction

We next proceed as usual by expanding the fields and fluxes in terms of the cohomology
bases of K3× T 2 before integrating over the internal manifold.

Special Geometry of K3× T 2

As in the Calabi-Yau case, we treat the even and odd cohomology groups of the com-
pactification manifolds separately to enable a suitable description of the Kähler-class
and complex-structure moduli spaces. A simple way to find a viable basis is to employ a
splitting into the K3 and T 2 components and consider the factorized Hodge diamond

1
1 0 0

1 1 × 1 20 1
1 0 0

1

T 2 K3 .

(5.4.9)

Since all nontrivial cohomology groups of K3 are of even degree, the property of a coho-
mologically nontrivial differential form on K3× T 2 being even or odd depends purely on
its T 2 part.

Even Cohomology

The even cohomology bases of T 2 are precisely the identity 1T 2 for the zero-forms and
1
KT2

? 1T 2 for the two-forms (the latter of which coincides with the normalized Kähler

form), {
1T 2

}
∈ H0 (T 2) ,{

1
KT2

? 1T 2

}
∈ H2 (T 2) ,

(5.4.10)
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and we denote them by v0 respectively v3 from now on. The bases of the K3 de Rham
cohomology groups are given by{

1K3

}
∈ H0 (K3) ,{

σu

}
∈ H2 (K3) , with u = 1, . . . 22{

1
KK3

? 1K3

}
∈ H4 (K3) ,

, (5.4.11)

and we define σ0 = 1K3 and σ23 = 1
KK3

? 1K3 to employ a collective notation

σU =
(
σ0 σu σ23

)
. (5.4.12)

We furthermore define ηuv to be the intersection metric

ηuv =

∫
K3

σu ∧ σv , (5.4.13)

which has signature (3, 19) due to the existence of three antiselfdual two-forms (the
Kähler form, the holomorphic two-form and its antiholomorphic counterpart) and 19
selfdual ones. This metric can serve as a building block of a matrix

LUV =

 0 0 −1
0 ηuv 0
−1 0 0

 , LUV =

 0 0 −1
0 ηuv 0
−1 0 0

 , (5.4.14)

which we use to lower and raise cohomological K3 indices,

σU = LUVσV. (5.4.15)

Putting all the above objects together, we can define a collective basis for the even de
Rham cohomology groups of K3× T 2 by

ωI =
(
ω0 ωu ω23

)
=
(
v0 ∧ σ0 v0 ∧ σu v0 ∧ σ23

)
,

ω̃I =
(
ω̃0 ω̃u ω̃23

)
=
(
v3 ∧ σ0 v3 ∧ σu v3 ∧ σ23

)
,

(5.4.16)

where the labeling I, J, . . . was chosen for later convenience. The basis elements satisfy
the normalization condition

∫
K3×T 2

ωI ∧ ω̃J =

 −1 0 0
0 δu

v 0
0 0 −1

 , (5.4.17)

and we again use a collective notation

ΣI =
(
ωI ω̃I

)
. (5.4.18)



92 5. Dimensional Reductions of Double Field Theory

Analogously to the Calabi-Yau case, this basis defines a symplectic structure by∫
K3×T 2

〈ΣI,ΣJ〉 = (Seven)IJ =

(
0 1

−1 0

)
∈ Sp (48,R) . (5.4.19)

In order to describe the Kähler-class moduli space of K3 × T 2, we combine the Kähler
form J and the internal part b of the B̂-field to a complexified Kähler form

J = b+ iJ = (bT 2 + iJT 2) + (bK3 + iJK3) = ρω̃0 + tuωu, (5.4.20)

where the latter splitting can be applied due to the vanishing first Betti number of K3.
The complex parameter ρ = b0 + iw0 encodes the volume modulus w0 of T 2 as well as the
component b0 of B̂ living purely in T 2. Analogously, the expressions tu encode the moduli
wu and bu, spanning the complexified Kähler cone of K3. In the upcoming discussion,
we will often encounter the poly-form eJ, which we expand as eJ = ΣIV

I with

V I =
(

1, tu, tutvηuv, ρtutvη
uv, ρtu, ρ

)
. (5.4.21)

Odd Cohomology

A basis for the odd cohomology groups can be constructed in a similar way by replacing
the even basis elements of T 2 by two one-form basis elements{

v1, v2

}
∈ H1

(
T 2
)

with

∫
T 2

v1 ∧ v2 = 1 (5.4.22)

and defining
αA =

(
α0 αu α23

)
=
(
v1 ∧ σ0 v1 ∧ σu v1 ∧ σ23

)
,

βA =
(
β0 βu β23

)
=
(
v2 ∧ σ0 v2 ∧ σu v2 ∧ σ23

)
.

(5.4.23)

These objects satisfy the normalization condition∫
K3×T 2

αA ∧ βA =

 −1 0 0
0 δu

v 0
0 0 −1

 (5.4.24)

and can be arranged in a collective basis

ΞA =
(
αA βA

)
(5.4.25)

to define a symplectic structure by∫
K3×T 2

〈ΞA,ΞB〉 = (Sodd)AB =

(
0 1

−1 0

)
∈ Sp (48,R) . (5.4.26)

Notice that we again incorporated a relative minus sign into the expansions in terms of
the even and odd cohomology bases for later convenience. More specifically, we expand
an arbitrary poly-form field A as

A = AIΣI + AAΞA = AIωI + AIω̃
I + AAαA − AAβ

A. (5.4.27)
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Similarly to its Kähler-class counterpart, the complex-structure moduli space of K3×T 2

can be described by a three-form Ω, defined as the product of a holomorphic one-form
ΩT 2 living in T 2 and a holomorphic two-form ΩK3 living in K3. Viewing T 2 as a one-
dimensional complex torus, ΩT 2 encodes the modular (complex-structure) parameter τ
by

ΩT 2 = v1 − τv2, (5.4.28)

where

τ =

∫
T 2

ΩT 2 ∧ v1. (5.4.29)

Similarly, ΩK3 can be expanded as

ΩK3 = T uσu, (5.4.30)

In the following, we will be mainly concerned with the expression ebΩ, which can be
expanded in terms of the basis (5.4.23) as ebΩ = ΞAW

A with

WA =
(

0, T u, T ubvηuv, τTubvη
uv, τTu, 0

)
. (5.4.31)

Gauge Coupling Matrices

As in the Calabi-Yau setting, we again define a gauge coupling matrix

MAB =

∫
K3×T 2

 −
〈
αA, ?bαB

〉 〈
αA, ?bβ

B
〉

〈
βA, ?bαB

〉
−
〈
βA, ?bβ

B
〉
, (5.4.32)

which can be written as

MAB =
1

Imτ

 |τ |2 ÑAB Reτ ÑA
B

Reτ ÑA
B ÑAB

 , (5.4.33)

where

ÑAB =

∫
K3

 〈
σU, ?bK3

σV
〉 〈

σU, ?bK3
σV
〉

〈
σU, ?bK3

σV
〉 〈

σU, ?bK3
σV
〉
 (5.4.34)

is the K3 analogue of (5.3.58) (recall that the indices A,B, . . ., I, J, . . . and U,V, . . . run
over the same values). Similarly, we define for the even cohomology groups

NIJ =

∫
K3×T 2

 〈
ωI, ?bωJ

〉 〈
ωI, ?bω̃

J
〉

〈
ω̃I, ?bωJ

〉 〈
ω̃I, ?bω̃

J
〉
 , (5.4.35)

which can be reformulated as

NIJ =
1

Imρ

 |ρ|2 ÑIJ ReρÑI
J

ReρÑI
J ÑIJ

 , (5.4.36)

with ÑIJ taking the same form as (5.4.34).
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Fluxes and Cohomology Bases

To relate the flux operators (5.4.1) to the gaugings of four-dimensional supergravity, we
once more proceed analogously to the Calabi-Yau setting. The action of the twisted
differential (5.2.22) on the cohomology bases can be summarized by the relations

D(ΣT )I = (OT )I
A(ΞT )A, D(ΞT )A = (ÕT )A

I(ΣT )I, (5.4.37)

where the charge matrices

OA
I =

(
−P̃A

I P̃AI

OAI −OA
I

)
, ÕI

A =

(
(OT )IA (P̃ T )IA

(OT )IA (P̃ T )I
A

)
(5.4.38)

comprise the flux expansion coefficients. Their components read

P̃A
I =

 (f + y)0
0 q0

u 0
hu0 (f + y)uu qu23
0 h23u (f + y)23

23

 ,

P̃AI =

 0 r0u (q + z) 0 23

ru0 (q + z) uu fu 23

(q + z) 23 0 f 23 u 0

 ,

OAI =

 0 h0u (f + y)0 23

hu0 (f + y)uu qu 23

(f + y)23 0 q23 u 0

 ,

OA
I =

 (q + z)0
0 f0

u 0
ru

0 (q + z)u
u fu

23

0 r23
u (q + z)23

23

 ,

(5.4.39)

and again satisfy the relation

Õ = −S−1OTS. (5.4.40)

The notation was chosen such that the small letters in the charge matrices indicate the
fluxes they descend from. While their origin should be clear for most cases, there are
some caveats for the F - and Q-fluxes. Here, the coefficients with different indices arise
from the flux components with two sub- or superscript K3 indices, while the coefficients
with matching indices originate from the components with one sub- and one superscript
index in K3.

Integrating over the Internal Space

With everything formulated in an analogous framework as in the Calabi-Yau setting, it
is now straightforward to integrate over the internal manifold. Similar considerations as
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in subsection 5.3.3 and 5.3.3 eventually lead to the results

V (IIA)

scalar, NS-NS =
e−2φ

2

[
V I(OT )I

AMABOB
JV

J +WA(ÕT )A
INIJÕJ

BW
B

− 1

2K
WASABOB

I

(
V IV

J
+ V

I
V J
)

(OT )J
C(ST )CDW

D
]

+
1

2

(
GI

flux + CA
0 (ÕT )A

I
)
NIJ

(
GJ

flux + ÕJ
BC

B
0

)
,

(5.4.41)

for the type IIA case and

V (IIB)

scalar, NS-NS =
e−2φ

2

[
V I(OT )I

AMABOB
JV

J +WA(ÕT )A
INIJÕJ

BW
B

− 1

2K
WASABOB

I

(
V IV

J
+ V

I
V J
)

(OT )J
C(ST )CDW

D
]

+
1

2

(
GA

flux + CI
0(OT )I

A
)
MAB

(
GB

flux +OB
JC

J
0

) (5.4.42)

for the type IIB case. Comparing the reduced potentials reveals the same set of mirror
mappings (5.3.81) already encountered in the Calabi-Yau setting (including a reflection of
the Hodge diamond (5.4.9) onto itself). One can furthermore see from the structure of the
K3×T 2 gauge coupling matrices (5.4.33) and (5.4.36) that the mappings MAB ↔ NIJ in-
volve a characteristic exchange of the volume and complex-structure modular parameters
in a complex torus

τ ↔ ρ . (5.4.43)

Assessing the effect of Mirror Symmetry on the K3-part is less straightforward since the
moduli space does not factorize into a complex-structure and a Kähler component as in
the case of Calabi-Yau three-folds. In this setting, the complex-structure moduli can be
interpreted as coefficients arising from the variations [221]

δgab ∼ Ωacg
cd̄χbd̄ + Ωbcg

cd̄χad̄ , (5.4.44)

where χ denotes some closed (1, 1)-form on K3. If χ is proportional to the Kähler-
form, this variation vanishes, and one is left with a total of 19 complex-structure moduli
which naturally combine with the (2, 0)- and (0, 2)-components of the B-field. On the
other hand, the Kähler moduli and the (1, 1)-components of the B-field again form 20
complexified Kähler moduli. Mirror Symmetry thus involves a similar exchange of roles
between the “extended” complex-structure and the complexified Kähler moduli as in the
CY3-setting, although the moduli space does not factorize.

5.5 Obtaining the full Action of N = 2 Gauged Su-

pergravity

We next show how the framework can be extended to the kinetic terms of type II theories.
This will allow us to derive the full four-dimensional action of N = 2 gauged supergravity
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from the Calabi-Yau setting. In doing so, we again set cohomologically trivial terms to
zero at the beginning of the calculation. A more thorough analysis similar to section 5.3
and dimensional reductions on K3 × T 2 are more involved due to the appearance of
additional Kaluza-Klein-like terms and will not be covered in this thesis.

The primary objective of our upcoming analysis is to relate the full double field theory
action to a particular formulation of four-dimensional N = 2 gauged supergravity first
presented in [202]. In accordance with the original work, we will adopt the assumptions
h1,1 ≤ h1,2 for the type IIA case and h1,1 ≥ h1,2 for the type IIB case. We furthermore
assume the matrix OA

I or ÕI
A to have maximal rank h1,1 + 1 or h1,2 + 1 in the respective

settings.

5.5.1 NS-NS Sector

Due to the vanishing first and fifth Betti numbers of Calabi-Yau three-folds, there do not
exist any non-trivial one- or five-cycles on CY3. It follows that all fields with effectively
one or five free internal indices acquire mass in four dimensions and can be ignored in
the low-energy limit. One immediate effect is that all components of the metric and the
Kalb-Ramond field with mixed indices can be discarded, which drastically simplifies the
expressions (5.2.8) and (5.2.9) building up the NS-NS contribution (5.2.7) to the action,

F̃ Iµν → 0, H̃µνρ → ∂[µBνρ], DµHIJ → ∂µHIJ , FI → 0, (5.5.1)

and leaves us with

SNS-NS =
1

2

∫
d4x d12Y

√
−g(4)

√
gCY3e

−2φ̂

[
R(4) + 4gµν∂µφ∂νφ−

1

12
gµνgρσgτλ∂[µBρτ ]∂[νBσλ] +

1

8
gµν∂µHIJ∂νHIJ

+FIJKFI′J ′K′
(
− 1

12
HII′HJJ ′HKK′ +

1

4
HII′ηJJ

′
ηKK

′ − 1

6
ηII

′
ηJJ

′
ηKK

′
)]

.

(5.5.2)
The first three terms are known from conventional type II supergravities, while the last
two lines were shown to correctly reduce to the scalar potential of N = 2 gauged
supergravity in section 5.3. It is therefore to be expected that the remaining term
1
8
gµν∂µHIJ∂νHIJ gives rise to the kinetic terms of the Kähler-class and complex-structure

moduli. And indeed, inserting (4.1.3) and using antisymmetry of the Kalb-Ramond field,
one obtains

1

8
gµν∂µHIJ∂νHIJ =

1

4
gµν
(
∂µgij∂νg

ij − gikgjl∂µbij∂νbkl
)
. (5.5.3)

Here, the first expression on the right-hand side encodes the dynamics of the internal
metric and its fluctuations about the vacuum. Analogously to conventional Calabi-Yau
compactifications, these fluctuations can be described in terms of the Kähler class and
complex-structure moduli [110]. For the Kalb-Ramond field, one can proceed analogously



5.5 Obtaining the full Action of N = 2 Gauged Supergravity 97

by using the expansion (5.3.44), which combines with the Kähler-class moduli to form
the complexified Kähler moduli.

Using this as a starting point, the rest of the dimensional reduction follows the same
principles as in conventional Calabi-Yau compactifications of type II theories. Explicit
computations can be found in [116–118], a similar discussion concerning manifolds with
SU(3)×SU(3) structure is presented in [220,199]. Defining the four-dimensional dilaton
as

e−2φ =

∫
CY3

e−2φ̂ (5.5.4)

and switching to Einstein frame via Weyl-rescaling of the external metric,

gµν → e−2φgµν , (5.5.5)

one eventually arrives at

SNS-NS, kin =

∫
M1,3

1

2
R(4) ?1(4)−dφ∧?dφ− 1

4
e−4φdB∧?dB−gijdti∧?dt̄j−gabdU a∧?dUb

,

(5.5.6)
where we again switched to differential form notation for later convenience. In the above
formulation, the expansion coefficients ti (cf. (5.3.45)) again parameterize the complexi-
fied Kähler-class moduli space MKC with metric gij, and U a the complex-structure moduli
space MCS with metric gab.

5.5.2 R-R Sector

A natural way to proceed for the R-R sector would be to evaluate the corresponding
action of (5.2.14) in four dimensions and then implement the duality relations (5.2.15) in
order to recover the action of N = 2 gauged supergravity. Since handling these duality
relations in four dimensions turns out rather complicated, we will, however, pursue a
different approach and consider the reduced equations of motion instead. Notice that
this has been done for compactifications on SU(3)×SU(3) structure manifolds in [199],
and many of the following technical steps are close to the ones employed in this work.

Type IIA Setting

Relation to Democratic Type IIA Supergravity

Starting from (5.2.14), a first step is to write down the pseudo-action explicitly in terms
of poly-form fields and obtain a form similar to (5.3.35). In doing so, we again neglect all
cohomologically trivial expressions and, thus, take into account only those components
with zero, two, three, four or six internal indices. Applying the methods presented in [211]
and arranging the (now ten-dimensional) Ĉ-fields and R-R fluxes in poly-forms

Ĉ(IIA) = Ĉ1 + Ĉ3 + Ĉ5 + Ĉ7 + Ĉ9,

G(IIA) = G0 +G2 +G4 +G6,
(5.5.7)
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we can define

Ĝ(IIA) = e−B̂G(IIA) + D̂Ĉ(IIA) = e−B̂G(IIA) + e−B̂D̂
(
eB̂Ĉ(IIA)

)
, (5.5.8)

with the ten-dimensional twisted differential

D̂ = d̂−H ∧ −F ◦ −Q • −Rx, (5.5.9)

to write the complete type IIA R-R pseudo-Lagrangian (5.2.14) as

?LR-R = −1

2
Ĝ(IIA) ∧ ?Ĝ(IIA). (5.5.10)

Notice that this resembles the R-R sector of democratic type IIA supergravity [210],
up to an exchange of signs in the exponential factors and the inclusion of additional
background fluxes. Since the action depends on all R-R potentials explicitly, the duality
relations (5.2.15) have to be imposed by hand. For the type IIA case, these are equivalent
to

Ĝ(IIA) = λ
(
?Ĝ(IIA)

)
, (5.5.11)

where λ denotes the involution operator defined in (5.2.28). Varying the corresponding
action of (5.5.10) with respect to the R-R fields, one obtains the poly-form equation(

d̂− dB̂ ∧+H ∧+F ◦+Q •+Rx
)
? Ĝ(IIA) = 0. (5.5.12)

Employing the duality relations (5.5.11), this can be recast to a set of Bianchi identities

e−B̂D̂
(
eB̂Ĝ(IIA)

)
= 0, (5.5.13)

where the prefactor of e−B̂ was included for later convenience. These relations are auto-
matically satisfied when imposing nilpotency of the twisted differential by hand, and the
nontrivial equations of motion in four dimensions now arise from the duality constraints
(5.5.11).

Reduced Equations of Motion

In order to evaluate the equations of motion in four dimensions, we next express the
appearing objects in a way that the framework of special geometry presented in subsec-
tion 5.3.3 can be applied. This can be achieved by switching to an alternative basis [210],
for which we define

eB̂C(IIA) =
(
CI

1 + CI
3

)
ωI +

(
CA

0 + CA
2 + CA

4

)
αA −

(
C0A + C2A + C4A

)
βA +

(
C1 I + C3 I

)
ω̃I

(5.5.14)
and

G0 = Gflux 0ω̃
0, G2 = Gi

fluxωi, G4 = Gflux iω̃
i, G6 = G0

fluxω0, (5.5.15)
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where the objects Cn now denote differential n-forms living in four dimensional spacetime.
The R-R poly-form (5.5.8) can then be expressed as

Ĝ(IIA) = e−B̂Ĝ(IIA) = e−B̂
(
Ĝ(IIA)

0 + Ĝ(IIA)

2 + Ĝ(IIA)

4 + Ĝ(IIA)

6 + Ĝ(IIA)

8 + Ĝ(IIA)

10

)
. (5.5.16)

Using the flux matrices (5.3.66) and the relations (5.3.68), the appearing poly-forms can
be expanded in terms of four-dimensional differential form fields,

Ĝ(IIA)

0 = G0 0ω̃
0,

Ĝ(IIA)

2 = G2 0ω̃
0 + Gi

0ωi,

Ĝ(IIA)

4 = G4 0ω̃
0 + Gi

2 ∧ ωi − GA
1 ∧ αA + G1A ∧ βA + G0 iω̃

i,

Ĝ(IIA)

6 = Gi
4 ∧ ωi − GA

3 ∧ αA + G3A ∧ βA + G2 i ∧ ω̃i + G0
0 ∧ ω0,

Ĝ(IIA)

8 = G4 i ∧ ω̃i + G0
2 ∧ ω0,

Ĝ(IIA)

10 = G0
4 ∧ ω0,

(5.5.17)

with the expansion coefficients given by

GI
0 = GI

flux + ÕI
AC

A
0 ,

GA
1 = dCA

0 +OA
IC

I
1,

GI
2 = dCI

1 + ÕI
AC

A
2 ,

GA
3 = dCA

2 +OA
IC

I
3,

GI
4 = dCI

3 + ÕI
AC

A
4 .

(5.5.18)

This expansion can be used as a starting point to compute the reduced equations of
motion descending from (5.5.13). Substituting the definition (5.5.16) into (5.5.13), one
obtains in A-basis notation

D̂Ĝ(IIA) = 0. (5.5.19)

After separating different components and integrating over CY3, this gives rise to the
four-dimensional equations of motion

OA
IG

I
0 = 0,

dGI
0 − ÕI

AG
A
1 = 0,

dGA
1 −OA

IG
I
2 = 0,

dGI
2 − ÕI

AG
A
3 = 0,

dGA
3 −OA

IG
I
4 = 0.

(5.5.20)
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Since the Kalb-Ramond field couples with the C-fields, one furthermore has to take
into account the (non-trivial) equation of motion obtained by varying the complete ten-
dimensional action with respect to B̂, which yields an eight-form equation

d
(
e−2φ̂ ? d̂B̂

)
+
[
Ĝ(IIA) ∧ ?Ĝ(IIA)

]
8

= 0. (5.5.21)

Reduced Duality Constraints

Our aim is now to implement the duality constraints (5.5.11) into the equations of motion
(5.5.20) and (5.5.21) in an appropriate way in order to recover the D = 4 N = 2 gauged
supergravity action found in formula (35) of [202]. In particular, we want the fundamental
(but not necessarily propagating) degrees of freedom to be given by2 2h1,2 +2 scalars ẐA,
h1,1 + 1 one-forms AI

1, 2h1,2 + 2 two-forms BA and the external Kalb-Ramond field B.
Up to conventions, the reduced duality constraints can be obtained in a way com-

pletely analogous to the approach of [199]. Inserting the expansion

e−B̂Ĝ(IIA) = e−b
(
K IωI +KIω̃

I + LAαA − LAβ
A
)

(5.5.22)

into (5.5.11), one obtains

K IωI+KIω̃
I+LAαA−LAβ

A = −?λ
(
K I
)
?bωI−?λ (KI)?b ω̃

I−?λ
(
LA
)
?bαA+?λ (LA)?bβ

A.
(5.5.23)

Applying the operators
∫
CY3

〈
ω̃I, ?b·

〉
and

∫
CY3

〈
βA, ?b·

〉
to both sides of the equation and

using (5.3.57 - 5.3.59), one can separate different internal components and obtain the
reduced duality constraints

KI = −ImNIJ ? λ
(
KJ
)

+ ReNIJK
J,

LA = −ImMAB ? λ
(
LB
)

+ ReMABL
B.

(5.5.24)

The K- and L-poly-forms still contain four-dimensional differential forms of different de-
grees. Separating components by hand and performing a Weyl-rescaling (5.5.5) according
to (5.5.5), we eventually arrive at

G2 I −BG0 I = ImNIJ ?
(
GJ

2 −B ∧ GJ
0

)
+ ReNIJ

(
GJ

2 −B ∧ GJ
0

)
,

GI
4 −B ∧ GI

2 +
1

2
B2GI

0 = −e4φ
(
S−1

) IJNJKG
K
0 ? 1(4),

GA
3 −B ∧ GA

1 = e2φ (S−1)
ABMBC ? G

C
1 .

(5.5.25)

Evaluating the Equations of Motion – Constraints on Fluxes

Before implementing the duality constraints, it makes sense to take a closer look at the
first line of (5.5.20). Unlike the remaining equations of motion, the left-hand side does

2We preliminarily adopt the notation of [202] and identify the correct definitions in the course of the
following discussion.
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not vanish trivially when imposing the nilpotency conditions (5.3.70). Instead, we are
left with a set of additional constraints, which take the form

OA
IG

I
flux = 0 (5.5.26)

and resemble the conditions found in (37) of [202]. Notice that these arise automatically
from the double field theory framework and do not have to be imposed by hand in our
considered setting.

Evaluating the Equations of Motion – CI
1

The simplest equations of motion to derive are those of the one-forms CI
1 , which we will

be able to identify with the fields AI
1 from [202] at the end of this subsection. In order to

get some intuition for the way of proceeding, we will treat this example in more detail.
A similar strategy can then be followed for the remaining degrees of freedom.

Many of the technical steps in the following discussion are again very close to the ones
employed in [199]. The essential difference is that in the present setting, the expressions
(5.5.18) are fixed by the double field theory action, whereas in the case of [199], their
structure was described solely in terms of the equations of motion (5.5.20). This leads
to slight redefinitions of the encountered objects, but will eventually lead to the same
physical degrees of freedom as in the SU(3)×SU(3) framework.

To motivate our ansatz, it makes sense to first take a look at the equations of motion
obtained by varying the action found in [202] with respect to the AI

1,

d
(
ImNIJ ? F

J
2 + ReNIJF

J
2 − eIABA − cIB

)
= 0. (5.5.27)

The first two terms appearing on the left-hand side have a very characterstic structure
and strongly resemble the first line of (5.5.25). Furthermore, the term BG0 I already shows
some resemblance of the expression cIB from the equation of motion (5.5.27). A viable
ansatz is therefore to replace G2 I in the lower-index components of the fourth equation
of motion from (5.5.20) by using line one of (5.5.25). Applying the nilpotency constraint
(5.3.70) of D, the former can be written as

dG2 I − ÕIAdCA
2 = 0. (5.5.28)

Substituting the first line of (5.5.25) into G2 I yields

d
(

ImNIJ ? F
J
2 + ReNIJF

J
2 − ÕIAC

A
2 +B ∧ G0 I

)
= 0, (5.5.29)

where

FI
2 := GI

2 −B ∧ GI
0. (5.5.30)

This can be further simplified by pulling out a factor of B∧ from the definition (5.5.14)
of CA

2 . We do this by employing the alternative expansion
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ebĈ(IIA) =
(
C̃I

1 + C̃I
3

)
ωI

+
(
C̃A

0 + C̃A
2 + C̃A

4

)
αA −

(
C̃0A + C̃2A + C̃4A

)
βA

+
(
C̃1 I + C̃3 I

)
ω̃I,

(5.5.31)

from which we infer the relation

CA
2 = C̃A

2 +B ∧ CA
0 , (5.5.32)

while the other fields appearing in (5.5.29) remain unaffected. Inserting the definitions
(5.5.18) for the G0 I, we are left with

FI
2 = dCI

1 + ÕI
AC̃

A
2 −B ∧ GI

flux (5.5.33)

and the equations of motion

d
(

ImNIJ ? F
J
2 + ReNIJF

J
2 − ÕIAC̃

A
2 +B ∧ GI flux

)
= 0. (5.5.34)

Up to sign convention for B, these take precisely the form of (5.5.27) when identifying

AI
1 = CI

1, BA = C̃A
2 , eIA = ÕIA and cI = GIflux.

Evaluating the Equations of Motion – C̃A
2

A similar analysis for the fields BA in [202] implies that a viable strategy is to use lines
one and three of the duality constraints (5.5.25) to reformulate the third equation of
motion in (5.5.20). For this, we introduce a new matrix ǑI

A defined to satisfy [202]

ǑI
AOA

J = δIJ , (5.5.35)

which in turn can be used to construct the projector

PA
B := OA

IǑI
B (5.5.36)

on the (h1,1 + 1)-dimensional subspace corresponding to the non-vanishing minor of OA
I.

We can then formally split the 2(h1,2 + 1) scalars CA
0 into two components

CA
0 = PA

BC
B
0 + C̃A

0 (5.5.37)

and identify C̃A
0 := (δAB − PA

B)CB
0 with the 2(h1,2 + 1) − (h1,1 + 1) propagating degrees

of freedom encoded by the scalars ẐA from [202]. Our aim is now to rewrite the third

equation of motion from (5.5.20) in such a way that only the fields C̃A
0 , CI

1, C̃A
2 and B

appear explicitly. This can be done by first left-multiplying line three of (5.5.25) with

ÕIA, yielding

ÕIAdCA
2 −B ∧ d(ÕIAC̃

A
0 ) = e2φÕIA

(
S−1

)ABMBC ? G
C
1 , (5.5.38)
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where we in particular used that ÕIAPA
B vanishes due to (5.3.70). Employing the ex-

pansion (5.5.31) and using that PA
BOB

I = OA
I, we obtain

PA
BC

B
0 +OA

IC
I
1 = −OA

I(∆
−1)IJ

(
?d(ÕJBC̃

B
2 ) + ÕJBC̃

B
0 ? dB + e2φ(OT )J

BMBCdC̃C
0

)
,

(5.5.39)
with

∆IJ = e2φ(OT )I
AMABOB

J. (5.5.40)

Starting from line three of (5.5.20), we separate components to get

dGA
1 − d(OA

IC
I
1)−OA

IÕI
BC

B
2 −OA IG2 I = 0. (5.5.41)

In this formulation, the third term can be substituted by the identity

OA
IÕI

BC
B
2 = −OA IÕIBC

B
2 (5.5.42)

derived from (5.3.70) and the fourth term by line two of (5.5.25). Inserting then the
previously derived relation (5.5.20) into GA

1 , we obtain after left-multiplication with SAB

0 = −d
[
(ÕT )A I(∆

−1)IJ
(
?d(ÕJBC̃

B
2 ) + ÕJBC̃

B
0 ? dB + e2φ(OT )J

BMBCdC̃C
0

)]
−d(ÕT )A IC

I
1+(ÕT )A

I
(

ImNIJ ? F
J
2 + ReNIJF

J
2 +B ∧ GIflux − ÕIBC̃

B
2

)
.

(5.5.43)

Evaluating the Equations of Motion – C̃A
0

Following the same procedure once more, we implement lines two and three of (5.5.25)
into the fifth equation of motion of (5.5.20). Simplifying via equations of motion one and
three, we obtain

d
[
e2φ(S−1)ABMBC ? G

C
1

]
+ dB ∧ GA

1 + e4φOA
I
(
S−1

) IJNJKG
K
0 ? 1(4) = 0. (5.5.44)

Inserting (5.5.39) and lowering symplectic indices with SAB, we arrive at

0 = −d
[
∆̃AB ? dC̃B

0 − e2φMABOB
I(∆

−1)IJ
(

d(ÕJCC̃
C
2 ) + ÕJCC̃

C
0 dB

)]
−dB ∧

[
SABdC̃B

0 − (ÕT )A I(∆
−1)IJ

·
(
?d(ÕJCC̃

C
2 ) + ÕJCC̃

C
0 ? dB + e2φ(OT )J

CMCDdC̃D
0

)]
+e4φ(ÕT )A

INIJ

(
GJ

flux + ÕJ
BC̃

B
0

)
? 1(4),

(5.5.45)

where

∆̃AB = e2φ
(
MAB − e2φMACOC

I(∆
−1)IJ(OT )J

DMDB
)
. (5.5.46)
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Evaluating the Equations of Motion – B

The equation of motion (5.5.21) of B̂ is already non-trivial and only needs to be refor-
mulated in a way that the undesired degrees of freedom disappear. We here consider
the part with two external and six internal components. Using the expansion (5.5.22)
and manually inserting involution operators (5.2.28), we can use (5.3.57) and (5.3.59) to
integrate over CY3, and after another Weyl-rescaling according to (5.5.5), we arrive at

1

2
d
(
e−4φ ? dB

)
− GI

0G2 I + G0 IG
I
2 + G1A ∧ GA

1 = 0. (5.5.47)

Substituting the corresponding expressions from (5.5.18), we eventually find

0 =
1

2
d
(
e−4φ ? dB

)
− GI

flux

(
ImNIJ ? F

J
2 + ReNIJF

J
2

)
+ GIfluxF

I
2 +

1

2
dC̃A

0SABdC̃B
0

−d
[
C̃A

0 (ÕT )A I(∆
−1)IJ

(
?d(ÕJBC̃

B
2 )− ÕJBC̃

B
0 ? dB + e2φ(OT )J

BMBCdC̃C
0

)]
.

(5.5.48)
This will be identified as the equation of motion for the external Kalb-Ramond field B
in the next paragraph.

Reconstructing the Action of D = 4 N = 2 Gauged Supergravity

Building upon our results for the scalar potential (5.3.80) and the kinetic NS-NS sector
(5.5.6), we can now utilize the previously derived equations of motion to reconstruct the
full four-dimensional action, which takes the form [202]

SIIA =

∫
M1,3

1

2
R(4) ? 1(4) − dφ ∧ ?dφ− e−4φ

4
dB ∧ ?dB − gijdti ∧ ?dt̄j − gabdU a ∧ ?dUb

+
1

2
ReNIJF

I
2 ∧ FJ

2 +
1

2
ImNIJF

I
2 ∧ ?FJ

2 +
1

2
∆̃ABdC̃A

0 ∧ ?dCB
0

+
1

2
(∆−1)IJ

(
d(ÕIAC̃

A
2 ) + ÕIAC̃

A
0 dB

)
∧ ?
(

d(ÕJBC̃
B
2 ) + ÕJBC̃

B
0 dB

)
+
(

d(ÕIAC̃
A
2 ) + ÕIAC̃

A
0 dB

)
∧
(
e2φ(∆−1)IJ(OT )J

BMBCdC̃C
0

)
− 1

2
dB ∧ C̃A

0SABdC̃B
0

−
(
ÕIAC̃

A
2 − GI fluxB

)
∧
(

dCI
1 + 1

2
ÕI

BC̃
B
2 − 1

2
GI

fluxB
)

+ Vscalar ? 1(4),

(5.5.49)
with

Vscalar = VNSNS + VRR

= +
e2φ

2
V I(OT )I

AMABOB
JV

J+
e2φ

2
WA(ÕT )A

INIJÕJ
BW

B

−e
2φ

4K
WASACOC

I

(
V IV

J
+ V

I
V J
)

(OT )J
DSDBW

B

+
e4φ

2

(
GI

flux + C̃A
0 (ÕT )A

I
)
NIJ

(
GJ

flux + ÕJ
BC̃

B
0

)
.

(5.5.50)
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One can verify by direct calculation and use of the relations (5.3.67) and (5.5.26) that
the equations of motion are correctly recovered when varying with respect to the cor-
responding fields. Up to different conventions and additional terms from the remaining
sectors, this replicates the structure of (35) from [202].

A similar result was derived for compactifications of ordinary type II theories on
SU(3)×SU(3) structure manifolds in [199], where a slightly different formulation in
terms of the actual propagating degrees of freedom was obtained. Indeed, in our present
discussion the fundamental fields C̃A

2 appear only in particular combinations with the

fluxes (or charges), and the actual propagating degrees of freedom are given by ÕIAC̃
A
2 .

In a similar way, the fields CA
0 enter the equations of motion exclusively in form of the

projections C̃A
0 , which encode only a part of the original degrees of freedom. Taking the

corresponding definitions into account, one can verify that the results for both frameworks
are indeed equivalent as expected.

To tie up loose ends, let us also note that we utilized only parts of the relations arising
from (5.5.20) to derive the four-dimensional supergravity equations of motion. One can
show by careful use of the Bianchi identities (5.3.70) that the remaining components
automatically depend only on the fields appearing in the effective action (5.5.49) and are
trivially satisfied when inserting the definitions (5.5.18). This is again in accordance with
the result of [199], where the corresponding relations were used to express the appearing
G-fields directly in terms of the propagating degrees of freedom.

Relation to the Standard Formulation of D = 4 N = 2 Gauged Supergravity

To conclude our discussion of the type IIA setting, let us briefly discuss how this result
relates to the standard formulation of D = 4 N = 2 gauged supergravity. In the original
work [202], the authors first constructed an alternative formulation of the theory in which
a subset of the scalars is dualized to two-forms. In this framework, the external component
B of the Kalb-Ramond field appears explicitly, and there exist certain combinations
of electric charges and new two-form fields which are not present in the initial action.
It was then found that this partially dualized formulation permits a natural extension
involving additional magnetic charges, which cannot be straightforwardly included into
the standard formulation.

In the framework applied throughout this chapter, the electric and magnetic charges
descend from the ten-dimensional generalized NS-NS fluxes. The magnetic charges are
thereby represented by the expressions OA I and ÕI

A, which encode precisely half of the
flux coefficients. In the generic case, this leads to a partially dualized N = 2 gauged
supergravity action along the lines of [202]. However, there also exist certain special
cases for which the dualization procedure becomes reversibe and the original formulation
can be recovered. A similar role is played by the R-R fluxes, which were already found
in [119–121] to prevent the four-dimensional Kalb-Ramond field from being dualized to
an axion.

We will next discuss some of these particular settings in more detail and show how
their action can be related to the standard formulation of N = 2 gauged and ungauged
supergravity. Notice that a similar analysis was also presented in [199], where the consid-
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ered special cases were shown to be equivalent to compactifications on SU(3) structure
manifolds.

Since the magnetic charges in four dimensions arise from the fluxes OA I and ÕI
A,

a natural ansatz is to reconsider the ten-dimensional equations of motion under the
additional assumption

OA I = 0, ÕI
A = 0. (5.5.51)

In this setting, parts of the undesired degrees of freedom automatically disappear from
the equations of motion, and the four-dimensional action can be formulated without
additional two-form fields ÕIAC̃

A
2 . This can be achieved by substituting lines one and

three of (5.5.25) into the lower-index components of the fourth equation of motion from
(5.5.20), which yields a new non-trivial equation of motion

d
(
ImNIJ ? F

J
2 + ReNIJF

J
2

)
+
(
GI flux + ÕIAC

A
0

)
dB + e2φ(OT )I

AMAB ?
(
dCA

0 +OA
IC

I
1

)
= 0

(5.5.52)
with

FI
2 = dCI

1 −B ∧ GI
flux. (5.5.53)

From here on, the relations (5.5.44) and (5.5.47) can be derived analogously to the general
case, and no further reformulations or substitutions are required for the scalar fields CA

0 .
The resulting equations of motion can then be derived from a different four-dimensional
action

SIIA =

∫
M1,3

1

2
R(4) ? 1(4) − dφ ∧ ?dφ− e−4φ

4
dB ∧ ?dB − gijdti ∧ ?dt̄j − gabdU a ∧ ?dUb

+
1

2
ReNIJF

I
2 ∧ FJ

2 +
1

2
ImNIJF

I
2 ∧ ?FJ

2 +
e2φ

2
MABDCA

0 ∧ ?DCB
0

−1

2
dB ∧

[
CA

0SABDCB
0 +

(
2GI flux + ÕIAC

A
0

)
CI

1

]
− 1

2
GI fluxG

I
fluxB ∧B

+Vscalar ? 1(4) ,
(5.5.54)

in which the physical degrees of freedom arising from the two-form fields ÕIAC̃
A
2 are now

encoded by a new set of scalar fields. The scalar potential Vscalar takes the same form as
in (5.5.50) and the covariant derivative D is defined by

DCA
0 = dCA

0 +OA
IC

I
1, (5.5.55)

the right-hand side of which matches with the field strength GA
1 in this particular setting.

A similar result was found in [199] and identified as the effective action of compactifica-
tions on SU(3) structure manifolds.

Parts of the action (5.5.54) already resemble the standard formulation of D = 4
N = 2 gauged supergravity. In a final step, we would like to dualize the four-dimensional
Kalb-Ramond field B to an axion a. As already discussed in the context of [119–121],
this is not as straightforward to realize for the general case since the presence of R-R
fluxes gives rise to an additional mass term for B. Similarly to the magnetic charges in



5.5 Obtaining the full Action of N = 2 Gauged Supergravity 107

(5.5.49), this problem can, however, be resolved by setting half of the corresponding flux
coefficients to zero,

GI
flux = 0. (5.5.56)

One can then follow the standard strategy by adding a Lagrange multiplier dB2∧da and
integrating out B. This eventually leads to

SIIA =

∫
M1,3

1

2
R(4) ? 1(4) − dφ ∧ ?dφ− gijdti ∧ ?dt̄j − gabdU a ∧ ?dUb

+
1

2
ReNIJF

I
2 ∧ FJ

2 +
1

2
ImNIJF

I
2 ∧ ?FJ

2 +
e2φ

2
MABDCA

0 ∧ ?DCB
0

−e
4φ

4

(
Da+ CA

0SABDCB
0

)
∧ ?
(
Da+ CA

0SABDCB
0

)
+Vscalar ? 1(4),

(5.5.57)

where the covariant derivative of the axion reads

Da = da−
(

2GI flux + ÕIAC
A
0

)
CI

1. (5.5.58)

The field content of this action now strongly resembles that of normal D = 4 N = 2
supergravity, albeit with additional gaugings arising from the remaining non-vanishing
fluxes. Setting the latter to zero, the contributions of GI flux as well as the matrices
O and Õ vanish, and one obtains (up to slight changes in conventions) the standard
quanternionic action (3.2.35) known from conventional Calabi-Yau compactifications of
type II theories.

Type IIB Setting

The discussion for type IIB theory follows a very similar pattern, and we will only sketch
the most important steps here.

Relation to Democratic Type IIB Supergravity

Our ansatz is again to reformulate the type IIB R-R pseudo-action (5.2.14) in poly-form
notation. The computations are mostly analogous to the type IIA case, and we obtain

?L(IIB)

RR = −1

2
Ĝ(IIB) ∧ ?Ĝ(IIB) (5.5.59)

with
Ĝ(IIB) = e−B̂G(IIB) + D̂Ĉ(IIB) = e−B̂G(IIB) + e−B̂D̂

(
eB̂Ĉ(IIB)

)
, (5.5.60)

and
G(IIB) = G3,

Ĉ(IIB) = Ĉ0 + Ĉ2 + Ĉ4 + Ĉ6 + Ĉ8.
(5.5.61)
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Notice that we consider only the three-form R-R flux since the one- and five-forms appear
exclusively in cohomologically trivial expressions on CY3. The factor e−B̂ in front of Ĝ(IIB)

thus has no effect and is included only for later convenience. The duality constraints
(5.2.15) for the type IIB case can be written as

Ĝ(IIB) = −λ
(
?Ĝ(IIB)

)
, (5.5.62)

and varying the action with respect to the C-field components yields the equations of
motion (

d− dB̂ ∧+H ∧+F ◦+Q •+Rx
)
? Ĝ(IIB) = 0, (5.5.63)

which are equivalent to the Bianchi identities

e−B̂D̂
(
eB̂Ĝ(IIB)

)
= 0. (5.5.64)

Reduced Equations of Motion and Duality Constraints

In order to employ the framework of special geometry, we again rewrite the above ex-
pressions in A-basis notation. We define

eB̂C(IIB) =
(
CI

0 + CI
2 + CI

4

)
ωI +

(
CA

1 + CA
3

)
αA −

(
C1A + C3A

)
βA +

(
C0 I + C2 I + C4 I

)
ω̃I

(5.5.65)
and

G3 = −GA
fluxαA + GfluxAβ

A, (5.5.66)

which can be utilized to reformulate the type IIB R-R poly-form (5.5.60) as

Ĝ(IIB) = e−B̂Ĝ(IIB) = e−B̂
(
Ĝ(IIB)

1 + Ĝ(IIB)

3 + Ĝ(IIB)

5 + Ĝ(IIB)

7 + Ĝ(IIB)

9

)
. (5.5.67)

Notice that these objects strongly resemble the corresponding expressions of the type IIA
case appearing in (5.5.14), (5.5.15) and (5.5.16), but with exchanged roles of the even
and odd cohomology components. We once more employ a shorthand notation

Ĝ(IIB)

1 = G1 0ω̃
0,

Ĝ(IIB)

3 = G3 0ω̃
0 + Gi

1ωi − GA
0 ∧ αA + G0A ∧ βA,

Ĝ(IIB)

5 = Gi
3 ∧ ωi − GA

2 ∧ αA + G2A ∧ βA + G1 iω̃
i,

Ĝ(IIB)

7 = −GA
4 ∧ αA + G4A ∧ βA + G3 i ∧ ω̃i + G0

1 ∧ ω0,

Ĝ(IIB)

9 = G0
3 ∧ ω0,

(5.5.68)
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where the expansion coefficients

GA
0 = GA

flux +OA
IC

I
0,

GI
1 = dCI

0 + ÕI
AC

A
1 ,

GA
2 = dCA

1 +OA
IC

I
2,

GI
3 = dCI

2 + ÕI
AC

A
3 ,

GA
4 = dCA

3 +OA
IC

I
4

(5.5.69)

can be derived by using the flux matrix relations (5.3.66 - 5.3.68). The equations of
motion (5.5.64) reduce to

D̂Ĝ(IIB) = 0, (5.5.70)

giving rise to the set of four-dimensional relations

ÕI
AG

A
0 = 0,

dGA
0 −OA

IG
I
1 = 0,

dGI
1 − ÕI

AG
A
2 = 0,

dGA
2 −OA

IG
I
3 = 0,

dGI
3 − ÕI

AG
A
4 = 0

(5.5.71)

after applying the same methods we already used to derive (5.5.20). The relevant equation
of motion for B̂ reads

1

2
d
(
e−4φ ? dB

)
− GA

0G2A + G0AG
A
2 + G1 I ∧ GA

I = 0. (5.5.72)

For the duality constraints (5.5.62), we follow the same pattern as for (5.5.11) and obtain

G2A −BG0A = ImMAB ?
(
GB

2 −B ∧ GB
0

)
+ ReMAB

(
GB

2 −B ∧ GB
0

)
,

GA
4 −B ∧ GA

2 + 1
2
B2GA

0 = −e4φ
(
S−1

) ABMBCG
C
0 ? 1(4),

GI
3 −B ∧ GI

1 = e2φ (S−1)
IJNJK ? G

K
1 .

(5.5.73)

Reconstructing the Action

As the structural analogies between the two settings suggest, the equations of motion
can be evaluated by following the same pattern as in the type IIA case. Defining

C̃I
2 = CI

2 −B ∧ CI
0, (5.5.74)
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and

C̃I
0 = (δIJ − ÕI

AǑA
J)C

J
0 , ǑA

IÕI
B = δAB , (5.5.75)

this strategy eventually brings us to the effective four-dimensional action

SIIB =

∫
M1,3

1

2
R(4) ? 1(4) − dφ ∧ ?dφ− e−4φ

4
dB ∧ ?dB − gijdti ∧ ?dt̄j − gabdU a ∧ ?dUb

+
1

2
ReMABF

A
2 ∧ FB

2 +
1

2
ImMABF

A
2 ∧ ?FB

2 +
1

2
∆̃IJdC̃

I
0 ∧ ?dC̃

J
0

+
1

2
(∆−1)AB

(
d(OA IC̃

I
2) +OA IC̃

I
0dB

)
∧ ?
(

d(OB JC̃
J
2) +OB JC̃

J
0dB

)
+
(

d(OA IC̃
I
2) +OA IC̃

I
0dB

)
∧
(
e2φ(∆−1)AB(ÕT )B

JNJKdC̃K
0

)
+

1

2
dB ∧ C̃I

0SIJdC̃
J
0

−
(
OA IC̃

I
2 − GA fluxB

)
∧
(

dCA
1 + 1

2
OA

JC̃
J
2 − 1

2
GA

fluxB
)

+ Vscalar ? 1(4)

(5.5.76)
with

Vscalar = VNSNS + VRR

= +
e2φ

2
V I(OT )I

AMABOB
JV

J+
e2φ

2
WA(ÕT )A

INIJÕJ
BW

B

−e
2φ

4K
WASACOC

I

(
V IV

J
+ V

I
V J
)

(OT )J
DSDBW

B

+
e4φ

2

(
GA

flux + C̃I
0(OT )I

A
)
MAB

(
GB

flux +OB
JC̃

J
0

)
(5.5.77)

Comparing this action to its IIA counterpart (5.5.49), one can again construct a set of
mirror mappings by extending (5.3.81) to

ti ↔ U a, gij ↔ gab,

MAB ↔ NIJ, h1,1 ↔ h1,2,

V I ↔ WA, SIJ ↔ SAB

CI
n ↔ CA

n , GI
flux ↔ GA

flux,

OA
I ↔ ÕI

A,

(5.5.78)

once more confirming preservation of IIA ↔ IIB Mirror Symmetry in the simultaneous
presence of geometric and nongeometric fluxes.

5.6 Discussion

In this chapter we have analyzed dimensional reductions of type II double field theories
with geometric and nongeometric fluxes. We again conclude our discussion by summariz-
ing our most important results and providing a short outlook on possible future directions
of research.
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Scalar Potential

In section 5.2 we derived the scalar potential of four-dimensional N = 2 gauged super-
gravity from dimensional reductions of the purely internal type IIA and IIB double field
theory action on a Calabi-Yau three-fold CY3. Building upon the elaborations of [78,79],
we extended the discussed setting by formally including generalized dilaton fluxes and
relaxing the primitivity constraints. This modification revealed a more general form of
the reformulated double field theory action, which shows a strong structural resemblance
of supergravity compactifications on SU(3)×SU(3) structure manifolds [199].

In section 5.3 it was then exemplified through K3 × T 2 how the framework can
be generalized beyond the Calabi-Yau setting. This was done by utilizing the features
of generalized Calabi-Yau and K3 structures [147, 203] to enable a special-geometric
description of the K3 × T 2 moduli space. The dimensional reduction led to a scalar
potential term resembling that of N = 4 gauged supergravity formulated in the N = 2
framework of [202]. An important stechnical step here was to exploit the properties of
K3 and T 2 to formally construct K3× T 2 analogues to the structure forms of CY3,

ebCY3
+iJCY3 ←→ ebK3+iJK3 ∧ ebT2+iJT2 ,

ebCY3 ∧ ΩCY3 ←→
(
ebK3 ∧ ΩK3

)
∧
(
ebT2 ∧ ΩT 2

)
,

(5.6.1)

where J denotes the Kähler form of the respective manifold and Ω its holomorphic volume
form. While the constructed scalar potential involves characteristic structures of N = 4
gauged supergravity, relating the result to its standard formulation explicitly turned out
to be a nontrivial task and might be an interesting direction for future research. It is to be
expected that the discussion for arbitrary manifolds allowing for a generalized Calabi-Yau
structure in the sense of [147,203] follows a similar pattern.

An essential novelty of the approach discussed in these sections is its capability of
describing generalized dilaton fluxes and non-vanishing trace-terms of the NS-NS fluxes.
While their inclusion into Calabi-Yau compactifications is only a formal generalization,
their contribution becomes nontrivial in the K3 × T 2 setting. In light of the previous
works [214,215], it is to be expected that such fluxes serve as a ten-dimensional origin of
non-unimodular gaugings in the N = 4 gauged supergravity framework. This was also
briefly discussed in section 4.2.3 of [149] in a double field theory context. Integrating the
dilaton flux operators into the twisted differential of double field theory did not require
including a rescaling charge operator as done in [215], which is in accordance with the
result of [199] for SU(3)×SU(3) structure manifolds.

Relation to four-dimensional N = 2 Gauged Supergravity

In section 5.5 we reconstructed the full bosonic part of the four-dimensional N = 2
gauged supergravity action by including the kinetic terms into the Calabi-Yau setting.
Our results replicate the action constructed in [202] and illustrate how the simultaneous
presence of all NS-NS and R-R fluxes not only gives rise to gaugings in the effective four-
dimensional theory, but also requires dualizing a subset of the axions in order to account
for all fluxes. Turning off half of the fluxes correctly led to the standard formulation of
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N = 2 gauged supergravity, which could be further reduced to its ungauged version when
setting the remaining fluxes to zero.

Our analysis of the R-R sector strongly resembles that of [199] for SU(3)×SU(3)
manifolds. An essential difference of the approach considered in this chapter is that the
field strengths are automatically determined by the double field theory action. This leads
to a slightly altered formulation of the action in which the ten-dimensional origin of the
four-dimensional fields becomes evident. A subset of these fields thereby appears only
in particular combinations with the fluxes, which eventually leads to the same physical
degrees of freedom as obtained in the SU(3)×SU(3) framework.

Taking up our discussion at the end of section 3.3, our result shows that double field
theory provides a natural ten-dimensional origin for previously isolated gauged super-
gravities. In the considered setting, it can thus serve as the missing link to complete the
“web of (gauged) supergravities” from figure 3.2 to a new form as illustrated in figure
5.1.

Type II SUGRAType II DFT 
with fluxes

    = 2 gauged 
SUGRA     = 2 SUGRA

dimensional 
reduction

dimensional
reduction

strong constraint,
vanishing fluxes

gauging
NN

Figure 5.1: A “web of supergravities”. Double field theory serves as the missing link
between ten-dimensional supergravities and gauged four-dimensional supergravities.

Mirror Symmetry

A final interesting result of our analysis is the recovery of Mirror Symmetry. Both the
CY3 and the K3 × T 2 setting featured a set of IIA ↔ IIB mirror mappings of their
effective actions that involved a characteristic exchange of roles between the Kähler-class
and complex-structure moduli. As was to be expected in light of the conjectured equiv-
alence of T-duality and Mirror Symmetry [61], this was also accompanied by mappings
between the geometric and non-geometric fluxes. In all cases, the double field theory
framework provided a nicely-interpretable notation of the mirror mappings as simple in-
terchangings between ten-dimensional poly-forms encoding the different types of moduli
and the theory-specific R-R fields.
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Open Questions and Future Directions

An interesting task to pursue in future research would be to to derive the remaining
four-dimensional gauged supergravities from double field theory. A natural next step
is thereby to analyze how the framework can be applied to the full action compactified
on K3 × T 2. Since dimensional reductions on Calabi-Yau three-folds lead to a partially
dualized formulation of gaugedN = 2 supergravity, an important question in this context
is whether a similar construction has to be applied to its N = 4 analogue. Similarly to
the Calabi-Yau setting, it would make sense to also address these questions with a view to
compactifications on SU(2) structure manifolds [222–224] and to elaborate the analogies
between both frameworks. Other possible directions include extensions of the orientifold
setting discussed in [78] or dimensional reductions of heterotic double field theory.
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Chapter 6

Type IIB Flux Vacua and Tadpole
Cancellation

We have seen in the previous chapters that (flux) compactifications of type II theories give
rise to (gauged)N = 2 supergravities in four dimensions. As discussed in the beginning of
this thesis, the most commonly used methods of model building in string theory require
the amount of supersymmetry to be reduced to N = 1. One way this problem can
be addressed is by introducing orientifold projections and D-branes. In conjunction with
constraints arising from the presence of fluxes, such compactifications come with a variety
of further restrictions which greatly affect the space of allowed background configurations.
This chapter will focus on the role of such consistency constraints in type IIB theory
compactified on the orientifold T 6/Z2 × Z2. Up to minor changes, the contents of this
chapter are mostly quoted in verbatim from the author’s work [80].

6.1 Overview

We again begin this chapter with a brief outline of the main ideas and most important
results our discussion. Two particular phenomenological considerations will be in the
focus of our analysis:

1. As discussed in the previous chapters, compactifications of string theory to four di-
mensions are typically performed on Calabi-Yau three-folds. The resulting effective
theory contains a number of massless scalar fields corresponding to deformations
of the background, which should be absent due to experimental constraints. A
way to achieve this for type II theories is to deform the background geometry by
Neveu-Schwarz–Neveu-Schwarz (NS-NS) and Ramond-Ramond (R-R) fluxes, which
generate a potential in the four-dimensional theory and provide mass-terms for the
moduli fields. However, especially in the type IIB setting some of the moduli can-
not be stabilized by geometric fluxes. One therefore includes nongeometric fluxes
or non-perturbative effects which lead to the KKLT [225] and large-volume [226]
scenarios. Moduli stabilization often results in anti-de-Sitter or Minkowski vacua,
while it is difficult to obtain de-Sitter solutions [227].
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2. A gauge-theory sector for type II theories can be engineered using D-branes. D-
branes filling four-dimensional spacetime and wrapping submanifolds in the com-
pact space have a gauge theory localized on their worldvolume. Chiral matter can
be localized at the intersection loci of different D-branes in the compact space, and
in this way four-dimensional gauge theories can be constructed in a geometric way
(for a review see for instance [228]). However, when introducing D-branes one typ-
ically has to perform an orientifold projection of the theory. The fixed-loci of this
projection correspond to orientifold planes which generically have negative mass
and negative charge.

Moduli stabilization and the construction of a gauge-theory sector are two important
aspects of connecting string theory to realistic four-dimensional physics. These tasks are
often approached independently, however, as emphasized for instance in [229], there is
a complicated interplay between them. This interplay can prevent moduli from being
stabilized or can modify the stabilization procedure. Following this line of thought, the
purpose of this chapter is to study how parts 1) and 2) are connected via the tadpole-
cancellation condition (schematically)

fluxes = D-branes + O-planes . (6.1.1)

We approach this question by analyzing how properties of the space of flux vacua
depend on the contribution of fluxes to the left-hand side of (6.1.1). We perform our
analysis for the type IIB orientifold of T 6/Z2×Z2 and consider the R-R three-form flux,
the geometric NS-NS H-flux as well as the nongeometric NS-NS Q-flux. The geometric
fluxes generically stabilize the complex-structure moduli and the axio-dilaton, while the
nongeometric fluxes allow for stabilization of the Kähler moduli. We then determine dis-
tributions for how the values of the stabilized moduli depend on the tadpole contribution
of the fluxes. Note that distributions of flux vacua have been discussed extensively in the
literature before. For instance, for type IIB compactifications various aspects have been
studied in [230–239, 71, 240] and for type IIA related work can be found in [68, 241]. In
the context of M-theory, similar questions have been discussed in [242], and for F-theory
see [243]. Recently also topological data analysis has been used to investigate properties
of flux vacua in [244,245]. The main results of our analysis can be summarized as follows:

� We observe that the space of flux vacua is not homogenous but shows characteristic
structures such as circular voids [233]. We show furthermore that solutions can be
accumulated on submanifolds in the moduli space.

� We find that flux configurations which stabilize moduli in a weak-coupling, large
complex-structure and/or large-volume regime make up only a very small fraction
of all possible configurations. The number of reliable flux vacua is therefore much
smaller than naively expected.

� In order to stabilize moduli in a perturbatively-controlled regime at weak coupling,
large complex structure and large volume, the flux contribution to the left-hand side
of tadpole-cancellation condition (6.1.1) has to be larger than a certain threshold.
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The more reliable these vacua are required to be, the larger this threshold has to be.
However, the contribution of D-branes and orientifold planes to the right-hand side
of (6.1.1) is typically small. It is therefore difficult to perform moduli stabilization in
a perturbatively-controlled regime and to satisfy the tadpole-cancellation condition.

Our findings for the structure of the space of flux vacua agree with for instance [233,245]
for the axio-dilaton, but we extend their analysis by including the complex-structure
moduli. Our observation concerning the difficulty of obtaining reliable flux vacua is
consistent with for instance [246], who find that type IIB solutions at weak string-coupling
are rare. Similarly, in [247] the authors argue that in order to avoid a certain runaway
behaviour large fluxes have to be considered. Also in [248] large fluxes are needed to
obtain reliable solutions, and related difficulties are encountered in [249].

This chapter is organized as follows: in section 6.2 we review type IIB orientifold
compactifications with geometric and nongeometric fluxes, we discuss the corresponding
tadpole-cancellation conditions, we specialize to the example of the T 6/Z2×Z2 orientifold
and determine the relevant dualities. In section 6.3 we study moduli stabilization for
the axio-dilaton, in section 6.4 we discuss the combined moduli stabilization of the axio-
dilaton and the complex-structure moduli, and in section 6.5 we stabilize all of the closed-
string moduli at tree-level. At the end of sections 6.3, 6.4 and 6.5 we have included brief
summaries for each section, which may help the reader to get an overview of the main
results. Conclusions and implications of our results are discussed in section 6.6.

6.2 Flux Compactifications on Orientifolds

In this chapter we are interested in compactifications of type IIB string theory on Calabi-
Yau orientifolds with geometric and nongeometric fluxes. In order to fix our notation, we
start in sections 6.2.1, 6.2.2 and 6.2.3 by briefly reviewing orientifold compactifications
and tadpole-cancellation conditions for general Calabi-Yau three-folds. In section 6.2.4
we specialize to the example of T 6/Z2 × Z2, and in section 6.2.5 we discuss duality
transformations for this background.

6.2.1 Orientifold Projection

Orientifold compactifications owe their name to the involvement of a so-called worldsheet
parity operator ΩP which essentially reverses the orientation of the string worldsheet by
exchanging left- and righ-moving modes of closed strings or the two ends of open strings.
Its purpose in string compactifications is to mod out the worldsheet parity, thus giving
rise to an unoriented theory. In the case of type II strings, this leads to the low-energy
spectrum of four-dimensional N = 2 supergravity being truncated to that of its N = 1
counterpart.

To define the full orientifold projection,

ΩP(−1)FL , (6.2.1)
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ΩP is combined with a holomorphic involution σ on CY3 and an additional factor (−1)FL

involving the left-moving fermion operator FL. The former can be chosen to act on Ω
and J as

σ∗J = +J , σ∗Ω = −Ω . (6.2.2)

A concept which will be of particular importance for our considerations are so-called
orientifold planes or Op-planes, which are defined as the fixed loci of σ. Since the holo-
morphic involution leaves the non-compact four-dimensioanl part invariant, such planes
cover the entire external space. Their presence generally poses a challenge from the phe-
nomenological viewpoint as Op-planes can carry negative R-R charges inducing closed
string excitations out of the vacuum. Owed to the characteristic shape of the correspond-
ing Feynman diagrams, this is commonly referred to as the problem of tadpole cancella-
tion. A way to address this issue is to include additional Dp-branes carrying positive R-R
charges into the theory. This comes, however, with a variety of consistency constraints
summarized under the term tadpole cancellation conditions which will play a crucial role
in our upcoming discussion and will be discussed in more detail in section 6.2.3.

For our choice (6.2.2), the allowed configurations of Op-planes are O3- and O7-planes,
whose tadpole contributions have to be cancelled by the presence of D3 and D7-branes.
There exists, however, also an alternative definition of (6.2.2) giving rise to O5- and
O9-planes [250].

6.2.2 Calabi-Yau Orientifolds

Type IIB orientifold compactifications on Calabi-Yau three-folds give rise to a N = 1
supergravity theory in four dimensions. This theory can be characterized in terms of
a superpotential, Kähler potential and D-term potential, which we determine in the
following.

Cohomology

The combined worldsheet parity and left-moving fermion operator act on the bosonic
fields as

ΩP (−1)FL g = + g , ΩP (−1)FL B = −B ,

ΩP (−1)FL φ = + φ , ΩP (−1)FL C2p = (−1)pC2p ,
(6.2.3)

with g the metric, B the Kalb-Ramond field, φ the dilaton and C2p the type IIB Ramond-
Ramond potentials. Since σ is an involution, the cohomology groups of the Calabi-Yau
three-fold CY3 split into even and odd eigenspaces as Hp,q(CY3) = Hp,q

+ (CY3)⊕Hp,q
− (CY3)

[250], and for our discussion we assume that the corresponding Hodge numbers satisfy

h2,1
+ = 0 , h1,1

− = 0 . (6.2.4)
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However, more general cases can be considered as well. For the even Dolbeault cohomol-
ogy groups we introduce bases analogously to (5.3.41){

1(6)
}
∈ H0,0

+ (CY3) ,{
ω̂i

}
∈ H1,1

+ (CY3) ,
with î = 1, . . . , h1,1{

ω̃ î
}
∈ H2,2

+ (CY3) ,{
1
K ? 1(6)

}
∈ H3,3

+ (CY3) ,

(6.2.5)

where ?1(6) denotes the volume form and K the total volume of CY3. These bases can
again be chosen to satisfy an analogous normalization condition to (5.3.43). Defining
ω0 := 1

K ? 1(6) and ω̃0 := 1(6), we can then construct a collective basis

{ωÎ, ω̃
Î} ,

∫
CY3

ωÎ ∧ ω̃
Ĵ = δ̂I

Ĵ , Î, Ĵ = 0, . . . , h1,1
+ . (6.2.6)

For the odd component of the third de-Rham cohomology group H3
−(CY3) we can follow

the same pattern as in (5.3.48) and choose a symplectic basis

{αǍ, β
Ǎ} ,

∫
CY3

αǍ ∧ βB̌ = δǍ
B̌ , Ǎ, B̌ = 0, . . . , h2,1

− , (6.2.7)

with all other pairings vanishing.

Moduli

When compactifying string theory from ten to four dimensions, the deformations of
the six-dimensional background become dynamical fields in the four-dimensional theory.
These moduli fields are contained in the poly-forms [219]

Φ+ = e−φ eB+iJ ,

Φ− = Ω ,
Φ+

c = eBC(IIB) + iReΦ+ , (6.2.8)

where the sum over all R-R potentials C(IIB) =
∑4

p=0 C2p is again to be understood as the
moduli contribution of the C2p-fields. Complex scalar fields τ and T̂i can be determined
by expanding Φ+

c into its zero- and four-form components as

Φ+
c = τ + T̂i ω̃

î =: TÎ ω̃
Î , (6.2.9)

where T0 := τ is called the axio-dilaton and the objects T̂i contain the Kähler moduli of
CY3. In general, this expression also contains two-forms anti-invariant under σ, which
are however vanishing due to our choice (6.2.4). The complex-structure moduli U ǎ with
ǎ = 1, . . . , h2,1

− are contained in the holomorphic three-form Ω.



120 6. Type IIB Flux Vacua and Tadpole Cancellation

Fluxes

We furthermore consider non-vanishing fluxes for the internal space. These are the R-R

three-form flux G3 = d
◦

C(IIB)
∣∣
3

as well as geometric and nongeometric fluxes (5.2.21) in
the NS-NS sector. For the latter, we will restrict our discussion to those coming with a
nontrivial contribution in cohomology, which are the three-form flux H, the geometric
flux F , and the nongeometric Q- and R-fluxes. The internal component of the twisted
differential operator (5.2.22) therefore takes the form

D = d +H ∧ −F ◦+Q • −Rx . (6.2.10)

in the considered setting. The precise action of the fluxes on the split cohomology bases
will be specified below. We furthermore summarize the action of the combined worldsheet
parity and left-moving fermion number on the fluxes as [70,78]

ΩP(−1)FL H = − H ,

ΩP(−1)FL F = + F ,

ΩP(−1)FL Q = − Q ,

ΩP(−1)FL R = + R .

ΩP(−1)FL G3 = −G3 , (6.2.11)

For our assumption (6.2.4), this implies that F and R are vanishing. We also note that
the R-R and NS-NS three-form fluxes have to satisfy quantization conditions of the form
(see e.g. [69]) ∫

Γ

G3 ∈ Z ,
∫

Γ

H ∈ Z , (6.2.12)

where Γ ∈ H3(CY3,Z) is an arbitrary three-cycle on the Calabi-Yau three-fold CY3. For
orbifolds and orientifolds this condition can be modified, and we come back to this point
on page 127 below. Furthermore, as will be explained in section 6.2.5, the NS-NS fluxes
are related among each other through T-duality transformations, and hence also the
geometric F - and the nongeometric Q- and R-fluxes should be appropriately quantized.

Supergravity Data

When compactifying type IIB string theory on orientifolds of Calabi-Yau three-folds, the
resulting four-dimensional effective theory can be described in terms of N = 1 super-
gravity [250]. In particular, the Kähler potential takes the form

K = − log
[
−i(τ − τ)

]
− 2 log K̂ − log

[
−i
∫
CY3

Ω ∧ Ω

]
, (6.2.13)

where K̂ denotes the volume of the Calabi-Yau manifold in Einstein frame. The superpo-
tential is generated by the fluxes and can be expressed using the Mukai pairing (5.2.27)



6.2 Flux Compactifications on Orientifolds 121

of the poly-forms (6.2.8) and the generalized derivative (6.2.10) in the form [70,213,71]

W =

∫
CY3

〈
Φ−, G3 −DΦ+

c

〉
=

∫
CY3

Ω ∧
[
G3 − τ H −

(
Q • ω̃ î

)
T̂i

]
.

(6.2.14)

In general, the fluxes (6.2.10) also generate a D-term potential which can be expressed
using the three-form part of D(ImΦ+) [78]. However, due to (6.2.11) the latter belongs
to the σ-even third cohomology and vanishes when taking into account our requirements
(6.2.4). In our setting therefore no D-term potential is generated.

Bianchi Identities and Tadpole-Cancellation Conditions

Finally, the R-R and NS-NS fluxes have to satisfy a number of Bianchi identities. These
can be expressed using the generalized derivative D as

D2 = NS-NS sources , DG3 = R-R sources , (6.2.15)

where NS-NS sources stand for NS5-branes, Kaluza-Klein monopoles or non-geometric
52

2-branes (see for instance [73] for a review and collection of references). However, in this
discussion we assume these to be absent and therefore require D2 = 0. The R-R sources
stand for orientifold planes and D-branes, and the second constraint in (6.2.15) is also
known as the tadpole cancellation condition. We discuss this condition in more detail in
the following section.

6.2.3 Tadpole-Cancellation Condition

The tadpole-cancellation condition is an important consistency condition for type I string
theories. It links the closed-string to the open-string sector and puts strong constraints
on the allowed D-brane configurations (for a review see for instance [228]). From a
conformal-field-theory point of view, the tadpole-cancellation condition ensures the ab-
sence of UV divergencies in one-loop amplitudes (see e.g. [251,252] for textbook reviews)
and therefore plays an important role for string theory being a consistent theory of grav-
ity. From an effective-field-theory point of view, the tadpole-cancellation condition is
the integrated version of the equation of motion for the R-R potentials and ensures the
absence of certain anomalies in type II orientifold compactifications via the generalized
Green-Schwarz mechanism [253]. The tadpole-cancellation condition is thus an important
consistency condition for string compactifications.

Explicit Expressions

We now formulate the tadpole-cancellation condition for the setting of the previous sec-
tion. The contribution of the R-R-sources can be described using the charges [254, 255]
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QDp = ch (F) ∧

√
Â(RT )

Â(RN)
∧ [ΓDp] , QOp = Qp

√
L(RT/4)

L(RN/4)
∧ [ΓOp] , (6.2.16)

where [ΓDp] and [ΓOp] denote the Poincaré duals of the cycles wrapped by D-branes and
O-planes in R1,3 × CY3. The open-string gauge flux on the D-branes F appears in the
Chern character, the tangential and normal part of the curvature two-form R appear in
the Â-genus and the Hirzebruch polynomial L, and Qp = −2p−4 denotes the charge of an
orientifold p-plane. For more details, the reader is referred, for instance, to section 8.6
in [73]. Denoting the orientifold image of a Dp-brane with a prime, the Bianchi identity
for the R-R fluxes then reads

DG3 =
∑

Dp+Dp′

QDp +
∑
Op

QOp , (6.2.17)

where the sum is over all D-branes and orientifold planes present in the background.
The Freed-Witten anomaly-cancellation condition [256] for D-branes takes the general
form [257,73]

DQDp = 0 , DQOp = 0 , (6.2.18)

where we included the corresponding expression for an orientifold p-plane. Equation
(6.2.17) can therefore be interpreted as a relation in D-cohomology.

For the setting discussed in this chapter, the orientifold projection satisfies (6.2.2)
and therefore leads to spacetime-filling O3- and O7-planes. Taking into account (6.2.4)
and that G3 in (6.2.17) is a three-form flux, we find the explicit expressions

Q •G3 =− 2
∑
D7a

ND7a [ΓD7a ] + 8
∑
O7b

[ΓO7b ] ,

H ∧G3 =− 2

(
ND3 −

NO3

4

)
ω0

−
∑
D7a

tr
(
Fa
)2 ∧ [ΓD7a ] + 2

(∑
D7a

ND7a

χ(ΓD7a

)
24

+
∑
O7b

χ
(
ΓO7b

)
12

)
ω0 .

(6.2.19)

Here, ND3 and NO3 denote the number of D3-branes and O3-planes, ND7a denotes the

number of coincident D7-branes in a stack a, [ΓD7a ] = nî
aω̂i is the Poincaré dual of the

cycle ΓD7a expanded in the basis (6.2.6), Fa is the (quantized) two-form gauge flux on
the stack of D7-branes a in the fundamental representation, and χ(Γ) denotes the Euler
number of the cycle Γ. The D-brane sums are over all D7-branes, and due to h1,1

− = 0 the
orientifold images give a factor of two. For details on the derivation of these expressions
see for instance [258].
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Orientifold Contributions

Let us now discuss the contribution of orientifold planes to the right-hand sides in (6.2.19).
Typically orientifold planes give a positive contribution while D-branes give a negative
contribution. For some classes of models the orientifold-contributions can be estimated
as follows:

� For orientifolds of T 6/ZM or T 6/ZM ×ZN the numbers of O3- and O7-planes have
been computed for instance in [259] for some examples. Here, the authors find that
NO3, NO7 . 60 and the contributions of the Euler numbers to (6.2.19) are vanishing.
The contribution of orientifold planes to the right-hand sides of (6.2.19) is therefore
typically positive and of order O(10).

� For del-Pezzo surfaces the possible orientifold projections have been classified in
[260]. The number of orientifold three- and seven-planes are of order O(10), and in
some examples the Euler numbers of the four-cycles are of order O(100). Also here,
the contribution of orientifold planes to the right-hand side of (6.2.19) is positive
and of order O(10).

� In F-theory the geometry of Calabi-Yau four-folds CY4 encodes the geometry of
D7-branes and orientifold planes in Calabi-Yau three-folds CY3. If a lift from type
IIB orientifolds to F-theory is possible, one finds that

χ(CY4)

24
=
NO3

4
+
∑
D7a

ND7a

χ(ΓD7a

)
24

+
∑
O7b

χ
(
ΓO7b

)
12

, (6.2.20)

where χ(CY4) denotes the Euler number of the Calabi-Yau four-fold CY4. In [261,
262] a manifold CY4max was identified with the largest known Euler number for a
Calabi-Yau four-fold

χ(CY4max) = 1 820 448 , (6.2.21)

and more details for the present context can be found in [76]. Hence, for this
example the contribution to the D3-tadpole in (6.2.19) is of order O(105).

D-brane Contributions

We furthermore note that the tadpole-cancellation conditions (6.2.19) are the integrated
versions of the R-R Bianchi identities (6.2.15). The former are therefore less restrictive
than the latter, but for a proper string-theory solution also the Bianchi identities with
localized sources have to be solved. When placing D-branes directly on top of orientifold
planes, solutions may be constructed more easily, but in general this a difficult task (see
for instance [263]).

However, we can make the following general argument: because D-branes have a non-
vanishing mass, their probe approximation breaks down when too many D-branes are
placed into a compact space (away from the orientifold planes). In this case the back-
reaction of D-branes on the geometry has to be taken into account, and an extreme case
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for this mechanism is the formation of black holes. It would be desirable to make this
more precise, but we can argue that for ignoring back-reaction effects the contribution of
D-branes to the right-hand sides in (6.2.19) should not be arbitrarily large.

Flux Contributions

Turning now to the flux contribution on the left-hand sides in (6.2.19), we note that for
vanishing Q-flux the H∧G3-term typically has to be positive in order to obtain physically-
relevant solutions. Since the right-hand sides are bounded from above by the orientifold
contributions, the flux contributions should not be larger than O(10) to O(105). In the
presence of nongeometric Q-flux the left-hand sides in (6.2.19) can be negative – but since
also the D-brane contributions are bounded, again the flux contributions should not be
too large. This is an important point for our approach, which we summarize as

In order to solve the tadpole-cancellation condition (6.2.19) and ignore
the back-reaction of D-branes, the contribution of fluxes to the left-hand
sides in (6.2.19) should not be too large. Depending on the setting,
known bounds are of orders O(10) to O(105).

6.2.4 T 6/Z2 × Z2 Orientifold

Let us now turn to a specific example for a compactification space. We consider the
orbifold T 6/Z2 × Z2, which provides a simple example of a Calabi-Yau three-fold with
only few moduli. For our purposes it is sufficient to stay in the orbifold limit and not
blow-up the fixed-point singularities, that is we ignore the twisted sectors. This model
has been extensively studied in the literature, and we refer for instance to [264–267] for
more details in the present context.

For this model the contribution of orientifold planes to the tadpole-cancellation con-
dition (6.2.19) only allows for a small number of different flux choices. In order to be able
to study general properties of the space of solutions, in the following we therefore ignore
the precise form of the tadpole cancellation condition and allow for arbitrarily-large val-
ues of H ∧G3 and Q •G3. We do however keep in mind that these tadpole contributions
are bounded by the D-brane and orientifold contributions.

Compactification Space

We start from the following six-dimensional orbifold construction which has the properties
of a Calabi-Yau three-fold:

CY3 =
T 2 × T 2 × T 2

Z2 × Z2

. (6.2.22)

On each of the two-tori we introduce complex coordinates as

zǎ = xǎ + U ǎyǎ , ǎ = 1, 2, 3 , (6.2.23)
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where xǎ and yǎ denote real coordinates with identifications xǎ ∼ xǎ + 1 and yǎ ∼ yǎ + 1,
U ǎ denote the complex structures on each of the T 2, and no summation is performed in
(6.2.23). The orbifold action is given by

Θ :

 z1

z2

z3

→
−z1

−z2

+z3

 , Θ′ :

 z1

z2

z3

→
+z1

−z2

−z3

 , (6.2.24)

where Θ and Θ′ are the two generators of the orbifold group Z2 × Z2. In addition, we
perform an orientifold projection

σ :

 z1

z2

z3

→
−z1

−z2

−z3

 . (6.2.25)

Cohomology

Next, we turn to the cohomology of (6.2.22). We note that there are no one- or five-forms
invariant under the orbifold action (6.2.24), and that the invariant three-forms are given
by the combinations

α0 = dx1 ∧ dx2 ∧ dx3 , β0 = +dy1 ∧ dy2 ∧ dy3 ,

α1 = dy1 ∧ dx2 ∧ dx3 , β1 = −dx1 ∧ dy2 ∧ dy3 ,

α2 = dx1 ∧ dy2 ∧ dx3 , β2 = −dy1 ∧ dx2 ∧ dy3 ,

α3 = dx1 ∧ dx2 ∧ dy3 , β3 = −dy1 ∧ dy2 ∧ dx3 .

(6.2.26)

Choosing the orientation of the six-dimensional space (6.2.22) such that we have
∫

dx1 ∧
dx2∧dx3∧dy1∧dy2∧dy3 = 1, the three-forms in (6.2.26) satisfy the intersection relation
(6.2.7). We can furthermore define a holomorphic three-form

Ω = dz1 ∧ dz2 ∧ dz3 , (6.2.27)

which – when expanded in the basis (6.2.26) – takes the form 1

Ω = α0 +
(

U1 α1 + U2 α2 + U3 α3

)
−
(
U2U3 β1 + U3U1 β2 + U1U2 β3

)
+ U1U2U3β0 .

(6.2.28)

Turning to the orientifold action (6.2.25), we see that all three-forms (6.2.26) are odd
under σ, and therefore h2,1

− = 3 and h2,1
+ = 0. We also note that Ω is odd under the

orientifold action as required by (6.2.2).
For the even cohomology we observe that the zero- and six-form cohomologies are

even under the orbifold action (6.2.24). For the second cohomology we find the invariant
(1, 1)-forms

ω̂i =
i

2 ImU î
dz î ∧ dz î , î = 1, 2, 3 , (6.2.29)

1The expression (6.2.28) is the classical result; in the quantum theory the coefficients of αǍ and βǍ

(i.e. the periods) typically receive quantum corrections. However, in the large complex-structure limit
ImU ǎ � 1 these corrections can be ignored.
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with no summation over î, and we define invariant (2, 2)-forms as

ω̃1 = −ω2 ∧ ω3 , ω̃2 = −ω3 ∧ ω1 , ω̃3 = −ω1 ∧ ω2 . (6.2.30)

Note that these satisfy the relations shown in (6.2.5). For the orbifold (6.2.22) we can
now define a real Kähler form as

J = v1ω1 + v2ω2 + v3ω3 , (6.2.31)

where the v î are the (real) Kähler moduli. The forms (6.2.29) and (6.2.30) are all even
under the orientifold projection (6.2.25), and therefore h1,1

+ = 3 and h1,1
− = 0. We also

note that J is even under σ, in agreement with (6.2.2).

Moduli

With the explicit expressions for the even cohomologies discussed above, we can now
determine the moduli fields contained in Φ+

c via equation (6.2.9). For the R-R zero- and
four-form potentials (purely in the internal space) we use the conventions

C0 = C(0)
0 ω̃

0 , C4 = C(4)
1 ω̃

1 + C(4)
2 ω̃

2 + C(4)
3 ω̃

3 , (6.2.32)

introduced in the previous chapter. Evaluating (6.2.9) in the present situation leads to

T0 = τ = C(0)
0 + ie−φ ,

T1 = C(4)
1 + iv2v3 ,

T2 = C(4)
2 + iv3v1 ,

T3 = C(4)
3 + iv1v2 ,

(6.2.33)

with the Einstein-frame Kähler moduli defined as vî = e−φ/2v î. We also note that the
R-R two-form potential C2 is odd under the combined worldsheet parity and left-moving
fermion number (cf. (6.2.3)) and should therefore be expanded in the σ-odd (1, 1)-
cohomology, which however vanishes. Finally, the complex-structure moduli U ǎ are con-
tained in Ω as can be seen from (6.2.28).

Fluxes

Let us now turn to the fluxes. Using the basis of three-forms (6.2.26), the NS-NS and
R-R three-form fluxes can be expanded as

G3 = fǍαǍ + fǍβ
Ǎ , H = hǍαǍ + hǍβ

Ǎ , (6.2.34)

where Ǎ = 0, . . . , 3 and we used the definitions fǍ := G(3)Ǎ, fǍ := G(3)
Ǎ to simplify nota-

tion. The expansion coefficients fǍ, fǍ, h
Ǎ, hǍ are quantized due to the flux quantization

conditions for G3 and H shown in (6.2.12). For the remaining fluxes in the NS-NS sector
we note that due to (6.2.4) and (6.2.11), the geometric F - and the nongeometric R-flux
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vanish. The Q-flux is in general non-vanishing, and we specify it by its action on the
third and fourth cohomology as

Q • αǍ = −qǍî ω̂i ,

Q • βǍ = +qǍ̂i ω̂i ,
Q • ω̃ î = qǍ̂iαǍ + qǍ

îβǍ . (6.2.35)

Here we have again î = 1, 2, 3, and the flux quanta are integers. In order to shorten
the notation for our subsequent discussion, we combine the H-flux with the Q-flux by
defining

qǍ
0 = hǍ , qǍ0 = hǍ . (6.2.36)

Let us briefly discuss a subtlety concerning the flux quantization condition (6.2.12).
It was first pointed out in [268] that on orbifold (or orientifold) spaces besides bulk
cycles inherited from the covering space, twisted cycles of shorter length can exist. This
implies that the quantization condition of the fluxes shown above is slightly modified.
For the present example of the type IIB T 6/Z2×Z2 orientifold this observation has been
mentioned in [269, 71] and has been analyzed in detail for instance in [270, 271]. More
concretely, for Z2 × Z2 orbifold actions with and without discrete torsion (see [272]) one
finds that fluxes on generic bulk cycles have to satisfy

without discrete torsion fǍ, fǍ, q
Ǎ̂I, qǍ

Î ∈ 8Z ,

with discrete torsion fǍ, fǍ, q
Ǎ̂I, qǍ

Î ∈ 4Z .
(6.2.37)

As mentioned at the beginning of this subsection, in our discussion we ignore the twisted
sector which effectively implies that we consider models without discrete torsion [270].
Fluxes will therefore be quantized in multiples of eight. In the literature similar orien-
tifolds have been studied [269, 230, 233, 237, 71], although with slightly different quanti-
zation conditions.

Bianchi Identities

Turning to the Bianchi identities (6.2.15), we recall from (6.2.34) and (6.2.35) that the

R-R and NS-NS flux quanta are given by fǍ, fǍ, qǍ
Î and qǍ̂I. For the left-hand side of the

Bianchi identities we then introduce the general notation

DG3 = QÎ ωÎ , QÎ = fǍq
Ǎ̂I − fǍqǍ

Î ,

DH = Q0ĴωĴ , QÎĴ = qǍ
ÎqǍĴ − qǍ̂IqǍĴ ,

D(Q • ω̃ î) = QîĴ ωĴ ,

(6.2.38)

where Î, Ĵ = 0, . . . , 3. Note that these expressions can be combined into an anti-symmetric
five-by-five matrix of the form

Q =

(
0 +QĴ

−QÎ QÎĴ

)
, Î, Ĵ = 0, 1, . . . , 3 . (6.2.39)
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The right-hand side of the Bianchi identities (6.2.15) corresponds to NS-NS and R-R
sources, and schematically we have the relations

Q0 ←→ O3-planes/D3-branes,

Qî ←→ O7-planes/D7-branes,

Q0̂i ←→ NS5-branes,

Qî̂j ←→ 52
2-branes,

(6.2.40)

where in particular QÎ for Î = 0, . . . , 3 are the contributions to the R-R tadpole can-
cellation conditions (6.2.19). As mentioned above, in this discussion we do not con-

sider NS5-branes or nongeometric 52
2-branes, which leads to the requirement QÎĴ = 0 for

Î, Ĵ = 0, . . . , 3.

Supergravity Data

Let us finally determine the Kähler and superpotential for the T 6/Z2 × Z2 orientifold
compactification. Evaluating (6.2.13) we find for the Kähler potential

K = −
3∑

Î=0

log
[
−i(TÎ − T Î)

]
−

3∑
ǎ=1

log
[
−i(U ǎ − U ǎ)

]
, (6.2.41)

up to an irrelevant constant term. Turning to the superpotential (6.2.14), the expansions
of the fluxes in (6.2.34) and (6.2.35) give rise to

W = f0 − q0
Î TÎ

+U ǎ
(
fǎ − qǎ Î TÎ

)
+1

2
σǎb̌čU

ǎU b̌
(
fč − q č̂I TÎ

)
−1

6
σǎb̌čU

ǎU b̌U č
(
f0 − q0̂I TÎ

)
,

(6.2.42)

where a summation over Î = 0, . . . , 3 and ǎ = 1, 2, 3 is understood. For ease of notation,
we also defined the symmetric symbol σǎb̌č, which has the only non-vanishing components

σ123 = σ132 = σ231 = σ213 = σ312 = σ321 = +1 . (6.2.43)

The scalar F-term potential is determined in terms of the Kähler potential K and super-
potential W according to

VF = eK
[
DαW GαβDβW − 3|W |2

]
, (6.2.44)

where φα collectively labels the complex scalar fields of the theory. The Kähler metric is
computed from the Kähler potential as gαβ = ∂α∂βK, and the covariant derivative reads

DαW = ∂αW +
(
∂αK

)
W . (6.2.45)

We also note that due to our assumption h2,1
+ = 0 shown in (6.2.4), no D-term potential

is generated by the fluxes.
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6.2.5 Dualities

We now want to discuss dualities for the orientifold of T 6/Z2 × Z2 introduced in the
previous section. We are interested in transformations which leave the physical properties
of a system invariant but which are not necessarily symmetries of the action. In particular,
we note that an extremum of the F-term potential (6.2.44) is reached for vanishing F-
terms

0 = ∂αW +
(
∂αK

)
W , (6.2.46)

and in our subsequent analysis we are interested in duality transformations which map
solutions of (6.2.46) to new solutions.

Overall Sign-Change

Let us start by noting that the F-term potential (6.2.44) as well as the F-term equations
(6.2.46) are invariant under changing the sign of all fluxes [71](

fǍ, f
Ǎ, qǍ

Î, qǍ̂I
)
−→

(
−fǍ,−fǍ,−qǍÎ,−qǍ̂I

)
. (6.2.47)

This Z2 transformation maps W → −W , which indeed leaves the scalar potential (6.2.44),
the equations (6.2.46) and the tadpole contributions (6.2.38) invariant.

SL(2,Z) for Complex-Structure Moduli U ǎ

Next, we consider the group of large diffeomorphisms for each of the two-tori in (6.2.22)
[71]. For a single T 2 this group is SL(2,Z), which is generated by T - and S-transformations
of the form

T : U ǎ → U ǎ + 1 , S : U ǎ → −1/U ǎ , (6.2.48)

with ǎ = 1, 2, 3. In order for the F-term equation (6.2.46) to stay invariant under T -
transformations, the fluxes have to transform as

U ǎ → U ǎ + bǎ ,

A0 → A0 − bǎAǎ + 1
2
σǎb̌č b

ǎbb̌Ač + 1
6
σǎb̌č b

ǎbb̌bč ,

Aǎ → Aǎ − σǎb̌č b
b̌Ač − 1

2
σǎb̌č b

b̌bčA0 ,

Aǎ → Aǎ + bǎA0 ,

A0 → A0 ,

(6.2.49)

where (AǍ, A
Ǎ) stands collectively for (fǍ, f

Ǎ) and (qǍ
Î, qǍ̂I), and σǎb̌č was defined in

(6.2.43). Under S-transformations of the complex-structure moduli, the fluxes transform
as

U1 → −1/U1 ,

A0 → −A1 ,

A1 → +A0 ,

A2 → −A3 ,

A3 → −A2 ,

A0 → −A1 ,

A1 → +A0 ,

A2 → +A3 ,

A3 → +A2 ,

(6.2.50)
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and similarly for U2 and U3. Note that for the fluxes this is not a Z2 but a Z4 action,
which is however reduced to Z2 using (6.2.47). We also note that for a simultaneous
S-transformation of all three complex-structure moduli, the transformation reads

U ǎ → −1/U ǎ ,
AǍ → +AǍ ,

AǍ → −AǍ .
(6.2.51)

Furthermore, all Bianchi identities and tadpole contributions QÎ and QÎĴ are invariant
under these transformations.

T-duality

We now turn to T-duality transformations. It is well-known that performing an odd
number of T-dualities for type IIB string theory results in the type IIA theory and vice
versa, and applying two or six T-dualities to type IIB string theory with O3-/O7-planes
results in type IIB with O5-/O9-planes. For T-duality to map the present setting of type
IIB with O3-/O7-planes to itself, we therefore have to perform four collective T-duality
transformations.

Let us now consider more closely the T 6/Z2 × Z2 orientifold with O3-/O7-planes.
Using the Buscher rules (2.2.20, 2.2.21), a collective T-duality transformation [273] say
along the first and second T 2 results in the following transformation of the moduli:

T-duality along z1, z2 :


τ → T3 ,
T1 → T2 , U1 → −1/U1 ,
T2 → T1 , U2 → −1/U2 ,
T3 → τ .

(6.2.52)

In (6.2.52) we have only shown how the moduli transform, but also the fluxes transform
in a non-trivial way under T-duality. However, (6.2.52) contains an S-transform of the
complex-structure moduli U1 and U2. To better show the underlying structure, let us
undo the U ǎ transformation in (6.2.52) using (6.2.50). We then obtain the transformation

τ → T3 ,
T1 → T2 ,
T2 → T1 ,
T3 → τ ,

qǍ
1 ↔ qǍ

2 ,
qǍ

3 ↔ hǍ ,

qǍ1 ↔ qǍ2 ,

qǍ3 ↔ hǍ ,

(6.2.53)

which by a slight abuse of notation we will refer to as T-duality in the following. Similar
transformations are obtained for T-duality along the second & third and first & third
two-torus.2

2We also mention that the transformation of the moduli under T-duality shown in (6.2.53) was to be
expected: for type IIB orientifolds the R-R zero- and four-form potentials C0 and C4 are the real parts of
τ and T̂i, respectively. Under a single T-duality the R-R potentials transform as Cp → Cp±1 [274], where
the upper/lower sign is for a transformation transversal/longitudinal to Cp. For a collective T-duality
along four directions we therefore map C0 → C4 and some components of C4 → C0. This agrees with
(6.2.53).
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We furthermore observe that the F-term equations (6.2.46) are invariant under a

permutation of the Kähler moduli T̂i and fluxes (qǍ
î, qǍ̂i). This is just a re-labelling of

indices and corresponds to the permutation group S3. Using now the T-duality action
(6.2.53) together with the permutation of Kähler moduli, we see that S3 is enhanced to

S4 acting on TÎ = (T0, T̂i) and fluxes (qǍ
Î, qǍ̂I). Indeed, for SÎ

Ĵ ∈ S4 the superpotential
(6.2.42) is invariant under

TÎ → SÎ
ĴTĴ ,

qǍ
Î → qǍ

Ĵ(S−1)Ĵ
Î ,

qǍ̂I → qǍĴ(S−1)Ĵ
Î ,

(6.2.54)

and the flux contributions to the Bianchi identities shown in (6.2.38) transform as

Q→ S−TQ S−1 , S =

(
1 0

0 SÎ
Ĵ

)
. (6.2.55)

We emphasize that four collective T-duality transformations for type II orientifold com-
pactification are permutations of moduli and fluxes. They do not correspond to trans-
formations which invert T̂i.

S-duality

We finally consider the SL(2,Z) duality of type IIB string theory. For vanishing Q-flux
its action on the axio-dilaton and the G3- and H-flux takes the form

τ → aτ + b

cτ + d
,

(
G3

H

)
→
(
a b
c d

)(
G3

H

)
,

(
a b
c d

)
∈ SL(2,Z) , (6.2.56)

where a, b, c, d ∈ Z. In particular, this transformation leaves the F-term equations (6.2.46)
invariant. However, for non-vanishing Q-flux only part of this duality survives.

� For constant shifts of the axio-dilaton and the Kähler moduli T̂i, the Kähler poten-
tial (6.2.41) as well as the superpotential (6.2.42) are invariant under

TÎ → TÎ + b̂I ,

fǍ → fǍ + qǍ
Îb̂I ,

fǍ → fǍ + qǍ̂Ib̂I ,

qǍ
Î → qǍ

Î ,

qǍ̂I → qǍ̂I ,

(6.2.57)

where the parameter b̂I has to be quantized as b̂I ∈ Z. This corresponds to a gauge
transformation of the R-R zero- and four-form potentials.

� For an S-transformation τ → −1/τ in the presence of nongeometric fluxes, the F-
term equations (6.2.46) are in general not invariant. To restore the SL(2,Z) duality
the authors of [212] introduced additional nongeometric P -fluxes as the counterpart
of the Q-fluxes. In this discussion we do not consider such P -fluxes, but refer for
instance to [275–278,257,279–281] for more details on this topic.
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6.3 Moduli Stabilization I

As a first example for moduli stabilization on the T 6/Z2 × Z2 orientifold, we consider a
specific choice of fluxes which stabilizes the axio-dilaton τ , fixes the complex-structure
moduli U ǎ to a symmetric point but leaves the Kähler moduli T̂i unstabilized. This
setting has been studied for instance in [230,233,237], and here we use it as a toy model
for the more involved settings in the subsequent sections.

6.3.1 Setting

We start by specifying the superpotential (6.2.42). We consider a configuration with
vanishing nongeometric fluxes (6.2.35),

qǍ
î = 0 , qǍ̂i = 0 , (6.3.1)

which implies that the Kähler moduli T̂i do not appear in the potential and hence are
not stabilized. The remaining R-R and NS-NS fluxes (6.2.34) are chosen as

f0 = 3 f̃0 , f1 = f2 = f3 = −f̃0 , f̃0 ∈ 8Z ,
f0 = 3 f̃0 , f1 = f2 = f3 = +f̃0 , f̃0 ∈ 8Z ,
h0 = 3h̃0 , h1 = h2 = h3 = −h̃0 , h̃0 ∈ 8Z ,
h0 = 3h̃0 , h1 = h2 = h3 = +h̃0 , h̃0 ∈ 8Z ,

(6.3.2)

where h̃0 and h̃0 should not be zero simultaneously. Since the superpotential W is in-
dependent of the Kähler moduli, the F-term equations (6.2.46) take the simple form

0 = FT̂i = ∂T̂iK W ,

0 = FU ǎ = ∂U ǎW + ∂U ǎK W ,

0 = Fτ = ∂τW + ∂τK W ,

⇒
0 = W ,

0 = ∂U ǎW ,

0 = ∂τW .

(6.3.3)

Ignoring unphysical values for U ǎ and τ with negative or vanishing imaginary part, we
obtain the following solution to (6.3.3):

U1 = U2 = U3 = i , τ =
f̃0 − ĩf0

h̃0 − ih̃0
. (6.3.4)

The fluxes in (6.3.2) are not arbitrary but are subject to the Bianchi identities (6.2.38).
Since all nongeometric Q-fluxes vanish, the only nontrivial condition is the D3-tadpole
contribution

Q0 = 12
(
f̃0h̃

0 − f̃0h̃0

)
> 0 , (6.3.5)

where the requirement of Q0 being positive is related to having Imτ > 0. Note that due
to the quantization condition for the fluxes in (6.3.2), Q0 is a multiple of 768.
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6.3.2 Finite Number of Solutions for fixed Q0

Next, we briefly review the arguments of [233,237] showing that the number of physically-
distinct solutions (6.3.4) is finite for finite Q0. We restrict the values of the axio-dilaton
τ to the fundamental domain of the corresponding SL(2,Z) duality (6.2.56)

Fτ =

{
−1

2
≤ τ1 ≤ 0, |τ |2 ≥ 1 ∪ 0 < τ1 < +

1

2
, |τ |2 > 1

}
. (6.3.6)

For ease of notation, we express the axio-dilaton in terms of its real and imaginary part
as τ = τ1 + iτ2, and for the solution (6.3.4) to the F-term equations we have

τ =
h̃0 f̃0 + h̃0 f̃0

(h̃0)2 + (h̃0)2
+

i

12

Q0

(h̃0)2 + (h̃0)2
. (6.3.7)

For a fixed positive value of Q0, the imaginary part of τ is bounded from above as τ2 ≤ Q0

768

since h̃0 and h̃0 are integer multiples of eight which cannot be zero simultaneously. We
now argue along the following lines:

� The tadpole contribution Q0 is invariant under the SL(2,Z) transformations (6.2.56).
Using then T -transformations acting on the axio-dilaton as τ → τ + b with b ∈ Z,
we can bring τ1 into the region −1

2
≤ τ1 < +1

2
. This T -transformation is a duality

transformation, and therefore we have the equivalence

f̃0 ∼ f̃0 + b h̃0 , f̃0 ∼ f̃0 + b h̃0 . (6.3.8)

Choosing without loss of generality h̃0 6= 0, for fixed h̃0 there are only finitely-many
inequivalent values for f̃0 given by

f̃0 = 0, . . . , h̃0 − 1 . (6.3.9)

� Next, using an S-transformation τ → −1/τ (possibly together with additional T -
transformations) we can bring τ into the fundamental domain Fτ . In Fτ a lower
bound for the imaginary part τ2 is obtained by considering τ1 = −1

2
for which

τ2 ≥
√

3/2. Using (6.3.7) we then find

0 < (h̃0)2 + (h̃0)2 ≤ Q0

6
√

3
, (6.3.10)

which leaves only finitely many possibilities for the integers h̃0, h̃
0. Together with

(6.3.9), this implies also a finite number of choices for f̃0.

� The remaining flux f̃0 is now determined via the tadpole contribution Q0 shown in
(6.3.5).

In summary, for a fixed positive value of the D3-tadpole contribution Q0, the F-term
equations (6.3.3) have only a finite number of of physically-distinct solutions for τ .
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6.3.3 Space of Solutions

In [233,237] it was shown that the solutions (6.3.4) mapped to the fundamental domain
for τ are not distributed homogeneously. In particular, the space of solutions contains
voids with large degeneracies in their centers. In this section we review these findings
and provide some new results on the dependence of these distributions on the D3-tadpole
contribution Q0. Our data has been obtained using a computer algorithm to generate all
physically-distinct flux vacua for a given upper bound on the D3-brane tadpole contri-
bution.

Distribution of Solutions

As we argued above, for a fixed value of Q0, the number of physically inequivalent so-
lutions for the axio-dilaton τ is finite. Using the SL(2,Z) duality (6.2.56), we can map
these solutions to the fundamental domain (6.3.6). The corresponding space of solutions
is shown in figures 6.1 and 6.2.

� For figure 6.1 we have included all flux configurations for which the tadpole con-
tribution satisfies 0 < Q0

768
≤ 300, and in order to have a symmetric plot we have

added points on the boundary of the fundamental domain at τ1 = +1
2
. We see that

the space of solutions for (6.3.4) is bounded as τ2 ≤ 300, and that solutions are
located on lines with fixed τ1.

� In figure 6.2 we show a zoom of figure 6.1 for a small range of τ2. Here we see
a characteristic structure of voids [233] with accumulated points in their centers.
Large voids are typically encircled by smaller ones, leading to the appearance of
gradually finer void structures as one zooms further into the plot. Notice that the
higher density of points near |τ |2 = 1 is not a physical property as we have not
taken into account the metric on moduli space.

Let us next note that the moduli space of the axio-dilaton τ is hyperbolic. Indeed from the
Kähler potential (6.2.41) we can derive the corresponding Kähler metric with components

gτ1τ1 = gτ2τ2 =
1

4τ2
2
, gτ1τ2 = 0 . (6.3.11)

A convenient way to visualize this hyperbolic space is by mapping the Poincaré half-plane
to the Poincaré disk via the conformal transformation

(τ1, τ2)→ (τ̃1, τ̃2) =

(
2τ1

τ 2
1 + (1 + τ2)2 ,

τ 2
1 + τ 2

2 − 1

τ 2
1 + (1 + τ2)2

)
. (6.3.12)

The space of solutions for the axio-dilaton mapped to the Poincaré disk is shown in
figure 6.3, which is the mapping of figure 6.1 under (6.3.12).

� In figure 6.3 the characteristic structure of voids is visible. In this plot effects of
the moduli-space metric are incorporated.
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τ1

τ2

Figure 6.1: Space of solutions for the axio-dilaton τ with fluxes (6.3.2), mapped to the
fundamental domain Fτ . All solutions satisfy the bound Q0

768
≤ Q0

max

768
= 300.

τ1

τ2

Figure 6.2: Zoom of figure 6.1 for 0 ≤ τ2 ≤ 5.
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τ̃1

τ̃2

Figure 6.3: Space of solutions for the axio-dilaton τ with fluxes of the form (6.3.2),
restricted to the fundamental domain and mapped to the Poincaré disk. All solutions
satisfy the bound Q0

768
≤ 300.

τ1

τ2

Figure 6.4: Space of solutions for the axio-dilaton τ with fluxes of the form (6.3.2) near
τ = 2i on the Poincaré plane for Q0

768
≤ 300 (blue) and Q0

768
≤ 3000 (red).
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Analysis of Voids

The number of physically-distinct solutions for the axio-dilaton is finite for fixed tadpole-
contribution Q0. The number of solutions N with Q0 ≤ Q0

max can be determined numeri-
cally, which leads to the following scaling behaviour

N ≈ 0.823

[
Q0

max

768

]2

(6.3.13)

for large Q0
max. We now want to study how the voids change depending on N, or, equiv-

alently, depending on Q0
max. In particular, we are interested how the size of the voids

depends on Q0
max. Qualitatively, this behaviour is illustrated in figure 6.4:

� In figure 6.4 the space of solutions for the axio-dilaton around the point τ = 2i is
shown. The blue points correspond to solutions which satisfy Q0

768
≤ 300, and the

red points correspond to solutions with Q0

768
≤ 3000. For larger Q0

max the void around
τ = 2i therefore becomes smaller, and finer void structures appear. These results
are in agreement with the ones found using topological data analysis in [245].

Let us denote the origin of a void by τvoid, and define its size by the distance to the
nearest solution τsol (not located at τvoid). The geodesic distance d is measured using the
metric (6.3.11) on the axio-dilaton moduli space, for which we have

d (τ , τ̃) =
1

2
arccosh

[
1 +

(τ̃1 − τ1)2 + (τ̃2 − τ2)2

2 τ̃2τ2

]
. (6.3.14)

As we can see for instance from figure 6.3, in the proper distance the voids can be
approximated by a circle whose radius we define as

Rvoid = min
τsol 6=τvoid

d(τvoid, τsol) . (6.3.15)

The scaling behaviour of Rvoid with Q0
max has been obtained for instance in [233, 237] as

R2
void ∼ 1/Q0

max, and below we have determined the prefactors for some families of voids
numerically. For voids located in the fundamental domain on the Poincaré plane we have
the following relation between the radius of the void Rvoid, the tadpole contribution Q0

max

and the number of solutions located at the center of the void nvoid:

R2
void ≈

1

Cτ2void

[
768

Q0
max

]

nvoid ≈
2π

Cτ2void

[
Q0

max

768

]
τ1void τ2void C

0 n 4
0 n+ 0.5 16
±0.2 n+ 0.4 20
±0.2 n+ 0.6 20

(6.3.16)

Here, n ∈ Z+. The constant C depends on the family of voids under consideration and
can be read off from the table in (6.3.16) for several examples. Note also that the number
of solutions located at the center of the void divided by the area of the void takes the
simple form

nvoid

2πR2
void

≈
[
Q0

max

768

]2

. (6.3.17)
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Q0
max
768

Nc

Figure 6.5: Number of solutions Nc (for the axio-dilaton τ with fluxes of the form (6.3.2))
which satisfy c ≤ τ2 ≤ Q0

max

768
for c = 2, 5, 10, 20 in colors blue, orange, green and red,

respectively.

Solutions at Small Coupling

The imaginary part of the axio-dilaton τ is bounded from above by the D3-tadpole
contribution Q0, which via (6.2.33) implies a restriction on the string coupling gs as

τ2 = e−φ =
1

gs

≤ Q0

768
⇒ gs ≥

768

Q0
. (6.3.18)

Recall that in our conventions Q0 is a multiple of 768. In the following we determine the
number of physically-distinct solutions Nc which satisfy τ2 ≥ c for some cutoff c > 0 so
that we have

768

Q0
max

≤ gs ≤
1

c
. (6.3.19)

Note that in order to ignore string-loop corrections and corrections from worldsheet
instantons, we need to stabilize the axio-dilaton at small gs. This implies that Q0 and c
should be sufficiently large. Using then the exact data for the space of solutions, we can
obtain fits for Nc for values of Q0

max of the order Q0
max

768
= O(103). In particular, with the

scaling of the total number of solutions N shown in (6.3.13) we have

Q0
max

768
� 1

c Nc Nc/N

2 0.393
[Q0

max

768

]2
0.478

5 0.157
[Q0

max

768

]2
0.191

10 0.078
[Q0

max

768

]2
0.095

20 0.039
[Q0

max

768

]2
0.047

(6.3.20)

We observe that in this limit the percentage of solutions with gs � 1 is small and
independent of Q0

max. For instance, only about 5% of the solutions have a string coupling
satisfying gs ≤ 0.05. However, the region of small tadpole contributions Q0

768
= O(1) is

more interesting. Here the number of solutions Nc does not follow a simple quadratic
behavior, and the precise numbers are shown in figure 6.5. We see that for a particular
c in gs ≤ 1/c, the D3-tadpole contributions Q0

768
has to be larger than some threshold.

Furthermore, above this threshold the number of solutions is not large but only O(10).
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6.3.4 Summary

Let us summarize the results and observations of this section for moduli stabilization of
the axio-dilaton with the choice of fluxes given in equation (6.3.4):

� As already known before, for a fixed D3-brane tadpole contribution Q0, the number
of physically-distinct solutions to the F-term equations for the axio-dilaton τ is finite
due to the corresponding SL(2,Z) duality [233,237].

� The solutions for the axio-dilaton in the fundamental domain are not distributed
homogeneously, but show characteristic void structures as illustrated in figures 6.2
and 6.3.

� With increasing upper bound Q0
max on the tadpole contribution, the area of these

voids shrinks and the number of solutions located at the center nvoid increases as
shown in (6.3.16). The precise behaviour for the radius Rvoid and nvoid is pro-
portional to a constant depending on the location of the void, however, the ratio
nvoid/2πR

2
void is universal.

� The string coupling is bounded from below by the tadpole contribution as 768
Q0 ≤ gs.

In order to ignore string corrections and trust the solutions (6.3.4), we have to
demand gs � 1 which implies Q0

768
� 1. This is in contrast to our discussion of

the tadpole-cancellation condition on page 124, which requires Q0

768
to be small, and

illustrates the difficulty of obtaining reliable solutions to the F-term equations.

� We have furthermore analyzed the number of physically-distinct solutions satisfying
gs ≤ 1/c. Requiring a small string coupling of for instance gs ≤ 1/10, we find that
only about 10% of the solutions satisfy this condition. If we require gs to be smaller,
the corresponding fraction of solutions becomes smaller.

6.4 Moduli Stabilization II

In this section we extend our previous discussion by including the complex-structure
moduli U ǎ. We choose flux configurations which stabilize the axio-dilaton and fix the
complex-structure moduli at an isotropic minimum with U1 = U2 = U3. Such vacua
have previously been studied for instance in [269,237].

6.4.1 Setting

We start again by specifying the superpotential (6.2.42) and set to zero the nongeometric
fluxes (6.2.35)

qǍ
î = 0 , qǍ̂i = 0 . (6.4.1)

For the R-R and remaining NS-NS fluxes (6.2.34) we choose the restricted setting

f1 = f2 = f3 , h1 = h2 = h3 ,

f1 = f2 = f3 , h1 = h2 = h3 ,
fǍ, fǍ, h

Ǎ, hǍ ∈ 8Z . (6.4.2)
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Since the superpotential is independent of the Kähler moduli T̂i, the F-term equations
(6.2.46) simplify as in (6.3.3) and we obtain

0 = W , 0 = ∂U ǎW , 0 = ∂τW . (6.4.3)

Due to the isotropic choice of fluxes in (6.4.2), the complex-structure moduli U ǎ are
stabilized such that

U1 = U2 = U3 =: U , (6.4.4)

and the F-term equations (6.4.3) reduce to

−f0 − 3U f1 − 3(U)2 f1 + (U)3 f0 = 0 ,

−h0 − 3U h1 − 3(U)2h1 + (U)3h0 = 0 ,
(6.4.5)

(f1 − τh1) + 2U(f1 − τh1)− (U)2(f0 − τh0) = 0 . (6.4.6)

The R-R and NS-NS fluxes in (6.4.2) are furthermore subject to the Bianchi identities
(6.2.38). Due to the vanishing Q-fluxes, the only nontrivial relation is again given by the
D3-brane tadpole contribution

Q0 = f0h
0 − f0h0 + 3

(
f1h

1 − f1h1

)
> 0 . (6.4.7)

Note that due to the quantization condition for the fluxes, the tadpole contribution Q0

is an integer multiple of 64. However, as it has been explained in footnote 10 of [269], in
order to obtain physically-viable solutions Q0 receives an additional factor of three. The
tadpole contribution is therefore always a multiple of 192, which is also what we observe
explicitly in our data.

6.4.2 Finite Number of Solutions for fixed Q0

The two equations for the complex-structure modulus shown in (6.4.5) define an overde-
termined cubic system for U , which in general does not allow for a solution in closed
form. Since the coefficients in (6.4.5) are real, one can, however, bring these equations
into the form

(U − u0)(U − u1)(U − ū1) = 0 , u0 ∈ R , u1 ∈ C , (6.4.8)

where u0, u1, ū1 denote the roots. Physically-acceptable solutions have to satisfy ImU >
0, and therefore the F-term equations (6.4.5) have at most one solution for U of interest
to us. The equation (6.4.6) can be solved for the axio-dilaton as

τ =
f1 + 2U f1 − (U)2 f0

h1 + 2Uh1 − (U)2h0
, (6.4.9)

which still depends on the complex-structure modulus U . More details on these solutions
can be found in appendix C, where we follow the discussion of [269,237]. As reviewed in
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section 6.2.5, in the absence of nongeometric Q-fluxes the axio-dilaton and the complex-
structure moduli enjoy SL(2,Z) dualities. These can be used to bring τ and U into their
fundamental domains

Fτ =

{
−1

2
≤ τ1 ≤ 0, |τ |2 ≥ 1 ∪ 0 < τ1 < +

1

2
, |τ |2 > 1

}
,

FU =

{
−1

2
≤ U1 ≤ 0, |U |2 ≥ 1 ∪ 0 < U1 < +

1

2
, |U |2 > 1

}
,

(6.4.10)

where we again split τ and U into their real and imaginary parts as τ = τ1 + iτ2 and
U = U1 + iU2. We furthermore note that the two SL(2,Z) dualities leave the D3-
tadpole contribution Q0 invariant. Now, as first demonstrated in [269,237] and reviewed
in appendix C, the dualities can be used to show that the number of physically-distinct
vacua in the fundamental domain is finite for fixed Q0. In the following we explore how
the properties of the space of solutions for τ and U depend on Q0.

6.4.3 Space of Solutions

In this section we study the space of solutions to the F-term equations (6.2.46) for the
combined axio-dilaton and complex-structure-modulus system. Since for the axio-dilaton
system we found two-dimensional circular voids in the two-dimensional moduli space, it
might seem natural to expect four-dimensional spherical voids in the four-dimensional
moduli space. It turns out that this is not the case, and the space of solutions involves
more intricate structures. Our data has again been obtained using a computer algorithm,
which generated all physically-distinct flux vacua for a given upper bound on the D3-
brane tadpole contribution Q0.

Distribution of Solutions

In [269, 237] (as well as in appendix C) it is shown that for fixed Q0 the number of
physically-distinct solutions is finite. We have determined all solutions for the setting
described in section 6.4.1 numerically and visualized them in the following figures.

� Figure 6.6 shows the solutions for the fluxes of the form (6.4.2) projected onto
the τ and onto the U -plane [237]. All solutions satisfy the bound on the tadpole
contribution Q0

192
≤ 1000, and in order to have a symmetric plot we included points

on the boundary of the fundamental domains. These plots are similar to the one
in figure 6.1. When comparing figures 6.6a and 6.6b, we note that for the same Q0

the maximum values for τ2 and U2 differ significantly. Furthermore, we note that
the number of different values for τ1 is much larger than for U1.

� In figure 6.7 we show sections through the four-dimensional space of solutions for
τ2 ≤ 2, characterized by different values of the complex-structure modulus. All
solutions satisfy Q0

192
≤ 1000, and these plots show void structures similar as in

figure 6.2. We note however that although the location of the voids stays the same
when going from U = i to U = 2i and similarly from U =

√
2i to U = 2

√
2i,
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τ1

τ2

(a) Projection of solutions onto the τ -plane.

U1

U2

(b) Projection of solutions onto the U -plane.

Figure 6.6: Space of solutions for the setting described in section 6.4.1, mapped to the
fundamental domains Fτ and FU and projected onto the τ - and U -plane. All solutions
satisfy the bound Q0

192
≤ 1000.
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the density of solutions decreases. This appears to be a general feature which we
observe in the data.

� Figure 6.8 contains three-dimensional sections of the four-dimensional space of so-
lutions for U1 = 0. All solutions have been mapped to the fundamental domain.
Figures 6.8a and 6.8b show two different points of view, which illustrate that the
three-dimensional section of the space of solutions is not homogenous. Solutions are
accumulated on planes for particular values of U2, while the space between these
planes is only sparsely populated. This is in agreement with our observations in
figures 6.7, which also imply a varying density of solutions.

The lines in figures 6.8a and 6.8b connect voids for different values of U2 and are
described by the following equations for t ∈ R+:

orange l1 (τ1, τ2, U1, U2) = ( 0 , 1 + t, 0 , 1 + 1
1
t) ,

red l2 (τ1, τ2, U1, U2) = ( 0 , 2 + t, 0 , 1 + 1
2
t) ,

purple l3 (τ1, τ2, U1, U2) = ( 0 , 3 + t, 0 , 1 + 1
3
t) ,

green l4 (τ1, τ2, U1, U2) = (−1
2
, 3

2
+ t, 0 , 1 + 2

3
t) .

(6.4.11)

� Figure 6.9 shows the same three-dimensional section of the space of solutions as in
figure 6.8. The point of view in figure 6.9a is along the line l1 (orange) of (6.4.11)
and the point of view in figure 6.9b is along the line l2 (red). In these three-
dimensional sections of the four-dimensional space of solutions we therefore have
an oblique-cylindrical void centered around the lines in (6.4.11).

Solutions at small Coupling and large Complex Structure

We now consider the number N of physically-distinct solutions for the combined axio-
dilaton and complex-structure moduli system defined in section 6.4.1. This number is
finite for fixed D3-tadpole contribution Q0, and since we have the numerical data we can
determine this number explicitly. For large Q0 the dependence takes the form

N ≈ 1.2501

[
Q0

192

]2

. (6.4.12)

We next note that in the fundamental domains, the imaginary parts of the axio-dilaton
and complex-structure moduli satisfy a lower bound similarly as in the previous example.
An upper bound can be obtained from the numerical data, which can be expressed as 3

√
3

2
≤ τ2 ≤

√
3

2

[
Q0

192

]
,

√
3

2
≤ U2 ≤

√
3

2

[
Q0

192

]1/2

. (6.4.13)

3More precisely, with x = Q0

192 the bound on U2 can be expressed as U2 ≤
√
Cx, where the constant C

takes values C = 3/4 for x = 0, 1 mod 4, C = 3/8 for x = 2 mod 8, C = 1/4 for x = 3, 7 mod 8, and
C = 1/8 for x = 6 mod 8.
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τ1

τ2

(a) U = i

τ1

τ2

(b) U = 2i

τ1

τ2

(c) U =
√

2i

τ1

τ2

(d) U = 2
√

2i

Figure 6.7: Section through the four-dimensional space of solutions for the setting de-
scribed in section 6.4.1. The solutions have been mapped to the fundamental domains,
and the sections are for fixed complex-structure modulus at U = i, U = 2i, U =

√
2i and

U = 2
√

2i. All solutions satisfy the bound Q0

192
≤ 1000.
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τ1

τ2

U2

(a) Point of view along the τ2-direction.

τ2

τ1

U2

l1 l4 l2

l3

(b) Point of view along the τ1-direction.

Figure 6.8: Section through the four-dimensional space of solutions with U1 = 0 for the
setting described in section 6.4.1. All solutions satisfy the bound Q0

192
≤ 1000 and have

been mapped to the fundamental domains. The lines in 6.8a and 6.8b connect voids for
different values of U2 and are described by the expressions in equation (6.4.11).
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τ1

τ2

U2

(a) View along the line l1 (orange) in figures 6.8.

τ1

τ2

U2

(b) View along the line l2 (red) in figures 6.8.

Figure 6.9: Section through the four-dimensional space of solutions with U1 = 0 for the
setting described in section 6.4.1. All solutions satisfy the bound Q0

192
≤ 1000 and have

been mapped to the fundamental domains. The points of view are along the line l1
(figure 6.9a) and line l2 (figure 6.9b) in figures 6.8, which show a void structure around
l1 and l2.
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Note that in our conventions the tadpole contribution Q0 is a multiple of 192. However,
as we have seen in (6.4.9), the solution for the axio-dilaton depends on the complex-
structure modulus. Although this dependence is difficult to analyze analytically, the
numerical data gives a bound on the solutions,

τ2 U2 ≤
3

4

Q0

192
. (6.4.14)

This bound is stronger than in (6.4.13), and it implies that for fixed Q0 the imaginary
parts of τ and U cannot be made simultaneously large. In particular, in order to have
solutions at small coupling gs = 1

τ2
� 1 and large complex structure U2 � 1, the tadpole

contribution has to be sufficiently large. Let us make this more precise and determine
numerically the number of solutions Nc with Q0 ≤ Q0

max for which

gs ≤
1

c
and U2 ≥ c . (6.4.15)

In the limit of large Q0
max

192
we obtained the following approximations:

Q0
max

192
� 1

c Nc Nc/N

2 0.0553
[Q0

max

192

]2−3.4617
[Q0

max

192

]
0.041

5 0.0047
[Q0

max

192

]2−0.7627
[Q0

max

192

]
0.004

10 0.0009
[Q0

max

192

]2−0.3569
[Q0

max

192

]
0.001

(6.4.16)

These approximations do not describe the data at a high precision, but are sufficient for
our purposes here. In particular, we see that at leading order Nc depends quadratically
on Q0

max and that the ratios Nc/N are rather small. Thus, only a small percentage of
the solutions to the F-term equations are in a perturbatively-controlled regime. More
interesting is the limit of small Q0

192
, which we have illustrated in figure 6.10. We see

that for c = 2 (blue) there are solutions starting at Q0

192
= 16. For c = 5 (orange) we

find solutions starting at Q0

192
= 100, and for c = 10 (green) solutions can be obtained

starting at Q0

192
= 400. The main conclusion we want to draw from this analysis is that for

solutions at weak coupling gs � 1 and large complex structure U2 � 1, the D3-tadpole
contribution Q0

192
has to be large. As discussed on page 124, this is in tension with the

tadpole cancellation condition.

6.4.4 Summary

Let us summarize the results obtained in this section for the space of solutions of the
combined axio-dilaton and complex-structure-moduli system with fluxes characterized by
the setting described in section 6.4.1:

� As shown before in [269, 237], for a fixed D3-brane tadpole contribution Q0 the
number of physically-distinct solutions to the F-term equations (6.2.46) for the axio-
dilaton and complex-structure moduli is finite. This is again due to the SL(2,Z)
dualities for the axio-dilaton and the complex-structure moduli.
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Nc

Q0
max
192

Figure 6.10: Number of solutions Nc as a function of Q0
max

192
(for the setting described in

section 6.4.1) which satisfy τ2, U2 ≥ c for c = 2, 5, 10 in colors blue, orange and green,
respectively. Notice the different ranges for Q0

max

192
on the horizontal axis.

� The values of the fixed moduli (mapped to their fundamental domains) are not
distributed homogeneously in the space of solutions. As shown in figures 6.9, the
solutions are accumulated on submanifolds in the four-dimensional space with few
points in between. We also find void structures in the space of solutions, which are
however not spherical but take a cylindrical form in three-dimensional sections (cf.
figures 6.9).

� The imaginary parts of the axio-dilaton and the complex-structure moduli τ2 and
U2 are bounded from above and below as shown in equation (6.4.13). In our data we
additionally find a stronger bound on the product τ2 U2 ≤ 3

4
Q0

192
, which implies that

in the weak-coupling and large-complex-structure regime the tadpole contribution
Q0

192
has to be large. This is again in contrast to our arguments regarding the

tadpole-cancellation condition on page 124, which requires Q0

192
to be small, and

illustrates the tension between the closed- and open-string sectors for obtaining
reliable solutions.

� We have furthermore shown that the fraction of reliable flux solutions within all
solutions for fixed tadpole Q0

192
is only of orders O(10−3), which is a reduction as

compared to the setting of section 6.3.

6.5 Moduli Stabilization III

We now generalize the setting from section 6.4 by including nongeometric Q-fluxes. The
fluxes are restricted such that the complex-structure and Kähler moduli are fixed isotrop-
ically as T1 = T2 = T3 =: T and U1 = U2 = U3 =: U , which reduces the system to the
three complex moduli fields τ , U and T . Such vacua have previously been analyzed for
instance in [71].
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6.5.1 Setting

We specify the superpotential (6.2.42) by imposing the following restrictions on the R-R
and NS-NS fluxes (6.2.34) and (6.2.35)

f1 = f2 = f3 , h1 = h2 = h3 ,
f1 = f2 = f3 , h1 = h2 = h3 ,

q01 = q02 = q03 ,
q0

1 = q0
2 = q0

3 ,

q11 = q22 = q33 , q12 = q13 = q21 = q23 = q31 = q32 =: q̃11 ,
q1

1 = q2
2 = q3

3 , q1
2 = q1

3 = q2
1 = q2

3 = q3
1 = q3

2 =: q̃1
1 ,

(6.5.1)

which leaves four independent R-R G3-flux components, four independent H-flux com-
ponents and six independent Q-flux components. As discussed around equation (6.2.37),
these fluxes are subject to the quantization conditions

f0, f1, f0, f1, h0, h1, h0, h1, q01, q11, q̃11, q0
1, q1

1, q̃1
1 ∈ 8Z . (6.5.2)

Together with the Kähler potential (6.2.41), the F-term equations (6.2.46) can then be
determined explicitly. Since in the present situation the superpotential W depends on
the Kähler moduli T̂i, the condition W = 0 is in general not obtained, and the resulting
system of equations is more involved. However, provided that solutions to the F-term
equations with non-vanishing imaginary parts exist, then for the fluxes (6.5.1) the moduli
are stabilized isotropically,

U1 = U2 = U3 =: U , T1 = T2 = T3 =: T . (6.5.3)

A necessary condition to achieve this stabilization is that q1
1 6= q̃1

1 and q11 6= q̃11. The
system of seven F-term equations for τ , U ǎ, T̂i then reduces to the three equations

0 =
[
f0−h0 τ − q0

1 3T
]

+ 3U
[
f1−h1 τ − (2 q̃1

1 + q1
1)T

]
−(U)3

[
f0−h0 τ − q01 3T

]
+ 3(U)2

[
f1−h1 τ − (2 q̃11 + q11) T

]
,

(6.5.4a)

0 =
[
f0−h0 τ − q0

1 (T + 2T )
]

+ 3U
[
f1−h1 τ − (2 q̃1

1 + q1
1) 1

3
(T + 2T )

]
−(U)3

[
f0−h0 τ − q01 (T + 2T )

]
+ 3(U)2

[
f1−h1 τ − (2 q̃11 + q11) 1

3
(T + 2T )

]
,

(6.5.4b)

0 =
[
f0−h0 τ − q0

1 3T
]

+ (U + 2U)
[
f1−h1 τ − (2 q̃1

1 + q1
1)T

]
−U(U)2

[
f0−h0 τ − q01 3T

]
+ (2UU + (U)2)

[
f1−h1 τ − (2 q̃11 + q11) T

]
.

(6.5.4c)

The R-R and NS-NS fluxes are furthermore subject to the Bianchi identities (6.2.38),
and using the restrictions (6.5.1), we find for the tadpole contributions

Q0 = f0h
0 − f0h0 + 3

(
f1h

1 − f1h1

)
,

Q1 = f0q
01 − f0q0

1 + 2
(
f1 q̃

11 − f1 q̃1
1
)

+ f1q
11 − f1q1

1 ,

Q01 = h0q
01 − h0q0

1 + 2
(
h1 q̃

11 − h1 q̃1
1
)

+ h1q
11 − h1q1

1 !
= 0 .

(6.5.5)
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Finally, as we discussed in section 6.2.5, the present setting is duality invariant un-
der SL (2,Z) transformations of the complex-structure modulus U whereas the SL(2,Z)
duality (6.2.56) of the axio-dilaton is broken to constant shifts (6.2.57) due to the non-
vanishing Q-flux. Furthermore, T-duality (6.2.54) is in general broken because of the
isotropic choice of fluxes in (6.5.1).

6.5.2 Infinite Number of Solutions for fixed QÎ

In contrast to the settings of sections 6.3 and 6.4, for non-vanishing Q-flux the number
of solutions for fixed tadpole contributions QÎ is infinite [71]. This can be illustrated with
the following example from [71]: the D7-brane tadpole contribution is fixed as Q1 = 0
and the fluxes are chosen as

f0 = 0 , f1 = 0 ,

f0 = Q0

b
, f1 = 0 ,

h0 = b , h1 = b ,
h0 = b , h1 = −b ,

q01 = 0 , q11 = −m, q̃11 = 0 ,
q0

1 = −m− n , q1
1 = n , q̃1

1 = m,

(6.5.6)

where m,n ∈ 8Z and b ∈ 8Z is restricted such that f0 ∈ 8Z. To obtain non-trivial
solutions we require m,n, b 6= 0, and the above choice of fluxes always satisfies the
Bianchi identities (6.5.5). A solution to the equations of motion (6.5.4) is given by

τ =
m3Q0

8b2n3
(−4± i) , U =

m+ n

m
± n

m
i , T =

mQ0

4bn2
(2± i) , (6.5.7)

where the sign takes the same value for all three moduli. In order for the imaginary parts
to be positive, we require that this sign is chosen appropriately and that Q0 > 0 and
b n > 0.

Note that (6.5.7) describes an infinite set of vacua since m,n are not bounded, which
is in contrast to the situations studied in sections 6.3 and 6.4. However, in order to trust
these solutions we have to require that Imτ, ImU, ImT > 1 which translates into the
conditions

1 <
(
± n
m

)3

<
Q0

8b2
, 1 < ± n

m
<

Q0

4bn
. (6.5.8)

For a fixed Q0 there is only a finite number of choices for (m,n, b) which satisfy (6.5.8),
and therefore the number of reliable solutions for the particular flux choice (6.5.6) is
finite for fixed Q0. We remark however that duality transformations can change the form
of (6.5.6), and therefore a similar analysis has to be performed for the transformed flux
choices. It remains an open question whether this leads to a finite number of reliable
flux solutions. Addressing this issue promises to be an interesting direction for future
research and might provide valuable insights into the structure of nongeometric flux
compactifications.
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6.5.3 Space of Solutions

Since the number of physically-distinct solutions for fixed tadpole contributions QÎ is in
general infinite, for the present setting we cannot construct a complete data set of flux
vacua even for fixed tadpole contributions. However, some insights into the space of
solutions can be obtained using Monte-Carlo sampling.

Dataset

Our data set of flux vacua for the setting described in section 6.5.1 has been obtained in
the following way:

� We restrict the contributions to the D3- and D7-brane tadpoles Q0 and Q1 shown
in equations (6.5.5) as∣∣∣∣Q0

64

∣∣∣∣ ≤ 1000 ,

∣∣∣∣Q1

64

∣∣∣∣ ≤ 1000 , Q01 = 0 . (6.5.9)

Note that due to the flux-quantization condition (6.5.2) the QÎ are always a multiple
of 64, and that Q0 and Q1 can be negative while still leading to positive imaginary
parts for τ , U , T .

� The fluxes in (6.5.1) are chosen randomly with a uniform distribution. The restric-
tion on the value of the fluxes reads∣∣∣∣flux quantum

8

∣∣∣∣ ≤ 100 . (6.5.10)

� We have generated 1.3 · 107 flux configurations for which 1) all moduli τ , U , T are
fixed, 2) all imaginary parts of the moduli fields are strictly positive, and 3) the
vacua are physically distinct (i.e. not related by SL(2,Z) transformations of the
complex-structure moduli nor by T -transformations of the axio-dilaton or Kähler
moduli).

� For these flux contributions all moduli are fixed, however, not all of these extrema
are stable. The number of vacua with all moduli fixed and without tachyonic or
flat directions is 2.9 · 106.

Solutions at small Coupling, large Complex Structure and large Volume

Since we do not have a complete set of solutions for fixed tadpole contributions Q0 and
Q1, the same analysis as for the previous cases cannot be performed. However, for our
data set we have determined the number of solutions Nc for which τ2 = Imτ , U2 = ImU
and T2 = ImT satisfy

τ2, U2, T2 ≥ c . (6.5.11)
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For sufficiently large c, this corresponds to the weak-coupling, large-complex-structure
and large-volume regime. We furthermore denote by |QÎ/64|min the lowest value of the

expression |QÎ/64| =
√

(Q0)2 + 3(Q1)2/64 in the set of vacua determined by (6.5.11). For
configurations which fix all moduli but may contain tachyonic directions we find:

all

c Nc Nc/N0 |QÎ/64|min

0 1.33 · 107 1 1

1 5.97 · 105 4.5 · 10−2 16.7

2 2.11 · 104 1.6 · 10−3 42.1

3 190 1.4 · 10−5 129.8

5 6 4.5 · 10−7 811.8

(6.5.12)

From here we see that vacua with large imaginary parts τ2, U2, T2 are extremely rare but
not excluded. For larger c – that is for more reliable solutions – the tadpole contribu-
tions have to be larger. These observations are in line with the results of the previous
sections. For the stabilized vacua (without flat or tachyonic directions) we obtain a
similar behaviour:

stable

c Nc Nc/N0 |QÎ/64|min

0 2.94 · 106 1 1

1 5.64 · 105 1.9 · 10−1 16.7

2 2.03 · 104 6.9 · 10−3 42.1

3 163 5.5 · 10−5 129.8

5 1 3.4 · 10−7 1707.4

(6.5.13)

In table 6.1 we have collected some concrete examples for fully stabilized vacua with
imaginary parts greater than one.

Distribution of Solutions in the QÎ-Plane

For moduli stabilization of the axio-dilaton and complex-structure moduli studied in
sections 6.3 and 6.4, we observed that the tadpole-contribution Q0 has to be positive in
order to obtain physical solutions with positive imaginary parts τ2 and U2. However,
when including nongeometric fluxes we see that positive as well as negative values of Q0

and Q1 can result in positive imaginary parts τ2, U2 and T2.
Having a large data set available, we have analyzed the distributions of vacua over

Q0 and Q1. For the set of stable vacua without flat or tachyonic directions we obtain

stable

Q0 Q1 fraction of all vacua

≤ 0 ≤ 0 0.518765

≤ 0 > 0 0.155262

> 0 ≤ 0 0.325822

> 0 > 0 0.000151

(6.5.14)

It is somewhat surprising that the fraction of vacua with tadpole contributions Q0 > 0
and Q1 > 0 is suppressed by three orders of magnitude compared to having at least one
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QÎ negative. For our data set of solutions which include potentially tachyonic directions
no such drastic difference is found:

all

Q0 Q1 fraction of all vacua

≤ 0 ≤ 0 0.360664

≤ 0 > 0 0.256953

> 0 ≤ 0 0.254567

> 0 > 0 0.127816

(6.5.15)

We also note that both data sets do not contain any solution with Q0 = Q1 = 0.

Distribution of Solutions in Moduli Space

We have also analyzed the distribution of solutions to the F-term equations (6.2.46)
within the moduli space. Since the density of solutions is very small, we were not able
to identify any patterns or structures.

6.5.4 Summary

We briefly summarize the main results obtained in this section for the combined moduli
stabilization of the axio-dilaton, complex-structure moduli and Kähler moduli by the
fluxes shown in equation (6.5.1):

� For fixed D3- and D7-brane tadpole contributions Q0 and Q1, the number of
physically-distinct vacua is in general infinite [71]. We therefore were not able to
generate a complete data set but used Monte-Carlo sampling to randomly generate
1.3 · 107 solutions to the F-term equations which fix all moduli.

� We have shown that reliable solutions at weak string coupling, large complex struc-
ture and large volume are only a small fraction of all vacua. For instance, stable
solutions with τ2, U2, T2 ≥ 5 make only a fraction of 3.4 · 10−7 of all solutions. Re-
quiring the solutions to be more reliable requires the tadpole contributions QÎ to
be larger, which is in tension with the tadpole-cancellation condition as discussed
on page 124.

� In table 6.1 we have shown some concrete examples of stable vacua with axio-
dilaton, complex-structure moduli and Kähler moduli fixed at imaginary parts
greater than one.

� Finally, we have pointed out that stable vacua with all tadpole contributions Q0

and Q1 positive are statistically disfavored. The reasons and implications of this
behaviour are not yet clear and might be an interesting direction for future research.
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6.6 Discussion

In this chapter we have studied moduli stabilization with R-R and NS-NS fluxes in type
IIB string theory for the example of the T 6/Z2 × Z2 orientifold. We have analyzed
the interplay between moduli stabilization and tadpole cancellation. In particular, we
have shown how properties of the vacua depend on the flux contribution to the tadpole-
cancellation condition.

Summary of Results

More concretely, the axio-dilaton and complex-structure moduli are fixed by geometric
fluxes while the Kähler moduli are fixed at tree-level by the nongeometric Q-flux. In
section 6.3 we have focussed on the axio-dilaton only and mainly ignored the complex-
structure and Kähler moduli. In section 6.4 we included the complex-structure moduli,
and in section 6.5 we studied moduli stabilization for all closed-string moduli. We ana-
lyzed the space of solutions to the F-term equations for these settings and found that it
is not homogenous:

� For the axio-dilaton the space of solutions contains characteristic void structures
(see figure 6.2) [233,237]. The radius of these voids depends on the flux contribution
Q0 to the tadpole-cancellation condition, and for larger Q0 the radii become smaller.

When including the complex-structure moduli, we observe that vacua are accu-
mulated on submanifolds within the space of solutions (see figure 6.8). On these
planes we again find void structures, which are connected by lines between different
planes. We therefore find cylindrical voids in (three-dimensional sections of) this
four-dimensional space of solutions.

Furthermore, in section 6.2.3 we have argued that the flux contribution to the tadpole-
cancellation condition cannot be arbitrarily large. In particular, for many known ex-
amples this contribution is small. We have then contrasted this observation with the
requirement of having reliable solutions at weak string-coupling, large complex structure
and large volume:

� We have seen that the fraction of vacua with small string coupling τ2 � 1, large
complex structure U2 � 1 and large volume T2 � 1 is small. For instance, within
the approach followed in this discussion around 20% of the solutions satisfy τ2 ≥ 5,
around 0.4% of the solutions satisfy τ2, U2 ≥ 5, and a fraction of around 10−7 of the
solutions satisfy τ2, U2, T2 ≥ 5. This suggests that for a large number of moduli,
only a very small fraction of the solutions can be trusted (within the tree-level
approach used in this work).

� We have also observed that in order to find vacua at weak string-coupling, large com-
plex structure and large volume, the flux contribution to the tadpole-cancellation
condition has to be large. Within the approach followed in this discussion, for τ2 ≥ 5
one needs Q0 ≥ 3840, for τ2, U2 ≥ 5 one needs Q0 ≥ 38208, and for τ2, U2, T2 ≥ 5
we have indications that one needs |QÎ| & O(105). This suggests that in order to
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stabilize a large number of moduli in a perturbatively-controlled regime, a large
flux contribution is needed. However, this conclusion is in stark contrast to the
tadpole-cancellation condition which strongly disfavors large flux contributions.

To conclude, in order to stabilize moduli in a reliable way a large flux contribution is
needed – which is however strongly restricted by the tadpole-cancellation condition. We
therefore see that moduli stabilization and model building in string theory cannot be
approached independently but have to be addressed simultaneously. This is a difficult
task.

Limitations and Future Directions

We now comment on the limitations of the analysis performed in this chapter and on
future directions:

� Our conclusions in this chapter are based on the study of a single compactification
space. We believe that the T 6/Z2 × Z2 orientifold captures main features of the
problem, but these have to be confirmed by other examples.

� In this discussion we have stabilized moduli at tree-level. Corrections to the effective
theory can usually be ignored in the weak-coupling, large-complex-structure and
large-volume regime, however, many of the obtained solutions are not in this regime.
We therefore should repeat our analysis and include various corrections from the
start, which in turn will modify the space of solutions.

� We have found that only a small fraction of solutions stabilize moduli in a perturba-
tively-controlled regime. This observation has implications for the landscape of
string vacua, in particular, it suggests that the landscape may be smaller than
naively expected. It would be desirable to make this statement more precise.

� The SL(2,Z) duality of the axio-dilaton was broken by nongeometric Q-fluxes.
Including so-called P -fluxes will restore this duality and may again modify the
corresponding space of solutions.

� The contribution of orientifold planes to the tadpole-cancellation condition could
only be estimated based on known examples. It would be desirable to have a
criterium which can put a bound on the orientifold contribution for a particular
compactification space.
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Chapter 7

Summary and Outlook

Dualities and nongeometric backgrounds are closely intertwined and form and integral
part of string an M-theory. Their very presence hints at the existence of underlying
structures which remain elusive for established mathematical frameworks. In this thesis
we presented the formalisms of extended geometries and field theories in which dualities
are implemented as a manifest symmetry into the model. This enabled us to approach
the problem of moduli stabilization from a more general viewpoint and to gain deeper
insights into the intricate structure of dualities and the string landscape.

7.1 Summary

Dualities – nontrival relations between seemingly different theories or structures – are
widely known in the fields of physics and mathematics. In many instances, they serve as
a valuable tool to address previously inaccessible problems from a different point of view
in which the intended task becomes feasible. On the other hand, the blurring between
unrelated or contrasting concepts raises suspicions that there is some fundamental aspect
of the models which is not yet fully understood. Throughout this thesis, we have seen
that the nature of dualities is not a purely philosophical question, but can be crucial for
the development of physically realistic models of our universe.

Starting Point

In string theory, the presence of mathematically ill-defined duals to flux backgrounds mo-
tivates idea of generalized flux backgrounds, which play an essential role in both obtaining
full moduli stabilization and linking gauged supergravities to a higher-dimensional origin.
Describing such models requires the consideration of structures beyond those of differen-
tial geometry. Extended field theories achieve this goal by enhancing point-particles with
additional dual coordinates, thus allowing dual theories to be embedded into extended
geometries in which duality transformations become a manifest symmetry. A particu-
larly appealing feature of such models is that previously ill-defined objects are provided
a geometric interpretation. A major part of this thesis is built around the utilization
of this property to obtain a better understanding of compactifications on non-geometric
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backgrounds.

Dimensional Reductions of Double Field Theory

In chapter 5 we performed dimensional reductions of type II double field theory on gen-
eralized flux backrounds explicitly for Calabi-Yau three-folds and K3 × T 2. The flux
formulation of double field theory provides a T-duality covariant extension of ordinary
supergravities formulated in terms of abstract generalized fluxes whose fluctuations can
can be identified with the known fluxes of the T-duality chain. Enforcing the strong
constraint on the background values, the setting effectively describes type II theories on
generalized backgrounds in which all geometric and non-geometric fluxes are implemented
as simple operators acting on differential form fields.

A major strength of double field theory is its capability to provide a natural ten-
dimensional origin for lower-dimensional gauged supergravities, which long appeared to
be isolated from string theory. We showed this explicitly by performing dimensional
reductions of the presented setting on Calabi-Yau three-folds, which gave rise to four-
dimensionalN = 2 supergravity with electric and magnetic gaugings. In the most general
case, the presence of non-geometric fluxes causes the four-dimensional action to manifest
in a partially dualized form [202]; in the purely geometric setting, this dualization becomes
reversible, and the theory takes a more familiar form which eventually reduces to that
of ungauged supergravity as the remaining fluxes are turned off. These results relate
directly to those of an alternative approach [199] employing SU(3) × SU(3) structure
manifolds, and many of the objects encountered in our computations could be related to
this framework.

Another appealing feature of our formalism is its transferability to a wider class of
compactification manifolds. This was carried out explicitly for the case K3 × T 2. By
generalizing the concepts and relaxing some of the constraints introduced previously
in [78, 79], we constructed a more general form of the scalar potential which correctly
incorporates the contribution of fluxes not present on Calabi-Yau three-folds. A similar
special-geometric framework as in the Calabi-Yau case could be constructed by employing
the ideas of generalized Calabi-Yau and K3 structures [147,203], which eventually enabled
us to perform the dimensional reduction in a mostly analogous way.

A final important aspect is the role of Mirror Symmetry in double field theory. Purely
geometric flux compactifications break the duality between type IIA and IIB theory due
to parts of the fluxes being mapped out of the geometric regime by T-duality transforma-
tions. By including all fluxes of the T-duality chain into the framework, Mirror Symmetry
is restored, with mappings between geometric and nongeometric fluxes clearly reflected
in the mirror mappings. Double field theory thereby catches the structural properties
of the duality in an elegant way as a simple exchange of roles between two poly-forms
encoding the complex and Kähler structures of the compactification manifold.

Dualities, Tadpole Cancellation and Type IIB Orientifolds

In the second major research part of this thesis, we focused on concrete examples of
moduli stabilization in type IIB orientifold compactifications with fluxes. At the heart
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of such models lies the application of an orientifold projection to mod out the orienta-
tion of the string and half of the supersymmetry generators, thus giving rise to N = 1
supergravity in four dimensions. This comes with a variety of consistency constraints on
the theory, most notably the tadpole-cancellation condition, which strongly restrict the
allowed combinations of flux quanta. At the same time, the presence of dualities renders
certain orbits of of configurations equivalent, thus drastically reducing the number of
physically-distinct vacua. In chapter 6 we performed an in-depth analysis of the space
of vacua for the type IIB orientifold of T 6/Z2 × Z2, thereby keeping a close eye on the
interplay between moduli stabilizaiton, tadpole cancellation and dualities.

An essential insight of our discussion is that flux configurations which stabilize moduli
in a pertubatively-controlled regime compose only a very small fraction of all possible
configurations. In these cases, large tadpole contributions are necessary or strongly fa-
vored. On the other hand, the non-vanishing mass of D-branes generally requires low
tadpole contributions in order to prevent the probe approximation from breaking down
due to backreactions on the geometry. Obtaining physical solutions which are reliable
from both perspectives is thus a difficult task, and the landscape of the considered mod-
els might ultimately be much smaller than expected if all approximations are taken into
account correctly.

Another interesting aspect is the effect of consistency constraints and dualities on
the structure of the space of vacua. It was first observed in [233, 237] that the funda-
mental domains of the SL(2,Z) duality groups for the different moduli contain voids or
regions of varying density. We found similar stuctures in more general settings. The
vacua then accumulate on submanifolds within the total space, which themselves contain
higher-dimensional void structures. The size of these voids generally shrinks as the flux
contribution to the tadpoles is increased, which is however again limited by the probe
approximation of D-branes. Their presence thus suggests that parts of the solution space
might remain inaccessible under the assumptions the considered models are based on.

Our results highlight the strong interplay between moduli stabilization and model
building in string theory. While the established approximations and frameworks certainly
serve as viable starting points to study the structure of flux vacua, we think it is of
essential importance to treat these two issues in a unified way in order to obtain more
realiable results.

7.2 Outlook

Dualities and extended geometries are still an active field of research, and promising
developments have occured in the recent past. We conclude this thesis with a brief
outlook on future developments and possible directions of further research.

Extended Field Theories and Beyond

Despite recent success in providing a better description of dualities and nongeometry in
string theory, much is still to be understood in the area of extended field theories. Strong
efforts are currently being made in applying the concepts of exceptional field theories
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to larger U-duality groups, and interesting insights into the structure of generalized flux
backgrounds and exotic branes are to be expected. More recently, the original idea of
a T-duality covariant worldsheet [282–287, 151, 288–291] was generalized to certain U-
duality groups [292, 293], and a study of open-string boundary conditions and D-branes
in extended spaces was initiated in [294,295].

From a phenomenological point of view, there exists a wide variety of settings to
analyze. One possible direction is to explcitly elaborate dimensional reductions of excep-
tional field theories; another interesting option would be to consider nongeometric flux
compactifications on various classes of manifolds and their relation to other framworks
such as SU(2) structures [222–224].

Flux Vacua and String Phenomenology

Concerning the issues of moduli stabilization and model building, a suggestive next step
would be to check to which degree the ideas can be transferred to a wider class of
compactification manifolds and how the inclusion of corrections to the effective theories
affects the results. Ultimately, it would be desirable to make more general statements on
the validity of flux vacua and the size of the string landscape.

On a more general level, there are various further directions of research to pursue. Two
particular fields of string phenomenology are currently experiencing a surge of interest.
A first approach which was also adopted in this thesis is the utilization of techniques
from data analysis and machine learning to study the structure of the string landscape.
While we sticked to a rather conventional statistics framework, there are ongoing efforts
to make more modern techniques such as topological data analysis or neural networks
applicable to problems in string theory [244, 245]. These methods are still in an early
stage of development, however, they bear a great potential to handle the large datasets
encountered in string theory and to discover patterns which might remain hidden for the
human eye.

A different strategy is to address the problem from the opposite direction and try to
find criteria for effective field theories to be incompatible with string theory. Research
on this so-called string swampland was already initiated in the mid-2000s [296–298] and
recently moved back into the focus of interest after a number of new swampland con-
jectures was elaborated [299–301, 227, 302–308]. While not a subject of this thesis, it is
certainly a promising approach to gain both a deeper insights into the phenomenology of
string theory as well as to address the issue of falsifiability.

Conclusion

Coming back to the starting point of this thesis, we saw throughout the recent chapters
that the quest for unification still acts as a driving force in modern high energy physics.
By implementing dualities as a manifest symmetry, extended field theories define a uni-
fied framework for dual supergravity theories, which ultimately enabled a mathematical
description of nongeometric backgrounds as well as an inclusion of gauged supergravities
into the web of dualities. Similarly, addressing the problems of moduli stabilization and
model building simultaneously allowed us to gain deeper insights into the structure of
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the string landscape and the reliability of commonly used approximations. All this shows
that the striving for unification is not an end unto itself, but can help to obtain a better
understanding of concepts that are already well-established and lead to the development
of new ideas which might be essential to address some of the open problems in modern
physics.
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Appendix A

Notation and Conventions

A.1 Spacetime Geometry and Indices

Throughout this thesis we make use of various kinds of indices, which are structured as
follows:

� We distinguish between serif letters A, a, . . . denoting spacetime indices and sanserif
letters A, a, . . . labeling the coordinates of moduli spaces. We furthermore introduce
blackboard typeface capital letters A,B, . . ., I, J, . . . as collective notation summa-
rizing certain de Rham cohomology bases, which are specified in subsection 5.3.3
and 5.4.2.

� In orientifold compactifications, cohomological indices of even eigenspaces of the
orientifold projection are indicated by “hat” symbols Â, â, . . . and those of odd
eigenspaces by “check” symbols Ǎ, ǎ, . . ..

� For spacetime indices, capital letters denote doubled coordinates, and small letters
denote normal coordinates.

Using this as a guideline, we define the following indices:

� Capital Latin letters M,N, . . . and A,B, . . . label the curved respectively tangent
coordinates of twenty-dimensional doubled spacetime.

� Small Latin letters m,n, . . . and a, b, . . . label the curved respectively tangent coor-
dinates of ten-dimensional spacetime.

� Small Greek letters µ, ν, . . . and ε, ζ, . . . label the curved respectively tangent coor-
dinates of four-dimensional external spacetime.

� Capital Latin letters I, J, . . . and A,B, . . . label the curved respectively tangent
coordinates of twelve-dimensional doubled internal space.

� Small Latin letters i, j, . . . and a, b, . . . label the curved respectively tangent coor-
dinates of six-dimensional internal space.
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� On the product manifold K3× T 2, the above internal indices are used for the K3
component, whereas specific indices R, S, . . ., r, s, . . . are used for curved coordinates
and X, Y, . . ., x, y, . . . for tangent coordinates of the T 2-component.

� On CY3, small Latin letters a, ā, b, b̄ . . . denote complex curved coordinates of six-
dimensional internal spacetime. On K3 × T 2, a, ā, b, b̄ . . . denote complex curved
coordinates of K3 and g, ḡ, h, h̄ . . . those of T 2.

Due to the variety of considered compactification manifolds, moduli-space and cohomo-
logical indices are specified in the sections where the bases are defined. Notice also that
some indices such as A,B, . . . and a, b, . . . are assigned multiple roles. Their meaning
will, however, always be clarified explicitly or obvious from the context.

A.2 Tensor Formalism and Differential Forms

For general tensors, differential forms and related operators, we apply the following con-
ventions:

� For instances in which the spacetime splits into external and internal components,
fields living on the full spacetime manifold are indicated by “hat” symbols Â, . . .
to prevent confusion with purely external or internal fields A, . . . .

� The antisymmetrization of a tensor A is is defined by

A[m1m2...mn] :=
1

n!

∑
π∈Sn

(−1)sign(π) Aπ(m1)π(m2)...π(mn), (A.2.1)

where Sn denotes the set of permutations of {1, 2, . . . n}.

� The Levi-Civita tensor εm1...mD in D dimensions is defined as the totally antisym-
metric tensor with ε012...(D−1) = 1 (Lorentzian signature) or ε123...D = 1 (Euclidean
signature). It satisfies the relations

εm1...mDεn1...nD
= D!δ

[m1
n1 . . . δ

mD]
nD = δm1...mD

n1...nD
,

εm1...mpmp+1...mDεm1...mpnp+1...nD
= p! (D − p)!δ

[mp+1

np+1 . . . δ
mD]
nD = p!δ

mp+1...mD
np+1...nD ,

εm1...mDεm1...mD
= D!.

(A.2.2)

� The components of a differential p-form ωp are defined as

ωp =
1

p!
ωm1...mpdxm1 ∧ . . . ∧ dxmp . (A.2.3)
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� The exterior product of a p-form ωp and a q-form χq is given by

∧ : Ωp (M)× Ωq (M) → Ωp+q (M)

(ωp, χq) 7→ ωp ∧ ωq =
(p+ q)!

p!q!
ω[m1...mp χn1....nq ] dxm1 ∧ . . .

. . . ∧ dxmp ∧ dxn1 ∧ . . . ∧ dxnq .
(A.2.4)

In this context, we choose the notation (ωp)
n =

n factors︷ ︸︸ ︷
ωp ∧ ωp ∧ . . . ∧ ωp for exterior

products of a p-form ωp with itself.

� The exterior derivative d is given by

d : Ωp (M) → Ωp+1 (M)

ωp 7→ dωp =
1

p!

∂ωm1...mp

∂xn
dxn ∧ dxm1 ∧ . . . ∧ dxmp .

(A.2.5)

� The Hodge star operator ? is defined by

? : Ωp (M) → ΩD−p (M)

ωp 7→ ?ωp =
1

√
gp! (D − p)!

εm1...mpmp+1...mD
gm1n1 . . . gmpnpωn1...npdD−px.

(A.2.6)
This induces a pairing of two p-forms ωp and χp given by

ωp ∧ ?χp =

√
g

p!
ωm1...mpχn1...np

gm1n1 . . . gmpnpdDx. (A.2.7)

On D−dimensional manifolds, ? satisfies the bijectivity condition

? ? ωp = α (−1)p(D−p) ωp , (A.2.8)

where α takes the value 1 for Euclidean and -1 for Lorentzian signatures. Using
this, one can show that the b-twisted Hodge star operator (5.2.30) squares to −1,

?b?b = −1. (A.2.9)

When splitting a differential p-form ωp = ηp−n ∧ ρn living in M10 = M1,3×M6 into
two components ηp−n ∈ Ωp−n (M1,3) and ρn ∈ Ωn (M6), the Hodge-star operator
splits as

?ωp = (−1)n(p−n) ? ηp−n ∧ ?ρn. (A.2.10)

As a consequence, one obtains for the involution operator (5.2.28)

?λ (ωp) = ?λ (ηp−n) ∧ ?λ (ρn) . (A.2.11)

� For differential poly-forms, we define the projectors [·]n to give as output the n-form
components of the argument.
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Appendix B

Important Identities of Complex and
Kähler Geometry

This appendix provides an overview of important geometric identities for Calabi-Yau
three-folds and K3×T 2 used throughout the calculations in sections 5.3 and 5.4. Most
of the technical steps are based on the notions complex and Kähler geometry, which shall
be briefly discussed here.

Both CY3 and K3 × T 2 are complex manifolds, allowing for a standard complex
structure I satisfying

Iab = iδab, I āb̄ = −iδāb̄,

Iab̄ = 0, I āb = 0.
(B.0.1)

Both manifolds are also Kähler and, thus, Hermitian. The only non-vanishing components
of their metric are therefore gab̄ = gāb. They are related to the Kähler form J by

Jab̄ = igab̄, Jāb = −igāb (B.0.2)

and, in real coordinates,

Jij = gimI
m
j. (B.0.3)

For the holomorphic three-form of CY3, we employ the normalization

i

8
Ω ∧ ?Ω =

1

3!
J3, (B.0.4)

leading to the relations

ΩabcΩāb̄c̄g
cc̄ = 8 (gaāgbb̄ − gab̄gbā) ,

ΩabcΩāb̄c̄g
bb̄gcc̄ = 16gaā,

ΩabcΩāb̄c̄g
aāgbb̄gcc̄ = 48.

(B.0.5)

The same normalization is applied to the holomorphic volume form Ω := ΩK3 × ΩT 2 of
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K3× T 2 (with J := JK3 + JT 2), and one obtains similarly

ΩgabΩḡāb̄g
gḡ = 8 (gaāgbb̄ − gab̄gbā) ,

ΩgabΩḡāb̄g
bb̄ = 8ggḡgaā,

ΩgabΩḡāb̄g
aāgbb̄ = 16ggḡ,

ΩgabΩḡāb̄g
gḡgaāgbb̄ = 16.

(B.0.6)



Appendix C

Finite Number of Solutions for
Geometric Isotropic Torus

In this appendix we follow the proof of [269, 237] to show that for the setting of sec-
tion 6.4.1 the number of physically-distinct solutions is finite for fixed Q0. The most
important tools to do this are the SL (2,Z) dualities of the axio-dilaton and complex-
structure moduli summarized in section 6.2.5. Splitting the moduli into real and imagi-
nary parts as

τ = τ1 + iτ2 , U = U1 + iU2 , (C.0.1)

we recall that the two equations (6.4.5) define an overdetermined cubic system for U and
therefore do not allow for a closed-form solution in the generic case. We will now follow
the lines of [269, 237] to demonstrate how a closed solution can still be obtained for the
physically relevant cases.

In order for a physical solution to exist, both equations have to share a common root
with non-vanishing imaginary part. Since all coefficients are real, there then exists a
second solution given by its complex conjugate, and the two equations share a common
quadratic factor. In this case, the two cubic polynomials (6.4.5) can be factorized as

(rU + s)P (U) = 0 ,

(uU + v )P (U) = 0 ,
(C.0.2)

where P (U) defines the common quadratic factor,

P (U) = l(U)2 +mU + n , (C.0.3)

and the seven new variables l,m, n, r, s, u, v ∈ Z are defined by an overdetermined system
of equations

r m + s l = −3f1 , r l = f0 ,

r n + sm = −3f1 , s n = −f0 ,
um + v l = −3h1 , ul = h0 ,

un + vm = −3h1 , v n = −h0 .

(C.0.4)
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The set of admissible septuples is furthermore restricted by requiring the flux quanta to
to satisfy the tadpole cancellation condition (6.4.7), which can be reformulated as(

rv − su
) (
m2 − 4ln

)
= −3Q0 . (C.0.5)

As shown in [269], this condition can only be satisfied if Q0 is a multiple of three, yielding
an overall factor of 192 when taking into account the flux quantization conditions. Since
the prefactors appearing in (C.0.2) are linear in U with real coefficients, the two solutions
with non-vanishing imaginary part can be obtained by choosing U such that

P (U) = 0 . (C.0.6)

Requiring furthermore the imaginary part of U to be positive, we arrive at the physical
solutions

U =
−m+

√
m2 − 4ln

2l
if l > 0 and n > 0 ,

U =
−m−

√
m2 − 4ln

2l
if l < 0 and n < 0 .

(C.0.7)

The F-term equation (6.4.6) is linear in τ and can be solved analytically, leading to the
stabilized value

τ =
s (m+ 2lU) + r

[
n+ U (2m+ 3lU)

]
v (m+ 2lU) + u

[
n+ U (2m+ 3lU)

] . (C.0.8)

We will now proceed similarly to section 6.3.2 to show that using the dualities for the
axio-dilaton and complex-structure moduli, for fixed Q0 only a finite number of solutions
can be found. Without loss of generality we focus on the case l > 0 and n > 0. The
situation l < 0 and n < 0 is completely analogous.

� As can be read off from the first line in (C.0.7), the shift symmetry (6.2.49) of U
gives rise to an equivalence

m ∼ m+ 2bl , b ∈ Z . (C.0.9)

It therefore follows that all inequivalent values of m are contained in the range

m = −l, . . . , l − 1 . (C.0.10)

� Considering the boundary U2 = −1
2
, a minimal requirement for U to be located in

the fundamental domain FU is given by U2 ≥
√

3/2. This is equivalent to requiring

m2 − 4ln ≤ −3l2 . (C.0.11)
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On the other hand, both of the factors on the left-hand side of the tadpole-
cancellation condition (C.0.5) have to be integers, giving rise to a lower bound

m2 − 4ln ≥ −3Q0 . (C.0.12)

This restricts the inequivalent values of both l and n to finite ranges

1 ≤ l ≤
√

Q0 ,
3l2 +m2

4l
≤ n ≤ 3Q0 +m2

4l
. (C.0.13)

� Employing the same arguments for the axio-dilaton, one finds an additional equiv-
alence

s ∼ s+ bv , b ∈ Z , (C.0.14)

as well as upper bounds for u and v.

� The remaining degree of freedom r is fixed by the tadpole cancellation condition
(C.0.5).

The above conditions leave only a finite number of inequivalent solutions for a fixed
D3-tadpole contribution Q0.
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pp. 481–559. Birkhäuser Basel, 2000.

[36] R. J. Szabo, “Quantum field theory on noncommutative spaces,” Phys. Rept. 378
(2003) 207–299, hep-th/0109162.

[37] Y. Nambu, “Quark model and the factorization of the Veneziano amplitude,”.

[38] H. B. Nielsen, “An almost physical interpretation of the dual n point function.,”
Nordita preprint (1969). unpublished.

[39] L. Susskind, “Harmonic-oscillator analogy for the veneziano model,” Physical
Review Letters 23 (1969), no. 10 545–547.

[40] L. Susskind, “Structure of hadrons implied by duality,” Physical Review D 1
(1970), no. 4 1182–1186.

[41] P. Ramond, “Dual theory for free fermions,” Physical Review D 3 (1971), no. 10
2415–2418.

[42] A. Neveu and J. Schwarz, “Tachyon-free dual model with a positive-intercept
trajectory,” Physics Letters B 34 (1971), no. 6 517–518.

[43] J. Scherk and J. H. Schwarz, “Dual models for non-hadrons,” Nuclear Physics B
81 (1974), no. 1 118–144.

[44] T. Yoneya, “Connection of dual models to electrodynamics and gravidynamics,”
Progress of Theoretical Physics 51 (1974), no. 6 1907–1920.

[45] F. Gliozzi, J. Scherk, and D. Olive, “Supersymmetry, supergravity theories and
the dual spinor model,” Nuclear Physics B 122 (1977), no. 2 253–290.

[46] M. B. Green and J. H. Schwarz, “Anomaly cancellations in supersymmetric d =
10 gauge theory and superstring theory,” Physics Letters B 149 (1984), no. 1-3
117–122.

[47] D. J. Gross, J. A. Harvey, E. Martinec, and R. Rohm, “Heterotic string,” Physical
Review Letters 54 (1985), no. 6 502–505.

http://xxx.lanl.gov/abs/gr-qc/0305080
http://xxx.lanl.gov/abs/0708.1236
http://xxx.lanl.gov/abs/hep-th/0601129
http://xxx.lanl.gov/abs/1102.3660
http://xxx.lanl.gov/abs/hep-th/0109162


180 BIBLIOGRAPHY

[48] A. Giveon, E. Rabinovici, and G. Veneziano, “Duality in String Background
Space,” Nucl. Phys. B322 (1989) 167–184.

[49] A. Giveon, M. Porrati, and E. Rabinovici, “Target space duality in string theory,”
Phys. Rept. 244 (1994) 77–202, hep-th/9401139.

[50] C. Montonen and D. I. Olive, “Magnetic Monopoles as Gauge Particles?,” Phys.
Lett. 72B (1977) 117–120.

[51] A. Sen, “Strong - weak coupling duality in four-dimensional string theory,” Int. J.
Mod. Phys. A9 (1994) 3707–3750, hep-th/9402002.

[52] C. M. Hull and P. K. Townsend, “Unity of superstring dualities,” Nucl. Phys.
B438 (1995) 109–137, hep-th/9410167. [,236(1994)].

[53] E. Witten, “String theory dynamics in various dimensions,” Nucl. Phys. B443
(1995) 85–126, hep-th/9503124.

[54] M. J. Duff, “The Theory formerly known as strings,” Sci. Am. 278 (1998) 64–69.
[Spektrum Wiss.1998N4,62(1998)].

[55] E. Bergshoeff, E. Sezgin, and P. K. Townsend, “Supermembranes and
Eleven-Dimensional Supergravity,” Phys. Lett. B189 (1987) 75–78.

[56] J. Polchinski, “Dirichlet Branes and Ramond-Ramond charges,” Phys. Rev. Lett.
75 (1995) 4724–4727, hep-th/9510017.

[57] J. M. Maldacena, “The Large N limit of superconformal field theories and
supergravity,” Int. J. Theor. Phys. 38 (1999) 1113–1133, hep-th/9711200. [Adv.
Theor. Math. Phys.2,231(1998)].

[58] B. R. Greene and M. R. Plesser, “Duality in Calabi-Yau Moduli Space,” Nucl.
Phys. B338 (1990) 15–37.

[59] Y. S. Tung, Essays on mirror manifolds. International Press, Hong Kong, 1992.

[60] K. Hori, S. Katz, A. Klemm, R. Pandharipande, R. Thomas, C. Vafa, R. Vakil,
and E. Zaslow, Mirror symmetry, vol. 1 of Clay mathematics monographs. AMS,
Providence, USA, 2003.

[61] A. Strominger, S.-T. Yau, and E. Zaslow, “Mirror symmetry is T duality,” Nucl.
Phys. B479 (1996) 243–259, hep-th/9606040.

[62] P. Candelas, G. T. Horowitz, A. Strominger, and E. Witten, “Vacuum
Configurations for Superstrings,” Nucl. Phys. B258 (1985) 46–74.

[63] K. Dasgupta, G. Rajesh, and S. Sethi, “M theory, orientifolds and G - flux,”
JHEP 08 (1999) 023, hep-th/9908088.

http://xxx.lanl.gov/abs/hep-th/9401139
http://xxx.lanl.gov/abs/hep-th/9402002
http://xxx.lanl.gov/abs/hep-th/9410167
http://xxx.lanl.gov/abs/hep-th/9503124
http://xxx.lanl.gov/abs/hep-th/9510017
http://xxx.lanl.gov/abs/hep-th/9711200
http://xxx.lanl.gov/abs/hep-th/9606040
http://xxx.lanl.gov/abs/hep-th/9908088


BIBLIOGRAPHY 181

[64] T. R. Taylor and C. Vafa, “R R flux on Calabi-Yau and partial supersymmetry
breaking,” Phys. Lett. B474 (2000) 130–137, hep-th/9912152.

[65] S. B. Giddings, S. Kachru, and J. Polchinski, “Hierarchies from fluxes in string
compactifications,” Phys. Rev. D66 (2002) 106006, hep-th/0105097.

[66] J.-P. Derendinger, C. Kounnas, P. M. Petropoulos, and F. Zwirner,
“Superpotentials in IIA compactifications with general fluxes,” Nucl. Phys. B715
(2005) 211–233, hep-th/0411276.

[67] G. Villadoro and F. Zwirner, “N=1 effective potential from dual type-IIA D6/O6
orientifolds with general fluxes,” JHEP 06 (2005) 047, hep-th/0503169.

[68] O. DeWolfe, A. Giryavets, S. Kachru, and W. Taylor, “Type IIA moduli
stabilization,” JHEP 07 (2005) 066, hep-th/0505160.

[69] M. Grana, “Flux compactifications in string theory: A Comprehensive review,”
Phys. Rept. 423 (2006) 91–158, hep-th/0509003.

[70] J. Shelton, W. Taylor, and B. Wecht, “Nongeometric flux compactifications,”
JHEP 10 (2005) 085, hep-th/0508133.

[71] J. Shelton, W. Taylor, and B. Wecht, “Generalized Flux Vacua,” JHEP 02 (2007)
095, hep-th/0607015.

[72] B. Wecht, “Lectures on Nongeometric Flux Compactifications,” Class. Quant.
Grav. 24 (2007) S773–S794, 0708.3984.

[73] E. Plauschinn, “Non-geometric backgrounds in string theory,” Phys. Rept. 798
(2019) 1–122, 1811.11203.

[74] R. Bousso and J. Polchinski, “Quantization of four form fluxes and dynamical
neutralization of the cosmological constant,” JHEP 06 (2000) 006,
hep-th/0004134.
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