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ABSTRACT  
The insular cortex (IC) processes sensory information from within and outside the body and has 

been implicated in emotion regulation and homeostasis. To date, there is no comprehensive 

connectivity map of the mouse IC. Therefore, in the first part of this thesis, I created a whole-

brain connectivity map of long range connections of the mouse IC. The IC was subdivided into 

three equally long parts (anterior, medial and posterior IC). Then, I performed cell-type specific 

monosynaptic rabies tracings to quantify afferent connections of excitatory and inhibitory IC 

neurons, while adeno-associated viral tracings allowed the detection of excitatory efferent axons. 

My analyses revealed that all parts of the insula are highly interconnected with multiple cortical 

and subcortical brain regions, which implies a complex integration of multi-sensory and 

emotional information in each insular subdivision. The anterior IC displays a distinctive 

connectivity pattern compared to the medial and posterior IC. While the connectivity of the mIC 

and pIC suggests a primary role in visceral and sensory integration, the aIC seems to play a central 

role in manipulating goal-directed motor behavior. These results provide an anatomical 

framework to guide the design of mechanistic investigations as well as working models of insular 

cortex function. 

In the second part of this thesis, I combined insights from optogenetic behavior experiments, fiber 

photometry-based calcium imaging and the above-mentioned anatomical data to reveal a role of 

the posterior insula in processing aversive sensory stimuli and bodily states. By performing 

projection-specific optogenetics, I functionally characterized an insula-to-central amygdala 

pathway and could show that it mediates anxiety-related behaviors, while an independent nucleus 

accumbens-projecting pathway regulates feeding upon changes in bodily state.  

In summary, the data presented in this thesis support a model in which the insular cortex detects 

aversive internal states and subsequently manipulates behavior, providing a mechanistic 

framework for IC function. These findings might aid in understanding how alterations in insula 

circuitry contribute to neuropsychiatric conditions such as obesity or anorexia, addiction and 

depression. 
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1 INTRODUCTION 

Affective as well as homeostatic states are strongly influencing ongoing behavior. These states 

arise from extended neural circuits through integration of internal and external stimuli1,2. In 

particular, aversive states such as pain and negative moods tune behavior towards survival 

programs3. The insular cortex (IC) is a major cortical convergence site for internal and external 

sensory information4–8. While rodent studies suggest an important role for the insula in processing 

taste and bodily signals, human imaging studies have linked the IC with emotion processing and 

regulation5,8–10. With this evidence, our laboratory hypothesized that the insula serves as an 

interface between bodily and emotional states. How this is mechanistically implemented is 

currently not known. In the following, I will briefly review the anatomy and function of the rodent 

insular cortex and introduce the main techniques that I used in this thesis. 

 

1.1 Anatomy of the Rodent Insular Cortex 
 

In animals that have a smooth-surfaced cortex, such as rats and mice, the insular cortex is located 

above the rhinal fissure on the lateral surface of the brain. The rodent insular cortex consists of 

several heterogeneous regions with distinct cytoarchitectural and connectional features11. In the 

following, I will introduce the cyto- and chemoarchitecture as well as the connectivity of the 

rodent insular cortex 
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1.1.1 Cyto- and Chemoarchitecture of the Insular Cortex 
 

The insula is comprised of (at least) three cytoarchitecturally distinct areas, according to the 

presence of granular layer 4 neurons. Based on this presence, the insula is separated into the 

granular (GI), dysgranular (DI) and agranular insula (AI). While the GI is organized in the 

classical six-layered prototypical cortical arrangement, the DI shows a progressive loss of the 

fourth layer.  

Where this loss is complete, the AI begins and is composed of only three soma carrying layers 

(2/3, 5 and 6)12. AI, DI and GI form strong interconnections along the dorso-ventral and rostro-

caudal axes13,14. Along the rostro-caudal axis, the insula has been further divided into the anterior 

insula (aIC), and the posterior insula (pIC). In rats, these are also sometimes referred to as rostral 

agranular insular cortex (RAIC) and caudal granular insular cortex (CGIC). The cytoarchitectural 

argument for a division into anterior and posterior part of the insular is less clear. The delineation 

of aIC and pIC are rather based on connectivity and functional responses.  

Chemoarchitectural features of the insular cortex include the presence of acetylcholinesterase in 

the agranular insula, strongly reduced myelination in dysgranular and agranular insula, absence 

of SMI-32 immunoreactivity in the entire insula and reduced number of parvalbumin-positive 

interneurons in the agranular insula15. Further, several neurotransmitter receptors are expressed, 

such as the D1- and D2 dopamine receptors16, ß-Adrenergic receptors17, cannabinoid CB1-

receptors18, serotonin receptors 5-HT1A
19, 5-HT2A

19, 5-HT2C
20, 5-HT3

21 and possibly 5-HT4,5,6,7
22, 

µ-, δ-, and κ-opioid receptors23 as well as nicotinic acetylcholine receptors24. 

 

1.1.2 Connectivity of the Mouse Insular Cortex 
 

The connectivity of the insular cortex has been characterized in rats and primates, but so far not 

as a comprehensive quantitative dataset. For the mouse, very few tracing studies exist25,26, 

however, the Allen Brain Mouse Connectivity Atlas27 provides several anterograde axonal AAV 

tracings from regions including IC. Yet, a brain-wide input map of the IC is completely lacking 

for the mouse. However, what studies have shown so far is that the IC receives information from 

external as well as internal senses via brainstem, thalamic and cortical inputs. These afferents are 

topographically organized leading to functional specializations, such as the ‘visceral insular 

cortex’, the ‘gustatory cortex’ (the primary taste cortex), or the insular auditory and 

somatosensory fields and potential many more28–31. Despite the specialization, it is important to 

note that these regions integrate cross-modal inputs as well32. Next to its sensory afferents, the 

limbic system reciprocally connects to the insular cortex; for example the LA and BLA13.  
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Further, the IC projects to BNST, the MD of the thalamus, the LH as well as to parahippocampal 

areas11.The IC is also heavily interconnected with other cortical regions11. Of interest in emotion-

regulation and decision-making is its reciprocal connectivity with prefrontal areas such as the 

OFC, mPFC and ACC. These regions are heavily implicated in executive-, cognitive- and 

emotional processing33. Further, the insular cortex, in particular the aIC has been shown to 

strongly project to the ventral striatum in primates34,35 and rats36 and this connection has been 

implicated in behavioral flexibility in reward contexts37,38. 

Taken together, the IC and its subdivisions display a heterogeneous and extensive connectivity 

with limbic- sensory-, memory- and executive systems, which places the insula in a unique 

position for integration of multi-sensory, emotional and cognitive information. There is evidence 

that within the IC distinct connectivity profiles exists, suggesting different functional roles of the 

aIC and pIC.  

 

1.2 Functions of the Insular Cortex 
 

Human fMRI studies and electrophysiological recordings in primates and rats have revealed that 

the insula is involved in a plethora of situations but it is unclear what its exact role is39. In the 

following, I will briefly introduce some key findings of the insular cortex stemming from both 

human and animal studies. 

 

1.2.1 Interoception 
 

Interoception – sensing the state of the body – has been correlated with activity in the insular 

cortex8,40. Anatomically, this is supported by inputs from nuclei of the thalamus which convey 

information about the heartbeat, blood pressure, blood oxygenation levels, bowel movements, 

nociceptive stimuli, hunger, disgust, nausea, tickle, itch and many more5–7,10,40. The posterior 

insula might be the first node in the brain, where all bodily information is integrated and 

monitored40. Subsequent processing towards more anterior parts of the insula is thought to further 

integrate the emotional state, goals and memories40. This positions the insula to detect salient 

stimuli regarding bodily integrity and homeostasis. Evidence supporting this, comes from 

experienced mindfulness meditators, which display an increased activation as well as an increased 

grey matter volume of the right anterior insula41,42. Another very interesting finding that 

corroborates the role of IC in interoception and self-awareness came from the group of Robin 

Carhart-Harris in 2016. They wanted to image human brains under the influence of the 
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hallucinogenic compound LSD (lysergic acid diethylamide). After administration of LSD (i.v., 

75 µg) the healthy volunteers were subjected to fMRI scans. Strikingly, the functional 

connectivity density of the insular cortex was highly correlated with self-reports of ego 

dissolution. This indicates a higher functional connectivity of the insular cortex with other cortical 

areas under the influence of LSD, possibly explaining out-of-body experiences or delusions to 

transform into an animal (lycanthropy)43. Another potent psychedelic substance 

Dimethyltryptamine (DMT), which is the main ingredient in the ancient shamanic Amazonian 

brew “Ayahuasca”, has strong anti-depressant and ego-dissolving effects. Interestingly, healthy 

and depressed subjects receiving Ayahausca and undergoing single photon emission tomography 

(SPECT) displayed a strong modulation of insular cortex activity44,45. Almost all of the other 

functions of IC that I will discuss below might eventually be related back, at least in part, to the 

interoceptive role of the insular cortex. 

 

1.2.2 Autonomous Functions 
 

In addition to sensing bodily aspects – i.e. interoception – the insular cortex can also affect 

autonomic functions directly, such as regulating the heartbeat, blood pressure or bowel 

movements46–50. It is unclear, via which pathways these effects could be mediated, but likely 

candidate projections include those to the BNST, CeA, LH or PBN. Studies in rats uncovered 

adjacent ‘pressor’ and ‘depressor’ sites within the pIC by electrical microstimulation in 

anesthetized animals51. Stimulation of these sites displayed opposing effects on the heart rate and 

blood pressure. This implies the existence of separated and antagonistic circuits very close to each 

other within the insula. This makes the insula an interesting structure in the etiology of 

psychosomatic disorders. 

 

1.2.3 Food Consumption and Gustation 
 

Multiple neuroimaging studies in humans and experiments in rodents revealed the contribution 

of the insula in gustation52,53, for visual food cues54,55, or olfactory food cues56, but also during 

craving for food57. Ultimately, eating is a multimodal experience composed of taste, smell and 

texture58. These sensory cues are thought to be combined within the anterior insula, as suggested 

by overlapping activation of parts of the anterior insula after independent stimulation with odor 

and taste cues59,60. In addition, the viscosity and texture of food is correlated with activity in the 
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aIC and mIC61,62. An important role of the assessment of the consumed food is how one’s body 

feels after having eaten. This relates to the interoceptive role of the insula, as described above40. 

Another supporting evidence that the IC is implicated in gustation and consummation of food is 

insular pathophysiology in eating disorders. A meta-analysis found a decreased mIC activity in 

overweight compared to lean subjects63. The authors hypothesize that a maladaptive 

interoception, causing a misinterpretation of appetite signals of the gut, could increase food intake 

in obese subjects. 

 

Conditioned Taste Aversion 

Conditioned taste aversion (CTA) is an acquired avoidance of a novel taste (= conditioned 

stimulus) if it has been previously paired with the sensation of visceral malaise or sickness             

(= unconditioned stimulus)64–66. In animal models, this can be reliably induced by pairing a novel 

taste with the administration of lithium chloride (LiCl)64. The mechanisms mediating conditioned 

taste aversion have been extensively studied in rats and mice and revealed, that lesions or 

pharmacological silencing encompassing the insular cortex prevent the acquisition, storage and 

expression of conditioned taste aversion to novel but also to familiar tastes67–70. Further studies 

showed the involvement of cholinergic and dopaminergic signaling in regulating insular plasticity 

during CTA71,72. Recently, Lavi et al. found that conditioned taste representations within the IC 

selectively shift to BLA-projecting IC neurons73. These results suggest the presence of valence-

specific neurons with a direct influence on the expression of taste aversion. Through learning, 

sensory stimuli are assigned to such valence-specific neurons, or in the case of innate preference 

for sucrose or avoidance of bitter taste, may be hard-wired. 

To summarize, the aIC and mIC seem to be multimodal integration hubs for the processing of 

food-related stimuli and maladaptive responses in these areas could underlie or promote obesity. 

Further, the insular cortex plays a pivotal role in the acquisition, storage and recall of conditioned 

taste aversion. 

 

1.2.4 Nociception 
 

Noxious somatosensory stimuli often activate the insular cortex, which has been suggested to play 

an important role in pain processing74–76. The pIC responds to the somatosensory aspects of pain, 

while the aIC has been shown to mediate its affective features77. Accumulating evidence 

implicates anatomical and functional alterations in the IC in the expression of chronic pain and 

with cognitive and affective disorders78. Interestingly, alterations in insular grey matter volume 
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due to chronic pain could be partially reversed after successful therapy of trigeminal neuralgia79. 

The role of the insula in pain is again closely intertwined with interoception, particularly, in the 

shaping of pain perception. Here, the aIC integrates multimodal information including 

nociception to give rise to the affective dimensions of pain.  

1.2.5 Fear and Anxiety 
 

Human imaging studies as well as animal studies have revealed a role for the insular cortex in 

representing positive and negative emotions, such as anger, sadness, fear and anxiety, disgust, 

happiness or joy, trust, surprise, as well as social emotions39,40,80. Emotional stimuli of various 

modalities, such as touch, vision or olfaction, elicit IC responses. Thus, a growing number of 

studies suggest an important role for the IC in fear and anxiety10,39,40,81. Human fMRI experiments 

detected a functional and structural connectivity of the IC with other limbic brain areas, in 

particular with the amygdala and the strength of this connectivity has been shown to correlate 

with the anxiety levels of healthy subjects81,82. In animal studies, electrophysiological recordings 

during fear-conditioning experiments revealed a population that responds to freezing and 

extinction within pIC83. Furthermore, irreversible lesion experiments as well as temporary 

pharmacological inhibition of the rat IC revealed a role of the IC in consolidation of learned 

fear84,85. Interestingly, the IC seems to be also involved in the learning of safety cues, which signal 

the absence of the unconditioned stimulus86,87. Therefore, both fear increasing as well as fear 

reducing circuits were found within the IC. 

1.2.6 Social Interaction 
 

Social animals need to be able to recognize and transmit social cues that facilitate and enable 

social interaction88. This is achieved by the social-decision-making network89, which is thought 

to include the insular cortex, as lesions of IC in humans and rodents results in deficits in emotion 

recognition and empathy90–93. This is further supported by changes in insular cortex activity and 

connectivity in autistic subjects94–96. Of particular interest in the context of social interaction is 

the oxytocin-releasing projection from the paraventricular nucleus of the hypothalamus to the 

agranular insula97. A recent study in rats has shown that oxytocin-release in the IC orchestrated 

approach or avoidance to stressed or non-stressed conspecifics98. A follow up study by the same 

lab identified the projection of the IC to the NAc to modulate social approach99. As social 

interaction seems to be based on recognizing one’s own bodily and emotional state and integrate 

it with those of a conspecific, the interoceptive function of insular cortex make it a prime 

candidate for modulating social interactions.  
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1.2.7 Addiction 
 

Addiction, also defined as “substance use disorder” in the DSM-5 (Diagnostic and Statistical 

Manual of Mental Disorders, 5th edition), is a mental disease that is defined by compulsive drug 

use and seeking despite negative consequences100. Furthermore, frequent relapse behavior is 

characteristic of addictive behavior100. Functional imaging studies in addicted human subjects 

have repeatedly and across several drugs of abuse detected correlations of insula activity upon 

drug consumption and drug seeking101. In addition, grey matter volume of the insular cortex is 

reduced in cocaine addicts102. In a very interesting analysis, Naqvi et al. report that stroke patients 

with lesions including the insular cortex, display an immediate and long lasting cessation of 

smoking in heavy smokers. These patients reported a lack of conscious bodily urge to smoke after 

the stroke. This was not the case in stroke patients where the insular cortex was not affected by 

the stroke103. Rodent studies have further supported the role of the insula in the formation of 

amphetamine-induced conditioned place preference, a model for drug seeking behavior4. Another 

study in rats has found that aversion-resistant intake of alcohol is sustained by glutamatergic 

projections from the insula and mPFC to the nucleus accumbens core104. Further, intra-venous 

self-administration of nicotine in rats was reduced upon infusion of a dopamine D1-receptor 

antagonist into the insular cortex, showing the importance of the dopamine system in the insular 

cortex for drug rewards105. 

These studies in rodents and humans suggest two modes of action by which the IC could influence 

addictive behavior. First, the acute urge to seek and consume a drug – i.e. craving, seems to be 

manifested via the IC. Second, aversion-resistant drug consumption might be caused through 

maladaptation of insular circuits that would otherwise terminate ongoing drug use. 

 

1.2.8 Conclusion 
 

As introduced above, the insular cortex has been implicated in a broad variety of functions, from 

taste over pain to addiction. Although at first many functions seem to be unrelated to each other 

or incoherent, a general finding shared across different species does emerge. The insula serves as 

a hub where various sensory, emotional and memory systems are integrated. Through its afferents, 

the insular cortex is in a perfect position to monitor the internal as well as external environment 

of an organism. Further, the insula adapts its predictions of future internal states through learning, 

as is evident by conditioned taste aversion. It therefore plays an important role in capturing the 

valence of internal or external stimuli, which might be maladapted, e.g. in drug or food addiction. 

These findings could explain why insula integrity is necessary for learning, emotion regulation, 
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and decision-making. In addition, evidence points to the fact that the insula is part of a salience 

detection network, which prioritizes the processing of acutely relevant stimuli. How exactly this 

is implemented on a mechanistic or cellular level is currently unknown. We also have little 

information about the function of specific output pathways or how such circuits might differ in 

their connectivity. 

 

1.3 Anatomical Tracing Techniques 

1.3.1 Monosynaptic Retrograde Rabies Tracing 
 

Non-viral tracing techniques, such as Cholera toxin subunit B (CTB), biocytin, biotinylated 

dextran amine (BDA), wheat germ agglutinin (WGA), fluorogold, retrobeads, and others, were 

invaluable in assessing the connectivity of the brain. However, these methods cannot account for 

cell-type specific differences of connectivity and they do not provide information about 

monosynaptic inputs.  

Retrograde viral tracing techniques based on neurotropic viruses, such as herpes-simplex virus 

(HSV), canine adenovirus type 2 (CAV2) and rabies and pseudo-rabies virus (RV, PRV), 

exploited the ability to traverse (multi-)synaptic pathways while being amplified at every step. 

These methods required at least bio-safety level 2 laboratories and for multi-synaptic tracings, the 

timing of termination of the tracings determined how many synapses were traversed. As these 

viruses hijack the endogenous transport machinery, there can be a marked difference of how many 

synapses were traversed, depending on the physical length of the axons.  

A major advance in rabies-based circuit tracing was the deletion of the glycoprotein “G” from the 

rabies genome, yielding RV∆G, which is restricted to a single trans-synaptic retrograde traverse 

(i.e. monosynaptic)106. In 2007, Wickersham et al. developed a cell-type specific monosynaptic 

retrograde rabies tracing technique by pseudotyping RV∆G with the envelope protein A (EnvA) 

of the avian leukosis virus. This restricted rabies infection to cells that expressed the avian 

receptor TVA107. By expressing the TVA receptor in a Cre-dependent manner, it became possible, 

to specifically trace direct inputs of genetically defined populations. 
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After retrogradely traversing from the starter neuron to the presynaptic partner, which must not 

express the G protein, a further trans-synaptic jump is not possible, thus only labeling direct 

monosynaptic input neurons. 

This novel and powerful strategy was quickly adapted in the systems neuroscience field and has 

been used to trace from single neurons108, from projection-defined neurons109, from newborn 

cells110, and most frequently from genetically defined cell types using Cre driver lines111–116. 

Although various approaches are conceivable, most frequently, a Cre-dependent AAV construct 

coding for the G protein and the TVA receptor is injected into a brain region of interest in a Cre-

driver mouse. After a period of 2-3 weeks allowing for sufficient expression of the gene products, 

a GFP-expressing EnvA-pseudotyped RABVΔG is infused in a second stereotaxic surgery into 

the same region in order to infect the TVA- and G- expressing neurons (see Figure 1). 

 

 

Figure 1. Schematic of cell-type specific monosynaptic rabies tracing. 1) A mixture of two Cre-
dependent AAV helper constructs is injected into the target region. After 2-3 weeks, a sufficient 
expression of TVA and G should be achieved. 2) Then, the genetically modified rabies virus, 
lacking the gene for the G protein and pseudotyped with the EnvA capsid is injected into the same 
area. Neurons that were infected with both, the two helper constructs and the rabies virus represent 
the “starter cells” (yellow). The brain-wide presynaptic partners (input neurons) to these starter 
neurons will be retrogradely infected by the rabies virus and express GFP. 
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1.3.2 Axonal Anterograde Viral Tracing 
 

In order to visualize brain-wide projections of neurons, neuroanatomists started using 

recombinant adeno-associated virus (AAV) expressing a fluorophore117. AAV vectors are based 

on non-pathogenic and defective human parvovirus and they cannot replicate without a helper 

virus. The major advantage of recombinant AAV (rAAV) is its very low toxicity and stable long-

term expression of gene products118. Aside from anatomical tracing studies, this makes the AAV 

system an attractive technique to deliver gene therapy118. 

The combination of the Cre-LoxP technology with rAAVs enables cell-type specific anterograde 

axonal tracings. To achieve this, the recombinant gene of interest, which is cloned into the AAV 

sequence, is flanked by two LoxP sites, rendering it dependent on the Cre-recombinase for 

efficient gene expression. In neurons that do not express Cre, very low levels of the gene product 

are observed. For anatomical studies, a fluorescent reporter protein such as the green fluorescent 

protein (GFP) are usually employed. GFP expression fills the entire neuron after a few weeks 

enabling the brain-wide visualization of its axons. This allows for a qualitative and quantitative 

measurement of innervation patterns of given cell-types. 

 

1.4 Optogenetics 
 

The development of optogenetics allowed neuronal manipulation in-vitro and in-vivo with a high-

temporal and cellular precision119. The principal idea of optogenetics is to exploit the light-

sensitivity of microbial opsins, to control ion-flow in neurons. Opsins are seven-transmembrane 

proteins, which exist in many variants, differing in their photocurrents, ion-specificity, kinetics 

and expression profiles. A major breakthrough was achieved in 2005 in Karl Deisseroth’s lab at 

Stanford, which performed experiments expressing the algal protein Channelrhodospin-2 (ChR2) 

in cultured neurons120. They could reliably control neuronal firing in a millisecond-timescale by 

applying blue light (473 nm). In the last 14 years many new genetically engineered and optimized 

opsins became available, leading to a large repertoire of specialized tools to either activate or 

inhibit neuronal spiking or gene expression, on varying time-scales.  

The in-vivo use of optogenetics led to an unprecedented advance in understanding the function of 

neural circuits. By expressing activating or inhibiting opsins in genetically defined neurons and 

implanting optic fibers over these neurons to deliver light, we gained mechanistic understandings 

of circuits and their implications in behavior. An extensive introduction of current advances in 

optogenetics is out of scope of this thesis and I refer to the many excellent reviews and protocols 
119,121,122. 
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However, very relevant to this thesis is the projection-specific manipulation of axon terminals in-

vivo. This strategy specifically manipulates long-range projections of opsin-expressing neurons 

in a target region, by placing the optic fiber that delivers the light over that target region121. This 

enables the functional characterization of a specific pathway, without affecting the cell bodies of 

the opsin expressing neurons.  

Nevertheless, there are caveats when applying optogenetics to study neural circuits in-vivo. 

Commonly, fixed stimulation frequencies, ranging from 1-60 Hz, have been used to stimulate 

large populations of neurons for one to many hundreds of seconds. Obviously, this pattern of 

activation does not resemble physiological firing of neurons and is highly artificial. Especially 

when assessing the behavioural outcome of these stimulations, one needs to consider that the 

observed behaviors might not occur in such a fashion in nature123. However, compared to 

chemogenetic manipulation124 or electrical microstimulation, optogenetics is still the most 

temporally precise tool to study genetically-defined neural circuits. 

 

1.5 Fiber Photometry 
 

Measuring neural responses via calcium imaging using genetically encoded calcium indicators, 

like the GCamP125 family, played an important role in the functional characterization of neural 

circuits in neuroscience. Two-photon imaging126,127 enabled the recording of many hundreds of 

single neurons in the layers 2/3 of cortex, and with recent advances in multi-photon imaging, 

neurons can be recorded up to >1 mm deep into cortex128. However, these costly and delicate 

microscopes usually require the mice to be head-fixed or anesthetized. Single-photon calcium 

imaging of deep brain structures during freely moving behavior became possible with head-

mounted miniature endomicroscopes129, however, the weight (>2g) of such a microscope can be 

as much as 10-20 % of the bodyweight of a mouse. Further, to image deeper areas, the use of 

graded-index (GRIN) lenses is necessary, but the large diameter of these lenses (>500 µm) causes 

substantial damage to the brain. New two-photon miniature microscopes are being developed and 

show promising results130, yet, the issue with the GRIN lenses and weight is not solved.  

Alternatively, fiber photometry provides a comparably easy solution to record the bulk neuronal 

activity of genetically-defined populations131,132. It makes use of the same multimode optical 

fibers that are also used for optogenetics and are implanted above the GCamP-expressing neurons. 

Through the same fiber, excitation light is delivered to the neurons and the resulting fluorescent 

signal of the calcium indicator collected. Thus, the mobility of the mouse is only mildly affected 

and more complex behaviors, such as social interactions, can be studied. New multi-channel fiber 

photometry systems have emerged that allow simultaneous recordings of two133 or more sites134.  
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A disadvantage of fiber photometry is the loss of single neuron resolution, compared to 

microendoscopy. If the signal is recorded from a heterogeneous population, like in cortex, 

responses from sparse or rarely active populations might be underrepresented and those that fire 

in synchronicity or very frequently might be overrepresented. This issue can be tackled by further 

refining the cell-type specificity via projection targets or intersectional genetics. Nevertheless, the 

bulk activity can be a first step in characterizing the dynamics of a brain region.  

 

1.6 Rodent Behavioral Testing 
 

Behavior has been defined by Tinbergen as “the total movements made by the intact animal”135. 

In order to understand how the brain generates a particular behavior, we need to identify the 

putative neural circuits that ultimately trigger the movement123. In the case of emotion-related 

behaviors, exposing rodents to specific environments can trigger behaviors that resembles anxiety 

or fear in humans. Manipulating the activity or integrity of brain areas during such behavior has 

helped us identify and partially understand the neural circuits involved in motivated behavior. It 

is important to keep in mind that almost all commonly used behavioral tests use a reductionist 

approach to make a very specific set of behaviors amenable to neuroscientific analysis. A single 

behavioral test cannot and does not try to address all multifaceted and highly complex naturalistic 

behaviors at once. Instead, behavioral tests can be designed in such a way that they model very 

specific domains of behavior that can help us to eventually tackle the underlying causes for 

maladaptive disorders, such as anxiety, depression, or addiction. In the following, I will briefly 

introduce the behavioral tasks that will be used in this thesis. 

 

Anxiety-related Behavioral Tests 

Open Field Test 

The open field test (OF) has been used in rodent behavioral research since 1934 an is one of the 

most frequently used instruments in animal psychology136. It is so popular, because it is extremely 

simple to perform, does not require any training of the animal and there is a consensus on the 

interpretation of the results. Rodents are placed into a round or rectangular apparatus that is 

enclosed with walls and allowed to explore the novel environment. Originally, Hall developed 

the OF in 1934 to count the number of fecal boli of rats as an index of timidity137. Over time, 

many more parameters have been added to the analysis of the OF. Today, most frequently 

assessed parameters are locomotor activity and the ratio between “time spent in the center” vs. 

“time spent in the periphery”. While stimulants such as amphetamine will strongly increase the 
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distance travelled in a OF, sedatives reduce locomotor activity136,138. As rodents show an innate 

avoidance of brightly lit and open spaces, they will prefer to move along walls (thigmotaxis) and 

spend less time in the exposed center zone. Interestingly, the anxiolytic benzodiazepine diazepam 

increases the time spent in the center zone without affecting the total distance travelled139. Since 

then, this constellation of results is considered to be indicative of an anxiolytic effect. Other 

measures related to the anxiety state of an animal include the stretched-attend position and 

rearings136. Recent advances in quantification and characterization of behaviors by machine 

learning techniques enable sub-second classification of behaviors and provide novel ways of 

analyzing OF data140. 

  

Elevated-Plus Maze 

The elevated plus maze (EPM) was first introduced in 1984 and relies on rodents’ preference for 

darker and enclosed spaces and innate avoidance of heights and open spaces141. The EPM assesses 

the internal conflict of a rodent to avoid predation on one hand and to explore its surroundings for 

food and mating partners on the other hand. While the closed arms provide protection, the open 

arms expose the rodent to height and an open space, but also a potential – but ultimately not 

presented –  reward. To perform the test, the animals are placed in the center of the maze facing 

a closed arm and their position in the maze is tracked for 5-10 min. The main readout for this 

behavioral task is the ratio of the time spent on the open arms vs. the closed arms, but parameters 

such as distance travelled, number of entries, number of stretched-attend postures, freezing or 

fecal boli might be of value142.  

In general, mice will spend much more time in the closed arms and depending on the conditions 

(mouse strain, age, sex, handling, lighting, satiety, pre-exposure to novel environment, circadian 

rhythm, housing conditions, to name a few) between 5 and 30 % on the open arms.  

What helped the EPM to gain traction in the preclinical research community was that compounds 

that display anxiolytic effects in humans, such as benzodiazepines, lead to an increase of time 

spent on the open arms, while leaving total distance travelled unaffected. In contrast, compounds 

that increase anxiety in humans also decreased the time spent on the open arms in rodents143,144. 

This grants the EPM a high construct validity. 

Nevertheless, criticism as a translation model of anxiety arose, as the EPM is only predictive for 

anxiolytic drugs acting on the GABAergic system, while newer compounds, e.g. 5-HT1A 

antagonists or selective serotonin reuptake inhibitors (SSRIs), which have clinical evidence of 

anxiolysis in humans, do not influence the time spent on the open arms145. Yet, the EPM and its 

variants, such as the elevated zero maze (EZM) remain the most popular anxiety-related tests to 

date.  
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Reward-related Behavioral Tests 

Real-Time Place Preference or Avoidance 

The Real-Time Place Preference (RTPP) or Real-Time Place Avoidance (RTPA) test  is a 

modification of the classical conditioned place preference test (CPP)146, but adapted to 

optogenetic manipulation. First, I will briefly introduce the CPP, which is an established test in 

neuropharmacological research to assess the motivational effects of psychoactive compounds. In 

essence, one compartment of a two-chambered behavioral apparatus is (repeatedly) paired with 

the administration of a compound of interest. Should the substance possess rewarding or habit-

forming properties, animals will spend more time in the chamber that has been paired with the 

administration of the substance, as compared to the chamber where this pairing never occurred. 

In contrast, should the substance elicit aversive properties, the animals will avoid the paired 

chamber. 

While the CPP assesses the memory of an outcome, the RTPP/RTPA enables the direct 

interrogation of the acute valence of an optogenetic stimulation. Analogous to the CPP, one of 

the two chambers is designated as the paired chamber, where optogenetic manipulation will occur. 

This is achieved by tracking the position of the animal in real-time and thereby constructing a 

closed-loop circuit which controls the laser emission. In case of a rewarding or pleasurable effect 

of optogenetic manipulation, the animals exhibit a real-time place preference. In contrast, aversive 

effects mediated by optogenetic manipulation should lead to reduced time spent in the stimulated 

chamber – a real-time place aversion. The RTPP has been a valuable tool in assessing positive or 

negative behavioral effects of optogenetic manipulations9,147–149.  

 

Sucrose Preference Test 

The sensitivity to a hedonic stimulus, for example to a sucrose solution, can be tested with the 

sucrose preference test. The test measures, how much rodents prefer a sucrose solution over water. 

Under normal circumstances, most strains of rats and mice strongly prefer the sweet sucrose 

solution; however, when the animals become anhedonic, for example by exposing them to chronic 

stress or other models of depression, they reduce that preference. Therefore, the sucrose 

preference test is a very simple but yet powerful test to approximate the sensitivity to rewards. A 

major advantage of this assay is its technical simplicity. On the other hand, low reproducibility 

and high variability can be disadvantages. Interestingly, a study showed that the common practice 

of handling mice by their tails can decrease sucrose consumption and licking bouts150. Therefore 

careful attention should be paid to adhering to a strict protocol when performing the sucrose 

test151. Important confounders are the duration of the test, the protocol for food and water 

deprivation, and the sucrose concentration of the solution. 
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As anhedonia presents a major symptom in depressed human patients but also in patients with 

schizophrenia, the sucrose preference test has been very frequently used in preclinical 

translational research151. Interestingly, administration of antidepressants, such as the SSRIs or 

tricyclic antidepressants, can restore the sucrose preference in rodent models of depression.  

 

Social Interaction Test 

Social motivation to interact with conspecifics is a powerful drive of humans and deficits in social 

interactions, as seen in autism spectrum disorder, can be very detrimental152. Mice are also a social 

species and exhibit many diverse social behaviors, such as reciprocal social interactions, social 

play, parenting, mating or aggressive behaviors153. Researchers developed several behavioral 

assays to assess certain aspects of social behavior in mice153. One of the most commonly used 

tests to measure social reward processing is the three-chamber social interaction test154. Here, the 

animal can freely explore a maze in which one compartment of the chamber harbors another 

conspecific and the other compartment a non-social object. Under normal conditions, mice spend 

more time with the social stimulus than with a novel object. However, chronically stressed – i.e 

“depressed” – animals reduce their social interaction time153. Therefore, the social interaction test 

is another measure of the hedonic state of an animal, but not reliant on taste and thus an interesting 

complement to the sucrose preference test. 
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1.7 Aims of the Study 
 

While anatomical investigations in diverse species highlight that the insular cortex is one of the 

most complex anatomical hubs in the mammalian brain50,155–158, to date there is no comprehensive 

connectivity map of the mouse insular cortex.  

Therefore, the first goal of this thesis was to map the input and output connectivity of IC 

excitatory as well as IC inhibitory neurons, by performing monosynaptic retrograde rabies 

tracings and anterograde axonal tracings of the mouse IC. I divided the IC into three equally large 

subdivisions, which I termed anterior, medial, and posterior insular cortex (aIC, mIC, and pIC, 

respectively). The resulting data set would serve as an anatomical framework to guide functional 

studies. 

As the pIC has been hypothesized to be the entry point into the IC, the second goal was to 

functionally analyze the role of the pIC in emotion-related behavioral tasks. Previous work from 

the Zuker lab9,30,148 characterized the pIC in the processing of bitter taste, but evidence suggests 

that the pIC plays an important role beyond taste recognition4,86,159,160. To clarify and further 

extend the idea that the pIC is involved in emotion-related processes, I employed optogenetic 

manipulations of the pIC during anxiety-related and consumption-related behavioral tasks. 

Based on the anatomical findings I would obtain from the first goal, as a third goal, I wanted to 

then functionally characterize segregated IC populations that would project to interesting targets 

of the limbic system, such as the amygdala, mPFC, ventral striatum or ventral hippocampus and 

try to disentangle their specific roles. 
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2 RESULTS 

2.1 Whole-Brain Connectivity Map of the Mouse Insular 
Cortex 

2.1.1 Starter Cell Characterization for RV and AAV Tracings 
 

I first checked the quality and distribution of the starter cell populations for both rabies virus (RV) 

tracings and adeno-associated viral (AAV) tracings with a CellProfiler pipeline that was created 

by myself with the help of  T. Gaitanos, a further lab member (Figure 2a, b and Methods). For 

the RV tracings, I scored neurons as starter cells when they were double positive for eGFP (i.e. 

RV+) and mCherry (i.e TVA+). For AAV tracings, starter neurons were detected as eYFP-

positive cell bodies. This provided me with the total number and location of all starter cells, which 

are depicted in Figure 2c. The starter cell populations for the three IC subdivisions were separated 

and mostly non-overlapping for both AAV and RV tracings. In a few cases, a small amount of 

starter cells were found outside the IC (e.g. in Pir, S1 and S2, or M1). A comprehensive table 

containing information for all animals used for the anatomy study can be found in Table 1 

(Methods). 
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Figure 2. Characterization of starter neurons for RV or AAV tracings. a) Starter cell identification pipeline for 
Rabies tracings. 1. High resolution image of a representative section at the injection site in the IC. Starter cells 
are double-labelled with TVA-mCherry and RV-GFP, and appear yellow. Scale bars 200 µm (main image), 
50 µm (inset). Number of starter cells was identified in an automated fashion using Cell Profiler. First RV+ 
cells were identified (image 2, yellow cell outlines) from the GFP image, then RV+ cells that also contain 
mCherry-TVA were identified from the mCherry signal (image 3, red rings within yellow RV+ cell outlines). 
Double labelled cells are counted as starter cells. b) Starter cell identification pipeline for AAV tracings. 1. 
Representative epifluorescent image of YFP-labelled AAV starter cells. Scale bars 200 µm (main image), 50 
µm (inset). 2. YFP-positive cells were identified in an automated manner using Cell Profiler. c) Schematic 
illustration of the lateral view of the IC including distances from Bregma (top panel) and heatmap showing 
average starter cell distribution for each tracing strategy at each specific IC target (bottom panels). The three 
IC target subdivisions were mostly non-overlapping, and only a minimal percentage of cells were detected in 
the Motor and Sensory Cortex (M/S), or Piriform Cortex (Pir) neighboring the IC. n = 3 mice per injection 
site/tracing strategy. Heatmap intensity scale is the same for all three IC target subdivisions. Regions absent at 
specific Bregma levels are indicated by dark gray squares 
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2.1.2 Whole-Brain Connectivity Map of IC   
 

To obtain an overview of the macro-scale IC connectivity, I created a brain-wide input and output 

connectivity map of excitatory and inhibitory neurons of the aIC, mIC and pIC. I segmented the 

data into 17 major brain regions that connect to the IC (Figure 3). As there was an order of 

magnitude difference between cortical and subcortical regions, I separated the data into these two 

categories for easier side-by-side comparison (Figure 3). 

 

 

Figure 3. Whole-brain input and output map of the mouse insular cortex. Comparison of inputs 
to excitatory and inhibitory IC neurons (left) and outputs of excitatory neurons of the IC (right) 
of all three IC subdivisions (aIC, red; mIC, green; pIC, blue) across the 17 major brain regions 
that displayed connectivity. Region values are given as percentage of total cells (RV) or of total 
pixels (AAV). Data is shown as average ± SEM. n = 3 mice per condition. Top panel shows 
cortical connectivity, bottom panel shows subcortical connectivity.  
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There were no substantial differences between the inputs to excitatory and inhibitory neurons, 

irrespective of the IC subdivision from which I traced. There was also no region, which solely 

innervated one of the three IC subdivisions. Yet, there were quantitative differences depending 

on region and IC subdivision. For example, there were around two times more inputs from the 

sensory cortex to the pIC (41 ± 11% of total excitatory input connectivity) in comparison to the 

other IC subdivisions (20 ± 5% and 23 ± 7% for mIC and aIC, respectively). In contrast, the motor 

cortex provided the majority of inputs to the aIC. In subcortical regions, the amygdala and 

thalamus provided most inputs to the IC.  

While there was a strong bi-directional connectivity with other cortical regions, some subcortical 

regions showed a strong directional bias, favoring either inputs or outputs. For example the 

striatum, which did not project to the IC, but was heavily innervated by it. In particular, the aIC 

provided the strongest projection to the striatum (32 ± 6%, as compared to 9 ± 1% and 11 ± 2% 

for the mIC and pIC, respectively). 

I also analyzed the data at a more detailed level, analyzing 75 brain areas separately. The resulting 

comprehensive data describe percent of total input to excitatory and inhibitory neurons, as well 

as outputs from excitatory neurons of the aIC, mIC and pIC. The tables containing these data can 

be found in the Appendix (see Appendix 1, 2, 3). 

2.1.3 Pair-wise Correlations of Rabies and AAV tracings 
 

Throughout my analysis, for both inputs and outputs, I noticed differences between the aIC, mIC 

and pIC. To test whether my observations could be confirmed by an unbiased statistical analysis, 

I correlated all input tracings (including inhibitory and excitatory mouse lines) to each other, as 

well as correlating all output tracings to each other. To do this, I calculated the pairwise correlation 

coefficients from the data of the 17 major brain regions (Figure 4a,b), but also at the highest 

resolution with all 75 regions of interest that have been used and applied a hierarchical clustering 

method (Figure 4c,d).  

Comparing the data at the level of 17 major brain regions was chosen to detect a global and 

striking difference between major brain systems. This analysis showed that overall, the input-

input comparisons displayed rather high correlation coefficients (Figure 4a, average correlation 

coefficients of 0.7 ± 0.16), indicating that across aIC, mIC and pIC for both excitatory and 

inhibitory neurons, inputs were scaling very similarly. The hierarchical clustering almost 

perfectly separated tracings from aIC (red labels and red dendrogram) of those from mIC or pIC, 

which were intermingled. The mIC and pIC cluster was further divided into two sub-clusters, 

however, this was neither due to injection site nor due to the genotype.  
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Surprisingly, when taking every ROI into account (Figure 4c, 75 brain regions) and performing 

the same analysis, the average of all correlations of the rabies tracings did not change (0.7 ± 0.17). 

This suggests that the main differences between the tracings are already evident at a higher level 

of the 17 major brain systems. Again, the hierarchical clustering grouped all except one tracing 

into the aIC cluster, while intermingling mIC and pIC tracings in the other cluster. 

 

 

Figure 4. Hierarchical clustering separates aIC from mIC and pIC for inputs as well as outputs. 
This is the case when correlating averaged data of 17 major brain regions (a, b, higher hierarchy) 
and when correlating the lowest level of all 75 brain regions (c, d). Matrices of hierarchically 
clustered pair-wise correlation coefficients (Pearson’s) of animals inputs vs. inputs a), c) or 
outputs vs outputs b), d). The pair-wise correlations were performed on the data organized into 
17 major brain regions (see Figure 3), or on all 75 regions (see Appendices 1-3). Far left gradient 
bar (green hues) indicates the center of the starter cells, ranked relative to every mouse in the 
dataset. Note for both input and output correlations, a clear cluster forms from the aIC-targeted 



Chapter 2: Results 

   22 

animals (top left boxed sections and red-colored dendrograms), whereas the mIC- and pIC-
targeted animals intermingle in a second cluster (larger boxed areas). Interestingly, the clustering 
algorithm did not separate excitatory (CamKIIα) from inhibitory (Gad2) rabies tracings.   

 

Analyzing the pairwise correlations for the AAV tracings at the 17 major brain region level, 

yielded an average correlation coefficient of 0.45 ± 0.28 (Figure 4b). This indicated that the 

outputs were still positively correlated with each other, but less so compared to the inputs vs. 

input correlations. Again, all three aIC AAV tracings were grouped into the same cluster, while 

AAV tracings from mIC and pIC were grouped together, except one outlier (mIC). 

Repeating the analysis including all 75 regions yielded a very similar average correlation 

coefficient of 0.46 ± 0.27. Again, this implies that most of variance is already captured with the 

17 major brain regions.  

To summarize, for both inputs and outputs, after applying hierarchical clustering, two distinct 

clusters formed, dividing the aIC animals from the intermixed mIC- and pIC mice. Indeed, for 

both input vs. input correlations as well as output vs. output correlations, the mIC and pIC tracings 

were interleaved, indicating a high degree of similarity between the medial and posterior regions 

of the IC. Neither the anterior-posterior coordinate of the starter cell population (left columns, 

green gradient), nor the cell-type from which I traced, could explain the sub-cluster within mIC 

and pIC targeted animals.  

The striking difference of input- and output-patterns of aIC connectivity imply a functional 

difference as compared to mIC and pIC. In particular, for the efferents, a major difference arises 

from the strong projection to the striatum, and to a lesser extent, to the motor cortex (Figure 3). 

Overall, these findings suggest that the aIC might serve as a general output hub of IC. 
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2.1.4 IC – Amygdala Connectivity  
 

The IC and amygdala are heavily interconnected through direct but also indirect pathways, some 

of which are reciprocal13,161–163. Both regions are heavily implicated in emotional processing and 

I therefore focus on the IC-Amygdala connectivity in this section. 

As expected, only cortex-like sub regions of the amygdala, such as the BLA or APir provided 

inputs to the IC subdivisions, whereas they were completely absent from striatum-like nuclei 

(CeA and MeA) (Figure 5a, Figure 6a). Interestingly, afferents from APir represented the only 

case where meaningful differences between tracings from excitatory and inhibitory neurons were 

detected.  

 

While inhibitory neurons of the aIC received very few inputs from the APir, excitatory neurons 

received considerably more (0.07% vs 1.50 %). In addition, I observed a pIC-to-aIC gradient 

regarding the APir inputs to the inhibitory neurons, with high input to pIC (>3% connectivity in 

the pIC) and very low to aIC.  

Interestingly, only small variations were detected when comparing inputs from the amygdala to 

excitatory neurons between aIC, mIC and pIC, with the mIC receiving slightly more innervation. 

This finding was further supported by the analysis of input density, which revealed a broader 

rostro-caudal spread and higher density of mIC-projecting aBLA, pBLA and APir neurons 

(Figure 6b).  

Regarding the outputs from the IC, all amygdalar regions were innervated except the MeA 

(Figure 6a). I found two opposing amygdala innervation gradients along the anterior-posterior 

axis of the IC. For instance, pIC strongly projected to the CeA, APir and pBLA, which confirms 

Figure 5. IC-amygdala connectivity. a) Coronal sections depicting the amygdala with its 
subregions. Distances are provided as anterior-posterior positions relative to Bregma. b) 
Representative images from excitatory inputs (top row, eGFP-expressing nerons) and outputs 
(bottom row, eYFP-positive neurons). Different Bregma levels are shown for each IC target site, 
as indicated on the images (-0.9 mm, -1.2 mm, -2.0mm). Scale bar = 200 µm. 
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retrograde CTB studies performed in rats and mice, respectively164,165. In the second part of this 

thesis, I functionally analyzed the pIC→CeA pathway using optogenetics and could reveal an 

important role in anxiety-related behavior (see Chapter 2.3). On the other hand, the aIC mainly 

projected to the aBLA. Recently, this aIC-to-aBLA projection has been shown to elicit appetitive 

responses9. Further, the aIC did not innervate more posterior basolateral regions (pBLA), which 

can be seen in the innervation density plot in (Figure 6b). In addition, the aIC did not project to 

any other amygdaloid nucleus except from a sparse projection to the EA. 

To summarize, there is a clear difference between the IC subdivisions when comparing outputs 

to the amygdala. Interestingly, the inputs to all subdivisions were quantitatively very similar. 

 

 

Figure 6. Quantification of Insula-Amygdala connectivity. a) Comparison of excitatory and 
inhibitory inputs detected in the amygdala (left) and excitatory outputs from the IC to the 
amygdala (right) in percent of total in- or output, respectively (aIC, red; mIC, green; pIC, blue). 
Data is shown as average ± SEM. n = 3 mice per condition. b) Input cell density (top row) and 
percent output density (bottom row) plots along the anterior-posterior axis covering the entire 
amygdala. We selected aBLA, pBLA, CeA and APir to provide the areas with most differences 
between the IC subdivisions. n = 3 mice per condition. Data shown as average ± SEM.   
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2.1.5 IC – Striatum Connectivity 
 

In higher mammals, cortico-striatal projections have been shown to be topographically 

organized166,167 and play a role in goal-oriented behavior and initiation of movements168. As I 

wanted to investigate the regulation of motivated behavior by the IC, the connectivity to the 

ventral striatum was of particular interest to me. As expected, there were no neurons projecting 

from striatum to cortex (Figure 3), and I therefore solely describe IC-to-striatum outputs in the 

following.  

In accordance with a recent study169, ventro-lateral parts of the striatum were more heavily 

targeted by IC projections than dorsal parts (Figure 7b). Notably, the vast majority of projections 

to the striatum arose from the aIC, which were high in density and spanning the ventro-lateral 

CPu along its entire rostro-caudal extent. Despite their low relative percentage of total outputs, 

the IPAC as well as the NAcc were densely innervated by aIC (Figure 7d).  

The mIC and pIC also innervated the CPu, but much weaker than the aIC (ca. 5-fold lower). Yet, 

both mIC and pIC densely projected to the IPAC (to around 60% density). The NAcc was also 

innervated by the pIC, although much weaker than from mIC or aIC. In the second part of this 

thesis, I have functionally analyzed the pIC→NAcc projection using optogenetics (see Chapter 

2.3) and could show that in spite of the relatively weak innervation, as compared to the mIC or 

aIC projection, consummatory behaviors could be potently interrupted.  

Overall, comparing mIC and pIC to each other, they displayed a very similar connectivity pattern 

to the striatum with 9% and 11% of total output, respectively. Remarkably, the aIC projection to 

the striatum represents the strongest output out of all regions innervated by aIC (31.8%).  

To summarize, there is a noticeable difference in the projections to the striatum along the rostro-

caudal axis of the IC, with the aIC being the most strongly connected part of IC.  
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Figure 7. IC-striatum connectivity. a) Coronal sections depicting the striatum with its subregions. 
b) Representative images from excitatory outputs (eYFP-positive neurons). Note the strong 
innervation of CPu, NAcc and NAcSh by the aIC. Different Bregma levels are shown for each 
aIC, mIC and pIC, as indicated on the images. Scale bar = 500 µm. c) Comparison of excitatory 
outputs from the three IC subdivisions to the striatum in percent of total output (aIC, red; mIC, 
green; pIC, blue). Values are given as percentage of total pixels. Data shown as average ± SEM, 
n = 3 mice per condition. d) Plots depict the density of IC innervation along the anterior-posterior 
axis of the striatum. n = 3 mice per condition, data shown as average ± SEM.   
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2.2 Functional Characterization of Posterior Insular Cortex 
 

Having mapped the connectivity of the mouse insular cortex, I next wanted to investigate its 

implications in behavior. As has been suggested previously, the flow of information within the 

IC starts at the pIC and is progressively transmitted to the aIC40,77. Craig suggested that sensory 

information about the body is first mapped in pIC and then subsequently remapped and integrated 

with emotional information in mIC and aIC77,170. My rabies tracings in part support this view, as 

the pIC receives the majority of its inputs from sensory cortex (S1, S2, Pir, Au2), whereas the aIC 

connectivity is biasing motor related areas. Thus, I chose to functionally investigate the pIC - the 

potential primary entry point into the insula.  

 

2.2.1 Optogenetic Stimulation of IC Induces a Mixture of Aversive 
Behaviors 
 

To characterize the functional implications of the pIC on behavior, I used optogenetics to first 

broadly stimulate its activity. I infected excitatory pyramidal neurons of the pIC by bilaterally 

injecting 150 nl of AAV coding for ChR2 under the CamKIIα promotor (AAV2/5-CaMKIIa-

hChR2(H134R)-EYFP) and implanted optic fibers 500 µm above the injection sites (Figure 8a). 

As my control condition, I used mice carrying bilateral optic fiber implants and that were injected 

with the same viral vector as for ChR2-mice but expressing only the fluorophore.  

I titrated the stimulation parameters and found that 20 Hz stimulation often led to direct and mixed 

behavioral effects, which became more frequent upon consecutive stimulations (Figure 8b,c). A 

typical response pattern began with an interruption of ongoing locomotion, which quickly became 

freezing. Further stimulation elicited backward escape movements, movements of the jaw or 

salivation. This would build up with additional stimulations to eventually display very severe 

behavioral effects, such as jumping, vocalizing, lying on the side in a crouching position. In one 

case, an animal even died shortly after stimulation. 



Chapter 2: Results 

   28 

 

Figure 8. Bilateral optogenetic stimulation of pIC elicits various stimulation-induced behaviors. 
a) Optogenetic virus injections and optic fiber placements above the pIC. AP, anterior-posterior 
distance from Bregma. GI, granular insular cortex; DI, dysgranular insular cortex; AIP, posterior 
agranular insular cortex. b) Photostimulation triggered defensive behaviors in ChR2-expressing 
mice. Rows are reactions of representative individual mice to successive stimulations. 
Experiments were terminated after 5 minutes or when reaching severely aversive responses 
(animals 2-6). c) Quantification of light-evoked behavioral responses upon repeated 20 Hz 
stimulations (n = 15 mice / group derived from two independent experiments with similar results, 
two-way RM ANOVA, group (opsin) effect, F (1, 28) = 857.6, p < 0.0001; behavior effect, F (6, 
168) = 22.63, p < 0.0001, group x behavior interaction, F (6, 168) = 22.69, p < 0.0001; Bonferroni 
post hoc analysis, grooming *p = 0.0224, jaw movements, stopping, escape and freezing ****p 
< 0.0001, salivation (p = 0.8581) and paws-to-mouth (p = 0.5988) were not significantly altered). 
d) Example LFP trace from one ChR2-expressing animal during unilateral photostimulation-
induced behaviors. Laser activations (473 nm, 1 s, 20 Hz, 5 ms pulse width, minimum of 4 s ISI) 
are indicated above the trace (blue) and observed behaviors are shown in color code below. Note 
the high amplitude LFP signal towards the end of the trace. Example LFP traces from different 
photostimulation-induced behaviors. Data from Panel d) was created and analyzed by Alexandra 
Klein. Panels a)-d) are adapted from my publication171 as permitted by the author reuse rights of 
Nature Springer.  

 

Especially the last stages of this stereotyped sequence resembled seizure-like activity. Indeed, 

simultaneous local field potential (LFP) recordings during optogenetic stimulations, which were 

performed by my colleague Alexandra Klein, detected seizure-like LFP signatures during the 

jumping and crouching behaviors (Figure 8d). 
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To be able to characterize pIC function in behavioral tests whose readout is solely based on the 

analysis of locomotion, for instance the open field test (OF), the elevated-plus maze (EPM) or a 

real-time place aversion test (RTPA), I needed to titrate the optogenetic stimulation in such a way, 

that it did not directly affect locomotion. After screening a pilot cohort from a range of frequencies 

and inter-stimulus-intervals, I decided to further use a 1 s ON, 4 s OFF stimulation pattern with a 

stimulation frequency of 10 Hz with 5 ms pulse width (473 nm, 3-5 mW at the tip of the optic 

fiber). Via simultaneous LFP recordings, Alexandra Klein confirmed, that this protocol of light 

stimulation did not induce seizure-like LFPs (data not shown).  

 

Figure 9: Real-time place preference test revealed that bilateral optogenetic pIC-activation is 
aversive. a) Left: schematic of the real-time place aversion assay (RTPA) and representative 
locomotor traces of eYFP and ChR2-expressing mice on the laser day. Right: Light activation of 
pIC neurons resulted in place aversion in ChR2 mice (n = 8 mice for ChR2 and n = 10 mice for 
eYFP, two-way RM ANOVA, group (opsin) F (1,16) = 8.598, p=0.0098 and group x time 
interaction F (2,32) = 4.082, p = 0.0264; Bonferroni post hoc analysis, ***p = 0.0008 for ChR2 
compared to eYFP; #p=0.0463 ChR2 laser off (day 1) versus laser on (day 2). b) Inhibition of the 
pIC did not affect real-time place preference. Time spent in the laser chamber on the day of laser 
stimulation was not significantly different between eYFP- and NpHR- expressing animals (n = 8 
mice / group, two-tailed unpaired t test, t = 0.584, df = 14, p = 0.569). c) Analysis of additional 
locomotion parameters of the RTPA assay (n = 8 ChR2, n = 10 eYFP mice). Left: stimulation of 
pIC increased velocity in the stimulated chamber (two-way RM ANOVA, F (1, 16) = 5.225, p = 
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0.0362, Bonferroni post-hoc, **p=0.0099 eYFP vs. ChR2 on laser ‘on’ day), but not in the 
unstimulated chamber (two-way RM ANOVA, F (1, 16) = 0.8818, p = 0.3617). Middle: 
Stimulation does not affect the number of entries into the stimulated chamber (two-way RM 
ANOVA, F (1, 16) = 2.124, p = 0.1644). Right: stimulation of pIC did not affect the distance 
travelled in the stimulated chamber (two-way RM ANOVA, F (1, 16) = 0.2085, p = 0.6540), but 
increased the distance travelled in the unstimulated chamber (two-way RM ANOVA, F (1,16) = 
9.772, p = 0.0065, Bonferroni post-hoc, **p=0.0056 eYFP vs. ChR2 on laser ‘on’ day).  Data is 
plotted as mean + s.e.m. Panels a)-c) are adapted from my publication171 as permitted by the 
author reuse rights of Nature Springer. 

 

To assess the valence of the stimulation-induced behaviors described above, I performed a real-

time place aversion test. The advantage of this behavioral task is that the animals gain control 

over the optogenetic manipulation and by exhibiting a preference or avoidance they report if they 

perceive stimulation as positively or negatively valenced, respectively. 

As has been previously reported148, I confirmed that ChR2-expressing mice avoided the laser-

coupled chamber, as compared to eYFP-expressing control animals (Figure 9a). In contrast to 

optogenetic stimulation, bilateral inhibition of the pIC in NpHR3.0-expressing mice had no effect 

on their place preference (Figure 9b). The avoidance of the chamber was not due to the animals 

moving less or slower on the stimulated side. The increased velocity in the stimulated side rather 

indicates that animals actively escaped the stimulated chamber (Figure 9c).  

In all cohorts of bilateral pIC stimulation, I observed that the breathing frequency was increased 

during, but also shortly after stimulation. As such an increased breathing rate could either be an 

immediate consequence of pIC activity or rather an emerging emotional reaction caused by 

aversive or arousing perceptions, I repeated pIC photostimulation in anesthetized mice and 

measured their heart- and breathing rates. For this, I used the MouseOx Plus pulse oximeter with 

a neck-clip under 1,5 % isoflurane anesthesia. Stimulation of the pIC at 5, 10 and 20 Hz increased 

breathing rate, whereas inhibition of pIC had no effect (Figure 10a,c). I could not find any 

alterations of the heart rate during pIC activation or inhibition (Figure 10b,d), which have been 

reported in electrical stimulation studies of IC in rats and humans47,48. 

To summarize, these findings demonstrate that peaks in pIC activity can elicit aversive reactions 

and avoidance, as well as autonomic changes. 
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Figure 10. Bilateral optogenetic manipulation of pIC increased breathing- but not heart rate in 
anaesthetized mice. a) Timeline of respiratory responses upon 5, 10, or 20 Hz stimulations or 
NpHR mediated inhibition of anesthetized mice (n = 6 ChR2, n = 4 eYFP, n = 4 NpHR mice). 
Line graphs are mean with shaded areas s.e.m. b) Heart rate measurements upon ChR2-, or NpHR-
mediated activity manipulations. Data are normalized to a 20-second baseline period for each 
individual. Line graphs are mean with shaded areas s.e.m. c) Optogenetic activation increased 
respiratory rates at all frequencies, while inhibition had no effect (eYFP, n = 12 mice (6 mice 
exposed to blue and 6 mice exposed to yellow light); ChR2 n = 10 mice; NpHR n = 6 mice; one-
way ANOVA, F (4, 43) = 4.643, p = 0.0033, Bonferroni post hoc analysis, *p = 0.0412 for eYFP 
versus 5 Hz; *p = 0.0116 for eYFP versus 10 Hz; *p = 0.0234 for eYFP versus 20 Hz; p > 0.999 
for eYFP versus NpHR.   d) Quantitative assessment of the same data as in panel b. No significant 
difference between groups was detected (one-way ANOVA F (4, 33) = 2.872, p = 0.0381). Box-
whisker plots display median, 25th to 75th percentiles, and min to max values.  Panels a)-d) are 
adapted from my publication171 as permitted by the author reuse rights of Nature Springer.  
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2.2.2 Bulk Calcium Imaging of IC Activity during Anxiety-Related 
Behavioral Tests 
 

The findings I described above suggested that increased pIC activity transmits a negative valence 

signal, which can elicit defensive reactions at 20 Hz. To investigate which naturally occurring 

situations might evoke pIC activity, aside from the already described response to bitter taste148, 

my colleague Ritu Roy Chowdhury measured the bulk activity of pIC neurons with fiber 

photometry while the mice explored the elevated plus maze (EPM) or elevated zero maze (EZM) 

(Figure 11a). I assisted in the analysis of the calcium traces and we first asked how the bulk 

activity of the pIC changed with the occupancy of the open or closed arms of the two mazes. For 

all measured animals, we detected high levels of pIC activity when the mice were in the closed 

arms of the mazes. In contrast, on the open arms the bulk pIC activity was consistently low 

(Figure 11b,c). These findings suggested that pIC activity is high during periods of high anxiety, 

i.e. while the animals avoid exploration and wait in the - presumably safer - closed arms. 

Alternatively, an increased pIC activity could also signify the safety of the closed compartment, 

as IC has been implicated in safety learning in rats86,172. To clarify this, we correlated the time 

spent on the open arms, i.e. a measure of their anxiety, with the averaged bulk fluorescence during 

their closed arm stays (Figure 11c). Indeed, the anxiety level was positively correlated with their 

closed arm pIC activity. In other words, we found that the higher the anxiety level of an animal 

was the higher was its bulk neuronal activity of pIC. This was complemented by the finding that 

the anxiety level of the animals correlated with their pIC activity during the open arm visits. In 

other words, the higher the anxiety, the lower the pIC open arm activity. When I correlated the 

pIC activity data with the animals’ approach or retreat behavior to and from the open arms (Figure 

12a, see Methods), I found that during retreats from the open arms pIC activity increased, whereas 

approaches were accompanied by decreases in pIC activity (Figure 12b). Overall, I found a 

significant positive correlation for approach- and retreat behavior with calcium activity (two-

sided one sample t test, t = 4.111, df = 10, **p= 0.0021, Figure 12c). Further, I analyzed the 

dynamic changes of the calcium signal during approach or retreat episodes and consistently found 

that pIC activity increased during retreats and decreased during approaches (Figure 12d). 

Correlating pIC activity with the velocity of the animals suggests that pIC activity is not driven 

by the speed of locomotion, as Ritu could not find a significant correlation (two-tailed one sample 

t test revealed no significant difference from zero, t = 0.8450, df = 10, p = 0.4179) (Figure 12e).  
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Figure 11. Bulk calcium imaging of pIC during anxiety-related tests revealed increased activity 
in the closed arms whereas open arm visits showed reduced activity. a) Optic fiber placement and 
virus used for fiber photometry. b) Example GCaMP6s trace from pIC excitatory neurons during 
4 minutes of elevated zero maze (EZM) exploration. Periods in the open arms are shaded in blue. 
Note, that the pIC activity decreases in the open arms. c) Mean pIC activity is significantly higher 
in all animals in the closed versus open arms in two similar paradigms, the EZM and elevated 
plus maze (EPM), (n= 11, two-tailed paired t test, t = 3.510, df = 10, **p=0.0056, data combined 
from 3 EPM mice (pluses) and 8 EZM mice (circles). The mean ± s.e.m. is shown in black. 
Middle: The mean closed arm activity in the pIC in both tests is correlated to the anxiety of the 
individuals (open arm time). Linear regression, F (1,9) = 8.574, *p = 0.0168, R2 = 0.4879, Right: 
The mean open arm activity is inversely correlated to anxiety. Linear regression, F (1,9) = 7.620, 
*p = 0.0221, R2 = 0.4585. Total n = 11 mice (3 EPM shown as pluses, 8 EZM shown as circles). 
Panels a)-c) are adapted from my publication171 as permitted by the author reuse rights of Nature 
Springer. 
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Figure 12. pIC activity is correlated with approaches and retreats to and from the open arm of 
anxiety-related tests. a) Schematic illustration of approach (movement towards open arms of the 
mazes) and retreat (movement towards the closed arms of the mazes) behavior. b) Exemplary 
overlay of pIC activity and distance travelled within the EZM reflecting approach and retreat 
behavior. c) Correlations between fluorescence and approach/retreat distances were significant 
for all animals (not shown) and correlation coefficients (r) overall significantly different from 
zero (n = 11 mice including 3 EPM (pluses)  and 8 EZM (circles) as above, two-sided one sample 
t test, t = 4.111, df = 10, **p= 0.0021). Error bars indicate s.e.m. d), For all animals, the average 
change of fluorescence was negative during approaches and positive during retreats. This resulted 
in an overall significant difference in the average fluorescent change between approaches and 
retreats (n = 11 mice, two-tailed paired t test, t = 2.255, df = 10, *p = 0.0478). Values from one 
mouse are connected with a grey line. The mean and s.e.m. are shown in black. e) Left: Pearson’s 
correlations of pIC fluorescence as a function of velocity in one example animal. Velocity is very 
weakly correlated to pIC activity. Right: There is no correlation of pIC activity and velocity across 
animals (n = 11 mice, circles tested in EZM, pluses tested in EPM, two-tailed one sample t test 
revealed no significant difference from zero, t = 0.8450, df = 10, p = 0.4179). Panels a)-e) are 
adapted from my publication171 as permitted by the author reuse rights of Nature Springer.   

 

Taken together, these results suggest that increased pIC activity may inhibit exploration of the 

open arms, while low pIC activity permits exploration. Furthermore, the data suggests that pIC 

activity is a proxy for the anxiety-levels of the animals.  
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2.2.3 Optogenetic Manipulation of pIC during Anxiety-related Tests 
Enables Bi-directional Modulation of Anxiety-like Behavior 
 

2.2.3.1 Real-time Optogenetic Manipulation on the EPM or EZM 
 

To test the role of the pIC in anxiety-like behavior, I designed an experiment that was guided by 

the fiber photometry results described above. I performed the test with the same animals used in 

Chapter 2.2.1, which bilaterally expressed opsins in the pIC under the CamKIIα promotor 

(Figure 13a). As we previously found that pIC activity was high in the closed arms of the EPM 

and EZM, I aimed to only inactivate the pIC while the animals were in the closed arms, but not 

when they were exploring the open arms (Figure 13b).  

Real-time silencing of the pIC of NpHR-mice increased the time spent on open arms of the EPM 

in comparison to controls. As it did not affect the total distance travelled, it suggests that inhibition 

had anxiolytic effects (Figure 13c). 

Oppositely, I only stimulated the pIC of ChR2-expressing mice when the animals were on the 

open arms, where pIC activity was shown to be low (Figure 13b). If pIC would rather signal 

safety than anxiety, activating the insula should encourage the animals to explore the open arms 

longer.  

To my surprise, I did not find a significant difference in time spent on open arms between eYFP- 

and ChR2-expressing mice in the EPM (Figure 13c). This might have been due to the anxiogenic 

environment in which the EPM was performed. I therefore subjected the same mice to an 

equivalent anxiety test, the EZM, but this time under low-anxiety settings (see Methods). ChR2-

mediated pIC stimulation in the open arms reduced the time spent on as well as the entries into 

the open arms (Figure 13d) suggesting an anxiogenic effect. Interestingly, pIC inhibition did not 

significantly increase open-arm time in this low-anxiety environment. 
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Figure 13. Real-time optogenetic manipulation exerts bi-directional influence on anxiety-like 
behavior.  a) Optogenetic experimental strategy. b) Real-time inhibition (left) and stimulation 
(right) arrangement in the EPM under high anxiety settings (top) and low anxiety settings in the 
EZM (bottom); see Methods. c) Data derived from n = 9 eYFP, n = 9 ChR2 and n = 10 NpHR -
expressing mice. pIC silencing increased the time spent (one-way ANOVA, F (2, 25) = 9.267, p 
= 0.0010, Bonferroni post-hoc analysis, **p = 0.0049 eYFP versus NpHR, **p = 0.0022 NpHR 
versus ChR2, p > 0.999 eYFP versus ChR2) and the number of entries into the open arms of the 
EPM (one-way ANOVA, F (2, 25) = 14.99, p < 0.0001, Bonferroni post-hoc analysis, **p = 
0.0014 eYFP versus NpHR, ****p < 0.0001 NpHR versus ChR2, p = 0.7971 eYFP versus ChR2), 
but left the locomotion distance unaltered (one-way ANOVA, F (2, 25) = 0.6660, p = 0.5227). d) 
In the same animals as in b), pIC stimulation decreased the time (one-way ANOVA, F (2, 25) = 
11.98, p = 0.0002, Bonferroni post-hoc analysis, **p = 0.0019 eYFP versus ChR2, ***p = 0.0004 
NpHR versus ChR2, p > 0.9999 eYFP versus NpHR), the number of entries into the open arms 
of the EZM (one-way ANOVA, F (2, 25) = 16.29, p < 0.0001, Bonferroni post-hoc analysis, *p 
= 0.0143 eYFP versus ChR2, ****p < 0.0001 NpHR versus ChR2, p = 0.0549 eYFP versus 
NpHR), and the overall locomotion distance (one-way ANOVA, F (2, 25) = 8.863, p = 0.0012, 
Bonferroni post hoc analysis, ***p = 0.0009 NpHR versus ChR2, eYFP versus NpHR, p = 0.0694, 
p = 0.2954 eYFP versus ChR2). Box-whisker plots display median, 25th to 75th percentiles, and 
min to max values. Panels a)-d) are adapted from my publication171 as permitted by the author 
reuse rights of Nature Springer. 
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2.2.3.2 Complementary Anxiety-related Behavioral Tests 
 

Of note is that in previous cohorts, performed by me and Arthur Matthys, we optogenetically 

inhibited pIC in alternating 2 min ON and OFF periods, as has been frequently used in 

literature173,174 (Figure 14a). This was not sufficient to significantly increase the time spent on 

the open arms (Figure 14b). Nevertheless, we found a strong trend towards anxiolysis as 

indicated by more time spent on the open arms, as well as more entries while travelling the same 

distance. These results combined with the real-time pIC inhibition described above suggest that 

pIC inhibition is anxiolytic only when sustained over longer periods and only when the insula 

would be naturally engaged. In support of this finding are similar observations that I obtained 

from silencing pIC with inhibitory DREADDs (hM4Di) in an open-field test (Figure 14c-d).  

 

Figure 14. Complementary anxiety-related experiments that support a role of the pIC in anxiety 
states. a) Experimental strategy and timeline for optogenetic pIC activity manipulations using a 
fixed regimen of alternating 2-min laser ‘on’ and ‘off’ epochs. b) Data from n = 8 eYFP- and n = 
11 NpHR-expressing mice. Left: Inhibition of pIC activity did not significantly alter the time 
spent in the open arms, only a trend towards anxiolysis was observed (two-way RM ANOVA, 
group (opsin) effect, F (1, 17) = 3.881, p = 0.0654; time effect, F (1.585, 26.95) = 24.73, p < 
0.0001, group x time interaction F (4, 68) = 0.5624, p = 0.6907). Right: Also the overall time 
spent in the open arms showed a trend to more exploration upon pIC inhibition (two-tailed 
unpaired t test: t = 1.970, df = 17, p = 0.0654). Neither the entries into the open arms (two-tailed 
unpaired t test, t = 2.008, df = 17, p = 0.0608), nor the total distances travelled within the maze 
(two-tailed unpaired t test, t=0.4976, df=17, p = 0.6251) differed between the groups. c) Viruses 
and strategy used to manipulate pIC activity using DREADDs. d) Constant silencing of the pIC 
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throughout the exploration of the circular open field using DREADD-hM4D resulted in anxiolytic 
effects (n = 9 mice / group) as revealed by increased time spent in the center (two-tailed unpaired 
t test, t = 2.165, df = 16, *p = 0.0459), but no difference in the total distance travelled (two-tailed 
unpaired t test, t = 0.5524, df = 16, p = 0.5883). Panels a)-d) are adapted from my publication171 
as permitted by the author reuse rights of Nature Springer. 

Taken together, these findings show that the pIC can influence anxiety-related behaviors bi-

directionally. Further, our data suggest that the pIC might play a role in creating, monitoring and 

modulating anxiety states.  

 

2.2.3.3 pIC mediates Persistent Anxiety 
 

To investigate if the pIC is influencing the emergence of anxiety states, I performed manipulations 

of the pIC and afterwards assessed the anxiety-level of the mouse on an EPM. First, I stimulated 

the pIC of ChR2- or eYFP-expressing mice ten times in an open field for 1 s at 20 Hz (473 nm, 

3-5 mW, 5 ms pulse width). Immediately afterwards, I detached the animals from the optic fiber 

cables and tested them on an EPM (Figure 15a). Strikingly, after stimulation, ChR2-expressing 

mice strongly reduced the time spent on open arms with less entries compared to eYFP-expressing 

controls (Figure 15b-d). This effect could be repeated by Alexandra Klein in an independent 

cohort. The sustained anxiety was particularly pronounced during the first 2 min of the test 

(Figure 15c,d). Thus, transient pIC stimulation induced a longer lasting anxiety-like state. 

Then, I wondered, whether pIC activity is necessary for the emergence of anxiety-like states. To 

test this, I subjected mice to five unsignaled foot shocks in a standard conditioning chamber 

(Figure 15a), as it has been shown, that shocks induce a long-lasting anxiety-like behavior175. 

During the 20 min period when mice received shocks, I constantly inhibited the pIC with orange 

laser light (594 nm, 12 mW). My colleague Alexandra Klein has shown in separate animals, that 

20 min long inhibition is able to reliably suppress neuronal activity in the pIC (see Appendix 4). 

When I then tested the mice on the EPM, eYFP-expressing control mice that have been shocked 

significantly decreased their open-arm exploration when compared to non-shocked controls 

(Figure 15b-d). Their explorative behavior resembled that of the ChR2-stimulated mice. In 

contrast, NpHR-expressing mice displayed a significant rescue of this behavioral phenotype 

resembling non-shocked eYFP-controls.  
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Figure 15. The pIC mediates persistent anxiety. a) Illustration of the experimental protocol. b)-
d), n = 10 eYFP mice without shocks, n = 18 ChR2 mice, n = 19 eYFP mice with shocks, n = 27 
NpHR mice. b) Transient photostimulation of the pIC (blue) decreased open arm time during 
subsequent testing on an EPM compared to controls (grey). The experience of footshocks resulted 
in a similar reduction of open-arm exploration in eYFP-expressing animals (magenta) as pIC 
stimulation (blue). This effect was attenuated by pIC inhibition during the shocks (orange). One-
way ANOVA, F(3,380)= 17.36, p < 0.0001,  Bonferroni post hoc analysis, eYFP with shocks vs. 
NpHR *p = 0.0399; eYFP with vs. without shocks ****p < 0.0001; eYFP with shocks vs. ChR2 
p = 0.3182; NpHR vs eYFP no shocks p = 0.2705; NpHR vs ChR2 ****p < 0.0001; eYFP no 
shocks vs. ChR2 ****p < 0.0001. c) The same data as in b) analyzed in 2-min bins revealed that 
pIC silenced and no-shock controls explore the open arms significantly more during the first two 
minutes than shocked or pIC-stimulated animals. Two-way RM ANOVA, group(opsin) effect, F 
(3, 70) = 4.340, p = 0.0073, time effect, F (2.678, 187.5) = 4.502, p=0.0062, opsin x time 
interaction, F (9, 210) = 2.139, P=0.0277; Bonferroni post-hoc analysis revealed significant 
differences for the following comparisons during the first two minutes: eYFP with shocks vs 
NpHR *p = 0.0415; eYFP with shocks vs. no shocks *p = 0.0244; NpHR vs. ChR2 **p = 0.0093; 
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eYFP no shocks vs ChR2 *p = 0.0173. Comparisons between eYFP with shocks and ChR2 (p > 
0.9999) and NpHR vs. eYFP no shocks (p = 0.7770) were not significant. The inset shows 
individual values for time spent in the open arms during the first two minutes and the significant 
differences as revealed by the Bonferroni test. d) Analysis of open arm entries over time in 2-min 
bins. Two-way RM ANOVA, group effect , F (3, 71) = 1.647, p = 0.1863, time effect, F (2.451, 
174) = 13.9, p < 0.0001, opsin x time interaction, F (9, 213) = 3.599, p = 0.0003; Bonferroni post-
hoc analysis revealed significant differences in the first two minutes for the following 
comparisons: eYFP with shocks vs NpHR *p = 0.0262; eYFP with shocks vs. no shocks *p = 
0.0221; NpHR vs. ChR2 *p = 0.0407; eYFP no shocks vs ChR2 *p = 0.0273. eYFP with shocks 
vs. ChR2 and NpHR vs. eYFP no shocks were not significantly different (both p > 0.9999). The 
inset shows individual values for open arm entries during the first two minutes and the significant 
differences as determined by the Bonferroni test. e)-f), n = 16 NpHR and n= 15 eYFP mice. e) 
Constant pIC inhibition did not affect freezing during the 20-minute footshock period. Left: 
Analysis in 5-minute bins revealed no difference between groups. Two-way RM ANOVA, group 
effect, F (1, 44) = 0.007057, p = 0.9334. Right: Total freezing of all individuals that received 
footshocks. Two-tailed unpaired t test, t = 0.4193, df = 13, p = 0.6818. f) Left: Analysis in 5-
minute bins revealed no difference between groups. Two-way RM ANOVA, group (opsin) effect, 
F (1, 28) = 0.6022, p = 0.4442. Right: Total freezing of all individuals that received footshocks. 
Two-tailed unpaired t test, t = 0.7586, df = 28, p = 0.4544. Bar and line graphs indicate mean ± 
s.e.m. Box-whisker plots display median, 25th to 75th percentiles, and min to max values. Panels 
a)-f) are adapted from my publication171 as permitted by the author reuse rights of Nature 
Springer.  

 

To rule out that the effects of pIC inhibition were due to a reduced acute fear expressed during 

the foot shocks, I analyzed freezing behavior, expressed during the foot shocks and again several 

days later in a conditioning chamber during contextual fear recall. I found that pIC inhibition did 

not affect acute freezing during the foot shocks (Figure 15e). Also, when performing a recall of 

contextual conditioning (without optogenetic manipulation), the NpHR mice spent a similar time 

freezing as control mice (Figure 15f). To exclude, that pIC inhibition modifies the pain perception 

of the shock, Tom Gaitanos helped me to show, that pIC inhibition did not affect pain thresholds 

in a ramping hot-plate test (see Appendix 5) 

In sum, these results imply that inhibition of the pIC does not interfere with acute reactions to 

painful stimuli and that it did not prevent acute freezing behavior. Instead, the data point towards 

an important role of the pIC in the generation of longer lasting anxiety states. 
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2.2.4 pIC→CeA and pIC→NAcc projector neurons form non-overlapping 
populations 
 

My anatomy data revealed several interesting projection pathways, which may underlie the 

heterogeneous behaviors elicited by global pIC stimulation. As described in Chapter 2.1.4 and 

2.1.5, the pIC projects to both the CeA and NAcc, two brain areas heavily implicated in motivated 

behaviors176,177. 

Recent studies have started to functionally explore the pIC-to-CeA projection (pIC→CeA), which 

mediated behavioral inhibition in a go-nogo task, and caused cessation of licking9,178.Therefore, I 

chose to further characterize the functional implications on behavior of pIC→CeA. 

As the IC has been shown to also play a role in addiction, feeding and decision-making, I was 

very keen to characterize the pIC-to-NAcc pathway (pIC→NAcc). The nucleus accumbens core 

has been extensively characterized in reward-related or appetitive behaviors, with a few studies 

indicating also mediation of aversive reactions168,179. 

However, before performing projection-specific optogenetic experiments with both pathways, I 

first aimed to better characterize the organization of the circuit from the pIC to the CeA and NAcc. 

In particular, I analyzed how the CeA- and the NAcc-projectors of the pIC distributed within the 

pIC. Therefore, I used the well characterized retrograde tracer Cholera toxin subunit B (CTB) 

conjugated with Alexa488 and Alexa555 dyes. I injected CTB-488 into the NAcc and CTB555 

into the CeA of the same animals and performed histology (Figure16a-c).  I quantified CeA- and 

NAcc-projecting neurons across the entire IC, as depicted in Figure16f. CeA-projectors were 

more abundant in the mIC and pIC, which is complementary to my anterograde AAV tracings 

from mIC and pIC (Figure 6). In contrast, NAcc-projectors were more numerous in the aIC, 

which is again consistent with my AAV tracings from aIC (Figure 7). Within the pIC, most 

labelled neurons projected to the CeA (66.3%) and around a third to NAcc (27.7%) (Figure 16d). 

The relative distribution within the layers of pIC showed, that most CTB+ neurons were found in 

the AIP, followed by DI and GI, however, the was no difference between CeA or NAcc projectors 

(Figure 16e). Interestingly, the two projecting populations were mostly non-overlapping, with 

<6% of pIC neurons projecting to both CeA and NAcc (Figure 16d). These results encouraged 

me to continue with the characterization of the CeA and NAcc pathway with projection-specific 

optogenetics. In order to guide my injection and implantation coordinates, I revisited the 

innervation density profiles from the pIC to both the CeA and the NAcc. At the rostro-caudal 

level where pIC innervation of the target regions was densest, I would implant optic fibers 

(Figure16g-j), while the optogenetic viral constructs would be injected into the pIC.  
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Figure 16. Largely non-overlapping pIC neuronal subpopulations project to the CeA and NAcc. 
a) CTB retrograde labeling of pIC projections to the CeA (CTB-555) and NAcc (CTB-488). b) 
Representative images of CTB injection sites in the CeA (top) and NAcc (bottom). Similar results 
were replicated in three mice. c) Representative image of retrogradely labeled pIC neurons 
projecting to CeA (magenta), NAcc (green), or both (yellow). d)-f) data from n = 3 mice. d) 
Quantification of retrogradely labeled pIC neurons. pIC-CeA (4863 ± 996.7 s.e.m. total 
retrogardely labelled cells) and pIC-NAcc-projectors (2050 ± 642.0 s.e.m. total retrogardely 
labelled cells)  were mostly non-overlapping, with < 6% of cells (405.7 ± 21.46 cells) projecting 
to both. e) Both populations, when normalized to total cell counts, distributed similarly in the 
different pIC sub regions. f) Distribution of CeA- and NAcc projectors in the anterior-posterior 
axis of the insular cortex (+2.4 to -1.22 mm from Bregma). In anterior insula we found more 
NAcc-projectors than CeA-projectors. In contrast, in posterior insula (blue box), CeA-projectors 
were more abundant than NAcc-projectors. g) Schematic of anterograde labeling of pIC axons. 
h) Representative images of eYFP-labelled pIC axons in the Amygdala (left) and Nucleus 
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Accumbens (right). Note the strong innervation within patches in the NAcc. Similar results were 
replicated in three mice.  i)-j) Quantification of innervation densities of pIC axons in the CeA (i) 
and NAc (j) in the anterior-posterior axis, revealing sites of highest innervation densities (n = 3 
mice). Sites of optic fiber implant for the following projection-specific experiments are marked 
with arrows. Lines and bar graphs are mean ± s.e.m. Scale bars represent 500 µm. Bar and line 
graphs indicate mean ± s.e.m. Panels a)-j) are adapted from my publication171 as permitted by the 
author reuse rights of Nature Springer. 
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2.3 Functional Characterization of pIC→CeA and 
pIC→NAcc  

 

To investigate the roles of pIC→CeA as well as pIC→NAcc, I infected pIC projection neurons 

with opsin-expressing AAV vectors as described above. The implantation of the optic fibers was 

guided by the innervation densities mentioned in Chapter 2.2.4; for the CeA at AP: 1.25 mm, 

ML: 2.75 mm, DV: -4.3 mm from Bregma and for NAcc at AP: +0.9 mm, ML: 1.3 mm, DV: -4.7 

mm from Bregma (Figure 17a,b).  
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Figure 17. Stimulation-induced behaviors of pIC→CeA or pIC→NAcc.  a)-b), Viral injection 
and optic fiber placement for a, pIC→CeA or b, pIC→NAcc projection-specific optogenetics. c)-
f), Stimulation-elicited behavioral reactions upon 20 Hz stimulation of the pIC→CeA or 
pIC→NAcc. c) and e) show the reactions over time to successive stimulations from 6 
representative animals for each pathway. c) Note the prominent reactions in the pIC→CeA 
pathway stimulated animal, e) while very few stimulations elicited reactions in the pIC→NAcc 
stimulated animal. d, Quantification of the stimulation-elicited reactions upon pIC→CeA 
stimulation in n = 11 animals / group, two-way RM ANOVA, group (opsin) effect, F (1, 20) = 
92.41, p < 0.0001; behavior effect, F (6, 120) = 28.64, p < 0.0001; group x behavior interaction, 
F (6, 120) = 29.30, p < 0.0001; Bonferroni post-hoc analysis revealed significant differences 
between eYFP and ChR2 animals for jaw movements, stopping, both ****p < 0.0001, and 
freezing *p = 0.0126. No differences were found for grooming p = 0.3727, paws-to-mouth p > 
0.9999 and salivation while a trend was observed for escapes p = 0.0503. f) Quantification of the 
stimulation-elicited reactions upon pIC→NAcc stimulation in n = 13 animals / group, two-way 
RM ANOVA, group (opsin) effect, F (1, 24) = 12.67, p = 0.0016; behavior effect, F (6, 144) = 
24.82, p < 0.0001; group x behavior interaction, F (6, 144) = 5.282, p < 0.0001; Bonferroni post-
hoc analysis revealed significant differences between eYFP- and ChR2-expressing animals for 
grooming **p = 0.0095 and jaw movements ****p < 0.0001. No differences were observed for 
escapes, paws-to-mouth, salivation freezing or stopping, all p > 0.9999. Panels a) and b) are 
adapted from my publication171 as permitted by the author reuse rights of Nature Springer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 2: Results 

   46 

2.3.1 Stimulation-induced Behaviors 
 

First, I analyzed stimulation-induced behaviors at 20 Hz as described above for the global pIC 

activation (Figure 8c-f). Resembling global pIC activation, stimulation of pIC→CeA elicited a 

subset of the behaviors, namely stopping, freezing and jaw movements (Figure 17c,d), however, 

less severe in their impact on the animals behavior.  

Stimulating the pIC→NAcc terminals did not cause any reaction except occasional jaw 

movements or grooming (Figure 17e,f). These results suggest that a subset of the aversive 

behaviors seen upon pIC activation are transmitted via excitatory glutamatergic projections to the 

CeA. Further, stimulating pIC→CeA decreased locomotion at 20 Hz, but not at 5 Hz or 10 Hz, 

while activation of the pIC→NAcc projection had no effect on locomotion (Figure 18). 

 

Figure 18. Optogenetic stimulation at 20 Hz causes increased immobility for pIC→CeA, but not 
for pIC→NAcc. a) Test for frequency-dependent effects on locomotion. Activation of pIC 
terminals in the CeA (n = 6 eYFP mice, n = 9 ChR2 mice) did not affect the distance travelled 
(two-way RM ANOVA F (1, 13) = 0.07393, p = 0.7900), but activation increased the time spent 
immobile (two-way RM ANOVA F (1, 13) = 7.464, *p = 0.0171, Bonferroni post-hoc analysis 
revealed significant differences between 5 and 20 Hz in the ChR2 group *p = 0.0266). b) 
Activation of the pIC→NAcc did not affect locomotion at any frequency (n = 6 eYFP mice, n= 7 
ChR2 mice, two-way RM ANOVA for frequency: F(2,48) = 2.306. p = 0.1106; and for opsin 
(F(3,24)4 = 0.4337, p = 0.7309). Panels a) and b) are adapted from my publication171 as permitted 
by the author reuse rights of Nature Springer. 

 

Because of the strong impairment of locomotion at 20 Hz, I chose 10 Hz for 1 s ON and 4 s OFF 

for all following pIC→CeA experiments, except where otherwise stated. As I did not observe an 

effect on locomotion for pIC→NAcc at 20 Hz, I kept this frequency for 1 s ON and 4 s OFF 

during the subsequent experiments. 
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2.3.2 Real-time Place Aversion Assay 
 

Next, I wanted to test if activation of the two projections would induce avoidance behavior as 

observed during global pIC stimulation (Figure 9). While activation of pIC→CeA lead to a robust 

aversion (Figure 19a), stimulation of pIC → NAcc had no effect on preference (Figure 19b). 

Interestingly, the inhibition of either pathway did not affect place-preference (Figure 19a,b). 

 

Figure 19. Stimulation of the pIC→CeA pathway elicits avoidance, whereas pIC→NAcc 
stimulation has no effects. a) Left: pIC→CeA stimulation resulted in real-time place aversion 
behavior (n = 7 ChR2 and n = 6 eYFP mice, two-way RM ANOVA revealed significant 
differences for group (opsin) F (1, 11) = 21.15, p = 0.0008 and light effect F (2, 22) = 5.531, p = 
0.0113 as well as opsin x laser interaction F (2, 22) = 5.368, p = 0.0126; Bonferroni post-hoc 
analysis revealed significant differences between the habituation (day 1, laser off) and laser on 
(day 2) ***p = 0.008, as well as the laser on (day 2) and memory test (day 3 laser off) **p = 
0.0017 for the ChR2 group but no difference for the eYFP group, comparisons between light on 
and off days p > 0.9999). The eYFP and ChR2 animals exhibited a different preference only under 
light stimulation ****p < 0.0001. Right: Inhibition of pIC terminals over CeA did not affect the 
animals’ preference for the stimulated chamber (n = 7 NpHR mice, n = 6 eYFP mice, two-way 
RM ANOVA laser (F(1,11) = 2.959, p = 0.1134), group (F(1,11) = 0.1724, p = 0.6860).   b) Left: 
Laser stimulation of the pIC→NAcc pathway did not influence place preference (n = 7 ChR2 and 
n =10 eYFP mice, two-way RM ANOVA revealed no significant differences for group (opsin) F 
(1, 15) = 0.5608, p = 0.4655, light F (1, 15) = 1.208, p = 0.2890, or opsin x laser interaction, F (1, 
15) = 0.6262 p = 0.441). Right:  Inhibition of pIC terminals over NAcc did not affect the animals’ 
preference for the stimulated chamber (n = 10 mice / group, two-way RM ANOVA, laser (F(1,18) 
= 9.399, p = 0.067). Panels a) and b) are adapted from my publication171 as permitted by the author 
reuse rights of Nature Springer  
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2.3.3 Breathing Rate 
 

Analogous to the experiment in Chapter 2.2.1, I measured the breathing rate of lightly 

anesthetized mice during optogenetic stimulation of the two projections. As I did not find an effect 

of pIC inhibition on breathing or heart rate, I did not test the effect of inhibition of the two 

projections. 

I found that pIC→CeA stimulation increased the breathing rate (Figure 20a), whereas 

pIC→NAcc stimulation did not modulate breathing (Figure 20b).  

This result suggests, that the increase of respiratory rate that I observed during global pIC 

stimulation, was mediated, at least in part, by pIC→CeA. 

 

Figure 20. Optogenetic stimulation of pIC→CeA increases the breathing rate of anaesthetized 
mice. a) pIC→CeA stimulation induced increases in respiratory rates in anesthetized animals (n 
= 5 ChR2 and n = 8 eYFP mice, one-way ANOVA, F (3, 19) = 5.098, p = 0.0093; Bonferroni 
multiple comparisons to eYFP controls: 5 Hz, *p = 0.0214; 10 Hz, *p = 0.0296, 20 Hz, *p = 
0.0172). b) pIC→NAcc stimulation did not affect respiratory rates (n = 5 ChR2 and n = 11 eYFP 
mice, one-way ANOVA, F (3, 21) = 0.02645, p = 0.9940. Panels a) and b) are adapted from my 
publication171 as permitted by the author reuse rights of Nature Springer. 
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2.3.4 Real-time Optogenetic Manipulation during EPM and EZM  
 

Next, I tested the influence of projection-specific manipulations on anxiety-related behavior using 

the same experimental approach as for the pIC (see Methods, Figure 13). Interestingly, activating 

as well as inhibiting pIC→CeA  caused bidirectional effects that were similar to those elicited by 

pIC manipulation: Inhibition of pIC→CeA had strong anxiolytic effects in a high-anxiety 

environment in the EPM, but it did not further increase the exploration of the open arms of the 

EZM under low-anxiety settings (Figure 21a,b) Oppositely, activation of pIC→CeA had no 

effects in the high-anxiety environment on the EPM, but strong anxiogenic effects on the EZM, 

in in low-anxiety settings (Figure 21b). 

In contrast, optogenetic manipulation of pIC→NAcc had no influence on any anxiety-related 

parameter (Figure 21c,d). These results suggest that pIC→CeA mediates the influence of pIC on 

anxiety states, but not pIC→NAcc. 
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Figure 21. Real-time optogenetic manipulation of pIC→CeA bi-directionally influences anxiety-
like behavior. Assessment of pathway-specific optogenetics on anxiety. a) pIC→CeA inhibition 
had anxiolytic effects in the EPM (n = 10 eYFP, n = 7 NpHR, n = 9 ChR2 mice). Open-arm time: 
one-way ANOVA, F (2, 23) = 11.87, p = 0.0003; Bonferroni post-hoc analysis: eYFP vs. NpHR, 
***p = 0.0006; eYFP vs. ChR2, p > 0.9999; NpHR vs. ChR2, ***p = 0.0009. Open-arm entries: 
One-way ANOVA, F (2, 23) = 13.48, p = 0.0001; Bonferroni post-hoc: eYFP vs. NpHR, ***p = 
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0.0004, eYFP vs. ChR2, p = 0.9704, NpHR vs. ChR2, ***p = 0.0003. Distance travelled in the 
entire maze was not affected by optogenetic manipulations of pIC→CeA: One-way ANOVA, F 
(2, 23) = 0.6430, p = 0.5349. b) Stimulation of pIC→CeA had anxiogenic effects in the EZM, 
while inhibition only increased entries but not the time spent in the open arms (n = 10 eYFP, n = 
7 NpHR, n = 7 ChR2 mice). Open-arm time: One-way ANOVA, F (2, 21) = 6.343, p = 0.0070; 
Bonferroni post-hoc analysis: eYFP vs. NpHR, p > 0.9999; eYFP vs. ChR2, *p = 0.0221; NpHR 
vs. ChR2, *p = 0.0111. Open-arm entries: One-way ANOVA, F (2, 21) = 9.533, p = 0.0011; 
Bonferroni post-hoc analysis: eYFP vs. NpHR, *p = 0.0276; eYFP vs. ChR2, p = 0.2498; NpHR 
vs. ChR2, ***p = 0.0009. Distance travelled in the entire maze was not affected by optogenetic 
manipulations of pIC→CeA: One-way ANOVA, F (2, 21) = 0.9968, p = 0.3859. c)-d) 
Optogenetic pIC→NAcc manipulations did not affect anxiety related-behaviors in the EPM or 
EZM (n = 10 eYFP, n = 10 NpHR, n = 6 ChR2 mice). c) EPM Open-arm time: One-way ANOVA, 
F (2, 23) = 1.465, p = 0.2519; EPM Open-arm entries: One-way ANOVA, F (2, 23) = 0.01173, p 
= 0.9883; Distance travelled in the EPM: One-way ANOVA, F (2, 23) = 0.5072, p = 0.6088. d) 
EZM Open-arm time: One-way ANOVA, F (2, 23) = 0.006972, p = 0.9931; EZM Open-arm 
entries: One-way ANOVA, F (2, 23) = 1.544, p = 0.2349; Distance travelled in the EZM: One-
way ANOVA, F (2, 23) = 1.244, p = 0.3068. Box-whisker plots display median, 25th to 75th 
percentiles, and min to max values. Panels a)-d) are adapted from my publication171 as permitted 
by the author reuse rights of Nature Springer. 

2.3.5 Sucrose Preference Test 
 

Given that pIC→NAcc manipulation did not affect autonomic functions, anxiety-related 

behaviors or avoidance, I was curious to find a behavior that would be influenced by manipulating 

that pathway. A literature search revealed, that a projection of D1R neurons of the nucleus 

accumbens to the ventral pallidum is able to interrupt licking of a sucrose solution180. Further, a 

recent study identified that both D1R and D2R-expressing neurons of the nucleus accumbens 

receive IC innervation111. Also, IC→NAc has been implicated in aversion-resistant alcohol 

intake104. 

Recently, the CeA has also been shown to not only mediate fear reactions, but also appetitive 

behaviors176,181,182. As both the CeA as well as the NAcc are known to be involved in reward and 

consummatory behaviors176,178,183–185, I performed a series of tests aimed at dissecting their 

specific roles in the context of appetitive behaviors. 

First, I tested if manipulations of both pathways would affect the innate preference for a 10% 

sucrose solution. I trained water-deprived animals that underwent projection-specific surgeries to 

establish a stable licking baseline for ca. 5 days. Mice were then placed in a custom-built lick-o-

meter chamber (50 cm x  30 cm x 30 cm) where they were presented with two licking spouts 

which would deliver water or sucrose and stimulated for 20 min with 1 s ON, 4 s OFF 10 Hz 

(CeA) or 20 Hz (NAcc) (473 nm, 3-5 mW, 5 ms pulse width) (Figure 22a). Neither activation 

nor inhibition of both pathways altered the sucrose preference (Figure 22b,d).  
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Figure 22. Optogenetic manipulation of both pathways does not influence innate sucrose 
preference, but laser interrupts ongoing licking. a)-e) Sucrose-preference and drinking behavior 
upon pathway-specific optogenetic manipulations. a) Illustration of open-loop sucrose preference 
paradigm. b) Sucrose-preference remains unaffected by pIC→CeA manipulations (n = 7 eYFP, n 
= 6 ChR2, n = 5 NpHR mice, two-tailed paired t tests comparing light ‘on’ and ‘off’ days: eYFP, 
t = 0.2939, df = 6, p = 0.7788; ChR2, t = 1.529, df = 5, p = 0.1869; NpHR, t = 0.8977, df = 4, p = 
0.4201). c), pIC→CeA stimulation at 10 Hz interrupts ongoing drinking. Drinking bouts are 
reduced to the 4 s ISI (n = 301 bouts eYFP, 316 bouts ChR2, 248 bouts NpHR, one-way ANOVA, 
F (2, 862) = 11.25, p < 0.0001; Bonferroni post-hoc analysis: eYFP vs. ChR2, ****p < 0.0001; 
eYFP vs. NpHR, p > 0.9999; ChR2 vs. NpHR, **p = 0.0012). d) Sucrose-preference remains 
unaffected by pIC→NAcc manipulations (n = 11 eYFP, n = 7 ChR2, n = 9 NpHR mice, two-
tailed paired t tests comparing light ‘on’ and ‘off’ days: eYFP, t = 1.538, df = 10, p = 0.1550; 
ChR2, t = 1.176, df = 6, p = 0.2842; NpHR, t = 1.106, df = 8, p = 0.3008). e) pIC→NAcc 
stimulation at 20 Hz interrupts ongoing drinking. Drinking bouts are reduced to the 4s ISI (n = 
700 bouts eYFP, 780 bouts ChR2, 334 bouts NpHR, one-way ANOVA, F (2, 1811) = 58.26, p < 
0.0001; Bonferroni post-hoc analysis: eYFP vs. NpHR, p = 0.2974; ChR2 vs eYFP or NpHR, 
both ****p < 0.0001). Panels a)-e) are adapted from my publication171 as permitted by the author 
reuse rights of Nature Springer. 

 

However, upon closer observation, I noticed that ongoing licking would be interrupted when it 

coincided with optogenetic stimulation of both pathways. Mice would either briefly retract their 

heads and continue to lick shortly after the laser turned off, or the stimulation led to a complete 

interruption of the session with the animal retreating to a corner of the lick-o-meter. I therefore 
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analyzed the duration of all licking bouts and noticed that ChR2-expressing CeA or NAcc mice 

rarely showed any bouts lasting longer than 4 s, whereas control animals were showing much 

longer bouts (Figure 22c,e). These results suggest, that due to the 1 s ON, 4 s OFF stimulation 

paradigm, the mice could only lick during the 4 s OFF period. 

To better understand this effect, I designed a closed-loop licking experiment, where the first lick 

would lead to a 1 s long optogenetic stimulation of 5, 10 or 20 Hz (Figure 23a). I performed this 

experiment only in a pIC→NAcc ChR2-expressing cohort. 

 

 

Figure 23. Closed-loop optogenetic stimulation of licking behavior interrupts licking in 
pIC→NAcc mice in a frequency-dependent manner. a) Experimental strategy to trigger laser 
stimulation selectively, when mice start to lick from a spout. After the first lick, the laser would 
pulse for 1s at either 0,5,10 or 20 Hz (473 nm, 3-5 mW, 5 ms pulse width), followed by a timeout 
of 4 s. b) Lick raster plots show that at 10 Hz the licking started to be interrupted. c) The lick rate 
within the 1 s laser stimulation period was reduced in a frequency-dependent manner. d) 
Stimulation caused mice to interrupt their licking for longer than the 1s duration of the laser 
activation. Panels a)-d) are adapted from my publication171 as permitted by the author reuse rights 
of Nature Springer. 

In control mice, the 1 s laser stimulation did not induce any alterations in lick rate or delay to first 

lick after laser. In the ChR2 expressing mice, there were minor irregularities apparent in the 

licking pattern at 5 Hz, which increased in a frequency-dependent manner at 10 and 20 Hz. At 20 

Hz, the licking could be interrupted in almost all cases and in some instances the mice would 

move away entirely from the licking spout (Figure 23b-d) 

These results confirmed that optogenetic stimulation of pIC→NAcc immediately and powerfully 

interrupt ongoing licking behavior. 
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2.3.6 Feeding under Optogenetic Stimulation 
 

Given the ability to completely interrupt licking of a liquid, I immediately wondered, how such a 

manipulation would affect eating of solid food. Therefore, I acutely food-deprived mice for 24 h 

and presented the animals with a standard food pellet in an empty home-cage. I would manually 

trigger the optogenetic stimulation (1 s, at 10 Hz (CeA) or 20 Hz (NAcc), 473 nm, 3-5 mW, 5 ms 

pulse width) when the mice started to nibble on the food pellet (Figure 24a). 

Interestingly, stimulation of both projections immediately interrupted feeding attempts. This 

effect was so powerful, that hungry animals would be almost completely stopped from ingesting 

food (Figure 24b,c) 

Notably, inhibition of pIC→NAcc or pIC→CeA in food-deprived mice did not alter the amount 

of consumed food (data not shown). This suggests that both pathways specifically transmit 

aversive signals to their subcortical targets and are not necessary for regular food consumption. 

 

Figure 24. Optogenetic stimulation of both pathways powerfully prevents food-deprived mice 
from feeding. a) Experimental design for closed-loop manipulations during feeding bouts. b) 
pIC→CeA stimulation reduced food consumption (left, n = 8 eYFP, n = 11 ChR2 mice, two-
tailed unpaired t test, t = 2.973, df = 17, **p = 0.0085) and reliably interrupted ongoing feeding 
bouts (right, n = 8 eYFP, n = 11 ChR2 mice, two-tailed unpaired t test, t = 13.12, df = 17, ****p 
< 0.0001). c) pIC→NAcc stimulation strongly reduced food consumption (left, n = 6 eYFP, n = 
10 ChR2 mice, two-tailed unpaired t test, t=7.271, df=14, ****p < 0.0001) and reliably interrupted 
ongoing feeding bouts (right, n = 6 eYFP, n = 10 ChR2 mice, two-tailed unpaired t test, t = 21.51, 
df = 14, ****p < 0.0001). Panels a)-c) are adapted from my publication171 as permitted by the 
author reuse rights of Nature Springer 
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2.3.7 Quinine Avoidance Test 
 

Previous studies from the laboratory of Charles Zuker described the term “bitter cortical field” 

for a region that is partially overlapping with the subdivision of IC that I classified as mIC and 

pIC148. They showed that optogenetic stimulation of this “bitter spot” elicits avoidance and a range 

of unconditioned aversive behaviors. When they inactivated the bitter cortical field, they could 

strongly disturb taste discrimination. In this study, I did not try to reproduce this finding, however, 

I wanted to investigate if one of the two pathways are involved in mediating the aversive reactions 

to bitter tastes. 

To test this, I measured the quinine preference index analogous to the sucrose preference. In brief, 

mice that have undergone the sucrose preference test have re-established a stable licking response 

and were offered water or a 0.5 mM quinine solution on the test day during acute optogenetic 

manipulation. 

Manipulations of both pathways in an open-loop fashion with 1 s ON, 4 s OFF, or constant 

inhibition for 20 min did not affect the strong innate aversion to quinine (Figure 25a). As a 

prolonged projection-specific inhibition of axons might elicit paradoxical effects due to reversal 

of the chloride reversal potential186, I analyzed the development of the quinine aversion over time. 

Animals avoided the quinine already after the first licks and did not reverse their aversion over 

time (Figure 25b). 

 

Figure 25. Quinine Aversion is not affected by optogenetic manipulation of pIC→CeA or 
pIC→NAcc. a) Optogenetic manipulation of neither the pIC-CeA nor the pIC-NAcc pathway 
impacts quinine aversion. Quinine aversion was not altered upon activation or inhibition of neither 
the pIC-CeA pathway (light on versus light off, two-tailed paired t tests: eYFP (n = 8), t = 0.274, 
df = 7, p = 0.791; ChR2 (n = 9), t = 0.896, df = 8, p = 0.397; NpHR (n = 5), t = 0.358, df = 4, p = 
0.738) nor the pIC-NAcc pathway (light on versus light off, two-tailed paired t tests: eYFP (n = 
10), t = 0.279, df = 14, p = 0.784; ChR2 (n = 7), t = 0.169, df = 12, p = 0.868; NpHR (n = 10), t 
= 0.449, df = 8, p = 0.665). b) Expression of quinine aversion during the entire trial in 5 min bins. 
Inhibition of the pIC-NAcc pathway did not alter the course of quinine avoidance in comparison 
to EYFP controls (n = 10 mice / group, mixed-model ANOVA, opsin effect: F (1, 18) = 0.1610, 
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p = 0.6930). Panels a) and b) are adapted from my publication171 as permitted by the author reuse 
rights of Nature Springer. 

2.3.8 Social Interaction 
 

To test if the interruptions in feeding and drinking might generalize to alternative rewards, I 

manipulated the projections while mice socially interacted with juveniles (Figure 26a). This 

experiment has been inspired by recent findings which implied the IC in approach and avoidance 

responses to social affective stimuli98,99. 

Interestingly, I found that stimulation of pIC→CeA interrupted social interactions which led to a 

strongly reduced average bout duration, but not pIC→NAcc stimulation (Figure 26b,c). As the 

total time the mice interacted with the juvenile conspecifics was not reduced upon pIC→CeA 

activation, the motivation to socially interact seemed to not be directly disturbed. Indeed, the 

number of interactions was slightly increased upon pIC→CeA stimulation (Figure 26b, right). 

Thus, the observed inhibition of behavior seemed to be generalized during pIC→CeA stimulation. 

 

Figure 26. Optogenetic stimulation of pIC→CeA but not pIC→NAcc interrupts ongoing social 
interaction. a) Experimental design for closed-loop manipulations during social interactions. b) 
While pIC→CeA stimulation did not affect the overall time the animals interacted (left, n = 6 
eYFP, n = 9 ChR2 mice, two-tailed unpaired t test, t = 1.048, df = 13, p = 0.3138), the stimulation 
acutely interrupted ongoing social interactions as seen in a significant reduction in the duration 
of individual interaction bouts (middle, n = 6 eYFP, n = 9 ChR2 mice, two-tailed unpaired t test, 
t = 6.908, df = 13, ****p < 0.0001). There was a trend towards increased number of interaction 
bouts (right). c) pIC→NAcc stimulation did not affect social interactions (n = 9 eYFP , n = 10 
ChR2 mice; left: total interaction time, two-tailed unpaired t test, t = 0.5167, df = 17, p = 0.6120; 
right: bout length: two-tailed unpaired t test, t = 0.8693, df = 17, p = 0.3968). Panels a)-c) are 
adapted from my publication171 as permitted by the author reuse rights of Nature Springer. 
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2.3.9 Lithium Chloride-induced Anorexia  
 

Visceral sickness (malaise) can powerfully inhibit eating, which you might have experienced 

yourself during a noro-virus infection. Existing literature strongly implies the IC in processing 

malaise187 as well as conditioned taste aversion (CTA)73,188,189. As my findings suggest that both 

CeA and NAcc can powerfully interrupt feeding, I next wanted to test, if these pathways could be 

mediating an acute anorexic effect of lithium chloride (LiCl)-induced malaise.  

For CTA, a novel taste is paired with the injection of LiCl, which leads to robust aversion of this 

taste in a recall test. However, acute anorexic effects on feeding are less well established. In a 

pilot experiment, I tested the effect of acute LiCl (50, 100 and 150 mg/KG BW) on sucrose 

consumption in water-deprived mice, but surprisingly this did not affect sucrose consumption (see 

Appendix 6). This indicated that thirst and/or the reward of a sucrose solution can overcome the 

acute effects of visceral malaise. However, in another pilot experiment, I observed that mice 

would strongly reduce their feeding during acute LiCl (150 mg/kg) (data not shown). 

After having established this anorexic effect on food consumption with LiCl in wild-type animals, 

I next tested in projection-specific cohorts if the two pathways are involved in suppressing feeding 

under malaise (Figure 27a). 

 

Figure 27. Inhibition of pIC→NAcc partially rescues LiCl-induced anorexia. a) Experimental 
design for constant pathway inhibition during feeding under visceral malaise (LiCl, lithium 
chloride). a)-d) Food consumption in hungry animals was reduced under the influence of LiCl 
whether or not the pIC→NAcc or pIC→CeA were inhibited. b) pIC→CeA groups: food 
consumption was reduced by LiCl under constant orange light in both, eYFP- (left: n = 10 mice, 
two-tailed paired t test, t=5.143, df=9, ***p = 0.0006) and NpHR-expressing animals (right: n = 
7 mice, two-tailed paired t test, t = 6.844, df = 6, ***p = 0.0005). c) Food consumption was also 
reduced under the same conditions when the pIC→NAcc pathway was manipulated (left:  n = 10 
eYFP mice, two-tailed paired t test, t = 9.517, df = 9, ****p < 0.0001; right: n = 10 NpHR mice, 
two-tailed paired t test, t = 4.629, df = 9, **p = 0.0012). d) However, pIC→NAcc inhibition 
reduced the anorexigenic effects of LiCl on food consumption (for pIC→CeA n = 10 eYFP and 
n = 7 NpHR mice, for pIC→NAcc n = 10 eYFP and 10 NpHR mice, one-way ANOVA, F (3, 33) 
= 16.36, p < 0.0001, Bonferroni post-hoc analysis revealed significant differences (****p < 
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0.0001) for NpHR:pIC→NAcc vs. NpHR: pIC→CeA, NpHR:pIC→NAcc vs. eYFP:pIC→CeA 
and NpHR:pIC→NAcc vs. eYFP:pIC→NAcc; no differences (p > 0.999) were detected for 
NpHR:pIC-CeA vs. eYFP:pIC-CeA, NpHR:pIC-CeA vs. eYFP:pIC-NAcc, or eYFP:pIC-NAcc 
vs eYFP:pIC-CeA). Panels a)-d) are adapted from my publication171 as permitted by the author 
reuse rights of Nature Springer. 

 

Again, all mice significantly reduced feeding in comparison to a baseline measurement when LiCl 

was administered shortly before feeding (Figure 27b-d). However, animals in which I silenced 

pIC→NAcc displayed a partial rescue, consuming more food than control animals or pIC→CeA 

mice (Figure 27d). Control experiments showed that inhibition of both projections had no effect 

on food intake in food-deprived mice (see Appendix 7). 

These results suggest, that pIC→NAcc, but not pIC→CeA, contributes to the anorexic effects 

mediated by LiCl-induced malaise. 

 

2.3.10 Fear-induced Anorexia 
 

As pIC→CeA was not implicated in malaise-induced anorexia, I wanted to find a natural stimulus 

through which this pathway could mediate its anorexic effects. The CeA has been shown to 

mediate acute fear behavior such as freezing or flight176. A commonly used olfactory stimulus to 

induce fear in mice is a predator odor, e.g. synthetic fox urine Trimethylthiazoline (TMT)190. 

Analogous to the malaise-induced anorexia, I designed a feeding task, where food-deprived mice 

were exposed to TMT and presented with a food pellet in an empty home cage (Figure 28a). I 

would constantly inhibit both pathways for 10 min (593 nm, 10 mW) and quantify the consumed 

food and the number of feeding bouts. 

The presence of TMT reduced the total amount of food consumed in comparison to baseline 

conditions and all animals strongly reduced their number of feeding bouts (see Appendix 7). 

Interestingly, mice in which I inhibited the pIC→CeA had an increased number of feeding bouts 

compared to the controls (Figure 28b). Inhibition of pIC→NAcc did neither affect the amount of 

food consumed nor the number of feeding bouts (Figure 28c). 

Although not being able to rescue the quantity of consumed food in the presence of TMT, the 

effect on the approach of food could be partially rescued by pIC→CeA silencing.  
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Figure 28. Anxiety-mediated anorexia is slightly ameliorated by pIC→CeA inhibition. a) 
Experimental design for constant pathway inhibition during feeding under predator threat 
(synthetic fox odor, TMT). b) The overall food consumed under pIC→CeA inhibition (n = 9 eYFP 
mice, n = 7 NpHR mice) in the presence of TMT was unaltered (two-tailed unpaired t test, t = 
1.089, df = 14, p = 0.2944), however animals performed more feeding bouts than controls in the 
presence of TMT (two-tailed unpaired t test, t = 2.434, df = 14, *p = 0.0289). c) pIC→NAcc 
inhibition (n = 6 eYFP mice, n = 10 NpHR mice) had no effect on the amount of consumed food 
(left, two-tailed unpaired t test, t = 0.5998, df = 14, P = 0.5582), or on the number of feeding bouts 
in the presence of TMT (right, two-tailed unpaired t test, t = 0.4547, df = 14, p = 0.6563). Bar 
graphs indicate mean ± s.e.m. Panels a)-c) are adapted from my publication171 as permitted by the 
author reuse rights of Nature Springer. 
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2.3.11 Controlling for Back-propagating Action Potentials induced by 
Projection-specific Stimulations 
 

One caveat of optogenetic activation of axon terminals is the potential to elicit back-propagating 

action potentials (APs)191,192. These APs travel “backwards” along the axon, eventually reaching 

the soma of the neuron. There, these APs could stimulate the axon initial segment and thereby 

elicit new APs, or lead to dendritic release of BDNF193. As neurons can heavily collateralize their 

axon, this would lead to neurotransmitter release at other synapses than the intended one. Thus, 

there is the danger to falsely attribute a behavioral effect to a specific synapse when performing 

projection-specific optogenetic experiments.  

Another caveat of projection-specific manipulations is the potential to influence opsin-expressing 

fibers that merely travel through the illuminated area under the optic fiber, but do not actually 

synapse in that target region. Ultimately, it could be the manipulation of these passing fibers that 

elicit the observed behaviors, and not the targeted synapses. 

In order to control for both of these issues, I modified previously reported control 

experiments174,184. In brief, the idea is to first pharmacologically block local glutamatergic 

signaling at the target site and subsequently perform projection-specific optogenetic experiments. 

This is only possible in GABAergic target regions, such as the CeA or the NAcc, as for example 

in cortex, such a strategy would certainly lead to a very strong modification of local processing. 

Thus, I implanted opto-fluid cannulas, which allow the sequential insertion of a liquid-injector 

followed by insertion of an optic fiber (see Methods). First, I bilaterally infused the CeA or the 

NAcc with NBQX (5 mg/ml, 150 µl per side), then inserted the optic fibers and after an hour 

tested the animals in the feeding task described in Chapter 2.3.6. 

I could confirm that back-propagation of terminal stimulation as well as activation of fibers of 

passage was limited since behavioral effects were potently disrupted upon blocking glutamatergic 

transmission within the target region (Figure 29a,b).  

This important control experiment, together with the fact that pIC→CeA and pIC→NAcc 

manipulations were markedly different, suggests that the projection-specific experiments indeed 

measured the influence of the targeted synapses. 
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Figure 29. Control experiment shows that back-propagating action-potentials do not cause 
feeding interruption. a) Opto-fluid cannulas were bilaterally implanted over the CeA to test if 
feeding interruption is caused by glutamate release of insular terminals. Indeed, blocking 
glutamate signalling within the CeA with the AMPA-Antagonist NBQX (5 mg/ml) abolished the 
effect mediated by optogenetic stimulation (n = 4 mice, two-tailed paired t test, t = 9.162, df = 3, 
**p = 0.0027). b) I applied the same strategy for the pICNAcc pathway and bilaterally infused 
NBQX 1 h prior to optogenetic stimulation during feeding. Again, blocking AMPA-Receptors 
was sufficient to abolish the feeding interruption (n = 3 mice, two-tailed paired t test, t = 8.668, 
df = 2, *p = 0.0131). This suggests that interruption of feeding is not mediated by passing fibers 
expressing ChR2 or by back propagation of action potentials, but by monosynaptic glutamate 
release from pIC terminals in the CeA and NAcc. Panels a) and b) are adapted from my 
publication171 as permitted by the author reuse rights of Nature Springer. 
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3 DISCUSSION 

By performing comprehensive anatomical and physiological circuit analyses in mice, I here 

provided a whole-brain connectivity map for the entire IC and defined a role for the pIC in 

influencing aversive states and regulating behavior via top-down projections to subcortical brain 

regions.  

3.1 Connectivity of the Mouse Insular Cortex 
 

In this study, I mapped the inputs and outputs of the anterior, medial and posterior IC of the mouse 

to generate a whole-brain IC connectome. All IC subdivisions are broadly connected to many 

functionally diverse parts of the brain, with a substantial degree of intra-insular cross talk. Each 

subdivision is a multi-modal hub and might process multiple aspects of bodily information and 

internal state. 
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Figure 30. Cartoon of the broad connectivity scheme of aIC, mIC and pIC with key brain 
structures. Red arrows indicate projections from IC; green arrows indicate inputs to IC. The 
weight of the arrows is proportional to % of total input/output. 

 

In Figure 30, the major input and output pathways are summarized for the aIC, mIC and pIC. The 

most striking feature of the aIC was its strong projection to the ventro-lateral striatum including 

NAc and CPu. In addition, it connected reciprocally with motor cortex and received less sensory 

information compared to mIC and pIC. Its thalamic connectivity is dominated by MD, a higher-

order polymodal association nucleus of the thalamus and by CM, the main motor-output of the 

thalamus. Regarding the connectivity with the amygdala, it is clearly BLA biased. This 

aICBLA projection has been functionally investigated and shown to elicit appetitive 

behaviors9. The mouse – and presumably every other mammalian - brain is hard-wired in such a 

way, that sweet taste is represented in the territory of aIC, and thus elicits appetitive responses. 

There is evidence that upon changing the valence of a stimulus, e.g. after conditioned taste 

aversion, the representation of a previously appetitive taste shifts towards more caudal parts of 

the IC, closer to the “bitter spot”73,194 and is avoided. As the primary gustatory cortex is embedded 

within the insular cortex, it is hard to disentangle taste and hedonic value coding. My tracing data 

suggests a more general role of the aIC than a reduction to a simple “sweet cortical field”148, as 

intra-insular projections from the mIC and pIC, which represent diverse bodily but also gustatory 

and olfactory information, provide a major input source. I therefore hypothesize that positively 
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valenced stimuli, including those that are innately appetitive, are mapped to the aIC, which is then 

providing a “go” signal through its down-stream projections. An open question is how aversive 

information routed from the pIC via the mIC to the aIC is processed. One possibility is that once 

an aversive stimulus has been detected in the pIC it prevents an appetitive response in the aIC – 

i.e. an antagonizing mechanism.  

In contrast, the mIC received strong olfactory and facial somatosensory inputs, displayed a strong 

bilateral connectivity with the amygdala and showed the strongest connection to memory-related 

cortex (ENT, PRh, ECT). The gustatory cortex is fully embedded within what I defined as mIC 

and comprised of the dysgranular subdivision of my mIC definition. Indeed, recent studies 

demonstrated a crucial role of the mIC in conditioned taste aversion (CTA)73. These findings 

indicate that the mIC could represent a learning hub of multiple aspects of consummatory 

behavior, such as taste- and texture processing of food, palatability, taste aversion or preference. 

Potentially, this could extend past consummatory behaviors, into social interaction, social 

hierarchy or mating behavior. 

The connectivity of the pIC is dominated by sensory cortical regions providing somatosensory, 

olfactory and auditory information. Regarding subcortical connectivity, the pIC is heavily 

connected to the thalamus, the amygdala and the ventro-lateral striatum. Regarding thalamic 

innervation of the pIC, it is reciprocally connected to the ventral-posterolateral complex, 

including the VPM, VPMpc and the VPL. These nuclei process somatosensory information of the 

face and oral cavity as well as gustatory and visceral information195 and project topographically 

organized to the mIC and pIC, specifically to the granular- and dysgranular layers of the IC157. 

Further, the pIC is connected to the medio-dorsal nucleus of the thalamus, a higher-order nucleus 

that is involved in memory and cognitive tasks112. Clearly, the pIC is well equipped to assess the 

quality and valence of tastes, but its projections to limbic structures, combined with the results of 

my optogenetic manipulations suggests a broader role in general aversive processing. 

Interestingly, my correlation and clustering analysis indicates that the connectivity of mIC is more 

similar to the connectivity patterns of pIC than of those of the aIC. There are some interesting 

differences between mIC and pIC, however, for example, the innervation of the pBLA as 

discussed below.  

Inhibitory interneurons across IC displayed very similar connectivity compared to excitatory 

pyramidal neurons. This is complemented by my correlation and hierarchical cluster analysis and 

is in agreement with rabies tracings performed in excitatory and inhibitory neurons of different 

brain regions113,196–198. This high similarity of input quantities between excitatory and inhibitory 

neurons is not sufficient to conclude that those populations receive the same information from the 

same neurons. For this, one would need to perform dual monosynaptic rabies tracings from 

excitatory and inhibitory neurons within the same animal. Due to the leakiness of current rabies 
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helper-constructs and the intrinsic connectivity between excitatory and inhibitory neurons of the 

cortex, this would make a validation of the starter neurons impossible and the results difficult to 

interpret. Alternatively, one possibility would be to identify the molecular identities of input 

neurons, e.g. by in-situ hybridization or immunohistochemistry performed on input neurons, to 

dissect the possibility of both feed-forward inhibition and disinhibition which could arise from 

parallel but antagonistic circuits.  

 

IC-amygdala Connectivity 

All three subdivisions of the IC are reciprocally connected to the amygdala. While the inputs from 

amygdala are more uniform and seem to broadcast information, the projections from IC to the 

amygdala differ strongly. For example, aIC receives similar inputs compared to mIC and pIC, but 

it only projects to the LA and aBLA. The connectivity profiles of mIC and pIC with the amygdala 

shows strong similarities, however, the pIC is exclusively projecting to the pBLA and APir. A 

more detailed functional dissection of the IC-amygdala circuitry is required in order to better 

understand both, the amygdala and the insular cortex.  

The pIC innervates the aBLA in a very similar manner to the mIC, however, it is also uniquely 

innervating the pBLA. This posterior part of the BLA has been shown to preferentially harbor 

neurons expressing the genetic marker Ppp1r1b+, which have been investigated in negative 

valence processing199. In this study, I characterized the pIC→CeA pathway, however, an 

interesting target to understand pIC’s role in aversive state processing might lie in the pICpBLA 

pathway. 

 

IC-striatum Connectivity  

The IC-striatum circuitry separates the IC into two parts, the aIC, which very strongly projects to 

the striatum, and the mIC and pIC, which innervate the striatum much weaker. As the ventral 

striatum is implicated in monitoring, executing and learning goal-oriented behaviors168, the aIC 

has a prime position to modulate and drive this system. This could indicate that the aIC is indeed 

the major output region of the insular cortex40,77. 

For the mIC and pIC, I could observe the innervation of distinct striatal patches in the nucleus 

accumbens by IC axons (see Figure 7b, mIC). It would be interesting to characterize which 

dopamine-receptor expressing medium-spiny neurons receive insular glutamatergic innervation 

and where these neurons in turn project to.  

Another interesting target of the insular cortex is the IPAC, which stands for interstitial nucleus 

of the posterior arm of the anterior commissure. All three subregions of IC densely innervate the 

IPAC, whose function is not well understood to date. Regarding that the IPAC shares many 
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connections with regions the IC also connects to, such as the CeA, BNST, LH, VPMpc, APir, it 

is speculated that this region is involved in autonomous control and consummatory 

behaviors200,201. 

Taken together, I here comprehensively mapped the brain-wide connectivity of three IC 

subdivisions spanning the entire mouse insular cortex. In this study, I confirmed that the insular 

meso-scale connectome of the mouse did not differ from findings obtained from rats. However, 

for the first time, the strength of the connections were quantitatively assessed and provided as a 

comprehensive resource for future studies. 

 

3.2 Functional Characterization of pIC 
 

3.2.1 Global pIC Manipulation  
 

In this study, my co-workers and I revealed how the posterior part of the IC mediates aversive 

emotional and bodily states and exerts top-down regulation of ongoing behavior via subcortical 

target regions. While human imaging studies have suggested a role for the IC in processing 

negative emotions, such as anxiety or low mood in depression202,203 my study is the first, to 

provide a comprehensive description of neuronal circuit mechanisms that underlie diverse 

aversive states within the pIC using mice as a model organism. My findings underline the extent 

to which the pIC should be regarded as a multimodal hub. 

A previous study has already shown that optogenetically stimulating pIC is avoided by mice148, 

but the authors interpreted this as avoidance of a bitter taste sensation that has been artificially 

created. With the present results, I extended these findings beyond gustation. Taste is an extremely 

important and evolutionarily old sense that guides animals to consume non-toxic food204. 

Especially the bitter taste is a potent and innate warning signal to mammals. However, in my 

recent publication, my colleague Nejc Dolensek has shown with 2-photon imaging that single 

neurons of the pIC track not only bitter, but also other acute aversive stimuli and more importantly 

aversive states171. Thus, a bitter taste is recognized by pIC as a salient aversive stimulus that 

mediates a hard-wired avoidance. In addition, our findings suggest that the insula monitors 

visceral and facial information and pIC neurons fire upon detection of a deviant signal. How these 

thresholds are dynamically tuned and which roles brain-wide oscillations and brain states play are 

exciting open questions.  

At least experimentally with optogenetics, stimulating the pIC has the capacity to entrain 

behavioral states, as shown with my sustained anxiety experiment (see Figure 15), or when I 
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optogenetically inhibited the insula in the closed arms of the elevated-plus maze, where it 

increased exploratory behavior. Already in pilot experiments, I observed an increased breathing 

rate and a tense body posture upon optogenetic stimulation of the pIC, which I confirmed by 

anaesthetized measurements (Figure 10). As the pIC has been implicated in sensing and 

modulating cardiac function46,49, I was surprised to not find effects on the heart rate in anesthetized 

mice. A study, that could elicit tachycardia, electrically stimulated the rat pIC in a closed-loop 

fashion synchronized with the R wave48. Thus, the reason why I could not measure an effect on 

heart rate could be due to the lack of synchronization of the optogenetic stimulation with the R 

wave. As derangements of insular functions, e.g. by stroke, seizure or stress, can induce cardiac 

arrest46, this could explain, why an animal died after optogenetic stimulation of the pIC.  

The fiber photometry measurements in the anxiety-like tasks revealed, that the pIC increases its 

bulk activity when the mice are in the corner of the closed arms. As reported in Figure 11 and 

Figure 12, pIC activity increases while the animal is retreating from the open arms and then 

reaches its peak in the corner of the maze. In contrast, when already in the closed arm, the bulk 

activity would start to decrease if the animal was about to start an exploration and would reach a 

local minimum when finally reaching the end of an open arm. Together with the optogenetic 

manipulation of pIC, I conclude that the insula is a key structure in the creation and modulation 

of a brain-wide anxiety state.  

Of note is, that some of the above mentioned conclusions dwell on a bilateral artificial activation 

or inhibition of hundreds or thousands of pIC pyramidal neurons via optogenetics. Obviously, this 

approach is crude and needs to be interpreted accordingly. It is highly likely, that we find an 

organized topographical representation of maybe even antagonistic processes within the pIC. 

Nevertheless, driving the entire pIC produces a net outcome that results in aversive reactions. As 

some pIC neurons still respond to sucrose, it is not solely processing negatively valenced 

stimuli30,171,205. Yet, this was a first step to characterize the global function of the posterior insular 

cortex and the mixed behavioral effects I observed suggest that there are multiple different circuits 

and regionalized specializations within the pIC.  

3.2.2 pIC-to-Central Amygdala Pathway 
 

The aversive behaviors observed upon optogenetic stimulation of the pIC were almost fully 

captured by selectively activating pIC→CeA. In addition, inhibiting this projection was sufficient 

to reproduce the anxiolytic effects of global pIC inhibition in the real-time EPM experiment. 

Overall, optogenetic activation of this pathway could interrupt any ongoing behavior. It remains 

unclear, if this interruption is a stimulation artefact or the bona fide role of this projection. In-

vitro electrophysiological studies have shown that IC innervates PKC-δ-, 5ht2a- and SOM-

positive interneurons of the CeL181,182,206, which are known to have antagonistic effects176. 
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This suggests that there exists a further segregation of the CeA-projecting population within the 

IC (see Figure 31).  

In this study, I optogenetically activated all CeL as well as CeM projecting terminals - artificially 

driving antagonistic circuits. The net outcome of this manipulation resulted in a general 

behavioural inhibition, but in order to better understand the circuit we need to be more specific in 

future studies, e.g. targeting only those insular neurons projecting to PKC-δ -positive neurons, 

which in turn project to the BNST. In addition, it would be very interesting to investigate when 

these CeA-projecting pIC neurons are naturally engaged, for example with projection-specific 

fiber photometry or 2P imaging. 

 

 

Figure 31. Open questions remaining about the IC-CeA connectivity. 1) Are there segregated IC 
subpopulations projecting to the distinct CeA subpopulations? 2) If so, how do these IC neurons 
differ in their input patterns and how does this input compare to the entire IC? 3) Is there a 
preferential innervation from IC to BNST, PAG, PBN or LH-projectors of the CeA? 

 

During the course of my project, three studies were published which also investigated the 

pIC→CeA pathway using optogenetic manipulations. Schiff et al. investigated the role of 

pIC→CeA in the establishment of behavioural responding to cues, which predict appetitive or 

aversive tastes in a go/no-go head-fixed task. They showed that the IC–CeL pathway is necessary 

for establishing the learned and anticipatory responses reinforced by tastants and that activation 

of this pathway supresses licking behavior206. However, the authors acknowledge the same 

challenge, namely, that there are multiple antagonistic cell-types within the CeA that are 

innervated by the IC. Thus, it is unclear, if the activation experiments recruit multiple functions 
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of this pathway. Nevertheless, this study and my findings complement each other and are in 

agreement, that this pathway mediates aversive information. 

Two months later, Wang et al. investigated the role of two projections from the “sweet” and 

“bitter” cortical fields, i.e. roughly corresponding to my aIC and pIC definition, to the BLA or the 

CeA, respectively9. There, they confirmed my RTPA findings, where activation of the pIC→CeA 

is avoided by the mice. Further, they could show that the coupling of drinking a neutral liquid 

(water) with the stimulation of pIC→CeA strongly suppressed the licking responses. Then, they 

activated the pathway when providing the mouse with sucrose, which equally reduced the licking 

response of the mice. This goes hand in hand with my results and those of Schiff et al., which 

show that optogenetic stimulation of the entirety of pIC→CeA fibers strongly suppresses ongoing 

behaviors.  

Shortly before we published my results in August 2019, Berret et al. investigated pIC→CeA in 

the context of threat learning207. They found a reduction of acute freezing responses upon 

optogenetically inhibiting pIC→CeA, but no effect on memory retrieval. Interestingly, they also 

describe and quantify stimulation-induced behaviors of this pathway, but at 40 Hz stimulation 

frequency for 10 s. In my hands, this would have certainly led to seizure-like behavior. 

Shockingly, shortly before I printed this thesis, it turned out, that the first author falsified the 

freezing data, which is very unfortunate and caused us some headache, as we were not seeing the 

same results. Nevertheless, all three studies are in agreement with my findings, that the posterior 

insular cortex plays a crucial role in evaluating aversive events. Again, all three studies including 

my own data face the same problem of missing specificity, that the pIC innervates multiple types 

of antagonistic CeA neurons. Future studies need to carefully dissect this pathway and 

characterize with greater specificity what the functional role of each sub population could be. This 

will probably uncover appetitive reactions as well, as pIC connects to the 5ht2a-positive neurons 

of the CeA182. 

3.2.3 pIC-to-Nucleus Accumbens Core Pathway 
 

In this study, I functionally analyzed the projection from the posterior insula to the core region of 

the nucleus accumbens. Optogenetic manipulation of this projection implied a role in 

consummatory behaviors, namely the interruption of drinking and feeding, without affecting 

hunger. Manipulation of this pathway did not induce avoidance in the RTPA, affect social 

interaction, and had no effect on breathing- or heart rate. Interestingly, inhibition of this projection 

could partially reverse the anorexic effects of LiCl-induced malaise. These findings provide 

evidence, that there is a specialized population of neurons that modify consummatory behaviors 

upon detection of an averse bodily state, like visceral sickness. As the rescue from malaise-

induced anorexia was not complete, it suggests that this pathway is complemented by other 
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circuits, which I hypothesize to be subcortical structures like the NTS, PBN, CeA, BLA and the 

LH– all structures, the pIC is connected to as well. Here, it would be interesting to elucidate the 

degree of collateralization of the NAcc-projectors with viral tracing techniques. Then, inhibition 

of the cell bodies of NAcc-projectors instead of the axons terminating in the NAcc, could clarify 

to which extent the anorexic function is mediated via these neurons. Further, better insights could 

be gained by measuring the physiological activity of this population, either with photo-tagged 

electrophysiological recordings, or with fiber photometry of retrogradely expressed GCamP 

within the pIC. This would yield important information of further physiological and naturally 

occurring stimuli that engage this pathway.   

In this study, I chose to target my optic fibers to the posterior part of the nucleus accumbens core. 

There is evidence that there exists a positive-to-negative valence gradient within the nucleus 

accumbens from anterior-to-posterior, respectively179. Infusion of opioid agonists (µ-, δ-, or κ-

opioid receptor antagonists) into the posterior part of the nucleus accumbens shell reduced food 

intake, which points to the same direction as my current findings. Therefore, it would be 

interesting to repeat the projection-specific experiment, but targeting a more anterior region of 

the nucleus accumbens and comparing the effects. 

The nucleus accumbens is mainly comprised of medium-spiny GABAergic neurons (MSNs) 

which express either the D1- or D2-dopamine receptors. O’Connor et al. showed that activating 

D1-expressing MSNs of the accumbens projecting to the lateral hypothalamus can interrupt 

licking of sucrose180, which suggests, that the effects I observed are mainly mediated through the 

pIC→D1R-MSN→LH circuit. Nevertheless, a rabies tracing study, that analyzed brain-wide 

monosynaptic inputs to D1- and D2-receptor expressing MSNs of the accumbens, showed, that 

D2-MSNs are also innervated by the insular cortex111. This leads to the possibility that there exists 

a further separation of the NAcc-projectors in the pIC, with different functional roles.  

From human imaging studies, we know that anorexic patients display an increased grey matter 

volume of the right pIC208. This could point to chronic over-activation of the pIC, including the 

NAcc-projector population described in this thesis. Therefore, an interesting experiment would 

be to chronically stimulate these neurons, e.g. by expressing the stimulating DREADD hM3qd124 

and chronically supplying CNO with the drinking water. This could result in plastic changes 

throughout the feeding circuits and create a novel animal model of anorexia.  

The IC-NAc pathway has also been studied in the context of drug addiction, focusing on the 

anterior insula and anterior nucleus accumbens37,209–212. These studies concluded that the 

aIC→NAcc pathway is positively associated with drug seeking. To my knowledge, there is no 

study investigating the role of pIC→NAcc in addiction, but extrapolating from my findings, this 

pathway should have opposite function to aIC→NAcc. I speculate that the pIC→NAcc pathway 

is engaged when high doses of drugs start lose their pleasantness, i.e. during stimulant-induced 
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tachycardia and vasoconstriction. Therefore, this pathway could harbor the therapeutic potential 

to reduce drug-use, but also overeating. 

Taken together, my results show that pIC→NAcc lacks the anxiety and aversion-related effects 

that I observed for pIC→CeA and can powerfully interrupt ongoing feeding and sucrose 

consumption without affecting the motivation to eat or drink.  

 

3.3 Limitations of the study 
 

Anatomy study 

Although this investigation sought to systematically compare brain-wide IC connectivity, there 

are limitations we need to consider. Firstly, despite there being good separation between the bulk 

of the starter cell populations into my defined zones, there is a small proportion of overlap that 

may influence the connectivity. This only affects the results when comparing with mIC results, 

as aIC and pIC starter populations were entirely separated. Contamination into non-IC regions 

may also influence the results we observed, however I did not find a correlation between the 

amount of non-IC starter cells in a specific brain region and an increase in connectivity to its 

known targets (data not shown). Displaying data as percentage of total comes with the caveat that 

smaller regions are underrepresented, for example the dorsal raphe nucleus only provided below 

0.5% of the total inputs, but consistently projected to the IC, as I confirmed post-hoc. Thus, 

functional implications cannot solely be drawn from the number of input cells. The alternative, 

using density analysis, underrepresents larger areas, such as cortical areas. Finally, counting 

labelled fiber presence after AAV infection to detect the output strength does not directly 

represent synaptic connectivity. Recent viral constructs coding for a fluorescent protein tagged to 

a synaptic marker (e.g. AAV-DIO-mRuby-T2A-synaptophysin-eGFP213), or exploiting the trans-

synaptic infection of AAV1-Cre214 would overcome this limitation. 

In addition, given my approach to trace from all layers of IC, I could not further differentiate finer 

differences of connectivity patterns of the granular, dysgranular and agranular parts of the IC. For 

instance, studies performed in hamsters and rats showed a further distinction of projections when 

comparing the dorsal and ventral division of aIC215–218. 
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Functional study 

Optogenetic excitation might engage circuits in an artificial manner, eliciting behaviors that lie 

outside of the naturally occurring repertoire123. The 1 s ON and 4 s OFF pattern that I used for 

optogenetic stimulation was needed to prevent overstimulation, but it does not necessarily reflect 

a physiological firing pattern of pyramidal IC neurons. Different populations of the pIC might 

favor different modes of firing and entraining an entire brain region is poised to cause a mix of 

effects. In addition, one has to consider that cumulative plastic effects could be induced by 

subsequent stimulations. This is certainly the case for acute states lasting few minutes, but might 

also long-lastingly change synaptic properties (such as LTP and LTD), thus potentially modifying 

baseline behavior of the animals.  

For the projection-specific experiments, there are two main challenges. First, it has been shown 

that optogenetic stimulation of axon terminals can elicit back-propagating action potentials. These 

then stimulate the axon-initial segment of the cell body, which in turn causes an action-potential 

down the axons. If the neuron sends collateral fibers to other regions, the synapse specificity of 

projection-specific activation might be lost or contaminated. Second, the laser light leaving the 

optic fiber might activate passing ChR2-positive fibers from the pIC that target thalamic or mid- 

and hindbrain nuclei. Thus, the observed behavioral effects could actually stem from activating 

those fibers rather than those terminating in CeA or NAcc.  

By performing a control experiment (see 2.3.11, Figure 29), I could exclude that back-

propagating action potentials or fibers of passage cause the observed effects of feeding 

interruption. It would have been interesting to also test if other behavioral effects, such as RTPP, 

breathing rate increases or anxiogenic effects hold true in such a control experiment, but this was 

out of the scope of this study. 
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4 MATERIALS AND METHODS 

4.1 Animals 
 

Mice between the age of 2–6 months were used in accordance with the regulations from the 

government of Upper Bavaria. CamKIIα-Cre (B6.Cg-Tg(Camk2a-cre)T29-1Stl/J) mice were 

employed for both retrograde rabies tracings and anterograde axonal tracings. Retrograde rabies 

tracings were also performed in GAD2-Cre (Gad2tm2(cre)Zjh/J) mice. Both male and female 

mice were used (Table 1). As controls for tracings, I employed male C57Bl6\NRj mice. Male 

C57BL/6NRj mice were used for all optogenetic experiments. Mice that underwent behavioral 

testing were housed in pairs of two. All mice were kept on an inversed 12 h light/dark cycle 

(lights off at 11:00 am). Mice were provided with ad libitum access to standard chow and water 

except for the sucrose preference test and quinine aversion test, where mice were water-

deprived for 24 h. For the feeding interruption test, the TMT test and the feeding under malaise 

test, mice were acutely food-swpeicws for 24 h prior to the feeding tests. 
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CamKIIa-Cre Distance from Bregma      

Target 

site 
ID 

Most 

anterior 
Median 

Most 

posterior 

Starter 

cell no. 

Total input 

cells 
Ratio Gender Hemisphere 

aIC 

872 2.77 1.77 0.8 2278 12440 5.46 f right 

461 2.4 2.2 1.6 1444 18080 12.50 f right 

557 2.45 2.09 0.73 15464 31916 2.06 f left 
          

mIC 

1323 1.7 1.21 0.85 3896 47019 12.07 m right 

460 1.3 0.7 0.2 2921 45345 15.50 f left 

16 1.2 0.7 0.13 2564 40514 15.80 f right 
          

pIC 

1114 1.25 -0.6 -2.15 2591 10981 4.24 f right 

175 0.37 -0.11 -1.43 1140 20464 17.90 f right 

972 0.3 -0.2 -0.7 5379 10943 2.03 f left 

 

 

 

 
     

Gad2-Cre Distance from Bregma [mm]      

Target 

site 

Mous

e ID 

Most 

anterior 
Median 

Most 

posterior 

Starter 

cells 

[no.] 

Total input 

cells [no.] 
Ratio Gender Hemisphere 

aIC 

1146 2.33 1.93 1.09 1672 5157 3.08 m right 

1147 2.65 2.2 1.53 1807 14390 7.96 m right 

1225 2.65 2.2 1.41 1847 5206 2.82 m right 
          

mIC 

1163 1.53 0.13 -0.83 2292 18498 8.07 f right 

1164 1 0.4 -0.35 1190 10951 9.20 f right 

1161 1.2 0.25 -0.95 1584 25240 15.93 m right 
          

pIC 

1162 -0.1 -0.8 -1.34 2020 16166 8.00 f right 

1221 0.13 -0.59 -1.43 912 13316 14.60 f right 

1224 -0.11 -0.7 -1.2 1027 6075 5.92 f left 

Table 1. Subjects of the anatomy study.  

 

 



Chapter 4: Materials and Methods 

   75 

4.2 Viral constructs 
 

For retrograde rabies and axonal AAV tracings as well as for in-vivo optogenetic experiments, 

the following viral constructs were obtained from the UNC Vector Core (Gene Therapy Center, 

University of North Carolina at Chapel Hill, USA): helper viruses for retrograde rabies tracings: 

AAV2/8-EF1a-FLEX-TVAmCherry (4.2x1012 vg/ml)  and AAV2/8-CA-FLEX-RG (2.5x1012 

vg/ml). For axonal AAV tracings: AAV2/5-EF1a-DIO-EYFP (5.6x1012 vg/ml). For optogenetic 

experiments: AAV2/5-CaMKIIa-hChR2(H134R)-EYFP (6.2x1012 particles/ml), AAV2/5-

CaMKIIa-eNpHR3.0-EYFP (5.2x1012 particles/ml), with AAV2/5-CaMKIIa-EYFP (4.3 x1012 

vg/ml) as control virus. For fiber photometry, AAV9.CamKII.GCaMP6s.WPRE.SV40 (≥ 1×10¹³ 

vg/mL) was obtained from Addgene (viral prep # 107790-AAV9). For DREADD experiments I 

used AAV8-hSyn-DIO-hM3D(Gq)-mCherry (4x1012 GC/ml, Addgene 44361) , AAV8-

CamKIIa-hM4D(Gi)-mCherry (2.64x1012 GC/ml, Addgene 50477), and AAV2/5-CaMKIIa-

EYFP (4.3 x1012 vg/ml, UNC Vector core).  For retrograde rabies tracings, I used G-deleted 

EnvA-pseudotyped rabies-GFP (RABV∆G-GFP(EnvA), 3x108 ffu/ml) that was kindly provided 

by K.K. Conzelmann (Max von Pettenkofer-Institute & Gene Center, Ludwig-Maximilians-

University, Munich).  

4.3 Stereotaxic surgeries 
 

I applied metamizol (200 mg/kg, s.c.) for peri-operative analgesia and carprofen (s.c., 5 mg/kg, 

once daily for 3 days) for post-operative pain care. Anaesthesia was initiated with 5% isoflurane 

and maintained at 1-2.5% throughout the surgical procedure. Mice were firmly secured in a 

stereotaxic frame (Stoelting), placed on a heating pad (37 °C) and I applied eye ointment 

(Bepanthen, Bayer). For viral injections, I pulled glass-pipettes and attached them to a microliter 

syringe (5 µL Model 75 RN, Hamilton) using a glass needle compression fitting (#55750-01, 

Hamilton). The syringe was then mounted onto a syringe pump, which was held by the stereotaxic 

frame, controlled by a microcontroller (UMP3 + micro4, WPI).  

For monosynaptic retrograde rabies tracings, I first unilaterally injected 100 – 150 nl of a 6:1 

(RG:TVA) mixture of helper-viruses (see viral constructs) into the aIC, mIC or pIC. 

The following coordinates (given in mm from Bregma) were targeted: for anterior IC (aIC): AP: 

+1.9 mm, ML: + or - 2.7 mm, DV: -3.0 mm. For medial IC (mIC): AP: 0.7 mm, ML: + or – 3.7 

mm, DV: -4.0 mm. For posterior IC (pIC): AP: -0.5 mm, ML: + or – 4.05 mm, DV:- 4.0 mm. 

I sealed the trepanation with bone wax and sutured the skin. After 3-4 weeks, 350 nl of SAD∆G-

eGFP(EnvA) were injected into the same coordinates as described above. Mice were sacrificed 7 

days after infusion of the rabies virus.  
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For axonal AAV tracings in CamKIIa-Cre mice, AAV2/5-EF1a-DIO-eYFP (80-100 nl) was 

unilaterally injected into either the aIC, mIC or pIC coordinates. Mice were sacrificed four weeks 

after the AAV injections. 

For in-vivo optogenetic experiments, I bilaterally injected 150 nl of virus at 80 nl/min into the 

pIC of C57BL6\NRj mice (distances from Bregma: AP: -0.45 mm, ML: ± 4.05 mm, DV: - 4.05 

mm). Then, custom made optic fibers (200 μm core, 0.22 NA, 1.25 mm zirconia ferrule from 

Thorlabs) were secured with acrylic glue and dental cement 0.5 mm above the injection site. 

For fiber photometry, 200 nl of AAV9-CamKIIa-GCaMP6s virus was unilaterally injected into 

the pIC (coordinates: AP: -0.45 mm, ML: ± 4 mm, DV: - 4 mm) and a optic fiber (custom-made, 

200 µm, 0.48 N, glued to zirconia ferrules (2.5mm) was secured 0.2 mm above the injection site. 

The optic fibers were secured using acrylic glue. 

For CTB double labelling within the same animals, three C57BL/6NRj mice were unilaterally 

injected with 150 nl of a 0.5% CTB-555 solution (in PBS) into the Central Amygdala (AP: -1.3 

mm, ML: ± 2.8 mm, DV: -4.7 mm) and 300 nl of a 0.5% CTB-488 solution into the Nucleus 

Accumbens core (AP: +0.9 mm, ML: 1.35 mm, DV: -4.7 mm). Mice were sacrificed 7 days after 

CTB injections. 

For projection-specific optogenetic experiments, I bilaterally injected C57BL/6NRj mice with 

150 nl of virus into the pIC as described above, but optic fibers were bilaterally implanted over 

the Central Amygdala (CeA) (AP: -1.3 mm, ML: ±2.8 mm, DV: -4.3 mm) or above the Nucleus 

Accumbens core (NAcc) (AP: +0.9 mm, ML: ±2.05, DV: -3.9 mm, 10° outward angle in the 

coronal plane). 

For backpropagation experiments, I bilaterally injected 150 nl AAV-CamKIIa-hChR2(H134R)-

EYFP into the pIC as described above and implanted opto-fluid cannulas (iOFC_M3_320/430 

and DiOFC_L_ZF_2.8_320/430, Doric lenses) over the CeA (AP: -1.3 mm, ML: ±2.8 mm, DV: 

-4.0 mm, with optic insert at DV: -4.3 mm or infusion insert at DV: -4.7 mm) or NAcc (AP: +0.9 

mm, ML: ±1.4 mm, DV: - 4.0 mm, with optic insert at DV: -4.2 mm or infusion insert at DV: -

4.6 mm). 

For DREADD experiments. Mice were bilaterally injected with 200 nl of virus per hemisphere 

into the pIC as described above. 

 

 

 

4.4 Histology 
 



Chapter 4: Materials and Methods 

   77 

Animals were anesthetized with ketamine/xylazine (100 mg/kg and 20 mg/kg BW, respectively, 

Serumwerk Bernburg) and perfused intra-cardially with 1x PBS followed by 4% 

paraformaldehyde (PFA) in PBS. Brains were post-fixed for an additional 24 h in 4% PFA at 4 

°C. Then, brains were embedded in agarose (3% in Water) and 70 µm coronal sections were cut 

with a VT1000S vibratome (Leica Biosystems). We collected all sections sequentially in single 

wells in 96-well plates. Every second section, ranging between approximately +2.8 to -6.2 mm 

from Bregma, was mounted on glass slides using a custom-made mounting medium containing 

Mowiol 4-88 (Roth, Germany) as described elsewhere219 with 0.2 mg/mL DAPI (Sigma-Aldrich, 

MO). Images of the coronal sections were acquired with a modified epifluorescent microscope 

equipped with a controllable stage (Ludl) orchestrated by µManager 2.0 beta and stitched with 

the Grid/StitchCollection Plugin in Fiji (ImageJ). I determined the placement of the optic fibers 

as well as the spread of the viral infection by referencing a mouse brain atlas (Franklin & Paxinos, 

4th edition56). For the tracing studies, only animals with highly specific injections targeted at IC 

were included in the anatomy analysis. For optogenetics, only animals with a correct fiber 

placement and a viral spread confined to pIC were included in the study. 

 

4.5 Image Processing and Data Analysis of Tracings 
 

Starter volume detection 

Both RV and AAV starter cell volumes were determined semi-automatically using CellProfiler 

3.0.0220. For each image, a set of ROIs were defined for the insular cortex and adjacent regions. 

For RV images, rabies positive cells were detected in the eGFP image, and the corresponding cell 

objects masked over the mCherry (TVA) image. mCherry signal was then detected and back-

related to the eGFP+ cell. The individual double-positive cells were traced through the z-stacks 

and related to their corresponding ROI. For AAV images, eYFP+ cells bodies were segmented 

and related to their corresponding ROI.    

 

Rabies analysis 

Images of coronal sections were pre-processed with the trainable Weka segmentation plugin for 

Fiji. The segmented GFP+ cells were quantified with a custom-written Fiji macro script. I created 

a collection of regions-of-interest (ROIs) for every coronal section guided by a mouse reference 

atlas. Rabies-positive neurons between +2.8 mm and -6.2 mm from Bregma (anterior-posterior) 

were counted and anatomically annotated (Figure 32). The data is reported as cell counts 

normalized to the total cell counts (% of total input). TVA expression can be leaky (see Do et al., 
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201657; Watabe-Uchida et al., 201258), so starter cells might be confused with input cells. In 

control experiments that I performed (injection of AAV-FLEX-TVAmcherry and AAV-FLEX-

RG followed by RABV∆G-GFP(EnvA) into C57BL6/NRj animals and injection of AAV-FLEX-

TVAmCherry followed by RABV∆G-GFP(EnvA) into CamKIIα-Cre mice), I observed a few 

dozen to hundred GFP+ cells around the injection site. No long-range inputs have been observed. 

As we were only interested in long-range connectivity and not in local microcircuitry of the insula, 

we excluded all input cells of IC and claustrum between -0.11 to -1.22 from analysis. 

 

 

Figure 32 Whole-brain analysis pipeline to detect and register rabies+ input neurons. First, the 
perfused brain was coronally sectioned and stained with DAPI. Next, epifluorescent images were 
acquired in the DAPI and GFP channel. The resulting images of single coronal sections were pre-
processed and binarized with a supervised machine learning algorithm. This binarized image was 
quantified, based on regions of interest (ROIs) that were manually drawn on the DAPI channel to 
match the Paxinons mouse brain atlas. 

 

Axonal AAV tracing analysis 

Coronal sections of axonal AAV tracings were acquired on a Leica SP5 confocal microscope. For 

each brain, I first visually determined the densest efferents outside insular cortex (usually VPMpc 

or Fundus of Striatum (IPAC)), and adjusted the acquisition settings to obtain a nearly saturated 

signal for this region. I acquired a single optical z-section of 10 µm thickness and positioned it in 

the middle of the coronal slice (z-axis). Every second brain section from +2.8 to -6.2 mm from 
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Bregma was acquired. Images were pre-processed with a hessian ridge detection as described 

elsewhere221. Briefly, this results in binarized images of the eYFP+ axons while eliminating 

background fluorescence.  These binarized images were quantified with Fiji Macro script that I 

produced. Similar to the rabies quantification, I used my custom-made ROI atlas synthesized from 

a mouse brain reference atlas and manually adjusted the ROIs for every coronal section (Figure 

33). I obtained area of the ROIs and the total pixel count per ROI. The Data is reported as “percent 

of total output”, which is the pixel count of a ROI normalized to the sum of all pixels identified 

to belong to axons. Additionally, I calculated the “percent innervation density”, which is the 

proportion of pixels covering the total area of a ROI, averaged across all sections, on which this 

ROI is present. I excluded passing fiber bundles (striatum, cerebral peduncles, anterior 

commissure, internal- and external capsules, pyramidal tract) from the analysis.  

 

 

Figure 33. Whole-brain analysis pipeline for AAV axonal tracings. First, the perfused brain was 
coronally sectioned (50 µm) and stained with DAPI. Next, a single 10 µm thick (z-axis) confocal 
image was acquired from the middle of the section (z-axis). Then, eYFP positive pixels were 
segmented with a hessian ridge-detection algorithm. These pixels were quantified in the same 
way as the rabies tracings. 

  

 

CTB double labelling analysis 
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 Images of coronal sections were acquired with an epifluorescent slide scanner, as described 

above. CTB positive cells were segmented using the trainable WEKA plugin as described for the 

rabies analysis, with separate classifiers for the 488 nm and 555 nm signal. I quantified the cell 

counts within the rostro-caudal extent of the insular cortex (AP: +2.45 mm to – 1.22 mm) using 

the same custom-written Fiji script as for the rabies analysis. Double-labelled cells were manually 

quantified with the Fiji cell counter plugin. 

 

4.6 Heart- and Breathing Rate Measurements in 
Anaesthetized Mice 

 

Anesthesia was initiated with 5% isoflurane and maintained at 1-1.5% during experiments. Mice 

were placed in a stereotaxic frame and heart rate and breathing rate were recorded with a 

MouseOx Plus oximeter (s-collar clip, shaved neck, Starr life sciences) while delivering bilateral 

optogenetic manipulations. For ChR2 expressing animals, this consisted of a 30 s baseline, 

followed by a 20 s stimulation epoch of 5, 10 or 20 Hz, 473 nm, 3-5 mW, 5 ms pulse width. 

Different frequencies were tested within the same animal after a 2 min break. For NpHR animals, 

we recorded a 30 s baseline, followed by a 2 min constant delivery of 593 nm light (12 mW). Z-

scores were calculated using the mean and SD from the first 20 s of the baseline recording. 

4.7 Behavioral Tests 
 

All mice were handled by the experimenters and habituated to tethering of the fiber optic patch 

cords for at least three days. All behavioral experiments were performed during the dark phase of 

the light cycle between 12:00 and 20:30. 

Stimulation-evoked behaviors 

Optogenetics: Animals were tethered to optic patch cords and placed in a behavioral arena 

(20x50x30 cm) with transparent plexiglas walls and recorded with a CMOS camera at 100 fps 

(DMK 33UP1300, Imaging Source). Laser stimulation was manually triggered by the 

experimenter at random intervals or when behavioral reactions had subsided during the 5 min test 

(473nm, 1 s, 20 Hz, 5 ms pulse width, 3-5 mW, minimum ISI = 4 s). The experiment was 

terminated prematurely if we observed severe reactions like jumping or crouching. Stimulation-

evoked behaviors were manually scored. DREADDs: Mice bilaterally expressing the excitatory 

DREADD-receptor hM3Dq or eYFP in the pIC were injected with clozapine-N-oxide (CNO, 10 

mg/kg, i.p.) and after 40 min they were placed into a circular open field arena. The mice were 
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video recorded for 15 min. Stimulation induced behaviors were scored manually by a human 

observer inspecting the videos post-hoc and blinded to the underlying condition.  

Real-time place avoidance (RTPA) 

The RTPA assay was performed on three consecutive days in custom-built chambers (50x40x25 

cm, transparent plexiglas, distinct metal floor grids, distinct visual patterns presented in 

chambers). We tracked the mice with a webcam (c930e, Logitech) that was interfaced with 

custom-written MATLAB software. The first day, mice were tracked for 20 min to establish their 

preferred chamber. The following day, the preferred chamber became the “stimulated chamber”. 

The trial started in the non-stimulated chamber and lasted 20 min. Crossing into the stimulated 

chamber resulted in delivery of light of 473 nm (at either 10 Hz, 3-5mW (pIC-ChR2 and pIC-

CeA), or 20 Hz, 7-10mW (pIC-NAcc); all with a 5 ms pulse width, 1 s Laser on followed by 4 s 

ISI). For NpHR animals we applied 594 nm constant illumination at 12 mW. Exiting the 

stimulated chamber immediately switched off the laser. On day 3, we tested if the mice displayed 

an association with the stimulated chamber (no laser).  

Real-time control of pIC activity during Elevated-Plus Maze (EPM) exploration in a high anxiety 

setting 

The custom-build EPM had the following dimensions: 5 cm wide arms, each arm was 35 cm long, 

5 mm ridge on open arms to prevent falls, closed walls 15 cm high, maze was elevated 60 cm 

from the floor. The EPM was performed for 10 min in a room the animals had never been exposed 

to. The mice were minimally handled (3 days with tethering to optic fibers). We illuminated the 

center of the EPM with 450 lux. The environment was noisy due to a cooling fan. We used 

ANYmaze to track mice in real-time and subsequently trigger optogenetic manipulation based on 

the location of the animals. Guided by our fiber photometry data (Fig 2 a and b), we inhibited the 

pIC or its projections to CeA and NAcc when the animal was located in the closed arms of the 

EPM, but not on the open arms. In contrast, we optogenetically stimulated the pIC or its 

projections to CeA and NAcc in the open arms of the EPM, but not in the closed arms. The 

stimulation parameters were set to 10 Hz, 3-5 mW (pIC-ChR2 and pIC-CeA), or 20 Hz and 7-10 

mW (pIC-NAcc), all with a 5 ms pulse width, 1 s laser on, 4 s ISI).  NpHR animals were subjected 

to 594 nm constant illumination at 12 mW. 

Real-time control of pIC activity during  Elevated-Zero Maze (EZM) exploration in a low anxiety 

environment 

The custom-build EZM had the following dimensions: diameter of 55 cm, 5 cm wide, 5 mm ridge 

on the open arms to prevent falls, 20 cm high closed walls, maze elevated 60 cm from the floor. 

To create low anxiety settings, we performed the task on well-handled mice (~ 6-7 days) in a quiet 

and dimly lit room (6 lux on the open arms) that the animals were habituated to. We used 
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ANYmaze to track mice in real-time and subsequently trigger optogenetic manipulation based on 

the location of the animals, as described above for the real-time optogenetic control in the EPM.  

Optogenetic stimulation followed by EPM 

pIC-ChR2 or -eYFP controls were optogenetically stimulated for 50 s in an open field arena with 

20 Hz, 5 ms pulse width, 3-5 mW. After 1 min recovery, animals were disconnected from the 

optical patch cord and subsequently tested for 8 min on the EPM. We placed mice in the center 

zone of the EPM facing a closed arm. 

 

Attenuation of sustained anxiety 

To induce an anxiety state, animals were placed in behavior boxes (Ugo Basile, Italy) consisting 

of a metal grid floor and plexiglas walls with distinct visual cues. The floor and walls were cleaned 

with 80% ethanol before and after each session. Freezing behavior was scored using ANYmaze. 

The animals were considered to be freezing if no movement except for breathing was detected for 

at least 2 s. Animals were tethered to optic patch cords, placed in the fear conditioning box and 

we administered five unsignaled shocks (1 s, 0.4 mA) through a metal grid floor over a 20 min 

time period with an ISI of 160 - 290 sec. Optogenetic inhibition (594 nm, 12 mW) was delivered 

during the entire 20 min. Then, mice were detached from the optic patch cords and placed in the 

center zone of the EPM facing the closed arms and tested for 8 min. For testing contextual fear 

memory recall, animals were placed in the same behavior boxes for 15 min 7 days after fear 

conditioning and freezing behavior was analyzed during the whole session. 

Ramping Hot Plate Test 

The temperature of the plate started at 32 °C and was ramped up by 1 °C per 4 s. The test was 

stopped and the temperature recorded, as soon as the mice licked their paws. pIC-NpHR mice 

were tethered to optic patch cords and habituated to the hot plate apparatus (Hot Cold Plate 

Analgesia Meter for Mice and Rats, Campden Instruments) for a maximum of 5 min. Each animal 

was tested a total of twelve times (6x light ON, 6x light OFF) on two separate days. Values are 

presented as the average of these twelve repeats.  

Sucrose preference test / quinine avoidance test 

24 h-water-deprived mice were trained for 30 min daily over 5 days to consume either a sucrose-

solution, or water only, from two sipper tubes presented in a custom-built chamber (30x50x30 

cm) until they reached a stable preference for sucrose. Since comparable sucrose preference 

assays used sucrose concentrations of 1-10% (Tye et al., 201351; Labouèbe et al., 201652), we 

chose a medium sucrose concentration range of 5%. The sucrose preference index was calculated 

as: (sucrose licks - water licks) / (sucrose licks + water licks). The location of the sucrose solution 

and water alternated daily and licks were recorded via a custom-built lickometer that was 
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interfaced with MATLAB. On test days, we delivered an open-loop stimulation pattern of 1 s 

laser-on with a 4 s ISI for 20 min. pIC-CeA animals were tested with 10 Hz on separate days, 

pIC-NAcc animals were tested with 20 Hz. For NpHR expressing mice, we delivered constant 

illumination (12 mW) for 20 min. For the quinine avoidance test, we first established a stable 

avoidance of quinine (0.5 mM in water) for three consecutive days. Then, on test days, we 

performed optogenetic manipulations as described above. Quinine preference index was 

calculated as (quinine licks - water licks) / (quinine licks + water licks). For analysis of the bout 

length, we grouped licks into a bout if the next inter-lick-interval was larger than 0.3 s. 

 

Closed-loop sucrose licking test 

ChR2-expressing pICNAcc mice that have undergone the ‘open-loop’ sucrose preference test 

(see above) were subjected to a closed-loop licking assay. The experiment was performed in the 

same chambers as described above; however, the setup was modified in such a way, that a detected 

lick would trigger optogenetic stimulation. The stimulation lasted a second and was followed by 

a four-second time-out period in which further licks would not elicit optogenetic stimulation. 

Three different frequencies were subsequently tested for three rounds with each lasting 5 min, 

starting with a no stimulation control, followed by 5, 10 and 20 Hz. The laserpower was set to 3-

5 mW (473 nm) 

Feeding under closed-loop optogenetic stimulation 

We habituated acutely food-deprived (24 h) mice to the behavioral chamber (20x50x30 cm) for 

5 min. Then, a standard chow pellet was secured to the floor with double-sided tape. We observed 

the behavior and manually triggered laser stimulation once the mouse started nibbling on the food 

pellet. This led to a laser stimulation of 1 s, 473 nm, 10 or 20 Hz, 5 ms pulse width, 7-10 mW 

measured at the tip of the fiber. The experimenter stimulated every attempt to feed (no 4 s ISI). 

The trial was recorded for 5 min at 100 fps and manually scored with ANYmaze. A successful 

interruption was scored if laser stimulation could stop chewing/eating for at least 1 s. Food intake 

was measured by weighing the food pellets and crumbles with precision fine scales before and 

after the trial. 

Feeding under malaise 

First, we tested if inhibition of the pIC-CeA or pIC-NAcc pathways for 20 min (594 nm, 10-12 

mW) influenced feeding in acutely food-deprived mice. After a day of refeeding, mice were again 

food deprived for 24 h and i.p. injected with a lithium chloride solution (0.3M in 0.9 % saline, 1.2 

% body weight = e.g. 350 µl / 30 g mouse) 30 min prior to the test. Terminals of the pIC-CeA or 

pIC-NAcc pathway were inhibited for 20 min (594 nm, 10-12 mW at the tip of the fiber) in the 
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presence of a standard chow pellet. The weights of the pellet before and after the test were 

measured with precision fine scales.  

 

Social approach test 

Mice were habituated for 5 min to a custom-built chamber (30x50x30 cm) containing an empty 

cylindrical cage. After habituation, male juvenile C57BL/6NRj mice were placed inside the 

cylinder cage for 5 min. Every social interaction resulted in a 1 s laser stimulation (parameters as 

above, no ISI) manually triggered by an experimenter. Close-up videos of the interactions were 

manually scored with ANYmaze. 

 

Feeding under anxiety 

First, we tested whether inhibition of pIC without the presence of TMT would affect feeding in 

food-deprived mice. Animals were tethered to optic patch cords and habituated to an empty cage 

for 5 min, after which we placed a standard food pellet and a 2.5 cm plastic petri-dish with saline 

soaked filter paper into one side of the cage. We constantly illuminated the pIC with 594 nm light 

(12 mW) for 10 min and recorded the behavior from the top and from the side. Following this 

control experiment, we repeated the test, but this time, we soaked the filter paper with 7 µl of a 

90 % 2,3,5-Trimethyl-3-thiazoline (TMT) solution (BioSRQ). Again, pIC was inhibited by 

delivering 594 nm laser light as described above. After each test run, we ventilated the behavioral 

room for 5-10 min with a rotating fan and opened lab doors. Videos from the side manually scored 

for flat-back approaches, rearing and grooming events by an observer blind to the experimental 

conditions. 

Frequency dependent locomotion response 

We connected the animals to the optic patch cords and placed them in an open arena (50x25x25 

cm). After a 1 min acclimatization, mice received 5, 10 or 20 Hz optogenetic stimulation (473 

nm, 1 s ON, 4 s OFF, 3-5 mW) for 30 s with a 2 min break when switching the stimulation 

frequency. Locomotion parameters were analyzed with ANYmaze. 

Backpropagation control experiments 

To test if the behavioral  effects induced by stimulation of pIC terminals over the CeA and NAcc 

were indeed mediated by monosynaptic, glutamatergic inputs from the pIC to the CeA or NAcc 

rather than axons of passage or antidromic activation of pIC somata, we performed the following 

control experiment adapted from a previous report (Felix-Ortiz et al., 201353).  

We bilaterally implanted opto-fluid cannulas (see section, ‘Surgeries’) over either CeA or NAcc 

in mice, which expressed ChR2 for 6 weeks in their pICs (for coordinates and cannulas see 
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section, ‘Surgeries’). First, we tested if interruption of ongoing feeding upon stimulation of the 

CeA or NAcc pathway could be reproduced. We guided the optic inserts (supplier DORIC lenses; 

for CeA: OI_iOFC-M3_200/240_0.22_FLT_4.3, for NAcc: OI_DiOFC-L-

ZF_200/240_0.22_FLT_4.2) through the opto-fluid cannulae, connected mice to optic patch 

cords and performed the feeding under closed-loop optogenetic stimulation experiment, as 

described above. Every attempt to feed led to a 1 s laser stimulation (473 nm, 5 ms, 3-5 mW, 10 

Hz (CeA) or 20 Hz (NAcc), no ISI). To assess effects within the same individuals, after 24 h of 

refeeding, we again food deprived the mice for 24 h. We then repeated the feeding under closed-

loop optogenetic stimulation. This time, 1-1.5 h before testing, animals were briefly anaesthetized 

and 300 nl of the AMPA receptor antagonist NBQX (NBQX disodium salt, Enzo Life Sciences 

GmbH, Germany; 5 mg/ml in sterile 0.9 % Saline) were infused through the fluid inserts (supplier 

Doric lenses; for CeA: FI_iOFC-M3_100/170_4.7; for NAcc: FI_DiOFC-L-ZF_100/170_4.6). 

For infusions, we connected the fluid inserts to a 5 µl microsyringe (Model 75 RN, Hamilton, 

USA) using PE tubing and inserted them into the implanted guide cannulae. The flow rate (150 

nl/min) was controlled by a syringe pump (UMP3 pump with a sys-micro4 controller, WPI, USA). 

 

Anxiety-like behavior under DREADD-mediated pIC manipulations 

Six weeks after bilateral injection of virus (hM4Di or EYFP control) into the pIC, mice were 

habituated to being injected i.p. for 3 consecutive days with 300 µl 0.9 % saline solution. On the 

day of the experiment, 10 mg/kg Clozapine-N-oxide solution (CNO, in sterile saline with a final 

DMSO concentration of 2.5%, Sigma, #C0832) was injected intraperitoneally 30-40 min before 

testing. Mice were then placed onto the center of a circular open field maze and observed for 15 

min. Behavior in the maze was recorded for 15 min and anxiety-like behavioral parameters were 

quantified afterwards using ANYmaze 6.0 (Stoelting) software. 

 

4.8 Fiber photometry 
 

Fiber photometry during elevated-plus maze (EPM) and elevated zero maze (EZM). Animals 

were handled for at least three days and habituated to being tethered. On the day of the 

experiments, mice were tethered to optic patch cords (low auto fluorescence fibers, NA 0.48, 

Doric) and connected to the fiber photometry setup via a rotary-joint. After 3 min of 

acclimatization in their home cage, the animals were tested for 15 min on the EZM or EPM. 

Videos of the behaving animals were acquired and analyzed using ANYmaze 6.0 (Stoelting) and 

synchronized to photometry data using TTL pulses.  
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Photometric signal acquisition and analysis. As described previously (Lerner et al. 201554), we 

used GCaMP6s bulk fluorescence measurements through a single optical fiber (custom made, 200 

µm diameter, 0.48 NA) for both delivery of excitation light and collection of emitted fluorescence. 

For both, excitation and emission measurements, we used a commercial fiber photometry system 

(1-site 2-color, Doric Lenses Inc., Canada) with two excitation wavelengths, 405 nm (isobestic 

point of the GCaMP signal, calcium-independent) and 465 nm (GCaMP signal, calcium-

dependent). The two excitation LEDs were fiber coupled into patch cords. Excitation light 

intensity was measured at the end of these patch cords as ~ 20 µW for 465 nm and ~ 7 µW for 

405 nm light. Patch cords were coupled to the implanted optic fibers before the behavior 

experiments. Implanted fibers were tested before implantation to transmit ≥ 80% of the incoming 

light.  

Photometry signals were recorded at 12 kHz, demodulated, and down sampled to 30 Hz for 

analysis. All photometry data were analyzed using custom-written MATLAB (Mathworks) 

programs. In order to remove the strongest photobleaching artifacts, we excluded the first 30 

seconds of each recording. To remove bleaching and motion artefacts, a least-squares linear fit 

was applied to the 405 nm control signal and aligned to the 465 nm signal, using a procedure 

developed by Lerner et al.: https://github.com/talialerner/Photometry-Analysis-

Shared/blob/master/Dropbox/MATLAB/Shared%20photometry%20code/controlFit.m 

The fluorescent change (∆F/F) was calculated as:  

∆F/F = (465 nm signal -fitted 405 nm signal) / fitted 405 nm signal 

For the correlation analysis, we built z scores using the mean and standard deviation calculated 

across the entire behavioral session to make comparisons between animals feasible. We then 

computed the AUC of the z scores for times spent either in the open or closed arms and plotted 

them on the y-axes.  

 

 Approach / Retreat analysis 

For the EPM, we defined an approach as movement from the corner of a closed arm towards the 

open arm. Conversely, a retreat was defined as movement from the open arms towards the corner 

of a closed arm (Figure 34). Additionally, we also considered movement from the corner of a 

closed arm towards the center as an approach, even when the mouse did not enter an open arm. 

In order to define approach and avoidance on the EZM, the position of the animal was transformed 

from Cartesian coordinates to angular displacement (-sin2θ). The position of the animal (θ) was 

computed from the dot product of the two vectors, namely, the vector between center of EZM to 

the starting point which was defined as one closed and open arm transition (0a in Figure 3b), and 

the vector between the center of EZM to the position of the animal on EZM. The position(θ) was 

https://github.com/talialerner/Photometry-Analysis-Shared/blob/master/Dropbox/MATLAB/Shared%20photometry%20code/controlFit.m
https://github.com/talialerner/Photometry-Analysis-Shared/blob/master/Dropbox/MATLAB/Shared%20photometry%20code/controlFit.m
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then converted to -sin2θ, so that when the animal was at the borders between open and closed 

arms, it’s angular displacement is 0, negative when in the open arms, and positive when in the 

closed arms. The angular displacement was at its maximum of 1 when the animal was at the 

extremes of the closed arm and (-1) when it was most exposed on the open arm. Approaches and 

retreats were in both cases manually annotated.  

To calculate the change of ∆F/F as plotted in Figure 11, we first annotated approaches and retreats 

manually. Approaches were only considered if they started at the end of the closed arm. Retreats 

were any movements leaving the open arm. We first calculated the mean derivative of ∆F/F for 

each approach and retreat for each animal. We then averaged all approaches and retreats made by 

a single animal to plot them as shown in Figure 11. 

 

Figure 34. Definition of Approach or Retreat behavior of mice on the EPM or EZM. Panels a) 
and b) are adapted from my publication171 as permitted by the author reuse rights of Nature 
Springer. 
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4.9 Statistical analysis 
Analyses were performed using either Gaphpad Prism (GraphPad Software, Inc., La Jolla, CA, 

USA, Version 8), MATLAB (Mathworks, Natick, MA, USA) or Python. Group comparisons 

were made using either one-way or two-way analysis of variance (ANOVA) followed by 

Bonferroni post hoc tests if a significant main effect or interaction was observed (p < 0.05). Single 

variable comparisons were made with two-tailed unpaired or paired t tests. Correlation analyses 

were made using linear regression. All animal numbers are reported in Figures and their legends. 

No statistical methods were used to predetermine sample size. 
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APPENDIX 5 
 

 

 

 

 

 

 

 

Ramping hot plate test (nociception control). Temperature thresholds did not change for NpHR-
expressing or eYFP-expressing mice between light ‘off’ and ‘on’ conditions (n = 5 eYFP mice: 
two-tailed paired t test, t = 0.02949, df = 9, p = 0.9771; n = 5 NpHR mice: two-tailed paired t test, 
t = 1.967, df = 9, p = 0.0807). Data is shown as means + s.e.m. 
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APPENDIX 6 
 

 

 

 

 

 

 

 

 

 

 

24-h water-deprived mice were administered (i.p.) with Saline or escalating doses of LiCl, but 
they did not significantly reduce their licking for a 10 % sucrose solution (for LiCl-dose: 2-way 
ANOVA, F(3, 18) = 0.9164, p=0.4528). This indicated that visceral malaise couldn’t overcome 
thirst or the reward value of sucrose. 
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APPENDIX 7 
 

 

left, Under naïve conditions, neither NpHR-mediated inhibition of the pIC-CeA (n=7) nor the 
pIC-NAcc (n=10) pathway changes feeding behavior in 24-h food deprived animals compared to 
controls (controls were pooled: eYFP:pIC-CeA, n=10, and eYFP:pIC-NAcc, n=10; one-way 
ANOVA, F (2, 34) = 0.1531, p = 0.8586). Trial duration 20 min.  

right, Feeding bouts are significantly reduced in presence of TMT. Control feeding in absence of 
TMT (controls w/o TMT, n = 9) was significantly more frequent than in presence of TMT 
(controls +TMT, n = 8), in eYFP expressing controls as shown in Fig. 8q (eYFP:pIC-CeA 
(+TMT), n = 9), or than in eYFP-expressing controls shown in Fig. 8r (eYFP:pIC-NAcc (+TMT), 
n = 6). One-way ANOVA, F (3, 28) = 24.98, ****p = 0.0043; Bonferroni post-hoc analyses 
comparing all TMT treated conditions to the no TMT control revealed significant differences 
(****p < 0.0001, ***p = 0.0005) 
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