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Abstract 

 

 

Background: Interdisciplinarity is one of the current trends in the 

scientific world today, that began with the uneasiness about the loss of the 

unity of science. This trend also opens possibilities for explaining complex 

phenomena more comprehensively and creating more advanced applications 

and implementations of scientific theories. One of the biggest challenges to 

conducting interdisciplinary research is theoretical integration, how can we 

combine theories from various disciplines such that the combination is 

fruitful? 

Method: This dissertation attempts to answer this challenge by 

analyzing the intertheoretical connections of some theories from various 

disciplines for some real interdisciplinary research. The structuralist 

metatheory of science is applied as the basic theory to model the 

intertheoretical connections formally. This research begins with modeling 

the scientific theories in question before modeling the intertheoretical 

connections and some modifications needed. This research focuses on some 

researches in cognitive science that involve psychology, neuroscience, and 

artificial intelligence. The first research is the research conducted by van 

Veen et al., who research the activity of neurons in a brain's field called 

dorsal Anterior Cingulate Cortex during a phase of dissonance between 

cognitions. This research serves as a context for the analysis of 

intertheoretical reduction between the Festinger theory of cognitive 

dissonance and the Hawkins-Kandel computational neuroscientific theory.  

The other research is the consonance model of simulation built by Shultz 

and Lepper, which implements the Hopfield network to build a simulation 

of the cognitive dissonance. The third research is the connectionist model of 

simulation built by van Overwalle and Jordens, which implements the two-

layers feed-forward perceptron and the delta rule as its learning rule to build 

a simulation of forced compliance dissonance. 

Result: Through this research, the author concludes that the 

structuralist metatheory of science can be applied for modeling and 

analyzing intertheoretical connections in the same discipline and between 

disciplines in real scientific research. The structuralist metatheory of science 

enables us to model and analyze the structure of the theories and their 

intertheoretical connections with great detail and brings very fruitful results. 

This research delivers some results not only for the structuralist theory 
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science itself but also for the philosophy of science in general and 

interdisciplinary researches, especially cognitive science. First, by analyzing 

the models, a revision of the definition of intertheoretical specialization, and 

specialization of the concept of theory-holon according to the structuralist 

theory of science, called the V-pattern and strategy for combining scientific 

theories, are proposed. These V-pattern and strategy can serve as a tool for 

combining scientific theories. 

Second, unlike other approaches on intertheoretical reduction such as 

the GNS model, the structuralist metatheory of science does not intend to 

formulate a generalized model of reduction nor focus only on 

intertheoretical reduction. It provides us powerful tools for modeling 

various intertheoretical relations, including intertheoretical reduction, case 

by case. Although the intertheoretical reduction in the structuralist model is 

more epistemological than ontological, the structuralist models show how 

the reduction has empirical claims and intended applications by applying the 

r* function that maps the T-theoretical level to T-non-theoretical level.  

Third, related to the notion of the unity of science, this dissertation 

still sees that the unity of science is still a plausible and essential agenda for 

the philosophy of science and the scientific world in general. This 

dissertation's idea of the unity of science proposed does not assume 

essentialism, reductionism, and epistemological monism. This dissertation 

sees that the unity of science is closely related to scientific practice. 

Fourth, for interdisciplinary research, primarily cognitive science, 

this dissertation proposes an approach to model and analyze intertheoretical 

connections for any scientific research or any philosophical school in 

philosophy of science related to the idea of intertheoretical relation. This 

dissertation is the first example of such modeling and analysis. 
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Eine Analyse der intertheoretischen Relationen in 

interdisziplinären Bereichen: Einige Fälle der 

Kognitionswissenschaft 

Eine Zusammenfassung 

 

"Interdisziplinarität" ist eines der wichtigsten Wörter, um einen Trend in der 

heutigen wissenschaftlichen Welt zu beschreiben. Dieser Trend der 

Interdisziplinarität begann mit Unbehagen über den Verlust der 

wissenschaftlichen Einheit am Anfang des 20. Jahrhundert und hat heute 

zugenommen. Dieser Trend eröffnet auch Möglichkeiten, komplexe 

Phänomene umfassender zu erklären und fortgeschrittenere Anwendungen 

und Implementierungen wissenschaftlicher Theorien zu schaffen. Laut 

Jungert spielen fünf Aspekte einer Disziplin eine wichtige Rolle bei der 

Untersuchung der Merkmale interdisziplinärer Beziehungen: Objekte, 

Methoden, Probleme, theoretischer Integrationsgrad und 

Personen/Institutionen (Jungert, 2013, S. 7–9).  

Eine der größten Herausforderungen bei der Durchführung interdisziplinärer 

Forschungen sind die Fragen der theoretischen Integration. Wie können wir 

Theorien aus verschiedenen Disziplinen so kombinieren, dass die 

Kombination fruchtbar ist? Diese Dissertation versucht, diese 

Herausforderung durch Analyse der intertheoretischen Zusammenhänge 

einiger Theorien aus verschiedenen Disziplinen zu beantworten, die für 

einige echte interdisziplinäre Forschungen kombiniert werden. Diese 

Forschung konzentriert sich auf einige Forschungen in der 

Kognitionswissenschaft, die Psychologie, Neurowissenschaften und 

künstliche Intelligenz umfassen. 

Um dieses Ziel zu erreichen, wird die strukturalistische Metatheorie der 

Wissenschaft angewendet, um die intertheoretischen Verbindungen 
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zwischen wissenschaftlichen Theorien aus verschiedenen Disziplinen durch 

Implementierung der Modelltheorie formal zu modellieren und zu 

analysieren. Ein Modell einer wissenschaftlichen Theorie wird als 

„Theorieelement“ bezeichnet und besteht aus einem Konzept des 

theoretischen Kerns und einer Menge von intendierten Anwendungen. Die 

strukturalistische Metatheorie der Wissenschaft modelliert die 

intertheoretischen Verbindungen als Beziehungen zwischen der Klasse 

potentieller Modelle verbundener Theorien, die eines der wesentlichen 

Elemente eines Theoriekerns sind. 

Diese Dissertation befasst sich ausschließlich mit den synchronischen 

intertheoretischen Relationen. Die strukturalistische Wissenschaftstheorie 

hat verschiedene intertheoretische Verbindungen definiert, nämlich den 

Entailment Link, Determining Link, die in dieser Dissertation ebenfalls 

überarbeitete intertheoretische Spezialisierung, intertheoretische Reduktion, 

intertheoretische Äquivalenz und intertheoretische Approximation. Diese 

verschiedenen intertheoretischen Verbindungen verbinden die 

wissenschaftliche Theorie und bilden zwei Arten von Relationen, d. H. Das 

Theorie-Netz und das Theorie-Holon. Während der Begriff des Theorie-

Netzes eine Vorstellung von lokaler oder enger intertheoretischer Relation 

beinhaltet, beinhaltet der Begriff des Theorie-Holons eine Vorstellung von 

globaler intertheoretischer Relation. 

Die Analyse intertheoretischer Verbindungen in der Kognitionswissenschaft 

erfolgt in zwei Schritten: Zunächst werden mehrere Theorien formal nach 

dem Konzept der Theorie-elemente modelliert. Dies sind die Festinger 

Theorie der kognitiven Dissonanz und ihre Spezialisierung, die Theorie der 

forced compliance Dissonanz aus dem Fachgebiet der Psychologie, die 

Computational Neuroscientific Theory nach Hawkins-Kandel und das 

McCulloch-Pitts-Modell von Neurons aus dem Gebiet der 

Neurowissenschaften sowie das Rosenblatt-Perzeptron, das two-layers feed-
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forward Neuronale Netz, die Delta-Regel und das Hopfield-Netzwerk aus 

dem Bereich der künstlichen Intelligenz. 

Der zweite Schritt ist die Modellierung synchroner intertheoretischer 

Beziehungen nach dem Konzept des Theorie-Netzes oder nach dem 

Konzept des Theorie-Holons. Die intertheoretischen Relationen zwischen 

den obigen Theorien, die modelliert werden, beruhen auf mehreren 

Forschungen.  

Die erste Fallstudie handelt von intertheoretischen Verbindungen im von 

van Veen et al gemachten Forschung. In diesem Fall ist die Theorie der 

forced-compliance Dissonanz mit der Computational Neuroscientific 

Theory von Hawkins-Kandel verbunden, um die Aktivität von Neuronen in 

einem Gehirnfeld namens dorsal Anterior Cingular Cortex während der 

Phase der kognitiven Dissonanz zu erklären. Da die Konzepte beider 

Theorien sehr unterschiedlich sind, gilt für die Modellierung der 

theoretischen Verbindungen beider Theorien die Definition des determining 

links. 

In der zweiten Fallstudie geht es um die intertheoretischen Verbindungen 

der von Shultz und Lepper entwickelten Simulation, die Konsonanz Modell 

genannt ist. Dieses Konsonanz Modell basiert auf der Idee: „dissonance 

reduction can be viewed as a constraint satisfaction problem“. (Shultz und 

Lepper, 1996, S. 220.) Das Modell implementiert das Hopfield-Netzwerk, 

um ein Subjekt zu simulieren, welches sich in einer Situation oder einer 

psychologischen Problemstellung befindet und nach der Harmonie seiner 

Kognition strebt. Die Problemstellung wird durch die klassichen Probleme 

der kognitiven Dissonanz geschaffen (Shultz und Lepper, 1996, S. 220). In 

dieser Simulation entspricht die Erhöhung der Konsonanz dem Prozess der 

Verringerung der Dissonanz oder dem Streben nach Harmonie zwischen den 

Überzeugungen und Einstellungen des Individuums. Für diesen Fall wird 

die Definition der determining links wieder angewendet, um die 
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intertheoretischen Verbindungen zwischen dem Hopfield-Netzwerk und der 

Festinger-Theorie der kognitiven Dissonanz zu modellieren. Anders als im 

ersten Fall sollte auch das Hopfield-Netzwerk modifiziert werden, damit die 

Simulation wie erwartet funktioniert.  

Der dritte Fall handelt von intertheoretischen Verbindungen einer 

Simulation der kognitiven Dissonanz, die von van Overwalle und Jordens 

entwickelt und als Connectionist Modell bezeichnet wird. Dieses Modell 

behandelt einige Aspekte, die vom Konsonanz Modell nicht abgedeckt 

werden. Die Grundidee dieser Simulation ist inspiriert von der von Cooper 

und Fazio (1984) vertretenen attributionellen Neuformulierung der Festinger 

Theorie der kognitiven Dissonanz: Die Reduktion der kognitiven Dissonanz 

wird von einem rationalen Prozess angetrieben, bei dem das kausale 

Verständnis von Gedanken, Gefühlen und Verhalten eine wichtige Rolle 

spielt (van Overwalle und Jordens, 2002, S. 205). Dieses Modell 

implementiert das two-layers feed-forward Neuronale Netz und die Delta-

Regel als Trainingsalgorithmus (van Overwalle und Jordens, 2002, S. 206–

207), um ein spezifisches Beispiel für ein Kognitionsexperiment zu 

simulieren, das von Freedman als erstes Paradigma für unzureichende 

Rechtfertigung bezeichnet wird (1965). 

Die Charakterisierung des Modells intertheoretischer Verbindungen für das 

Connectionist Modell erfolgt in mehreren Schritten: Im ersten Schritt soll 

das Theorieelement des Rosenblatt-Perzeptrons, das Theorieelement des two 

layers Feed-Forward Neuronalen Netzes und das Theorie-Element der 

Delta-Regel vereinheitlicht werden und ein neues Einheitsmodell von ihnen 

bauen. Im zweiten Schritt modifizieren wir das neue Einheitsmodell, um es 

an die Bedingungen des Connectionist Modells anzupassen. Der dritte 

Schritt besteht darin, die Theorie der forced-compliance Dissonanz zu 

modifizieren, indem einige Konzepte gemäß der Idee von Cooper und Fazio 

hinzugefügt werden. Im letzten Schritt sollen die intertheoretischen 
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Verbindungen zwischen der modifizierten Festinger-Theorie der kognitiven 

Dissonanz und dem modifizierten Einheitsmodell des Rosenblatt-

Perzeptrons, dem two layers feed-forward Neuronalen Netz und der Delta-

Regel charakterisiert werden. Diese Modellierung besteht aus verschiedenen 

intertheoretischen Verbindungen, wie z. B.: Determining links, 

Spezialisierung und Reduktion. 

Die letzte intertheoretische Verbindung zu modellieren ist die 

intertheoretische Verbindung des McCulloch-Pitts-Neurons und des 

Rosenblatt-Perzeptrons. Dieses Modell zeigt, wie zwei in zwei 

verschiedenen Disziplinen entwickelte Theorien sich in Beziehung setzen 

können, weil eine davon die andere verallgemeinert. In diesem Fall ist das 

später in der künstlichen Intelligenz entwickelte Rosenblatt-Perzeptron eine 

Weiterentwicklung des zuerst in den Neurowissenschaften entwickelten 

McCulloch-Pitts-Neurons. Aus der synchronischen Perspektive ist die 

intertheoretische Verbindung beider Theorien eine intertheoretische 

Reduktion, bei der das McCulloch-Pitts-Neuron vom Rosenblatt-Perzeptron 

reduziert wird. Da beide Theorien nahe beieinander liegen, handelt es sich 

bei diesem Fall nicht um die globale intertheoretische Relation, sondern um 

die lokale intertheoretische Relation. Daher müssen wir lokal intendierte 

Anwendungen nicht besprechen. 

Diese Forschung liefert mehrere Ergebnisse, die nicht nur in der 

Philosophie, sondern auch in Studien in interdisziplinären Bereichen, 

insbesondere der Kognitionswissenschaft, einige Beiträge leisten: Erstens 

schlägt diese Dissertation eine kleine Überarbeitung der Definition der 

intertheoretischen Spezialisierung und einer Weiterentwicklung für den 

Begriff des Theorie-Holons, d.h. des V-Musters und der V-strategie vor. 

Das V-Muster und die V-Strategie wurden als Werkzeuge entwickelt, um 

mehrere Theorie-Elemente zu kombinieren und daraus ein neues 

Einheitstheorie-Element zu erstellen. Dieses V-Muster und diese V-
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Strategie haben einen praktischen Zweck, der auf dem Konzept des Theorie-

Holons und seinem empirischen Klaims basiert, nämlich wie man mehrere 

Theorien in einer globalen intertheoretischen Relation kombiniert und seine 

lokale intendierte Anwendung bestimmt, indem nur dyadische 

Verbindungen implementiert werden. 

Zweitens, da es sich bei allen untersuchten Fällen um eine intertheoretische 

Reduktion handelt, können wir das strukturalistischen Modell mit dem 

generalisierten Nagel-Schaffner Modell (das GNS-Modell) vergleichen. Die 

Unterschiede von beiden lauten wie folgt: (1) Der Hauptunterschied liegt in 

der strukturalistischen Forderung, dass die wissenschaftlichen Theorien in 

der Mengenlehre modelliert werden müssen, um ihre innere logische 

Struktur zu modellieren. Dieser Ansatz erfordert eine kompliziertere 

Modellierung als das GNS-Modell, bietet jedoch gleichzeitig mehr Details 

und eine genauere Analyse. (2) Der zweite Hauptunterschied besteht darin, 

dass nach Ansicht der Strukturalisten die intertheoretische Reduktion eher 

epistemologisch als ontologisch ist, obwohl sie eine empirische Basis haben 

sollte - charakterisiert durch die partiellen Potentialmodelle. Es bezieht sich 

eher auf die Struktur der Theorien als auf die Realität. (3) Der dritte 

Hauptunterschied besteht darin, dass in der strukturalistischen Theorie der 

Wissenschaften der Strukturalisten die intertheoretische Reduktion nur eine 

von mehreren anderen intertheoretischen Verbindungen (Verknüpfungen) 

ist und die Strukturalisten einige von ihnen bereits formal charakterisiert 

haben. (4) Es gibt kein als solches verallgemeinertes Modell der 

intertheoretischen Reduktion für die Strukturalisten. Die Strukturalisten 

haben eine formale Definition als ein Werkzeug definiert, wie eine 

intertheoretische Reduktion von einer wissenschaftlichen Theorie auf einer 

anderen Theorie modelliert werden kann, aber die Strukturalisten haben 

nicht die Absicht, ein allgemeines Reduktionsmuster für wissenschaftliche 

Praktiken zu formalisieren. (5) Der letzte Unterschied soll zeigen, dass die 
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intertheoretische Reduktion etwas mit den erklärten Phänomenen zu tun hat, 

das strukturalistische Modell verwendet die interpreting links, die die 

Potentialmodelle eines Theorie-Elements mit dem partiellen Potentialmodell 

der anderen Theorie-Elements verbinden. Das GNS-Modell verwendet 

einige Verbesserungen, die von Dizadji-Bahmani, F., Frigg, R. und 

Hartmann S. (2009) in ihrer Arbeit „Who’s afraid of Nagelian Reduction?“ 

Und von van Riel, Raphael (2011) in seiner Arbeit vorgeschlagen wurden 

„Nagelian Reduction beyond the Nagel Model“. 

Drittens zeigt diese Dissertation meine einzigartige Position in Bezug auf 

den Begriff der Einheit der Wissenschaft in der Wissenschaftstheorie. Im 

Allgemeinen gibt es zwei entgegengesetzte Positionen in Bezug auf den 

Begriff der Einheit der Wissenschaft in der Wissenschaftstheorie, nämlich 

die Stanford-Schule, die den Begriff der Einheit der Wissenschaft auf der 

Grundlage der Metaphysik der Wissenschaft aufgibt, und andere 

Philosophen, die immer noch einen Begriff der Einheit der Wissenschaft 

vertreten. Die Position stimmt mehr mit der Stanford-Schule überein, 

obwohl diese Dissertation sieht, dass die wissenschaftlichen Theorien auf 

der Grundlage der wissenschaftlichen Praxis miteinander verbunden sind. 

Diese Position ist sehr ähnlich zum integrativen Pluralismus.  

Viertens, in interdisziplinären Forschungen, insbesondere in der 

Kognitionswissenschaft, schlägt meine Dissertation einen Ansatz vor, wie 

wir intertheoretische Verbindungen zwischen wissenschaftlichen Theorien 

modellieren und analysieren oder verschiedene wissenschaftliche Theorien 

kombinieren können.   
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Chapter 1 

The Problem and Its Context: Background and Relevance 

 

 

1.1. Interdisciplinarity: Its Brief History, Concept, and Aspect(s) Related 

to This Project 

 ‘Interdisciplinarity’ is one of the most important words to describe a 

trend in the scientific world today. As Palmer has put it, “interdisciplinarity 

has become a topic of wide interest, penetrating the sciences, social sciences, 

and humanities. Many researchers practice it, and others study it. Scholars in 

the emergent area of knowledge studies have made many observations that 

call attention to the importance of interdisciplinary inquiry for the 

advancement of knowledge. For example, they have claimed that path-

breaking ideas usually come from the cross-disciplinary investigation (Turner, 

1991) and that disciplinary boundaries are the fault line that conceals future 

scientific revolutions (Fuller, 1988).” (Palmer, 1996, p. 30). This trend of 

interdisciplinarity began in the 20th century and has grown stronger today. 

Nevertheless, what is ‘interdisciplinarity’? Why has this trend become so 

popular in the sciences? Why is it important to understand? This dissertation 

will start to answer these questions by giving a simple definition of the word 

‘interdisciplinary,’ telling a brief story of the development of science, and 

delivering in-depth explanations of this trend. 

 The Meaning of ‘Interdisciplinarity’ and ‘Interdisciplinary.’ The 

word ‘interdisciplinary’ is a compound adjective word consisting of a prefix 

‘inter’ and the word ‘disciplinary.’ The prefix ‘inter’ means “between; among” 

or “mutually; reciprocally” (Oxford Dictionary of English). The word 

‘disciplinary’ means “concerning or enforcing a discipline,” and the word 

‘discipline’ means “a branch of knowledge” (Oxford Dictionary of English). 

The Oxford Dictionary of English gives a simple meaning for 
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‘interdisciplinary’ as ‘relation between more than one branch of knowledge’ 

and for ‘interdisciplinarity’ as ‘the quality or fact of involving or drawing on 

two or more branches of knowledge.’ Before we try to give a deeper and more 

precise understanding of what ‘interdisciplinary’ and ‘interdisciplinarity’ 

really mean, it would be beneficial to get first an intuitive idea by examining 

its historical background in the history of science. 

 A Brief History of Interdisciplinarity. Concerning the idea of 

interdisciplinarity, the history of science can be divided into three periods: the 

period of pre-disciplinarity, the period of shaping disciplinarity, and the 

period of developing interdisciplinarity. In the pre-disciplinary period, the 

search for knowledge seemed to be interdisciplinary because there were no 

specialized branches of knowledge like in current time. Several philosophers 

in ancient Greece and Rome, like Aristotle and the stoic philosophers, tried to 

categorize human knowledge and to understand how that knowledge was best 

gained and ordered. “Aristotle differentiated ‘scientia’ (episteme) as the 

knowledge about causes and reasons from mere opinions (doxa) that are often 

subjective, and from technology (techne) and the arts (ars) as the knowledge 

requisite to create or construct. In this classification, only scientific 

knowledge (scientia) can claim to be universally valid. Science is, distinct 

from practical orientation, a theoretically oriented activity. Theoretical 

knowledge is gained by observation and contemplation and comprises three 

areas (or disciplines in the modern sense): mathematics, physics, and (first) 

philosophy. Mathematics consists of geometry, arithmetic optics, and 

harmonics. Physics is the knowledge of the material world and all forms of 

life (i.e., today’s biology). Philosophy includes knowledge of the cosmos and 

theology. The Roman Stoa (c. 300 BC) subsequently developed a 

classification of knowledge in opposition to Aristotle’s that included practical 

knowledge and distinguished logics, physics, and ethics. Subsequently, 

Aristotelian and Stoic classifications overlapped and merged with the 

medieval concepts of the ‘artes liberales’ that constituted what was then 
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considered the comprehensive system of knowledge: grammar, rhetoric, logic, 

arithmetic, music, geometry, and astronomy.” (Weingart, 2010, p. 3). 

 After that, the classification and the theory of science and knowledge 

production continued to be developed. For example: “Bacon differentiated, 

on the one hand, between natural and civil history dealing with works of 

nature and man, respectively. On the other hand, the sciences were 

distinguished into theology and philosophy, and philosophy into a doctrine of 

the deity (natural theology), a doctrine of nature and a doctrine of man. … 

The hierarchy of faculties as organizational structures of the universities, 

institutionalized since the Middle Ages, placed philosophy at the bottom, and 

medicine, law, and theology above it. Although this hierarchy of the faculties 

had also represented a classification of knowledge, it subsequently lost 

acceptance. At the end of the eighteenth century, the notion of a ‘lower’ 

faculty and ‘higher faculties' counted as past.”  (Weingart, 2010, pp. 4–5). 

 The epoch of shaping disciplinarity already began in the time of Bacon. 

However, at that time, “these disciplines did not have a social function of their 

own but only served as repositories of certified knowledge. Disciplines were 

relatively unimportant until the end of the eighteenth century (Stichweh 1984, 

pp. 14–15).” (Weingart, 2010, p. 4). At the end of the eighteenth century, the 

notion of discipline took over the role of the hierarchy. The most important 

reason for this was the growing pressure that data collection had on the 

disciplines. It caused problems of overload and integration (Weingart, 2010, 

p. 4). 

  To solve this problem, the scholarly activities were differentiated into 

disciplines through two developments, namely increasing abstractions and the 

number of new subject matters. Weingart writes: “One was increasing 

abstraction, for example, through the mathematical conceptualization of 

objects. It means that science to a decreasing degree gained its information 

about the world directly from its environment. … A growing stock of concepts, 

theories, and instruments mediated the experiences gathered, i.e., experience 
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was no longer grasped immediately but rather constructed on the level of the 

concept. At the same time, and this is the second development, the modern 

scientific mode of gaining knowledge was expanded to new subject matters.” 

(Weingart, 2010, pp. 5–6). This development brought some other results, 

namely: (1) The birth of specialization, (2) the self-referential specialized 

communication among the scholars, that caused a division between specialists 

and laypersons, (3) the loss of the unity of science, (4) a fundamental change 

in the orientation of scientists from becoming knowledgeable in several fields 

of science to discovering new phenomena and explanations, (5) organizing 

researches on the basis of a division of labor into numerous highly specialized 

activities, and (6) switching roles between academic and university: the 

academies became the institutional place for the collection and conservation 

of knowledge, while the university produced and disseminated new 

knowledge (Weingart, 2010, pp. 6–7). 

 According to Weingart, a discipline is formed and developed through 

self-referential communication, which is ‘closed’ towards its environment; 

the evaluation of relevance and quality of research is limited to the members 

of the respective disciplinary community (Weingard, 2010, p. 8). Therefore, 

every discipline has a social identity and a factual identity. Discussing both 

identities, Weingart writes: “Their social identity is constituted by the rules of 

membership, i.e., teaching, examinations, certificates, careers, the attribution 

of reputation, and, thus, the formation of a hierarchical social structure. Their 

factual identity is constituted by the contents of the communication. It 

concerns the delineation of a subject matter, a common set of problems and 

theories, concepts and specific methods to study it, the criteria of quality of 

achievement which are the basis for the evaluation and attribution of 

reputation by peer review” (Weingart, 2010, p. 8). 

 Institutionalization of disciplines occurs not only in university 

faculties but also in scholarly associations. These scholarly associations have 

functions not only for the internal aspects of the disciplines via coordinating 
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the communication process by staging conferences and running disciplinary 

journals, but also for their economic, political, and social environments via 

representing the interests of the disciplinary communities in various ways, 

such as the certification of disciplinary training and formal accreditation as 

attempts to secure a monopoly for a specific sector of the professional or 

semiprofessional job market (Weingart, 2010, pp. 8–9).  Although the 

disciplines have a significant degree of autonomy in determining their 

development, they depend on external resources that are distributed by 

research councils and foundations – government departments and industry – 

according to their priorities and political or economic goals (Weingart, 2010, 

p. 9).   

  The epoch of interdisciplinarity began with the uneasiness about the 

loss of the unity of science, which brought back a call for reunification or 

interdisciplinarity. According to Weingart (2010), several successive 

occasions mark the coming of this new epoch (p. 12): First, in the 1930s the 

first ‘unity of science’ movement was initiated by philosophers of science and 

natural scientists, especially those of the Vienna Circle, but this movement 

had no impact. Second, in the late 1960s and the 1970s in the context of 

debates about technology gaps, technology forecasting, and protection of the 

environment, the Organisation for Economic Cooperation and Development 

(OECD) triggered a new debate on interdisciplinarity (Apostel et al., 1972). 

Erich Jantsch’s term ‘transdisciplinarity’ from that publication was used by 

Gibbons et al. (1994) to diagnose the emergence of a new mode of knowledge 

production. Gibbon named it ‘mode 2.’ His thesis states that the traditional 

disciplinary ‘mode 1’ of knowledge production has given way to a new 

transdisciplinary mode of knowledge production. Since that time, there were 

many animated discussions among analysts and the mobilization of 

conflicting evidence. Together with a series of similar pronouncements of a 

fundamental change in knowledge production, these analyses beg the 
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question of whether they genuinely signal the advent of a new order of 

knowledge formation or if they only describe surface phenomena (Funtowicz 

and Ravetz, 1993; Ziman, 1994). The difference between ‘interdisciplinary’ 

and ‘transdisciplinary’ will be discussed later in this chapter – for our purpose 

here, it is sufficient for us to look at the history of interdisciplinarity and some 

essential, related terms have been discussed. 

 The claims of change – insofar as they are relevant here – can be 

summarized as follows: “the university has lost its monopoly as the institution 

of knowledge production since many other organizations are also performing 

that function. Transitory networks and contexts are formed which replace 

traditional disciplines. Knowledge production outside disciplines is no longer 

the search for basic laws (fundamental research) but takes place in contexts 

of application (Funtowicz and Ravetz, 1993, p. 121; Gibbons et al., 1994, p. 

4). Disciplines are no longer the crucial frames of orientation for the 

delineation of subject matters and the formulation of research problems. 

Research is, instead, characterized by transdisciplinarity: solutions to 

problems appear in contexts of application, and research results are no longer 

communicated in journals. The criteria of quality are no longer determined by 

disciplines alone, but additional criteria, social, political, and economical, are 

applied to determine quality (Funtowicz and Ravetz, 1993, p. 90; Gibbons et 

al., 1994, p. 8)” (Weingart, 2010, p. 12). 

 There are two historical and sociological reasons for the emergence of 

inter- and transdisciplinary structures that would replace traditional 

disciplines. As Weingart writes: “First, with the continuously growing 

number of specialties (i.e., research fields below the level of disciplines) the 

probability increases that, due to the proximity of such fields, new re-

combinations will occur which will result in new ‘interdisciplinary’ research 

fields. ...Second, inter- and transdisciplinary research fields are promoted by 

funding agencies in the interest of directing research to politically desired 
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goals. This process is conditioned by the fact that the ‘externally’ defined 

subject matters, research problems, and values or interests can trigger 

sustained research” (Weingart, 2010, p. 12, see also Jungert, 2013, p. 10). 

 The Concept of Interdisciplinarity. It is not easy to give an exact 

definition of the term interdisciplinarity. In several works discussing 

interdisciplinarity, there exist different ways to define interdisciplinarity. The 

first way is defining interdisciplinarity by the goals of the cooperation. There 

are various ways of applying multiple disciplines at the same time for the 

same purpose. And not all of them deserve to be called ‘interdisciplinary.’ A 

relationship between management sciences and philosophy cannot be called 

‘interdisciplinary’ just because a university applies several management 

theories in planning to start a philosophical department. To be called 

‘interdisciplinary,’ these various disciplines must be related to each other in 

such a way that in their activities their relationship has a purpose of gaining 

knowledge (Voigt, 2013, p. 32). In search of knowledge, the activities, such 

as changing, limiting, or expanding the object-fields and modifying, newly 

developing, or giving up the methods beyond the constraints of the disciplines, 

are the elements of interdisciplinary cooperation (Voigt, 2013, p. 32). A 

comprehensive definition is given by the Organization for Economic 

Cooperation and Development: “Interdisciplinary—An adjective describing 

the interaction among two or more different disciplines. This interaction may 

range from a simple communication of ideas to the mutual integration of 

organizing concepts, methodology, procedures, epistemology, terminology, 

data, and organization of research and education in a fairly large field. An 

interdisciplinary group consists of persons trained in different fields of 

knowledge (disciplines) with different concepts, methods, and data and terms 

organized into a common effort on a common problem with continuous 

intercommunication among the participants from the different disciplines” 

(OECD, 1972, pp. 25–26). To find out whether cooperation between 

disciplines is interdisciplinary or not, Birnbaum (1977) developed a set of 
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indicators to determine the extent to which a project meets the criteria for 

interdisciplinary research. These indicators are: “(1) different bodies of 

knowledge are represented in the research group, (2) group members use 

different problem-solving approaches, (3) members of the group perform 

different roles in solving problems, (4) members of the group work on a 

common problem, (5) the group is responsible for the final product, (6) the 

group shares common facilities, (7) the nature of the problem determines the 

selection of group members, and (8) members are influenced by how others 

perform their tasks” (in Lattuca, 2001, p. 13). 

 Several Other Related/Similar Terms. In many books about 

interdisciplinarity, two other terms refer to a similar kind of relation, where 

various disciplines stand together, namely multidisciplinarity and 

transdisciplinarity.1  Therefore, it is important here to explain the differences 

between them. Multidisciplinarity refers to several different disciplines 

speaking about a common or similar theme without trying to build any 

structured cooperation or synthesis among their results. The most striking 

difference from pure disciplinary research is that in multidisciplinary research 

there is a minimal knowledge about the relevant research from the other fields 

(Jungert, 2013, p. 2). Klein says that juxtaposing, sequencing and 

coordinating are the characteristics of multidisciplinarity (Klein, 2010, p. 16). 

The concept of transdisciplinarity means more intensive cooperation between 

 
1 Jungert (2013) gives several other words related to the notion of interdisciplinarity. They 

are multi-, pluri-, cross-, inter-, and transdisciplinarity. Here we discuss only multi-, inter-, 

and transdisciplinarity because these three represent a full relationship among various 

disciplines. The word ‘pluridisciplinarity’ is rather a synonym for multidisciplinarity. It 

describes a relationship similar to multidisciplinarity with the extra notion “to enhance the 

relationship between them” (Jantsch, 1970 in Jungert, 2013, p. 2). The word 

‘crossdisciplinarity’ refers to the following phenomenon: “The axiomatics of one discipline 

are imposed upon other disciplines at the same hierarchical level, thereby creating a rigid 

polarization across disciplines toward a disciplinary axiomatics” (Jantsch, 1970 in Jungert, 

2013, p. 3). In this cross-disciplinarity methods and research programs of another discipline 

are taken over as its subject. Its goal is neither a fusion of given disciplines nor a molding of 

new disciplines (Jungert, 2013, p. 3), but “to solve important and urgent problems that cannot 

be defined and solved from the perspective of any one of the existing disciplines” 

(Kockelmans, 1979, p. 82). 
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the disciplines that finally lead to the crossing and merging of different 

disciplines. This cooperation leads to a continuous system of scientific, 

systematic change that changes the technical and disciplinary orientations 

(Sukopp, 2013, pp. 23–24). Klein describes the characteristics of a 

transdisciplinarity as transcending, transgressing, and transforming (Klein, 

2010, p. 16). By contrast, the concept of interdisciplinarity was defined by 

Heckhausen: “Die Rede von der ‚interdisziplinären Forschung‘ besagt 

gewöhnlich nicht mehr, als dass einige Wissenschaftler, die verschiedenen 

Fächern gehören, zusammen an einem Problem arbeiten, das so allgemein, 

alltagsnach oder fachfremd betitelt ist, daß noch kein Vertreter der beteiligten 

Fächer bereits das Problem unter den Aspekten seiner eigenen Fachlichkeit 

eingegrenzt und definiert hätte. [In English: The talk of ‘interdisciplinary 

research’ usually just means that some scientists who belong to different 

disciplines work together on a problem that is so general, every day or 

unfamiliar that no representative of the specialties involved has the problem 

delimited and defined from the point of view of his own specialty.]” 

(Heckhausen, 1987, p. 129). This leads to working or researching together in 

cooperative scientific action. As for the characteristics of interdisciplinarity, 

Klein (2010) mentions integrating, interacting, linking, focusing and blending. 

(P. 16). These differences can be summarized in the following table: 

Relation Multidisciplinarity Interdisciplinarity Transdisciplinarity 

Characteristics juxtaposing, 

sequencing, and 

coordinating 

integrating, 

interacting, linking, 

focusing, and 

blending. 

transcending, 

transgressing, and 

transforming 

Cooperation no cooperation cooperation cooperation 

 

Table 1.1. The differences between multidisciplinarity, interdisciplinarity, and 

transdisciplinarity regarding their characteristics and the cooperation between their 

discipline-elements. (Adapted from Klein, 2010, p.16) 
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 Aspects of Interdisciplinary Studies or Researches Regarding 

This Project. According to Jungert, there are five aspects of a discipline that 

play an important role in examining the characteristics of interdisciplinary 

relations: Gegenstände (objects of investigation), Methoden (methods), 

Probleme (problems), theoretisches Integrationsniveau (level of theoretical 

integration), and Personen/Institutionen (persons/institutions) (Jungert, 2013, 

pp. 7–9). These five aspects must be present to form an interdisciplinary 

relationship. However, there are different degrees of each among various 

interdisciplinary researches. This dissertation will focus solely on one of the 

biggest challenges in interdisciplinary researches related to the issues of 

theoretical integration; how can we connect scientific theories from various 

disciplines such that the intertheoretical relation built is fruitful? This work 

aims to suggest a formal approach to build a model of how several theories 

from various disciplines are related to each other in interdisciplinary research.   

 Cognitive Science as A Case Study of Intertheoretical Relations. 

The subject of interdisciplinarity is both broad and vast. This dissertation will 

only focus on one interdisciplinary field, namely cognitive science. The 

reasons for choosing cognitive science are as follows: (1) Cognitive science 

fulfills the criteria of interdisciplinary studies. For studying the mind, 

cognitive science integrates many fields of science. Furthermore, it is not 

merely that several different disciplines speak about the same or a similar 

theme without any structured cooperation or trying to build a synthesis of 

their results – cognitive science is not merely multidisciplinary. (2) There are 

many fruitful researches in cognitive science. Intuitively, we are right in 

hoping that we can learn more from something successful, rather than from 

something unsuccessful or not yet successful. (3) Cognitive science is not 

only interdisciplinary but also a multicategory discipline. The term 

‘categories’ here refers to our classification of the various scientific 

disciplines into three categories that we normally use, i.e., natural sciences, 
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social sciences, and humanities. The disciplines in cognitive science do not 

only belong to natural sciences but also the social sciences and the humanities. 

 However, cognitive science is a vast interdisciplinary field, that 

contains at least six disciplines, hundreds of theories, and research programs 

– and it seems that these numbers are still increasing. Therefore, there shall 

be a limitation of the number of cases discussed. This dissertation will build 

and analyze formal models for the intertheoretical relation between cognitive 

dissonance and the corresponding computational neuroscientific theory in the 

functionality of dorsal Anterior Cingulate Cortex (dACC), between two 

models of neurons, and two simulations of the theory of cognitive dissonance. 

The first simulation is the consonance model built by Thomas R. Shultz and 

Mark R. Lepper and the second is the adaptive connectionist model built by 

Frank van Overwalle and Karen Jordens. The purpose of modeling several 

models of intertheoretical relations is to show how this approach is also 

applicable to many other synchronic intertheoretical relations. Synchronic 

intertheoretical relations occur in those cases where scientists connect several 

theories assumed existing together for their research. The complete 

description of these combined theories and their place in cognitive science 

will be discussed in Chapters 4–8. 

 

1.2. State of the Art of the Problem: Studies about Intertheoretical 

Relations in Interdisciplinary Fields 

 Although the topic of intertheoretical relations has recently become 

more and more interesting for philosophers of science, the discussions are 

mostly dominated by the discussions about reduction or intertheoretical 

reduction.2  This fact is understandable for the two following reasons: an 

ontological reason and a historical reason. 

 
2 In several renowned encyclopedias of philosophy, a subject of intertheoretical relation 

cannot be found in their table of contents, whereas a subject of reduction or intertheoretical 

reduction can. These encyclopedias are the following: the Stanford Encyclopedia of 
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 Historical reason. Although many aspects of science have been 

thought over since the Greek philosophers, modern philosophy of science 

began with Ernst Mach’s program and logical positivism. They systematically 

consolidated this heritage into a brand new approach to philosophy and 

science by implementing modern logic and engaging in the conceptual 

foundations of empirical science. The goals of their program were (1) to 

create new foundations for physics with a strong consideration of the results 

of the physiology of the senses, (2) to recover the unity of all sciences, and 

(3) to eradicate the metaphysical speculations from the field of science for 

good (Moulines, 2008, p. 26). Thus, the topic of reduction became one of the 

most critical issues in the agenda of modern philosophy science. A 

monumental work from one of those thinkers, Der logische Aufbau der Welt 

by Rudolf Carnap (1928), tries to reduce physics and the other sciences to 

elementary psychology. Carnap’s other work, Unity of Science, is an attempt 

to build the unity of science from the language of physics by reduction: “… 

science is a unity, [such] that all empirical statements can be expressed in a 

single language, all states of affairs are of one kind and are known by the 

same method” (Carnap, 1934, p. 32). Although the reduction is not the only 

epistemological proposal for the unity of science today, this topic is still an 

important and relevant topic with a most extensive historical background in 

philosophy of science.    

 Ontological reason. To obtain a richer explanation of a specific 

phenomenon x, it is evident that we can refer to more basic phenomena, which 

constitute x. Therefore, the concept of reduction is a significant component in 

the discussion about intertheoretical relations. According to the Stanford 

Encyclopedia of Philosophy, the reduction can be understood as follows:    

 
Philosophy, The Internet Encyclopedia of Philosophy, the Routledge Encyclopedia of 

Philosophy, and Kaldis, Byron Ed. (2013): The Encyclopedia of Philosophy and Social 

Science. None of these have an entry about intertheoretical relations, but all of them have 

an entry about reduction. 
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“The English verb ‘reduce,’ derives from the Latin ‘reducere,’ 

whose literal meaning ‘to bring back,’ informs its metaphorical use in 

philosophy. If one asserts that the mental reduces to the physical, that 

heat reduces to kinetic molecular energy, or that one theory reduces to 

another theory, one implies that in some relevant sense the reduced 

theory can be brought back to the reducing theory, the mental can be 

brought back to the physical, or heat can be brought back to molecular 

kinetic energy. The term ‘reduction’ as used in philosophy expresses 

the idea that if an entity x reduces to an entity y, then y is in a sense 

prior to x, is more basic than x, is such that x fully depends upon it or 

is constituted by it. Saying that x reduces to y typically implies that x 

is nothing more than y or nothing over and above y. 

... ‘Reduction’ is a term of natural language. Building upon its 

common metaphoric meaning, philosophers use it to designate 

relations of particular philosophical importance in many closely 

related fields, especially in the philosophy of science, the philosophy 

of mind, and metaphysics. 

The notion of scientific reduction as used in contemporary 

analytic philosophy differs from conceptions of reduction according 

to which we learn about the instantiation of reduction relations on a 

purely a priori basis from basic religious, metaphysical or 

epistemological principles. ‘Scientific reduction’ applies to 

reductionist claims supposedly justified by scientific evidence and the 

success of science.” (van Riel and van Gulick, 2014). 

It is important to note that this concept of reduction is not to be confused with 

reductionism, which is also a popular term or school in philosophy of science. 

“Reductionism is the adoption of reduction as the global ideal of the unified 

structure of scientific knowledge and a measure of its progress.” (Cart, 2013). 

People can agree with the existence of reduction as an intertheoretical relation, 

without agreeing with reductionism. 
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  Because of its importance, there are attempts to conceptualize the 

concept of reduction or, respectively, the concept of scientific reduction. One 

of the popular approaches is the generalized Nagel-Schaffner (GNS) model 

of reduction, outlined by Ernst Nagel in his Structure of Science and improved 

by Schaffner and others. In Chapter 8 the GNS model of reduction will be 

compared to the structuralist models of intertheoretical reduction. In this 

dissertation, the structuralist theory of science will be applied to modeling 

intertheoretical reduction in some existing researches and analyzing them to 

understand how intertheoretical reduction works. 

 At this point, it is important to be clarified that this dissertation has no 

agenda to develop or to support any idea of reductionism. However, the 

purpose of this dissertation in this matter is to propose an approach to evaluate 

the modern notion of intertheoretical reduction and the notion of reductionism 

by applying the structuralist metatheory of science.  

 Related to intertheoretical reduction, another issue to consider is the 

idea of the unity of science. In the birth of modern philosophy of science, 

recovering unity of science was set as one of its goals, but now there are many 

discussions to evaluate this goal – or respectively the idea. The reasons are: 

(1) there is no sign of its realization until now. Furthermore, (2) the idea of 

the unity of science, especially in its original version, is merely incompatible 

and implausible concerning the real scientific practices and the real 

development of science (Dupré, 1995). Members of the Stanford School, such 

as Dupré, Ian Hacking, Peter Galison, Patrick Suppes, and Nancy Cartwright, 

have launched attacks against universalism and uniformity both in the 

methodological and the metaphysical sense: “Disunity appears characterized 

by three pluralistic theses: against essentialism, there is always a plurality of 

classifications of reality into kinds; against reductionism, there exists equal 

reality and causal efficacy of systems at different levels of description, that is, 

the micro level is not causally complete, leaving room for downward 

causation; and against epistemological monism, there is no single 
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methodology that supports a single criterion of scientificity, nor a universal 

domain of its applicability, only a plurality of epistemic and non-epistemic 

virtues” (Jordi, 2013, about Dupré). On the other side, many philosophers, 

such as Hempel, Nagel, Friedman, Kitcher, Cat, Klein, Putnam, etc., still 

think that the unity of science is an important idea. They propose many ideas 

to evaluate and sharpen the concept in many ways by asking the following 

questions: Is the unity of science ontological or epistemological? How can 

the unity of science be achieved – by which method, under which 

requirements, etc.? Of course, my position can easily be ascertained from the 

title of my dissertation. This dissertation assumes that there is so-called unity 

of science, but the kind and the way still need to be clarified. Hopefully, this 

dissertation can provide some clues to make the discussion about the unity or 

disunity of science more fruitful (in Chapter 8) by giving some concrete 

examples from the real scientific practice in interdisciplinary fields, 

especially in cognitive science (in Chapters 5–7).   

 

1.3. Studies on Intertheoretical Connections in Cognitive Science 

 As an interdisciplinary field, cognitive science also becomes an 

exciting field for discussions about intertheoretical relations. In the discussion 

about the reduction mentioned above, the relationship between the mind and 

the body, which is one of the most central topics in cognitive science, often 

becomes an object of debate. During the rapid development of cognitive 

science, there are four views about intertheoretical connections in cognitive 

science according to Ezquerro and Manrique (2004), namely: (1) the classical 

view, (2) the connectionist revision, (3) the pragmatist approach, and (4) the 

reductionist approach. This categorization is based on the position of these 

authors with respect to the notion of the privileged level. The privileged level 

is understood here as a level (or a discipline) “at which all the different 

disciplines come to converge” (Ezquerro and Manrique, 2004, p.61): 

“Research in Cognitive Science has often assumed the existence of a 
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privileged level at which all the different disciplines come to converge. 

Computational theories were the first ones to offer themselves as such a level. 

The equation ‘cognition = information processing,’ on which the cognitive 

revolution was founded, seemed to find its natural place in the technical and 

mathematical developments provided by those theories. The possibility of 

obtaining a system of computational mechanisms that accounted for the 

totality of cognitive phenomena offered the promise of a ‘unified theory of 

cognition’ (Newell, 1990).” The classical view and the connectionist revision 

agree with the existence of such a privileged level, without being reductionist. 

The classical view holds the view that “to explain a particular mental 

phenomenon … required giving the right computational account between the 

right kinds of representations, which were conceived as a symbol system” 

(Ezquerro and Manrique, 2004, p. 65), whereas the connectionist approach 

does not use a symbol system or manipulations of symbols but an artificial 

neural network. However, the proponents of connectionism claim that " their 

systems offer a real possibility to bridge neuroscientific, computational, and 

intentional descriptions” (Ezquerro and Manrique, 2004, p. 68). The 

pragmatist approach denies the existence of a privileged level because they 

see that “the different ways of formulating levels depend just on our different 

approaches to the phenomena we want to study, and this, …, depends on 

pragmatic considerations” (Ezquerro and Manrique, 2004, p. 81). 

Furthermore, the reductionist approach, as proposed by Bickle, agrees with 

the existence of a privileged level and tries to give a more detailed and smooth 

intertheoretical reduction using the set-theoretical approach characteristic of 

the structuralist theory of science. Chapter 8 will also respond to this 

discussion about the intertheoretical reduction in cognitive science and show 

the position and the contributions of this research concretely.  
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1.4. Why the Structuralist Approach? 

 From the description of the current state of the research on 

intertheoretical relations both in the philosophy of science and cognitive 

science above some points can be concluded as follows: (1) The discussions 

about intertheoretical relations are dominated by the idea of reduction as if 

there were no other intertheoretical relations3 (2) Most examples presented in 

the discussion of intertheoretical relations are reasonable speculative sketches 

about intertheoretical relations – the theories are real, but the models of 

intertheoretical relations presented have just a minimal relation – if not 

without any relation at all – to scientific practice. Therefore, there is no way 

to verify those models, and they only give small contributions to 

interdisciplinary practices. (3) There may be models of intertheoretical 

relations that are based on real scientific practice besides the models based on 

speculative sketches. However, they are not detailed enough to give 

significant contributions to scientific practices, and (as far as the author can 

see) none is a model of interdisciplinary intertheoretical relations.  

 Because of these points, this research focuses on building a model of 

intertheoretical relations for a specific interdisciplinary field and take 

cognitive science as a real case. The models are based on concrete examples 

in cognitive science, namely the explanation or simulation of a psychological 

property by the network in the brain or the artificial neural network. It is 

generally assumed that our mental properties or faculties are connected to our 

brain, and several scientific research about these connections have been done 

in cognitive science. The implementation of artificial neural networks comes 

 
3 Of course, I do not mean to say that all philosophers of science know only intertheoretical 

reduction. Many philosophers surely know that there are different kinds of intertheoretical 

relations besides intertheoretical reduction. Structuralists know several types of 

intertheoretical relations, and intertheoretical reduction is just among them (see Chapter 2). 

We may also look at Schaffner’s revision of Nagel’s notion of reduction called the 

Generalized Nagel-Schaffner (GNS) model of reduction.  
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into the playground because it is currently still impossible for us to understand 

the networks of the brain entirely.   

 The structuralist theory of science is chosen as the underlying theory 

for this project because of the following reasons: (1) To trace how scientists 

add some constraints or assumptions to the theories and how those constraints 

or assumptions affect the theories, it requires a theory that can help for 

building a detailed model of the combined theories and their relations. The 

structuralist metatheory of science provides tools for analyzing and building 

models of scientific theories by identifying their important components. (2) 

The structuralist theory of science implements the formal approach that 

enables us to reach high clarity and consistency in modeling and analysis. It 

is crucial because some terms from various disciplines often have a different 

meaning or reference, although they use the same word. To understand 

intertheoretical connections between theories from various disciplines, it is 

important to identify precisely which parts of the theories in question are 

interconnected and how they are connected. The structuralist theory of 

science provides powerful tools by modeling the theory in several classes of 

terms or their relations, i.e., potential models, actual models, etc. With these 

classes, it becomes possible to identify not only the inner structure of the 

connected theories but also the connected parts of the theories and the 

properties of the connections. Modeling individual theories in question will 

be presented in Chapter 3, whereas modeling intertheoretical connections 

between them will be in Chapters 5–7. (3) The structuralist theory of science 

has high flexibility for modeling because it implements set theory instead of 

first-order predicate logic. (4) The structuralist theory of science has already 

identified and characterized several kinds of intertheoretical connections. It 

will be of a great help in analyzing the intertheoretical relationships, which 

no other approach in the philosophy of science can offer. 

 By applying the structuralist theory of science, the research will be 

conducted as follows. First, several formal models of the theory-elements that 
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will be combined are presented in Chapter 3. After that, some preparations 

for the modeling of intertheoretical connections in interdisciplinary fields 

should be done in Chapter 4, i.e., explaining some formal tools and revisions 

that will be helpful for the modeling and a short overview of cognitive science 

related to our investigation. Chapters 5–7 will explain some interdisciplinary 

researches and build formal models of intertheoretical relations between their 

theories in question. In the last stage, analysis of the types of intertheoretical 

relations and how they work will be a part of Chapter 8.    

 

1.5. Research Plan 

 This last section systematizes the plan of discussion as follows: 

Chapter 2 will describe the structuralist theory of science as the basic 

metatheory of this project and its application. Chapter 3 will deliver some 

structuralist models of several theories needed from psychology, 

neuroscience, and artificial neural network. These theories are the Festinger 

theory of cognitive dissonance, the McCulloch-Pitts neuron, the Hopfield 

network, the Rosenblatt perceptron, the architecture of artificial neural 

network, and the delta rule. Chapter 4 will discuss several preparations for the 

modeling of the intertheoretical connections. They include a revision of the 

definition of specialization, the notion of an echelon set, and a brief overview 

of cognitive science. Chapter 5 will deliver a structuralist model of the 

intertheoretical relations between a specialization of the theory of cognitive 

dissonance, i.e., for the case of forced compliance dissonance, and the 

corresponding computational neuroscientific theory. In this modeling, the 

case of the dorsal Anterior Cingulate Cortex investigated by van Veen, et. al. 

will be used. Chapter 6 will show how the McCulloch-Pitts neuron in 

neuroscience is in synchronic relation to the Rosenblatt perceptron in artificial 

intelligence. It will be a model of intertheoretical relation between the models 

of neurons in both disciplines. Chapter 6 will also deliver a structuralist model 

of the intertheoretical relations between the Festinger theory of cognitive 
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dissonance and the Hopfield network according to the consonance model. 

Chapter 7 will be about building a structuralist model of intertheoretical 

relations between the theory of forced compliance dissonance and the feed-

forward neural network according to the connectionist model. Chapter 8 will 

discuss the relevance and the contributions of this research for the current 

state of the related discussion about intertheoretical relations (or respectively 

reduction) and the unity of science in the philosophy of science and cognitive 

science. Chapter 9 contains a critical reflection about how this research 

contributes to the scientific practice in interdisciplinary fields and suggests 

the possible developments and improvements of this project for some future 

works. 
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Chapter 2 

The Structuralist Theory of Science and Intertheoretical 

Connections 

 

 

 This chapter will describe the basic idea of the structuralist theory of 

science and how it will work to give an account of intertheoretical 

connections. This topic will be discussed in several parts as follows. The first 

part will explain the basic concept of formal modeling of scientific theories. 

The second part will discuss the notion of intertheoretical connection and its 

kinds. The third part will discuss the results of the intertheoretical links, 

namely the notions of a theory-net and a theory-holon. Scientific theories are 

connected to other scientific theories, and this results in two kinds of relation 

networks. The first kind is a local relation network, which is called a “theory-

net.” And the second kind is a global one, which is called a “theory-holon.” 

The fourth part of this chapter will discuss the idea of theoreticity with respect 

to intertheoretical connections. And finally, the idea of a fragment will be 

discussed in the last part. 

 

2.1. The Basic Concept for Formal Modeling of Scientific Theories 

according to the Structuralist Theory of Science 

 The structuralist theory of science was developed by Joseph Sneed, 

Wolfgang Stegmuller, Wolfgang Balzer, and C. Ulises Moulines. Although 

many books and articles have been written about this theory, its central book 

is An Architectonic for Science, written by Balzer, Moulines, and Sneed in 

1987. This dissertation will use the abbreviation ‘BMS’ to refer to this book.    

 The structuralist theory of science as a kind of metatheory has scientific 

theories as its objects of investigation. Therefore, the structuralist theory of 

science does not (want to) create scientific theories – it assumes that they 
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already exist. The goal of this metatheory is the modeling and analyzing the 

deep logical structure of scientific theories. For this goal, the structuralist 

program applies several formal tools, including, most importantly, set theory 

and model theory.  

 The structuralist metatheory of science understands scientific theories 

as models to explain phenomena. As a model, a scientific theory unifies 

various aspects of phenomena to explain those phenomena. Under the model 

concept, the structuralist theory of science, as Bartelborth (1996) depicts it, 

makes clear in general terms that a model is merely a representation that is 

specifically designed to serve as a representation of something in the 

theoretical level of knowledge. A model does not necessarily have to be an 

isomorphic image of objects and their properties and relations. A model must 

only be able to show the isomorphic correlations between certain aspects of 

reality and certain parts of the model (Bartelborth, 1996, p. 364). In the case 

of a scientific theory, the structuralist theory of science links this intuitive idea 

of a model mainly to the formal notion of model in logic and mathematics. 

According to the structuralist approach, logic, and mathematics, especially 

set theory, represent the terms (or concepts) of scientific theory and the 

relations between those terms (or concepts). Therefore, the structuralist 

theory of science under the concept of ‘model’ always conceives it as a formal 

or logical-semantic model. 

 The first and smallest model-theoretic concept for a scientific theory 

is called ‘theory-element’ in the structuralist theory of science. The term 

‘theory-element’ is understood as “the smallest unit of empirical science that 

has all the features required to say something interesting about the world.” 

(BMS, p. xx). Each theory-element contains a vocabulary or conceptual 

structure and an empirical law-statement or a law-like statement formulated 

with this vocabulary, and “a specification of the things to which this law is 

intended to apply” (BMS, p. xx). This theory-element is a construct in terms 

of set theory and model theory. The basic intuition of this approach is “that 
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the smallest significant or interesting parts of empirical science are best 

characterized, not as linguistic entities, but as model-theoretic entities” (BMS, 

p. xxi). 

 For building a theory-element, the structuralist theory of science sees 

that the simplest structure of a scientific theory can be modeled formally as a 

structure of the form: D1, ... Dm, R1, ..., Rn, where Di is the basic set and Rj 

is the relation between these basic sets. The Di contains the objects of a theory 

– they can be both empirical objects and purely mathematical objects. The Rj 

represents the relation or function between the objects of the modeled theory; 

in the quantitative disciplines, the Rj is often a function of empirical objects 

to real numbers or vectors. This way of representation serves as the first step 

for the modeling of scientific theories. The selected sets of axioms determine 

most precisely those classes of models that represent the specific areas of the 

phenomena that are important for the theory.   

 The next step consists in distinguishing among the selected axioms 

two classes, namely, the class of the ‘frame conditions’ (which defines the 

class of the potential models (Mp)) and the class of the substantial laws (which 

defines the class of the actual models (M)). While the potential models 

contain only the basic concepts and the formal characteristics of the theory – 

it does not say anything interesting about the world – the actual models, which 

contain the essential laws of the theory, say something interesting about the 

world. For the formation of these two kinds of models, the structuralist theory 

of science uses the method introduced by Patrick Suppes known as 

‘axiomatization by means of a set-theoretical predicate’ (Moulines, 1996, p. 

6). The formal definitions of the potential models and the actual models are 

given as DI-8 and DI-8* in BMS, p.17. From the definition of Mp(T) and 

M(T), we can see that the relation between Mp(T) and M(T) is as follows: 

M(T) is a subset of Mp(T) or M(T)  Mp(T). This step characterizes the 

identity of the scientific theory as the pair Mp, M. This pair can be called 
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the ‘model element’ because it provides the essential unit to comprehend the 

essence of the theory.  

 However, for some analyses of scientific theories, especially for 

analysis of their intertheoretical connections, these two classes are not enough. 

For this purpose, the structuralist theory of science provides us with a 

fundamental concept of intertheoretical connections (links) – symbolized by 

‘L’ for such purposes. The structuralist sees that scientific theories are not 

isolated units, but they are joined together with one another in specific 

connections or relations. The definition of the links is given in BMS, p. 61. 

 Another useful tool that the structuralist theory of science provides is 

the distinction between two different conceptual and methodological levels 

of a theory, namely the T-theoretical level and the T-non-theoretical level. 

The T-theoretical level is to be understood as specific concepts of a theory 

which can be obtained only on the assumption of the theory itself (see the 

criterion of T-theoreticity in BMS, p. 55). Other concepts of the theory, which 

can be obtained without presupposing the theory itself, belong to the T-non 

theoretical level. The T-non-theoretical concepts come from observations or 

from other theories. This distinction leads to a new substructure that contains 

only the non-theoretical elements, the “class of partial potential models,” and 

is symbolized by Mpp – while the potential models Mp contain both the T-

theoretical and the T-non-theoretical elements. The class of partial potential 

models can be obtained by the function r: Mp(T) → Mpp(T). The definition 

of the class of partial potential models Mpp is given in BMS, p. 57. 

 The potential models Mp, the actual models M, the partial potential 

models Mpp, and the global links GL, – together with the global constraint 

GC and the approximations A, which are not discussed here because they are 

not relevant for this dissertation, – form the core of the theory-element K. The 

definition of a theory-core is given in BMS, p.79. The components of the 

theory core K do not yet reflect the empirical side of empirical theory. For 

this reason, another domain must be added so that the concept of a theory-
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element can represent a real empirical theory. A scientific theory must in 

principle be applicable to real phenomena so that explanations, predictions, 

and applications are possible in the form of technologies. This domain is the 

domain of intended applications and is symbolized by I. The characterization 

of a theory-element is given in the structuralist theory of science by a tuple 

K, I. 

  The structuralist theory of science holds three assumptions for the 

determination of the domain of intended applications. According to the first 

assumption, the intended applications are neither pure reality nor pure 

experience. The domain of intended applications does not contain pre-

conceptual things or sense-data. According to this, the domain of intended 

applications of a theory is conceptually determined by the existing terms. 

According to the second assumption, the intended applications of the theory 

are not concerned with all human experience, but with local and diverse parts 

of human experiences. The structuralist concept of science does not assume 

there exists a kind of theory of everything. Each scientific theory has its 

domain of intended applications I; these domains of different theories can 

overlap, partially overlap, loosely connect, or be completely apart. The 

structuralist theory of science regards the domain of intended applications as 

a subclass of the partial potential models (Mpp). This approach is a weak 

characterization of the intended applications. To discuss the domain of 

intended applications in more detail, it cannot be stated in the pure 

formulation utilizing set theory or model theory, since the intended 

applications are not independent of historical and pragmatic factors. The 

definition of the intended application is given in BMS, p. 88. 

 Since scientific theories are not isolated units but are related to other 

theories, the theory-elements, as their formal models, appear in groups and 

are connected through intertheoretical connections (links). Intertheoretical 

links serve to transmit ‘information’ between theory-elements (BMS, p. xx). 
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Certain intertheoretical connections such as specializations link theory-

elements with the same vocabulary, and different laws, in networks that 

represent another general conception of a scientific theory. Moreover, global 

empirical science is a network of (all) theory-elements that connect with other 

theory-elements through various intertheoretical connections L. In this way, 

the structuralist theory of science divides the formal explication of the 

intuitive idea of a scientific theory into three different concepts. The simplest 

level is the idea of a theory-element. In the next level, some (at least two) 

theories having the same basic conceptual apparatus appear connected and 

form a theory-net. After that, many (though not all) theories in the second 

sense (i.e., theory-nets) form a global structure of scientific theories called a 

‘theory-holon.’ 

 In real scientific practice, scientific theories can change over time in 

three directions: “First, the things to which the laws in individual theory-

elements are expected to apply ... may grow or diminish. Second, theory-

elements may appear and disappear from the complex. Finally, 

intertheoretical links between the theory-elements may appear and disappear 

from the complex” (BMS, pp. xx–xxi). In these transformations of scientific 

theories and intertheoretical connections already discussed, two kinds of 

representations of the links between scientific theories are considered. First, 

there is the concept of ‘theory-evolution.’ A theory-evolution is a 

development of ‘theory-nets’ through time. Secondly, the synchronic 

representation shows how many scientific theories can be assembled at a time 

and can be linked to each other to provide explanations of certain phenomena 

or specific intended applications. This dissertation focuses on this synchronic 

representation of intertheoretical relations.  
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2.2 The Concept of Intertheoretical Connections and Their Varieties 

2.2.1. The Concept of Intertheoretical Connections 

 Scientific theories are always connected to other scientific theories. 

Therefore, the structuralists understand intertheoretical connections in two 

ways, i.e., intertheoretical connections as a kind of bridge connecting several 

scientific theories and intertheoretical connections as essential components of 

each scientific theory. 

 As one of the essential components of a scientific theory, the 

structuralist theory of science includes the concept of intertheoretical 

connection in the concept of theory-core. Intertheoretical connections belong 

to the concept of a scientific theory because the idea of an isolated theory in 

science is fundamentally deficient. A scientific theory’s identity can only be 

adequately understood if one considers its links with other scientific theories. 

 As intertheoretical bridges, intertheoretical relations are not relations 

between statements or sets of statements but relations between models or sets 

of models. In this case, it is important to formulate more precisely, in a formal 

way, either that a connection is a bridge between models of the same theory 

or a bridge between models of different theories. The first is called 

intratheoretical bridge or constraint (C), while the second is an 

intertheoretical bridge or link (L). The definition of a bridge can be seen in 

Moulines & Polanski, 1996, p. 220.  

As stated above, a model element E = Mp
i, Mi is the smallest pair 

that forms the identity of a scientific theory. If there is an intertheoretical 

connection, such as λ  Mp
i' Mp

j, it is convenient to write the intertheoretical 

connection between two different theories as EiλEj. If there are two models 

to be considered, xi and xj, the intertheoretical connection between them is xi, 

xj, and can be written as xixj. 
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2.2.2. The Varieties of Intertheoretical Connections 

 Because it is important to understand the nature of intertheoretical 

relations between scientific theories, the structuralist theory of science 

provides us with many tools for the analysis of intertheoretical relations. The 

structuralist metatheory of science identifies various kinds of intertheoretical 

connections as relations between scientific theories. According to Moulines 

(1992), two basic intertheoretical connections are the entailment 

intertheoretical connection and the determining intertheoretical connection. 

All other intertheoretical connections can be derived from these two types 

either by adding further conditions or by combining them. There are at least 

five types of specific intertheoretical connections formally characterized by 

the structuralist metatheory of science for synchronic intertheoretical 

relations. Some of them can be attributed to the entailment intertheoretical 

connections because they are specific types of entailment links – 

specialization, reduction, equivalence, and approximation. However, the 

partial reduction is a specific type of determining link. 

 In addition to these five specific synchronic intertheoretical 

connections, Moulines (2014) also characterized four specific diachronic 

intertheoretical connections that capture the dynamic development of a 

scientific theory, namely crystallization of a theory, evolution of a theory, 

embedding of one theory into another one, and replacement of one theory by 

another accompanied by partial (semantic) incommensurability. Since 

diachronic intertheoretical connections are not the topic of this dissertation, 

they will not be discussed here. This notwithstanding, the case discussed in 

Chapter 6 is historically a case of intertheoretical embedding, namely the 

embedding of the McCulloch-Pitts neuron into the Rosenblatt perceptron. 

This intertheoretical connection is a connection from the model of a neuron 

in neuroscience into the mathematical model of a neuron, called perceptron, 

that is used in the artificial neural network for the simulation of cognitive 

dissonance.  
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2.2.2.1. Entailment Intertheoretical Connections (Links) 

 Entailment intertheoretical connections are intertheoretical 

connections that connect the whole of the actual models of two theories. 

Therefore, they form a unity of classes from the structures of different theories. 

The formal definition of entailment intertheoretical connections is to be found 

in Moulines & Polanski, 1996, p. 223. This definition of the entailment 

intertheoretical connections (links) can also be applied to the analysis of 

theory-holons by adding some additional conditions for the T-non-theoretical 

level or an intended application (See DVIII-2 in BMS, p. 392). The additional 

conditions are as follows: (1) the entailment link must connect the actual 

models of both theories, and (2) the entailment link provides a mapping to the 

set of intended applications of one of both theory-elements according to the 

function r. This mapping defines the local empirical claims of the links in the 

theory-holon.     

 

2.2.2.2. Determining Intertheoretical Connections (Links) 

 Determining intertheoretical connections represent relations between 

single terms or concepts (i.e., they are term to term relations), which 

connected theories contain. The formal definition of determining 

intertheoretical connections is given in Moulines & Polanski, 1996, p. 223.  

 

2.2.2.3. Intertheoretical Specialization 

 Specialization is another type of intertheoretical connections that arise 

because of an addition of special laws or law-like statements to a theory T, 

such that a new theory T’ comes into existence. The additional law(s) cause 

an improvement of the explanatory power with the cost of a limitation of the 

explanatory range. From the model-theoretical point of view, this addition of 

special law(s) into the existing laws can be considered as creating a subset 

M’(T) from the current models M(T). The subset M’(T) satisfies more 

constraining conditions for a partial set of I(T) in a more limited empirical 
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range. This notion of specialization is defined formally as DIV-1 of BMS, p. 

170. 

 A specialization relation has the following characteristics: (a) the 

specialization is used for special cases, (b) the specialization limits the 

empirical content of the initial theory-element core. These properties are 

expressed in BMS, p. 170. 

 

2.2.2.4. Intertheoretical Theoretization 

 The essential idea of theoretization can be understood through the 

difference between T-theoreticity and T-non-theoreticity. The T-theoretical 

concepts of a theory are the concepts that can only be determined by 

presupposing the theory itself. The other concepts, which do not require the 

theory T itself for their determination, are called T-non-theoretical concepts. 

The T-non-theoretical concepts can be derived from other theories, 

measurements, and observations. Here we can easily see that a T*-non-

theoretical concept of theory T* can be a T-theoretical concept of the theory 

T if the theory T* is linked to theory T or applies or accepts certain concepts 

of theory T. Thus, whether a concept is theoretical or non-theoretical, is not 

an inherent property of the concept. The identity of a concept can change from 

one theory to another through such intertheoretical relations. Such an 

intertheoretical relation is called theoretization. More precisely, the concept 

of theoretization can be understood as follows: T* is a theoretization of T, if 

T*-non-theoretical concepts are concepts of T, either T-theoretical or T-non-

theoretical. There is a distinction between two cases: T* is a theoretization of 

T in the weak sense, if some of the T*-non-theoretical concepts come from 

T; while T* is a theoretization of T in the strong sense, when all T*-non-

theoretical concepts come from T. The intertheoretical theoretization is 

defined formally as DVI-1 in BMS, p. 251. 

 

 



 

31 

 

2.2.2.5. Intertheoretical Reduction 

 The intertheoretical reduction is one of the most important topics in 

many discussions of the philosophy of science. There are several types of 

reductions in these discussions. The first type is the historical reduction, 

which can be comprehended intuitively by considering historical 

developments of specific scientific explanations, such as the development of 

the explanation of the motion of planets from Ptolemy via Copernicus and 

Kepler to Newton. Historically, these relations were sometimes shown in the 

following circumstances: a theory T is replaced by a new and conceptually 

different theory T* with related or similar, but better constructed intended 

applications (BMS, p. 252). There are intense discussions about the 

justification of this transition, but this discussion is no longer the subject of 

this work because this work is not intended to discuss the diachronic 

intertheoretical relations. The second kind of reduction that can be made is 

due to the simplification of applications of theory. Such a reduction is called 

‘practical reduction.’ In many interdisciplinary cases, there are also 

reductions due to the speculative view that one particular area is viewed as 

more basic than another. However, this speculative mode of reduction will 

not be discussed in this work, although interdisciplinarity is at the center of 

my research. The distinction between historical reduction, practical reduction, 

and speculative reduction plays no role in our discussion about reduction as 

long as the modeling is concerned. What is crucial is the distinction between 

exact reduction and approximative reduction. The expression “reduction” 

used here denotes the exact reduction, and the expression “approximation” 

refers to the approximate reduction, which can be modeled by implementing 

the notion of intertheoretical approximation grounded on exact reduction. For 

simplicity and clarity of modeling intertheoretical connections, I will not 

consider the notion of approximation in the case studies in this dissertation. 

 The reduction discussed here is a kind of intertheoretical relation 

between the structural classes of the theories and not simply between the 
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concepts or the terms of the theories. For a formal definition of the reduction 

relation between a T ‘the reduced theory’ and a T* ‘the reducing theory,’ the 

structuralist metatheory of science has considered seven conditions for an 

adequate reduction relation. (See BMS, pp. 275–276) However, we do not 

discuss these details here, since they are not relevant to the present discussion.  

 

2.2.2.6. Intertheoretical Equivalence 

 In discussing the fourth kind of intertheoretical connections, the so-

called equivalence, the structuralist distinguishes two kinds. The first is 

empirical equivalence, while the second is theoretical equivalence or simply 

equivalence. 

 Empirical Equivalence. Empirical equivalence focuses on the T-non-

theoretical level of the theory, namely the intended applications. This 

approach considers theories as a tool for explaining particular phenomena that 

they take up or for solving problems in the area of the phenomena. In this 

approach, the structures of the complete theoretical instruments can be 

neglected as long as both theories provide the ‘same’ explanations and solve 

the ‘same’ problems with the ‘same’ systems or if they have the ‘same’ 

empirical content. This empirical equivalence is formally defined in BMS, on 

pages 288-289 as D VI-9 and TVI-7. By giving the formal definition, the 

structuralist theory of science assumes that empirical equivalence is a kind of 

global intertheoretical relations without further investigation of its 

components.  

 Theoretical Equivalence. Theoretical equivalence also takes the 

theoretical concepts of the theories into account, which belong to the potential 

models. Two theories are equivalent if their complete theoretical structures 

are in some respects isomorphic, and the two theories explain the ‘same’ 

phenomenon. Moreover, this relationship between potential models provides 

a satisfactory comparison between the intended applications. The relation, 
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however, does not have to be bijective between models. This equivalence 

relation is formally defined as DVI-11 in BMS, p. 297. 

 

2.2.2.7. Intertheoretical Approximation 

 The last special type of the intertheoretical connections characterized 

in BMS is intertheoretical approximation. The term “intertheoretical 

approximation” is understood as a kind of inexact intertheoretical relation 

between two theory elements T and T’, where Mpp(T)Mpp(T’) and 

Mp(T)Mp(T’). The two theoretical elements, which are compared or 

connected here by the intertheoretical approximation, belong to two 

synchronically different theories. Therefore, the intertheoretical 

approximation is a relation between theory elements in the form K, A, I and 

K’, A’, I’, where K and K’ are conceptually different, and A and A’, which 

are the sets of admissible blurs of both theories T and T’ related to the 

intertheoretical connection between them, are also different. If Mp and Mp’ 

are different, then A and A’ will also be different. Therefore, there are no 

“common” blurs that express the relation between the two theories.   

 

2.3. Modeling Relations (or Networks) between Theories 

 After discussing various kinds of intertheoretical connections, now we 

can move on to discussing how extensive intertheoretical relations can be 

produced from these various kinds of intertheoretical connections. The 

structuralist metatheory of science has already characterized two products of 

intertheoretical relations, namely: theory-nets and theory-holons. 

 

2.3.1. Theory-nets 

 With the term ‘theory-net,’ the structuralist metatheory of science 

describes a relation between two or more theory-elements with the same 

potential models and same partial potential models and are related through a 



 

34 

 

particular intertheoretical connection, i.e., specialization(s). The notion of a 

theory-net corresponds to a ‘local’ idea, that is, the combination of a scientific 

theory with other closely linked theories. A standard example is classical 

particle mechanics with its specializations such as Newtonian classical 

particle mechanics, Hooke’s classical particle mechanics, and others. The 

notion of theory-net is defined in DIV-2 of the BMS, p. 172. The 

specialization connection in theory-nets is a partial order relation; that is, it 

has the following properties: reflexive, transitive, and antisymmetric (BMS, 

p.172). 

 There are various types and cases of nets of scientific theories – we 

can represent them by graph theory. In the normal situation, a theory-net (N) 

consists of at least two different theory-elements, which are connected to each 

other. The cases must be that they are either specializations of another 

common ‘higher’ theory-element or else one is a specialization of the other. 

In such a theory-net, there is always at least one theory-element that is not a 

specialization of other theories, and there are also theory-element(s) that have 

no specializations. Theory-elements, which are not a specialization of other 

theory elements, are called the basic theory-element(s). An important type of 

theory-net is the theory-net with a single basic theory-element. In graph-

theoretical representation, it forms a tree-like structure. Therefore, it is called 

a theory-tree. This kind of theory-net, the basic theory that forms it, and the 

condition of connectedness are discussed and defined in BMS, pp. 173–175.     

 The structuralist metatheory of science conceives a theory element as 

a pair K, I. Therefore, the relations between the cores and the intended 

applications of the theories involved in the network should also be considered 

in the construction of a theory-net. The relations between the cores and the 

relations between the intended applications of the theories in the network are 

formulated as DIV-6 and D IV-7 in BMS, pp. 176–177. In a tree-like network, 

the net of cores and the nets of applications have the same net structure as the 
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original theory-net, if there is only a set of the intended applications for each 

core in the original network, and vice versa (BMS, p. 177 see T IV-5). 

 Since the empirical content of a theory-element is interpreted as the 

statement ICn(K), the theory-net has as many individual empirical contents 

as the theory-elements in the net. BMS summarizes the global empirical 

content of the net as the conjunction of all these individual empirical contents 

of the theory-elements, as formulated in D IV-8 (BMS, p. 177). 

 In the case of an unconnected theory-net with possibly unrelated sub-

nets, its empirical claim contains more or less amorphous conjunction of 

individual empirical claims. However, in the case of the connected theory-net, 

the empirical claim is important to be considered inasmuch as all individual 

claims refer to the same Mpp. All the individual sets of intended applications 

Ii of theory-elements in such a connected, tree-like net, are the subsets of the 

basic set I0. These individual subsets Ii can be subsumed under the basic core 

K0 as supplemented by the addition of certain restricting conditions to the 

basic core K0. These specific conditions are the conditions that define Ki. 

However, we have to consider that the empirical claim of the basic theory-

element can be vacuous because of Cn(K0) = Po (Mpp). However, even in 

such a case, the global empirical assertion of the network may not be vacuous 

because of Cn(Ki)  Po (Mpp) at least for some specializations Ki. At any 

rate, even if the basic statement is not vacuous, it usually is very weak. 

 

2.3.2. Theory-holons 

 The relations between some theories of different theory-nets, which 

enter further intertheoretical connections, build a ‘theory-holon.’ The concept 

of theory-holon contains a ‘global’ idea. In a theory-holon, scientific theories 

have connections not only with their close relatives, but also with many other 

theories from other areas of empirical science, be it within one and the same 

discipline, or else from different disciplines. The connections here are much 
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more complicated than in a theory-net because many different intertheoretical 

connections are involved. There are even several types of intertheoretical 

connections between two theories T and T’ in such a global relation. To make 

it simple, the discussion is firstly held as if there is always only one 

connection. This approach is based on reality that the conjunction of several 

links – set-theoretically expressed by their intersection – is also a link. The 

general idea of theory-holon is defined as D VIII-1 in BMS, p. 389. The 

notation N used in the original definition in BMS is replaced by H in this 

dissertation to differentiate the theory-holons from the theory-nets. 

 In a theory-holon, the intertheoretical connections  are a partial 

function mapping a theory-element T to another theory-element T’. As a 

partial function,  implies that there is at most one link between T and T’ and 

there is room for pairs of theory-elements in H that are not connected. The 

pair T, T’ as a domain of  means that  is a subset of the relation between 

the potential models of both theories, namely Mp(T) and Mp(T’). Defining a 

theory-holon requires that all theory-elements in H must be connected at least 

to a theory-element in H. Any theory-element which does not satisfy this 

requirement is called “isolated” and has no connection with a holon. 

Therefore, there is the possibility of linking many theory-elements in 

networks through different links because of the transitivity of the 

intertheoretical connections – if a theory-element T is connected to another 

theory-element T’ by  and T’ is connected to T” by ’, then we can always 

define a new ” as link between T and T”. 

 The network structure of the theory-holon is more complicated than 

the structure of theory-nets. It contains the global way of connecting various 

theory-elements. Graph theory represents the structure of the relations created 

by links. This network of theories H,  consists of binary relations between 

theory-elements and can also be expressed as follows: TT’ iff T, T’ Dom 
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(). In BMS, pp. 393–394, we can find the definition of a theory-holon in the 

graph-theoretic expression. 

 Although a theory-holon deals with global intertheoretical relations, it 

does not refer to the global empirical claim of the holon, nor to its (global) 

intended applications. The problem with the global notion of empirical claims 

and intended applications is that on the practical level of such notions, they 

are implausible and impractical. In practice, it is more plausible if we refer 

only to the empirical claim(s) and the intended application(s) of a small piece 

of the holon. For this reason, we discuss the local empirical claims and the 

intended applications of a theory-element or a theory-net in the context of the 

theory-holon, including them. 

 To discuss the local empirical claims and the ‘local’ intended 

applications, we must begin with an (individual) theory-element. Then, the 

examination of the theory-elements that contribute to the theory-holon 

follows. In this context, an interpreting link must be considered. By 

“interpreting link,” we mean an intertheoretical connection, which gives 

interpretations about the non-theoretical concepts of a theory-element. Thus, 

a theory-element T’ interprets another theory-element T (in holon H) iff. T’, 

TDom(), and (T’, T) is an interpretive link. In the holon, a theory-

element may play both an interpreting and an interpreted role (BMS, p. 396).  

 

2.4. The Intertheoretical Connections and the Concept of T-Theoreticity 

 As a result of the discussion about the notion of a theory-core, a 

criterion about the difference between T-theoreticity and T-non-theoreticity 

must be present in order to identify the theoretical level conceived as the 

potential models and the practical or non-theoretical level conceived as the 

partial potential models. In contrast to the classical metatheory of science, the 

structuralist metatheory of science assumes that not only the observational 

concepts belong to the practical level, but also the concepts adopted from 
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other theories. Therefore, the criterion of T-theoreticity can be sharpened 

through the relations of theory with other theories in the same holon. 

 

2.5. The Fragment 

 Although the concept of a fragment does not belong to the theoretical 

part of the structuralist metatheory of science, BMS discusses this for 

practical reasons. The term ‘fragment of empirical science’ refers to a part of 

empirical science that serves as a unit of empirical science in the usual 

discussions of science. A fragment consists of a few theory-elements 

connected to each other in specific networks or in a particular scientific field. 

A fragment is only a part of a theory-holon, but it is larger than single theory-

elements or theory-nets. An example is what I will analyze in this dissertation: 

The fragment of psychology, including the theory of cognitive dissonance as 

one of its parts, is connected not only with its specializations in the theory-

net but also with other theories in psychology. Moreover, as an 

interdisciplinary field in science, cognitive science forms a larger fragment 

that connects fragments of psychology with fragments of neuroscience and 

with fragments of artificial intelligence.  For such a practical reason, and for 

delimiting the discussion, the idea of a fragment of empirical science will be 

needed later.   



 

 
39 

 

Chapter 3 

Structuralist Models of Several Scientific Theories in 

Cognitive Science: The Case of Dissonance Reduction in the 

Cognitive Process 

 

 

 This chapter will discuss the building of set-theoretical models of 

several theories in various scientific fields in cognitive science. Since 

cognitive science is a vast discipline, it will be realistic if this work limits 

itself only to the relations between several theories from two or three 

connected fields for explaining a specific case of phenomena. Thus, this 

dissertation will focus on the phenomena of dissonance reduction in the 

cognitive process. These phenomena are explained well by the theory of 

cognitive dissonance from Leon Festinger. There are also many kinds of 

research in neuroscience and simulation by using artificial neural networks 

related to these phenomena. This chapter will present several structuralist 

models of several theories from these fields before we model the 

intertheoretical connections for such research.    

 

3.1. Psychology 

 The first scientific field of cognitive science that will be modeled here 

is psychology, especially the theory of cognitive dissonance from Leon 

Festinger in 1957. Rainer Westermann has already built the structuralist 

models for the Festinger theory of cognitive dissonance and its specializations 

in 1989 and 2000. The content of the theory will be described first and then 

followed by the structuralist models built by Rainer Westermann.  
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3.1.1. A Brief Description of the Theory of Cognitive Dissonance 

 Leon Festinger develops the theory of cognitive dissonance in his 

book A Theory of Cognitive Dissonance, first published in 1957, and then 

republished in 1985. The basic idea of the theory is that we have an inner 

drive to hold all attitudes and beliefs in harmony, and therefore, we have 

tendencies to avoid, reduce, or eliminate disharmony or dissonance (McLeod, 

2008, updated 2014). This dissonance theory has great importance and 

influences in the psychology of motivation and social psychology and has led 

to many experiments and considerable theoretical progress. The book itself 

consists of 10 chapters. Chapter 1 presents the general theory of cognitive 

dissonance, whereas the rest present the specific modifications of the theory 

in four different specific situations, namely (1) Post-decision Dissonance 

(Chapters 2 and 3), (2) Forced Compliance Dissonance (Chapters 4 and 5), 

(3) Dissonance and Information Exposure (Chapters 6 and 7), and (4) Social 

Disagreement Dissonance (Chapters 8–10). This structure fits well the 

structuralist idea of theory-element and theory-nets, which are connected by 

the kind of intertheoretical connection called specialization. This dissertation 

will only use the theory of cognitive dissonance itself and the forced 

compliance dissonance for modeling and analyzing the intertheoretical 

connections.   

 The Main Theory of Cognitive Dissonance. The theory of cognitive 

dissonance begins with the idea that “the individual strives toward 

consistency within himself” (Festinger, 1985, p.1). However, in real life, there 

are many occasions where a person makes decisions or behaves in ways that 

cause inconsistencies with her other existing knowledge, opinions, or beliefs 

about the environment, about herself, or about her behavior, for example, 

smoking and the knowledge of its side effects. For his theory, Festinger 

replaces the word ‘consistency’ by ‘consonance’ and the word ‘inconsistency’ 

by ‘dissonance’ (Festinger, 1985, pp. 2–3). The hypothesis of the theory is as 

follows: (1) the existence of dissonance will motivate a person to reduce the 
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dissonance in order to achieve consonance and (2) when dissonance is present, 

the person will actively avoid situations and information which would likely 

increase the dissonance. 

  The dissonance may occur in the two following situations: (1) new 

events or new information becomes known to a person that does not have 

complete control over them. These events or information creates a momentary 

dissonance with the existing knowledge, opinion, or cognition concerning her 

behavior or decision. (2) the dissonance can also arise in an everyday situation, 

where only a few things are clear-cut enough related to behavior or decision 

about right or wrong, safe or dangerous, etc. There are widely various 

situations in which dissonance is nearly unavoidable (Festinger, 1985, p. 5). 

To reduce, or respectively to eliminate the dissonance, there are two possible 

options for the person. “He might simply change his cognition about his 

behavior by changing his action, … [or] he might change his ‘knowledge’ 

about the effect of [his actions]” (Festinger, 1985, p. 6).     

  According to Festinger, there are three possible kinds of relations 

between two cognitions: irrelevance, consonance, and dissonance. Two 

cognitions are irrelevant if they have nothing to do with each other. “Under 

such circumstances where one cognitive element implies nothing at all 

concerning some other element, these two elements are irrelevant to one 

another” (Festinger, 1985, p. 11). Two cognitions are in dissonance if they are 

inconsistent or contradictory to each other according to cultural or specific 

group standards. Otherwise, they are in consonance (Festinger, 1985, p. 13). 

The reasons for dissonance could be a logical inconsistency, cultural custom 

and manners, a specific opinion about particular more general opinion(s), 

experience(s) in the past, etc. (Festinger, 1985, p. 14).   

“All dissonance relations are not of equal magnitude, [therefore] it is 

necessary to distinguish the degree of dissonance and to specify what 

determines how strong a given dissonance relation is” (Festinger, 1985, p. 16). 

The notion of the magnitude of dissonance is defined by the importance of 
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the elements of cognition. “If two elements are dissonant with one another, 

the magnitude of the dissonance will be a function of the importance of the 

elements. The more these elements are important to, or valued by, the person, 

the greater will be the magnitude of a dissonance relation between them” 

(Festinger, 1985, p. 16).    

  This magnitude of dissonance is an essential variable in determining 

the pressure to reduce dissonance. “The strength of the pressures to reduce 

the dissonance is a function of the magnitude of the dissonance” (Festinger, 

1985, pp. 17–18). In his book, Festinger mentions several options for a person 

to reduce dissonance, namely: (1) by changing a behavioral, cognitive 

element, (2) by changing an environmental, cognitive element, or (3) by 

adding new cognitive elements. Despite these possible ways of reducing 

dissonance, the attempts to reduce or eliminate dissonance are not always 

successful. Some dissonance might have resistance against these attempts. 

This success or failure to reduce dissonance defines the maximum magnitude 

of the dissonance. “The maximum dissonance that can exist between any two 

elements is equal to the total resistance to change of the less resistant element. 

The magnitude of dissonance cannot exceed this amount because, at this point 

of maximum possible dissonance, the less resistant element would change, 

thus eliminating the dissonance” (Festinger, 1985, p. 28). Besides attempting 

to reduce or eliminate dissonance, a person also has tendencies to avoid the 

increase of dissonance. 

 The Theory of Forced Compliance Dissonance. Sometimes a 

person behaves in a manner counter to her convictions or will publicly make 

a statement, which she does not really believe. She does it because of public 

compliance – in the form of threat of punishment or special rewards – without 

accompanying changes of private opinion (Festinger, 1985, p. 85). It will 

increase dissonance and the pressure to reduce it.   

 For recognizing a case of public compliance in changes of a person’s 

private opinion from her genuine opinion, there are two strategies according 
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to Festinger, namely: (1) by removing the source of influence or pressure, and 

(2) by direct measurement of her private opinion that can be done by assuring 

the person’s anonymity – by saying that her identity will not be exposed.  

     The strength of dissonance is determined by the number and importance 

of cognitive elements that are dissonant with the cognition about the overt 

behavior. It is also determined by elements of cognition that “correspond to 

the knowledge that a reward has been obtained or that a punishment has been 

avoided” (Festinger, 1985, p. 90). Both determining elements must be in one 

of the following relations: (1) “The expected reward or punishment had to be 

sufficient, in relation to the resistance to change, to produce the compliant 

behavior in the first place. Consequently, it is reasonable inference to suppose 

that the sum of consonant relations is greater than the sum of dissonance. ... 

However, if the reward or the punishment is a too great reward or punishment, 

dissonance will be small” (Festinger, 1985, p. 91). The smaller the rewards or 

punishment is, the higher the magnitude of dissonance is. (2) Alternatively, 

the expected reward or punishment is too small to produce overt behavior so 

that the person stays with his private opinion or decision. In this case, the 

bigger the reward or punishment is, the higher the dissonance that will be 

produced. (Festinger, 1985, pp. 91–92)   

 Festinger suggests some strategies to reduce this specific kind of 

dissonance as follows: (1) by adding the weight of reward and punishment, 

or (2) by specific actions to change the private opinion or its – as much as 

possible – cognitive elements becoming consonant to the overt action. 

 

3.1.2. A Structuralist Model of the Theory of Cognitive Dissonance 

 For a structuralist model of Festinger’s theory of cognitive dissonance, 

this dissertation just takes over the models, which are built by Rainer 

Westermann. These models can be found in two of his works, namely 

Festinger’s Theory of Cognitive Dissonance: A Revised Structural 

Reconstruction (1989) and Festinger’s Theory of Cognitive Dissonance: A 
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Structuralist Theory-Net (2000). The first work focuses more on the building 

of the model and the considerations behind it, whereas the second focuses 

more on the model and its specializations. 

  In the first work, Westermann builds two models for Festinger's theory 

of cognitive dissonance, namely: the full version, called DissA, and the 

simplified version, called DissB. This research uses the simplified version for 

two reasons: (1) according to Westermann DissA does not adequately 

represent the theoretical basis of all empirical studies on dissonance theory 

for two reasons: (a) empirical research refers to additional terms and 

relationships, and (b) empirical dissonance research does not make use of all 

terms and relations of element DissA. (2) DissB represents the common 

theoretical reference point of all dissonance research and is hypothesized to 

be the basic model of all theory-elements from which various parts and 

versions of dissonance theory can be reconstructed.   

 

3.1.2.1. The Theory-Element of the Theory of Cognitive Dissonance 

(DissB) 

 In building his structuralist model, the DissB, Westermann considers 

the following concepts as the elements of the potential models (Mp), 

respectively, the following basic concepts. Firstly, the most fundamental 

concept of the theory is “cognition” or “cognitive element” (Westermann, 

1989, p. 34), which means “any knowledge, opinion, or belief about the 

environment, about oneself, or about one's behavior” (Festinger, 1985, p. 3). 

To define the cognition that plays an essential role in increasing or reducing 

dissonance in a particular moment, Westermann differentiates between the set 

of relevant cognitions that are present (Cognition) and the set of interesting 

raw elements of cognition of a specific subject or group (RawCog). RawCog 

refers to the set of cognitions belonging to the subject or the group. Cognition 

is the set of cognitions that plays a role in dissonance or consonance. This 

differentiation is made by the time when the dissonance takes place or 
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increases. Therefore, Cognition is defined as a subset of RawCog. An 

auxiliary set for this task is the set of time points (Time),    

 Secondly, the other fundamental concepts are the concepts of possible 

relations between several cognitions or cognitive elements: consonance, 

dissonance, and irrelevance. In the construction, according to Westermann, 

only the two first concepts are relevant. Conscog and Disscog model the 

concepts of consonant and dissonance relations between pairs of cognitive 

elements. “The subsets Disscog and Conscog of the cartesian product 

Cognition  Cognition are mutually exclusive and encompass the dissonant 

and the consonant pairs of cognitions, respectively” (Westermann, 2000, p. 

191).   

The next important concepts are the degree of dissonance or 

consonance. These concepts are pairdiss for the degree of dissonance and 

paircons for the degree of consonance. These functions map the elements of 

Disscog and Conscog into a set of positive real numbers representing the 

degree of the relations. Westermann adds a note: “these functions are defined 

so that the degree of dissonance and consonance may vary over time” 

(Westermann, 2000, p. 191). 

 The magnitude of dissonance and the magnitude of consonance in 

Festinger’s theory depend on the degree of importance of the relationship. 

Therefore, Westermann introduces a function pairimp. With this function, the 

degree of importance is represented by a positive real number. The magnitude 

of dissonance and the pressure to reduce it are represented by the functions 

diss and redpress that attribute a positive real number to each element of 

Cognition for their measure. 

  Finally, the auxiliary functions confl and suppo (magnitude of conflict 

and support) are defined by Westermann as sums of the value of importance. 

“For each element of Cognition, the summation runs overall relationship to 

other cognitive elements that are dissonant or consonant, respectively. The 
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support of an element also represents the resistance to change for that 

cognition” (Westermann, 2000, p. 192). 

 From the concepts above, Westermann builds the potential model as 

follows (Westermann, 2000, p. 190): 

DIII-1: x is a potential model of Festinger’s theory of Cognitive Dissonance 

(x  Mp(DissB) ) iff there exist Time, Rawcog, Cognition, Disscog, Conscog, 

pairdiss, paircons, pairimp, diss, redpress such that: 

(1) x = Time, Rawcog, Cognition, Disscog, Conscog, pairdiss, paircons, 

pairimp, diss, redpress 

(2) Time  IR is a finite, non-empty set of points of time 

(3) Rawcog is a finite, non-empty set of raw elements of cognition 

(4) Cognition  Rawcog  time   (actual elements of cognition) 

(5) Disscog  Cognition  Cognition  (dissonant cognitions) 

Conscog  Cognition  Cognition  (consonant cognitions) 

Disscog  Conscog =  

(6) pairdiss: Disscog → IR0
+   (dissonance within pairs) 

paircons: Conscog → IR0
+   (consonance within pairs) 

(7) Pairimp: (Disscog  Conscog) → IR0
+ (importance of pairs) 

(8) diss: Cognition → IR0
+   (magnitude of dissonance) 

redpress: Cognition → IR0
+   (dissonance reduction pressure) 

(9) confl (cit) := (cit, ckt)Disscog pairimp(cit, ckt) (degree of conflict) 

(10) suppo(cit) := (cit, ckt)Conscog pairimp(cit, ckt) (degree of support) 

 

 The next crucial step in building a structuralist model of the theory of 

cognitive dissonance is building an actual model, which contains the law-

statements or the law-like statements of the theory. Westermann uses the 

following indexing system to refer to typical elements of Cognition: cit with 

iRawcog and tTime. (1) The first law statement or law-like statement is if 

two cognitive elements are dissonant with one another. The magnitude of the 
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dissonance “will be a function of the importance of the elements” (Festinger, 

1957, p. 16 in Westermann, 2000, p. 193) and “increases as the importance or 

value of the elements increase” (Festinger, 1957, p. 18 in Westermann, 2000, 

p. 193). Westermann follows Festinger’s assumption of “a strictly monotone 

increasing relationship between importance and dissonance of the pairs of 

cognition” (Westermann, 2000, p. 193). (2) The second law statement or law-

like statement is that the same is also the case for the consonant relation 

between a pair of cognitive elements.   

 (3) The magnitude of dissonance between the element in question and 

the remainder of the person's cognition, “will depend on the proportion of 

relevant elements that are dissonant with the one in question” (Festinger, 1957, 

p. 17 in Westermann, 2000, p. 194) and “is a function of the weighted 

proportion of all relevant relations … that are dissonant. The term ‘weighted 

proportion’ is used because each relevant relation would be weighted 

according to the importance of the elements involved in the relation” 

(Festinger, 1957, p. 18 in Westermann, 2000, p. 194). The two functions confl 

and supp can be used to formulate this relationship. Here, Westermann 

assumes that ‘depend on’ and ‘is a function of’ have a strictly monotone 

relationship.  
 (4) According to Westermann, the central point of Festinger's theory 

refers to the consequences of dissonance arousal: “The presence of 

dissonance gives rise to pressures to reduce dissonance. … The strength of 

the pressure to reduce the dissonance is a function of the magnitude of the 

existing dissonance” (Festinger, 1957, p. 263 in Westermann, 2000, p. 194). 

The existing dissonance between cognitive elements can be reduced or 

eliminated by changing one of these elements, by adding new elements, or by 

decreasing the importance of the elements involved. The activity of reducing 

dissonance does not ensure that dissonance will be reduced; sometimes, it can 

even be increased. The dissonance theory does not predict this, but only says 

“that in the presence of a dissonance, one will be able to observe the attempts 
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to reduce it” (Festinger, 1957, p. 24, in Westermann, 2000, p. 194). The 

function redpress represents the magnitude of these attempts. 

 The actual models of the Festinger theory of cognitive dissonance can 

be defined as follows: (Westermann, 2000, p. 193) 

DIII-2: x is an actual model of the Festinger theory of cognitive dissonance 

(x M(DissB)), iff there exist Time, Rawcog, Cognition, Disscog, Conscog, 

pairdiss, paircons, pairimp, diss, redpress such that: 

(1) x = Time, Rawcog, Cognition, Disscog, Conscog, pairdiss, paircons, 

pairimp, diss, redpress  Mp(DissB) 

(2) For all (cit,cjt), (cku, clu) Disscog: if pairimp (cit,cjt) < pairimp(cku,clu), 

then pairdiss(cit,cjt)<pairdiss(cku, clu)   

(If the importance of the pair cku and clu is greater than the importance 

of the pair cit and cjt, then the dissonance of the pair cku and clu is 

greater than the dissonance of the pair cit and cjt) 

(3) For all (cit, cjt), (cku, clu) Conscog: if pairimp (cit,cjt) < pairimp(cku,clu), 

then paircons(cit,cjt)<paircons(cku, clu) 

(If the importance of the pair cku and clu is greater than the importance 

of the pair cit and cjt, then the consonance of the pair cku and clu is 

greater than the consonance of the pair cit and cjt) 

(4) For all cit, cju Cognition: if confl(cit)/(confl(cit) + suppo(cit)) < 

confl(cju)/(confl(cju) + suppo (cju)), then diss(cit) < diss(cju). 

(If the proportion between the degree of conflict of cju and the sum of 

the importance of cju is greater than the proportion between the degree 

of conflict of cit and the sum of the importance of cit, then the 

dissonance of cju is greater than the dissonance of cit) 

(5) For all cit, cju Cognition: If diss(cit) < diss(cju), then 

redpress(cit)<redpress(cju). 

(If the dissonance of cju is greater than the dissonance of cit, then the 

attempt to reduce cju will be greater than the attempt to reduce cit) 
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 According to Westermann, the T-theoretical terms of the Festinger 

theory are pairdiss, paircons, diss, and redpress, because these terms are 

determined by assuming the Festinger theory of cognitive dissonance itself.  

Therefore, its partial potential models are as follows: 

DIII-3: y is a partial potential model of Festinger’s theory of cognitive 

dissonance (y  Mpp(DissB)) iff there exists x such that: 

(1) x = Time, Rawcog, Cognition, Disscog, Conscog, pairdiss, paircons, 

pairimp, diss, redpress  Mp(DissB) 

(2) pairdiss, paircons, diss, redpress are T-theoretical. 

(3) y = Time, Rawcog, Cognition, Disscog, Conscog, pairimp   

Mpp(DissB) 

 

3.1.2.2. The Theory-Element of Forced Compliance Dissonance (DissF) 

 The potential models for the specialized theory element of forced 

compliance dissonance can be built by adding the following new components 

to the potential model of DissB (Westermann, 2000, pp. 203–204): Firstly, 

Forcecom is a subset of the cognition and pertain to the behaviors that are not 

in harmony with personal attitudes. Secondly, the function attidiff represents 

the difference between the real personal attitudes and the attitudes expressed 

in her behaviors. Thirdly, the function imp represents the subjective 

importance of cognition. Moreover, fourthly, the function reward shows the 

subjective magnitude of promised reward for the counter-attitudinal behavior 

or the magnitude of threatened punishment for refusing to do the counter-

attitudinal behavior. This specialized theory element is called DissF, and its 

potential models can be defined as follows (Westermann, 2000, p. 203): 

DIII-4: x is a potential model of the forced compliance dissonance (x  

Mp(DissF)) iff there exist Time, Rawcog, Cognition, Disscog, Conscog, 
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pairdiss, paircons, pairimp, diss, redpress, Forcecom, attidiff, imp, reward 

such that: 

(1) x = Time, Rawcog, Cognition, Disscog, Conscog, pairdiss, paircons, 

pairimp, diss, redpress, Forcecom, attidiff, imp, reward  Mp(DissF) 

(2) Time, Rawcog, Cognition, Disscog, Conscog, pairdiss, paircons, 

pairimp, diss, redpress  Mp(DissB) 

(3) Forcecom  Cognition   (cognitions on counterattitudinal 

     behavior) 

(4) attidiff: Forcecom → IR   (attitudinal difference) 

(5) imp: Cognition → IR0
+   (importance of cognition) 

(6) reward: Forcecom → IR0
+   (magnitude of reward or  

     punishment) 

  

 The actual models for DissF M(DissF) can be defined by assuming 

that the potential models Mp(DissF) are held and by adding the following law 

or law-like statements: firstly, “the more important the opinions or the 

behavior involved, and the smaller the promised reward or threatened 

punishment, the greater is the magnitude of dissonance that is created” 

(Westermann, 2000, p. 204). Secondly, “pressure to reduce forced compliance 

dissonance may be manifested in a reduction of the importance or value of 

the behavior and opinion involved, an enhancement of the subjective 

magnitude of the promised reward or threatened punishment, and a change of 

private opinion in accordance with public behavior, i.e., in a smaller 

difference between real and expressed personal attitude” (Westermann, 2000, 

p. 204). The actual models of the specialization in the forced compliance 

dissonance are defined as follows (Westermann, 2000, p. 204): 

DIII-5: x is an actual model of the forced compliance dissonance (x 

 M(DissF)) iff there exist Time, Rawcog, Cognition, Disscog, Conscog, 
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pairdiss, paircons, pairimp, diss, redpress, Forcecom, attidiff, imp, reward 

such that: 

(1) x = Time, Rawcog, Cognition, Disscog, Conscog, pairdiss, paircons, 

pairimp, diss, redpress, Forcecom, attidiff, imp, reward  Mp(DissF) 

(2) For all cju  Forcecom: 

ifcp imp(cit) < imp(cju) 

or reward(cit) > reward(cju) 

thenp diss(cit) < diss(cju). 

(3) For all cit, cju, cit+, cju+  Forcecom with t<t+, u<u+: 

ifcp 0 < redpress(cit) < redpress(cju) 

thenp 0 > imp(cit+) - imp(cit) > imp(cju+) - imp(cju) 

or 0 < reward(cit+) - reward(cit) < reward(cju+) - reward(cju) 

or 0 > attidiff(cit+) - attidiff(cit) > attidiff(cju+) - attidiff(cju). 

 

 The additional terms are non-theoretical with respect to dissonance 

theory because their values can be determined by direct ratings, magnitude 

estimations, pair comparisons, or other standard scaling methods. Since DissF 

is a specialization of DissB, the T-theoretical terms of DissF are similar to 

those of DissB with respect to the theory-net according to DVIII-3 in BMS, 

p. 392. The partial potential models of DissF can be built by omitting its T-

theoretical elements as follows:   

DIII-6: y is a partial potential model of the forced compliance dissonance  (y 

 Mpp(DissF)) iff there exists x such that: 

(1) x = Time, Rawcog, Cognition, Disscog, Conscog, pairdiss, paircons, 

pairimp, diss, redpress, Forcecom, attidiff, imp, reward  Mp(DissF) 

(2) pairdiss, paircons, diss, redpress are T-theoretical. 

(3) y = Time, Rawcog, Cognition, Disscog, Conscog, pairimp, Forcecom, 

attidiff, imp, reward  Mpp(DissF) 
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3.2. Neuroscience 

 The second scientific field, whose theories will be modeled here, is 

neuroscience. In the recent development of cognitive science, there are many 

kinds of research dedicated to exploring the relationship between mind and 

body, especially the brain and neural systems. On the neurobiology level, 

mental processes depend on two primary processes, namely the information 

processed by the neural network and the chemical processes by the enzymes. 

The network process is how the neurons in their network process the data 

input to give appropriate responses. The chemical process is how enzymes or 

some chemicals play a role in making the network process more effective or 

less effective.  

 There are many types of research in both processes related to the 

theory of cognitive dissonance. Because of the time limitation, this 

dissertation will focus on the network process. Therefore, in this part of 

Chapter 3, two theory elements will be presented: the McCulloch-Pitts neuron 

and Hawkins-Kandel’s computational neuroscientific theory (CNT). The 

author created the structuralist model of the McCulloch-Pitts neuron, whereas 

the structuralist model of Hawkins-Kandel’s CNT was created by John Bickle 

– with some adaptation for this dissertation by the author.    

 

3.2.1. Building a Structuralist Model of Hawkins-Kandel’s 

Computational Neuroscientific Theory (CNT) 

 John Bickle builds a structuralist model of Hawkins-Kandel’s 

Computational Neuroscientific Theory (CNT) based on their paper entitled Is 

There a Cell-Biological Alphabet for Simple Forms of Learning? (1984) In 

their paper, Hawkins and Kandel discuss the correlation between the 

phenomena of learning and the interneuron activities in the brain. Some 

progress has been made in identifying cellular mechanisms for habituation, 

sensitization, and conditioning in simple vertebrate systems and higher 

invertebrates such as Aplysia, Drosophila, Hermissenda, locust, and crayfish. 
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From these studies, Hawkins and Kandel (1984) summarize the general 

features of neural activities in the brain with respect to learning as follows: 

“(1) Elementary aspect of learning are not distributed in the brain but can be 

localized to the activity of specific nerve cells; (2) Learning produces 

alterations in the membrane properties and the synaptic connections of those 

cells; (3) The changes in synaptic connections so far encountered have not 

involved the formation of the new synaptic contacts. Rather, they are achieved 

by modulation the amount of chemical transmitter released by the presynaptic 

terminal of neurons; And (4) In several instances, the molecular mechanisms 

of learning involve intracellular second messengers and modulation of 

specific ion channels” (p. 375).   

 Bickle does not build the model of all these features, but only a part 

of them. He focuses on the connections among neurons in the learning process 

and broadens his approach to the general idea of mental representations. 

“[Mental] Representations are usually characterized in one of two ways: as 

patterns of activation values (values of non-negative real numbers 

representing the firing rates of some or all of the neurons in the network), or 

as patterns of synaptic weight values that regulate activation values in all but 

the input neurons of the network” (Bickle, 1998, p. 191). Bickle identifies the 

fundamental features of Hawkins and Kandel's neurobiological theories: “(1) 

a set of neurons, (2) a state of activation and an output function for each 

neurons, (3) a pattern of connectivity among the neurons (4) an intraneuronal 

activation rule for combining the inputs to a neuron with its current activation 

state to produce a new activation state, and (5) various intraneuronal 

processes for adjusting the synaptic strengths between a neuron and others 

receiving its output as part of their input” (Bickle, 1998, p. 191).   

 To build his structuralist model, Bickle uses the following notations: 

“N is a network (hence the well-ordering condition) of neurons (n). Act is a 

set of action commands (to the motor system). T is a set of time instances (t). 

AV is the activation-value relation, taking neurons at times into positive real 
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values. O is the neurons’ output at times, determined by some mathematical 

function A on each neuron's activation value. I is [the] input at times coming 

into any neurons from outside the network (e.g., from the sensory periphery). 

CW is the connection weight relation at times, with the restriction that no unit 

is actively connected to itself. Cause is the causation relation from the 

activation values of a subset of neurons (seemingly without exception a 

proper subset, the output neurons) onto action commands. [Italic is used here 

to indicate the sets’ names]” (Bickle, 1998, p. 192).   

 The potential models of the Computational Neuroscientific Theory 

(Mp(CNT)) according to Bickle are defined as follows: 

DIII-7: x is a potential model of the Computational Neuroscientific Theory (x 

 Mp(CNT)) iff there exist N, Act, T, AV, O, I, CW, Cause such that:   

(1) x =  N, Act, T, IN, IR, AV, O, I, CW, Cause   Mp(CNT) 

(2) N is a finite, non-empty, non-singleton, well-ordered set of neurons 

(3) Act is a finite, possibly empty set of the action command 

(4) T is a finite, non-empty set, non-singleton, well-ordered set of point 

of time 

(5) AV := N  T → IR+       (Activation of neurons) 

(6) O := N  T → IR, and for all nN, tT, O(n,t) = AV(n,t)  

(Neuron’s Output) 

(7) I := N  T → IR     (Neuron’s Input) 

(8) CW := N  N  T → IR, & for all nN, tT, CW (n,n,t) = {x| xIR} 

(Connection Weight at t) 

(9) Cause := AV* → Act, where AV*  AV   

(Seemingly without exception, AV* AV) 

 

 The actual models contain the following laws or law-like statements 

as follows (Bickle, 1998, pp. 192–193): “(1) the activation value of each 

neuron at some time is the result of some arithmetical function F on 
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connection weights multiplied by the output of all neurons actively connected 

with the one in question, inputs to the neuron from outside the network [if 

any], and the neuron’s activation value at the time instant just before. (2) If 

the right relation obtains between inputs to the network over time, then the 

connection weights times outputs of the presynaptic units differ by quantity 

D from those products at an earlier time. (3) if the same inputs to the network 

obtain over time, then the output of some units will be less at a later time 

compared to the earlier time.” The set of the actual models of the 

Computational Neuroscientific Theory (M(CNT)) according to Bickle is 

defined as follows: 

DIII-8: x is an actual model of the Computational Neuroscientific Theory (x 

M(CNT)) iff there exist N, Act, T, AV, O, I, CW, Cause such that: 

(1) x =  N, Act, T, IN, IR, AV, O, I, CW, Cause   Mp(CNT) 

(2) For all n1, n2  N: AV(n1, t) = CW(n2, n1) . O(n2) I(n1) AV(n1, t-1).  

(3) If Relation between I(N) at t & I(N) at t-1 &...& I(N) at t-n, then 

CW(N) at t times O(N) at t differs by D from CW(N) at t-n times O(N) 

at t-n). 

(4) If I(N) at t= I(N) at t-1 = … = I(N) at t-n, then O(N) at t differs from 

O(N) at t-n in that for some nN, O(n,t) < O(n,t-n).   

 

 The partial potential models of computational neuroscientific theory 

can be defined by omitting the T-theoretical elements. Because all the 

elements can be observed empirically or be modeled by some other theory, 

the partial potential models of CNT are identical with its potential models. 

The partial potential models of the computational neuroscientific theory 

(Mpp(CNT)) can be characterized as follows: 

DIII-9: y is a partial potential model of the Computational Neuroscientific 

Theory (y  Mpp(CNT)) iff there exists x such that: 

(1) x =  N, Act, T, IN, IR, AV, O, I, CW, Cause   Mp(CNT) 



 

 
56 

 

(2) There is no T-theoretical element. 

(3) y =  N, Act, T, IN, IR, AV, O, I, CW, Cause   Mpp(CNT) 

 

3.2.2. Building a Structuralist Model of the McCulloch-Pitts Neuron 

 The McCulloch-Pitts neuron (1943) is an abstract and simplified 

model about the activity of a neuron in neural networks from 

neurophysiological data based on the following five assumptions: “1) The 

activity of the neuron is an “all-or-none” process. 2) A certain fixed number 

of synapses must be excited within the period of latent addition in order to 

excite a neuron at any time, and this number is independent of previous 

activity and position on the neuron. 3) The only significant delay within the 

nervous system is the synaptic delay. 4) The activity of any inhibitory synapse 

absolutely prevents excitation of the neuron at that time. 5) The structure of 

the net does not change with time” (McCulloch-Pitts, 1943, p. 118).   

  The McCulloch-Pitts model shows that a neuron has the 

characteristics of a digital automaton in its activities. A neuron consists of a 

soma and an axon. In a neural network, axons connect to other neurons at 

synapses. These synapses are a place where the information is transmitted 

from one neuron to another one. A neural network is an arrangement of a finite 

number of neurons, whereas every axon of a neuron is in connection with the 

soma of other neurons (or maybe its own) at the synapse. In a network these 

neurons have just two possible conditions – they fire (in excitation) or do not 

fire (in inhibition). These conditions can be achieved because each neuron has 

a threshold. If the amount of total input received by a neuron is higher than 

or the same as its threshold, the neuron is in an excitatory state; otherwise, the 

neuron is in an inhibitory state.    

The threshold of neurons, according to the McCulloch-Pitts model, 

enables the neurons in a neural network to perform all logical operations. We 

can build various logical switches from such neurons by controlling the input 
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signal and the threshold: for a logical AND-switch, we choose the input signal 

1/m and the threshold (m-1)/m, such that the neuron fires, if all inputs are 

active – m is here the number of input neurons. For a logical OR-switch, we 

choose the threshold 1/(m-1). Moreover, for the logical negation, we choose 

the threshold -1/2 and the synaptic weight -1, such that the threshold can be 

exceeded if the input signal is 0. A combination of these three operations can 

build the rest of the logical switches. Nowadays, this idea is developed and 

applied for various usages not only as an explanatory model in neuroscience 

but also in several other scientific fields, where the simulation of cognitive 

dissonance is just one among them.   

 The McCulloch-Pitts model and other models in artificial neural 

networks studies are typically presented as a directed graph. The vertices 

represent the neurons, whereas the edges represent the synaptic connections 

(axon and its synaptic connection). Every edge is labeled with a real number 

representing the strength of synaptic connections. A positive number indicates 

excitatory synapses, whereas the 0 (zero) or a negative number indicates the 

inhibitory synapses. For each neuron in the networks, there is a specific 

threshold value to fire. If the neuron’s threshold value is surpassed at the time 

(t-1) by a single or several firing neurons connected to the soma of this neuron, 

the neuron will be in the excitatory condition and fires on time t.   

 In the McCulloch-Pitts model, the neurons (N) receive their input (Inp) 

from a number n of other neurons through a synaptic connection (C). The 

neurons that serve as input-giver are called “input neurons” (N0). The synaptic 

connections between neurons have a synaptic weight (W), whereas every 

neuron has a threshold (). Suppose some input-neurons fire at time t0. They 

give an input (Inp) for the neuron after them in a synaptic connection. As a 

response, a neuron will fire at time t1, by giving its output (Outp). In the 

McCulloch-Pitts model, each neuron has only two conditions, namely 

inhibitory, represented by 0, and excitatory, represented by 1.   
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 Three processes occur in the McCulloch-Pitts neuron. (1) The neuron 

unifies all inputs, that are received. This process forms the network-input for 

it. The process is represented here as a network-input function (fnet) as 

follows:   

  fnet (Inp, W, t0) = netn = i=1
n wi.inpi 

(2) The second process is activation (fact). In this process, the network-input 

is compared with the neuron's threshold: if the network input is greater than 

or the same as the threshold, a neuron is in the excitatory condition; otherwise, 

a neuron is in the inhibitory condition. 

     |1, if netn  

  fact (netn, ) = Actn = | 

     |0, otherwise 

(3) If the neuron is in the excitatory state, it will fire (output = 1) according 

to the output-function fout, otherwise, it will not fire (output = 0): fout (actn) 

= output neuron at t1. 

 

Figure 3.1. The McCulloch-Pitts model of a neuron (Adapted from Borgelt, C. et. 

al., 2003, p.33) 

 

 Based on the considerations discussed above, a theory-element of the 

McCulloch-Pitts neuron can be built as follows: Firstly, the potential models 
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of the McCulloch-Pitts model of a neuron (Mp(MCP-N)) can be characterized 

as follows: 

DIII-10: x is a potential model of McCulloch-Pitt model of neuron (x  

Mp(MCP-N)) iff there exist N, N0, T, IR, IN C, W, ,  Inp, Outp, fnet, fact, 

fout, such that 

(1) x =  N, N0, T, IR, IN, , C, W, Inp, Outp, fnet, fact, fout   Mp(MCP-

N) 

(2) N = a finite non-empty set of neurons 

(3) N0 = non-empty set of input neurons = {mN| (m, n)C} (Input units) 

(4) T = a discrete order of points of time t = 0, 1, 2, ...            (Time) 

(5) =  → IR    

(Threshold – assigns to every neuron a real number as its threshold) 

(6) C  NN     

(a finite non-empty set of connection between neurons) 

(7) W:= C → IR        

(Synaptic Weight – assigns to each pair of neurons a real number as 

synaptic weight, where w(i,j) = w(j, i) and wW) 

(8) Inp:= N/N0C T →     

(Input – assigns to each neuron, except input neurons, at the point of 

time T several real numbers as its input, that is sent by its input units 

(N0) in the network; 0 = by an inhibitory input neuron and 1 = by an 

excitatory input neuron)    

(9) Outp:= N/N0 T →     

(Output – assigns to each neuron, except input neurons, at the point of 

time T a real number as its output, that is sent to the next neuron in the 

network; 0 = inhibitory and 1 = excitatory) 

(10) fnet:= W  Inp → IR   

(Network Input function – assigns to each neuron (except input units) 

at every point of time t from T a real number as network input) 
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(11) fact:= fnet   → IR   

(Activation function – compares the result from fnet with θ and 

assigns to the neuron a real number. The result is either 0 or 1) 

(12) fout:= fact → Outp  

(Output function – assigns every neuron a number 0 (inhibitory) or 1 

(excitatory) as its output according to Outp.) 

 

 The actual models of McCulloch-Pitts model of neuron (M(MCP-N)) 

can be defined as follows: 

DIII-11: x is an actual model of McCulloch-Pitts model of neuron (x  

M(MCP-N)) iff there exist N, N0, , C, W, T, Inp, Outp, fnet, fact, fout, IR, 

IN such that: 

(1) x =  N,  N0, T, IR, IN, , C, W, Inp, Outp, fnet, fact, fout   Mp(MCP-

N) 

(2) There is n  N/N0, ci C for i IN, t0,t1T,  and let netn, actn, outn so 

that: 

 (2.1) netn = fnet (Inp, W, t0) = i=1
n  Inpi (n, ci, t0).W(ci) 

 (2.2) actn = fact( netn, ): 

  (i) actn = 1, if netn  , 

  (ii) actn = 0, otherwise. 

 (2.3) outn = fout (actn) = Outp (n, t1). 

 

 Now we define the partial potential models of the McCulloch-Pitts 

neuron by omitting the T-theoretical concepts. In the McCulloch-Pitts model, 

only the three function terms – fnet, fact, and fout – are T-theoretical because 

the concepts of the neuron, connections, synaptic weight, time, and threshold 

are empirical. These three terms are T-theoretical because these terms 

presuppose this theory of neuron itself. According to this theory a neuron 

must have the following three characteristics: First, receiving input-signals 
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from the sending neurons, called the input neurons, as represented by fnet. 

The second characteristic is comparing the input signal with a specific weight 

called ‘threshold.’ The neuron will fire if the input signal is greater than its 

threshold (excitatory state); the neuron will not fire if the input signal is 

smaller than its threshold (inhibitory state). fact represents this characteristic. 

Moreover, fout represents the third characteristic, namely that of sending the 

result to other receiving neurons. Therefore, the partial potential models of 

McCulloch-Pitts neuron are characterized as follows:   

DIII-12: y is a partial potential model of McCulloch-Pitts neuron (Mpp(MCP-

N)) iff there exists x such that: 

(1) x =  N, N0, T, IR, IN, , C, W, Inp, Outp, fnet, fact, fout   Mp(MCP-

N) 

(2) fnet, fact, fout are T-theoretical. 

(3) y =  N, N0, T, IR, IN, , C, W, Inp, Outp  Mpp(MCP-N) 

 

3.3. The Artificial Neural Network 

 Today it is still impossible to know exactly how the network of 

neurons in the brain works produce the phenomena of cognition because of 

its complexity. In neuroscience, we can only learn about the parts of the brain 

on various levels of explanation that play an essential role in cognitive 

processes, such as neurons and their network, regions in the cerebrum, the 

interconnection between parts of the brain and so on. Our brain has 1011 

neurons, and therefore, there are n.2n possibilities of connections among 

neurons, where n = 1011; we have no chance to fully understand the cognitive 

process in the brain with our current scientific development.   

Many neuroscientists and psychologists seek another way out to 

understand the brain’s information processing from a branch of computer 

science, called Artificial Intelligence (A.I.). In the history of artificial 

intelligence, there are two approaches developed to modeling cognition 
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namely, by symbol manipulation and by the artificial neural network (also 

known as connectionism) (Bechtel and Abrahamsen, 2002, p. 2): “Both 

connectionist and symbolic systems can be viewed as computational systems. 

However, they advance quite different conceptions of what computation 

involves. In the symbol approach, computation involves the transformation 

of symbols according to [logical] rules. … We treat a traditional computer as 

a symbolic device, and we view it as performing symbolic manipulations 

specified by rules which typically are written in a special data structure called 

the program. [Italics in the original] The connectionist view of computation 

is quite different. It focuses on causal processes by which units excite and 

inhibit each other and does not provide either for stored symbols or rules that 

govern their manipulation.” The symbolic manipulation approach, whose 

proponents are Dennett, Fodor, Pylyshyn, and others, has its roots more in 

logic and linguistics, whereas the connectionist approach is inspired by a 

model of a neuron from neuroscience and statistics or probability theory. Its 

proponents are Frank Rosenblatt, John Hopfield, Geoffrey Hinton, David 

Rummelhart, Paul Smolensky, David McClelland, among others. Because of 

this close relation between neuroscience and the artificial neural network, I 

have chosen to use the artificial neural network as a model, or respectively a 

simulation of cognitive dissonance reduction.    

Giving an explanation via a simulation of the brain’s computational 

process is just one of the goals of the artificial neural network research. The 

other goal is to solve some technical issues, such as face recognition, 

controlling, voice recognition, and so on. This dissertation will limit itself to 

the first goal, i.e., to analyze the intertheoretical connections between 

Festinger’s theory of cognitive dissonance and the artificial neural network 

by the simulations of cognitive dissonance according to the following models:   

(1) Thomas R. Shultz and Mark R. Lepper: the consonance model. 

(2) Frank van Overwalle and Karen Jordens: the adaptive connectionist 

model. 
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The abbreviation ANN stands for the artificial neural network.   

In the simulation of psychological phenomena by using ANN, they 

built a specific network of several artificial models of the neuron – normally 

the Rosenblatt perceptron. These artificial neurons are placed in a certain 

network pattern, such as a feed-forward network or a recurrent network. Then 

specific learning algorithms (or learning rules), such as the delta rule (also 

called Widrow-Hoff rule), will be executed. Whereas the consonance model 

uses the Hopfield network – a kind of recurrent network, the adaptive 

connectionist model – to simplify it will be called the connectionist model – 

uses the two layers feed-forward neural network and the delta rule as its 

learning algorithm. In this third section of Chapter 3, we will build several 

structuralist models for the Rosenblatt perceptron, the Hopfield network, the 

two-layers feed-forward neural network, and the delta rule. 

  

3.3.1. Building a Structuralist Model of the Rosenblatt Perceptron 

 The McCulloch-Pitts model has several limitations. Firstly, the input 

from input neurons is only either 1 or 0. Secondly, the connection weights and 

the threshold are initially set from the beginning to perform certain logical 

functions. Therefore, the McCulloch-Pitts neuron cannot learn. In history, 

these limitations were removed by the theory of the perceptron due to Arthur 

Rosenblatt in 1958.   

 The Rosenblatt perceptron is the second generation of the model of a 

neuron. In the perceptron, the input(s) are not only 0 and 1, as in the 

McCulloch-Pitt neuron. The input can be various numbers depending on the 

use of the network. Therefore, instead of just having the characteristics of a 

digital automaton, the perceptron has a statistical character. It can now 

analyze a given set of data and build an approximative model for those data 

by its activation function (and learning rule). 

 Perceptrons (or neurons), which are not input-perceptrons, (N/N0) 

receive input-value in real numbers from input-perceptrons (or also input 
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neurons) (N0) through a (synaptic) connection (C). The synaptic connections 

between neurons have a synaptic weight (W), whereas every neuron, which is 

not input neuron, has a bias () that is normally set as 1. The notion of bias 

here is like the notion of threshold in the McCulloch-Pitts neuron. By setting 

bias =1, the bias gives the perceptron a trainable constant value, because the 

connection weight of bias can be adjusted according to the learning rule. By 

implementing a learning rule, such as the delta rule, the bias helps to adjust 

the function to approximate the data. The synaptic weight of the connection 

between the bias and the neuron also has a weight W0. Because of bias and its 

connection, the perceptron has the characteristics of the statistical function in 

its network-input function.    

 Like the McCulloch-Pitts neuron, the perceptron also has three 

processes. (1) The neuron unifies all inputs that are received. It forms the 

network-input for it. This process is represented here as a network function 

(fnet) as follows: 

  fnet (Inp, W) = netn = i=1
n
  Inpi (n, ci,).W(ci). 

(2) The second process is the activation function (fact). In this process the 

network-input is processed according to a certain activation function.1 The 

activation function that will be used in the connectionist model in Chapter 7 

is the linear regression:   

  fact(netn, b, w0) = actn= netn + b.w0 

 
1 For neurons in the hidden layer one of the following activation functions is normally applied: 

a. The sigmoid activation function: 

fact(netn, b, w0)= actn = 1/ (1 + e^(netn + b.w0)) 

b. The Tanh activation function: 

fact(netn, b, w0)= actn = (e^(netn + b.w0) - e^-(netn + b.w0))/ (e^(netn + b.w0) 

 + e^-(netn + b.w0)) 

c. The Rectified linear (ReLU) activation function: 

     0   for (netn + b.w0) < 0 

fact(netn, b, w0)= actn =  or 

     (netn + b.w0) for (netn + b.w0) >= 0 

And the neurons in the output layer normally use linear regression:   

  fact(netn, b, w0) = actn= netn + b.w0 
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(3) The neuron gives a real number as its output according to: 

  fout(actn) = outn. 

 

 

Figure 3.2. The Rosenblatt model of a perceptron (Adapted from Borgelt, C. et. al., 

2003, p.33) 

  

From the description above, we can build a structuralist model of the 

Rosenblatt perceptron according to the following steps: First, we define the 

potential models of the Rosenblatt perceptron (Mp(RP)) as follows: 

DIII-13: x is a potential model of the Rosenblatt perceptron (x  Mp(RP)) iff 

there exist N, N0, IR, IN, B, C, W0, W, Inp, Outp, fnet, fact, fout, such that: 

(1) x=N, N0, IR, IN, B, C, W0, W, Inp, Outp, fnet, fact, fout  Mp(RP) 

(2) N = a finite non-empty set of neurons 

(3) N0 = a non-empty set of input-neurons = {mN| (m,n)C }   

(Input units) 

(4) B=  → IR    

(Bias – assigns to every neuron besides the input neurons a real 

number as its bias. Bias is normally set = 1) 

(5) C  NN      

(a finite non-empty set of connections between neurons) 

(6) W0 := BN/N0 → IR   (Synaptic Weight from Bias) 

(7) W := C → IR       
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(Synaptic Weight – W assigns to each pair of neurons a real number 

as the synaptic weight.) 

(8) Inp:= N/N0C → IR      

(Input – assigns to each neuron several real numbers as its input, sent 

by its input-units in the network)     

(9) Outp:= N/N0 → IR     

(Output – assigns to each neuron a real number as its output, that is 

sent to the next neuron in the network) 

(10) fnet: W Inp → IR    

(Network Input function – assigns to neurons (except input units) a 

real number as the network input) 

(11) fact: fnet    W0→ IR   

(Activation function – there are various activation functions) 

(12) fout: fact → Outp   

(Output function – assigns every neuron a real number as its output 

according to Outp) 

 

Second, the actual models of the Rosenblatt perceptron (M(RP)) can 

be defined as follows: 

DIII-14: x is an actual model of the Rosenblatt perceptron (x  M(RP)) iff 

there exist N, N0, IR, IN, B, C, W0, W, Inp, Outp, fnet, fact, fout such that. 

(1) x= N, N0, IR, IN, B, C, W0, W, Inp, Outp, fnet, fact, fout  Mp(RP) 

(2) There is n  N/N0, ci C for iIN, bB and let netn, actn, outn so that: 

(2.1) netn = fnet (Inp, W) = i=1
n  Inpi (n, ci,).W(ci),  

(2.2) actn = fact(netn, b, w0) = netn + b.w0. 

(2.3) outn = fout (actn) = Outp . 

 

Finally, the partial potential models of the Rosenblatt perceptron 

(Mpp(RP)) can be defined by omitting the T-theoretical elements. Like in the 
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McCulloch-Pitts model, only fnet, fact, and fout of the Rosenblatt perceptron 

are T-theoretical because the other concepts, such as the neuron, bias, 

connections, bias’s connection weight, and synaptic weight are ‘empirical’ – 

determined by inputs containing data from an empirical observation – and 

based on other theories. These three terms are T-theoretical because these 

terms presuppose this theory of a perceptron itself. Later in Chapter 6 we can 

see that these three are theoretical terms related to the net with McCulloch-

Pitts neuron. The partial potential model of the Rosenblatt perceptron can be 

defined as follows: 

DIII-15: y is a partial potential model of the Rosenblatt perceptron (Mpp(RP)) 

iff there exists x such that: 

(1) x =  N, N0, IR, IN, B, C, W0, W, Inp, Outp, fnet, fact, fout   Mp(RP). 

(2) fnet, fact, fout are T-theoretic.  

(3) y =  N, N0, IR, IN, W, B, W0, Inp, Outp   Mpp(RP). 

 

 Before discussing the architecture of the network, the following items 

are worthy of consideration: (1) There are two main streams of the artificial 

neural network regarding the goal and application of its development. The 

first develops the artificial neural network to build the simulation of the 

brain's functionality, and the second develops the artificial neural network to 

solve a specific problem or support some technology as a kind of artificial 

intelligence or machine learning. The first one tries to mimic how the brain 

works as precisely as possible. Therefore, it usually uses the perceptron with 

the input and output like the McCulloch-Pitts model – 0 for the inhibitory 

condition and 1 for the excitatory condition. As for the second idea, the 

perceptron model is generally used with various inputs and outputs in the real 

numbers. Because of its purposes, this dissertation will follow the first idea. 

(2) For a multi-layers feed-forward neural network with hidden layers, the 

model of the perceptron is usually used. For the simplest version with only 
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two layers – input-layer and output-layer – both the McCulloch-Pitts model 

and the Rosenblatt perceptron can be used. 

 

3.3.2. Building a Structuralist Model of the Network Architecture 

The perceptrons are placed in a specific architecture of networks in 

order to work according to our purpose. There are various network-

architectures in the study of artificial neural networks. However, we can 

categorize them into two main categories: feed-forward neural networks and 

recurrent neural networks. (People may also build a mixture of them).    

 A network-architecture of neural networks is normally described in 

the terms of directed graph-theory. As Borgelt et.al., 2003, pp. 29–30 say: 

“Ein (künstliches) neuronales Netz ist ein (gerichteter) Graph G = (U,C), 

dessen Knoten u  U Neuronen (neurons, units) und dessen Kanten c  C 

Verbindungen (connections) heißen. Die Menge U der Knoten ist unterteilt in 

die Menge Uin der Eingabeneuronen (input neurons), Uout der 

Ausgabeneuronen (output neurons) und die Menge Uhidden der versteckten 

Neuronen (hidden neurons). Es gilt [In English: An (artificial) neural network 

is a (directed) graph G = (U, C) whose nodes are called u  U neurons 

(neurons, units) and whose edges are c  C connections. The set U of nodes 

is subdivided into the set Uin of the input neurons, the set Uout of the output 

neurons, and the set Uhidden of the hidden neurons. It applies]”: 

 U = Uin  Uout  Uhidden, 

 Uin   Uout  Uhidden  (Uin  Uout)=” 

In this work, I will use notation N for Neuron, instead of U. 

In an artificial neural network-architecture, these three kinds of 

neurons-layers have each of their roles as follows: (1) Input neurons (Nin) are 

the neurons in the input layer. They receive the input values for the neural 

network and convey them to the neurons in the next layers, either the output 

layer (in two-layer neural networks) or the first hidden layer (in multi-layer 
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neural networks). (2) Output neurons (Nout) are the neurons in the output layer. 

They receive the values, that were processed and transferred by the other 

layers, either the last hidden layer or the input layer, and give them back as 

the output of the networks after processing them. (3) Hidden neurons (Nhidden) 

are the neurons in the hidden layer. Hidden layers are the layers of neurons 

that are neither the input layer nor the output layer. Hidden layers lie between 

the input layer and the output layer – they are called “hidden layer” because 

of their place. They received the output of the neuron in the previous layer, 

process it, and convey the result as an input to the next layer. 

 Between two neurons, which are connected by a directed connection 

C, we can define the neuron predecessors (pred) and the neuron successors 

(succ) as follows (Borgelt et al., 2003, p. 29): 

 pred = {n1 N| (n1, n2)  C} 

 succ = {n2  N| (n1, n2)  C} 

In the neural network “Jeder Verbindung (v,u)  C ist ein Gewicht wuv 

zugeordnet und jedem Neuron u  U drei (reellwertige) Zuständsgrößen: die 

Netzeingabe netu (network input), die Aktivierung actu (activation) und die 

Ausgabe outu (output). Jedes Eingabeneuron u  U in besitzt außerdem eine 

vierte (reellwertige) Zustandsgröße, die externe Eingabe extu (external input) 

[in English: Each connection (v, u)  C is assigned a weight wuv and each 

neuron u  U three (real-valued) states of operation: the network input netu, 

the activation actu (activation) and the output outu (output). Each input neuron 

u  U in also has a fourth (real-valued) state variable, the external input extu 

(external input).]” (Borgelt, et.al., 2003, p.30). In this work, the notations n1, 

n2 is used here instead of u, v. 
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Figure 3.3. The architecture of an artificial neural network  

 

 To build a structuralist model for a theory element of the architecture 

of the artificial neural network, we must define the potential model, the actual 

model, and the partial potential model. The potential models of the 

architecture of the artificial neural network (Mp(archNN)) can be 

characterized as follows: 

DIII-16: x is a potential model of the architecture of the artificial neural 

network (x  Mp(archNN)) iff there exist N, Nin, Nout, Nhidden, IR, C, pred, 

succ, W, extn, netn, actn, outn such that: 

(1) x =  N, Nin, Nout, Nhidden, IR, C, pred, succ, W, extn, netn, actn, outn   

Mp(archNN) 

(2) N is a finite non-empty set of neurons. 

(3) Nin is a finite non-empty set of input-neurons. 

(4) Nout is a finite non-empty set of output-neurons. 

(5) Nhidden is a finite set of hidden neurons. 

(6) C  NN     (a finite non-empty set of  

    directed connections between neurons) 

(7) pred = {n1 N| (n1, n2)  C}   (presynaptic neurons) 

(8) succ = {n2  N| (n1, n2)  C}  (postsynaptic neurons) 
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(9) W:= C → IR     (synaptic weight) 

(10) extn:= Nin → IR   (external input) 

(11) netn:= N → IR   (network-input) 

(12) actn:= N → IR   (activation) 

(13) outn:= N → IR   (output) 

 

 The following law or law-like statement determines the set of actual 

models of the architecture of artificial neural network (M(archNN)): (1) A 

network lets no single neuron excluded from the rest. All neurons are 

connected and play a role as input neurons, hidden neurons, or output neurons. 

(2) Input neurons play the role of predecessors in the network, whereas the 

output neurons play the role of successors, and the hidden neurons play both 

roles as successors and as predecessors. (3) Neurons in the hidden layer(s) are 

neither the input neurons nor the output neurons. The actual models for the 

architecture of artificial neural network (M(archNN)) can be formally 

characterized as follows: 

DIII-17: x is an actual model of the architecture of the artificial neural 

network (x  M(archNN)) iff there exist N, Nin, Nout, Nhidden, IR, C, pred, succ, 

W, extn, netn, actn, outn such that: 

(1) x =  N, Nin, Nout, Nhidden, IR, C, pred, succ, W, extn, netn, actn, outn   

Mp(archNN) 

(2) N = Nin  Nout  Nhidden, 

(3) for all n  N it holds: 

(3.1) Nin = pred 

(3.2) Nout = succ 

(3.3) Nhidden = succ  pred 

(4) Nhidden  (Nin  out) =  

(5) n  Nhidden, n  Nout:   

(5.1) netn = fnet
(n) (w→

n, in
→

n) = w→
n in

→
n = n0pred(n) wn0,n outn0. 
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(5.2) For the Rosenblatt perceptron with the linear activation function:  

         actn = fact(netn, b, w0)= netn + b.w0 

(5.3) outn = fout (actn) 

  

 To characterize the partial potential models of the architecture of an 

artificial neural network (Mpp(archNN)), we omit the T-theoretical concepts 

from the potential models (Mp(archNN)). In the architecture of a neural 

network, the three terms – netn, actn, outn – are T-theoretical, because these 

terms presuppose the concept of a network of neurons. They are the results of 

the three functions of neurons in the network – either according to the 

McCulloch-Pitts model or the Rosenblatt perceptron. The partial potential 

models of the architecture of a neural network (Mpp(archNN)) are 

characterized as follows: 

DIII-18: y is a partial potential model of the architecture of neural network (y 

 Mpp(archNN)) iff there exist x such that: 

(1) x =  N, Nin, Nout, Nhidden, IR, C, pred, succ, W, extn, netn, actn, outn   

Mp(archNN) 

(2) netn, actn, outn are T-theoretic. 

(3) y =  N, Nin, Nout, Nhidden, IR, C, pred, succ, W, extn   Mpp(archNN) 

 

3.3.3. Building a Structuralist Model for the Two-Layers Feed-Forward 

Neural Network and the Hopfield Network 

 The two network architectures that we will use, i.e., the two layers 

feed-forward neural network and the Hopfield network, are understood as two 

among many specializations of the general model of a network architecture 

according to the concept of theory-net because they can be derived by adding 

several additional requirements.   
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3.3.3.1. The Theory-Element of the Two Layers Feed-forward Neural 

Network 

In feed-forward neural networks, the connections between neurons do 

not form a cycle. Through these connections, all neurons in a specific layer 

always send their outputs to neurons in the next layer in the direction from 

input to output. The neurons in the input layer send their output to the neurons 

in the output layer or the first layer of the hidden layer. The neurons in the 

hidden layer send their output to the neurons in the output layer or to the 

neurons in the next hidden layer. The neurons in the output layer receive the 

outputs of the neurons in the input layer or in the last hidden layer as their 

inputs.  

 From this scenario, we can see that there are two kinds of feed-forward 

neural networks. The simplest kind is called “two-layers feed-forward neural 

network,” consisting of only two layers of neurons, namely a layer of input 

neurons (input layer) and a layer of output neurons (output layer).  The input 

is fed directly by the input neuron to the neurons in the output layer because 

this kind of neural network has no hidden layer. 

  

Figure 3.4. A two-layers feed-forward neural network 
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 For this specialization, we add the following new laws statements (or 

law-like statements) in the actual models of two-layers feed-forward neural 

networks (M(2L-FFNN)), whereas the potential models of two-layers feed-

forward neural networks (Mp(2L-FFNN)) are identical with Mp(archNN): (1) 

There is no hidden layer of neurons; therefore each neuron is either an input 

neuron or output neuron. (2) The input neurons and the output neurons are 

not identical. (3) All connections in this architecture are connections between 

input neurons and output neurons. (4) For each output neuron, its network 

input (netn) is the result of the network input function of the neuron. Whereas 

its activation (actn) is the result of the activation function of the neuron, and 

its network output is the result of the output function of the neurons. The 

actual models of two-layers feed-forward neural network-architecture 

(M(2L-FFNN)) can be characterized as follows:   

DIII-19: x is an actual model of the two-layer feed-forward neural network (x 

 M(2L-FFNN)) iff there exist N, Nin, Nout, Nhidden, IR, C, pred, succ, W, extn, 

netn, actn, outn such that: 

(1) x =  N, Nin, Nout, Nhidden, IR, C, pred, succ, W, extn, netn, actn, outn   

Mp(2L-FFNN) 

(2) Nhidden =  

(3) N = Nin  Nout  Nhidden, 

(4) for all n  N it holds: 

(4.1) Nin = pred 

(4.2) Nout = succ 

(5) Nin  Nout =  

(6) C  Nin  Nout 

(7) n  Nout:   

 (7.1) netn = fnet
(n) (w→

n, in
→

n) = w→
n in

→
n = n0pred(n) wn0,n outn0. 

 (7.2) For perceptron with the linear activation function:  
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          actn = fact(netn, b, w0)= netn + b.w0 

 (7.3) outn = fout (actn) 

 

 The second type of feed-forward neural network is the multi-layers 

one. This kind consists not only of an input layer and an output layer but also 

some layers of hidden neurons (hidden layer) – at least one hidden layer. We 

do not discuss this type because it will not be used for the simulations 

discussed later.  

 

3.3.3.2. A Theory-Element of the Hopfield Network 

 In the recurrent neural networks, the connections between neurons can 

form a loop. There are several architectures of the recurrent neural network, 

such as the Hopfield network, Boltzmann machine, etc. For the goal of this 

dissertation, only a structuralist model of the Hopfield network will be built.   

 The Hopfield network is a form of a fully recurrent neural network 

popularized by John Hopfield in 1982 through his paper Neural Networks and 

Physical Systems with Emergent Collective Computational Abilities. The 

neurons in the Hopfield network are binary threshold units in strong backward 

coupling.2 They take only two different values for their states, 0 (inhibitory) 

 
2 “The processing devices will be called neurons. Each neuron i has two states like those of 

McCulloch and Pitts: Vi = 0 (“not firing”) and Vi = 1 (“firing at maximum rate”). When 

neuron i has a connection made to it from neuron j, the strength of connection is defined as 

Tij. (Nonconnected neurons have Tij = 0.) The instantaneous state of the system is specified 

by listing the N values of Vi, so it is represented by a binary word of N bits.  

The state changes in time according to the following algorithm. For each neuron i 

there is a fixed threshold Ui. Each neuron i readjusts its state randomly in time but with a 

mean attempt rate W, setting 

Vi → 0   >Ui 

If ji TijVi 

Vi → 1   <Ui 

Thus, each neuron randomly and asynchronously evaluates whether it is above or below 

threshold and readjusts accordingly. (Unless otherwise stated, we choose Ui = 0.) 

Although this model has superficial similarities to the perceptron, the essential 

differences are responsible for the new results. First, perceptrons were modeled chiefly with 

neural connections in a “forward” direction A→B→C→D. The analysis of networks with 

strong backward coupling  proved intractable. All our interesting results arise as 
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or 1 (excitatory), so the Hopfield network uses a kind of McCulloch-Pitt 

neuron. To build a structuralist model of the Hopfield network, we can use 

fnet, fact, and fout of the McCulloch-Pitts neuron for this network.   

 The network input function of each neuron n is the sum of all outputs 

of other neurons [plus the actual input] times the connection’s weight. In 

matrix form, it can be described as follows: 

 nN: fnet(n) (w→
n, in

→
n) =   w→

n in
→

n = m-{n} wmn outm. 

The activation function of each neuron n is a threshold-function as follows: 

 

     | 1, in case netn  n, 

 nN: fact(n) (netn, n) = | 

     | -1, otherwise. 

 

Or sometimes the activation function of the neurons of a Hopfield network 

is defined by using the old activation actn (Borgelt, C. et. al., 2003, p. 112): 

 

      | 1, in case netn > n, 

 nN: fact(n) (netn, n, actn) =  | -1, in case netn < n, 

      | actn, in case netn = n. 

 

The output function of each neuron is the following. 

 nN: fout(n) (actn) = actn. 

As a fully recurrent neural network, each neuron in the Hopfield network is 

connected to other neurons, except with itself. In the Hopfield network, every 

 
consequences of the strong back-coupling. Second, Perceptron studies usually made a 

random net of neurons deal directly with areal physical world and did not ask the questions 

essential to finding the more abstract emergent computational properties. Finally, 

Perceptron modeling required synchronous neurons like a conventional digital computer. 

There is no evidence for such global synchrony and, given the delays of nerve signal 

propagation, there would be no way to use global synchrony effectively. Chiefly 

computational properties which can exist in spite of asynchrony have interesting 

implications in biology” (Hopfield, 1982, p. 2554). 
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neuron serves both as an input neuron and as an output neuron. Because all 

neurons in the Hopfield networks serve as input and output, it has no hidden 

neurons. We need to add the following statements in our general model of a 

neural network above:  

 (i) Nhidden = ,   Nin=Nout=N, 

 (ii) C = NN – {(n, n)| n N}. 

The weight of each connection is symmetrical. 

 n0, n1 N, n0  n1: wn0n1 = wn1n0.  

  This network has its convergence statement. Therefore, the Hopfield 

network does not need any learning rule, unlike the feed-forward neural 

network. A convergence statement is a law or law-like statement that is 

connected to the learning process of the neural network. In the learning 

process, the activation of neurons in the Hopfield networks are newly and 

asynchronously calculated. After many finite steps (max. n.2n steps of a single 

realization, with n = number of neurons), it will reach a stable condition, when 

the Hopfield network reaches one of the ‘lowest’ cost (or to converge to a 

local minimum). The stable condition is called “convergence.” 

 As a function to reach a stable condition, the Hopfield network uses a 

so-called energy function. This energy function assigns to every state of the 

Hopfield network a real number as the energy of state. This function must 

become smaller or stay the same in every state-transition. The lowest energy 

defines the stable condition/state. The energy function of the Hopfield 

network is   

 E = - 1/2 act→T W act→  + →T act→ 

with act→ = (actu1, …, actun)
T  = the activation states of nets. 

W = the weight-matrix of nets 

→ = (u1, .., un)
T  is the vector of the threshold of neurons.  
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Figure 3.5. The Hopfield network with four neurons (Adapted from: Wikipedia) 

 

 To build a structuralist model of the Hopfield network, we must first 

modify the potential model by adding two extra concepts, namely state (State) 

and energy (E). The concept of state (State) is a three tuples relation between 

activation (actn) and connection weights (W) and activation (actn). Moreover, 

the energy (E) is a function mapping each state to a specific rational number. 

We can characterize the potential model of the Hopfield network (Mp(HN))as 

follows:   

DIII-20: x is a potential model of the architecture of the Hopfield network (x 

 Mp(HN)) iff there exist N, Nin, Nout, Nhidden, IR, C, pred, succ, W, extn, netn, 

actn, outn, State, E so that: 

(1) x= N, Nin, Nout, Nhidden, IR,  C, pred, succ, W, extn, netn, actn, outn, 

State, E   Mp(HN) 

(2) N is a finite non-empty set of neurons. 

(3) C  NN is a finite non-empty set of directed connections between 

neurons. 
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(4) Nin is a finite non-empty set of input neurons. 

(5) Nout is a finite non-empty set of output neurons. 

(6) Nhidden is a finite set of hidden neurons. 

(7)  := N→ IR     (Threshold/bias) 

(8) pred(n) = {n1 N| (n1, n2)  C}   (presynaptic neurons) 

(9) succ(n) = {n2  N| (n1, n2)  C}   (postsynaptic neurons) 

(10) W:= C → IR       (synaptic weight) 

(11) extn:= Nin → IR    (external input) 

(12) netn:= Inp  W → IR    (network input) 

(13) actn:= N→ IR     (activation) 

(14) outn:= N → IR    (output) 

(15) State  actn  W  actn    (a finite non-empty set of 

      states of Hopfield’s net) 

(16) E:= State → IR    (Energy function)  

 

 The second step is the modification of the actual models of the neural 

network architecture. The Hopfield network can be seen as a specialization of 

the standard model by adding the following laws or law-like statement in the 

actual model:   

(1) In the Hopfield network, there is no hidden layer. 

(2) Input neurons and output neurons are identical. All neurons in a 

Hopfield’s network serve both as input neurons and as output neurons. 

(3) Every neuron is connected to all other neurons, except with itself. 

(4) The connection weight between n1 and n0 is identical to the connection 

weight between n0 and n1. 

(5) Each neuron network input (netn) is the result of each neuron's input 

function (see above). 

(6) For each neuron, activation (actn) is the result of each neuron's 

activation function (see above). 
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(7) Each neuron network output (outn) is the result of each neuron's output 

function (see above). 

(8) Energy function: E = - 1/2 act→T W act→ + →T act→ (for the details 

see above). 

The actual models for the Hopfield network (M(HN)) can be characterized as 

follows: 

DIII-21: x is an actual model of the architecture of the Hopfield network (x  

M(HN)) iff there exist N, Nin, Nout, Nhidden, IR,  C, pred, succ, W, extn, netn, 

actn, outn, State, E such that: 

(1) x= N, Nin, Nout, Nhidden, IR, C, pred, succ, W, extn, netn, actn, outn, 

State, E   Mp(HN) 

(2) for all n  N it holds: 

(2.1) Nin = pred 

(2.2) Nout = succ 

(2.3) Nhidden = succ  pred 

(3) N = Nin  Nout  Nhidden, 

(4) Nhidden  (Nin  out) =  

(5) Nhidden =  

(6) Nin=Nout=N 

(7) C = NN – {(n, n)| n N}. 

(8) n1,n0 N, n1  n0: wn1,n0 = wn0,n1 

(9) Input-net: nN: netn = fnet
(u) (w→

n, in
→

n) =   w→
n in

→
n = n0-{n1} 

wn0,n1 outn0. 

(10) Activation 

 () nN: actn = fact
(n) (netn, n) 

  (i) actn = 1, if netn  n ,or 

  (ii) actn = -1, otherwise. 

 or 

 (10.2) n: actn = fact
(n) (netn, ) 
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  (i) actn = 1, in case netn > n, or 

  (ii) actn = -1, in case netn < n, or 

  (iii) actn = actn, in case netn = n. 

(11) output: nN: fout
(n) (actn) = actn 

(12) E = - 1/2 act→T W act→ + →T act→ 

  whereas: act→ = (actn1, …, actnm)T is the activation state of the 

    network. 

      W is the matrix of the weight of the Hopfield network.   

      → = (n1, ..., nm)T  is the vector of the thresholds of 

    the neurons. 

 

 The partial potential models of the Hopfield network can be derived 

from the potential models by omitting the T-theoretical concepts. In the 

Hopfield network, the terms netn, actn, outn, State, and E are T-theoretical 

because they presuppose the Hopfield network itself. The netn, actn, outn are 

T-theoretical concepts of the more general architecture of the neural network, 

and State and E are T-theoretical elements of the Hopfield network itself. The 

partial potential models of the Hopfield network (Mpp(HN)) are characterized 

as follows: 

DIII-22: y is a partial potential model of the Hopfield network (y  Mpp(HN)) 

iff there exists x such that: 

(1) x= N, Nin, Nout, Nhidden, IR,  C, pred, succ, W, extn, netn, actn, outn, 

State, E   Mp(HN) 

(2) netn, actn, outn, State, E are T-theoretical. 

(3) y =  N, Nin, Nout, Nhidden, IR,  C, pred, succ, W, extn   Mpp(HN) 
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3.3.3.3. The Theory-Net for the Network-Architecture 

 Until the current discussion, we just see as if the network-architecture 

of the artificial neural network has only two immediate specializations, i.e., 

the two layers feed-forward neural network and the Hopfield network. The 

fact is that the general network-architecture has several specializations in the 

form of feed-forward neural networks by adding the new statement:  Nin  

Nout =  and recurrent neural networks by adding the new statement that there 

is a loop within the networks. The feed-forward neural networks have two 

specializations, namely the single-layer neural networks and the multi-layer 

neural networks. The specializations can be derived by adding some 

additional statements about the network and by applying several statements 

of the appropriate neuron models. The recurrent neural networks have many 

specializations, but here only the Hopfield network is discussed. We also get 

the Hopfield network by adding some additional statements and two 

theoretical terms about the network and by applying several statements of the 

appropriate neuron's models.   

 

3.3.4. Building A Structuralist Model of the Delta Rule 

  In order to operate as expected, artificial neural networks need to learn. 

They can learn to minimize error according to specific rules/algorithms. The 

learning rule plays the role of guiding the artificial neural network to reach 

the optimal state of operation by adjustment of the synaptic weight or the 

threshold of the neurons. The goal is to reach the minimal error or cost in 

supervised learning and unsupervised learning or maximal payoff by 

reinforcement learning. Related to the topic of this dissertation, the delta rule, 

as the learning rule, will be applied for the two-layers feed-forward neural 

network because the connectionist simulation of cognitive dissonance 

discussed later implements this learning rule.   
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 The basic idea of the learning rule used here is how to minimize error 

(normally called ‘cost’) by adjusting the weight of connectivity between 

neurons. If the neural network reaches the minimal cost, the learning step 

should be terminated. This condition is called convergence. Because of this 

goal, we need two basic functions, especially for feed-forward with the delta 

rule (and back-propagation), namely the cost-function and the gradient 

descent function.     

The Widrow-Hoff Model of Learning Rule or the Delta Rule. 

According to the delta rule, the neural network should be fed with a set of 

inputs (Inp) and trained with expected outputs (Out) as a training set L. 

Normally the Inp and the Out are written in the form of matrices Inp→ and 

Out→. The connection's weight W and the threshold   can be set randomly 

(Here we use the bias B, the bias is normally set =1 and its connection weight 

w0IR). With those inputs INP, the neural network will produce the actual 

output OUTn. In the first time of our network’s computation, there will be a 

difference between the actual output (OUTn) and the value of the desired 

output (Out→). These value differences, called the error (Error), will be 

corrected by training our neural network according to the delta rule. We also 

assign a real number as a learning rate .  With the delta rule, we update the 

weight of every synaptic weight.  

The general strategy of the Delta Rule is as follows: (1) We start with 

measuring the error in the output. It is defined by the difference between the 

actual output and the desired output according to the following formula:   

 Error= 1/n  (out – outn)2                     (the cost function) 

(2) The second step is to modify the weight to decrease the error of the 

network. Because the error is calculated for the whole pattern, the local error 

is not available. Therefore, we need to derive the error related to the activation 

of each output unit so that we can determine how the error will change 

according to each neuron’s activation. This step can be done by calculating 
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the error locally as the difference between the desired and the actual output 

activation (I use the symbol  for the local difference): 

 Error/outnn = (out – outnn)    (the derivation of Error by outn) 

It tells us how far the output of each neuron input must be changed to 

minimize the error.   

(3) Because we cannot change the input of the network (Inp), we must change 

the connection weight (W) in order to reduce the error. To do that, we can use 

the following chain rule: 

 Error/ weightn = Error/ outnn.outnn / weightn 

(4) To evaluate the partial derivative of actual output OUTn related to the 

connection's weight (W), we have the linear activation rule: 

 outnn = i(wni inpi) or  netn + b.w0 (activation-function of the 

 perceptron) 

For this partial derivative is: 

 outnn / weightn = inpi 

(5) The partial derivative of the error related to each weight (with negative 

sign) can be computed by multiplying the discrepancy by the input unit's 

activation. 

 Error/ weightn= – (out – outnn).inpi 

(6) The delta-rule multiplies this by the learning rate  

 wi = –  (out – outnn).inpi 

Alternatively, for the network: 

  wi = – i  (out – outnni).inpi 

Note: If we set the learning rate too small, the learning process will be very 

slow. However, if we set the learning rate too big, then the neural network 

will not reach the minimal cost (convergent state) because it takes a too big 

step in the gradient descent.    

(7) The last step is to update the connection weight by the following rule: 

 wi
(neu) = wi

(alt) + wi . 
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 Borgelt et al. give the Convergence-statement for Delta rule as follows 

(Borgelt, C. et al., 2003, p. 27): 

“Sei L={(x1
→, o1),..., (xm

→, om)} eine Menge von Trainingsbeispielen, jeweils 

bestehend aus einem Eingabevektor xi
→  IRn und der zu diesem 

Eingabevektor gewünschten Ausgabe oi {0,1}. Weiter sei L0 = {(x→, o)  L| 

o =0} und L1 = {(x→, o)  L| o =1}. Wenn L0 und L1 linear separabel sind, 

d.h., wenn w→IRn  und   IR existieren, so dass  

(x→, 0) L0:  w→ x→ <  and 

 (x→, 1) L1:  w→ x→   

Dann terminieren [der Trainingsalgorithmus] 

[In English: Let L={(x1
→, o1),..., (xm

→, om)} be a set of training examples, 

each one consisting of an input vector xi
→  IRn and for this vector input there 

is a desired output oi {0,1}. Further let let L0 = {(x→, o)  L| o =0} and L1 

= {(x→, o)  L| o =1}. If L0 and L1 are linearly separable, i.e., if there exist 

w→IRn and  IR, such that: 

 (x→, 0) L0:  w→ x→ <  and 

 (x→, 1) L1:  w→ x→   

Then [the training algorithm for the delta rule] is terminated.].” 

This dissertation uses the symbol B for bias instead of the symbol . 

The Structuralist Model of the Delta Rule. To build a structuralist 

model for the delta rule we characterize the potential models, the actual 

models, and the partial potential models. The potential models of the delta 

rule (Mp(DR)) can be formulated as follows: 

DIII-23: x is a potential model of the delta rule (x  Mp(DR)) iff there exist 

N, IR, Inp, Out, C, B, W, OUTn, , Error so that: 

(1) x =  N, IR, Inp, Out, C, L, B, W, OUTn, , Error   Mp(DR) 

(2) N is a finite non-empty set of neurons. 

(3) Inp  IR    (Input) 
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(4) INP→ is a set of the input vector.   

(5) Out  IR    (desired Output) 

(6) OUT→ is a set of an output-vector. 

(7) C  NN is a finite non-empty set of directed connections between 

neurons. 

(8) L  Inp  Out    (a finite non-empty set of  

     training examples) 

(9) B := N → IR    (Bias) 

(10) W:= C → IR    (weight) 

(11) Outn  IR       (actual output, if the neural  

     network is fed with input Inp)   

(12)   IR    (learning rate) 

(13) Error := Out  OUTn → IR2  (The network’s error is a 

 mapping into a two-dimensional Cartesian coordinate system) 

 

 The actual models of the delta rule (M(DR)) consist of the following 

law statements or law-like statements: (1) The network’s error can be 

calculated by dividing the sums of the square of the discrepancy between 

actual output and expected output by two. This method to calculate the 

network’s error is known as the mean square error (MSE) method. To correct 

each neuron's error, we need to derive this network’s error for each neuron. 

(2) The learning-rule is as follows: (a) For all neurons’ bias, the update is (old) 

+  with  = – (Out – OUTN). (b) For all neurons’ connection-weight 

the update is wi
(new) = wi

(old) + wi with wi = (Out – OUTN) Inpi and  is 

the learning rate. (3) The Convergence-statement for the delta rule is as 

follows: given a set of training-sample L containing pairs of input and desired 

output L={(Inp1
→, Out1),..., (Inpm

→, Outm)}, the set L contains L0 = {(Inp→, 

Out)  L| Out =0} and L1 = {(Inp→, Out)  L| Out =1}. If L0 and L1 are 
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linearly separable, and if w→IRn and B=IR exist, then for all L0 the net-input 

is <  and for all L1 the network input is  B  

The actual models for the delta rule (M(DR)) can be defined as 

follows: 

DIII-24: x is an actual model of the delta rule (xM(DR)) iff there exist N, 

IR, Inp, Out, C, L, B, W, OUTN, , Error such that: 

(1) x =  N, IR, Inp, Out, C, L, B, W, OUTn, , Error   Mp(DR) 

(2) i{1, ..., n}: Error= ½ i (Out – OUTN)2 and the derivation for each 

neuron's activation: (Out – OUTN) 

(3) bi i=1, ..., n: bi
(new) = bi

(old) + bi with bi = – (Out – OUTN). 

(4) wiW, i=1, ..., n: wi
(new) = wi

(old) + wi with wi = (Out – OUTN) 

Inpi 

(5) Convergence-statement: 

Supposed L={(Inp1
→ , Out1),..., (Inpm

→ , Outm)} is a set of training-

sample with 

L0 = {(Inp→, Out)  L| Out =0} and L1 = {(Inp→, Out)  L| Out =1}. 

If L0 and L1 are linearly separable and if w→IRn  and B =IR exist, 

then 

 (Inp→, 0) L0:  w→ Inp→ <  and 

 (Inp→, 1) L1:   w→ Inp→   

 The partial potential models of the delta rule can be characterized by 

omitting the T-theoretical elements from the potential model Mp(DR), which 

are the learning-rate () and the error (Error) because both terms presuppose 

the delta rule itself. The learning rate () determines the learning's speed. The 

Error is here understood as the difference between actual outputs and the 

desired outputs in the output-layer. Therefore, the partial potential models of 

the delta rule (Mpp(DR)) can be defined as follows: 

 



 

 
88 

 

DIII-25: y is a partial potential Model of the delta-rule (yMpp(DR)) iff there 

exist x such that: 

(1) x = N, C, Inp, Out, L, B, W, OUTN, , ErrorMp(DR). 

(2)  and Error are T-theoretical. 

(3) y =  N, C, Inp, Out, L, B, W, OUTN   Mpp(DR). 
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Chapter 4 

Some Preliminary Work for Building the Structuralist 

Models of Intertheoretical Connections in Some Cases in 

Cognitive Science   

 

 

 Before starting with modeling intertheoretical connections between 

several theories in cognitive science, some preparations in this chapter should 

be made. The preparations involve some adjustments to the structuralist 

theory of science and an overview of cognitive science relevant to this 

dissertation. 

 

4.1. Some Adjustments in the Structuralist Theory of Science 

 Though the standard version of the structuralist metatheory of science 

in BMS is a powerful tool to represent scientific theories and their 

intertheoretical connections formally, two improvements are needed to 

deliver a better analysis of intertheoretical connections in interdisciplinary 

fields. The first improvement is the notion of echelon partial substructure 

developed by Moulines in his paper Intertheoretical Relations and the 

Dynamics of Science, 2014. And the second is a revision that I propose for the 

definition of a specialization. 

 

4.1.1. The Notion of Echelon Partial Substructure 

 In 2014, Moulines gave a formal definition of echelon partial 

substructure as a preparation for giving a formal structuralist account for four 

types of theoretical changes from the diachronic point of view, i.e., in the 

development of scientific theories. The notion of echelon partial structure is 

intuitively as follows: Given a set-theoretic operation Θ, which consist in 

successively applying a finite number of times the operations of power-set 
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construction and cartesian product to some given sets. The operation Θ 

always begins with power-set construction. S is an echelon partial 

substructure of S* iff for all Si components of S, there exist some S*k 

component(s) of S* where Si is the range of operation Θ applied to S*k. The 

complete definition of echelon partial substructure can be seen in Moulines, 

2014, p. 1512. This definition is beneficial to characterize subsets of potential 

models (Mp) that contents components of Mp, which some certain 

intertheoretical connection are applied to. Respectively this definition can 

also be applied to Mpp for characterizing (local) empirical claims of the 

intertheoretical connection. 

With the definition of echelon partial substructure, Moulines can 

distinguish in a precise manner between concepts that are connected to one 

another in a diachronic intertheoretical relation and concepts which are not. 

The notion of echelon partial substructure will also be applied here for the 

same reason to some cases of synchronic intertheoretical relations. To build 

several models of intertheoretical relations precisely, we need not only all 

definitions of intertheoretical connection and its varieties of Chapter 2, but 

also the definition of echelon partial substructure. The reason for this is that 

in many cases, there are some unconnected concepts and some other concepts 

in the potential models, which connect to specific concepts in another theory-

element through intertheoretical relations – These concepts must be 

distinguishable. Such cases can also be seen in most cases of intertheoretical 

reduction in Chapters 5–7.  They are examples of cases of partial reduction, 

of which only several concepts in the potential models (Mp) of a theory 

element T, as a higher-level theory, can be reduced by concepts in the 

potential models of another theory element T*, a lower-level theory. In the 

next three chapters, we will see that not all concepts in the potential models 

of Festinger’s theory Mp(DissB) (or in the potential models of forced-

compliance dissonance Mp(DissF)) can be reduced by the concepts of the 

potential models of the Hawkins-Kandel Computational Neurobiological 
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Theory Mp(CNT), the Hopfield network Mp(HN), or the two-layer feed-

forward neural network Mp(RP+2L-FFN+DL). The notion of echelon partial 

substructure will be implemented in order to characterize which concepts in 

Mp(DissB) or Mp(DissF) are being reduced by the concepts of Mp(CNT), 

Mp(HN), or Mp(RP+2L-FFN+DL). 

 Therefore, the procedure for our modeling and analysis will be as 

follows: Generally, a definition of special types of intertheoretical connection 

is applied to create a model of intertheoretical connections for our selected 

cases. However, the definition of both determining and entailment links are 

used to get a more detailed analysis of intertheoretical relations. By using the 

definition of both basic types of links, we can identify all connected concepts 

and build an echelon partial substructure of the potential models of the 

connected theories. Moreover, we will analyze how those intertheoretical 

connections work and connect the terms of those theories with respect to the 

T-non-theoretical level of the connected theories. 

 

4.1.2. A Revision of the Definition of Specialization 

 The second improvement is a revision of the definition of 

intertheoretical specialization DIV-1 in the BMS, p. 170. As mentioned in 

Chapter 3, Rainer Westermann had already built a theory-net of the Festinger 

theory of cognitive dissonance with its four specializations. Let us now look 

at one of its specializations, called the forced compliance dissonance. In this 

case, the specialization relation is built not only by adding some new law 

statements or law-like statements to the actual models of the Festinger theory 

of cognitive dissonance M(DissB), but also by modifying its potential models 

Mp(DissB) (see DIII-1 and DIII-2). The modification in the potential models 

is made by adding several restrictions, which make the extension of the 

potential models of forced compliance dissonance Mp(DissF) (see DIII-4) 

narrower than the Mp(DissB). 
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Similar cases also occur in three other specializations of the Festinger theory 

of cognitive dissonance, namely post-decision dissonance (DissD), 

information exposure dissonance (DissI), and social disagreement dissonance 

(DissS). In these three cases, additional restrictions are not only added to the 

actual model, but also to the potential model. Mp(DissD), Mp(DissF), 

Mp(DissI), and Mp(DissS) are no longer equal to Mp(DissB), but they become 

the subsets of Mp(DissB). Therefore, Mpp(DissD), Mpp(DissF) (see DIII-6), 

Mpp(DissI), and Mpp(DissS) are also the subsets of Mpp(DissB) (see DIII-3). 

From these cases, the author finds that the definition of specialization D IV-1 

in BMS, p. 170, is too strong – especially with respect to the condition DIV-

1 (1) Mp’ = Mp and Mpp’ = Mpp. This definition does not provide a possibility 

to modify the Mp by adding some more restrictions, which will be able to 

produce a type of specialization as well. Therefore, this dissertation suggests 

a modification to the definition of specialization as follows: (this definition 

will be used for the rest of this dissertation). 

D IV-1: If T = Mp, M, Mpp, GC, GL, I and T’ = Mp’, M’, Mpp’, GC’, GL’, 

 I’ are idealized theory-elements, then T’ is an idealized 

 specialization of T (abbreviated as T’T) iff: 

  (1) Mp’  Mp and Mpp’ Mpp, 

  (2) M’  M, GC’  GC, GL’  GL and I’  I, 

 

 This modification still retains the three characteristics of the 

specialization relation in Theorem IV-1 in BMS page 170, but diminishes a 

possible tension between DIV-1 (1) Mp’ = Mp and Mpp’= Mpp and TIV-18 (b) 

Cn(K’)Cn(K) of BMS. Also, it will be able to solve, or at least reduce, 

tension with the definition of intertheoretical connections as a bridge between 

theories in Moulines and Polanski, 1996, p. 222. In the new definition of 

specialization, there must not appear two statements that seemingly contradict 

each other: On the one hand Mp’ = Mp and Mpp’= Mpp (BMS, 1987, p. 170) 
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and, on the other hand, the definition of an intertheoretical connection i,j (1 

 i,j  n  Mp
i  Mp

j) (Def 6(2) in Moulines and Polanski, 1996, p. 222). 

 

4.2. An Overview of Cognitive Science Related to This Project 

 Although cognitive science is a relatively young interdisciplinary 

field, it has already been a very fruitful scientific field. There are many 

research programs in this field that are very helpful to provide us with a more 

comprehensive and in-depth explanation of phenomena of the mind, or that 

inspire us to develop many applications in the form of technologies and 

techniques (such as artificial neural networks for face or speech recognition, 

predictions for the stock exchange, and others). Cognitive science is an 

interdisciplinary field that studies phenomena of cognition – not only limited 

to human cognition but including animal cognition as well. There are at least 

six scientific fields that constitute cognitive science. They are philosophy (of 

mind), psychology, neuroscience, linguistics, artificial intelligence, and 

anthropology – or other social sciences. (Figure 4.1) 

 

Figure 4.1. The fields in cognitive science according to Keyser et al. 1978; Solid 

lines indicate near or strong connections and dashed lines indicate far or weaker 

connections. (Source: Stephan, Achim, and Walter, Sven, 2013, p.3) 
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In this dissertation, our modeling of intertheoretical connections in 

cognitive science will cover only three areas, namely psychology, 

neuroscience, and artificial intelligence. This modeling is based on the 

following description. Cognition comprises very complex phenomena that 

have been difficult to comprehend completely ever since ancient times. In the 

philosophy of mind, there are many theories that try to explain the mind (or 

cognition) and its relationship with the body. An interest in the mind and 

behavior can be found in the ancient civilizations. At that time, psychology 

was a part of philosophy. Psychology only started to be an independent field 

in 1879 when Wilhelm Wundt, who called himself as a psychologist, built the 

first laboratory for psychological research in Leipzig. Since then, many 

approaches and schools in psychology have been founded (especially in 

cognitive psychology) to explain the phenomena of mind and their aspects, 

such as behaviorism, psychoanalysis, and many more.    

 In cognitive science and modern philosophy of mind, all these schools 

are called folk psychology or commonsense psychology. The term folk 

psychology means “(1) commonsense psychology that explains human 

behavior in terms of beliefs, desires, intentions, expectations, preferences, 

hopes, fears, etc.; (2) an interpretation of such everyday explanations as part 

of a folk theory, comprising a network of generalizations employing concepts 

like belief, desire, and so on” (Baker, 1999, p. 319). In cognitive science, this 

folk psychology is occasionally seen as an anti-scientific view of our self-

understanding and, therefore, replaceable by other approaches related to 

neuroscience and artificial intelligence. Several cognitive scientists, such as 

Stephen P. Stich, Paul M. Churchland, and Patricia R. Churchland, who try to 

combine, or respectively reduce psychology to neuroscience, call themselves 

eliminative materialists. On the other hand, many philosophers admit a kind 

of reduction relation between psychological processes and brain processes but 

do not demand replacement of folk psychology theories, such as Jaegwon 

Kim, Terence Horgan, James Woodward, Daniel Dennett, among others. 
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 A second important discipline in the study of the mind is neuroscience, 

especially cognitive neuroscience. Neuroscience is the study of the brain and 

its neural networks explaining how our cognitive process takes place in our 

brains. In cognitive neuroscience, the study of the cognitive process is done 

in two ways. First, to discover the functionality of brain parts or regions in 

the cognitive process, neuroscientists observe the correlation between 

disturbances of cognitive capacities (e. g. aphasia) or personality-changes and 

damage to certain parts of the brain (e. g. lesions). From such observations, 

neuroscientists can identify the functionality of certain parts of the brain in 

cognitive processes. The second way is to do experiments – via models and 

observations – of how the neurons and their network produce certain aspects 

of cognition, of how the metabolism of a brain works and what its influence 

is in cognitive processes. The research is carried out not only on human brains 

but also on animal brains.   

 There are a huge number of neurons and their connections in a brain; 

for example, the human brain contains around 1011 neurons and 1014 synapses, 

and even now, it is impossible to identify all existing connections 

(connectome), especially in vivo. Sebastian Seung writes poetically:    

 “No road, no trail can penetrate this forest. The long and delicate 

branches of its trees lie everywhere, choking space with their exuberant 

growth. No sunbeam can fly a path tortuous enough to navigate the 

narrow spaces between these entangled branches. All the trees of this 

dark forest grew from 100 billion seeds planted together. And, all in one 

day, every tree is destined to die. This forest is majestic, but also comic 

and even tragic. It is all of these things. Indeed, sometimes I think it is 

everything. Every novel and every symphony, every cruel murder and 

every act of mercy, every love affair and every quarrel, every joke and 

every sorrow— all these things come from the forest. You may be 

surprised to hear that it fits in a container less than one foot in diameter. 

And that there are seven billion on this earth. You happen to be the 
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caretaker of one, the forest that lives inside your skull. The trees of 

which I speak are those special cells called neurons. The mission of 

neuroscience is to explore their enchanted branches— to tame the 

jungle of the mind” (Seung, 2012).   

To study how a brain works and produces cognition, cognitive scientists 

assume that a brain is a black box. They use artificial intelligence as an aid to 

model and simulate a cognitive process. One of the approaches in artificial 

intelligence that is often implemented is called artificial neural networks. It is 

so-called because it is strongly inspired by the concept of a neuron.     

The intertheoretical relations of these theories will be formally 

modeled according to the following interdisciplinary relations. Under the 

topic of interdisciplinary relation between psychology and neuroscience, the 

intertheoretical connections between the theory of forced compliance 

dissonance in psychology and the Hawkins-Kandel computational 

neuroscientific theory (CNT) in neuroscience will be modeled based on the 

result of research by Vincent van Veen, et al. The second interdisciplinary 

relation is between psychology and artificial intelligence. We will model the 

intertheoretical connections of two simulations of cognitive dissonance, 

namely the consonance and the connectionist models. The consonance model 

implements the Hopfield network to simulate the phenomena of dissonance 

reduction. Therefore, we are going to model the intertheoretical connections 

between the Festinger (general) theory of cognitive dissonance and the 

Hopfield network. For the connectionist model, which uses the two-layers 

feed-forward neural network with the delta rule, we are going to model the 

intertheoretical connection between the Rosenblatt perceptron, the two layers 

feed-forward neural network and the delta rule on one side and the forced 

compliance dissonance theory on the other side. And the last interdisciplinary 

relation is between neuroscience and artificial intelligence, namely between 

the McCulloch-Pitts neuron and the Rosenblatt perceptron. These concrete 

cases of intertheoretical relations can be seen in Figure 4.2. 
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Figure 4.2. The map of the intertheoretical relations, that will be discussed in this 

dissertation; CD = the theory of cognitive dissonance (DissB model); DissD = the 

post decision dissonance theory; DissF= the forced compliance dissonance theory; 

DissI = the dissonance & information exposure theory; DissS= the social 

disagreement dissonance theory; CNT = the computational neuroscientific theory; 

MP= the McCulloch-Pitts neuron; RP= the Rosenblatt perceptron; Arch.NN= the 

architecture of neural network model; HN=the Hopfield network; FFNN+DR= the 

feed-forward neural network model and the delta rule; continuous lines = 

interdisciplinary relations/connections; continuous arrows = the specialization 

Relations in a theory-net. The researches modeled are VanVeen et.al’s (DissF & 

CNT), the consonance model (DissB & HN), and the connectionist model.   
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Chapter 5 

The Structuralist Model of Intertheoretical Connections 

between the Festinger Theory of Cognitive Dissonance and 

the Hawkins-Kandel Computational Neuroscientific Theory 

in the Process of Dissonance Reduction in the Dorsal Anterior 

Cingulate Cortex (dACC) 

 

 

5.1. Van Veen’s Research Program and the Connection between 

Psychology and Neuroscience  

 Many scientists and philosophers believe that there are connections 

between human psychological phenomena and how the human brain works. 

They develop some relations between psychological theories and theories 

about how the brain works – intertheoretical relations in these matters are 

known as intertheoretical reduction. Many scientists attempted to show how 

experiments can confirm such intertheoretical relations. The first 

intertheoretical relation that will be modeled and analyzed is the relation 

between Festinger’s theory of cognitive dissonance and Hawkins-Kandel’s 

computational neuroscientific theory (CNT) by putting in context of a 

research conducted by Vincent van Veen et al. (2009). This analysis aims to 

show how far such a (widely) believed intertheoretical relation between two 

theories from different disciplines could be confirmed by research about the 

phenomena explained by it. In our case, both theories are from psychology 

and neuroscience. Van Veen et al. themselves had no intention to prove the 

intertheoretical reduction between Festinger’s theory of cognitive dissonance 

and the Hawkins-Kandel computational neuroscientific theory (CNT). Their 

research aims to show that a specific area of cerebral cortex in the human 

brain plays a vital role during a phase of cognitive dissonance.  
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In 2009 Van Veen et al. investigated a specific area of the cerebral 

cortex called dorsal Anterior Cingulate Cortex (dACC) or Broadman’s area 

32. The Brodmann areas are areas of the cerebral cortex in human or other 

primate brains defined by the neurons’ cytostructure. The division and 

numbering of the Broadman areas were initially made by the German 

anatomist Korbinian Brodmann in 1909. The division of the Brodmann areas 

has been refined and renamed for more than a century and remains widely 

used as a reference of the cytoarchitectural organization of the human cortex.   

 The dACC is a part of the Anterior Cingulate Cortex (ACC) that deals 

with cognitive processes, such as reward anticipation and decision making. 

The other area of the ACC is called ventral Anterior Cingulate Cortex 

(vACC), which deals with emotional processes. The dACC is connected to the 

prefrontal cortex, the parietal cortex, the motor systems, and the frontal eye 

fields. This position gives it a central role in processing top-down and bottom-

up stimuli and assigning appropriate control to other areas of the brain. 

       

    

        

Figure 5.1. The dorsal Anterior Cingulate Cortex (Source: quizlet.com) 

 

 Because of its position, Van Veen and others proposed that the dACC 

has a function to detect conflicts between prior attitudes and counter-
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attitudinal behavior in cognitive dissonance. “One of the dACC’s functions in 

cognition is to detect the conflict between active, but incompatible, streams 

of information processing, such as between the color and the meaning of a 

word in the Stroop task. dACC activation is consistently related to the amount 

of conflict occurring in such tasks. … We hypothesized that the dACC’s 

conflict monitoring function might generalize from detecting conflict in 

simple speeded-response tasks to detecting the conflict between prior 

attitudes and counter-attitudinal behavior in cognitive dissonance” (van Veen 

et al., 2009, p. 1469). They also said that these functions could be simulated 

by implementing the Hopfield network: “Computational simulations of 

conflict in simple speeded response tasks have measured conflict as 

Hopfield's energy and have shown that dACC activation in such tasks can be 

well modeled by this measure” (van Veen et al., 2009, p. 1469).   

 Van Veen et al. reported their observations using fMRI on the 

participants of an experiment of cognitive dissonance by applying the induced 

compliance procedure. The research was conducted as follows (van Veen et 

al., 2009, pp. 1469–1470): In the first step, participants performed a rather 

long (45 min) and tedious task in an uncomfortable environment, namely in 

a magnetic resonance scanner. While participants performed this task, they 

were randomly assigned to one of two groups: the dissonance group or the 

control group.   

 In the second step, the participants had to respond to sentences 

presented on a screen with their left or right ring, middle, or index finger, that 

represented 6 points on the Likert scale (1 = left ring finger, agree entirely; 6 

= right ring finger, disagree entirely). There were two types of sentences: 

target sentences, which consist of attitudes toward the scanner, and neutral 

sentences, composed of other topics or tasks. Participants in the control group 

were told to respond to the target sentences as if they were enjoying the 

scanner and the task, regardless of their actual feeling about the experience. 

They were informed that they would receive additional money for each 
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sentence, to which they responded as if they were enjoying the scanner and 

the task. However, they were told to respond honestly to the other sentences, 

namely the neutral sentences.    

 Participants in the dissonance group were given instructions about 

how to respond to the stimuli. They were told that a patient had been 

scheduled to be scanned after them and was to perform a similar task in the 

scanner. The participants were informed that this patient was now in the 

control room, watching the experimental control computer screen, and was 

very nervous and uncomfortable about his upcoming scanning session. The 

participants were informed that several of the sentences were about their 

attitudes toward the scanner and the task. They were asked if they would be 

willing to respond as though they enjoyed being in the scanner and doing the 

task, regardless of their real feelings about the experience. They were made 

to believe that the patient in the control room could see the responses on the 

screen. This situation was set to create a counter-attitudinal argument.   

 In the third step, participants were led into a private waiting room after 

the scanning was completed. There they were asked to fill out a set of forms, 

which also contained the target sentences. This time they were asked to 

respond according to their actual feeling about their experience in the scanner. 

A composite score was calculated for the participants’ enjoyment of the 

scanner and task. After completing the forms, the participants were carefully 

interviewed; participants who admitted having doubts about the validity of 

the cover story were not included in the analysis.   

 The result was as follows: “We found that participants in the 

dissonance group changed their attitudes more than participants in the control 

group following counter-attitudinal behavior. Furthermore, dACC and 

anterior insula activation during counter-attitudinal behavior predicted the 

participants' final attitude in the dissonance group, but not in the control 

group. In the dissonance group, these partial correlations were significant for 

the bilateral dACC and bilateral anterior insula regions (partial r range = 0.60–
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0.68, all P < 0.01); for those regions, these correlations were not significant 

in the control group (partial r range = –0.33–0.11, all P > 0.1). ANCOVA 

analysis verified that for the bilateral dACC and left Anterior Insula. These 

correlations were greater in the dissonance group than in the control group 

(F1,35 range = 4.10–9.43, all P < 0.05). For the right anterior insula, the 

ANCOVA was marginally significant (F1,35 = 3.186, P = 0.083)” (van Veen 

et. al, 2009, p. 1472).   

 In the discussion part of their article, van Veen, et al. (2009) write: 

“These findings are consistent with a number of prior observations. Both 

cognitive dissonance and dACC and anterior insula activation have been 

associated with negative affect and autonomic arousal. These regions might, 

therefore, be responsible for representing or triggering the negative affect and 

related autonomic arousal associated with the dissonance. … Our data expand 

on those findings, indicating that dACC activity during the counter-attitudinal 

argument, which is similar to lying, predicts subsequent attitude change, but 

only when counter-attitudinal behavior conflicts with other cognitions. … In 

short, our results are consistent with theories of cognitive dissonance that 

emphasize the conflict between different cognitions, such as the original 

theory. In particular, our results are consistent with the action-based model of 

cognitive dissonance, which posits that conflict between cognitions evokes 

an aversive state because it potentially interferes with unconflicted, effective, 

goal-driven action” (van Veen et al., 2009, p. 1472). 

 Based on van Veen et al.’s experiment, the Festinger theory of 

cognitive dissonance will be connected to the Hawkins-Kandel computational 

neuroscientific theory (CNT) according to the following principles. (1) 

Cognitions in the dissonance theory are defined as patterns of activation value 

or patterns of synaptic weight values that regulate activation values in all, 

except the input neurons of the network (Bickle, 1998, p. 191). (2) The 

network of neurons discussed here will be limited to the network of neurons 
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in dACC. (3) The research conducted by van Veen shows that cognitive 

dissonance is related to high activation of the dACC area and anterior insula.   

 

5.2. Building A Structuralist Model of the Intertheoretical Connection 

between the Festinger Theory of Cognitive Dissonance and the Hawkins-

Kandel Computational Neuroscientific Theory (CNT) 

 To build a model of the intertheoretical relation between the Festinger 

theory of cognitive dissonance and the computational neuroscientific theory, 

we follow the idea that cognition at the psychological level can be 

characterized as a pattern of activation values and synaptic weight values that 

regulate activation values in all neurons of the network. Therefore, the term 

Cognition in the theory of cognitive dissonance is related to the relation 

between activation values (AV) and connection weights (CW) of the 

computational neuroscientific theory. Because both theories assume that both 

cognition and this activation and connection weights occur at certain discrete 

point(s) of time, the terms time (T) of both theories are connected to each 

other.   

 To make this model more concrete, we are going to refer to van Veen 

et al.’s research about the connections between a special case of cognitive 

dissonance, namely forced compliance dissonance, and the neural activities 

in a particular brain region called the dorsal Anterior Cingulate Cortex 

(dACC) (for the detail experiment see Chapter 4). This brain area shows 

different activities between the event(s) of cognitive dissonance and event(s) 

of consonance. The experiment showed high activity of dACC and Anterior 

Insula during counter-attitudinal behavior. The terms Disscog and Conscog 

in the theory of forced compliance dissonance are connected to the high 

neural activities or the low neural activities of dACC.   

 Based on the case observed by van Veen et al., we have to build a 

model of the intertheoretical relation between a specialization of cognitive 

dissonance (DissB), called forced compliance dissonance (DissF), and the 
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computational neuroscientific theory (CNT). The specialization for the forced 

compliance dissonance (DissF) has several special terms, such as Forcecom, 

attidiff, imp, and reward. The Forcecom is a subset of cognition. Therefore, it 

must be connected to the relation between the set of activation values (AV) 

and the set of connection weights (CW). However, we have several 

uncertainties about connecting the attidiff, imp, and reward with terms in 

CNT. This fact is understandable because we cannot give such empirical 

evidence1.     

 Because only several terms in the potential models of forced 

compliance dissonance (Mp(DissF)) are connected with the potential models 

of the computational neuroscientific theory (Mp(CNT)), the definition of 

determining link is used to identify the intertheoretical relation between the 

terms of both models. By identifying all determining links between them, we 

can determine the echelon partial substructure from the potential model of 

both theory-elements. The intertheoretical connections between both echelon 

subsets are now a kind of entailment link (see the definition of entailment link 

in Moulines & Polanski, 1996, p. 223). Based on these entailment links, we 

can apply the definition of interpreting links to connect the respective 

elements in the partial potential models of the forced compliance dissonance 

Mpp(DissF). In this way, we determine the local intended applications of the 

intertheoretical connections.    

 The intertheoretical connections between the forced compliance 

dissonance and the computational neuroscientific theory for neurons in the 

dorsal Anterior Cingulate Cortex (dACC) can be formally characterized as 

follows: Since in this case, the computational neuroscientific theory is applied 

to explained the behavior of neurons in the dorsal Anterior Cingulate Cortex 

(dACC), I call the theory-element of CNT in this case “CNT on dACC.”  

 
1 with our technology today. In some simulations of dissonance reductions implementing 

artificial neural networks, the activation value of the artificial neurons is usually connected 

with the presence or absence of cognitions. 
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D V-1:  If T(DissF) = Mp(DissF), M(DissF), Mpp(DissF), I(DissF) and 

T(CNT on dACC) = Mp(CNT on dACC), M(CNT on dACC), Mpp(CNT on 

dACC), I(CNT on dACC) then there exist  as a set of determining links 1, 

2, 3, 4, 5 between T(DissF) and T(CNT on dACC) iff there exist  x1, x2 

such that: 

(1) x1 = Time, Rawcog, Cognition, Disscog, Conscog, pairdiss, paircons, 

pairimp, diss, redpress, Forcecom, attidiff, imp, reward  Mp(DissF) 

(Let x1 be a potential model of the forced compliance dissonance 

(Mp(DissF)) 

(2) x2 = N, Act, T, IN, IR, AV, O, I, CW, Cause  Mp(CNT on dACC) 

(Let x2 be a potential model of the computational neuroscientific 

theory (Mp(CNT on dACC)) 

(3) Time  T  

(Let  be the first determining link, which connects the set Time in 

Mp(DissF) to the set T in Mp(CNT on dACC).  is bijective) 

(4) Cognition  (AV  CW)  

(Let  be the second determining link, which connects the set 

Cognition in Mp(DissF) to the relation between the set of activation 

value AV and the set of connection weight CW in Mp(CNT on dACC). 

The relation between AV and CW is defined according to DIII-17(2). 

It is also relevant for defining the 3) 

(5) Forcecom  (AV  CW), where 3  2  

(Let  be the third determining link, which connects the set Forcecom 

in Mp(DissF) to the relation between the set of activation value AV 

and the set of connection weight CW in Mp(CNT on dACC)) 

(6) Disscog  (CW  CW), where for all neurons in the network at a 

certain period of time i
m ||CW(ti) - CW(ti+1)|| is big.  
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(Let  be the fourth determining link, which connects the set Disscog 

in Mp(DissF) to the relation (difference) between connection weights 

CW at ti and connection weights CW at ti+1 in Mp(CNT). It is Disscog 

if for all neurons in the network at a certain period of time i
m ||CW(ti) 

- CW(ti+1)|| is big) 

(7) Conscog  (CW  CW), where for all neurons in the network at a 

certain period of time i
m ||CW(ti) - CW(ti+1)|| is small.  

(Let  be the fifth determining link, which connects the set Conscog 

in Mp(DissF) to the relation (difference) between connection weights 

CW at ti and connection weights CW at ti+1 in Mp(CNT on dACC). It 

is Conscog if for all neurons in the network at a certain period of time 

i
m ||CW(ti) - CW(ti+1)|| is small) 

(8)  = {1, 2, 3, 4, 5}  

(Let L is a set of determining links between T(DissF) and T(CNT on 

dACC)) 

 

 With the determining links defined above, the echelon partial 

substructure of both theory-elements, which represent the intertheoretically 

connected concepts between both theories, can be characterized. Both 

echelon partial substructures are connected by a kind of entailment links, 

which unite them. Therefore, we can define the entailment links as a set, 

which contains all previous determining links, as follows: 

D V-2: If T(DissF) = Mp(DissF), M(DissF), Mpp(DissF), I(DissF) and 

T(CNT on dACC) = Mp(CNT on dACC), M(CNT on dACC), Mpp(CNT on 

dACC), I(CNT on dACC) then there exist echelon subsets e1, e2 and the 

entailment links between them E iff there exist  x1, x2, 1, 2, 3, 4, 5  

according to D V-8 such that: 

(1) x1 = Time, Rawcog, Cognition, Disscog, Conscog, pairdiss, paircons, 

pairimp, diss, redpress, Forcecom, attidiff, imp, reward  Mp(DissF) 
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(Let x1 be a potential model of the forced compliance dissonance 

(Mp(DissF))) 

(2) x2 =  N, Act, T, IN, IR, AV, O, I, CW, Cause   Mp(CNT on dACC) 

(Let x2 be a potential model of the computational neuroscientific 

Theory (Mp(CNT on dACC))) 

(3)  = {1, 2, 3, 4, 5}  

(Let  be a set of determining links between x1 and x2) 

(4) e1 = Time, Cognition, Forcecom, Disscog, Conscog  an echelon 

subset of Mp(DissF) connected to Mp(CNT on dACC) with respect to 

  

(Therefore, e1 is an echelon partial substructure of Mp(DissF) 

concerning the intertheoretical connections between T(DissF) and 

T(CNT on dACC) with respect to ) 

(5) e2 = T, AV, CW  Mp(CNT on dACC) with respect to   

(Therefore, e2 is an echelon partial substructure of Mp(CNT on dACC) 

concerning the intertheoretical connections between T(DissF) and 

T(CNT on dACC) with respect to ) 

(6) E = {1, 2, 3, 4, 5}  

(Therefore, E is a set of the entailment links between the echelon 

partial substructure e1(DissF) and the echelon partial substructure 

e2(CNT on dACC)) 

  

Determining the interpreting links for the intertheoretical reduction 

between DissF and CNT can be done by applying VIII-7 and D VIII-8 in 

BMS, p. 398–400 and the empirical claim of the interpreting links by applying 

DVIII-9, and D VIII-10 in BMS, p 402–404. Both are on the non-theoretical 

level and deal with local empirical claims of the intertheoretical reduction. By 

defining both, we can know which of the T-non-theoretical concepts of one 

or both theories are relevant for this intertheoretical reduction. This 
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dissertation will only focus on the local empirical claims of the Festinger 

theory of forced compliance dissonance as the reduced theory; we could do 

the same thing for the Hawkins-Kandel computational neuroscientific theory 

(CNT) by using the same procedure as well. The interpreting links and its 

local empirical claims on the theory of forced compliance dissonance can be 

defined as follows: 

DV-3 : E*(DissF) = {l1, l2, l3, l4, l5} is a collection of interpretation links, 

where T(DissF) is interpreted by T(CNT on dACC) and f1 is the local 

empirical claims of the interpreting links for the reduction of DissF by CNT 

on dACC on the DissF, iff there exist x1, x2 , e1, e2, E, y1 such that: 

(1) x1 = Time, Rawcog, Cognition, Disscog, Conscog, pairdiss, paircons, 

pairimp, diss, redpress, Forcecom, attidiff, imp, reward  Mp(DissF) 

(Let x1 be a potential model of the forced compliance dissonance 

(Mp(DissF))) 

(2) x2 =  N, Act, T, IN, IR, AV, O, I, CW, Cause   Mp(CNT on dACC) 

(Let x2 be a potential model of the computational neuroscientific 

Theory (Mp(CNT on dACC))) 

(3) e1 = Time, Cognition, Forcecom, Disscog, Conscog  an echelon 

subset of Mp(DissF) connected to Mp(CNT on dACC)  

(Let e1 be an echelon subset of Mp(DissF) formed by 1–5 according 

to D V-2(4)) 

(4) e2 =  T, AV, CW   Mp(CNT on dACC)  

(Let e2 be an echelon subset of Mp(CNT on dACC) formed by 1–5 

according to D V-2(5)) 

(5) E = {1, 2, 3, 4, 5}  the set of entailment links  

(Let E be a set of entailment links between e1 and e2) 

(6) y1 = Time, Rawcog, Cognition, Disscog, Conscog, pairimp, 

Forcecom, attidiff, imp, reward  Mpp(DissF)  
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(Let y1 be a partial potential model of the forced compliance 

dissonance (Mp(DissF))) 

(7) l1 = {tj timei | T(tj)  Time(timei) → R(tj timei), where R(x,y) means 

x interpreting y and R is bijective.  

(l1 is an interpreting link that connects both concepts of Time from 

Mpp(DissF) as identical to T from Mp (CNT on dACC)) 

(8) l2 = {(cw, aw)j , cognitioni | (CW, AW)j  Cognition(cognitioni) → 

R((cw, aw)j , cognitioni)}, where the relation between CW and AV is 

according to nk,nl  N: AV(nk,t) = CW(nl,nk).O(nl) I(nk) AV(nk, t-1).  

(l2 is an interpreting link that interprets the concept of cognition from 

Mpp(DissF) as a function of AV and CW from Mp (CNT on dACC)) 

(9) l3 = { (cw, aw)j, forcecomi  | (CW, AW)j  Forcecom(forcecomi) → 

R((cw, aw)j, forcecomi)}, where the relation between CW and AV is 

according to nk,nl  N: AV(nk,t) = CW(nl,nk).O(nl) I(nk) AV(nk, t-1). 

(l3 is an interpreting link that interprets the concept of forcecom from 

Mpp(DissF) as a function of AV and CW from Mp (CNT on dACC)) 

(10) l4 = {(cw, cw)j, dci | (CW, CW)j  Disscog(dci) → R((cw, 

cw)j, dci)}, where (CW,CW) is according to the following function: 

when for all neurons in the network at a certain period of time i
m 

||CW(ti) - CW(ti+1)|| is big.  

(l4 is an interpreting link that interprets the concept of Disscog from 

Mpp(DissF) as a function of CW and CW over time from Mp (CNT on 

dACC)) 

(11) l5 = {(cw, cw)j, cci | (CW, CW)j  Conscog(cci) → R((cw, 

cw)j, cci)}, where (CW,CW) is according to the following function: 

when for all neurons in the network at a certain period of time i
m 

||CW(ti) - CW(ti+1)|| is small. (l5 is an interpreting link that interprets 

the concept of Conscog from Mpp(DissF) as a function of the cross 

product of CW with itself over time from Mp (CNT on dACC)) 
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(12) f1 = Time, Cognition, Disscog, Conscog, Forcecom  an 

echelon subset of Mpp(DissF) by applying function r*: e1 → f1, that 

maps E from  Mp(DissF) into Mpp(DissF).  

(f1 is a set of the empirical claims of the interpreting links for the 

reduction of DissF by CNT on dACC) 

 

 The local empirical claims of this intertheoretical reduction f1 show 

that on the side of the Festinger theory, all relevant cognitions and their 

interactions happening in time in DissF, as psychological phenomena, are 

interpreted as the interaction between the activation and the connections 

weight in the neurons of a specific part of the brain by the CNT. In the case 

of van Veen et al.’s research, through the interpreting links the phenomena of 

cognitive dissonance or cognitive consonance because of forced compliance 

are understood as the interaction between the neurons’ activation and the 

connection weight of neural networks in the dorsal Anterior Cingulate Cortex 

(dACC) according to the computational neuroscientific theory. The cognitive 

dissonances within the dissonance group can be associated with high activity 

of the neural network in the brain to adjust synaptic connections to restore 

consonance; this is measured by fMRI.   

 Theoretically, we could also generalize the intertheoretical reduction 

to the Festinger theory of cognitive dissonance (DissB) by omitting the 

special rules that create DissF. The only element of the echelon partial 

substructure of Mp(DissF), which determines the intertheoretical 

specialization relation between DissF and DissB, is Forcecom. Since 

Forcecom is a subset of Cognition, the entailment links and the interpreting 

links can be generalized by omitting Forcecom. 
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A Summary of This Chapter and Some Reflections. This chapter 

presents a structuralist model to analyze the intertheoretical connections 

between a specialization of the Festinger theory of cognitive dissonance 

(called forced compliance dissonance (DissF)) and the computational 

neuroscientific theory (CNT) in the case of the dorsal Anterior Cingulate 

Cortex (dACC) in Van Veen et. al.’s research program. This kind of 

intertheoretical relation is an intertheoretical reduction; in this case, only the 

echelon partial subset of Mp(DissF) is entirely connected to the echelon 

partial subset of Mp(CNT). 

 The modeling is done by taking the following steps: (1) We identify 

the set of determining links () between both theories, which connect several 

basic terms of both theories. (2) We characterize the echelon subsets (e) of 

Mp of both theories. Based on the second step, we can denote the set of 

determining links as the set of the entailment links between both echelon 

subsets (E). (3) Now, we can deal with the non-theoretical level of the 

intertheoretical connection. In this level, the empirical claims or intended 

applications of the intertheoretical connections are local on one of both 

theories according to the concept of theory-holon. Therefore, we have to 

choose which theory we consider as the local one according to our goal or 

focus. Supposed, we want to explain the dissonance and consonance 

according to the DissF in the term of activity of the neurons according to the 

CNT. Hence, we determined the forced compliance dissonance to be the local 

theory. We define the interpreting links between both theories, where DissF 

is interpreted by CNT. We determined the set of interpreting links that connect 

a part of Mpp(DissF) to the echelon subset of Mp(CNT on dACC) by this 

requirement: {li = y, x’| x’Mp(CNT on dACC), yMpp(DissF) and there 

is xMp(DissF) such that x,x'(DissF, CNT on dACC) and r*(DissF)=y} – 

The function r*(DissF)=y projects the echelon subset of Mp(DissF) to 

Mpp(DissF). And (4) the result of the projection is the class f that is the set of 
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the empirical claims of our intertheoretical connection. This class f is also the 

echelon subset of Mpp(DissF) as our interpreted theory concerning this 

intertheoretical reduction. The model can be graphically presented as follows: 

 

Figure 5.2. A structuralist modeling of the intertheoretical reduction between the 

theory of forced compliance dissonance (DissF) as the reduced theory and the 

computational neuroscientific theory (CNT) as the reducing theory; e(DissF) is the 

echelon subset of Mp(DissF) and e(CNT) is the echelon subset of Mp(CNT). Both 

are connected by a set of entailment links (E). The interpreting links with local 

intended applications at DissF (E*(DissF)) connect the set of the local empirical 

claims of this intertheoretical reduction f(DissF) to the echelon partial subset of 

Mp(CNT). f(DissF) is the echelon partial subset of Mpp(DissF). 

 

Through this modeling and analysis, a piece of confirmation of the 

notion that the psychological phenomena have connections with how the 

brain works is delivered by confirmation of intertheoretical reduction 

between the Festinger theory of cognitive dissonance and the Hawkins-

Kandel computational neuroscientific theory put in the context of van Veen 

et al.’s research. The confirmation can be seen as an empirical confirmation 

as long as both sets of empirical claims of the interpreting links from both 
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directions (f(DissF) and f(CNT on dACC) – can be modeled in the similar 

ways similar to DV-3) are not empty sets. It means that interpretations of each 

theory by another theory have empirical elements. However, in this case, the 

confirmation is limited for several reasons: (1) both connected theories are 

only two of many existing theories in both fields. (2) The intertheoretical 

connections modeled are only one of many possible connections. (3) The 

experiments itself is not intended to deliver confirmation of intertheoretical 

connections in question. (4) The explanation power of these intertheoretical 

connections is limited to the concepts of the theories connected. We need to 

connect more theories to get better comprehensiveness and confirmations, but 

the range of phenomena explained will be more specific (limited).  

Although we cannot get a very good degree of confirmation – which 

is not the goal of this analysis – we still get an example that is representative 

in many scientific and philosophical practices. The structuralist metatheory 

of science can be applied for modeling, analyzing, and helping to measure the 

degree of confirmation of our theory combination or to develop measuring 

method – by specifying the interconnected parts of the connected theories.  
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Chapter 6 

The Structuralist Models of Intertheoretical Connections 

between the McCulloch-Pitts Neuron and the Rosenblatt 

Perceptron and between the Festinger Theory of Cognitive 

Dissonance and the Hopfield Network in the Consonance 

Model of Simulation 

 

 

 To understand brain processes during cognitive dissonance, cognitive 

scientists developed simulations of the process of dissonance reduction by 

implementing a branch of artificial intelligence inspired by the way how 

neurons in the brain work, namely artificial neural networks. In Chapters 6 

and 7, this dissertation will analyze the intertheoretical connections of some 

simulation of the Festinger theory of cognitive dissonance. Chapter 6 will 

discuss the intertheoretical connections of a cognitive dissonance simulation 

called the consonance model, whereas Chapter 7 the connectionist model. 

Both simulations apply mathematical models of neurons that are connected 

in a specific network.   

The first model of a neuron, which is still relevant in neuroscience 

today, was developed by Warren S. McCulloch and Walter H. Pitts in 1943. 

In the computational neuroscientific theory, the neurons work as a logical 

switch – there are only two possibilities for the condition of the neurons, i.e., 

fire (excitatory) or not fire (inhibitory). This theory is based on the 

McCulloch-Pitts model of a neuron. However, to build a simulation by using 

an artificial neural network, we must move from the McCulloch-Pitts neuron 

to the Rosenblatt perceptron. Before starting with the consonance model, it 

will be interesting to model the intertheoretical connections between the 

neuron's model commonly used in neuroscience and the neuron's model 



 

115 

 

commonly used in the artificial intelligence, so that we can know how both 

models of neurons related each other. 

This chapter will consist of two parts. The first part will model the 

intertheoretical relation of both models of a neuron in order to explore 

similarities and differences of both models as a preparation for our discussion 

of the simulation of cognitive dissonance. It is a case of historical reduction, 

where the McCulloch-Pitts neuron is seen as one of the Rosenblatt 

perceptron's specializations. The second part will discuss a model of 

intertheoretical connections between the Festinger theory of cognitive 

dissonance and the Hopfield network according to the consonance model of 

simulation. 

 

6.1. The Intertheoretical Relation between the McCulloch-Pitts Neuron 

and the Rosenblatt Perceptron 

 Historically speaking, the intertheoretical relation between the 

McCulloch-Pitts neuron and the Rosenblatt perceptron is a diachronic one: 

namely, an intertheoretical embedding. “In this kind of scientific change, the 

models of an older theory get embedded (approximately and perhaps not 

completely) into the models of a newer, more complex theory in such a way 

that all (or almost all) intended applications of the older theory, whether 

successful or unsuccessful, become successful intended applications of the 

newer one” (Moulines, 2014, p. 1509). The McCulloch-Pitts neuron (1943) is 

the first generation of a neuron's model, whereas the Rosenblatt perceptron 

(1958) is the second generation, into which the McCulloch-Pitts neuron gets 

embedded.  

However, his dissertation treats them as in a synchronic relationship 

because modeling the development of the theory of neuron is not relevant for 

this project. For this project, knowing the difference and similarity between 

them is more important because they provide a basis for building a justified 

and meaningful simulation. Therefore, a model of intertheoretical embedding 
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will not be built here, but a model of the intertheoretical reduction and 

specialization of both theories. The goal of this modeling is to illustrate two 

things formally: The first is similarities and dissimilarities between both 

theories. The second is the advantage(s) of the Rosenblatt perceptron over the 

McCulloch-Pitts neuron by changing the possibility of input – to a varying 

degree – and its various options of the activation function(s) in mathematical 

models. With a learning rule, a perceptron can also behave as a digital 

automaton like the McCulloch-Pitts model, besides as a statistical automaton 

that combines all input data and builds a model representing characteristics 

of the data.  

 The similarities and differences between both models can be analyzed 

through how far the potential models of both theory-elements can be 

connected by reduction and specialization relations. Here is presented a 

mathematical model of how the Rosenblatt perceptron reduces to McCulloch-

Pitts neuron, which becomes its specialization. Not all elements of potential 

models of McCulloch-Pitts neuron (Mp(MCP-N)) (see D III-10 in Chapter 3 

above) are connected to the elements of potential models of the Rosenblatt 

Perceptron (Mp(RP)) (see D III-13 in Chapter 3 above). Therefore, modeling 

the intertheoretical reduction of both theories requires identification of 

determining links, which connects concepts to concepts in both theories' 

potential models. The determining links between the theory-element of 

McCulloch-Pitts neuron T(MCP-N) and the theory-element of the Rosenblatt 

perceptron T(RP) can be specified as follows: 

DVI-1: If T(MCP-N) = Mp(MCP-N), M(MCP-N), Mpp(MCP-N), I(MCP-

N) and T(RP) = Mp(RP), M(RP), Mpp(RP), I(RP), then there exist 1, 2, 

3, 4, 5, 6, 7, 8, 9, 10, L, e1, e2, E between T(MCP-N) and T(RP) iff 

there exist  x, x’ such that: 

(1) x =  N, N0, IR, IN, B, C, W0, W, Inp, Outp, fnet, fact, fout   Mp(RP) 

(Let x be a potential model of the Rosenblatt Perceptron) 
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(2) x’ = N’, N0’, T, IR, IN, , C’, W’, Inp’, Outp’, fnet’, fact’, fout’   

Mp(MCP-N)  

(Let x’ be a potential model of the McCulloch-Pitts Neuron) 

(3) 1  N  N’, where a = b, for aN and bN’  

(λ1 is a determining link that connects the set of neurons (N) in the 

potential model of the Rosenblatt perceptron (x) and the set of neurons 

(N’) in the potential model of the McCulloch-Pitts neuron (x’). λ1 is 

bijective)  

(4) 2  N0  N0’, where a = b, for aN0 and bN0’  

(λ2 is a determining link that connects the set of input neurons (N0) in 

the potential model of the Rosenblatt perceptron (x) and the set of 

input neurons (N0’) in the potential model of the McCulloch-Pitts 

neuron (x’). λ2 is bijective) 

(5) 3  C  C’, where a = b, for aC and bC’  

(λ3 is a determining link that connects the set of connections between 

neurons (C) in the potential model of the Rosenblatt perceptron (x) 

and the set of connections between neurons (C’) in the potential model 

of the McCulloch-Pitts neuron (x’). λ3 is bijective) 

(6) 4  W  W’, where a = b, for aW and bW’  

(λ4 is a determining link that connects the set of connection weights 

(W) in the potential model of the Rosenblatt perceptron (x) and the set 

of connection weights (W’) in the potential model of the McCulloch-

Pitts neuron (x’). λ4 is bijective) 

(7) 5  (B  W0)   , where ac  b, for aB, cW0, and b, where 

B, W0  IR and  is a constant.  

(λ5 is a determining link that connects the relation between the bias of 

the neurons (B) and its connection weight (W0) in the potential model 

of the Rosenblatt perceptron (x) to the set of a threshold of each 
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neuron () in the potential model of the McCulloch-Pitts neuron (x’). 

λ5 is surjective) 

(8) 6  Inp  Inp’, where a  b, for aInp and bInp’, where Inp IR 

and Inp’{0,1}  

(λ6 is a determining link that connects the set of inputs (Inp) in the 

potential model of the Rosenblatt perceptron (x) and the set of inputs 

(Inp’) in the potential model of the McCulloch-Pitts neuron (x’). λ6 is 

surjective because Inp  Inp’) 

(9) 7  Outp  Outp’, where a  b, for aOutp and bOutp’, where 

OutpIR and Outp’{0,1}  

(λ7 is a determining link that connects the set of outputs (Outp) in the 

potential model of the Rosenblatt perceptron (x) and the set of outputs 

(Outp’) in the potential model of the McCulloch-Pitts neuron (x’). λ7 

is surjective because Outp  Outp’) 

(10) 8  fnet  fnet’, where a = b, for afnet and bfnet’  

(λ8 is a determining link that connects the network input function of 

neurons (fnet) in the potential model of the Rosenblatt perceptron (x) 

and the network input function of neurons (fnet’) in the potential 

model of the McCulloch-Pitts neuron (x’). λ8 is bijective) 

(11) 9  fact  fact’, where a  b, for afact, and bfact’, where 

factIR and fact’ {0,1}  

(λ9 is a determining link that connects the activation function of 

neurons (fact) in the potential model of the Rosenblatt perceptron (x) 

and the activation function of neurons (fact’) in the potential model of 

the McCulloch-Pitts neuron (x’). λ9 is surjective because fact  fact’) 

(12) 10  fout  fout’, where a  b, for afout, and bfout’, where 

foutIR and fout’ {0,1}  

(λ10 is a determining link that connects the output function of neurons 

(fout) in the potential model of the Rosenblatt perceptron (x) and the 
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output function of neurons (fout’) in the potential model of the 

McCulloch-Pitts neuron (x’). λ10 is surjective because fout  fout’) 

(13)  = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}  

( is a collection of determining links that connect the concepts of 

both theories) 

(14) e1 = N, N0, IR, IN, B C, W0, W, Inp, Outp, fnet, fact, fout   

an echelon partial subset of Mp(RP)  

(e1 is an echelon partial subset of the potential model of the Rosenblatt 

perceptron) 

(15) e2 = N’, N0’, IR, IN, , C’, W’, Inp’, Outp’, fnet’, fact’, fout’ 

  an echelon partial subset of Mp(MCP-N)  

(e2 is an echelon partial subset of the potential model of the 

McCulloch-Pitts neuron) 

(16) E = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}  

(E is a set of entailment links that connect the echelon partial subset 

of the potential model of the Rosenblatt perceptron and the echelon 

partial subset of the potential model of the McCulloch-Pitts neuron) 

 

In this model, theoretical similarities and dissimilarities between the 

McCulloch-Pitts neuron and the Rosenblatt perceptron can be identified by 

similarities and differences of terms or concepts of both theories connected 

by determining links connecting sets of the same terms. The theoretical 

similarities between the McCulloch-Pitts neuron and the Rosenblatt 

perceptron are determined through the following concepts: 

(1) The concepts of neurons (N), neuron input (N0), connections (C), and 

connection weight(W) and network input function (fnet) of both 

models are similar. 
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(2) The concept of the threshold of the McCulloch-Pitts neuron is a true 

subset of a multiplication of the bias (B) and its connection weight 

(W0) in the Rosenblatt perceptron. 

(3) The terms input (Inp), output (Outp), and output function (fout) are 

equivalent as long as these terms of the Rosenblatt perceptron cover 

only 0 and 1.  

(4) The concept of the activation function (fact) of both models is 

equivalent as long as they implement the same activation function, 

namely the linear function. 

The theoretical dissimilarities can be determined by the intertheoretical 

reduction of both models that can be identified by the two following 

conditions. The first condition is that there is a term with no determining link 

at all, namely the concept of time (T) in the McCulloch-Pitts neuron. It 

“reduces” applicability of the Rosenblatt perceptron. The second condition is 

that there exist some determining links that are not bijective but surjective. 

These links show not only how far their similarities but also reduce the 

applicability of the Rosenblatt perceptron. The concepts of Inp, Outp, fact, 

and fout of both models are not entirely similar, because these concepts of 

McCulloch-Pitts neurons are only true subsets of the respective concepts of 

the Rosenblatt perceptron.  

Modeling the empirical reduction between both models of the 

artificial neuron can be done by projecting the determining intertheoretical 

connections between both theories onto their T-non-theoretical level. It can 

be done by omitting the determining links that connect the T-theoretical 

elements of both potential models. As we see in Chapter 2, the T-theoretical 

elements in the potential models of the McCulloch-Pitts neuron are their fnet, 

fact, and fout, whereas the T-theoretical elements in the potential models of 

the Rosenblatt perceptron are also their fnet, fact, and fout. Here, we speak 

about theory-nets and not about theory-holon because both theories are in 

relatives. Therefore, defining local empirical claims of the intertheoretical 
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relation is not required. The determining links that represent the empirical 

similarities – and dissimilarities – of both theories are as follows: 

DVI-2: * is a collection of determining links that represents the empirical 

equivalence between the theory-element of McCulloch-Pitts neuron and the 

theory-element of the Rosenblatt perceptron and f1 is an echelon partial subset 

of the partial potential model of the McCulloch-Pitts neuron iff there exists x, 

x’, , y, y’ such that: 

(1) x =  N, N0, IR, IN, B, C, W0, W, Inp, Outp, fnet, fact, fout   Mp(RP) 

(Let x be a potential model of the Rosenblatt perceptron) 

(2) x’ = N’, N0’, T, IR, IN, , C’, W’, Inp’, Outp’, fnet’, fact’, fout’   

Mp(MCP-N)  

(Let x’ be a potential model of the McCulloch-Pitts neuron) 

(3)  = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}  

(Let  be a collection of the determining links between both potential 

models) 

(4) fnet, fact, fout are T-theoretic  

(The T-theoretical elements in the potential model of the Rosenblatt 

perceptron) 

(5) fnet’, fact’, fout’ are T-theoretic  

(The T-theoretical elements in the potential model of the McCulloch-

Pitts neuron) 

(6) y = N, N0, IR, IN, B, C, W0, W, Inp, Outp  Mpp(RP)  

(y is a partial potential model of the Rosenblatt perceptron) 

(7) y’ = N’, N0’, T, IR, IN, , C’, W’, Inp’, Outp’  Mpp(MCP-N)  

(y’ is a partial potential model of the McCulloch-Pitts neuron) 

(8) * = {1, 2, 3, 4, 5, 6, 7}  

(* is be a collection of the determining links of both partial potential 

models) 
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(9) f1 = N, N0, IR, IN, B, C, W0, W, Inp, Outp  echelon partial subset 

of Mpp(RP)  

(f1 is an echelon partial subset of the partial potential model of the 

Rosenblatt perceptron) 

(10) f2 = N’, N0’, IR, IN, , C’, W’, Inp, Outp  echelon partial 

subset of Mpp(MCP-N)  

(f2 is an echelon partial subset of the partial potential model of the 

McCulloch-Pitts Neuron) 

 

Through this model, the intertheoretical reduction and specialization 

can be illustrated through the following figure: 

 

Figure 6.1. The reduction link reduces the theory-element of the Rosenblatt 

perceptron (T(RP)) to the theory-element of the McCulloch-Pitts neuron (T(MCP-

N)) and as its result T(MCP-N) becomes a specialization of T(RP) 

 

The relation of both theories also matches the requirements of 

specialization relation in DIV-1. 

(1) Mp(MCP-N)  Mp(RP), Mpp(MCP-N)  Mpp(RP) 
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(2) M(MCP-N)  M(RP), GL(MCP-N)  GL(RP), and I(MCP-N)  

I(RP). 

 

In the next part of this chapter and the next chapter, the structuralist 

metatheory of science is applied not for modeling empirical theories, but for 

modeling artificial neural networks for simulation. Some fellow structuralists 

may not agree with this research because the structuralist theory is 

particularly suitable for modeling empirical theories, whereas the artificial 

neural network is not an empirical model but a mathematical model. This 

dissertation sees that the application STS is not only limited to modeling 

empirical theories but also for modeling non-empirical scientific theories, 

such as artificial neural networks. This application is based on some 

considerations as follows: First, Mpp contains not only empirical or 

observational terms but also non-observational terms, i.e., terms from other 

theories. (2) Es is possible that terms x1,.., x10 in theory T are not empirical, 

but they are related or taken over analogically from the terms x1’,… x10’ from 

T’, which are empirical. It is precisely the case of Rosenblatt perceptron and 

the McCulloch-Pitts neuron. (3) For building the simulation, the T-theoretical 

terms of the theory element of the McCulloch-Pitts neuron T(MCP-N) such 

as fnet, fact, and fout can be taken over as the T-theoretical terms of the 

theory-element of the Rosenblatt perceptron T(RP) because both theory-

elements are in the same theory-net (see DVIII-3, BMS, p. 392). 

 

6.2. The Consonance Model  

 The consonance model is developed by Thomas R. Shultz and Mark 

R. Lepper. This model simulates the mind as a mechanism that maintains 

some equilibrium and the dissonance reduction as a solving of the constraint 

satisfaction problem among someone's beliefs and behaviors. “The model is 

based on the idea that dissonance reduction can be viewed as a constraint 
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satisfaction problem. … the motive to seek cognitive consistency postulated 

by dissonance theory and related models … can be seen as imposing 

constraints on the beliefs and attitudes that an individual holds 

simultaneously …. Such problems can be solved by the simultaneous 

satisfaction of many soft constraints that can vary in their relative importance. 

Soft, as opposed to hard, constraints are those that are desirable, but not 

essential, to satisfy” (Shultz and Lepper, 1996, p. 220).  In this model, the 

network is being used to simulate “the subject’s representation of the situation 

created, or psychological problem posed, by the experimental settings in the 

classic cognitive dissonance paradigms” (Shultz and Lepper, 1996, p. 220).  

Shultz and Lepper implemented the Hopfield network because it can be used 

to solve complex optimization problems, where network states with low 

energy levels represent optimal solutions.   

 The basic idea of this simulation is as follows: The units (or neurons) 

represent the cognition involved in arousal of dissonance and reduction of 

dissonance. The activation of units represents the direction and strength of an 

individual’s beliefs and attitudes. The units can differ in their resistance to 

change according to differences related to the fact that cognition may be 

supported by other cognition or anchored in reality. Connection weights 

represent psychologically causal implications among the individual’s beliefs 

and attitudes. Therefore, they can be either excitatory (+), inhibitory (-), or 

psychologically irrelevant (0). We can initially adapt unit activations and 

connection weights, depending on the paradigm, according to the different 

conditions of a single experiment (Shultz and Lepper, 1996, p. 220).   

  In this simulation, increasing consonance corresponds to the process 

of reducing dissonance or striving for consistency among individual's beliefs 

and attitudes. Shultz and Lepper defined consonance as “the degree to which 

similarly active units are linked by excitatory (+) weights and differently 

active units or inactive units are linked by inhibitory (-) weights” (Shultz and 

Lepper, 2009, p. 238). In the consonance model of simulation, Shultz and 
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Lepper implement the Hopfield network with some modifications. “Hopfield 

worked out the mathematics for solving constraint satisfaction problems in 

parallel networks. Maximizing the consonance (or goodness) of any pair of 

connected units depends on the sign of the connection between them …. If 

connected by a positive weight, both units of the pair should be active to 

maximize consonance. With a negative weight, consonance is maximized 

when the two units are not both active; that is, when both are inactive, or only 

one is active. Activation will change over time cycles so as to satisfy the 

various constraints and increase consonance” (Shultz and Lepper, 1996, p. 

220).    

 This consonance model works according to the following 

computational rule (Shultz and Lepper, 1996, pp. 220–221, 2009, pp. 239–

241): The consonance contributed by a particular unit i can be defined as 

follows:  

 consonancei = j wij aiaj     (1) 

Where wij is the connection weight between units i and j, ai is the activation 

of receiving unit i, and aj is the activation of the sending unit j. The network's 

consonance is defined as a sum of consonance of all receiving units in the 

network:   

 consonancen = ij wij aiaj     (2) 

The Hopfield network is a recurrent neural network. Therefore, all units are 

both a receiving unit and a sending unit. Activation of all units is propagated 

over time in the network according to the following rules for updating the 

unit's activation:   

 ai(t+1) = ai(t) + neti[ceiling – ai(t)], when neti ≥ 0,  (3) 

 ai(t+1) = ai(t) + neti[ai(t) – floor], when neti < 0,  (4) 

where ai(t+1) is the activation of receiving unit i at time t+1, ai(t) is the 

activation of unit i at time t, ceiling is the maximal level of unit activation, 
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floor is the minimal level of unit activation, and neti is the scaled net input to 

unit i, which can be defined as:  

 neti = resisti j wij aj      (5) 

The parameter resisti indicates the resistance of receiving unit i to having its 

activation changed. Smaller values of this parameter indicate greater 

resistance because smaller values mean less impact of the network input. The 

network input of a unit is updated by the sum of the products of connection 

weight and activation of their sending unit over the time of the simulation.  

 The implementation of the consonance model for cognitive 

dissonance simulation requires six theoretical principles for mapping the 

consonance model onto the dissonance theory (Shultz and Lepper, 2009, p. 

245). These principles constrain the design of networks representing the 

(general) conditions of each experiment. “To varying degrees, these 

theoretical principles were specified in classical dissonance theory. 

Additional specifications, where necessary, are supplied by the consonance 

model. Each theoretical principle governs the design of all simulations with 

the consonance model” (Shultz and Lepper, 1996, p. 221). These principles 

are as follows:   

 Principle 1: Representation of cognition. Although cognitions are 

the basic elements of the theory of cognitive dissonance, they are not fully 

specified in this theory. “They can be both beliefs and evaluations (i.e., 

attitudes), such cognitions could be assumed to vary in both direction and 

strength. The positive direction could represent that something is either 

believed to be true or is favorably evaluated. …, the negative direction could 

represent that something is either believed to be false or is negatively 

evaluated. Strength is the degree to which something is believed to be true or 

false or evaluated positively or negatively” (Shultz and Lepper, 1996, p. 221). 

Therefore, in this network, each cognition is represented by the net activation 

of a pair of negatively connected units – one unit represents a positive 
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direction, and the other represents the negative direction. Respectively, a net 

activation for the cognition is the difference between the activation of the 

positive unit and the activation of the negative unit. The neurological and 

computational plausibility for this has been reviewed by Anderson (1995, pp. 

150–152), where the neurons can be found in two organized groups, which 

are inhibitory and excitatory at the same time related to some specific input. 

The activation range for the positive neurons is also higher than the one for 

the negative neuron. For mimicking this fact, Shultz and Lepper set ceiling 

activation parameter to 1 for units representing positive aspects of cognition, 

and to 0.5 for units representing the negative aspect of cognition. The floor 

parameter is set to 0 for both types. For undertaking the simulation, the initial 

activation is generally set by default to the value 0.5 for high – strongly 

believed – and 0.1 for low – weakly believed.   

  This representation allows some degree of ambivalence in cognition, 

such as something both liked and disliked. The inhibitory connections 

between the two poles tend to discourage such ambivalence. However, 

relatively persistent ambivalence can be produced if both the positive and 

negative units for a cognition receive strong support from other cognitions. 

Such ambivalence creates dissonance, as explained in the next principle. 

 Principle 2: Relationships among cognitions. In the consonance 

model, cognitions are connected to other cognitions based on their causal 

implications to form a network, which represents a person’s relevant beliefs 

and attitudes regarding a particular experimental situation. A negative 

implication is represented by an inhibitory (-) weight between two cognitions; 

a positive implication is represented by an excitatory (+) weight. Connection 

weights range from -1 to 1, with 0 representing a lack of causal relation. If 

two cognitions are positively related, their positive poles are connected to an 

excitatory weight; it is similar for their negative pole. Inhibitory (-) weights 

connect the positive pole of one cognition with the negative pole of another 

cognition and vice versa (Figure 4.3.A). If two cognitions are negatively 



 

128 

 

related, their positive poles are connected to the inhibitory weights; it will be 

similar for their negative poles. The excitatory weights connect the positive 

pole of one cognition with the negative pole of another cognition and vice 

versa (Figure 4.3.B). For both cases, each unit has an inhibitory self-

connection, and all connection weights are bidirectional. In this simulation, 

the initial connection weight is set by default to 0.5 for a strong connection, 

and for a weak connection to 0.1 by default.   

 

Figure 6.2. Any two cognitions can be connected positively (as shown in Figure A), 

negatively (as shown in Figure B), or can be unrelated. In this figure, positive 

connection weights are symbolized by the solid lines and negative connection 

weights by the dashed lines. Each connection is symbolized by an ellipse drawn 

around the positive and negative poles of the cognition. (Source: Shultz and 

Lepper, 1996, p. 222) 

 

 Principle 3: Magnitude of dissonance. According to cognitive 

dissonance theory, the total amount of dissonance is a function of the ratio of 

dissonance cognitions to all relevant cognitions (dissonant plus consonant 

cognition) with cognitions and relations weighted for their importance to a 

person. In the consonance model, the total consonance of the network is 

represented by Equation 2 above, which is defined by the triple products of 

sending activation, receiving activation, and connection weight summed. 
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Total dissonance is formally defined as the negative of total consonance 

divided by r, the number of non-zero inter-cognition relations in the network.  

 Dissonance = - ij wij aiaj / r     (6) 

Dividing by r has the goal of standardizing dissonance across networks of 

different size and connection density by controlling the number of relevant 

relations. The self-connection of units is excluded from this computation.   

 The following things are worth mentioning: (1) The definition of 

dissonance is analogous to the Hopfield network's definition of energy. (2) 

The total consonance is a triple product of sending activation, receiving 

activation, and connecting weight summed. In term of believability, the larger 

their numeric value, the larger is their impact on consonance. (3) Irrelevant 

cognition that is connected by a weight of 0 contributes nothing to consonance. 

(4) This definition of dissonance offers some advantages over the definition 

given by Festinger because it is mathematically formalized. Therefore, it 

provides: (a) an easy application to complex belief structures, (b) the 

possibility of measurement of the amount of dissonance in each inter-

cognition relation and of ambivalence within the cognition, and (c) variations 

according to all possible individual relations, whether consonance, 

dissonance, or mixed.    

 Principle 4: Dissonance reduction. According to the theory of 

cognitive dissonance, people have a strong tendency to reduce cognitive 

dissonance, although this is not always successful. In the consonance model, 

networks tend to settle into more stable, lower dissonance states by updating 

all unit activations according to equations 3–5 above. Shultz and Lepper set 

two parameters that affect the process of dissonance reduction, namely cap 

and rand%: “A cap parameter, with a default of -0.5, corresponds to the 

connection between each unit and itself, wii, and prevents activations from 

reaching the activation ceiling. … The rand% parameter provides a means of 

globally testing the robustness of the results obtained in simulations in the 
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face of variations in the specific numerical values used to instantiate key 

variables. At the start of each network run, connection weights, resistances, 

and initial activations all are randomized by adding or subtracting a random 

proportion of their initial amounts. The rand% parameter specifies the 

proportion range in which these additional and subtraction are selected under 

a random uniform distribution. Ordinarily, we use small (0.1), medium (0.5), 

and large (1.0) levels of rand%. The randomizing network values in this way 

increases psychological realism because not every person can be expected to 

share exactly the same parameter values” (Shultz and Lepper, 2009, p. 244). 

This rand% parameter randomizes these basic variables as follows:  

 y = x {random(absolute[x  rand%])}   (7) 

The randomization of weight values violates the symmetry of connection 

weights as assumed by Hopfield (1982, 1984), so that wij ≠ wji, and thus 

makes network solutions less stable, meaning that outcomes are more variable. 

Related to this randomization in the Hopfield network, Shultz and Lepper 

write, “that violations of the symmetry assumption increased memory errors 

and instability in network solutions to memory retrieval problems. Such 

results may also correspond to natural psychological variation” (Shultz and 

Lepper, 1996, p. 224). 

 Principle 5: Changes in Cognitions. According to Festinger (1957), 

dissonance can be reduced by decreasing the number or importance of 

dissonant relations, by increasing the number or importance of consonant 

relations, or by a combination of these factors. Changing the importance of 

dissonance can be done by changing evaluations, beliefs, and implications 

among them. In the theory of cognitive dissonance, there are different degrees 

of resistance to change among the cognitions; the cognitions most likely to 

change are the least resistant to change. For example, beliefs are more 

resistant to change than evaluations or attitudes. “Resistance stems from the 

possible creations of new dissonance because of relations with other 



 

131 

 

cognitions; from cognition that is anchored in reality, and from the difficulty 

of changing aspects of reality” (Shultz and Lepper, 1996, p. 224). According 

to dissonance experiments, dissonance is reduced by changes in evaluations, 

not by changes in belief about the salient event presented nor by changes in 

implications among cognitions (Shultz and Lepper, 1996, p. 224). For 

simulating this fact, these connection weights in the consonance model are 

not allowed to change, but cognition unit activations change over time as 

dissonance is reduced. The resistance parameter (Resisti) simulates this 

phenomenon in equation five above. By default, this parameter is set to the 

values of 0.5 for low resistance and of 0.1 for high resistance.   

 Principle 6: Importance of Dissonance. In their model, Shultz and 

Lepper implement the idea of the importance of dissonance by multiplying 

all connection weights and unit activations with a certain number at the 

beginning of every simulation. “An importance parameter multiplies all 

connection weights and unit activation at the start of each run, before the 

initial randomizations described under Principle 4. Typically, we use values 

of 1.0 in control conditions, 0.5 for conditions that lessen the importance of a 

dissonance situation, and 1.5 for conditions that enhance the importance of a 

dissonance situation. … The precise values used are somewhat arbitrary, but 

it is important, that they differ substantially to generate different results” 

(Shultz and Lepper, 2009, p. 245). 

  The simulation, according to this consonance model, is done by using 

a generic consonance model. In this model, cognitions are categorized into 

three categories: behaviors, justifications, and evaluations. In several 

simulations that implement this model, “the consonance model enables 

specification of each of the relevant cognitions, including their type and their 

initial activations, and of the relations among cognitions. Different 

dissonance experiments require different instantiations of this generic 

network because they involve different particular types of cognition, with 

differing particular initial activation values, and particular implications 
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among cognitions. … evaluation cognition is given low resistance, whereas 

other cognitions types (about behavior and justifications) are given high 

resistance” (Shultz and Lepper, 1996, p. 224).    

 

6.3. The Structuralist Model of the Intertheoretical Connections between 

Festinger’s Theory of Cognitive Dissonance and the Hopfield Network 

for the Consonance Model 

 The consonance model is a simulation of dissonance reduction 

through an artificial recurrent neural network, namely the Hopfield network. 

The motivation of this simulation is to simulate how neural activities in the 

brain can produce such psychological processes, namely reducing the 

dissonance at hand.   

 Building a model of intertheoretical connections of the consonant 

model requires some modifications of the Hopfield network. The first 

modification is related to the first principle in the consonant model, namely 

representation of cognition: “They can be both beliefs and evaluations (i.e., 

attitudes), such cognition could be assumed to vary in both direction and 

strength. The positive direction could represent that something is either 

believed to be true or is favorably evaluated. …, the negative direction could 

represent that something is either believed to be false or is negatively 

evaluated. Strength is the degree to which something is believed to be true or 

false or evaluated positively or negatively” (Shultz and Lepper, 1996, p. 221).  

It requires to modify the Hopfield network by adding a differentiation 

between neurons and the relation between those neurons. The first 

modification is eliminating differentiation among input neurons, hidden 

neurons, output neurons, pred(n), and succ(n), and creating differentiation 

between neurons (+) and neurons (-) to represent positive and negative 

valuations.   

(1) N+ is a finite non-empty set of neurons (+). 

(2) N- is a finite non-empty set of neurons (-). 
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(3) N+  N 

(4) N-  N 

 The second modification is a differentiation among the connections 

between neurons, which differentiates between pairs of neurons (Pairs) 

representing a cognition, and relations between members of Pairs (Conpairs) 

that represent the relation between cognitions. In the consonance model, the 

cognition is represented by a pair of neurons; the set of Pairs represent a set 

of cognitions. Therefore, the connection between cognitions will be 

represented by connections between elements of Pairs. The set of Conpairs 

will represent these connections between cognitions. 

(1) Pairs  N+' N-, all members of Pairs are bijective relations. 

(2) Pairs  C 

(3) Conpairs  Pairs  Pairs 

(4) C = Pairs  Conpairs  

 For the simulation, extn and outn, are not required anymore; all 

required is the activation of the pairs of neurons, that represent the valuations 

of the cognition. Therefore, they are put aside. Because the simulation does 

not have input and output, the network input netn will be modified. Defining 

netn needs another new parameter that behaves like a learning parameter. 

Shultz and Lepper call it as resisti “that indicates the resistance of receiving 

unit i to having its activation changed. Smaller values of this parameter 

indicate greater resistance because smaller values mean less impact of the net 

input” (Shultz and Lepper, 1999, p. 240). The law statement to determine neti 

will be neti = resisti j wij aj.  

 We also need a variable for time t to capture the update of the 

activation of receiving unit over time. The updating rules are as follows: 

 ai(t+1) = ai(t) + neti[ceiling – ai(t)], when neti ≥ 0,    

 ai(t+1) = ai(t) + neti[ai(t) – floor], when neti < 0,    
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Therefore, we also need two additional terms, ceiling and floor. Shultz and 

Lepper set ceiling activation parameter to 1 for units representing positive 

aspects of cognitions, and to 0.5 for units representing negative aspect of 

cognitions. The floor parameter is set to 0 for both types. 

 The next modification is related to the definition of consonance and 

dissonance. The term consonance replaces the term of state from the old 

Mp(HN) (see D III-20 of Chapter 3 above), whereas the term dissonance 

replaces the term energy E from the old Mp(HN). The consonance contributed 

by a particular unit i can be defined as follows: 

  consonancei = j wij aiaj      

where wij is the connection weight between units i and j, ai is the activation 

of receiving unit i, and aj is the activation of the sending unit j. The 

consonance of the network is defined as a sum of the consonances of all 

receiving units in the network: 

  consonancen = ij wij aiaj    

The total dissonance is formally defined as the negative of total consonance 

divided by r, the number of non-zero inter-cognition relations in the network.  

  Dissonance = - ij wij aiaj / r 

The last modification is the addition of two parameters that affect the process 

of dissonance reduction, i.e. cap and rand%: “A cap parameter, with a default 

of -0.5, corresponds to the connection between each unit and itself, wii, and 

prevents activations from reaching the activation ceiling.… The rand% 

parameter provides a means of globally testing the robustness of the results 

obtained in simulations in the face of variations in the specific numerical 

values used to instantiate key variables. At the start of each network run, 

connection weights, resistances, and initial activations are all randomized by 

adding or subtracting a random proportion of their initial amounts. The rand% 

parameter specifies the proportion range in which these additional and 

subtraction are selected under a random uniform distribution. Ordinarily, we 
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use small (0.1), medium (0.5), and large (1.0) levels of rand%. Randomizing 

network values in this way increases psychological realism, because not every 

person can be expected to share exactly the same parameter values” (Shultz 

and Lepper, 2009, p. 244). Therefore, the potential models and the actual 

models of the Hopfield network (D III-20 & DIII-21) in Chapter 3 are 

modified into DVI-2 and DVI-3 as follows:   

DVI-3: x is a potential model of the architecture of the Hopfield network for 

the consonance model (x  Mp(HN for Consonance)) iff there exist N, T, N+, 

N-, C, Pairs, Conpairs, W, Resist, A, netn, State, E so that: 

(1) X = N, T, IR, N+, N-, C, Pairs, Conpairs, W, Resist, A, Imp, cap, 

rand%, netn, ceiling, floor, consonance, Dissonance  Mp(HN for 

Consonance) (let x be a potential model of the adapted Hopfield 

network for the consonance model) 

(2) N      (Let N is a non-empty set of neurons) 

(3) T       

(T is a finite non-empty set of discrete points of time) 

(4) N+  N  

(N+ as a subset of N is a finite non-empty set of neurons, that represent 

positive valuations of cognition) 

(5) N-  N  

(N- as a subset of N is a finite non-empty set of neurons, that represent 

negative valuations of cognitions) 

(6) C  NN  

(C is a finite non-empty set of directed connections between neurons) 

(7) Pairs  N+N-   

(Pairs is a relation between two neurons with two opposite valuations 

that represent a certain cognition. Pairs is bijective)    

(8) Conpairs  PairsPairs   
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(Conpairs is a set of connections between Pairs, which represents the 

relationships between cognitions)  

(9) W := C → {-1, 0, 1}      

(W is a function that maps every connection into an element of the set 

{-1, 0, 1}. This number represents the weight of connections, which 

represent the characteristics of the relation between the neurons in 

pairs)   

(10) Resisti := N → IR   

(Resist is a function that maps each neuron to a real number that 

represents the resistance of the neuron i to having its activation 

changed) 

(11) A := N→ IR    

(A is a function that maps each neuron to a real number that represents 

the activation of the unit/neuron) 

(12) Imp := IR → IR   

(Imp is a function that represents the importance parameter. It is 

implemented on A and W)    

(13) cap := C → IR   

(cap is a function that maps each neuron to a real number, which 

represents the synaptic weight of units with itself. By default, this 

synaptic weight is set to -0.5) 

(14) rand% := IR → IR   

(Rand% is a function of random parameters)    

(15) netn  resist  actn  W → IR   

(netn is a function that calculates the network input of each neuron)  

(16) ceiling := N → IR   

(ceiling is a function that maps each neuron to a real number as a 

parameter representing the maximal level of unit activation: This is 
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set to 1 for units representing positive aspects of cognition, and to 0.5 

for units representing the negative aspect of cognition) 

(17) floor := N → IR   

(floor is a function that maps each neuron to a real number as a 

parameter representing the minimal level of unit activation set to 0 for 

both types) 

(18) Consonance  actn  W  actn 

(Consonance is a relation that represents the state of the Hopfield net) 

(19) Dissonance := State → IR   

(Dissonance is a function that represents the magnitude of dissonance) 

 

DVI-3: x is an actual model of the architecture of the Hopfield network for 

the consonance model (x  M(HN for Consonance)) iff there exist N, C, T, 

N+, N-, Pairs, Conpairs, W, Resist, A, cap, rand%, netn, ceiling, floor, 

consonance, Dissonance such that: 

(1) x = N, T, IR, N+, N-, C, Pairs, Conpairs, W, Resist, A, Imp, cap, rand%, 

netn, ceiling, floor, consonance, Dissonance  Mp(HN for 

Consonance)  

(let x be a potential model of the Hopfield network for the consonance 

model.) 

(2) N = N+  N-  

(The set of neurons in the network consists only of neurons with 

positive valuation and neurons with negative valuation) 

(3) N+  N- =   

(The intersection of the sets of neurons with positive valuation and the 

set with negative valuation is an empty set. Therefore, there exist no 

neuron with both and no valuation(s)) 

(4) C = NN – {(n1, n2)| n1N n2N → n1=n2}  

(C is a set of the connections between a neuron and other neurons) 
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(5) ni, nj  N, ni  nj: wij = [-1, 1], where wij = 0 means a lack of causal 

relation.  

(The synaptic weight (wW) has a value between -1 and 1, where wij 

= 0 means a lack of causal relation.) 

(6) For all ni, nj  N+: wij = ]0, 1] and for all ni,nj N- : wij = ]0,1].  

(The synaptic weight (wW) between two neurons with the same 

valuation is between 0 and 1. Zero is not included) 

(7) For all ni  N+, nj  N- : wij = [-1, 0[.  

(The synaptic weight (wW) between two neurons with the different 

valuation is between -1 and 0. Zero is not included) 

(8) For all ni, nj  N, ni = nj: capij = capji = -0.5  

(The connection weight for intra-neural connections is set -0.5) 

(9) For all x  A, W: x* = Imp (x). 

for control condition: x* = 1.0x 

for lessened importance: x* = 0.5x  

for enhanced importance: x* =1.5x  

 (“The importance parameter Imp multiplies all connection weights 

 and the unit activations at the start of each run, before the initial 

 randomization under [D VI-3 (10)]” (Shultz and Lepper, 1999, p. 

 245)) 

(10) For initial x  A, W, Resist: xinitial = x {random(absolute[x  

 rand%])}  

(A, W, Resist are initialized in the beginning of simulation by using a 

random number according to y = x {random(absolute[x  rand%])}) 

(11) For ni, nj  N, resisti  Resist, wij  W, i,j = 1, …, k: neti = 

 resisti 1
k wij aj.  

(Impact of parameter Resist on the net. Smaller values of Resist 

indicate greater resistance because smaller values mean less impact of 

the net input) 
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(12) For all niN, tjT, j = 0, 1, …, k: 

(a) for t = t0:   

  ai(tj+1) = ainitial i (tj) + neti[ceiling – aiinitial i(tj)], when neti ≥ 0, 

  ai(tj+1) = ainitial i(tj) + neti[aiinitial i(tj) – floor], when neti < 0,  

  (b) for t = tj, j = 1, …, k:  

  ai(tj+1) = ai(tj) + neti[ceiling – ai(tj)], when neti ≥ 0,  

  ai(tj+1) = ai(tj) + neti[ai(tj) – floor], when neti < 0,  

  (The activation function during the time considered.)  

(13) for all ni,nj N:   

  (a) consonancei = j wij aiaj 

  (b) consonancen = ij wij aiaj   

  (The consonance function of the network) 

(14) Dissonance = - ij wij aiaj / r   

(The dissonance function of the network) 

 

 The partial potential models of the Hopfield Network for the 

consonance model Mpp(HN for Consonance) can be modeled by omitting the 

T-theoretical elements of the potential models of the Hopfield network, i.e., 

Resist, A, imp cap, rand%, netn, ceiling, floor, consonance, Dissonance. These 

concepts are T-theoretical because they are defined without any empirical 

observation or any other theories. They are determined so that the system 

behaves naturally. The partial potential models of the Hopfield network for 

the consonant model can be defined as follows: 

DVI-4: y is a partial potential model of the Hopfield Network for the 

consonance model (y = Mpp(HN for Consonance)) iff there exist x such that: 

(1) x = N, C, T, N+, N-, Pairs, Conpairs, W, Resist, A, imp, cap, rand%, 

netn, ceiling, floor, consonance, Dissonance  Mp(HN for 

Consonance) 
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(2) Resist, A, imp cap, rand%, netn, ceiling, floor, consonance, 

Dissonance are T-theoretical elements. 

(3) y = N, C, T, N+, N-, Pairs, Conpairs, W, netn  Mpp(HN for 

Consonant) 

 

 This modified version of the Hopfield network is a kind of 

specialization of the Hopfield network by adding those additional 

requirements above. Now modeling the intertheoretical connections between 

the Hopfield Network for consonance model T(HN for Consonance) and the 

Festinger Theory of Cognitive Dissonance T(DissB) can be done as follows. 

(1) The first step is defining the determining links, which describe the 

intertheoretical connections between the terms of both theories that are 

connected. (2) The second step is determining an echelon partial subset of the 

potential models of the theory of cognitive dissonance Mp(DissB), whose 

elements are connected to the elements of the potential model of the Hopfield 

network for the consonance model. This echelon partial subset of Mp(DissB) 

describes which parts of the dissonance theory can be reduced and simulated 

by the Hopfield network for the consonance model. The echelon partial subset 

of Mp(HN for Consonance) will describe which parts of the Hopfield network 

for the consonance model reduce the dissonance theory (D VI-5). (3) We can 

determine the entailment link between the echelon partial subsets of both 

theories' potential models. (4) The last step will be projecting the 

intertheoretical determining links to the partial potential model of one of both 

theories to characterize the class of local empirical claims and the class of 

intended applications. The first three steps will be executed as follows:  

DVI-5:  is a collection of determining links between T(DissB) and T(HN 

for Consonance), e1 is an echelon partial subset of the potential models of the 

dissonance theory (Mp(DissB)) and e2 is an echelon partial subset of the 

potential models of the Hopfield network for the consonance model (Mp(HN 
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for Consonance)), and E is a set of entailment links connecting both echelon 

partial subsets, e1 and e2, iff there exist x1, x2, 1, 2, 3, 4, 5 6 7 such 

that: 

(1) x1 = Time, Rawcog, Cognition, Disscog, Conscog, pairdiss, paircons, 

pairimp, diss, redpress  Mp(DissB)  

(Let x1 be a potential model of the cognitive dissonance (Mp(DissB)).) 

(2) x2 = N, C, T, N+, N-, Pairs, Conpairs, W, Resist, A, imp, cap, rand%, 

netn, ceiling, floor, consonance, Dissonance  Mp(HN for 

Consonance)  

(Let x2 be a potential model of the Hopfield network for the 

consonance model (Mp(HN for Consonance))) 

(3) 1  Cognition  Pairs  

(1 is the determining link that connects the set Cognition to the set 

Pairs and 1 is bijective)   

(4) 2  Disscog  Conpairs  

(2 is the determining link that connects the set Disscog to the set 

Conspairs and 2 is bijective)   

(5) 3  Conscog  Conpairs  

(3 is the determining link that connects the set Conscog to the set 

Conspairs and 3 is bijective) 

(6) 4  pairdiss  W  

(4 is the determining link that connects the set pairdiss to the set of 

connection weight W and 4 is bijective) 

(7) 5  paircons  W  

(5 is the determining link that connects the set paircons to the set of 

connection weight W and 5 is bijective)  

(8) 6  Pairimp  imp  
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(6 is the determining link that connects the set Pairimp to the set imp 

and 6 is bijective) 

(9) 7  diss  Dissonance  

(7 is the determining link that connects the set diss to the set 

Dissonance and 7 is bijective) 

(10)  = {1, 2, 3, 4, 5, 6, 7}  

( is a collection of the determining links between (Mp(DissB)) and 

(Mp(HN for Consonance))) 

(11) e1 = Cognition, Disscog, Conscog, pairdiss, paircons, pairimp, 

diss  echelon partial subset of Mp(DissB)  

(e1 is an echelon subset of (Mp(DissB))) 

(12) e2 = Pairs, Conpairs, W, Dissonance   echelon partial subset 

of Mp(HN for Consonance)  

(e2 is an echelon subset of (Mp(HN for Consonance))) 

(13) E = {1, 2, 3, 4, 5, 6, 7}  

(E is the entailment link between the echelon subset of (Mp(DissB)) 

and the echelon subset of (Mp(HN for Consonance))) 

 

 The last step, which is to characterize the interpreting links on the 

partial potential models, aims to determine local empirical claims and the 

empirical contents of the intertheoretical reduction of cognitive dissonance 

theory by the Hopfield network according to the consonance model. Based 

on D VIII-7 and VIII-8 in BMS, pp. 398–400 the interpreting links for the 

reduction of the theory of cognitive dissonance T(DissB) by the Hopfield 

network for the consonance model T(HN for Consonance) can be determined 

as follows: 

DVI-6: E*(DissB) = {l1, l2, l3, l4, l5 l6, l7 } is a collection of interpreting links, 

where T(DissB) is interpreted by T(HN for Consonance) in the consonance 

model and f1 is the set of empirical claims of the interpreting links of the 
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reduction of DissB by HN for Consonance, iff there exist x1, x2 , e1, e2, E, y1 

such that: 

(1) x1 = Time, Rawcog, Cognition, Disscog, Conscog, pairdiss, paircons, 

pairimp, diss, redpress  Mp(DissB)  

(x1 is the potential model of the theory of cognitive dissonance (Mp 

(DissB))) 

(2) x2 = N, C, T, N+, N-, Pairs, Conpairs, W, Resist, A, imp, cap, rand%, 

netn, ceiling, floor, consonance, Dissonance  Mp(HN for 

Consonance)  

(x2 is the potential model of the Hopfield network for consonance 

(Mp(HN for Consonance))) 

(3) e1 = Cognition, Disscog, Conscog, pairdiss, paircons, pairimp, diss 

 echelon set of Mp(DissB) connected to Mp(HN for Consonance)  

(e1 is an echelon subset of (Mp(DissB))) 

(4) e2 =  Pairs, Conpairs, W, imp, Dissonance   echelon set of Mp(HN 

for Consonance) connected to Mp(DissB)  

(e2 is an echelon subset of (Mp(HN for Consonance))) 

(5) E = {1, 2, 3, 4, 5, 6, 7}  the set of entailment link between e1 

and e2.  

(E is the set of entailment links between DissB and HN for 

Consonance) 

(6) y1 = Time, Rawcog, Cognition, Disscog, Conscog  Mpp(DissB)  

(y1 is a partial potential model of the theory of cognitive dissonance 

(Mpp (DissB))) 

(7) E*(DissB) = {l1, l2, l3, l4, l5 l6, l7}  the set of interpreting links, where 

{li = x’, y| x’Mp(T’), yMpp*(T) and there is xMp(T) such that 

x',x(T', T) and r*(x)=y}.  

(E*(DissB) is a collection of interpreting links) 
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(8) l1 = {pairj , cogi| Pair(pairj)  Cognition (cogi) → R(pairj , cogi)}, 

where R(x,y) = x interprets y.  

(l1 is an interpreting link that interprets the concept of cognition 

represented by a pair of neurons. The set Cognition here is an element 

of Mpp(DissF), whereas the set Pairs is an element of Mp(HN for 

Consonance)) 

(9) l2 := {cpj , dci| Conpair(cpj)  Disscog(dci) → R (cpj, dci)}  

(l2 is an interpreting link that interprets the concept of dissonant 

cognitions being represented by some connection between a pair of 

neurons. The set Disscog here is an element of Mpp(DissF), whereas 

the set Conpair is an element of Mp(HN for Consonance)) 

(10) l3 = {cpj, cci| Conpair(cpj)  Conscog(cci) → R (cpj , cci)}  

(l3 is an interpreting link that interprets the concept of consonant 

cognitions being represented by some connection between a pair of 

neurons. The set Conscog here is an element of Mpp(DissF), whereas 

the set Conpair is an element of Mp(HN for Consonance)) 

(11) l4 = {wj, pdi| wj  [-1, 0[  pairdiss(pdi) → R( wj, pdi)}  

(l4 is an interpreting link that interprets the concept of the dissonance 

within pairs of cognitions being represented by the synaptic weight. 

The set pairdiss here is an element of Mpp(DissF), whereas the set W 

is an element of Mp(HN for Consonance)) 

(12) l5 = {wj, pci| wj  ]0, 1]  paircons(pci) → R( wj, pci)}  

(l5 is an interpreting link that interprets the concept of the consonance 

within pairs of cognitions being represented by the synaptic weight. 

The set paircons here is an element of Mpp(DissF), whereas the set W 

is an element of Mp(HN for Consonance)) 

(13) l6 = {impj, pii| impj  {0.5, 1, 1.5}  pairimp(pii) → R(impj, 

pii)}  
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(l6 is an interpreting link that interprets the concept of the importance 

within pairs of cognitions being represented by the synaptic weight. 

The set Pairimp here is an element of Mpp(DissF), whereas the set 

Imp is an element of Mp(HN for Consonance)) 

(14) l7 = {dissonancej, dissi| dissonance(dissonancej)  diss(dissi) 

→ R (dissonancej, dissi)}  

(l7 is an interpreting link that interprets the concept of the magnitude 

of dissonance being represented by the concept of dissonance. The set 

diss here is an element of Mpp(DissF), whereas the set dissonance is 

an element of Mp(HN for Consonance)) 

(15) f1 = Cognition, Disscog, Conscog  an echelon subset of 

Mpp(DissB) by applying function r*: e1 → f1, that mapping E* from  

Mp (DissB) to Mpp(DissB)  

(f1 is the echelon subset of Mpp(DissB) representing the local 

empirical claims of the intertheoretical reduction on the side of the 

reduced theory of cognitive dissonance (DissB)) 

 

 Based on DVIII-9 and DVIII-10 in BMS, f1 can be determined as the 

set of empirical claims of the intertheoretical reduction of the theory of 

cognitive dissonance to the Hopfield network for the consonance model. The 

empirical claims of this intertheoretical reduction refer to a set of the actual 

cognitions and the relations between these cognitions, either consonant or 

dissonant. The actual cognitions simulated are ‘inputs’ of the network, given 

by examples such as toy, punishment, playing or not playing, happy or not 

happy, etc. Every cognition is interpreted as a pair of neurons, that represent 

two poles of valuation. The pairs of cognitions, either dissonant or consonant, 

are interpreted as connected pairs of neurons in the Hopfield network for the 

consonance model.   
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A Summary of This Part. We have built a structuralist model to 

model and analyze the intertheoretical connections between the Festinger 

theory of cognitive dissonance (DissB) and the Hopfield network for the 

consonance model (HN for consonance). In this case only part of Mp(DissB), 

namely the echelon partial subset c1(DissB), is connected to part of Mp(HN 

for consonance), i.e. the echelon partial subset c2(HN for consonance). 

Besides modeling the intertheoretical connections on the theoretical level, the 

structuralist metatheory of science provides us also with the tools for 

modeling and analyzing the intertheoretical connections on the non-

theoretical level i.e., the local empirical claims of the intertheoretical relation. 

Our model can be graphically represented as follows: 

 

Figure 6.3. A structuralist modeling of intertheoretical reduction between the theory 

of cognitive dissonance (DissB) and the Hopfield network for the consonance 

model (HN for Consonance). e(DissB) is an echelon subset of Mp(DissB) and 

e(HN for Consonance) is an echelon subset of Mp(HN for Consonance). Both are 

connected by a set of entailment links (E). The interpreting links with local at 

DissB (E*(DissB)) connect the set of empirical claims of this intertheoretical 

reduction at DissB to the echelon subset of Mp(HN for Consonant) as the reducing 

theory. 
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Chapter 7 

The Structuralist Model of Intertheoretical Connections 

between the Festinger Theory of Cognitive Dissonance and 

the Two Layers Feed-Forward Neural Network in the 

Connectionist Model of Simulation 

 

 

 Another simulation of cognitive dissonance, whose intertheoretical 

connections will be modeled and analyzed here, is the connectionist model. 

This simulation implements the Rosenblatt perceptron with the two-layers 

feed-forward neural network and the delta rule as its learning rule. To model 

intertheoretical relations for this simulation that involves more than two 

theories for this simulation, the following strategy will be implemented: The 

first step is to model the intertheoretical connections that unify the 

Rosenblatt perceptron, the two-layers feed-forward neural network, and the 

delta rule. The result will be simplified by building a new theory-element 

that unifies the theory-elements of these three theories to make the modeling 

and analysis of intertheoretical connections for the simulation easier. The 

last step will be modeling and analysis of the intertheoretical connections of 

the simulation itself by using the unifying theory-element, instead of using 

the original theory-elements.  

 

7.1. The Intertheoretical Connections Between the Two-Layers Feed-

Forward Neural Network, the Rosenblatt Perceptron, and the Delta 

Rule 

 For building a model of the intertheoretical relation between these 

three theories, this dissertation will use the approach to model 

intertheoretical relations between two theory-elements. In the connectionist 

model, several perceptrons are placed in a two-layers feed-forward network, 
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and this network of neurons is trained by applying the delta rule. Based on 

this schema, two intertheoretical connections of two theory-elements will 

take part in modeling the intertheoretical connection between them, i.e., 

between the neurons and their network and between the network of neurons 

and the learning rule. In this intertheoretical relation, neither the potential 

models of the Rosenblatt perceptron (Mp(RP)) are fully connected to the 

potential models of the two layers feed-forward neural networks (Mp(2L-

FFNN)) nor the potential models of the two layers feed-forward neural 

networks (Mp(2L-FFNN)) to the potential models of the delta rule 

(Mp(DR)). Hence, we should apply the definition of determining links to 

model and analyze them.  

 To reduce the complexity in discussing the idea behind this 

combination, let us first focus on the intertheoretical relation between the 

Rosenblatt perceptron and the two-layers feed-forward neural network. By 

placing several neurons in two-layers feed-forward architecture, the 

following concepts of both theory-elements are connected. The concept of 

neuron (N) in Mp(RP) is connected with the concept of neuron (N) in 

Mp(2L-FFNN). The concept of input neuron (N0) in Mp(RP) is also 

connected with the concept of input neuron (Nin) in Mp(2L-FFNN). The 

concept of connections (C) in Mp(RP) and the concept of connections (C) in 

Mp(2L-FFNN) are connected. Moreover, the concept of synaptic weight (W) 

in the Mp(RP) and the concept of synaptic weight (W) in the Mp(2L-FFNN) 

are also connected. Finally, all three T-theoretical concepts of both Mp(2L-

FFNN) and Mp(RP) are connected: fnet is connected with netn, fact with 

actn, and fout with outn.  

 After placing those neurons in the network, the delta rule is applied 

as a learning rule for the network. The second step is to connect the 

concepts from the delta rule to the concepts of the network. The concept of 

neuron (N) from Mp(DR) cannot be connected to the concept of neuron in 

the network because the delta rule is not applied to the input neurons. 
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Therefore, the concept of neuron from Mp(DR) is not connected with all 

neurons in the input neurons (N0 or Nin). In the case of the two layers feed-

forward neural network, which does not have the hidden layer (Nhidden = ), 

the concept of neuron from Mp(DR) is only connected to the concept of 

output neuron from the network (Nout and N/N0). However, the concept of 

connection C from Mp(DR) can safely be connected to the concept of 

connection in the network. The concept of bias (B) from Mp(DR) can also 

be connected to the concept of bias (B) in the network. The concept of 

connection weight (W) from Mp(DR) is connected not only with the concept 

of connection weight of the network but also with (W0) from Mp(RP). 

Weight (W) from Mp(DR) combines both of them. The concept of input 

from Mp(DR) is identical to the input of the network, especially because the 

network is a two-layers feed-forward neural network. The concept of actual 

output (OUTn) from Mp(DR) can also be seen as identical with the concept 

of output in the network (outn and outp). However, the concept of desired 

output (Out) cannot be connected to the term output of the network 

(directly) because it is the label of the training-sample. Now, the 

intertheoretical relations connecting the potential models of these theories 

can be defined as follows: 

D VII-1 :If T(RP) = Mp(RP), M(RP), Mpp(RP), I(RP) and T(2L-FFNN) = 

Mp(2L-FFNN), M(2L-FFNN), Mpp(2L-FFNN), I(2L-FFNN) and T(DR) = 

Mp(DR), M(DR), Mpp(DR), I(DR) then there exist determining links 

between T(RP) and T(ArchNN) and T(DR) iff there exist x1 and x2 and x3 

such that: 

(1) x1 = N, N0, IR, IN, C, W, B, W0, Inp, Outp, fnet, fact, fout  

Mp(RP) (x1 is a potential model of the Rosenblatt perceptron 

(Mp(RP))) 

(2) x2 = N’, Nin, Nout, Nhidden, IR, C’, pred(n), succ(n), W’, extn, netn, 

actn, outn  Mp(2L-FFNN)  
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(x2 is a potential model of the two-layers feed-forward neural 

network (Mp(2L-FFNN))) 

(3) x3 = N*, IR, Inp*, Out*, C*, L, B*, W*, OUTn, , 

Error  Mp(DR)  

(x3 is a potential model of the delta-rule (Mp(DR))) 

(4) N  N’  

(The concept of neuron (N) in the Mp(RP) is connected with the 

concept of neuron (N’) in the Mp(2L-FFNN), because both refer to 

all neurons in the networks)  

(5) Nout  N*  N/N0  

(The concept of neuron (N*) in the Mp(DR) is connected with the 

concept of neuron (N) in Mp(RP) without referring to the input 

neurons (N0) and the concept of output neuron (Nout) in Mp(2L-

FFNN)) 

(6) N0  Nin   

(The concepts of input neuron (N0) in Mp(RP) and (Nin) Mp(2L-

FFNN) are connected. The case would be different in the multi-layer 

feed-forward neural network) 

(7) C  C’  C*  

(The concepts of connection (C, C’, C*) between neurons in all 

potential models are connected) 

(8) B  B*  

(The concepts of bias in both Mp(RP) and Mp(DR) are connected) 

(9) W  W’  

(The concepts of connection weight in the potential models of the 

Rosenblatt perceptron and two-layers feed-forward neural networks 

are connected) 

(10) W*  W  W0   
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(The concept of connection weight (W*) in Mp(DR) is connected 

with both the concept of connection weight (W) and the concept of 

connection weight of the bias (W0) in Mp(RP)) 

(11) Inp  Inp*  extn  

(The concept of input (Inp) in Mp(RP) is connected with both the 

concept of external input (extn) in Mp(2L-FFNN) and the concept of 

input (Inp*) in Mp(DR)) 

(12) Outp  outn  OUTn  

(The concept of Output (Outp) in Mp(RP) is connected with the 

concept of output (outn) in Mp(2L-FFNN) and the concept of actual 

output (OUTn) in Mp(DR)) 

(13) fnet  netn  

(The concept of fnet in Mp(RP) is connected with the concept of netn 

in Mp(2L-FFNN)) 

(14) fact  actn  

(The concept of fact in Mp(RP) is connected with the concept of actn 

in Mp(2L-FFNN)) 

 

 Based on these connections, the intertheoretical connection 

connecting the actual models of these theories can be specified as follows: 

D VII-2: If T(RP) = Mp(RP), M(RP), Mpp(RP), I(RP) and T(2L-FFNN) = 

Mp(2L-FFNN), M(2L-FFNN), Mpp(2L-FFNN), I(2L-FFNN) and T(DR) = 

Mp(DR), M(DR), Mpp(DR), I(DR) then there exist determining links 

among T(RP) and T(ArchNN) and T(DR) iff there exist x1 and x2 and x3 

such that: 

(1) x1 = N, N0, IR, IN, C, W, B, W0, Inp, Outp, fnet, fact, fout  

Mp(RP)  

(x1 is a potential model of the Rosenblatt Perceptron (Mp(RP))) 
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(2) x2 = N’, IR, Nin, Nout, C’, pred(n), succ(n), W’, extn, netn, actn, 

outn  Mp(2L-FFNN)  

(x2 is a potential model of the two-layers feed-forward neural 

network (Mp(2L-FFNN))) 

(3) x3 = N*, IR, Inp*, Out*, C*, L, B*, W*, OUTn, , 

Error  Mp(DR)  

(x3 is a potential model of the delta rule (Mp(DR))) 

(4) N = N’  

(The concept of neuron (N) of the Rosenblatt perceptron is identical 

to the concept of neuron (N’) of the two-layers feed-forward neural 

network) 

(5) Nout = N* = N/N0  

(The concept of neuron (N*) of the delta rule refers to the set of 

neurons (N) in the perceptron without referring to the set of neurons 

input (N0). Moreover, in the two-layers feed-forward neural network 

this only refers to the neuron output (Nout)) 

(6) N0 = Nin → Inp   

(The concept of neuron input (N0) of the Rosenblatt perceptron is 

identical to the concept of neuron in the input layer (Nin) of the two-

layers feed-forward neural network. In applying the delta rule, real 

numbers are attached to these neurons as the input training for the 

network) 

(7) C = C’ = C*  

(The concept of connection in all theory-elements is identical) 

(8) B = B*  

(The concept of bias in the Rosenblatt perceptron and the concept of 

bias in the delta rule are identical) 

(9) W = W’  
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(The concept of synaptic weight in the Rosenblatt perceptron and the 

concept of the two layers feed-forward neural network are identical) 

(10) W* := W0  W  

(The concept of synaptic weight W* in the delta rule refers to 

unification between W0 and W in the Rosenblatt perceptron) 

(11) Inp = Inp*= extn  

(The concept of input from the delta rule is identical to the concept 

of input of the Rosenblatt perceptron) 

(12) Outp = Outn = OUTn  

(The actual output of the Rosenblatt perceptron is identical with the 

concept of actual output of the delta rule) 

There is n  N/N0, ci C for iIN, bB and let netn, actn, outn so 

that: 

(13) netn = fnet (Inp, W) = i=1
n Inpi (n, ci,)W(ci)  

(For each output neuron: its network input (netn) is the result of the 

network input function of the neuron. The neurons receive input 

according to netn = fnet (Inp, W) = i=1
n Inpi (ni, ci)W(ci)) 

(14) actn = fact (netn, b, w0) according to linear regression: fact 

(netn, b, w0) = netn + bw0  

(For each output neuron: Its activation (actn) is the result of the 

activation function of the neuron, and its network output is the result 

of the output function of the neurons. The neurons are activated (in 

an excitatory state) according to the linear regression: fact(netn, b, 

w0) = netn + bw0) 

(15) outn = fout (actn) = Outp  

(For each output neuron: it sends its output signal according to 

fout(fact), which is identical to the output (outn) in the two layers 

feed-forward neural network and the actual output (Outp) in the 

delta rule) 
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 From the formulation of the intertheoretical connections above, there 

are several concepts in the three theories that are identical, especially in the 

case of the two-layers feed-forward neural network. Therefore, the model’s 

simplification in a unifying model can be done by omitting the models’ 

redundant concepts as follows:  

(1) Because the set N in the Mp(RP) and N' in the Mp(2L-FFNN) are 

identical, we will use just N for our new unifying models. 

(2) Because the set N0 in the Mp(RP) and Nin in the Mp(2L-FFNN) are 

identical, we will use just Nin for our new unifying models. 

(3) Because the set N* in the Mp(DR) and N/N0 in the Mp(RP) refer to 

the same set of Nout in Mp(2L-FFNN) in the new unifying model, we 

will use just Nout. 

(4) We will use only the set C because all the connected terms come 

from the three theories.   

(5) We will use just the set of bias B from the Rosenblatt Perceptron 

because this set is identical with the set of bias B* in the delta rule.    

(6) We will use the sets W and W0 in our new unifying models because 

both terms can cover both sets W’ and W*.   

(7) In the case of the two layers feed-forward neural networks, all input 

neurons are connected to every output neuron. Therefore, all sets of 

inputs (Inp, extn, Inp*) from all models refer to the same inputs. 

Therefore, we use only the term Inp for our new models.  

(8) In the case of the two layers feed-forward neural networks, the 

outputs of every neuron besides the input neuron (Outp) in the 

Rosenblatt perceptron are the outputs (outn) of the neural networks 

and are also seen as the actual output (OUTn) according to the delta 

rule. Therefore, we will use just the set outn in our new unifying 

models.  
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(9) We will also take over pred(n), succ(n), netn, actn from the two 

layers feed-forward neural networks. From the Rosenblatt 

Perceptron, we need three functions, namely fnet, fact, and fout. 

Moreover, from the delta rule, we need the set of desired outputs 

(Out), The set of the training-sample (L), the learning rate () and 

the set Error from the delta rule. 

(10) We will still need to add the set of natural numbers and the 

set of rational numbers.  

 

  With these considerations, the standard form of the unifying 

potential model of the Rosenblatt perceptron, the two layers feed-forward 

neural network, and the delta rule (Mp(RP + 2L-FFNN + DR)) can be 

defined as follows: 

D VII-3: x is a unifying potential model of the Rosenblatt perceptron, the 

two-layers feed-forward neural network, and the delta rule (Mp(RP + 2L-

FFNN + DR)) iff there exist N, Nin, Nout, IN, IR, C, pred(n), succ(n), W, B, 

W0, Inp, Out, L, , fnet, fact, fout, netn, actn, outn, Error  such that: 

(1) x = N, Nin, Nout, IN, IR, C, pred(n), succ(n), W, B, W0, Inp, Out, L, 

, fnet, fact, fout, netn, actn, outn, Error  Mp(RP + 2L-FFNN + 

DR) 

(2) N = a finite non-empty set of neurons. 

(3) Nin = non-empty set of input neurons.     

(4) Nout is a finite non-empty set of output-neurons 

(5) C  NN     

(a finite non-empty set of connection between neurons)  

(6) pred(n) = {n1N| (n1, n2)C}   (presynaptic neurons) 

(7) succ(n) = {n2  N| (n1, n2)C}   (postsynaptic neurons) 

(8) W := C → IR      
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(Synaptic Weight W assigns to each pair of neurons a real number as 

synaptic weight.) 

(9) B =  → IR    

(Bias B assigns to every neuron a real number as its bias. Bias is 

normally set = 1)  

(10) W0 := BN → IR  (synaptic weight from bias) 

(11) Inp := NoutC → IR    

(Input Inp assigns to each neuron several real numbers as its input, 

that is sent by its Input-units (N0) in the network)     

(12) fnet:= W Inp → IR   

(Network Input function (fnet) assigns to Neuron (except for input 

unit) a real number as network input) 

(13) fact:= fnet  b → IR    (activation function)  

(14) fout:= fact → Outp   (output function) 

(15) extn:= Nin → IR    (external input) 

(16) netn:= Nout → IR   (network-input) 

(17) actn:= Nout → IR    (activation) 

(18) outn := Nout → IR    (output) 

(19) Inp  IR     

(input – Inp→ is a set of the input-vector, whose elements are 

identical with Inp) 

(20) Out  IR     

(desired output – Out→ is a set of an output-vector, whose elements 

are identical with Out) 

(21) L  Inp  Out   

(a finite non-empty set of training examples) 

(22) Outn  IR      

(actual output, if the neural network is fed with input Inp. Outn
→ is a 

set of an output-vector, whose elements are identical with Outn) 
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(23)   IR     (learning rate) 

(24) Error := Out  Outn → IR2  

(The network’s error mapping in a two-dimensional Cartesian 

coordinate system)  

 

  The unifying actual models of the new (synthetized) theory can be 

characterized as follows: 

D VII-4 :x is a unifying actual model of the Rosenblatt perceptron, the two 

layers feed-forward neural network, and the delta rule (M(RP + 2L-FFNN + 

DR)) iff there exists N, Nin, Nout, IN, IR, C, pred(n), succ(n), W, B, W0, Inp, 

Out, L, , fnet, fact, fout, netn, actn, outn, Error such that: 

(1) x =  N, Nin, Nout, IN, IR, C, pred(n), succ(n), W, B, W0, Inp, Out, L, 

, fnet, fact, fout, netn, actn, outn, Error   Mp(RP + 2L-FFNN + 

DR) 

(2) N = Nin  Nout 

(3) for all n  N it holds: 

(3.1) Nin(n) ↔ pred(n) 

(3.2) Nout(n) ↔ succ(n) 

(4) Nin  Nout =  

(5) C  Nin Nout 

(6)  There is nNout, ciC for iIN, bB and let netn, actn, outn 

so that: 

(6.1) netn = fnet (Inp, W) = i=1
n  Inpi (n, ci,).W(ci)  

(6.2) actn = fact(netn, b, w0) according to Linear Regression: 

fact(netn, b, w0)= netn + b.w0 

(6.3) outn = fout (actn). 

(7) i{1,...,n}: Error= ½ i (Outn – Out)2  and the derivation for each 

neuron's activation: (Outn – Out) 

(8) bi i=1,...,n: bi
(new) = bi

(old) + bi with bi = – (Outn – Out). 
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(9) wiW, i=1,...,n: wi
(new) = wi

(old) + wi with wi = – (Outn – Out) 

Inpi  

(10) Convergence-statement:  

Suppose L={(Inp1
→ , Out1),..., (Inpm

→ , Outm)} is a set of training-

sample with  

L0 = {(Inp→, Out)  L| Out =0} and L1 = {(Inp→, Out)  L| Out =1}. 

If L0 and L1 are linearly separable, viz. if w→IRn and =IR exist, so 

that: 

 (Inp→, 0) L0 : w
→ Inp→ <  and 

 (Inp→, 1) L1 : w
→ Inp→   

 

  From the unifying potential models, the unifying partial potential 

models can be defined by omitting the T-theoretical elements (see Chapter 

3) as follows: 

D VII-5: y is a unifying partial potential model of the Rosenblatt perceptron, 

the two-layers feed-forward neural network, and the delta rule (Mpp(RP + 

2L-FFNN + DR)) iff there exist x such that: 

(1) x = N, Nin, Nout, IN, IR, C, pred(n), succ(n), W, B, W0, Inp, Out, L, 

, fnet, fact, fout, netn, actn, outn, Error  Mp(RP + 2L-FFNN + 

DR) 

(2) fnet, fact, fout, netn, actn, outn,  Error are T-theoretical. 

(3) y = N, Nin, Nout, IN, IR, C, pred(n), succ(n), W, B, W0, Inp, Out, 

L  Mpp(RP + 2L-FFNN + DR) 

 

 The relation between the Rosenblatt perceptron, the two-layers feed-

forward neural network, and the delta rule is a relationship between three 

theories at the same time, even if the links being used always exist only 

between two theories. This “tripartite” relation occurs if we combine two (or 

maybe more) theory-elements (T1, ..., Tn) into another theory-element T0, 
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which serves as the mainboard theory – because of its form I call this 

relation the “V-pattern of intertheoretical relations.” The notion of the V-

pattern and the unifying theory-element will be discussed in more detail in 

Chapter 8. This relation can be described in a directed acyclic graph – like 

the letter “V” – as follows:  

 

 

Figure 7.1. The directed acyclic graph of the V-pattern of intertheoretical relation. 

In our case, the mainboard theory is the two-layers feed-forward neural network, a 

specialization of the architecture of the neural network. The connected theories are 

the perceptron and the delta-rule. The word “mainboard theory" are used by 

referring to the fact that the other combined theories are connected to this theory 

and the local intended applications of intertheoretical connections of this 

combination of theories lay on it. 

 

7.2. The Connectionist Model 

 The connectionist model was created by Frank van Overwalle and 

Karen Jordens, as a further advance in modeling cognitive dissonance. This 

model deals with some aspects that are not covered by the consonance 

model. “In this [consonance] model cognitions about discrepant behavior, 

justification, and evaluation are represented in separate nodes, and 
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connection weights denote the causal implications between cognitions, 

much like in automatic spreading activation models. Shultz and Lepper’s 

novel contribution is that the consonance model can reach consistency 

automatically through the simultaneous satisfaction of the multiple 

constraints imposed by the connections. However, an important limitation is 

that the connections themselves are not dynamically learned, but handset by 

the authors based on available evidence. The aim of this article is to further 

advance the connectionist modeling of cognitive dissonance by presenting 

an alternative connectionist model in which the connections between 

cognitions are automatically developed, without intervention from the 

experimenter” (Overwalle and Jordens, 2002, p. 204). The connectionist 

model's aims are very different from the consonance model, and its set of 

basic assumptions on how the mind works are very different as well. “... our 

connectionist approach reflects a view of the mind as an adaptive learning 

mechanism, where cognitive dissonance is seen as a relatively rational 

process in which people seek causal answers for why they think, feel or 

behave inconsistently” (van Overwalle and Jordens, 2002, p. 205).  

 The basic idea of this simulation is inspired by the attributional 

reformulation of the Festinger theory of cognitive dissonance advocated by 

Cooper and Fazio (1984): “Cognitive dissonance reduction is driven by a 

rational process in which the causal understanding of thoughts, feelings, and 

behaviors plays a major role” (van Overwalle and Jordens, 2002, p. 205). 

This idea agrees with Cooper and Fazio’s notion that people’s attempt to 

understand and justify their dissonant behavior and emotions causally is at 

the root of the creation and reduction of dissonance (van Overwalle and 

Jordens, 2002, p. 205). However, there are also several differences between 

both as follows. (1) In Cooper and Fazio’s notion one’s responsibility takes 

a central role in changing one’s attitudes to justify their discrepant behavior 

in the dissonance situation, whereas in the connectionist model, it is the 

attitude object that takes the central role. “We view the attributions to the 
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attitude object as central rather than attributions of the one’s responsibility, 

we emphasize the role of affect during dissonance and neglect arousal, and 

we focus on unexpected outcomes rather than unwanted outcomes” (van 

Overwalle and Jordens, 2002, p. 205). To specify their attitude objects, 

Overwalle and Jordens follow the three components view on attitude from 

Rosenberg and Hovland (1960): cognitions, behaviors, and emotions. They 

define “an attitude as manifesting itself through its causal connections in 

memory between the cognitive representation or belief about the attitude 

object and feelings about this interaction. The intensity of an attitude is 

defined by the strength of these connections” (van Overwalle and Jordens, 

2002, p. 205). (2) In this connectionist model, the dissonance is an 

emotional state of discomfort rather than physiological arousal. This kind of 

emotion serves as a source of information in making judgments and 

inferences in a dissonance situation. Moreover, affection experience itself is 

subjected to an attributional analysis. Also, in Cooper and Fazio’s model, 

dissonance creates arousal, which serves as the instigator of an attributional 

interpretation (van Overwalle and Jordens, 2002, p. 206).   

 This model implements the two-layers feed-forward neural networks 

and the delta rule as its training algorithm (van Overwalle and Jordens, 

2002, pp. 206–207) to simulate a specific example of cognition experiment 

called the first insufficient justification paradigm by Freedman (1965).1 This 

 
1 The experiment is conducted as follows: “School children were forbidden to play with an 

attractive toy (a robot) under either mild or severe threat of punishment, and the 

experimenter either stayed in the room while the child played (surveillance condition), or 

went away (this surveillance variable was not included in the introductory example). Actual 

play with the previously forbidden toy about 40 days later in the absence of the 

experimenter or any threat, revealed greater derogation of the forbidden toy in the mild than 

in the severe threat condition when there had been no surveillance. When there had been 

surveillance, the effect of severity of threat was negligible. … The attributional explanation 

for these results was that mild threat alone provided insufficient justification for the counter 

attitudinal behavior of not playing with the attractive toy and thus created high dissonance 

that was reduced by lowering the attraction for the toy. In contrast, either the high threat or 

the exper imenter's surveillance provided sufficient justification for not playing with the toy 

and thus created little dissonance and little attitude change” (van Overwalle and Jordens, 

2002, p. 216). 
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neural network links the causes with the outcomes in its connections. In the 

connectionist model, an attitude object (such as attractive toys) and several 

additional external pressures (such as the mild or severe threat of 

punishment) are the causes, whereas a behavior (such as play) and a current 

emotion (such as happy) are the outcomes. The nodes representing causes 

and outcomes are located in two different layers that are connected via 

adjustable connections. The first layer contains the input nodes representing 

the possible causes, and the second layer contains the output nodes 

representing the outcome. The connections between both layers represent 

causal explanations. The adjustable connection weights represent the quality 

or strength of the causal influence, and for attitude-object nodes, they 

represent the intensity of the attitude. Activation in the network spreads 

from the input nodes to the output nodes through these connections. We take 

the example given by the authors to make it clear (Figure 2):  
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   A. Feed-forward Network (initials weights) 

 

  B. Feed-forward Network (after prior history) 

 

Figure 7.2. Specification of the feed-forward network model  

(Source: Van Overwalle and Jordens, 2002, p. 207) 

 

  The delta rule strives to reduce the error between what the network 

expects from prior information and the current information. In the 

beginning, all connection weights are set at zero and eventually reach 
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excitatory, inhibitory, or zero weight depending on the person’s learning 

history. In general, the delta rule predicts that the more a cause and an 

outcome co-occur, the stronger their connections will become until they 

reach the asymptote (typically -1 and +1). This learning process can be 

explained as follows (by using Figure 7.2): Initially, all weights are set to 

zero values (see Figure 7.2 A). Now we set a causal factor, such as a toy +1 

(means present). This input will spread in proportion to the connection 

weight to all output nodes. It is because, in this initial condition, all 

connection weights are zero, and the activation weight of all output nodes is 

zero. The network here uses linear activations. “The activations received at 

the output nodes are linearly summed to determine their activation. This 

output activation can be understood as representing the magnitude of the 

outcome anticipated by the network” (van Overwalle and Jordens, 2002, pp. 

207–208).  

 The observed outcome is represented by an external teaching signal, 

which has activation of +1 when the outcome is present (e.g., play or 

happy), zero when absent (e.g., not play, or moderate affect), and -1 when 

the opposite outcome is present (e.g., unhappy). The predicted outcome 

(output activation) is then compared with the actual occurrence of the 

outcomes (external teaching signal). In the beginning, output activation is 

zero, whereas now the actual output is +1, represented by playing with a toy 

and being happy. Thus, there is an error +1 for each output node. It means 

“the network at this point seriously underestimates the magnitude of the 

behavioral and emotional reactions” (van Overwalle and Jordens, 2002, p. 

208).    

 The delta rule plays an important role here to make this simulation 

realistic. By implementing the delta rule, the network’s connection weights 

are adjusted to minimize the discrepancy between predicted and actual 

output in proportion to the magnitude of the error. In this case, the 

connection between the toy and the outcomes will be adjusted upward. How 
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the delta rule works has already been explained in Chapter 3. We now 

introduce the threat, either +1 for severe threat or +0.5 for mild threat. The 

same process will happen, namely: (1) The neural network gets a new 

predicted outcome. (2) This predicted outcome will be compared with the 

new observed outcome, and the network gets a new discrepancy between 

both outcomes. (3) The delta rule will adjust the connection weights of the 

network according to the new situation. The condition of the network after 

certain trials is described in Figure 7.2 B.   

 How fast a person’s mental representation of a dissonant situation is 

brought into correspondence with reality is represented by a learning rate 

parameter in the delta rule. This learning rate usually is between zero and 

+1. “A high learning rate indicates that new information has strong priority 

over old information and leads to radical adjustments in the connection 

weights, whereas a low learning rate suggests conservative adjustments that 

preserve much of the knowledge in the weights acquired by the old 

information” (van Overwalle and Jordens, 2002, p. 208). 

 This model reflects the dissonance reduction as follows: “… the 

discrepancy in the expected and actual outcomes (actions and affect) reflects 

cognitive dissonance, while the adjustments in the connection weights 

(determined by the delta algorithm) reflect dissonance reduction through 

attitude change” (van Overwalle and Jordens, 2002, p. 208). This simulation 

refers to Festinger’s idea that “behavior is guided by accurate information 

about the environment and the self, and that dissonance can arise when this 

information disconfirms cognitions or expectations …. Therefore, any 

discrepancy between one’s predictions (based on relevant input) and one’s 

behavior or emotion would be disturbing to the person and will be avoided” 

(van Overwalle and Jordens, 2002, p. 209). The connectionist model 

captures dissonance by the fact that activation of the causal nodes will 

always create an error at the output without attitude adjustments. The 

magnitude of this error represents the magnitude of dissonance.    
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 The simulation is conducted in two phases. In the first phase, called 

the pre-experimental phase, the connection weights are set in such a way as 

to simulate the set of beliefs and evaluations that the participants have. In 

the second phase, the experimental manipulation was closely replicated. 

“We first describe, how often the attitude object and external factors in the 

simulations occurred and under which experimental conditions, next the 

nature and direction of the behavioral and affective outcomes, how all these 

cognitions were coded in a distributed manner, and we end with some 

general features of the simulation. Although some of the specifications 

detailed next may seem arbitrary, they are in fact irrelevant with respect to 

the basic mechanism at work, and many of them can be relaxed without 

affecting the simulation result much (robustness section at the end of the 

simulations). We aim to demonstrate that some plausible assumptions about 

learning histories can explain human dissonance data, not that the 

specifications are necessarily correct nor that they are the only possible ones 

that make the simulation work” (Overwalle and Jordens, 2002, p. 213).   

 

7.3. Festinger’s Theory of Cognitive Dissonance and the Feed-Forward 

Neural Network for the Connectionist Model 

  The last intertheoretical relation that will be examined in this 

dissertation is the relation between the theory of cognitive dissonance and 

the implementation of the two-layers feed-forward neural network to build 

the connectionist model or simulation of dissonance reduction. For analysis 

the intertheoretical connections between the theory of cognitive dissonance 

and the feed-forward neural network according to the connectionist model, 

several preparatory steps are needed. The first step is adaptation of the 

unifying model of the perceptron, the two-layers feed-forward neural 

network, and the delta rule above to meet the requirements of the 

connectionist model. The second is the modification of the structuralist 

model of the theory of forced compliance dissonance (T(DissF)) from 
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Chapter 3 to fit the simulation’s goal. (3) The last step is modeling the 

intertheoretical relation between both theories according to the connectionist 

model. 

 

7.3.1. Adapting the Unified Model of the Feed-forward Neural Network 

to the Requirements of the Connectionist Model 

 From the description of the connectionist model above, the 

requirements can be summarized as follows: (1) The connectionist model 

uses the two-layers feed-forward neural network with the delta rule as its 

learning-rule. The neural networks consist of four neurons divided into two 

layers; each layer consists of two neurons. Two neurons in the input layer 

represent, for example, cognition of toy and cognition of threat, whereas the 

two neurons in the output layer represent cognition of play and cognition of 

happy. (2) The connectionist model implements the linear activations for the 

output neurons in the neural network. (3) The activation of an input-neuron 

is set 1 or 0 for a toy, which represents “present” or “not present.” For the 

threat, an input neuron will be set 0, +0.5, or +1 to represent “not present,” 

“mild threat,” or “severe threat.” (4) The expected activation of output 

neurons will be set at +1 when the outcome is present (e.g., play or happy), 

zero when absent (e.g., not play, or moderate affect), and -1 when the 

opposite outcome is present (e.g., unhappy). (5) And the learning rate for 

this simulation is set between 0 and 1. Based on these requirements, the 

unified theory element T(RP + 2L-FFNN + DR for Connectionist) should be 

adjusted by the following steps: First, we specialize the unifying potential 

models by adding or adjusting the specific required conditions as follows:  

DVII-6: x is a unifying potential model of the Rosenblatt Perceptron, the 

two layers feed-forward neural network, and the delta rule for the 

connectionist model (Mp(RP + 2L-FFNN + DR for Connectionist)) iff there 
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exist N, Nin, Nout, IN, IR, C, pred(n), succ(n), W, B, W0, Inp, Out, L, , fnet, 

fact, fout, netn, actn, outn, Error  such that: 

(1) x =  N, Nin, Nout, IN, IR, C, pred(n), succ(n), W, B, W0, Inp, Out, L, 

, fnet, fact, fout, netn, actn, outn, Error   Mp(RP + 2L-FFNN + 

DR) 

(2) N = a finite non-empty set of neurons 

(3) Nin = non-empty set of input neuron    

(4) Nout is a finite non-empty set of output neurons 

(5) C  NN   

(a finite non-empty set of connection between neurons)  

(6) pred(n) = {n1N| (n1, n2)C}   (presynaptic neurons) 

(7) succ(n) = {n2N| (n1, n2)C}   (postsynaptic neurons) 

(8) W := C→IR     

(synaptic weight W assigns to each pair of neurons a real number as 

synaptic weight.) 

(9) B =  → IR  

(bias – assigns to every neuron a real number as its bias. Bias is 

normally set = 1)  

(10) W0 := BN → IR  (synaptic weight from bias) 

(11) Inp := NoutC → IR    

(input – assigns to each neuron several real numbers as its input, that 

is sent by its input neurons N0 in the network)     

(12) fnet := WInp → IR   

(network input function – assigns to Neuron except for input neurons 

a real number as network input) 

(13) fact := fnet  b → IR   

(activation function – there are various activation function) 

(14) fout := fact → Outp  
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(output function – assigns every neuron a real number as its output 

according to Outp) 

(15) extn := Nin → IR     (external input) 

(15.1) netn:= Nout → IR    (network-input) 

(15.2) actn:= Nout → IR    (activation) 

(15.3) outn:= Nout → IR    (output) 

(16) Inp  {0, 0.5, 1}   

(input – Inp→ is a set of the input-vector, whose elements are 

identical with Inp) 

(17) Out  {-1, 0, 1}  

(desired output – Out→ is a set of an output-vector, whose elements 

are identical with Out) 

(18) L  Inp  Out    (a finite non-empty set of Training example) 

(19) Outn  IR   

(actual output, if the neural network is fed with input Inp. Outn
→ is a 

set of an output-vector, whose elements are identical with Outn) 

(20)   ]0, 1[    (learning rate) 

(21) Error := Out OUTn → IR2  

(The Network’s Error mapping in a two-dimensional Cartesian 

coordinate system) 

 

  The unifying actual models can be adjusted as follows: 

D VII-7: x is a unifying actual model of the Rosenblatt perceptron, the two 

layers feed-forward neural network, and the delta rule for the connectionist 

model (M(RP + 2L-FFNN + DR for Connectionist)) iff there exist N, Nin, 

Nout, IN, IR, C, pred(n), succ(n), W, B, W0, Inp, Out, L, , fnet, fact, fout, 

netn, actn, outn, Error such that: 



 

170 

 

(1) x =  N, Nin, Nout, IN, IR, C, pred(n), succ(n), W, B, W0, Inp, Out, L, 

, fnet, fact, fout, netn, actn, outn, Error   Mp(RP + 2L-FFNN + Dr 

for Connectionist)  

(Let x be a potential model of the theory unifying the Rosenblatt 

perceptron, the two-layers feed-forward neural network, and the 

delta rule) 

(2) N = Nin  Nout  

(All neurons are categorized in input neurons or output neurons) 

(3) for all n  N it holds: 

(3.1) Nin(n) ↔ pred(n)  

(input neurons are neurons followed by other neurons in the 

network. They send their output to other neurons) 

(3.2) Nout(n) ↔ succ(n)  

(output neurons are neurons following other neurons in the network. 

They receive their input from other neurons) 

(4) Nin  Nout =   

(There are no neuron playing both roles. There are only either input 

neurons or output neurons) 

(5) C  Nin Nout  

(All network connections are between input neurons and output 

neurons) 

(6) For all njNout, every niNin, cijC for i,jIN, bB so that: 

(6.1) netn = fnet (Inp, W) = i=1
n Inpi (ni, ci,)W(ci)   

(network input of output neurons) 

(6.2) actn = fact (netn, b, w0) according to fact(netn, b, w0)= netn + 

bw0  

(activation function of output neurons) 

(6.3) outn = fout (actn)  

(output of the output neurons)  
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(7) i{1,...,n}: Error= ½ i (Outn – Out)2  and the derivation for each 

neuron's activation: (Outn – Out)    (network error) 

(8) biB, i=1,...,n: bi
(new) = bi

(old) + bi with bi = – (Outn – Out) 

(updating bias) 

(9) wiW, i=1,...,n: wi
(new) = wi

(old) + wi with wi = (Outn – Out) 

Inpi      (updating connection weights) 

(10) Convergence-statement:  

Suppose L={(Inp1
→ , Out1),..., (Inpm

→ , Outm)} is a set of training-

sample with  

L0 = {(Inp→, Out)  L| Out =0} and L1 = {(Inp→, Out)  L| Out =1}. 

If L0 and L1 are linearly separable, viz. if w→IRn and IR exist so 

that 

 (Inp→, 0) L0:  w→ Inp→ <  and 

 (Inp→, 1) L1:   w→ Inp→   

 

 In the final step, the united partial potential models are characterized 

by omitting the T-theoretical elements (see Chapter 3) from the unifying 

potential models as follows: 

DVII-8: y is a unified partial potential model of the Rosenblatt perceptron, 

the two-layers feed-forward neural network, and the delta rule for the 

connectionist model (Mpp(RP + 2L-FFNN + DR for Connectionist)) iff there 

exist x such that: 

(1) x = N, Nin, Nout, IN, IR, C, pred(n), succ(n), W, B, W0, Inp, Out, L, 

, fnet, fact, fout, netn, actn, outn, Error  Mp(RP + 2L-FFNN + DR 

for Connectionist) 

(2) fnet, fact, fout, netn, actn, outn,  Error are T-theoretical. 

(3) y = N, Nin, Nout, IN, IR, C, pred(n), succ(n), W, B, W0, Inp, Out, 

L  Mp(RP + 2L-FFNN + DR for Connectionist) 
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7.3.2. Modification of the Theory-Element of Forced Compliance 

Dissonance for the Connectionist Model 

 The connectionist model attempts to simulate a single case; namely, 

the dissonance arouses by a given punishment if there is a toy to play. This 

case is a case of forced compliance dissonance (DissF), where the 

compliance is given in the form of punishment. We need to make some 

small modifications to the theory-element of the forced compliance 

dissonance (DissF) regarding attitude-object attributions. The first 

modification is that we must differentiate the elements of the set Cognition 

into three subsets, namely, thought, behavior, and emotion, because van 

Overwalle and Jordens follow the view of three components on attitudes 

from Rosenberg and Hovland (1960): cognitions, behaviors, and emotions. 

Instead of using “cognition,” this dissertation uses “thought” in order to 

avoid confusion with its super-set Cognition. The set thought contains 

(cognitions of) objects (such as toy, punishment, etc.), the set behavior 

contains (cognitions of) behaviors (such as play, read, etc.) and the set 

emotion contains (cognition of) emotions (such as happy, sad, etc.). The 

relation between these three new subsets and the set Cognition in the 

Mp(DissF) can be described as follows: 

 thought  Cognition 

 behavior  Cognition 

 emotion  Cognition 

 Forcecom  thought 

 The second modification of Mp(DissF) is defining the set attitude, 

which characterizes the relation between cognition of object and emotion or 

between cognition of object and behavior.  

 attitude  (thought' behavior)  (thought emotion) 

The set of attitudes contains dissonant and consonant relations between 

cognitions.    
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 attitude  Disscog  Conscog 

In the theory-element of the forced compliance dissonance T(DissF) the set 

Forcecom, as a subset of thought, also plays a role in defining the set 

subattitude as a subset of attitude. 

 subattitude  (Forcecom  behavior)  (Forcecom  emotion) 

Through these modifications, the Mp(DissF for Connectionist) can be 

characterized as follows: 

DVII-9: x is a potential model of the forced compliance dissonance 

(xMp(DissF for Connectionist)) iff there exist Time, Rawcog, Cognition, 

thought, behavior, emotion, attitude, attint, Disscog, Conscog, pairdiss, 

paircons, pairimp, diss, redpress, Forcecom, subattitude, subattint, attidiff, 

imp, reward such that: 

(1) x = Time, Rawcog, Cognition, thought, behavior, emotion, attitude, 

attint, Disscog, Conscog, pairdiss, paircons, pairimp, diss, redpress, 

Forcecom, subattitude, subattint, attidiff, imp, reward  Mp(DissF 

for Connectionist)  

(Let x be a potential model of the theory of forced compliance 

dissonance for the connectionist model) 

(2) Time is a finite, non-empty set of points of time 

(3) Rawcog is a finite, non-empty set of raw elements of cognition 

(4) Cognition  Rawcog time   (actual elements of cognition) 

(5) thought  Cognition    (cognitions of an object)  

(6) behavior  Cognition   (cognitions of behavior)  

(7) emotion  Cognition    (cognitions of emotion)  

(8) attitude  (thought  behavior)  (thought  emotion)   

(attitudes to object consist of the relation between object and 

behavior or emotion)   

(9) attint: attitude → IR0    (the intensity of attitude) 

(10) Disscog  Cognition  Cognition  
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(dissonant cognitions such that Disscog  attitude) 

(11) Conscog  Cognition  Cognition  

(consonant cognitions such that Conscogattitude) 

(12) Disscog  Conscog =  

(13) pairdiss := Disscog → IR0
+    

(dissonance within pairs) 

(14) paircons := Conscog → IR0
+    

(consonance within pairs) 

(15) pairimp := (Disscog  Conscog) → IR0
+   

(importance of pairs) 

(16) diss := Cognition → IR0
+              

(magnitude of dissonance) 

(17) redpress := Cognition → IR0
+ 

(dissonance reduction pressure) 

(18) confl(cit) := (cit, ckt)Disscog pairimp(cit, ckt)  

(degree of conflict) 

(19) suppo(cit) := (cit, ckt)Conscog pairimp(cit, ckt)  

(degree of support) 

(20) Forcecom  thought    

(cognitions on counter-attitudinal behavior)  

(21) subattitude  (Forcecom  behavior)  (Forcecom 

 emotion)  (attitude to cognition on counter-attitudinal behavior)  

(22) subattint := subattitude → IR0  

(intensity of attitude to cognition on counter-attitudinal behavior)  

(23) attidiff := Forcecom → IR   (attitudinal difference) 

(24) imp := Cognition → IR0
+  (importance of cognition) 

(25) reward := Forcecom → IR0
+   

(magnitude of reward or punishment) 
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 With this modification of the potential models of the forced 

compliance dissonance (Mp(DissF)), we also should modify the actual 

models of the forced compliance dissonance M(DissF). 

DVII-10: x is an actual model of the forced compliance dissonance (x  

M(DissF for Connectionist)) iff there exist Time, Rawcog, Cognition, 

thought, behavior, emotion, attitude, attint, Disscog, Conscog, pairdiss, 

paircons, pairimp, diss, redpress, Forcecom, subattitude, subattint, attidiff, 

imp, reward such that: 

(1) x = Time, Rawcog, Cognition, thought, behavior, emotion, attitude, 

attint, Disscog, Conscog, pairdiss, paircons, pairimp, diss, redpress, 

Forcecom, subattitude, subattint, attidiff, imp, reward  Mp(DissF 

for Connectionist) (Let x be a potential model of the theory of forced 

compliance dissonance for the connectionist model) 

(2) attitude = {(cit,cjt)| (citthought  cjtbehavior)  (citthought 

 cjtemotion)} 

(attitude objects are pairs between the thought of objects and the 

behavior to objects or pairs between the thought of objects and the 

emotion to objects) 

(3) Disscog  Conscog  attitude 

(According to the connectionist model: the cognitive dissonance or 

cognitive consonance are about attitude objects) 

(4) For all (cit,cjt), (cku, clu) Disscog: if pairimp (cit,cjt) < 

pairimp(cku,clu), then pairdiss(cit,cjt)<pairdiss(cku, clu)   

(If the importance of the pair cku and clu is greater than the 

importance of the pair cit and cjt, then the dissonance of the pair cku 

and clu is greater than the dissonance of the pair cit and cjt)  

(5) For all (cit, cjt), (cku, clu) Conscog: if pairimp (cit,cjt) < 

pairimp(cku,clu), then paircons(cit,cjt)<paircons(cku, clu) 
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(If the importance of the pair cku and clu is greater than the 

importance of the pair cit and cjt, then the consonance of the pair cku 

and clu is greater than the consonance of the pair cit and cjt)  

(6) For all cit, cju Cognition: if confl(cit)/(confl(cit) + suppo (cit)) < 

confl(cju)/(confl(cju) + suppo (cju)), then diss(cit) < diss(cju). 

(If the proportion between the degree of conflict of cju and the sum 

of the importance of cju is greater than the proportion between the 

degree of conflict of cit and the sum of the importance of cit, then the 

dissonance of cju is greater than the dissonance of cit) 

(7) For all cit, cju  Cognition: If diss(cit) < diss(cju), then 

redpress(cit)<redpress(cju). 

(If the dissonance of cju is greater than the dissonance of cit, then the 

attempt to reduce cju will be greater than the attempt to reduce cit) 

(8) Subattitude := {(cit, cjt)| (cit  Forcecom  cjt  behavior)   (cit 

 Forcecom  cjt  emotion)} 

(According to the connectionist model: the subattitude objects are 

pairs of Forcecom and behavior towards the object or pairs of 

Forcecom and emotion towards the object) 

(9) For all cit , cju  Forcecom: 

ifcp imp(cit)<imp(cju) or reward(cit)>reward(cju),  

thenp diss(cit)< diss(cju).  

(the more important the opinions or the behavior involved and the 

smaller the promised reward or threatened punishment, the greater is 

the magnitude of dissonance created) 

(10) For all cit, cju, cit+, cju+  Forcecom with t<t+, u<u+: 

ifcp 0 < redpress(cit) < redpress(cju) 

thenp 0 > imp(cit+) - imp(cit) > imp(cju+) - imp(cju) 

or 0 < reward(cit+) - reward(cit) < reward(cju+) - reward(cju) 

or 0 > attidiff(cit+) - attidiff(cit) > attidiff(cju+) - attidiff(cju).  
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(Pressure to reduce dissonance may be manifested in reducing the 

importance or value of the behavior and opinion involved, enhancing 

the subjective magnitude of the promised reward or threatened 

punishment, and a change of private opinion following public 

behavior) 

 

 The modification of the potential models of the forced compliance 

dissonance (Mp(DissF)) leads to a modification of the partial potential 

models of the forced compliance dissonance (Mpp(DissF)). The partial 

potential model of the forced compliance dissonance can be defined by 

omitting attint, pairdiss, paircons, diss, redpress, subattint because they are 

the T-theoretical elements (see also Chapter 3) as follows:   

DVII-11: y is a partial potential model of the forced compliance dissonance 

for connectionist (y  Mpp(DissF for Connectionist)) iff there exists x such 

that: 

(1) x = Time, Rawcog, Cognition, thought, behavior, emotion, attitude, 

attint, Disscog, Conscog, pairdiss, paircons, pairimp, diss, redpress, 

Forcecom, subattitude, subattint, attidiff, imp, rewardMp(DissF 

for Connectionist)  

(2) attint, pairdiss, paircons, diss, redpress, subattint are T-theoretical. 

(3) y = Time, Rawcog, Cognition, thought, behavior, emotion, attitude, 

Disscog, Conscog, pairimp, Forcecom, subattitude, attidiff, imp, 

rewardMpp(DissF for connectionist) 

 

 This T(DissF for Connectionist) can be seen as a kind of 

specialization of both original theories – T(DissB) and T(DissF) – because 

of the additional requirements. Now we can continue with the modeling and 

analysis of intertheoretical relations between the theory-element of the 

forced compliance dissonance (T(DissF for Connectionist)) and the unified 
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theory-element of the Rosenblatt perceptron, the two-layers feed-forward 

neural network, and the delta rule (T(RP+2L-FFNN+DR for Connectionist)) 

on the connectionist model. 

 

7.3.3. Modeling the Intertheoretical Connections between both Theory-

Elements for the Connectionist Model  

  The connectionist simulation uses only four neurons, which are 

divided into two layers. They represent the cognitions considered at the time 

of the simulation. The input neurons represent the thought of a toy and the 

thought of a threat. The presence and importance of a toy are represented by 

an input: no toy = 0 and the presence of toy = 1. The presence and the 

degree of a threat are represented by an input: no threat = 0, mild threat = 

0.5, severe threat =1. The output neurons represent behavior and emotion. 

The first output neuron represents the existence and the kind of behavior: 0 

for not play, 1 for play. The second output neuron represents the emotion: -1 

for unhappy, 0 for no emotion, +1 for happy. The connections between input 

neuron and output neuron represent attitude to the toy (attitude) or attitude 

to threat (subattitude). The connection weight represents the intensity of 

attitude to the toy (attint) or the intensity of attitude to threat (subattint). The 

dissonance is represented by Error in this simulation, which will be reduced 

by applying the delta rule. 

 However, in building the structuralist model of intertheoretical 

relations between the forced compliance dissonance (DissF) and the neural 

network in the connectionist model, more ‘general’ models of such 

intertheoretical connections will be built because this specific case can be 

expanded for a larger number of cognitions. Let us begin with the 

intertheoretical connections between the potential models of the forced 

compliance dissonance for the consonance model (Mp(DissF for 

connectionist)) and the unifying potential models of the Rosenblatt 

perceptron, the two layers feed-forward neural network and the delta rule 
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for the consonance model (Mp(RP + 2L-FFNN + DR for Connectionist)), 

which can be defined as follows:  

DVII-12:  is a collection of determining links between Mp(DissF for 

connectionist) and Mp(RP + 2L-FFNN + DR for Connectionist), e1 is an 

echelon set of Mp(DissF for connectionist) and e2 is an echelon set of 

Mp(RP + 2L-FFNN + DR for Connectionist), and E is a set of entailment 

links connecting both echelons sets iff there exists x1, x2 , 1, 2, 3, 4, 5, 

6, 7, 8, 9, 10, 11, 12, 13, 14 such that: 

(1) x1= Time, Rawcog, Cognition, thought, behavior, emotion, attitude, 

attint, Disscog, Conscog, pairdiss, paircons, pairimp, diss, redpress, 

Forcecom, subattitude, subattint, attidiff, imp, reward  Mp(DissF 

for Connectionist)  

(Let x1 be a potential model of the forced compliance dissonance 

(Mp(DissF))) 

(2) x2=  N, Nin, Nout, IN, IR, C, pred(n), succ(n), W, B, W0, Inp, Out, L, 

, fnet, fact, fout, netn, actn, outn, Error   Mp(RP + 2L-FFNN + DR 

for Connectionist)  

(Let x2 be a potential model of the unified model of the two-layers 

feed-forward neural network, the Rosenblatt's Perceptron, and the 

delta rule for the connectionist model (Mp(RP + 2L-FFNN + DR for 

Connectionist))) 

(3) 1  Cognition  N  

(1 is a determining link – x is (seen to be) identical with y – that 

connects the set Cognition from Mp(DissF) to the set of neurons (N) 

from Mp(RP + 2L-FFNN + DR for Connectionist) and a bijective 

relation) 

(4) 2  thought  Nin  

(2 is a determining link – x is (seen to be) identical with y – that 

connects the set thought from Mp(DissF) to the set of Input Neurons 
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(Nin) from Mp(RP + 2L-FFNN + DR for Connectionist) and a 

bijective relation) 

(5) 3  Forcecom  Nin  

(3 is a determining link – x is (seen to be) identical with y – that 

connects the set Forcecom from Mp(DissF) to the set of Input 

Neurons (Nin) from Mp(RP + 2L-FFNN + DR for Connectionist) and 

a bijective relation) 

(6) 4  behavior  Nout  

(4 is a determining link – x is (seen to be) identical with y – that 

connects the set behavior from Mp(DissF) to the set of Output 

Neurons (Nout) from Mp(RP + 2L-FFNN + DR for Connectionist) 

and a bijective relation) 

(7) 5  emotion  Nout  

(5 is a determining link – x is (seen to be) identical with y – that 

connects the set emotion from Mp(DissF) to the set of Output 

Neurons (Nout) from Mp(RP + 2L-FFNN + DR for Connectionist) 

and a bijective relation) 

(8) 6  attitude  C  

(6 is a determining link – x is (seen to be) identical with y – that 

connects the set attitude from Mp(DissF) to the set of connections 

(C) from Mp(RP + 2L-FFNN + DR for Connectionist) and a 

bijective relation) 

(9) 7  subattitude  C  

(7 is a determining link – x is (seen to be) identical with y – that 

connects the set subattitude from Mp(DissF) to the set of 

connections (C) from Mp(RP + 2L-FFNN + DR for Connectionist) 

and a bijective relation) 

(10) 8  attint  W  
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(8 is a determining link – x is (seen to be) identical with y – that 

connects the set attint from Mp(DissF) to the set of connection 

weights (W) from Mp(RP + 2L-FFNN + DR for Connectionist) and a 

bijective relation) 

(11) 9  subattint  W  

(9 is a determining link – x is (seen to be) identical with y – that 

connects the set subattint from Mp(DissF) to the set of connection 

weights (W) from Mp(RP + 2L-FFNN + DR for Connectionist) and a 

bijective relation) 

(12) 10  imp  Inp  

(10 is a determining link – x is (seen to be) identical with y – that 

connects the set of important of cognition (imp) from Mp(DissF) to 

the set of inputs (Inp) from Mp(RP + 2L-FFNN + DR for 

Connectionist) and a bijective relation) 

(13) 11  reward  Inp  

(11 is a determining link – x is (seen to be) identical with y – that 

connects the set Reward from Mp(DissF) to the set of inputs (Inp) 

from Mp(RP + 2L-FFNN + DR for Connectionist) and a bijective 

relation)  

(14) 12  behavior  Out  

(12 is a determining link – x is (seen to be) identical with y – that 

connects the set behavior from Mp(DissF) to the set of desired 

outputs (Out) from Mp(RP + 2L-FFNN + DR for Connectionist) and 

a bijective relation) 

(15) 13  emotion  Out  

(13 is a determining link – x is (seen to be) identical with y – that 

connects the set emotion from Mp(DissF) to the set of desired 

outputs (Out) from Mp(RP + 2L-FFNN + DR for Connectionist) and 

a bijective relation) 
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(16) 14  diss  Error  

(14 is a determining link – x is (seen to be) identical with y – that 

connects the set of dissonance (diss) from Mp(DissF) to the set Error 

from Mp(RP + 2L-FFNN + DR for Connectionist) and a bijective 

relation) 

(17)  = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14} 

(Then  is a collection of determining links between T(DissF for 

connectionist) and T(RP + 2L-FFNN + DR for Connectionist)) 

(18) e1 =  Cognition, thought, behavior, emotion, attitude, attint, 

Forcecom, subattitude, subattint, diss, imp, reward  echelon set of 

Mp(DissF for Connectionist)  

(e1 is an echelon set of Mp(DissF for connectionist)) 

(19) e2 =  N, Nin, Nout, C, W, Inp, Out, Error   echelon set of 

Mp(RP + 2L-FFNN + DR for Connectionist)  

(e2 is an echelon set of Mp(RP + 2L-FFNN + DR for Connectionist))  

(20) E = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}  

(E is a set of entailment links between e1 and e2) 

 

The interpreting links in the level of the partial potential models are 

characterized in order to determine the local empirical claims and the 

intended applications. Based on D VIII-7 and VIII-8 in BMS, pp. 398–400 

the interpreting links for the reduction of DissF for connectionist by RP + 

2L-FFNN + DR for Connectionist can be determined as follows: 

DVII-13: E*(DissF) = {l1, l2, l3, l4, l5 l6, l7, l8, l9, l10, l11, l12, l13, l14} is a 

collection of interpreting links, where T(DissF for Connectionist) is 

interpreted by T(RP + 2L-FFNN + DR for Connectionist) in the 

connectionist model iff there exist x1, x2, e1, e2, y1, f1 such that: 

(1) x1= Time, Rawcog, Cognition, thought, behavior, emotion, attitude, 

attint, Disscog, Conscog, pairdiss, paircons, pairimp, diss, redpress, 
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Forcecom, subattitude, subattint, attidiff, imp, reward  Mp(DissF 

for Connectionist)  

(x1 is a potential model of the forced compliance dissonance for the 

connectionist (Mp(DissF for Connectionist))) 

(2) x2= N, Nin, Nout, IN, IR, C, pred(n), succ(n), W, B, W0, Inp, Out, L, 

, fnet, fact, fout, netn, actn, outn, Error  Mp(RP + 2L-FFNN + DR 

for Connectionist)  

(x2 is a potential model of the unified Perceptron, 2-layers feed 

forward neural network, and delta-rule (Mp(RP + 2L-FFNN + DR 

for Connectionist))) 

(3) e1 = Cognition, thought, behavior, emotion, attitude, attint, 

Forcecom, subattitude, subattint, diss, imp, reward  echelon set of 

Mp(DissF for Connectionist)  

(e1 is an echelon set of Mp(DissF for Connectionist)) 

(4) e2 = N, Nin, Nout, C, W, Inp, Out, Error  echelon set of Mp(RP + 

2L-FFNN + DR for Connectionist)  

(e2 is an echelon set of Mp(RP + 2L-FFNN + DR for Connectionist))  

(5) E = {1, 2, 3, 4, 5 6, 7, 8, 9, 10, 11, 12, 13, 14}  

(E is a set of entailment links between e1 and e2) 

(6) y1 = Time, Rawcog, Cognition, thought, behavior, emotion, attitude, 

Disscog, Conscog, pairimp, Forcecom, subattitude, attidiff, imp, 

reward  Mpp(DissF for connectionist)  

(y1 is the partial potential model of the forced compliance 

dissonance for connectionist (Mpp(DissF for Connectionist))) 

(7) E*(DissF) = {l1, l2, l3, l4, l5 l6, l7, l8, l9, l10, l11, l12, l13, l14}  the set of 

interpreting links,where {li = x’,y| x’Mp(T’), yMpp*(T) and 

there is xMp(T) such that x’,x(T’, T) and r*(x)=y}  

(E*(DissF for Connectionist) is the collection of interpreting links) 
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(8) l1 = {nj, cognitioni| N(nj)  Cognition (cognitioni) → R(nj, 

cognitioni)} (R(x,y) = x interprets y, and R is bijective)  

(l1 is the interpreting link, that interprets each cognition in DissF for 

Connectionist being represented by a neuron in RP + 2L-FFNN + 

DR for Connectionist. In the simulation there are 4 neurons – 2 input 

neurons and 2 output neurons – represent toy, threat, play and happy. 

The Cognition here is an element of Mpp(DissF), whereas N is an 

element of Mp( RP + 2L-FFNN + DR for Connectionist)) 

(9) l2 = {nin(j), thoui| Nin(nin(j))  thought(thoui) → R(nin(j), thoui)} 

(l2 is the interpreting link, that interprets each thought in DissF for 

Connectionist being represented by an input neuron in RP + 2L-

FFNN + DR for Connectionist. In the simulation nin(1) = toy. The 

thought here is an element of Mpp(DissF), whereas Nin is an element 

of Mp( RP + 2L-FFNN + DR for Connectionist)) 

(10) l3 = {nin(j), forcecomi| Nin (nin(j))  Forcecom(forcecomi) → 

R(nin(j), forcecomi)}  

(l3 is the interpreting link, that interprets each forcecom in DissF for 

Connectionist being represented by an input neuron in RP + 2L-

FFNN + DR for Connectionist. In the simulation nin(2) = threat. The 

Forcecom here is an element of Mpp(DissF), whereas Nin is an 

element of Mp( RP + 2L-FFNN + DR for Connectionist)) 

(11) l4 ={nout(j), behavi| Nout(nout(j))  behavior(behavi) → R(nout(j), 

behavi)}  

(l4 is the interpreting link, that interprets each behavior in DissF for 

Connectionist being represented by output neurons in RP + 2L-

FFNN + DR for Connectionist. In the simulation nout(1) = play. The 

behavior here is an element of Mpp(DissF), whereas Nout is an 

element of Mp( RP + 2L-FFNN + DR for Connectionist)) 
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(12) l5 = {nout(j), emoi| Nout (nout(j))  emotion(emoi) → R(nout(j), 

emoi)}  

(l5 is the interpreting link, that interprets each emotion in DissF for 

Connectionist being represented by output neurons in RP + 2L-

FFNN + DR for Connectionist. In the simulation nout(2) = happy. The 

emotion here is an element of Mpp(DissF), whereas Nout is an 

element of Mp( RP + 2L-FFNN + DR for Connectionist)) 

(13) l6 = {cj, atti| C(cj)  attitude(atti) → R( cj, atti)}  

(l6 is the interpreting link, that interprets attitude in DissF for 

Connectionist being represented by an inter-neuronal connection in 

RP + 2L-FFNN + DR for Connectionist. The attitude here is an 

element of Mpp(DissF), whereas C is an element of Mp( RP + 2L-

FFNN + DR for Connectionist)) 

(14) l7 = {cj, subatti| C(cj)  subattitude(subatti) → R( cj, subatti)} 

(l7 is the interpreting link, that interprets subattitude in DissF for 

Connectionist being represented by an inter-neuronal connection in 

RP + 2L-FFNN + DR for Connectionist. The subattitude here is an 

element of Mpp(DissF), whereas C is an element of Mp( RP + 2L-

FFNN + DR for Connectionist)) 

(15) l8 = {wj, attii| W(wj)  attint(attii) → R(wj, attii)}  

(l8 is the interpreting link, that interprets attint in DissF for 

Connectionist being represented by connection weights in RP + 2L-

FFNN + DR for Connectionist. The attint here is an element of 

Mpp(DissF), whereas W is an element of Mp( RP + 2L-FFNN + DR 

for Connectionist)) 

(16) l9 = {wj, subattii| W(wj)  subattint(subattii) → R(wj, 

subattii)}  

(l9 is the interpreting link, that interprets subattint in DissF for 

Connectionist being represented by connection weights in RP + 2L-
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FFNN + DR for Connectionist. The subattint here is an element of 

Mpp(DissF), whereas W is an element of Mp( RP + 2L-FFNN + DR 

for Connectionist)) 

(17) l10 = {inpj, impi| Inp(inpj)  imp(impi) → R(inpj, impi)}  

(l10 is the interpreting link, that interprets imp in DissF for 

Connectionist being represented by the input in RP + 2L-FFNN + 

DR for Connectionist. In the simulation the possibilities are {(not 

present, 0), (present, 1)}. The imp here is an element of Mpp(DissF), 

whereas Inp is an element of Mp( RP + 2L-FFNN + DR for 

Connectionist)) 

(18) l11 = {inpj, rewi| Inp(inpj)  reward(rewi) → R(inpj, rewi)} 

(l11 is the interpreting link, that interprets reward in DissF for 

Connectionist being represented by the input in RP + 2L-FFNN + 

DR for Connectionist. In the simulation the possibilities are {(not 

present, 0), (mild, 0.5), (severe, 1)}. The Reward here is an element 

of Mpp(DissF), whereas Inp is an element of Mp( RP + 2L-FFNN + 

DR for Connectionist)) 

(19) l12 = {outj, behavi| Out (outj)  behavior(behavi) → R(outj, 

behavi)}  

(l12 is the interpreting link, that interprets behavior in DissF for 

Connectionist being represented by the output in RP + 2L-FFNN + 

DR for Connectionist.  In the simulation, the possibilities are {(not 

play, 0), (play, 1)}. The behavior here is an element of Mpp(DissF), 

whereas Out is an element of Mp( RP + 2L-FFNN + DR for 

Connectionist)) 

(20) l13 = {outj, emoi| Out(outj)  emotion(emoi) → R(outj, 

emoi)}  

(l13 is the interpreting link, that interprets emotion in DissF for 

Connectionist being represented by the output in RP + 2L-FFNN + 
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DR for Connectionist.  In the simulation the possibilities are 

{(unhappy, -1), (neutral, 0), (happy, 1)}. The emotion here is an 

element of Mpp(DissF), whereas Out is an element of Mp( RP + 2L-

FFNN + DR for Connectionist)) 

(21) l14 = {errori, dissi| Error(errorj)  diss(dissi) → R (errorj, 

dissi)}  

(l14 is the interpreting link, that interprets dissonance in DissF for 

Connectionist represented by the Error in RP + 2L-FFNN + DR for 

Connectionist. The dissonance here is an element of Mpp(DissF), 

whereas Error is an element of Mp( RP + 2L-FFNN + DR for 

Connectionist)) 

(22) f1 = Cognition, thought, behavior, emotion, attitude, 

Forcecom, subattitude, imp, reward  an echelon subset of 

Mpp(DissF) by applying function r*: e1 → f1, that mapping 

E*(DIssF) from  Mp (DissF) to Mpp(DissF)  

(f1 is an echelon subset of Mpp(DissF) with respect to E*(DissF)) 

 

 Based on D VIII-9 and DVIII-10 in BMS the f1 can be determined as 

the set of empirical claims of the intertheoretical reduction of the theory of 

forced compliance dissonance by RP + 2L-FFNN + DR for Connectionist. 

The empirical claims of this intertheoretical reduction refer to the sets 

cognition, thought, behavior, emotion, attitude, attint, Forcecom, 

subattitude, imp, Reward in the partial potential models of the forced 

compliance dissonance for connectionist. They are the specialization of the 

original forced compliance dissonance by adding new categories in the 

concept of cognition and the relation between them. The interpreting links 

E*(DissF for Connectionist) interpret these concepts being represented by 

some concepts from RP + 2L-FFNN + DR for Connectionist.  
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A Summary of this Chapter. A structuralist model of the 

intertheoretical connections between the adapted forced compliance 

dissonance (DissF for connectionist) and the adapted two-layers feed-

forward perceptrons with the delta rule for the connectionist model (RP + 

2L-FFNN + DR for Connectionist) was built. In this intertheoretical 

reduction, only the echelon partial subset of Mp(DissF for connectionist) is 

connected to the echelon partial subset of Mp(RP + 2L-FFNN + DR for 

Connectionist). Our model can be presented in Figure 7.3. 

 

Figure 7.3. A structuralist modeling of intertheoretical reduction between the 

adapted forced compliance dissonance (DissF for connectionist) and the adapted 

two-layers feed-forward neural network for the connectionist model (RP + 2L-

FFNN + DR for Connectionist). e(DissF for connectionist) is the echelon partial 

subset of Mp(DissF for Connectionist) and e(RP + 2L-FFNN + DR for 

Connectionist) is the echelon partial subset of Mp(RP + 2L-FFNN + DR for 

Connectionist). Both are connected by a set of entailment Links (E). The 

interpreting links with local at DissF for connectionist (E*(DissF for 

Connectionist)) connect the set of empirical claim of this intertheoretical reduction 

at DissB and the echelon partial subset of Mp(RP + 2L-FFNN + DR for 

Connectionist) as the reducing theory. 
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In the first part of this chapter it has been discussed about the so-

called V-pattern. Now, having discussed the intertheoretical connections, we 

want to look back to the notion of V-pattern and how it works in the 

interdisciplinary context – especially if the relations between theories in the 

disciplines involved are very complex or contain the V-pattern too. The case 

of the connectionist model is interesting because both combined theories 

have a kind of V-pattern. In this model, both V-patterns are connected by a 

link with one of them serving as the mainboard theory. We are dealing with 

a multi-level V-pattern, which can be depicted in graph theory as follows: 

 

Figure 7.4. The pattern of intertheoretical relations between the adapted theory of 

forced compliance dissonance and the adapted unifying theory of the perceptron, 

the two-layers feed-forward neural network and the delta-rule for connectionist  
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Chapter 8 

The Contribution of This Research for Philosophy of Science, 

Cognitive Science, and Interdisciplinary Practices 

 

 

 This chapter will discuss the significance of this research for the 

relevant scientific fields, namely the philosophy of science, cognitive 

science, and interdisciplinary practices. In the philosophy of science, this 

research contributes with further development of the structuralist theory of 

science not only as a first implementation of this theory in modeling the 

intertheoretical connections in interdisciplinary fields, and not only in the 

adjustment of the definition of specialization provided in Chapter 4 but also 

in the formulation of a new specialization of the notion of a theory-holon 

related to the combination of theories in scientific practices that will be the 

first topic in this chapter. The second topic in this chapter will be a 

comparison between the results of modeling intertheoretical reduction as 

having been done in the last three chapters with the generalized Nagel-

Schaffner approach. This chapter will also discuss the idea of the unity of 

science and show how a program for the unity of science is possible. For 

cognitive science and other interdisciplinary practices, this dissertation is 

the first attempt at modeling and analyzing intertheoretical connections 

between theories from various disciplines by implementing formal methods 

to show how a successful intertheoretical combination works logically.  

 

8.1. A Further Development in the Structuralist Theory of Science 

 The modeling of intertheoretical connections in the last three 

chapters shows the usefulness of the structuralist theory of science in 

mapping the intertheoretical connections between two or more theories 

within one single discipline or between various disciplines. The structuralist 
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theory of science cannot only be used to model the intertheoretical relations 

between the concepts of the theories but also the modifications needed such 

that the connected theories work as expected (planned). By these models, 

we can discover a new pattern of connections, a strategy to connect or 

combine several theories, and a recipe to build a more complex model or 

theory, and new association links.   

 

8.1.1. The V-Pattern of Intertheoretical Connections and A Strategy to 

Build A More Complex Model by Unifying Several Theories 

 Balzer, Moulines, and Sneed have discussed several types of 

intertheoretical connections and formulated their formal definitions. This 

dissertation is an attempt to implement those definitions to build and 

analyze several real cases of intertheoretical connections in interdisciplinary 

fields, especially in cognitive science. This attempt provides a chance to 

learn more about the intertheoretical connections – and admittedly, there 

will be more to learn in the future. In Chapter 5, an intertheoretical relation 

between the Festinger theory of cognitive dissonance and the computational 

neuroscientific theory has been modeled and analyzed concerning the 

interdisciplinary research on the dorsal Anterior Cingulate Cortex 

conducted by van Veen et al. (2009). This modeling and analysis specify in a 

formal way how the concepts of both theories connect and how to formulate 

the local intended applications or empirical claims of the connections, which 

shows how far the connected theories can explain their intended 

phenomena. However, this modeling is the simplest of our models.   

In Chapters 6 and 7 author attempts to model and analyze more 

detailed and more complicated intertheoretical connections, namely 

intertheoretical connections between two or more theories in a simulation. A 

simulation is not as simple as an explanation because a simulation must add 

several additional requirements to mimic the simulated phenomena. It is a 

fact that the original form of the theories involved is not (always) ready for 
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such an intended application. In Chapter 6, the Hopfield model of the 

recurrent neural network is not ready for cognitive dissonance simulation. It 

needs some modifications or adjustments to build a simulation according to 

the consonance model. The result of such change is seen as a specialization 

of the original theory. The connectionist simulation gives the same or even a 

more complicated situation in Chapter 7. Not only some adjustments are 

needed, but also a combination of several theory-elements at once, namely 

the Rosenblatt perceptron, the two-layers feed-forward neural network, and 

the delta rule, to build a new theoretical unity.  

Before continuing the discussion about the combination of the three 

theories, it is necessary to explain why the presentation is made complicated 

by seeing them as three theories. The Rosenblatt perceptron, the two-layers 

feed-forward neural network, and the delta rule usually are applied together 

in data science and machine learning. Some readers may think that they can 

be seen simply as one model, and it is not necessary to discuss a 

combination of theories and their intertheoretical connections. However, 

such an opinion oversimplifies the real conceptual and methodological 

situation. Such oversimplification makes some interesting and important 

points stayed unclear. In this work, they are seen as three independent 

theories, and three theory-elements are modeled for several reasons. First, 

these theories are indeed three conceptually and methodologically different 

theories. In machine learning or data science, people often replace one of 

these theories with another model or theory. A very common example is that 

people replace the two-layers feed-forward neural network with a multi-

layers feed-forward neural network, but still use the perceptron and the delta 

rule as its learning rule. They place perceptrons in some additional layers 

between the input layer and the output layer, and they use the delta rule to 

train the multi-layers perceptrons (MLP). Second, it leads to the importance 

of research on intertheoretical connections in general. Notably, this topic is 

relatively rarely discussed in comparison to the topic of reduction or unity 
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of science, although there are many types of intertheoretical connections 

that can be explored and used in scientific practice. Third, it points out the 

importance of modeling and analyzing intertheoretical connections for 

modeling complex phenomena. Modeling and analyzing intertheoretical 

connection can be beneficial not only to evaluate our steps in combining and 

adjusting the theories implemented but also to formulate a general strategy 

to build a more complex theory or model to explain complex phenomena, 

especially in our interdisciplinary age.   

 Inspired by the idea of the local empirical claim of the theory-holon 

to interpret the model of intertheoretical connections in Chapter 5, a special 

pattern for combining scientific theories, called “V-pattern,” has been 

discovered. This name is used because of its graphic representation when 

determining the local empirical claims or intended applications. And this 

section will characterize the definition of the V-pattern and explain a 

strategy to implement it. The V-pattern has the following main features: (1) 

There exists a theory-element T0 that serves as the mainboard theory of the 

V-pattern of intertheoretical relations. The mainboard theory is a theory to 

which all other theories are being connected in this pattern. The mainboard 

theory represents a basic model of phenomena that we want to explain 

through our set of theories in a holon. (2) T1, ..., Tn are the connected 

theories that can be connected one by one to the T0 with an intertheoretical 

connection. These connected theories enrich the basic model represented by 

the T0 to deliver a more holistic explanation or application. These features 

can be formally defined as follows:  

D VIII-1: v is a V-pattern of an intertheoretical relation iff there exist T0, H, 

and  such that: 

(1) v = T0, H,    V 

(2) T0 is the main board theory-element. 
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(3) H is a set of connected theory-elements to T0, where H has at least 

one element.   

(4)  is a non-empty set of intertheoretical connections (links).  

(5) For T0 there are T1, T2, …, Tn H such that: (T1 1 T0)  (T2 2 T0) 

… (Tn n T0), where i  . 

Besides the two main features above, other features can also be described as 

follows: First, the intertheoretical connections on the class of the potential 

models can be modeled as the dyadic relations between concepts of the 

mainboard theory and concepts of additional theory(es) by using the 

determining links that represent a relation “x is identical with y” unless a 

certain specific relation defined. The type of intertheoretical connection 

used here is exclusively the determining link because in combining theories, 

it is about connections between concepts. Second, the intended application 

of the V-pattern of intertheoretical relations is local on the mainboard theory 

T0. Since the V-pattern is a pattern for theory-holon, the intended 

applications are local. In the V-pattern the local intended applications are 

placed on the mainboard theory T0, whose T0-non-theoretical concepts are 

being interpreted by other concepts of other connected theories T1, T2, …, 

Tn through interpreting links. This relation can be described in a directed 

acyclic graph as follows:  

 

Figure 8.1. The directed acyclic graph of the V-pattern of intertheoretical relation 
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 This V-pattern is a kind of specialization of the general pattern of 

connected theory-holon as characterized in BMS as D VIII-1. The V-

pattern, as a specialization of theory-holon, can be defined as follows: 

D VIII-2: H is a V-pattern in a theory-holon iff there exist N0, N, and 

 such that H = N0 N,  and: 

(1) N0 and N are non-empty sets of theory-elements. N0 is the theory-net 

that contains the mainboard theory (T0N0), and N is the set of 

theory-nets that contain theory-elements connected to the mainboard 

theory.  

(2) : N0N → {Po(Mp(T0)  Mp(T))/T0N0 ,TN} is a partial 

function.  

(3) For all T, there exists T0: Let T0, TDom(), then (T0, T) 

Mp(T0)Mp(T).  

(4) If N contains more than one element, then there is T0N0, and there 

is TN, such that T0, TDom() or T, T0Dom ().  

(5) For all T0N0, T1, T2 N: Let T0, T1Dom () and T0, T2Dom 

(), then T1, T2Dom (). 

 

 The V-pattern serves as a tool for helping to build a (more) complex 

combined theory for explaining and modeling a complex phenomenon or for 

creating a complex implementation or application. This tool is formulated 

because scientific theories typically have two features that make it difficult 

to make a comprehensive application. One of the features of scientific 

theories is that a theory must be general enough – a scientific theory does 

not model a specific or single phenomenon, but general phenomena. For 

example, the Festinger theory of cognitive dissonance explains not only 

dissonance reduction of one person but also similar processes of many (if 

not all) persons. Because of this kind of generalization, a scientific theory 

explains certain phenomena only as far as some aspects are concerned. 
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Because of these two features, building a comprehensive explanation, 

model, application, or implementation of a theory of a particularly complex 

phenomenon needs some modification and combination of some given 

scientific theories. Chapters 6 and 7 show that building a simulation requires 

some adjustments to the theories from both disciplines.   

 For such purposes, the V-pattern can be implemented through the 

following strategy: (1) We choose a theory about complex phenomena as a 

mainboard theory. Some considerations for choosing the mainboard theory 

are as follows: (a) Choose a theory from a discipline explaining the 

phenomena on which the research focuses. In Chapter 7, the connectionist 

model focus on the simulation of dissonance reduction. Therefore, the 

mainboard theory for this combination is the Festinger theory. (b) It would 

be better if the chosen theory contains most of the concepts we need. The 

local intended application will be focused on the mainboard theory. (2) We 

connect other theory-elements to the mainboard theory-element. Through 

both steps, we will get a schema similar to Figure 8.1. (3) We unite the 

theories into one single new theory by the following procedure. (a) By 

combining all the potential models of all theories to be the single unified 

potential models. (b) By reducing the elements of the unifying potential 

models by omitting the superfluous or redundant concepts and by 

transferring all the relations and functions of the omitted elements to the rest 

identical concepts. (4) There is also the possibility of combining several V-

patterns to building a more complex model by following the steps one 

through three and placing the mainboard theory containing fewer concepts 

in level one and connecting it to the mainboard theory-element containing 

more concepts. The pattern can be described as follows:  
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Figure 8.2. The Directed Acyclic Graph of the Combined V-Patterns of 

Intertheoretical Relation; T2 Is the Other Main Board Theory-Element, to Which 

the T'1, T'2, …, T'n Are Connected. T0 Is More General than T2. Therefore, We 

Have to Put T0 in the Level 0 and T2 in the Level 1 Connected to some Term(s) of 

T0. 

 

8.1.2. The Unifying Theory-Element 

 In Chapter 7, a new kind of theory-element is introduced, a 

combination of several theory-elements into one single theory-element. This 

model simplifies the model of intertheoretical connections and unifies 

several connected theories or models to build a more complex theory or 

model. This new kind of theory-element will be called as unifying theory-

element.   

 A unifying theory-element is essentially a unification of several 

combined theories, where some or all concepts are connected through a 

bijective relation “x is identical with y.” For unifying those theories, the 

dyadic intertheoretical connections are sufficient by implementing of the V-

pattern and following the strategy laid out in section 8.1.1 above. The 

unifying theory-element can be characterized as follows:  

D VIII-3 : TU = Mp
U, MU, Mpp

U, U, E*u is the unifying theory-element 

between T0, T1, …, Tn iff there exist T0 = Mp
0, M0, Mpp

0, E*0, T1 = Mp
1, 

M1, Mpp
1, …, Tn = Mp

n, Mn, Mpp
n 1 2  n , l1, l2, …, ln such that: 
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(1) Mp
U := Mp

0  Mp
1  …  Mp

n  

(Mp
U is the set of potential models of the new unifying theory-

element (TU)) 

(2) MU := M0  M1  …  Mn  

(MU is the set of actual models of the new unifying theory-element 

(TU)) 

(3) Mpp
U := r°(Mp

U), where r° is a function that project Mp
U to Mpp

U  

(Mpp
U is the partial potential models of the new unifying theory-

element (TU)) 

(4) U := 1  2  …  n, where: 

1) 1  Mp
0' Mp

1 

2) 2  Mp
0' Mp

2 

…) ... 

n) n  Mp
0  Mp

n  

(U is the set of the unifying intertheoretical connections (links) that 

connect Mp
0 to Mp

i, and i = 1, 2, ... n, where: 

1)  is the set of unifying intertheoretical connections (links) that 

connect Mp
0 to Mp

1 

2) 2 is the set of unifying intertheoretical connections (links) that 

connect Mp
0 to Mp

2 

… 

n) n is the set of unifying intertheoretical connections (links) that 

connect Mp
0 to Mp

n) 

(5) E*U = E*0 :=  l1  l2  …  ln, where: 

1) l1 = {x1, y0 | x1Mp
1  y0Mpp

0  x0Mp
0 → x1,x0(T1, T0) 

and r*(x0)=y0 } 

2) l2 = {x2, y0 | x2Mp
2  y0Mpp

0  x0Mp
0 → x2,x0(T2, T0) 

and r*(x0)=y0 } 

…) … 
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n) ln = {xn, y0 | xnMp
n  y0Mpp

0  x0Mp
0 → xn,x0(Tn, T0) 

and r*(x0)=y0 } 

(E*U is the set of interpreting links that connect Mpp
0 to Mp

i, such 

that Mp
i is interpreting Mpp

0, and i = 1, 2, ... n, where:  

1) l1 is the set of interpreting links that connect Mp
1 to Mpp

0, where 

T1 interprets T0. 

2) l2 is the set of interpreting links that connect Mp
2 to Mpp

0, where 

T2 interprets T0. 

… 

n) ln is the set of interpreting links that connect Mp
n to Mpp

0, where 

Tn interprets T0) 

 

 The intuitive idea behind this definition is as follows: Suppose there 

are several theory-elements to combine. The unifying intertheoretical 

connections implemented here between them are dyadic relations that 

connect the mainboard theory element (T0) and the other theory-elements 

(T1, …, Tn). Because the theory-elements we want to combine are different, 

the potential models of each theory-element are also different. Because of 

this fact, the unifying intertheoretical connections between two theory-

elements are a set of determining links. Like the other kinds of 

intertheoretical connections in the structuralist theory of science, the 

unifying intertheoretical connections are also the relations between the 

potential models of both combined theories. Based on these considerations, 

the Mp
U can be built by unifying the Mp of the combined theory-elements. 

This new unifying theory-element will also contain all law-statements of the 

combined theory-elements. Therefore, the actual models for the unifying 

theory-element (MU(TU)) are defined as the unification of the actual models 

(M) of the connected theory-elements. The set of unifying intertheoretical 

connections () connects the elements of all Mp of the connected theory-
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elements. The partial potential models of the unifying theory-element 

(Mpp
U(TU)) can also be characterized by implementing the function r° that 

maps the Mp
U to Mpp

U by omitting the T-theoretical elements of Mp
U.  

 

8.2. Philosophy of Science in General  

 There are two major issues in the philosophy of science in general to 

which our modeling has relevance. The first one is the issue of 

intertheoretical reduction, which dominates the discussion about the relation 

between theories in the philosophy of science today. Another issue in the 

philosophy of science that is relevant to the results of this work is the issue 

of the unity of science.   

 

8.2.1. Intertheoretical Reduction 

One of the most influential theories of intertheoretical reduction is 

the generalized Nagel-Schaffner (GNF) theory of intertheoretical reduction. 

This theory is an improvement on the original version of Nagel’s theory of 

reduction. The basic idea of Nagel’s original account of reduction is 

relatively simple. A theory TP reduces to another theory TF iff the laws of TP 

can be deduced from the laws of TF and some auxiliary assumptions. The 

auxiliary assumptions are typically idealizations and boundary conditions. 

Nagel considers two formal conditions for reduction concerning the formal 

nature of theories. The two conditions for successful reduction are 

connectability and derivability. The condition of connectability requires that 

for every theoretical term in TP there is a theoretical term in TF 

corresponding to it. The condition of derivability says that if connectability 

is satisfied, the laws of TP can be derived from the laws of TF plus auxiliary 

assumptions. For Nagel, there are also two kinds of reduction, namely 

homogeneous reduction and heterogeneous reduction. In the homogeneous 

reduction, both theories share the same relevant predicates. Therefore, the 
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connectability requirement is trivially satisfied. Whereas in heterogeneous 

reduction, the relevant terms of both theories are not the same.  

The case of intertheoretical reduction in interdisciplinary fields is the 

heterogeneous reduction and is rarely a homogeneous one. Firstly, it is 

obvious in our cases because we model the intertheoretical reduction, which 

connects some psychological concepts to some biological entities or 

mathematical entities. The theories do not share the same relevant terms. 

Secondly, although our theories sometimes use the same words, they have 

different basic concepts or relations defined according to their disciplines. 

For example, let’s examine the word “neuron” being used in both 

neuroscience and artificial neural networks. The meaning of neurons in both 

fields is very different. In neuroscience, the term ‘neuron’ refers to cells in 

the brain and the nervous system of living creatures, whereas the term 

‘neuron’ in artificial neural network refers to an abstract mathematical 

model of a neuron written in a computer program.  

Because of the heterogeneous reduction, the relevant terms of 

connected theories are not the same. It is impossible to derive the laws of TP 

from TF directly. For making the reduction possible, bridge laws are needed 

to connect the vocabulary of TP and TF by providing ‘rules of translation.’ 

The obvious difficulty for this original model is the exact derivability, 

because it is impossible to derive the exact laws of TP from TF. To solve this 

problem, Kenneth F. Schaffner makes a revision that is called Generalized 

Nagel-Schaffner (GNS) model of reduction. The Schaffner proposal can be 

briefly formulated as follows: “TF reduces TP iff there is a corrected version 

TP* of TP such that, (a) TP* is derivable from TF given that the terms of TP* 

are associated via bridge laws with terms of TF, and (b) the relation between 

TP* and TP is one of, at least, strong analogy (sometimes also ‘approximate 

equality’, ‘close agreement’, or ‘good approximation’)” (Dizadji-Bahmani, 

F., Frigg, R., and Hartmann S., 2011, p. 398). The abbreviation DFH in this 

dissertation stands for Dizadji-Bahmani, F., Frigg, R., and Hartmann S. The 
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derivation of TP* can be done in two steps, namely: (a) deriving a special 

version of TF, called TF*, by introducing auxiliary assumptions, and (b) 

replacing the relevant terms by their 'correspondents' using bridge laws to 

produce TP* (DFH, 2011, p. 398). In this revised version bridge laws are 

crucial to this picture of reduction because “reduction is the deductive 

subsumption of a corrected version of TP under TF, where the deduction 

involves first deriving a restricted version, TF*, of the reducing theory by 

introducing boundary conditions and auxiliary assumptions and then using 

bridge laws to obtain TP* from TF*”. (DFH, S. 2011, p. 399) Also, this 

model can be represented as follows:  

 

Figure 8.3. The generalized Nagel-Schaffner model of reduction (Source: DFH, S. 

2011, p. 399) 

 

 DFH proposes several other improvements in their paper Who’s 

afraid of Nagelian Reduction? as follows: (a) The first revision is about the 

status of bridge laws. According to DFH, p. 404, bridge laws cannot just be 

a mere convention but must be factual claims. There are two different kinds 

of bridge laws: The first kind is bridge laws that associate basic entities of 

TP and TF with each other. This kind is called entity association laws. The 

second kind is called property association laws. “They assert that the TP-

properties of a system stand in a relevant relation to the TF-properties of that 

system, and the magnitudes of these properties stand in a relevant functional 

relationship” (DFH, p. 404). (b) The second revision is about the meaning or 

interest of reduction in the discussion about multiple realizations, which is a 

hot topic in the interdisciplinary context. Multiple realizations, it is said, 

undercut the explanatory power of reductions. Reductions are desirable for 
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two reasons: consistency and confirmation. Establishing a reductive relation 

between TF and TP ensures the consistency and co-tenability of both 

accounts. If we have two theories whose target domains are identical (or 

have significant overlap), we would expect evidence confirming one theory 

would also confirm the other theory. It can only happen if the two theories 

are connected, for example, in the reduction of thermodynamics to statistical 

mechanics. (c) The third revision is about two additional requirements for 

auxiliary assumptions: The first is the condition of non-redundancy, i.e., TF 

must be used in the deduction of TP*; that is, TP* must not follow from the 

auxiliary assumptions alone.  The second is the condition of immanence. 

The auxiliary assumptions must belong to the paradigm of TF; i.e., auxiliary 

assumptions cannot be foreign to TF’s conceptual apparatus. (d) The fourth 

revision is an additional condition for TP* beside the five conditions 

formulated in Schaffner, 1967, p. 144: DFH, 2011 requires that TP* must 

share with TP all essential terms. 

 On the other hand, Van Riel proposed another revision of the current 

interpretation of Nagel’s model of reduction, the official Nagelian model. 

According to Van Riel, the official Nagelian model has a tendency1 to have 

less to do with observations. This tendency leads to some formal worries: “if 

reduction is a derivation plus (sometimes) bridge laws, then any theory 

would reduce to itself …; moreover, any theory would reduce to any 

inconsistent theory, and contrary to what one might expect, reduction is not 

an asymmetric relation” (van Riel, 2011, p. 354). In his reinterpretation, van 

Riel emphasizes ontological aspects of reduction – not only epistemological 

aspects. There are five points regarded as the main features of the “real 

 
1 I employ here the word “tendency,” because I do not think that all current thinkers 

despise the ontological or observational aspects of Nagel's model of reduction. For 

example, that DFH do not despise the observational aspects of Nagelian reduction. In 

the 2011 paper, their concern is to answer epistemologically the objections against 

especially Nagel's model of reduction and generally the idea of reduction, and they also 

attempt to correlate the phenomena explained by TF and TP to constructed TF* and TP* 

via Bayes’ theorem.   
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Nagel model” in his reinterpretation, namely: “(1) Reduction is a relation 

holding among a great variety of scientific representational devices, among 

which theories play an important epistemological role. (2) Interesting 

reductions are explanations that consist in deductions that are carried out 

with the help of bridge laws, and they have to obey (some of) the relevant 

non-formal criteria (unification, appropriateness of reducing theory and 

bridge laws, and, if possible, correction should be involved in reduction). (3) 

Bridge laws are to be regarded as stating ontological links (identities or 

relations among extensions) in a posteriori. (4) The reduction is not direct 

(in the sense that it is not a case of theory explanation) – it goes together 

with explanations of the phenomena of the reduced theory by the reducing 

theory. (5) The Nagel’s model is not a [mere] epistemological model of 

reduction” (van Riel, 2011, p. 371-2).   

 This GNS model of intertheoretical reduction with these 

improvements is very different from the structuralist model used here. 

However, we can still discuss how both models explain the phenomena of 

intertheoretical reduction in their own ways. Here I will discuss three points 

regarding this topic: The first point is the main differences between the 

structuralist theory of science and the GNS model. The second point is the 

difference in building the model of intertheoretical reduction. This point is 

related to the main GNS model of intertheoretical reduction. The third point 

is about the difference between the structuralist models and the GNS model 

related to the claim that the model must capture how the intertheoretical 

reduction should be related to observations. This last point is the main topic 

of all revisions of the GNS model above.  

 

8.2.1.1. The Main Differences Between the GNS Model and the 

Structuralist Model 

 The main difference lies in the structuralist requirement that the 

scientific theories in question must be modeled in set theory to model their 
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inner logical structure. To build the model of a theory, we form the class of 

potential models Mp of the theories on the T-theoretical level and the class 

of partial potential model (Mpp) on the T-non-theoretical level. An 

intertheoretical connection as a bridge between theories is a relationship 

between terms in Mp of the connected theories. This approach requires more 

complicated modeling than the GNS model but, at the same time, provides a 

more detailed and precise analysis. The differentiation between the T-

theoretical level and the T-non-theoretical level in the structuralist model 

points out the form of the empirical claims (and intended applications) of 

the connected theories. It enables us to characterize the scope of the 

intertheoretical connections precisely, which represents the empirical objects 

or the concepts from other theory-elements. By characterizing the actual 

models of related theories, we can also characterize what kind of 

intertheoretical connections are there and how they connect the law or law-

like statements of both theories. The second main difference is that, 

according to the structuralists, the intertheoretical reduction is more 

epistemological than ontological, although it should have some empirical 

basis – characterized by the partial potential models. It is related more to the 

structure of theories, rather than to reality itself. Finally, the third main 

difference is that, in the structuralist theory of science, the intertheoretical 

reduction is just one among several other intertheoretical connections 

(links), and the structuralists have already characterized some of them 

formally.  

 

8.2.1.2. There Is No Generalized Structuralist Model of the 

Intertheoretical Reduction as Such 

 Whereas the main differences between the structuralist model and 

the GNS model can be found just by theoretically comparing both 

approaches, this dissertation exposes further differences by implementing 

the structuralist theory of science to model some intertheoretical 
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connections in some real areas of research in cognitive science. By 

modeling some of them, this dissertation uncovers a further difference 

between the structuralist model of intertheoretical reduction and the GNS 

model; namely, there is no such generalized model of intertheoretical 

reduction for the structuralists. Structuralists have characterized a formal 

definition of how a scientific theory can be reduced to another theory, but 

the structuralists have no intention of formalizing a general pattern of 

reduction for scientific practices. It is so because as we have seen in the 

previous chapters, the patterns of intertheoretical reduction can differ 

depending on the purposes and levels of explanation scientists have set for 

their research. In Chapters 5–7, three patterns of an intertheoretical 

reduction have been laid out – there could exist more. Chapter 5 lays out a 

model of intertheoretical reduction without modifications. A model of 

intertheoretical reduction with some modifications has been discussed in 

Chapter 6. Chapter 7 presents a model of reduction with a combination of 

several theories and modifications of previous theories.   

 A Reduction Model Without Modifications. The reduction model 

without modifications in Chapter 5 is exemplified by the intertheoretical 

reduction between the theory of forced compliance dissonance (DissF) as 

the reduced theory and the computational neuroscientific theory (CNT) as 

the reducing theory placed in the context of van Veen et al. 's research. In 

this case, CNT can immediately reduce DissF based on the assumption of 

the connection itself that on the brain’s level the reducing dissonance 

between cognitions is in the dorsal Anterior Cingulate Cortex (dACC) 

represented by the communication network of neurons, which involve the 

neurons’ activation and the connection’s weight. We do not need to modify 

either CNT or DissF to any other theories before we build an intertheoretical 

reduction bridge/link between the concepts of both theories. The connected 

concepts of both theories as being modeled in the theory-elements T(DissF) 

and T(CNT) can be seen in Table 8.1.  
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In this case, the intertheoretical reduction brings us relatively little 

explanatory power about the cognitive (dissonance) processes and their 

relationship with the neural network in the human brain based on such 

common assumptions. The reduction delivers nothing more than a 

confirmation that cognitive dissonance processes are connected to neurons' 

activities in the dorsal Anterior Cingulate Cortex (dACC) of the brain; that 

is, there is high activity of neurons in the dissonance case and low activity 

of neurons in the non-dissonance cases. However, we cannot know, which 

neurons from the set of neurons of dACC can be connected to which 

cognition or cognition processes that have been observed. From the 

empirical result of the observation done by van Veen et al. by fMRI we can 

just confirm that such a dissonance reduction process happens and the 

intertheoretical reduction works.  

 A Reduction Model with Modifications. The second case and the 

third case are cases of reduction of the psychological theory to the artificial 

neural network in some simulations. By such simulations, cognitive 

scientists hope to understand how the neural network in our brains can 

perform a (computational) process such that the phenomena of cognition 

emerge. For that purpose, they use artificial neural networks, which are 

inspired by how neurons work. In this second and third cases, some 

modifications are needed such that the theories can be connected reasonably.  

 In this second case of reduction, Shultz and Lepper use the Hopfield 

network to simulate dissonance reduction. This simulation shows that the 

values of specific cognitions are changing in the process of dissonance 

reduction. To build this simulation, Shultz and Lepper implement the 

Hopfield Network with some modifications. The modifications include not 

only several additional conditions or assumptions but also adding some 

constants. They can be seen in Table 8.2:  
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No. T(HN) Modifications T(HN for Consonant) 

M1 N The first modification is creating two new 

subsets of N, namely N+ and N- 
N+  N  

N-  N  

M2 C The second modification is creating two 

new subsets of C, namely Pairs and 

Conpairs. Pairs is the relation between 

sets N+ and N-. Conpairs is a relation 

between Pairs. 

Pairs  N+ N-, Pairs is a 

bijective relation. 

Pairs  C 

Conpairs  Pairs' Pairs 

C = Pairs  Conpairs  

M3 extn Removed  

M4 outn Removed  

M5  Adding a learning parameter called 

“resisti.”  

resisti 

M6 netn Modifying the law-statement.  neti = resisti j wij aj 

M7  Adding a new set of points of time (T) T 

M8  Adding a new set called ceiling, which is 

set to 1 for N+ and is set to 0.5 for N- 

ceiling 

M9  Adding a new set called floor, which is set 

to 0 for all N. 

floor 

M10 , actn Modification of the updating rule of 

activation of the neurons. Here the neurons 

are assumed just excitatory or inhibitory. 

Both concepts are reduced to A, where 

aA. 

1) ai(t+1) = ai(t) + 

neti[ceiling – ai(t)], when 

neti ≥ 0,  

  

2) ai(t+1) = ai(t) + 

neti[ai(t) – floor], when 

neti < 0, 

M11 state The term state is replaced by the term 

consonance 

consonance 

M12 E The term E is replaced by the term 

dissonance 

dissonance 

M13  Addition of the cap parameter cap 

M14  Addition of the rand% parameter rand% 

 

Table 8.2. Modifications of the Hopfield Network for the Consonance Model 

  

With these modifications to the Hopfield network’s theory-element, 

we defined a new theory-element of the Hopfield Network that is built 

especially for the Consonant model of simulation (T(HN for Consonant)). 

Therefore, the intertheoretical reduction is actually between T(DissB) as the 

reduced theory and T(HN for consonant) as the reducing theory. The 

determining links for this intertheoretical reduction can be shown in Table 

8.3:  

 



 

210 

 

Determining 

links 

T(DissB) T(HN for 

Consonant) 

Explanation 

1 Cognitions Pairs 1 connects the set Cognition to the 

set Pairs and 1 is bijective. 

2 Disscog Conpairs 2 connects the set Disscog to the 

set Conspairs and 2 is bijective. 

3 Conscog Conpairs 3 connects the set Conscog to the 

set Conspairs and 3 is bijective. 

4 Pairdiss W 4 connects the set pairdiss to the 

set of connection weight W, and 4 

is bijective. 

5 Paircons W 5 connects the set paircons to the 

set of connection weight W, and 5 

is bijective. 

6 Pairimp imp 6 connects the set Pairimp to the 

set imp and 6 is bijective. 

7 Diss Dissonance 7 connects the set diss to the set 

Dissonance and 7 is bijective. 

 

Table 8.3. The Determining Links that Connect Concepts of T(DissB) and T(HN for 

Consonance) 

 

 A Reduction Model with a Combination of Several Theories and 

Modifications. In the third case, the connectionist model uses the two-

layers feed-forward neural network with the Rosenblatt perceptron and the 

delta rule as a learning rule for this network. In this case, we see that for 

specific intertheoretical reduction the successfully reducing theory is not 

one single original theory-element, but a combination (and even with 

modification) of several theory-elements connected by determining links. 

The structuralist metatheory requires us to model this combination to 

analyze the intertheoretical reduction accurately. The combination of these 

theories can be modeled by implementing the V-pattern and the strategy 

above. The combination of these theory-elements is done by the determining 

links, which help us to build the unifying model as presented in Table 8.4:  
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No. T(RP) T(2L-

FFNN) 

T(DL) Explanations of Determining links T(RP+2L-

FFN+DL) 

1 N N’  The first link determines that N be 

identical with N' because both are the 

set of all neurons in the networks. It 

can be simplified by eliminating the 

redundant set N' in the unifying 

model.  

N 

2 N/N0 Nout N* The second link determines that all N 

besides N0 be identical with Nout and 

N*. Therefore, for the reason of 

simplification, we include only the 

Nout in the unifying model. 

Nout 

3 N0 Nin    The third determining link equates N0 

and Nin because both sets are the sets 

of input-neurons. The unifying model 

includes only Nin. 

Nin 

4 C C’ C* The fourth determining link connects 

all sets of connections in the three 

theory-elements because they refer to 

the same object in the application. 

Therefore, we can use just C.  

C 

5 B  B* The fifth determining link identifies 

the set B from T(RP) as identical 

with B* from T(DR). Hence, the 

unifying model needs just B.  

B 

6 W W’  The sixth determining links equate W 

and W'. Thus, we need just W in the 

new unifying model.  

W 

7 W, W0  W* The seventh determining link defines 

that the connection weight W* of 

T(DR) is a unification of both W and 

W0 of T(RP). Hence, we still need 

W0. 

W0 

8 Inp extn Inp* The eighth determining link equates 

Inp, extn, Inp* as the network-inputs 

for the unifying model. Therefore, we 

need only one of them.  

Inp 

9 Outp outn OUTn The ninth determining link equates 

Outp, outn, and OUTn because all of 

them is the set of the actual output of 

the network. We use only Outn 

outn 

10 fnet netn  The tenth determining link connects 

netn to fnet as its result. 

fnet, netn 

11 fact actn  The eleventh determining link 

connects actn to fact as its result. 

fact, actn 

12 fout outn  The twelfth determining link 

connects outn to fout as its result. 

fout 

 

Table 8.4. The Determining Links that Connect Concepts of T(RP), T(2L-FFNN), and 

T(DL) 
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 We can use this unifying model to simulate several phenomena of 

dissonance reduction according to the connectionist model. However, van 

Overwalle and Jordens used it in their research for a specific case, namely, 

forced compliance dissonance among children when they are exposed to a 

toy and punishment. To build this simulation, the unifying theory-element is 

adjusted as follows: (1) The unifying model consists of 4 neurons in two 

layers. (2) The connectionist model implements the linear activations for the 

output perceptron(s) in the neural network. (3) The activation of an input-

neuron will be set 1 or 0 for a toy, representing “present” or “not present.” 

Moreover, for the threat, an input neuron will be set 0, +0.5, or +1 to 

represent “not present,” “mild threat,” or “severe threat.” (4) The expected 

activation of output-neurons will be set of +1 when the outcome is present 

(e.g., play or happy), zero when absent (e.g., not play, or moderate affect), 

and -1 when the opposite outcome is present (e.g., unhappy). (5) Also, the 

learning rate for this simulation is set between 0 and 1.   

 The connectionist simulation requires not only the combination and 

modification of the several theory-elements in the artificial neural networks 

but also some modifications of the theory-element of forced compliance 

dissonance T(DissF) itself. The modifications are listed in Table 8.5:  
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No. T(DissF) Modifications T(DissF for 

Connectionist) 

M1 Cognition We build a subset of Cognition that is 

called thought. 
thought  Cognition 

M2 Cognition We build another subset of Cognition that 

is called behavior. 
behavior  Cognition 

M3 Cognition We build another subset of Cognition that 

is called emotion.  
emotion  Cognition 

M4  We build a new set called attitude, which 

expresses the relation between thought and 

behavior or between thought and emotion.   

 

This new set also should be the superset of 

Disscog and Conscog  

attitude  thought 

'behavior  thought 

'emotion.   

 

Disscog  attitude 

Conscog  attitude 

Disscog  Conscog  

attitude 

M5  We add a new magnitude of the intensity 

of attitude (attint), which expresses a 

function that maps every element of 

attitude to a rational number to express the 

strength of the attitude.  

attint: attitude → IR0  

M6 Forcecom We set the set Forcecom as a subset of 

thought 
Forcecom  thought 

M7  We add a new subset of attitude, called 

subattitude, which consists of the relation 

between Forcecom and behavior or 

between Forcecom and emotion. 

subattitude  

Forcecombehavior  

Forcecomemotion 

 

subattitude  attitude 

M8  We add a new subclass of the intensity of 

attitude, called subattint, which expresses 

a function that maps every element of 

subattitude to a rational number to express 

their strength.  

subattint: subattitude → 

IR0  

 

subattint  attint 

 

Table 8.5. Modifications of the Theory Forced Compliance Dissonance for the 

Connectionist Model 

 

 These modifications in DissF are needed because the simulation is intended 

to reflect “a view of the mind as an adaptive learning mechanism, where 

cognitive dissonance is seen as a relatively rational process in which people 

seek causal answers for why they think, feel or behave inconsistently” (van 

Overwalle and Jordens, 2002, p. 205). To make the simulation works several 

concepts in both modified theories have to be connected by the following 

determining links in Table 8.6: 
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A Reduction Model of Two Theories where the Newcomer 

Becomes a Generalization the Old One. The model of intertheoretical 

connection of the McCulloch-Pitts neuron and the Rosenblatt perceptron is a 

model of such intertheoretical reduction. This model shows how two 

theories developed in two different disciplines can relate to each other 

because one of them generalize the other. In this case, the Rosenblatt 

perceptron, which came later and was developed in artificial intelligence, is 

a further development of the McCulloch-Pitts neuron, which came first and 

was developed in neuroscience. Synchronically, the intertheoretical 

connection of both theories is an intertheoretical reduction where the 

Rosenblatt perceptron reduces the McCulloch-Pitts neuron. The determining 

links which play a decisive role in the intertheoretical reduction, or 

respectively the intertheoretical specialization are listed in Table 8.7: 
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Determining 

links 

Set in 

T(RP) 

Set in 

T(MCP-N) 

Note 

5 B × W0  a determining link that connects the relation 

between the bias of the neurons (B) and its 

connection weight (W0) in the potential 

model of the Rosenblatt perceptron (x) to the 

set of a threshold of each neuron () in the 

potential model of the McCulloch-Pitts 

Neuron (x’). λ5 is surjective. 

6 Inp Inp’ a determining link that connects the set of 

inputs (Inp) in the potential model of the 

Rosenblatt perceptron (x) and the set of 

inputs (Inp’) in the potential model of the 

McCulloch-Pitts Neuron (x’). λ6 is surjective 

because Inp  Inp’. 

7 Outp Outp’ a determining link that connects the set of 

outputs (Outp) in the potential model of the 

Rosenblatt perceptron (x) and the set of 

outputs (Outp’) in the potential model of the 

McCulloch-Pitts Neuron (x’). λ7 is surjective 

because Outp  Outp’. 

9 fact fact’ a determining link that connects the 

activation function of neurons (fact) in the 

potential model of the Rosenblatt perceptron 

(x) and the activation function of neurons 

(fact’) in the potential model of the 

McCulloch-Pitts Neuron (x’). λ9 is surjective 

because fact  fact’. 

10 fout fout’ a determining link that connects the output 

function of neurons (fout) in the potential 

model of the Rosenblatt perceptron (x) and 

the output function of neurons (fout’) in the 

potential model of the McCulloch-Pitts 

Neuron (x’). λ10 is surjective because fout  

fout’. 

 

Table 8.7. The Determining Links that Connect Concepts of T(RP) and T(MCP-N) 

 

8.2.1.3. The Empirical Status of the Intertheoretical Reduction 

 The third point to mention concerns the epistemological and 

ontological status of the intertheoretical connections, especially 

intertheoretical reduction. These issues are connected to some revisions 

made by DFH and by van Riel for the GNS model above. In the structuralist 

model, we can explain the epistemological status of an intertheoretical 

connection in general by the links connecting the potential models of both 
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connected theories. The structuralist model uses the interpreting links to 

show that the intertheoretical reduction has something to do with the 

explained phenomena. The interpreting links connect the potential models of 

one theory-element to the partial potential model of the other theory-

element. 

To understand how this works, we should remember what kinds of 

elements of the potential models and the partial potential models of a 

theory-element. A potential model consists of the sets that represent all basic 

concepts of the theory and all the basic relations among those concepts. 

Most of these concepts and relations are T-non-theoretical, but some of 

them are T-theoretical. By defining the partial potential models Mpp(T), we 

omit the T-theoretical elements from the potential models Mp(T) of a 

theory-element T by using a function r: Mp(T) → Mpp(T). Now we have the 

partial potential models of T that only consist of T-non-theoretical elements. 

Suppose we have a reducing theory T* that is connected partially through 

the intertheoretical reduction to T as the reduced theory. The intertheoretical 

reduction is a set that consists of several determining links, which connect 

several concepts or relations from the Mp of both theories. We can define 

the echelon subsets e of the Mp of both theories, consisting of only and all 

the connected concepts or relations related by the intertheoretical reduction. 

The intertheoretical reduction is now in the form of entailment links that 

connect both echelon subsets. To determine the empirical claim of the 

intertheoretical reduction, we can project e1(T) to the field of partial 

potential models Mpp(T) by using a function r*: e1(T) → f1(T) and get f1(T) 

as an echelon subset of Mpp(T). f1(T) is the set of local empirical claims of 

the intertheoretical reduction on the side of T. The interpreting links 

connecting the Mpp(T) and the Mp(T*) show us, which non-theoretical 

concepts of T, which come from other theories, are related by this 

intertheoretical reduction to T*; they are defined by f1(T).   
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 The T-non-theoretical elements that can be defined through defining 

f1(T) – where T consists of the reduced theory-element – in the models 

defined in Chapters 5–7 can be shown as follows: In the first case of 

Chapter 5, the forced compliance dissonance is reduced by the 

computational neuroscientific theory. The structuralist model of 

intertheoretical reduction leads to characterize the T-non-theoretical terms 

of the forced compliance dissonance in Table 8.8: 

 

no. The T-non-theoretical 

Terms (Concepts) 

Category: Observational 

term or concept of other 

theories 

Explanation 

1 Time an observational term a set of points of time. 

2 Cognition an observational term a set of cognitions. 

3 Disscog an observational term a set of pairs of 

cognitions, which are 

dissonant each other. 

4 Conscog an observational term a set of pairs of 

cognitions, which are 

consonant with each 

other.  

5 Forcecom an observational term a set of forced 

compliance, which is a 

subset of Cognition. 

 

Table 8.8. The Local Empirical Claims of the Intertheoretical Reduction between T(DissF) 

and T(CNT) 

 

 In the second case in Chapter 6, namely consonance simulation, the 

theory of cognitive dissonance is reduced by the Hopfield network. The 

structuralist model of intertheoretical reduction characterizes the T-non-

theoretical terms of the theory of cognitive dissonance in Table 8.9:  
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no. The T-non-theoretical 

Terms (Concepts) 

Category: Observational term 

or concept of other theories 

Explanation 

1 Cognition An observational term The set of cognitions 

2 Disscog An observational term The set of pairs of 

cognitions, which are 

dissonant each other  

3 Conscog An observational term The set of pairs of 

cognitions, which are 

consonant with each 

other  

 

Table 8.9. The Local Empirical Claims of the Intertheoretical Reduction between T(DissB) 

and T(HN for Consonance) 

 

 In the third case in Chapter 7, the connectionist simulation, the 

modified theory of forced compliance dissonance is reduced to the two-

layer neural network, which consists of three theories, i.e., the Rosenblatt 

perceptron, the two-layer architecture of the feed-forward neural network, 

and the delta rule as its learning rule. The T-non-theoretical terms of the 

modified forced compliance dissonance characterized by the modeling in 

Chapter 7 are in Table 8.10:  
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no. The T-non- 

theoretical Terms 

(Concepts) 

Observational term or 

concept of other 

theories 

Explanation 

1 Cognition An observational term The set of cognitions 

2 thought An observational term, 

but also a concept from 

another theory  

The set thought is a subset of the set 

Cognition concerning the 

attributional reformulation 

advocated by Cooper and Fazio 

(1984)  

3 behavior An observational term, 

but also a concept from 

another theory  

The set behavior is a subset of the 

set Cognition concerning the 

attributional reformulation 

advocated by Cooper and Fazio 

(1984)  

4 emotion An observational term, 

but also a concept from 

another theory  

The set emotion is a subset of the set 

Cognition concerning the 

attributional reformulation 

advocated by Cooper and Fazio 

(1984)  

5 attitude An observational term, 

but also a concept from 

another theory  

The set attitude, as a superset, unites 

both the set of cognitive dissonance 

(Disscog) and the set of cognitive 

consonance (Conscog), which are 

understood as attitude to objects 

6 Forcecom Observational term The set of forced compliance, which 

is a subset of Cognition. 

7 subattitude An observational term, 

but also a concept from 

another theory  

The subset subattitude is a subset of 

the set attitude concerning the set 

Forcecom   

8 imp Observational term The set of importance of cognition 

9 reward Observational term The set of magnitude of reward or 

punishment 

 

Table 8.10. The Local Empirical Claims of the Intertheoretical Reduction between T(DissF 

for Connectionist) and T(RP+2L-FFN+DL for Connectionist) 

 

  In the third case, we can see the reasons for the distinction between 

T-theoretical and T-non-theoretical concepts, namely that the observational 

terms are characterized not merely by a pure observation alone, but also by 

involving other theories. It is not decided whether the terms, which we 

categorize as “observational terms,” are purely observational terms or 

employ concepts from other theories. The limitations of this dissertation do 

not allow me to be more explicit about this issue. 
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 The fourth case, namely the intertheoretical reduction of the 

Rosenblatt perceptron to the McCulloch-Pitts neuron, is not a case of the 

global intertheoretical relation but a case of the local intertheoretical 

connection since both theories are close together though from two different 

disciplines. The McCulloch-Pitts neuron becomes a special case of the 

Rosenblatt perceptron. Therefore, we do not need to discuss a local intended 

application. The Rosenblatt perceptron’s empirical claims become smaller in 

its specialization, the McCulloch-Pitts neuron because of an additional set T 

and the restrictions applied to the sets , Inp, and Outp.  

 After discussing four cases above, some conclusions about the 

structuralist model’s distinctive characteristics in comparison with the GNF 

model of intertheoretical reduction can be drawn: (1) The structuralist is 

required to model the theories and the intertheoretical reduction in set theory 

or model theory. This requirement allows for a higher degree of distinctness 

and sharpness of analysis. (2) The structuralist model does not build a 

general model of intertheoretical reduction like the GNS model. The 

structuralist equips us with definitions of theory-element and various 

intertheoretical connections and relations – and reduction is just one of them 

– to model and analyze those relationships case by case with great detail and 

accuracy. (3) By implementing the r* function, the structuralist can also 

specify how its model of intertheoretical reduction refers to the 

observational fields. It means that the intertheoretical reduction is not 

merely epistemological, and it does have a certain relation with the observed 

phenomena. In the structuralist theory of science, there are various types of 

intertheoretical connections that work together to produce a successful 

intertheoretical reduction. These primary intertheoretical connections are 

determining links and entailment links that operate at the T-theoretical level. 

Both determine whether the relation being constructed – not only reduction 

– is full or partial. Another type of connection is the interpreting links, 



 

222 

 

which operate at the T-non-theoretical level and define the reduction’s 

empirical claims. 

 

8.2.2. Unity of Science 

 In the discussion about the unity of science, there are two opposite 

positions. The first one is the position of philosophers who believe in the 

notion of the unity of science. They have a long history of how they try to 

find a basis for such a notion. If most of the history of philosophy – since 

antiquity until modern philosophy – the unity of science or knowledge had a 

speculative or metaphysical basis, the first time the idea of the unity of 

science got a more empirical basis, was when some philosophers in the 

Vienna Circle began their movement following Mach and pursuing the 

following goals: “1. To create new foundations for physics with strong 

consideration of the results of sense physiology; one could even speak of the 

attempt to give the concepts and principles of physics a psychophysiological 

basis. 2. Restore the unity of all empirical sciences. 3. To finally ‘eradicate’ 

the metaphysical speculations from the field of science.” (Moulines, 2008, 

p. 26). This current is still being developed and refined until now. The other 

position is that of the Stanford philosophers, who do not believe in the idea 

of the unity of science. They are John Dupré, Ian Hacking, Peter Galison, 

Patrick Suppes, and Nancy Cartwright. They assume the notion of the 

disunity of science and plurality based not only on the methodological point 

of view toward science and scientific practice but also on a metaphysical 

point of view. (Cat, 2017) Dupré has characterized this position by three 

pluralistic theses as follows: “(1) against essentialism, there is always a 

plurality of classifications of reality into kinds; (2) against reductionism, 

there exists equal reality and causal efficacy of systems at different levels of 

description, that is, the micro level is not causally complete, leaving room 

for downward causation; and (3) against epistemological monism, there is 

no single methodology that supports a single criterion of scientificity, nor a 



 

223 

 

universal domain of its applicability, only a plurality of epistemic and non-

epistemic virtues” (Cat, 2017).  

 Between both positions, this dissertation takes a unique position. On 

the one hand, it takes a view similar to the disunity of science. The 

structuralist metatheory of science starts with an assumption that scientific 

theories are already there, created through various assumptions, approaches, 

goals, etc., without supporting the agendas of essentialism, reductionism, 

and epistemological monism. In the modeling, in Chapters 3, 5–7, we can 

see that our models do not make any claims about those three notions, 

which are generally the basis of the unity of science. However, it does not 

mean that the structuralist theory of science abandons the notion of the unity 

of science. It also supports a certain notion of the unity of science, but not in 

the fashion above. This position has a great similarity with the integrative 

pluralism (Mitchell, 2003).2  

 The structuralist metatheory of science sees that being in connection 

with other scientific theories is one of the essential features of a scientific 

theory. In Chapter 2, many kinds of intertheoretical connections have been 

laid out to describe how scientific theories stay connected with each other in 

a synchronic relationship. In Intertheoretical Relations and the Dynamic of 

Science (2014), Moulines explicates several other intertheoretical 

connections in diachronic perspective. According to the structuralist 

metatheory of science all these intertheoretical connections build theory-

nets and theory-holons as their results both in synchronic and diachronic 

perspectives. According to the structuralist theory of science, the unity of 

science, at least tendentially, is based on intertheoretical connections that 

connect the classes or concepts of the connected theories (for some practical 

reasons). Let us see how our investigation has provided some ground for 

ascertaining this tendency toward a unification of science, at least partially.  

 
2 A comparison and a relation between the structuralist theory of science and the integrative 

pluralism will not be discussed here because they are not the focus of this dissertation.  
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 First, in Chapters 5–7, theories from the same or various disciplines 

are connected and build (fragments of) a theory-holon. These connections 

can be modeled and precisely characterized by implementing model theory. 

In this way, certain concepts between two or more theories can be connected 

precisely. This strategy works very well to identify the intertheoretical 

connections within a discipline and an interdisciplinary setting.   

 Second, in Chapters 5–7, the intertheoretical relations modeled are 

based on several real cases. The scientific theories are not automatically 

connected by themselves but are connected through the scientists' activities 

for specific practical purposes or goals, which have been predetermined 

before. Connecting two concepts from two theories, mainly from different 

disciplines, is not a simple task. There are some cases where the connections 

can be identified clearly, such as in the Festinger theory of cognitive 

dissonance and its specializations or the relation between the McCulloch-

Pitts Neuron and the Rosenblatt perceptron. However, sometimes the 

connections are not as clear as in the case of the forced compliance 

dissonance and the computational neuroscientific theory. There are cases 

where we need to combine several theories in order to be clear enough about 

the existing connections, such as in the intertheoretical connections between 

the forced compliance dissonance and the unified theory coming from the 

Rosenblatt Perceptron, the two-layers feed-forward neural network, and the 

delta rule. Sometimes we also need to determine several constants and 

modify the theory so that the connections ‘work’ well, such as in the relation 

between the theory of cognitive dissonance and the Hopfield network. This 

dissertation demonstrates that the complexity of the problem of 

intertheoretical connections increases when we deal with interdisciplinary 

relations. 

 Third, in the simulation case, we see that a simulation must have a 

more specific goal than an explanation because it must cover additional 

aspects of the phenomena simulated. To model intertheoretical connections 
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between a theory of specific phenomena and the computational theories for 

simulation, we have several things to do, namely (1) modification of the 

simulated theory to make it suitable to the simulation's goal. the 

modification can be seen as a specialization of the original theory-element. 

(2) Building a simulation combination and modification of several 

simulating theories – normally computational theories – are needed by 

determining certain constants or constraints, such that the simulation 

becomes realistic enough. (3) A complete model of intertheoretical 

connections for a simulation can only be modeled after finishing both steps 

above.   

In connection to the idea of the unity of science, this research shows 

that the structuralist theory of science is powerful enough to model various 

intertheoretical connections in real science, not only within one single 

discipline but also between several disciplines. By modeling and analyzing 

those intertheoretical connections, my dissertation shows that the unity of 

science without essentialism, reductionism, and epistemological monism is 

possible. The prospect of the unity of science responds to the possibility of 

different kinds of intertheoretical connections connecting various scientific 

theories from different fields, thereby forming (fragments of) theory-holon. 

It corresponds to the contention that being connected with other theories is 

one of the essential characteristics of real scientific theories. 

 

8.3. Interdisciplinary Research and Cognitive Science 

 As discussed in Chapter 1 the new epoch of interdisciplinarity began 

with uneasiness about the loss of the unity of science. Since it is a recent 

trend in science, people still are worried about how to understand 

interdisciplinarity precisely. It is not an easy task, because there are many 

similar-sounding terms around. The differences between them were 

explained in Chapter 1. For understanding and practicing interdisciplinarity 

on the level of theoretical integration, it is not enough to characterize the 
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meaning of those terms precisely but also the connections between them that 

produce realistic and fruitful interdisciplinary researches. In Chapters 5–7, 

this dissertation discussed three models of intertheoretical relations of three 

distinctive interdisciplinary researches from the field of cognitive science. 

These cases show how the structuralist theory of science lets us map the 

intertheoretical connections between theories from various disciplines 

within real research programs.  

  The first is the intertheoretical reduction between Festinger's theory 

of cognitive dissonance from psychology and the Hawkins-Kandel 

Computational Neuroscientific Theory (CNT). This case is an example of 

the case of the mind-body problem: How our psychological phenomena are 

related to how the human brain works. In this case, the research examined a 

relation between the phenomena of cognitive dissonance and the activity of 

neurons in the brain. In this modeling, the theory of forced compliance 

dissonance, which underlies the van Veen et al. psychological experiment, is 

connected to the Hawkins-Kandel computational neuroscientific theory 

which can be applied to explain the activity of neurons of the dorsal 

Anterior Cingulate Cortex (dACC) during the moments of dissonance. The 

structuralist modeling of the intertheoretical relation serves as tools to 

specify the relations among terms from both theories according to this 

research.    

 The second case is a case of analogy between mind and computer, 

especially artificial intelligence. Shultz and Lepper built a simulation of the 

Festinger theory of cognitive dissonance by using the Hopfield network. 

This simulation is called the consonance model. This simulation aims to 

represent the mind as a mechanism that maintains some equilibrium and the 

dissonance reduction as a solving of the constraint satisfaction problem 

between someone's beliefs and behaviors. The structuralist modeling of the 

intertheoretical connections is applied to map not only the connection 
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among the terms of both theories but also the modifications of the Hopfield 

Network to meet the requirements and the goal of the simulations.   

 Finally, the third case, the case of connectionist simulation, is also a 

case of simulation of cognitive dissonance by using artificial intelligence. 

Nevertheless, the goal of the simulation and the type of artificial neural 

network are different. The purpose of the connectionist model is to simulate 

“a view of the mind as an adaptive learning mechanism, where cognitive 

dissonance is seen as a relatively rational process in which people seek 

causal answers for why they think, feel or behave inconsistently” (van 

Overwalle and Jordens, 2002, p. 205). The connectionist model implements 

a combination of the Rosenblatt perceptron, the two-layers feed-forward 

neural network, and the delta rule. This combination of the three and the 

forced compliance dissonance theory itself still need to be adjusted 

according the purpose of the simulation, before they can be combined. The 

detailed steps for building the structuralist model for this simulation are 

explained in Chapter 7.   

Both cases in Chapters 6 and 7 show that to simulate certain 

phenomena, just applying some theories is not enough. A particular goal of 

simulation has to be set for determining the combination and adjustments to 

the theories. It leads to an interesting result, that about specific phenomena 

it is possible to build various simulations by setting different goal, 

emphasizing and focusing on different aspects, applying and combining 

different theories. Various simulations made our understanding of the 

phenomena more diverse in perspective. However, it brings us a new 

challenge to integrating them, such that diverse knowledge of certain 

phenomena does bring to comprehensiveness and not to contradiction. For 

answering this challenge, the author believes that the structuralist theory of 

science can be applied as follows: (1) The first step is characterizing the 

unifying theory-element for each simulation by implementing V-pattern and 

strategy. (2) The second step is adjusting and combining the unifying 
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theory-elements to build a unifying theory-element for unifying simulation. 

Of course, we still need to make further research to test how it works.  

 As we have discussed in Chapter 1, Ezrquerro and Manrique 

categorized the intertheoretical relations in cognitive science in the 

following: (1) classical view, (2) connectionist revision, (3) pragmatist 

approach, and (4) the reductionist approach. Different from the structuralist 

model of intertheoretical relation, this categorization is based on different 

positions regarding the notion of a privileged level. In connection with these 

kinds of intertheoretical relation in cognitive science, the structuralist model 

does not belong to one of them and does not serve their agendas. However, 

the structuralist model of intertheoretical connection can be implemented by 

them to build their model formally. The structuralist modeling offers 

detailed modeling and precise analysis in return. This offer can also be seen 

in the work of John Bickle, who applied the structuralist model for the 

reductionist approach, and in this dissertation, which applies to 

connectionist and other reductionist approaches.  
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Chapter 9 

Some Concluding Remarks and Prospects for Future 

Research 

 

 

The structuralist theory of science is a fruitful theory to model single 

scientific theories so that we can understand their inner structure and model 

the intertheoretical connections between some theories within one and the 

same discipline and between theories from various disciplines.  

For modeling intertheoretical connections, the structuralist theory of 

science uses two most basic intertheoretical connections, namely 

determining links and entailment links. From these basic intertheoretical 

connections, we can model the various kinds of intertheoretical relations, 

either diachronically or synchronically. As for the results of intertheoretical 

connections, the structuralist theory of science differentiates them into two 

types, namely theory-net and theory-holon. Theory-nets are results of 

intertheoretical connections between theories in a close relationship, 

whereas theory-holons are results of intertheoretical connections between 

theories in global science. They can be either from one discipline or various 

disciplines. However, the paradoxical result from the analysis of empirical 

claims of theory-holons is that their empirical claims are not global, but 

local.  

In this dissertation, the structuralist theory of science is applied to 

model and analyze intertheoretical connections between the theories from a 

single discipline and from various disciplines – interdisciplinary cases – in 

real scientific practice. There are four models of intertheoretical relations 

between theories from a single discipline presented here. They are (1) the 

model of intertheoretical specialization between the forced compliance 

dissonance and the general theory of cognitive dissonance made by 
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Westermann, (2) the model of intertheoretical specialization of architectures 

of neural networks, and (3) the unifying relation between the Rosenblatt 

perceptron, the two-layers feed-forward neural network, and the delta rule. 

The model of intertheoretical relations for interdisciplinary cases presented 

here are (1) The Festinger theory of cognitive dissonance as related to the 

Hawkins-Kandel computational neuroscientific theory (CNT), (2) the model 

of intertheoretical reduction and intertheoretical specialization between the 

McCulloch-Pitts neuron model and the Rosenblatt perceptron – It is a 

unique relationship because both theories are from two different fields, but 

they are very closely related, (3) the Festinger theory of cognitive 

dissonance as related to the Hopfield network for the consonance model of 

simulation, and (4) the Festinger theory of cognitive dissonance as 

associated with the unified theory between the Rosenblatt perceptron, the 

two-layers feed-forward neural network and the delta rule for the 

connectionist model of simulation.  

Based on all models that have been built in this dissertation, some 

conclusions can be drawn. First, the intertheoretical relations in 

interdisciplinary fields can be modeled formally like other intertheoretical 

relations by connecting the theories’ potential models. The main difference 

lies in the basic sets of the respective potential models, whose elements 

depend on the discipline, to which the theories belong. Second, the most (if 

not all) models of intertheoretical connections in interdisciplinary research 

will not fulfill the definition of entailment links concerning the respective 

potential model. The determining links play crucial roles in building their 

models. In most (if not all) cases, entailment links connect only the echelon 

partial subset of the respective partial models. Third, the case of synchronic 

intertheoretical relation between the McCulloch-Pitts neuron and the 

Rosenblatt perceptron is not an interdisciplinary relation, but cross-

disciplinary relation, where a theory of neuron in neuroscience is taken over 

to formulate a theory of perceptron in computer science (see Chapter 1, 
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footnote 1, p. 8). For cross-disciplinary relations, it is safe for now to 

consider the first point is correct.   

This research delivers some contributions to the philosophy of 

science as well as to interdisciplinary studies, especially in cognitive 

science, from where the examples come. For the philosophy of science, this 

research shows that there are many kinds of intertheoretical connections – 

not only intertheoretical reduction – that deserve more attention from the 

scientists and the philosopher of science. Secondly, to model a successful 

intertheoretical reduction, we need other kinds of intertheoretical 

connections that map the links between the terms or concepts of the 

connected theories. Thus, the structuralist theory of science can deliver a 

more detailed model than the generalized Nagel-Schaffner model. Thirdly, 

this research shows us a unique kind of the unity of science. The idea of the 

unity of science envisaged in the present work is not based on essentialism, 

reductionism, and methodological monism. However, it is based on practical 

reasons for and the goals of the researches. The unity of science promoted 

here is the result of connecting scientific theories of single or various 

discipline(s) through intertheoretical connections. However, the unity of 

science envisaged here does not only contain the epistemologically correct 

links without observational or empirical truth.  

Moreover, for interdisciplinary research, primarily cognitive science, 

this research is the first attempt to deliver mathematical models of 

intertheoretical connections between theories. We still have to build more 

models or maps of intertheoretical links for more interdisciplinary research 

to obtain a more comprehensive explanation of how scientific theories can 

be combined in interdisciplinary research to achieve its goal effectively. 

From this attempt to build several models of intertheoretical connections, 

this dissertation characterizes the V-pattern and strategy, that can serve as a 

procedure for combining several theories given as theory-elements and for 

building a new unifying theory-element. Finally, to explain some 
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phenomena – of which we cannot have a direct observation – some 

scientists attempt to develop a simulation to deeper comprehend the 

phenomena in question. It is the case for both simulations that we model in 

Chapters 6 and 7. To create a simulation, we need a more complex 

combination of theories rather than to deliver an explanation because we 

attempt to mimic the phenomenon itself. The structuralist modeling can 

model not only intertheoretical connections for creating a simulation but 

also specific adjustments needed.  

 Indeed, this research is limited to modeling and mapping the 

intertheoretical relations both within a discipline and in some 

interdisciplinary contexts. Still, this research can be extended through 

several possible types of research. For example, (1) Inspired by the 

application of Bayesian networks to the general Nagel-Schaffner account of 

reduction, we can apply Bayesian networks to the structuralist account to 

measure the degree of confirmation of the intertheoretical connections. (2) 

With the development of machine learning and artificial intelligence, I see a 

possibility to combine this research with some approaches in these fields 

such as the artificial neural network and reinforcement learning to write a 

computer program that might help us in combining theories or other 

intelligent models, tracking, and documenting the relations between them. 
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